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Abstract. In this paper, we study the computational complexity of
the commutative determinant polynomial computed by a class of set-
multilinear circuits which we call regular set-multilinear circuits. Reg-
ular set-multilinear circuits are commutative circuits with a restriction
on the order in which they can compute polynomials. A regular circuit
can be seen as the commutative analogue of the ordered circuit defined
by Hrubes, Wigderson and Yehudayoff [5]. We show that if the commu-
tative determinant polynomial has small representation in the sum of
constantly many regular set-multilinear circuits, then the commutative
permanent polynomial also has a small arithmetic circuit.

Keywords: Hardness of determinant · Set-multilinear circuits ·
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1 Introduction

Arithmetic circuit complexity studies the complexity of computing polynomi-
als using arithmetic operations. Arithmetic circuits are a natural computational
model for computing and describing polynomials. Arithmetic circuit is a directed
acyclic graph with internal nodes labeled by + or ×, and leaves labeled by either
variables or elements from a underlying field F. The complexity measures asso-
ciated with arithmetic circuits are size, which measures number of gates in the
circuit, and depth, which measures length of the longest path from a leaf to the
output gate in the circuit. Two important examples of polynomial family are
the determinant and the permanent polynomials. The determinant polynomial
is ubiquitous in linear algebra, and it can be computed by polynomial-sized arith-
metic circuits (see e.g., [3]). On the other hand, the permanent of 0/1 matrices
is #P-complete [10], where #P corresponds to the counting class in the world of
Boolean complexity classes. Thus, it is believed that, over fields of characteristic
different from 2, the permanent PERM = (PERMn) polynomial family cannot
be computed by any polynomial-sized circuit family. A central open problem of
the field is proving super-polynomial size lower bounds for arithmetic circuits
that compute the permanent polynomial PERMn. Motivated by this problem,
Valiant, in his seminal work [9], defined the arithmetic analogues of P and NP:
denoted by VP and VNP. Informally, VP consists of multivariate (commutative)
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polynomials that have polynomial size circuits. Valiant showed that PERM
is VNP-complete w.r.t. projection reductions. Thus, V P �= V NP iff PERMn

requires arithmetic circuits of size super-polynomial in n.
Set-multilinear circuits are introduced in the work of [7]. Let F be a field and

X = X1 � X2 � · · · � Xd be a partition of the variable set X. A set-multilinear
polynomial f ∈ F[X] w.r.t. this partition is a homogeneous degree d multilinear
polynomial such that every nonzero monomial of f has exactly one variable
from Xi, for all 1 ≤ i ≤ d. Some of the well-known polynomial families like
the permanent PERMn and the determinant DETn, are set-multilinear. The
variable set is X = {xij}1≤i,j≤n and the partition can be taken as the row-wise
partition of the variable set. I.e. Xi = {xij | 1 ≤ j ≤ n} for 1 ≤ i ≤ n. In
this work, we study the set-multilinear circuit complexity of the determinant
polynomial DETn. A set-multilinear arithmetic circuit C computing f w.r.t.
the above partition of X, is a directed acyclic graph such that each in-degree 0
node of the graph is labeled with an element from X ∪ F. Each internal node
v of C is of in-degree 2, and is either a + gate or × gate. With each gate v
we can associate a subset of indices Iv ⊆ [d] and the polynomial fv computed
by the circuit at v is set-multilinear over the variable partition

⊔
i∈Iv

Xi. If v
is a + gate then for each input u of v, Iu = Iv. If v is a × gate with inputs
v1 and v2 then Iv = Iv1 � Iv2 . Clearly, in a set-multilinear circuit every gate
computes a set-multilinear polynomial (in a syntactic sense). The output gate of
C computes the polynomial f , which is set-multilinear over the variable partition⊔

i∈[d] Xi. The size of C is the number of gates in it and its depth is the length
of the longest path from an input gate to the output gate of C. Additionally, a
set-multilinear circuit C is called a set-multilinear formula if out-degree of every
gate is bounded by 1.

Set-multilinear arithmetic circuits are a natural model for computing set-
multilinear polynomials. It can be seen that each set-multilinear polynomial can
be computed by a set-multilinear arithmetic circuit. For set-multilinear formu-
las, super-polynomial size lower bounds are known [8]. Super-polynomial lower
bounds for a class of set-multilinear ABPs computing the determinant DETn is
shown in [1]. It is known that proving super-polynomial lower bound result for
general set-multilinear circuits computing the permanent polynomial PERMn

would imply that PERMn requires super-polynomial size non-commutative
arithmetic circuits, and this is an open problem for over three decades. Non-
commutative circuits are a restriction on the computational power of circuits.
Though non-commutative circuits compute non-commutative polynomials, one
can study what is the power of commutativity in computing the DETn poly-
nomial. Noncommutative arithmetic circuit models are well studied, see e.g.,
[2,5,6]. In [2], it was shown that computing the non-commutative determinant
polynomial is as hard as computing the commutative permanent polynomial.

1.1 Our Results

To explain our results, we first define the computational model that we study.
Let Sn denote the set of all permutations over the set {1, 2..., n}.
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Definition 1 (Regular Set-Multilinear Circuits). Let X = X1 �X2 � · · · �
Xd be a partition of the variable set X. Let σ ∈ Sd. A set-multilinear circuit C
that computes a set-multilinear polynomial f ∈ F [X] w.r.t the above partition
is called regular set-multilinear circuit w.r.t σ ∈ Sd, if every gate v in C is
associated with an interval Iv w.r.t σ ∈ Sd. In other words, σ ∈ Sd defines
an ordering (σ(1), σ(2), · · · , σ(d)) and every gate v in C is associated with an
interval Iv w.r.t σ-ordering (σ(1), σ(2), · · · , σ(d)).

Let C be a regular set-multilinear circuit w.r.t σ computing a commutative
polynomial f of degree d. Let v be a gate in C computing the polynomial fv of
degree k. By definition, fv is a set-multilinear polynomial w.r.t Iv = [σ(i), σ(i +
1), · · · , σ(i+k)], where i <= d−k. Let order(fv) = Iv = (σ(i), σ(i+1), · · · , σ(i+
k)).

Since for each gate v in C, Iv can be viewed as an interval w.r.t σ ∈ Sd, the
two children u and w of v can be designated as left and right child. In particular,
for each product gate v with children u and w such that Iv = Iu � Iw, we refer
to u as the left child of v, and w as the right child of v.

We make the following observations about regular set-multilinear circuits:

– If v is an input gate (leaf node) labeled by a field constant, then order(fv) =
(), where () is the empty sequence. If v is an input gate labeled by a variable
xi,j , then order(fv) = (i).

– If v is an product gate, then order(fv) = order(fu) � order(fw), where the
interval order(fv) is obtained by appending order(fu) with order(fw).

– If v is a sum gate, then order(fv) = order(fu) = order(fw).

One can define several versions of non-commutative DETn polynomial. Non-
commutative circuits computing the DETn polynomial, where the first index
of the variables in each monomial is in increasing order, can be seen as reg-
ular set-multilinear w.r.t the identity permutation. In [2], it was shown that
computing the non-commutative determinant polynomial is as hard as comput-
ing the commutative permanent polynomial. A natural next step is to find the
set-multilinear circuit complexity of the commutative determinant polynomial.

We study the computational complexity of the commutative determinant
polynomial DETn computed by a sum of regular set-multilinear circuits. We
show that if the determinant polynomial DETn is computed by a circuit C of
size s, where C is a sum of constantly-many regular set-multilinear circuits, then
we can modify C to compute the permanent polynomial PERMnε , where ε > 0,
such that the new circuit size is polynomially related to the size of C. We remark
that in our result, there is no restriction on the number of different parse tree
types/shapes (see e.g., [1]) allowed in each regular circuits.

One can view this as a generalization of the result shown in [2] to a class
of set-multilinear circuits computing the determinant polynomial DETn. We
obtain our result by carefully combining Erdös-Szekeres theorem [4] and some
properties that we prove about regular set-multilinear circuits and the result of
[2].
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2 Preliminaries

2.1 Determinant and Permanent

Definition 2 (Commutative Determinant and Permanent). Given the set of
variables X = {xi,j | 1 ≤ i, j ≤ n}, the n × n commutative determinant and the
n × n commutative permanent over X, denoted by DETn(X) and PERMn(X)
respectively, are n2-variate polynomials of degree n given by:

DETn(X) =
∑

σ∈Sn

sgn(σ)
n∏

i=1

xi,σ(i)

PERMn(X) =
∑

σ∈Sn

n∏

i=1

xi,σ(i),

Non-commutative determinant can be defined in various ways depending on
the order in which variables are multiplied. One natural type of non-commutative
determinant, called the Cayley determinant CDETn, is one where the order of
multiplication is the identity permutation w.r.t first index of the variable.

2.2 Erdös-Szekeres Theorem

Theorem 1 (Erdös-Szekeres Theorem, [4]). Let n be a positive integer. Let
S be a sequence of distinct integers of length at least n2 + 1. Then, there exists
a monotonically increasing subsequence of S of length n + 1, or a monotonically
decreasing subsequence of S of length n + 1.

Let A,B be two n × n matrices. The following are known facts about the deter-
minant and permutations.

Fact 1: det(A × B) = det(A) × det(B).
Fact 2: The determinant of a permutation matrix is either +1 or −1.
Fact 3: Let τ, σ ∈ Sn. Then sign(τ ◦ σ) = sign(τ) × sign(σ).

For n ∈ N, let [n] = {1, 2, · · · , n}.

3 Hardness of the Determinant: Sum of Two Regular
Set-Multilinear Circuits

In this section, we show that if the determinant polynomial is computed by a
sum of two regular set-multilinear circuits then the permanent polynomial can
also be represented as a regular set-multilinear circuit. This result involves all
the techniques which will be used in the main result and it is easy to explain
in this sum of two regular circuits model. In the next section, we will prove
the result for sum of constantly many regular set-multilinear circuits. We note
that all our polynomials are commutative. For the purpose of readability, we
sometimes ignore the floor operation.
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Let X = {xi,j | 1 ≤ i, j ≤ n} be the set of variables. Let Xi = {xij | 1 ≤
j ≤ n} for 1 ≤ i ≤ n. Our aim is to show that if C = Cσ1

1 + Cσ2
2 computing

the determinant polynomial DETn(X) ∈ F[X], where the circuits Cσ1
1 , Cσ2

2 are
regular set-multilinear circuits w.r.t σ1, σ2 ∈ Sn respectively, then there is an
efficient transformation that converts the given circuit C to another circuit C ′

computing the permanent polynomial of degree
√

n/2. Given C = Cσ1
1 + Cσ2

2

computing DETn(X), if σ1 = σ2 then we can directly adapt the result of [2]
and get a circuit C ′ computing the permanent polynomial of degree n/2. If n
is not even then we can substitute variables in the set Xn suitably from {0, 1}
such that C computes DETn−1(X) before using the result of [2].

The case of σ1 �= σ2 needs more work that we explain now. The idea is to use
the well known Erdös-Szekeres Theorem [4] that guarantees that any sequence
of n distinct integers contains a subsequence of length at least

√
n that is either

monotonically increasing or decreasing. By viewing σ = (σ(1), σ(2), · · · , σ(n))
as a sequence of integers, we apply the above result to permutations σ1, σ2 ∈ Sn.
We first apply it to σ1 = (σ1(1), σ1(2), ..., σ1(n)) and let A = {i1, i2, · · · , i√n} be
the set of indices that appear in this monotone subsequence. If the subsequence
is monotonically increasing then we do substitutions in DETn(X) so that it com-
putes the determinant polynomial of

√
n × √

n matrix whose rows and columns
are labeled by the elements of set A. This is done by making suitable substitu-
tions to the variables in X from X ∪ {0, 1} in the given circuit C. After this we
get a circuit C ′ from C that computes DET√

n(X ′) where X ′ =
⊔

i∈A Xi.
We note that C ′ = Cσ1′

1 + Cσ2′
2 where σ1′, σ2′ ∈ S√

n and σ1′ =
(σ1′(1), σ1′(2), · · · , σ1′(

√
n)) is in increasing order. If σ1′ = σ2′, then we can use

[2] and get the permanent of degree
√

n/2. Otherwise, we apply Erdös-Szekeres
Theorem to permutations σ1′, σ2′. In particular, this will give us a monotone
subsequence in σ2′ = (σ2′(1), σ2′(2), · · · , σ2′(

√
n)) with length at least n1/4. If

this sequence is increasing, then the same subsequence is also increasing in σ1′

as we already noted that it is in increasing order. Let A1 = {j1, j2, · · · , jn1/4} be
the set of indices that appear in this monotone subsequence. Now we project, as
before so that it computes the determinant polynomial of a n1/4 × n1/4 matrix
whose rows and columns are labeled by the elements in set A1. After substituting
from X ′ ∪{0, 1} for each variable in the given circuit C ′, we get a regular circuit
C

′′
that computes DETn1/4(X ′′), where X ′′ =

⊔
i∈A1

Xi.
The important thing to note here is that in the new circuit C

′′
= Cσ1′′

1 +Cσ2′′
2 ,

where σ1′′, σ2′′ ∈ Sn1/4 , both σ1′′ and σ2′′ are the same, i.e., σ1′′ = σ2′′. We can
rename the variable sets in X ′′ =

⊔
i∈A1

Xi to X1,X2, · · · ,Xn1/4 . For example,
if i1 ∈ A1 is the lowest index then we can rename Xi1 to X1, and for all j,
rename Xi1,j to X1,j . Similarly, the k-th lowest index is modified. After these
modifications, we can assume that X̂ =

⊔
i∈[n1/4] Xi.

As we noted before, any non-commutative circuit computing DETn, where
the first index of the variables in each monomial is in increasing order, can be
seen as regular set-multilinear w.r.t identity permutation. Now we can apply the
following theorem (Theorem 10 from [2]) to get our result.
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Theorem 2 (Theorem 10, [2]). For any n ∈ N, if there is a non-commutative
circuit C of size s computing the Cayley determinant DET2n(X) then there is
a circuit C ′ of size polynomial in s and n that computes the Cayley permanent
PERMn(Y ).

If n′ = 
n1/4� is not an even number then we ignore the Xn′ variable set
in X̂ by following substitutions: Xn′,n′ = 1 and for all j ∈ [n′ − 1], Xn′,j = 0
and Xj,n′ = 0. After this substitutions, we have a circuit that computes the
determinant DETn′−1 polynomial. Now applying the above theorem we get a
circuit Ĉ that computes the permanent polynomial of degree n′−1

2 .
We now explain how to handle if Erdös-Szekeres Theorem guarantees only

monotonically decreasing sequence. For that we define the reverse of a regular
set-multilinear circuit C w.r.t σ ∈ Sn computing a polynomial f . This results in
a regular set-multilinear circuit Crev w.r.t σrev ∈ Sn, where σrev = (σ(n), σ(n−
1), ..., σ(1)), computing the same commutative polynomial f as circuit C. We
note that if σ has monotonically decreasing subsequence of length k then σrev

has a monotonically increasing subsequence of same length k. We obtain Crev

by interchanging the left and right children of product gates in C. This is proved
in the following lemma.

Lemma 1 (Reversal Lemma). Let X = {xi,j | 1 ≤ i, j ≤ n} be a set of vari-
ables and X = X1 � X2 � ... � Xn be a partition of X, where for all 1 ≤ i ≤ n,
Xi = {xi,1, xi,2, ..., xi,n}. Let C be a regular set-multilinear circuit w.r.t a permu-
tation σ ∈ Sn computing the polynomial f ∈ F [X]. Then, there exists a regular
set-multilinear circuit Crev w.r.t σrev ∈ Sn where σrev = (σ(n), σ(n−1), ..., σ(1))
computing the same commutative polynomial f as circuit C. Moreover, the size
of Crev is same as that of C.

Proof. First, we describe the construction of the circuit Crev, and then prove its
correctness. Let v be a gate in C. As C is a regular set-multilinear circuit w.r.t
σ ∈ Sn, we have an interval Iv w.r.t the permutation σ associated with the gate
v.

Construction of Crev: Starting with the product gates at the bottom of C
and gradually moving up level-by-level, swap the left and right children of each
product gate.

Correctness: We show by induction on depth d of C that both circuits C
and Crev compute the same polynomial f ∈ F [X] and Crev is a regular set-
multilinear circuit w.r.t σrev ∈ Sn, where σrev = (σ(n), σ(n − 1), ..., σ(1)). Let
fv and frev

v denote the polynomials computed at any node v in C and Crev,
respectively. Let order(fv) = Iv. We will show that fv and frev

v are the same
polynomial and the only difference is in their orders. That is, order(frev

v ) =
rev(order(fv)), where rev(order(fv)) is order(fv) written in reverse (i.e., the
interval Iv is reversed).

The proof is by induction on the depth d of the circuit Crev. Let frev denote
the polynomial computed by Crev.
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Base Case: The base case is any node at depth 0, i.e., a leaf node. Consider
any leaf node l. Then fl, the polynomial computed at l, is either a variable or
a field constant in F . If fl is a field constant, then order(fl) = (). Therefore,
order(frev

l ) = (). If fl is a variable xi,j , 1 ≤ i, j ≤ n, then order(fl) = (i).
Therefore, the order(frev

l ) = (i). In both cases, frev
l = fl and order(frev

l ) =
rev(order(fl)).

Induction Hypothesis: Assume for any node u at depth d′, 1 ≤ d′ ≤ d − 1,
that frev

u = fu and order(frev
u ) = rev(order(fu)).

Induction Step: Consider any node v at depth d′ + 1, with vL and vR as
its left and right children, respectively. By induction hypothesis, frev

vL
= fvL

and order(frev
vL

) = rev(order(fvL
)). Similarly, frev

vR
= fvR

and order(frev
vR

) =
rev(order(fvR

)).
If v is a product gate, then frev

v = frev
vR

× frev
vL

, which is equivalent to
fvR

× fvL
= fv by induction hypothesis. By induction hypothesis, order(frev

v )
is order(frev

vR
) appended with order(frev

vL
). The order(frev

vL
) = rev(order(fvL

)),
and order(frev

vR
) = rev(order(fvR

)). Therefore, order(frev
v ) = rev(order(fv)).

If v is a sum gate, then frev
v = frev

vL
+frev

vR
, which is equivalent to fvL

+fvR
=

fv by induction hypothesis. As v is a sum gate, order(fv) = order(fvL
) =

order(fvR
). As order(frev

vL
) = rev(order(fvL

)) by induction hypothesis, we have
that order(frev

v ) = rev(order(fv)) and order(frev
vR

) = rev(order(fvR
)). Thus,

order(frev
v ) = order(frev

vL
) = order(frev

vR
).

The size of Crev is same as that of C because the only modification we are
doing to C is swapping the children of product gates. This completes proof of
the lemma.

Using Lemma 1, we can handle the monotonically decreasing sequence with-
out modifying the polynomial computed by a regular set-multilinear circuit. This
gives us a circuit Ĉ that computes the permanent polynomial of degree

4√n
2 . We

remark that Lemma 1 can be adapted for non-commutative circuits as well.
We now explain how to get the permanent polynomial of degree

√
n
2 instead of

4√n
2 . This gives us quadratic improvement in the degree of the permanent polyno-

mial. This is based on the observation that if C is a regular set-multilinear circuit
w.r.t a permutation σ ∈ Sn computing the determinant polynomial DETn(X),
then for any permutation τ ∈ Sn, there is another regular set-multilinear circuit
C ′ w.r.t τ ◦ σ ∈ Sn computing the same determinant polynomial DETn(X).
Moreover, the size of C ′ is at most one more than the size of C.

In other words, composition of permutations can be efficiently carried
out for regular set-multilinear circuits computing the determinant polynomial
DETn(X).

Lemma 2 (Composition Lemma). Let C = C1 + C2 be the sum of two
regular set-multilinear circuits computing the determinant polynomial DETn(X),
where the circuits C1, C2 are regular set-multilinear circuits w.r.t σ1, σ2 ∈ Sn

respectively. Then for any permutation τ ∈ Sn, there exists another circuit C ′

that computes DETn(X). C ′ is also a sum of two regular set-multilinear circuits
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(regular set-multilinear w.r.t τ ◦ σ1, τ ◦ σ2 ∈ Sn). Moreover, the size of C ′ is at
most one more than the size of C.

Proof. First, we describe the construction of the circuit C ′ = C ′
1 + C ′

2 and then
prove its correctness.

Construction of C
′
: For every variable xi,j in C = C1 + C2, substitute the

variable xτ(i),j . Let Ĉ be this modified circuit. If sgn(τ) is -1, then add a leaf
node labeled -1 and multiply the root node of Ĉ with this leaf node. Let C ′ be
this modified circuit. The size of C ′ is at most one more than the size of C.

Correctness: Now we will prove that C ′ computes DETn(X). Let m1 and m2

be any two monomials in DETn(X) computed by C. Let m′
1 and m′

2 be the
monomials obtained by applying τ to the first index of each of the variables
in m1 and m2 respectively. The permutations corresponding to m′

1 and m′
2 are

τ ◦ σ1 and τ ◦ σ2 respectively.

– Case 1: m1 = m2. We show that m′
1 = m′

2 in C ′. We note that m1 and m2

could be computed by circuits C1 and C2 respectively. Thus, the order of
variables appearing in m1 and m2 could be different in general. By construc-
tion of C ′, xi,j is substituted by the variable xτ(i),j . Since m1 = m2, we get
m′

1 = m′
2.

– Case 2: m1 �= m2. We show that m′
1 �= m′

2 in C ′. Since m1 �= m2, there
exists a variable xi1,j1 in m1 and a variable xi2,j2 in m2 such that xi1,j1 �=
xi2,j2 . Suppose j1 = j2, then i1 �= i2. Then, xτ(i1),j1 �= xτ(i2),j2 . This implies
m′

1 �= m′
2. Suppose j1 �= j2, then xτ(i1),j1 �= xτ(i2),j2 , which again implies that

m′
1 �= m′

2.

By construction of C ′, we note that coefficients of monomials are not affected.
Now we will prove that C ′ computes DETn(X). Let AX be a n×n matrix where
row i contains all variables of the set Xi. In other words, the entry of i-th row
and j-th column of the matrix AX is xi,j . Let β ∈ Sn. By changing xi,j to xβ(i),j ,
in effect it permutes the rows of AX . In other words, the determinant is equal
to the determinant of Pβ × AX , where Pβ is the n × n permutation matrix. The
entry of i-th and j-th column of Pβ is 1 iff j = β(i) and 0 otherwise. By Fact 1
and 2, we have det(Pβ × AX) = det(Pβ) × det(AX) = sign(β) × det(AX).

Thus, composing the permutation τ with σ1, σ2 maps different monomials
to different monomials and in effect does not change the determinant computed
except that the sign changes. Note that sgn(τ ◦β) = sgn(τ).sgn(β) (by Fact 3).
Therefore, if sgn(τ) = −1, then the coefficients of m′

1 and m′
2 are the negatives

of the coefficients of m1 and m2 respectively. Therefore, if sgn(τ) = −1, C ′

computes DETn(X), as the leaf gate labeled -1 multiplied to the output gate
ensures that C ′ computes DETn(X). However, the coefficients of m′

1 and m′
2

are the same as the coefficients of m1 and m2 respectively, if sgn(τ) = +1. In
the case that sgn(τ) = +1, there is no need of this leaf gate. In both cases, the
polynomial computed by C ′ is DETn(X).

Now we will show that order(Cj) = (τ(σj(1)), τ(σj(2)), ..., τ(σj(n))), j ∈
{1, 2}. The proof is by induction on the depth d of the circuit. We will prove
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it for C1. The proof is similar for the circuit C2. Recall that C1 is regular set-
multilinear circuit w.r.t σ1. Let v be a gate in the circuit. We denote polynomial
computed at v in C and C ′ by fv and f ′

v respectively.

Base Case: The base case is any node at depth 0, i.e., a leaf node. Let � be
any leaf node. Then f� is either a field constant or a variable xi,j . If f� ∈ F ,
then the order(f�) is the empty sequence (). As there is no variable in f�, there
is no change to be made. Therefore, order(f ′

�) = (), and therefore the claim
trivially holds. If f� is a variable xi,j , then order(f�) = (i) = (σ1(k)), for some
k ∈ {1, 2, ..., n}. We change xi,j to xτ(i),j , which means order(f ′

�) = (τ(σ1(k))).

Induction Hypothesis: Suppose the claim holds for any node at depth d′, 1 ≤
d′ < d.

Induction Step: Consider any node v at depth d′ + 1. Let u and w be its left
and right children with degrees du, dw respectively.

– Case 1: v is a sum gate. Thus, f ′
v = f ′

u + f ′
w. Then order(f ′

u) = order(f ′
w) =

order(f ′
v).

– Case 2: v is a product gate. Thus, f ′
v = f ′

u × f ′
w. Let 0 ≤ a ≤ n − du − dw,

where du, dw denote degrees of fu, fw respectively.
Let order(fu) = (σ1(a + 1), σ1(a + 2), · · · , σ1(a + du)) and
order(fw) = (σ1(a + du + 1), σ1(a + du + 2), · · · , σ1(a + du + dv)). By IH,
order(f ′

u) = (τ(σ1(a+1)), τ(σ1(a+2)), ..., τ(σ1(a+du))), and let order(f ′
w) =

(τ(σ1(a+du +1)), τ(σ1(a+du +2)), ..., τ(σ1(a+du +dv))). Then order(f ′
v) =

(τ(σ1(a + 1)), · · · , τ(σ1(a + du)), τ(σ1(a + du + 1)), · · · , τ(σ1(a + du + dv))).

Thus, in both cases, the claim holds. This completes the proof of the lemma.

Unlike Lemma 1, we note that in general this composition operation may not
hold for any polynomial f computed by a regular circuit. For example, if C is a
regular set-multilinear circuit computing the polynomial f = x1,1x2,0x3,0x4,1

then by swapping the 3rd and 4th indices, we get a different polynomial
f ′ = x1,1x2,0x4,0x3,1. Now we have all results needed to the case where the
determinant polynomial is computed by a sum of two regular set-multilinear
circuits.

Theorem 3. Let X = {xi,j}n
i=1,j=1. If the determinant polynomial over X

is computed by a circuit C of size s, where C is the sum of two regular set-
multilinear circuits, then the permanent polynomial of degree

√
n/2 can be com-

puted by a regular set-multilinear circuit C ′ of size polynomial in n and s.

Proof. Let C = Cσ1
1 +Cσ2

2 , where the circuits Cσ1
1 , Cσ2

2 are regular set-multilinear
circuits w.r.t σ1, σ2 ∈ Sn respectively. We show that there is an efficient trans-
formation that converts the given circuit C to another circuit C ′ computing the
permanent polynomial of degree

√
n/2.

Without loss of generality, we can assume that σ1 is the identity permutation.
This is because otherwise by Lemma 2 we can get a new circuit Ĉ = C

σ−1
1 ◦σ1

1 +
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C
σ−1
1 ◦σ2

2 with σ−1
1 ◦σ1, σ

−1
1 ◦σ2 ∈ Sn as the two permutations used. This does not

increase the circuit size. By the Erdös-Szekeres Theorem, there is a monotone
subsequence of length

√
n. Let A be the set of all such indices.

– Case 1: Subsequence is increasing. As σ1 is the identity, the same subsequence
of indices in σ1 is also increasing. We do the following substitutions. For all
j /∈ A, set xj,j = 1 and for all i ∈ [n] and i �= j, set xj,i = 0 and xi,j = 0.
After this substitutions, the circuit computes the determinant polynomial
over A′ =

⊔
i∈A Xi and the order of the subsequence in both C1 and C2 are the

same. We rename the variable sets in A′ as follows: if i1 ∈ A1 is the j-th lowest
index in the subsequence then we rename Xi1 to Xj , and for all k, rename
Xi1,k to Xj,k. The modified circuit C ′ computes the determinant polynomial
over X̂ =

⊔
i∈[n1/2] Xi and it is regular w.r.t the identity permutation in S√

n.
– Case 2: Subsequence is decreasing. Then by Lemma 1, we modify the circuit

Cσ2
2 to get a new circuit computing the same polynomial as computed by the

circuit Cσ2
2 but the new circuit is regular set-multilinear w.r.t the permutation

σrev
2 = (σ2(n), σ2(n− 1), · · · , σ2(1)). We note that, by applying Lemma 1, no

sign change occurs to the determinant polynomial. In this modified (second)
circuit, the corresponding subsequence now becomes increasing. This reduces
this case to case 1.

Thus, after this modifications we have a new regular circuit C ′, that computes
the determinant polynomial of degree

√
n, w.r.t the identity permutation. If


√n� is not an even number then we substitute variables in X√
n as explained

before. Thus, C ′ computes the determinant polynomial of even degree. Now by
the result of [2], we can compute the permanent polynomial of degree

√
n
2 by a

circuit of size polynomial in s and n. This completes the proof of the theorem.

4 Hardness of the Determinant: Sum of Constantly-Many
Regular Set-Multilinear Circuits

In this section, we show that if the determinant polynomial DETn(X) is com-
puted by a sum of constantly many regular set-multilinear circuits then the
permanent polynomial PERMnε/2(X), ε > 0 depends on k, computed a regular
circuit. The proof of the following lemma is omitted due to lack of space. This is
a generalization of the (composition) Lemma 2 but idea of the proof is similar.

Lemma 3. Let C = C1 + C2 + · · · + Ck be a sum of k regular set-multilinear
circuits such that C computes DETn(X). Let C1, C2, ..., Ck be regular set-
multilinear w.r.t σ1, σ2, ..., σk respectively, where each σi ∈ Sn. For any τ ∈
Sn, let C

τ(σ1)
1 , C

τ(σ2)
2 , ...., C

τ(σk)
k be the circuits obtained by substituting xτ(i),j

for each variable in xi,j in each of the k circuits. Let C ′ be the sum of
C

τ(σ1)
1 , C

τ(σ2)
2 , ...., C

τ(σk)
k . Then C ′ also computes DETn(X). Moreover, the size

of C ′ is at most one more than the size of C.
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Without loss of generality we can assume that for each i �= j ∈ [k], σi �= σj .
Otherwise, we can combine all Ci’s which use same σi into a single Ci using
addition gates and get a circuit C that is a sum of k′ regular set-multilinear
circuits, where k′ < k. Therefore, C is the sum of k′ regular set-multilinear
circuits such that no two permutations used by any two of these k′ circuits is
same. We call such a circuit C as k′-regular circuit.

Theorem 4. Let C be the sum of k-many regular set-multilinear circuits, of size
s, computing the determinant polynomial DETn(X). Then there exists a regular
set-multilinear circuit whose size is at most s+1 that computes the determinant
polynomial DETnε(X ′), where X ′ = {xi,j}nε

i=1,j=1 and ε ≥ 1/2k−1.

Proof. Let C = Cσ1
1 + Cσ2

2 + · · · + Cσk

k , where the circuits Cσi
i are regular

set-multilinear circuits w.r.t σi ∈ Sn, i ∈ [k]. We show that there is an efficient
transformation that converts the given circuit C to another circuit C ′ computing
the determinant polynomial of degree nε, ε = 1/2k−1 .

Without loss of generality, we can assume that σ1 is the identity permutation.
This is because otherwise by Lemma 2 we can get a new circuit Ĉ = Ĉ1 + Ĉ2 +
· · · + Ĉk′ where Ĉi is a regular set-multilinear circuit w.r.t the permutation
σ−1
1 ◦ σi ∈ Sn, where i ∈ [k]. We note that Ĉ computes the same polynomial as

circuit C and both circuits have the same size.
Denote by C(�) the circuit obtained after the �-th iteration, where 0 ≤ � < k.

We will show that C(�) computes the determinant polynomial of degree n1/2�

and C(�) is a (k − �)-regular circuit.
At iteration 0, this condition holds, as C(0) = C computes the determinant

polynomial over X and C(0) is a k-regular circuit.
Suppose the condition is true for some m, where 0 ≤ m < k. We will show

that C(m+1) computes the determinant polynomial of degree n1/2m+1
and C(m+1)

is a k − (m + 1)-regular circuit. Note that C1, C2, · · · , Ck have been modified
during the first m iterations. Let us denote these modified circuits at the end of
the m-th iteration by C ′

1, C
′
2, · · · , C ′

k. Thus, C(m) = C ′
1 + C ′

2 + · · · + C ′
k.

Without loss of generality, we will assume that each variable in the deter-
minant computed by C(m) has both its indices in X(m) = {1, 2, · · · , km},
where km = n

1
2m . We note that the first m regular set-multilinear circuits

C ′
1, C

′
2, · · · , C ′

m are regular w.r.t identity permutation id ∈ Skm
. As noted before,

we can combine all C ′
i’s which has same σi as single Ci using addition gates.

By Erdös-Szekeres Theorem [4], in σ′
m+1, there is a monotone subsequence of

length n
1

2m+1 . There are two cases to handle based on whether the subsequence
is increasing or decreasing.

– Case 1: Suppose σ′
m+1 has an increasing subsequence. Let S(m+1) =

{i1, i2, · · · , ikm+1} be the set of indices in this increasing subsequence, where
km+1 = n

1
2m+1 . We do the following substitutions. For all j /∈ S(m+1),

set xj,j = 1 and for all i ∈ [km] and i �= j, set xj,i = 0 and xi,j = 0.
After these substitutions, the circuit computes the determinant polynomial
over A′ =

⊔
i∈S(m+1) Xi. We rename the variable sets in A′ as follows: if
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i1 ∈ S(m+1) is the j-th lowest index in the subsequence then we rename Xi1

to Xj , and for all k, rename xi1,k to xj,k. The modified circuit C(m+1) com-
putes the determinant polynomial over X̂ =

⊔
i∈[km+1]

Xi. It is clear that
σ′
1 = σ′

2 = · · · = σ′
m = σ′

m+1 = identity. This shows that C(m+1) is a
k − (m + 1)-regular circuit.

– Case 2: Suppose σ′
m+1 has only a decreasing subsequence, then, we mod-

ify the sub-circuit C ′
m+1 by Lemma 1 to get a new circuit computing the

same polynomial as computed by the (m + 1)-th sub-circuit in the previous
iteration but the new circuit is regular set-multilinear w.r.t the permutation
σrev

m+1 = (σ′
m+1(km), σ′

m+1(km − 1), · · · , σ′
m+1(1)). Note that after reversal

operation, Lemma 1 guarantees that the polynomial computed by the circuit
C ′

m+1 does not change. In σrev
m+1, the corresponding subsequence now becomes

increasing. It is clear that the same sequence of indices in σ′
1, σ

′
2, · · · , σ′

m are
also increasing. This reduces this case to case 1.

Clearly, C(m+1), obtained at the end of the (m+1)-th iteration, computes the
determinant over X(m+1) = {xi,j | i, j ∈ S(m+1)}. This implies that at the end of
(k − 1)-th iteration, C(k−1) computes the determinant of degree nε over X(k−1),
where ε = 1/2k−1. Moreover, C(k−1) is a 1-regular set-multilinear circuit. This
completes the proof of the theorem.

Let d be the degree of the determinant polynomial computed by the circuit
C(k−1) in the above theorem. Clearly, d ≥ n

1
2k−1 . If 
d� is not an even number

then like before we substitute variables in the set X�d	 such that the modified
circuit computes the determinant of even degree 
d� − 1. Now by the result of
[2], we can compute the permanent polynomial of degree d/2 by a circuit of size
polynomial in s and n. Thus, we get the following main result as a corollary.

Corollary 1. Let C be the sum of k-many regular set-multilinear circuits com-
puting the determinant polynomial DETn(X). Let s denote the size of the circuit
C. Then there exists a regular set-multilinear circuit Ĉ computing the permanent
polynomial PERMnε/2, where ε = 1/2k−1. Moreover, the size of Ĉ is polynomial
in s and n.

We note that to compute the permanent polynomial of degree n, we need to
consider the determinant polynomial of degree n2k−1

computed by a k-regular
circuit. So, our methods need k to be a constant.

5 Discussion

In this paper we studied the complexity of computing the determinant polyno-
mial using sum of constant number of regular set-multilinear circuits. We showed
that computing the determinant in this model is at least as hard as computing
the commutative permanent polynomial. An interesting open question is whether
our results can be extended to the sum of a non-constant (some function of the
degree of the determinant) number of regular set-multilinear circuits. Another
question is: What is the complexity of computing the determinant polynomial
using set-multilinear circuits?. This question was also raised in [1].
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