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Abstract. Multiparty session types (MPST) provide a typing disci-
pline for message passing concurrency, ensuring deadlock freedom for dis-
tributed processes. This paper first summarises the relationship between
MPST and communicating finite state machines (CFSMs), which offers
not only theoretical justifications of MPST but also a guidance to imple-
ment MPST in practice. As one of the applications, we present νScr
(NuScr), an extensible toolchain for MPST-based multiparty protocols.
The toolchain can convert multiparty protocols in the Scribble protocol
description language into global types in the MPST theory; global types
are projected into local types, and local types are converted to their corre-
sponding CFSMs. The toolchain also generates APIs from CFSMs that
implement endpoints in the protocol. Our design allows for language-
independent code generation, and opens possibilities to generate APIs
in various programming languages. We design our toolchain with mod-
ularity and extensibility in mind, so that extensions of core MPST can
be easily integrated within our framework. As a case study, we show the
implementation of the nested protocol extension in νScr, to showcase
our extensibility.

Keywords: Session Types · Communicating Finite State Machines ·
Distributed programming · Scribble · Protocols

1 Introduction

In the modern era of distributed and concurrent programming, how to achieve
safety with minimal effort (i.e. lightweight formal methods) becomes a hot area
of research. Session types [19] provide a typing discipline for message passing
concurrency, by assigning session types to communication channels, in terms
of a sequence of actions over a channel. Session types, initially only able to
describe communications between two ends of a channel, are later extended to
multiparty [20,21], giving rise to the multiparty session types (MPST) theory.
The MPST typing discipline guarantees that a set of well-typed communicating
processes are free from deadlocks or communication mismatches.
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1.1 Communicating Finite State Machines and Session Types

Motivation: Why CFSMs? Communicating Automata [2], also known as
Communicating Finite State Machines (CFSMs), are a classical model for proto-
col specification and verification. Before being used in many industrial contexts,
CFSMs have been a pioneer theoretical formalism, in which distributed safety
properties could be formalised and studied.

Establishing a formal connection between CFSMs and session types allows
the use of CFSMs to build theoretically well-founded tools for MPST. The first
work that utilised CFSMs in practice is Demangeon et al. [11], a toolchain
for monitoring multiparty communications at runtime for large scientific cyber-
infrastructures developed by the Ocean Observatories Initiative [41].

From the theoretical side, the CFSM framework offers canonical justifications
for session types to answer open questions which have been asked since [20]. The
1st question is about expressiveness: to which class of CFSMs do session types
correspond? The 2nd question concerns the semantic correspondence between
session types and CFSMs: how do the safety properties that session types guar-
antee relate to those of CFSMs? The 3rd question is about efficiency : why
do session types provide efficient algorithms for type-checking or verifying dis-
tributed programs, while general CFSMs are undecidable? CFSMs can be also
seen as generalised endpoint specifications, therefore an excellent target for a
common ground for comparing protocol specification languages.

To answer the three questions above, we need to identify a sound and complete
subset of CFSMs that corresponds to MPST behaviour, which we explain below.

B 1 2 3 4 5
S!title S?quote S!ok S?date

S!retry

S 1 2 3 4 5
B?title B!quote B?ok B!date

B?retry

Fig. 1. Two dual communicating automata: the buyer and the seller

Binary Session Types as CFSMs. The subclass that fully characterises
binary session types [19] was actually proposed by Gouda, Manning and Yu [16]
in a pure automata context (independently from the discovery of session
types [45]). Consider a simple business protocol between a Buyer and a Seller.
From the Buyer’s viewpoint, the Buyer sends the title of a book, then the Seller
answers with a quote. If the Buyer is satisfied by the quote, then they send their
address and the Seller sends back the delivery date; otherwise they retry the
same conversation. This can be specified by the two machines of the Buyer and
the Seller in Fig. 1. We can observe that these CFSMs satisfy three conditions:
First, the communications are deterministic: messages that are part of the same
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choice, ok and retry here, are distinct. Secondly, there is no mixed state (each
state has either only sending actions, or only receiving actions). Third, these two
machines have compatible traces (i.e. dual): the Seller machine can be defined by
exchanging sending and receiving actions of the Buyer machine. Breaking one
of these conditions allows deadlock situations and breaking one of the first two
conditions makes the compatibility checking undecidable [16].

Essentially, the same characterisation is given in binary session types [19].
Consider the following session type of the Buyer.

μt.⊕title.&quote.⊕{ok : ⊕addrs.&date. end retry : t} (1)

The session type above describes the communication pattern using several
constructs. The operator ⊕title denotes an output of the title, whereas &quote
denotes an input of a quote. The output choice features the two options ok and
retry and . denotes sequencing. end represents the termination of the session,
and μt is recursion. The simplicity and tractability of binary sessions come from
the notion of duality in interactions [15], which corresponds to compatibility of
CFSMs. In (1), not only the Buyer’s behaviour, but also the whole conversation
structure is already represented in this single type: the interaction pattern of the
Seller is fully given as the dual of the type in (1) (exchanging input ⊕ and out-
put &). When composing two parties, we only have to check they have mutually
dual types, and the resulting communication is guaranteed to be deadlock-free.

Multiparty Session Types and CFSMs. The notion of duality is no longer
effective in multiparty communication, where the whole conversation cannot be
reconstructed from only the behaviour of a single machine. Instead of directly
trying to decide whether the communication of a system satisfies safety (which is
undecidable in the general case), we devise a compatible, decidable condition of a
set of machines, which forces them to collaborate together. We define a complete
characterisation of global type behaviours into CFSMs: a set of CFSMs satisfy
some compatible conditions, if and only if the CFSMs can mimic the expected
behaviour of a given global type. A good global type means the global type can
only generate safe CFSMs by endpoint projection, which satisfies realisability.

A

1 2 3

4

B!quit C!finish

B!act C!commit

B

1 2 3

4

A?quit C!save

A?act C!sig

C

1 2 3

4

B?save A?finish

B?sig A?commit

Fig. 2. CFSMs for the commit protocol

We give a simple example to illustrate the proposal. The Commit protocol in
Fig. 2 involves three machines: Alice, Bob and Carol. Alice orders Bob to act or
quit. If act is sent, Bob sends a signal to Carol, and Alice sends a commitment
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to Carol and continues. Otherwise Bob informs Carol to save the data, and
Alice gives the final notification to Carol to finish the protocol.

Deniélou and Yoshida [12] present a decidable notion of multiparty compatibil-
ity as a generalisation of duality of binary sessions, for a given set of (more than
two) CFSMs. The idea is that any single machine can see the rest of the machines
as a single machine, up to unobservable actions (like a τ -transition in CCS).
Therefore, we check the duality between each automaton and the rest, up to
internal communications (1-bounded executions in the terminology of CFSMs)
that the other machines will independently perform. For example, in Fig. 2, to
check the compatibility of trace AB!quit ·AC!finish in Alice, we observe the dual
trace AB?quit · AC?finish from Bob and Carol, executing the internal commu-
nication between Bob and Carol: BC!save · BC?save. If this extended duality is
valid for all the machines from any 1-bounded reachable state, then they satisfy
multiparty compatibility and can characterise a well-formed global type.

Our motivation to study this general compatibility comes from the need
for using global types to develop tools for choreographic distributed test-
ing in web service software [44] and distributed monitoring for large cyber-
infrastructures [41], where local specifications are often updated independently
and one needs to refine the original global specification according to the local
updates.

The 1-boundedness and multiparty compatibility conditions are extended to
the k-bounded condition in [28] (called k-multiparty compatibility). Another flex-
ible form of safe and more asynchronous CFSMs (which do not rely on duality
or buffer bounds) is studied in [7,14] (called asynchronous subtyping). Unfor-
tunately, the asynchronous subtyping relation is undecidable, even if limited to
only two machines; currently its decidable sound algorithms are restricted to
either binary session types [3] or finite MPSTs [6].

Practically, a direct analysis based on CFSMs is computationally expensive,
even if the shapes of CFSMs are limited. For building a toolchain for practical
programming languages, we take the safe-by-construction approaches—we start
from specifying a global type, and project it to endpoint types or CFSMs, for
code generation into various programming languages, and/or other purposes.
Interestingly, multiparty compatibility also helps enlarge the well-formedness
condition of global types [23]. See Sect. 5.

1.2 νSCR: An Extensible Toolchain for Multiparty Session Types

We present a new toolchain for multiparty protocols, νScr (NuScr), for han-
dling protocols written in the Scribble language. The implementation of MPST
has three main aspects: (1) a language for specifying global interactions—
specifically, the Scribble protocol description language [18]; (2) a tool to
manipulate specifications and generate implementable APIs (Scribble [44] is
already a mature industrial-strength tool able to generate APIs in multiple pro-
gramming languages); and (3) a theory backing the safety guarantees, such as
Featherweight Scribble [35], which minds the gap between the practical Scrib-
ble protocol description language, and the theoretical MPST specifications [21].
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A Global Type G
Project onto each

participant

LA

Local Type for A

LB

Local Type for B

LS

Local Type for S

Fig. 3. Top-down methodology

The aim of this implementation is to be lightweight and extensible. Whilst the
Scribble language describes more expressive protocols than the original MPST
theory [21], νScr handler a core, well-defined subset of Scribble protocols that
have a corresponding MPST global type, following the formalisation of [35]. We
do so in anticipation that further extensions of the MPST theory can be easily
implemented in νScr, and a researcher can smoothly integrate their own MPST
design/theory in νScr. For this purpose, we use a modular design that does not
only enable future extensions, but also makes them easy to implement.

The rest of the paper is structured as follows: Sect. 2 introduces multiparty
session types, the theoretical foundation of our tool; Sect. 3 introduces the νScr
toolchain; Sect. 4 presents a case study of extending νScr with nested proto-
cols [10]; and Sect. 5 summarises related work and concludes this paper. νScr is
publicly available at https://github.com/nuscr/nuscr/ under the GPLv3 license.

2 Multiparty Session Types (MPST)

In this section, we introduce the theoretical foundation of our tool—Multiparty
Session Types (MPST) [21], a typing discipline for concurrent processes.

The main design philosophy of MPST follows a top-down approach (see
Fig. 3): a global type describes a global view of a communication protocol between
a number of participants. Each participant has their own perspective of the pro-
tocol, prescribed by their local type, which are obtained via an operation called
projection. A local type for a participant can be used for code generation or
type-checking to ensure that the participating process follows the local type.
If all participating processes follow their corresponding local types, obtained
via projection from a global type, these processes are free from communication
mismatches or deadlocks, guaranteed by the MPST typing discipline.

Global and Local Types. We show the syntax of global types and local types
in Fig. 4. The global type p → q {li(Si).Gi}i∈I is a message from p to q, where
p �= q and I �= ∅. The message carries a label li and payload type Si, selected
from a non-empty index set I, and the protocol continues as Gi. We write
p → q : l(S).G when |I| = 1. end denotes a type that is terminated. The local
type p&{li(Si).Li}i∈I (resp. p⊕{li(Si).Li}i∈I) denotes an external choice (resp.
internal choice), where participant carrying this local type will receive (resp.

https://github.com/nuscr/nuscr/
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S ::= int | bool | . . . Base Types
G ::= Global Types

| p → q {li(Si).Gi}i∈I Message
| µt.G Recursion
| t | end Type Var., End

L ::= Local Types
| p&{li(Si).Li}i∈I External Choice
| p⊕{li(Si).Li}i∈I Internal Choice
| µt.L Recursion
| t | end Type Var., End

Fig. 4. Syntax of multiparty session types, in the style of [48]

send) a message from (resp. to) the participant p, among the index set I. Recur-
sive types are realised by μt.G (resp. μt.L) and t, by taking a equi-recursive
view (However, we require types to be contractive, e.g. μt.t is not allowed).

We can obtain local types by projecting a global type upon a partici-
pant. Projection is defined as a partial function, since not all global types are
implementable—these types might be unable to be implemented in a type-safe
way. We say a global type is well-formed, if the projection of the global type upon
all participants are defined. Well-formed global types can be implemented by a
collection of concurrent processes, each implementing their projected local type.
Well-typed processes will enjoy the benefit of the MPST typing discipline, are
free from deadlocks or communication mismatches. Curious readers may refer
to [48] for more details.

From Local Types to Communicating Finite State Machines. A local
type describes the behaviour of a specific role in a given global type, which can be
represented by a communicating finite state machine1 (CFSM) [2]. As shown by
Deniélou and Yoshida [12] and Neykova and Yoshida [35], there is an algorithm
to construct a CFSM that is trace-equivalent to the local type.

Relation to Scribble. Scribble [44,49] is a toolchain for implementing mul-
tiparty protocols. In particular, the syntax of the Scribble protocol description
language correlates closely to the theory of MPST. Neykova and Yoshida [35] give
a formal description of the Scribble protocol description language, known as
Featherweight Scribble, and establish a correspondence between global proto-
cols in Featherweight Scribble and global types in the MPST theory (Sect. 4).

3 νSCR: An Extensible Implementation of Multiparty
Session Types in OCAML

In this section, we describe the structure of νScr and highlight the correspon-
dence to the multiparty session type theory. νScr is written in OCaml in around
8000 lines of code, implementing the core part of the Scribble language, with
various extensions to the original MPST. νScr also has a web interface (https://
nuscr.dev/), so that users can perform quick prototyping in browsers, saving the
need for installation (see Fig. 5 for a screenshot).

1 Also known as endpoint finite state machine (EFSM) [22].

https://nuscr.dev/
https://nuscr.dev/
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Fig. 5. A screenshot of the νScr web interface, showing an Adder protocol

Overview. νScr is designed to be extensible, so that researchers working on
MPST theories can find it easy to implement their extensions upon the code
base of νScr. Inspired by Haskell, we use language pragmas to control lan-
guage extensions, so that users do not need to download different versions of the
software for different language extensions. Currently, two major extensions are
implemented, namely nested protocols [10,13] and refinement types [51]. Pro-
tocols in the Scribble description language are accepted by νScr, and then
converted into an MPST global type.

From a global type, νScr is able to project upon a specified participant
to obtain their local type, and subsequently obtain the corresponding CFSM.
Moreover, νScr is able to generate code for implementing the participant in
various programming languages, from their local type or CFSM. νScr can be
used either as a standalone command line application, or as an OCaml library
for manipulating multiparty protocols.

Code Layout. The codebase of νScr can be briefly split into 4 components:
syntax, mpst, codegen and utils. We introduce the components in detail.

Syntax. The syntax component handles the syntax of the Scribble protocol
description language, the core part of which is shown in Fig. 6. We use OCam-

llex and Menhir to generate the lexer and parser respectively. A Scribble
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Protocol Declarations P ::= global protocol p (role r1, · · · , role rn){G}
Protocol Constructs G ::= l(S) from r1 to r2;G′ Single Message

| choice at r {G1} or · · · or {Gn} Branches
| rec X {G′} | continue X Recursion / Var.
| end (omitted in practice) Termination
| do p(r1, · · · , rn) Protocol Call

Base Types S ::= int | bool | · · ·

Fig. 6. Syntax of core Scribble language

1 global protocol Adder(role C, role S)

2 { choice at C

3 { add(int) from C to S;

4 add(int) from C to S;

5 sum(int) from S to C;

6 do Adder(C, S); }

7 or

8 { bye() from C to S;

9 bye() from S to C; } }

(a) Adder Protocol in Scribble

GAdder = µt.C → S

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

add(int).
C → S : add(int).
S → C : sum(int).
t;

bye().
S → C : bye().
end

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

(b) Global Type of Adder Protocol

Fig. 7. Adder protocol and its corresponding global type

module consists of multiple protocol declarations P . In the syntax, protocol
names are represented by p, role names by r, label names by l, and recursion
variable names by X. The four kinds of names range over string identifiers. They
are separated in distinct name spaces in νScr, and appropriately distinguished.

As a running example, we show a simple Scribble protocol describing an
Adder protocol in Fig. 7a, where a Client is able to make various requests to add
two ints, before they decide to finish the protocol with a bye message.

Multiparty Session Types. We show the key pipeline of handling multiparty
session types in Fig. 8, implemented in the mpst component. An input file is
parsed into a Scribble module, by the syntaxtree component described in the
previous paragraph. The protocols are then converted into a global type (defined
in Gtype module), which describes an overall protocol between multiple roles.
A global type is projected into a local type (defined in Ltype module), given a
specified role, which describes the local communication behaviour. We construct
a corresponding communicating finite state machine (CFSM) [2] (defined in Efsm
module) for the local type, and it can be used for API generation.

To obtain a global type, we extract it from the syntax tree of the Scribble

protocol file. During this extraction process, we perform syntactic checks on the
protocol, e.g. validating whether role names, recursion variables, and protocol
names have been defined before they are used. We show the global type of the
Adder protocol in Fig. 7b.
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Scribble
Module

Global Type Local Type CFSM

Fig. 8. Workflow of νScr

1 global protocol NonDirected (role A, role B, role C)

2 { choice at A // A sends to either B or to C in this choice

3 { Foo() from A to B; // either send to B

4 Bar() from A to C; }

5 or { Bar() from A to C; // or send to C

6 Foo() from A to B; } }

Fig. 9. Non-directed choice in Scribble

It is important to note that, syntactically correct protocols may fall out of
the expressiveness of the original MPST theory, e.g. the protocol shown in Fig. 9.
The role A makes a choice of sending Foo to B first, or sending Bar to C first, which
has no corresponding construct in the syntax (Fig. 4). Whilst some protocols fall
out of the scope of the core MPST theory, an extension to the core theory may
accept such protocols with non-directed choices.

The projection from global types upon participants is implemented in the
Ltype module, and the projected local types can be converted into their corre-
sponding communicating automata, using the technique described in [12]. We
use the graph library OCamlgraph [8], to represent the CFSM as a directed
graph. We show the local type for Client in Fig. 10a, and its corresponding CFSM
in Fig. 10b. Both local types and communicating automata can be used for code
generation purposes, which will be introduced in the next paragraph.

Code Generation. The codegen component generates APIs for implement-
ing distributed processes using the MPST theory. Following the MPST design
methodology, processes should follow the projected local type from the pre-
scribed global type. By the means of code generation, the processes implemented
using generated APIs will be correct by construction.

Currently, νScr supports code generation in OCaml, Go (with the nested
protocol extension [13]) and F� (with the refinement type extension [51]). More-
over, νScr can export the CFSM as a GraphViz Dot file, and code generation
backends can be implemented separately from νScr. This approach has been
used to support code generation in Rust [9], Scala and TypeScript [31].

To generate code in OCaml, we use a CFSM-based generation technique,
as proposed in [22]; however, we do not follow the class-based APIs, i.e. states
in the CFSMs are classes, and state transitions are methods on classes in [22].
While it would be possible to implement a similar object oriented approach in
OCaml, it does not fit well in the functional programming paradigm. νScr uses
a callback-based approach [51] for API generation, and generates functions for
transitions and maintains the state internally in a finite state machine runner.
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LC = µt.S⊕

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

add(int).
S⊕add(int).
S&sum(int).
t;

bye().
S&bye().
end

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

(a) Local Type for Role C

C 1 2 3

4 5

S!add(int) S!add(int)

S?bye()

S!bye()

S?sum(int)

(b) CFSM for role C

Fig. 10. Local type and CFSM for role C in the Adder protocol

1 module type Callbacks = sig

2 type t (* An abstract type for user-maintained state *)

3

4 (* Sending callbacks return the state and a labelled value to send *)

5 val state1Send : t → t * [ bye of unit | add of int]

6 val state2Send : t → t * [ add of int]

7

8 (* Receiving callbacks take received value as arguments,

9 * and return the state *)

10 val state3Receivesum : t → int → t

11 val state4Receivebye : t → unit → t

12 end

Fig. 11. Generated module type in OCaml for role C

API Style. The generated API separates the program logic and communication
aspects of the endpoint program, in contrast to existing approaches of code
generation [22]. We generate type signatures of callback functions, corresponding
to state transitions in the CFSM, for handling the program logic. The signatures
are collected in the form of a module type, named Callbacks. We show the
generated module signature in Fig. 11, for implement the Client in the Adder
protocol (Fig. 10). Since we use a graph representation for CFSMs, the generation
process is done by iterating through the edges of the graph.

For a complete endpoint, We generate an OCaml functor taking a module
of type Callbacks to an implementation module. The module exposes a runner,
which executes the CFSM when provided connections to other communicating
roles. The runner handles the communication with other roles, so that the call-
back module does not need to involve any sending and receiving primitives.

Optional Monadic APIs. To enable asynchronous execution, we optionally gen-
erate code compatible with monadic communication primitives. This allows
users to implement the endpoint program with popular asynchronous execution
libraries in OCaml, such as Lwt [40].
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1 (*# NestedProtocols #*)

2 nested protocol Fork

3 (role M; new role W)

4 { choice at M

5 { Task() from M to W;

6 M calls Fork(M);

7 Result() from W to M; }

8 or

9 { End() from M to W; } }

1 global protocol ForkJoin

2 (role M, role W)

3 { choice at M

4 { Task() from M to W;

5 M calls Fork(M);

6 Result() from W to M; }

7 or

8 { SingleTask() from M to W;

9 Result() from W to M; } }

Fig. 12. A nested fork join protocol in Scribble [13, Fig. 7.3]

Utilities. The utils component contain miscellaneous modules fulfilling various
utility functions. A few notable modules in this component, relevant to future
extensions of νScr, include:

– Names module defines separated namespaces for all kinds of names occurring
in global and local types, e.g. payload type names, payload label names,
recursion variable names, etc.

– Err module defines all kinds of errors that occur throughout all components.
– Pragma module defines language pragmas, controlling the enabled extensions.

4 Extending νSCR

The modular design of νScr allows extensions of the MPST theory to be imple-
mented easily. The language pragmas, implemented as a special comment at the
beginning of an input file, control which extensions are enabled when handling
the protocols. So far, two major extensions have been added to νScr: nested
protocols implemented by Echarren Serrano [13], and refinement types imple-
mented by Zhou et al. [51]; and additional extensions are being implemented:
choreography automata [1] by Neil Sayers, parallel types by Francisco Ferreira,
and crash handling by Adam D. Barwell.

We use the nested protocol extension by Echarren Serrano [13] as a case
study to demonstrate how an extension can be implemented in νScr. Nested
protocols [10] allow dynamic creation of participants and sub-sessions in a pro-
tocol, extending the expressiveness of global types. In Fig. 12, we show a fork
join protocol, described in Scribble with the nested protocol extension.

Creating a New Pragma. The first line of Fig. 12 enables the nested proto-
cols extension using the pragma NestedProtocols (wrapped in (*# #*)). New
pragmas are added in the Pragma module in the utils component, including
a new constructor for the new pragma, and functions to get and set whether
the extension is toggled. An implementer may also check for conflicting pragmas
when processing all pragmas, so that incompatible extensions are not enabled
at the same time. In order to preserve the behaviour when the extension is not
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enabled, it is essential that subsequent implementations of the extension should
query whether the extension is enabled before proceeding.

Extending the Syntax. The extension allows nested protocols to be defined
using the keyword nested, with the possibility to dynamically create new par-
ticipating roles. In addition, a new construct calls is introduced to create a
sub-session that follows a nested protocol, where new roles may be created to
participate in the sub-session.

To implement these new syntactic constructs, an implementer should extend
the syntaxtree component. To begin with, the concrete syntax tree (in the
Syntax module) is to be extended with constructors for the new syntax, e.g.
the new calls constructs in protocol body. Additional lexing or parsing rules
should be added accordingly in the corresponding module.

Extending the MPST Theory. The crucial part is to implement the theory
extension in the mpst component, where global and local types are defined.
Within the component, global (resp. local) types are defined using the OCaml

type Gtype.t (resp. Ltype.t). We add new constructors for new global types
(CallG for protocol calls) and new local types (InviteCreateL for inviting and
creating dynamic roles, and AcceptL for accepting invitations). Projection can
be extended accordingly in the Ltype module, which we will not explain in detail.

However, extending the global and local types does not complete the
extension—the implementer needs to connect the concrete syntax of Scribble

global protocols to the abstract syntax of MPST global types. The extraction
is defined at Gtype.of protocol, where a global type is obtained from a global
protocol. When processing the new syntactic constructs added by the extension,
the implementer should remember to call Pragma.nested protocol enabled
(which will return true when the pragma is set) to avoid interference with the
core MPST, i.e. when the extension is not enabled.

Extending the Code Generation. Section 3 describes OCaml code genera-
tion from CFSMs. However, constructing CFSMs for nested protocols is an open
problem. Hence, for this extension the Go code generation is instead based on
local types. νScr code generation backends in the codegen component is free
to choose any representation in the mpst component, so implementers may pick
whichever representation that suits best their code generation approach.

The generated Go APIs also use callbacks, and the message passing primi-
tives in Go with channels and concurrent execution with goroutines fit the setup
of session types very well. The code generator creates type definitions for dif-
ferent channels used in the communication, message exchanges, and callbacks.
New participants in the protocol can be spawned when needed using goroutines.

5 Related and Future Work

Non-Scribble-Based MPST Implementations. Scalas and Yoshida [43]
(accompanying artefact) implement a toolkit for analysing synchronous mul-
tiparty protocols. The underlying theory for this tool is the generalised multi-
party session types, where the type system is parameterised on a safety property.
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The toolkit uses a model checker (mCRL2 [46]) to decide whether the desired
safety property holds. A shortcoming of this approach is that (1) the verifi-
cation power is bound by the model checker—for example, mCRL2 allows to
verify only finite-controlled local session types (no parallel compositions under
recursion) and cannot verify channel passing; and (2) the approach is not scal-
able to asynchronous communication with unbounded buffers (as safety becomes
undecidable). Several prototype tools that analyse safety of general forms of local
types (or CFSMs) are developed in the context of multiparty CFSMs [27,28] and
binary CFSMs [3]. The tool in [27] enables a bottom-up approach, which builds
a global type from a set of safe local types. These approaches are, in general,
high in complexity (requiring a global analysis to a set of CFSMs), and difficult
to integrate with real programming languages because of the need to extract
local types from source languages. For example, Ng and Yoshida [38] develop a
tool (based on [27]) to build a global graph from local session types extracted
from Go source codes, in order to check deadlock-freedom. Only a subset of Go

syntax is supported [50].
Our top-down approach is based on the original, less general multiparty ses-

sion type theory, yet we implement an extensible toolchain with possibilities to
generate OCaml code for execution. Imai et al. [24] implement multiparty ses-
sion types in OCaml with protocol combinators, whereas our approach takes
inputs from Scribble protocols. Their tool uses features such as variant and
object types in OCaml to encode external and internal choices in the local types,
and supports session delegation. Our callback-based approach does not support
delegation, but also does not require sophisticated type system features.

For more advanced applications of MPST, global types with motion primi-
tives of Cyber Physical Systems [29,30] provide a collision freedom guarantee for
concurrent robotics applications. Castro-Perez and Yoshida [6] use global types
to uniformly predict communication costs of parallel algorithms and distributed
protocols implemented in different languages.

Scribble-Based MPST Implementations and Extensions. The Scribble
toolchain provides a language-agnostic description language for multiparty pro-
tocols, targeting a variety of programming languages: Java [22], Scala [42],
Go [4], TypeScript [31], PureScript [25], Rust [9,26], F� [32], F� [51],
Erlang [33], Python [11,34], MPI-C [36,37], C [39], etc.

The Scribble toolchain describes multiparty protocols, including some that
are not expressible in the MPST theory, e.g. the choice constructs in Scrib-

ble name a role making an internal choice, whereas the MPST global type has
form p → q {li(Si).Gi}, where two roles are named. The protocol in Fig. 9 is
expressible in Scribble, although not in the core MPST theory we implement.

The Scribble toolchain implements a number of extensions of MPST,
e.g. explicit connections [23], interruptible protocols [11]. νScr implements the
core MPST theory by our design choice, so that extensions of the MPST the-
ory can be easily implemented, with the usual syntactical projections. Whilst
the Scribble toolchain uses model checking and other validation techniques to
verify the safety of the multiparty protocol to enlarge well-formedness, the same
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technique might not be applicable when extending the original MPST [21]. νScr
keeps an underlying core syntax and its validation faithful to the literature, so
that other users can easily integrate their own MPST theory. We demonstrate
our extensibility via the case study with nested protocols.

Besides the Scribble toolchain itself, Voinea et al. [47] provide a tool,
StMungo, to translate a Scribble multiparty protocol to a typestate specifi-
cation in Java. The typestate specification can be checked via Mungo, a static
typechecker for typestates in Java. Developers can use the generated typestate
APIs to implement the multiparty protocol safely. Harvey et al. [17] use the
Scribble toolchain with explicit connections [23] to develop a tool for affine
multiparty session types with adaptations.

Future Work. Recently, Castro-Perez et al. [5] propose Zooid, a domain
specific language for certified multiparty communication, embedded in Coq

and implemented atop their mechanisation framework of asynchronous MPST.
For future work, we would like to produce a certified version of Scribble—
CertiScr, extending the Zooid framework, for the core of νScr. We would
like to mechanise the extraction process from Scribble to global types in [5],
and the CFSM construction process from local types in Coq, completing the
picture of fully mechanised toolchain from Scribble protocols to CFSMs. The
Coq code can then be extracted into OCaml to produce a formally verified
νScr core.
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