
Regular Model Checking with Regular
Relations

Vrunda Dave1, Taylor Dohmen2(B), Shankara Narayanan Krishna1,
and Ashutosh Trivedi2

1 IIT Bombay, Mumbai, India
{vrunda,krishnas}@cse.iitb.ac.in

2 Univeristy of Colorado, Boulder, USA
{taylor.dohmen,ashutosh.trivedi}@colorado.edu

Abstract. Regular model checking is an exploration technique for infi-
nite state systems where state spaces are represented as regular languages
and transition relations are expressed using rational relations over infi-
nite (or finite) strings. We extend the regular model checking paradigm
to permit the use of more powerful transition relations: the class of reg-
ular relations, of which the rational relations are a strict subset. We use
the language of monadic second-order logic (MSO) on infinite strings
to specify such relations and adopt streaming string transducers (SSTs)
as a suitable computational model. We introduce nondeterministic SSTs
over infinite strings (ω-NSSTs) and show that they precisely capture the
relations definable in MSO. We further explore theoretical properties of
ω-NSSTs required to effectively carry out regular model checking. In par-
ticular, we establish that the regular type checking problem for ω-NSSTs
is decidable in Pspace. Since the post-image of a regular language under
a regular relation may not be regular (or even context-free), approaches
that iteratively compute the image can not be effectively carried out in
this setting. Instead, we utilize the fact that regular relations are closed
under composition, which, together with our decidability result, provides
a foundation for regular model checking with regular relations.

1 Introduction

Regular model checking [2,3,13,24,31] is a symbolic exploration and verifica-
tion technique where sets of configurations are expressed as regular languages
and transition relations are encoded as rational relations [27–29] in the form
of generalized sequential machines. A generalized sequential machine (GSM) is
essentially a finite state machine with output capability; on every transition an
input symbol is read, the state changes, and a finite string is appended to an
output string (see Fig. 1, for instance, where the label α/s indicates that the
machine reads the symbol α and writes the string s on any such transition).
While regular model checking is undecidable in general, a number of approxi-
mation schemes and heuristics [1,8,12,13,18,22,23,30] have made it a practical
verification approach. It has, for example, been applied to verify programs with
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unbounded data structures such as lists and stacks [3,13]. Moreover, since infi-
nite strings over a finite alphabet can be naturally interpreted as real numbers in
the unit interval, regular model checking over infinite strings provides a frame-
work [7,9,10,14,25,26] to analyze properties of dynamical systems.

s0

start

s1

α/0α

α/00α

1/1

0/0

Fig. 1. A GSM that shifts
a string to the right by 1
or 2, or equivalently realiz-
ing division of the binary
encoding of real numbers
in [0, 1] by 2 or 4.

This paper generalizes the regular model checking
approach so that transition relations can be expressed
using regular relations over infinite strings. We pro-
pose the computational model of nondeterminis-
tic streaming string transducers on infinite strings
(ω-NSST), and explore theoretical properties of ω-
NSSTs required to effectively carry out regular model
checking.

Regular Relations. While rational relations are
capable of modelling a rich set of transition sys-
tems, their limitations can be observed by noting
their inability to express common transformations
such as copy

def= w �→ ww and reverse
def= w �→ ←−w ,

where the string ←−w is the reverse of the string w. Courcelle [16,17] ini-
tiated the use of monadic second-order logic (MSO) in defining determin-
istic and nondeterministic graph-to-graph transformations which are known
to include some non-rational transformations like copy and reverse. Engel-
friet and Hoogeboom [20] showed that deterministic MSO-definable trans-
formations (DMSOT) over finite strings coincide exactly with the trans-
formations that can be realized by generalizations of GSMs that can
read inputs in two directions (2GSM). Furthermore, they showed that
this correspondence does not extend to the set of nondeterministic MSO-
definable transformations (NMSOT) and nondeterministic 2GSMs (N2GSM).

s0

a x := ax

b x := bx

x

Fig. 2. SST implementing
reverse. Here, x is a string
variable and input strings
ending in the final state
s0 output variable x (as
shown by the label on the
outgoing arrow from s0.)

Alur and Černý [4] proposed a one-way machine
capable of realizing the same transformations as
DMSOTs. These machines, known as streaming string
transducers (SST), work by storing and combining
partial outputs in a finite set of variables, and enjoy a
number of appealing properties including decidability
of functional equivalence and type-checking (see Fig. 2
for an SST realization of reverse). Alur and Deshmukh
followed up this work by introducing nondeterminis-
tic streaming string transducers (NSST) as a natural
generalization [5] and proved this model captures pre-
cisely the same set of relations as NMSOTs. Since the
connection between automata and logic is often used
as a yardstick for regularity, MSO-definable functions
and relations over finite strings are often called regular
functions and regular relations.
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Regular Relations over Infinite Strings. The expressiveness of SSTs and
MSO-definable transformations also coincide when representing functions over
infinite strings [6]. Deterministic SSTs operating on infinite strings are known as
ω-DSSTs, however, for regular relations of infinite strings, no existing computa-
tional model exists. We combine and generalize results in the literature on NSSTs
and ω-DSSTs to propose the computational model of nondeterministic streaming
ω-string transducers (ω-NSST) capturing regular relations of ω-strings.
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Fig. 3. An ω-NSST implementing the relation R←−u u from Example 1. Let α denote all
symbols in A, excluding #. Variable w remembers the string since the last #, while x
and y store the chosen suffix and its reverse. The output variable is z.

Example 1. Let A be a finite alphabet and # be a special separator not in A.
For u, v ∈ A∗, we say that v � u if v is a suffix of u. Consider a relation R←−u u that
transforms strings in (A∪{#})ω such that each maximal #-free finite substring
u occurring in the input string is transformed into ←−v v for some suffix v of u.
Formally, R←−u u is defined as

{(u1# · · · #un#w,←−v1v1# · · · #←−vnvn#w) : ui, vi ∈ A∗, w ∈ Aω, and vi � ui}
∪ {(u1#u2# . . . ,←−v1v1#←−v2v2# . . .) : ui, vi ∈ A∗ and vi � ui} ,

and can be implemented as an ω-NSST with Büchi acceptance condition (accept-
ing states are visited infinitely often for accepting strings) as shown in Fig. 3.

Contributions and Outline. In Sect. 2 we introduce ω-NSSTs and their
semantics as a computational model for regular relations. In Sect. 3 we prove
that the ω-NSST-definable relations coincide exactly with MSO-definable rela-
tions of infinite strings. In Sect. 4 we consider regular model checking with regu-
lar relations. To enable regular model checking with regular relations, we study
the following key verification problem. The type checking problem for ω-NSSTs
asks to decide, given two ω-regular languages L1, L2 and an ω-NSST, whether
[[T ]](L1) ⊆ L2, where [[T ]] is the regular relation implemented by T . We show
that type checking for ω-NSSTs is decidable in Pspace.
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2 Regular Relations for Infinite Strings

An alphabet A is a finite set of letters. A string w over an alphabet A is a finite
sequence of symbols in A. We denote the empty string by ε. We write A∗ for
the set of all finite strings over A, and for w ∈ A∗ we write |w| for its length. A
language L over A is a subset of A∗. An ω-string x over A is a function x : N→A,
and written as x = x(0)x(1) · · · . We write Aω for the set of all ω-strings over A,
and A∞ for A∗ ∪ Aω. An ω-language L over A is a subset of Aω.

2.1 MSO Definable Relations

Strings may be viewed as ordered structures encoded over the signature SA =
{(a)a∈A, <} and interpreted with respect to A∗ or Aω. The domain of a string
in this context refers to the set of valid positions in the string, and the relation
< in SA ranges over this domain. The expression a(x) holds true if the symbol
at position x is a, and x < y holds if x is a lesser index than y.

Formulae in MSO over SA are defined relative to a countable set of first-
order variables x, y, z, . . . that range over individual elements of the domain and
a countable set of second-order variables X,Y,Z, . . . that range over subsets of
the domain. The syntax for well-formed formulae is given as:

φ :: = ∃X. φ | ∃x. φ | φ ∧ φ | φ ∨ φ | ¬φ | a(x) | x < y | x ∈ X

MSO transducers are particular specifications in this logic that define trans-
formations between strings. Intuitively, each such transducer copies each input
string some fixed number of times and treats the positions in each copy as nodes
in a graph, which are then relabeled and and rearranged in accordance with the
formulae of the transducer to produce an output.

Definition 1. A deterministic MSO ω-string transducer (ω-DMSOT) is a tuple
(
A,B, dom, N, (φn

b (x))n∈N
b∈B , (ψn,m(x, y))n,m∈N

)
,

where A and B are input and output alphabets, N = {1, . . . , n} is a set of
copy indices, dom is an MSO sentence that defines an input language, the node
formulae (φn

b (x))n∈N
b∈B specify the labels of positions in the output, and the edge

formulae (ψn,m(x, y))n,m∈N specify which positions in the output will be adjacent.

A ω-DMSOT operates over N disjoint copies of the string graph of an input.
Each formula φn

b has a single free variable and should be interpreted such that
if a position satisfies φn

b , then that position will be labeled by the symbol b in
the nth disjoint string graph comprising the output. Each formula ψ(n,m) has
two free variables and a satisfying pair of indices indicates that there is a link
between the former index in copy n and the latter index in copy m.

Nondeterminism is introduced through additional set variables X1, . . . , Xk

called parameters. Fixing a valuation—sets of positions of the input graph sat-
isfying the domain formula—of these parameters determines an output graph,
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a b b b # b a # aω

a b b b # b a # aω

a b b b # b a # aω

0 1 1 1 0 1 1 0

0 0 1 1 0 0 1 0

Fig. 4. Two possible outputs of the relation given in Example 1 constructed according
ot the ω-NMSOT from Example 2.

just as in the deterministic case. Each possible valuation may result in a different
output graph for the same input graph, and thus nondeterminism arises from
the choice of valuation.

Definition 2. A nondeterministic MSO ω-string transducer (ω-NMSOT) with
k free set variables Xk = (X1, . . . , Xk) is given as a tuple

(
A,B, dom(Xk), N, (φn

b (x,Xk))n∈N
b∈B , (ψn,m(x, y,Xk))n,m∈N

)
,

where all formulae are parameterized by the free second-order variables in addi-
tion to the required first-order parameters.

A relation between strings is a regular relation if it is definable by a ω-
NMSOT. Since ω-DMSOTs can map each input to at most one output, the
relations definable by ω-DMSOTs are called the regular functions.

Example 2. We now describe a ω-NMSOT capturing the relation given in Exam-
ple 1. Set A = {a, b,#} = B, N = {1, 2}, and consider a single parameter
X1 = {X1}. The domain of the relation is simply Aω, so we omit the formula.
For all symbols β ∈ B and copy indices n ∈ N , the node formulae labels each
position with the same symbol as the corresponding position in the input string:
φn

β(x,X1)
def= β(x). We omit formal specifications of the edge formulae (which

can be found in the extended version of this work [19]) and describe them infor-
mally. The formula for edges from copy 1 to copy 1 connects adjacent non-#
positions that belong to X1 in the reverse order. The formula for edges from
copy 1 to copy 2 connects non-# positions to themselves when the predecessor
position is not in X1. The formula for edges from copy 2 to copy 2 links the
right-most sequence of positions in X1 that preceed a # symbol and also con-
nect all those positions coming after the final # if required. Finally, the formula
for edges from copy 2 to copy 1 links # symbols to the last position in X1 left
of the next #.

Two possible outputs from the relation of Example 1 are displayed in Fig. 4
which shows how the above ω-NMSOT constructs an output string for two differ-
ent valuations of X1. A 1 in the blue (resp. green) row signifies that the position
at that column is in X1, while a 0 indicates that it is not in X1.



Regular Model Checking with Regular Relations 195

2.2 Nondeterministic Streaming String Transducers

Definition 3. A nondeterministic streaming string transducer T over ω-strings
(ω-NSST) is a tuple (A,B, S, I,Acc,Δ, f,X,U), where

– A and B are finite input and output alphabets,
– S is a finite set of states,
– I ⊆ Q is a set of initial states,
– Acc is an acceptance condition,
– X is a finite set of string variables,
– U is a finite set of variable update functions of type X → (X ∪ B)∗,
– Δ is a transition function of type (S × A) → 2U×S, and
– f ∈ X is an append-only output variable.

Such a machine is deterministic (a ω-DSST) if |Δ(s, a)| = 1, for all states s ∈ S
and symbols a ∈ A, and |I| = 1; it is nondeterministic otherwise.

On each transition sk
ak−→
uk

sk+1, the transducer changes state and applies the

update uk to each variable of X in parallel. An ω-NSST is copyless if every vari-
able in X occurs at most once in the image im(u) of every update u ∈ U . Alter-
nately stated, an update u ∈ U is copyless if the string u(x0)u(x1) . . . u(xn−1)
has at most one occurrence of each x ∈ X, and an ω-NSST is copyless if all of
its updates are copyless.

A run of an ω-NSST on an infinite string a1a2 · · · ∈ Aω is an infinite
sequence of states and transitions s0

a0−→
u0

s1
a1−→
u1

. . . where s0 ∈ I and

(sk+1, uk) ∈ Δ(sk, ak) for all k ∈ N. Let RunsT (w) be the set of all runs
in T , given input w. An update function u : X → (X ∪ B)∗ can easily be
extended to û : (X ∪ B)∗ → (X ∪ B)∗ such that û(w) def= ε if w = ε,
û(w) def= bû(w′) if w = bw′, and u(x)û(w′) if w = xw′. The effect of two
updates u1, u2 ∈ U in sequence can be summarized by the function composition
û1 ◦ û2; likewise a sequence of updates of arbitrary length would be summarized
by û0 ◦ û1 ◦ . . . ◦ ûn−1. For notational convenience, we often omit the hats when
the extension is clear from context. Notice that if all updates in a sequence of
compositions are copyless, then so is the entire summary.

A valuation is a function X → B∗ mapping each variable to a string value.
The initial valuation valε of all variables is the empty string ε. A valuation is
well-defined after any finite prefix rn of a run r and is computed as a compo-
sition of updates occurring on this prefix: valrn

= valε ◦ u0 ◦ u1 ◦ · · · ◦ un−1.
The output T (r) def= limn→∞ valrn

(f) of T on r is well-defined only if r is
accepted by T . Since the output variable f is only ever appended to and never
prepended, this limit exists and is an ω-string whenever r is accepted, other-
wise we set T (r) = ⊥. The relation [[T ]] realized by an ω-NSST T is given by
[[T ]] def= {(w, T (r)) : r ∈ RunsT (w)}. An ω-NSST T is functional if for every w
the set {w′ : (w,w′) ∈ [[T ]]} has cardinality at most 1.

We consider both Büchi and Muller acceptance conditions for ω-NSSTs and
reference these classes of machines by the initialisms NBT and NMT (DBT and
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DMT for their deterministic versions), respectively. For a run r ∈ RunsT (w), let
Inf(r) ⊆ S denote the set of states visited infinitely often.

1. A Büchi acceptance condition is given by a set of states F ⊆ S and is inter-
preted such that a NBT is defined on an input w ∈ Aω if there exists a run
r ∈ RunsT (w) for which Inf(r) ∩ F �= ∅.

2. A Muller acceptance condition is given as a set of sets F = {F0, . . . , Fn} ⊆ 2S ,
interpreted such that a NMT is defined on input w ∈ Aω if there exists a run
r ∈ RunsT (w) for which Inf(r) ∈ F.

Proposition 1. A relation is NBT definable if, and only if, it is NMT definable.

The equivalence of NBT and NMT -definable relations follows from
a straightforward application of the equivalence of nondeterministic Büchi
automata and nondeterministic Muller automata. Equivalence of these accep-
tance conditions in transducers allows us to switch between them whenever con-
venient.

Remark 1. Observe that DMTs and functional NMTs, both of which were intro-
duced in [6], have a slightly different output mechanism, which is defined as a
function Ω : 2S ⇀ X∗ such that the output string Ω(S′) is copyless and of the
form x1 . . . xn, for all S′ ⊆ S for which Ω(S′) �= ⊥. Furthermore, there is the
condition that if s, s′ ∈ S′ and a ∈ A s.t. (u, s′) ∈ Δ(s, a), then (1) u(xk) = xk

for all k < n and (2) u(xn) = xnw for some w ∈ (X ∪ B)∗.
In contrast, our definition has a unique append-only output variable f ∈ X.

However, our model with the Muller acceptance is as expressive as that studied
in [6]. One can use nondeterminism to guess a position in the input after which
states in a Muller accepting set S′ will be visited infinitely often. The output
function can be defined by guessing a Muller set, and keeping an extra variable
for the output. Upon making the guess, it will move the contents of x1 . . . xn to
the variable f and make a transition to a copy TS′ of the transducer where Acc =
{S′}. If any state outside the set S′ is visited, or the variables x1 . . . , xn−1 are
updated, or the variable f is assigned in non-appending fashion, then TS′ makes
a transition to a rejecting sink state. Alur, Filiot, and Trivedi [6] showed the
equivalence of functional NMT with DMT. This implies that the transductions
definable using functional NMTs or functional NBTs (in our definition) are
precisely those definable by ω-DMSOT.

3 Equivalence of ω-NMSOT and ω-NSST

Alur and Deshmukh [5] showed that relations over finite strings definable by
nondeterministic MSO transducers coincide with those definable by nondeter-
ministic streaming string transducers. We generalize this result by proving that
a relation is definable by an ω-NMSOT if, and only if, it is definable by an
ω-NSST. We provide symmetric arguments to connect ω-NSST, ω-DSST and
ω-NMSOT, ω-DMSOT, resulting in a simple proof.
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Our arguments use the concept of a relabeling relation, following Engelfriet
and Hoogeboom [20]. A relation ρ ⊆ Aω × Bω is a relabeling, if there exists
another relation ρ′ ⊆ A×B such that (aw, bv) ∈ ρ iff (a, b) ∈ ρ′ and (w, v) ∈ ρ. In
other words, ρ is obtained by lifting the letter-to-letter relation ρ′, in a straight-
forward manner, to ω-strings. Let Let(ρ) denote the letter to letter relation
ρ′ ⊆ A × B corresponding to ρ and let RL be the set of all such relabelings.

Theorem 1. ω-NMSOT = ω-NSST.

The proof of Theorem1 proceeds in two stages. In the first part (Lemma 1),
we show that every ω-NSST is equivalent to the composition of a nondeterminis-
tic relabeling and a ω-DSST. In the second part (Lemma 2), we show that every
ω-NMSOT is equivalent to the composition of a nondeterministic relabeling and
a ω-DMSOT. These two lemmas, in conjunction with the equivalence of DMTs
and functional NMTs [6], allow us to equate these two models of transformation
via a simple assignment.

Lemma 1. ω-NSST = ω-DSST ◦ RL

Proof. We first show ω-DSST ◦ RL ⊆ ω-NSST by proving that for every DMT
T

def= (B,C, S, I,F,Δ, f,X,U) and nondeterministic relabeling ρ ⊆ Aω × Bω,
there is a NMT T ′ def= (A,C, S, I,F,Δρ, f,X,U) such that [[T ′]] = [[T ]] ◦ ρ. As
indicated by the tuple given to specify T ′, the only distinct components between
the two machines are their input alphabets and their transition functions Δ and
Δρ. The latter is given as Δρ

def= (s, a) �→ ⋃

(a,b)∈Let(ρ)

Δ(s, b). The nondetermin-

ism of ρ is therefore captured in Δρ. This results in a unique run through T ′,
for every possible relabeling of inputs for T . Since the remaining pieces of T are
untouched in the process of constructing T ′, it is clear that [[T ′]] = [[T ]] ◦ ρ.

What remains to be shown is the inclusion ω-NSST ⊆ ω-DSST ◦ RL: for
any NMT T

def= (A,B, S, I,F,Δ, f,X,U), there exists a DMT T ′ and a
nondeterministic relabeling ρ such that [[T ]] = [[T ′]] ◦ ρ. From T , we can con-
struct a nondeterministic, letter-to-letter relation ρ′ ⊆ A × (U × S) as follows:
ρ′ def= {(a, (u, s′)) : (u, s′) ∈ Δ(s, a)}. Now let ρ ⊆ Aω × (U × S)ω be the exten-
sion of ρ′ as described previously. The relation ρ contains the set of all possible
runs through T for any possible input in Aω.

Next, we construct a DMT T ′ def= (U × S,B, S, I,F,Δρ, f,X,U) with tran-

sition function Δρ
def= (s, (u, s′)) �→ {(u, s′) : (u, s′) ∈ Δ(s, a) for some a ∈ A}.

Consequently, T ′ retains only the pairs in ρ which correspond to valid runs T
and encodes them as ω-strings over the alphabet S × U . The DMT T ′ then
simply follows the instructions encoded in its input and thereby simulates only
legitimate runs through T . Thus, we may conclude that [[T ]] = [[T ′]] ◦ ρ. ��
Lemma 2. ω-NMSOT = ω-DMSOT ◦ RL.

Proof. We begin by showing the inclusion ω-NMSOT ⊆ ω-DMSOT◦RL: for any
ω-NMSOT T , there exists an ω-DMSOT T ′ and a relabeling ρ such that [[T ]] =
[[T ′]]◦ρ. Nondeterministic choice in T is determined by the choice of assignment to
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free variables in Xk. Alternatively, the job of facilitating nondeterminism can be
placed upon a relabeling relation, thereby allowing us to remove the parameter
variables. Define a letter-to-letter relation ρ′ ⊆ A × (A × {0, 1}k) as follows:
ρ′ def=

{
(a, (a, b)) : b ∈ {0, 1}k

}
, and let the relabeling ρ ⊆ Aω × (A × {0, 1}k)ω

be its extension. This relabeling essentially gives us a new alphabet such that
each symbol from A is tagged with encodings of its membership status for each
set parameter from Xk. Now, we can construct an ω-DMSOT T ′ that is identical
to T , apart from two distinctions. Firstly, T ′ is deterministic (i.e. it has no free
set variables), and every occurrence of a subformula x ∈ Xi in T is replaced
by a subformula

∨

b∈{0,1}k∧b[i]=1

(a, b)(x) in T ′. As a result of this encoding, the

equality [[T ]] = [[T ′]] ◦ ρ holds.
The converse inclusion, ω-DMSOT◦RL ⊆ ω-NMSOT, is much simpler. Every

relabeling ρ in RL is ω-NMSOT definable: consider ρ′ = Let(ρ) ⊆ A × B. The
ω-NMSOT specifying ρ is similar to identity/copy, except that here we have
that the output label is b iff the input label is a and (a, b) ∈ ρ′. This can be
implemented using second-order variables Xb for all b ∈ B. Let XB represent
this set. Only a single copy is required to produce the output. Node formulae
are given by φ1

b(x,XB) def=
∨

a∈A

∨

(a,b)∈ρ′
(a(x) ∧ x ∈ Xb), and the edge formulae

by ψ1,1(x, y,XB) def= x < y. It is known that ω-NMSOT are closed under
composition [17]. Thus, we conclude that any composition of a nondeterministic
relabeling and a ω-DMSOT is definable by a ω-NMSOT and that ω-MSOT◦RL ⊆
ω-NMSOT. ��

In conjunction Lemmas 1 and 2 along with the results of [6] allow us to write
the following equation, thereby proving Theorem1.

ω-NMSOT = ω-DMSOT ◦ RL = DMT ◦ RL = NMT = ω-NSST

4 MSO-Definable Regular Model Checking

In this section, we explain how algorithms for deciding properties of regular
relations can be used to perform regular model checking. Given two relations T1

and T2, their sequential composition is [[T2 ◦T1]]
def= {(x, z) : (x, y) ∈ [[T1]], (y, z)

∈ [[T2]]}. Let T k denote the k-fold composition of a relation T with itself. Let
T ∗ denote the transitive closure of T .

Suppose that init and bad are regular languages representing sets of states in
some system that are initial, and unsafe, respectively. Given a generic transition
relation T which captures the dynamics of the system, the regular model checking
problem asks to decide whether any element of bad is reachable from any ele-
ment of init via repeated applications of T . In precise terms, the regular model
checking problem asks to decide whether the equation [[T ∗]](init) ∩ bad = ∅
holds. Bounded model checking, in this setting, asks to decide, given n ∈ N,
whether [[T k]](init) ∩ bad = ∅ holds, for all k ≤ n. Unbounded model checking
is undecidable (cf. [19] for a proof), so we focus on bounded model checking.
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When T is a rational relation, its image is always a regular language, and this
permits the approach of iteratively applying T from init and checking whether
this set intersects with bad by standard automata-theoretic methods. If T is a
regular relation, its image may not be a regular language, and we must iteratively
compute compositions of T with itself and test whether these compositions enter
the bad language. To allow this, we establish decidability of the type checking
problem for ω-NSSTs: given two ω-regular languages L1, L2 and an ω-NSST T ,
decide if the inclusions L1 ⊆ dom(T ) and [[T ]](L1) ⊆ L2 hold.

Theorem 2. The type checking problem for ω-NSSTs is decidable in Pspace.

Proof. Suppose that T
def= (A,B, S, I, F,Δ, f,X,U) is an NBT and L1 ⊆ Aω

and L2 ⊆ Bω are ω-regular languages, encoded, respectively, as deterministic
Muller automata (DMA) M1 and M2. We first check whether T is defined for
all ω-strings w ∈ L1, i.e. whether L1 ⊆ dom(T ). A nondeterministic Büchi
automaton (NBA) C that recognizes the domain of T can be constructed in
linear time by ignoring variables and output mechanism. The inclusion L1 ⊆
dom(T ) can be decided in Pspace by checking emptiness of M ′

1 ∩ C where M ′
1

is the NBA equivalent to M1 and C is the NBA representing the complement
language of dom(T ). It is known that an NBA can be constructed from a DMA
with exponential blowup in the number of states [11]. A complement automaton
can be constructed for an NBA with exponential increase in the number of
states as well [11]. Hence C has exponentially many states relative to T and M1.
Intersection of M ′

1 and C is a standard product construction with a flag so that
both M ′

1 and C visit good states infinitely often. Thus the intersection NBA
M ′

1 ∩ C has exponentially many states relative to T and M1. Thanks to the fact
that emptiness of NBA can be checked in NLogSpace [11], the emptiness of
this product automaton, can be decided in NPspace = Pspace.

We now assume that T is well-defined on L1 and construct a nondetermin-
istic Muller automaton (NMA) A such that the language of A is defined as
{w ∈ L1 : ∃w′ ∈ [[T ]](w) s.t. w′ �∈ L2}. Next, we construct a DMA M2 for L2

by complementing the Acc set. The automaton A simulates M1, T and M2

in parallel. Next, we construct an NMT T ′ corresponding to the NBT T in
order to homogenize the acceptance condition accross these machines. Let us
fix the definition for all three machines: (i) M1

def= (A,S1, p0,F1,Δ1), (ii)
T ′ def= (A,B, S, I,F′,Δ, f,X,U), (iii) M2

def= (B,S2, r0,F2,Δ2).
The NMA A is defined as the product of M1 and T ′ (without the out-

put mechanism), and it stores a state summary map—i.e. the effect of run-
ning current valuation of each variable starting from all states of M2—in
each of its own states. Formally, the states of A comprise a finite subset of
S1 × S × (S2 × X → S2 ∪ {⊥}). A state (q, p, g) with g(r, x) = r′ represents
that, starting from state r, if we read the current value of variable x, then we
reach state r′. If g(r, x) = ⊥, it indicates that there is no run on valuation of
x starting from r. This information can be updated along the run of A. For
instance, if a transition of T updates x as aybx, then the summary map g is
updated to g′ such that g′(r, x) = g(Δ2(g(Δ2(r, a), y), b), x), and summarizes
the effect of reading x = aybx in M2 starting from state r.
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The set of states of A is SA = S1 × S × (S2 × X → S2 ∪ {⊥}), in which
S1, S, and S2 represent the state sets of M1, T ′, and M2, respectively. The
transition relation ΔA is defined such that (q′, p′, g′) ∈ ΔA((q, p, g), a) iff (i)
Δ1(q, a) = q′, (ii) (u, p′) ∈ Δ1(p, a), and (iii) g′(r, x) = r′ and Δ2(r, valu(x)) = r′,
for all x ∈ X and r ∈ S2,. Initial states are the product of initial states i.e. a
set IA = {(q0, p0, r0) : q0 ∈ I}. The Muller accepting set of A is defined as
the collection of all P ⊆ SA such that (i) π1(P ) ∈ F1, (ii) π2(P ) ∈ F, and
(iii) (π3(P ))(r0, f) ∈ F2, where πi is the ith projection. The size of NMA A is
exponential in the number variables of T , polynomial in the number of states
of M1 and T . Thanks to the fact that emptiness of an NMA can be determined
in NLogSpace [11], emptiness of A having exponential states in the inputs T ,
M1 and M2, can be decided in NPspace and thus, by Savitch’s theorem, also
in Pspace. ��

Since regular relations are definable in MSO, they are closed under sequential
composition. In combination with Theorems 1 and 2, this establishes the neces-
sary conditions for bounded regular model checking with regular relations to be
possible. Thus, we have the following corollary.

Corollary 1. Bounded model checking with regular relations is decidable.

Despite the fact that unbounded regular model checking is undecidable,
bounded regular model checking provides a refutation procedure. That is, it
allows us to search for a witness for proving the system unsafe. Unfortunately,
we cannot use bounded model checking of this kind to decide if the system does
satisfy the desired property. On the other hand, we identify several special cases
of the problem which permit the safety of the system to be verified in finite time.
In general, we assume that init ⊆ bad, where bad is the complement of bad.

Functional Fixed Points. The first instance applies when T is functional, i.e. [[T ]]
is a function, and relies on the following result of Alur, Filiot, and Trivedi [6].

Theorem 3. Given an ω-NSST T , it is decidable if [[T ]] is a function. Given a
pair of functional ω-NSSTs T1 and T2, it is decidable if [[T1]] = [[T2]].

At every step of the bounded regular model checking procedure, one can check
if T k is functional, if T k+1 is functional, and if [[T k]] = [[T k+1]]. If these three
conditions hold, then, for all m ≥ 0, we have that [[T k]] = [[T k+m]]. When this
occurs and [[T k]](init) ⊆ bad holds, it follows that [[T k]] = [[T ∗]] and therefore
that [[T ∗]](init) ⊆ bad which implies [[T ∗]](init) ∩ bad = ∅. Note that T k can
be functional even when T is not. To see this, consider a non-functional ω-NSST
T such that [[T ]](aω) = {bω, cω}, and [[T ]](bω) = dω = [[T ]](cω). If aω ∈ init and
|[[T ]](w)| = 1 for every other input w and aω /∈ im(T ), then T 2 is functional.

Inductive Invariants. An alternative approach involves showing that [[T ]] satisfies
some inductive invariant. Select, as a candidate invariant, a regular or ω-regular
language L which is contained in the set of safe states L ⊆ bad. Now, L provides
a witness to the unbounded safety of the system if the following pair of conditions
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s0start s1 s2

1

⎧
⎪⎨

⎪⎩

x := ε

y := 0
z = 1

1

⎧
⎪⎨

⎪⎩

x := x1
y := y0
z = z

0

⎧
⎪⎨

⎪⎩

x := xy1
y := ε

z = z

0

⎧
⎪⎨

⎪⎩

x := x0
y := ε

z = z

Fig. 5. An ω-SST squaring a number with binary expansion of the form 1n0ω. The
output at s1 and s2 is x. Notice that this function can not be expressed as a GSM.

are met: (i) init ⊆ L and (ii) [[T ]](L) ⊆ L. Together, (i) and (ii) imply that
[[T ∗]](init) ⊆ L, and in combination with the assumption that L ⊆ bad this
yields that [[T ∗]](init)∩bad = ∅. The necessary inclusions can be formulated as
instances of the type checking problem, and so, given an appropriately chosen
inductive invariant in the form of an ω-regular language, the global safety of such
a system may be verified in polynomial space. This method is easily generalized
by searching for k-inductive invariants: ω-regular languages for which there is a
k ∈ N such that [[T k]](L) ⊆ L. The k-inductive approach complements bounded
regular model checking, since, for a given k, bounded regular model checking
lets us decide if the system is safe for up to k transitions while k-induction lets
us decide if it is safe after at least k transitions.

5 Conclusion

We introduced ω-NSSTs as a computational model for regular relations over infi-
nite strings, and showed that the relations definable by ω-NSST coincide exactly
with those definable in MSO. Motivated by potential applications in formal ver-
ification, we studied algorithmic properties of these objects and established the
minimal theoretical results required for bounded regular model checking to be
possible with regular transition relations.

Regular functions and relations provide an intriguing class of models for real
valued functions, see Fig. 5 for example. In [15,21] analytic properties such as
continuity and differentiability of real functions encoded by ω-automata have
been studied. Extending this line of research by going beyond standard ω-
automata is both theoretically interesting and could be leveraged towards appli-
cations involving verification and control of dynamical systems. The present
work indicates the viability of generalizing the automata-theoretic approach to
modeling real functions. With this application in mind, it would be worthwhile
to study the approximation techniques developed for traditional regular model
checking to see if they generalize to handle regular relations.
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27. Löding, C., Spinrath, C.: Decision problems for subclasses of rational relations over
finite and infinite words. Discret. Math. Theor. Comput. Sci. 21(3) (2019). http://
dmtcs.episciences.org/5141

28. Sakarovitch, J.: Elements of Automata Theory. Cambridge University Press, Cam-
bridge (2009). https://doi.org/10.1017/CBO9781139195218

29. Schützenberger, M.: Sur les relations rationelles entre monöıdes libres. Theor. Com-
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