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Preface

The 23rd International Symposium on Fundamentals of Computation Theory (FCT
2021) was hosted virtually by the National Technical University of Athens due to the
COVID-19 pandemic during September 12-15, 2021. The Symposium on Funda-
mentals of Computation Theory (FCT) was established in 1977 for researchers inter-
ested in all aspects of theoretical computer science and in particular algorithms,
complexity, and formal and logical methods. FCT is a biennial conference. Previous
symposia have been held in Poznan (Poland, 1977), Wendisch-Rietz (Germany, 1979),
Szeged (Hungary, 1981), Borgholm (Sweden, 1983), Cottbus (Germany, 1985), Kazan
(Russia, 1987), Szeged (Hungary, 1989), Gosen-Berlin (Germany, 1991), Szeged
(Hungary, 1993), Dresden (Germany, 1995), Krakow (Poland, 1997), lasi (Romania,
1999), Riga (Latvia, 2001), Malmo (Sweden, 2003), Liibeck (Germany, 2005),
Budapest (Hungary, 2007), Wroclaw (Poland, 2009), Oslo (Norway, 2011), Liverpool
(UK, 2013), Gdansk (Poland, 2015), Bordeaux (France, 2017), and Copenhagen
(Denmark, 2019).

The Program Committee (PC) of FCT 2021 received 94 submissions. Each sub-
mission was reviewed by at least three PC members and some trusted external
reviewers, and evaluated on its quality, originality, and relevance to the symposium.
The PC selected 30 papers for presentation at the conference and inclusion in these
proceedings.

Four invited talks were given at FCT 2021 by Constantinos Daskalakis (Mas-
sachusetts Institute of Technology, USA), Daniel Marx (Max Planck Institute for
Informatics, Germany), Claire Mathieu (CNRS and University of Paris, France), and
Nobuko Yoshida (Imperial College, UK). David Richerby (University of Essex, UK)
offered an invited tutorial.

This volume contains, in addition to the 30 accepted regular papers, the papers
of the invited talks of Claire Mathieu and Nobuko Yoshida, the abstracts of the invited
talks of Constantinos Daskalakis and Daniel Marx, and the abstract of the invited
tutorial of David Richerby.

The Program Committee selected one contribution for the best paper award and two
contributions for the best student paper awards, all sponsored by Springer:

— The best paper award went to Marc Neveling, Jorg Rothe, and Robin Weishaupt for
their paper “The Possible Winner Problem with Uncertain Weights Revisited.”

— Two papers shared the best student paper award: (a) “Faster FPT Algorithms for
Deletion to Pairs of Graph Classes” by Ashwin Jacob, Diptapriyo Majumdar, and
Venkatesh Raman, and (b) “On Finding Separators in Temporal Split and Permu-
tation Graphs” by Nicolas Maack, Hendrik Molter, Rolf Niedermeier, and Malte
Renken.

We thank the Steering Committee and its chair, Marek Karpinski, for giving us the
opportunity to serve as the program chairs of FCT 2021, and for trusting us with the
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responsibilities of selecting the Program Committee, the conference program, and
publications.

We would like to thank all the authors who responded to the call for papers, the
invited speakers, the members of the Program Committee, and the external reviewers
for their diligent work in evaluating the submissions and for their contributions to the
electronic discussions. We would also like to thank the members of the Organizing
Committee and the members of the Local Arrangements team for the great job they
have done; special thanks go to Dimitris Fotakis, loanna Protekdikou, and Antonis
Antonopoulos.

We would like to thank Springer for publishing the proceedings of FCT 2021 in
their ARCoSS/LNCS series and for their sponsoring of the best paper awards. We are
thankful to the members of the Editorial Board of Lecture Notes in Computer Science
and the editors at Springer for their help throughout the publication process. We also
acknowledge support from the Institute of Communication and Computer Systems
of the School of Electrical and Computer Engineering of the National Technical
University of Athens, towards covering teleconference expenses and registration costs
for a number of students. Sponsors that provided support after the preparation of these
proceedings appear on the webpage of the conference: https://www.corelab.ntua.gr/
fct2021/.

The EasyChair conference system was used to manage the electronic submissions,
the review process, and the electronic Program Committee discussions. It made our
task much easier.

This volume is dedicated to the fond memory of our friend and colleague Yannis
Manoussakis, Professor at University of Paris-Saclay, France. Yannis, a specialist in
graph theory, unexpectedly passed away earlier this year in his beloved hometown on
Crete. We will always remember him for his open heart and his great passion for
theoretical computer science.

July 2021 Evripidis Bampis
Aris Pagourtzis
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Min-Max Optimization: From von Neumann
to Deep Learning Plenary Talks

Constantinos Daskalakis

Massachusetts Institute of Technology, Cambridge, MA, USA

Abstract. Deep Learning applications, such as Generative Adversarial Net-
works and other adversarial training frameworks, motivate min-maximization of
nonconvex-nonconcave objectives. Unlike their convex-concave counterparts,
however, for which a multitude of equilibrium computation methods are
available, nonconvex-nonconcave objectives pose significant optimization
challenges. Gradient-descent based methods commonly fail to identify equi-
libria, and even computing local approximate equilibria has remained daunting.
We shed light on this challenge through a combination of complexity-theoretic,
game-theoretic and topological techniques, presenting obstacles and opportu-
nities for Deep Learning and Game Theory going forward.

(This talk is based on joint works with Noah Golowich, Stratis Skoulakis and
Manolis Zampetakis)



Tight Complexity Results for Algorithms Using
Tree Decompositions

Daniel Marx

CISPA Helmholtz Center for Information Security, Saarbriicken, Germany

Abstract. It is well known that hard algorithmic problems on graphs are easier
to solve if we are given a low-width tree composition of the input graph. For
many problems, if a tree decomposition of width k is available, algorithms with
running time of the form f(k)*poly(n) are known; that is, the problem is
fixed-parameter tractable (FPT) parameterized by the width of the given
decomposition. But what is the best possible function f(k) in such an algorithm?
In the past decade, a series of new upper and lower bounds gave us a tight
understanding of this question for particular problems. The talk will give a
survey of these results and some new developments.



The Complexity of Counting Problems
(Tutorial)

David Richerby

University of Essex, Colchester, UK

Abstract. Every computational decision problem (“Is there an X?”’) has a nat-
ural counting variant (“How many X’s are there?”’). More generally, computing
weighted sums such as integrals, expectations and partition functions in statis-
tical physics can also be seen as counting problems.

This tutorial will give an introduction to the complexity of solving counting
problems, both exactly and approximately. I will focus on variants of constraint
satisfaction problems. These are powerful enough to naturally express many
important problems, but also being restricted enough to allow their computa-
tional complexity to be classified completely and elegantly. No prior knowledge
of counting problems will be assumed.
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Two-Sided Matching Markets
with Strongly Correlated Preferences

Hugo Gimbert!, Claire Mathieu?®™, and Simon Mauras®

! CNRS, LaBRI, Bordeaux, France
hugo.gimbert@cnrs.fr
2 CNRS, IRIF, Paris, France
Claire.Mathieu@irif.fr
3 Université de Paris, IRIF, Paris, France
simon.maurasQirif.fr

Abstract. Stable matching in a community consisting of men and
women is a classical combinatorial problem that has been the subject
of intense theoretical and empirical study since its introduction in 1962
in a seminal paper by Gale and Shapley, who designed the celebrated
“deferred acceptance” algorithm for the problem.

In the input, each participant ranks participants of the opposite type,
so the input consists of a collection of permutations, representing the
preference lists. A bipartite matching is unstable if some man-woman pair
is blocking: both strictly prefer each other to their partner in the match-
ing. Stability is an important economics concept in matching markets
from the viewpoint of manipulability. The unicity of a stable matching
implies non-manipulability, and near-unicity implies limited manipula-
bility, thus these are mathematical properties related to the quality of
stable matching algorithms.

This paper is a theoretical study of the effect of correlations on approx-
imate manipulability of stable matching algorithms. Our approach is to
go beyond worst case, assuming that some of the input preference lists are
drawn from a distribution. Approximate manipulability is approached
from several angles: when all stable partners of a person have approx-
imately the same rank; or when most persons have a unique stable
partner.

1 Introduction

In the classical stable matching problem, a certain community consists of men
and women (all heterosexual and monogamous) where each person ranks those of
the opposite sex in accordance with his or her preferences for a marriage partner
(possibly declaring some matches as unacceptable). Our objective is to marry
off the members of the community in such a way that the established matching
is stable, i.e. such that there is no blocking pair. A man and a woman who are
not married to each other form a blocking pair if they prefer each other to their
mates.

In their seminal paper, Gale and Shapley [11] designed the men-proposing
deferred acceptance procedure, where men propose while women disposes. This

© Springer Nature Switzerland AG 2021
E. Bampis and A. Pagourtzis (Eds.): FCT 2021, LNCS 12867, pp. 3-17, 2021.
https://doi.org/10.1007/978-3-030-86593-1_1
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algorithm always outputs a matching which is stable, optimal for men and pes-
simal for women (in terms of rank of each person’s partner). By symmetry, there
also exists a women-optimal /men-pessimal stable matching. Gale and Shapley’s
original motivation was the assignment of students to colleges, a setting to which
the algorithm and results extend, and their approach was successfully imple-
mented in many matching markets; see for example [1,2,8,29].

However, there exists instances where the men-optimal and women-optimal
stable matchings are different, and even extreme cases of instances in which every
man/woman pair belongs to some stable matching. This raises the question of
which matching to choose [14,15] and of possible strategic behavior [9,10,28].
More precisely, if a woman lies about her preference list, this gives rise to new
stable matchings, where she will be no better off than she would be in the
true women-optimal matching. Thus, a woman can only gain from strategic
manipulation up to the maximum difference between her best and worst partners
in stable matchings. By symmetry, this also implies that the men proposing
deferred acceptance procedure is strategy-proof for men (as they will get their
best possible partner by telling the truth).

Fortunately, there is empirical evidence that in many instances, in practice
the stable matching is essentially unique (a phenomenon often referred to as
“core-convergence” ); see for example [6,16,23,29]. One of the empirical expla-
nations for core-convergence given by Roth and Peranson in [29] is that the
preference lists are correlated: “One factor that strongly influences the size of
the set of stable matchings is the correlation of preferences among programs and
among applicants. When preferences are highly correlated (i.e., when similar pro-
grams tend to agree which are the most desirable applicants, and applicants tend
to agree which are the most desirable programs), the set of stable matchings is
small.”

Following that direction of enquiry, we study the core-convergence phe-
nomenon, in a model where preferences are stochastic. When preferences of
women are strongly correlated, Theorem 1 shows that the expected difference of
rank between each woman’s worst and best stable partner is a constant, hence
the incentives to manipulate are limited. If additionally the preferences of men
are uncorrelated, Theorem 2 shows that most women have a unique stable part-
ner, and therefore have no incentives to manipulate.

1.1 Definitions and Main Theorems

Matchings. Let M = {my,...,mpr} be a set of M men, W = {wy,...,ww} be
a set of W women, and N = min(M, W). In a matching, each person is either
single, or matched with someone of the opposite sex. Formally, we see a matching
as a function g : MUW — M UW, which is self-inverse (u? = Id), where
each man m is paired either with a woman or himself (u(m) € WU {m}), and
symmetrically, each woman w is paired with a man or herself (u(w) € MU{w}).

Preference Lists. Each person declares which members of the opposite sex they
find acceptable, then gives a strictly ordered preference list of those members.
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Preference lists are complete when no one is declared unacceptable. Formally, we
represent the preference list of a man m as a total order >, over WU{m}, where
w =, m means that man m finds woman w acceptable, and w =, w’ means
that man m prefers woman w to woman w’. Similarly we define the preference
list >,, of woman w.

Stability. A man-woman pair (m,w) is blocking a matching p when m >, u(w)
and w >, p(m). Abusing notations, observe that p matches a person p with
an unacceptable partner when p would prefer to remain single, that is when the
pair (p,p) is blocking. A matching with no blocking pair is stable. A stable pair
is a pair which belongs to at least one stable matching.

Random Preferences. We consider a model where each person’s set of acceptable
partners is deterministic, and orderings of acceptable partners are drawn inde-
pendently from regular distributions. When unspecified, someone’s acceptable
partners and/or their ordering is adversarial, that is chosen by an adversary
who knows the input model but does not know the outcome of the random coin
flips.

Definition 1 (Regular distribution). A distribution of preferences lists is
regular when for every sequence of acceptable partners ay, . .., ar we have Play >~
ag|ag > -+ > ag] < Play > asg).

Intuitively, knowing that ao is ranked well only decreases the probability
that a; beats as. Most probability distributions that have been studied are reg-
ular. In particular, sorting acceptable partners by scores (drawn independently
from distributions on R), yields a regular distribution. As an example of regu-
lar distribution, we study popularity preferences, introduced by Immorlica and
Madhian [17].

Definition 2 (Popularity preferences). When a woman w has popularity
preferences, she gives a positive popularity D,,(m) to each acceptable partner m.
We see Dy, as a distribution over her acceptable partners, scaled so that it sums
to 1. She uses this distribution to draw her favourite partner, then her second
favourite, and so on until her least favourite partner.

The following Theorem shows that under some assumptions every woman
gives approximately the same rank to all of her stable partners.

Theorem 1. Assume that each woman independently draws her preference list
from a regular distribution. The men’s preference lists are arbitrary. Let uy be
an upper bound on the odds that man m;yy is ranked before man my;:

Vk>1, wup=max

w,i

{ﬂ)[mi-‘rk )

w finds both m; and m;1y acceptable
[P[mi —w mH_k]

Then for each woman with at least one stable partner, in expectation all of
her stable partners are ranked within (1 + 2exp(} .~ kug)) Y 1>, kK%uy of one
another in her preference list. - B
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Theorem 1 is most relevant when the women’s preference lists are strongly
correlated, that is, when every woman’s preference list is “close” to a single
ranking m; > mg > ... > mys. This closeness is measured by the odds that in
some ranking, some man is ranked ahead of a man who, in the ranking m; >
mo = ... > mys, would be k slots ahead of him.

We detail below three examples of applications, where the expected difference
of ranks between each woman’s best and worst partners is O(1), and thus her
incentives to misreport her preferences are limited.

— Identical preferences. If all women rank their acceptable partners using a mas-
ter list mq = mqo = --- > myy, then all ux’s are equal to 0. Then Theorem 1
states that each woman has a unique stable husband, a well-known result for
this type of instances.

— Preferences from identical popularities. Assume that women have popularity
preferences (Definition 2) and that each woman gives man m; popularity 2.
Then uy = 27% and the expected rank difference is at most O(1).

— Preferences from correlated utilities. Assume that women have similar pref-
erences: each woman w gives man m; a score that is the sum of a com-
mon value ¢ and an idiosyncratic value 7" which is normally distributed
with mean 0 and variance o?; she then sorts men béy increasing scores. Then
u, < maxy,; {2 P — 0¥, > k]} < 2e~*/29)° and the expected rank

difference, by a short calculation, is at most 4y/@o3(1 4 2¢7”) = O(1).

A stronger notion of approximate incentive compatibility is near-unicity of a
stable matching, meaning that most persons have either no or one unique stable
partner, and thus have no incentive to misreport their preferences. When does
that hold? One answer is given by Theorem 2.

Theorem 2. Assume that each woman independently draws her preference list
from a reqular distribution. Let uy, be an upper bound on the odds that man m;y
is ranked before man my;:

{[P[mprk —w ml]

Vk>1, wur=ma
N g 3 Plmi =w miti]

w,i

w finds both m; and m; g acceptable}

Further assume that all preferences are complete, that uy = exp(—£2(k)), and
that men have uniformly random preferences. Then, in expectation the fraction
of persons who have multiple stable partners converges to 0.

Notice that in the three examples of Theorem 1, the sequence (ug)r>1 is
exponentially decreasing. The assumptions of Theorem 2 are minimal in the
sense that removing one would bring us back to a case where a constant fraction
of woman have multiple stable partners.

— Preference lists of women. If we remove the assumption that us is exponen-
tially decreasing, the conclusion no longer holds: consider a balanced market
balanced (M = W) in which both men and women have complete uniformly
random preferences; then most women have ~ In N stable husbands [19,25].
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— Preference lists of men. Assume that men have random preference built as
follows: starting from the ordering wq, wa, ..., ws, each pair (wo;—_1,ws;) is
swapped with probability 1/2, for all i. A symmetric definition for women’s
preferences satisfy the hypothesis of Theorem 2, with vy = 1 and uy = 0 for
all k > 2. Then there is a 1/8 probability that men mq;_1 and ms; are both
stable partners of women wo;_1 and wsy;, for all 7, hence a constant expected
fraction of persons with multiple stable partners.

— Incomplete preferences. Consider a market divided into groups of size 4 of
the form {mag;—1,ma;, wa;—1,ws; }, where a man and a woman are mutually
acceptable if they belong to the same group. Once again, with constant prob-
ability, mo;_1 and meo; are both stable partners of women wo;_1 and ws;.

1.2 Related Work

Analyzing instances that are less far-fetched than in the worst case is the moti-
vation underlying the model of stochastically generated preference lists. A series
of papers [19,22,24-26] study the model where N men and N women have com-
plete uniformly random preferences. Asymptotically, and in expectation, the
total number of stable matchings is ~ e "' N In N, in which a fixed woman has
~ In N stable husbands, where her best stable husband has rank ~ In NV and her
worst stable husband has rank ~ N/In N.

The first theoretical explanations of the “core-convergence” phenomenon
where given in [17] and [4], in variations of the standard uniform model. Immor-
lica and Mahdian [17] consider the case where men have constant size random
preferences (truncated popularity preferences). Ashlagi, Kanoria and Leshno [4],
consider slightly unbalanced matching markets (M < W). Both articles prove
that the fraction of persons with several stable partners tends to 0 as the market
grows large. Theorem 2 and its proof incorporate ideas from those two papers.

Beyond strong “core-convergence”, where most agents have a unique stable
partner, one can bound the utility gain by manipulating a stable mechanism.
Lee [21] considers a model with random cardinal utilities, and shows that agents
receive almost the same utility in all stable matchings. Kanoria, Min and Qian
[18], and Ashlagi, Braverman, Thomas and Zhao [3] study the rank of each
person’s partner, under the men and women optimal stable matchings, as a
function of the market imbalance and the size of preference lists [18], or as a
function of each person’s (bounded) popularity [3]. Theorem 1 can be compared
with such results.

Beyond one-to-one matchings, school choice is an example of many-to-one
markets. Kojima and Pathak [20] generalize results from [17] and prove that most
schools have no incentives to manipulate. Azevedo and Leshno [5] show that large
markets converge to a unique stable matching in a model with a continuum of
students. To counter balance those findings, Bir6, Hassidim, Romm and Shorer
[7], and Rheingans-Yoo [27] argue that socioeconomic status and geographic
preferences might undermine core-convergence, thus some incentives remain in
such markets.
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2 Strongly Correlated Preferences: Proof of Theorem 1

Theorem 1. Assume that each woman independently draws her preference list
from a regular distribution. The men’s preference lists are arbitrary. Let uy be
an upper bound on the odds that man m;yy is ranked before man my;:

{[P[TTLH_k ~w ml]

Vk>1, wur = max
’ i [P[mi =w Mtk

w,i

w finds both m; and m; g acceptable}

Then for each woman with at least one stable partner, in expectation all of
her stable partners are ranked within (1 + 2exp(Y .~ kuk)) Y1, kK2uy of one
another in her preference list. - -

In Subsect. 2.1, we define a partition of stable matching instances into blocks.
For strongly correlated instances, blocks provide the structural insight to start
the analysis: in Lemma 3, we use them to upper-bound the difference of ranks
between a woman’s worst and best stable partners by the sum of (1) the number
z of men coming from other blocks and who are placed between stable husbands
in the woman’s preference list, and (2) the block size.

The analysis requires a delicate handling of conditional probabilities. In Sub-
sect. 2.2, we explain how to condition on the men-optimal stable matching, when
preferences are random.

Subsection 2.3 analyzes (1). The men involved are out of place compared to
their position in the ranking m; > ... > mj,, and the odds of such events can be
bounded, thanks to the assumption that distributions of preferences are regular.
Our main technical lemma there is Lemma 4.

Subsection 2.4 analyzes (2), the block size by first giving a simple greedy
algorithm (Algorithm 2) to compute a block. Each of the two limits of a block
is computed by a sequence of “jumps”, so the total distance traveled is a sum
of jumps which, thanks to Lemma 4 again, can be stochastically dominated by
a sum X of independent random variables (see Lemma 7); thus it all reduces to
analyzing X, a simple mathematical exercise (Lemma 8).

Finally, Subsect. 2.5 combines the Lemmas previously established to prove
Theorem 1.

Our analysis builds on Theorems 1 and 2, two fundamental and well-known
results.

Theorem 1 (Adapted from [11]). Algorithm 1 oulputs a stable matching ppm
in which every man (resp. woman) has his best (resp. her worst) stable partner.
Symmetrically, there exists a stable matching pyy in which every woman (resp.
man) has her best (resp. his worst) stable partner.

Theorem 2 (Adapted from [12]). Each person is either matched in all stable
matchings, or single in all stable matchings. In particular, a woman is matched
in all stable matchings if and only if she received at least one acceptable proposal
during Algorithm 1.
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Algorithm 1. Men Proposing Deferred Acceptance.

Input: Preferences of men (>m)men and women (>w)wew.
Initialization: Start with an empty matching pu.
‘While a man m is single and has not proposed to every woman he finds acceptable,
do
m proposes to his favorite woman w he has not proposed to yet.
If m is w’s favorite acceptable man among all proposals she received,
w accepts m’s proposal, and rejects her previous husband if she was married.

Output: Resulting matching.

2.1 Separators and Blocks
In this subsection, we define the block structure underlying our analysis.

Definition 3 (separator). A separator is a set S C M of men such that in the
men-optimal stable matching puprq, each woman married to a man in S prefers
him to all men outside S':

Yw € upm(S)NW, Vme M\S, pupm(w) =, m

Lemma 1. Given a separator S C M, every stable matching matches S to the
same set of women.

Proof. Let w € pp(S) and let m be the partner of w in some stable matching,.
Since paq is the woman-pessimal stable matching by Theorem 1, w prefers m
to pa(w). By definition of separators, that implies that m € S. Hence, in every
stable matching p, women of paq(S) are matched to men in S. By a cardinality
argument, men of S are matched by p to pa(95).

Definition 4 (prefix separator, block). A prefix separator is a separator S
such that S = {my,ma,...,my} for some 0 <t < N. Given a collection of b+ 1
prefiz separators S; = {mq,...,my,} with 0 =tg <t; <--- <t = N, the i-th
block is the set B; = S, \ Sy,_, with 1 <14 <b.

Abusing notations, we will denote S as the prefix separator t and B as the
block (ti—h ti] .

Lemma 2. Given a block B C M, every stable matching matches B to the same
set of women.

Proof. B equals S, \ St,_, for some i. Applying Lemma 1 to S;, and to S¢,_,
proves the Lemma.

Lemma 3. Consider a woman w, who is matched by pr and let B = (1,7]
denote her block. Let x denote the number of men from a better block that are
ranked by w, between a man of B and my:

x={i<U]|35>1, mj =y, Mi >, M}l
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Then in wy,’s preference list, the difference of ranks between wy,’s worst and best
stable partners is at most x +r — 1 — 1.

Proof. Since ppq is woman-pessimal by Theorem 1, m,, is the last stable husband
in wy,’s preference list. Let m; denote her best stable husband.

In wy,’s preference list, the interval from m; to m,, contains men from her own
block, plus possibly some additional men. Such a man m; comes from outside
her block (I, 7] and she prefers him to m,,: since r is a prefix separator, we must
have i < [. Thus x counts the number of men who do not belong to her block
but who in her preference list are ranked between m; and m,,.

On the other hand, the number of men who belong to her block and who in
her preference list are ranked between m; and m,, (inclusive) is at most r — I.

Together, the difference of ranks between w,,’s worst and best stable partners
is at most = + (r —[) — 1. See Fig. 1 for an illustration.

l=2,r=8andz=1

My > M3 > M7 > M2 > Mg > Me = Mg > M5 >M10 > We > M4 . .
O m; with i <1

O O O=——O—0—O) 0 ©
. o
1w (we) s (we) unacceptable O miwithl<isr
@® m; withr <1
<m4r—1-1 z=1{0|30,0>-0-@}

Fig. 1. Preference list of wy,, with n = 6. The block of w,, is defined by a left separator
at [ = 2 and a right separator at » = 8. Colors white, gray and black corresponds to
blocks, and are defined in the legend. All stable partners of w, must be gray. Men in
black are all ranked after m,, = pa(wy). The difference in rank between wy’s worst
and best partner is at most the number of gray men (here r — [ = 6), minus 1, plus the
number of white men ranked after a gray man and before m,, (here x = 1).

2.2 Conditioning on the Man Optimal Stable Matching When
Preferences Are Random

We study the case where each person draws her preference list from an arbitrary
distribution. The preference lists are random variables, that are independent but
not necessarily identically distributed.

Intuitively, we use the principle of deferred decision and construct prefer-
ence lists in an online manner. By Theorem 1 the man-optimal stable matching
g is computed by Algorithm 1, and the remaining randomness can be used
for a stochastic analysis of each person’s stable partners. To be more formal,
we define a random variable H, and inspection of Algorithm 1 shows that H
contains enough information on each person’s preferences to run Algorithm 1
deterministically.

Definition 5. Let H = (pm, (0m)mem, (Tw)wew) denote the random variable
consisting of (1) the man-optimal stable matching paq, (2) each man’s ranking
of the women he prefers to his partner in puam, and (3) each woman’s ranking of
the men who prefer her to their partner in paq.
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2.3 Analyzing the Number x of Men from Other Blocks
Lemma 4. Recall the sequence (ug)r>1 defined in the statement of Theorem 1:

IP 7 w 0
k> 1, uk_ma_x{w

w,i

w finds both m; and m; g acceptable}
[P[mi —w mi_;,_k}
Let w be a woman. Given a subset of her acceptable men and a ranking of that
subset ai >y -+ >y ap, we condition on the event that in w’s preference list,
a1 > - >w Gp holds. Let m; = a1 be w’s favorite man in that subset. Let J;
be a random variable, equal to the highest j > i such that woman w prefers m;
to m;. Formally, J; = max{j > i | m; =, m;}. Then, for all k > 1, we have

PlJi <i+k|Ji <i+k+1]>exp(—ur), and P[Ji <i+k]>exp(—D,5,ue)

Proof. J; is determined by w’s preference list. We construct w’s preference list
using the following algorithm: initially we know her ranking o4 of the subset
A = {ai1,a9,...,a,} of acceptable men, and m; = a; is her favorite among
those. For each j from N to ¢ in decreasing order, we insert m; into the ranking
according to the distribution of w’s preference list, stopping as soon as some m;
is ranked before m; (or when j = i is that does not happen). Then the step j > i
at which this algorithm stops equals J;.

To analyze the algorithm, observe that at each step j = N, N —1,..., we
already know w’s ranking of the subset S = {mj+1,...,mn}U{as,...,a,} U
{men who are not acceptable to w}. If m; is already in S, w prefers m; to m;,
thus the algorithm continues and J; < j. Otherwise the algorithm inserts m;
into the existing ranking: by definition of regular distributions (Definition 1),
the probability that m; beats m; given the ranking constructed so far is at most
the unconditional probability P[m; >, m;].

P[J; < j | w’s partial ranking at step j] > 1 — P[m; >, m;].

-1
By definition of u;_;, we have 1 — P{m; >, m;] = (1 + M) > (1+

Plm; >wmj]
uj )"t > exp(—uj_;).
Summing over all rankings og of S that are compatible with o4 and with
Ji S ja

UD[JZ<.]|J1§]]: Z UD[0'3|O'A]-[P[J1‘<j|Us]
os compatible with
J;<j and with o4

> Plos | oa] - exp(—u; ;) = exp(—u;_;).

os
Finally, P[.J; < j] = [T)_; P[Ji < €| Ji <€) > [T, exp(—u).

Recall from Lemma 3 that »— [ — 14z is an upper bound on the difference of
rank of woman w,,’s worst and best stable husbands. We first bound the expected
value of the random variable x defined in Lemma 3.
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Lemma 5. Given a woman w,, define the random variable x as in Lemma 3:
conditioning on H, x = |[{i < 1| 3j > 1, m; =y, Mi >w, Myp}| is the number
of men in a better block, who can be ranked between w, ’s worst and best stable
husbands. Then E[z] <3, o, kuy.

Proof. Start by conditioning on H, and let m,, = a1 >y a2 >y -+ > ap be wy’s
ranking of men who prefer her to their partner in pa. We draw the preference
lists of each woman w; with ¢ < n, and use Algorithm 2 to compute the value
of [.

For each ¢ < [, we proceed as follows. If m,, >, m;, then m,; cannot be
ranked between w,’s worst and best stable partners. Otherwise, we are in a
situation where m; >, @1 > Wy -+ >, ap. Using notations from Lemma 4, w
prefers m; to all m; with j > [ if and only if J; < [+ 1. By Lemma 4 this occurs
with probability at least exp(—> ;< ;_; ux). Thus

P[3j > 1, mj >w, Mi >w, Mn | H,1] <1—exp(— Zk21+1—iuk) < Zk2l+1—iUk
Summing this probability for all ¢ < [, we obtain E[x | H,l] < Y.,

Zkzl+1—i ug < Zk21 kug.

2.4 Analyzing the Block Size

Lemma 6. Consider w,, who is matched by pup;. Then Algorithm 2 outputs the
block containing w,.

Algorithm 2. Computing a block

Initialization:
Compute the man optimal stable matching pa.
Relabel women so that w; denotes the wife of m; in pa
Pick a woman w,, who is married in paq.
Left prefix separator: initialize [ «— n — 1
while there exists ¢ <[ and j > [ such that m; >, m;:
l—min{s <1|3j>1, mj >w, mi} — 1.
Right prefix separator: initialize r <— n.
while there exists j > r and ¢ < r such that m; >, m;:
r—max{j >r |3 <r m; -, mi}.

Output: (I, r].

Proof. Algorithm 2 is understood most easily by following its execution on Fig. 2.
Algorithm 2 applies a right-to-left greedy method to find the largest prefix sep-
arator [ which is < n — 1. By definition of prefix separators, a witness that some
t is not a prefix separator is a pair (m;,w;) where j > t > ¢ and woman w;
prefers man m; to her partner: m; >,, m;. Then the same pair also certifies
that not’ =¢,t—1,t—2,...,7 can be a prefix separator either, so the algorithm
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jumps to ¢ — 1 and looks for a witness again. When there is no witness, a prefix
separator has been found, thus [ is the largest prefix separator < n—1. Similarly,
Algorithm 2 computes the smallest prefix separator r which is > n. Thus, by
definition of blocks, (I, 7] is the block containing w,,.

0 I emm=my N ge==e T N
. ~ Py ~
* -~ - *
. . - . ¥ L . . s
4 4 4 t t + 4 4 —>
| ] | ] | ]
w1 Wi+1 ' » Wn g Wr wN
| ] | ] | ]
Women ' . .
| ]
' Hm
| ]
Men 1 1 1
| ] | ] | ]
m1 mit+1 : : Mn : my mn

Fig. 2. Computing the block containing woman w,. The vertical black edges corre-
spond to the men-optimal stable matching paq. There is a light gray arc (mj,w;) if
j > i and woman w; prefers man m; to her partner: m; >, m;. The prefix sepa-
rators correspond to the solid red vertical lines which do not intersect any gray arc.
Algorithm 2 applies a right-to-left greedy method to find the largest prefix separator
{ which is < n — 1, jumping from dashed red line to dashed red line, and a similar
left-to-right greedy method again to find the smallest prefix separator r» which is > n.
This determines the block (I, 7] containing n. (Color figure online)

Definition 6. Let X be the random wvariable defined as follows. Let (A;)i>o0
denote a sequence of i.i.d.r.v.’s taking non-negative integer values with the fol-
lowing distribution:

V6 >0, P[A, <d]=exp (— D ks kuk)

Then X = Ag+ Ay + -+ + Ap_q, where T is the first t > 0 such that A; = 0.
The proofs of the following Lemmas can be found in [13].

Lemma 7. Given a woman wy, let (I,7] denote the block containing n. Condi-
tioning on ‘H, I and r are integer random variable, such thatr —n andn—1—1
are stochastically dominated by X.

Lemma 8. We have E[X] < exp(Y_;5 kug) D psy K ug.

2.5 Putting Everything Together

Proof (Proof of Theorem 1). Without loss of generality, we may assume that
N = M < W and that each man is matched in the man-optimal stable matching
1 to see that, for each man m we add a “virtual” woman w as his least favorite
acceptable partner, such that m is the only acceptable partner of w. A man is
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single in the original instance if and only if he is matched to a “virtual” woman
in the new instance.

We start our analysis by conditioning on the random variable H (see Defi-
nition 5). Algorithm 1 then computes pps, which matches each woman to her
worst stable partner. Up to relabeling the women, we may also assume that for
all i < N we have w; := pr(m;).

Let w,, be a woman who is married in pa. From there, we use Lemma 3
to bound the difference of rank between her worst and best stable partner by
r+r—Il—1=z+(r—n)+(n—10—1). We bound the expected value of = using
Lemma 5, and the expected values of both r —n and n — [ — 1 using Lemmas 7
and 8.

3 Unique Stable Partner: Proof of Theorem 2

Theorem 2. Assume that each woman independently draws her preference list
from a reqular distribution. Let uy, be an upper bound on the odds that man m;
is ranked before man m;:

{[P[mi+k M)

Vk >1, wup = max
’ ] [P[T)’LZ —w Mtk

w, i

w finds both m; and m;4y, acceptable}

Further assume that all preferences are complete, that u, = exp(—$2(k)), and
that men have uniformly random preferences. Then, in expectation the fraction
of persons who have multiple stable partners converges to 0.

The proof first continues the analysis of blocks started in Sect.2.4. When
ug = exp(—£2(k)), it can be tightened with a mathematical analysis to prove
(Corollary 1) that with high probability, no block size exceeds O(logn), and that
in addition, in her preference list no woman switches the relative ordering of two
men m; and M} o(ogn). Lhe rest of the proof assumes that those properties
hold. The only remaining source of randomness comes from the preference lists
of men.

The intuition is that it is hard for man m; to have another stable partner
from his block. Because of the random uniform assumption on m;’s preference
list, between w; and the next person from his block, his list is likely to have
some woman w; with j > 4. Woman w; likes m; better than her own partner,
because of the no-switching property, and m; likes her better than his putative
second stable partner, so they form a blocking pair preventing m;’s second stable
partner. Transforming that intuition into a proof requires care because of the
need to condition on several events.

Definition 7. Let C = O(1) be a constant to be defined later. Let K denote the
event that every block has size at most C'In N, and every woman prefers man
m; to man m;4y, whenever k > Cln N.

The proofs of the following Lemmas can be found in [13].
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Lemma 9. Assume that women have preferences drawn from regular distribu-
tions such that uy, = exp(—{2(k)). Then, the size of each man’s block is a random
variable with an exponential tail:

Vi, P[block containing m; has size > k] = exp(—§2(k)).

Corollary 1. One can choose C' = O(1) such that the probability of event K is
>1-1/N2.

Lemma 10. Fiz i € [1, N]. Conditioning on H and on K, the probability that
woman w; has more than one stable husband is at most 3CIn N/(N+C1ln N —i).

Proof (Proof of Theorem 2). As in the previous proof, in our analysis we condi-
tion on event H (see Definition 5), i.e. on (1) the man-optimal stable matching
1, (2) each man’s ranking of the women he prefers to his partner in g, and
(3) each woman’s ranking of the men who prefer her to their partner in paq. As
before, a person who is not matched in g remains single in all stable match-
ings, hence, without loss of generality, we assume that M = W = N, and that
w; = pam(mg) for all 1 <4 < N.

Let Z denote the number of women with several stable partners. We show
that in expectation Z = O(In? N), hence the fraction of persons with multi-
ple stable partners converges to 0. We separate the analysis of Z according to
whether event I holds. When K does not hold, we bound that number by NV, so
by Corollary 1: E[Z] < (1/N?) x N + (1 —1/N?) x E(Z|K).

Conditioning on H and switching summations, we write:

E(Z|K) = P[H]-E(Z|K,H) = > > P[H] - Plw; has several stable husbands | K, H]
H T H

By Lemma 10, we can write: Plw; has several stable husbands | K, H] <
3CInN/(N 4+ Cln N — i). Hence the expected number of women who have
several stable partners is at most 1/N plus

N N—-1

3CInN _ Z 3CInN

2 N+ChN—i 4<itChN
Clog N—1+N

<3CInN @

Clog N—1 3

ClogN -1+ N

When N is large enough, we can simplify this bound to 3C In* N.
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