
23rd International Symposium, FCT 2021
Athens, Greece, September 12–15, 2021
Proceedings

Fundamentals
of Computation TheoryLN

CS
 1

28
67

AR
Co

SS
Evripidis Bampis
Aris Pagourtzis (Eds.)

Lecture Notes in Computer Science 12867

Founding Editors

Gerhard Goos, Germany
Juris Hartmanis, USA

Editorial Board Members

Elisa Bertino, USA
Wen Gao, China
Bernhard Steffen , Germany

Gerhard Woeginger , Germany
Moti Yung, USA

Advanced Research in Computing and Software Science
Subline of Lecture Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome ‘La Sapienza’, Italy

Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board

Susanne Albers, TU Munich, Germany
Benjamin C. Pierce, University of Pennsylvania, USA
Bernhard Steffen , University of Dortmund, Germany
Deng Xiaotie, Peking University, Beijing, China
Jeannette M. Wing, Microsoft Research, Redmond, WA, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693
https://orcid.org/0000-0001-9619-1558

More information about this subseries at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Evripidis Bampis • Aris Pagourtzis (Eds.)

Fundamentals
of Computation Theory
23rd International Symposium, FCT 2021
Athens, Greece, September 12–15, 2021
Proceedings

123

Editors
Evripidis Bampis
Sorbonne University
Paris, France

Aris Pagourtzis
National Technical University of Athens
Athens, Greece

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-86592-4 ISBN 978-3-030-86593-1 (eBook)
https://doi.org/10.1007/978-3-030-86593-1

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2021
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-4498-3040
https://orcid.org/0000-0002-6220-3722
https://doi.org/10.1007/978-3-030-86593-1

Preface

The 23rd International Symposium on Fundamentals of Computation Theory (FCT
2021) was hosted virtually by the National Technical University of Athens due to the
COVID-19 pandemic during September 12–15, 2021. The Symposium on Funda-
mentals of Computation Theory (FCT) was established in 1977 for researchers inter-
ested in all aspects of theoretical computer science and in particular algorithms,
complexity, and formal and logical methods. FCT is a biennial conference. Previous
symposia have been held in Poznan (Poland, 1977), Wendisch-Rietz (Germany, 1979),
Szeged (Hungary, 1981), Borgholm (Sweden, 1983), Cottbus (Germany, 1985), Kazan
(Russia, 1987), Szeged (Hungary, 1989), Gosen-Berlin (Germany, 1991), Szeged
(Hungary, 1993), Dresden (Germany, 1995), Krakow (Poland, 1997), Iasi (Romania,
1999), Riga (Latvia, 2001), Malmö (Sweden, 2003), Lübeck (Germany, 2005),
Budapest (Hungary, 2007), Wroclaw (Poland, 2009), Oslo (Norway, 2011), Liverpool
(UK, 2013), Gdansk (Poland, 2015), Bordeaux (France, 2017), and Copenhagen
(Denmark, 2019).

The Program Committee (PC) of FCT 2021 received 94 submissions. Each sub-
mission was reviewed by at least three PC members and some trusted external
reviewers, and evaluated on its quality, originality, and relevance to the symposium.
The PC selected 30 papers for presentation at the conference and inclusion in these
proceedings.

Four invited talks were given at FCT 2021 by Constantinos Daskalakis (Mas-
sachusetts Institute of Technology, USA), Daniel Marx (Max Planck Institute for
Informatics, Germany), Claire Mathieu (CNRS and University of Paris, France), and
Nobuko Yoshida (Imperial College, UK). David Richerby (University of Essex, UK)
offered an invited tutorial.

This volume contains, in addition to the 30 accepted regular papers, the papers
of the invited talks of Claire Mathieu and Nobuko Yoshida, the abstracts of the invited
talks of Constantinos Daskalakis and Daniel Marx, and the abstract of the invited
tutorial of David Richerby.

The Program Committee selected one contribution for the best paper award and two
contributions for the best student paper awards, all sponsored by Springer:

– The best paper award went to Marc Neveling, Jörg Rothe, and Robin Weishaupt for
their paper “The Possible Winner Problem with Uncertain Weights Revisited.”

– Two papers shared the best student paper award: (a) “Faster FPT Algorithms for
Deletion to Pairs of Graph Classes” by Ashwin Jacob, Diptapriyo Majumdar, and
Venkatesh Raman, and (b) “On Finding Separators in Temporal Split and Permu-
tation Graphs” by Nicolas Maack, Hendrik Molter, Rolf Niedermeier, and Malte
Renken.

We thank the Steering Committee and its chair, Marek Karpinski, for giving us the
opportunity to serve as the program chairs of FCT 2021, and for trusting us with the

responsibilities of selecting the Program Committee, the conference program, and
publications.

We would like to thank all the authors who responded to the call for papers, the
invited speakers, the members of the Program Committee, and the external reviewers
for their diligent work in evaluating the submissions and for their contributions to the
electronic discussions. We would also like to thank the members of the Organizing
Committee and the members of the Local Arrangements team for the great job they
have done; special thanks go to Dimitris Fotakis, Ioanna Protekdikou, and Antonis
Antonopoulos.

We would like to thank Springer for publishing the proceedings of FCT 2021 in
their ARCoSS/LNCS series and for their sponsoring of the best paper awards. We are
thankful to the members of the Editorial Board of Lecture Notes in Computer Science
and the editors at Springer for their help throughout the publication process. We also
acknowledge support from the Institute of Communication and Computer Systems
of the School of Electrical and Computer Engineering of the National Technical
University of Athens, towards covering teleconference expenses and registration costs
for a number of students. Sponsors that provided support after the preparation of these
proceedings appear on the webpage of the conference: https://www.corelab.ntua.gr/
fct2021/.

The EasyChair conference system was used to manage the electronic submissions,
the review process, and the electronic Program Committee discussions. It made our
task much easier.

This volume is dedicated to the fond memory of our friend and colleague Yannis
Manoussakis, Professor at University of Paris-Saclay, France. Yannis, a specialist in
graph theory, unexpectedly passed away earlier this year in his beloved hometown on
Crete. We will always remember him for his open heart and his great passion for
theoretical computer science.

July 2021 Evripidis Bampis
Aris Pagourtzis

vi Preface

https://www.corelab.ntua.gr/fct2021/
https://www.corelab.ntua.gr/fct2021/

Organization

Steering Committee

Bogdan Chlebus Augusta University, USA
Marek Karpinski (Chair) University of Bonn, Germany
Andrzej Lingas Lund University, Sweden
Miklos Santha CNRS and University Paris Diderot, France
Eli Upfal Brown University, USA

Program Committee

Evripidis Bampis (Co-chair) Sorbonne University, France
Petra Berenbrink University of Hamburg, Germany
Arnaud Casteigts University of Bordeaux, France
Marek Chrobak University of California, Riverside, USA
Hans van Ditmarsch CNRS and University of Lorraine, France
Thomas Erlebach University of Leicester, UK
Bruno Escoffier Sorbonne University, France
Henning Fernau University of Trier, Germany
Dimitris Fotakis National Technical University of Athens, Greece
Pierre Fraigniaud CNRS and University of Paris, France
Leszek Gasieniec University of Liverpool, UK, and Augusta University,

USA
Laurent Gourves CNRS and Paris Dauphine University, France
Giuseppe F. Italiano LUISS Guido Carli University, Italy
Ralf Klasing CNRS and University of Bordeaux, France
Alexander Kononov Sobolev Institute of Mathematics and Novosibirsk State

University, Russia
Antonin Kucera Masaryk University, Czech Republic
Dietrich Kuske Technische Universität Ilmenau, Germany
Nikos Leonardos National and Kapodistrian University of Athens,

Greece
Minming Li City University of Hong Kong, Hong Kong
Zsuzsanna Liptak University of Verona, Italy
Giorgio Lucarelli University of Lorraine, France
Vangelis Markakis Athens University of Economics and Business, Greece
Nicole Megow University of Bremen, Germany
Andrzej Murawski University of Oxford, UK
Aris Pagourtzis (Co-chair) National Technical University of Athens, Greece
Charis Papadopoulos University of Ioannina, Greece
Igor Potapov University of Liverpool, UK
Tomasz Radzik King’s College London, UK

Maria Serna Universitat Politecnica de Catalunya, Spain
Hadas Shachnai Technion, Israel
Vorapong Suppakitpaisarn University of Tokyo, Japan
Nikos Tzevelekos Queen Mary University of London, UK
Guochuan Zhang Zhejiang University, China

Organizing Committee

Dimitris Fotakis (Co-chair) National Technical University of Athens, Greece
Nikos Leonardos National and Kapodistrian University of Athens,

Greece
Thanasis Lianeas National Technical University of Athens, Greece
Aris Pagourtzis (Co-chair) National Technical University of Athens, Greece

Additional Reviewers

Faisal Abu-Khzam
Ioannis Anagnostides
Antonis Antonopoulos
Andrei Asinowski
Max Bannach
Rémy Belmonte
Nathalie Bertrand
René Van Bevern
Therese Biedl
Felix Biermeier
Davide Bilò
Ahmad Biniaz
Johanna Björklund
Benedikt Bollig
Michaël Cadilhac
Olivier Carton
Armando Castaneda
Pyrros Chaidos
Sankardeep Chakraborty
Pierre Charbit
Hunter Chase
Vincent Chau
Leroy Chew
Dmitry Chistikov
Dimitrios Christou
Ferdinando Cicalese
Florence Clerc

Bruno Courcelle
Geoffrey Cruttwell
Dominik D. Freydenberger
Clément Dallard
Minati De
Yichao Duan
Swan Dubois
Pavlos Efraimidis
Matthias Englert
Leah Epstein
Vincent Fagnon
Qilong Feng
Irene Finocchi
Florent Foucaud
Shayan Garani
Ran Gelles
Marios Georgiou
Archontia Giannopoulou
Andreas Göbel
Stefan Göller
Radu Grigore
Nathan Grosshans
Hermann Gruber
Longkun Guo
Siddharth Gupta
Anthony Guttmann
Christoph Haase

viii Organization

Christopher Hahn
Ararat Harutyunyan
Stefan Hoffmann
Markus Holzer
Hamed Hosseinpour
Lars Jaffke
Łukasz Jeż
Seungbum Jo
Jerome Jochems
Dominik Kaaser
Alkis Kalavasis
Phillip Keldenich
Evgeny Kiktenko
Eun Jung Kim
Jurijs Kirillovs
Bjørn Kjos-Hanssen
Ondřej Klíma
Sang-Ki Ko
Tomasz Kociumaka
Athanasios Konstantinidis
Richard Korf
Evangelos Kosinas
Ariel Kulik
Arnaud Labourel
Daniel Leivant
Ondrej Lengal
Jérôme Leroux
Yu-Yang Lin
Zhenwei Liu
Christof Löding
Diptapriyo Majumdar
Pasquale Malacaria
Andreas Maletti
Florin Manea
Nikolaos Melissinos
Wolfgang Merkle
Othon Michail
Sarah Minich
Hendrik Molter
Tobias Mömke
Clement Mommessin
Nelma Moreira
Achour Mostéfaoui
Lars Nagel

Vasileios Nakos
Reino Niskanen
Jana Novotna
Thomas Nowak
Jan Obdrzalek
Paulo Oliva
Yota Otachi
Dominik Pajak
Panagiotis Patsilinakos
Simon Perdrix
Giovanni Pighizzini
Giuseppe Prencipe
Gabriele Puppis
Srinivasa Rao-Satti
Mikhail Raskin
Divya Ravi
Rostislav Razumchik
Andrew Rechnitzer
Vojtech Rehak
Rebecca Reiffenhäuser
Marc Renault
Vinicius F. dos Santos
Ramprasad Saptharishi
Jayalal Sarma
Christian Scheideler
Daniel Schmand
Sylvain Schmitz
Vladimir Shenmaier
Sebastian Siebertz
Blerina Sinaimeri
Malte Skambath
Dmitry Sokolov
Srikanth Srinivasan
Konstantinos Stavropoulos
Frank Stephan
Gerth Stølting-Brodal
Yuichi Sudo
Till Tantau
Konstantinos Tsakalidis
Artem Tsikiridis
Kei Uchizawa
Walter Unger
Yuanhao Wei
Andreas Wiese

Organization ix

Nicolas Wieseke
Kyrill Winkler
Petra Wolf
Lirong Xia
Chenyang Xu
Kuan Yang

Wei Yu
Tom van der Zanden
Jingru Zhang
Peng Zhang
Ruilong Zhang
Xu Zijian

x Organization

Plenary Talks

Min-Max Optimization: From von Neumann
to Deep Learning Plenary Talks

Constantinos Daskalakis

Massachusetts Institute of Technology, Cambridge, MA, USA

Abstract. Deep Learning applications, such as Generative Adversarial Net-
works and other adversarial training frameworks, motivate min-maximization of
nonconvex-nonconcave objectives. Unlike their convex-concave counterparts,
however, for which a multitude of equilibrium computation methods are
available, nonconvex-nonconcave objectives pose significant optimization
challenges. Gradient-descent based methods commonly fail to identify equi-
libria, and even computing local approximate equilibria has remained daunting.
We shed light on this challenge through a combination of complexity-theoretic,
game-theoretic and topological techniques, presenting obstacles and opportu-
nities for Deep Learning and Game Theory going forward.
(This talk is based on joint works with Noah Golowich, Stratis Skoulakis and

Manolis Zampetakis)

Tight Complexity Results for Algorithms Using
Tree Decompositions

Dániel Marx

CISPA Helmholtz Center for Information Security, Saarbrücken, Germany

Abstract. It is well known that hard algorithmic problems on graphs are easier
to solve if we are given a low-width tree composition of the input graph. For
many problems, if a tree decomposition of width k is available, algorithms with
running time of the form f(k)*poly(n) are known; that is, the problem is
fixed-parameter tractable (FPT) parameterized by the width of the given
decomposition. But what is the best possible function f(k) in such an algorithm?
In the past decade, a series of new upper and lower bounds gave us a tight
understanding of this question for particular problems. The talk will give a
survey of these results and some new developments.

The Complexity of Counting Problems
(Tutorial)

David Richerby

University of Essex, Colchester, UK

Abstract. Every computational decision problem (“Is there an X?”) has a nat-
ural counting variant (“How many X’s are there?”). More generally, computing
weighted sums such as integrals, expectations and partition functions in statis-
tical physics can also be seen as counting problems.
This tutorial will give an introduction to the complexity of solving counting

problems, both exactly and approximately. I will focus on variants of constraint
satisfaction problems. These are powerful enough to naturally express many
important problems, but also being restricted enough to allow their computa-
tional complexity to be classified completely and elegantly. No prior knowledge
of counting problems will be assumed.

Contents

Invited Papers

Two-Sided Matching Markets with Strongly Correlated Preferences. 3
Hugo Gimbert, Claire Mathieu, and Simon Mauras

Communicating Finite State Machines and an Extensible Toolchain
for Multiparty Session Types . 18

Nobuko Yoshida, Fangyi Zhou, and Francisco Ferreira

Contributed Papers

First-Order Logic and Its Infinitary Quantifier Extensions over
Countable Words . 39

Bharat Adsul, Saptarshi Sarkar, and A. V. Sreejith

From Symmetry to Asymmetry: Generalizing TSP Approximations
by Parametrization. 53

Lukas Behrendt, Katrin Casel, Tobias Friedrich,
J. A. Gregor Lagodzinski, Alexander Löser, and Marcus Wilhelm

A Poly-log Competitive Posted-Price Algorithm for Online Metrical
Matching on a Spider . 67

Max Bender, Jacob Gilbert, and Kirk Pruhs

Computational Complexity of Covering Disconnected Multigraphs 85
Jan Bok, Jiří Fiala, Nikola Jedličková, Jan Kratochvíl,
and Michaela Seifrtová

The Complexity of Bicriteria Tree-Depth . 100
Piotr Borowiecki, Dariusz Dereniowski, and Dorota Osula

TS-Reconfiguration of Dominating Sets in Circle and Circular-Arc Graphs. . . 114
Nicolas Bousquet and Alice Joffard

Bipartite 3-Regular Counting Problems with Mixed Signs 135
Jin-Yi Cai, Austen Z. Fan, and Yin Liu

The Satisfiability Problem for a Quantitative Fragment of PCTL 149
Miroslav Chodil and Antonín Kučera

Beyond the BEST Theorem: Fast Assessment of Eulerian Trails 162
Alessio Conte, Roberto Grossi, Grigorios Loukides, Nadia Pisanti,
Solon P. Pissis, and Giulia Punzi

Linear-Time Minimal Cograph Editing. 176
Christophe Crespelle

Regular Model Checking with Regular Relations . 190
Vrunda Dave, Taylor Dohmen, Shankara Narayanan Krishna,
and Ashutosh Trivedi

Minimum Consistent Subset Problem for Trees. 204
Sanjana Dey, Anil Maheshwari, and Subhas C. Nandy

Parameterized Complexity of Finding Subgraphs with Hereditary Properties
on Hereditary Graph Classes . 217

David Eppstein, Siddharth Gupta, and Elham Havvaei

The Space Complexity of Sum Labelling . 230
Henning Fernau and Kshitij Gajjar

On Minimizing Regular Expressions Without Kleene Star 245
Hermann Gruber, Markus Holzer, and Simon Wolfsteiner

Computational Complexity of Computing a Quasi-Proper Equilibrium 259
Kristoffer Arnsfelt Hansen and Troels Bjerre Lund

Computational Complexity of Synchronization Under Sparse
Regular Constraints . 272

Stefan Hoffmann

On Dasgupta’s Hierarchical Clustering Objective and Its Relation to Other
Graph Parameters . 287

Svein Høgemo, Benjamin Bergougnoux, Ulrik Brandes,
Christophe Paul, and Jan Arne Telle

Mengerian Temporal Graphs Revisited . 301
Allen Ibiapina and Ana Silva

Faster FPT Algorithms for Deletion to Pairs of Graph Classes 314
Ashwin Jacob, Diptapriyo Majumdar, and Venkatesh Raman

Fast Algorithms for the Rooted Triplet Distance Between Caterpillars 327
Jesper Jansson and Wing Lik Lee

Deciding Top-Down Determinism of Regular Tree Languages 341
Peter Leupold and Sebastian Maneth

Propositional Gossip Protocols . 354
Joseph Livesey and Dominik Wojtczak

Complexity of Word Problems for HNN-Extensions 371
Markus Lohrey

xviii Contents

On Finding Separators in Temporal Split and Permutation Graphs. 385
Nicolas Maack, Hendrik Molter, Rolf Niedermeier, and Malte Renken

The Possible Winner Problem with Uncertain Weights Revisited. 399
Marc Neveling, Jörg Rothe, and Robin Weishaupt

Streaming Deletion Problems Parameterized by Vertex Cover 413
Jelle J. Oostveen and Erik Jan van Leeuwen

On the Hardness of the Determinant: Sum of Regular
Set-Multilinear Circuits . 427

S. Raja and G. V. Sumukha Bharadwaj

Concentration of the Collision Estimator . 440
Maciej Skorski

Valency-Based Consensus Under Message Adversaries Without
Limit-Closure . 457

Kyrill Winkler, Ulrich Schmid, and Thomas Nowak

Author Index . 475

Contents xix

Invited Papers

Two-Sided Matching Markets
with Strongly Correlated Preferences

Hugo Gimbert1, Claire Mathieu2(B), and Simon Mauras3

1 CNRS, LaBRI, Bordeaux, France
hugo.gimbert@cnrs.fr

2 CNRS, IRIF, Paris, France
Claire.Mathieu@irif.fr

3 Université de Paris, IRIF, Paris, France
simon.mauras@irif.fr

Abstract. Stable matching in a community consisting of men and
women is a classical combinatorial problem that has been the subject
of intense theoretical and empirical study since its introduction in 1962
in a seminal paper by Gale and Shapley, who designed the celebrated
“deferred acceptance” algorithm for the problem.

In the input, each participant ranks participants of the opposite type,
so the input consists of a collection of permutations, representing the
preference lists. A bipartite matching is unstable if some man-woman pair
is blocking: both strictly prefer each other to their partner in the match-
ing. Stability is an important economics concept in matching markets
from the viewpoint of manipulability. The unicity of a stable matching
implies non-manipulability, and near-unicity implies limited manipula-
bility, thus these are mathematical properties related to the quality of
stable matching algorithms.

This paper is a theoretical study of the effect of correlations on approx-
imate manipulability of stable matching algorithms. Our approach is to
go beyond worst case, assuming that some of the input preference lists are
drawn from a distribution. Approximate manipulability is approached
from several angles: when all stable partners of a person have approx-
imately the same rank; or when most persons have a unique stable
partner.

1 Introduction

In the classical stable matching problem, a certain community consists of men
and women (all heterosexual and monogamous) where each person ranks those of
the opposite sex in accordance with his or her preferences for a marriage partner
(possibly declaring some matches as unacceptable). Our objective is to marry
off the members of the community in such a way that the established matching
is stable, i.e. such that there is no blocking pair. A man and a woman who are
not married to each other form a blocking pair if they prefer each other to their
mates.

In their seminal paper, Gale and Shapley [11] designed the men-proposing
deferred acceptance procedure, where men propose while women disposes. This
c© Springer Nature Switzerland AG 2021
E. Bampis and A. Pagourtzis (Eds.): FCT 2021, LNCS 12867, pp. 3–17, 2021.
https://doi.org/10.1007/978-3-030-86593-1_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86593-1_1&domain=pdf
https://doi.org/10.1007/978-3-030-86593-1_1

4 H. Gimbert et al.

algorithm always outputs a matching which is stable, optimal for men and pes-
simal for women (in terms of rank of each person’s partner). By symmetry, there
also exists a women-optimal/men-pessimal stable matching. Gale and Shapley’s
original motivation was the assignment of students to colleges, a setting to which
the algorithm and results extend, and their approach was successfully imple-
mented in many matching markets; see for example [1,2,8,29].

However, there exists instances where the men-optimal and women-optimal
stable matchings are different, and even extreme cases of instances in which every
man/woman pair belongs to some stable matching. This raises the question of
which matching to choose [14,15] and of possible strategic behavior [9,10,28].
More precisely, if a woman lies about her preference list, this gives rise to new
stable matchings, where she will be no better off than she would be in the
true women-optimal matching. Thus, a woman can only gain from strategic
manipulation up to the maximum difference between her best and worst partners
in stable matchings. By symmetry, this also implies that the men proposing
deferred acceptance procedure is strategy-proof for men (as they will get their
best possible partner by telling the truth).

Fortunately, there is empirical evidence that in many instances, in practice
the stable matching is essentially unique (a phenomenon often referred to as
“core-convergence”); see for example [6,16,23,29]. One of the empirical expla-
nations for core-convergence given by Roth and Peranson in [29] is that the
preference lists are correlated: “One factor that strongly influences the size of
the set of stable matchings is the correlation of preferences among programs and
among applicants. When preferences are highly correlated (i.e., when similar pro-
grams tend to agree which are the most desirable applicants, and applicants tend
to agree which are the most desirable programs), the set of stable matchings is
small.”

Following that direction of enquiry, we study the core-convergence phe-
nomenon, in a model where preferences are stochastic. When preferences of
women are strongly correlated, Theorem 1 shows that the expected difference of
rank between each woman’s worst and best stable partner is a constant, hence
the incentives to manipulate are limited. If additionally the preferences of men
are uncorrelated, Theorem 2 shows that most women have a unique stable part-
ner, and therefore have no incentives to manipulate.

1.1 Definitions and Main Theorems

Matchings. Let M = {m1, . . . ,mM} be a set of M men, W = {w1, . . . , wW } be
a set of W women, and N = min(M,W). In a matching, each person is either
single, or matched with someone of the opposite sex. Formally, we see a matching
as a function μ : M ∪ W → M ∪ W, which is self-inverse (μ2 = Id), where
each man m is paired either with a woman or himself (μ(m) ∈ W ∪ {m}), and
symmetrically, each woman w is paired with a man or herself (μ(w) ∈ M∪{w}).

Preference Lists. Each person declares which members of the opposite sex they
find acceptable, then gives a strictly ordered preference list of those members.

Two-Sided Matching Markets with Strongly Correlated Preferences 5

Preference lists are complete when no one is declared unacceptable. Formally, we
represent the preference list of a man m as a total order �m over W∪{m}, where
w �m m means that man m finds woman w acceptable, and w �m w′ means
that man m prefers woman w to woman w′. Similarly we define the preference
list �w of woman w.

Stability. A man-woman pair (m,w) is blocking a matching μ when m �w μ(w)
and w �m μ(m). Abusing notations, observe that μ matches a person p with
an unacceptable partner when p would prefer to remain single, that is when the
pair (p, p) is blocking. A matching with no blocking pair is stable. A stable pair
is a pair which belongs to at least one stable matching.

Random Preferences. We consider a model where each person’s set of acceptable
partners is deterministic, and orderings of acceptable partners are drawn inde-
pendently from regular distributions. When unspecified, someone’s acceptable
partners and/or their ordering is adversarial, that is chosen by an adversary
who knows the input model but does not know the outcome of the random coin
flips.

Definition 1 (Regular distribution). A distribution of preferences lists is
regular when for every sequence of acceptable partners a1, . . . , ak we have P[a1 �
a2 | a2 � · · · � ak] ≤ P[a1 � a2].

Intuitively, knowing that a2 is ranked well only decreases the probability
that a1 beats a2. Most probability distributions that have been studied are reg-
ular. In particular, sorting acceptable partners by scores (drawn independently
from distributions on R), yields a regular distribution. As an example of regu-
lar distribution, we study popularity preferences, introduced by Immorlica and
Madhian [17].

Definition 2 (Popularity preferences). When a woman w has popularity
preferences, she gives a positive popularity Dw(m) to each acceptable partner m.
We see Dw as a distribution over her acceptable partners, scaled so that it sums
to 1. She uses this distribution to draw her favourite partner, then her second
favourite, and so on until her least favourite partner.

The following Theorem shows that under some assumptions every woman
gives approximately the same rank to all of her stable partners.

Theorem 1. Assume that each woman independently draws her preference list
from a regular distribution. The men’s preference lists are arbitrary. Let uk be
an upper bound on the odds that man mi+k is ranked before man mi:

∀k ≥ 1, uk = max
w,i

{
P[mi+k �w mi]
P[mi �w mi+k]

∣∣∣∣ w finds both mi and mi+k acceptable
}

Then for each woman with at least one stable partner, in expectation all of
her stable partners are ranked within (1 + 2 exp(

∑
k≥1 kuk))

∑
k≥1 k2uk of one

another in her preference list.

6 H. Gimbert et al.

Theorem 1 is most relevant when the women’s preference lists are strongly
correlated, that is, when every woman’s preference list is “close” to a single
ranking m1 � m2 � . . . � mM . This closeness is measured by the odds that in
some ranking, some man is ranked ahead of a man who, in the ranking m1 �
m2 � . . . � mM , would be k slots ahead of him.

We detail below three examples of applications, where the expected difference
of ranks between each woman’s best and worst partners is O(1), and thus her
incentives to misreport her preferences are limited.

– Identical preferences. If all women rank their acceptable partners using a mas-
ter list m1 � m2 � · · · � mM , then all uk’s are equal to 0. Then Theorem 1
states that each woman has a unique stable husband, a well-known result for
this type of instances.

– Preferences from identical popularities. Assume that women have popularity
preferences (Definition 2) and that each woman gives man mi popularity 2−i.
Then uk = 2−k and the expected rank difference is at most O(1).

– Preferences from correlated utilities. Assume that women have similar pref-
erences: each woman w gives man mi a score that is the sum of a com-
mon value i and an idiosyncratic value ηw

i which is normally distributed
with mean 0 and variance σ2; she then sorts men by increasing scores. Then
uk ≤ maxw,i {2 · P[ηw

i − ηw
i+k > k]} ≤ 2e−(k/2σ)2 and the expected rank

difference, by a short calculation, is at most 4
√

πσ3(1 + 2e4σ2
) = O(1).

A stronger notion of approximate incentive compatibility is near-unicity of a
stable matching, meaning that most persons have either no or one unique stable
partner, and thus have no incentive to misreport their preferences. When does
that hold? One answer is given by Theorem 2.

Theorem 2. Assume that each woman independently draws her preference list
from a regular distribution. Let uk be an upper bound on the odds that man mi+k

is ranked before man mi:

∀k ≥ 1, uk = max
w,i

{
P[mi+k �w mi]
P[mi �w mi+k]

∣∣∣∣ w finds both mi and mi+k acceptable
}

Further assume that all preferences are complete, that uk = exp(−Ω(k)), and
that men have uniformly random preferences. Then, in expectation the fraction
of persons who have multiple stable partners converges to 0.

Notice that in the three examples of Theorem 1, the sequence (uk)k≥1 is
exponentially decreasing. The assumptions of Theorem 2 are minimal in the
sense that removing one would bring us back to a case where a constant fraction
of woman have multiple stable partners.

– Preference lists of women. If we remove the assumption that uk is exponen-
tially decreasing, the conclusion no longer holds: consider a balanced market
balanced (M = W) in which both men and women have complete uniformly
random preferences; then most women have ∼ ln N stable husbands [19,25].

Two-Sided Matching Markets with Strongly Correlated Preferences 7

– Preference lists of men. Assume that men have random preference built as
follows: starting from the ordering w1, w2, . . . , wM , each pair (w2i−1, w2i) is
swapped with probability 1/2, for all i. A symmetric definition for women’s
preferences satisfy the hypothesis of Theorem 2, with u1 = 1 and uk = 0 for
all k ≥ 2. Then there is a 1/8 probability that men m2i−1 and m2i are both
stable partners of women w2i−1 and w2i, for all i, hence a constant expected
fraction of persons with multiple stable partners.

– Incomplete preferences. Consider a market divided into groups of size 4 of
the form {m2i−1,m2i, w2i−1, w2i}, where a man and a woman are mutually
acceptable if they belong to the same group. Once again, with constant prob-
ability, m2i−1 and m2i are both stable partners of women w2i−1 and w2i.

1.2 Related Work

Analyzing instances that are less far-fetched than in the worst case is the moti-
vation underlying the model of stochastically generated preference lists. A series
of papers [19,22,24–26] study the model where N men and N women have com-
plete uniformly random preferences. Asymptotically, and in expectation, the
total number of stable matchings is ∼ e−1N ln N , in which a fixed woman has
∼ ln N stable husbands, where her best stable husband has rank ∼ ln N and her
worst stable husband has rank ∼ N/ ln N .

The first theoretical explanations of the “core-convergence” phenomenon
where given in [17] and [4], in variations of the standard uniform model. Immor-
lica and Mahdian [17] consider the case where men have constant size random
preferences (truncated popularity preferences). Ashlagi, Kanoria and Leshno [4],
consider slightly unbalanced matching markets (M < W). Both articles prove
that the fraction of persons with several stable partners tends to 0 as the market
grows large. Theorem 2 and its proof incorporate ideas from those two papers.

Beyond strong “core-convergence”, where most agents have a unique stable
partner, one can bound the utility gain by manipulating a stable mechanism.
Lee [21] considers a model with random cardinal utilities, and shows that agents
receive almost the same utility in all stable matchings. Kanoria, Min and Qian
[18], and Ashlagi, Braverman, Thomas and Zhao [3] study the rank of each
person’s partner, under the men and women optimal stable matchings, as a
function of the market imbalance and the size of preference lists [18], or as a
function of each person’s (bounded) popularity [3]. Theorem 1 can be compared
with such results.

Beyond one-to-one matchings, school choice is an example of many-to-one
markets. Kojima and Pathak [20] generalize results from [17] and prove that most
schools have no incentives to manipulate. Azevedo and Leshno [5] show that large
markets converge to a unique stable matching in a model with a continuum of
students. To counter balance those findings, Biró, Hassidim, Romm and Shorer
[7], and Rheingans-Yoo [27] argue that socioeconomic status and geographic
preferences might undermine core-convergence, thus some incentives remain in
such markets.

8 H. Gimbert et al.

2 Strongly Correlated Preferences: Proof of Theorem 1

Theorem 1. Assume that each woman independently draws her preference list
from a regular distribution. The men’s preference lists are arbitrary. Let uk be
an upper bound on the odds that man mi+k is ranked before man mi:

∀k ≥ 1, uk = max
w,i

{
P[mi+k �w mi]
P[mi �w mi+k]

∣∣∣∣ w finds both mi and mi+k acceptable
}

Then for each woman with at least one stable partner, in expectation all of
her stable partners are ranked within (1 + 2 exp(

∑
k≥1 kuk))

∑
k≥1 k2uk of one

another in her preference list.

In Subsect. 2.1, we define a partition of stable matching instances into blocks.
For strongly correlated instances, blocks provide the structural insight to start
the analysis: in Lemma 3, we use them to upper-bound the difference of ranks
between a woman’s worst and best stable partners by the sum of (1) the number
x of men coming from other blocks and who are placed between stable husbands
in the woman’s preference list, and (2) the block size.

The analysis requires a delicate handling of conditional probabilities. In Sub-
sect. 2.2, we explain how to condition on the men-optimal stable matching, when
preferences are random.

Subsection 2.3 analyzes (1). The men involved are out of place compared to
their position in the ranking m1 � . . . � mM , and the odds of such events can be
bounded, thanks to the assumption that distributions of preferences are regular.
Our main technical lemma there is Lemma 4.

Subsection 2.4 analyzes (2), the block size by first giving a simple greedy
algorithm (Algorithm 2) to compute a block. Each of the two limits of a block
is computed by a sequence of “jumps”, so the total distance traveled is a sum
of jumps which, thanks to Lemma 4 again, can be stochastically dominated by
a sum X of independent random variables (see Lemma 7); thus it all reduces to
analyzing X, a simple mathematical exercise (Lemma 8).

Finally, Subsect. 2.5 combines the Lemmas previously established to prove
Theorem 1.

Our analysis builds on Theorems 1 and 2, two fundamental and well-known
results.

Theorem 1 (Adapted from [11]). Algorithm 1 outputs a stable matching μM
in which every man (resp. woman) has his best (resp. her worst) stable partner.
Symmetrically, there exists a stable matching μW in which every woman (resp.
man) has her best (resp. his worst) stable partner.

Theorem 2 (Adapted from [12]). Each person is either matched in all stable
matchings, or single in all stable matchings. In particular, a woman is matched
in all stable matchings if and only if she received at least one acceptable proposal
during Algorithm 1.

Two-Sided Matching Markets with Strongly Correlated Preferences 9

Algorithm 1. Men Proposing Deferred Acceptance.
Input: Preferences of men (�m)m∈M and women (�w)w∈W .
Initialization: Start with an empty matching µ.
While a man m is single and has not proposed to every woman he finds acceptable,
do

m proposes to his favorite woman w he has not proposed to yet.
If m is w’s favorite acceptable man among all proposals she received,

w accepts m’s proposal, and rejects her previous husband if she was married.

Output: Resulting matching.

2.1 Separators and Blocks

In this subsection, we define the block structure underlying our analysis.

Definition 3 (separator). A separator is a set S ⊆ M of men such that in the
men-optimal stable matching μM, each woman married to a man in S prefers
him to all men outside S:

∀w ∈ μM(S) ∩ W, ∀m ∈ M \ S, μM(w) �w m

Lemma 1. Given a separator S ⊆ M, every stable matching matches S to the
same set of women.

Proof. Let w ∈ μM(S) and let m be the partner of w in some stable matching.
Since μM is the woman-pessimal stable matching by Theorem 1, w prefers m
to μM(w). By definition of separators, that implies that m ∈ S. Hence, in every
stable matching μ, women of μM(S) are matched to men in S. By a cardinality
argument, men of S are matched by μ to μM(S).

Definition 4 (prefix separator, block). A prefix separator is a separator S
such that S = {m1,m2, . . . ,mt} for some 0 ≤ t ≤ N . Given a collection of b + 1
prefix separators Si = {m1, . . . ,mti} with 0 = t0 < t1 < · · · < tb = N , the i-th
block is the set Bi = Sti \ Sti−1 with 1 ≤ i ≤ b.

Abusing notations, we will denote S as the prefix separator t and B as the
block (ti−1, ti].

Lemma 2. Given a block B ⊆ M, every stable matching matches B to the same
set of women.

Proof. B equals Sti \ Sti−1 for some i. Applying Lemma 1 to Sti and to Sti−1

proves the Lemma.

Lemma 3. Consider a woman wn who is matched by μM and let B = (l, r]
denote her block. Let x denote the number of men from a better block that are
ranked by wn between a man of B and mn:

x = |{i ≤ l | ∃j > l, mj �wn
mi �wn

mn}|.

10 H. Gimbert et al.

Then in wn’s preference list, the difference of ranks between wn’s worst and best
stable partners is at most x + r − l − 1.

Proof. Since μM is woman-pessimal by Theorem 1, mn is the last stable husband
in wn’s preference list. Let mj denote her best stable husband.

In wn’s preference list, the interval from mj to mn contains men from her own
block, plus possibly some additional men. Such a man mi comes from outside
her block (l, r] and she prefers him to mn: since r is a prefix separator, we must
have i ≤ l. Thus x counts the number of men who do not belong to her block
but who in her preference list are ranked between mj and mn.

On the other hand, the number of men who belong to her block and who in
her preference list are ranked between mj and mn (inclusive) is at most r − l.

Together, the difference of ranks between wn’s worst and best stable partners
is at most x + (r − l) − 1. See Fig. 1 for an illustration.

m1 m3 m7 m2 m8 m6 m9 m5 m10 w6 m4

µW(w6) µM(w6) unacceptable

≤ x+ r − l − 1

l = 2, r = 8 and x = 1

mi with i ≤ l

mi with l < i ≤ r

mi with r < i

x = |{ | ∃ ,

Fig. 1. Preference list of wn, with n = 6. The block of wn is defined by a left separator
at l = 2 and a right separator at r = 8. Colors white, gray and black corresponds to
blocks, and are defined in the legend. All stable partners of wn must be gray. Men in
black are all ranked after mn = µM(wn). The difference in rank between wn’s worst
and best partner is at most the number of gray men (here r− l = 6), minus 1, plus the
number of white men ranked after a gray man and before mn (here x = 1).

2.2 Conditioning on the Man Optimal Stable Matching When
Preferences Are Random

We study the case where each person draws her preference list from an arbitrary
distribution. The preference lists are random variables, that are independent but
not necessarily identically distributed.

Intuitively, we use the principle of deferred decision and construct prefer-
ence lists in an online manner. By Theorem 1 the man-optimal stable matching
μM is computed by Algorithm 1, and the remaining randomness can be used
for a stochastic analysis of each person’s stable partners. To be more formal,
we define a random variable H, and inspection of Algorithm 1 shows that H
contains enough information on each person’s preferences to run Algorithm 1
deterministically.

Definition 5. Let H = (μM, (σm)m∈M, (πw)w∈W) denote the random variable
consisting of (1) the man-optimal stable matching μM, (2) each man’s ranking
of the women he prefers to his partner in μM, and (3) each woman’s ranking of
the men who prefer her to their partner in μM.

Two-Sided Matching Markets with Strongly Correlated Preferences 11

2.3 Analyzing the Number x of Men from Other Blocks

Lemma 4. Recall the sequence (uk)k≥1 defined in the statement of Theorem 1:

∀k ≥ 1, uk = max
w,i

{
P[mi+k �w mi]
P[mi �w mi+k]

∣∣∣∣ w finds both mi and mi+k acceptable
}

Let w be a woman. Given a subset of her acceptable men and a ranking of that
subset a1 �w · · · �w ap, we condition on the event that in w’s preference list,
a1 �w · · · �w ap holds. Let mi = a1 be w’s favorite man in that subset. Let Ji

be a random variable, equal to the highest j ≥ i such that woman w prefers mj

to mi. Formally, Ji = max{j ≥ i | mj �w mi}. Then, for all k ≥ 1, we have

P[Ji < i + k | Ji < i + k + 1] ≥ exp(−uk), and P[Ji < i + k] ≥ exp(− ∑
�≥k u�).

Proof. Ji is determined by w’s preference list. We construct w’s preference list
using the following algorithm: initially we know her ranking σA of the subset
A = {a1, a2, . . . , ap} of acceptable men, and mi = a1 is her favorite among
those. For each j from N to i in decreasing order, we insert mj into the ranking
according to the distribution of w’s preference list, stopping as soon as some mj

is ranked before mi (or when j = i is that does not happen). Then the step j ≥ i
at which this algorithm stops equals Ji.

To analyze the algorithm, observe that at each step j = N,N − 1, . . ., we
already know w’s ranking of the subset S = {mj+1, . . . ,mN} ∪ {a1, . . . , ap} ∪
{men who are not acceptable to w}. If mj is already in S, w prefers mi to mj ,
thus the algorithm continues and Ji < j. Otherwise the algorithm inserts mj

into the existing ranking: by definition of regular distributions (Definition 1),
the probability that mj beats mi given the ranking constructed so far is at most
the unconditional probability P[mj �w mi].

P[Ji < j | w’s partial ranking at step j] ≥ 1 − P[mj �w mi].

By definition of uj−i, we have 1 − P[mj �w mi] =
(
1 + P[mj�wmi]

P[mi�wmj]

)−1

≥ (1 +

uj−i)−1 ≥ exp(−uj−i).
Summing over all rankings σS of S that are compatible with σA and with

Ji ≤ j,

P[Ji < j | Ji ≤ j] =
∑

σS compatible with
Ji≤j and with σA

P[σS | σA] · P[Ji < j | σS]

≥
∑
σS

P[σS | σA] · exp(−uj−i) = exp(−uj−i).

Finally, P[Ji < j] =
∏N

�=j P[Ji < � | Ji ≤ �] ≥ ∏
k≥j−i exp(−uk).

Recall from Lemma 3 that r− l−1+x is an upper bound on the difference of
rank of woman wn’s worst and best stable husbands. We first bound the expected
value of the random variable x defined in Lemma 3.

12 H. Gimbert et al.

Lemma 5. Given a woman wn, define the random variable x as in Lemma 3:
conditioning on H, x = |{i ≤ l | ∃j > l, mj �wn

mi �wn
mn}| is the number

of men in a better block, who can be ranked between wn’s worst and best stable
husbands. Then E[x] ≤ ∑

k≥1 kuk.

Proof. Start by conditioning on H, and let mn = a1 �w a2 �w · · · �w ap be wn’s
ranking of men who prefer her to their partner in μM. We draw the preference
lists of each woman wi with i < n, and use Algorithm 2 to compute the value
of l.

For each i ≤ l, we proceed as follows. If mn �wn
mi, then mi cannot be

ranked between wn’s worst and best stable partners. Otherwise, we are in a
situation where mi �wn

a1 � wn · · · �wn
ap. Using notations from Lemma 4, w

prefers mi to all mj with j > l if and only if Ji < l +1. By Lemma 4 this occurs
with probability at least exp(−∑

k≥l+1−i uk). Thus

P[∃j > l, mj �wn mi �wn mn | H, l] ≤ 1 − exp(−
∑

k≥l+1−i
uk) ≤

∑

k≥l+1−i
uk.

Summing this probability for all i ≤ l, we obtain E[x | H, l] ≤ ∑
i≤l∑

k≥l+1−i uk ≤ ∑
k≥1 kuk.

2.4 Analyzing the Block Size

Lemma 6. Consider wn who is matched by μM . Then Algorithm 2 outputs the
block containing wn.

Algorithm 2. Computing a block
Initialization:

Compute the man optimal stable matching µM.
Relabel women so that wi denotes the wife of mi in µM
Pick a woman wn who is married in µM.

Left prefix separator: initialize l ← n − 1
while there exists i ≤ l and j > l such that mj �wi mi:

l ← min{i ≤ l | ∃j > l, mj �wi mi} − 1.
Right prefix separator: initialize r ← n.

while there exists j > r and i ≤ r such that mj �wi mi:
r ← max{j > r | ∃i ≤ r, mj �wi mi}.

Output: (l, r].

Proof. Algorithm 2 is understood most easily by following its execution on Fig. 2.
Algorithm 2 applies a right-to-left greedy method to find the largest prefix sep-
arator l which is ≤ n− 1. By definition of prefix separators, a witness that some
t is not a prefix separator is a pair (mj , wi) where j > t ≥ i and woman wi

prefers man mj to her partner: mj >wi
mi. Then the same pair also certifies

that no t′ = t, t− 1, t− 2, . . . , i can be a prefix separator either, so the algorithm

Two-Sided Matching Markets with Strongly Correlated Preferences 13

jumps to i − 1 and looks for a witness again. When there is no witness, a prefix
separator has been found, thus l is the largest prefix separator ≤ n−1. Similarly,
Algorithm 2 computes the smallest prefix separator r which is ≥ n. Thus, by
definition of blocks, (l, r] is the block containing wn.

Women
µM

Men
m1 ml+1 mn mr mN

w1 wl+1 wn wr wN

Nrnl0

Fig. 2. Computing the block containing woman wn. The vertical black edges corre-
spond to the men-optimal stable matching µM. There is a light gray arc (mj , wi) if
j > i and woman wi prefers man mj to her partner: mj �wi mi. The prefix sepa-
rators correspond to the solid red vertical lines which do not intersect any gray arc.
Algorithm 2 applies a right-to-left greedy method to find the largest prefix separator
l which is ≤ n − 1, jumping from dashed red line to dashed red line, and a similar
left-to-right greedy method again to find the smallest prefix separator r which is ≥ n.
This determines the block (l, r] containing n. (Color figure online)

Definition 6. Let X be the random variable defined as follows. Let (Δt)t≥0

denote a sequence of i.i.d.r.v.’s taking non-negative integer values with the fol-
lowing distribution:

∀δ > 0, P[Δt < δ] = exp
(
−∑

k≥δ kuk

)

Then X = Δ0 + Δ1 + · · · + ΔT−1, where T is the first t ≥ 0 such that Δt = 0.

The proofs of the following Lemmas can be found in [13].

Lemma 7. Given a woman wn, let (l, r] denote the block containing n. Condi-
tioning on H, l and r are integer random variable, such that r − n and n − 1 − l
are stochastically dominated by X.

Lemma 8. We have E[X] ≤ exp(
∑

k≥1 kuk)
∑

k≥1 k2uk.

2.5 Putting Everything Together

Proof (Proof of Theorem 1). Without loss of generality, we may assume that
N = M ≤ W and that each man is matched in the man-optimal stable matching
μM: to see that, for each man m we add a “virtual” woman w as his least favorite
acceptable partner, such that m is the only acceptable partner of w. A man is

14 H. Gimbert et al.

single in the original instance if and only if he is matched to a “virtual” woman
in the new instance.

We start our analysis by conditioning on the random variable H (see Defi-
nition 5). Algorithm 1 then computes μM , which matches each woman to her
worst stable partner. Up to relabeling the women, we may also assume that for
all i ≤ N we have wi := μM(mi).

Let wn be a woman who is married in μM. From there, we use Lemma 3
to bound the difference of rank between her worst and best stable partner by
x+ r − l − 1 = x + (r −n) + (n − l − 1). We bound the expected value of x using
Lemma 5, and the expected values of both r − n and n − l − 1 using Lemmas 7
and 8.

3 Unique Stable Partner: Proof of Theorem 2

Theorem 2. Assume that each woman independently draws her preference list
from a regular distribution. Let uk be an upper bound on the odds that man mi+k

is ranked before man mi:

∀k ≥ 1, uk = max
w,i

{
P[mi+k �w mi]
P[mi �w mi+k]

∣∣∣∣ w finds both mi and mi+k acceptable
}

Further assume that all preferences are complete, that uk = exp(−Ω(k)), and
that men have uniformly random preferences. Then, in expectation the fraction
of persons who have multiple stable partners converges to 0.

The proof first continues the analysis of blocks started in Sect. 2.4. When
uk = exp(−Ω(k)), it can be tightened with a mathematical analysis to prove
(Corollary 1) that with high probability, no block size exceeds O(log n), and that
in addition, in her preference list no woman switches the relative ordering of two
men mi and mi+Ω(log n). The rest of the proof assumes that those properties
hold. The only remaining source of randomness comes from the preference lists
of men.

The intuition is that it is hard for man mi to have another stable partner
from his block. Because of the random uniform assumption on mi’s preference
list, between wi and the next person from his block, his list is likely to have
some woman wj with j � i. Woman wj likes mi better than her own partner,
because of the no-switching property, and mi likes her better than his putative
second stable partner, so they form a blocking pair preventing mi’s second stable
partner. Transforming that intuition into a proof requires care because of the
need to condition on several events.

Definition 7. Let C = O(1) be a constant to be defined later. Let K denote the
event that every block has size at most C ln N , and every woman prefers man
mi to man mi+k, whenever k ≥ C ln N .

The proofs of the following Lemmas can be found in [13].

Two-Sided Matching Markets with Strongly Correlated Preferences 15

Lemma 9. Assume that women have preferences drawn from regular distribu-
tions such that uk = exp(−Ω(k)). Then, the size of each man’s block is a random
variable with an exponential tail:

∀i, P[block containing mi has size ≥ k] = exp(−Ω(k)).

Corollary 1. One can choose C = O(1) such that the probability of event K is
≥ 1 − 1/N2.

Lemma 10. Fix i ∈ [1, N]. Conditioning on H and on K, the probability that
woman wi has more than one stable husband is at most 3C ln N/(N +C ln N −i).

Proof (Proof of Theorem 2). As in the previous proof, in our analysis we condi-
tion on event H (see Definition 5), i.e. on (1) the man-optimal stable matching
μM, (2) each man’s ranking of the women he prefers to his partner in μM, and
(3) each woman’s ranking of the men who prefer her to their partner in μM. As
before, a person who is not matched in μM remains single in all stable match-
ings, hence, without loss of generality, we assume that M = W = N , and that
wi = μM(mi) for all 1 ≤ i ≤ N .

Let Z denote the number of women with several stable partners. We show
that in expectation Z = O(ln2 N), hence the fraction of persons with multi-
ple stable partners converges to 0. We separate the analysis of Z according to
whether event K holds. When K does not hold, we bound that number by N , so
by Corollary 1: E[Z] ≤ (1/N2) × N + (1 − 1/N2) × E(Z|K).

Conditioning on H and switching summations, we write:

E(Z|K) =
∑

H
P[H] · E(Z|K,H) =

∑

i

∑

H
P[H] · P[wi has several stable husbands | K,H]

By Lemma 10, we can write: P[wi has several stable husbands | K,H] ≤
3C ln N/(N + C ln N − i). Hence the expected number of women who have
several stable partners is at most 1/N plus

N∑
i=1

3C ln N

N + C ln N − i
=

N−1∑
i=0

3C ln N

i + C ln N

≤ 3C ln N

∫ C log N−1+N

C log N−1

dt

t

= 3C ln N ln
(

C log N − 1 + N

C log N − 1

)

When N is large enough, we can simplify this bound to 3C ln2 N .

Acknowledgements. This work was partially funded by the grant ANR-19-CE48-
0016 from the French National Research Agency (ANR).

16 H. Gimbert et al.

References

1. Abdulkadiroğlu, A., Pathak, P.A., Roth, A.E.: The New York city high school
match. Am. Econ. Rev. 95(2), 364–367 (2005)

2. Abdulkadiroğlu, A., Pathak, P.A., Roth, A.E., Sönmez, T.: The Boston Public
School match. Am. Econ. Rev. 95(2), 368–371 (2005)

3. Ashlagi, I., Braverman, M., Thomas, C., Zhao, G.: Tiered random matching mar-
kets: rank is proportional to popularity. In: 12th Innovations in Theoretical Com-
puter Science Conference (ITCS). Schloss Dagstuhl-Leibniz-Zentrum für Infor-
matik (2021)

4. Ashlagi, I., Kanoria, Y., Leshno, J.D.: Unbalanced random matching markets: the
stark effect of competition. J. Polit. Econ. 125(1), 69–98 (2017)

5. Azevedo, E.M., Leshno, J.D.: A supply and demand framework for two-sided
matching markets. J. Polit. Econ. 124(5), 1235–1268 (2016)

6. Banerjee, A., Duflo, E., Ghatak, M., Lafortune, J.: Marry for what? Caste and
mate selection in modern India. Am. Econ. J. Microecon. 5(2), 33–72 (2013)

7. Biró, P., Hassidim, A., Romm, A., Shorrer, R.I., Sóvágó, S.: Need versus merit: the
large core of college admissions markets. arXiv preprint arXiv:2010.08631 (2020)

8. Correa, J., et al.: School choice in Chile. In: Proceedings of the 2019 ACM Con-
ference on Economics and Computation, pp. 325–343 (2019)

9. Demange, G., Gale, D., Sotomayor, M.: A further note on the stable matching
problem. Discret. Appl. Math. 16(3), 217–222 (1987)

10. Dubins, L.E., Freedman, D.A.: Machiavelli and the Gale-Shapley algorithm. Am.
Math. Mon. 88(7), 485–494 (1981)

11. Gale, D., Shapley, L.S.: College admissions and the stability of marriage. Am.
Math. Mon. 69(1), 9–15 (1962)

12. Gale, D., Sotomayor, M.: Some remarks on the stable matching problem. Discret.
Appl. Math. 11(3), 223–232 (1985)

13. Gimbert, H., Mathieu, C., Mauras, S.: Two-sided matching markets with strongly
correlated preferences. arXiv preprint arXiv:1904.03890 (2019)

14. Gusfield, D.: Three fast algorithms for four problems in stable marriage. SIAM J.
Comput. 16(1), 111–128 (1987)

15. Gusfield, D., Irving, R.W.: The Stable Marriage Problem: Structure and Algo-
rithms. MIT Press, Cambridge (1989)

16. Hitsch, G.J., Hortaçsu, A., Ariely, D.: Matching and sorting in online dating. Am.
Econ. Rev. 100(1), 130–63 (2010)

17. Immorlica, N., Mahdian, M.: Incentives in large random two-sided markets. ACM
Trans. Econ. Comput. 3(3), 14 (2015)

18. Kanoria, Y., Min, S., Qian, P.: In which matching markets does the short side enjoy
an advantage? In: Proceedings of the 2021 ACM-SIAM Symposium on Discrete
Algorithms (SODA), pp. 1374–1386. SIAM (2021)

19. Knuth, D.E., Motwani, R., Pittel, B.: Stable husbands. In: Proceedings of the First
Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 397–404 (1990)

20. Kojima, F., Pathak, P.A.: Incentives and stability in large two-sided matching
markets. Am. Econ. Rev. 99(3), 608–27 (2009)

21. Lee, S.: Incentive compatibility of large centralized matching markets. Rev. Econ.
Stud. 84(1), 444–463 (2016)

22. Lennon, C., Pittel, B.: On the likely number of solutions for the stable marriage
problem. Comb. Probab. Comput. 18(3), 371–421 (2009)

http://arxiv.org/abs/2010.08631
http://arxiv.org/abs/1904.03890

Two-Sided Matching Markets with Strongly Correlated Preferences 17

23. Pathak, P.A., Sönmez, T.: Leveling the playing field: sincere and sophisticated
players in the Boston mechanism. Am. Econ. Rev. 98(4), 1636–52 (2008)

24. Pittel, B.: The average number of stable matchings. SIAM J. Discret. Math. 2(4),
530–549 (1989)

25. Pittel, B.: On likely solutions of a stable marriage problem. Ann. Appl. Probab.
2, 358–401 (1992)

26. Pittel, B., Shepp, L., Veklerov, E.: On the number of fixed pairs in a random
instance of the stable marriage problem. SIAM J. Discret. Math. 21(4), 947–958
(2007)

27. Rheingans-Yoo, R., Street, J.: Large random matching markets with localized pref-
erence structures can exhibit large cores. Technical report, Mimeo (2020)

28. Roth, A.E.: The economics of matching: stability and incentives. Math. Oper. Res.
7(4), 617–628 (1982)

29. Roth, A.E., Peranson, E.: The redesign of the matching market for American physi-
cians: some engineering aspects of economic design. Am. Econ. Rev. 89(4), 748–780
(1999)

Communicating Finite State Machines
and an Extensible Toolchain
for Multiparty Session Types

Nobuko Yoshida(B) , Fangyi Zhou , and Francisco Ferreira

Imperial College London, London, UK
{n.yoshida,fangyi.zhou15,f.ferreira-ruiz}@imperial.ac.uk

Abstract. Multiparty session types (MPST) provide a typing disci-
pline for message passing concurrency, ensuring deadlock freedom for dis-
tributed processes. This paper first summarises the relationship between
MPST and communicating finite state machines (CFSMs), which offers
not only theoretical justifications of MPST but also a guidance to imple-
ment MPST in practice. As one of the applications, we present νScr
(NuScr), an extensible toolchain for MPST-based multiparty protocols.
The toolchain can convert multiparty protocols in the Scribble protocol
description language into global types in the MPST theory; global types
are projected into local types, and local types are converted to their corre-
sponding CFSMs. The toolchain also generates APIs from CFSMs that
implement endpoints in the protocol. Our design allows for language-
independent code generation, and opens possibilities to generate APIs
in various programming languages. We design our toolchain with mod-
ularity and extensibility in mind, so that extensions of core MPST can
be easily integrated within our framework. As a case study, we show the
implementation of the nested protocol extension in νScr, to showcase
our extensibility.

Keywords: Session Types · Communicating Finite State Machines ·
Distributed programming · Scribble · Protocols

1 Introduction

In the modern era of distributed and concurrent programming, how to achieve
safety with minimal effort (i.e. lightweight formal methods) becomes a hot area
of research. Session types [19] provide a typing discipline for message passing
concurrency, by assigning session types to communication channels, in terms
of a sequence of actions over a channel. Session types, initially only able to
describe communications between two ends of a channel, are later extended to
multiparty [20,21], giving rise to the multiparty session types (MPST) theory.
The MPST typing discipline guarantees that a set of well-typed communicating
processes are free from deadlocks or communication mismatches.

c© Springer Nature Switzerland AG 2021
E. Bampis and A. Pagourtzis (Eds.): FCT 2021, LNCS 12867, pp. 18–35, 2021.
https://doi.org/10.1007/978-3-030-86593-1_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86593-1_2&domain=pdf
http://orcid.org/0000-0002-3925-8557
http://orcid.org/0000-0002-8973-0821
http://orcid.org/0000-0001-8494-7696
https://doi.org/10.1007/978-3-030-86593-1_2

Communicating Finite State Machines and νScr 19

1.1 Communicating Finite State Machines and Session Types

Motivation: Why CFSMs? Communicating Automata [2], also known as
Communicating Finite State Machines (CFSMs), are a classical model for proto-
col specification and verification. Before being used in many industrial contexts,
CFSMs have been a pioneer theoretical formalism, in which distributed safety
properties could be formalised and studied.

Establishing a formal connection between CFSMs and session types allows
the use of CFSMs to build theoretically well-founded tools for MPST. The first
work that utilised CFSMs in practice is Demangeon et al. [11], a toolchain
for monitoring multiparty communications at runtime for large scientific cyber-
infrastructures developed by the Ocean Observatories Initiative [41].

From the theoretical side, the CFSM framework offers canonical justifications
for session types to answer open questions which have been asked since [20]. The
1st question is about expressiveness: to which class of CFSMs do session types
correspond? The 2nd question concerns the semantic correspondence between
session types and CFSMs: how do the safety properties that session types guar-
antee relate to those of CFSMs? The 3rd question is about efficiency : why
do session types provide efficient algorithms for type-checking or verifying dis-
tributed programs, while general CFSMs are undecidable? CFSMs can be also
seen as generalised endpoint specifications, therefore an excellent target for a
common ground for comparing protocol specification languages.

To answer the three questions above, we need to identify a sound and complete
subset of CFSMs that corresponds to MPST behaviour, which we explain below.

B 1 2 3 4 5
S!title S?quote S!ok S?date

S!retry

S 1 2 3 4 5
B?title B!quote B?ok B!date

B?retry

Fig. 1. Two dual communicating automata: the buyer and the seller

Binary Session Types as CFSMs. The subclass that fully characterises
binary session types [19] was actually proposed by Gouda, Manning and Yu [16]
in a pure automata context (independently from the discovery of session
types [45]). Consider a simple business protocol between a Buyer and a Seller.
From the Buyer’s viewpoint, the Buyer sends the title of a book, then the Seller
answers with a quote. If the Buyer is satisfied by the quote, then they send their
address and the Seller sends back the delivery date; otherwise they retry the
same conversation. This can be specified by the two machines of the Buyer and
the Seller in Fig. 1. We can observe that these CFSMs satisfy three conditions:
First, the communications are deterministic: messages that are part of the same

20 N. Yoshida et al.

choice, ok and retry here, are distinct. Secondly, there is no mixed state (each
state has either only sending actions, or only receiving actions). Third, these two
machines have compatible traces (i.e. dual): the Seller machine can be defined by
exchanging sending and receiving actions of the Buyer machine. Breaking one
of these conditions allows deadlock situations and breaking one of the first two
conditions makes the compatibility checking undecidable [16].

Essentially, the same characterisation is given in binary session types [19].
Consider the following session type of the Buyer.

μt.⊕title."e.⊕{ok : ⊕addrs.&date. end retry : t} (1)

The session type above describes the communication pattern using several
constructs. The operator ⊕title denotes an output of the title, whereas "e
denotes an input of a quote. The output choice features the two options ok and
retry and . denotes sequencing. end represents the termination of the session,
and μt is recursion. The simplicity and tractability of binary sessions come from
the notion of duality in interactions [15], which corresponds to compatibility of
CFSMs. In (1), not only the Buyer’s behaviour, but also the whole conversation
structure is already represented in this single type: the interaction pattern of the
Seller is fully given as the dual of the type in (1) (exchanging input ⊕ and out-
put &). When composing two parties, we only have to check they have mutually
dual types, and the resulting communication is guaranteed to be deadlock-free.

Multiparty Session Types and CFSMs. The notion of duality is no longer
effective in multiparty communication, where the whole conversation cannot be
reconstructed from only the behaviour of a single machine. Instead of directly
trying to decide whether the communication of a system satisfies safety (which is
undecidable in the general case), we devise a compatible, decidable condition of a
set of machines, which forces them to collaborate together. We define a complete
characterisation of global type behaviours into CFSMs: a set of CFSMs satisfy
some compatible conditions, if and only if the CFSMs can mimic the expected
behaviour of a given global type. A good global type means the global type can
only generate safe CFSMs by endpoint projection, which satisfies realisability.

A

1 2 3

4

B!quit C!finish

B!act C!commit

B

1 2 3

4

A?quit C!save

A?act C!sig

C

1 2 3

4

B?save A?finish

B?sig A?commit

Fig. 2. CFSMs for the commit protocol

We give a simple example to illustrate the proposal. The Commit protocol in
Fig. 2 involves three machines: Alice, Bob and Carol. Alice orders Bob to act or
quit. If act is sent, Bob sends a signal to Carol, and Alice sends a commitment

Communicating Finite State Machines and νScr 21

to Carol and continues. Otherwise Bob informs Carol to save the data, and
Alice gives the final notification to Carol to finish the protocol.

Deniélou and Yoshida [12] present a decidable notion of multiparty compatibil-
ity as a generalisation of duality of binary sessions, for a given set of (more than
two) CFSMs. The idea is that any single machine can see the rest of the machines
as a single machine, up to unobservable actions (like a τ -transition in CCS).
Therefore, we check the duality between each automaton and the rest, up to
internal communications (1-bounded executions in the terminology of CFSMs)
that the other machines will independently perform. For example, in Fig. 2, to
check the compatibility of trace AB!quit ·AC!finish in Alice, we observe the dual
trace AB?quit · AC?finish from Bob and Carol, executing the internal commu-
nication between Bob and Carol: BC!save · BC?save. If this extended duality is
valid for all the machines from any 1-bounded reachable state, then they satisfy
multiparty compatibility and can characterise a well-formed global type.

Our motivation to study this general compatibility comes from the need
for using global types to develop tools for choreographic distributed test-
ing in web service software [44] and distributed monitoring for large cyber-
infrastructures [41], where local specifications are often updated independently
and one needs to refine the original global specification according to the local
updates.

The 1-boundedness and multiparty compatibility conditions are extended to
the k-bounded condition in [28] (called k-multiparty compatibility). Another flex-
ible form of safe and more asynchronous CFSMs (which do not rely on duality
or buffer bounds) is studied in [7,14] (called asynchronous subtyping). Unfor-
tunately, the asynchronous subtyping relation is undecidable, even if limited to
only two machines; currently its decidable sound algorithms are restricted to
either binary session types [3] or finite MPSTs [6].

Practically, a direct analysis based on CFSMs is computationally expensive,
even if the shapes of CFSMs are limited. For building a toolchain for practical
programming languages, we take the safe-by-construction approaches—we start
from specifying a global type, and project it to endpoint types or CFSMs, for
code generation into various programming languages, and/or other purposes.
Interestingly, multiparty compatibility also helps enlarge the well-formedness
condition of global types [23]. See Sect. 5.

1.2 νSCR: An Extensible Toolchain for Multiparty Session Types

We present a new toolchain for multiparty protocols, νScr (NuScr), for han-
dling protocols written in the Scribble language. The implementation of MPST
has three main aspects: (1) a language for specifying global interactions—
specifically, the Scribble protocol description language [18]; (2) a tool to
manipulate specifications and generate implementable APIs (Scribble [44] is
already a mature industrial-strength tool able to generate APIs in multiple pro-
gramming languages); and (3) a theory backing the safety guarantees, such as
Featherweight Scribble [35], which minds the gap between the practical Scrib-
ble protocol description language, and the theoretical MPST specifications [21].

22 N. Yoshida et al.

A Global Type G
Project onto each

participant

LA

Local Type for A

LB

Local Type for B

LS

Local Type for S

Fig. 3. Top-down methodology

The aim of this implementation is to be lightweight and extensible. Whilst the
Scribble language describes more expressive protocols than the original MPST
theory [21], νScr handler a core, well-defined subset of Scribble protocols that
have a corresponding MPST global type, following the formalisation of [35]. We
do so in anticipation that further extensions of the MPST theory can be easily
implemented in νScr, and a researcher can smoothly integrate their own MPST
design/theory in νScr. For this purpose, we use a modular design that does not
only enable future extensions, but also makes them easy to implement.

The rest of the paper is structured as follows: Sect. 2 introduces multiparty
session types, the theoretical foundation of our tool; Sect. 3 introduces the νScr
toolchain; Sect. 4 presents a case study of extending νScr with nested proto-
cols [10]; and Sect. 5 summarises related work and concludes this paper. νScr is
publicly available at https://github.com/nuscr/nuscr/ under the GPLv3 license.

2 Multiparty Session Types (MPST)

In this section, we introduce the theoretical foundation of our tool—Multiparty
Session Types (MPST) [21], a typing discipline for concurrent processes.

The main design philosophy of MPST follows a top-down approach (see
Fig. 3): a global type describes a global view of a communication protocol between
a number of participants. Each participant has their own perspective of the pro-
tocol, prescribed by their local type, which are obtained via an operation called
projection. A local type for a participant can be used for code generation or
type-checking to ensure that the participating process follows the local type.
If all participating processes follow their corresponding local types, obtained
via projection from a global type, these processes are free from communication
mismatches or deadlocks, guaranteed by the MPST typing discipline.

Global and Local Types. We show the syntax of global types and local types
in Fig. 4. The global type p → q {li(Si).Gi}i∈I is a message from p to q, where
p �= q and I �= ∅. The message carries a label li and payload type Si, selected
from a non-empty index set I, and the protocol continues as Gi. We write
p → q : l(S).G when |I| = 1. end denotes a type that is terminated. The local
type p&{li(Si).Li}i∈I (resp. p⊕{li(Si).Li}i∈I) denotes an external choice (resp.
internal choice), where participant carrying this local type will receive (resp.

https://github.com/nuscr/nuscr/

Communicating Finite State Machines and νScr 23

S ::= int | bool | . . . Base Types
G ::= Global Types

| p → q {li(Si).Gi}i∈I Message
| µt.G Recursion
| t | end Type Var., End

L ::= Local Types
| p&{li(Si).Li}i∈I External Choice
| p⊕{li(Si).Li}i∈I Internal Choice
| µt.L Recursion
| t | end Type Var., End

Fig. 4. Syntax of multiparty session types, in the style of [48]

send) a message from (resp. to) the participant p, among the index set I. Recur-
sive types are realised by μt.G (resp. μt.L) and t, by taking a equi-recursive
view (However, we require types to be contractive, e.g. μt.t is not allowed).

We can obtain local types by projecting a global type upon a partici-
pant. Projection is defined as a partial function, since not all global types are
implementable—these types might be unable to be implemented in a type-safe
way. We say a global type is well-formed, if the projection of the global type upon
all participants are defined. Well-formed global types can be implemented by a
collection of concurrent processes, each implementing their projected local type.
Well-typed processes will enjoy the benefit of the MPST typing discipline, are
free from deadlocks or communication mismatches. Curious readers may refer
to [48] for more details.

From Local Types to Communicating Finite State Machines. A local
type describes the behaviour of a specific role in a given global type, which can be
represented by a communicating finite state machine1 (CFSM) [2]. As shown by
Deniélou and Yoshida [12] and Neykova and Yoshida [35], there is an algorithm
to construct a CFSM that is trace-equivalent to the local type.

Relation to Scribble. Scribble [44,49] is a toolchain for implementing mul-
tiparty protocols. In particular, the syntax of the Scribble protocol description
language correlates closely to the theory of MPST. Neykova and Yoshida [35] give
a formal description of the Scribble protocol description language, known as
Featherweight Scribble, and establish a correspondence between global proto-
cols in Featherweight Scribble and global types in the MPST theory (Sect. 4).

3 νSCR: An Extensible Implementation of Multiparty
Session Types in OCAML

In this section, we describe the structure of νScr and highlight the correspon-
dence to the multiparty session type theory. νScr is written in OCaml in around
8000 lines of code, implementing the core part of the Scribble language, with
various extensions to the original MPST. νScr also has a web interface (https://
nuscr.dev/), so that users can perform quick prototyping in browsers, saving the
need for installation (see Fig. 5 for a screenshot).

1 Also known as endpoint finite state machine (EFSM) [22].

https://nuscr.dev/
https://nuscr.dev/

24 N. Yoshida et al.

Fig. 5. A screenshot of the νScr web interface, showing an Adder protocol

Overview. νScr is designed to be extensible, so that researchers working on
MPST theories can find it easy to implement their extensions upon the code
base of νScr. Inspired by Haskell, we use language pragmas to control lan-
guage extensions, so that users do not need to download different versions of the
software for different language extensions. Currently, two major extensions are
implemented, namely nested protocols [10,13] and refinement types [51]. Pro-
tocols in the Scribble description language are accepted by νScr, and then
converted into an MPST global type.

From a global type, νScr is able to project upon a specified participant
to obtain their local type, and subsequently obtain the corresponding CFSM.
Moreover, νScr is able to generate code for implementing the participant in
various programming languages, from their local type or CFSM. νScr can be
used either as a standalone command line application, or as an OCaml library
for manipulating multiparty protocols.

Code Layout. The codebase of νScr can be briefly split into 4 components:
syntax, mpst, codegen and utils. We introduce the components in detail.

Syntax. The syntax component handles the syntax of the Scribble protocol
description language, the core part of which is shown in Fig. 6. We use OCam-

llex and Menhir to generate the lexer and parser respectively. A Scribble

Communicating Finite State Machines and νScr 25

Protocol Declarations P ::= global protocol p (role r1, · · · , role rn){G}
Protocol Constructs G ::= l(S) from r1 to r2;G′ Single Message

| choice at r {G1} or · · · or {Gn} Branches
| rec X {G′} | continue X Recursion / Var.
| end (omitted in practice) Termination
| do p(r1, · · · , rn) Protocol Call

Base Types S ::= int | bool | · · ·

Fig. 6. Syntax of core Scribble language

1 global protocol Adder(role C, role S)

2 { choice at C

3 { add(int) from C to S;

4 add(int) from C to S;

5 sum(int) from S to C;

6 do Adder(C, S); }

7 or

8 { bye() from C to S;

9 bye() from S to C; } }

(a) Adder Protocol in Scribble

GAdder = µt.C → S

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

add(int).
C → S : add(int).
S → C : sum(int).
t;

bye().
S → C : bye().
end

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

(b) Global Type of Adder Protocol

Fig. 7. Adder protocol and its corresponding global type

module consists of multiple protocol declarations P . In the syntax, protocol
names are represented by p, role names by r, label names by l, and recursion
variable names by X. The four kinds of names range over string identifiers. They
are separated in distinct name spaces in νScr, and appropriately distinguished.

As a running example, we show a simple Scribble protocol describing an
Adder protocol in Fig. 7a, where a Client is able to make various requests to add
two ints, before they decide to finish the protocol with a bye message.

Multiparty Session Types. We show the key pipeline of handling multiparty
session types in Fig. 8, implemented in the mpst component. An input file is
parsed into a Scribble module, by the syntaxtree component described in the
previous paragraph. The protocols are then converted into a global type (defined
in Gtype module), which describes an overall protocol between multiple roles.
A global type is projected into a local type (defined in Ltype module), given a
specified role, which describes the local communication behaviour. We construct
a corresponding communicating finite state machine (CFSM) [2] (defined in Efsm
module) for the local type, and it can be used for API generation.

To obtain a global type, we extract it from the syntax tree of the Scribble

protocol file. During this extraction process, we perform syntactic checks on the
protocol, e.g. validating whether role names, recursion variables, and protocol
names have been defined before they are used. We show the global type of the
Adder protocol in Fig. 7b.

26 N. Yoshida et al.

Scribble
Module

Global Type Local Type CFSM

Fig. 8. Workflow of νScr

1 global protocol NonDirected (role A, role B, role C)

2 { choice at A // A sends to either B or to C in this choice

3 { Foo() from A to B; // either send to B

4 Bar() from A to C; }

5 or { Bar() from A to C; // or send to C

6 Foo() from A to B; } }

Fig. 9. Non-directed choice in Scribble

It is important to note that, syntactically correct protocols may fall out of
the expressiveness of the original MPST theory, e.g. the protocol shown in Fig. 9.
The role A makes a choice of sending Foo to B first, or sending Bar to C first, which
has no corresponding construct in the syntax (Fig. 4). Whilst some protocols fall
out of the scope of the core MPST theory, an extension to the core theory may
accept such protocols with non-directed choices.

The projection from global types upon participants is implemented in the
Ltype module, and the projected local types can be converted into their corre-
sponding communicating automata, using the technique described in [12]. We
use the graph library OCamlgraph [8], to represent the CFSM as a directed
graph. We show the local type for Client in Fig. 10a, and its corresponding CFSM
in Fig. 10b. Both local types and communicating automata can be used for code
generation purposes, which will be introduced in the next paragraph.

Code Generation. The codegen component generates APIs for implement-
ing distributed processes using the MPST theory. Following the MPST design
methodology, processes should follow the projected local type from the pre-
scribed global type. By the means of code generation, the processes implemented
using generated APIs will be correct by construction.

Currently, νScr supports code generation in OCaml, Go (with the nested
protocol extension [13]) and F� (with the refinement type extension [51]). More-
over, νScr can export the CFSM as a GraphViz Dot file, and code generation
backends can be implemented separately from νScr. This approach has been
used to support code generation in Rust [9], Scala and TypeScript [31].

To generate code in OCaml, we use a CFSM-based generation technique,
as proposed in [22]; however, we do not follow the class-based APIs, i.e. states
in the CFSMs are classes, and state transitions are methods on classes in [22].
While it would be possible to implement a similar object oriented approach in
OCaml, it does not fit well in the functional programming paradigm. νScr uses
a callback-based approach [51] for API generation, and generates functions for
transitions and maintains the state internally in a finite state machine runner.

Communicating Finite State Machines and νScr 27

LC = µt.S⊕

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

add(int).
S⊕add(int).
S&sum(int).
t;

bye().
S&bye().
end

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

(a) Local Type for Role C

C 1 2 3

4 5

S!add(int) S!add(int)

S?bye()

S!bye()

S?sum(int)

(b) CFSM for role C

Fig. 10. Local type and CFSM for role C in the Adder protocol

1 module type Callbacks = sig

2 type t (* An abstract type for user-maintained state *)

3

4 (* Sending callbacks return the state and a labelled value to send *)

5 val state1Send : t → t * [bye of unit | add of int]

6 val state2Send : t → t * [add of int]

7

8 (* Receiving callbacks take received value as arguments,

9 * and return the state *)

10 val state3Receivesum : t → int → t

11 val state4Receivebye : t → unit → t

12 end

Fig. 11. Generated module type in OCaml for role C

API Style. The generated API separates the program logic and communication
aspects of the endpoint program, in contrast to existing approaches of code
generation [22]. We generate type signatures of callback functions, corresponding
to state transitions in the CFSM, for handling the program logic. The signatures
are collected in the form of a module type, named Callbacks. We show the
generated module signature in Fig. 11, for implement the Client in the Adder
protocol (Fig. 10). Since we use a graph representation for CFSMs, the generation
process is done by iterating through the edges of the graph.

For a complete endpoint, We generate an OCaml functor taking a module
of type Callbacks to an implementation module. The module exposes a runner,
which executes the CFSM when provided connections to other communicating
roles. The runner handles the communication with other roles, so that the call-
back module does not need to involve any sending and receiving primitives.

Optional Monadic APIs. To enable asynchronous execution, we optionally gen-
erate code compatible with monadic communication primitives. This allows
users to implement the endpoint program with popular asynchronous execution
libraries in OCaml, such as Lwt [40].

28 N. Yoshida et al.

1 (*# NestedProtocols #*)

2 nested protocol Fork

3 (role M; new role W)

4 { choice at M

5 { Task() from M to W;

6 M calls Fork(M);

7 Result() from W to M; }

8 or

9 { End() from M to W; } }

1 global protocol ForkJoin

2 (role M, role W)

3 { choice at M

4 { Task() from M to W;

5 M calls Fork(M);

6 Result() from W to M; }

7 or

8 { SingleTask() from M to W;

9 Result() from W to M; } }

Fig. 12. A nested fork join protocol in Scribble [13, Fig. 7.3]

Utilities. The utils component contain miscellaneous modules fulfilling various
utility functions. A few notable modules in this component, relevant to future
extensions of νScr, include:

– Names module defines separated namespaces for all kinds of names occurring
in global and local types, e.g. payload type names, payload label names,
recursion variable names, etc.

– Err module defines all kinds of errors that occur throughout all components.
– Pragma module defines language pragmas, controlling the enabled extensions.

4 Extending νSCR

The modular design of νScr allows extensions of the MPST theory to be imple-
mented easily. The language pragmas, implemented as a special comment at the
beginning of an input file, control which extensions are enabled when handling
the protocols. So far, two major extensions have been added to νScr: nested
protocols implemented by Echarren Serrano [13], and refinement types imple-
mented by Zhou et al. [51]; and additional extensions are being implemented:
choreography automata [1] by Neil Sayers, parallel types by Francisco Ferreira,
and crash handling by Adam D. Barwell.

We use the nested protocol extension by Echarren Serrano [13] as a case
study to demonstrate how an extension can be implemented in νScr. Nested
protocols [10] allow dynamic creation of participants and sub-sessions in a pro-
tocol, extending the expressiveness of global types. In Fig. 12, we show a fork
join protocol, described in Scribble with the nested protocol extension.

Creating a New Pragma. The first line of Fig. 12 enables the nested proto-
cols extension using the pragma NestedProtocols (wrapped in (*# #*)). New
pragmas are added in the Pragma module in the utils component, including
a new constructor for the new pragma, and functions to get and set whether
the extension is toggled. An implementer may also check for conflicting pragmas
when processing all pragmas, so that incompatible extensions are not enabled
at the same time. In order to preserve the behaviour when the extension is not

Communicating Finite State Machines and νScr 29

enabled, it is essential that subsequent implementations of the extension should
query whether the extension is enabled before proceeding.

Extending the Syntax. The extension allows nested protocols to be defined
using the keyword nested, with the possibility to dynamically create new par-
ticipating roles. In addition, a new construct calls is introduced to create a
sub-session that follows a nested protocol, where new roles may be created to
participate in the sub-session.

To implement these new syntactic constructs, an implementer should extend
the syntaxtree component. To begin with, the concrete syntax tree (in the
Syntax module) is to be extended with constructors for the new syntax, e.g.
the new calls constructs in protocol body. Additional lexing or parsing rules
should be added accordingly in the corresponding module.

Extending the MPST Theory. The crucial part is to implement the theory
extension in the mpst component, where global and local types are defined.
Within the component, global (resp. local) types are defined using the OCaml

type Gtype.t (resp. Ltype.t). We add new constructors for new global types
(CallG for protocol calls) and new local types (InviteCreateL for inviting and
creating dynamic roles, and AcceptL for accepting invitations). Projection can
be extended accordingly in the Ltype module, which we will not explain in detail.

However, extending the global and local types does not complete the
extension—the implementer needs to connect the concrete syntax of Scribble

global protocols to the abstract syntax of MPST global types. The extraction
is defined at Gtype.of protocol, where a global type is obtained from a global
protocol. When processing the new syntactic constructs added by the extension,
the implementer should remember to call Pragma.nested protocol enabled
(which will return true when the pragma is set) to avoid interference with the
core MPST, i.e. when the extension is not enabled.

Extending the Code Generation. Section 3 describes OCaml code genera-
tion from CFSMs. However, constructing CFSMs for nested protocols is an open
problem. Hence, for this extension the Go code generation is instead based on
local types. νScr code generation backends in the codegen component is free
to choose any representation in the mpst component, so implementers may pick
whichever representation that suits best their code generation approach.

The generated Go APIs also use callbacks, and the message passing primi-
tives in Go with channels and concurrent execution with goroutines fit the setup
of session types very well. The code generator creates type definitions for dif-
ferent channels used in the communication, message exchanges, and callbacks.
New participants in the protocol can be spawned when needed using goroutines.

5 Related and Future Work

Non-Scribble-Based MPST Implementations. Scalas and Yoshida [43]
(accompanying artefact) implement a toolkit for analysing synchronous mul-
tiparty protocols. The underlying theory for this tool is the generalised multi-
party session types, where the type system is parameterised on a safety property.

30 N. Yoshida et al.

The toolkit uses a model checker (mCRL2 [46]) to decide whether the desired
safety property holds. A shortcoming of this approach is that (1) the verifi-
cation power is bound by the model checker—for example, mCRL2 allows to
verify only finite-controlled local session types (no parallel compositions under
recursion) and cannot verify channel passing; and (2) the approach is not scal-
able to asynchronous communication with unbounded buffers (as safety becomes
undecidable). Several prototype tools that analyse safety of general forms of local
types (or CFSMs) are developed in the context of multiparty CFSMs [27,28] and
binary CFSMs [3]. The tool in [27] enables a bottom-up approach, which builds
a global type from a set of safe local types. These approaches are, in general,
high in complexity (requiring a global analysis to a set of CFSMs), and difficult
to integrate with real programming languages because of the need to extract
local types from source languages. For example, Ng and Yoshida [38] develop a
tool (based on [27]) to build a global graph from local session types extracted
from Go source codes, in order to check deadlock-freedom. Only a subset of Go

syntax is supported [50].
Our top-down approach is based on the original, less general multiparty ses-

sion type theory, yet we implement an extensible toolchain with possibilities to
generate OCaml code for execution. Imai et al. [24] implement multiparty ses-
sion types in OCaml with protocol combinators, whereas our approach takes
inputs from Scribble protocols. Their tool uses features such as variant and
object types in OCaml to encode external and internal choices in the local types,
and supports session delegation. Our callback-based approach does not support
delegation, but also does not require sophisticated type system features.

For more advanced applications of MPST, global types with motion primi-
tives of Cyber Physical Systems [29,30] provide a collision freedom guarantee for
concurrent robotics applications. Castro-Perez and Yoshida [6] use global types
to uniformly predict communication costs of parallel algorithms and distributed
protocols implemented in different languages.

Scribble-Based MPST Implementations and Extensions. The Scribble
toolchain provides a language-agnostic description language for multiparty pro-
tocols, targeting a variety of programming languages: Java [22], Scala [42],
Go [4], TypeScript [31], PureScript [25], Rust [9,26], F� [32], F� [51],
Erlang [33], Python [11,34], MPI-C [36,37], C [39], etc.

The Scribble toolchain describes multiparty protocols, including some that
are not expressible in the MPST theory, e.g. the choice constructs in Scrib-

ble name a role making an internal choice, whereas the MPST global type has
form p → q {li(Si).Gi}, where two roles are named. The protocol in Fig. 9 is
expressible in Scribble, although not in the core MPST theory we implement.

The Scribble toolchain implements a number of extensions of MPST,
e.g. explicit connections [23], interruptible protocols [11]. νScr implements the
core MPST theory by our design choice, so that extensions of the MPST the-
ory can be easily implemented, with the usual syntactical projections. Whilst
the Scribble toolchain uses model checking and other validation techniques to
verify the safety of the multiparty protocol to enlarge well-formedness, the same

Communicating Finite State Machines and νScr 31

technique might not be applicable when extending the original MPST [21]. νScr
keeps an underlying core syntax and its validation faithful to the literature, so
that other users can easily integrate their own MPST theory. We demonstrate
our extensibility via the case study with nested protocols.

Besides the Scribble toolchain itself, Voinea et al. [47] provide a tool,
StMungo, to translate a Scribble multiparty protocol to a typestate specifi-
cation in Java. The typestate specification can be checked via Mungo, a static
typechecker for typestates in Java. Developers can use the generated typestate
APIs to implement the multiparty protocol safely. Harvey et al. [17] use the
Scribble toolchain with explicit connections [23] to develop a tool for affine
multiparty session types with adaptations.

Future Work. Recently, Castro-Perez et al. [5] propose Zooid, a domain
specific language for certified multiparty communication, embedded in Coq

and implemented atop their mechanisation framework of asynchronous MPST.
For future work, we would like to produce a certified version of Scribble—
CertiScr, extending the Zooid framework, for the core of νScr. We would
like to mechanise the extraction process from Scribble to global types in [5],
and the CFSM construction process from local types in Coq, completing the
picture of fully mechanised toolchain from Scribble protocols to CFSMs. The
Coq code can then be extracted into OCaml to produce a formally verified
νScr core.

Acknowledgements. We thank Simon Castellan for the initial collaboration on
νScr project. The work is supported by EPSRC EP/T006544/1, EP/K011715/1,
EP/K034413/1, EP/L00058X/1, EP/N027833/1, EP/N028201/1, EP/T006544/1,
EP/T014709/1 and EP/V000462/1, and NCSS/EPSRC VeTSS.

References

1. Barbanera, F., Lanese, I., Tuosto, E.: Choreography automata. In: Bliudze, S.,
Bocchi, L. (eds.) COORDINATION 2020. LNCS, vol. 12134, pp. 86–106. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-50029-0 6

2. Brand, D., Zafiropulo, P.: On communicating finite-state machines. J. ACM 30(2),
323–342 (1983). https://doi.org/10.1145/322374.322380

3. Bravetti, M., Carbone, M., Lange, J., Yoshida, N., Zavattaro, G.: A sound algo-
rithm for asynchronous session subtyping and its implementation. Log. Methods
Comput. Sci. 17(1), March 2021. https://lmcs.episciences.org/7238

4. Castro, D., Hu, R., Jongmans, S.S., Ng, N., Yoshida, N.: Distributed program-
ming using role-parametric session types in go: statically-typed endpoint APIs for
dynamically-instantiated communication structures. Proc. ACM Program. Lang.
3 (POPL), January 2019. https://doi.org/10.1145/3290342

5. Castro-Perez, D., Ferreira, F., Gheri, L., Yoshida, N.: Zooid: a DSL for certified
multiparty computation: from mechanised metatheory to certified multiparty pro-
cesses. In: Proceedings of the 42nd ACM SIGPLAN International Conference on
Programming Language Design and Implementation, PLDI 2021, New York, NY,
USA, pp. 237–251. Association for Computing Machinery (2021). https://doi.org/
10.1145/3453483.3454041

https://doi.org/10.1007/978-3-030-50029-0_6
https://doi.org/10.1145/322374.322380
https://lmcs.episciences.org/7238
https://doi.org/10.1145/3290342
https://doi.org/10.1145/3453483.3454041
https://doi.org/10.1145/3453483.3454041

32 N. Yoshida et al.

6. Castro-Perez, D., Yoshida, N.: CAMP: cost-aware multiparty session protocols.
Proc. ACM Program. Lang. 4 (OOPSLA), November 2020. https://doi.org/10.
1145/3428223

7. Chen, T.C., Dezani-Ciancaglini, M., Scalas, A., Yoshida, N.: On the preciseness of
subtyping in session types. Log. Methods Comput. Sci. 13(2), June 2017. https://
lmcs.episciences.org/3752

8. Conchon, S., Filliâtre, J.C., Signoles, J.: OCamlgraph: An OCaml Graph Library
(2017). http://ocamlgraph.lri.fr/index.en.html. Accessed 21 May 2021

9. Cutner, Z., Yoshida, N.: Safe session-based asynchronous coordination in rust. In:
Damiani, F., Dardha, O. (eds.) COORDINATION 2021. LNCS, vol. 12717, pp.
80–89. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78142-2 5

10. Demangeon, R., Honda, K.: Nested protocols in session types. In: Koutny, M.,
Ulidowski, I. (eds.) CONCUR 2012. LNCS, vol. 7454, pp. 272–286. Springer, Hei-
delberg (2012). https://doi.org/10.1007/978-3-642-32940-1 20

11. Demangeon, R., Honda, K., Hu, R., Neykova, R., Yoshida, N.: Practical interrupt-
ible conversations: distributed dynamic verification with multiparty session types
and Python. Formal Methods Syst. Des. 46(3), 197–225 (2014). https://doi.org/
10.1007/s10703-014-0218-8

12. Deniélou, P.-M., Yoshida, N.: Multiparty compatibility in communicating
automata: characterisation and synthesis of global session types. In: Fomin, F.V.,
Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013. LNCS, vol. 7966, pp.
174–186. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39212-
2 18

13. Echarren Serrano, B.: Nested multiparty session programming in go. Master’s the-
sis, Imperial College London (2020). https://becharrens.files.wordpress.com/2020/
07/final report.pdf

14. Ghilezan, S., Pantović, J., Prokić, I., Scalas, A., Yoshida, N.: Precise subtyping for
asynchronous multiparty sessions. Proc. ACM Program. Lang. 5 (POPL), January
2021. https://doi.org/10.1145/3434297

15. Girard, J.Y.: Linear logic. Theor. Comput. Sci. 50(1), 1–101 (1987). https://www.
sciencedirect.com/science/article/pii/0304397587900454

16. Gouda, M.G., Manning, E.G., Yu, Y.T.: On the progress of communication between
two machines. In: Maekawa, M., Belady, L.A. (eds.) IBM 1980. LNCS, vol. 143, pp.
369–389. Springer, Heidelberg (1982). https://doi.org/10.1007/3-540-11604-4 62

17. Harvey, P., Fowler, S., Dardha, O., Gay, S.J.: Multiparty session types for safe
runtime adaptation in an actor language. In: Møller, A., Sridharan, M. (eds.) 35th
European Conference on Object-Oriented Programming (ECOOP 2021). Leibniz
International Proceedings in Informatics (LIPIcs), vol. 194, pp. 10:1–10:30. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, Dagstuhl, Germany (2021). https://
drops.dagstuhl.de/opus/volltexte/2021/14053

18. Honda, K., Mukhamedov, A., Brown, G., Chen, T.-C., Yoshida, N.: Scribbling
interactions with a formal foundation. In: Natarajan, R., Ojo, A. (eds.) ICDCIT
2011. LNCS, vol. 6536, pp. 55–75. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-19056-8 4

19. Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type discipline
for structured communication-based programming. In: Hankin, C. (ed.) ESOP
1998. LNCS, vol. 1381, pp. 122–138. Springer, Heidelberg (1998). https://doi.org/
10.1007/BFb0053567

https://doi.org/10.1145/3428223
https://doi.org/10.1145/3428223
https://lmcs.episciences.org/3752
https://lmcs.episciences.org/3752
http://ocamlgraph.lri.fr/index.en.html
https://doi.org/10.1007/978-3-030-78142-2_5
https://doi.org/10.1007/978-3-642-32940-1_20
https://doi.org/10.1007/s10703-014-0218-8
https://doi.org/10.1007/s10703-014-0218-8
https://doi.org/10.1007/978-3-642-39212-2_18
https://doi.org/10.1007/978-3-642-39212-2_18
https://becharrens.files.wordpress.com/2020/07/final_report.pdf
https://becharrens.files.wordpress.com/2020/07/final_report.pdf
https://doi.org/10.1145/3434297
https://www.sciencedirect.com/science/article/pii/0304397587900454
https://www.sciencedirect.com/science/article/pii/0304397587900454
https://doi.org/10.1007/3-540-11604-4_62
https://drops.dagstuhl.de/opus/volltexte/2021/14053
https://drops.dagstuhl.de/opus/volltexte/2021/14053
https://doi.org/10.1007/978-3-642-19056-8_4
https://doi.org/10.1007/978-3-642-19056-8_4
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1007/BFb0053567

Communicating Finite State Machines and νScr 33

20. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In:
Proceedings of the 35th Annual ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, POPL 2008, New York, NY, USA, pp. 273–284.
ACM (2008). http://doi.acm.org/10.1145/1328438.1328472

21. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. J.
ACM 63, 1–67 (2016)

22. Hu, R., Yoshida, N.: Hybrid session verification through endpoint API generation.
In: Stevens, P., Wasowski, A. (eds.) FASE 2016. LNCS, vol. 9633, pp. 401–418.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49665-7 24

23. Hu, R., Yoshida, N.: Explicit connection actions in multiparty session types. In:
Huisman, M., Rubin, J. (eds.) FASE 2017. LNCS, vol. 10202, pp. 116–133. Springer,
Heidelberg (2017). https://doi.org/10.1007/978-3-662-54494-5 7

24. Imai, K., Neykova, R., Yoshida, N., Yuen, S.: Multiparty session programming
with global protocol combinators. In: Hirschfeld, R., Pape, T. (eds.) 34th European
Conference on Object-Oriented Programming (ECOOP 2020), pp. 9:1–9:30. Leib-
niz International Proceedings in Informatics (LIPIcs), Schloss Dagstuhl-Leibniz-
Zentrum für Informatik, Dagstuhl, Germany (2020). https://drops.dagstuhl.de/
opus/volltexte/2020/13166

25. King, J., Ng, N., Yoshida, N.: Multiparty session type-safe web development with
static linearity. In: Martins, F., Orchard, D. (eds.) Proceedings Programming Lan-
guage Approaches to Concurrency- and Communication-cEntric Software, Prague,
Czech Republic, 7th April 2019. Electronic Proceedings in Theoretical Computer
Science, vol. 291, pp. 35–46. Open Publishing Association (2019)

26. Lagaillardie, N., Neykova, R., Yoshida, N.: Implementing multiparty session types
in rust. In: Bliudze, S., Bocchi, L. (eds.) COORDINATION 2020. LNCS, vol. 12134,
pp. 127–136. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50029-0 8

27. Lange, J., Tuosto, E., Yoshida, N.: From communicating machines to graphical
choreographies. In: Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2015, New York,
NY, USA, pp. 221–232. Association for Computing Machinery (2015). https://doi.
org/10.1145/2676726.2676964

28. Lange, J., Yoshida, N.: Verifying asynchronous interactions via communicating
session automata. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp.
97–117. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25540-4 6

29. Majumdar, R., Pirron, M., Yoshida, N., Zufferey, D.: Motion session types for
robotic interactions (brave new idea paper). In: Donaldson, A.F. (ed.) 33rd Euro-
pean Conference on Object-Oriented Programming (ECOOP 2019). Leibniz Inter-
national Proceedings in Informatics (LIPIcs), vol. 134, pp. 28:1–28:27. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2019). http://
drops.dagstuhl.de/opus/volltexte/2019/10820

30. Majumdar, R., Yoshida, N., Zufferey, D.: Multiparty motion coordination: from
choreographies to robotics programs. Proc. ACM Program. Lang. 4 (OOPSLA),
November 2020. https://doi.org/10.1145/3428202

31. Miu, A., Ferreira, F., Yoshida, N., Zhou, F.: Communication-safe web programming
in TypeScript with routed multiparty session types. In: Proceedings of the 30th
ACM SIGPLAN International Conference on Compiler Construction, CC 2021,
New York, NY, USA, pp. 94–106. Association for Computing Machinery (2021).
https://doi.org/10.1145/3446804.3446854

http://doi.acm.org/10.1145/1328438.1328472
https://doi.org/10.1007/978-3-662-49665-7_24
https://doi.org/10.1007/978-3-662-54494-5_7
https://drops.dagstuhl.de/opus/volltexte/2020/13166
https://drops.dagstuhl.de/opus/volltexte/2020/13166
https://doi.org/10.1007/978-3-030-50029-0_8
https://doi.org/10.1145/2676726.2676964
https://doi.org/10.1145/2676726.2676964
https://doi.org/10.1007/978-3-030-25540-4_6
http://drops.dagstuhl.de/opus/volltexte/2019/10820
http://drops.dagstuhl.de/opus/volltexte/2019/10820
https://doi.org/10.1145/3428202
https://doi.org/10.1145/3446804.3446854

34 N. Yoshida et al.

32. Neykova, R., Hu, R., Yoshida, N., Abdeljallal, F.: A session type provider: compile-
time API generation of distributed protocols with refinements in F#. In: Proceed-
ings of the 27th International Conference on Compiler Construction, CC 2018, New
York, NY, USA, pp. 128–138. ACM (2018). http://doi.acm.org/10.1145/3178372.
3179495

33. Neykova, R., Yoshida, N.: Let it recover: multiparty protocol-induced recovery.
In: Proceedings of the 26th International Conference on Compiler Construction,
CC 2017, New York, NY, USA, pp. 98–108. Association for Computing Machinery
(2017). https://doi.org/10.1145/3033019.3033031

34. Neykova, R., Yoshida, N.: Multiparty session actors. Log. Methods Comput. Sci.
13(1), March 2017. https://lmcs.episciences.org/3227

35. Neykova, R., Yoshida, N.: Featherweight scribble. In: Boreale, M., Corradini, F.,
Loreti, M., Pugliese, R. (eds.) Models, Languages, and Tools for Concurrent and
Distributed Programming. LNCS, vol. 11665, pp. 236–259. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-21485-2 14

36. Ng, N., de Figueiredo Coutinho, J.G., Yoshida, N.: Protocols by default. In: Franke,
B. (ed.) CC 2015. LNCS, vol. 9031, pp. 212–232. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46663-6 11

37. Ng, N., Yoshida, N.: Pabble: parameterised Scribble. SOCA 9(3), 269–284 (2014).
https://doi.org/10.1007/s11761-014-0172-8

38. Ng, N., Yoshida, N.: Static deadlock detection for concurrent go by global session
graph synthesis. In: Proceedings of the 25th International Conference on Com-
piler Construction, CC 2016, New York, NY, USA, pp. 174–184. Association for
Computing Machinery (2016). https://doi.org/10.1145/2892208.2892232

39. Ng, N., Yoshida, N., Honda, K.: Multiparty session C: safe parallel programming
with message optimisation. In: Furia, C.A., Nanz, S. (eds.) TOOLS 2012. LNCS,
vol. 7304, pp. 202–218. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-30561-0 15

40. Ocsigen: Lwt Manual (2021). https://ocsigen.org/lwt/latest/manual/manual.
Accessed 21 May 2021

41. OOI: Ocean Observatories Initiative (2020). http://www.oceanobservatories.org/
42. Scalas, A., Dardha, O., Hu, R., Yoshida, N.: A linear decomposition of multi-

party sessions for safe distributed programming. In: Müller, P. (ed.) 31st Euro-
pean Conference on Object-Oriented Programming (ECOOP 2017). Leibniz Inter-
national Proceedings in Informatics (LIPIcs), vol. 74, pp. 24:1–24:31. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2017). http://
drops.dagstuhl.de/opus/volltexte/2017/7263

43. Scalas, A., Yoshida, N.: Less is more: multiparty session types revisited. Proc. ACM
Program. Lang. 3 (POPL), January 2019. https://doi.org/10.1145/3290343

44. Scribble Authors: Scribble: Describing Multi Party Protocols (2015). http://www.
scribble.org/. Accessed 21 May 2021

45. Takeuchi, K., Honda, K., Kubo, M.: An interaction-based language and its typ-
ing system. In: Halatsis, C., Maritsas, D., Philokyprou, G., Theodoridis, S. (eds.)
PARLE 1994. LNCS, vol. 817, pp. 398–413. Springer, Heidelberg (1994). https://
doi.org/10.1007/3-540-58184-7 118

46. Technische Universiteit Eindhoven: mCRL2 (2018). https://www.mcrl2.org/web/
user manual/index.html

47. Voinea, A.L., Dardha, O., Gay, S.J.: Typechecking Java protocols with [St]Mungo.
In: Gotsman, A., Sokolova, A. (eds.) FORTE 2020. LNCS, vol. 12136, pp. 208–224.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50086-3 12

http://doi.acm.org/10.1145/3178372.3179495
http://doi.acm.org/10.1145/3178372.3179495
https://doi.org/10.1145/3033019.3033031
https://lmcs.episciences.org/3227
https://doi.org/10.1007/978-3-030-21485-2_14
https://doi.org/10.1007/978-3-662-46663-6_11
https://doi.org/10.1007/s11761-014-0172-8
https://doi.org/10.1145/2892208.2892232
https://doi.org/10.1007/978-3-642-30561-0_15
https://doi.org/10.1007/978-3-642-30561-0_15
https://ocsigen.org/lwt/latest/manual/manual
http://www.oceanobservatories.org/
http://drops.dagstuhl.de/opus/volltexte/2017/7263
http://drops.dagstuhl.de/opus/volltexte/2017/7263
https://doi.org/10.1145/3290343
http://www.scribble.org/
http://www.scribble.org/
https://doi.org/10.1007/3-540-58184-7_118
https://doi.org/10.1007/3-540-58184-7_118
https://www.mcrl2.org/web/user_manual/index.html
https://www.mcrl2.org/web/user_manual/index.html
https://doi.org/10.1007/978-3-030-50086-3_12

Communicating Finite State Machines and νScr 35

48. Yoshida, N., Gheri, L.: A very gentle introduction to multiparty session types.
In: Hung, D.V., D’Souza, M. (eds.) ICDCIT 2020. LNCS, vol. 11969, pp. 73–93.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-36987-3 5

49. Yoshida, N., Hu, R., Neykova, R., Ng, N.: The Scribble protocol language. In:
Abadi, M., Lluch Lafuente, A. (eds.) TGC 2013. LNCS, vol. 8358, pp. 22–41.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-05119-2 3

50. Yuan, T., Li, G., Lu, J., Liu, C., Li, L., Xue, J.: GoBench: a benchmark suite of
real-world go concurrency bugs. In: 2021 IEEE/ACM International Symposium on
Code Generation and Optimization (CGO), pp. 187–199 (2021)

51. Zhou, F., Ferreira, F., Hu, R., Neykova, R., Yoshida, N.: Statically verified refine-
ments for multiparty protocols. Proc. ACM Program. Lang. 4 (OOPSLA), Novem-
ber 2020. https://doi.org/10.1145/3428216

https://doi.org/10.1007/978-3-030-36987-3_5
https://doi.org/10.1007/978-3-319-05119-2_3
https://doi.org/10.1145/3428216

Contributed Papers

First-Order Logic and Its
Infinitary Quantifier Extensions over

Countable Words

Bharat Adsul1, Saptarshi Sarkar1, and A. V. Sreejith2(B)

1 IIT Bombay, Powai, Mumbai 400076, Maharashtra, India
{adsul,sapta}@cse.iitb.ac.in

2 IIT Goa, Farmagudi, Ponda 403401, Goa, India
sreejithav@iitgoa.ac.in

Abstract. We contribute to the refined understanding of the language-
logic-algebra interplay in the context of first-order properties of countable
words. We establish decidable algebraic characterizations of one vari-
able fragment of FO as well as boolean closure of existential fragment
of FO via a strengthening of Simon’s theorem about piecewise testable
languages. We propose a new extension of FO which admits infinitary
quantifiers to reason about the inherent infinitary properties of count-
able words. We provide a very natural and hierarchical block-product
based characterization of the new extension. We also explicate its role
in view of other natural and classical logical systems such as WMSO
and FO[cut] - an extension of FO where quantification over Dedekind-
cuts is allowed. We also rule out the possibility of a finite-basis for a
block-product based characterization of these logical systems. Finally,
we report simple but novel algebraic characterizations of one variable
fragments of the hierarchies of the new proposed extension of FO.

Keywords: Countable words · First-order logic · Monoids

1 Introduction

Over finite words, we have a foundational language-logic-algebra connection
(see [11,18]) which equates regular-expressions, MSO-logic, and (recognition by)
finite monoids/automata. In fact, one can effectively associate, to a regular lan-
guage, its finite syntactic monoid. This canonical algebraic structure carries a
rich amount of information about the corresponding language. Its role is high-
lighted by the classical Schützenberger-McNaughton-Papert theorem (see, for
instance, [12]) which shows that aperiodicity property of the syntactic monoid
coincides with describability using star-free expressions as well as definability in
First-Order (FO) logic. So, we arrive at a refined understanding of the language-
logic-algebra connection to an important subclass of regular languages: it equates
star-free regular expressions, FO-logic, and aperiodic finite monoids.

c© Springer Nature Switzerland AG 2021
E. Bampis and A. Pagourtzis (Eds.): FCT 2021, LNCS 12867, pp. 39–52, 2021.
https://doi.org/10.1007/978-3-030-86593-1_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86593-1_3&domain=pdf
https://doi.org/10.1007/978-3-030-86593-1_3

40 B. Adsul et al.

A variety of algebraic tools have been developed and crucially used to obtain
deeper insights. Some of these tools [12,15,17] are: ordered monoids, the so-
called Green’s relations, wreath/block products and related principles etc. Let
us mention Simon’s celebrated theorem [14] - which equates piecewise-testable
languages, Boolean closure of the existential fragment of FO-logic and J-trivial1

finite monoids. It is important to note that this is an effective characteriza-
tion, that is, it provides a decidable characterization of the logical fragment.
There have been several results of this kind (see the survey [7]). Another partic-
ularly interesting set of results is in the spirit of the fundamental Krohn-Rhodes
theorem. These results establish a block-product based decompositional char-
acterization of a logical fragment and have many important applications [15].
The prominent examples are a characterization of FO-logic (resp. FO2, the two-
variable fragment) in terms of strongly (resp. weakly) iterated block-products of
copies of the unique 2-element aperiodic monoid.

One of the motivations for this work is to establish similar results in the
theory of regular languages of countable words. We use the overarching alge-
braic framework developed in the seminal work [5] to reason about languages of
countable words. This framework extends the language-logic-algebra interplay
to the setting of countable words. It develops fundamental algebraic structures
such as finite �-monoids and �-algebras and equates MSO-definability with
recognizability by these algebraic structures. A detailed study of a variety of
sub-logics of MSO over countable words is carried out in [6]. This study also
extends classical Green’s relations to �-algebras and makes heavy use of it. Of
particular interest to us are the results about algebraic equational character-
izations of FO, FO[cut] – an extension of FO that allows quantification over
Dedekind cuts and WMSO – an extension of FO that allows quantification over
finite sets. A decidable algebraic characterization of FO2 over countable words
is also presented in [10]. Another recent development [1] is the seamless inte-
gration of block products into the countable setting. The work introduces the
block product operation of the relevant algebraic structures and establishes
an appealing block product principle. Further, it naturally extends the above-
mentioned block product characterizations of FO and FO2 to countable words.

In this work, we begin our explorations into the small fragments of FO
over countable words, guided by the choice of results in [7]. We arrive at the
language-logic-algebra connection for FO1 – the one variable fragment of FO.
Coupled with earlier results about FO2 and FO= FO3 (see [8]), this completes
our algebraic understanding of FO fragments defined by the number of permissi-
ble variables. We next extend Simon’s theorem on piecewise testable languages
to countable words and provide a natural algebraic characterization of the
Boolean closure of the existential-fragment of FO. Fortunately or unfortunately,
depending on the point of view, this landscape of small fragments of FO over
countable words parallels very closely the same landscape over finite words. This
can be attributed to the limited expressive power of FO over countable words.
For instance, Bès and Carton [4] showed that the seemingly natural ‘finiteness’

1 Here J is one of the fundamental Green’s equivalence relations.

FO and Infinitary Quantifiers 41

property (that the set of all positions is a finite set) of countable words can not
be expressed in FO!

One of the main contributions of this work is the introduction of new infini-
tary quantifiers to FO. The works [3,9] also extend FO over arbitrary struc-
tures by cardinality/finitary-counting quantifiers and studies decidable theories
thereof. An extension of FO over finite and ω-words by modulus-counting quan-
tifiers is algebraically characterized in [16]. The main purpose of our new quan-
tifiers is to naturally allow expression of infinitary features which are inherent in
the countable setting and study the resulting definable formal languages in the
algebraic framework of [5]. An example formula using such an infinitary quan-
tifier is: ∃∞1x : a(x) ∧ ¬∃∞1x : b(x). In its natural semantics, this formula with
one variable asserts that there are infinitely many a-labelled positions and only
finitely many b-labelled positions. We propose an extension of FO called FO[∞]
that supports first-order infinitary quantifiers of the form ∃∞kx to talk about
existence of higher-level infinitely (more accurately, Infinitary rank k) many wit-
nesses x. We organize FO[∞] in a natural hierarchy based on the maximum
allowed infinitary-level of the quantifiers.

We now summarize the key technical results of this paper. We establish a
hierarchical block product based characterization of FO[∞]. Towards this, we
identify an appropriate simple family of �-algebras and show that this family
(in fact, its initial fragments) serve as a basis in our hierarchical block product
based characterization. We establish that FO[∞] properties can be expressed
simultaneously in FO[cut] as well as WMSO. We also show that the language-
logic-algebra connection for FO1 admits novel generalizations to the one variable
fragments of the new extension of FO. We finally present ‘no finite block product
basis’ theorems for our FO extensions, FO[cut], and the class FO[cut]∩WMSO.
This is in contrast with [1] where the unique 2-element �-algebra is a basis for
a block-product based characterization of FO.

The rest of the paper is organized as follows. Section 2 recalls basic notions
about countable words and summarizes the necessary algebraic background from
the framework [5]. Section 3 deals with the small fragments of FO: FO1 and
the Boolean closure of the existential fragment of FO. Section 4 contains the
extensions FO[∞] and results relevant to it. Section 5 is concerned with ‘no
finite block product basis’ theorems. See [2] for complete details and proofs.

2 Preliminaries

In this section we briefly recall the algebraic framework developed in [5].

Countable Words. A countable linear ordering (or simply ordering) α = (X,<)
is a non-empty countable set X equipped with a total order: X is the domain
of α. An ordering β = (Y,<) is called a subordering of α if Y ⊆ X and the
order on Y is induced from that of X. We denote by ω, ω∗, δ, η the orderings
(N, <), (−N, <), (Z, <), (Q, <) respectively. A Dedekind cut (or simply a cut) is
a left-closed subset Y ⊆ X of α. Given disjoint linear orderings (βi)i∈α indexed

42 B. Adsul et al.

with a linear ordering α, their generalized sum
∑

i∈α βi is the linear ordering
over the union of the domains of the βi’s, with the order defined by x < y if
either x ∈ βi and y ∈ βj with i < j, or x, y ∈ βi for some i, and x < y in βi. The
book [13] contains a detailed study of linear orderings.

An alphabet Σ is a finite set of symbols called letters. Given a linear ordering
α, a countable word (henceforth called word) over Σ of domain α is a mapping
w : α → Σ. The domain of a word is denoted dom(w). For a subset I ⊆ dom(w),
w|I denotes the subword obtained by restricting w to the domain I. If I is an
interval (∀x, y ∈ I, x < z < y → z ∈ I) then w|I is called a factor of w. The set
of all words is denoted Σ� and the set of all non-empty (resp. finite) words Σ⊕
(resp. Σ∗). A language (of countable words) is a subset of Σ�. The generalized
concatenation of the words (wi)i∈α indexed by a linear ordering α is

∏
i∈α wi

and denotes the word w of domain
∑

i∈α βi where βi are disjoint and such that
w|βi

is isomorphic to wi for all i ∈ α.
The empty word ε, is the only word of empty domain. The ω-power of a

word u is defined as uω ::=
∏

i∈ω u. The ω∗-power of a word u, denoted by
uω∗

, is
∏

i∈ω∗ u. The perfect shuffle for a non-empty finite set of letters A ⊆ Σ
(denoted by Aη) is a word of domain (Q, <) in which only letters from A occur
and, all non-empty and non-singleton intervals contain at least one occurrence
of each letter in A. This word is unique up to isomorphism (see [13]). We can
extend the notion of perfect shuffle to a finite set of words W = {w1, . . . , wk}.
We define Wη to be

∏
i∈Q wf(i) where f : (Q, <) → {1, 2, . . . , k} is the unique

perfect shuffle over the set of letters {1, 2, . . . , k}.

The Algebra. A �-monoid M = (M,π) is a set M equipped with an operation
π, called the product, from M� to M , that satisfies π(a) = a for all a ∈ M , and
the generalized associativity property: for every words ui over M with i ranging
over a countable linear ordering α, π

(∏
i∈α ui

)
= π

(∏
i∈α π(ui)

)
. We reserve the

notation id for the identity element id = π(ε); it is called the neutral element in
[5]. An example of a �-monoid is the free �-monoid (Σ�, ε,

∏
) over the alphabet

Σ with the product being the generalized concatenation. Now we discuss some
natural algebraic notions. A morphism from a �-monoid (M,π) to a �-monoid
(M ′, π′) is a map h : M → M ′ such that, for every w ∈ M�, h(π(w)) = π′(h̄(w))
where h̄ is the pointwise extension of h to words. We skip the notions sub-
�-monoid and direct products since they are as expected. We say M = (M,π)
divides M′ = (M ′, π′) if there exists a sub �-monoid M′′ = (M ′′, π′′) of M′ and
a surjective morphism from M′′ to M.

A �-monoid M = (M,π) is said to be finite if M is so. Note that, even
for a finite �-monoid, the product operation π has an infinitary description.
It turns out that π can be captured using finitely presentable derived opera-
tions. Corresponding to a �-monoid (M,π) there is an induced �-algebra M =
(M, id, ·, τ , τ ∗,κ) where the operations are defined as following: for all a, b ∈ M ,
a·b = π(ab), aτ = π(aω), aτ ∗

= π(aω∗
) and for all ∅ �= E ⊆ M , Eκ = π(Eη).

For a singleton set {m}, we write mκ = {m}κ . These derived operators satisfy
certain natural axioms; see [5] for details. It has been established in [5] that
an arbitrary finite �-algebra M = (M, id, ·, τ , τ ∗,κ) satisfying these natural

FO and Infinitary Quantifiers 43

axioms is induced by a unique �-monoid M = (M,π). It is rather straightfor-
ward to define the notions of morphisms, subalgebras, direct-products as well as
division for �-algebras.

It follows from the definition of a �-algebra M = (M, id, ·, τ , τ ∗,κ) that
(M, id, ·) is a monoid, that is the operation · is associative with identity id.
Note that, for all m ∈ M , m·id = id·m = m and for all ∅ �= E ⊆ M , Eκ =
(E ∪ {id})κ . Further, idτ = idτ ∗

= idκ = id. As a result, in our definitions of
�-algebras later in the paper, we restrict the descriptions of derived operators
to M \ {id}. An idempotent is an element e where e·e = e. In a finite monoid,
every element m has a unique positive power mk which is an idempotent; we
denote this idempotent by m! and refer to it as the idempotent power.

An evaluation tree over a word u ∈ M�\{ε} is a tree T = (T, h) such that
every branch/path of T is of finite length and where every vertex in T is a factor
of u, the root is u and h : T → M is a map such that:

– A leaf is a singleton letter a ∈ M such that h(a) = a.
– Internal nodes have either two or ω or ω∗ or Q many children.
– If w has children v1 and v2, then w = v1v2 and h(w) = h(v1)·h(v2).
– If w has ω many children 〈v1, v2, . . . 〉, then there is an idempotent e such that

e = h(vi) for all i ≥ 1, and w =
∏

i∈ω vi and h(w) = eτ .
– If w has ω∗ many children 〈. . . , v−2, v−1〉, then there is an idempotent f such

that f = h(vi) for all i ≤ −1, and w =
∏

i∈ω∗ vi and h(w) = fτ ∗
.

– If w has Q many children 〈vi〉i∈Q, then w =
∏

i∈Q vi where for the
perfect shuffle f over an E = {a1, . . . , ak} ⊆ M , h(vi) = af(i), and
h(w) = Eκ .

The value of T is defined to be h(u). It was shown in [5, Proposition 3.8 and 3.9]
that every word u has an evaluation tree and the values of two evaluation trees
of u are equal and they are equal to π(u). Therefore, a �-algebra defines the
generalized associativity product π : M� → M . The correspondence between
finite �-monoids and �-algebras permits interchangeability; we exploit it
implicitly.

A morphism from the free �-monoid Σ� to M is described (determined)
by a map h′ : Σ → M ; we simply write h′ : Σ → M. With h′ also denoting
its pointwise extension h′ : Σ� → M�, given a word u ∈ Σ�, we can use the
evalution tree over the word h′(u) ∈ M� to obtain π(h′(u)) ∈ M . By further
abuse of notation, h′ : Σ� → M also denotes the morphism which sends u to
π(h′(u)). We say that L is recognized by M if there exists a map/morphism
h′ : Σ� → M such that L = h′−1(h′(L)). The fundamental result of [5] states
that regular languages (MSO definable languages) are exactly those recognized
by finite �-monoids (equivalently �-algebras). It is important to note that, every
regular language L is associated a finite (canonical/minimal) syntactic �-monoid
(and a corresonding syntactic �-algebra) which divides every �-monoid (resp.
�-algebra) that recognizes L.

44 B. Adsul et al.

Example 1. The �-monoid U1 = ({id, 0}, π) and its induced �-algebra are
shown on the left and right respectively.

π(u) =

{
id if u ∈ {id}�
0 otherwise

id 0 τ τ ∗

id id 0 id id
0 0 0 0 0

Sκ =

{
id if S = {id}
0 otherwise

Let Σ = {a, b} and L be the set of words which contain an occurrence of letter a.
It is easy to see that the map h : Σ → U1 sending h(a) = 0, h(b) = id recognizes
L as L = h−1(0). In fact, U1 is the syntactic �-monoid of L.

Example 2. Consider the �-algebra Gap = ({id, [], (], [), (), g}, id, ·, τ , τ ∗,κ).
We let Σ = {a} and define the map h : Σ → Gap as h(a) = []. The resulting
morphism maps a word u to h(u) = g iff the word u admits a gap; that is a
cut with no maximum and its complement has no minimum. Other words are
mapped to their correct ‘ends-type’: for instance, h(u) = [) iff dom(u) has a
minimum and no maximum. For a word v = aωaω∗

, the pointwise extension
v′ = h(v) = []

ω
[]

ω∗
. An example evaluation tree T for v′ consists of root with

two children. The left (resp. right) child has ω (resp. ω∗) many children [] and
has value []τ (resp. []τ

∗). As a result, the value of T is []τ ·[]τ
∗ = [)·(] = g.

· [] [) (] () g τ τ ∗

[] [] [) [] [) g [) (]

[) [] [) g g g [) ()

(] (] () (] () g () (]

() (] () g g g g g
g g g g g g g g

Sκ =

{
id if S = {id}
g otherwise

We can characterize �-monoids using equational identities. For example, M
is a commutative �-monoid if and only if M satisfies the equation x·y = y·x.
This means that the equation holds for any assignment of elements in the M to
the variables x and y. We say M is aperiodic if it satisfies the profinite identity
x = x·x!. Like in the case of monoids, the set of �-monoids satisfying a set of
equations are closed under subsemigroup, division and direct product [6].

The block product of �-monoids M and N, is denoted by M�N and is the
semidirect product of M and K = NM×M with respect to the canonical left and
right ‘action’ of M on K. The details are given in [1]. The block product principle
characterizes languages defined by block product of �-monoids. Towards this,
fix a map h : Σ → M�N such that h(a) = (ma, fa) where ma ∈ M and
fa : M ×M → N . The map h1 : Σ → M setting h1(a) = ma defines a morphism
h1 : Σ� → M . We define the transducer σ : Σ� → (M × Σ × M)� as follows:
let u ∈ Σ� with domain α. The word u′ = σ(u) has domain α and for a position
x ∈ α, u′(x) = (h1(u<x), u(x), h1(u>x)). Here u<x (resp. u>x)) is the subword
of u on positions strictly less (resp. greater) than x.

Proposition 1 (Block Product Principle [1]). Let L ⊆ Σ� be recognized
by h : Σ → M�N. Then L is a boolean combination of languages of the form

FO and Infinitary Quantifiers 45

L1 and σ−1(L2) where L1 and L2 are recognized by M and N respectively and
σ : Σ� → (M × Σ × M)� is the aforementioned state-based transducer.

3 Small Fragments of FO

In this section, we focus on two particularly small fragments of first-order logic
interpreted over countable words. First-order logic uses variables x, y, z, . . . which
are interpreted as positions in the domain of a word. The syntax of first-order
logic (FO) is: x < y | a(x) | φ1 ∧ φ2 | φ1 ∨ φ2 | ¬φ | ∃x φ, for all a ∈ Σ.

We skip the natural semantics. A language L of countable words is said to
be FO-definable if there exists an FO-sentence φ such L = {u ∈ Σ� | u |= φ}.

Recall that the classical Schützenberger-McNaughton-Papert theorem char-
acterizes FO-definabilty of a regular language of finite words in terms of aperi-
odicity of its finite syntactic monoid. The survey [7] presents similar decidable
characterizations of several interesting small fragments of FO-logic such as FO1,
FO2, B(∃∗) – boolean closure of the existential first-order logic. It is known [8]
that, over finite as well as countable words, FO = FO3. As mentioned in the
introduction, over countable words, we already have decidable algebraic char-
acterizations of FO3 from [6] and FO2 from [10]. Here we identify decidable
algebraic characterizations, over countable words, for FO1 and B(∃∗).

3.1 FO with Single Variable

The fragment FO1 has access to only one variable. We recall that over finite
words a regular language is FO1-definable iff its syntactic monoid is commutative
and idempotent. We henceforth focus our attention to FO1 on countable words.

Clearly, FO1 can recognize all words with a particular letter. With a single
variable the logic cannot talk about order of letters or count the number of
occurrence of a letter. This gives an intuition that the syntactic �-monoid of a
language definable in FO1 is commutative and idempotent.

We say that a �-algebra M = (M, id, ·, τ , τ ∗,κ) is shuffle-trivial if it satisfies
the equational identity: {x1, . . . , xp}κ = x1·x2· . . . ·xp. Note that shuffle-triviality
implies commutativity: x·y = {x, y}κ = {y, x}κ = y·x. Moreover, every element
of M is a shuffle-idempotent: for all m ∈ M,mκ = m. It is a consequence of the
axioms of a �-algebra that a shuffle-idempotent is an idempotent.

Theorem 1. Let L ⊆ Σ� be a regular language. The following are equivalent.

1. L is recognized by some finite shuffle-trivial �-algebra.
2. L is a boolean combination of languages of the form B� where B ⊆ Σ.
3. L is definable in FO1.
4. L is recognized by direct product of U1s.
5. The syntactic �-algebra of L is shuffle-trivial.

46 B. Adsul et al.

3.2 Boolean Closure of Existential FO

Let us first recall the characterization of B(∃∗) - the boolean closure of existen-
tial FO over finite words. This is precisely the content of the theorem due to
Simon [14]. The usual presentation of Simon’s theorem refers to piecewise testable
languages which are easily seen to be equivalent to B(∃∗)-definable languages.
Simon’s theorem states that a regular language of finite words is B(∃∗)-definable
iff its syntactic monoid is J-trivial. We refer to [12] for a detailed study of Green’s
relations and its use in the proof of Simon’s theorem.

The original proof of Simon’s theorem uses the congruence ∼n, parametrized
by n ∈ N, on finite words Σ∗: for u, v ∈ Σ∗, u ∼n v if u and v have the same set
of subwords of length less than or equal to n. Note that ∼n has finite index.

We fix n ∈ N and work with ∼n defined on countable words Σ�: for u, v ∈
Σ�, u ∼n v if u and v have the same set of subwords of length less than or equal
to n. It is immediate that ∼n is an equivalence relation on Σ� of finite index.
We let Sn = Σ�/ ∼n denote the finite set of ∼n-equivalence classes. For a word
w, [w]n denotes the ∼n-equivalence class which contains w.

Lemma 1. There is a natural well-defined product operation π : S�
n →

Sn as follows: π
(∏

i∈α[wi]n
)

=
[∏

i∈α wi

]
n
. This operation π satisfies the

generalized associativity property. As a result, Sn = (Sn, id = [ε]n, π) is a
�-monoid.

Note that the lemma implies that hn : Σ� → Sn mapping w to [w]n is a
morphism of �-monoids.

We say that a �-algebra is shuffle-power-trivial if it satisfies the (profinite)
identity: {x1, . . . , xp}κ = (x1·x2· . . . ·xp)!. Note that, every idempotent of such
a �-algebra is a shuffle-idempotent: x! = x implies xκ = x. Further, it can be
shown that, in this case, the underlying monoid is J-trivial.

Theorem 2. Let L ⊆ Σ� be a regular language. The following are equivalent.

1. L is recognized by a finite shuffle-power-trivial �-algebra.
2. L is recognized by the quotient morphism hn : Σ� → Sn for some n.
3. L is definable in B(∃∗).
4. The syntactic �-algebra of L is shuffle-power-trivial.

4 First Order Logic with infinitary quantifiers

Our results in the previous section resemble very closely the corresponding results
over finite words. This can be attributed to the limited capability of the operators
τ , τ ∗ and κ in the �-monoids we witnessed. As mentioned in the Introduction,
FO cannot define the language of infinite number of a’s. An existential quantifier
is a threshold counting quantifier - it says there exists at least one position
satisfying a property. Using multiple such quantifiers, FO can count up to any
finite constant but not more. Over countable words, it is natural to ask for

FO and Infinitary Quantifiers 47

stronger threshold quantifiers. We introduce natural infinitary versions of the
existential quantifier which precisely serve this purpose.

We define I0 to be the set of all non-empty finite orderings. For any num-
ber n ∈ N, we define the set In to be the set of all orderings of the form∑

i∈Z αi where αi ∈ In−1 ∪ {ε} and is closed under finite sum. We define the
Infinitary rank (or simply rank) of a linear ordering α (denoted by ∞-rank(α))
as the least n (if it exists) where α ∈ In. If there is no such n we say that the rank
is infinite. For example, ∞-rank(ω) = ∞-rank(ω + ω) = ∞-rank(ω∗ + ω) = 1,
∞-rank(ω2) = ∞-rank(ω2 + ω∗) = 2, and the rank of η = (Q, <) is infinite.

We introduce the logic FO[∞] extending FO with infinitary quantifiers :
∃∞0x ϕ | ∃∞1x ϕ | . . . | ∃∞nx ϕ | . . . for all n ∈ N.

Note that all the variables are first order and they are interpreted as
positions, that is, elements of the underlying linear ordering. The seman-
tics of the infinitary quantifier ∃∞nx for an n ≥ 0 is: for a word w and
an assignment s, we say w, s |= ∃∞nx ϕ if there exists a subordering
X ⊆ dom(w) such that ∞-rank(X) = n and w, s[x = i] |= ϕ for
all i ∈ X. Hence, ∃∞0x ϕ is equivalent to ∃x ϕ since both formulas
are true if and only if there is at least one position x which satisfies φ.

id

0

1

n

Fig. 1. Δn-chain

The logic FO[(∞j)j≤n] denote the fragment containing
only the infinitary quantifiers ∃∞jx for all j ≤ n. Clearly
the following relationship is maintained among the logics:

FO = FO[(∞j)j≤0] ⊆ FO[(∞j)j≤1] ⊆ FO[(∞j)j≤2] ⊆ . . .

We also denote by FO1[(∞j)j≤n] the corresponding one
variable fragment of FO[(∞j)j≤n].

Example 3. The formula ∃∞1x a(x) denotes the set of all
countable words with infinitely many positions labelled a.
Since FO cannot express this, it shows FO � FO[(∞j)j≤1].

For n ≥ 0, we define �-algebra Δn-chain as: ({id, 0, 1, . . . , n}, id, ·, τ , τ ∗,κ)
where for all 0 ≤ i ≤ j ≤ n, i·j = j·i = max(i, j) = j and for all 0 ≤ k < n,
kτ = kτ ∗

= k + 1 and nτ = nτ ∗
= n. That is, kτ = kτ ∗

= min(k + 1, n).
Moreover, idκ = id and Sκ = n for any S where S\{id} �= ∅. In short, the
descriptions of the derived operators restricted to Δn \ {id} are

(i, j) ·�−→ max(i, j), i
τ�−→ min(i + 1, n), i

τ ∗
�−−→ min(i + 1, n), S

κ�−→ n

Note that Δn is both commutative and idempotent. It is also the syntactic
�-algebra for the language defined by ∃∞nx a(x). Further, Δ0 is isomorphic to
U1 from Example 1. See (Fig. 1).

4.1 FO[∞] with single variable

In this section we characterize languages definable in the one variable fragment
FO1[(∞j)j≤n] as those which can be recognized by the direct product of Δn.

48 B. Adsul et al.

Theorem 3. Languages recognized by direct product of Δn are exactly those
definable in FO1[(∞j)j≤n].

Proof. We first show that languages recognized by Δn are definable in
FO1[(∞j)j≤n]. Let h : Σ� → Δn be a morphism. It suffices to show that for
any element m ∈ Δn, h−1(m) is definable in FO1[(∞j)j≤n]. In the rest of
the discussion we adopt the convention that id < 0. Let ↑m denote the set
{m′ | m′ ≥ m}. Note that for an m < n, h−1(m) = h−1(↑m)\h−1(↑(m+1)) and
h−1(n) = h−1(↑n). Therefore, it is sufficient to show that h−1(↑m) is definable
in FO1[(∞j)j≤n]. For each m ∈ Δn, we define the language L(m) as

{
w | there

exists a letter a in w such that h(a) = j �= id and either j ≥ m or there is a
set of positions α labelled a such that ∞-rank(α) = j′ and j + j′ ≥ m

}
The

following FO1[(∞j)j≤n] sentence defines the language L(m).
∨

a∈Σ, h(a)≥m

∃x a(x) ∨
∨

a∈Σ, 0≤h(a)<m

∃∞m−h(a)x a(x)

We show that L(m) = h−1(↑m) by induction on m. The base case holds since
↑id = Δn, h−1(↑id) = Σ� and L(id) = Σ�. To prove the induction hypothesis
assume the claim holds for all j < m. Consider a word w. By a second induction
on the height of an evaluation tree (T, h) for w we show for all words v ∈ T , v ∈
h−1(↑m) if and only if v ∈ L(m). In each of the following cases we assume that
the children of the node (if they exist) satisfy the second induction hypothesis.

1. Case v is a letter: The hypothesis clearly holds
2. Case v is a concatenation of two words v1 and v2: There are two cases to

consider - {v1, v2}∩h−1(↑m) �= ∅ or not. In the first case, let for an i ∈ {1, 2}
we have h(vi) ≥ m and vi ∈ L(m). Clearly h(v) = h(v1v2) ≥ m and v ∈
L(m). For the second case, let us assume h(v1) = i and h(v2) = j such that
i ≤ j < m and both v1, v2 /∈ L(m). From the definition of Δn, it follows that
h(v) = h(v1v2) = j. Let the a-labelled suborderings in v1 and v2 be α1 and
α2 respectively where ∞-rank(α1) ≤ ∞-rank(α2) = j′. It follows from the
definition that ∞-rank(α1 + α2) = j′ and therefore v /∈ L(m).

3. Case v is an ω-sequence of words 〈v1, v2, . . . , 〉 such that h(vi) = k, for all
i, and k is an idempotent (in Δn all elements are idempotents): Firstly, if
k ≥ m and vi ∈ L(m) then clearly h(v) ≥ m and v ∈ L(m). The non-trivial
case is k = m − 1. From the second induction hypothesis vi /∈ L(m) for all i.
From the definition of Δn, h(v) = kτ = m. We need to show that v ∈ L(m).
By first induction hypothesis, each vi has a letter ai and an ai-labelled set
of positions αi such that h(ai) + ∞-rank(αi) = k. Since |Σ| is finite, ω-many
of these ais are the same letter, say a. Hence the a-labelled set of positions
α =

∑
i:ai=a αi in v satisfies ∞-rank(α) = ∞-rank(αi)+1. As a consequence,

h(a) + ∞-rank(α) = k + 1 or in other words v ∈ L(m).
4. Case v is an ω∗-sequence: This case is symmetric to the above case.
5. Case v is a perfect shuffle, h(v) = Sκ : It is easy to see that the induction

hypothesis holds if S = {id}. So, assume S ∩ {id} �= ∅. Hence h(v) = n.

FO and Infinitary Quantifiers 49

Since, there are Q-many children u where h(u) �= id, there is a letter a such
that a-labelled set of positions in v has infinite rank or v ∈ L(n).

The other direction of the proof follows from the fact that a one variable quanti-
fier free formula is essentially a disjunction of letter predicates and therefore the
boolean combination of formulas can be recognized by direct products of Δk.

4.2 The General FO[∞] logic

In this section, we consider the full logic FO[(∞j)j≤n] and observe that they
define exactly those languages recognized by block products of Δn.

Theorem 4. The languages defined by FO[(∞j)j≤n] are exactly those recognized
by finite block products of Δn. Moreover, the languages defined by FO[∞] are
exactly those recognized by finite block products of {Δn | n ∈ N}.

Proof. We first show that languages recognizable by finite block products of Δn

are definable in FO[(∞j)j≤n]. The proof is via induction on the number of Δn

in an iterated block product. The base case follows from Theorem 3.
For the inductive step, consider a morphism h : Σ� → M�Δn. Let

h1 : Σ� → M be the induced morphism to M , and let σ be the associated
transducer. By the block product principle (see Proposition 1), any language
recognized by h is a boolean combination of languages L1 ⊆ Σ� recognized by
M and σ−1(L2) where L2 ⊆ (M × Σ × M)� is recognized by Δn. By induction
hypothesis, L1 is FO[(∞j)j≤n] definable. By the base case L2 is FO[(∞j)j≤n]
definable but over the alphabet M ×Σ×M . To complete the proof, one needs to
show for any word w ∈ Σ� and assignment s, and for any FO[(∞j)j≤n] formula
ϕ over the alphabet M ×Σ ×M , there exists a FO[(∞j)j≤n] formula ϕ̂ over the
alphabet Σ such that w, s |= ϕ̂ if and only if σ(w), s |= ϕ. For instance, suppose
ϕ = ∃∞ix (m1, c,m2)(x), and inductively φm1 (resp. φm2) are FO[(∞j)j≤n] for-
mula characterizing words over Σ� that are mapped by h1 to m1 (resp. m2).
Then ϕ̂ is ∃∞ix (φm1 |<x ∧c(x)∧φm2 |>x), where φm1 |<x is the formula φm1 with
all its variables relativised to less than the variable x. This way, one proves that
σ−1(L2) is FO[(∞j)j≤n] definable. This completes the proof of this direction.

The other direction of the proof is a standard generalization of the proof
of equivalence of FO and the block product closure of Δ0 given in [1, Theo-
rem 2]. The block product principle allows us to “simulate” infinitary quantifiers
using block products of Δn and vice-versa. We can then inductively recognize
languages defined by formulas using iterated block products.

We claim that both first order logic with cuts (FO[cut]) and weak monadic
second order logic (WMSO) can define the languages definable in FO[∞].

Theorem 5. FO[∞] ⊆ FO[cut] ∩ WMSO.2

2 Henceforth, by a slight abuse of notation, FO[∞], FO[cut], WMSO also denote the
language-classes defined by the corresponding logics.

50 B. Adsul et al.

5 No Finite Basis Theorems

The main goal of this section is to prove that FO[∞],FO[cut] and FO[cut] ∩
WMSO over countable words do not admit a block product based characteriza-
tion which uses only a finite set of �-monoids. This is in stark contrast with the
result in [1] which shows that a language of countable words is FO-definable iff it
is recognized by a strong iteration of block product of copies of Δ0 (alternately
called U1). This is abbreviated by saying that FO has a block-product based
characterization using a basis which contains the single �-monoid Δ0. Notice
that, it follows from the results in the previous section that FO[∞] admits a
block product based characterization using the natural infinite basis {Δn}n∈N.

Fix a finite �-algebra M = (M, id, ·, τ , τ ∗,κ). For every n ∈ N, we define the
operation γn : M → M which maps x to xγn . The inductive definition of γn is
as follows (recall idempotent power): xγ0 = x! and xγn = ((xγn−1)τ (xγn−1)τ ∗

)!.

Lemma 2. For each m ∈ M , there exists n such that ∀n′ ≥ n,mγn = mγn′ .

We now define the gap-nesting-length of M (in notation, gnlen(M)) to be the
smallest n such that for all m ∈ M , mγn = mγn+1 . It follows from the previous
lemma that a finite �-algebra has a finite gap-nesting-length. It is a simple
computation that, for each k, gnlen(Δk) = k. The following main technical
lemma is the key to our no-finite-basis theorems.

Lemma 3. For finite aperiodic3 �-algebras M and N ,

1. We have, gnlen(M�N) ≤ max (gnlen(M), gnlen(N)).
2. If M divides N then gnlen(M) ≤ gnlen(N).

Corollary 1. FO[(∞j)j≤n] � FO[(∞j)j≤n+1].

Proof. By Theorem 4, the syntactic �-algebra M of any FO[(∞j)j≤n]-definable
language divides a block product of copies of Δn. By Lemma 3 and the fact
that gnlen(Δn) = n, gnlen(M) ≤ n. Note that, Δn+1 is the syntactic �-algebra
for the language L defined by the FO[(∞j)j≤n+1] formula ∃∞n+1x a(x). As
gnlen(Δn+1) = n + 1, it follows that L cannot be defined in FO[(∞j)j≤n].

Theorem 6. There is no finite basis for a block product based characterization
for any of these logical systems FO[∞],FO[cut],FO[cut] ∩ WMSO.

Proof. Fix one of the logics L mentioned in the statement of the theorem. It
follows from Theorem 5 and the algebraic characterization of FO[cut] from [6]
that the syntactic �-algebras of L-definable languages are aperiodic. Now sup-
pose, for contradiction, that L admits a finite basis B of aperiodic �-algebras
for its block product based characterization. Since B is finite, there exists n ∈ N

such that for all �-algebras M in B, gnlen(M) ≤ n. It follows by Lemma 3
that the syntactic �-algebra N of every L-definable language has the property
gnlen(N) ≤ n.
3 This simply means that the underlying monoid of a �-algebra is aperiodic.

FO and Infinitary Quantifiers 51

Now consider the language L defined by the FO[∞] sentence φ =
∃∞n+1x a(x). By Theorem 5, L is L-definable. Hence, the gap-nesting-length of
the syntactic �-algebra K of L is less than or equal to n. However, K is simply
Δn+1 and gnlen(Δm+1) = n + 1. This leads to a contradiction.

6 Conclusion

Over countable words, we have obtained decidable characterizations of the one
variable fragment FO1 and the Boolean closure of the existential-fragment of
FO. More importantly, we have enriched FO with new infinitary quantifiers and
established hierarchical block-product based characterization of the resulting
extension FO[∞]. We also show that FO[∞] properties can be expressed simul-
taneously in FO[cut] as well as WMSO. We do not know if the converse also
holds. If true, it will provide a syntactic means to describe the semantic ‘class’
FO[cut] ∩ WMSO. We have also shown that these natural logical systems can
not have a block-product based characterization using a finite basis.

References

1. Adsul, B., Sarkar, S., Sreejith, A.V.: Block products for algebras over countable
words and applications to logic. In: 34th Annual ACM/IEEE Symposium on Logic
in Computer Science, LICS 2019, pp. 1–13. IEEE (2019)

2. Adsul, B., Sarkar, S., Sreejith, A.V.: First-order logic and its infinitary quantifier
extensions over countable words. CoRR abs/2107.01468 (2021). https://arxiv.org/
abs/2107.01468

3. Baudisch, A., Seese, D., Tuschik, H.P., Weese, M.: Decidability and Generalized
Quantifiers. Akademie Verlag, Berlin (1980)

4. Bès, A., Carton, O.: Algebraic characterization of FO for scattered linear order-
ings. In: Computer Science Logic, 20th Annual Conference of the EACSL, CSL
2011. LIPIcs, vol. 12, pp. 67–81. Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik (2011)

5. Carton, O., Colcombet, T., Puppis, G.: An algebraic approach to MSO-definability
on countable linear orderings. J. Symb. Log. 83(3), 1147–1189 (2018)

6. Colcombet, T., Sreejith, A.V.: Limited set quantifiers over countable linear order-
ings. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.)
ICALP 2015. LNCS, vol. 9135, pp. 146–158. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-47666-6 12

7. Diekert, V., Gastin, P., Kufleitner, M.: A survey on small fragments of first-order
logic over finite words. Int. J. Found. Comput. Sci. 19(3), 513–548 (2008)

8. Gabbay, D.M., Hodkinson, I., Reynolds, M.: Temporal Logic: Mathematical Foun-
dations and Computational Aspects, vol. 1. Oxford University Press, Oxford (1994)

9. Gradel, E., Otto, M., Rosen, E.: Two-variable logic with counting is decidable. In:
Proceedings of Twelfth Annual IEEE Symposium on Logic in Computer Science,
pp. 306–317 (1997)

10. Manuel, A., Sreejith, A.V.: Two-variable logic over countable linear orderings. In:
41st International Symposium on Mathematical Foundations of Computer Science,
MFCS 2016, pp. 66:1–66:13 (2016)

https://arxiv.org/abs/2107.01468
https://arxiv.org/abs/2107.01468
https://doi.org/10.1007/978-3-662-47666-6_12
https://doi.org/10.1007/978-3-662-47666-6_12

52 B. Adsul et al.

11. Pin, J.E.: Handbook of Formal Languages, Vol. 1. chap. Syntactic Semigroups, pp.
679–746. Springer-Verlag, Heidelberg (1997)

12. Pin, J.É.: Mathematical foundations of automata theory (2020)
13. Rosenstein, J.G.: Linear Orderings. Academic Press, New York (1981)
14. Simon, I.: Piecewise testable events. In: Brakhage, H. (ed.) GI-Fachtagung 1975.

LNCS, vol. 33, pp. 214–222. Springer, Heidelberg (1975). https://doi.org/10.1007/
3-540-07407-4 23

15. Straubing, H.: Finite automata, formal logic, and circuit complexity. Birkhauser
Verlag, Basel, Switzerland (1994)

16. Straubing, H., Thérien, D., Thomas, W.: Regular languages defined with general-
ized quantifiers. In: Lepistö, T., Salomaa, A. (eds.) ICALP 1988. LNCS, vol. 317,
pp. 561–575. Springer, Heidelberg (1988). https://doi.org/10.1007/3-540-19488-
6 142

17. Straubing, H., Weil, P.: Varieties. CoRR abs/1502.03951 (2015). http://arxiv.org/
abs/1502.03951

18. Thomas, W.: Handbook of Formal Languages, vol. 3. chap. Languages, Automata,
and Logic, pp. 389–455. Springer-Verlag Inc., New York (1997). http://dl.acm.org/
citation.cfm?id=267871.267878

https://doi.org/10.1007/3-540-07407-4_23
https://doi.org/10.1007/3-540-07407-4_23
https://doi.org/10.1007/3-540-19488-6_142
https://doi.org/10.1007/3-540-19488-6_142
http://arxiv.org/abs/1502.03951
http://arxiv.org/abs/1502.03951
http://dl.acm.org/citation.cfm?id=267871.267878
http://dl.acm.org/citation.cfm?id=267871.267878

From Symmetry to Asymmetry:
Generalizing TSP Approximations

by Parametrization

Lukas Behrendt1, Katrin Casel1(B), Tobias Friedrich1,
J. A. Gregor Lagodzinski1, Alexander Löser1, and Marcus Wilhelm2

1 Hasso Plattner Institute, University of Potsdam, Potsdam, Germany
{lukas.behrendt,alexander.loeser}@student.hpi.de,

{katrin.casel,tobias.friedrich,gregor.lagodzinski}@hpi.de
2 Karlsruhe Institute of Technology, Karlsruhe, Germany

marcus.wilhelm@kit.edu

Abstract. We generalize the tree doubling and Christofides algorithm
to parameterized approximations for ATSP. The parameters we con-
sider for the respective generalizations are upper bounded by the number
of asymmetric distances, which yields algorithms to efficiently compute
good approximations also for moderately asymmetric TSP instances. As
generalization of the Christofides algorithm, we derive a parameterized
2.5-approximation, where the parameter is the size of a vertex cover for
the subgraph induced by the asymmetric distances. Our generalization
of the tree doubling algorithm gives a parameterized 3-approximation,
where the parameter is the minimum number of asymmetric distances
in a minimum spanning arborescence. Further, we combine these with
a notion of symmetry relaxation which allows to trade approximation
guarantee for runtime. Since the two parameters we consider are theo-
retically incomparable, we present experimental results which show that
generalized tree doubling frequently outperforms generalized Christofides
with respect to parameter size.

Keywords: Parameterized approximation · Stability of
approximation · TSP vs. ATSP

1 Introduction

The ubiquitous traveling salesman problem asks for a shortest round trip through
a given set of cities. Its relation to the Hamiltonian cycle problem does not only
imply NP-hardness, but also implies that efficient approximation is impossible
for unrestricted instances, which is why distances are usually assumed to satisfy
the triangle inequality. This restriction to metric instances is one of the most
extensively studied problems in combinatorial optimization, yet its approxima-
bility prevails as an active research area. Despite the breakthrough by Svensson

c© Springer Nature Switzerland AG 2021
E. Bampis and A. Pagourtzis (Eds.): FCT 2021, LNCS 12867, pp. 53–66, 2021.
https://doi.org/10.1007/978-3-030-86593-1_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86593-1_4&domain=pdf
https://doi.org/10.1007/978-3-030-86593-1_4

54 L. Behrendt et al.

et al. [32], particularly the difference between symmetric and asymmetric dis-
tances remains rather poorly understood. In this paper we employ the tools of
parameterized complexity as a new approach to explicitly study the effects of
asymmetry on the approximability of the metric traveling salesman problem.

1.1 Motivation

Symmetric distance, meaning that traveling from A to B has the same cost as
traveling from B to A, is certainly the most common assumption to the metric
traveling salesman problem. In fact, it is so common that the name (metric) trav-
eling salesman problem (TSP) is usually associated with this symmetric version,
while the more general case is explicitly referred to as asymmetric (ATSP).

It appears as if symmetry plays a vital role in view of approximations. For
TSP it was known for over 40 years that a 3

2 -approximation is possible with
the famous algorithm of Christofides [10] (or Christofides-Serdyukov, see [4]).
Recently, Karlin et al. [22] showed a randomized approximation with an expected
ratio of 3

2 −ε for a small constant ε > 0. For ATSP, Svensson et al. [32] answered
the longstanding open question for the existence of a constant factor approxima-
tion in the affirmative. Although the current state of the art was very recently
established by Traub and Vygen [33] with the ratio of 22 + ε, this still leaves
a significant gap between the positive results for TSP and ATSP, whereas the
currently known lower bounds by Karpinski et al. [23] of 123

122 for TSP and 75
74

for ATSP do not indicate such a vast difference. This raises the question of how
symmetry truly affects approximability.

The assumption of symmetry does not seem very natural. A study by
Mart́ınez Mori and Samaranayake [28] shows that road networks exhibit asym-
metry even when only the lengths of the shortest paths are considered. Phe-
nomena like road blocks, one-way streets and rush hour can result in unbounded
violations of symmetry while the triangle inequality remains satisfied. In compar-
ison, restricting to distances that satisfy the triangle inequality is a reasonable
assumption in all scenarios where visiting cities more than once is acceptable.
Finding a shortest tour that visits each city at least once translates to metric
TSP by taking the shortest path metric, also called metric closure.

The asymmetry factor is the maximum ratio between the length of the short-
est paths from A to B and B to A over all cities A,B. The investigation in [28]
revealed that most asymmetries are insignificantly small. With these few but
existing significant asymmetries in mind, we consider spending exponential time
with respect to some measure of the degree of asymmetry. Our basic objective
is to salvage the approximability of TSP for ATSP by allowing this increase in
runtime. Formally, we give parameterized approximations (see e.g., [26]), which
means a guaranteed performance ratio and a runtime of the form poly(n)f(k),
where f is an arbitrary function, n is the size of the instance and k is a measure
for asymmetry. This approach aims to offer efficiency for instances of low asym-
metry and to improve our understanding of the challenges asymmetric distances
pose to the design of approximation algorithms.

From Symmetry to Asymmetry 55

1.2 Our Results

We derive parameterized approximations based on the Christofides and the tree
doubling algorithm with respective suitable parameters. Both parameters under
study are bounded by the number of asymmetric distances, i.e., pairs of vertices
(u, v) for which traveling from u to v is cheaper than traveling from v to u.
Further, we combine these parameters with the asymmetry factor Δ [28] in the
sense that they treat distances with asymmetry factor Δ ≤ β for some β ≥ 1
as symmetric, which shrinks both parameters to consider only the more severe
β-asymmetries (distance from v to u is at least β times the distance from u to v).
In particular, we derive parameterized approximations with

– ratio 7
4 + 3

4β for parameter k = size of a vertex cover for the subgraph induced
by the β-asymmetric distances (generalized Christofides);

– ratio 2 + β for parameter z = minimum number of β-asymmetric distances
in a minimum spanning arborescence (generalized tree doubling).

For β = 1, we prove the ratio of 2.5 to be tight for generalized Christofides.
The lack of such a tightness result and further observations lead us to conjecture
that generalized tree doubling is actually a 2-approximation for β = 1. Since the
two parameters k and z are theoretically incomparable, we conduct experiments
which show that generalized tree doubling frequently outperforms generalized
Christofides with respect to parameter size.

The paper is organized as follows. In Sect. 3 we generalize the Christofides
algorithm. Our main result, the more elaborate generalized tree doubling algo-
rithm, is presented in Sect. 4. In Sect. 5 we give the combination with the asym-
metry factor and Sect. 6 describes our experimental results. For the full version
of this extended abstract, see [3].

1.3 Related Work

Conceptually, our approach can be seen as a study of stability with respect
to asymmetry in the framework of stability of approximation by Böckenhauer
et al. [6]. Probably the most extensively studied stability measure for (A)TSP
is the β-triangle inequality, also called parameterized triangle inequality, which
refers to the requirement c(u, v) ≤ β(c(u,w) + c(w, v)) for all u, v, w ∈ V with
u �= v �= w. For ATSP with β-triangle inequality, the 1

2(1−β) -approximation
derived by Kowalik and Mucha [25] for β ∈ (12 , 1) improves upon a series of
previous results [5,9,34] and is also known to be tight with respect to the cycle
cover relaxation as lower bound. For TSP, the survey of Klasing and Mömke [24]
gives a summary of the known results with β-triangle inequality.

Mart́ınez Mori and Samaranayake [28] showed that the Christofides algorithm
is 3

2 -stable with respect to the asymmetry factor, meaning that it can be used to
compute a 3

2Δ-approximation for instances with asymmetry factor at most Δ.
So far, there are only a few parameterized approximations for (variations

of) TSP. Marx et al. [27] consider ATSP on a restricted graph class called k-
nearly-embeddable. They derive approximations where the ratio and the runtime
depend on structural parameters of the given instance. A true parameterized

56 L. Behrendt et al.

approximation for a TSP type problem is given by Böckenhauer et al. in [7] for
deadline TSP, a generalization of TSP where some cities have to be reached by
the tour within a given deadline. They give a 2.5-approximation that requires
exponential time only with respect to the number of cities with deadline.

Another interesting approach to invest moderate exponential time is given
by Bonnet et al. in [8]. They derive a routine that allows to compute for any
r ≤ n a log r-approximation for ATSP that requires time O∗(2

n
r).

2 Preliminaries

Throughout the paper, instances of ATSP are always simple complete directed
graphs denoted by G = (V,A, c) with non-negative cost function c on A. For
u, v ∈ V , (u, v) denotes the arc from u to v and c(u, v) denotes its cost. For an
arc (u, v) ∈ A we call (v, u) ∈ A the opposite arc. To refer to the connections
between vertices without regarding any directedness, for an arc (u, v) ∈ A and
its opposite arc, we call {u, v} an arc-pair or simply link. Links can be thought
of like edges in an undirected graph. If the cost function c satisfies the triangle
inequality, i.e., c(u, v) ≤ c(u,w) + c(w, v) for all u, v, w ∈ V , we call G metric. If
the graph is not clear from context, we use V [G] and A[G] to denote the vertices
and arcs of G, respectively.

In a not necessarily complete graph G′, a trail is a sequence of vertices where
each vertex is equal to or has an arc to its successor. A path is a trail containing
no vertex twice. Circuit and cycle denote a trail and a path where the last vertex
has an arc to the first vertex, respectively. We denote a trail by v1, . . . , vn and a
circuit by (v1, . . . , vn). A tour of G′ is a cycle that visits each vertex of G′.

If G is metric, every trail can be turned into a path visiting the same vertices
via a metric shortcut without increasing the cost, where metric shortcut means
removing multiple occurrences of each vertex. All tours in G are valid ATSP
solutions, and we use c∗(G) to denote the cost of an optimal solution for G.

For G = (V,A, c) we denote the vertex-induced subgraph of V ′ ⊆ V by G[V ′],
the arc-induced subgraph of A′ ⊆ A by G[A′] and also the link-induced subgraph
of a set of links E by G[E]. Slightly abusing notation, G[V ′] and G[A′] then also
inherit the weights of G. Further, for a subgraph G′ of G, we use c(G′) to denote
the sum of all arc costs in G′. We observe:

Lemma 1. Let G be a metric graph and V ′ ⊆ V . Then, G[V ′] is metric as well.

Lemma 2. Let G be a metric graph and V ′ ⊆ V . Then, c∗(G[V ′]) ≤ c∗(G).

We also use one other transformation we call minor. Here, G′ is a minor
of G if there is a series of contractions which, starting from G, result in G′. A
contraction of (u, v) replaces u and v with a single vertex uv and sets c(w, uv) =
min{c(w, u), c(w, v)} and c(uv,w) = min{c(u,w), c(v, w)} for all w ∈ V \ {u, v}.

3 Generalized Christofides Algorithm

The Christofides algorithm [10] is a polynomial approximation for TSP with
performance ratio 3

2 . On instance G it first computes a minimum spanning tree T

From Symmetry to Asymmetry 57

for G and then adds a minimum cost perfect matching M on the vertices V ′ of
odd degree in T . The resulting subgraph is connected and each vertex has an
even degree, so it is possible to compute an Eulerian cycle for it, which is a
circuit of cost c(T) + c(M) that visits all vertices. Metric shortcuts turn this
circuit into a tour. Since taking every second edge in an optimal tour for G[V ′]
gives a perfect matching for the vertices of odd degree, the edges in M have a
cost of at most 1

2c∗(G[V ′]) ≤ 1
2c∗(G). Together with the bound of c∗(G) on the

cost of T , this proofs the approximation ratio of 3
2 .

Regarding ATSP, the most dire problem of this approach is that combining T
and M to an Eulerian circuit is impossible if some arcs point in the wrong
direction, and it is unclear how to restrict T and M accordingly while keeping
the relation of their cost to the optimum value. Due to this conceptual problem,
we use a reduction to a TSP instance for which the Christofides algorithm can be
applied. Observe that such a reduction cannot simply be designed by brute-force
guessing the correct set of asymmetries in an optimal solution; fixing a subset of
arcs to be in a solution cannot be modeled as an undirected instance. The design
of our algorithm is instead based on a simple structural insight that allows the
use of the Christofides algorithm on a symmetric subgraph.

We first explain an easier variant of the algorithm. The idea is to divide
the graph into an asymmetric and a symmetric subgraph. For G = (V,A, c) we
define the set of asymmetric links by Ea = {{u, v} | u, v ∈ V, c(u, v) �= c(v, u)}
and the set of asymmetric and symmetric vertices by Va = {v ∈ V | {u, v} ∈
Ea for some u ∈ V }, and Vs = V \ Va, respectively.

We define the asymmetric subgraph by G[Va ∪ {v}], where v is an arbitrary
vertex in Vs, and the symmetric one by G[Vs]. Note that tours through both
subgraphs can be merged at the overlap in v and turned into a tour of the
whole graph with metric shortcuts. Combining in this way an exact solution for
G[Va∪{v}] and a 3

2 -approximate solution for G[Vs], computed by the Christofides
algorithm, overall yields a parameterized 5

2 -approximation with parameter |Va|.
To improve this, consider a vertex cover VC of G[Ea]. The complement of

VC forms an independent set in G[Ea], implying that G contains no asymmetric
links between vertices in Vs ∪ (Va \ VC). This can be exploited to consider the
smaller structural parameter z, the size of a vertex cover in G[Ea]. The improved
algorithm uses a vertex cover VC in G[Ea], selects a vertex v ∈ Vs and considers
G[VC ∪ {v}] as the asymmetric and G[V \ VC] as the symmetric subgraph.

Using a simple O(m + 2zz2) algorithm (e.g. branching on the k2-kernel as
discussed in the introduction of [11] for “Bar Fight Prevention”) for the minimal
vertex cover for G[Ea], and the dynamic programming algorithm by Held and
Karp [17] for ATSP on G[VC ∪ {v}] in O(2zz2) yields the following.

Theorem 1. Metric ATSP can be 5
2 -approximated in O(n3+2zz2) where z is the

size of a minimum vertex cover of the subgraph induced by all asymmetric links.

Instead of exact algorithms for the vertex cover for G[Ea] and the solution on
G[VC∪{v}], we can also use approximations. A 2-approximation for vertex cover
and the 2

3 log n-approximation of Feige and Singh [14] on G[VC ∪{v}] yields the
following interesting result.

58 L. Behrendt et al.

Fig. 1. Gk for k = 7: Black and gray links are symmetric with cost 2, dotted links are
symmetric with cost 1. Dashed links are asymmetric, with cost 1 from gray to black
vertex and cost 2 from black to gray vertex.

Corollary 1. Metric ATSP can be (23 log x + 3
2)-approximated in polyno-

mial time, where x = min (2z + 1, |Va|), Va is the set of asymmetric vertices
and z is the size of a minimum vertex cover for the subgraph induced by all
asymmetric links.

This improves upon the approximation ratio of 2
3 log n if x

n < 2− 9
4 , mean-

ing that G[VC ∪ {v}] only contains a sufficiently small fraction of the ver-
tices. We note that the result of Asadapour et al. [2] gives a polynomial
(8 log(z)/ log log(z) + 3

2)-approximation, which is asymptotically stronger but
less suitable for the instances with small values of z we are interested in.

Further, note that one can also use any approximation for TSP (not just
the Christofides algorithm) for the symmetric subgraph and obtain an (α + 1)-
approximation for ATSP from any α-approximation for TSP.

It remains to see if this approach can be improved. Aiming for a smaller
parameter seems difficult as this would not split off a symmetric subgraph.
Regarding a possible improvement of the ratio, one might hope to salvage the
ratio of 3

2 for TSP, obtained by the Christofides algorithm, for ATSP. However,
such an improvement requires a different algorithmic strategy as the ratio in
Theorem 1 is asymptotically tight, which can be shown as follows.

We define a family of graphs Gk for k ∈ N, k > 2 such that the approximation
ratio converges to 2.5 for increasing k, Fig. 1 describes G7. The black zig-zag
pattern is the textbook example for the tightness of the Christofides algorithm.
The idea is that the gray vertices build the minimum vertex cover such that
the black zig-zag pattern becomes the symmetric instance. The gray cycle is
then the asymmetric subgraph and solving it exactly yields a tour of cost 2k.
Together with the approximation on the symmetric subgraph, which converges
to 3k, this results in a tour of length 5k. As the optimal tour takes the dotted
and dashed links in the cheaper direction and has cost 2k, we deduce that 2.5 is
asymptotically tight for Theorem 1.

4 Generalized Tree Doubling Algorithm

One other widely known approximation for TSP is the tree doubling algorithm.
It computes a minimum spanning tree (MST) and doubles every edge in it to

From Symmetry to Asymmetry 59

Fig. 2. Exemplary construction for a suitable path χi. Left: spanning tree with Pi

dashed; Middle: trail through partially doubled edges; Right: resulting path.

ensure the existence of an Eulerian circuit. Since the circuit uses every MST
edge exactly twice, it is twice as expensive as the tree, which itself is at most
as expensive as the optimum tour. Thus, transforming the circuit with metric
shortcuts gives a 2-approximation. To adapt this approach to ATSP we use a
minimum spanning arborescence (MSA) as the directed variant of an MST. Tree
doubling then runs into trouble when the cost of an opposite arc is arbitrarily
higher than the direction contained in the MSA. These arcs are the core of the
problem and hence our basis to generalize the tree doubling algorithm.

Formally, we call (u, v) ∈ A a one-way arc in G = (V,A, c) if c(u, v) < c(v, u).
In a nutshell, our algorithm removes all one-way arcs from an MSA, computes a
tour for each resulting connected component by an altered tree doubling routine
and uses exponential time in the number of removed one-way arcs to connect
these subtours to a solution for the whole graph. For a best runtime, we hence
want to keep the number of one-way arcs in the starting MSA as small as possible.
For our parametrization, we formally define k to be the minimum number of one-
way arcs in an MSA for G.

At first glance, it might seem that finding an MSA with k one-way arcs is
a difficult task. However this can be accomplished by searching for an MSA
with the altered weight function c′ defined by c′(e) = |V |c(e) + 1 if e is a one-
way arc, and c′(e) = |V |c(e), otherwise. Trying every possible root vertex with
this altered weight function, and the Chu–Liu/Edmonds algorithm [13] with
Fibonacci heaps [15] to compute the MSA, yields the following result.

Lemma 3. Let G be a metric ATSP instance, then an MSA of G with a mini-
mum number of one-way arcs can be computed in O(n3).

With this best MSA, we can describe our generalized tree doubling algorithm.
Let T be the MSA for G computed with Lemma 3, and let T1, . . . , Tk+1

be the connected components in the graph created by deleting all k one-
way arcs from T . We construct a graph M by contracting each set of ver-
tices V [Ti] to one vertex vM

i with our notion of contraction to a minor. This
results in V [M] = {vM

1 , . . . , vM
k+1} and for all vM

i , vM
j ∈ V [M] with i �= j,

c(vM
i , vM

j) = min ({c(ti, tj) | ti ∈ V [Ti], tj ∈ V [Tj]}).

Lemma 4. Let G be a metric ATSP instance and M be minor of G, then
c∗(M) ≤ c∗(G).

Since M only contains k + 1 vertices, we brute-force an optimal tour τ ′ for M .
It remains to extend τ ′ to a tour of G. Consider a vertex vM

i in M (which corre-
sponds to the component Ti) and assume w.l.o.g. that in τ ′ it is preceded by vM

i−1

60 L. Behrendt et al.

and precedes vM
i+1. Further, let (vTi−1

out , vTi
in) and (vTi

out , v
Ti+1
in) be the cheapest arc

between Ti−1 and Ti, and Ti and Ti+1, respectively. The goal is to find a path χi

that starts in vTi
in , ends in vTi

out , and spans all vertices in Ti (formally a solution
to s-t-path TSP for G[Ti] with s = vTi

in and t = vTi
out). Replacing vTi in τ ′ by χi

for each i turns τ ′ into a tour. However, the cost of χi has to be bounded.
Such a path χi through Ti can be found by adapting the tree doubling algo-

rithm. We treat Ti as undirected and double all its edges that are not on the
shortest path Pi from vTi

in to vTi
out . The resulting graph contains an Eulerian trail

from vTi
in to vTi

out , which is turned into a path by metric shortcuts ensuring that
vTi
in and vTi

out remain start and end node, see Fig. 2 for an example. Observe that
we cannot use any of the better approximations for s-t-path TSP, such as [19],
since the subgraph induced by the vertices in Ti is not necessarily completely
symmetric. Further, even if this was possible, the only information we can use
to compare the tour through Ti with the optimum for the whole graph G are
the arcs from the MSA, which in the worst case always results in a ratio of 2.

For the cost of χi, note that it contains for each arc (u, v) in Ti at most both
(u, v) and (v, u). Since there are no one-way arcs in Ti, any opposite arc is at
most as expensive as the original arc in Ti. Consequently, the cost of χi is at
most twice the cost of the arcs in Ti and the sum of all χi is at most 2c∗(G). In
combination with the cost of at most c∗(G) for τ ′, this yields:

Theorem 2. Metric ATSP can be 3-approximated in O(2k · k2 + n3), where k
is the minimum number of one-way arcs in a minimum spanning arborescence.

Contrary to the approach in Sect. 3, we cannot plug in some approximation
to find a good tour τ ′ for M to derive something like Corollary 1. Note that
the minor M is not necessarily metric since contractions do not preserve the
triangle inequality. Still, one might ask if M , as minor of a metric graph, has
useful structural properties. However, the following result discourages such ideas.

Lemma 5. Let G be a complete, directed graph with cost function c. Then, there
exists a complete, metric graph Ĝ of which G is a minor.

Computing a tour for M is related to the generalized traveling salesman problem
(GTSP) which can be tracked back to publications of Henry-Labordère and Sak-
sena [18,31]. Given a partition of the cities into r sets, GTSP asks for a minimum
cost tour containing (at least) one vertex from each of the r sets. Unfortunately,
there are no known efficient ways to solve or approximate GTSP. However, we
observe that using an optimal GTSP tour for the vertex sets corresponding to
T1, . . . , Tk+1 instead of the tour through M still yields a 3-approximation. In
fact, this remains true even if we fix one arbitrary city for each set, which yields
a graph M ′ that is just an induced subgraph and hence metric. For this simplified
approach, the ratio 3 is indeed asymptotically tight.

Aside from the fact that we did not find a tight example for Theorem 2, seeing
that the choice of any arbitrary vertex still yields a 3-approximation causes us
to conjecture that our more sophisticated generalization of the tree doubling
algorithm is in fact a 2-approximation. Proving such a ratio however requires an
exploitable connection between the cost for the paths χi and the cost of τ ′.

From Symmetry to Asymmetry 61

5 Trading Approximation Quality for Runtime

In real life, we expect instances with many small asymmetries which have little
impact but lead to relatively large parameter values. Therefore, ignoring asym-
metric links where both directions have similar cost and trading some approxi-
mation quality for running time yields an intriguing perspective. As a formal way
to describe moderate asymmetry, we use the asymmetry factor of Mart́ınez Mori
and Samaranayake [28] as introduced in Sect. 1.3. Since Δ is commonly used
for the maximum degree, and we want to describe variable restrictions of the
asymmetry factor, we use β instead. For β ≥ 1 we call a link {u, v} or arc (u, v)
β-symmetric if 1

β ≤ c(u,v)
c(v,u) ≤ β, otherwise it is called β-asymmetric. We show

that our algorithms support a quality-runtime trade-off with respect to β.

5.1 Relaxed Generalized Christofides Algorithm

For a given β we modify the algorithm presented in Sect. 3 by treating every
β-symmetric link as symmetric. This results in parametrization by the ver-
tex cover of the subgraph induced by all β-asymmetric links. We denote this
parameter by zβ . Since the β-symmetric subgraph is not completely symmet-
ric, the Christofides algorithm cannot be directly used. Mart́ınez Mori and
Samaranayake [28] showed that it is 3

2 -stable by replacing every link with
an undirected edge and assigning it the cost of the more expensive direction.
Combined with the arguments used for Theorem 1, this gives a parameterized
(32β + 1)-approximation for parameter zβ . This can be improved by turning the
β-symmetric subgraph symmetric by assigning the cost of the cheaper direction.
Although this may not yield a metric graph, it suffices that the original graph
is metric to prove that the Christofides algorithm yields a good solution.

Theorem 3. For any β ≥ 1, metric ATSP can be (34β + 7
4)-approximated in

O(n3 + 2zβ z2β) where zβ is the size of a minimum vertex cover of the subgraph
induced by all β-asymmetric links.

5.2 Relaxed Generalized Tree Doubling Algorithm

For the generalized tree doubling algorithm, we define a β-one-way arc as a
one-way arc that is β-asymmetric. We denote by kβ the minimum number of
β-one-way arcs in an MSA. Note that the strategy in Lemma 3 can also be used
to find an MSA with kβ β-one-way arcs. The generalization of Theorem 2 is
straightforward, instead of deleting all one-way arcs we only delete β-one-way
arcs. This results in fewer components and a smaller graph Mβ . The drawback
is a change to the cost analysis: so far, we considered the component trees Ti to
be symmetric. Now for every (u, v) ∈ A[Ti], the opposite arc (v, u) can be up to
β times as expensive. The adjusted tree doubling algorithm for the path through
Ti uses every arc in Ti and its opposite arc at most once, which in total costs
at most (1 + β)c∗(G). Combined with the cost of at most c∗(G) for an optimum
tour through Mβ , this yields:

62 L. Behrendt et al.

Theorem 4. For any β ≥ 1, metric ATSP can be (2 + β)-approximated in
O(2kβ k2

β +n3) where kβ is the minimum number of β-one-way arcs in an MSA.

6 Experimental Results

To test the practical viability of our algorithms, we implemented them in their
relaxed form (see Sect. 5) to also observe their behavior when certain asymme-
tries are ignored. We evaluated on the asymmetric graphs from the TSPLIB
collection [29], the standard benchmark for TSP solvers, and on a set of specific
ATSP instances extracted from road networks by Rodŕıguez and Ruiz [30].

6.1 Implementation Details

Our implementation (available on GitHub1) is written in Python 3, except for
the vertex cover solver, which is written in Java. We used the Python library
NetworkX [16] for graph manipulation, the C++ library Lemon [12] for com-
puting MSAs, and Concorde [1] for solving TSP exactly. Since Concorde is a
TSP solver, we transformed the ATSP instances into TSP instances with the
transformation presented by Jonker and Volgenant [20,21].

We note that the runtime of our implementations is incomparable to state
of the art ATSP solvers. Among others, the reason is Python’s inherently low
performance and the inefficiency of solving ATSP with Concorde. However, this
is of no importance for our evaluation of approximation ratio, parameter size,
and the proof of concept.

6.2 Experiments

In the TSPLIB there are 19 asymmetric instances ranging from 17 up to 443
vertices. As some of the instances are not metric, we computed the metric closure
of each graph. The instances’ names contain the number of vertices (e.g., ftv33)
and similar names indicate similar properties. For example, instances starting
with rbg have relatively high symmetry and a high number of zero-cost arcs.
Contrasting that, the instances with prefix ftv contain little symmetry, but most
asymmetric links are only moderately asymmetric. Most instances are rather
small, with only 6 of the instances having more than 70 vertices. We ignored the
instance br17 as its metric closure is completely symmetric.

For each TSPLIB instance we executed each algorithm five times with differ-
ent values for β and recorded the value of the parameter as well as the approxima-
tion ratio. Starting with β = 1 (which corresponds to 100% of the asymmetric
links), we raised the value of β each step, reducing the number of asymmet-
ric links treated as asymmetric to a quarter of the previous experiment. Some
instances include many zero-cost arcs, so there is no value of β ignoring those.
We considered zero-cost arcs to have a small positive cost (set to 0.1) when cal-
culating the asymmetry factor, thus treating links with a small additive error
1 https://github.com/Blaidd-Drwg/atsp-approximation.

https://github.com/Blaidd-Drwg/atsp-approximation

From Symmetry to Asymmetry 63

Table 1. Experimental results on TSPLIB instances with percentage of asymmetric
links that were treated as asymmetric shown in the column header. Each cell contains
parameter value and approximation factor, separated by a slash (trivial parameter
value 0 omitted in 0% column). Superiority in the sense of smaller kernel or better
approximation ratio is highlighted with bold font.

Generalized Christofides algorithm Generalized tree doubling algorithm

100% 25% 6.25% 1.56% 0% 100% 25% 6.25% 1.56% 0%

ft53 53/1.00 29/1.54 13/1.70 6/1.69 1.72 45/1.08 25/1.36 6/1.42 1/1.57 1.97

ft70 69/1.02 34/1.24 12/1.26 7/1.41 1.24 64/1.02 27/1.13 4/1.20 2/1.21 1.28

ftv170 155/1.17 123/1.38 97/1.57 64/1.85 2.37 108/1.14 107/1.14 103/1.21 75/1.46 1.81

ftv33 29/1.12 19/1.45 11/1.43 5/1.56 1.33 19/1.34 16/1.34 11/1.44 2/1.23 1.50

ftv35 32/1.07 21/1.51 12/1.55 6/1.49 1.38 23/1.15 17/1.23 11/1.47 2/1.28 1.58

ftv38 33/1.13 23/1.38 12/1.43 7/1.47 1.39 23/1.24 18/1.33 12/1.54 3/1.30 1.62

ftv44 40/1.09 32/1.38 19/1.46 10/1.56 1.54 32/1.24 25/1.41 18/1.41 7/1.50 1.79

ftv47 44/1.05 32/1.47 19/1.66 13/1.65 1.66 35/1.09 30/1.16 19/1.34 9/1.38 1.58

ftv55 49/1.13 38/1.44 23/1.57 15/1.65 1.84 37/1.20 32/1.26 25/1.34 12/1.58 2.00

ftv64 57/1.11 46/1.46 30/1.66 18/1.73 1.72 50/1.10 43/1.15 31/1.29 14/1.71 1.45

ftv70 63/1.11 50/1.43 32/1.64 20/1.72 1.96 53/1.26 47/1.14 33/1.21 16/1.57 1.51

kro124p 99/1.11 86/1.30 65/1.36 40/1.41 1.24 81/1.06 70/1.13 57/1.20 34/1.28 1.37

p43 15/1.01 6/1.01 0/1.01 0/1.01 1.01 0/1.01 0/1.01 0/1.01 0/1.01 1.01

rbg323 148/1.02 59/1.17 43/1.19 18/1.30 1.34 235/1.09 22/1.27 6/1.27 0/1.30 1.30

rbg358 108/1.01 47/1.13 27/1.15 22/1.14 1.18 232/1.03 39/1.14 18/1.19 13/1.20 1.22

rbg403 125/1.01 41/1.12 11/1.26 11/1.26 1.17 113/1.05 30/1.14 0/1.24 0/1.24 1.24

rbg443 138/1.00 43/1.14 12/1.24 12/1.24 1.15 127/1.04 32/1.17 0/1.24 0/1.24 1.24

ry48p 47/1.20 37/1.40 23/1.46 11/1.47 1.16 28/1.10 22/1.14 11/1.24 5/1.29 1.21

as symmetric in case of these otherwise undauntedly asymmetric one-way arcs
of cost 0. Note that we did not alter the instance, but only used these additive
errors for relaxation decisions. Finally, β was set to ∞, such that the graph is
treated as completely symmetric. This results in the non-generalized versions of
the tree doubling and Christofides algorithm. The results are shown in Table 1.

The second dataset contains 450 ATSP instances based on travel distances
between random points sampled across different regions and cities in Spain. The
graphs in this dataset have between 50 and 500 vertices. On average 98.8% of
the links are asymmetric (std. dev. 1.08%) and no graph contains arcs of cost
zero. Most links are however only slightly asymmetric: denoting by asymmetry
factor the relative difference between the cost of a links more expensive arc and
its opposite arc, the mean asymmetry factor is 3.55% on average over all graphs
(std. dev. 0.040%). The median asymmetry factor is 1.32% (std. dev. 1.56%) on
average. There are however also links with large asymmetry factor. The highest
asymmetry factor is 15.0 (std. dev. 58.8) on average. Overall this makes the
graphs in the second dataset very relevant to the algorithms we present. Unfor-
tunately, due to computational constraints and the size of the dataset and the
graphs therein, we could only determine the values of the parameters and not the
cost of all optimal tours and the obtained approximation ratio. Figure 3 presents
the relative value of z and k for different values of β.

64 L. Behrendt et al.

Generalized Christofides Generalized tree-doubling

50,100 150,200 250,300 350,400 450,500 50,100 150,200 250,300 350,400 450,500

0.00

0.25

0.50

0.75

1.00

Graph size

P
ar
am

et
er

va
lu
e
(r
el
at
iv
e)

β 1 1.1 1.3 1.5 2

Fig. 3. Parameter values relative to graph size for generalized Christofides and tree
doubling algorithms for different values of β. Each box spans the second and third
quartile of the data and whiskers extend for 1.5 inter-quartile-ranges. The median is
marked as a line, the mean as a rhombus and outliers as disks.

6.3 Evaluation

First, we note that most graphs in the TSPLIB contain very little symmetry.
This leads to large parameter values for β = 1, i.e., only some graphs with more
than 10% symmetry have parameter values below 50% of the graph size. Still, we
observe that the approximation factor is always far below the upper bound, never
exceeding even 2.0. Also, we see that interpolating β to reduce the number of
relevant asymmetric links produces a valuable trade-off between approximation
quality and parameter value. Comparing both algorithms, we observe that on the
majority of instances and values for β the generalized tree doubling algorithm
produces smaller parameter values.

This can also be observed on the instances of the second dataset, which we
consider to be more representative of realistic inputs. We want to highlight that
the parameters are significantly smaller than the size of the input graphs even for
small values of β. E.g., for the generalized tree doubling algorithm with β = 1.1
the median relative parameter value over all instances is 0.045. It also seems
that the relative size of the parameters is stable for different input sizes.

These results underline the practicality of our approach, especially with
regards to the parameter values obtained by choosing a suitable β.

From Symmetry to Asymmetry 65

References

1. Applegate, D., Bixby, R., Cook, W., Chvátal, V.: On the solution of traveling
salesman problems. Doc. Math. 111, 645–656 (1998)

2. Asadpour, A., Goemans, M.X., Madry, A., Gharan, S.O., Saberi, A.: An O(log
n/log log n)-approximation algorithm for the asymmetric traveling salesman prob-
lem. Oper. Res. 65(4), 1043–1061 (2017). https://doi.org/10.1287/opre.2017.1603

3. Behrendt, L., Casel, K., Friedrich, T., Lagodzinski, J.A.G., Löser, A., Wilhelm, M.:
From symmetry to asymmetry: generalizing TSP approximations by parametriza-
tion. CoRR abs/1911.02453 (2019). http://arxiv.org/abs/1911.02453

4. van Bevern, R., Slugina, V.A.: A historical note on the 3/2-approximation algo-
rithm for the metric traveling salesman problem. Hist. Math. 53, 118–127 (2020).
https://www.sciencedirect.com/science/article/pii/S0315086020300240

5. Bläser, M., Manthey, B., Sgall, J.: An improved approximation algorithm for the
asymmetric TSP with strengthened triangle inequality. J. Discret. Algorithms 4(4),
623–632 (2006). https://doi.org/10.1016/j.jda.2005.07.004

6. Böckenhauer, H., Hromkovic, J., Klasing, R., Seibert, S., Unger, W.: Towards the
notion of stability of approximation for hard optimization tasks and the traveling
salesman problem. Theor. Comput. Sci. 285(1), 3–24 (2002). https://doi.org/10.
1016/S0304-3975(01)00287-0

7. Böckenhauer, H., Hromkovic, J., Kneis, J., Kupke, J.: The parameterized approx-
imability of TSP with deadlines. Theor. Comput. Sci. 41(3), 431–444 (2007).
https://doi.org/10.1007/s00224-007-1347-x

8. Bonnet, É., Lampis, M., Paschos, V.T.: Time-approximation trade-offs for inap-
proximable problems. J. Comput. Syst. Sci. 92, 171–180 (2018). https://doi.org/
10.1016/j.jcss.2017.09.009

9. Chandran, L.S., Ram, L.S.: Approximations for ATSP with parametrized triangle
inequality. In: Alt, H., Ferreira, A. (eds.) STACS 2002. LNCS, vol. 2285, pp. 227–
237. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45841-7 18

10. Christofides, N.: Worst-case analysis of a new heuristic for the travelling sales-
man problem. Technical report 388, Graduate School of Industrial Administration,
Carnegie Mellon University (1976)

11. Cygan, M., et al.: Parameterized Algorithms. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-21275-3

12. Dezső, B., Jüttner, A., Kovács, P.: LEMON - an open source C++ graph template
library. Electron. Notes Theor. Comput. Sci. 264(5), 23–45 (2011). https://doi.
org/10.1016/j.entcs.2011.06.003

13. Edmonds, J.: Optimum branchings. J. Res. Natl. Bur. Stan. Sect. B Math. Math.
Phys. 71B(4), 233 (1967)

14. Feige, U., Singh, M.: Improved approximation ratios for traveling salesperson tours
and paths in directed graphs. In: Charikar, M., Jansen, K., Reingold, O., Rolim,
J.D.P. (eds.) APPROX/RANDOM -2007. LNCS, vol. 4627, pp. 104–118. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-74208-1 8

15. Gabow, H.N., Galil, Z., Spencer, T.H., Tarjan, R.E.: Efficient algorithms for finding
minimum spanning trees in undirected and directed graphs. Combinatorica 6(2),
109–122 (1986). https://doi.org/10.1007/BF02579168

16. Hagberg, A., Schult, D., Swart, P.: Exploring network structure, dynamics, and
function using NetworkX. In: Proceedings of the 7th Python in Science Conference,
pp. 11–15 (2008). http://conference.scipy.org/proceedings/SciPy2008/paper 2/

https://doi.org/10.1287/opre.2017.1603
http://arxiv.org/abs/1911.02453
https://www.sciencedirect.com/science/article/pii/S0315086020300240
https://doi.org/10.1016/j.jda.2005.07.004
https://doi.org/10.1016/S0304-3975(01)00287-0
https://doi.org/10.1016/S0304-3975(01)00287-0
https://doi.org/10.1007/s00224-007-1347-x
https://doi.org/10.1016/j.jcss.2017.09.009
https://doi.org/10.1016/j.jcss.2017.09.009
https://doi.org/10.1007/3-540-45841-7_18
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1016/j.entcs.2011.06.003
https://doi.org/10.1016/j.entcs.2011.06.003
https://doi.org/10.1007/978-3-540-74208-1_8
https://doi.org/10.1007/BF02579168
http://conference.scipy.org/proceedings/SciPy2008/paper_2/

66 L. Behrendt et al.

17. Held, M., Karp, R.M.: A dynamic programming approach to sequencing problems.
J. Soc. Ind. Appl. Math. 10(1), 196–210 (1962)

18. Henry-Labordère, A.L.: The record balancing problem: a dynamic programming
solution of a generalized traveling salesman problem. RAIRO B-2, 43–49 (1969)

19. Hoogeveen, J.A.: Analysis of Christofides’ heuristic: some paths are more difficult
than cycles. Oper. Res. Lett. 10(5), 291–295 (1991). https://doi.org/10.1016/0167-
6377(91)90016-I

20. Jonker, R., Volgenant, T.: Transforming asymmetric into symmetric traveling sales-
man problems. Oper. Res. Lett. 2(4), 161–163 (1983)

21. Jonker, R., Volgenant, T.: Transforming asymmetric into symmetric traveling sales-
man problems: erratum. Oper. Res. Lett. 5(4), 215–216 (1986)

22. Karlin, A., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm
for metric TSP. In: Khuller, S., Williams, V.V. (eds.) Proceedings of the STOC
2021, pp. 32–45. ACM (2021). https://doi.org/10.1145/3406325.3451009

23. Karpinski, M., Lampis, M., Schmied, R.: New inapproximability bounds for TSP. J.
Comput. Syst. Sci. 81(8), 1665–1677 (2015). https://doi.org/10.1016/j.jcss.2015.
06.003

24. Klasing, R., Mömke, T.: A modern view on stability of approximation. In:
Böckenhauer, H.-J., Komm, D., Unger, W. (eds.) Adventures Between Lower
Bounds and Higher Altitudes. LNCS, vol. 11011, pp. 393–408. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-98355-4 22

25. Kowalik, �L, Mucha, M.: Two approximation algorithms for ATSP with strength-
ened triangle inequality. In: Dehne, F., Gavrilova, M., Sack, J.-R., Tóth, C.D. (eds.)
WADS 2009. LNCS, vol. 5664, pp. 471–482. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-03367-4 41

26. Marx, D.: Parameterized complexity and approximation algorithms. Comput. J.
51(1), 60–78 (2008). https://doi.org/10.1093/comjnl/bxm048

27. Marx, D., Salmasi, A., Sidiropoulos, A.: Constant-factor approximations for asym-
metric TSP on nearly-embeddable graphs. In: Proceedings of APPROX/RANDOM
2016, pp. 16:1–16:54. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2016).
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2016.16

28. Mori, J.C.M., Samaranayake, S.: Bounded asymmetry in road networks. Sci. Rep.
9(11951), 1–9 (2019). https://doi.org/10.1038/s41598-019-48463-z

29. Reinelt, G.: TSPLIB–a traveling salesman problem library. INFORMS J. Comput.
3(4), 376–384 (1991). https://doi.org/10.1287/ijoc.3.4.376

30. Rodŕıguez, A., Ruiz, R.: The effect of the asymmetry of road transportation net-
works on the traveling salesman problem. Comput. Oper. Res. 39(7), 1566–1576
(2012). https://doi.org/10.1016/j.cor.2011.09.005

31. Saksena, J.P.: Mathematical model of scheduling clients through welfare agencies.
Comput. Oper. Res. J. 8, 185–200 (1970)

32. Svensson, O., Tarnawski, J., Végh, L.A.: A constant-factor approximation algo-
rithm for the asymmetric traveling salesman problem. J. ACM 67(6), 37:1-37:53
(2020). https://doi.org/10.1145/3424306

33. Traub, V., Vygen, J.: An improved approximation algorithm for ATSP. In: Pro-
ceedings of STOC 2020, pp. 1–13. ACM (2020). https://doi.org/10.1145/3357713.
3384233

34. Zhang, T., Li, W., Li, J.: An improved approximation algorithm for the ATSP with
parameterized triangle inequality. J. Algorithms 64(2–3), 74–78 (2009). https://
doi.org/10.1016/j.jalgor.2008.10.002

https://doi.org/10.1016/0167-6377(91)90016-I
https://doi.org/10.1016/0167-6377(91)90016-I
https://doi.org/10.1145/3406325.3451009
https://doi.org/10.1016/j.jcss.2015.06.003
https://doi.org/10.1016/j.jcss.2015.06.003
https://doi.org/10.1007/978-3-319-98355-4_22
https://doi.org/10.1007/978-3-642-03367-4_41
https://doi.org/10.1007/978-3-642-03367-4_41
https://doi.org/10.1093/comjnl/bxm048
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2016.16
https://doi.org/10.1038/s41598-019-48463-z
https://doi.org/10.1287/ijoc.3.4.376
https://doi.org/10.1016/j.cor.2011.09.005
https://doi.org/10.1145/3424306
https://doi.org/10.1145/3357713.3384233
https://doi.org/10.1145/3357713.3384233
https://doi.org/10.1016/j.jalgor.2008.10.002
https://doi.org/10.1016/j.jalgor.2008.10.002

A Poly-log Competitive Posted-Price
Algorithm for Online Metrical Matching

on a Spider

Max Bender1(B), Jacob Gilbert2(B), and Kirk Pruhs1(B)

1 Computer Science Deparment, University of Pittsburgh,
Pittsburgh, PA 15213, USA
{mcb121,kirk}@pitt.edu

2 Computer Science Department, University of Maryland, College Park, USA
jgilber8@umd.edu

Abstract. Motivated by demand-responsive parking pricing systems we
consider posted-price algorithms for the online metrical matching prob-
lem. Our main result is a polylog competitive posted-price algorithm in
the case that the metric space is a spider.

1 Introduction

1.1 Motivation and Problem Statement

SFpark is San Francisco’s system for managing the availability of on-street park-
ing [2,3,29]. The goal of SFpark is to reduce the time and fuel wasted by drivers
searching for an open parking spot. The system monitors parking usages using
sensors embedded in the pavement and distributes this information in real-time
to drivers via SFpark.org and phone apps. SFpark periodically adjusts parking
meter pricing to manage demand, to lower prices in underutilized areas, and to
raise prices in overutilized areas. Prices can range from a minimum of 25 cents
to a maximum of 7 dollars per hour during normal hours, with a 18 dollars per
hour cap for special events such as baseball games or street fairs. Several other
cities in the world have similar demand-responsive parking pricing systems, for
example Calgary has had the ParkPlus system since 2008 [1].

One natural simple model of the problem of centrally assigning drivers to
parking spots to minimize time and fuel usage is the online metrical matching
problem. The setting for online metrical matching consists of a collection of k
servers (the parking spots) located at various locations within a metric space.
The algorithm then sees an online sequence of requests over time that arrive at
various locations in the metric space (the drivers arriving to look for a parking
spot). In response to a request, the online algorithm must match the request

Supported in part by NSF grants CCF-1421508 and CCF-1535755, and an IBM Faculty
Award.

c© Springer Nature Switzerland AG 2021
E. Bampis and A. Pagourtzis (Eds.): FCT 2021, LNCS 12867, pp. 67–84, 2021.
https://doi.org/10.1007/978-3-030-86593-1_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86593-1_5&domain=pdf
http://orcid.org/0000-0001-5680-1753
https://doi.org/10.1007/978-3-030-86593-1_5

68 M. Bender et al.

(car) to some server (parking spot) that has not been previously matched. Con-
ceptually we interpret this matching as the request (car) moving to the location
of the matched server (parking spot). The objective goal is to minimize the
aggregate distance traveled by the requests (cars).

In order to be implementable within the context of SFpark, algorithms for
online metric matching must be posted-price algorithms. In this setting, posted-
price means that before each request arrives, the algorithm sets a price on
each unused server (parking spot) without knowing the location where the next
request will arrive. We assume each request is a selfish agent who moves to
the available server (parking spot) that minimizes the sum of the price of that
server (parking spot) and the distance to that server (parking spot). The objec-
tive remains to minimize the aggregate distance traveled by the requests (cars).
Thus conceptually, the objective of the parking pricing agency is minimizing
social cost, not maximizing revenue.

Research into posted-price algorithms for online metrical matching was ini-
tiated in [14] as part of a broader study of the use of posted-price algorithms
to minimize social cost in online optimization problems. As a posted-price algo-
rithm is a valid online algorithm, one can not expect to obtain a better compet-
itive ratio for posted-price algorithms than what is achievable by general online
algorithms. So this research line has primarily focused on problems where the
optimal competitive ratio achievable by an online algorithm is (perhaps approx-
imately) known and seeks to determine whether a comparable competitive ratio
can be (again perhaps approximately) achieved by a posted-price algorithm. The
higher level goal is to determine the increase in social cost that is necessitated by
the restriction that the algorithm has to use posted prices to incentivize selfish
agents, instead of being able to mandate agent behavior.

Before stating our results on posted-price algorithms for online metric match-
ing we want to lay the groundwork by reviewing past work on posted-price algo-
rithm design techniques, past work on general online algorithms for online metric
matching, and past work on posted-price algorithms for online metric matching.

1.2 Past Work

The most obvious algorithmic design approach for posted-price problems is to
directly design a pricing algorithm from scratch, as is done for metrical task sys-
tems in [15]. Two less direct algorithmic design paradigms have emerged in the
literature. The first algorithmic design paradigm is what we will call mimicry. A
posted-price algorithm A mimics an online algorithm B if the probability that
B will take a particular action is equal the probability that a self-interested
agent will choose this same action when the prices of actions are set using A.
For example, [18] shows how to set prices to mimic the O(1)-competitive algo-
rithm Slow-Fit from [8,9] for the problem of minimizing makespan on related
machines. For some problems it is not possible to mimic known competitive
algorithms using posted prices. For such problems, another algorithmic design
paradigm is what we will call monotonization. In the monotonization algorithm
design approach, one first seeks to characterize the online algorithms that can

A Poly-log Competitive Posted-Price Algorithm 69

be mimicked, and then design such a mimicable online algorithm (the reason for
using this terminology is that in all the examples in the literature, this character-
ization involves some sort of monotonicity property). For example, monotoniza-
tion is used in [15] to obtain an O(k)-competitive posted-price algorithm for the
k-server problem on a line metric, in [16] to obtain an O(k)-competitive posted-
price algorithm for the k-server problem on a tree metric, and in [21] to obtain
an O(1)-competitive posted-price algorithm for minimizing maximum flow time
on related machines. In all of these examples, the competitive ratio achievable by
the posted-price algorithm is comparable to the best competitive ratio achiev-
able by a general online algorithm, thus showing that there is minimal increase
in social cost necessitated by the use of posted-prices.

Let us now turn to known results for general algorithms for online metric
matching in a general metric. There is a deterministic online algorithm that is
(2k −1)-competitive, and no deterministic online algorithm can achieve a better
competitive ratio in a star metric [22,23]. Using HST’s (Hierarchically Separated
Trees) [11,12,17,25] obtained an O(log3 k)-competitive randomized algorithm.
The algorithm in [25] can be viewed as combining two online randomized metric
matching algorithms:

HST Algorithm: An O(log k)-competitive algorithm for O(log k)-HST’s.

Uniform Metric Space Algorithm: The natural O(log k)-competitive for a
uniform metric space.

Later [10] obtained an O(log2 k)-competitive randomized algorithm by replacing
the HST algorithm used by [25] by a O(log k)-competitive algorithm for 2-HST’s.

Better competitive ratios for online metric matching can be achieved on some
natural metric spaces. Let us first consider a line metric. An O(k.59)-competitive
deterministic algorithm was given in [4]. Subsequently several different O(log k)-
competitive randomized algorithms are given in [20]. These algorithms leverage
special properties of HST’s constructed from a line metric. [20] also showed that
the natural Harmonic algorithm is O(log Δ)-competitive, where Δ is the ratio
of the distance between the furthest two servers and the distance between the
closest two servers. And by applying a standard doubling approach, [20] showed
how to convert this Harmonic algorithm into an O(log k)-competitive algorithm.
An O(log2 k)-competitive deterministic online algorithm, called RM, was given
in [26], and this was later improved to O(log k) in [28]. An Ω(log k) lower bound
on the competitive ratio for certain types of natural algorithms is given in [5,24].
A 9.001 lower bound on the competitive ratio of deterministic algorithm is given
in [19]. This was improved to an Ω(

√
log k) lower bound on the competitive ratio

for randomized algorithms in [27].
[26] also showed that for every metric space the competitive ratio of the RM

algorithm is at most O(log2 k) times the optimal competitive ratio achievable by
a deterministic algorithm on that metric space.

We now turn to posted-price algorithms for online metric matching. [14]
shows that the online algorithm Harmonic is mimicable on a line metric, and

70 M. Bender et al.

thus, using the results from [20], obtain an O(log Δ)-competitive randomized
posted-price algorithm for a line metric.

[13] considered posted-price algorithms for tree metrics. [13] adopts the mono-
tization approach, and identifies a monotonicity property that characterizes
mimicable algorithms for online metrical matching in tree metrics. This mono-
tization property is that, as a request arrival location moves closer to a server
location, the probability that the request uses that server can not decrease.
While this monotization property might seem innocuous at first, standard algo-
rithmic approaches are seemingly hopelessly nonmonotone. For example, there
is no hope to mimic any of the online algorithms that are based on HST’s as
HST’s by their very nature lose too much information about the structure of a
tree metric. [13] developed a type of hierarchical tree, which they call a grove,
that is a refinement of an HST that retains more information about the topology
of the original metric space, and showed how to approximate a tree metric by a
grove in a similar way to which one can approximate a tree metric by an HST.
One way to think of an HST is as a unit star where each of the leaves can be
recursively thought of as a scaled-down HST. In this vein, a grove is unit tree
where each of the nodes can be recursively thought of as a scaled-down grove.
(Unit here means the distance of every edge is 1) One can then develop algo-
rithms for a grove, as one does for a HST, that is, design one algorithm for the
grove/HST and another algorithm for the base metric space. However, for groves
the base metric is a unit tree (instead of a uniform metric space as it is for an
HST). [13] gave a monotone grove algorithm that, if combined with certain types
of “low-hop” monotone algorithms for a unit tree, yields a poly-log competitive
monotone algorithm for a general tree metric (unfortunately its not quite a black
box reduction). An algorithm for a unit tree is low-hop if the number of servers
that have to move a positive distance to a parking spot is at most

L

(
(1 + ε)H +

ln k

ε

)

where H is the diameter of the unit tree, 1
ε is poly-log bounded, and L is the

optimal/minimum number of servers that have to move a positive distance to
a parking spot. The multiplicative (1 + ε) term has to be so small because
the grove algorithm is going to apply the unit tree algorithm recursively to a
poly-log depth. [13] then developed a monotone low-hop algorithm for a unit
tree for the online metric search problem, which is a special case of the online
metric matching problem in that there is a promise that there is an optimal
matching with only one nonzero length edge (most lower bounds for online metric
matching are of this special type). This low-hop algorithm is based on the classic
multiplicative weights algorithm in the setting of online learning from experts
[6]. Conceptually there is one expert for each leaf of the tree, and this expert
always recommends that the car/request travel toward this leaf. Putting this all
together, the main result of [13] is a O(log6 Δ log2 n)-competitive posted-price
algorithm for online metric searching (not matching) on a general tree metric.

A Poly-log Competitive Posted-Price Algorithm 71

1.3 Our Contribution

Our main result is a O(log5 Δ log2 n)-competitive posted-price algorithm for
online metric matching on a spider metric. A spider is a rooted tree T in which
the root ρ (sometimes called the head) is the only node of degree greater than
2. We use d to denote the degree of the root and use the term leg to refer to
the leaf to root paths in the spider. We achieve our main result by designing a
monotone low-hop algorithm Spider-Match for a unit spider, and then applying
the techniques developed in [13] for groves.

As in [13], the starting point in the design of our low-hop algorithm
Spider-Match is the classic multiplicative weights algorithm in the setting of
online learning from experts [6]. However, because we consider online metric
matching, instead of online metric search as in [13], we have to surmount tech-
nical difficulties that did not arise in [13]. In Sect. 2 we give an overview of some
of the key algorithmic ideas behind the design of Spider-Match, and an expla-
nation of some of these technical difficulties. We strongly recommend that the
reader read this section before launching into the subsequent technical sections.

In Sect. 3 we give some preparatory notation and terminology. In Sect. 4 we
give a formal definition of the Spider-Match algorithm. In Sect. 5 we give the
analysis of Spider-Match. Finally in the appendix we show how these results can
be combined with the results from [13] to obtain a O(log5 Δ log2 n)-competitive
posted-price algorithm for online metric matching on a spider metric (This is
more or less the same as the grove analysis in [13], except for a slight refinement
that cuts off a factor of log Δ).

2 Intuitive Overview on a Simple Instance

Assume in our unit spider T that each leg is of infinite length, that the root ρ
contains no servers, and that each node other than ρ contains a single server.
Furthermore, suppose the request sequence r1, r2, . . . is such that

– The first m < d requests, r1, ..., rm all arrived at the root ρ, and
– if a request rt, t > m, arrives on a leg � then it must arrive at the vertex on

leg � that is closest to the root ρ among those vertices where a request has
not yet arrived.

To model this within the setting of online learning from experts [6], we assume
that there are

(
d
m

)
experts, one for each of the possible collection R of m distinct

legs. Initially, the expert R recommends the first m requests move down the legs
in R (one request per leg) to the first available server. Subsequently each expert
R recommends requests that arrive on a leg � ∈ R move down to the next
available server on leg �, and recommends that requests that arrive on a leg
� /∈ R use the server at the location where the request arrived (which exists by
assumption). So each expert incurs a cost of 1 hop when a request arrives on one
of its recommended legs, and a cost of 0 otherwise. (Recall that in the definition
of a low-hop algorithm, all moves of nonzero distance cost one hop).

72 M. Bender et al.

The classic multiplicative weights algorithm maintains a probability distri-
bution π over experts R, which in turn induces a probability π(s) that server
s is available if an expert is picked according to probability distribution π. If
one could design an online algorithm that also maintained the invariant that
each server s is available with probability π(s) then one could conclude that the
expected number of hops used by this algorithm is at most:

m

(
(1 + ε)H +

ln(d)
ε

+ 1
)

,

where H is the minimum total cost of all the experts and is thus low-hop, using
the standard analysis of the multiplicative weights algorithm [6].

To maintain the invariant that each server is available with probability π(s)
we need to design a probability distribution qr for each possible location r where
the next request might arrive, where qr(�) is the probability that our algorithm
will move a request arriving at location r to the next available server on leg �.
We need that probability distributions qr to satisfy two properties:

– The probability that a server s is available will be π(s), so the experts distri-
bution is matched.

– These probabilities are monotone. So as r moves closer to a server s the
probability that the algorithm will use server s can not decrease.

Again, at first impression the monotonicity requirement can seem innocuous, but
it is actually very limiting. Our eventual design of such probability distributions
qr was by significant trial and error; we do not have a principled explanation
why these are in some sense the “right” distributions.

An even bigger technical challenge arises when we relax the requirement that
the m requests at the root arrive at the start, and instead may arrive anywhere in
the sequence. Then the algorithm’s estimate m of the number of root requests,
and thus the number

(
d
m

)
of experts, can increase when a request arrives at

the root. This request then yields in a new probability distribution π̃ over
(

d
m+1

)
experts that replaces the prior probability distribution π over

(
d
m

)
experts. First,

we need to show how to adapt the standard analysis of the multiplicative weights
algorithm to handle this. Then we need to design a probability distribution q̃
where q̃(�) gives the probability that this request at the root will move to the first
available server on leg �. We need the q̃ to satisfy the following two properties:

– If the next request arrives at the root then the probability that a server s is
available will be π̃(s), so the new experts distribution is matched.

– The probability distributions qr and q̃ are monotone. So as r moves closer to a
server s the probability that the algorithm will use server s can not decrease.

As the probability distributions qr and q̃ are designed to match different experts
distributions, it is challenging to attain monotonicity. Again our design of q̃
derived from significant trial and error.

A Poly-log Competitive Posted-Price Algorithm 73

This is illustrative of a general phenomenon, it is difficult to maintain mono-
tonicity for any sort of algorithmic design that has the form:

If a property P is true about a new request then take action A, else take
action B.

when some request locations will make property P true and some requests loca-
tions will make property P false. In this case, the actions A and B have to be
carefully coordinated with each other, and with the locations where property P
is true, to maintain monotonicity.

Roughly speaking, on a general instance, our algorithm Spider-Match works
as follows. If there is an available server between the current request and the
root then the request moves to the first available server on the path to the
root. Intuitively, these are “easy” requests that we account for without having
to invoke multiplicative weights. Otherwise if there is a hole between the current
request and the root, then the request is matched to the available server on leg
� that is closest to the root with a probability q(�). Roughly speaking, a hole is
a server location that does not contain an available server, but that could have
contained an available server if the prior random events internal to the algorithm
had been different. Otherwise, the request is matched to the available server on
leg � that is closest to the root with a probability q̃(�).

3 Notation and Terminology

Definition 1. – A spider metric is a rooted tree metric (T = ((V, ρ), E), x), an
acyclic connected graph consisting of vertices V and edges E with a particular
vertex ρ marked as the root, along with a distance metric x : V × V → R

satisfying
i) x(u, v) = 0 if and only if u = v,
ii) x(u, v) = x(v, u), and
iii) x(u, v) ≤ x(u,w) + x(w, v)
for all u, v, w ∈ V .

– The degree d of a tree is the degree of the root ρ.
– A spider metric is a rooted tree metric (T = ((V, ρ), E), x) where ρ is the

single vertex of degree greater than 2.
– A server s is a leaf-server if there are no other servers in the subtree rooted

at s.
– Let L(T) = {μ1, ..., μd} denote the collection of leaf-servers.
– For � ∈ [d], define T� ⊆ V as the set of servers on the path from the root ρ to

μ�, inclusive. T� is referred to as the �th leg of T .
– A server s on T� becomes a hole when either

a) a request rt arrives on Tλ where λ �= � and rt is matched to s,
b) or a request rt arrives on the path from ρ to s (inclusive of ρ, non-inclusive

of s) and matches to s.
– A hole s is filled and loses its status as a hole when a request rt arrives such

that

74 M. Bender et al.

a) s is on the path from rt to ρ, inclusive,
b) and there is no available server on the path from rt to s.

– The number of holes at time t is denoted by mt.
– We define T� to be alive if there is still an available server or a hole in T� and

dead otherwise.
– Let At = {� ∈ [d] | T� is alive just before the arrival of rt}.
– If rt �= ρ, let �t = � such that rt ∈ T�. Otherwise, if rt = ρ, let �t = 0.
– Let χt denote the sum of available servers and holes on the path from rt to

the root ρ, inclusive.

4 The Spider-Match Algorithm Design

We formally define the Spider-Match algorithm on a given rooted spider T
with root ρ. The probability distributions qt

σ(�) and q̃t
σ(�), used in the algorithm

description, are defined after the algorithm (as this seems more natural).

Definition 2 (Spider-Match Algorithm). Spider-Match maintains an inter-
nal setting σ, initialized to ∅, representing which legs of the spider Spider-Match
currently has holes on. The algorithm operates in two phases, starting with the
core phase and possibly transitioning to the epilogue. During the core phase,
at the arrival of rt:

1. If χt > 1, match rt to the closest available server on the path from rt to the
root, inclusive (as we shall see, in this case there must be at least one such
available server).

2. If χt = 1:
(a) If there is an available server on the path from rt to ρ, match rt to that

server.
(b) Otherwise, if rt does not kill �t, then rt is matched to the first available

server in T� with probability qt
σ(�). In this case, σ ← σ\{�t} ∪ {�}.

(c) Otherwise, rt is matched to the first available server in T� with probability
q̃t
σ(�). In this case, σ ← σ\{�t} ∪ {�}.

In this case, we say that rt was collocated if the server s that contributed to
χt was collocated with rt; otherwise, rt is non-collocated.

3. If χt = 0, rt is matched to the first available server in T� with probability
q̃t
σ(�). In this case, σ ← σ ∪ {�}. If mt+1 = |At+1|, the epilogue immediately

begins.

In the epilogue phase, at the arrival of rt:

1. If there is an available server on the path from rt to ρ, match rt to the closest
available server on the path from rt to the root, inclusive.

2. Else if rt = ρ or T�t
is dead, match rt to the first available server on T� where

� is chosen from At uniformly at random.
3. Else match rt to the first available server in T�t

.

A Poly-log Competitive Posted-Price Algorithm 75

In order to define q and q̃, we let

nt
� = |{ri | i ≤ t, ri ∈ T�, and χi = 1}|,

wt
� = (1 − ε)nt

� for � ∈ [d],

wt
R =

∏
�∈R

wt
� = (1 − ε)

∑
�∈R nt

� for R ∈ 2[d],

W t(X) =
∑
R∈X

wt
R for X ∈ 22

[d]
.

This lets us now define q and q̃ as follows:

qt
σ(�) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if � ∈ (σ\{�t}) ∪ ([d]\At)
εwt

�

∑

T ∈(At\{�t,�}
mt−1)

wt
T

mt−|σ∩T |

(1−ε)wt
�t

W t
(
(At\{�t}

mt−1)
)
+W t

(
(At\{�t}

mt
)
) if � ∈ At\σ

1 −
∑

λ�=�t
qt
σ(λ) if � = �t

q̃t
σ(�) =

⎧⎪⎨
⎪⎩

0 if � ∈ σ ∪ ([d]\At)
wt

�

∑

T ∈(At\{�}
mt

)
wt

T
mt+1−|σ∩T |

W t
(
(At

mt+1)
) if � ∈ At\σ

5 Analysis of the Spider-Match Algorithm

In this section, we first show in Lemma 2 that Spider-Match is well defined. We
then show in Lemma 3 that Spider-Match follows the multiplicative updates
method experts’ distribution to maintain its holes. In Lemma 4 we show that
Spider-Match is monotone. Lastly, we show the main theorem 1 of this section,
where we bound the number of times Spider-Match pays to handle requests.

Lemma 1. By construction of Spider-Match, it follows that until the epilogue
there is at most one hole per subtree T�.

Proof. This follows from the fact that Spider-Match either matches a request
to an available server and thus does not make a new hole, or creates a new hole
on a leg without a hole since by the definitions of q and q̃, there is 0 probability
of matching to a leg in σ\{�t}. Note that there will always be a leg without a
hole for a request to be to matched to in the core phase, else we move to the
epilogue phase.

Lemma 2. Spider-Match is well defined.

Proof. We will show that

a)
∑

�∈[d] q
t
R(�) = 1,

b)
∑

�∈[d] q̃
t
R(�) = 1

for any R ∈ 2[d].

76 M. Bender et al.

For a), note that qt
R(�t) = 1−

∑
λ�=�t

qt
R(λ), so it suffices to show that qt

R(�) ≤
1 for all �. Since all terms in the denominator are positive, ε < 1, and 1

mt−|R∩T | ≤
1, it follows that qt

R(�) ≤ 1 for all �.
For b), since q̃t

R(�) = 0 for � ∈ R ∪ ([d]\At), it remains to show that∑
�∈At\R q̃t

R(�) = 1.

∑

�∈At\R

q̃t
R(�) =

∑
�∈At\R wt

�

∑
T∈(At\{�}

mt
)

wt
T

mt+1−|R∩T |

W t
((At

mt+1

)) by Def. 2

=

∑
�∈At\R

∑
T∈(At\{�}

mt
)

wt
T ∪{�}

mt+1−|R∩(T∪{�})|

W t
((At

mt+1

)) since weights are
multiplicative and � �∈ R

=

∑
T∈(At

mt+1)
|T\R|

mt+1−|R∩T |w
t
T

W t
((At

mt+1

))

=

∑
T∈(At

mt+1)
wt

T

W t
((At

mt+1

)) as |T\R| = |T | − |T ∩ R|
= mt + 1 − |T ∩ R| since

T ∈
(

At

mt + 1

)

=
W t

((At

mt+1

))

W t
((At

mt+1

)) = 1 by Def. 2

Definition 3 (pt
T and πt

T). We denote pt
T as the probability that the internal

parameter σ of the algorithm is T ∈
(At

mt

)
just before the arrival of rt. We define

πt
T =

wt
T

W t
((

[d]
mt

))

Lemma 3. For any R ∈
(
[d]
mt

)
, we have pt

R ≥ πt
R.

Proof. To conserve space, this proof has been moved to the appendix.

We next show that this algorithm is monotone and hence induces a pricing
scheme as shown in [13].

Lemma 4. Spider-Match is monotone.

Proof. Let rt →Spider-Match s denote the event that rt is matched by
Spider-Match to s. We must show that Pr[rt →Spider-Match s | rt = u] ≤
Pr[rt →Spider-Match s | rt = v] for all u, v ∈ V and s ∈ S where v is on the

A Poly-log Competitive Posted-Price Algorithm 77

path from u to s. Note that u and v can belong to separate subtrees; and if
s = v, then Pr[rt →Spider-Match s | rt = v] = 1, so we can assume that s is not
collocated with v. The claim is also trivial for the case where u = v. Letting
χv

t = χt | rt = v, we break the proof into the following cases:

a. χu
t = 0 and
i) χv

t = 0
ii) χv

t = 1
iii) χv

t > 1
b. χu

t > 1 and
i) χv

t = 0
ii) χv

t = 1
iii) χv

t > 1
c. χu

t = 1 and
i) χv

t > 1
ii) χv

t = 1
iii) χv

t = 0

Throughout this proof, we will define �v such that v is on T�v
.

For a.i), we have that Pr[rt →Spider-Match s | rt = u] = Pr[rt →Spider-Match

s | rt = v], so the claim is trivially true.
For a.ii), note that if �v ∈ σ then Pr[rt →Spider-Match s | rt = u] = 0.

However, if �v �∈ σ, then there is an available server in between u and v, so
Pr[rt →Spider-Match s | rt = u] = 0.

For a.iii), note that there must be some available server between u and v, as
χv

t > 1; thus we have that Pr[rt →Spider-Match s | rt = u] = 0.
For b.i) and b.ii), note that there must be some available server between u

and v, as χu
t > 1 ≥ χv

t ; thus we have that Pr[rt →Spider-Match s | rt = u] = 0.
For b.iii), if u and v are on T� and Tλ respectively, where � �= λ, then there are

available servers between u and v and thus Pr[rt →Spider-Match s | rt = u] = 0.
If u and v are on the same T� and if s is the closest available server to u on
the path from u to ρ, then Pr[rt →Spider-Match s | rt = u] = Pr[rt →Spider-Match

s | rt = v] = 1. Otherwise, Pr[rt →Spider-Match s | rt = u] = 0.
For c.i), note that there must be some available server between u and v, as

χv
t > 1; thus we have that Pr[rt →Spider-Match s | rt = u] = 0.

For c.ii), first if �u = �v then Pr[rt →Spider-Match s | rt = u] =
Pr[rt →Spider-Match s | rt = v]. Otherwise, note that if �v ∈ σ then
Pr[rt →Spider-Match s | rt = u] = 0. However, if �v �∈ σ, then there is an available
server in between u and v, so Pr[rt →Spider-Match s | rt = u] = 0.

For c.iii), first if �u �∈ σ then Pr[rt →Spider-Match s | rt = u] = 0. Otherwise,
if �t = �u would kill �u, then Pr[rt →Spider-Match s | rt = u] = Pr[rt →Spider-Match

s | rt = v]. Otherwise, we must show that qt
σ(�) ≤ q̃t

σ(�). Since ε ≤ 1
3 we note

78 M. Bender et al.

q
t
σ(�) =

εwt
�

∑

T ∈
(At\{�t,�}

mt−1

)
wt

T
mt−|σ∩T |

(1 − ε)wt
�t

W t
((At\{�t}

mt−1

))
+ W t

((At\{�t}
mt

)) ≤ ε

1 − ε

wt
�

∑

T ∈
(At\{�t,�}

mt−1

)
wt

T
mt−|σ∩T |

wt
�t

W t
((At\{�t}

mt−1

))
+ W t

((At\{�t}
mt

))

=
ε

1 − ε

wt
�

∑

T ∈
(At\{�t,�}

mt−1

)
wt

T
mt−|σ∩T |

W t
((At

mt

)) ≤ 1

2

wt
�

∑

T ∈
(At\{�t,�}

mt−1

)
wt

T
mt−|σ∩T |

W t
((At

mt

)) . (1)

Hence, it suffices to prove that
wt

�

∑

T ∈(At\{�t,�}
mt−1)

wt
T

mt−|σ∩T |

W t
(
(At

mt
)
) ≤ 2q̃t

σ(�). By cross

multiplication, this becomes:

W t

((At

mt + 1

)) ∑
T∈

(At\{�t,�}
mt−1

)

wt
T

mt − |σ ∩ T | ≤ 2W t

((At

mt

)) ∑
T∈

(At\{�}
mt

)

wt
T

mt + 1 − |σ ∩ T |

(2)
Letting P = At\{�t, �}, we note

W t

((At

mt + 1

))
= wt

{�t,�}W t

((P
mt − 1

))
+

(
wt

�t
+ wt

�

)
W t

((P
mt

))
+ W t

((P
mt + 1

))
,

(3)

W t

((At

mt

))
= wt

{�t,�}W t

((P
mt − 2

))
+

(
wt

�t
+ wt

�

)
W t

((P
mt − 1

))
+ W t

((P
mt

))
,

(4)

and
∑

T∈
(At\{�}

mt

)

wt
T

mt + 1 − |σ ∩ T | = wt
�t

∑
T∈

(P
mt−1

)

wt
T

mt − |σ ∩ T | +
∑

T∈
(P

mt

)

wt
T

mt + 1 − |σ ∩ T |

(5)

We will break down the left-hand side of Eq. 2 into the following disjoint
inequalities, where the right-hand sides of the following inequalities are all dis-
joint sums from the right-hand side of Eq. 2. Hence to show Eq. 2 it suffices to
show the following three inequalities:

1) W t

((P
mt − 1

)) ∑
T∈

(P
mt−1

)

wt
T

mt − |σ ∩ T |

≤ 2W t

((P
mt − 2

)) ∑
T∈

(P
mt

)

wt
T

mt + 1 − |σ ∩ T | + 2W t

((P
mt − 1

)) ∑
T∈

(P
mt−1

)

wt
T

mt − |σ ∩ T |

2) W t

((P
mt

)) ∑
T∈

(P
mt−1

)

wt
T

mt − |σ ∩ T | ≤ 2W t

((P
mt − 1

)) ∑
T∈

(P
mt

)

wt
T

mt + 1 − |σ ∩ T |

3) W t

((P
mt + 1

)) ∑
T∈

(P
mt−1

)

wt
T

mt − |σ ∩ T | ≤ 2W t

((P
mt

)) ∑
T∈

(P
mt

)

wt
T

mt + 1 − |σ ∩ T |

Note that the first one is trivially true. For 2 and 3, note that we are effectively
taking a summation on both sides over weighted multisets. In order to show the

A Poly-log Competitive Posted-Price Algorithm 79

result, we will try to match terms on the left hand side to terms at least as big
on the right hand side.

Call a function f : A × B → C × D useful if f satisfies:

1. f is an injection
2. if f(a, b) = (c, d), then c = a\{μ} and d = b ∪ {μ} for some μ ∈ a\b.

Suppose f :
(P
mt

)
×

(P
mt−1

)
→

(P
mt−1

)
×

(P
mt

)
is useful. Let g :

(P
mt

)
×

(P
mt−1

)
→

(P
1

)
be defined such that f(a, b) = (a\g(a, b), b ∪ g(a, b)). Then

W t

((
P
mt

))
∑

T∈(P
mt−1)

wt
T

mt − |σ ∩ T | =
∑

R∈(P
mt

)

∑

T∈(P
mt−1)

wt
Rwt

T

mt − |σ ∩ T |

≤ 2
∑

R∈(P
mt

)

∑

T∈(P
mt−1)

wt
Rwt

T

mt + 1 − |σ ∩ T |

= 2
∑

R∈(P
mt

)

∑

T∈(P
mt−1)

wt
R\g(R,T)w

t
T∪g(R,T)

mt + 1 − |σ ∩ T |

≤ 2
∑

R∈(P
mt

)

∑

T∈(P
mt−1)

wt
R\g(R,T)w

t
T∪g(R,T)

mt + 1 − |σ ∩ (T ∪ g(R, T))|

≤ 2
∑

R∈(P
mt−1)

∑

T∈(P
mt

)

wt
Rwt

T

mt + 1 − |σ ∩ T |

= 2W t

((
P

mt − 1

))
∑

T∈(P
mt

)

wt
T

mt + 1 − |σ ∩ T |

Similarly, suppose f :
(P
mt+1

)
×

(P
mt−1

)
→

(P
mt

)
×

(P
mt

)
is useful. Let g :(P

mt+1

)
×

(P
mt−1

)
→

(P
1

)
be defined such that f(a, b) = (a\g(a, b), b ∪ g(a, b)).

Then

W
t

((P
mt + 1

)) ∑

T ∈
(P

mt−1

)

wt
T

mt − |σ ∩ T | =
∑

R∈
(P

mt+1

)

∑

T ∈
(P

mt−1

)

wt
Rwt

T

mt − |σ ∩ T |

≤ 2
∑

R∈
(P

mt+1

)

∑

T ∈
(P

mt−1

)

wt
Rwt

T

mt + 1 − |σ ∩ T |

= 2
∑

R∈
(P

mt+1

)

∑

T ∈
(P

mt−1

)

wt
R\g(R,T)w

t
T ∪g(R,T)

mt + 1 − |σ ∩ T |

≤ 2
∑

R∈
(P

mt+1

)

∑

T ∈
(P

mt−1

)

wt
R\g(R,T)w

t
T ∪g(R,T)

mt + 1 − |σ ∩ (T ∪ g(R, T))|

≤ 2
∑

R∈
(P

mt

)

∑

T ∈
(P

mt

)

wt
Rwt

T

mt + 1 − |σ ∩ T |

≤ 2W
t

((P
mt

)) ∑

T ∈
(P

mt

)

wt
T

mt + 1 − |σ ∩ T |

80 M. Bender et al.

Hence if these useful functions exist, then the proof is complete.
We now turn to showing the existence of these functions.

1. A useful function f :
(P
mt

)
×

(P
mt−1

)
→

(P
mt−1

)
×

(P
mt

)
exists.

2. A useful function f :
(P
mt+1

)
×

(P
mt−1

)
→

(P
mt

)
×

(P
mt

)
exists.

For the first statement, consider a bipartite graph G = ((X,Y), E) where
X =

(P
mt

)
×

(P
mt−1

)
, Y =

(P
mt−1

)
×

(P
mt

)
, and {(R1, T1), (R2, T2)} ∈ E if R2 =

R1\{�} and T2 = T1 ∪{�} for some � ∈ R1\T1. Note that by this choice of edges,
the graph is divided into disjoint unions where for each maximal connected
subgraph GQ there exists some multi set Q so that for each element (R, T)
of the subgraph GQ we have that Q = R � T . Furthermore, this subgraph
is mt − |ΔQ|-regular, where ΔQ = {x ∈ Q | nQ

x > 1}, so by Hall’s theorem
there exists a perfect matching. Since there exists a perfect matching on each
maximal connected subgraph, there is a perfect matching between the two sets.
The function induced by this matching is useful by construction.

For the second statement, consider a bipartite graph G = (X,Y), E) where
X =

(P
mt+1

)
×

(P
mt−1

)
, Y =

(P
mt

)
×

(P
mt

)
, and {(R1, T1), (R2, T2)} ∈ E if R2 =

R1\{�} and T2 = T1 ∪{�} for some � ∈ R1\T1. Note that by this choice of edges,
the graph is divided into disjoint unions where for each maximal connected
subgraph GQ = ((XQ, YQ), EQ) there exists some multi set Q so that for each
element (R, T) of the subgraph GQ we have that Q = R � T . Furthermore, this
subgraph is (mt + 1 − |ΔQ|,mt − |ΔQ|)-regular, where ΔQ = {x ∈ Q | nQ

x > 1},
so by Hall’s theorem there exists a matching saturating XQ. Thus, there is a
matching saturating X. The function induced by this matching is useful by
construction.

Lastly, we show the main theorem of this section, where we bound the number
of times we pay a positive cost as a function of the height H of our tree and the
degree d of the root. For the analysis of our algorithm, we will consider a metric
search problem which we think will help the reader understand the analysis of
Theorem 1. In this metric search problem, the algorithm sees a set of available
parking spots located within a metric space. Over time, two types of events can
occur: a car can enter the space, or a parking spot can be decommissioned. The
algorithm’s job is to always keep cars matched to available parking spaces, where
each space can be filled by just one car. When a car arrives, it must be moved to
an available parking space; when a parking space is decommissioned, if a car had
been parked at it, then that car must be moved to a different available parking
space. Clearly, any request sequence can be simulated by equating the servers to
parking spaces and requests to cars. Alternatively, if a request arrives at a server
for which no other request has arrived at, this can equivalently be thought of as
decommissioning that parking spot. As such, given r, we will create a sequence
η of events for the parking problem described above according to the following
deterministic function:

A Poly-log Competitive Posted-Price Algorithm 81

Definition 4 (The η sequence). Given rt, define ηt by:

1. If χt = 0: ηt is the event that a new car enters the space at the location of rt.
2. If χt ≥ 1:

(a) if rt is collocated with an available server or if rt is collocated with a
parked car which has already moved: ηt is the event that the parking
spot at rt is decommissioned.

(b) else: ηt is the event that a new car enters the space at the location of rt.

Let Lt denote the number of cars in the system after the ηt event. Then, any
optimal matching solution must contain at least Lt positive cost matchings to
handle the requests {r1, ..., rt}. Furthermore, it follows from the definition of mt

that mt ≤ Lt.

Theorem 1.

E

[
n∑

t=1

1r(t)

]
≤ Lt

(
(1 + ε)H +

ln d

ε
+ 1

)

where 1r (t) is an indicator random variable that is 1 if Spider-Match pays
positive cost to match rt and 0 otherwise.

Proof. Our proof relies on the following claim:

Claim. Let rτ denote the first request such that χt = 0 and let κ denote the
number of requests rt such that χt = 0. First, let r′ be the request sequence r
after removing any request for which χt = 0. Now consider the alternate request
sequence r′′ defined such that r′′

t = rt for t < τ , r′′
t = ρ for τ ≤ t < τ + κ, and

r′′
τ+κ+t = r′

τ+t for t ≥ 0. Then E [
∑n

t=1 1
r (t)] ≤ E

[∑n
t=1 1

r ′′
(t)

]
.

First, we show that with this claim the result follows: because of the claim,
we can assume r = r′′, so that for t �∈ {τ, ..., τ + κ − 1} it follows that χt �= 0.
We define cost vectors

ct
R =

{
1 �t ∈ R or R ∩ Dt �= ∅
0 otherwise.

where Dt is the set of dead legs at time t.
Define δt

R such that
pt

R = πt
R + δt

R (6)

for all R ∈
(
[d]
mt

)
. By Lemma 3, it follows that δt

R ≥ 0 for all R. Then we have
that ∑

R∈(At

mt
)

pt
R =

∑
R∈(At

mt
)

πt
R +

∑
R∈(At

mt
)

δt
R, (7)

where
∑

R∈(At

mt
) pt

R = 1 by construction.

82 M. Bender et al.

Then, if χt = 1 and ηt is a decommissioning of a parking spot, we have

E [1r (t)] =
∑

R∈(At

mt
)

s.t. �t∈R

pt
R

=
∑

R∈(At

mt
)

s.t. �t∈R

δt
R +

∑
R∈(At

mt
)

s.t. �t∈R

πt
R definition of δt

R

≤
∑

R∈(At

mt
)

δt
R +

∑
R∈(At

mt
)

s.t. �t∈R

πt
R

=
∑

R∩Dt �=∅
πt

R +
∑

R∈(At

mt
)

s.t. �t∈R

πt
R definition of δt

R

= �ct · �πt definition of �ct.

Let T = {t | ηt is a decommissioning}.
The Multiplicative Weights guarantee from [7] gives us that

∀R ∈
(

[d]
mt

)
,

∑
t∈T

�ct · �πt ≤ (1 + ε)
∑
t∈T

ct
R +

ln
(
[d]
mt

)
ε

Let us choose R to be the last mt legs that die; the result follows.
Lastly, to see that the claim holds, let τ̃ denote the last time t such that

χt = 0. Then for t �∈ {τ, ..., τ̃}, it follows that E [1r (t)] = E
[
1r ′′

(t)
]
. Next,

for any t ∈ {τ, ..., τ̃}, let rt′ denote the request corresponding to r′′
t . Then the

number of holes at time t under r′′ is at least the number of holes at time t′

under r by construction of r′′, thus E [1r (t)] ≥ E
[
1r ′′

(t)
]
. The claim follows,

completing the proof.

6 Conclusion

The obvious immediate open question is whether a poly-log competitive posted-
price algorithm exists for online metric matching on a general tree metric. The
most immediate problem that one runs into when trying to apply the approach
of [13], and that we apply here, is that it is not at all clear what the “right”
choice of experts is. Each of the natural choices has fundamental issues that
seem challenging to overcome.

Acknowledgements. We thank Anupam Gupta, Aditya Krishnan, and Alireza
Samadian for extensive helpful discussions.

A Poly-log Competitive Posted-Price Algorithm 83

References

1. Calgary ParkPlus Homepage. https://www.calgaryparking.com/parkplus
2. SFpark Homepage. http://sfpark.org/
3. SFpark Wikipedia page. https://en.wikipedia.org/wiki/SFpark
4. Antoniadis, A., Barcelo, N., Nugent, M., Pruhs, K., Scquizzato, M.: A o(n)-

competitive deterministic algorithm for online matching on a line. In: Workshop
on Approximation and Online Algorithms, pp. 11–22 (2014)

5. Antoniadis, A., Fischer, C., Tönnis, A.: A collection of lower bounds for online
matching on the line. In: Bender, M.A., Farach-Colton, M., Mosteiro, M.A. (eds.)
LATIN 2018. LNCS, vol. 10807, pp. 52–65. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-77404-6 5

6. Arora, S., Hazan, E., Kale, S.: The multiplicative weights update method: a meta-
algorithm and applications. Theory Comput. 8, 121–164 (2012)

7. Arora, S., Hazan, E., Kale, S.: The multiplicative weights update method: a
meta-algorithm and applications. Theory Comput. 8(6), 121–164 (2012). https://
doi.org/10.4086/toc.2012.v008a006. http://www.theoryofcomputing.org/articles/
v008a006

8. Aspnes, J., Azar, Y., Fiat, A., Plotkin, S., Waarts, O.: On-line routing of virtual
circuits with applications to load balancing and machine scheduling. J. ACM 44(3),
486–504 (1997)

9. Azar, Y., Kalyanasundaram, B., Plotkin, S.A., Pruhs, K., Waarts, O.: On-line load
balancing of temporary tasks. J. Algorithms 22(1), 93–110 (1997)

10. Bansal, N., Buchbinder, N., Gupta, A., Naor, J.: A randomized O(log2 k)-
competitive algorithm for metric bipartite matching. Algorithmica 68(2), 390–403
(2014)

11. Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic appli-
cations. In: Symposium on Foundations of Computer Science, pp. 184–193 (1996)

12. Bartal, Y.: On approximating arbitrary metrics by tree metrics. In: ACM Sympo-
sium on Theory of Computing, pp. 161–168 (1998)

13. Bender, M., Gilbert, J., Krishnan, A., Pruhs, K.: Competitively pricing parking in
a tree. In: Chen, X., Gravin, N., Hoefer, M., Mehta, R. (eds.) WINE 2020. LNCS,
vol. 12495, pp. 220–233. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-64946-3 16

14. Cohen, I.R., Eden, A., Fiat, A., Jez, L.: Pricing online decisions: beyond auctions.
CoRR abs/1504.01093 (2015). http://arxiv.org/abs/1504.01093

15. Cohen, I.R., Eden, A., Fiat, A., Jez, L.: Pricing online decisions: beyond auctions.
In: ACM-SIAM Symposium on Discrete Algorithms, pp. 73–91 (2015)

16. Cohen, I.R., Eden, A., Fiat, A., Jez, L.: Dynamic pricing of servers on trees. In:
Approximation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques. LIPIcs, vol. 145, pp. 10:1–10:22 (2019)

17. Fakcharoenphol, J., Rao, S., Talwar, K.: A tight bound on approximating arbitrary
metrics by tree metrics. J. Comput. Syst. Sci. 69(3), 485–497 (2004)

18. Feldman, M., Fiat, A., Roytman, A.: Makespan minimization via posted prices.
In: ACM Conference on Economics and Computation, pp. 405–422 (2017)

19. Fuchs, B., Hochstättler, W., Kern, W.: Online matching on a line. Theoret. Com-
put. Sci. 332(1–3), 251–264 (2005)

20. Gupta, A., Lewi, K.: The online metric matching problem for doubling metrics. In:
Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012. LNCS,
vol. 7391, pp. 424–435. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-31594-7 36

https://www.calgaryparking.com/parkplus
http://sfpark.org/
https://en.wikipedia.org/wiki/SFpark
https://doi.org/10.1007/978-3-319-77404-6_5
https://doi.org/10.1007/978-3-319-77404-6_5
https://doi.org/10.4086/toc.2012.v008a006
https://doi.org/10.4086/toc.2012.v008a006
http://www.theoryofcomputing.org/articles/v008a006
http://www.theoryofcomputing.org/articles/v008a006
https://doi.org/10.1007/978-3-030-64946-3_16
https://doi.org/10.1007/978-3-030-64946-3_16
http://arxiv.org/abs/1504.01093
https://doi.org/10.1007/978-3-642-31594-7_36
https://doi.org/10.1007/978-3-642-31594-7_36

84 M. Bender et al.

21. Im, S., Moseley, B., Pruhs, K., Stein, C.: Minimizing maximum flow time on related
machines via dynamic posted pricing. In: European Symposium on Algorithms, pp.
51:1–51:10 (2017)

22. Kalyanasundaram, B., Pruhs, K.: Online weighted matching. J. Algorithms 14(3),
478–488 (1993)

23. Khuller, S., Mitchell, S.G., Vazirani, V.V.: On-line algorithms for weighted bipar-
tite matching and stable marriages. Theoret. Comput. Sci. 127(2), 255–267 (1994)

24. Koutsoupias, E., Nanavati, A.: The online matching problem on a line. In: Solis-
Oba, R., Jansen, K. (eds.) WAOA 2003. LNCS, vol. 2909, pp. 179–191. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-24592-6 14

25. Meyerson, A., Nanavati, A., Poplawski, L.J.: Randomized online algorithms for
minimum metric bipartite matching. In: ACM-SIAM Symposium on Discrete Algo-
rithms, pp. 954–959 (2006)

26. Nayyar, K., Raghvendra, S.: An input sensitive online algorithm for the metric
bipartite matching problem. In: Symposium on Foundations of Computer Science,
pp. 505–515 (2017)

27. Peserico, E., Scquizzato, M.: Matching on the line admits no o(
√
logn)-competitive

algorithm. CoRR abs/2012.15593 (2020). https://arxiv.org/abs/2012.15593
28. Raghvendra, S.: Optimal analysis of an online algorithm for the bipartite matching

problem on a line. In: Symposium on Computational Geometry. LIPIcs, vol. 99,
pp. 67:1–67:14 (2018)

29. Shoup, D., Pierce, G.: SFpark: pricing parking by demand (2013). https://www.
accessmagazine.org/fall-2013/sfpark-pricing-parking-demand/

https://doi.org/10.1007/978-3-540-24592-6_14
https://arxiv.org/abs/2012.15593
https://www.accessmagazine.org/fall-2013/sfpark-pricing-parking-demand/
https://www.accessmagazine.org/fall-2013/sfpark-pricing-parking-demand/

Computational Complexity of Covering
Disconnected Multigraphs

Jan Bok1(B) , Jǐŕı Fiala2 , Nikola Jedličková2 , Jan Kratochv́ıl2 ,
and Michaela Seifrtová2

1 Computer Science Institute, Faculty of Mathematics and Physics,
Charles University, Prague, Czech Republic

bok@iuuk.mff.cuni.cz
2 Department of Applied Mathematics, Faculty of Mathematics and Physics,

Charles University, Prague, Czech Republic
{fiala,jedlickova,honza,mikina}@kam.mff.cuni.cz

Abstract. The notion of graph covers is a discretization of covering
spaces introduced and deeply studied in topology. In discrete mathemat-
ics and theoretical computer science, they have attained a lot of atten-
tion from both the structural and complexity perspectives. Nonetheless,
disconnected graphs were usually omitted from the considerations with
the explanation that it is sufficient to understand coverings of the con-
nected components of the target graph by components of the source one.
However, different (but equivalent) versions of the definition of covers
of connected graphs generalize to nonequivalent definitions of discon-
nected graphs. The aim of this paper is to summarize this issue and to
compare three different approaches to covers of disconnected graphs: 1)
locally bijective homomorphisms, 2) globally surjective locally bijective
homomorphisms (which we call surjective covers), and 3) locally bijec-
tive homomorphisms which cover every vertex the same number of times
(which we call equitable covers). The standpoint of our comparison is the
complexity of deciding if an input graph covers a fixed target graph. We
show that both surjective and equitable covers satisfy what certainly is
a natural and welcome property: covering a disconnected graph is poly-
nomial time decidable if such it is for every connected component of the
graph, and it is NP-complete if it is NP-complete for at least one of its
components. Despite of this, we argue that the third variant, equitable
covers, is the right one, when considering covers of colored (multi)graphs.
Moreover, the complexity of surjective and equitable covers differ from
the fixed parameter complexity point of view. We conclude the paper by
a complete characterization of the complexity of covering 2-vertex col-
ored multigraphs with semi-edges. We present the results in the utmost
generality and strength. In accord with the current trends we consider
(multi)graphs with semi-edges, and, on the other hand, we aim at proving
the NP-completeness results for simple input graphs.

c© Springer Nature Switzerland AG 2021
E. Bampis and A. Pagourtzis (Eds.): FCT 2021, LNCS 12867, pp. 85–99, 2021.
https://doi.org/10.1007/978-3-030-86593-1_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86593-1_6&domain=pdf
http://orcid.org/0000-0002-7973-1361
http://orcid.org/0000-0002-8108-567X
http://orcid.org/0000-0001-9518-6386
http://orcid.org/0000-0002-2620-6133
http://orcid.org/0000-0003-0050-480X
https://doi.org/10.1007/978-3-030-86593-1_6

86 J. Bok et al.

1 Introduction

The notion of graph covering is motivated by the notion of covering of topological
spaces. It has found numerous applications in graph theory, in construction of
highly symmetric graphs of requested further properties (cf. [3,9]), but also in
models of local computation [2,5,6]. The application in computer science led
Abello, Fellows, and Stilwell [1] to pose the problem of characterizing those
(multi)graphs for which one can decide in polynomial time if they are covered by
an input graph. They have noticed that because of the motivation, it is natural
to consider multigraphs, i.e., the situation when multiple edges and loops are
allowed. Kratochv́ıl, Proskurowski and Telle [8] showed that in order to fully
characterize the complexity of covering simple graphs, it is necessary but also
sufficient to characterize the complexity of covering colored mixed multigraphs
of minimum degree at least three. Informally, semi-edges have, compared to the
usual edges in graph theory, only one endpoint. In modern topological graph
theory it has now become standard to consider graphs with semi-edges since
these occur naturally in algebraic graph reductions. Bok et al. initiated the
study of the computational complexity of covering graphs with semi-edges in
[4].

In all the literature devoted to the computational aspects of graph covers,
only covers of connected graphs have been considered so far. The authors of [7]
justify this by claiming in Fact 2.b that “For a disconnected graph H, the H-
cover problem is polynomially solvable (NP-complete) if and only if the Hi-cover
problem is polynomially solvable (NP-complete) for every (for some) connected
component Hi of H”. Though this seems to be a plausible and desirable property,
a closer look shows that the validity of this statement depends on the exact
definition of covers for disconnected graphs. Namely in the case of multigraphs
with semi-edges when the existence of a covering projection does not follow from
the existence of a degree-obedient vertex mapping anymore.

The purpose of this paper is to have a closer look at covers of disconnected
graphs in three points of view: the definition, complexity results, and the role of
disconnected subgraphs in colored multigraphs. In Sect. 3 we first discuss what
are the possible definitions of covers of disconnected graphs – locally bijective
homomorphisms are a natural generalization from the algebraic graph theory
standpoint, globally surjective locally bijective homomorphisms (which we call
surjective covers) seem to have been understood by the topological graph theory
community as the generalization from the standpoint of topological motivation,
and a novel and more restrictive definition of equitable covers, in which every
vertex of the target graph is required to be covered by the same number of
vertices of the source one. The goal of the paper is to convince the reader that
the most appropriate definition is the last one. In Sect. 4 we inspect the three
possible definitions under the magnifying glass of computational complexity.
The main result is that the above mentioned Fact 2.b is true for surjective
covers, and remains true also for the newly proposed definition of equitable
covers of disconnected graphs. The NP-hardness part of the statement is proven
for instances when the input graphs are required to be simple. Lastly, in Sect. 5

Computational Complexity of Covering Disconnected Multigraphs 87

we review the concept of covers of colored graphs and show that in this context
the notion of equitable covers is indeed the most natural one. We justify our
approach by providing a characterization of polynomial/NP-complete instances
of the H-Cover problem for colored mixed multigraphs with semi-edges. It is
worth noting that in Sect. 2 we also introduce a new notion of being stronger, a
relation between (multi)graphs that generalizes the covering relation and which
we utilize in the NP-hardness reductions in Sect. 4. We believe that this notion is
interesting on its own and that its further study would deepen the understanding
of graph covers.

2 Covers of Connected Graphs

In this section we formally define what we call graphs, we review the notion of
a covering projection for connected graphs and we introduce a quasi-ordering of
connected graphs defined by the existence of their simple covers. In the rest of
the paper we drop the prefix multi- when we speak about (multi-)graphs – from
now on, graphs are allowed to have multiple edges, loops, and/or semi-edges (we
talk about simple graphs if none of these are allowed).

A very elegant description of ordinary edges, loops and semi-edges through
the concept of darts is used in more algebraic-based papers on covers. The fol-
lowing formal definition is inspired by the one given in [11].

Definition 1. A graph is a triple (D,V,Λ), where D is a set of darts, and V
and Λ are each a partition of D into disjoint sets. Moreover, all sets in Λ have
size one or two.

Vertices are here the sets of darts forming the partition V . The set of links
Λ splits into three disjoint sets Λ = E ∪ L ∪ S, where E represents the edges,
i.e., those links of Λ that intersect two distinct vertices from V , L are the loops,
i.e., those 2-element sets of Λ that are subsets of some set from V , and S are
the semi-edges, i.e., the 1-element sets from Λ.

The usual terminology that a vertex v ∈ V is incident with an edge e ∈ E
or that distinct vertices u and v are adjacent can be expressed as v ∩ e �= ∅ and
as ∃e ∈ E : u ∩ e �= ∅ ∧ v ∩ e �= ∅, respectively.

A graph is usually defined as an ordered triple (V,Λ, ι), for Λ = E ∪ L ∪ S,
where ι is the incidence mapping ι : Λ −→ V ∪ (

V
2

)
such that ι(e) ∈ V for all

e ∈ L ∪ S and ι(e) ∈ (
V
2

)
for all s ∈ E. We use both approaches in this paper

and employ advantages of each of them in different situations. See an illustrative
example in Fig. 1.

The degree of a vertex v ∈ V is deg(v) = |v|. The fact that a loop contributes
2 to the degree of its vertex may seem not automatic at first sight, but becomes
natural when graph embeddings on surfaces are considered.

The multiedge between u and v is an inclusion-wise maximal subset of links
that connect u and v, i.e. {e ∈ E : e ∩ v �= ∅ ∧ v ∩ e �= ∅} and the cardinality of
this set is the multiplicity of the (multi)edge uv. In the same way we define the
multiplicity of a loop or of a semi-edge.

88 J. Bok et al.

e1

e2

l3l1 l2

s1
s2

s3

s1

s2 s3

e1

e2

l1

l2

l3

parts of Λ
parts of V
darts

Fig. 1. An example of a graph drawn in a usual graph-theoretical way (left) and using
the alternative dart-based definition (right). The figure appeared first in [4].

In case of simple graphs we use also the traditional notation for an edge as
e = uv and we write G = (V,E).

A graph H = (D′, V ′, Λ′) is a subgraph of a graph G = (D,V,Λ) if their sets
of darts satisfy D′ ⊆ D and their partitions fulfill V ′ = V |D′ and Λ′ = Λ|D′ .

A path in graph G is a sequence of distinct darts such that consecutive darts
either constitute an edge or a vertex of degree 2. A path is closed if the first pair
as well as the last pair constitute edges. In such a case we say that it connects
the vertex containing the first dart to the vertex of the last one. If the first pair
and the last pair are vertices then the path is open. In all other cases (including
a sequence of length 1) the path is half-way.

By a component of a graph we mean an inclusion-wise maximal induced sub-
graph such that every two of its vertices are connected by a subgraph isomorphic
to a path. We say that a graph is connected if it has only a single component.

It shall be useful for our purposes to specifically denote one-vertex and two-
vertex graphs. Let us denote by F (b, c) the one-vertex graph with b semi-edges
and c loops and by W (k,m, �, p, q) the two-vertex graph with k semi-edges and
m loops at one vertex, p loops and q semi-edges at the other one, and � > 0
multiple edges connecting the two vertices (these edges are referred to as bars).
In other words, W (k,m, �, p, q) is obtained from the disjoint union of F (k,m)
and F (q, p) by connecting their vertices by � parallel edges. Note that the graph
in Fig. 1 is in fact W (2, 2, 2, 1, 1).

2.1 Covers of Connected Graphs

Though there is no ambiguity in the definition of graph covers of connected
graphs, the standard definition used e.g. in [8] or [10] becomes rather techni-
cal especially when semi-edges are allowed. The following simple-to-state yet
equivalent definition was introduced in [4].

Definition 2. We say that a graph G = (DG, VG, ΛG) covers a connected graph
H = (DH , VH , ΛH) (denoted as G −→ H) if there exists a map f : DG → DH

such that:

– The map f is surjective.
– For every u ∈ VG, there is a u′ ∈ VH such that the restriction of f onto u is

a bijection between u and u′.
– For every e ∈ ΛG, there is an e′ ∈ ΛH such that f(e) = e′.

Computational Complexity of Covering Disconnected Multigraphs 89

We write G −→ H to express that G covers H when both G and H are con-
nected graphs. This compact and succinct definition emphasizes the usefulness of
the dart definition of graphs in contrast with the lengthy and technical definition
of covers in the standard way which is recalled in the following proposition.

Proposition 3. A graph G covers a graph H if and only if G allows a pair of
mappings fV : V (G) −→ V (H) and fΛ : Λ(G) −→ Λ(H) such that

1. fΛ(e) ∈ L(H) for every e ∈ L(G) and fΛ(e) ∈ S(H) for every e ∈ S(G),
2. ι(fΛ(e)) = fV (ι(e)) for every e ∈ L(G) ∪ S(G),
3. for every link e ∈ Λ(G) such that fΛ(e) ∈ S(H)∪L(H) and ι(e) = {u, v}, we

have ι(fΛ(e)) = fV (u) = fV (v),
4. for every link e ∈ Λ(G) such that fΛ(e) ∈ E(H) and ι(e) = {u, v} (note that

it must be fV (u) �= fV (v)), we have ι(fΛ(e)) = {fV (u), fV (v)},
5. for every loop e ∈ L(H), f−1(e) is a disjoint union of loops and cycles span-

ning all vertices u ∈ V (G) such that fV (u) = ι(e),
6. for every semi-edge e ∈ S(H), f−1(e) is a disjoint union of edges and semi-

edges spanning all vertices u ∈ V (G) such that fV (u) = ι(e), and
7. for every edge e ∈ E(H), f−1(e) is a disjoint union of edges (i.e., a matching)

spanning all vertices u ∈ V (G) such that fV (u) ∈ ι(e).

Finally, H-Cover is the associated decision problem having a graph G on
input and asking if G covers H.

2.2 A Special Relation Regarding Covers

Graph covering is a transitive relation among connected graphs. Thus when
A −→ B for graphs A and B, every graph G that covers A also covers B.
Surprisingly, the conclusion may hold true also in cases when A does not cover B,
if we only consider simple graphs G. To describe this phenomenon, we introduce
the following definition, which will prove useful in several reductions later on.

Definition 4. Given connected graphs A,B, we say that A is stronger than B,
and write A � B, if every simple graph that covers A also covers B.

The smallest nontrivial example of such a pair of graphs are two one-vertex
graphs: F (2, 0) with a pair of semi-edges and F (0, 1), one vertex with a loop.
While F (0, 1) is covered by any cycle, only cycles of even length cover F (2, 0).
So F (2, 0) � F (0, 1).

Observe that whenever A is simple, then (A � B) if and only if (A −→ B).
One might also notice that � defines a quasi-order on connected graphs. Many

pairs of graphs are left incomparable with respect to this relation, even those
covering a common target graph. On the other hand, the equivalence classes
of pair-wise comparable graphs may be nontrivial, and the graphs within one
class might have different numbers of vertices. For example, W (0, 0, 2, 0, 0) and
F (2, 0) form an equivalence class of �, as for both of these graphs, the class of
simple graphs covering them is exactly the class of even cycles. We believe the

90 J. Bok et al.

relation of being stronger is a concept interesting on its own. In particular, the
following questions remain open and seem relevant.

Problem 5. Do there exist two graphs A and B such that A has no semi-edges,
A �−→ B and yet A � B?

Problem 6. Do there exist two �-equivalent graphs such that none of them covers
the other one?

3 What is a Cover of a Disconnected Graph?

From now on, we assume that we are given two (possibly disconnected) graphs G
and H and we are interested in determining whether G covers H. In particular
in this section we discus what it means that G covers H. We assume that G
has p components of connectivity, G1, G2, . . . , Gp, and H has q components,
H1,H2, . . . , Hq. It is reasonable to request that a covering projection must map
each component of G onto some component of H, and this restricted mapping
must be a covering. The questions we are raising are:

1. Should the covering projection be globally surjective, i.e., must the preimage
of every vertex of H be nonempty?

2. Should the preimages of the vertices of H be of the same size?

Both these questions are the first ones at hand when trying to generalize graph
covers to disconnected graphs, since the answer is “yes” in the case of connected
graphs (and it is customary to call a projection that covers every vertex k times
a k-fold cover).

Definition 7. Let G and H be graphs and let us have a mapping f : G −→ H.

– We say that f is a locally bijective homomorphism of G to H if for each
component Gi of G, the restricted mapping F |Gi

: Gi −→ H is a covering
projection of Gi onto some component of H. We write G −→lb H if such a
mapping exists.

– We say that f is a surjective covering projection of G to H if for each compo-
nent Gi of G, the restricted mapping F |Gi

: Gi −→ H is a covering projection
of Gi onto some component of H, and f is surjective. We write G −→sur H
if such a mapping exists.

– We say that f is an equitable covering projection of G to H if for each
component Gi of G, the restricted mapping F |Gi

: Gi −→ H is a covering
projection of Gi onto some component of H, and for every two vertices u, v ∈
V (H), |f−1(u)| = |f−1(v)|. We write G −→equit H if such a mapping exists.

A useful tool both for describing and discussing the variants, as well as for
algorithmic considerations, is introduced in the following definition.

Computational Complexity of Covering Disconnected Multigraphs 91

Definition 8. Given graphs G and H with components of connectivity G1, G2,
. . . , Gp, and H1,H2, . . . , Hq, respectively, the covering pattern of the pair G,H is
the weighted bipartite graph Cov(G,H) = ({g1, g2, . . . , gp, h1, h2, . . . , hq}, {gihj :
Gi −→ Hj}) with edge weights rij = r(gihj) = |V (Gi)|

|V (Hj)| .

The following observation follows directly from the definitions, but will be
useful in the computational complexity considerations.

Observation 9. Let G and H be graphs. Then the following holds.

– We have G −→lb H if and only if the degree of every vertex gi, i = 1, 2, . . . , p
in Cov(G,H) is greater than zero.

– We have G −→sur H if and only if the degree of every vertex gi, i = 1, 2, . . . , p
in Cov(G,H) is greater than zero and Cov(G,H) has a matching of size q.

– We have G −→equit H if and only if Cov(G,H) has a spanning subgraph
Map(G,H) such that every vertex gi, i = 1, 2, . . . , p has degree 1 in Map(G,H)
and for every vertex hj of Cov(G,H),

∑
i:gihj∈E(Map(G,H)) rij = k, where

k = |V (G)|
|V (H)| .

4 Complexity Results

We feel the world will be on the right track if H-Cover is polynomial time
solvable whenever Hi-Cover is polynomial time solvable for every component
Hi of H, while H-Cover is NP-complete whenever Hi-Cover is NP-complete
for some component Hi of H. To strengthen the results, we allow arbitrary input
graphs (i.e., with multiple edges, loops and/or semi-edges) when considering
polynomial time algorithms, while we restrict the inputs to simple graphs when
we aim at NP-hardness results. In some cases we are able to prove results also
from the Fixed Parameter Tractability standpoint.

The following lemma is simple, but useful. Note that though we are mostly
interested in the time complexity of deciding G −→ H for a fixed graph H and
input graph G, this lemma assumes both the source and the target graphs to be
part of the input. The size of the input is measured by the number of edges.

Lemma 10. Let ϕ(A,B) be the best running time of an algorithm deciding if
A −→ B for connected graphs A and B, and let ϕ(n,B) be the worst case
of ϕ(A,B) over all connected graphs of size n. Then for given input graphs
G and H with components of connectivity G1, G2, . . . , Gp, and H1,H2, . . . ,Hq,
respectively, the covering pattern Cov(G,H) can be constructed in time O(pq ·
maxq

j=1 ϕ(n,Hj)) = O(n2 · maxq
j=1 ϕ(n,Hj)), where n is the input size, i.e., the

sum of the numbers of edges in G and H. ��
Corollary 11. Constructing the covering pattern of input graphs G and H is in
the complexity class XP when parameterized by the maximum size of a compo-
nent of the target graph H, provided the Hj-Cover problem is polynomial time
solvable for every component Hj of H.

92 J. Bok et al.

Corollary 12. The covering pattern of input graphs G and H can be constructed
in polynomial time provided all components of H have bounded size and the
Hj-Cover problem is solvable in polynomial time for every component Hj

of H. ��
In the following subsections, we discuss and compare the computational com-

plexity of deciding the existence of locally bijective homomorphisms, surjective
covers and equitable covers. The corresponding decision problems are denoted
by LBHom, SurjectiveCover, and EquitableCover. If the target graph is
fixed to be H, we write H-LBHom (and analogously for the other variants).

4.1 Locally Bijective Homomorphisms

Though the notion of locally bijective homomorphisms is seemingly the most
straightforward generalization of the fact that in a graph covering projection to
a connected graph “the closed neighborhood of every vertex of the source graph
is mapped bijectively to the closed neighborhood of its image”, we show in this
subsection that it does not behave as we would like to see it from the compu-
tational complexity perspective. Proposition 14 shows that there are infinitely
many graphs H with only two components each such that H-LBHom is poly-
nomial time solvable, while Hi-LBHom is NP-complete for one component Hi

of H. The polynomial part of the desired properties is, however, fulfilled, even
in some cases when both graphs are part of the input:

Theorem 13. If Hi-Cover is polynomial time solvable for every component
Hi of H, then

i) the H-LBHom problem is polynomial time solvable,
ii) the LBHom problem is in XP when parameterized by the maximum size of

a component of the target graph H,
iii) the LBHom problem is solvable in polynomial time, provided the components

of H have bounded size.

However, it is not true that H-LBHom is NP-complete whenever Hj-Cover

is NP-complete for some component Hj of H. Infinitely many examples can
be constructed by means of the following proposition. These examples provide
another argument for our opinion that the notion of locally bijective homomor-
phism is not the right generalization of graph covering to disconnected graphs.

In the following propositon, + represents the operation of disjoint union of
two graphs.

Proposition 14. Let H = H1 + H2 for connected graphs H1 and H2 such that
H1 � H2. Then H-LBHom for simple input graphs is polynomially reducible to
H2-LBHom for simple input graphs. In particular, if H2-LBHom is polynomial
time decidable, then so is H-LBHom as well.

Computational Complexity of Covering Disconnected Multigraphs 93

4.2 Surjective Covers

The notion of surjective covers is favored by topologists since it captures the fact
that every vertex (point) of the target graph (space) is covered [Nedela, private
communication 2020]. We are happy to report that this notion behaves as we
would like to see from the point of view of computational complexity.

Theorem 15. If Hi-Cover is polynomial time solvable for every component
Hi of H, then

i) the H-SurjectiveCover problem is polynomial time solvable,
ii) the SurjectiveCover problem is in XP when parameterized by the maxi-

mum size of a component of the target graph H, and
iii) the SurjectiveCover problem is solvable in polynomial time if the com-

ponents of H have bounded size.

For surjective covers, the NP-hardness of the problem of deciding if there
is a covering of one component of H propagates to NP-hardness of deciding if
there is a surjective covering of entire H, even when our attention is restricted
to simple input graphs.

Theorem 16. The H-SurjectiveCover problem is NP-complete for simple
input graphs if Hi-Cover is NP-complete for simple input graphs for at least
one component Hi of H.

Proof. Without loss of generality suppose that H1-Cover is NP-complete for
simple input graphs. Let G1 be a simple graph for which G1 −→ H1 is to be
tested. We show that there exists a polynomial time reduction from H1-Cover

to H-SurjectiveCover. For every j = 2, . . . , q, fix a simple connected graph
Gj that covers Hj such that Gj −→ H1 if and only if Hj � H1 (in other words,
Gj is a witness which does not cover H1 when Hj is not stronger than H1). Note
that the size of each Gj , j = 2, . . . , q, is a constant which does not depend on the
size of the input graph G1. Note also, that since H is a fixed graph, we do not
check algorithmically whether Hj � H1 when picking Gj . We are only proving
the existence of a reduction, and for this we may assume the relation Hj �H1 to
be given by a table.

Let G be the disjoint union of Gj , j = 1, . . . , q. We claim that G −→sur H
if and only if G1 −→ H1. The “if” part is clear. We map Gj onto Hj for every
j = 1, 2, . . . , q by the covering projections that are assumed to exist. Their union
is a surjective covering projection of G to H.

For the “only if” direction, suppose that f : V (G) −→ V (H) is a surjective
covering projection. Since f must be globally surjective and G and H have the
same number of components, namely q, different components of G are mapped
onto different components of H by f . Define f̃ ∈ Sym(q) by setting f̃(i) = j

if and only if f maps Gi onto Hj . Then f̃ is a permutation of {1, 2, . . . , q}.
Consider the cycle containing 1. Let it be (i1 = 1, i2, i3, . . . , it), which means
that Gij −→ Hij+1 for j = 1, 2, . . . , t − 1, and Git −→ Hi1 . By reverse induction

94 J. Bok et al.

on j, from j = t down to j = 2, we prove that Hj � H1. Indeed, for j = t,
Git −→ H1 means that Hit is stronger than H1, since we would have set Git as
a witness that does not cover H1 if it were not. For the inductive step, assume
that Hij+1 � H1 and consider Gij . Now Gij covers Hij+1 since f̃(ij) = ij+1.
Because Gij is a simple graph and Hij+1 is stronger than H1, this implies that
Gij −→ H1. But then Hij must itself be stronger than H1, otherwise we would
have set Gij as a witness that does not cover H1. We conclude that Hi2 � H1,
and hence G1 −→ H1 follows from the fact that the simple graph G1 covers Hi2 .

4.3 Equitable Covers

Equitable covers also behave nicely from the computational complexity point of
view in the crucial aspects:

Theorem 17. The H-EquitableCover problem is polynomial time solvable
if Hi-Cover is polynomial time solvable for every component Hi of H.

Proof. First construct the covering pattern Cov(G,H). Since H is a fixed graph,
this can be done in time polynomial in the size of the input, i.e., G, as it follows
from Corollary 12.

Using dynamic programming, fill in a table M(s, k1, k2, . . . , kq), s =
0, 1, . . . , p, kj = 0, 1, . . . , k = |V (G)|

|V (H)| for j = 1, 2, . . . , q, with values true and false.
Its meaning is that M(s, k1, k2, . . . , kq) = true if and only if G1 ∪ G2 ∪ . . . ∪ Gs

allows a locally bijective homomorphism f to H such that for every j and every
u ∈ V (Hj), |f−1(u)| = kj . The table is initialized by setting M(0, k1, . . . , kq) to
true, if k1 = k2 = . . . = kq = 0 and to false otherwise.

In the inductive step assume that all values for some s are filled in correctly,
and move on to s + 1. For every edge gs+1hj of Cov(G,H) and every q-tuple
k1, k2, . . . , kq such that M(s, k1, k2, . . . , kq) = true, set M(s + 1, k1, k2, . . . , kj +
rs+1,j , . . . , kq) = true, provided kj + rs+1,j ≤ k. Clearly, the loop invari-
ant is fulfilled, and hence G is a k-fold (equitable) cover of H if and only if
M(p, k, k, . . . , k) is set to true.

The table M has (p + 1) · (k + 1)q = O(nq+1) entries and the inductive
step changes O((k + 1)q · q values. So processing the table can be concluded in
O((k + 1)q(1 + pq) = O(nq+1) steps.

If both G and H are part of the input, we do not know how to avoid q in the
exponent.

Proposition 18. The EquitableCover problem is in XP when parameterized
by the number q of components of H plus the maximum size of a component of
the target graph H, provided Hi-Cover is polynomial time solvable for every
component Hi of H.

Problem 19. Is the EquitableCover problem in XP when parameterized by
the maximum size of a component of the target graph H, provided each Hi-

Cover is polynomial time solvable for every component Hi of H?

Computational Complexity of Covering Disconnected Multigraphs 95

The NP-hardness theorem holds true as well:

Theorem 20. The H-EquitableCover problem is NP-complete for simple
input graphs if Hi-Cover is NP-complete for simple input graphs for at least
one component Hi of H.

5 Covering Colored Two-Vertex Graphs

We now introduce the last generalization and consider coverings of graphs which
come with links and vertices equipped with additional information, which we sim-
ply refer to as a color. The requirement is that the covering projection respects
the colors, both on the vertices and on the links. This generalization is not pur-
poseless as it may seem. It is shown in [8] that to fully characterize the complexity
of H-Cover for simple graphs H, it is necessary and suffices to understand the
complexity of H-Cover for colored mixed multigraphs of valency greater than
2. The requirement on the minimum degree of H gives hope that the charac-
terization can be more easily described. We will first describe the concept of
covers of colored graphs with semi-edges in detail in Subsect. 5.1, where we also
give our final argument in favor of equitable covers. Then we extend the charac-
terization of the computational complexity of covering colored 2-vertex graphs
without semi-edges presented in [8] to general graphs in Subsect. 5.2.

5.1 Covers of Colored Graphs

Definition 21. We say that a graph G is colored, if it is equipped with a func-
tion c : D ∪ V → N. Furthermore, a colored graph covers a colored graph H if G
covers H via a mapping f and this mapping respects the colors, i.e., cG = cH ◦f
on D and every u ∈ VG satisfies cG(u) = cH(f(u)).

Note that one may assume without loss of generality that all vertices are of
the same color, since we can add the color of a vertex as a shade to the colors of
its darts. However, for the reductions described below, it is convenient to keep
the intermediate step of coloring vertices as well.

The final argument that equitable covers are the most proper generalization
to disconnected graphs is given by the following observation. (Note that color
induced subgraphs of a connected graph may be disconnected).

Observation 22. Let a colored graph H be connected and let f : G −→ H be
a color preserving mapping that respects the links (i.e., for every link e ∈ ΛG,
there is a link e′ ∈ ΛH such that f(e) = e′). Then f is a covering projection if
and only if f : Gi,j −→ Hi,j is an equitable covering projection for every two
(not necessarily distinct) colors i, j, where Gi,j ,Hi,j denote the subgraphs of G
and H induced by the links e such that c(e) = {i, j}. ��

Kratochv́ıl et al. [8] proved that the existence of a covering between two
(simple) graphs can be reduced to the existence of a covering between two colored
graphs of minimum degree three. Their concept of colored directed multigraph is
equivalent to our concept of colored graphs (without semi-edges), namely:

96 J. Bok et al.

Fig. 2. Reduction of a graph to a colored graph of minimum degree 3. Distinct colors
represent distinct integers.

– The vertex color encoding the collection of trees (without semi-edges) stem-
ming from a vertex is encoded as the vertex color in the exactly same way.

– The link color encoding a subgraph isomorphic to colored induced path
between two vertices of degree at least three is encoded as the pair of colors
of the edge or a loop that is used for the replacement of the path.

– When the path coloring is symmetric, we use the same color twice for the
darts of the replaced arc which could be viewed as an undirected edge of the
construction of [8].

– On the other hand, when the coloring is not symmetric and the replaced arc
hence needed to be directed in [8], we use a pair of distinct colors on the two
darts, which naturally represents the direction.

When semi-edges are allowed we must take into account one more possibility.
The color used on the two darts representing a symmetric colored path of even
number of vertices may be used also to represent a half-way path with the
identical color pattern ended by a semi-edge. A formal description follows:

By a pattern P we mean a finite sequence of positive integers (p1, . . . , pk). A
pattern is symmetric if pi = pk+1−i, and the reverse pattern is P = (pk, . . . , p1).

The pattern of a closed path d1, . . . , d2k in a colored graph G is the sequence
of colors c(u0), c(d1), c(d2), c(u1), c(d3), c(d4), c(u2), . . . , c(d2k), c(uk), where ∀i ∈
{1, . . . , k} the vertex ui contains the dart d2i, and in addition u0 contains the dart
d1. Analogously we define patterns of open and half-way paths—the sequence of
dart colors is augmented by the vertex colors.

Now, a half-way path of pattern P that starts in a vertex of degree 3 and
ends by a semi-edge will be replaced by a single dart whose color is identical
to those used for the two darts used for the replacement of closed paths whose
pattern is the concatenation PP , see Fig. 2.

5.2 Two-Vertex Graphs

We say that a colored graph G is regular if all its vertices have the same color and
for every i ∈ N all vertices are incident with the same number of darts of color
i. Kratochv́ıl et al. [8] completely characterized the computational complexity
of the H-Cover problem on colored graphs on at most two vertices without
semi-edges. Their result implies the following:

Computational Complexity of Covering Disconnected Multigraphs 97

Proposition 23. Let H be a connected colored graph on at most two vertices
without semi-edges. The H-Cover problem is polynomially solvable if:

1. The graph H contains only one vertex or
2. H is not regular or
3. (a) for every color i ∈ N, the Hi-EquitableCover problem is solvable in

polynomial time, where Hi is the colored subgraph of H induced by the
links colored by i, and

(b) for every pair of colors i, j ∈ N, the Hi,j-EquitableCover problem
is solvable in polynomial time, where Hi,j is the colored subgraph of H
induced by the links l ∈ Λ such that c(l) = {i, j}.

Otherwise, the H-Cover problem is NP-complete.

Informally, the NP-completeness persists if and only if H has two vertices
which have the same degree in every color, and the NP-completeness appears
on a monochromatic subgraph (either undirected or directed). Such a subgraph
must contain both vertices and be connected. We extend this characterization
to include semi-edges as well:

Theorem 24. Let H be a colored graph on at most two vertices. The H-Equi-

tableCover problem is polynomially solvable if:

1. The graph H contains only one vertex and for every i, Hi-Cover is solvable
in polynomial time, where Hi is the subgraph of H induced by the loops and
semi-edges colored by i or

2. H is not regular and for every i and each vertex u ∈ VH , the Hu
i -Cover

problem is solvable in polynomial time, where Hu
i is the colored subgraph of

H induced by the loops and semi-edges incident with u colored by i or
3. H is regular on two vertices and

(a) for every color i ∈ N, the Hi-EquitableCover problem is solvable in
polynomial time, where Hi is the colored subgraph of H induced by the
links colored by i, and

(b) for every pair of colors i, j ∈ N, the Hi,j-EquitableCover problem is
solvable in polynomial time, where Hi,j is the subgraph of H induced by
the links l ∈ Λ such that c(l) = {i, j}.

Otherwise, the H-EquitableCover problem is NP-complete.

Observe that the cases when every color induces in H a subgraph without
semi-edges are covered by Proposition 23.

6 Conclusion

The main goal of this paper was to point out that the generalization of the
notion of graph covers of connected graphs to disconnected ones is not obvious.
We have presented three variants, depending of the requirement if the projection

98 J. Bok et al.

should or need not be globally surjective, and if all vertices should be covered
the same number of times. We argue that the most restrictive variant, which we
call equitable covers, is the most appropriate one, namely from the point of view
of covers of colored graphs.

We have compared the computational complexity aspects of these variants
and show that two of them, surjective and equitable covers, possess the natu-
rally desired property that H-Cover is polynomially solvable if covering each
component of H is polynomially solvable, and NP-complete if covering at least
one component of H is NP-complete. However, we identified some open question
from the point of view of fixed parameter tractability.

In the last section we review the extension of graph covers to covers of colored
graphs, recall that colors can be encoded by non-coverable patterns in simple
graphs, and discuss this issue in detail for the case when semi-edges are allowed.
With this new feature we conclude the complete characterization of the compu-
tational complexity of covering 2-vertex colored graphs, initiated (and proved
for graphs without semi-edges) 24 years ago in [8].

Acknowledgments. – Jan Bok and Nikola Jedličková: Supported by research grant
GAČR 20-15576S of the Czech Science Foundation and by SVV–2020–260578. The
authors were also partially supported by GAUK 1580119.

– Jǐŕı Fiala and Jan Kratochv́ıl: Supported by research grant GAČR 20-15576S of
the Czech Science Foundation.

– Michaela Seifrtová: Supported by research grant GAČR 19-17314J of the Czech
Science Foundation.

References

1. Abello, J., Fellows, M.R., Stillwell, J.C.: On the complexity and combinatorics of
covering finite complexes. Aust. J. Combin. 4, 103–112 (1991)

2. Angluin, D.: Local and global properties in networks of processors. In: Proceedings
of the 12th ACM Symposium on Theory of Computing, pp. 82–93 (1980)

3. Biggs, N.: Algebraic Graph Theory. Cambridge University Press, Cambridge (1974)
4. Bok, J., Fiala, J., Hliněný, P., Jedličková, N., Kratochv́ıl, J.: Computational com-

plexity of covering two-vertex multigraphs with semi-edges. CoRR abs/2103.15214
(2021). https://arxiv.org/abs/2103.15214. To appear in proceedings of MFCS 2021

5. Chalopin, J., Métivier, Y., Zielonka, W.: Local computations in graphs: the case
of cellular edge local computations. Fund. Inform. 74(1), 85–114 (2006)

6. Chaplick, S., Fiala, J., van ’t Hof, P., Paulusma, D., Tesař, M.: Locally con-
strained homomorphisms on graphs of bounded treewidth and bounded degree. In:
G ↪asieniec, L., Wolter, F. (eds.) FCT 2013. LNCS, vol. 8070, pp. 121–132. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-40164-0 14

7. Kratochv́ıl, J., Proskurowski, A., Telle, J.A.: Complexity of graph covering prob-
lems. In: Mayr, E.W., Schmidt, G., Tinhofer, G. (eds.) WG 1994. LNCS, vol. 903,
pp. 93–105. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-59071-
4 40

8. Kratochv́ıl, J., Proskurowski, A., Telle, J.A.: Covering directed multigraphs I. Col-
ored directed multigraphs. In: Möhring, R.H. (ed.) WG. LNCS, vol. 1335, pp.
242–257. Springer, Heidelberg (1997)

https://arxiv.org/abs/2103.15214
https://doi.org/10.1007/978-3-642-40164-0_14
https://doi.org/10.1007/3-540-59071-4_40
https://doi.org/10.1007/3-540-59071-4_40

Computational Complexity of Covering Disconnected Multigraphs 99

9. Malnič, A., Nedela, R., Škoviera, M.: Lifting graph automorphisms by voltage
assignments. Eur. J. Comb. 21(7), 927–947 (2000)

10. Matoušek, J., Nešetřil, J.: Invitation to Discrete Mathematics. Oxford University
Press, Oxford (1998)

11. Mednykh, A.D., Nedela, R.: Harmonic Morphisms of Graphs: Part I: Graph Cov-
erings, 1st edn. Vydavatelstvo Univerzity Mateja Bela v Banskej Bystrici (2015)

The Complexity of Bicriteria Tree-Depth

Piotr Borowiecki1,2, Dariusz Dereniowski1(B), and Dorota Osula1

1 Faculty of Electronics, Telecommunications and Informatics,
Gdańsk University of Technology, Gdańsk, Poland

deren@eti.pg.edu.pl
2 Institute of Control and Computation Engineering, University of Zielona Góra,

Zielona Góra, Poland

Abstract. The tree-depth problem can be seen as finding an elimina-
tion tree of minimum height for a given input graph G. We introduce a
bicriteria generalization in which additionally the width of the elimina-
tion tree needs to be bounded by some input integer b. We are interested
in the case when G is the line graph of a tree, proving that the problem
is NP-hard and obtaining a polynomial-time additive 2b-approximation
algorithm. This particular class of graphs received significant attention,
mainly due to potential applications. These include purely combinatorial
applications like searching in tree-like partial orders (which generalizes
binary search in sorted data), or practical ones in parallel processing.

Keywords: Elimination tree · Graph ranking · Parallel assembly ·
Tree-depth

1 Introduction

The problem of computing tree-depth has a long history in the realm of parallel
computations. It was considered for the first time under the name of minimum
height elimination trees where it played an important role in speeding-up parallel
factorization of (sparse) matrices [17]. Then, the problem re-appeared under the
name of vertex ranking [2]. More applications have been brought up, including
parallel assembly of multi-part products, where tree-like structures have been
mostly considered. Another application in this realm includes parallel query
processing in relational databases [19]. It turns out that in order to design an
efficient parallel schedule for performing the query, a vertex ranking of a line
graph of a spanning tree of G is computed. Later on, the same problem has been
introduced under different names in a number of other applications: LIFO-search
[11], searching in tree-like partial orders [1], which generalizes the classical binary
search in sorted arrays, ordered coloring, graph ranking [12], and more recently,

Work partially supported under Ministry of Science and Higher Education (Poland)
subsidy for Gdańsk University of Technology. Moreover, D. Dereniowski and D. Osula
have been partially supported by National Science Centre (Poland) grant number
2018/31/B/ST6/00820.

c© Springer Nature Switzerland AG 2021
E. Bampis and A. Pagourtzis (Eds.): FCT 2021, LNCS 12867, pp. 100–113, 2021.
https://doi.org/10.1007/978-3-030-86593-1_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86593-1_7&domain=pdf
https://doi.org/10.1007/978-3-030-86593-1_7

The Complexity of Bicriteria Tree-Depth 101

tree-depth [21]. Through the connection to searching partial orders, it is worth
pointing out that tree-depth computation (i.e., a search strategy for the partial
order) can be used to automated finding of software bugs [1]. In this application,
again, the line graphs of trees and their tree-depth are of interest.

Related Work. The tree-depth problem is NP-complete for arbitrary line
graphs [15]. The smallest superclass of trees for which the problem is NP-
complete are chordal graphs [9]. For the trees themselves, the problem can be
solved in linear-time [23]. The problem turned out to be much more challenging
and interesting for line graphs of trees. A number of papers have been published,
see e.g. [25–27], that gradually reduced the complexity from O(n4 log3 n) [1] and
O(n3 log n) [24] to the final linear-time algorithms [16,20], where n is the order of
the input tree. Motivated e.g. by applications, the edge-weighted case has been
introduced [6]: it is strongly NP-hard even for restricted classes of trees [4–
6]. For algorithmic results on weighted paths see e.g. [4,14]. For weighted trees,
there is a number of works improving on possible approximation ratio achievable
in polynomial-time [4–6], with the best one of O(

√
log n) [8], and it remains as a

challenging open question whether a constant-factor approximation is feasible.
There is also a number of searching models that generalize searching in (rooted)
tree-like partial orders to more general classes of partial orders see e.g. [3,7,22].
These general graph-theoretic models find applications e.g. in machine learn-
ing [10]. The tree-depth generalization that we consider for line graphs of trees
has been introduced for trees [28] under the name of vertex ranking with capac-
ity : there exists an O∗(2.5875n)-time optimal algorithm for general graphs, and
f(n)-approximate solution to vertex ranking can be transformed to an (f(n)+1)-
approximate solution to vertex ranking with capacity. Moreover, for trees, this
problem admits a polynomial time absolute O(log b)-approximation [28].

Problem Statement and Our Results. In this section we introduce a general-
ization of the concept of the classical elimination tree by considering elimination
forests with level functions explicitly defined on their vertex sets. In this context
a rooted forest is meant as a disjoint union of rooted trees. We start with a notion
of the classical elimination tree that we call here a free elimination tree. For the
sake of correctness we point out that all graphs G = (V,E) considered in this
paper are finite, simple and undirected, with vertex set V and edge set E.

Definition 1. A free elimination tree for a connected graph G is a rooted tree
T defined recursively as follows:

1. let V (T) = V (G) and let an arbitrary vertex r ∈ V (T) be the root of T ,
2. if |V (G)| = 1, then let E(T) = ∅. Otherwise, let E(T) =

⋃k
i=1

(
E(Ti) ∪ {ei}

)

where k is the number of connected components of G − r, and Ti stands for
an elimination tree for the i-th connected component of G − r with the root
r(Ti) joined by the edge ei with the root r of T , i.e., ei = {r(Ti), r}.

Definition 2. Let G be a graph with k connected components. A free elimination
forest for G is the disjoint union of k free elimination trees, each of which is
determined for distinct connected component of G.

102 P. Borowiecki et al.

Given two vertices u and v of a rooted forest F , we say that v is an ancestor of
u if v belongs to the path with the end-vertices in u and the root of the connected
component of F that contains u. If v is an ancestor of u and {v, u} ∈ E(F), then
v is the parent of u while u is a child of v.

Definition 3. Let F be a free elimination forest for a graph G, and let f :
V (F) → Z

+ be a level function, i.e. a function such that f(u) < f(v) whenever
v is an ancestor of u. A free elimination forest F with a level function f is called
an elimination forest for G and it is denoted by Ff .

For an elimination forest Ff its height h(Ff) is defined as max{f(v) | v ∈
V (Ff)}. Clearly, the maximum can be attained only for the roots of the con-
nected components of Ff . Now, for every i ∈ {1, . . . , h(Ff)} we define the i-th
level Li(Ff) of Ff as the set of vertices v in V (Ff) for which f(v) = i (notice
that we allow empty levels). In a natural way the width w(Ff) of elimination
forest Ff is defined as maxi |Li(Ff)|, where i ∈ {1, . . . , h(Ff)}.

We point out that the above definitions do not impose the placement of the
roots of all k connected components of Ff at the highest level. In fact, each root
can be placed at an arbitrary level. Moreover, it is also not required that adjacent
vertices of an elimination forest occupy consecutive levels. Also note that though
the definition of the classical elimination tree does not explicitly give any level
function, one of the possible functions can be, and usually is, implicitly deduced
by assuming that each level is formed by a single recursive step in Definition 1.

Definition 4. Let G be a graph and let b be a positive integer. The bounded-
width tree-depth btd(G, b) of a graph G is the minimum k for which there exists
an elimination forest Ff for a graph G such that h(Ff) = k and w(Ff) ≤ b.

Note that for every G and b > 0 there always exists some elimination forest
of width bounded by b. In what follows we omit subscript f whenever level
function f is clear from the context. We can now formulate our main problem.

Bounded-Width Tree-Depth (BTD)

Input: A graph G, positive integers k and b.
Question: Does btd(G, b) ≤ k hold?

The above seemingly small differences in the classical and our definitions
play an important role both in our NP-completeness reduction and algorithm.
They significantly affect the bounded-width tree-depth problem complexity thus
making it different than that of the classical tree-depth. The classical tree-depth
problem can be solved in linear time for line graphs of trees [16,20]. The gener-
alization we consider turns out to be NP-complete.

Theorem 1. BTD problem is NP-complete for line graphs of trees.

The proofs given in Sect. 3 reveal that bounded-width tree-depth behaves
differently than the original tree-depth problem strongly depending on the con-
nectivity of the graph. Specifically, for tree-depth, only connected graphs are of

The Complexity of Bicriteria Tree-Depth 103

interest since tree-depth of a non-connected graph is just the maximum tree-
depth taken over its connected components. In the bounded-width tree-depth
problem, the connected components interact. En route of proving Theorem 1,
we first obtain hardness of the problem for line graphs of forests and then we
extend it to get the NP-completeness of BTD for line graphs of trees.

On the positive side, we develop an approximation algorithm for line graphs
of trees. Here, the fact that minimum height elimination tree (or equivalently an
optimal tree-depth) can be found efficiently [16,20] turns out to be very useful—
we start with such a tree (with some additional preprocessing) and squeeze it
down so that its width becomes as required. The squeezing-down is done in a
top-down fashion, by considering the highest level that contains more than b
vertices, and moving the excess vertices downwards. The algorithm moves down
those vertices that are the roots of the subtrees of the smallest height. This leads
to polynomial-time approximation algorithm with an additive error of 2b.

Theorem 2. There exists a polynomial-time additive 2b-approximation algo-
rithm for BTD problem for line graphs of trees.

We note that our algorithm is different from the one for trees in [28]. Finding bal-
anced vertex separators for trees is easy an hence in [28] it is guaranteed that after
an initial recursive search one gets a forest with components of roughly similar
size. Then, a solution can be constructed by putting the vertices of each com-
ponent on pairwise distinct levels. In contrast, for line graphs of trees balanced
separators do not exist in general. Thus we initialize our algorithm with a min-
imum height elimination tree, for otherwise using involved bottom-up dynamic
programming as in [16,20] seems unavoidable. Another difference is that it is
unknown if there exists an optimal polynomial-time algorithm for trees.

2 Preliminaries

For the sake of clarity and to avoid involved notation and argument, necessary
when carrying the proofs directly on line graphs, we use EG to denote an elim-
ination forest for the line graph L(G) of a graph G. Consequently, since by the
definitions of line graph and elimination forest, there is a natural one-to-one
correspondence between the edges of a graph G and the vertices of its line graph
and hence the vertices of an elimination forest EG, for each edge of G we shortly
say that it corresponds to the appropriate vertex v of EG and that it belongs to
the level of EG that contains v. Also, with a small abuse of notation the above
one-to-one correspondence allows the use of any level function �, determined for
an elimination forest EG, as if it was defined on E(G). Thus for every edge e in
E(G) we say that �(e) = p if for the corresp. vertex v of EG it holds v ∈ Lp(EG).

Concerning the properties of level functions in the above-mentioned common
context of a graph G and elimination forest EG, we note that if two distinct
edges e1, e2 are adjacent in G, then they cannot belong to the same level of
EG, i.e., �(e1) �= �(e2). Similarly, it is not hard to see that in the recursive
elimination process performed on the vertices of L(G) (according to Definition 1)

104 P. Borowiecki et al.

all vertices eliminated at the same recursive step belong to distinct components
of the processed graph, and for each of them the value of a level function is
greater than for the vertices eliminated in further steps. In other words, for
distinct edges e1, e2 of G such that �(e1) = �(e2) every path with end-edges
e1, e2 contains an edge e′ such that �(e′) > �(e1). Note that considering � as a
function defined on E(G) and satisfying both of the above-mentioned properties,
� can be equivalently seen as an edge ranking of a graph G (see e.g. [13]).

We use the same common context to define the visibility of a level from a
vertex in G. Namely, for a vertex v in G we say that the p-th level is visible
in G from v if there exists an edge e = {u1, u2} with �(e) = p and G contains
a path with end-vertices v, u, where u ∈ {u1, u2} and for each edge e′ of the
path �(e′) ≤ p. The set of levels visible in G from v is denoted by vis(G, v).
When determining the levels admissible for a given edge in a graph G (or for the
corresponding vertex in elimination forest EG) we need to consider and forbid
all levels visible from both end-vertices of that edge, i.e., the level p is admissible
for e = {u1, u2} if neither p ∈ vis(G − e, u1) nor p ∈ vis(G − e, u2).

3 NP-completeness of BTD

Technically, we prove NP-completeness of BTD performing a polynomial-time
reduction from the Minimum hitting set (MHS) problem.

Minimum Hitting Set (MHS)

Input: A set A = {a1, . . . , an}, subsets A1, . . . , Am of A, an integer t ≥ 0.
Question: Is there an A′ ⊆ A such that |A′| ≤ t and A′ ∩Aj �= ∅, j ∈ {1, . . . , m}?

Construction. On the basis of the input to the MHS problem, we construct
an appropriate forest F consisting of the tree T , called the main component,
and some number of additional connected components created on the basis of
‘template’ trees T d defined later on. By Sn we denote an n-vertex star, and
for a vertex v in G we use S(v) to denote its subgraph induced by v and its
neighbors of degree 1. An important parameter in our construction is an integer
M given at the end of this section. First, we focus on the structure of the
main component T obtained by the identification of distinguished vertices ri of
the trees T (ai) constructed for the corresponding ai ∈ A, i ∈ {1, . . . , n}. The
common vertex r, resulting from the identification, becomes the root of T . Next,
we add M +3(m−1)+4 edges incident to r (hence S(r) is a star SM+3(m−1)+5).
As the building blocks of T (ai) we need graphs Gα with α ≥ M + 1 and graphs
G(ai) (for their structure, see Fig. 1). The graph Gα has one distinguished vertex
called a connector, denoted by w1, while G(ai) has two connectors ri and vi. The
stars in the ‘loops’ in Fig. 1 have their central vertex marked in black. From a
slightly informal perspective, we describe T (ai) as ’star-shaped’ structure formed
with m + 1 graphs T0, . . . , Tm, where T0 = G(ai), Tj = Gϕ(j) with

ϕ(j) = M + 3(j − 1) + 1

for every j ∈ {1, . . . , m}. More formally, T (ai) is formed by the identification of
the connector vi of T0 with the connector w1, done for each Tj , j ∈ {1, . . . , m}.

The Complexity of Bicriteria Tree-Depth 105

ri

ui

vi

Sk−2i+1

Sk−2i+1

(a) u′
i

(c)

...

Sϕ(1)+1

Sϕ(2)+1

Sϕ(m)+1v′
i

G(ai)

w1

(b)

Sα+1

w2

SαSα+2

w3

Sα Sα+1

Gα

w′
1 w′

3 w′
2

S(w2)

r

...

xd+1 xk

SkSd+1

P2M

T d

...
...

zk−2i

zϕ(m)+4Sϕ(m)+4

Sϕ(m)+5

Sk−2i

XY (ai)

Fig. 1. The graphs used in Construction: (a) G(ai), (b) Gα, (c) T d, where M ≤ d < α.

To complete the construction of T (ai), for every Aj containing ai we take a
copy of an 2M -vertex path P2M and identify one of its end-vertices with a leaf
of S(w2) of the corresponding tree Tj in T (ai) (P2M is now attached at Tj). At
this point, we remark on the structure of T . We note that G(ai) depends on ai

which determines the degrees of u′
i, v

′
i and vi, and hence the number of vertices

in {zϕ(m)+4, . . . , zk−2i} (see Fig. 1(a)). Also note that for a given ai ∈ A the trees
T1, . . . , Tm in T (ai) are pairwise different and their structure depends on j. On
the other hand T1, . . . , Tm are independent of ai. For distinct elements ai1 , ai2 ∈
A the structure of T (ai1) and T (ai2) differs, which follows from dissimilarity of
G(ai1) and G(ai2) and varying ’attachment patterns’ of paths P2M . To finish the
construction of the forest F we use the trees T d with d ≥ M (see Fig. 1(c); the
path P2M is said to be attached at T d). Namely, the forest F is composed of a
single copy of T , 2n − |Aj | + 1 copies of Tϕ(j)−1 for j = 1, and n − |Aj | + 1
copies of Tϕ(j)−1 for each j ∈ {2, . . . , m}, as well as n − 1 copies of Tϕ(j) and
n copies of Tϕ(j)+1 with both templates taken for each j ∈ {1, . . . , m}. In what
follows, referring to a path P2M we always mean one of the paths P2M used in
this construction. Define m:

m = |E(F) \
⋃

E(P2M)|, where the sum runs over all paths P2M . (1)

We remark that m depends on k because the construction of F depends on k.
For the BTD problem, we set the input parameters b and k to be:

k = M + 1 + 3m + 2n + t, b = n2M + m (2)

where M is chosen as a minimum integer satisfying M ≥ 2�log2 m+1. This can
be rewritten as 2M > 4m2 (we use this form in the proof). We remark that the
values of the parameters can be set to be polynomial in m,n and t. It follows
from the construction that m is polynomially bounded in k, that is, m ≤ c1k

c for
some constants c1 and c. Take M and k so that M ≥ 2c log2 k+2 log2 c1+3. This
can be done in view of (2). This fixes the values of m and b. Since 2c log2 k +
2 log2 c1 + 3 ≥ 2�log2 m + 1, it holds 2M > 4m2. This bound on M implies
k = O(m + n + t) and thus m, 2M and b are polynomial in m,n and t.

The Idea of the Proof. First of all, we note that the vast majority of edges in
the forest F belongs to the additional components, which due to their structure

106 P. Borowiecki et al.

fit into precisely planned levels of an elimination forest EF , thus leaving exactly
the right amount of capacity on those levels where the main component gad-
gets come into play. The positioning of elimination subtrees corresponding to
appropriate paths P2M is determined in Lemma 4; also see Fig. 2 for a sketch of
elimination subtrees fitting into appropriate levels. Though most of the capacity
consumed by the main component can be attributed to the paths P2M (attached
at leaves of respective instances of the gadget Gα) the role of just a few edges
of G(ai) and Gα cannot be overestimated. As we will see, the assignment of
the edge {ui, vi} to the level k − 2i + 2 is equivalent to including the element
ai in the solution A′. Due to the sensitivity of the gadget Gα to what levels
are visible from its connector w1 ‘outside’ Gα (see Lemmas 1 and 2) we get a
coupling between the level of {ui, vi} and the highest level that can be occupied
by the so called ’root edge’ of the path P2M attached at Gα, when particular
instance Gϕ(j) of the gadget in T (ai) corresponds to the set Aj containing ai.
More specifically, if �({ui, vi}) = k − 2i + 2, then the root edge of such a paths
P2M can be moved to ϕ(j) from ϕ(j) − 1 allowing all of its other edges to be
moved one level up, thus gaining the increase of the free space at the level that
has been previously occupied by roughly half of its edges.

2n − (|A1| − 1)

...

|A1| − 1

...

n − 1

...

n

...

...

...

1

2

3

M = ϕ(1)− 1

M + 1 = ϕ(1)

M + 2 = ϕ(1) + 1

...

Fig. 2. Positioning of elimination subtrees corresp. to P2M ’s in the main and additional
components (dashed and solid lines, resp.) of the forest F . A snapshot for j = 1.

The bound t on the size of solution A′ is met by attaching appropriate number
of edges pending at the root r of the main component T . The number of such
edges depends on t and it is calculated in such a way that in at most t of n
subgraphs T (ai) the edge {r, ui} will be allowed at level not exceeding k−2n. In
Lemma 3 we show that either {r, ui} or {ui, vi} must occupy the level k − 2i+2
and hence there will be at most t subgraphs T (ai) with the edge {ui, vi} assigned
to the level k − 2i + 2 and triggering the above-mentioned process of lifting.

Proof of NP-Completeness. We always treat the gadgets as if they were sub-
graphs of the forest F , e.g., when analyzing admissibility of levels for particular
edges of Gα, we use vis(F ′, w1) to refer to the levels visible from w1 in F ′, where
F ′ is a graph induced by V (F)\V (Gα − w1).

Lemma 1. If α + 2 or α + 3 belongs to vis(F ′, w1), then for every elimination
tree EGα

it holds h(EGα
) > α+3. If neither α+2 nor α+3 belongs to vis(F ′, w1)

and α + 1 ∈ vis(F ′, w1), then in every elimination tree EGα
of height α + 3 the

The Complexity of Bicriteria Tree-Depth 107

ri

ui

vi

(a)

u′
i

Gϕ(1)
v′

i

Y (ai)

...

ϕ(m) + 4

ϕ(m) + 5

k − 2i

k − 2i + 1 Gϕ(j)

Gϕ(m)

ϕ(j) + 2

ϕ(j) + 3

ϕ(m) + 2

ϕ(m) + 3

≤ ϕ(1)

ϕ(1) + 1

ϕ(j) + 1

ϕ(m) + 1

X
k − 2i + 1

> k − 2i + 2

k − 2i + 2 ...
...

..
.

...

..
.

ri

ui

vi

(b)

u′
i

Gϕ(1)
v′

i

Y (ai)

...

ϕ(m) + 4

ϕ(m) + 5

k − 2i

k − 2i + 1 Gϕ(j)

Gϕ(m)

ϕ(j) + 2
ϕ(j) + 3

ϕ(m) + 2
ϕ(m) + 3

ϕ(j) + 1

ϕ(m) + 1

X

k − 2i + 1

> k − 2i + 2

k − 2i + 2

...

...

..
.

≤ k − 2n

Fig. 3. The two major cases of visibility (the arrows point the levels visible from vi).

levels admissible for S(w2) are in {1, . . . , α}, and the only levels visible from w1

in Gα are α + 2 and α + 3.

Lemma 2. If neither α + 1, α + 2 nor α + 3 belongs to vis(F ′, w1), then there
exists an elimination tree EGα

of height α + 3 with all edges of S(w2) at levels
in {2, . . . , α + 1} and such that only the levels α + 1, α + 2 and α + 3 are visible
from w1 in Gα. Moreover, there is no elimination tree EGα

with h(EGα
) < α+3.

The next lemma describes the mutual interaction between distinguished edges of
G(ai), which manifests as a ‘switching’ property of the gadget and allows ‘lifting’
of appropriate elimination subtrees preserving the bound b on the level size.

Lemma 3. If ET is an elimination tree of height k, then for each i ∈ {1, . . . , n}
either �({r, ui}) = k − 2i + 2 or �({ui, vi}) = k − 2i + 2, and each level p ∈
{k − 2i + 1, . . . , k} is visible from r in the subgraph induced by the vertices of
T (a1), . . . , T (ai).

Consequently, if ET is an elimination tree of height k, then each level in
{k − 2n + 1, . . . , k} is visible in T from r and if �({ui, vi}) = k − 2i + 2, then
�({r, ui}) ≤ k − 2n, i ∈ {1, . . . , n}. Note that if �({r, ui}) = k − 2i + 2, then
due to the visibility of particular levels, the edge {ui, vi} must be assigned to
a level p satisfying p < M , which is crucial in our reduction. In fact, pushing
{ui, vi} to a low level triggers the above-mentioned ’switching’ by making certain
levels in the subgraph X visible from the vertex vi (see Fig. 3). In particular,
for each j ∈ {1, . . . , m} the level ϕ(j) + 1 becomes visible in X from the vertex
w1 ∈ V (Gϕ(j)) which by Lemma 1 results in impossibility of ’lifting’ EP2M

for
P2M is attached at Gϕ(j).

The root edge of the path P2M , denoted by r(P2M), is the edge at the highest
level of EP2M

. An important aspect of lifting the elimination subtrees is that of
estimating the highest possible levels at which the root edges of P2M ’s can be

108 P. Borowiecki et al.

placed in EF . In what follows R is the set of all root edges, and Rm, Ra are the
subsets of those in the main and additional components, respectively.

Lemma 4. Let F be the forest corresponding to an instance of the MHS problem
and let EF be b-bounded. For each i ∈ {1, . . . , n} and j ∈ {1, . . . , m} it holds:

(a) If P2M is attached at Tj of T (ai), then �(r(P2M)) ∈ {ϕ(j) − 1, ϕ(j)}.
(b) If P2M is attached at T d with d = ϕ(j) − 1, then r(P2M) ∈ Ld(EF).
(c) |Lϕ(j)−1(EF) ∩ R| ≤ η, where η = 2n if j = 1, and η = n if j ∈ {2, . . . , m}.
Theorem 3. The BTD problem is NP-complete for line graphs of forests.

Proof (sketch). Let A, t and A1, . . . , Am form an instance of the MHS problem,
and let F and b be as in Construction (recall k = M + 3m + t + 2n + 1).

(⇒) We are going to argue that if there exists a b-bounded elimination forest
EF such that h(EF) ≤ k, then there exists a solution A′ to the MHS problem
such that |A′| ≤ t. A solution to the MHS problem is defined as follows:

ai ∈ A′ if and only if �({ui, vi}) = k − 2i + 2, (3)

for each i ∈ {1, . . . , n}. First we prove that |A′| ≤ t. Let H be a connected
component of the graph obtained from F by the removal of all edges e for which
in EF it holds �(e) > k − 2n and such that the root r of T belongs to H.
Clearly, h(EH) ≤ k − 2n. On the contrary, suppose that |A′| > t. We know
that if �(ui, vi) = k − 2i + 2 (i.e. when by (3) ai ∈ A′), then {r, ui} ∈ E(H).
Moreover, |E(S(r))| = k − 2n − t and hence E(S(r)) ⊆ E(H). Thus dH(r) ≥
|E(S(r))|+|A′| = k−2n−t+|A′| > k−2n, which in turn implies h(EH) > k−2n,
a contradiction. Now, we prove a ’hitting property’, i.e. A′ ∩ Aj �= ∅ for each
Aj with j ∈ {1, . . . , m}. By Lemma 4(b), η − |Aj | + 1 elements in Ra belong to
Lϕ(j)−1(EF). If |Aj | elements in Rm were additionally contained in Lϕ(j)−1(EF),
then |Lϕ(j)−1(EF) ∩ R| > η, which would contradict Lemma 4(c). Therefore at
least one element in Rm, say the one related to P2M attached at Tj of T (ai∗),
must be assigned to a level different from ϕ(j) − 1 which by Lemma 4(a) is
exactly the level ϕ(j). It holds (we omit details) that if �({r, ui}) = k − 2i + 2,
then in every ET [ui] of height k − 2i + 1 for each edge e of S(w2) in Tj we have
�(e) ∈ {1, . . . , ϕ(j)}. Thus �({r, ui∗}) �= k − 2i∗ + 2 and hence by Lemma 3 we
have �({ui∗ , vi∗}) = k − 2i∗ + 2 which by (3) results in ai∗ ∈ A′.

(⇐) Now, we show that if there exists a solution A′ to the MHS problem
such that |A′| ≤ t, then there exists a b-bounded elimination forest EF with
h(EF) ≤ k. Given A′, we have to define on E(F) a level function � with values
at most k. Starting with the edges {ui, vi} and {r, ui} for all i ∈ {1, . . . , n} we
set �({ui, vi}) = k − 2i + 2 if ai ∈ S′, and �({r, ui}) = k − 2i + 2 otherwise. For
the remaining edges, the values of � follow from omitted proofs of Lemmas 1–4,
properties of our gadgets, and the analysis of P2M ’s attached at subgraphs Tj of
the main component T . We focus on the last aspect. By assumption, for each j ∈
{1, . . . , m} there exists ai∗ ∈ A′ ∩Aj and hence we set �({ui∗ , vi∗}) = k−2i∗ +2.
Omitting details, we observe that there exists an elimination tree ET [vi] of height

The Complexity of Bicriteria Tree-Depth 109

k − 2i + 1 such that the levels in {2, . . . , ϕ(j) + 1} are admissible for the edges
of S(w2) in each Tj of T (ai∗). Let �(e) = ϕ(j) + 1, where e is an edge of S(w2)
sharing an end-vertex with the P2M attached at Tj . This allows r(P2M) at level
ϕ(j) (with other edges of P2M assigned to the levels ϕ(j)−M +1, . . . , ϕ(j)− 1).
For the remaining |Aj | − 1 paths P2M , their root edges we assign to the level
ϕ(j)−1. Considering the elements in Ra, independently, for each j ∈ {1, . . . , m}
we get η − |Aj | − 1, n − 1 and n root edges (of the paths P2M attached at
components T d with d ∈ {ϕ(j) − 1, ϕ(j), ϕ(j) + 1}) that by Lemma 4(b) are
already assigned to respective levels d. Thus summing the elements in Rm and
Ra for each level p ∈ {ϕ(j) − 1, ϕ(j), ϕ(j) + 1} we obtain |Lp(EF) ∩ R| ≤ η.
The proof is completed by showing that each level contains at most b elements.
Namely, each level p contains 2s vertices corresponding to the edges of P2M

rooted at level p + s for each s ∈ {0, . . . ,M − 1}. Therefore, if W denotes the
set of all edges of F that do not belong to the paths P2M , we get

|Lp(EF)| ≤ η

M−1∑

s=0

2s + |W ∩ Lp(EF)| ≤ n2M + m
(2)
= b. ��

Transition from a forest to a tree is done by spanning all connected components
of a forest F into specific tree T . Then the reduction from BTD for forests is
used as the crux of the proof of Theorem 1.

4 The Approximation Algorithm

For an elimination tree ET and its vertex v, we denote by ET [v] the subtree
of ET induced by v and all its descendants in ET . By lowering a vertex v we
mean a two-phase operation of moving all vertices in ET [v] one level down in
ET (i.e., decreasing �(u) by 1 for each u ∈ V (ET [v])) and if for the resulting
function there is a vertex u ∈ V (ET [v]) with �(u) ≤ 0, then incrementing �(w)
for each w ∈ V (ET). (The former ‘normalization’ is to ensure that levels are
positive integers.) Though always feasible, it may produce an elimination tree
with height larger than the initial one. We say that an elimination tree ET is
compact if every subtree of ET occupies a set of consecutive levels in ET . This
can be easily ensured in linear time. Namely, for each {v, u} ∈ E(ET) such
that �(v) < �(u) − 1, increment the level of v and all its descendants. Given an
elimination tree ET , we distinguish a specific type of the root-leaf paths. Namely,
by a trunk we mean a path (v1, . . . , vk) from the root vk to an arbitrary leaf v1
at level 1 of ET (note that only leaves at level 1 are admissible). We use trunks
to define branches at the vertices vi with i ∈ {2, . . . , k} of the trunk (v1, . . . , vk),
where for particular vertex vi a branch is understood as a subtree ET [v] with v
being a child of vi such that v �= vi−1. Since elimination trees we consider are
binary trees, a branch with respect to a given trunk is uniquely determined. For
any elimination tree ET , the b highest levels are called its prefix. A subtree of ET

is thin if in each level it has at most one vertex. A level i is full if |Li(ET)| ≥ b.

Preprocessing Steps. In this section we introduce operations of stretching and
sorting of elimination trees that constitute two major steps of the preprocessing

110 P. Borowiecki et al.

phase of our algorithm. We start with an operation of stretching a subtree ET [v].
If subtree is thin or its height is at least b, then stretching leaves the subtree
unchanged. Otherwise, we note later on, that it is enough to consider the case of
a vertex v at level l with two children u1 and u2 at level l − 1 such that ET [u1]
and ET [u2] are thin and compact. Let li denote the lowest level occupied by a
vertex of ET [ui], i ∈ {1, 2}, so the levels occupied by the vertices of ET [ui] are
li, . . . , l − 1. Then, stretching ET [v] is realized by lowering l − l1 times the vertex
u2 so that it is placed at the level l1 − 1. Consequently, ET [v] becomes thin and
occupies at most 2l − l1 − l2 + 1 levels with the root v at level l, the vertices of
ET [u1] remaining at levels in l1, . . . , l−1 and the vertices of ET [u2] moved to the
levels in l1 − l + l2, . . . , l1 − 1. (For simplicity, we referred here to the levels of all
vertices according to the level function of the initial elimination tree, i.e., before
the ‘normalization’ applied after each lowering of a vertex.) For an elimination
tree ET , a stretched elimination tree E ′

T is obtained by stretching each subtree
ET [v] of ET , where the roots v are selected in postorder fashion, i.e., for each v we
stretch the subtrees rooted at the children of v before stretching ET [v]. Clearly,
the transition from ET to E ′

T can be computed in linear time.

Observation 1. If E ′
T is a stretched elimination tree obtained from a compact

elimination tree ET , then h(E ′
T) ≤ h(ET) + 2b and E ′

T is compact. Moreover, if
for a vertex v, |V (ET [v])| ≥ b, then E ′

T [v] has height at least b.

Suppose that ET is an elimination tree with a vertex z1 and its child z2. A switch
of z1 and z2 is the operation on ET as shown in Fig. 4 (intuitively, the switch
results in exchanging the roles of the subtrees ET [z3] and ET [z4] while the aim
of switching is to obtain a type of ordering of the subtrees). We note that this
concept has been used on a wider class of non-binary elimination trees under the
names of tree rotations or reorderings (see, e.g. [18]). Here we define switching
with no connection to whether z1 and z2 belong to a given trunk or not. Later
on, we use this operation with respect to the location of particular trunks. If
switch is performed on an elimination tree for some graph G, then the resulting
tree is also an elimination tree for G. We say that ET is sorted along a trunk
(v1, . . . , vk) (recall that vk is the root) if the height of the branch at vi is at most

(a)

ET [z3]

z1

z2 z3

z4
z5

ET [z5]
ET [z4]

...

level l

level l − 1

(b)

ET [z4]

z2

z1 z4

z3
z5

ET [z5]
ET [z3]

...

level l

level l − 1

e1
e3

e2
l l − 1

e4

e5

l − 1

l − 2

l − 2

ET [z5]

ET [z4] ET [z3]

Fig. 4. A switch of z1 and z2: (a) ET ; (b) ET after the switch; (c) the levels after the
switch shown on the tree T , where each zi in ET corresponds to the edge ei in T ;

The Complexity of Bicriteria Tree-Depth 111

that of the branch at vi+1, where i ∈ {2, . . . , k − 1}. We say that ET is sorted if
for each vertex v of ET , the subtree ET [v] is sorted along each of its trunks. It
is important to note that the notion of a trunk pertains to any elimination tree
and hence can be equally applied not only to ET but also to any of its subtrees.

Lemma 5. For each tree T , there exists a sorted ET of minimum height and it
can be computed in polynomial time.

Formulation of the Algorithm. Informally, the algorithm starts with a mini-
mum height elimination tree that is stretched and sorted. In each iteration of the
main loop the following takes place. If the current elimination tree is b-bounded,
then the algorithm finishes. Otherwise, in the highest level that has more than
b vertices, the lowest subtree rooted at a vertex v is located. Then, v is lowered.

Algorithm BTD: bounded-width tree-depth approximation for L(T)

1 Let ET be a minimum height compact elimination tree for L(T)
2 Obtain E0

T by first making ET stretched and then sorted, and set t ← 0
3 while Et

T is not b-bounded do
4 Find the highest level lt such that |Llt(Et

T)| > b
5 v ← arg minu h(Et

T [u]), where u iterates over all vertices in Llt(Et
T)

6 Obtain Et+1
T by lowering v in Et

T and increment t

7 return Et
T

Analysis (Sketch). The complexity follows from [16,20].
Since lowering any vertex gives a valid elimination tree, the final Eτ

T is a b-
bounded elimination tree. An informal outline of its height analysis is as follows.
We introduce the following structural property of an elimination tree. Let l1 <
· · · < ld be the full levels of an elimination tree ET except for the highest b − 1
levels. We say that ET is structured if either all levels with at least b vertices
belong to the prefix or ld = h(ET)−b+1 and li = li−1+1 for each i ∈ {2, . . . , d}.
In other words, in a structured elimination tree the full levels that are not in the
prefix form a consecutive segment that reaches the lowest level of the prefix. It
turns out that E0

T obtained in line 2 of Algorithm BTD is structured.
The two following invariants along the iterations of the loop are maintained,

when transforming Et−1
T to Et

T . If some level h(Et
T)−l becomes full, then the level

h(Et
T) − l + 1 should be also full at this point, and both levels should stay full

in the future iterations. This essentially means that the trees Et
T , t > 0, remain

structured. Therefore, if for the final elimination tree Eτ
T , h(Eτ

T) > h(E0
T), then at

most b levels are not full: the highest b−1 ones and level 1. Thus, h(Eτ
T) ≤ b+ m

b ,
where m is the number of edges in T . This ensures the required approximation
bound, since in the case h(Eτ

T) = h(E0
T) by Observation 1 we know that this

height is additively at most b from btd(L(T), b). This proves Theorem 2.

112 P. Borowiecki et al.

References

1. Ben-Asher, Y., Farchi, E., Newman, I.: Optimal search in trees. SIAM J. Comput.
28(6), 2090–2102 (1999)

2. Bodlaender, H.L., et al.: Rankings of graphs. SIAM J. Discrete Math. 11(1), 168–
181 (1998)

3. Carmo, R., Donadelli, J., Kohayakawa, Y., Laber, E.S.: Searching in random par-
tially ordered sets. Theor. Comput. Sci. 321(1), 41–57 (2004)

4. Cicalese, F., Jacobs, T., Laber, E.S., Valentim, C.D.: The binary identification
problem for weighted trees. Theor. Comput. Sci. 459, 100–112 (2012)

5. Cicalese, F., Keszegh, B., Lidický, B., Pálvölgyi, D., Valla, T.: On the tree search
problem with non-uniform costs. Theor. Comput. Sci. 647, 22–32 (2016)

6. Dereniowski, D.: Edge ranking of weighted trees. Discret. Appl. Math. 154(8),
1198–1209 (2006)

7. Dereniowski, D.: Edge ranking and searching in partial orders. Discret. Appl. Math.
156(13), 2493–2500 (2008)

8. Dereniowski, D., Kosowski, A., Uznański, P., Zou, M.: Approximation strategies
for generalized binary search in weighted trees. In: ICALP 2017, pp. 84:1–84:14
(2017)

9. Dereniowski, D., Nadolski, A.: Vertex rankings of chordal graphs and weighted
trees. Inf. Process. Lett. 98(3), 96–100 (2006)

10. Emamjomeh-Zadeh, E., Kempe, D.: A general framework for robust interactive
learning. In: NIPS 2017, pp. 7082–7091 (2017)

11. Giannopoulou, A.C., Hunter, P., Thilikos, D.M.: LIFO-search: a min-max theorem
and a searching game for cycle-rank and tree-depth. Discret. Appl. Math. 160(15),
2089–2097 (2012)

12. Iyer, A.V., Ratliff, H.D., Vijayan, G.: Optimal node ranking of trees. Inf. Process.
Lett. 28(5), 225–229 (1988)

13. Iyer, A.V., Ratliff, H.D., Vijayan, G.: On an edge ranking problem of trees and
graphs. Discret. Appl. Math. 30(1), 43–52 (1991). https://doi.org/10.1016/0166-
218X(91)90012-L

14. Laber, E.S., Milidiú, R.L., Pessoa, A.A.: On binary searching with nonuniform
costs. SIAM J. Comput. 31(4), 1022–1047 (2002)

15. Lam, T.W., Yue, F.L.: Edge ranking of graphs is hard. Discret. Appl. Math. 85(1),
71–86 (1998)

16. Lam, T.W., Yue, F.L.: Optimal edge ranking of trees in linear time. Algorithmica
30(1), 12–33 (2001)

17. Liu, J.W.: The role of elimination trees in sparse factorization. SIAM J. Matrix
Anal. Appl. 11(1), 134–172 (1990)

18. Liu, J.: Equivalent sparse matrix reorderings by elimination tree rotations. SIAM
J. Sci. Stat. Comput. 9(3), 424–444 (1988)

19. Makino, K., Uno, Y., Ibaraki, T.: On minimum edge ranking spanning trees. J.
Algorithms 38(2), 411–437 (2001)

20. Mozes, S., Onak, K., Weimann, O.: Finding an optimal tree searching strategy in
linear time. In: SODA 2008, pp. 1096–1105 (2008)

21. Nešetřil, J., de Mendez, P.O.: Tree-depth, subgraph coloring and homomorphism
bounds. Eur. J. Comb. 27(6), 1022–1041 (2006)

22. Onak, K., Parys, P.: Generalization of binary search: searching in trees and forest-
like partial orders. In: FOCS 2006, pp. 379–388 (2006)

https://doi.org/10.1016/0166-218X(91)90012-L
https://doi.org/10.1016/0166-218X(91)90012-L

The Complexity of Bicriteria Tree-Depth 113

23. Schäffer, A.A.: Optimal node ranking of trees in linear time. Inf. Process. Lett.
33(2), 91–96 (1989)

24. de la Torre, P., Greenlaw, R., Schäffer, A.A.: Optimal edge ranking of trees in
polynomial time. Algorithmica 13(6), 592–618 (1995)

25. Zhou, X., Kashem, M.A., Nishizeki, T.: Generalized edge-rankings of trees
(extended abstract). In: d’Amore, F., Franciosa, P.G., Marchetti-Spaccamela, A.
(eds.) WG 1996. LNCS, vol. 1197, pp. 390–404. Springer, Heidelberg (1997).
https://doi.org/10.1007/3-540-62559-3 31

26. Zhou, X., Nishizeki, T.: An efficient algorithm for edge-ranking trees. In: van
Leeuwen, J. (ed.) ESA 1994. LNCS, vol. 855, pp. 118–129. Springer, Heidelberg
(1994). https://doi.org/10.1007/BFb0049402

27. Zhou, X., Nishizeki, T.: Finding optimal edge-rankings of trees. In: SODA 1995,
pp. 122–131

28. Zwaan, R.: Vertex ranking with capacity. In: van Leeuwen, J., Muscholl, A., Peleg,
D., Pokorný, J., Rumpe, B. (eds.) SOFSEM 2010. LNCS, vol. 5901, pp. 767–778.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11266-9 64

https://doi.org/10.1007/3-540-62559-3_31
https://doi.org/10.1007/BFb0049402
https://doi.org/10.1007/978-3-642-11266-9_64

TS-Reconfiguration of Dominating Sets
in Circle and Circular-Arc Graphs

Nicolas Bousquet and Alice Joffard(B)

LIRIS, CNRS, Université Claude Bernard, Lyon, France
{nicolas.bousquet,alice.joffard}@liris.cnrs.fr

Abstract. We study the dominating set reconfiguration problem with
the token sliding rule. Let G be a graph G = (V,E) and two dom-
inating sets Ds and Dt of G. The goal is to decide if there exists a
sequence S = 〈D1 := Ds, . . . , D� := Dt〉 of dominating sets of G such
that for any two consecutive dominating sets Dr and Dr+1 with r < t,
Dr+1 = (Dr \ u) ∪ {v}, where uv ∈ E.

In a recent paper, Bonamy et al. [3] studied this problem and raised
the following questions: what is the complexity of this problem on
circular-arc graphs? On circle graphs? In this paper, we answer both ques-
tions by proving that the problem is polynomial on circular-arc graphs
and PSPACE-complete on circle graphs.

Keywords: Reconfiguration · Dominating sets · Token sliding · Circle
graphs · Circular-arc graphs

1 Introduction

Reconfiguration problems consist, given an instance of a problem, in determining
if (and in how many steps) we can transform one of its solutions into another one
via a sequence of elementary operations keeping a solution along this sequence.
The sequence is called a reconfiguration sequence.

Let Π be a problem and I be an instance of Π. Another way to describe a
reconfiguration problem is to define the reconfiguration graph RI , whose vertices
are the solutions of I and in which two solutions are adjacent if and only if we
can transform the first into the second in one elementary step. In this paper,
we focus on the Reachability problem that, given two solutions I, J of I,
returns true if and only if there exists a reconfiguration sequence from I to J .
Other works have focused on different problems such as the connectivity of the
reconfiguration graph or its diameter, see e.g. [4,7]. Reconfiguration problems
arise in various fields such as combinatorial games, motion of robots, random
sampling, or enumeration. It has been intensively studied for various rules and
problems such as satisfiability constraints [7], graph coloring [1,6], vertex covers
and independent sets [10,11,13] or matchings [2]. The reader is referred to the

This work was supported by ANR project GrR (ANR-18-CE40-0032).

c© Springer Nature Switzerland AG 2021
E. Bampis and A. Pagourtzis (Eds.): FCT 2021, LNCS 12867, pp. 114–134, 2021.
https://doi.org/10.1007/978-3-030-86593-1_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86593-1_8&domain=pdf
https://doi.org/10.1007/978-3-030-86593-1_8

TS-Reconfiguration of Dominating Sets in Circle and Circular-Arc Graphs 115

surveys [14,16] for a more complete overview on reconfiguration problems. In
this work, we focus on dominating set reconfiguration. Throughout the paper,
all the graphs are finite and simple.

Let G = (V,E) be a graph. A dominating set of G is a subset of vertices X
such that, for every v ∈ V , either v ∈ X or v has a neighbor in X. A dominating
set can be seen as a subset of tokens placed on vertices that dominates the
graph. Three types of elementary operations, called reconfiguration rules, have
been studied for the reconfiguration of dominating sets.

• The token addition-removal rule (TAR) where each operation consists in
either removing a token from a vertex, or adding a token on any vertex.

• The token jumping rule (TJ) where an operation consists in moving a token
from a vertex to any vertex of the graph.

• The token sliding rule (TS) where an operation consists in sliding a token
from a vertex to an adjacent vertex.

In this paper, we focus on the reconfiguration of dominating sets with the
token sliding rule. Note that we allow (as well as in the other papers on the
topic, see [3]) the dominating sets to be multisets. In other words, several tokens
can be put on the same vertex. Bonamy et al. observed in [3] that this choice
can modify the reconfiguration graph and the set of dominating sets that can be
reached from the initial one. More formally, we consider the following problem:
Dominating Set Reconfiguration under Token Sliding (DSRTS)
Input: A graph G, two dominating sets Ds and Dt of G.
Output: Does there exist a dominating set reconfiguration sequence from Ds

to Dt under the token sliding rule ?

Dominating Set Reconfiguration under Token Sliding. The dominating set recon-
figuration problem has been widely studied with the token addition-removal
rule. Most of the earlier works focused on the conditions that ensure that the
reconfiguration graph is connected in function of several graph parameters, see
e.g. [5,8,15]. From a complexity point of view, Haddadan et al. [9], proved that
the reachability problem is PSPACE-complete under the addition-removal rule,
even when restricted to split or bipartite graphs. They also provide linear time
algorithms in trees and interval graphs.

More recently, Bonamy et al. [3] studied the token sliding rule. They proved
that DSRTS is PSPACE-complete, even restricted to split, bipartite or bounded
treewidth graphs. They also provide polynomial time algorithms for cographs
and dually chordal graphs (which contain interval graphs). In their paper, they
raise the following question: is it possible to generalize the polynomial time
algorithm for interval graphs to circular-arc graphs ?

They also ask if there exists a class of graphs for which the maximum dom-
inating set problem is NP-complete but its TS-reconfiguration counterpart is
polynomial. They propose the class of circle graphs as a candidate.

116 N. Bousquet and A. Joffard

Our Contribution. In this paper, we answer the questions raised in [3]. First, we
prove the following:

Theorem 1. DSRTS is polynomial in circular-arc graphs.

The idea of the proof is that if we fix a vertex of the dominating set then we
can unfold the rest of the graph to get an interval graph. We can then use the
algorithm of Bonamy et al. on interval graphs to determine if we can slide the
fixed vertex to a better position. Our second main result is the following:

Theorem 2. DSRTS is PSPACE-complete in circle graphs.

This is answering a second question of [3]. The proof is inspired from the
proof that Dominating Set in circle graphs is NP-complete [12] but has to
be adapted in the reconfiguration framework by adding gadgets to have control
on the possible dominating sets of optimal size plus one.

The proofs of the statements marked with � are not given in this proceeding.

2 Preliminaries

Let G = (V,E) be a graph. Given a vertex v ∈ V , N(v) denotes the open
neighborhood of v, i.e. the set {y ∈ V : vy ∈ E}.

A multiset is defined as a set but an element can appear several times. The
number of times it appears is its multiplicity. The multiplicity of an element that
does not appear in the multiset is 0. Let A and B be multisets. The union of A
and B, denoted by A∪B, is the multiset containing only elements of A or B, and
in which the multiplicity of each element is the sum of their multiplicities in A
and B. The difference A\B is the multiset containing only elements of A, and in
which the multiplicity of each element is the difference between its multiplicity
in A and its multiplicity in B (if the result is negative then the element is not in
A \ B). By abuse of language, all along this paper, we refer to multisets as sets.

Under the token sliding rule, a move vi � vj , from a set Sr to a set Sr+1,
denotes the token sliding operation along the edge vivj from vi to vj , i.e. Sr+1 =
(Sr ∪ {vj}) \ {vi} with vj is in Sr. We say that a set S is before a set S′ in
a reconfiguration sequence S if S contains a subsequence starting with S and
ending with S′.

3 A Polynomial Time Algorithm for Circular-Arc Graphs

An interval graph G = (V,E) is an intersection graph of intervals of the real
line. In other words, the set of vertices is a set of real intervals and two ver-
tices are adjacent if their corresponding intervals intersect. A circular-arc graph
G = (V,E) is an intersection graph of arcs of a circle. In other words, every
vertex is associated an arc A and there is an edge between two vertices if their
corresponding arcs intersect. By abuse of notation, we refer to the vertices by
their image arc. circular-arc graphs strictly contain interval graphs. Bonamy et
al. proved the following result in [3] that we will use as a black-box:

TS-Reconfiguration of Dominating Sets in Circle and Circular-Arc Graphs 117

Theorem 3 (Bonamy et al. [3]). Let G be a connected interval graph, and
Ds,Dt be two dominating sets of G of the same size. There exists a TS-
reconfiguration sequence from Ds to Dt.

One can naturally wonder if Theorem 3 can be extended to circular-arc
graphs. The answer is negative since, for every k, the cycle C3k is a circular-arc
graph that has only three dominating sets of size exactly k (the ones contain-
ing vertices i mod 3 for i ∈ {0, 1, 2}), which are pairwise non adjacent for the
TS-rule.

However, we prove that we can decide in polynomial time if we can transform
one dominating set into another. The remaining of this section is devoted to prove
Theorem 1.

Let G = (V,E) be a circular-arc graph and Ds,Dt be dominating sets of G
of size k. Assume first that there exists an arc v ∈ V that is the whole circle. So
{v} is a dominating set of G and for any dominating sets Ds and Dt, we can
move a token from Ds to v, then move every other token of Ds to a vertex of
Dt (in at most two steps passing through v), and finally move the token on v to
the last vertex of Dt. Since a token stays on v, we keep a dominating set. So if
such an arc exists, there exists a reconfiguration sequence from Ds to Dt.

From now on we assume that no arc contains the whole circle (and that no
vertex dominates the graph). For any arc v ∈ V , the left extremity of v, denoted
by �(v), is the first extremity of v we meet when we follow the circle clockwise,
starting from a point outside of v. The other extremity of v is called the right
extremity and is denoted by r(v).

We start by showing a simple lemma that is used in the proof of Theorem 1.

Lemma 1. (�) Let G = (V,E) be a graph, and u, v ∈ V , where N [u] ⊆ N [v].
If S is a TS-reconfiguration sequence in G, and S′ is obtained by replacing
any occurrence of u by v in the dominating sets of S, then S′ also is a TS-
reconfiguration sequence.

For the proof of Theorem 1, we also need the following auxiliary graph Gu

(see Fig. 1 for an illustration). Let u be a vertex of G such that no arc strictly
contains u. For any v �= u not contained in u, we create an arc v′ that is the
closure of v \ u1. Since u is maximal by inclusion, v′ is an arc. Let G′

u be the
circular-arc graph containing all the arcs v′ defined above plus u. Note that the
set of edges of G′

u might be smaller than E. That being said, any dominating set
D of G containing u can be adapted into a dominating set D′ of G′

u containing
u and the image v′ of any vertex v ∈ D. We now construct Gu from G′

u. First
remove the vertex u. Note that after this deletion, no arc intersects the open
interval (�(u), r(u)) so the resulting graph is an interval graph. We can unfold
it in such a way that the first vertex starts at position �(u) and the last vertex
ends at position r(u) (see Fig. 1). We add two new vertices, u′ and u′′, that
correspond to each extremity of u. One has interval (−∞, �(u)) and the other

1 v′ is the part of v that is not included in u. Note that the fact that v′ is the closure
of that arc ensures that u and v′ intersect.

118 N. Bousquet and A. Joffard

has interval (r(u),+∞). Since no arc but u′ (resp. u′′) intersects (−∞, �(u)] (resp.
[r(u),+∞)), we can create (n + 2) new vertices only adjacent to u′ (resp. u′′).
These 2n + 4 vertices are called the leaves of Gu.

u

− +

− +

u u

GuG

Fig. 1. The interval graph Gu obtained from the circular-arc graph G. The thick inter-
val in G correponds to u. The thick intervals in Gu correspond to u′ and u′′, and the
intervals above are the added leaves.

Given a set D of G that contains u, we define a set Du of Gu such that u′, u′′

are in Du and, for every v �= u in V (G), v′ is in Du if and only if v ∈ D.

Lemma 2. (�) If D is a dominating set of G that contains u then Du is a
dominating set of Gu.

Note that Du has size |D| + 1.

Lemma 3. (�) If D is a dominating set of G that contains u, then the following
hold:

(i) All the dominating sets of Gu of size |D| + 1 contain u′ and u′′.
(ii) For every dominating set X of Gu of size |D| + 1, (X ∩ V) ∪ {u} is a

dominating set of G of size at most |D|.
(iii) Every reconfiguration sequence in Gu between two dominating sets Ds,Dt

of Gu of size at most |D| + 1 that does not contain any leaf can be adapted
into a reconfiguration sequence in G from (Ds \ {u′, u′′}) ∪ {u} to (Dt \
{u′, u′′}) ∪ {u}.

Using Lemmas 2, 3 and Theorem 3, we can prove the following:

Corollary 1. Let G be a circular-arc graph, and Ds,Dt be two dominating sets
of G, with Ds ∩ Dt �= ∅. There exists a TS-reconfiguration sequence from Ds

to Dt.

We now have all the ingredients to prove Theorem 1.

Proof (of Theorem 1). Let G = (V,E) be a circular-arc graph, and let Ds and
Dt be two dominating sets of G. Free to slide tokens, we can assume that the
intervals of Ds and Dt are maximal by inclusion. By Lemma 1, we can also
assume that all the vertices of the dominating sets we consider are maximal by

TS-Reconfiguration of Dominating Sets in Circle and Circular-Arc Graphs 119

inclusion. Moreover, by Corollary 1, we can assume that Ds ∩ Dt = ∅. By abuse
of notation, we say that in G, an arc v is the first arc on the left (resp. on the
right) of another arc u if the first left extremity of an inclusion-wise maximal arc
(of G, or of the stated dominating set) we encounter when browsing the circle
counter clockwise (resp. clockwise) from the left extremity of u is the one of v.
In interval graphs, we say that an interval v is at the left (resp. at the right) of
an interval u if the left extremity of v is smaller (resp. larger) than the one of
u. Note that since the intervals of the dominating sets are maximal by inclusion,
the left and right ordering of these vertices are the same.

Let u1 ∈ Ds. Let v be the first vertex at the right of u1 in Dt. We perform
the following algorithm, called the Right Sliding Algorithm. By Lemma 3, all
the dominating sets of size |Ds| + 1 in Gu1 contain u′

1 and u′′
1 . Let D′

2 be a
dominating set of the interval graph Gu1 of size |Ds| + 1, such that the first
vertex at the right of u′

1 has the smallest left extremity (we can indeed find such a
dominating set in polynomial time). By Theorem 3, there exists a transformation
from (Ds ∪ {u′

1, u
′′
1}) \ {u1} to D′

2 in Gu1 . And by Lemma 3, there exists a
transformation from Ds to D2 := (D′

2 ∪ {u1}) \ {u′
1, u

′′
1} in G. We apply this

transformation. Informally speaking, it permits to move the token at the left of
u1 closest from u1, which allows to push the token on u1 to the right.

We now fix all the vertices of D2 but u1 and try to slide the token on u1 to
its right. If we can push it on a vertex at the right of v, we can in particular push
it on v (since v is maximal by inclusion) and keep a dominating set. So we set
u2 = v if we can reach v or the rightmost possible vertex maximal by inclusion
we can reach otherwise. We now repeat these operations with u2 instead of u1,
i.e. we apply a reconfiguration sequence towards a dominating set of G in which
the first vertex on the left of u2 is the closest to u2, then try to slide u2 to
the right, onto u3. We repeat until ui = ui+1 (i.e. we cannot move to the right
anymore) or ui = v. Let u1, . . . , u� be the resulting sequence of vertices. Note
that this algorithm is polynomial since after at most n steps we reach v or a
fixed point.

We can similarly define the Left Sliding Algorithm by replacing the leftmost
dominating set of Gui

by the rightmost, and slide ui to the left for any i. We
stop when we cannot slide to the left anymore, or when ui = v′, where v′ is the
first vertex at the left of u1 in Dt. Let u′

� be the last vertex of the sequence of
vertices given by the Left Sliding Algorithm.

Claim. (�) We can transform Ds into Dt if and only if u� = v or u′
� = v′. 	

4 PSPACE-Hardness for Circle Graphs

A circle graph G = (V,E) is an intersection graph of chords of a circle C. In
other words, we can associate to each vertex of V two points of C, and there is
an edge between two vertices if the chords between their pair of points intersect.
Equivalently, G can be represented on the real line. We associate to each vertex
an interval of the real line and there is an edge between two vertices if their

120 N. Bousquet and A. Joffard

intervals intersect but do not contain each other. In this section, we use the last
representation. For any interval I, �(I) denotes the left extremity of I, and r(I)
its right extremity.

The goal of this section is to show that DSRTS is PSPACE-complete in circle
graphs. We provide a polynomial time reduction from SATR to DSRTS. This
reduction is inspired from one used in [12] to show that the minimum dominating
set problem is NP-complete on circle graphs. The SATR problem is defined as
follows:
Satisfiability Reconfiguration (SATR)
Input: A Boolean formula F in conjunctive normal form, two variable assign-
ments As and At that satisfy F .
Output: Does there exist a reconfiguration sequence from As to At that keeps
F satisfied, where the operation consists in a variable flip, i.e. the change of the
assignment of exactly one variable from x = 0 to x = 1, or conversely?

Let (F,As, At) be an instance of SATR. Let x1 . . . , xn be the variables of F .
Since F is in conjunctive normal form, it is a conjunction of clauses c1, . . . , cm

which are disjunctions of literals. A literal is a variable or its negation, and we
denote by xi ∈ cj (resp. xi ∈ cj) the fact that xi (resp. the negation of xi) is
a literal of cj . Since duplicating clauses does not modify the satisfiability of a
formula, we can assume that m is a multiple of 4. We can also assume that for
every i, j, xi or xi is not in cj (otherwise the clause is satisfied for any assignment
and can be removed from F).

4.1 The Reduction

Let us construct an instance (GF ,DF (As),DF (At)) of DSRTS from (F,As, At).
We start by constructing the circle graph GF . In [12], the author gives the
coordinates of the endpoints of all the intervals. In this proceeding, we only give
the relative position of the intervals. Most of the positions are moreover given
graphically. We however outline some of the edges and non edges in GF that
have an impact on the upcoming proofs.

Let us first note that by adding to a circle graph H an interval that starts
just before the extremity of another interval u and ends just after, we add one
vertex to H, only connected to u. So:

Remark 1. If H is a circle graph and u is a vertex of H, then the graph H plus
a new vertex only connected to u is circle graph.

• For each variable xi, we create m base intervals Bi
j where 1 ≤ j ≤ m. We

also create m
2 intervals Xi

j (resp. X
i

j) called the positive bridge intervals (resp.
negative bridge intervals) of xi, where 1 ≤ j ≤ m

2 . The positions of these inter-
vals are illustrated in Fig. 2.
Base intervals are pairwise non adjacent. On the other hand, every positive
(resp. negative) bridge interval is incident to exactly two base intervals; And
all the positive (resp. negative) bridge intervals of xi are incident to pair-
wise distinct base intervals. In particular, the positive (resp. negative) bridge

TS-Reconfiguration of Dominating Sets in Circle and Circular-Arc Graphs 121

intervals dominate the base intervals; And every base interval is adjacent to
exactly one positive and one negative bridge interval. All the positive (resp.
negative) bridge intervals but Xi

1 and Xi
m
2

have exactly one other positive
(resp. negative) bridge interval neighbor. Finally, for every i, every negative
bridge interval X

i

j has exactly two positive bridge interval neighbors (Xi
j−1

and Xi
j) except for X

i

1, which does not have any. Note that a bridge interval
of xi is not adjacent to a bridge interval or a base interval of xj for j �= i.

• For any clause cj , we create two identical clause intervals Cj and C ′
j . As one

interval contains the other, Cj and C ′
j are not adjacent. The clause intervals

are not adjacent to any interval constructed so far.
• For every j such that xi ∈ cj (resp. xi ∈ cj), we create four intervals T i

j , U i
j ,

V i
j and W i

j (resp. T
i

j , U
i

j , V
i

j and W
i

j), called the positive path intervals (resp.
negative path intervals) of xi. See Fig. 2 and Fig. 3 for an illustration.
The neighborhood of every clause interval Cj is the set of intervals W i

j with

xi ∈ cj and intervals W
i

j with xi ∈ cj . The interval V i
j (resp. V

i

j) is only

adjacent to U i
j and W i

j (resp. U
i

j and W
i

j). The interval T i
j (resp. T

i

j) is only

adjacent to Bi
j , U i

j and one positive bridge interval (resp. Bi
j , U

i

j and one
negative bridge interval), which is the same one adjacent to Bi

j . Since U i
j and

W i
j (resp. U

i

j and W
i

j) are not adjacent, Bi
j , T i

j , U i
j , V i

j , W i
j and Cj (resp.

Bi
j , T

i

j , U
i

j , V
i

j , W
i

j and Cj) induce a path. Finally, for any two variables xi

and x′
i such that xi �= x′

i, the only path intervals of respectively xi and x′
i

that can be adjacent are the W and W intervals adjacent to different clause
intervals.
The intervals of xi denote the base, bridge and path intervals of xi.

• For every bridge interval and every U , U , W and W interval, we create a
dead-end interval only adjacent to it. Then, for any dead-end interval, we
create 6mn pending intervals only adjacent to it. Remark 1 ensures that the
resulting graph is a circle graph. Informally speaking, since the dead-end
intervals have a lot of pending intervals, they will be forced to be in any
dominating set of size at most 6mn. Thus, in any dominating set, we know
that bridge, U , U , W and W intervals (as well as dead-end and pending
ones) are already dominated. So the other vertices in the dominating set will
only be there to dominate the other vertices of the graph, which are called
important.

• Finally, we create a junction interval J , that starts just before �(C1) and end
just after r(Cm). It is adjacent to every W or W interval, and to no other
interval. This completes the construction of the graph GF .

4.2 Basic Properties of GF

Let us first give a couple of properties satisfied by GF . The following lemma will
be used to guarantee that any token can be moved to any vertex of the graph
as long as the rest of the tokens form a dominating set.

122 N. Bousquet and A. Joffard

B1
1 B1

2 B1
3 B1

4 B2
1 B2

2 B2
3 B2

4
C1 C2 C3 C4

JX
1
1 X

2
1

X
1
2 X

2
2

X1
1 X1

2 X2
1 X2

2

T 1
1 T 1

3 T 1
4 T 2

1

T
1
2 T

2
2 T

2
4

U1
1

U1
3

U1
4

U2
1

U
1
2 U

2
2

U
2
4

V 1
1 V 1

3 V 1
4 V 2

1

V
1
2 V

2
2 V

2
4

W 1
1

W 1
3

W 1
4

W 2
1

W
1
2

W
2
2

W
2
4

Fig. 2. The intervals obtained for the formula F = (x1∨x2)∧(x1∨x2)∧(x1)∧(x2∨x1)
with m = 4 clauses and n = 2 variables. The dead-end intervals and the pending
intervals are not represented here.

Lemma 4. (�) The graph GF is connected.

For any variable assignment A of F , let DF (A) be the set of intervals of GF

defined as follows. The junction interval J and all the dead-end intervals belong
to DF (A). For any xi such that xi = 1 in A, the positive bridge, W and U
intervals of xi belong to DF (A). And for any variable xi such that xi = 0 in A,
the negative bridge, W and U intervals of xi belong to DF (A). The multiplicity
of each of these intervals is 1. Thus, |DF (A)| = 3mn

2 + 3
∑n

i=1 �i + 1 where for
any xi, �i is the number of clauses that contain xi or xi.

Lemma 5. (�) If A satisfies F , then DF (A) \ J is a dominating set of GF .

Let K := 3mn
2 + 3

∑n
i=1 �i + 1. Since the number 6mn of leaves attached on

each dead-end interval is strictly more than K (as �i ≤ m), the following holds.

Remark 2. Any dominating set of size at most K contains all the (mn+2
∑n

i=1 �i)
dead-end intervals.

Thus, in any dominating set of size K, all the pending, dead-end, bridge, U , U ,
W and W intervals are dominated. So we simply have to focus on the domination
of base, T , T , V , V and junction intervals (i.e. the important intervals).

TS-Reconfiguration of Dominating Sets in Circle and Circular-Arc Graphs 123

B1
1 B1

2

X
1
2

X1
1

T 1
1

T
1
2

U1
1

U
1
2

V 1
1

V
1
2

W 1
1

. . .

W
1
2

. . .

Fig. 3. A zoom on some intervals of the variable x1.

Lemma 6. (�) If D is a dominating set of G then for any xi, D contains
at least �i intervals dominating the V and V intervals of xi and m

2 intervals
dominating the base ones. Moreover, these two sets of intervals are disjoint, and
they are intervals of xi.

Remark 2 and Lemma 6 imply that any dominating set D of size K contains
(mn+2

∑n
i=1 �i) dead-end intervals and (�i + m

2) intervals of xi for any xi. Since
K = 3mn

2 +3
∑n

i=1 �i +1, there is one remaining token. Thus, for any variable xi

but at most one, there are (�i + m
2) intervals of xi in D. If there exists xk with

more than (�i + m
2) intervals of xk in D, then there are exactly (�k + m

2 + 1) of
them. The variable xk is called the moving variable of D, denoted by mv(D).

For any xi, we denote by Xi (resp. Xi) the set of positive (resp. negative)
bridge variables of xi. Similarly, we denote by Wi (resp. Wi) the set of W (resp.
W) variables of xi. Let us give more details about the intervals of xi in D.

Lemma 7. (�) If D is a dominating set of size K, then for any variable xi �=
mv(D), either Xi ⊆ D and Xi ∩ D = ∅, or Xi ⊆ D and Xi ∩ D = ∅.
Lemma 8. (�) If D is a dominating set of size K, then for any variable xi �=
mv(D), if Xi ⊆ D then Wi ∩ D = ∅, otherwise Wi ∩ D = ∅.

4.3 Safeness of the Reduction

Let (F,As, At) be an instance of SATR, and let Ds = DF (As) and Dt = DF (At).
By Lemma 5, (GF ,Ds,Dt) is an instance of DSRTS.

Lemma 9. If (F,As, At) is a yes-instance of SATR, then (GF ,Ds,Dt) is a
yes-instance of DSRTS.

Proof. Let (F,As, At) be a yes-instance of SATR, and S =< A1 :=
As, . . . , A� := At > be the reconfiguration sequence from As to At. We con-
struct a sequence S′ from Ds to Dt by replacing any flip of variable xi � xi of
S from Ar to Ar+1 by the following sequence of token slides from DF (Ar) to
DF (Ar+1)2. In this proceeding, we omit the proof that it maintains a dominating
set.
2 And replacing any flip xi � xi by the converse of this sequence.

124 N. Bousquet and A. Joffard

• We perform a sequence of slides that moves the token on J to X
i

1.
• For any j such that xi ∈ Cj , we move the token from W i

j to V i
j then U i

j .

• For j from 1 to m
2 − 1, we apply the move Xi

j � X
i

j+1.

• For any j such that xi ∈ Cj , we move the token from U
i

j to V
i

j then W
i

j .
• We perform a sequence of moves that slide the token on Xi

m
2

to J . 	

Lemma 10. (�) If there exists a reconfiguration sequence S from Ds to Dt,
then there exists another one S′ such that for any two adjacent dominating sets
Dr and Dr+1 of S′, if both Dr and Dr+1 have a moving variable, then it is the
same one.

Lemma 11. If (GF ,Ds,Dt) is a yes-instance of DSRTS, then (F,As, At) is a
yes-instance of SATR.

Proof. Let (GF ,Ds,Dt) be a yes-instance of DSRTS. There exists a sequence S′

from Ds to Dt. By Lemma 10, we can assume that for any adjacent sets Dr and
Dr+1 of S′, if both Dr and Dr+1 have a moving variable, they are the same.

Let us construct a reconfiguration sequence S from As to At. To any dom-
inating set D of GF , we associate a variable assignment A(D) of F as follows.
For any xi �= mv(D), either Xi ⊂ D or Xi ⊂ D by Lemma 7. If Xi ⊂ D we set
xi = 1, otherwise xi = 0. Let xk be such that mv(D) = xk if it exists. If there
exists j such that W k

j ∈ D and if for any xi �= xk with xi ∈ cj , we have Xi ⊂ D,
and for any xi �= xk with xi ∈ cj , we have Xi ⊂ D, then xk = 1. Otherwise
xk = 0.

Let S be the sequence of assignments obtained by replacing in S′ any dominat-
ing set D by A(D). To conclude, we must show that the assignments associated
to Ds and Dt are As and At. Also, for every dominating set D, A(D) has to
satisfy F . Finally, for every move in GF , we must be able to associate a (possibly
empty) variable flip. Let us first state a useful claim.

Claim. (�) For any consecutive dominating sets Dr and Dr+1 and any xi that is
not mv(Dr) nor mv(Dr+1), the value of xi is identical in A(Dr) and A(Dr+1).

Claim. (�) We have A(Ds) = As and A(Dt) = At.

Claim. For any dominating set D of S′, A(D) satisfies F .

Proof. Since the clause intervals are only adjacent to W and W intervals, they
are dominated by them, or by themselves in D. But only one clause interval
can belong to D. Thus, for any clause interval Cj , if Cj ∈ D, then C ′

j must be
dominated by a W or a W interval, that also dominates Cj . So in any case, Cj

is dominated by a W or a W interval. We study four possible cases and show
that in each case, cj is satisfied by A(D).

If Cj is dominated in D by an interval W i
j , where xi �= mv(D), then by

Lemmas 7 and 8, Xi ⊂ D and by definition of A(D), xi = 1. Since W i
j exists, it

means that xi ∈ cj , thus cj is satisfied by A(D). Similarly, if Cj is dominated in

TS-Reconfiguration of Dominating Sets in Circle and Circular-Arc Graphs 125

D by an interval W
i

j , where xi �= mv(D), then by Lemmas 7 and 8, Xi ⊂ D. So

xi = 0. Since W
i

j exists, xi ∈ cj , and therefore cj is satisfied by A(D).
If Cj is only dominated by W k

j in D, where xk = mv(D). Then, if there exists
xi �= xk with xi ∈ cj and Xi ⊂ D (resp. xi ∈ cj and Xi ⊂ D), then xi = 1 (resp.
xi = 0) and cj is satisfied by A(D). So we can assume that, for any xi �= xk with
xi ∈ cj we have Xi �⊂ D. By Lemma 7, Xi ⊂ D. And for any xi �= xk such that
xi ∈ cj we have Xi �⊂ D, and thus Xi ⊂ D. So, by definition of A(D), we have
xk = 1. Since xk ∈ cj (since W k

j exists), cj is satisfied by A(D).

Finally, assume that Cj is only dominated by W
k

j in D, where xk = mv(D).
If there exists xi �= xk such that xi ∈ cj and Xi ⊂ D (resp. xi ∈ cj and Xi ⊂ D),
then xi = 1 (respectively xi = 0) so cj is satisfied by A(D). Thus, by Lemma
7, we can assume that for any xi �= xk such that xi ∈ cj (resp. xi ∈ cj), we
have Xi ⊂ D (resp. Xi ⊂ D). Let us show that there is no clause interval Cj′

dominated by a W k
i interval of xk in D and that satisfies, for any xi �= xk, if

xi ∈ cj′ then Xi ⊂ D, and if xi ∈ cj′ then Xi ⊂ D. This will imply xk = 0 by
construction and then the fact that cj is satisfied.

Since Ds has no moving variable, there exists a dominating set before D
in S′ with no moving variable. Let Dr be the latest in S′ amongst them. By
assumption, mv(Dq) = xk for any Dq that comes earlier than D but later than
Dr. Thus, by Claim 4.3, for any xi �= xk, xi is the same in A(Dr) and A(D).

Now, by assumption, for any xi �= xk with xi ∈ cj (resp. xi ∈ cj) we have
Xi ⊂ D (resp. Xi ⊂ D). Thus, since xi has the same value in D and Dr, if
xi ∈ cj (resp. xi ∈ cj) then Xi ⊂ Dr (resp. Xi ⊂ Dr) and then, by Lemma 8,
W i

j �∈ Dr (resp. W
i

j �∈ Dr). Therefore, Cj is only dominated by W
k

j in Dr. But
since Dr has no moving variable, Xk ⊂ Dr by Lemma 7 and Lemma 8. Thus,
by Lemma 8, for any j′ �= j, W k

j′ �∈ Dr. So for any j′ �= j such that xk ∈ cj′ , Cj′

is dominated by at least one interval W i
j′ or W

i

j′ in Dr, where xi �= xk. Lemma

8 ensures that if Cj′ is dominated by W i
j′ (resp. W

i

j′) in Dr then Xi ⊂ Dr

(resp. Xi ⊂ Dr), and since xi has the same value in D and Dr, it gives Xi ⊂ D
(resp. Xi ⊂ D). Therefore, by Lemma 7, if a clause interval Cj′ is dominated
by a W interval of xk in D, then either there exists xi �= xk such that xi ∈ cj′

and D(xi) �⊂ D, or there exists xi �= xk such that xi ∈ c′
j and D(xi) �⊂ D. By

definition of A(D), this implies that xk = 0 in A(D). Since W
k

j exists, xk ∈ cj

thus cj is satisfied by A(D). ♦
Claim. (�) For any two dominating sets Dr and Dr+1 of S′, either A(Dr+1) =
A(Dr), or A(Dr+1) is reachable from A(Dr) with a variable flip move.

Proof (of Theorem 2). Let Ds = DF (As) and Dt = DF (At). Lemma 9 and 11
ensure that (GF ,Ds,Dt) is a yes-instance of DSRTS if and only if (F,As, At) is
a yes-instance of SATR. And SATR is PSPACE-complete [7]. 	

126 N. Bousquet and A. Joffard

5 Open Questions

We left open the following question raised in [3]: is there a class for which Mini-

mum Dominating Set is NP-complete but TS-Reachability is polynomial?
More generally, there are many graph classes in which the DSRTS problem

remains to be studied. For instance, we are currently working on the complexity
of DSRTS in H-free graphs, line graphs and unit disk graphs. It could also be
studied in outerplanar graphs. Outerplanar graphs form a natural subclass of
circle graphs, of bounded treewidth graph, and of planar graphs on which the
complexity of the problem is PSPACE-complete.

A Appendix

A.1 Proofs of Section 3

Proof of Lemma 1

Lemma. Let G = (V,E) be a graph, and u, v ∈ V , where N(u) ⊆ N(v). If S is a
TS-reconfiguration sequence in G, and S′ is obtained by replacing any occurrence
of u by v in the dominating sets of S, then S′ also is a TS-reconfiguration
sequence.

Proof. Every neighbor of u also is a neighbor of v. Thus, replacing u by v in a
dominating set keeps the domination of G. Moreover, any move that involves u
can be applied if we replace it by v, which gives the result. 	

Proof of Lemma 2

Lemma. Let D be a dominating set of G such that u ∈ D, and let Du =
D ∪ {u′, u′′} \ {u}. The set Du is a dominating set of Gu.

Proof. Every vertex of N(u) in the original graph G is either not in Gu, or is
dominated by u′ or u′′. The neighborhood of all the other vertices have not
been modified. Moreover, all the new vertices are dominated since they are all
adjacent to u′ or u′′. 	

Proof of Lemma 3

Lemma. The following holds:

(i) All the dominating sets of Gu of size |D| + 1 contain u′ and u′′.
(ii) For every dominating set X of Gu of size |D| + 1, (X ∩ V) ∪ {u} is a

dominating set of G of size at most |D|.
(iii) Every reconfiguration sequence in Gu between two dominating sets Ds,Dt

of Gu of size at most |D| + 1 that does not contain any leaf can be adapted
into a reconfiguration sequence in G from (Ds \ {u′, u′′}) ∪ {u} to (Dt \
{u′, u′′}) ∪ {u}.

TS-Reconfiguration of Dominating Sets in Circle and Circular-Arc Graphs 127

Proof. Proof of (i). The point (i) holds since there are n + 2 leaves attached
to each of u′ and u′′ and that |D| ≤ n.
Proof of (ii). The vertices u′ and u′′ only dominate vertices of V dominated
by u in G and u′ and u′′ are in any dominating set of size at most |D| + 1 of Gu

by (i). Moreover no edge between two vertices x, y ∈ V (G) was created in Gu.
Thus (X ∩V)∪{u} is a dominating set of G since the only vertices of V (G) that
are not in V (Gu) are vertices whose arcs are strictly included in u and then are
dominated by u.
Proof of (iii). By Lemma 1, we can assume that there is no token on u′ or
u′′ at any point. We show that we can adapt the transformation. If the move
x � y satisfies that x, y /∈ {u′, u′′} then the same edge exists in G and by (ii),
the resulting set is dominating. So we can assume that x or y are u′ or u′′. We
simply have to slide from or to u since N(u′) and N(u′′) minus the leaves is equal
to N(u). Since there is never a token on the leaves, the conclusion follows. 	

Proof of Claim

Claim. We can transform Ds into Dt if and only if u� = v or u′
� = v′.

Proof. Firstly, if u� = v, then Corollary 1 ensures that there exists a transfor-
mation from D� to Dt and thus from Ds to Dt, and similarly if u′

� = v′.
Let us now prove the converse direction. If u� �= v and u′

� �= v′, assume for
contradiction that there exists a transformation sequence S from Ds to Dt. By
Lemma 1 we can assume that all the vertices in any dominating set of S are
maximal by inclusion.

Let us consider the first dominating set C of S where the token initially on
u1 is at the right of u� in G, or at the left of u′

� in G. Such a dominating set
exists no token of Dt is between u′

�′ and u�. Let us denote by C ′ the dominating
set before C in the sequence and x � y the move from C to C ′. By symmetry,
we can assume that y is at the right of u�. Note that x is at the left of u�. Note
that C ′′ = C \{x}∪{u�} is a dominating set of G since C and C ′ = C \{x}∪{y}
are dominating sets and u� is between x and y.

So C\{x}∪{u�, u
′
�} is a dominating set of Gu�

and then for C ′′ it was possible
to move the token on u� to the right, a contradiction with the fact that u� was
a fixed point. 	

A.2 Proofs of Section 4

A.3 Detailed Construction of GF

All along this construction, we repeatedly refer to real number as points. We say
that a point p is at the left of a point q (or q is at the right of p) if p < q. We
say that p is just at the left of q, (or q is just at the right of p) if p is at the left
of q, and no interval defined so far has an extremity in [p, q]. Note that since we
are working with real intervals, given a point p, it is always possible to create a
point just at the left (or just at the right) of p. Finally, we say that an interval I

128 N. Bousquet and A. Joffard

B1
1 B1

2 B1
3 B1

4 B1
5 B1

6 B1
7 B1

8 B2
1 B2

2 B2
3 B2

4 B2
5 B2

6 B2
7 B2

8

X
1
1 X

1
3 X

2
1 X

2
3

X
1
2 X

1
4 X

2
2 X

2
4

X1
1 X1

4 X2
1 X2

4X1
2 X2

2

X1
3 X2

3

Fig. 4. The base, positive and negative bridge intervals with n = 2 and m = 8.

frames a set of points P if �(I) is just at the left of the minimum of P and r(I)
is just at the right of the maximum of P .

The base intervals Bi
j are pairwise disjoint for any i and j, and are ordered

by increasing i, then increasing j for a same i.
Let q be such that m = 4q. For every i and every 0 ≤ r < q, the interval

X
i

2r+1 starts just at the right of �(Bi
4r+1) and ends just at the right of �(Bi

4r+3),

and X
i

2r+2 starts just at the right of �(Bi
4r+2) and ends just at the right of

�(Bi
4r+4). The interval Xi

1 starts just at the left of r(Bi
1) and ends just at the

left of r(Bi
2). For every 1 ≤ r < q, the interval Xi

2r starts just at the left of
r(Bi

4r−1) and ends just at the left of r(Bi
4r+1), and Xi

2r+1 starts just at the left
of r(Bi

4r) and ends just at the left of r(Bi
4r+2). Finally, Xi

m
2

starts just at the
left of r(Bi

m−1) and ends just at the left of r(Bi
m).

The positions of these intervals are illustrated in Fig. 4.
The clause intervals Cj are pairwise disjoint and ordered by increasing j, and

we have �(C1) > r(Bn
m).

The interval T i
j frames the right extremity of Bi

j and the extremity of the pos-

itive bridge interval that belongs to Bi
j . The interval T

i

j frames the left extremity
of Bi

j and the extremity of the negative bridge interval that belongs to Bi
j . The

interval U i
j starts just at the left of r(T i

j), the interval U
i

j starts just at the right

of l(T
i

j), and they both end between the right of the last base interval of the
variable xi and the left of the next base or clause interval. We moreover construct
the intervals U i

j (resp. U
i

j) in such a way that r(U i
j) (resp. r(U

i

j)) is increasing

when j is increasing. In other words, the U i
j (resp. U

i

j) are pairwise adjacent.
The interval V i

j (resp. V i
j) frames the right extremity of U i

j (resp. U i
j). And the

interval W i
j (resp. W i

j) starts just at the left of r(V i
j) (resp. r(V i

j)) and ends in
an arbitrary point of Cj . Moreover, for any i �= i′, W i

j (resp. W i
j) and W i′

j (resp.

W i′
j) end on the same point of Cj . This ensures that one interval the other and

are therefore not adjacent.
The junction interval J frames �(C1) and r(Cm).

TS-Reconfiguration of Dominating Sets in Circle and Circular-Arc Graphs 129

Proof of Lemma 4

Lemma. The graph GF is connected.

Proof. Let xi be a variable. Let us first prove that the intervals of xi are in
the same connected component of GF . (Recall that they are the base, bridge
and path intervals of xi). Firstly, for any j such that xi ∈ Cj (resp. xi ∈ Cj),
Bi

jT
i
jU

i
jV

i
j W i

j (resp. Bi
jT

i

jU
i

jV
i

jW
i

j) is a path of GF . Since every base interval
of xi is adjacent to a positive and a negative bridge interval of xi, it is enough
to show that all the bridge intervals of xi are in the same connected compo-
nent. Since for every j ≥ 2, X

i

j is adjacent to Xi
j−1 and Xi

j , we know that

Xi
1X

i

2,X
i
2 . . . X

i
m
2
Xi

m
2

is a path of GF . Moreover, X
i

1 is adjacent to X
i

2. So all
the intervals of xi are in the same connected component of GF .

Now, since the junction interval J is adjacent to every W and W interval
(and that each variable appears in at least one clause), J is in the connected
component of all the path variables, so the intervals of xi and xi′ are in the same
connected component for every i �= i′. Since each clause at least one variable,
Cj is adjacent to at least one interval W i

j or W
i

j . Finally, each dead-end interval
is adjacent to a bridge interval or a U , U , W or W interval, and each pendant
interval is adjacent to a dead-end interval. Therefore, GF is connected. 	

Proof of Lemma 5

Lemma. If A satisfies F , then DF (A) \ J is a dominating set of GF .

Proof. Since every dead-end interval belongs to DF (A) \ J , every pending and
dead-end interval is dominated, as well as every bridge, U , U , W and W interval.
Since for each variable xi, the positive (resp. negative) bridge intervals of xi

dominate the base intervals of xi, the base intervals are dominated. Moreover,
the positive (resp. negative) bridge intervals of xi and the U (resp. U) intervals
of xi both dominate the T (resp. T) intervals of xi. Thus, the T and T intervals
are all dominated. Moreover, for any variable xi, the U and W (resp. U and W)
intervals of xi both dominate the V (resp. V) intervals of xi. Thus, the V and
V intervals are all dominated. Finally, since A satisfies F , each clause has at
least one of its literal in A. Thus, each Cj and C ′

j has at least one adjacent W i
j

or W
i

j in DF (A) \ J and are therefore dominated by it, as well as the junction
interval. 	

Proof of Lemma 6

Lemma. If D is a dominating set of G then for any xi, D at least �i intervals
dominating the V and V intervals of xi and m

2 intervals dominating the base
ones. Moreover, these two sets of intervals are disjoint, and they are intervals of
xi.

130 N. Bousquet and A. Joffard

Proof. For any variable xi, each interval V i
j (resp. V

i

j) can only be dominated

by U i
j , V i

j or W i
j (resp. U

i

j , V
i

j or W
i

j). Indeed V i
j spans the left extremity of W i

j

and the right extremity of U i
j and since no interval starts or ends between these

two points, the interval V i
j is only adjacent to U i

j and W i
j . And similarly V

i

j is

only adjacent to U
i

j and W
i

j . Thus, at least �i intervals dominate the V and V
intervals of xi, and they are intervals of xi. Moreover, only the base, bridge, T
and T intervals of xi are adjacent to the base intervals. Since each bridge interval
is adjacent to two base intervals, and each T and T interval of xi is adjacent to
one base interval of xi, D must contain at least m

2 of such intervals to dominate
the m base intervals. 	

Proof of Lemma 7

Lemma. If D is a dominating set of size K, then for any variable xi �= mv(D),
either Xi ⊆ D and Xi ∩ D = ∅, or Xi ⊆ D and Xi ∩ D = ∅.
Proof. Since xi �= mv(D), there are exactly �i + m

2 variables of xi in D. Thus,
by Lemma 6, exactly m

2 intervals of xi in D dominate the bridge intervals of
xi. Only the bridge, T and T intervals of xi are adjacent to the base intervals.
Moreover, bridge intervals are adjacent to two base intervals and T or T intervals
are adjacent to only one. Since there are m base intervals of xi, each interval of
D must dominate a pair of base intervals (or none of them). So these intervals
of D should be some bridge intervals of xi.

Note that, by cardinality, each pair of bridge intervals of D must dominate
pairwise disjoint base intervals. Let us now show by induction that these bridge
intervals are either all the positive bridge intervals, or all the negative bridge
intervals. We study two cases: either Xi

1 ∈ D, or Xi
1 �∈ D.

Assume that Xi
1 ∈ D. In D, Xi

1 dominates Bi
1 and Bi

2. Thus, since X
i

1

dominates Bi
1 and X

i

2 dominates Bi
2, none of X

i

1,X
i

2 are in D (since their neigh-
borhood in the set of base intervals is not disjoint with Xi

1). But Bi
3 (resp Bi

4)
is only adjacent to X

i

1 and Xi
2 (resp. X

i

2 and Xi
3). Thus both Xi

2,X
i
3 are in D.

Suppose now that for a given j such that j is even and j ≤ m
2 − 2, we have

Xi
j ,X

i
j+1 ∈ D. Then, since a base interval dominated by Xi

j (resp. Xi
j+1) also

is dominated by X
i

j+1 (resp. X
i

j+2), the intervals X
i

j+1,X
i

j+2 are not in D. But

there is a base interval adjacent only to X
i

j+1 and Xi
j+2 (resp. X

i

j+2 and Xi
j+3

if j �= m
2 − 2, or X

i

j+2 and Xi
j+2 if j = m

2 − 2). Therefore, if j + 2 < m
2 we

have Xi
j+2,X

i
j+3 ∈ D, and Xi

m
2

∈ D. By induction, if Xi
1 ∈ D then each of the

m
2 positive bridge intervals belong to D and thus none of the negative bridge
intervals do.

Assume now that Xi
1 �∈ D. Then, to dominate Bi

1 and Bi
2, we must have

X
i

1,X
i

2 ∈ D. Let us show that if for a given odd j such that j ≤ m
2 − 3 we

have X
i

j ,X
i

j+1 ∈ D, then X
i

j+2,X
i

j+3 ∈ D. Since X
i

j (resp. X
i

j+1) dominates
base intervals also dominated by Xi

j+1 (resp. Xi
j+2), we have Xi

j+1,X
i
j+2 �∈ D.

TS-Reconfiguration of Dominating Sets in Circle and Circular-Arc Graphs 131

But there exists a base interval only adjacent to Xi
j+1 and X

i

j+2 (resp. Xi
j+2

and X
i

j+3). Thus, X
i

j+2,X
i

j+3 ∈ D. By induction, if Xi
1 �∈ D then each of the m

2
negative bridge intervals belong to D. Thus, none of the positive bridge intervals
belong to D. 	

Proof of Lemma 8

Lemma. If D is a dominating set of size K, then for any variable xi �= mv(D),
if Xi ⊆ D then Wi ∩ D = ∅, otherwise Wi ∩ D = ∅.
Proof. By Lemma 7, D either Xi or Xi.

If Xi ⊂ D, Lemma 7 ensures that Xi ∩ D = ∅. So the intervals T
i

j have to
be dominated by other intervals.

By Lemma 6, �i intervals must dominate the V and V intervals of xi. Since
no interval dominates two of them, each T

i

j has to be dominated by an interval
that is also dominating a V or V interval. The only interval that dominates both
T

i

j and a V or V interval is U
i

j . So all the U intervals are in D and W ∩ D = ∅
(since the only V or V interval dominated by a W interval is a V interval, which
is already dominated).

Similarly if Xi ⊂ D, Lemma 7 ensures that Xi ∩ D = ∅. So the intervals T i
j

have to be dominated by other intervals. And one can prove similarly that these
intervals should be the U intervals and then the W intervals are not in D. 	

Complete Proof of Lemma 9

Lemma. If (F,As, At) is a yes-instance of SATR, then (GF ,Ds,Dt) is a yes-
instance of DSRTS.

Proof. Let (F,As, At) be a yes-instance of SATR, and let S =< A1 :=
As, . . . , A� := At > be the reconfiguration sequence from As to At. We con-
struct a reconfiguration sequence S′ from Ds to Dt by replacing any flip of
variable xi � xi of S from Ar to Ar+1 by the following sequence of token slides
from DF (Ar) to DF (Ar+1)3.

• We perform a sequence of slides that moves the token on J to X
i

1. By Lemma
4, GF is connected, and by Lemma 5, DF (Ar)\J is a dominating set. So any
sequence of moves along a path from J to X

i

1 keeps a dominating set.
• For any j such that xi ∈ Cj , we first move the token from W i

j to V i
j then

from V i
j to U i

j . Let us show that this keeps GF dominated. The important
intervals that can be dominated by W i

j are V i
j , Cj , and J . The vertex V i

j is
dominated anyway during the sequence since it is also dominated by V i

j and
U i

j . Moreover, since xi � xi keeps F satisfied, each clause containing xi has
a literal different from xi that also satisfies the clause. Thus, for each Cj such

that xi ∈ Cj , there exists an interval W i′
j or W

i′

j , with i′ �= i, that belongs to
DF (Ar), and then dominates both Cj and J during these two moves.

3 And replacing any flip xi � xi by the converse of this sequence.

132 N. Bousquet and A. Joffard

• For j from 1 to m
2 − 1, we apply the move Xi

j � X
i

j+1. This move is possible

since Xi
j and X

i

j+1 are neighbors in GF . Let us show that this move keeps
a dominating set. For j = 1, the important intervals that are dominated
by Xi

1 are Bi
1, Bi

2, and T i
1. Since U i

1 is in the current dominating set (by
the second point), T i

1 is dominated. Moreover Bi
1 is dominated by X

i

1, and
Bi

2 is a neighbor of X
i

2. Thus, Xi
1 � X

i

2 maintains a dominating set. For
2 ≤ j ≤ m

2 − 1, the important intervals that are dominated by Xi
j are Bi

k,
Bi

k−2 and T i
j where k = 2j + 1 if j is even and k = 2j otherwise. Again T i

j

is dominated by the U intervals. Moreover Bi
k−2 is dominated by X

i

j−1 (on
which there is a token since we perform this sequence for increasing j), and
Bi

k is also dominated by X
i

j+1.

• For any j such that xi ∈ Cj , we move the token from U
i

j to V
i

j and then from

V
i

j to W
i

j . The important intervals dominated by U
i

j are the intervals T
i

j , V
i

j .

But T
i

j is dominated by a negative bridge interval, and V
i

j stays dominated

by V
i

j then W
i

j .
• The previous moves lead to the dominating set (DF (Ar+1) \ J) ∪ Xi

m
2
. We

finally perform a sequence of moves that slide the token on Xi
m
2

to J . It can
be done since Lemma 4 ensures that GF is connected. And all along the
transformation, we keep a dominating set by Lemma 5. As wanted, it leads
to the dominating set DF (Ar+1). 	

Proof of Lemma 10

Lemma. If there exists a reconfiguration sequence S from Ds to Dt, then there
exists another one S′ such that for any two adjacent dominating sets Dr and
Dr+1 of S′, if both Dr and Dr+1 have a moving variable, then it is the same
one.

Proof. Assume that, in S, there exist two adjacent dominating sets Dr and Dr+1

such that both Dr and Dr+1 have a moving variable, and mv(Dr) �= mv(Dr+1).
Let us modify slightly the sequence in order to avoid this move.

Since Dr and Dr+1 are adjacent in S, we have Dr+1 = Dr ∪ v \ {u}, where
uv is an edge of GF . Since mv(Dr) �= mv(Dr+1), u is an interval of mv(Dr),
and v an interval of mv(Dr+1). By construction, the only edges of GF between
intervals of different variables are between their {W,W} intervals. Thus, both u
and v are W or W intervals and, in particular they are adjacent to the junction
interval J . Moreover, the only important intervals that are adjacent to u (resp.
v) are the V or V intervals of the same variable as u, W or W intervals, clause
intervals, or the junction interval J . Since u and v are adjacent, and since they
are both W or W intervals, they cannot be adjacent to the same clause interval.
But the only intervals that are potentially not dominated by Dr \ u = Dr+1 \ v
should be dominated both by u in Dr and by v in Dr+1. So these intervals are
included in the set of W or W intervals and the junction interval, which are all

TS-Reconfiguration of Dominating Sets in Circle and Circular-Arc Graphs 133

dominated by J . Thus, Dr ∪ J \ u is a dominating set of GF . Therefore, we can
add in S the dominating set Dr ∪J \u between Dr and Dr+1. This intermediate
dominating set has no moving variable. By repeating this procedure while there
are adjacent dominating sets in S with different moving variables, we obtain the
desired reconfiguration sequence S′. 	

Proof of First Claim

Claim. For any consecutive dominating sets Dr and Dr+1 and any xi that is not
mv(Dr) nor mv(Dr+1), the value of xi is identical in A(Dr) and A(Dr+1).

Proof. Lemma 7 ensures that for any xi such that xi �= mv(Dr) and xi �=
mv(Dr+1), either Xi ⊂ Dr and Xi ∩ Dr = ∅ or Xi ⊂ Dr and Xi ∩ Dr = ∅,
and the same holds in Dr+1. Since the number of positive and negative bridge
intervals is at least 2 (since by assumption m is a multiple of 4), and Dr+1 is
reachable from Dr in a single step, either both Dr and Dr+1 contain Xi, or both
contain Xi. Thus, by definition of A(D), for any xi such that xi �= mv(Dr) and
xi �= mv(Dr+1), xi has the same value in A(Dr) and A(Dr+1). ♦

Proof of Second Claim

Claim. We have A(Ds) = As and A(Dt) = At.

Proof. By definition, Ds = DF (As) and thus Ds the junction interval, which
means that it does not have any moving variable. Moreover, Ds Xi for any
variable xi such that xi = 1 in As and Xi for any variable xi such that xi = 0
in As. Therefore, for any variable xi, xi = 1 in As if and only if xi = 1 in A(Ds).
Similarly, A(Dt) = At. ♦

Proof of Last Claim

Claim. For any two dominating sets Dr and Dr+1 of S′, either A(Dr+1) =
A(Dr), or A(Dr+1) is reachable from A(Dr) with a variable flip move.

Proof. By Claim 4.3, for any variable xi such that xi �= mv(Dr) and xi �=
mv(Dr+1), xi has the same value in A(Dr) and A(Dr+1). Moreover, by definition
of S′, if both Dr and Dr+1 have a moving variable then mv(Dr) = mv(Dr+1).
Therefore, at most one variable changes its value between A(Dr) and A(Dr+1),
which concludes the proof. ♦

References

1. Bonamy, M., Bousquet, N., Feghali, C., Johnson, M.: On a conjecture of Mohar
concerning Kempe equivalence of regular graphs. J. Comb. Theory Ser. B 135,
179–199 (2019)

2. Bonamy, M., et al.: The perfect matching reconfiguration problem. In: 44th Inter-
national Symposium on Mathematical Foundations of Computer Science, MFCS
2019, pp. 80:1–80:14 (2019)

134 N. Bousquet and A. Joffard

3. Bonamy, M., Dorbec, P., Ouvrard, P.: Dominating sets reconfiguration under token
sliding. Discret. Appl. Math. 301, 6–18 (2021)

4. Bousquet, N., Heinrich, M.: A polynomial version of Cereceda’s conjecture. arXiv
preprint arXiv:1903.05619 (2019)

5. Bousquet, N., Joffard, A., Ouvrard, P.: Linear transformations between dominating
sets in the tar-model. In: 31st International Symposium on Algorithms and Com-
putation (ISAAC 2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2020)

6. Cereceda, L., van den Heuvel, J., Johnson, M.: Finding paths between 3-colorings.
J. Graph Theory 67(1), 69–82 (2011)

7. Gopalan, P., Kolaitis, P.G., Maneva, E., Papadimitriou, C.H.: The connectivity of
Boolean satisfiability: computational and structural dichotomies. SIAM J. Comput.
38(6), 2330–2355 (2009)

8. Haas, R., Seyffarth, K.: The k-dominating graph. Graphs Comb. 30(3), 609–617
(2014)

9. Haddadan, A., et al.: The complexity of dominating set reconfiguration. Theor.
Comput. Sci. 651, 37–49 (2016)

10. Hearn, R.A., Demaine, E.: PSPACE-completeness of sliding-block puzzles and
other problems through the nondeterministic constraint logic model of computa-
tion. Theor. Comput. Sci. 343(1–2) (2005)

11. Ito, T., et al.: On the complexity of reconfiguration problems. Theor. Comput. Sci.
412(12–14), 1054–1065 (2011)

12. Keil, J.M.: The complexity of domination problems in circle graphs. Discret. Appl.
Math. 42(1), 51–63 (1993)

13. Lokshtanov, D., Mouawad, A.E.: The complexity of independent set reconfigura-
tion on bipartite graphs. ACM Trans. Algorithms (TALG) 15(1), 1–19 (2018)

14. Nishimura, N.: Introduction to reconfiguration. Algorithms 11(4), 52 (2018)
15. Suzuki, A., Mouawad, A.E., Nishimura, N.: Reconfiguration of dominating sets. J.

Comb. Optim. 32(4), 1182–1195 (2016)
16. van den Heuvel, J.: The complexity of change. Surveys in Comb. 409(2013), 127–

160 (2013)

http://arxiv.org/abs/1903.05619

Bipartite 3-Regular Counting Problems
with Mixed Signs

Jin-Yi Cai, Austen Z. Fan , and Yin Liu(B)

University of Wisconsin-Madison, Madison, WI 53706, USA
{jyc,afan,yinl}@cs.wisc.edu

Abstract. We prove a complexity dichotomy for a class of counting
problems expressible as bipartite 3-regular Holant problems. For every
problem of the form Holant (f |=3), where f is any integer-valued ternary
symmetric constraint function on Boolean variables, we prove that it is
either P-time computable or #P-hard, depending on an explicit criterion
of f . The constraint function can take both positive and negative values,
allowing for cancellations. In addition, we discover a new phenomenon:
there is a set F with the property that for every f ∈ F the problem
Holant (f |=3) is planar P-time computable but #P-hard in general, yet
its planar tractability is by a combination of a holographic transforma-
tion by

[
1 1
1 −1

]
to FKT together with an independent global argument.

Keywords: Dichotomy theorem · Holant problem · Bipartite graph

1 Introduction

Holant problems encompass a broad class of counting problems [1–3,9–12,17,18,
20,24,25,27]. For symmetric constraint functions this is also equivalent to edge-
coloring models [21,22]. These problems extend counting constraint satisfaction
problems. Freedman, Lovász and Schrijver proved that some prototypical Holant
problems, such as counting perfect matchings, cannot be expressed as vertex-
coloring models known as graph homomorphisms [16,19]. To be more precise,
counting CSP are precisely Holant problems where Equalities of all arities are
assumed to be part of the constraint functions. Meanwhile, Holant problems can
be viewed as counting CSP with read-twice variables. The classification program
of counting problems is to classify as broad a class of these problems as possible
into either #P-hard or P-time computable. This paper is an investigation of a
class of restricted Holant problems.

While much progress has been made for the classification of counting
CSP [4,6,7,14], and some progress for Holant problems [5], classifying Holant
problems on regular bipartite graphs is particularly challenging. In a very recent
paper [15] we initiated the study of Holant problems in the simplest setting of 3-
regular bipartite graphs with nonnegative constraint functions. Admittedly, this

Supported by NSF CCF-1714275.

c© Springer Nature Switzerland AG 2021
E. Bampis and A. Pagourtzis (Eds.): FCT 2021, LNCS 12867, pp. 135–148, 2021.
https://doi.org/10.1007/978-3-030-86593-1_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86593-1_9&domain=pdf
http://orcid.org/0000-0001-7714-2195
https://doi.org/10.1007/978-3-030-86593-1_9

136 J.-Y. Cai et al.

is a severe restriction, because nonnegativity of the constraint functions rules
out cancellation, which is a source of non-trivial P-time algorithms. Cancella-
tion is in a sense the raison d’être for the Holant framework following Valiant’s
holographic algorithms [24–26]. The (potential) existence of P-time algorithms
by cancellation is exciting, but at the same time creates obstacles if we want to
classify every problem in the family into either P-time computable or #P-hard.
At the same time, restricting to nonnegative constraints makes the classification
theorem easier to prove. In this paper, we remove this nonnegativity restriction.

More formally, a Holant problem is defined on a graph where edges are vari-
ables and vertices are constraint functions. The aim of a Holant problem is to
compute its partition function, which is a sum over all {0, 1}-edge assignments
of the product over all vertices of the constraint function evaluations. E.g., if
every vertex has the Exact-One function (which evaluates to 1 if exactly one
incident edge is 1, and evaluates to 0 otherwise), then the partition function
gives the number of perfect matchings. In this paper we consider Holant prob-
lems on 3-regular bipartite graphs G = (U, V,E), where the Holant problem
Holant (f |=3) computes the following partition function1

Holant(G) =
∑

σ:E→{0,1}

∏

u∈U

f
(

σ|E(u)

) ∏

v∈V

(=3)
(

σ|E(v)

)
,

where f = [f0, f1, f2, f3] at each u ∈ U is an integer-valued constraint function
that evaluates to fi if σ assigns exactly i among 3 incident edges E(u) to 1,
and (=3) = [1, 0, 0, 1] is the Equality function on 3 variables (which is 1 iff all
three inputs are equal). E.g., if we take the Exact-One function f = [0, 1, 0, 0]
in the 3-regular bipartite problem Holant (f |=3), the right hand side (RHS)
(=3) represents 3-element subsets and each element appears in 3 such subsets,
and Holant(G) counts the number of exact-3-covers; if f is the Or function
[0, 1, 1, 1] then Holant(G) counts the number of all set covers.

The main theorem in this paper is a complexity dichotomy (Theorem 6): for
any rational-valued function f of arity 3, the problem Holant (f |=3) is either
#P-hard or P-time computable, depending on an explicit criterion on f . The
main advance is to allow f to take both positive and negative values, thus can-
cellations in the sum

∑
σ:E→{0,1} can occur.

A major component of the classification program is to account for some
algorithms, called holographic algorithms, that were initially discovered by
Valiant [24]. These algorithms introduce quantum-like cancellations as the main
tool. In the past 10 to 15 years we have gained a great deal of understanding of
these mysteriously looking algorithms. In particular, it was proved in [12] that
for all counting CSP with arbitrary constraint functions on Boolean variables,
there is a precise 3-way division of problem types: (1) P-time computable in
general, (2) P-time computable on planar structures but #P-hard in general,
and (3) #P-hard even on planar structures. Moreover, every problem in type

1 If we replace f by a set F of constraint functions, each u ∈ U is assigned some fu ∈ F ,
and replace (=3) by EQ, the set of Equality of all arities, then Holant (F | EQ) can
be taken as the definition of counting CSP.

Bipartite 3-Regular Counting Problems with Mixed Signs 137

(2) is so by Valiant’s holographic reduction to the Fisher-Kasteleyn-Temperley
algorithm (FKT) for planar perfect matchings. In [8] for (non-bipartite) Holant
problems with symmetric constraint functions, the 3-way division above persists,
but problems in (2) include one more subtype unrelated to Valiant’s holographic
reduction. In this paper, we have a surprising discovery. We found a new set
of functions F which fits into type (2) problems above, but the planar P-time
tractability is neither by Valiant’s holographic reduction alone, nor entirely inde-
pendent of it. Rather it is by a combination of a holographic reduction together
with a global argument. Here is an example of such a problems: We say (X,S)
is a 3-regular k-uniform set system, if S consists of a family of subsets S ⊂ X
each of size |S| = k, and every x ∈ X is in exactly 3 sets. If k = 2 this is just
a 3-regular graph. We consider 3-regular 3-uniform set systems. We say S ′ is a
leafless partial cover if every x ∈ ⋃

S∈S′ S belongs to more than one set S ∈ S ′.
We say x is lightly covered if |{S ∈ S ′ : x ∈ S}| is 2, and heavily covered if it
is 3.
Problem: Weighted-Leafless-Partial-Cover.
Input: A 3-regular 3-uniform set system (X,S).
Output:

∑
S′(−1)l2h, where the sum is over all leafless partial covers S ′, and l

(resp. h) is the number of x ∈ X that are lightly covered (resp. heavily covered).
One can show that this problem is just Holant (f |=3), where f = [1, 0,−1, 2].

This problem is a special case of a set of problems of the form f = [3a + b,−a −
b,−a + b, 3a − b]. We show that all these problems belong to type (2) above,
although they are not directly solvable by a holographic algorithm since they
are provably not matchgates-transformable.

In this paper, we use Mathematica™ to perform symbolic computation. In
particular, the procedure CylindricalDecomposition in Mathematica™ is an
implementation (of a version) of Tarski’s theorem on the decidability of the the-
ory of real-closed fields. Some of our proof steps involve heavy symbolic computa-
tion. This stems from the bipartite structure. In order to preserve this structure,
one has to connect each vertex from the left hand side (LHS) to RHS when con-
structing subgraph fragments called gadgets. In 3-regular bipartite graphs, it is
easy to show that any gadget construction produces a constraint function that
has the following restriction: the difference of the arities between the two sides is
0 mod 3. This severely limits the possible constructions within a moderate size,
and a reasonable sized construction tends to produce gigantic polynomials. To
“solve” some of these polynomials seems beyond direct manipulation by hand.

We believe our dichotomy (Theorem 6) is valid even for (algebraic) real or
complex-valued constraint functions. However, in this paper we can only prove
it for rational-valued constraint functions. There are two difficulties of extending
our proof beyond Q. The first is that we use the idea of interpolating degenerate
straddled functions, for which we need to ensure that the ratio of the eigenvalues
of the interpolating gadget matrix is not a root of unity. With rational-valued
constraint functions, the only roots of unity that can occur are in a degree 2
extension field. For general constraint functions, they can be arbitrary roots of
unity. Another difficulty is that some Mathematica™ steps showing the nonexis-
tence of some cases are only valid for Q.

138 J.-Y. Cai et al.

2 Preliminaries

We use graph fragments called gadgets in our constructions. As illustrated in
Fig. 1, 2, 3, 4 and 5, a gadget is a bipartite graph G = (U, V,Eint, Eext) with
internal edges Eint and dangling edges Eext. There can be m (respectively n)
dangling edges internally incident to vertices from U (respectively V). These
m + n dangling edges represent input Boolean variables x1, . . . , xm, y1, . . . , yn

and the gadget defines a constraint function, a.k.a. a signature

f(x1, . . . , xm, y1, . . . , yn) =
∑

σ:Eint→{0,1}

∏

u∈U

f
(
σ̂|E(u)

) ∏

v∈V

(=3)
(
σ̂|E(v)

)
,

where σ̂ denotes the extension of σ by the assignment on the dangling edges.
As indicated before, in any gadget construction we must be careful to keep the
bipartite structure. In particular, we must keep track whether an input variable
is on the LHS (labeled by f), or it is on the RHS (labeled by (=3)). In each
figure of gadgets presented later, we use a blue square to represent a signature
from LHS, which under most of the cases will be [f0, f1, f2, f3], a green circle to
represent the ternary equality (=3), and a black triangle to represent a unary
signature whose values depend on the context.

A symmetric signature is a function that is invariant under any permutation
of its variables. The value of such a signature depends only on the Hamming
weight of its input. We denote a ternary symmetric signature f by the nota-
tion f = [f0, f1, f2, f3], where fi is the value on inputs of Hamming weight i.
The Equality of arities 3 is (=3) = [1, 0, 0, 1]. A symmetric signature f is
called (1) degenerate if it is the tensor power of a unary signature; (2) Gener-
alized Equality, or Gen-Eq, if it is zero unless all inputs are equal. Affine sig-
natures were discovered in the dichotomy for counting constraint satisfaction
problems (#CSP) [5]. A (real valued) ternary symmetric signature is affine if it
has the form [1, 0, 0,±1], [1, 0, 1, 0], [1, 0,−1, 0], [1, 1,−1,−1] or [1,−1,−1, 1], or
by reversing the order of the entries, up to a constant factor. If f is degenerate,
Gen-Eq, or affine, then the problem #CSP(f) and thus Holant (f |=3) is in P
(for a more detailed exposition of this theory, see [5]). Our dichotomy asserts
that, for all signatures f with fi ∈ Q, these three classes are the only tractable
cases of the problem Holant (f |=3); all other signatures lead to #P-hardness.

By a slight abuse of terminology, we say f is in P, or respectively #P-hard, if
the problem Holant (f | (=3)) is computable in P, or respectively #P-hard. We
will use the following theorem [20] on spin systems when proving our results:

Theorem 1. Let a, b ∈ C, and X = ab, Z =
(

a3+b3

2

)2

. Holant ([a, 1, b] | (=3))
is #P-hard except in the following cases when the problem is in P.

1. X = 1;
2. X = Z = 0;
3. X = −1 and Z = 0;
4. X = −1 and Z = −1.

Bipartite 3-Regular Counting Problems with Mixed Signs 139

Fig. 1. G1: the square node is labeled f = [1, a, b, c], the circle node is (=3).

An important observation is that in the context of Holant (f | (=3)), every
gadget construction produces a signature with m ≡ n mod 3, where m and n
are the numbers of input variables (arities) from the LHS and RHS respectively.
Thus, any construction that produces a signature purely on either the LHS or
the RHS will have arity a multiple of 3. In order that our constructions are more
manageable in size, we will make heavy use of straddled gadgets with m = n = 1
that do not belong to either side and yet can be easily iterated. The signatures
of the iterated gadgets are represented by matrix powers.

Consider the binary straddled gadget G1 in Fig. 1. Its signature is G1 = [1 b
a c],

where G1(i, j) (at row i column j) is the value of this gadget when the left
dangling edge (from the “square”) and the right dangling edge (from the “circle”
(=3)) are assigned i and j respectively, for i, j ∈ {0, 1}. Iterating G1 sequentially
k times is represented by the matrix power Gk

1 . It turns out that it is very useful
either to produce directly or to obtain by interpolation a rank deficient straddled
signature, which would in most cases allow us to obtain unary signatures on
either side. With unary signatures we can connect to a ternary signature to
produce binary signatures on one side and then apply Theorem 1. The proof
idea of Lemma 1 is the same as in [15] for nonnegative signatures.

Lemma 1. Given the binary straddled signature G1 = [1 b
a c], we can interpolate

the degenerate binary straddled signature [y xy
1 x], provided that c �= ab, a �= 0,

Δ =
√

(1 − c)2 + 4ab �= 0 and λ
μ is not a root of unity, where λ = −Δ+(1+c)

2 ,

μ = Δ+(1+c)
2 are the two eigenvalues, and x = Δ−(1−c)

2a and y = Δ+(1−c)
2a .

Proof. We have x+y = Δ/a �= 0 and so
[−x y

1 1

]−1 exists, and the matrix G1 has
the Jordan Normal Form

G1 =
(

1 b
a c

)
=

(−x y
1 1

)(
λ 0
0 μ

)(−x y
1 1

)−1

.

Here the matrix G1 is non-degenerate since c �= ab, and so λ and μ are nonzero.
Consider

D =
1

x + y

(
y xy
1 x

)
=

(−x y
1 1

)(
0 0
0 1

)(−x y
1 1

)−1

.

Given any bipartite graph Ω where the binary degenerate straddled signature D
appears n times, we form gadgets Gs

1 where 0 ≤ s ≤ n by iterating the G1 gadget
s times and replacing each occurrence of D with Gs

1. (For s = 0 we replace each
copy of D by an edge.) Denote the resulting bipartite graph as Ωs. We stratify
the assignments in the Holant sum for Ω according to assignments to [0 0

0 1] as:

140 J.-Y. Cai et al.

(a) f1 (b) f2 (c) f3 (d) f4

Fig. 2. Four gadgets where each triangle represents the unary gadget [1, x]

– (0, 0) i times;
– (1, 1) j times;

with i + j = n; all other assignments will contribute 0 in the Holant sum for
Ω. The same statement is true for each Ωs with the matrix

[
λs 0
0 μs

]
. Let ci,j be

the sum, in Ω, over all such assignments of the products of evaluations of all
other signatures other than that represented by the matrix [0 0

0 1], including the
contributions from

[−x y
1 1

]
and its inverse. The same quantities cij appear for

each Ωs, independent of s, with the substitution of the matrix
[

λs 0
0 μs

]
. Then,

for 0 ≤ s ≤ n, we have

HolantΩs
=

∑

i+j=n

(
λiμj

)s · ci,j (2.1)

and HolantΩ = c0,n. Since λ/μ is not a root of unity, the quantities λiμn−i

are pairwise distinct, thus (2.1) is a full ranked Vandermonde system. Thus we
can compute HolantΩ from HolantΩs

by solving the linear system in polynomial
time. Thus we can interpolate D in polynomial time.

The next lemma allows us to get unary signatures.

Lemma 2. For Holant([1, a, b, c] | =3), a, b, c ∈ Q, a �= 0, with the availability
of binary degenerate straddled signature [y xy

1 x] (here x, y ∈ C can be arbitrary),
in polynomial time

1. we can interpolate [y, 1] on the LHS, i.e., Holant({[1, a, b, c], [y, 1]} | =3) ≤T

Holant([1, a, b, c]| =3);
2. we can interpolate [1, x] on the RHS, i.e., Holant([1, a, b, c] |{(=3), [1, x]}) ≤T

Holant([1, a, b, c]| =3), except for two cases: [1, a, a, 1], [1, a,−1 − 2a, 2 + 3a].

Proof. For the problem Holant({[1, a, b, c], [y, 1]} | =3), the number of occurrences
of [y, 1] on LHS is 0 mod 3, say 3n, since the other signatures are both of arity 3.
Now, for each occurrence of [y, 1], we replace it with the binary straddled signature
[y xy
1 x], leaving 3n dangling edges on RHS yet to be connected to LHS, each of

which represents a unary signature [1, x]. We build a gadget to connect every triple
of such dangling edges. We claim that at least one of the connection gadgets in
Figs. 2a, 2b, 2c and 2d creates a nonzero global factor. The factors of these four
gadgets are f1 = cx3 + 3bx2 + 3ax + 1, f2 = (ab + c)x3 + (3bc + 2a2 + b)x2 +
(2b2 + ac + 3a)x + ab + 1, f3 = (a3 + b3 + c3)x3 + 3(a2 + 2ab2 + bc2)x2 +

Bipartite 3-Regular Counting Problems with Mixed Signs 141

(a) g1 (b) g2 (c) g3

Fig. 3. Three gadgets where each triangle represents the unary gadget [y, 1]

3(a + 2a2b + b2c)x + 1 + 2a3 + b3 and f4 = (ab + 2abc + c3)x3 + (2a2 + b +
2a2c + 3ab2 + bc + 3b2c)x2 + (3a + 3a2b + ac + 2b2 + 2b2c + ac2)x + 1 + 2ab + abc
respectively. By setting the four formulae to be 0 simultaneously, with a �= 0,
a, b, c ∈ Q and x ∈ C, we found that there is no solution. This verification uses
Mathematica™. Thus, we can always “absorb” the left-over [1, x]’s at the cost of
some easily computable nonzero global factor.

For the other claim on [1, x] on RHS, i.e.,

Holant([1, a, b, c] | {(=3), [1, x]}) ≤T Holant([1, a, b, c] | =3)

we use a similar strategy to “absorb” the left-over copies of [y, 1] on the LHS by
connecting them to (=3) in the gadgets in the Figs. 3a, 3b or 3c. These gadgets
produce factors g1 = y3+1, g2 = y3+by2+ay+c and g3 = y3+3a2y2+3b2y+c2

respectively. It can be directly checked that, for complex y, all these factors are
0 iff y = −1, and the signature has the form [1, a, a, 1] or [1, a,−2a−1, 3a+2]. ��

A main thrust in our proof is we want to be assured that such degenerate
binary straddled signature can be obtained, and the corresponding unary signa-
tures in Lemma 2 can be produced. We now first consider the two exceptional
cases [1, a, a, 1] and [1, a,−2a − 1, 3a + 2] where this is not possible.

Lemma 3. The problem [1, a, a, 1] is #P-hard unless a ∈ {0,±1} in which case
it is in P.

Proof. If a = 0 or a = ±1, then it is either Gen-Eq or degenerate or affine, and
thus Holant([1, a, a, 1] | =3) is in P. Now assume a �= 0 and a �= ±1.

Using the gadget G1, we have Δ = |2a| and x = y = Δ/2a = ±1 depending
on the sign of a. So we get the signature [y, 1] = [±1, 1] on LHS by Lemmas 1
and 2. Connecting two copies of [y, 1] to [1, 0, 0, 1] on RHS, we get [1, 1] on RHS
regardless of the sign. Connecting [1, 1] to [1, a, a, 1] on LHS, we get [1+a, 2a, 1+
a] on LHS. The problem Holant([1+a, 2a, 1+a] | =3) is #P-hard by Theorem 1
unless a = 0,±1 or − 1

3 , thus we only need to consider the signature [3,−1,−1, 3].
If a = − 1

3 , we apply holographic transformation with the Hadamard matrix
H =

[
1 1
1 −1

]
. Note that [3,−1,−1, 3] = 4((1, 0)⊗3+(0, 1)⊗3)−(1, 1)⊗3. Here each

tensor power represents a truth-table of 8 entries, or a vector of dimension 8; the
linear combination is the truth-table for the symmetric signature [3,−1,−1, 3],
which is in fact a short hand for the vector (3,−1,−1,−1,−1,−1,−1, 3). Also
note that, (1, 0)H = (1, 1), (0, 1)H = (1,−1) and (1, 1)H = (2, 0), thus we have

142 J.-Y. Cai et al.

[3,−1,−1, 3]H⊗3 = 4((1, 1)⊗3 + (1,−1)⊗3) − (2, 0)⊗3 = 4[2, 0, 2, 0] − [8, 0, 0, 0] =
[0, 0, 8, 0], which is equivalent to [0, 0, 1, 0] by a global factor. So, we get

Holant ([3,−1,−1, 3] | (=3)) ≡T Holant
(
[3,−1,−1, 3]H⊗3 | (H⊗3)−1[1, 0, 0, 1]

)

≡T Holant ([0, 0, 1, 0] | [1, 0, 1, 0])
≡T Holant ([0, 0, 1, 0] | [0, 0, 1, 0])
≡T Holant ([0, 1, 0, 0] | [0, 1, 0, 0])

where the first reduction is by Valiant’s Holant theorem [25], the third reduction
comes from the following observation: given a bipartite 3-regular graph G =
(V,U,E) where the vertices in V are assigned the signature [0, 0, 1, 0] and the
vertices in U are assigned the signature [1, 0, 1, 0], every nonzero term in the
Holant sum must correspond to a mapping σ : E → {0, 1} where exactly two
edges of any vertex are assigned 1. The fourth reduction is by simply flipping 0’s
and 1’s. The problem Holant ([0, 1, 0, 0] | [0, 1, 0, 0]) is the problem of counting
perfect matchings in 3-regular bipartite graphs, which Dagum and Luby proved
to be #P-complete (Theorem 6.2 in [13]). ��
Lemma 4. The problem [1, a,−2a − 1, 3a + 2] is #P-hard unless a = −1 in
which case it is in P.

Proof. Observe that the truth-table of the symmetric signature [1, a,−2a−1, 3a+
2] written as an 8-dimensional column vector is just

2(a + 1)

([
1
0

]⊗3

+

[
0
1

]⊗3
)

− a + 1

2

([
1
1

]⊗3

+

[
1

−1

]⊗3
)

− a

[
1

−1

]⊗3

.

Here again, the tensor powers as 8-dimensional vectors represent truth-tables,
and the linear combination of these vectors “holographically” reconstitute a
truth-table of the symmetric signature [1, a,−2a−1, 3a+2]. We apply the holo-
graphic transformation with the Hadamard matrix H =

[
1 1
1 −1

]
, and we get

Holant ([1, a,−2a − 1, 3a + 2] | (=3))

≡T Holant
(
[1, a,−2a − 1, 3a + 2]H⊗3 | (H⊗3)−1[1, 0, 0, 1]

)

≡T Holant ([0, 0, a + 1,−3a − 1] | [1, 0, 1, 0])
≡T Holant ([0, 0, a + 1, 0] | [0, 0, 1, 0]) ,

where the last equivalence follows from the observation that for each nonzero
term in the Holant sum, every vertex on the LHS has at least two of three edges
assigned 1 (from [0, 0, a+1,−3a−1]), meanwhile every vertex on the RHS has at
most two of three edges assigned 1 (from [1, 0, 1, 0]). The graph being bipartite
and 3-regular, the number of vertices on both sides must equal, thus every vertex
has exactly two incident edges assigned 1.

Bipartite 3-Regular Counting Problems with Mixed Signs 143

Then by flipping 0’s and 1’s,

Holant ([0, 0, a + 1, 0] | [0, 0, 1, 0]) ≡T Holant ([0, a + 1, 0, 0] | [0, 1, 0, 0]) .

For a �= −1, this problem is equivalent to counting perfect matchings in
bipartite 3-regular graphs, which is #P-complete. If a = −1, the signature
[1,−1, 1,−1] = [1,−1]⊗3 is degenerate, and thus in P. The holographic reduction
also reveals that, not only the problem is in P, but the Holant sum is 0. ��

We can generalize Lemma 4 to get the following corollary.

Corollary 1. The problem Holant (f |=3), where f = [3a+b,−a−b,−a+b, 3a−
b], is computable in polynomial time on planar graphs for all a, b, but is #P-hard
on general graphs for all a �= 0.

Proof. The following equivalence is by a holographic transformation using H:

Holant (f | (=3)) ≡T Holant
(
fH⊗3 | (H−1)⊗3(=3)

)

≡T Holant ([0, 0, a, b] | [1, 0, 1, 0])
≡T Holant ([0, 0, a, 0] | [0, 0, 1, 0])
≡T Holant ([0, a, 0, 0] | [0, 1, 0, 0])

where the third reduction follows the same reasoning as in the proof of Lemma 4.
When a �= 0, Holant ([0, a, 0, 0] | [0, 1, 0, 0]) is (up to a global nonzero factor)
the perfect matching problem on 3-regular bipartite graphs. This problem is
computable in polynomial time on planar graphs and the reductions are valid
for planar graphs as well. It is #P-hard on general graphs (for a �= 0). ��
Remark: The planar tractability of the problem Holant (f |=3), for f =
[3a + b,−a − b,−a + b, 3a − b], is a remarkable fact. It is neither accomplished
by a holographic transformation to matchgates alone, nor entirely independent
from it. One can prove that the signature f is not matchgates-transformable
(for nonzero a, b; see [5] for the theory of matchgates and the realizability of
signatures by matchgates under holographic transformation). In previous com-
plexity dichotomies, we have found that for the entire class of counting CSP
problems over Boolean variables, all problems that are #P-hard in general but
P-time tractable on planar graphs are tractable by the following universal algo-
rithmic strategy—a holographic transformation to matchgates followed by the
FKT algorithm [12]. On the other hand, for (non-bipartite) Holant problems with
arbitrary symmetric signature sets, this category of problems (planar tractable
but #P-hard in general) is completely characterized by two types [8]: (1) holo-
graphic transformations to matchgates, and (2) a separate kind that depends on
the existence of “a wheel structure” (unrelated to holographic transformations
and matchgates). Here in Corollary 1 we have found the first instance where a
new type has emerged.

144 J.-Y. Cai et al.

Proposition 1. For G1 = [1 b
a c], with a, b, c ∈ Q, if it is non-singular (i.e.,

c �= ab), then it has two nonzero eigenvalues λ and μ. The ratio λ/μ is not a
root of unity unless at least one of the following conditions holds:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

c + 1 = 0
ab + c2 + c + 1 = 0
2ab + c2 + 1 = 0
3ab + c2 − c + 1 = 0
4ab + c2 − 2c + 1 = 0

(2.2)

Now we introduce two more binary straddled signatures—G2 and G3 in Fig. 4.
The signature matrix of G2 is

[
w b′
a′ c′

]
, where w = 1+2a3+b3, a′ = a+2a2b+b2c,

b′ = a2 + 2ab2 + bc2 and c′ = a3 + 2b3 + c3. The signature matrix of G3 is[
1+ab a2+bc
a+b2 ab+c2

]
. In this case we define w = 1 + ab, a′ = a + b2, b′ = a2 + bc and

c′ = ab + c2. Similar to Proposition 1, we have the following on G2 and G3.

(a) G2 (b) G3

Fig. 4. Two binary straddled gadgets

Proposition 2. For each gadget G2 and G3 respectively, if the signature matrix
is non-degenerate, then the ratio λ′/μ′ of its eigenvalues is not a root of unity
unless at least one of the following conditions holds, where A = w + c′, B =
(c′ − w)2 + 4a′b′. ⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

A = 0
B = 0
A2 + B = 0
A2 + 3B = 0
3A2 + B = 0

(2.3)

Lemma 5. Suppose a, b, c ∈ Q, a �= 0 and c �= ab and a, b, c do not satisfy any
condition in (2.2). Let x = Δ−(1−c)

2a , y = Δ+(1−c)
2a and Δ =

√
(1 − c)2 + 4ab.

Then for Holant([1, a, b, c] | =3),

1. we can interpolate [y, 1] on LHS;
2. we can interpolate [1, x] on RHS except for 2 cases: [1, a, a, 1], [1, a,−1 −

2a, 2 + 3a].

Bipartite 3-Regular Counting Problems with Mixed Signs 145

We have similar statements corresponding to G2 (resp. G3). When the sig-
nature matrix is non-singular and does not satisfy any condition in (2.3), we
can interpolate the corresponding [y′, 1] on LHS, and we can also interpolate the
corresponding [1, x′] on RHS except when y′ = −1.

Definition 1. For Holant([1, a, b, c] | =3), with a, b, c ∈ Q, a �= 0, we say a
binary straddled gadget G works if the signature matrix of G is non-degenerate
and the ratio of its two eigenvalues λ/μ is not a root of unity.

Remark: Explicitly, the condition that G1 works is that c �= ab and a, b, c do
not satisfy any condition in (2.2), which is just the assumptions in Lemma 5. G1

works implies that it can be used to interpolate [y, 1] on LHS, and to interpolate
[1, x] on RHS with two exceptions for which we already proved the dichotomy.
The x, y are as stated in Lemma 5. Similar remarks are valid for the binary
straddled gadgets G2 and G3.

The unary signatures Δ0 = [1, 0] and Δ1 = [0, 1] are called the pinning
signatures because they “pin” a variable to 0 or 1. One good use of having
unary signatures is that we can use Lemma 7 to get the two pinning signatures.
Pinning signatures are helpful as the following lemma shows.

Lemma 6. If Δ0 and Δ1 are available on the RHS in Holant([1, a, b, c] | =3),
where a, b, c ∈ Q, ab �= 0, then the problem is #P-hard unless [1, a, b, c] is affine
or degenerate, in which cases it is in P.

The following lemma lets us interpolate arbitrary unary signatures on RHS,
in particular Δ0 and Δ1, from a binary gadget with a straddled signature and a
suitable unary signature s on RHS. Mathematically, the proof is essentially the
same as in [23], but technically Lemma 7 applies to binary straddled signatures.

Lemma 7. Let M ∈ R
2×2 be a non-singular signature matrix for a binary strad-

dled gadget which is diagonalizable with distinct eigenvalues, and s = [a, b] be a
unary signature on RHS that is not a row eigenvector of M . Then {s · M j}j≥0

can be used to interpolate any unary signature on RHS.

The ternary gadget G4 in Fig. 5 will be used in the paper.

Fig. 5. G4

146 J.-Y. Cai et al.

3 Main Theorem

Our main theorem is Theorem 6. The main part of its proof is to deal with
the generic case f = [f0, f1, f2, f3] where f0, f1, f2, f3 are all nonzero. Roughly
speaking, we argue that either the simplest gadget G1 works, in which case we
get suitable unary signatures with some small number of exceptional cases which
we can handle separately, or the gadget G1 does not work, in which case we gain
a polynomial condition in (2.2). When G1 works we can construct signatures
from f to show #P-hardness which implies that f is also #P-hard, or we get
additional stringent conditions on f0, f1, f2, f3 which we can analyse separately.
When G1 does not work, armed by the polynomial condition from (2.2), we can
afford to use more complicated gadgets G2 and G3. We also use G4 to produce
new ternary signatures. It turns out that we need to iterate this theme more than
once, but every time we either succeed because the current gadget works, or it
does not, in which case we gain an additional polynomial condition similar to the
one in (2.2), and from that we can afford to use a more complicated gadget, every
time staying just one step ahead of a symbolic computational explosion due to
the high complexity of CylindricalDecomposition for Tarski’s theorem. The
exact proof differs somewhat from the outline above because of some technical
complications.

We need the following preliminary dichotomies:

Theorem 2. The problem [1, a, b, 0] for a, b ∈ Q is #P-hard unless it is degen-
erate or affine, and thus in P.

Theorem 3. The problem [1, a, 0, c] with a, c ∈ Q is #P-hard unless a = 0, in
which case it is Gen-Eq and thus in P.

Theorem 4. The problem [0, a, b, 0] with a, b ∈ Q is #P-hard unless a = b = 0,
in which case the Holant value is 0.

Theorem 5. The problem [1, a, b, c] with a, b, c ∈ Q, abc �= 0, is #P-hard unless
it is degenerate, Gen-Eq or affine.

The logical structure of our proof of the main dichotomy theorem is illus-
trated in the following flowchart.

[f0, f1, f2, f3]
Dichotomy

for [0, a, b, 0],
Theorem 4

[1, a, b, c]
Dichotomy

for [1, a, b, 0],
Theorem 2

With
possible
flipping
we have

[1, a, 0, c].
Dichotomy
Theorem 3

Dichotomy in
Theorem 5

if f0 = f3 = 0

else, possibly
by flipping

if c = 0
if c �= 0

and ab = 0

else (i.e., abc �= 0)

We are now ready to prove our main theorem.

Bipartite 3-Regular Counting Problems with Mixed Signs 147

Theorem 6. The problem Holant{ [f0, f1, f2, f3] | (=3)} with fi ∈ Q (i =
0, 1, 2, 3) is #P-hard unless the signature [f0, f1, f2, f3] is degenerate, Gen-Eq
or belongs to the affine class.

Proof. First, if f0 = f3 = 0, by Theorem 4, we know that it is #P-hard unless it
is [0, 0, 0, 0] which is degenerate. Note that in all other cases, [0, f1, f2, 0] is not
Gen-Eq, degenerate or affine.

Assume now at least one of f0 and f3 is not 0. By flipping the role of 0 and 1,
we can assume f0 �= 0, then the signature becomes [1, a, b, c] after normalization.

If c = 0, the dichotomy for [1, a, b, 0] is proved in Theorem 2.
If in [1, a, b, c], c �= 0, then a and b are symmetric by flipping. Now if ab = 0, we

can assume b = 0 by the afore-mentioned symmetry, i.e., the signature becomes
[1, a, 0, c]. By Theorem 3, it is #P-hard unless a = 0, in which case it is Gen-Eq.
In all other cases, it is not Gen-Eq or degenerate or affine.

Finally, for the problem [1, a, b, c] where abc �= 0, Theorem 5 proves the
dichotomy that it is #P-hard unless the signature is degenerate or Gen-Eq or
affine. ��

References

1. Backens, M.: A new Holant dichotomy inspired by quantum computation. In: 44th
International Colloquium on Automata, Languages, and Programming, ICALP,
pp. 16:1–16:14 (2017)

2. Backens, M.: A complete dichotomy for complex-valued Holantc. In: 45th Inter-
national Colloquium on Automata, Languages, and Programming, ICALP, pp.
12:1–12:14 (2018)

3. Backens, M., Goldberg, L.A.: Holant clones and the approximability of conservative
Holant problems. ACM Trans. Algorithms 16(2), 23:1–23:55 (2020)

4. Bulatov, A.A.: A dichotomy theorem for constraint satisfaction problems on a
3-element set. J. ACM (JACM) 53(1), 66–120 (2006)

5. Cai, J., Chen, X.: Complexity Dichotomies for Counting Problems: Boolean
Domain, vol. 1. Cambridge University Press, Cambridge (2017)

6. Cai, J., Chen, X.: Complexity of counting CSP with complex weights. J. ACM
64(3), 19:1–19:39 (2017)

7. Cai, J., Chen, X., Lu, P.: Nonnegative weighted# CSP: an effective complexity
dichotomy. SIAM J. Comput. 45(6), 2177–2198 (2016)

8. Cai, J., Fu, Z., Guo, H., Williams, T.: A Holant dichotomy: is the FKT algorithm
universal? In: IEEE 56th Annual Symposium on Foundations of Computer Science,
FOCS, pp. 1259–1276 (2015)

9. Cai, J., Guo, H., Williams, T.: A complete dichotomy rises from the capture of
vanishing signatures. SIAM J. Comput. 45(5), 1671–1728 (2016)

10. Cai, J., Lu, P.: Holographic algorithms: from art to science. J. Comput. Syst. Sci.
77(1), 41–61 (2011)

11. Cai, J., Lu, P., Xia, M.: Holant problems and counting CSP. In: Proceedings of
the Forty-First Annual ACM Symposium on Theory of Computing, pp. 715–724
(2009)

12. Cai, J., Lu, P., Xia, M.: Holographic algorithms with matchgates capture pre-
cisely tractable planar #CSP. In: 51th Annual IEEE Symposium on Foundations
of Computer Science, FOCS, pp. 427–436 (2010)

148 J.-Y. Cai et al.

13. Dagum, P., Luby, M.: Approximating the permanent of graphs with large factors.
Theor. Comput. Sci. 102(2), 283–305 (1992)

14. Dyer, M., Richerby, D.: An effective dichotomy for the counting constraint satis-
faction problem. SIAM J. Comput. 42(3), 1245–1274 (2013)

15. Fan, A.Z., Cai, J.: Dichotomy result on 3-regular bipartite non-negative functions.
arXiv preprint arXiv:2011.09110 (2020)

16. Freedman, M., Lovász, L., Schrijver, A.: Reflection positivity, rank connectivity,
and homomorphism of graphs. J. Am. Math. Soc. 20(1), 37–51 (2007)

17. Guo, H., Huang, S., Lu, P., Xia, M.: The complexity of weighted Boolean #CSP
modulo K. In: 28th International Symposium on Theoretical Aspects of Computer
Science, STACS, pp. 249–260 (2011)

18. Guo, H., Lu, P., Valiant, L.G.: The complexity of symmetric Boolean parity Holant
problems. SIAM J. Comput. 42(1), 324–356 (2013)

19. Hell, P., Nesetril, J.: Graphs and Homomorphisms, Oxford Lecture Series in Math-
ematics and its Applications, vol. 28. Oxford University Press (2004)

20. Kowalczyk, M., Cai, J.: Holant problems for regular graphs with complex edge
functions. In: 27th International Symposium on Theoretical Aspects of Computer
Science, STACS, pp. 525–536 (2010)

21. Szegedy, B.: Edge coloring models and reflection positivity. J. Am. Math. Soc.
20(4), 969–988 (2007)

22. Szegedy, B.: Edge coloring models as singular vertex coloring models. In: Katona,
G.O.H., Schrijver, A., Szõnyi, T., Sági, G. (eds.) Fete of Combinatorics and Com-
puter Science. BSMS, pp. 327–336. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-13580-4 12

23. Vadhan, S.P.: The complexity of counting in sparse, regular, and planar graphs.
SIAM J. Comput. 31(2), 398–427 (2001)

24. Valiant, L.G.: Accidental algorthims. In: 47th Annual IEEE Symposium on Foun-
dations of Computer Science, FOCS, pp. 509–517. IEEE (2006)

25. Valiant, L.G.: Holographic algorithms. SIAM J. Comput. 37(5), 1565–1594 (2008)
26. Valiant, L.G.: Some observations on holographic algorithms. Comput. Complex.

27(3), 351–374 (2017). https://doi.org/10.1007/s00037-017-0160-4
27. Xia, M.: Holographic reduction: a domain changed application and its partial con-

verse theorems. In: Automata, Languages and Programming, pp. 666–677 (2010)

http://arxiv.org/abs/2011.09110
https://doi.org/10.1007/978-3-642-13580-4_12
https://doi.org/10.1007/978-3-642-13580-4_12
https://doi.org/10.1007/s00037-017-0160-4

The Satisfiability Problem
for a Quantitative Fragment of PCTL

Miroslav Chodil and Antońın Kučera(B)

Masaryk University, Brno, Czechia
tony@fi.muni.cz

Abstract. We give a sufficient condition under which every finite-
satisfiable formula of a given PCTL fragment has a model with at most
doubly exponential number of states (consequently, the finite satisfia-
bility problem for the fragment is in 2-EXPSPACE). The condition is
semantic and it is based on enforcing a form of “progress” in non-bottom
SCCs contributing to the satisfaction of a given PCTL formula. We show
that the condition is satisfied by PCTL fragments beyond the reach of
existing methods.

Keywords: Probabilistic temporal logics · Satisfiability · PCTL

1 Introduction

Probabilistic CTL (PCTL) [19] is a temporal logic applicable to discrete-time
probabilistic systems with Markov chain semantics. PCTL is obtained from the
standard CTL (see, e.g., [14]) by replacing the existential/universal path quanti-
fiers with the probabilistic operator P (Φ) �� r. Here, Φ is a path formula, �� is a
comparison such as ≥ or <, and r is a numerical constant. A formula P (Φ) �� r
holds in a state s if the probability of all runs initiated in s satisfying Φ is
��-bounded by r. The satisfiability problem for PCTL, asking whether a given
PCTL formula has a model, is a long-standing open question in probabilistic
verification resisting numerous research attempts.

Unlike CTL and other non-probabilistic temporal logics, PCTL does not
have a small model property guaranteeing the existence of a bounded-size model
for every satisfiable formula. In fact, one can easily construct satisfiable PCTL
formulae without any finite model (see, e.g., [8]). Hence, the PCTL satisfiability
problem is studied in two basic variants: (1) finite satisfiability, where we ask
about the existence of a finite model, and (2) general satisfiability, where we ask
about the existence of an unrestricted model.

For the qualitative fragment of PCTL, where the range of admissible prob-
ability constraints is restricted to {=0, >0,=1, <1}, both variants of the satis-
fiability problem are EXPTIME-complete, and a finite description of a model
for a satisfiable formula is effectively constructible [8]. Unfortunately, the under-
lying proof techniques are not applicable to general PCTL with unrestricted
(quantitative) probability constraints such as ≥0.25 or <0.7.
c© Springer Nature Switzerland AG 2021
E. Bampis and A. Pagourtzis (Eds.): FCT 2021, LNCS 12867, pp. 149–161, 2021.
https://doi.org/10.1007/978-3-030-86593-1_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86593-1_10&domain=pdf
http://orcid.org/0000-0002-8406-0443
http://orcid.org/0000-0002-6602-8028
https://doi.org/10.1007/978-3-030-86593-1_10

150 M. Chodil and A. Kučera

To solve the finite satisfiability problem for some PCTL fragment, it suffices
to establish a computable upper bound on the size (the number of states) of
a model for a finite-satisfiable formula of the fragment1. At first glance, one is
tempted to conjecture the existence of such a bound for the whole PCTL because
there is no apparent way how a finite-satisfiable PCTL formula ϕ can “enforce”
the existence of F (ϕ) distinct states in a model of ϕ, where F grows faster
than any computable function. Interestingly, this conjecture is provably wrong
in a slightly modified setting where we ask about finite PCTL satisfiability in
a subclass of Markov chains Mk where every state has at most k ≥ 2 imme-
diate successors (the k is an arbitrarily large fixed constant). This problem is
undecidable and hence no computable upper bound on the size of a finite model
in Mk exists [8] (see [9] for a full proof). So far, all attempts at extending the
undecidability proof of [8] to the class of unrestricted Markov chains have failed;
it is not yet clear whether the obstacles are invincible.

Regardless of the ultimate decidability status of the (finite) PCTL satisfia-
bility, the study of PCTL fragments brings important insights into the structure
and expressiveness of PCTL formulae. The existing works [12,22] identify several
fragments where every (finite) satisfiable formula has a model of bounded size
and specific shape. In [12], it is shown that every formula ϕ of the bounded frag-
ment of PCTL, where the validity of ϕ in a state s depends only on a bounded
prefix of a run initiated in s, has a bounded-size tree model. In [22], seven PCTL
fragments based on F and G operators are studied. For each of these fragments,
it is shown that every satisfiable (or finite-satisfiable) formula has a bounded-size
model such that every non-bottom SCC is a singleton. It is also shown that there
are finite-satisfiable PCTL formulae without a model of this shape. An example
of such formula is

ψ ≡ G=1

(
F≥0.5(a ∧ F≥0.2¬a) ∨ a

) ∧ F=1 G=1 a ∧ ¬a

In [22], it is shown that ψ is finite satisfiable2, but every finite model of ψ has a
non-bottom SCC with at least two states, such as the Markov chain M of Fig. 1.

Our Contribution. A crucial step towards solving the finite satisfiability prob-
lem for PCTL is understanding the role of non-bottom SCCs. Intuitively, if a
given PCTL formula ϕ enforces a model with a non-bottom SCC, then the top
SCC must achieve some sort of “progress” in satisfying ϕ, and successor SCCs
are required to satisfy only some “simpler” formulae. In this paper, we develop
this intuition into an algorithm deciding finite satisfiability for various PCTL
fragments beyond the reach of existing methods.

More concretely, we design a sufficient condition under which every for-
mula in a given PCTL fragment has a bounded model with at most doubly
1 Although there are uncountably many Markov chains with n states, the edge proba-

bilities can be represented symbolically by variables, and the satisfiability of a given
PCTL formula in a Markov chain with n states can then be encoded in the existential
fragment of first-order theory of the reals. This construction is presented in [13].

2 In [22], the formula ψ has the same structure but uses qualitative probability con-
straints.

The Satisfiability Problem for a Quantitative Fragment of PCTL 151

exponential number of states. Consequently, the finite satisfiability problem for
the fragment is in 2-EXPSPACE. The condition says that a progress in sat-
isfying ϕ is achievable by a SCC C where C has a bounded number states and
takes the form of a loop with one exit state of bounded outdegree (see Fig. 2).
Furthermore, the successor states are required to satisfy PCTL formulae strictly
simpler than ϕ in a precisely defined sense. Hence, bounded models for these
formulae exist by induction hypothesis, and thus we complete the construction
of a bounded model for ϕ.

The above sufficient condition is “semantic” and it is satisfied by various
mutually incomparable syntactic fragments of PCTL that are not covered by
the methods of [22] (two of these fragments contain the formula ψ presented
above). Hence, our semantic condition can be seen as a “unifying principle”
behind these new decidability results.

In our construction, we had to address fundamental issues specific to quanti-
tative PCTL. The basic observation behind the small model property proofs for
non-probabilistic temporal logics (and also qualitative PCTL) is that the satis-
faction of a given formula in a given state s is determined by the satisfaction
of ϕ and its subformulae in the successor states of s. For quantitative PCTL,
this is not true. For example, knowing whether immediate successors of a state s
satisfy the formula F≥0.2 ϕ does not necessarily allow to determine the satisfac-
tion of F≥0.2 ϕ in s. What we need is a precise probability of satisfying the path
formula Fϕ in the successors of s. Clearly, it makes no sense to filter a model
according to the satisfaction of infinitely many formulae of the form F≥r ϕ. In
our proof, we invent a method for extending the set of “relevant formulae” so
that it remains bounded and still captures the crucial properties of states.

The methodology presented in this paper can be extended by considering
SCCs with increasingly complex structure and analyzing the achievable “progress
in satisfaction” of PCTL formulae (see Sect. 4 for more comments). We believe
that this effort may eventually result in a decidability proof for the whole PCTL.

Related Work. The satisfiability problem for non-probabilistic CTL is known
to be EXPTIME-complete [15]. The same upper bound is valid also for a richer
logic of the modal μ-calculus [3,18]. The probabilistic extension of CTL (and
also CTL∗) was initially studied in its qualitative form [20,23]. The satisfiability
problem is shown decidable in these works. A precise complexity classification of
general and finite satisfiability, together with a construction of (a finite descrip-
tion of) a model is given in [8]. In the same paper, it is also shown that the
satisfiability and the finite satisfiability problems are undecidable when the class
of admissible models is restricted to Markov chains with a k-bounded branch-
ing degree, where k ≥ 2 is an arbitrary constant. A variant of the bounded
satisfiability problem, where transition probabilities are restricted to {1

2 , 1}, is
proven NP-complete in [4]. The decidability of finite satisfiability for fragments
of quantitative PCTL is established in the works [12,22] discussed above.

The model-checking problem for PCTL has been studied both for finite
Markov chains (see, e.g., [1,2,5,21]) and for infinite Markov chains generated
by probabilistic pushdown automata and their subclasses [11,16,17]. PCTL

152 M. Chodil and A. Kučera

a¬a

a

s
0.6

1
0.4

1

Fig. 1. A Markov chain M such that s |= ψ.

formulae have also been used as objectives in Markov decision processes (MDPs)
and stochastic games, where the players controlling non-deterministic states
strive to satisfy/falsify a given PCTL formula. Positive decidability results exist
for finite MDPs and qualitative PCTL formulae [10]. For quantitative PCTL and
finite MDPs, the problem becomes undecidable [7]. Let us note that the afore-
mentioned undecidability results for the (finite) PCTL satisfiability problem in
subclasses of Markov chains with bounded branching degree follow by utilizing
proof techniques of [7].

2 Preliminaries

We use N, Q, R to denote the sets of non-negative integers, rational numbers, and
real numbers, respectively. We use the standard notation for writing intervals of
real numbers, e.g., [0, 1) denotes the set of all r ∈ R such that 0 ≤ r < 1.

The logic PCTL [19] is a probabilistic version of Computational Tree Logic
[14] obtained by replacing the existential and universal path quantifiers with the
probabilistic operator P (Φ) �� r, where Φ is a path formula, �� is a comparison,
and r ∈ [0, 1] is a constant.

In full PCTL, the syntax of path formulae is based on the X and U (‘next’
and ‘until’) operators. In this paper, we consider a variant of PCTL based on F
and G operators.

Definition 1 (PCTL). Let AP be a set of atomic propositions. The syntax
of PCTL state and path formulae is defined by the following abstract syntax
equations:

ϕ ::= a | ¬a | ϕ ∧ ϕ | ϕ ∨ ϕ | P (Φ) � r
Φ ::= Fϕ | G ϕ

Here, a ∈ AP, � ∈ {≥, >}, and r ∈ [0, 1].

For the sake of simplicity, the trivial probability constraints ‘≥0’ and ‘>1’ are
syntactically forbidden. Since the formula Φ in the probabilistic operator P (Φ)�r
is always of the form Fϕ or Gϕ, we often write just F�r ϕ and G�r ϕ instead of
P (Fϕ)�r and P (Gϕ)�r, respectively. The probability constraint ‘≥1’ is usually
written as ‘=1’. The set of all state subformulae of a given state formula ϕ is
denoted by sub(ϕ). For a set X of PCTL formulae, we use sub(X) to denote⋃

ϕ∈X sub(ϕ).

The Satisfiability Problem for a Quantitative Fragment of PCTL 153

Observe that the negation is applicable only to atomic propositions and the
comparison ranges only over {≥, >}. This causes no loss of generality because
negations can be pushed inside, and formulae such as F≤r ϕ and G<r ϕ are
equivalent to G≥1−r ¬ϕ and F>1−r ¬ϕ, respectively.

PCTL formulae are interpreted over Markov chains where every state s is
assigned a subset v(s) ⊆ AP of atomic propositions valid in s.

Definition 2 (Markov chain). A Markov chain is a triple M = (S, P, v),
where S is a finite or countably infinite set of states, P : S × S → [0, 1] is a
function such that

∑
t∈S P (s, t) = 1 for every s ∈ S, and v : S → 2AP.

A path in M is a finite sequence w = s0 . . . sn of states such that P (si, si+1) >
0 for all i < n. A run in M is an infinite sequence π = s0s1 . . . of states such
that every finite prefix of π is a path in M . We also use π(i) to denote the state
si of π.

A strongly connected component (SCC) of M is a maximal U ⊆ S such that,
for all s, t ∈ U , there is a path from s to t. A bottom SCC (BSCC) of M is a
SCC U such that for every s ∈ U and every path s0 . . . sn where s = s0 we have
that sn ∈ U .

For every path w = s0 . . . sn, let Run(w) be the set of all runs starting
with w, and let P(Run(w)) =

∏n−1
i=0 P (si, si+1). To every state s, we associate

the probability space (Run(s),Fs,Ps), where Fs is the σ-field generated by all
Run(w) where w starts in s, and Ps is the unique probability measure obtained
by extending P in the standard way (see, e.g., [6]).

The validity of a PCTL state/path formula for a given state/run of M is
defined inductively as follows:

s |= a iff a ∈ v(s),
s |= ¬a iff a
∈ v(s),
s |= ϕ1 ∧ ϕ2 iff s |= ϕ1 and s |= ϕ2,
s |= ϕ1 ∨ ϕ2 iff s |= ϕ1 or s |= ϕ2,
s |= P (Φ) � r iff Ps({π ∈ Run(s) | π |= Φ}) � r,

π |= Fϕ iff π(i) |= ϕ for some i ∈ N,
π |= Gϕ iff π(i) |= ϕ for all i ∈ N.

For a set X of PCTL state formulae, we write s |= X iff x |= ϕ for every ϕ ∈ X.
We say that M is a model of ϕ if s |= ϕ for some state s of M . The (finite)

PCTL satisfiability problem is the question whether a given PCTL formula has
a (finite) model.

A PCTL fragment is a set of PCTL state formulae L closed under state
subformulae and changes in probability constraints, i.e., if F�r ϕ ∈ L (or G�r ϕ ∈
L), then F≥r′ ϕ ∈ L (or G≥r′ ϕ ∈ L) for every r′ ∈ (0, 1].

3 Results

In this section, we formulate our main results. As a running example, we use the
formula ψ of Sect. 1 and its model of Fig. 1.

154 M. Chodil and A. Kučera

Definition 3. Let ψ be a PCTL formula and s a state in a Markov chain such
that s |= ψ. The closure of ψ in s, denoted by Cs(ψ), is the least set K satisfying
the following conditions:

– ψ ∈ K;
– if ϕ1 ∨ ϕ2 ∈ K and s |= ϕ1, then ϕ1 ∈ K;
– if ϕ1 ∨ ϕ2 ∈ K and s |= ϕ2, then ϕ2 ∈ K;
– if ϕ1 ∧ ϕ2 ∈ K, then ϕ1, ϕ2 ∈ K;
– if F�r ϕ ∈ K and s |= ϕ, then ϕ ∈ K;

Furthermore, for a finite set X of PCTL formulae such that s |= X, we put
Cs(X) =

⋃
ψ∈X Cs(ψ).

Observe that Cs(ψ) contains some but not necessarily all subformulae of ψ
that are valid in s. In particular, there is no rule saying that if G�r ϕ ∈ K, then
ϕ ∈ K. As we shall see, the subformulae within the scope of G�r operator need
special treatment.

Example 1. For the formula ψ and the state s of our running example, we obtain

Cs(ψ) = {ψ, G=1

(
F≥0.5(a ∧ F≥0.2 ¬a) ∨ a

)
, F=1 G=1 a, ¬a}

Observe that although F=1 G=1 a ∈ Cs(ψ), the formula G=1 a is not included
into Cs(ψ) because s
|= G=1 a.

The set Cs(ψ) does not give a precise information about the satisfaction
of relevant path formulae. Therefore, we allow for “updating” the closure with
precise quantities.

Definition 4. Let X be a set of PCTL formulae and s a state in a Markov chain
such that s |= ϕ for every ϕ ∈ X. The update of X in s, denoted by Us(X), is
the set of formulae obtained by replacing every formula of the form P (Φ) � r in
X with the formula P (Φ) ≥ r′, where r′ = Ps({π ∈ Run(s) | π |= Φ}).

Observe that r′ ≥ r, and the formulae of X which are not of the form P (Φ)�r
are left unchanged by Us. The UCs operator is defined by UCs(X) = Us(Cs(X)).
Observe that UCs is idempotent, i.e., UCs(UCs(X)) = UCs(X).

Example 2. In our running example, we have that

UCs(ψ) = {ψ, G=1

(
F≥0.5(a ∧ F≥0.2 ¬a) ∨ a

)
, F=1 G=1 a, ¬a}

because the probability constraint r in the two formulae of the form P (Φ) � r is
equal to 1 and cannot be enlarged.

In our next definition, we introduce a sufficient condition under which the
finite satisfiability problem is decidable in a PCTL fragment L.

Definition 5. We say that a PCTL fragment L is progressive if for every finite
set X of PCTL formulae and every state s of a finite Markov chain such that

The Satisfiability Problem for a Quantitative Fragment of PCTL 155

– s |= X,
– X is closed and updated (i.e., X = UCs(X)),
– X ⊆ L
there exists a progress loop, i.e., a finite sequence L = L0, . . . , Ln of subsets of
sub(X) satisfying the following conditions:

(1) X ⊆ Li for some i ∈ {0, . . . , n};
(2) L0, . . . , Ln are pairwise different (this induces an upper bound on n);
(3) for every i ∈ {0, . . . , n}, we have that

• if a ∈ Li, then ¬a
∈ Li;
• if ϕ1 ∧ ϕ2 ∈ Li, then ϕ1, ϕ2 ∈ Li;
• if ϕ1 ∨ ϕ2 ∈ Li, then ϕ1 ∈ Li or ϕ2 ∈ Li;
• if G�r ϕ ∈ Li, then ϕ ∈ Lj for every j ∈ {0, . . . , n}.

Furthermore, let Δ(L) be the set of all ϕ ∈ L0 ∪ · · · ∪ Ln such that one of the
following conditions holds:

– ϕ ≡ G�r ψ;
– ϕ ≡ F�r ψ and ψ
∈ L0 ∪ · · · ∪ Ln;
– ϕ ≡ F=1 ψ and F=1 ψ ∈ Li for some i such that ψ
∈ Li ∪ · · · ∪ Ln.

We require that

(4) s |= Δ(L);
(5) s
|= ψ for every formula of form F�r ψ such that F�r ψ ∈ Δ(L);
(6) degs(Δ(L)) ⊂ degs(X) or cfs(Δ(L)) ⊆ cfs(X).

Here, the set degs(Y) consists of formulae G ϕ such that sub(Y) contains
a formula of the form G�r ϕ and s
|= G=1 ϕ. The set cfs(Y) consists of
formulae F ϕ such that Y contains a formula of the form F�r ϕ, s
|= ϕ, and
there is a finite path from s to a state t where t |= ϕ and degt(Y) = degs(Y).

Example 3. In our running example, consider X = UCs(ψ). Then L0, L1, where

L0 = {ψ, G=1

(
F≥0.5(a ∧ F≥0.2 ¬a) ∨ a

)
, F≥0.5(a ∧ F≥0.2 ¬a) ∨ a,

F≥0.5(a ∧ F≥0.2 ¬a), F=1 G=1 a, ¬a}
L1 = {F≥0.5(a ∧ F≥0.2 ¬a) ∨ a, F≥0.5(a ∧ F≥0.2 ¬a), a ∧ F≥0.2 ¬a, a, F≥0.2 ¬a}
is a progress loop for X and s. Observe that

Δ(L) = {G=1

(
F≥0.5(a ∧ F≥0.2 ¬a) ∨ a

)
, F=1 G=1 a} .

Furthermore, X ⊆ L0 and Δ(L) ⊆ X.

Intuitively, a progress loop allows to prove the existence of a bounded-size
model for a finite-satisfiable formula ψ where ψ ∈ L. Let us fix some (unspecified)
finite Markov chain M and a state s of M such that s |= ψ. Initially, we put
X = UCs(ψ). Then, we consider a progress loop L = L0, . . . , Ln for X and s,
and construct the graph of Fig. 2. The states
0, . . . ,
n correspond to L0, . . . , Ln,
and, as we shall see,
i |= Li for every i ∈ {0, . . . , n} after completing our

156 M. Chodil and A. Kučera

�0 �1 �n

t1

tm

1 1 1

x1

xm

1− ∑
xi

Xt1 = UCti(Δ(L)ti)

Xtm = UCtm(Δ(L)tm)

Fig. 2. A graph for a progress loop L0, . . . , Ln.

construction. Intuitively, the set Δ(L) contains formulae whose satisfaction is
not ensured by the loop itself, and must be “propagated” to the successors of

n. The probabilities x1, . . . , xm are chosen so that 1 − ∑

xi is larger than the
maximal r
= 1 appearing in formulae of the form F�r ϕ ∈ L0 ∪ · · · ∪ Ln. This
ensures that every
i visits every
j with high-enough probability.

The loop is required not to spoil relevant formulae of the form G�r ψ (see
the last condition in (3)) and to satisfy almost all of the “new” formulae of the
form F�r ψ that do not appear in X and have been added to the loop because of
the last condition in (3). In Example 3, such a “new” formula is, e.g., F≥0.5(a ∧
F≥0.2 ¬a). Formulae in Δ(L) must satisfy the technical condition (6) which
ensures progress with respect to the measure defined in Sect. 3.1 even in the
presence of the “new” formulae added to Δ(L).

Now we explain how the successors t1, . . . , tm of
n are constructed, and what
is the bound on m. Recall that

Δ(L) =
{
P (Φ1) � r1, . . . , P (Φv) � rv, . . . , P (Φu) � ru

}

where Φi ≡ F ϕi for 1 ≤ i ≤ v, and Φi ≡ G ϕi for v < i ≤ u, respectively. Clearly,
u is bounded by the number of subformulae of the considered formula ψ. For
every state t of M , let αt be the u-dimensional vector such that

αt(i) = Pt

({π ∈ Run(t) | π |= Φi}
)
.

Furthermore, let B be the set of all states t of M such that t either belongs
to a BSCC of M or t |= ϕi for some 1 ≤ i ≤ v. Since M is finite, B is also
finite, but there is no upper bound on the size of B. For every t ∈ B, let yt

be the probability of all runs initiated in s visiting the state t so that all states
preceding the first visit to t are not contained in B. It is easy to see that

αs ≤
∑

t∈B

yt · αt (1)

Observe that the two vectors of (1) are equal on the first v components. For
the remaining components, the inequality can be strict because some of the ϕi

formulae, where i > v, can become invalid along a path from s before visiting a
state of B (the runs initiated by such a path do not satisfy Gϕi).

The Satisfiability Problem for a Quantitative Fragment of PCTL 157

Since
∑

t∈B yt = 1, we can apply Carathéodory’s convex hull theorem and
thus obtain a subset B′ ⊆ B with at most u + 1 elements such that

∑
t∈B yt · αt

lies in the convex hull of αt, t ∈ B′. That is,

αs ≤ p1 · αt1 + · · · + pm · αtm

where m ≤ u + 1, 0 < pi ≤ 1 for all i ∈ {1, . . . , m},
∑m

i=1 pi = 1, and B′ =
{t1, . . . , tm}. Let � > 0 be a constant such that 1 − � > r for every r
= 1
appearing in formulae of the form F�r ϕ ∈ L0∪· · ·∪Ln. For every i ∈ {1, . . . , m},
the probability xi (see Fig. 2) is defined by xi = pi · �. Furthermore, for every
ti ∈ B′, we construct the set3

Δ(L)ti =
{
P (Φ1) ≥ αti(1), . . . , P (Φv) ≥ αti(v), . . . , P (Φu) ≥ αti(u)

}

and then the set Xti = UCti(Δ(L)ti). We have that Xti ⊆ L, and Xti is smaller
than X with respect to the measure defined in Sect. 3.1. Hence, we proceed by
induction, and construct a finite model of bounded size for Xti by considering a
progress loop for Xti and ti. Thus, we obtain the following theorem:

Theorem 1. Let L be a progressive PCTL fragment. Then every finite-
satisfiable formula ψ ∈ L has a model with at most aaa+5

states where a =
|sub(ψ)|, such that every non-bottom SCC is a simple loop with one exit state (see
Fig. 2). Consequently, the finite satisfiability problem for L is in 2-EXPSPACE.

A full technical proof of Theorem 1 formalizing the above sketch is given in [13].
The 2-EXPSPACE upper bound is obtained by encoding the bounded sat-

isfiability into existential theory of the reals. This encoding is recalled in [13].
Theorem 1 can be applied to various PCTL fragments by demonstrating

their progressivity, and can be interpreted as a “unifying principle” behind these
concrete decidability results. To illustrate this, we give examples of progressive
fragments in Sect. 3.2.

3.1 Progress Measure

A crucial ingredient of our result is a function measuring the complexity of PCTL
formulae. The value of this function, denoted by ‖ · ‖s, is strictly decreased by
every progress loop, i.e., ‖Xti‖ti < ‖X‖s for every Xti . Now we explain the
definition of ‖X‖s. We start by introducing some auxiliary notions.

Let X be a set of PCTL state formulae. Recall that sub(X) denotes the set
all state subformulae of all ϕ ∈ X. The set psub(X) consists of all path formulae
Φ such that sub(X) contains a state formula of the form P (Φ) � r.

Let Φ be a path formula of the form Fϕ or Gϕ. The size of Φ, denoted by
‖Φ‖, is defined as follows:

‖Φ‖ = 1 +
∑

Ψ∈psub(ϕ)

‖Ψ‖

3 We do not include formulae with the trivial “≥0” probability constraint.

158 M. Chodil and A. Kučera

Here, the empty sum denotes 0. Note that this definition is correct because the
nesting depth of F and G is finite in every path formula, and the above equality
makes sense also for psub(ϕ) = ∅.

Definition 6 (Progress measure ‖ · ‖s). Let X be a finite set of PCTL
formulae and s a state in a Markov chain. We put

‖X‖s = 1 + |degs(X)| ·
(
1 +

∑

Φ∈psub(X)

‖Φ‖
)

+
∑

Φ∈cfs(X)

‖Φ‖

The progress measure of Definition 6 appears technical, but it faithfully cap-
tures the simplification achieved by a progress loop.

Example 4. Let X = UCs(ψ) for the ψ and s of our running example, i.e.,

X = {ψ, G=1

(
F≥0.5(a ∧ F≥0.2 ¬a) ∨ a

)
, F=1 G=1 a, ¬a}

We have that

– degs(X) = {G a},
– psub(X) = {G

(
F≥0.5(a ∧ F≥0.2 ¬a) ∨ a

)
, F G=1 a},

– cfs(X) = ∅.

Since ‖G
(
F≥0.5(a ∧ F≥0.2 ¬a) ∨ a

)‖ = 3 and ‖F G=1 a‖ = 2, we obtain
‖X‖s = 7.

3.2 Progressive PCTL Fragments

In this section, we give examples of several progressive PCTL fragments. The
constraint �r has the same meaning as in Definition 1, and �w stands for an
arbitrary constraint except for ‘=1’.

Fragment L1

ϕ ::= a | ¬a | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | F�r ϕ | G�r ψ
ψ ::= a | ¬a | ψ1 ∧ ψ2 | ψ1 ∨ ψ2 | G�r ψ

Fragment L2

ϕ ::= a | ¬a | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | F�r ϕ | G=1 ψ
ψ ::= a | ¬a | ψ1 ∧ ψ2 | ψ1 ∨ ψ2 | F�w ψ

Fragment L3

ϕ ::= a | ¬a | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | F�r ϕ | G=1 ψ | G=1 �
ψ ::= a | ¬a | ψ1 ∧ ψ2 | ψ1 ∨ ψ2 | F�w ψ
� ::= �1 ∧ �2 | �1 ∨ �2 | F�w ψ | G=1 ψ | G=1 �

The Satisfiability Problem for a Quantitative Fragment of PCTL 159

Fragment L4

ϕ ::= a | ¬a | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | F�r ϕ | G=1 ψ
ψ ::= a | ¬a | ψ1 ∧ ψ2 | ψ1 ∨ ψ2 | F>0 ψ | G=1 ψ

Observe that L2 and L3 contain the formula ψ of our running example. The
above fragments are chosen so that they are not covered by the results of [22] and
illustrate various properties of Definition 5. Fragments L2, L3, and L4 contain
formulae requiring non-bottom SCCs with more than one state.

To demonstrate the applicability of Theorem 1, we explicitly show that L2

is progressive.

Proposition 1. Fragment L2 is progressive.

Proof. Let X ⊆ L2 be a finite set of formulae and s a state of a finite Markov
chain such that s |= X and X = UCs(X). We show that there exists a progress
loop for X and s. To achieve that, we inductively construct a finite sequence
L0, . . . , Ln, where every Li is associated to some state ti reachable from s such
that ti |= Li. The set L0 is the least set M satisfying the following conditions:

– X ⊆ M ;
– if ϕ1 ∧ ϕ2 ∈ M , then ϕ1, ϕ2 ∈ M ;
– if ϕ1 ∨ ϕ2 ∈ M and s |= ϕ1, then ϕ1 ∈ M ;
– if ϕ1 ∨ ϕ2 ∈ M and s |= ϕ2, then ϕ2 ∈ M ;
– if G�r ϕ ∈ M , then ϕ ∈ M .
– if F�r ϕ ∈ M and s |= ϕ, then ϕ ∈ M .

We put t0 = s (observe s |= L0). Furthermore, let N be the set of all formulae
ξ such that G=1 ξ ∈ L0.

Suppose that L0, . . . , Ln are the sets constructed so far where ti |= Li for
every i ∈ {0, . . . , n}. Now we distinguish two possibilities.

– If for every formula of the form F�r ξ ∈ L0 ∪ . . . ∪ Ln where F�r ϕ
∈ X there
exists i ∈ {0, . . . , n} such that ξ ∈ Li, then the construction terminates.

– Otherwise, let F�r ξ ∈ Li be a formula such that F�r ξ
∈ X and ξ
∈ L0 ∪ . . .∪
Ln. It follows from the definition of the fragment L2 that r
= 1. Furthermore,
ti
|= ξ (this is guaranteed by the closure rules defining L0 and Ln+1, see
below). Since ti |= F�r ξ, there exists a state t reachable from ti (and hence
also from s) such that t |= ξ. Furthermore, t |= N . Now, we construct Ln+1,
which is the least set M satisfying the following conditions:

• ξ ∈ M ;
• N ⊆ M ;
• if ϕ1 ∧ ϕ2 ∈ M , then ϕ1, ϕ2 ∈ M ;
• if ϕ1 ∨ ϕ2 ∈ M and t |= ϕ1, then ϕ1 ∈ M ;
• if ϕ1 ∨ ϕ2 ∈ M and t |= ϕ2, then ϕ2 ∈ M ;
• if F�r ϕ ∈ M and t |= ϕ, then ϕ ∈ M .

Observe that if G=1 ϕ ∈ M , then G�r ϕ ∈ N because ξ does not contain
any subformula of the form G=1 ϕ (see the definition of L2). Furthermore,
t |= Ln+1.

160 M. Chodil and A. Kučera

Note that if F�r ϕ ∈ Δ(L), then this formula belongs also to X. Now it is not
hard to see that the constructed L0, . . . , Ln is a progress loop. ��

Let us note that arguments justifying the progressiveness of L1 are simple,
arguments for L3 are obtained by extending the ones for L2, and arguments for
L4 already involve the technical condition (6) in Definition 5 in a non-trivial
manner.

4 Conclusions

We have shown that the finite satisfiability problem is decidable in doubly expo-
nential space for all PCTL fragments where a progress loop is guaranteed to exist.
A natural continuation of our work is to generalize the shape of a progress SCC
and the associated progress measure. Natural candidates are loops with several
exit states, and SCCs with arbitrary topology but one exit state. Here, increas-
ing the probability of satisfying Fϕ subformulae can be “traded” for decreasing
the probability of satisfying Gϕ formulae, and understanding this phenomenon
is another important step towards solving the finite satisfiability problem for the
whole PCTL.

Let us note that the technique introduced in this paper can also be used to
tackle the decidability of general satisfiability for PCTL fragments containing
formulae that are not finitely satisfiable. By unfolding progress loops into infinite-
state Markov chains and arranging the probabilities appropriately, formulae of
the form Gϕ can be satisfied with arbitrarily large probability by the progress
loop itself, although the loop is still exited with positive probability. Elaborating
this idea is another interesting challenge for future work.

Acknowledgement. The work is supported by the Czech Science Foundation, Grant
No. 21-24711S.

References

1. Baier, C., Katoen, J.P.: Principles of Model Checking. The MIT Press, Cambridge
(2008)

2. Baier, C., Kwiatkowska, M.: Model checking for a probabilistic branching time
logic with fairness. Distrib. Comput. 11(3), 125–155 (1998)

3. Banieqbal, B., Barringer, H.: Temporal logic with fixed points. In: Banieqbal, B.,
Barringer, H., Pnueli, A. (eds.) Temporal Logic in Specification. LNCS, vol. 398,
pp. 62–74. Springer, Heidelberg (1989). https://doi.org/10.1007/3-540-51803-7 22

4. Bertrand, N., Fearnley, J., Schewe, S.: Bounded satisfiability for PCTL. In: Pro-
ceedings of CSL 2012. Leibniz International Proceedings in Informatics, vol. 16,
pp. 92–106. Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2012)

5. Bianco, A., de Alfaro, L.: Model checking of probabilistic and nondeterministic
systems. In: Thiagarajan, P.S. (ed.) FSTTCS 1995. LNCS, vol. 1026, pp. 499–513.
Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60692-0 70

6. Billingsley, P.: Probability and Measure. Wiley, Hoboken (1995)

https://doi.org/10.1007/3-540-51803-7_22
https://doi.org/10.1007/3-540-60692-0_70

The Satisfiability Problem for a Quantitative Fragment of PCTL 161

7. Brázdil, T., Brožek, V., Forejt, V., Kučera, A.: Stochastic games with branching-
time winning objectives. In: Proceedings of LICS 2006, pp. 349–358. IEEE Com-
puter Society Press (2006)

8. Brázdil, T., Forejt, V., Křet́ınský, J., Kučera, A.: The satisfiability problem for
probabilistic CTL. In: Proceedings of LICS 2008, pp. 391–402. IEEE Computer
Society Press (2008)

9. Brázdil, T., Forejt, V., Křet́ınský, J., Kučera, A.: The satisfiability problem for
probabilistic CTL. Technical report FIMU-RS-2008-03, Faculty of Informatics,
Masaryk University (2008)

10. Brázdil, T., Forejt, V., Kučera, A.: Controller synthesis and verification for
Markov decision processes with qualitative branching time objectives. In: Aceto, L.,
Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz,
I. (eds.) ICALP 2008. LNCS, vol. 5126, pp. 148–159. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-70583-3 13

11. Brázdil, T., Kučera, A., Stražovský, O.: On the decidability of temporal properties
of probabilistic pushdown automata. In: Diekert, V., Durand, B. (eds.) STACS
2005. LNCS, vol. 3404, pp. 145–157. Springer, Heidelberg (2005). https://doi.org/
10.1007/978-3-540-31856-9 12

12. Chakraborty, S., Katoen, J.: On the satisfiability of some simple probabilistic logics.
In: Proceedings of LICS 2016, pp. 56–65 (2016)

13. Chodil, M., Kučera, A.: The satisfiability problem for a quantitative fragment of
PCTL. arXiv:2107.03794 [cs.LO] (2021)

14. Emerson, E.: Temporal and modal logic. In: Handbook of Theoretical Computer
Science B, pp. 995–1072 (1991)

15. Emerson, E., Halpern, J.: Decision procedures and expressiveness in the temporal
logic of branching time. In: Proceedings of STOC 1982, pp. 169–180. ACM Press
(1982)

16. Esparza, J., Kučera, A., Mayr, R.: Model-checking probabilistic pushdown
automata. Logical Methods Comput. Sci. 2(1:2), 1–31 (2006)

17. Etessami, K., Yannakakis, M.: Model checking of recursive probabilistic systems.
ACM Trans. Comput. Logic 13 (2012)

18. Fischer, M., Ladner, R.: Propositional dynamic logic of regular programs. J. Com-
put. Syst. Sci. 18, 194–211 (1979)

19. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal
Aspects Comput. 6, 512–535 (1994)

20. Hart, S., Sharir, M.: Probabilistic temporal logic for finite and bounded models.
In: Proceedings of POPL 1984, pp. 1–13. ACM Press (1984)

21. Huth, M., Kwiatkowska, M.: Quantitative analysis and model checking. In: Pro-
ceedings of LICS 1997, pp. 111–122. IEEE Computer Society Press (1997)

22. Křet́ınský, J., Rotar, A.: The satisfiability problem for unbounded fragments of
probabilistic CTL. In: Proceedings of CONCUR 2018. Leibniz International Pro-
ceedings in Informatics, vol. 118, pp. 32:1–32:16. Schloss Dagstuhl-Leibniz-Zentrum
für Informatik (2018)

23. Lehman, D., Shelah, S.: Reasoning with time and chance. Inf. Control 53, 165–198
(1982)

https://doi.org/10.1007/978-3-540-70583-3_13
https://doi.org/10.1007/978-3-540-31856-9_12
https://doi.org/10.1007/978-3-540-31856-9_12
http://arxiv.org/abs/2107.03794

Beyond the BEST Theorem: Fast
Assessment of Eulerian Trails

Alessio Conte1 , Roberto Grossi1,2 , Grigorios Loukides3 ,
Nadia Pisanti1,2 , Solon P. Pissis2,4,5 , and Giulia Punzi1(B)

1 Università di Pisa, Pisa, Italy
{conte,grossi,pisanti}@di.unipi.it, giulia.punzi@phd.unipi.it

2 ERABLE Team, Lyon, France
3 King’s College London, London, UK

grigorios.loukides@kcl.ac.uk
4 CWI, Amsterdam, The Netherlands

solon.pissis@cwi.nl
5 Vrije Universiteit, Amsterdam, The Netherlands

Abstract. Given a directed multigraph G = (V, E), with |V | = n nodes
and |E| = m edges, and an integer z, we are asked to assess whether the
number #ET (G) of node-distinct Eulerian trails of G is at least z; two
trails are called node-distinct if their node sequences are different. This
problem has been formalized by Bernardini et al. [ALENEX 2020] as it
is the core computational problem in several string processing applica-
tions. It can be solved in O(nω) arithmetic operations by applying the
well-known BEST theorem, where ω < 2.373 denotes the matrix multi-
plication exponent. The algorithmic challenge is: Can we solve this prob-
lem faster for certain values of m and z? Namely, we want to design a
combinatorial algorithm for assessing whether #ET (G) ≥ z, which does
not resort to the BEST theorem and has a predictably bounded cost as
a function of m and z. We address this challenge here by providing a
combinatorial algorithm requiring O(m · min{z, #ET (G)}) time.

1 Introduction

Eulerian trails (or Eulerian paths) were introduced by Euler in 1736: Given a
multigraph G = (V,E), an Eulerian trail traverses every edge in E exactly once,
allowing for revisiting nodes in V . An Eulerian cycle is an Eulerian trail that
starts and ends on the same node in V . The perhaps most fundamental algo-
rithmic question related to Eulerian trails is whether we can efficiently identify
one of them. Hierholzer’s paper ([9], [5, 1B]) can be employed for this purpose to
get a linear-time algorithm. A related question is counting Eulerian trails: this is
#P -complete for undirected graphs [6], while for directed graphs the number of
Eulerian trails can be computed in polynomial time using the BEST theorem [1],
named after de Bruijn, van Aardenne-Ehrenfest, Smith and Tutte.

Two trails are called node-distinct if their node sequences are different.
Bernardini et al. formalized the following basic problem in [3], which surprisingly
c© Springer Nature Switzerland AG 2021
E. Bampis and A. Pagourtzis (Eds.): FCT 2021, LNCS 12867, pp. 162–175, 2021.
https://doi.org/10.1007/978-3-030-86593-1_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86593-1_11&domain=pdf
http://orcid.org/0000-0003-0770-2235
http://orcid.org/0000-0002-7985-4222
http://orcid.org/0000-0003-0888-5061
http://orcid.org/0000-0003-3915-7665
http://orcid.org/0000-0002-1445-1932
http://orcid.org/0000-0001-8738-1595
https://doi.org/10.1007/978-3-030-86593-1_11

Beyond the BEST Theorem: Fast Assessment of Eulerian Trails 163

had not been previously posed to the best of our knowledge: Given a directed
multigraph G = (V,E), with |V | = n nodes and |E| = m edges, two nodes
s, t ∈ V , and a positive integer z, assess whether the number #ET (G) of node-
distinct Eulerian trails of G with source s and target t is at least z. This is the
core computational problem in several string processing applications [3,11,12].

This problem can be solved in O(nω) arithmetic operations as follows [3,11],
where ω < 2.373 denotes the matrix multiplication exponent [2,8,16]. (The
underlying assumption is that G is Eulerian1, that is, the indegree equals the
outdegree in each node, possibly except for the source and the target of the trail.)
Let A = (auv) be the adjacency matrix of G allowing both auv > 1 (multi-edges)
and auu > 0 (self-loops). Let ru = d+(u) for u �= t, rt = d+(t) + 1, where d+(u)
denotes the outdegree of u, and the edges are counted with multiplicity. We can
apply the BEST theorem using its formulation for directed multigraphs [10]:

#ET (G) = (detL) ·
(∏

u∈V

(ru − 1)!

)
·
(∏

(u,v)∈E

(auv)!

)−1

(1)

where L = (luv) is the n × n matrix with luu = ru − auu and luv = −auv. The
original BEST theorem states that the number of Eulerian trails of a (directed)
graph can be obtained by multiplying the number of arborescences rooted at
any node of the graph (given by detL) by the number of permutations of the
edges outgoing from each node (

∏
u∈V (ru −1)!). In the multigraph version given

in Eq. (1), the formula is further divided by the number of permutations of
multi-edges (

∏
(u,v)∈E auv!), in order to only count node-distinct trails.

Beyond the BEST Theorem: We address the following algorithmic challenge [3,
Final Remarks]: design a combinatorial algorithm for assessing #ET (G) ≥ z,
which does not resort to the BEST theorem and has a predictably bounded cost
as a function of m and z (as we do not need #ET (G) to provide an answer).

We first illustrate how this challenge is well-founded without matrix multi-
plication. In Eq. (1), we can single out two factors: the determinant detL and
the ratio of factorials F =

∏
u∈V (ru − 1)!(

∏
(u,v)∈E auv!)−1. First, the assess-

ment based on Eq. (1) cannot rely on the assumption that F ≥ z (which would
imply that #ET (G) ≥ z), since we can have F � 1. As an example, consider a
directed multi-cycle with n nodes, u1, . . . , un, each connected to the next (and
un back to u1) with k multi-edges: we have only one node-distinct Eulerian trail,
so #ET (G) = 1, but there are kn−1 arborescences, so det L = kn−1. In particu-
lar, we have that F = k!(k−1)!n−1

k!n = 1
kn−1 � 1, for any choice of s = t. Second,

enumerating arborescences [7,15], progressively bounding detL to check whether
det L ≥ z/F , might be costly. This is because the number of arborescences could
be exponential in #ET (G), as in our example. Therefore, in this paper, we fol-
low a fundamentally different approach, which takes O(m) = O(nk) time in our
example, and can be generalized to more involved graphs.

1 If G is not Eulerian, the answer is trivially negative for any non-zero z.

164 A. Conte et al.

We remark that exploiting Eq. (1) with matrix multiplication could be costly
too. Avoiding matrix multiplication makes a difference of several orders of mag-
nitude as these arithmetic operations can be costly. In typical instances in exper-
iments, computing detL with state-of-the-art (sparse) matrix multiplication
libraries and other tricks can still take several hours (see [3] for more details).

Our Results and Techniques: Our main contribution is to introduce an app-
roach that does not merely employ the structure of the BEST theorem, but
it actually goes beyond that: we design an efficient algorithm which directly
provides an assessment by looking directly at Eulerian trails, without consider-
ing the different factors of Eq. (1). We first present a natural (but non-trivial)
algorithm to facilitate the reader’s comprehension. The main idea consists in pro-
viding a lower bound on #ET (G), based on the product of the lower bounds for
the node-distinct trails of its strongly connected components. This lower bound
is then progressively refined by considering any arbitrarily chosen component,
and its contribution is improved by employing some novel structural properties
of strongly connected components of Eulerian graphs. Our method conceptu-
ally provides a recursive enumeration approach whose calls enumerate the first
z node-distinct Eulerian trails in Θ(m2 · min{z,#ET (G)}) time. However, we
improve upon that, as our lower-bound driven algorithm does not necessarily
perform all the recursive calls to assess whether or not #ET (G) ≥ z.

The above algorithm may require quadratic time per Eulerian trail because
each call might require O(m) time. We refine it to bring its complexity down by
a double numbering on the edges, which guarantees that every call generates at
least two distinct calls. This double numbering gives us insight on the interior
connectivity structure of the graph; namely, how strongly connected components
change when we start removing edges, which is the source of the quadratic time.
With this double numbering, we manage to instantly retrieve edges that generate
new trails, no longer needing to iterate for O(m) unsuccessful steps. We thus
reduce the time by a factor of m, which gives a time-optimal algorithm for
z = O(1) or for #ET (G) = O(1). Our main result is formalized as follows.2

Theorem 1. Given a directed multigraph G = (V,E), with |E| = m, and an
integer z, assessing #ET (G) ≥ z can be done in O(m · min{z,#ET (G)}) time.

Let us remark that our algorithms can potentially run asymptotically faster
than the worst-case bounds given above. Under suitable assumptions and values
of z, it is possible that they run in less than Constant Amortized Time (CAT)
per solution (cf. [13]). In principle, this implies that, under suitable assumptions,
assessment might be intrinsically more efficient than counting.

Paper Organization: Sect. 2 introduces the basic definitions and notation used
throughout. In Sect. 3, we prove the combinatorial properties of Eulerian graphs
which form the basis of our technique. In Sect. 4, we present the simple O(m2 ·
2 We assume throughout that basic arithmetic operations take constant time, which

is the case when z = O(poly(m)).

Beyond the BEST Theorem: Fast Assessment of Eulerian Trails 165

min{z,#ET (G)})-time algorithm. This algorithm is then refined to our main
result, which is described in Sect. 5.

2 Definitions and Notation

Consider a directed graph G = (V,E) with multi-edges and self-loops, and let
|V | = n and |E| = m; the edges are counted with multiplicity. A trail over G is
a sequence of adjacent distinct edges. Two trails are node-distinct if their node
sequences are different. An Eulerian trail of G is a trail that traverses every edge
exactly once. We consider node-distinct Eulerian trails. The set of node-distinct
Eulerian trails of G is denoted by ET (G) and its size is denoted by #ET (G).
We may omit the term “node-distinct” when it is clear from its context.

Given a node u ∈ V , we define its outdegree (resp. indegree) as the number
of edges of the form (u, v) (resp. (v, u)), counting multiplicity and self-loops. We
then denote by Δ(u) the difference outdegree(u) − indegree(u). Furthermore, we
define the set of out-neighbors of u as N+(u) = {v ∈ V | (u, v) ∈ E}. Finally, we
use the notation N+

C (u) = N+(u) ∩ C, when referring only to the out-neighbors
inside some subgraph C of G.

G is called strongly connected if there is a trail in each direction between
each pair of the graph nodes. A strongly connected component (SCC) of G is a
strongly connected subgraph of G. G is called weakly connected if replacing all
of its edges by undirected edges produces a connected graph: it has at least one
node and there is a trail between every pair of nodes.

Definition 1. A directed graph G = (V,E) is Eulerian with source s and target
t, where s, t ∈ V , if it is weakly connected and (i) Δ(s) = 1, Δ(t) = −1, and
Δ(u) = 0 for all u ∈ V \{s, t}; or (ii) Δ(u)=0 for all u∈V . In Case (i), G has
an Eulerian trail from s to t. In Case (ii), G has an Eulerian cycle: an Eulerian
trail that starts and ends on s = t.

3 Structure and Properties of Directed Eulerian Graphs

The SCCs of a directed Eulerian graph G induce a directed acyclic graph GSCC.
Considering this graph, we derive some non-trivial and useful properties, upon
which we will heavily rely to design our algorithms for assessing the number
of node-distinct Eulerian trails. Let us start with the following crucial lemma
whose proof is deferred to the full version of the paper.

Lemma 1. Let G be an Eulerian graph, with SCCs C0, . . . , Ck, source s ∈ C0,
and target t ∈ Ck. The corresponding GSCC is a chain graph of the form C0 →
C1 → . . . → Ck, where the arrow between Ci and Ci+1 represents a single edge
(ti, si+1) ∈ E, called bridging edge. Furthermore, each Ci is Eulerian with source
si and target ti, where s0 = s, tk = t.

It follows from Lemma 1 that every trail from s to t must traverse all edges
of C0, . . . , Ci before crossing the bridging edge (ti, si+1). As a consequence, we
obtain the following.

166 A. Conte et al.

Corollary 1. Let G be an Eulerian graph with SCCs C0, . . . , Ck. Then we have
that ET (G) =

∏k
i=0 ET (Ci), where

∏
denotes the cartesian product. It follows

that the number of trails of G is the product of the number of trails of its SCCs.

We can thus focus on an individual SCC or, equivalently, assume, wlog, that
the Eulerian graph is strongly connected. The following lemma, whose proof is
deferred to the full version of the paper, forms the basis of our technique.

Lemma 2. Let C be a strongly connected Eulerian graph with source s and
target t. For every edge (s, u), there is an Eulerian trail of C whose first two
traversed nodes are s and u. Moreover, the residual graph C \ (s, u) remains
Eulerian with new source u.

Corollary 2. Let Ci be any SCC of an Eulerian graph with source si. Then:

ET (Ci) =
⋃

u∈N+
Ci

(si)

(si, u) · ET (Ci \ (si, u)),

that is, the Eulerian trails of Ci are given by concatenating each possible start
of the trail (si, u) with all its possible continuations, i.e., the trails in ET (Ci \
(si, u)). Thus the number of trails of Ci is the sum of the number of trails of the
subgraphs with edges (si, u) removed, for every u ∈ N+

Ci
(si) distinct out-neighbor

of si in Ci, with u as the new source.

Proof. This follows from Lemma 2 applied to the SCCs: we know that each
distinct out-neighbor of si leads to at least one trail; furthermore, no two of
these trails can be equal since they begin with distinct edges. Lastly, all trails
are accounted for, since we consider every trail starting from every distinct out-
neighbor of si, and si is the source of Ci. �	

Note the subtle point in the statement of Corollary 2, where we use N+
Ci

(si)
instead of N+(si): if the latter two differ, it is because si has an outgoing bridging
edge, and this should be traversed after all other edges in Ci.

4 Assessment Algorithm for #ET(G)

We present AssessET, a simple but non-trivial algorithm for assessing the num-
ber of node-distinct Eulerian trails on a given directed graph, which will be
refined in Sect. 5. AssessET takes the following input parameters: (i) a weakly
connected Eulerian graph G = (V,E) with source s and target t; (ii) a positive
integer threshold z, and (iii) a function lb(·), which outputs a lower bound on
the number of the node-distinct Eulerian trails in G. To achieve the desired
complexity, lb(·) must be computable in O(m) time and lb(·) ≥ 1 must hold.

Proposition 1. Given graph G, nodes s and t, integer z, and lb(·), AssessET

assesses #ET (G) ≥ z in O(m2 · min{z,#ET (G)}) time using O(mz) space.

Beyond the BEST Theorem: Fast Assessment of Eulerian Trails 167

Main Idea: Let C0, . . . , Ck be the set of SCCs of an Eulerian graph G as illus-
trated in Lemma 1. AssessET exploits Corollary 1, Lemma 2, and Corollary 2,
to provide a lower bound on the number of node-distinct Eulerian trails of
graph G, denoted by lbET (G), where lbET (G) ≤ #ET (G). Initially, we set
lbET (G) =

∏k
i=0 lb(Ci), based on the product of the lower bounds for the number

of node-distinct Eulerian trails of the SCCs of G by Corollary 1. Then lbET (G)
is progressively refined by considering any arbitrarily chosen component, say Ci,
and in turn replacing its lower bound lb(Ci) with a new lower bound lbET (Ci)
that exploits Lemma 2 and its Corollary 2. That is, we remove each different
outgoing edge from the source si of Ci, and after computing the lb(·) function
on all of the resulting graphs, we sum these lower bounds to obtain lbET (Ci),
and update lbET (G). We proceed in this way until either lbET (G) ≥ z, or we
compute the actual number of trails: lbET (G) = #ET (G).

The requirements for the lower bound function are trivially satisfied by the
constant function lb(·) ≡ 1. However, we use a better lower bound given by
Lemma 3 below, whose proof is deferred to the full version of the paper.

Lemma 3. For any Eulerian graph G, the function

lb(G) = 1 +
∑

v∈V (G):|N+
G

(v)|≥3

(|N+
G (v)| − 2). (2)

is a lower bound for the number #ET (G) of node-distinct Eulerian trails of G.

Function ComputeSCC: Our algorithm relies on a function ComputeSCC(G),
which computes the SCCs of a given input graph G. This function only outputs
the non-trivial components (i.e., comprised of multiple nodes), and it requires
O(m) time to achieve this (specifically, we make use of [14]).

Frontier Data Structure: In order to efficiently explore the different SCCs as
discussed above, we introduce the Frontier Data Structure, denoted by F =
{f1, . . . , f|F|}, representing the frontier of the recursive tree we are implicitly
constructing when traversing a component. At any moment of the computation,
an element fj ∈ F is a tuple 〈Cj

0 , . . . , C
j
hj

〉, where C0, . . . , Chj
are the non-

trivial SCCs of some Eulerian subgraph Gj ⊂ G. A component is considered
trivial if it is comprised of a single node. A trivial component is omitted because
it contributes to the product in Eq. (3) below by a factor of one. Different Gj ’s
are obtained from G by removing different edges that are outgoing from the
source of a component, as per Lemma 2; thus Gj differs from any other Gl by at
least one removed edge. In this way, each element of the frontier represents at
least one node-distinct Eulerian trail of G. Furthermore, our data structure F
retains an important invariant: at any moment, the elements of F are the SCC
decompositions of the subgraphs which realize the current bound. That is,

lbET (G) =
|F|∑
j=1

lbET (fj) =
|F|∑
j=1

hj∏
i=0

lb(Cj
i). (3)

168 A. Conte et al.

Each component fj [i] = Cj
i , with source sj

i and target tji , is represented
in f ∈ F as a tuple of the form (V [Cj

i], E[Cj
i], sj

i , t
j
i , lb(C

j
i)). In what follows,

we consider F implemented as a stack : both removing and inserting elements
requires O(1) time with pop and push operations. Performing these operations
also modifies the size of F , which is accounted for. We can thus answer whether
the stack is empty in O(1) time.

Algorithm AssessET: The algorithm maintains a running bound lbET , induced
by the components currently forming the elements of the stack, according to
Eq. (3), where lbET is the current value of lbET (G). We proceed as follows:

1. Compute the (non-trivial) SCCs of graph G. If there is none, we only have
one trail, and lbET = 1. Otherwise, we initialize the stack with the tuple
〈C0, . . . , Ck〉 of these SCCs, and also initialize the bound accordingly setting
lbET ← ∏k

j=0 lb(Cj).
2. While lbET < z, we perform the following:

(a) If the stack is empty, we output NO. Since non-trivial components are
never added into the stack, the stack is empty if and only if lbET =
#ET (G) and lbET < z.

(b) Otherwise, we pop an element f from the stack, and remove its contribu-
tion from the current bound: lbET ← lbET − lbET (f), where lbET (f) =∏|f |

i=1 lb(f [i]).
(c) We pick an arbitrary component Ci = f [i] of tuple f , and let si be its

source. We remove the component from f .
(d) For all distinct out-neighbors u ∈ N+

Ci
(si):

i. We compute the SCCs C of Ci with edge (si, u) removed.
ii. If f with the added new components C (i.e. f · C) is non-empty, we

add it into the stack and increase the running bound accordingly as
lbET ← lbET + lbET (f · C). If f · C is empty, it corresponds to a single
Eulerian trail, so we increase the bound lbET by one.

3. If we exit from the while loop in Step 2, then lbET ≥ z and we output YES.

When lb(·) always returns 1, AssessET makes O(mz) calls to compute the
SCCs, of O(m) time each, as it essentially enumerates z Eulerian trails one by
one. However, when lb(·) > 1, a lot of these calls are avoided as lower bounds
are multiplied. The pseudocode of AssessET is provided in Algorithm 1.

The correctness of AssessET follows from Corollary 1, Lemma 2 and Corol-
lary 2. The analysis of time and space complexity of AssessET, which completes
the proof of Proposition 1, is deferred to the full version of the paper.

5 Improved Assessment Algorithm

We may think of AssessET as a recursive computation (handled explicitly with
pop/push on a stack) having the drawback that it makes O(mz) recursive calls.
To try and speed up the process, one could resort to existing decremental SCC

Beyond the BEST Theorem: Fast Assessment of Eulerian Trails 169

Algorithm 1. (AssessET)
1: procedure AssessET(G = (V, E), z = O(poly(|E|), lb(·))
2: C0, . . . , Ck ← ComputeSCC(G) � Only considers non-trivial SCCs
3: f ← 〈C0, . . . , Ck〉
4: if f is empty then lbET ← 1
5: else Stack.push(f) � Initialization
6: lbET ← ∏k

j=0 lb(Cj)

7: while lbET < z do
8: if Stack.IsEmpty() then Output NO

9: f ← Stack.pop()

10: lbET ← lbET − lbET (f) � lbET (f) =
∏|f |

i=1 lb(f [i])
11: Choose any i; let Ci = f [i] and si be its source � f [i] is the i-th SCC of f
12: Remove Ci from f
13: for all u ∈ N+

Ci
(si) do

14: C ← ComputeSCC(Ci \ (si, u))
15: if f · C is not empty then � f · C: f with each SCC of C appended
16: Stack.push(f · C)
17: lbET ← lbET + lbET (f · C)
18: else lbET ← lbET + 1

19: Output YES

algorithms [4]. However, these tend to add (poly)logarithmic factors, and do not
immediately yield improvements unless further amortization is suitably designed.

We use a different approach, reducing the number of calls to O(z) by guar-
anteeing that each call generates at least two further calls or immediately halts
when one Eulerian trail is found. In this section, we show how to attain this goal
with an efficient combinatorial procedure.

s a b c d

1

8

2

7

3

6

4

5

Fig. 1. This graph has a single node-distinct Eulerian trail from s to itself, even though
all nodes except for s and d are branching.

5.1 Introducing Function BranchingSource

Consider the SCC Ci chosen in AssessET, and its source si. We call a node
u ∈ Ci branching if it has at least two distinct out-neighbors in Ci, that is,
|N+

Ci
(u)| ≥ 2. Thus, if si is branching, we have at least two calls by Lemma 2.

The issue comes when si has just one out-neighbor, as illustrated in Fig. 1: some
of the remaining nodes could be branching but, unfortunately, only one node-
distinct Eulerian trail exists. Thus, the existence of branching nodes when the
source si is not branching does not guarantee that we attain our goal.

170 A. Conte et al.

One first solution comes to mind, as it is exploited in our lower bound lb(·) of
Eq. 2. Consider a trail T ∈ ET (Ci), which is nonempty as Ci is Eulerian: a node
u gives rise to at least |N+

Ci
(u)|−2 further Eulerian trails by Lemma 2 as, when u

becomes a source for the first time, one out-neighbor of u is part of T and at most
one out-neighbor of u leads to a bridging edge; thus the remaining |N+

Ci
(u)| − 2

out-neighbors can be traversed in any order by so many other Eulerian trails.
While this helps for |N+

Ci
(u)| ≥ 3, it is not so useful in the situation illustrated

in Fig. 1, where all branching nodes have |N+
Ci

(u)| = 2.

Main Idea: A better solution is obtained by introducing a function Branching-

Source to be applied to any tuple f of SCCs from the frontier data structure F .
If any of these SCCs has a branching source, then BranchingSource returns
f itself. Otherwise, it examines each SCC C in f : if #ET (C) = 1, it removes
C from f as it is trivial; otherwise, it finds the longest common prefix P of
all trails in ET (C), and computes the SCCs of C \ P , which take the place of
C in f . Among these SCCs, one is guaranteed to have a branching source, so
BranchingSource returns f updated in this way. Note that only trivial SCCs
are removed by BranchingSource, and hence the number of Eulerian trails
cannot change. If f is empty, then we have a single Eulerian trail as there is
no choice. BranchingSource can be implemented in O(m2) time as it simu-
lates what AssessET does until a branching source is found. The challenge is to
implement it in O(m) time. Armed with that, we can modify AssessET and get
ImprovedAssessET, where we guarantee in O(m) time that the source si is
always branching. The modification is just a few lines, once BranchingSource

is available, so we do not provide a detailed description of the pseudocode.

5.2 Linear-Time Computation of BranchingSource

Suppose that tuple f in the frontier data structure F contains only SCCs with
non-branching sources (otherwise, BranchingSource returns f unchanged).
Consider any SCC C in the tuple f . The main idea is to fix any trail T ∈ ET (C),
which can be found in O(|E(C)|) time, and traverse T asking at each node u
whether there is an alternative trail T ′ branching at u.

Swap Edges: Let us start with the following definition.

Definition 2. Given an Eulerian trail T of an SCC C, let Tu be the prefix of
T from its source s to the first time u is met, and let (u, v) be the next edge
traversed by T . An edge (u, v′) in C is a swap edge if Tu · (u, v′) is prefix of
another Eulerian trail T ′ �= T and v′ �= v. We say that u admits a swap edge
and Tu = T ′

u is the longest common prefix of T and T ′.

The discovery of swap edges in C is key to BranchingSource: although
different Eulerian trails of C may give rise to different swap edges in C, these
trails all share P , so the node u at the end of P can be identified by Tu (Defini-
tion 2), for any trail T ∈ ET (C). The proof of the following lemma is deferred
to the full version of the paper.

Beyond the BEST Theorem: Fast Assessment of Eulerian Trails 171

Lemma 4. Suppose that all swap edges are known in an SCC C of f for any
given trail T ∈ ET (C). Then (i) #ET (C) = 1 if and only if there are no swap
edges in C; moreover, (ii) if #ET (C) > 1, let u be the first node that is met
traversing T and that admits a swap edge. Then P = Tu is the longest common
prefix of all the trails in ET (C).

Using Swap Edges in BranchingSource: Based on Lemma 4, BranchingSource

examines each C ∈f : it tests whether C is trivial (#ET (C)=1), or it finds the
longest common prefix P =Tu of all the trails. If all SCCs are trivial, it returns
an empty f . Otherwise, it deletes from f the trivial SCCs found so far, and for
the current non-trivial SCC C, it computes the set C =ComputeSCC(C \ Tu)
of SCCs. Note that u becomes the source of an SCC in C and u is branching as
it admits a swap edge (u, v′), along with (u, v) from its trail T . Thus, u keeps at
least two out-neighbors v and v′ in C. At this point, BranchingSource stops
its computation, updates f by replacing C with the SCCs from C, and returns f .
Since only trivial SCCs are removed from f , and the number of Eulerian trails in
C is the product of those in the SCCs of C, the overall number of Eulerian trails
in f does not change before and after its update. This proves the following.

Lemma 5. Given any tuple f in F and the set of swap edges in the SCCs of f ,
the function BranchingSource takes O(m) time to update f , so that either
f is empty (a single Eulerian trail exists in f), or f contains at least one SCC
with branching source.

Remark 1. Since every swap edge generates at least one new Eulerian trail, if
we can find all swap edges in O(m) time, we can employ lb(G) = 1+ “number
of swap edges” in our algorithm. Any node with three different out-neighbors
generates at least a swap edge. Thus, this new choice for the lower bound function
necessarily performs better than the one shown in Eq. (2). For example, in Fig. 2,
there are 5 swap edges whereas lb(·) = 1.

Finding Swap Edges in Linear Time: We are thus interested in finding all the
swap edges in linear time. We need the following property, whose proof is deferred
to the full version of the paper, to characterize them for an SCC C of f .

Lemma 6. Let C be an SCC, and let T with prefix Tu · (u, v) be one of its
Eulerian trails. Edge (u, v′), for v′ �= v, is a swap edge if and only if there is a
trail from v′ to u (i.e., u is reachable from v′) in C \ Tu.

In order to find the swap edges, we need to traverse T in reverse order and
assign each edge e ∈ E(C) two integers, as illustrated in the example of Fig. 2:
(i) the Eulerian trail numbering etn(e), which represents the position of e inside
T and is immediate to compute, and (ii) the disconnecting index di(e), which is
discussed in the next paragraph as its computation is a bit more involved. As
we will see (Lemma 7), comparing these integers allows us to check if a given
edge is a swap edge in constant time.

172 A. Conte et al.

s = t
source
target

a

b

c

d

e

f

g

h

16 14

4 3 1 0

5 4

7 5

2 1

6 5

15 14

12 9

8 7

9 7 10 9

11 9

13 5

14 5

17 3 3 2

Fig. 2. Example of an Eulerian graph with s = t. The black (left) numbers on the
edges are the Eulerian trail numbers etn for a given trail T ; the orange (right) ones are
the disconnecting indices dis. Swap edges are in bold.

Disconnecting Indices: We introduce the notion of disconnecting index relatively
to a given trail T ∈ET (C), according to the following rationale. We observe that
Lemma 5 characterizes a swap edge (u, v′) by stating that u and v′ must belong
to the same SCC after Tu is removed from C. Suppose that we want to traverse
T to discover the swap edges. Equivalently, we take the edges according to their
etn order in T . Fix any edge (u, v′). At the beginning, u and v′ are in the same
SCC C. Next, we start to conceptually remove, from C, the edges traversed by
an increasingly long prefix of T : how long will u and v′ stay in the same SCC? In
this scenario, the disconnecting index of (u, v′) corresponds to the maximum etn
(hence prefix of T) for which u and v′ will stay in the same SCC, i.e., removing
any prefix of T longer than this one from C disconnects v′ from u.

For any � ∈ [0,m], we denote by T≤� the prefix Tu of T such that |Tu| = �.
When � = 0, it is the empty prefix; when � = m, it is T itself.

Definition 3. Given an edge (u, v′) ∈ E(C), its disconnecting index is

di(u, v′) = max {0 ≤ � < etn(u, v′) | u, v′ are inside an SCC of C \ T≤�} .

Figure 2 illustrates an example where the following property, whose proof is
deferred to the full version of the paper, can be checked by inspection.

Lemma 7. For any edge (u, v′) ∈ E(C), we have that (u, v′) is a swap edge for
a given trail if and only if di(u, v′) ≥ etn(u, v) − 1 for some v �= v′.

Linear-Time Computation of Disconnecting Indices: Consider an SCC C from
f ∈ F , and any arbitrary trail T ∈ ET (C) (computable in O(|E(C)|) time).
Assign the Eulerian trail numbering etn(e) to each edge e ∈ E(C). We discuss
how to assign the disconnecting index di(e) to each edge e in O(|E(C)|) time.

We proceed by reconstructing T backwards. That is, we conceptually start
from an empty graph, and we add edges from T , one at a time from last to first

Beyond the BEST Theorem: Fast Assessment of Eulerian Trails 173

(i.e., in decreasing order of their etn values), until all edges from T are added back
obtaining again the SCC C. During this task, along with disconnecting indices,
we also assign a flag tr(u) = true to the nodes u touched by the edges that have
been added. We keep a stack, Bridges, for the edges that have been added but
do not yet have a disconnecting index, i.e., they are not in an SCC of the current
partial graph. More formally, we will guarantee the following invariants:

I1 The edges in Bridges have increasing etn values, starting from the top.
I2 The edges in Bridges are all and only the bridging edges of the current

graph.
I3 Given any two consecutive edges e, e′ in Bridges, the edges with etn values

in [etn(e) + 1, etn(e′) − 1] (which, observe, are not in Bridges) make up an
SCC of the current graph.

I4 The flag tr(u) is true if and only if u is incident to an edge of the current
graph.

We describe the algorithm, prove its correctness and all invariants.
For � = m,m−1, . . . , 1, step � adds back to the current graph the edge (u, v)

such that etn(u, v) = �. Let u be the tail and v be the head of the edge.

– If the tail u has not been explored yet (i.e., tr(u) = false), we add (u, v) to
Bridges and set tr(u) = true. If � = m, then v is the last node of the trail
and we also set tr(v) = true.

– Otherwise, u has been traversed before, and there must be at least an edge
incoming in u in our current graph; let (z, u) be the one such edge with highest
etn value, say, etn(z, u) = x. We assign di(u, v) = etn(u, v) − 1, and pop all
edges e from Bridges such that etn(e) ≤ x, assigning di(e) = etn(u, v) − 1
to all of these too.

Lemma 8. Given an SCC C from f in F , and any arbitrary trail T ∈ ET (C),
the disconnecting indices of T can be computed in O(|E(C)|) time and space.

The proof of Lemma 8 is deferred to the full version of the paper. We thus
arrive at our main result.

Theorem 1. Given a directed multigraph G = (V,E), with |E| = m, and an
integer z, assessing #ET (G) ≥ z can be done in O(m · min{z,#ET (G)}) time.

Other than being easily extensible to the edge-distinct case, the algorithm
underlying Theorem 1 has an attractive property: its number of O(m)-time
steps is z in the worst case, but can be significantly smaller in practice, thanks
to suitable lower bounding techniques. This property means that our assess-
ment algorithm can potentially run in less than CAT per solution on favorable
instances.

Acknowledgments. We wish to thank Luca Versari for useful discussions on a previ-
ous version of the main algorithm. This paper is part of the PANGAIA project that has
received funding from the European Union’s Horizon 2020 research and innovation pro-
gramme under the Marie Sk�lodowska-Curie grant agreement No 872539. This paper is

174 A. Conte et al.

also part of the ALPACA project that has received funding from the European Union’s
Horizon 2020 research and innovation programme under the Marie Sk�lodowska-Curie
grant agreement No 956229.

References

1. van Aardenne-Ehrenfest, T., de Bruijn, N.G.: Circuits and Trees in Oriented Linear
Graphs, pp. 149–163. Birkhäuser Boston, Boston, MA (1987). https://doi.org/10.
1007/978-0-8176-4842-8 12

2. Alman, J., Williams, V.V.: A refined laser method and faster matrix multiplication.
In: Marx, D. (ed.) Proceedings of the 2021 ACM-SIAM Symposium on Discrete
Algorithms, SODA 2021, Virtual Conference, 10–13 January 2021, pp. 522–539.
SIAM (2021). https://doi.org/10.1137/1.9781611976465.32

3. Bernardini, G., Chen, H., Fici, G., Loukides, G., Pissis, S.P.: Reverse-safe data
structures for text indexing. In: Blelloch, G.E., Finocchi, I. (eds.) Proceedings of
the Symposium on Algorithm Engineering and Experiments, ALENEX 2020, Salt
Lake City, UT, USA, 5–6 January 2020. pp. 199–213. SIAM (2020). https://doi.
org/10.1137/1.9781611976007.16

4. Bernstein, A., Probst, M., Wulff-Nilsen, C.: Decremental strongly-connected com-
ponents and single-source reachability in near-linear time. In: Proceedings of the
51st Annual ACM SIGACT Symposium on Theory of Computing. p. 365–376.
STOC 2019, Association for Computing Machinery, New York, NY, USA (2019).
https://doi.org/10.1145/3313276.3316335

5. Biggs, N.L., Lloyd, E.K., Wilson, R.J.: Graph Theory 1736–1936. Clarendon Press
(1976)

6. Brightwell, G.R., Winkler, P.: Counting Eulerian circuits is #P-complete. In:
Demetrescu, C., Sedgewick, R., Tamassia, R. (eds.) Proceedings of the Seventh
Workshop on Algorithm Engineering and Experiments and the Second Workshop
on Analytic Algorithmics and Combinatorics, ALENEX/ANALCO 2005, Vancou-
ver, BC, Canada, 22 January 2005, pp. 259–262. SIAM (2005), http://www.siam.
org/meetings/analco05/papers/09grbrightwell.pdf

7. Gabow, H.N., Myers, E.W.: Finding all spanning trees of directed and undirected
graphs. SIAM J. Comput. 7(3), 280–287 (1978)

8. Gall, F.L.: Powers of tensors and fast matrix multiplication. In: Nabeshima, K.,
Nagasaka, K., Winkler, F., Szántó, Á. (eds.) International Symposium on Symbolic
and Algebraic Computation, ISSAC 2014, Kobe, Japan, July 23–25, 2014, pp. 296–
303. ACM (2014). https://doi.org/10.1145/2608628.2608664

9. Hierholzer, C., Wiener, C.: Über die möglichkeit, einen linienzug ohne wiederholung
und ohne unterbrechung zu umfahren. Math. Ann. 6(1), 30–32 (1873)

10. Hutchinson, J.P., Wilf, H.S.: On Eulerian circuits and words with prescribed adja-
cency patterns. J. Combin. Theor. Ser. A 18(1), 80–87 (1975)

11. Kingsford, C., Schatz, M.C., Pop, M.: Assembly complexity of prokaryotic genomes
using short reads. BMC Bioinform. 11, 21 (2010). https://doi.org/10.1186/1471-
2105-11-21

12. Patro, R., Mount, S.M., Kingsford, C.: Sailfish: alignment-free isoform quantifica-
tion from RNA-seq reads using lightweight algorithms. Nature Biotechnol. 32, 462–
464 (2014). https://doi.org/10.1038/nbt.2862, https://www.nature.com/articles/
nbt.2862

13. Ruskey, F.: Combinatorial generation. Preliminary working draft. University of
Victoria, Victoria, BC, Canada 11, 20 (2003)

https://doi.org/10.1007/978-0-8176-4842-8_12
https://doi.org/10.1007/978-0-8176-4842-8_12
https://doi.org/10.1137/1.9781611976465.32
https://doi.org/10.1137/1.9781611976007.16
https://doi.org/10.1137/1.9781611976007.16
https://doi.org/10.1145/3313276.3316335
http://www.siam.org/meetings/analco05/papers/09grbrightwell.pdf
http://www.siam.org/meetings/analco05/papers/09grbrightwell.pdf
https://doi.org/10.1145/2608628.2608664
https://doi.org/10.1186/1471-2105-11-21
https://doi.org/10.1186/1471-2105-11-21
https://doi.org/10.1038/nbt.2862
https://www.nature.com/articles/nbt.2862
https://www.nature.com/articles/nbt.2862

Beyond the BEST Theorem: Fast Assessment of Eulerian Trails 175

14. Tarjan, R.E.: Depth-first search and linear graph algorithms. SIAM J. Comput.
1(2), 146–160 (1972). https://doi.org/10.1137/0201010, https://doi.org/10.1137/
0201010

15. Uno, Takeaki: A new approach for speeding up enumeration algorithms and its
application for matroid bases. In: Asano, Takano, Imai, Hideki, Lee, D.. T..,
Nakano, Shin-ichi, Tokuyama, Takeshi (eds.) COCOON 1999. LNCS, vol. 1627,
pp. 349–359. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48686-
0 35

16. Williams, V.V.: Multiplying matrices faster than coppersmith-winograd. In:
Karloff, H.J., Pitassi, T. (eds.) Proceedings of the 44th Symposium on Theory
of Computing Conference, STOC 2012, New York, NY, USA, 19–22 May 2012, pp.
887–898. ACM (2012). https://doi.org/10.1145/2213977.2214056

https://doi.org/10.1137/0201010
https://doi.org/10.1137/0201010
https://doi.org/10.1137/0201010
https://doi.org/10.1007/3-540-48686-0_35
https://doi.org/10.1007/3-540-48686-0_35
https://doi.org/10.1145/2213977.2214056

Linear-Time Minimal Cograph Editing

Christophe Crespelle(B)

University of Lyon, UCB Lyon 1, ENS de Lyon, CNRS, Inria, LIP UMR 5668,
15 Parvis René Descartes, 69342 Lyon, France

christophe.crespelle@univ-lyon1.fr

Abstract. We present an algorithm for computing a minimal editing
of an arbitrary graph G into a cograph, i.e. a set of edits (additions
and deletions of edges) that turns G into a cograph and that is minimal
for inclusion. Our algorithm runs in linear time in the size of the input
graph, that is O(n + m) time where n and m are the number of vertices
and the number of edges of G, respectively.

1 Introduction

We consider the problem of editing an arbitrary graph into a cograph, i.e. a graph
with no induced path on 4 vertices. This lies within the general framework of
graph modification problems, in which one wants to perform elementary modi-
fications to an input graph, typically adding and removing edges and vertices,
in order to obtain a graph belonging to a given target class of graphs, which
satisfies some additional property compared to the input. Ideally, one would like
to do so by performing a minimum number of elementary modifications. This
is a fundamental problem in graph algorithms, which answers the question to
know how far is a given graph from satisfying a target property.

Here, we consider the edge modification problem called editing, where two
operations are allowed: adding an edge and deleting an edge. In other words,
given a graph G = (V,E), we want to find a set M ⊆ {{x, y} | x, y ∈ V } of pairs
of vertices, called edits, such that the edited graph H = (V,EΔM) belongs to
the target class. In this case, the quantity to be minimised, called the cost of
the editing, is the number |M | of adjacencies that are modified, i.e. the number
of edges that are added plus the number of edges that are deleted. There exist
two other edge modification problems, called completion and deletion, which
are particular cases of editing where only addition of edges or only deletion of
edges is allowed, respectively. Edge modification problems are essential in algo-
rithmic graph theory, where they are closely related to some important graph
parameters, such as treewidth [1]. They also naturally appear in many problems
arising in computer science [3,23], molecular biology [6] and genomics, where
they played a key role in the mapping of the human genome [14,22]. Recently,

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under the Marie Sklodowska-Curie grant agreement No
749022.

c© Springer Nature Switzerland AG 2021
E. Bampis and A. Pagourtzis (Eds.): FCT 2021, LNCS 12867, pp. 176–189, 2021.
https://doi.org/10.1007/978-3-030-86593-1_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86593-1_12&domain=pdf
https://doi.org/10.1007/978-3-030-86593-1_12

Linear-Time Minimal Cograph Editing 177

edge modification problems into the class of cographs and some of its subclasses
has become a powerful approach to solve problems in complex networks analysis,
such as inference of phylogenomics [19,20], identification of groups in social net-
works [21,28] and measures of centrality of nodes in networks [5,31]. For these
applications, the need to treat real-world datasets, whose size is often huge and
constantly growing, asks for extremely efficient algorithms with regard to the
running time that provide solutions of good quality (number of edits).

Unfortunately, finding the minimum number of edits to be performed in
an editing problem is NP-hard for most of the target classes of interest (see,
e.g., the thesis of Mancini [26] for further discussion and references). Moreover,
the classic approaches developped to deal with this difficulty of computation,
such as exact exponential algorithms (see e.g. [4]) and parameterised algorithms
(see e.g. [2,7]), are of no help in practice to deal with real-world networks of
hundreds of thousands of edges or more (up to billions in some cases). The
reason is that their complexity exponentially (or super-polynomially) depends
on some parameter, either the size of the graph or the number of edits, that is
almost always very large in practice, at least some thousands, which forbids to
run these algorithms on such data.

As an alternative, the approach based on the inclusion-minimal relaxation of
the problem, called minimal editing, allows to design very fast polynomial time
algorithms that still provide good solutions. Instead of asking for the minimum
number of edits, the minimal editing problem only asks for a set of edits which is
minimal for inclusion, i.e. which does not contain any proper subset of edits that
also results in a graph in the target class. This approach has been extensively
used for completion problems, for the class of cographs itself [11,25], as well as
for many other graph classes, including chordal graphs [17], interval graphs [13,
29], proper interval graphs [30], split graphs [18], comparability graphs [16] and
permutation graphs [12]. The main reason for the success of inclusion-minimal
completion is that, for all these classes, it provides a heuristic for minimum-
cardinality completion that runs in a very low polynomial complexity, often
O(nm) or O(n2) time.

Rather surprisingly, the inclusion-minimal approach has never been used for
editing problems, where both addition and deletion are allowed, which consti-
tutes a big lack for the domain. Indeed, from a practical point of view, the general
version of editing has much more interest as the number of edits obtained is usu-
ally much lower when both operations are used. There even exist examples (see
Fig. 1) where n edits are enough to turn the graph into a cograph while Ω(n2)
modifications are required both for pure deletion and for pure completion. More-
over, we show in this paper that dealing with both operations may be beneficial
not only for the number of edits output, but also for the time complexity of the
algorithm.

Related Work. Edge modification problems into the class of cographs have
already received a great amount of attention, including in the parameterized
complexity framework [15,24,27]. Concerning the inclusion-minimal approach,
unlike the minimal editing problem, minimal cograph completion has already

178 C. Crespelle

stable

stable

clique

clique

matching

matching

A B

DC

anti−matchinganti−matching

Fig. 1. Graph Gn on n = 4k vertices, with k ≥ 1. The edges between A and B and
between C and D induce matchings while the edges between A and C and between B
and D induce anti-matchings (i.e. the complement of a matching). There are no edges
between A and D and between B and C. Any cograph deletion (resp. completion) of
Gn requires Ω(n2) deletions (resp. additions) of edges, but n edits are enough to turn
Gn into a cograph.

been studied. [25] designed an incremental algorithm that gives an inclusion-
minimal cograph completion in time O(n+m′), where n is the number of vertices
and m′ the number of edges in the output cograph. Later, [11] improved the
running time to O(n + m log2 n) for the inputs where the number of edges m is
small and m′ is large. They also show that within the O(n+m′) time complexity,
it is possible to determine the minimum number of edges to be added at each
step of the incremental algorithm.

[21] and [19] designed heuristics, for cograph deletion and cograph editing
respectively, that are not intended to output a minimal set of modifications.
In the worst case, the algorithm of [21] runs in time at least O(m2) and the
algorithm of [19] in time greater than O(n2). Finally, let us mention that for the
subclass of quasi-threshold graphs, there exist two heuristics dedicated to the
editing problem. The one in [28] runs in cubic time in the worst case while [5]
obtains a complexity which is often close to linear in practice, but which remains
quadratic in the worst case.

Our Results. We design an algorithm that computes a minimal cograph editing
of an arbitrary graph in linear time in the size of the input graph, i.e. O(n + m)
time. This is the first algorithm for a cograph edge modification problem that
runs in linear time. Even compared to the O(n + m′)-time algorithm of [25]
for the pure completion problem, the O(n + m) complexity we obtain here for
the editing problem is a significant improvement since, as shown in [11], many
instances having only m = O(n) edges actually require m′ = Ω(n2) edges in
any of their completions. Note that, as a particular case, our minimal cograph
editing algorithm solves the cograph recognition problem in linear time, and the
technique we use can be seen as an extension of the seminal work of [9]. Like the
algorithms in [11,25], our algorithm is incremental on the vertices and as the one
in [11], it is able to provide a minimum number of edits to be performed at each

Linear-Time Minimal Cograph Editing 179

incremental step and is even able to list all the editings having this minimum
cardinality, within the same complexity. This implies that the editing output at
the end of the algorithm never contains more than m edits.

2 Preliminaries

All graphs considered here are finite and simple. In the following, G is a graph,
V (or V (G)) is its vertex set and E (or E(G)) is its edge set. We use the notation
G = (V,E) and n stands for the cardinality |V | of V and m for |E|. An edge
between vertices x and y will be arbitrarily denoted by xy or yx. The (open)
neighbourhood of x is denoted by N(x) (or NG(x)). The subgraph of G induced
by the subset of vertices X ⊆ V is denoted by G[X] = (X, {xy ∈ E | x, y ∈ X}).

For a rooted tree T , we employ the usual terminology for children, parent,
ancestors and descendants of a node u in T (the two later notions including u
itself). We denote by C(u) the set of children of u and by parent(u) its parent.
The subtree of T rooted at u, denoted Tu, is the tree induced by the descendants
of node u in T (which include u itself). We denote lca(u, v) the lowest common
ancestor of nodes u and v in T .

Cographs. One of the characterisations of the class of cographs (see [8] for a
more detailed introduction to the class) is that they are the graphs obtained
from a single vertex under the closure of the parallel composition and the series
composition. The parallel composition of two graphs G1 = (V1, E1) and G2 =
(V2, E2) is the disjoint union of G1 and G2, i.e., the graph Gpar =

(
V1 ∪V2, E1 ∪

E2

)
. The series composition of G1 and G2 is the disjoint union of G1 and G2

plus all possible edges from a vertex of G1 to one of G2, i.e., the graph Gser

(
V1∪

V2, E1 ∪ E2 ∪ {xy | x ∈ V1, y ∈ V2}
)
. These operations are naturally extended to

a finite number of graphs.
This gives a nice representation of a cograph G by a tree whose leaves are

the vertices of G and whose internal nodes (non-leaf nodes) are labelled P , for
parallel, or S, for series, corresponding to the operations used in the construction
of G. It is always possible to find such a labelled tree T representing G such that
every internal node has at least two children, no two parallel nodes are adjacent
in T and no two series nodes are adjacent. This tree T is unique [8] and is called
the cotree of G. Note that the subtree Tu rooted at some node u of cotree T also
defines a cograph whose vertex set, denoted V (u), is the set of leaves of Tu. The
adjacencies between the vertices of a cograph can easily be read off its cotree, in
the following way.

Remark 1. Two vertices x and y of a cograph G having cotree T are adjacent iff
the lowest common ancestor u of leaves x and y in T is a series node. Otherwise,
if u is a parallel node, x and y are not adjacent.

Let us emphasize that the class of cographs is hereditary, i.e., an induced
subgraph of a cograph is also a cograph (since the class also admits a definition
by forbidden induced subgraphs).

180 C. Crespelle

Incremental Minimal Cograph Editing. Our approach for computing a
minimal cograph editing of an arbitrary graph G is incremental, in the sense
that we take the vertices of G one by one, in an arbitrary order (x1, . . . , xn),
and at step i we compute a minimal cograph editing Hi of Gi = G[{x1, . . . , xi}]
from a minimal cograph editing Hi−1 of Gi−1, by modifying only adjacencies
involving xi. This is possible thanks to the following observation that is general
to all hereditary graph classes that are stable under the addition of universal
vertices and isolated vertices, like cographs.

Lemma 1. (see e.g. [29]). Let G be an arbitrary graph and let H be a minimal
cograph editing (resp. completion or deletion) of G. Consider a new graph G′ =
G + x, obtained by adding to G a new vertex x adjacent to an arbitrary set
N(x) of vertices of G. There is a minimal cograph editing (resp. completion or
deletion) H ′ of G′ such that H ′ − x = H.

The new problem. Thanks to Lemma 1 above, in all the rest of this arti-
cle, we consider the following problem and use the following (slightly modified)
notations: G is a cograph, G + x is the graph obtained by adding to G a new
vertex x adjacent to some set N(x) of vertices of G and our goal is to compute a
minimal cograph editing H of G + x such that H − x = G. We sometimes write
G + (x,N(x)) instead of G + x, when we want to make the neighbourhood of x
in G + x explicit, and we denote d = |N(x)|.
Definition 1 (Full, hollow, mixed). A subset S ⊆ V (G) is full if S ⊆ N(x),
hollow if S ∩ N(x) = ∅ and mixed if S is neither full nor hollow. We use the
same vocabulary for nodes u of T , referring to their associated set of vertices
V (u).

From [9,10], we have the following characterisation of the case where the
insertion of x in cograph G yields a cograph G+x, in the case where the root of
T is mixed. Note that if the root of T is not mixed, then x is a universal vertex or
an isolated vertex in G+x and G+x is necessarily a cograph (because cographs
are closed under both the addition of a universal vertex and the addition of an
isolated vertex).

Theorem 1. (Reformulated from [9,10]). If the root of T is mixed, then
G + x is a cograph iff there exists a mixed node u of T such that:

1. all the children of u are full or hollow and
2. for all vertices y ∈ V (G) \ V (u), y ∈ N(x) iff lca(y, u) is a series node.

Moreover, when such a node u exists, it is unique and it is called the insertion
node.

In addition, when G + x is a cograph, its cotree can be obtained from the
cotree T of G by inserting x as a grand child of the insertion node u in T ,
see [9,10] for a full description of the modifications of the cotree under the
insertion of x.

Linear-Time Minimal Cograph Editing 181

3 Characterisation of Minimal Cograph Editings of G + x

In this section, we build upon Theorem 1 to get a characterisation of all the
minimal cograph editings of G+x (Lemmas 3 and 4 below), extending the work
of [11] for pure completion. Note that from Theorem 1, any minimal editing
defines a unique insertion node.

Definition 2 (Minimal insertion node). A node u of T is a minimal inser-
tion node iff there exists a minimal editing H of G+x such that u is the insertion
node associated to H.

Definition 3 (Consistent and settled). An editing H of G+x is consistent
with a node u of T iff the three following conditions are satisfied:

1. H makes x adjacent to all the vertices y �∈ V (u) such that lca(y, u) is a series
node and non-adjacent to all the vertices z �∈ V (u) such that lca(z, u) is a
parallel node, and

2. all the children of u are full or hollow in H, and
3. all the hollow (resp. full) children of u in G + x are hollow (resp. full) in H

as well.

If, in addition, u is mixed in H, we say that H is settled at u. A minimum con-
sistent editing (resp. minimum settled editing) is an editing consistent with some
node u (resp. settled at u) and having minimum cost among editings consistent
with u (resp. settled at u).

Lemma 2 below states that any minimal cograph editing of G+x is an editing
settled at some mixed node of T .

Lemma 2. If u is a minimal insertion node and H a minimal editing whose
insertion node is u, then u is mixed and H is an editing settled at u.

We will need the following definitions in order to characterise the minimal
editings of G + x.

Definition 4. (Completion-forced [11] and deletion-forced). A comple
tion-forced node u is inductively defined as a node satisfying at least one of
the three following conditions:

1. u is full, or
2. u is a parallel node with all its children non-hollow, or
3. u is a series node with all its children completion-forced.

A node u is deletion-forced, in G + (x,N(x)), iff u is completion-forced in G +
(x, V (G) \ N(x)), where G is the complement graph of G.

Remark 2. The complement graph G of a cograph G is a cograph and the cotree
of G is obtained from the cotree T of G by flipping the labels of the internal
nodes: series nodes become parallel nodes and vice-versa.

182 C. Crespelle

The rationale for these notions is that for u a completion-forced (resp.
deletion-forced) node, G[V (u)] + x admits a unique cograph completion (resp.
deletion), which is the trivial one that makes x universal (resp. isolated) in
G[V (u)] + x.

Definition 5 (Clean). A mixed node u of T is clean iff either:

– the parent v of u is a parallel node and u is the unique non-hollow child of v,
or

– the parent v of u is a series node and u is the unique non-full child of v.

We can now state our characterisation. Lemma 3 identifies the minimal inser-
tion nodes u and Lemma 4 gives all the editings settled at u that are minimal
for inclusion.

Lemma 3. A mixed node u of T is a minimal insertion node iff one of these
conditions holds:

1. u is parallel and either u has at least 3 children and no clean non-completion-
forced child or u has exactly 2 children, at least one of which is completion-
forced; or

2. u is series and either u has at least 3 children and no clean non-deletion-forced
child or u has exactly 2 children, at least one of which is deletion-forced.

Lemma 4. Let u be a mixed node of T and let H be an editing settled at u. H
is a minimal editing iff exactly one of the two following conditions is satisfied:

– u is a parallel node and either at least two children of u are full in H or
exactly one child of u is full in H and this child is completion-forced.

– u is a series node and either at least two children of u are hollow in H or
exactly one child of u is hollow in H and this child is deletion-forced.

Using the characterisations provided by Lemmas 3 and 4, one can show the
following theorem, whose proof is omitted due to space restriction.

Theorem 2. There exists an O(n)-time algorithm that, given a cograph G, its
cotree T and a new vertex x together with its neighbourhood, determines all the
minimal insertion nodes u of T and for each of them determines an editing of
minimum cost, denoted mincost(u), among those settled at u, called a minimum
settled editing.

4 An O(n + m)-time Algorithm for Minimal Cograph
Editing

We now design an incremental algorithm in which one step runs in O(d) time,
where d = |N(x)| is the degree of the new vertex x in G+(x,N(x)), resulting in
an overall O(n + m) time complexity for the whole algorithm. The difficulty to
do so is that the minimal insertion nodes can be far from each other in the tree,

Linear-Time Minimal Cograph Editing 183

at distance Ω(n), so we cannot explore entirely the part of T connecting them,
as done by the algorithm of Theorem 2. Therefore, the main idea to achieve a
linear complexity is to avoid to search all the minimal insertion nodes of T by
discarding those for which the best settled editing has cost greater than d, i.e. is
more costly than the trivial delete-all editing (in which all the edges incident to
x are deleted). Thanks to this, we can limit ourselves to search a sub-forest of
T that has size O(d). In particular, note that we call the O(n)-time algorithm
of Theorem 2 only on some disjoint subtrees Tu rooted at nodes u that satisfy
|V (u) ∩ N(x)| ≥ |V (u) \ N(x)|, which we call the preponderant nodes, ensuring
that all of these calls need no more than O(

∑
u |Tu|) = O(

∑
u 2|V (u)∩N(x)|) =

O(d) total computation time.
A preponderant node is maximal if none of its strict ancestors in T is prepon-

derant. We denote by Γ the set of parents of the maximal preponderant nodes
of T . The algorithm colours the neighbours of x in black and leaves the other
vertices white. We denote B(u) = |V (u)∩N(x)| the number of black leaves of Tu

and W (u) = |V (u) \ N(x)| its number of white leaves. For any node u of T , we
denote cost-above(u) the number of edits that is to be performed on the adjacen-
cies between x and the vertices of V (G)\V (u) in any editing settled at u. And we
denote diff-above(u) = cost-above(u)−(d−B(u)), which is the difference of cost,
restricted to the adjacencies between x and V (G) \ V (u), between any editing
settled at u and the delete-all editing. For a node u ∈ T , we denote Cprep(u) the
set of its preponderant children and we denote Bprep(u) =

⋃
v∈Cprep(u)

B(v) and
Wprep(u) =

⋃
v∈Cprep(u)

W (v). The general scheme of the algorithm is in three
steps:

1. determine the maximal preponderant nodes of T ,
2. for every parent u of some maximal preponderant node, i.e. u ∈ Γ ,

decide whether diff-above(u) ≤ Bprep(u) and determine the exact value of
diff-above(u) when u satisfies this condition,

3. for such nodes u, for each of their preponderant children u′ and for each min-
imal insertion node v ∈ Tu′ , determine one editing of minimum cost among
those settled at v.

The rationale behind this approach is as follows. We try to discover all the
minimum editings of G + x by listing the minimum settled editings of the nodes
u ∈ T , whose cost has been denoted mincost(u). Doing so, we can safely disre-
gard the nodes u such that mincost(u) > d (the cost of the delete-all editing) or
mincost(u) > mincost(v) for another node v. For this reason, we can focus only
on the nodes that are in the subtree or are the parent of some maximal prepon-
derant node, since all other insertion nodes are more costly. Let u ∈ Γ , let u′ be
a preponderant child of u and let v ∈ Tu′ . Another necessary condition so that
mincost(v) ≤ d is that diff-above(v) ≤ B(v), because any editing can save at
most B(v) edits in Tv compared to the delete-all editing. This implies the same
condition for all the ancestors of v, including u′, and an even stronger condition
for u, namely diff-above(u) ≤ Bprep(u). This is why our algorithm first deter-
mines the nodes u ∈ Γ that satisfy this necessary condition, then determines

184 C. Crespelle

their preponderant children u′ that satisfy diff-above(u′) ≤ B(u′) and searches
completely their subtrees Tu′ , thanks to the algorithm of Theorem 2, to obtain
a minimum settled editing for each minimal insertion node v of Tu′ (and for u
as well).

Theorem 3 below, whose proof is omitted due to page limit, states that the
set of all maximal preponderant nodes can be found in O(d) time.

Theorem 3. There exists an algorithm that, given a cograph G, its cotree T
and a new vertex x together with its neighbourhood, determines all the maximal
preponderant nodes of T in time O(d), where d is the degree of x.

4.1 Determining Diff-Above

For the rest of the algorithm, we slightly modify the tree T as follows: for every
parent u of some maximal preponderant node, i.e. u ∈ Γ , we modify the list of
children of u by cutting off all preponderant children of u. The set of nodes of
the tree T ′ obtained in this way is exactly the set of non-preponderant nodes
of T that have no preponderant ancestor. In particular, T ′ contains only white
leaves, since black leaves are preponderant nodes. We keep track of the parts of
T that have been removed by storing, for each node u ∈ Γ , the numbers Bprep(u)
and Wprep(u) of the black leaves and white leaves, respectively, in the subtrees
of the preponderant children of u.

Routine Search-tree. In order to determine diff-above we use an auxiliary
routine, called Search-tree, which is our main tool to ensure that we search a
part of T ′ that has size O(d). It performs a limited search of the subtree of a
node u which has the following fundamental property.

Lemma 5. After an O(d)-time preprocessing of T ′, for any non-preponderant
node u ∈ T ′ and any positive integer s, a call to Routine Search-tree(u, s)
determines whether W (u) − B(u) ≤ s in time O(min{s,W (u) − B(u)}).

The preprocessing step is also performed by Routine Search-tree, of which
we now give a coarse-grain description. Routine Search-tree(u, s) performs a
depth-first search of T ′

u with budget s. The budget s of the search is converted
into a ttl (standing for time to live) which is initially set to 2 + 5s and which is
decreased by 1 everytime an edge of T ′ is traversed (either upward or downward).
During the search of T ′

u, thanks to the numbers Bprep(v) and Wprep(v) stored
in the nodes v ∈ T ′

u ∩Γ , we maintain a counter cpt of the difference between the
number of white leaves and the number of black leaves in the part of Tu that
corresponds to the part of T ′

u that has been searched so far. The search of T ′
u

stops when either the subtree of u has been entirely searched (cpt then contains
the exact value of W (u) − B(u)) or when the ttl becomes negative for the first
time, if this happens before. Therefore, the search never takes more than O(s)
time.

The preprocessing step consists in assigning a weighted shorcut to each
node u ∈ Γ , which points to the node of T ′

u on which stops the call

Linear-Time Minimal Cograph Editing 185

to Search-tree(u, exc(u)), where exc(u) =
∑

ui∈Cprep(u)
(B(ui) − W (ui)), and

whose weight is the value of cpt when the call terminates. The interest of these
shorcuts is that the calls to Search-tree(v, s), with v an ancestor of u in T ,
that are made later do not need to perform this part of the search again, they
simply follow the shorcut and update their own counter with the weight cpt of
the shorcut. This allows to achieve the complexity mentionned in Lemma 5 and
to keep the overall complexity of the algorithn linear. During the search of T ′

u

if a node v ∈ Γ that has not been assigned a shorcut yet is encountered, then
we first assign its shorcut to v before we continue the search of T ′

u. In this way,
each part of T ′ is searched at most once and the complexity of the preprocessing
step is O(

∑
u∈Γ exc(u)) = O(d).

Finally, one can prove that once all the shorcuts have been assigned, the
number of edge traversals and shorcut traversals needed to entirely search the
subtree T ′

u of a non-preponderant node u is at most 2 + 5(W (u) − B(u)). Ther-
feore, if W (u) − B(u) ≤ s, Search-tree(u, s) entirely searches the subtree T ′

u,
in O(W (u) − B(u)) time, which proves Lemma 5.

Searching the Branch of Node u. Now, we show how to decide, for u the
parent of some maximal preponderant node, whether diff-above(u) ≤ Bprep(u)
and we determine the exact value of diff-above(u) when this condition holds.
To this purpose, we search the branch from u up to the root of T , using a
budget bud initially set at bud(u) = Bprep(u). Along the search, we maintain the
current value bud(v) of bud on the ancestor v of u so that bud(v) = Bprep(u) −
diff-abovev(u), where diff-abovev(u) is defined as diff-above(u) but in the subtree
Tv (instead of the whole cotree T). Let v be the current node of the search and
p its parent. The search stops when either:

1. v is the root of T , or
2. bud(p) = Bprep(u) − diff-abovep(u) < 0, or
3. p has some preponderant child and bud(p) = Bprep(u) − diff-abovep(u) ≥ 0

but bud(p) < Bprep(p).

In the first case, u satisfies the condition diff-above(u) ≤ Bprep(u), as
the search reached the root with a non-negative budget. In the second case,
mincost(u) > mincost(v): we stop the search and discard it. In the third case,
for complexity reasons, we stop the search initiated at u and make it a child of
the search initiated at p in an auxiliary forest F , as this latter search will stop
further up in T . Afterwards, when all searches have been performed, we use F
to decide whether u satisfies the condition diff-above(u) ≤ Bprep(u).

The key for searching the branch of u is to be able to update bud(v) =
Bprep(u) − diff-abovev(u) when moving from the current node v to its parent
p. If p is a parallel node, this is easy as diff-abovep(u) = diff-abovev(u) and
so bud(p) = bud(v). When p is a series node, we obtain bud(p) by adding to
bud(v) the quantity diff-abovep(u) − diff-abovev(u) = (Bprep(p) − Wprep(p)) −∑

q∈Cnon(p)\{v}(W (q)−B(q)), where Cnon(p) denotes the set of non-preponderant
children of p. If p has no preponderant children, then we continue the search iff
bud(p) ≥ 0 (Condition 2 above), which writes in this case

∑
q∈Cnon(p)\{v}(W (q)−

186 C. Crespelle

B(q)) ≤ bud(v). This can be tested by a call to Routine Search-tree(q, .) on
each node q ∈ Cnon(p) \ {v} with a global budget of bud(v) for all the calls
(each call starts with the budget remaining from the previous calls). If p has
some preponderant child, then we continue the search iff bud(p) ≥ Bprep(p)
(Condition 3 above). Instead of checking directly this condition, we check a
weaker condition, namely that bud(p) ≥ Bprep(p) − Wprep(p), which also writes∑

q∈Cnon(p)\{v}(W (q) − B(q)) ≤ bud(v). As previously, we check this condition
thanks to Routine Search-tree: if it does not hold, then we also have bud(p) <
Bprep(p) so we stop the search initiated at u and make it a child in F of the
search initiated at p; otherwise, if

∑
q∈Cnon(p)\{v}(W (q) − B(q)) ≤ bud(v), then

Routine Search-tree has searched all the subtrees rooted at the nodes q ∈
Cnon(p) \ {v}. Therefore, we can determine directly the exact value of bud(p),
compare it to Bprep(p) and either continue the search initiated at u or stop it
and make it a child in F of the search initiated at p.

The main idea for getting an O(d) time complexity is to ensure that each
black leaf will participate to the budget of the search of only one branch. This
is true for the initial budgets Bprep(u) of the searches. But unfortunately, when
the next node p of the search is a series node with some preponderant child, an
additional quantity Bprep(p) − Wprep(p) is added to the current budget of the
search. This means that this quantity Bprep(p)−Wprep(p) will contribute to the
budget of all the searches that were initiated at some node in the subtree of
p and that continue after p, which threatens the linear complexity we aim at.
Therefore, for preserving the complexity, instead of continuing all the searches
that should continue beyond p, we only continue one of them, say f , that reached
p with maximum remaining budget and we make the other searches children of
this search f in F . In this way, the quantity Bprep(p) − Wprep(p) contributes
only to search f and the total time complexity of all the searches is bounded
by O(

∑
u∈Γ Bprep(u)) = O(d). There is an additional difficulty to be solved

here: we have to be sure that at the time we determine the search reaching p
with maximum remaining budget, all the searches that will eventually reach p
have done so already. To ensure this, we launch the searches in an order σ that
guarantees that all the searches initiated at some strict descendant of any p ∈ Γ
are launched before the search initiated at p itself is launched and we determine
the search reaching p with maximum remaining budget at the time when the
search initiated at p is launched. It is possible to determine such an order σ in
O(d) time by a careful partial bottom-up search of T starting from all the nodes
in Γ . The difficulty is again that we cannot afford to search all T but only an
O(d)-size subpart of it.

Once all the searches have been performed, we obtain a forest F on these
searches. We parse each tree Fi in F , starting from its root. For each search f
in Fi, we determine whether the node u at which search f was initiated satisfies
the condition diff-above(u) ≤ Bprep(u) (this is easy for the search f̂ being the
root of Fi, as we just need to check whether f̂ reached the root of T). If u does
not satisfy the condition, we discard all the descendant searches f ′ of f in Fi as
the nodes they were initiated at also fail to satisfy the condition. If u satisfies the

Linear-Time Minimal Cograph Editing 187

condition, we can determine the exact value of diff-above(u). We then determine
which of the child searches f ′ of f in Fi have their initiator node v that satisfies
the condition. We can do this thanks to diff-above(u) and the value bud(p) of
the remaining budget at node p of the search f ′, where p is the node of T where
the searches f and f ′ met and where f ′ was made a child of f . When the parse
of F is over, we obtain the set of all nodes u ∈ Γ that satisfy the condition
diff-above(u) ≤ Bprep(u) and we have the exact value of diff-above(u) for each
of them. Overall, this takes time O(d).

4.2 Final Stage of the Algorithm and Overall Complexity

We first find all the maximal preponderant nodes and determine for each of their
parents u whether the condition diff-above(u) ≤ Bprep(u) holds (and we get the
value of diff-above(u) in the positive), as shown above. This takes O(d) time.
As noted earlier, we know that all the nodes v′ ∈ T such that mincost(v′) ≤ d
either belong to the subset of nodes of Γ that satisfy the condition above, or
are in the subtree of some preponderant child of such a node. Then, for all the
nodes u ∈ Γ that satisfy diff-above(u) ≤ Bprep(u), we determine the set of
their preponderant children v that satisfy diff-above(v) ≤ B(v), which is also
a necessary condition so that Tv contains some node v′ with mincost(v′) ≤ d.
This can be done thanks to Routine Search-tree and takes O(d) time. Then,
for each child v of u satisfying this condition, we call the algorithm of Theorem 2
on G[V (v)] + x to get an editing of minimum cost among those settled in Tv.
This takes time O(|V (v)|) = O(B(v)) since v is a preponderant node. Finally,
we select one editing of minimum cost among the editings obtained in each
tree Tv and the editings settled at nodes u ∈ Γ themselves: this is a minimum
editing of G + x, say settled at node w, and it takes O(d) time to find it. Once
this insertion node w has been determined, we update the cotree T and its
factorising permutation π (which we use to find maximal preponderant nodes)
as shown in [9,10], as well as the reciprocal pointers between the nodes of T and
the cells of π. This takes O(d) time and we can update all the information our
algorithm needs on the tree within the same time. It is worth noting that our
algorithm represents and manipulates the current cograph G only via its cotree.
Nevertheless, it can straightforwardly be augmented to maintain the adjacency
lists of G as well, within the same time complexity, by observing that at each
incremental step, the modified degree of the new vertex x is always less than 2d.

5 Conclusion and Perspectives

We designed an O(n+m)-time algorithm for minimal cograph editing using the
fact that there always exists an editing of cost at most m, which is not true
for pure completion. Our result, which, to the best of our knowledge, is the
first algorithm for an inclusion-minimal editing problem, suggests that consid-
ering minimal editing instead of minimal completion may allow to design faster

188 C. Crespelle

algorithms. Since the editing problem is likely to provide smaller sets of edits
than the completion problem, this possibility should be explored for other target
classes of graphs.

References

1. Arnborg, S., Corneil, D.G., Proskurowski, A.: Complexity of finding embeddings
in a k-tree. SIAM J. Algebraic Discrete Methods 8(2), 277–284 (1987)

2. Bliznets, I., Fomin, F.V., Pilipczuk, M., Pilipczuk, M.: Subexponential parame-
terized algorithm for interval completion. In: SODA 2016, pp. 1116–1131. SIAM
(2016)

3. Böcker, S., Baumbach, J.: Cluster editing. In: Bonizzoni, P., Brattka, V., Löwe, B.
(eds.) CiE 2013. LNCS, vol. 7921, pp. 33–44. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-39053-1 5

4. Böcker, S., Briesemeister, S., Klau, G.W.: Exact algorithms for cluster editing:
evaluation and experiments. Algorithmica 60(2), 316–334 (2011)

5. Brandes, Ulrik, Hamann, Michael, Strasser, Ben, Wagner, Dorothea: Fast quasi-
threshold editing. In: Bansal, Nikhil, Finocchi, Irene (eds.) ESA 2015. LNCS, vol.
9294, pp. 251–262. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-48350-3 22

6. Bruckner, S., Hüffner, F., Komusiewicz, C.: A graph modification approach for
finding core-periphery structures in protein interaction networks. Algorithms Mol.
Biol. 10(1), 1–13 (2015)

7. Cao, Y.: Unit interval editing is fixed-parameter tractable. Inf. Comput. 253, 109–
126 (2017)

8. Corneil, D., Lerchs, H., Burlingham, L.: Complement reducible graphs. Discret.
Appl. Math. 3(3), 163–174 (1981)

9. Corneil, D., Perl, Y., Stewart, L.: A linear time recognition algorithm for cographs.
SIAM J. Comput. 14(4), 926–934 (1985)

10. Crespelle, C., Paul, C.: Fully dynamic recognition algorithm and certificate for
directed cographs. Discret. Appl. Math. 154(12), 1722–1741 (2006)

11. Crespelle, C., Lokshtanov, D., Phan, T.H.D., Thierry, E.: Faster and enhanced
inclusion-minimal cograph completion. In: Gao, X., Du, H., Han, M. (eds.) COCOA
2017. LNCS, vol. 10627, pp. 210–224. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-71150-8 19

12. Crespelle, C., Perez, A., Todinca, I.: An o(n2)-time algorithm for the minimal
permutation completion problem. Discret. Appl. Math. 254, 80–95 (2019)

13. Crespelle, C., Todinca, I.: An O(n2)-time algorithm for the minimal interval com-
pletion problem. Theor. Comput. Sci. 494, 75–85 (2013)

14. Goldberg, P., Golumbic, M., Kaplan, H., Shamir, R.: Four strikes against physical
mapping of DNA. J. Comput. Biol. 2, 139–152 (1995)

15. Guillemot, S., Havet, F., Paul, C., Perez, A.: On the (non-)existence of polynomial
kernels for Pl-free edge modification problems. Algorithmica 65(4), 900–926 (2012)

16. Heggernes, P., Mancini, F., Papadopoulos, C.: Minimal comparability completions
of arbitrary graphs. Discret. Appl. Math. 156(5), 705–718 (2008)

17. Heggernes, P., Telle, J.A., Villanger, Y.: Computing minimal triangulations in time
O(nα log n) = o(n2.376). SIAM J. Discrete Math. 19(4), 900–913 (2005)

18. Heggernes, P., Mancini, F.: Minimal split completions. Discret. Appl. Math.
157(12), 2659–2669 (2009)

https://doi.org/10.1007/978-3-642-39053-1_5
https://doi.org/10.1007/978-3-642-39053-1_5
https://doi.org/10.1007/978-3-662-48350-3_22
https://doi.org/10.1007/978-3-662-48350-3_22
https://doi.org/10.1007/978-3-319-71150-8_19
https://doi.org/10.1007/978-3-319-71150-8_19

Linear-Time Minimal Cograph Editing 189

19. Hellmuth, M., Fritz, A., Wieseke, N., Stadler, P.F.: Techniques for the cograph
editing problem: Module merge is equivalent to editing P4s. CoRR abs/1509.06983
(2015)

20. Hellmuth, M., Wieseke, N., Lechner, M., Lenhof, H.P., Middendorf, M., Stadler,
P.F.: Phylogenomics with paralogs. PNAS 112(7), 2058–2063 (2015)

21. Jia, S., et al.: Defining and identifying cograph communities in complex networks.
New J. Phys. 17(1), 013044 (2015)

22. Karp, R.: Mapping the genome: some combinatorial problems arising in molecular
biology. In: 25th ACM Symposium on Theory of Computing (STOC 1993), pp.
278–285. ACM (1993)

23. Liu, K., Terzi, E.: Towards identity anonymization on graphs. In: ACM SIGMOD
International Conference on Management of Data (SIGMOD 2008), pp. 93–106.
ACM (2008)

24. Liu, Y., Wang, J., Guo, J., Chen, J.: Complexity and parameterized algorithms for
cograph editing. Theoret. Comput. Sci. 461, 45–54 (2012)

25. Lokshtanov, D., Mancini, F., Papadopoulos, C.: Characterizing and computing
minimal cograph completions. Discrete Appl. Math. 158(7), 755–764 (2010)

26. Mancini, F.: Graph Modification Problems Related to Graph Classes. Ph.D. Thesis,
University of Bergen, Norway (2008)

27. Nastos, J., Gao, Y.: Bounded search tree algorithms for parametrized cograph
deletion: Efficient branching rules by exploiting structures of special graph classes.
Discrete Math., Alg. and Appl. 4 (2012)

28. Nastos, J., Gao, Y.: Familial groups in social networks. Social Networks 35(3),
439–450 (2013)

29. Ohtsuki, T., Mori, H., Kashiwabara, T., Fujisawa, T.: On minimal augmentation
of a graph to obtain an interval graph. J. Comput. Syst. Sci. 22(1), 60–97 (1981)

30. Rapaport, I., Suchan, K., Todinca, I.: Minimal proper interval completions. Inf.
Process. Lett. 106(5), 195–202 (2008)

31. Schoch, D., Brandes, U.: Stars, neighborhood inclusion and network centrality. In:
SIAM Workshop on Network Science (2015)

Regular Model Checking with Regular
Relations

Vrunda Dave1, Taylor Dohmen2(B), Shankara Narayanan Krishna1,
and Ashutosh Trivedi2

1 IIT Bombay, Mumbai, India
{vrunda,krishnas}@cse.iitb.ac.in

2 Univeristy of Colorado, Boulder, USA
{taylor.dohmen,ashutosh.trivedi}@colorado.edu

Abstract. Regular model checking is an exploration technique for infi-
nite state systems where state spaces are represented as regular languages
and transition relations are expressed using rational relations over infi-
nite (or finite) strings. We extend the regular model checking paradigm
to permit the use of more powerful transition relations: the class of reg-
ular relations, of which the rational relations are a strict subset. We use
the language of monadic second-order logic (MSO) on infinite strings
to specify such relations and adopt streaming string transducers (SSTs)
as a suitable computational model. We introduce nondeterministic SSTs
over infinite strings (ω-NSSTs) and show that they precisely capture the
relations definable in MSO. We further explore theoretical properties of
ω-NSSTs required to effectively carry out regular model checking. In par-
ticular, we establish that the regular type checking problem for ω-NSSTs
is decidable in Pspace. Since the post-image of a regular language under
a regular relation may not be regular (or even context-free), approaches
that iteratively compute the image can not be effectively carried out in
this setting. Instead, we utilize the fact that regular relations are closed
under composition, which, together with our decidability result, provides
a foundation for regular model checking with regular relations.

1 Introduction

Regular model checking [2,3,13,24,31] is a symbolic exploration and verifica-
tion technique where sets of configurations are expressed as regular languages
and transition relations are encoded as rational relations [27–29] in the form
of generalized sequential machines. A generalized sequential machine (GSM) is
essentially a finite state machine with output capability; on every transition an
input symbol is read, the state changes, and a finite string is appended to an
output string (see Fig. 1, for instance, where the label α/s indicates that the
machine reads the symbol α and writes the string s on any such transition).
While regular model checking is undecidable in general, a number of approxi-
mation schemes and heuristics [1,8,12,13,18,22,23,30] have made it a practical
verification approach. It has, for example, been applied to verify programs with
c© Springer Nature Switzerland AG 2021
E. Bampis and A. Pagourtzis (Eds.): FCT 2021, LNCS 12867, pp. 190–203, 2021.
https://doi.org/10.1007/978-3-030-86593-1_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86593-1_13&domain=pdf
https://doi.org/10.1007/978-3-030-86593-1_13

Regular Model Checking with Regular Relations 191

unbounded data structures such as lists and stacks [3,13]. Moreover, since infi-
nite strings over a finite alphabet can be naturally interpreted as real numbers in
the unit interval, regular model checking over infinite strings provides a frame-
work [7,9,10,14,25,26] to analyze properties of dynamical systems.

s0

start

s1

α/0α

α/00α

1/1

0/0

Fig. 1. A GSM that shifts
a string to the right by 1
or 2, or equivalently realiz-
ing division of the binary
encoding of real numbers
in [0, 1] by 2 or 4.

This paper generalizes the regular model checking
approach so that transition relations can be expressed
using regular relations over infinite strings. We pro-
pose the computational model of nondeterminis-
tic streaming string transducers on infinite strings
(ω-NSST), and explore theoretical properties of ω-
NSSTs required to effectively carry out regular model
checking.

Regular Relations. While rational relations are
capable of modelling a rich set of transition sys-
tems, their limitations can be observed by noting
their inability to express common transformations
such as copy

def= w �→ ww and reverse
def= w �→ ←−w ,

where the string ←−w is the reverse of the string w. Courcelle [16,17] ini-
tiated the use of monadic second-order logic (MSO) in defining determin-
istic and nondeterministic graph-to-graph transformations which are known
to include some non-rational transformations like copy and reverse. Engel-
friet and Hoogeboom [20] showed that deterministic MSO-definable trans-
formations (DMSOT) over finite strings coincide exactly with the trans-
formations that can be realized by generalizations of GSMs that can
read inputs in two directions (2GSM). Furthermore, they showed that
this correspondence does not extend to the set of nondeterministic MSO-
definable transformations (NMSOT) and nondeterministic 2GSMs (N2GSM).

s0

a x := ax

b x := bx

x

Fig. 2. SST implementing
reverse. Here, x is a string
variable and input strings
ending in the final state
s0 output variable x (as
shown by the label on the
outgoing arrow from s0.)

Alur and Černý [4] proposed a one-way machine
capable of realizing the same transformations as
DMSOTs. These machines, known as streaming string
transducers (SST), work by storing and combining
partial outputs in a finite set of variables, and enjoy a
number of appealing properties including decidability
of functional equivalence and type-checking (see Fig. 2
for an SST realization of reverse). Alur and Deshmukh
followed up this work by introducing nondeterminis-
tic streaming string transducers (NSST) as a natural
generalization [5] and proved this model captures pre-
cisely the same set of relations as NMSOTs. Since the
connection between automata and logic is often used
as a yardstick for regularity, MSO-definable functions
and relations over finite strings are often called regular
functions and regular relations.

192 V. Dave et al.

Regular Relations over Infinite Strings. The expressiveness of SSTs and
MSO-definable transformations also coincide when representing functions over
infinite strings [6]. Deterministic SSTs operating on infinite strings are known as
ω-DSSTs, however, for regular relations of infinite strings, no existing computa-
tional model exists. We combine and generalize results in the literature on NSSTs
and ω-DSSTs to propose the computational model of nondeterministic streaming
ω-string transducers (ω-NSST) capturing regular relations of ω-strings.

s0start s1 s2

α w := wα

#
w := ε

z := z#

α

⎧
⎪⎨

⎪⎩

w := wα

x := xα

y := αy

α

⎧
⎪⎨

⎪⎩

w := wα

x := xα

y := αy

#

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

w := ε

x := ε

y := ε

z := zyx#

α
w := ε

z := zwα

α
w := ε

z := zwα

α z := zα

Fig. 3. An ω-NSST implementing the relation R←−u u from Example 1. Let α denote all
symbols in A, excluding #. Variable w remembers the string since the last #, while x
and y store the chosen suffix and its reverse. The output variable is z.

Example 1. Let A be a finite alphabet and # be a special separator not in A.
For u, v ∈ A∗, we say that v � u if v is a suffix of u. Consider a relation R←−u u that
transforms strings in (A∪{#})ω such that each maximal #-free finite substring
u occurring in the input string is transformed into ←−v v for some suffix v of u.
Formally, R←−u u is defined as

{(u1# · · · #un#w,←−v1v1# · · · #←−vnvn#w) : ui, vi ∈ A∗, w ∈ Aω, and vi � ui}
∪ {(u1#u2# . . . ,←−v1v1#←−v2v2# . . .) : ui, vi ∈ A∗ and vi � ui} ,

and can be implemented as an ω-NSST with Büchi acceptance condition (accept-
ing states are visited infinitely often for accepting strings) as shown in Fig. 3.

Contributions and Outline. In Sect. 2 we introduce ω-NSSTs and their
semantics as a computational model for regular relations. In Sect. 3 we prove
that the ω-NSST-definable relations coincide exactly with MSO-definable rela-
tions of infinite strings. In Sect. 4 we consider regular model checking with regu-
lar relations. To enable regular model checking with regular relations, we study
the following key verification problem. The type checking problem for ω-NSSTs
asks to decide, given two ω-regular languages L1, L2 and an ω-NSST, whether
[[T]](L1) ⊆ L2, where [[T]] is the regular relation implemented by T . We show
that type checking for ω-NSSTs is decidable in Pspace.

Regular Model Checking with Regular Relations 193

2 Regular Relations for Infinite Strings

An alphabet A is a finite set of letters. A string w over an alphabet A is a finite
sequence of symbols in A. We denote the empty string by ε. We write A∗ for
the set of all finite strings over A, and for w ∈ A∗ we write |w| for its length. A
language L over A is a subset of A∗. An ω-string x over A is a function x : N→A,
and written as x = x(0)x(1) · · · . We write Aω for the set of all ω-strings over A,
and A∞ for A∗ ∪ Aω. An ω-language L over A is a subset of Aω.

2.1 MSO Definable Relations

Strings may be viewed as ordered structures encoded over the signature SA =
{(a)a∈A, <} and interpreted with respect to A∗ or Aω. The domain of a string
in this context refers to the set of valid positions in the string, and the relation
< in SA ranges over this domain. The expression a(x) holds true if the symbol
at position x is a, and x < y holds if x is a lesser index than y.

Formulae in MSO over SA are defined relative to a countable set of first-
order variables x, y, z, . . . that range over individual elements of the domain and
a countable set of second-order variables X,Y,Z, . . . that range over subsets of
the domain. The syntax for well-formed formulae is given as:

φ :: = ∃X. φ | ∃x. φ | φ ∧ φ | φ ∨ φ | ¬φ | a(x) | x < y | x ∈ X

MSO transducers are particular specifications in this logic that define trans-
formations between strings. Intuitively, each such transducer copies each input
string some fixed number of times and treats the positions in each copy as nodes
in a graph, which are then relabeled and and rearranged in accordance with the
formulae of the transducer to produce an output.

Definition 1. A deterministic MSO ω-string transducer (ω-DMSOT) is a tuple
(
A,B, dom, N, (φn

b (x))n∈N
b∈B , (ψn,m(x, y))n,m∈N

)
,

where A and B are input and output alphabets, N = {1, . . . , n} is a set of
copy indices, dom is an MSO sentence that defines an input language, the node
formulae (φn

b (x))n∈N
b∈B specify the labels of positions in the output, and the edge

formulae (ψn,m(x, y))n,m∈N specify which positions in the output will be adjacent.

A ω-DMSOT operates over N disjoint copies of the string graph of an input.
Each formula φn

b has a single free variable and should be interpreted such that
if a position satisfies φn

b , then that position will be labeled by the symbol b in
the nth disjoint string graph comprising the output. Each formula ψ(n,m) has
two free variables and a satisfying pair of indices indicates that there is a link
between the former index in copy n and the latter index in copy m.

Nondeterminism is introduced through additional set variables X1, . . . , Xk

called parameters. Fixing a valuation—sets of positions of the input graph sat-
isfying the domain formula—of these parameters determines an output graph,

194 V. Dave et al.

a b b b # b a # aω

a b b b # b a # aω

a b b b # b a # aω

0 1 1 1 0 1 1 0

0 0 1 1 0 0 1 0

Fig. 4. Two possible outputs of the relation given in Example 1 constructed according
ot the ω-NMSOT from Example 2.

just as in the deterministic case. Each possible valuation may result in a different
output graph for the same input graph, and thus nondeterminism arises from
the choice of valuation.

Definition 2. A nondeterministic MSO ω-string transducer (ω-NMSOT) with
k free set variables Xk = (X1, . . . , Xk) is given as a tuple

(
A,B, dom(Xk), N, (φn

b (x,Xk))n∈N
b∈B , (ψn,m(x, y,Xk))n,m∈N

)
,

where all formulae are parameterized by the free second-order variables in addi-
tion to the required first-order parameters.

A relation between strings is a regular relation if it is definable by a ω-
NMSOT. Since ω-DMSOTs can map each input to at most one output, the
relations definable by ω-DMSOTs are called the regular functions.

Example 2. We now describe a ω-NMSOT capturing the relation given in Exam-
ple 1. Set A = {a, b,#} = B, N = {1, 2}, and consider a single parameter
X1 = {X1}. The domain of the relation is simply Aω, so we omit the formula.
For all symbols β ∈ B and copy indices n ∈ N , the node formulae labels each
position with the same symbol as the corresponding position in the input string:
φn

β(x,X1)
def= β(x). We omit formal specifications of the edge formulae (which

can be found in the extended version of this work [19]) and describe them infor-
mally. The formula for edges from copy 1 to copy 1 connects adjacent non-#
positions that belong to X1 in the reverse order. The formula for edges from
copy 1 to copy 2 connects non-# positions to themselves when the predecessor
position is not in X1. The formula for edges from copy 2 to copy 2 links the
right-most sequence of positions in X1 that preceed a # symbol and also con-
nect all those positions coming after the final # if required. Finally, the formula
for edges from copy 2 to copy 1 links # symbols to the last position in X1 left
of the next #.

Two possible outputs from the relation of Example 1 are displayed in Fig. 4
which shows how the above ω-NMSOT constructs an output string for two differ-
ent valuations of X1. A 1 in the blue (resp. green) row signifies that the position
at that column is in X1, while a 0 indicates that it is not in X1.

Regular Model Checking with Regular Relations 195

2.2 Nondeterministic Streaming String Transducers

Definition 3. A nondeterministic streaming string transducer T over ω-strings
(ω-NSST) is a tuple (A,B, S, I,Acc,Δ, f,X,U), where

– A and B are finite input and output alphabets,
– S is a finite set of states,
– I ⊆ Q is a set of initial states,
– Acc is an acceptance condition,
– X is a finite set of string variables,
– U is a finite set of variable update functions of type X → (X ∪ B)∗,
– Δ is a transition function of type (S × A) → 2U×S, and
– f ∈ X is an append-only output variable.

Such a machine is deterministic (a ω-DSST) if |Δ(s, a)| = 1, for all states s ∈ S
and symbols a ∈ A, and |I| = 1; it is nondeterministic otherwise.

On each transition sk
ak−→
uk

sk+1, the transducer changes state and applies the

update uk to each variable of X in parallel. An ω-NSST is copyless if every vari-
able in X occurs at most once in the image im(u) of every update u ∈ U . Alter-
nately stated, an update u ∈ U is copyless if the string u(x0)u(x1) . . . u(xn−1)
has at most one occurrence of each x ∈ X, and an ω-NSST is copyless if all of
its updates are copyless.

A run of an ω-NSST on an infinite string a1a2 · · · ∈ Aω is an infinite
sequence of states and transitions s0

a0−→
u0

s1
a1−→
u1

. . . where s0 ∈ I and

(sk+1, uk) ∈ Δ(sk, ak) for all k ∈ N. Let RunsT (w) be the set of all runs
in T , given input w. An update function u : X → (X ∪ B)∗ can easily be
extended to û : (X ∪ B)∗ → (X ∪ B)∗ such that û(w) def= ε if w = ε,
û(w) def= bû(w′) if w = bw′, and u(x)û(w′) if w = xw′. The effect of two
updates u1, u2 ∈ U in sequence can be summarized by the function composition
û1 ◦ û2; likewise a sequence of updates of arbitrary length would be summarized
by û0 ◦ û1 ◦ . . . ◦ ûn−1. For notational convenience, we often omit the hats when
the extension is clear from context. Notice that if all updates in a sequence of
compositions are copyless, then so is the entire summary.

A valuation is a function X → B∗ mapping each variable to a string value.
The initial valuation valε of all variables is the empty string ε. A valuation is
well-defined after any finite prefix rn of a run r and is computed as a compo-
sition of updates occurring on this prefix: valrn

= valε ◦ u0 ◦ u1 ◦ · · · ◦ un−1.
The output T (r) def= limn→∞ valrn

(f) of T on r is well-defined only if r is
accepted by T . Since the output variable f is only ever appended to and never
prepended, this limit exists and is an ω-string whenever r is accepted, other-
wise we set T (r) = ⊥. The relation [[T]] realized by an ω-NSST T is given by
[[T]] def= {(w, T (r)) : r ∈ RunsT (w)}. An ω-NSST T is functional if for every w
the set {w′ : (w,w′) ∈ [[T]]} has cardinality at most 1.

We consider both Büchi and Muller acceptance conditions for ω-NSSTs and
reference these classes of machines by the initialisms NBT and NMT (DBT and

196 V. Dave et al.

DMT for their deterministic versions), respectively. For a run r ∈ RunsT (w), let
Inf(r) ⊆ S denote the set of states visited infinitely often.

1. A Büchi acceptance condition is given by a set of states F ⊆ S and is inter-
preted such that a NBT is defined on an input w ∈ Aω if there exists a run
r ∈ RunsT (w) for which Inf(r) ∩ F �= ∅.

2. A Muller acceptance condition is given as a set of sets F = {F0, . . . , Fn} ⊆ 2S ,
interpreted such that a NMT is defined on input w ∈ Aω if there exists a run
r ∈ RunsT (w) for which Inf(r) ∈ F.

Proposition 1. A relation is NBT definable if, and only if, it is NMT definable.

The equivalence of NBT and NMT -definable relations follows from
a straightforward application of the equivalence of nondeterministic Büchi
automata and nondeterministic Muller automata. Equivalence of these accep-
tance conditions in transducers allows us to switch between them whenever con-
venient.

Remark 1. Observe that DMTs and functional NMTs, both of which were intro-
duced in [6], have a slightly different output mechanism, which is defined as a
function Ω : 2S ⇀ X∗ such that the output string Ω(S′) is copyless and of the
form x1 . . . xn, for all S′ ⊆ S for which Ω(S′) �= ⊥. Furthermore, there is the
condition that if s, s′ ∈ S′ and a ∈ A s.t. (u, s′) ∈ Δ(s, a), then (1) u(xk) = xk

for all k < n and (2) u(xn) = xnw for some w ∈ (X ∪ B)∗.
In contrast, our definition has a unique append-only output variable f ∈ X.

However, our model with the Muller acceptance is as expressive as that studied
in [6]. One can use nondeterminism to guess a position in the input after which
states in a Muller accepting set S′ will be visited infinitely often. The output
function can be defined by guessing a Muller set, and keeping an extra variable
for the output. Upon making the guess, it will move the contents of x1 . . . xn to
the variable f and make a transition to a copy TS′ of the transducer where Acc =
{S′}. If any state outside the set S′ is visited, or the variables x1 . . . , xn−1 are
updated, or the variable f is assigned in non-appending fashion, then TS′ makes
a transition to a rejecting sink state. Alur, Filiot, and Trivedi [6] showed the
equivalence of functional NMT with DMT. This implies that the transductions
definable using functional NMTs or functional NBTs (in our definition) are
precisely those definable by ω-DMSOT.

3 Equivalence of ω-NMSOT and ω-NSST

Alur and Deshmukh [5] showed that relations over finite strings definable by
nondeterministic MSO transducers coincide with those definable by nondeter-
ministic streaming string transducers. We generalize this result by proving that
a relation is definable by an ω-NMSOT if, and only if, it is definable by an
ω-NSST. We provide symmetric arguments to connect ω-NSST, ω-DSST and
ω-NMSOT, ω-DMSOT, resulting in a simple proof.

Regular Model Checking with Regular Relations 197

Our arguments use the concept of a relabeling relation, following Engelfriet
and Hoogeboom [20]. A relation ρ ⊆ Aω × Bω is a relabeling, if there exists
another relation ρ′ ⊆ A×B such that (aw, bv) ∈ ρ iff (a, b) ∈ ρ′ and (w, v) ∈ ρ. In
other words, ρ is obtained by lifting the letter-to-letter relation ρ′, in a straight-
forward manner, to ω-strings. Let Let(ρ) denote the letter to letter relation
ρ′ ⊆ A × B corresponding to ρ and let RL be the set of all such relabelings.

Theorem 1. ω-NMSOT = ω-NSST.

The proof of Theorem1 proceeds in two stages. In the first part (Lemma 1),
we show that every ω-NSST is equivalent to the composition of a nondeterminis-
tic relabeling and a ω-DSST. In the second part (Lemma 2), we show that every
ω-NMSOT is equivalent to the composition of a nondeterministic relabeling and
a ω-DMSOT. These two lemmas, in conjunction with the equivalence of DMTs
and functional NMTs [6], allow us to equate these two models of transformation
via a simple assignment.

Lemma 1. ω-NSST = ω-DSST ◦ RL

Proof. We first show ω-DSST ◦ RL ⊆ ω-NSST by proving that for every DMT
T

def= (B,C, S, I,F,Δ, f,X,U) and nondeterministic relabeling ρ ⊆ Aω × Bω,
there is a NMT T ′ def= (A,C, S, I,F,Δρ, f,X,U) such that [[T ′]] = [[T]] ◦ ρ. As
indicated by the tuple given to specify T ′, the only distinct components between
the two machines are their input alphabets and their transition functions Δ and
Δρ. The latter is given as Δρ

def= (s, a) �→ ⋃

(a,b)∈Let(ρ)

Δ(s, b). The nondetermin-

ism of ρ is therefore captured in Δρ. This results in a unique run through T ′,
for every possible relabeling of inputs for T . Since the remaining pieces of T are
untouched in the process of constructing T ′, it is clear that [[T ′]] = [[T]] ◦ ρ.

What remains to be shown is the inclusion ω-NSST ⊆ ω-DSST ◦ RL: for
any NMT T

def= (A,B, S, I,F,Δ, f,X,U), there exists a DMT T ′ and a
nondeterministic relabeling ρ such that [[T]] = [[T ′]] ◦ ρ. From T , we can con-
struct a nondeterministic, letter-to-letter relation ρ′ ⊆ A × (U × S) as follows:
ρ′ def= {(a, (u, s′)) : (u, s′) ∈ Δ(s, a)}. Now let ρ ⊆ Aω × (U × S)ω be the exten-
sion of ρ′ as described previously. The relation ρ contains the set of all possible
runs through T for any possible input in Aω.

Next, we construct a DMT T ′ def= (U × S,B, S, I,F,Δρ, f,X,U) with tran-

sition function Δρ
def= (s, (u, s′)) �→ {(u, s′) : (u, s′) ∈ Δ(s, a) for some a ∈ A}.

Consequently, T ′ retains only the pairs in ρ which correspond to valid runs T
and encodes them as ω-strings over the alphabet S × U . The DMT T ′ then
simply follows the instructions encoded in its input and thereby simulates only
legitimate runs through T . Thus, we may conclude that [[T]] = [[T ′]] ◦ ρ. ��
Lemma 2. ω-NMSOT = ω-DMSOT ◦ RL.

Proof. We begin by showing the inclusion ω-NMSOT ⊆ ω-DMSOT◦RL: for any
ω-NMSOT T , there exists an ω-DMSOT T ′ and a relabeling ρ such that [[T]] =
[[T ′]]◦ρ. Nondeterministic choice in T is determined by the choice of assignment to

198 V. Dave et al.

free variables in Xk. Alternatively, the job of facilitating nondeterminism can be
placed upon a relabeling relation, thereby allowing us to remove the parameter
variables. Define a letter-to-letter relation ρ′ ⊆ A × (A × {0, 1}k) as follows:
ρ′ def=

{
(a, (a, b)) : b ∈ {0, 1}k

}
, and let the relabeling ρ ⊆ Aω × (A × {0, 1}k)ω

be its extension. This relabeling essentially gives us a new alphabet such that
each symbol from A is tagged with encodings of its membership status for each
set parameter from Xk. Now, we can construct an ω-DMSOT T ′ that is identical
to T , apart from two distinctions. Firstly, T ′ is deterministic (i.e. it has no free
set variables), and every occurrence of a subformula x ∈ Xi in T is replaced
by a subformula

∨

b∈{0,1}k∧b[i]=1

(a, b)(x) in T ′. As a result of this encoding, the

equality [[T]] = [[T ′]] ◦ ρ holds.
The converse inclusion, ω-DMSOT◦RL ⊆ ω-NMSOT, is much simpler. Every

relabeling ρ in RL is ω-NMSOT definable: consider ρ′ = Let(ρ) ⊆ A × B. The
ω-NMSOT specifying ρ is similar to identity/copy, except that here we have
that the output label is b iff the input label is a and (a, b) ∈ ρ′. This can be
implemented using second-order variables Xb for all b ∈ B. Let XB represent
this set. Only a single copy is required to produce the output. Node formulae
are given by φ1

b(x,XB) def=
∨

a∈A

∨

(a,b)∈ρ′
(a(x) ∧ x ∈ Xb), and the edge formulae

by ψ1,1(x, y,XB) def= x < y. It is known that ω-NMSOT are closed under
composition [17]. Thus, we conclude that any composition of a nondeterministic
relabeling and a ω-DMSOT is definable by a ω-NMSOT and that ω-MSOT◦RL ⊆
ω-NMSOT. ��

In conjunction Lemmas 1 and 2 along with the results of [6] allow us to write
the following equation, thereby proving Theorem1.

ω-NMSOT = ω-DMSOT ◦ RL = DMT ◦ RL = NMT = ω-NSST

4 MSO-Definable Regular Model Checking

In this section, we explain how algorithms for deciding properties of regular
relations can be used to perform regular model checking. Given two relations T1

and T2, their sequential composition is [[T2 ◦T1]]
def= {(x, z) : (x, y) ∈ [[T1]], (y, z)

∈ [[T2]]}. Let T k denote the k-fold composition of a relation T with itself. Let
T ∗ denote the transitive closure of T .

Suppose that init and bad are regular languages representing sets of states in
some system that are initial, and unsafe, respectively. Given a generic transition
relation T which captures the dynamics of the system, the regular model checking
problem asks to decide whether any element of bad is reachable from any ele-
ment of init via repeated applications of T . In precise terms, the regular model
checking problem asks to decide whether the equation [[T ∗]](init) ∩ bad = ∅
holds. Bounded model checking, in this setting, asks to decide, given n ∈ N,
whether [[T k]](init) ∩ bad = ∅ holds, for all k ≤ n. Unbounded model checking
is undecidable (cf. [19] for a proof), so we focus on bounded model checking.

Regular Model Checking with Regular Relations 199

When T is a rational relation, its image is always a regular language, and this
permits the approach of iteratively applying T from init and checking whether
this set intersects with bad by standard automata-theoretic methods. If T is a
regular relation, its image may not be a regular language, and we must iteratively
compute compositions of T with itself and test whether these compositions enter
the bad language. To allow this, we establish decidability of the type checking
problem for ω-NSSTs: given two ω-regular languages L1, L2 and an ω-NSST T ,
decide if the inclusions L1 ⊆ dom(T) and [[T]](L1) ⊆ L2 hold.

Theorem 2. The type checking problem for ω-NSSTs is decidable in Pspace.

Proof. Suppose that T
def= (A,B, S, I, F,Δ, f,X,U) is an NBT and L1 ⊆ Aω

and L2 ⊆ Bω are ω-regular languages, encoded, respectively, as deterministic
Muller automata (DMA) M1 and M2. We first check whether T is defined for
all ω-strings w ∈ L1, i.e. whether L1 ⊆ dom(T). A nondeterministic Büchi
automaton (NBA) C that recognizes the domain of T can be constructed in
linear time by ignoring variables and output mechanism. The inclusion L1 ⊆
dom(T) can be decided in Pspace by checking emptiness of M ′

1 ∩ C where M ′
1

is the NBA equivalent to M1 and C is the NBA representing the complement
language of dom(T). It is known that an NBA can be constructed from a DMA
with exponential blowup in the number of states [11]. A complement automaton
can be constructed for an NBA with exponential increase in the number of
states as well [11]. Hence C has exponentially many states relative to T and M1.
Intersection of M ′

1 and C is a standard product construction with a flag so that
both M ′

1 and C visit good states infinitely often. Thus the intersection NBA
M ′

1 ∩ C has exponentially many states relative to T and M1. Thanks to the fact
that emptiness of NBA can be checked in NLogSpace [11], the emptiness of
this product automaton, can be decided in NPspace = Pspace.

We now assume that T is well-defined on L1 and construct a nondetermin-
istic Muller automaton (NMA) A such that the language of A is defined as
{w ∈ L1 : ∃w′ ∈ [[T]](w) s.t. w′ �∈ L2}. Next, we construct a DMA M2 for L2

by complementing the Acc set. The automaton A simulates M1, T and M2

in parallel. Next, we construct an NMT T ′ corresponding to the NBT T in
order to homogenize the acceptance condition accross these machines. Let us
fix the definition for all three machines: (i) M1

def= (A,S1, p0,F1,Δ1), (ii)
T ′ def= (A,B, S, I,F′,Δ, f,X,U), (iii) M2

def= (B,S2, r0,F2,Δ2).
The NMA A is defined as the product of M1 and T ′ (without the out-

put mechanism), and it stores a state summary map—i.e. the effect of run-
ning current valuation of each variable starting from all states of M2—in
each of its own states. Formally, the states of A comprise a finite subset of
S1 × S × (S2 × X → S2 ∪ {⊥}). A state (q, p, g) with g(r, x) = r′ represents
that, starting from state r, if we read the current value of variable x, then we
reach state r′. If g(r, x) = ⊥, it indicates that there is no run on valuation of
x starting from r. This information can be updated along the run of A. For
instance, if a transition of T updates x as aybx, then the summary map g is
updated to g′ such that g′(r, x) = g(Δ2(g(Δ2(r, a), y), b), x), and summarizes
the effect of reading x = aybx in M2 starting from state r.

200 V. Dave et al.

The set of states of A is SA = S1 × S × (S2 × X → S2 ∪ {⊥}), in which
S1, S, and S2 represent the state sets of M1, T ′, and M2, respectively. The
transition relation ΔA is defined such that (q′, p′, g′) ∈ ΔA((q, p, g), a) iff (i)
Δ1(q, a) = q′, (ii) (u, p′) ∈ Δ1(p, a), and (iii) g′(r, x) = r′ and Δ2(r, valu(x)) = r′,
for all x ∈ X and r ∈ S2,. Initial states are the product of initial states i.e. a
set IA = {(q0, p0, r0) : q0 ∈ I}. The Muller accepting set of A is defined as
the collection of all P ⊆ SA such that (i) π1(P) ∈ F1, (ii) π2(P) ∈ F, and
(iii) (π3(P))(r0, f) ∈ F2, where πi is the ith projection. The size of NMA A is
exponential in the number variables of T , polynomial in the number of states
of M1 and T . Thanks to the fact that emptiness of an NMA can be determined
in NLogSpace [11], emptiness of A having exponential states in the inputs T ,
M1 and M2, can be decided in NPspace and thus, by Savitch’s theorem, also
in Pspace. ��

Since regular relations are definable in MSO, they are closed under sequential
composition. In combination with Theorems 1 and 2, this establishes the neces-
sary conditions for bounded regular model checking with regular relations to be
possible. Thus, we have the following corollary.

Corollary 1. Bounded model checking with regular relations is decidable.

Despite the fact that unbounded regular model checking is undecidable,
bounded regular model checking provides a refutation procedure. That is, it
allows us to search for a witness for proving the system unsafe. Unfortunately,
we cannot use bounded model checking of this kind to decide if the system does
satisfy the desired property. On the other hand, we identify several special cases
of the problem which permit the safety of the system to be verified in finite time.
In general, we assume that init ⊆ bad, where bad is the complement of bad.

Functional Fixed Points. The first instance applies when T is functional, i.e. [[T]]
is a function, and relies on the following result of Alur, Filiot, and Trivedi [6].

Theorem 3. Given an ω-NSST T , it is decidable if [[T]] is a function. Given a
pair of functional ω-NSSTs T1 and T2, it is decidable if [[T1]] = [[T2]].

At every step of the bounded regular model checking procedure, one can check
if T k is functional, if T k+1 is functional, and if [[T k]] = [[T k+1]]. If these three
conditions hold, then, for all m ≥ 0, we have that [[T k]] = [[T k+m]]. When this
occurs and [[T k]](init) ⊆ bad holds, it follows that [[T k]] = [[T ∗]] and therefore
that [[T ∗]](init) ⊆ bad which implies [[T ∗]](init) ∩ bad = ∅. Note that T k can
be functional even when T is not. To see this, consider a non-functional ω-NSST
T such that [[T]](aω) = {bω, cω}, and [[T]](bω) = dω = [[T]](cω). If aω ∈ init and
|[[T]](w)| = 1 for every other input w and aω /∈ im(T), then T 2 is functional.

Inductive Invariants. An alternative approach involves showing that [[T]] satisfies
some inductive invariant. Select, as a candidate invariant, a regular or ω-regular
language L which is contained in the set of safe states L ⊆ bad. Now, L provides
a witness to the unbounded safety of the system if the following pair of conditions

Regular Model Checking with Regular Relations 201

s0start s1 s2

1

⎧
⎪⎨

⎪⎩

x := ε

y := 0
z = 1

1

⎧
⎪⎨

⎪⎩

x := x1
y := y0
z = z

0

⎧
⎪⎨

⎪⎩

x := xy1
y := ε

z = z

0

⎧
⎪⎨

⎪⎩

x := x0
y := ε

z = z

Fig. 5. An ω-SST squaring a number with binary expansion of the form 1n0ω. The
output at s1 and s2 is x. Notice that this function can not be expressed as a GSM.

are met: (i) init ⊆ L and (ii) [[T]](L) ⊆ L. Together, (i) and (ii) imply that
[[T ∗]](init) ⊆ L, and in combination with the assumption that L ⊆ bad this
yields that [[T ∗]](init)∩bad = ∅. The necessary inclusions can be formulated as
instances of the type checking problem, and so, given an appropriately chosen
inductive invariant in the form of an ω-regular language, the global safety of such
a system may be verified in polynomial space. This method is easily generalized
by searching for k-inductive invariants: ω-regular languages for which there is a
k ∈ N such that [[T k]](L) ⊆ L. The k-inductive approach complements bounded
regular model checking, since, for a given k, bounded regular model checking
lets us decide if the system is safe for up to k transitions while k-induction lets
us decide if it is safe after at least k transitions.

5 Conclusion

We introduced ω-NSSTs as a computational model for regular relations over infi-
nite strings, and showed that the relations definable by ω-NSST coincide exactly
with those definable in MSO. Motivated by potential applications in formal ver-
ification, we studied algorithmic properties of these objects and established the
minimal theoretical results required for bounded regular model checking to be
possible with regular transition relations.

Regular functions and relations provide an intriguing class of models for real
valued functions, see Fig. 5 for example. In [15,21] analytic properties such as
continuity and differentiability of real functions encoded by ω-automata have
been studied. Extending this line of research by going beyond standard ω-
automata is both theoretically interesting and could be leveraged towards appli-
cations involving verification and control of dynamical systems. The present
work indicates the viability of generalizing the automata-theoretic approach to
modeling real functions. With this application in mind, it would be worthwhile
to study the approximation techniques developed for traditional regular model
checking to see if they generalize to handle regular relations.

202 V. Dave et al.

References

1. Abdulla, P.A., Jonsson, B., Nilsson, M., d’Orso, J.: Regular model checking made
simple and effcient. In: Brim, L., Křet́ınský, M., Kučera, A., Jančar, P. (eds.) CON-
CUR 2002. LNCS, vol. 2421, pp. 116–131. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-45694-5 9

2. Abdulla, P.A., Jonsson, B., Nilsson, M., d’Orso, J., Saksena, M.: Regular model
checking for LTL(MSO). Int. J. Softw. Tools Technol. Transf. 14(2), 223–241
(2012). https://doi.org/10.1007/s10009-011-0212-z

3. Abdulla, P.A., Jonsson, B., Nilsson, M., Saksena, M.: A survey of regular model
checking. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp.
35–48. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28644-8 3

4. Alur, R., Cerný, P.: Expressiveness of streaming string transducers. In: IARCS
Annual Conference on Foundations of Software Technology and Theoretical Com-
puter Science, FSTTCS. LIPIcs, vol. 8, pp. 1–12. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2010). https://doi.org/10.4230/LIPIcs.FSTTCS.2010.1

5. Alur, R., Deshmukh, J.V.: Nondeterministic streaming string transducers. In:
Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011. LNCS, vol. 6756, pp. 1–20.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22012-8 1

6. Alur, R., Filiot, E., Trivedi, A.: Regular transformations of infinite strings. In:
Proceedings of the 27th Annual IEEE Symposium on Logic in Computer Science,
LICS, pp. 65–74. IEEE Computer Society (2012). https://doi.org/10.1109/LICS.
2012.18

7. Boigelot, B., Jodogne, S., Wolper, P.: An effective decision procedure for linear
arithmetic over the integers and reals. ACM Trans. Comput. Log. 6(3), 614–633
(2005). https://doi.org/10.1145/1071596.1071601

8. Boigelot, B., Legay, A., Wolper, P.: Iterating Transducers in the Large. In: Hunt,
W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 223–235. Springer, Hei-
delberg (2003). https://doi.org/10.1007/978-3-540-45069-6 24

9. Boigelot, B., Legay, A., Wolper, P.: Omega-regular model checking. In: Jensen,
K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 561–575. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-24730-2 41

10. Boigelot, B., Wolper, P.: Representing arithmetic constraints with finite automata:
an overview. In: Stuckey, P.J. (ed.) ICLP 2002. LNCS, vol. 2401, pp. 1–20. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-45619-8 1

11. Boker, U.: Why these automata types? In: LPAR-22. 22nd International Con-
ference on Logic for Programming, Artificial Intelligence and Reasoning. EPiC
Series in Computing, vol. 57, pp. 143–163. EasyChair (2018). https://easychair.
org/publications/paper/G5dD

12. Bouajjani, A., Habermehl, P., Vojnar, T.: Abstract regular model checking. In:
Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 372–386. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-27813-9 29

13. Bouajjani, A., Jonsson, B., Nilsson, M., Touili, T.: Regular model checking. In:
Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 403–418.
Springer, Heidelberg (2000). https://doi.org/10.1007/10722167 31

14. Bouajjani, A., Legay, A., Wolper, P.: Handling liveness properties in (omega-
)regular model checking. In: Proceedings of the 6th International Workshop on
Verification of Infinite-State Systems, INFINITY. Electronic Notes in Theoretical
Computer Science, vol. 138, pp. 101–115. Elsevier (2004). https://doi.org/10.1016/
j.entcs.2005.02.061

https://doi.org/10.1007/3-540-45694-5_9
https://doi.org/10.1007/3-540-45694-5_9
https://doi.org/10.1007/s10009-011-0212-z
https://doi.org/10.1007/978-3-540-28644-8_3
https://doi.org/10.4230/LIPIcs.FSTTCS.2010.1
https://doi.org/10.1007/978-3-642-22012-8_1
https://doi.org/10.1109/LICS.2012.18
https://doi.org/10.1109/LICS.2012.18
https://doi.org/10.1145/1071596.1071601
https://doi.org/10.1007/978-3-540-45069-6_24
https://doi.org/10.1007/978-3-540-24730-2_41
https://doi.org/10.1007/3-540-45619-8_1
https://easychair.org/publications/paper/G5dD
https://easychair.org/publications/paper/G5dD
https://doi.org/10.1007/978-3-540-27813-9_29
https://doi.org/10.1007/10722167_31
https://doi.org/10.1016/j.entcs.2005.02.061
https://doi.org/10.1016/j.entcs.2005.02.061

Regular Model Checking with Regular Relations 203

15. Chaudhuri, S., Sankaranarayanan, S., Vardi, M.Y.: Regular real analysis. In: 28th
Annual ACM/IEEE Symposium on Logic in Computer Science, LICS, pp. 509–518.
IEEE Computer Society (2013). https://doi.org/10.1109/LICS.2013.57

16. Courcelle, B.: Monadic second-order definable graph transductions: a sur-
vey. Theor. Comput. Sci. 126(1), 53–75 (1994). https://doi.org/10.1016/0304-
3975(94)90268-2

17. Courcelle, B., Engelfriet, J.: Graph Structure and Monadic Second-Order Logic
- A Language-Theoretic Approach, Encyclopedia of mathematics and its applica-
tions, vol. 138. Cambridge University Press (2012). http://www.cambridge.org/fr/
knowledge/isbn/item5758776/?site locale=fr FR

18. Dams, D., Lakhnech, Y., Steffen, M.: Iterating transducers. In: Berry, G., Comon,
H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 286–297. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-44585-4 27

19. Dave, V., Dohmen, T., Krishna, S.N., Trivedi, A.: Regular model checking with
regular relations. CoRR abs/1910.09072 (2019). http://arxiv.org/abs/1910.09072

20. Engelfriet, J., Hoogeboom, H.J.: MSO definable string transductions and two-way
finite-state transducers. ACM Trans. Comput. Log. 2(2), 216–254 (2001). https://
doi.org/10.1145/371316.371512

21. Gorman, A.B., et al.: Continuous regular functions. Log. Methods Comput. Sci.
16(1) (2020). https://doi.org/10.23638/LMCS-16(1:17)2020

22. Habermehl, P., Vojnar, T.: Regular model checking using inference of regular
languages. In: Proceedings of the 6th International Workshop on Verification of
Infinite-State Systems, INFINITY. Electronic Notes in Theoretical Computer Sci-
ence, vol. 138, pp. 21–36. Elsevier (2004). https://doi.org/10.1016/j.entcs.2005.01.
044

23. Jonsson, B., Nilsson, M.: Transitive closures of regular relations for verifying
infinite-state systems. In: Graf, S., Schwartzbach, M. (eds.) TACAS 2000. LNCS,
vol. 1785, pp. 220–235. Springer, Heidelberg (2000). https://doi.org/10.1007/3-
540-46419-0 16

24. Kesten, Y., Maler, O., Marcus, M., Pnueli, A., Shahar, E.: Symbolic model check-
ing with rich assertional languages. Theor. Comput. Sci. 256(12), 93–112 (2001).
https://doi.org/10.1016/S0304-3975(00)00103-1

25. Legay, A.: Extrapolating (omega-)regular model checking. Int. J. Softw. Tools Tech-
nol. Transf. 14(2), 119–143 (2012). https://doi.org/10.1007/s10009-011-0209-7

26. Legay, A., Wolper, P.: On (omega-)regular model checking. ACM Trans. Comput.
Log. 12(1), 2:1-2:46 (2010). https://doi.org/10.1145/1838552.1838554

27. Löding, C., Spinrath, C.: Decision problems for subclasses of rational relations over
finite and infinite words. Discret. Math. Theor. Comput. Sci. 21(3) (2019). http://
dmtcs.episciences.org/5141

28. Sakarovitch, J.: Elements of Automata Theory. Cambridge University Press, Cam-
bridge (2009). https://doi.org/10.1017/CBO9781139195218

29. Schützenberger, M.: Sur les relations rationelles entre monöıdes libres. Theor. Com-
put. Sci. 243–259 (1976)

30. Touili, T.: Regular model checking using widening techniques. Electron. Notes
Theor. Comput. Sci. 50(4), 342–356 (2001). https://doi.org/10.1016/S1571-
0661(04)00187-2

31. Wolper, P., Boigelot, B.: Verifying systems with infinite but regular state spaces.
In: Hu, A.J., Vardi, M.Y. (eds.) CAV 1998. LNCS, vol. 1427, pp. 88–97. Springer,
Heidelberg (1998). https://doi.org/10.1007/BFb0028736

https://doi.org/10.1109/LICS.2013.57
https://doi.org/10.1016/0304-3975(94)90268-2
https://doi.org/10.1016/0304-3975(94)90268-2
http://www.cambridge.org/fr/knowledge/isbn/item5758776/?site_locale=fr_FR
http://www.cambridge.org/fr/knowledge/isbn/item5758776/?site_locale=fr_FR
https://doi.org/10.1007/3-540-44585-4_27
http://arxiv.org/abs/1910.09072
https://doi.org/10.1145/371316.371512
https://doi.org/10.1145/371316.371512
https://doi.org/10.23638/LMCS-16(1:17)2020
https://doi.org/10.1016/j.entcs.2005.01.044
https://doi.org/10.1016/j.entcs.2005.01.044
https://doi.org/10.1007/3-540-46419-0_16
https://doi.org/10.1007/3-540-46419-0_16
https://doi.org/10.1016/S0304-3975(00)00103-1
https://doi.org/10.1007/s10009-011-0209-7
https://doi.org/10.1145/1838552.1838554
http://dmtcs.episciences.org/5141
http://dmtcs.episciences.org/5141
https://doi.org/10.1017/CBO9781139195218
https://doi.org/10.1016/S1571-0661(04)00187-2
https://doi.org/10.1016/S1571-0661(04)00187-2
https://doi.org/10.1007/BFb0028736

Minimum Consistent Subset Problem
for Trees

Sanjana Dey1(B), Anil Maheshwari2, and Subhas C. Nandy1

1 ACM Unit, Indian Statistical Institute, Kolkata, India
info4.sanjana@gmail.com, nandysc@isical.ac.in

2 School of Computer Science, Carleton University, Ottawa, Canada
anil@scs.carleton.ca

Abstract. In the minimum consistent subset (MCS) problem, a con-
nected simple undirected graph G = (V, E) is given in which each vertex
is colored by one of the possible colors {c1, c2, . . . , ck}; the objective is to
compute a minimum size subset C ⊆ V such that for each vertex v ∈ V ,
one of its nearest neighbors in C, with respect to the hop-distance, is of
the same color as the color of v. The decision version of the MCS problem
is NP-complete even for planar graphs. We propose a polynomial-time
algorithm for computing a minimum consistent subset of a bi-chromatic
tree.

Keywords: Consistent subset · Graphs · Trees · Optimal algorithm

1 Introduction

The consistent subset problem was first introduced by Hart [6] in the context
of reducing the size of the learning set. In pattern recognition, classification is
done using the nearest neighbor rule: given the learning set O of objects already
classified, each new object is classified into the same class as its closest object
from O. A subset O′ of the learning set O is a consistent subset if, for each
object o from O, the object o and its closest neighbor in O′ are in the same
class. Ritter [9] introduced the problem of finding consistent subsets of minimum
size. Some other important applications are in the field of speech recognition,
handwriting recognition, object recognition in vision research etc., see [8].

A geometric variant of the consistent subset problem is as follows. Let P
be a set of colored points in the plane. A consistent subset of P is a subset
S ⊆ P such that for every point p ∈ P \ S, its closest point among the points
in S has the same color as that of p. In the minimum consistent subset (MCS)
problem, the objective is to find a consistent subset of P of minimum cardinality.
In [8], it is shown that the decision version of this problem is NP-complete for
3-colored point sets in R2. In [7], NP-hardness is shown for 2-colored point sets
in R2. Recently, a sub-exponential time algorithm for the MCS problem in R2

Anil Maheshwari—Research supported by NSERC.

c© Springer Nature Switzerland AG 2021
E. Bampis and A. Pagourtzis (Eds.): FCT 2021, LNCS 12867, pp. 204–216, 2021.
https://doi.org/10.1007/978-3-030-86593-1_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86593-1_14&domain=pdf
https://doi.org/10.1007/978-3-030-86593-1_14

Minimum Consistent Subset Problem for Trees 205

is proposed in [2]. It is also shown in [2] that in O(n log n) time, one can test
whether the size of the minimum consistent subset of a bi-colored point set in
R2 is of size 2 or not. In the same paper, an O(n) time algorithm is presented
for the special case of collinear points.

We study the following graph-theoretic version of the MCS problem in this
paper:

Minimum consistent subset problem in a graph
Let G = (V,E) be a graph whose vertices are partitioned into k classes (i.e.,
colors), namely V1, V2, . . . , Vk. The objective is to choose subsets V ′

i ⊆ Vi,
i = 1, 2, . . . , k such that for each member v ∈ V , if v ∈ Vi then among its
nearest neighbors in ∪k

i=1V
′
i there is a vertex of V ′

i , and
∑k

i=1 |V ′
i | is minimum.

The distance between a pair of vertices u and v is the number of edges in the
shortest path from u to v, and is referred to as dist(u, v). The nearest neighbor
is defined with respect to this distance measure in G.

The decision version of the MCS problem is NP-Hard for general graphs
G = (V,E). The hardness reduction is from the minimum dominating set of
an undirected graph [1]. The same result also holds for planar graphs as the
dominating set problem for planar graphs is NP-Hard. To the best of our
knowledge, surprisingly, only little is known about the algorithmic complex-
ity of minimum consistent subset problem in graphs. In [5], polynomial-time
algorithms are proposed for some simple graph classes, namely (i) paths, (ii)
caterpillars, (iii) spiders and (iv) combs. A related problem is recently studied
in [3,4], where the inverse Voronoi diagram (IVD) in graphs is defined as fol-
lows. A graph G = (V,E) with positive edge weights, and a sequence of subsets
{V1, V2, . . . , Vk}, Vi ⊆ V for i = 1, 2, . . . , k, are given where each subset Vi is
connected in G, and ∪k

i=1Vi = V . The objective is to identify the existence of a
subset X = {x1, x2, . . . , xk}, where each xi ∈ Vi is such that for every element
v ∈ Vi its nearest neighbor in X is xi. Here, by distance of a pair of vertices
u, v ∈ V , we mean the shortest path distance with respect to the edge weights in
G. In [3,4], it is shown that the IVD problem for planar graphs is NP-complete.
For trees, the IVD problem can be solved in O(N + n log2 n) time [4], where
N = n +

∑k
i=1 |Vi|.

In this paper, we propose a polynomial-time algorithm for computing a MCS
of a bi-chromatic tree T = (V,E) in which each vertex is colored red or blue.
Note that this problem is different from the IVD problem in [3,4]. For example,
even if we assume that the connected components of the vertices of the same
color belong to the same subset, we may need to choose none, one or more than
one vertex from each subset to make all the vertices in T consistent.

2 Preliminaries

We use C ⊆ V to denote a consistent subset of the tree T = (V,E) of minimum
cardinality.

Observation 1. If all the vertices in T are of the same color, then C consists
of a single vertex (any vertex forms an MCS) of T . If T can be arranged as a

206 S. Dey et al.

Fig. 1. (a) Illustration of n block and � block, (b) Illustration of gates Γ (u, w), Γ (u, w′),
Γ (u, w′′), and (c) the covered tree T

−(u,w)
v = T \ (Tvu ∪ Tvw)

rooted tree with an appropriate vertex, say ρ ∈ V , as the root, and the vertices
in each alternate level of T are of a different color then C = V .

In linear time we can determine whether T satisfies Observation 1 and report
an appropriate MCS. Thus, for the rest of the paper, we assume that T doesn’t
satisfy Observation 1.

We will use the following notations to describe our algorithm. Let u −→ v
denotes the path between u and v in T , and let dist(u, v) denotes the length of
the path u −→ v in T . A path u −→ v in which all the vertices are of the same
color is referred to as a run. Let v and x be two vertices in T , and let vx be the
neighbor of v such that if we delete the edge (v, vx) from T , then T is split into
two sub-trees, one (rooted at vx) containing the vertex x, and the remaining
part contains the vertex v. The sub-tree containing v will be referred to as T−x

v .
Similarly, for a triple of vertices v, x and y, T

−(x,y)
v is obtained by deleting the

sub-trees rooted at vx and vy by removing the edges (v, vx) and (v, vy). From
now onwards, the term covered for a set of vertices implies that those vertices
are consistently covered, i.e., the vertices satisfy the property of being consistent
with some vertex in C.

Definition 1 (Blocks). A block in a tree is defined as a connected set of vertices
of the same color. We have two types of blocks, namely leaf blocks and non-leaf
blocks (see Fig. 1(a)). A leaf block is a block including at least one leaf of T , and
is denoted as � block. An � block having exactly one vertex connected with a
vertex of another color, through which this � block is connected with the rest of
the tree, is called a true � block; if an � block has more than one vertex connected
with vertices of another color, then it is called a partial � block. A non-leaf block
does not contain any leaf vertex of T , and is called an n block.

Definition 2 (Gates). A gate Γ (u,w) is defined by a tuple (u,w), u,w ∈ V ,
such that (a) u and w are of different colors, (b) there exist exactly two runs of
different colors on the path u −→ w in T , and (c) the difference in the number of
vertices in these two runs is at most 1 (see Fig. 1(b)). If the number of vertices
on the path u −→ w is odd, then the middle-most vertex v on this path is

Minimum Consistent Subset Problem for Trees 207

Fig. 2. (a) Nested sibling gate and (b) Processing of a useful sibling gate

referred to as the anchor vertex of Γ (u,w). If the number of vertices on the path
u −→ w is even, then there is no anchor vertex in that gate. However, then the
middle-most edge is referred to as the anchor edge of Γ (u,w).

Observation 2. Every bi-colored tree T of size greater than three that does not
satisfy Observation 1, has at least one gate.

Observation 3. Let the number of vertices in the path u −→ w of a gate Γ (u,w)
be odd. Let v be the anchor vertex of Γ (u,w), N(v) be the set of neighbors of v,
and for the pair of neighbors vu, vw ∈ N(v), the subtrees Tvu

and Tvw
, obtained

by deleting the edge (v, vu) and (v, vw) from T , contain u (in Tvu
) and w (in

Tvw
), respectively. If {u,w} are in C, and no other vertex at distance less than

dist(u, v) from v is in C, then all the vertices in T \ (Tvu
∪ Tvw

) are consistently
covered (see Fig. 1(c)).

Proof. Given the premise, for each vertex z ∈ T
−(u,w)
v , dist(u, z) = dist(w, z).

Since the colors of u and w are distinct, z is consistently covered by the inclusion
of {u,w} in C. ��

Definition 3 (Sibling Gates). In a rooted tree T , a gate Γ (u,w) will be
referred to as a sibling gate if the number of vertices in the path u −→ w is
odd, and the anchor v of Γ (u,w) is a predecessor of both u and w in T . We
denote this type of gate as Γsib(u, v, w).

As mentioned earlier, if {u,w} of Γsib(u, v, w) is included in C then all the
vertices of the tree T

−(u,w)
v are consistently covered.

Observation 4. Let Γsib(u, v, w) be a sibling gate in T ; vu and vw are two chil-
dren of v such that the sub-trees rooted at vu and vw contain u and w, respec-
tively. Now, if there exists a sibling gate Γsib(û, v̂, ŵ) in any of the sub-trees
rooted at vu and vw (see Fig. 2(a)), then the set of vertices consistently covered
by {u,w} is a subset of vertices consistently covered by {û, ŵ}.

Definition 4 (Useful Sibling Gates). A sibling gate Γsib(u, v, w) is said to
be a useful sibling gate if the two sub-trees of v containing the vertices u and w
respectively do not contain any other sibling gates.

208 S. Dey et al.

Assume that T does not satisfy Observation 1. Let us consider an MCS C of
a tree T . Let us consider a pair of bi-chromatic vertices {u,w} in C such that
u is red and w is blue and among all such bichromatic pairs in C they have the
minimum distance in T . Observe that this pair of vertices forms a gate Γ (u,w).
There are two cases depending on whether the number of vertices in the path
u → w is even or odd.

First, consider the case it is odd. By Observation 3, the middlemost vertex v
in the path u → w is an anchor vertex. Let Tv denote the tree T rooted at v. Now
Tv has a minimum consistent subset C such that C contains a pair of vertices
constituting a sibling gate with the root of Tv as the anchor. Now consider the
case that the number of vertices in the path u → w is even. Now we have an
anchor edge (see Definition 2). We introduce a fictitious vertex v on the anchor
edge and root the tree T at this vertex (as if the tree is ‘rooted at the anchor
edge’). In this case, Tv has a minimum consistent subset C such that C contains
a pair of vertices constituting a sibling gate with the root of Tv as the anchor.
Thus we have,

Lemma 1. Assume that T does not satisfy Observation 1. There exists a vertex
v (real or fictitious), such that if T is rooted at v, T has a minimum consistent
subset C such that C contains a pair of vertices constituting a sibling gate with v
as their anchor.

We now explain the main structure of our algorithm for the computation of
MCS for a bi-colored tree T . See Algorithm 1 for a pseudocode. If T satisfies
Observation 1, then the computation of MCS is straightforward. Otherwise, we
compute MCS of all the rooted trees at the anchor vertices of the gates as stated
in Lemma 1. Among all the rooted trees, the MCS of T will be the one that is
of the smallest size.

Next, we briefly discuss each of the steps of Algorithm 1. Step 1 can be
accomplished by rooting T at an arbitrary vertex and then checking whether
the conditions for Observation 1 are met. Step 2 requires rooting tree T at n
vertices of T and n − 1 fictitious vertices corresponding to each edge of T . In
Step 3, we need to check whether the root v of Tv is an anchor of a useful sibling
gate. Step 4 is discussed in detail in Sect. 3. In Sect. 4, we show that Algorithm 1
is correct and runs in polynomial time.

3 Computing MCS of a Tree Rooted at an Anchor

In this section, we show how to compute minimum consistent set C(Tv) for a
tree Tv rooted at an anchor vertex v. Note that v is an anchor vertex (either a
vertex of T or a fictitious vertex) corresponding to a sibling gate Γ (u, v, w) (see
Definition 3). Moreover, we can assume that Γ (u, v, w) is a useful sibling gate
(see Definition 4). This follows from Observation 4 as the two children vu and vw

of v, where the sub-trees rooted at vu and vw contain u and w, respectively, do
not contain any sibling gates.

Minimum Consistent Subset Problem for Trees 209

Algorithm 1: An MCS C of T
Input: A tree T = (V, E)
Output: An MCS C for the tree T
//STEP 1;
if T is monochromatic or T is alternating then

report MCS and return;
end
//STEP 2;
R = ∅;
for each vertex v of T do

root T at v, and let Tv be the resulting rooted tree;
R = R ∪ {Tv};

end
for each edge e of T do

Root T at a fictitious vertex v on e, let Tv be the rooted tree;
R = R ∪ {Tv};

end
//STEP 3;
for each rooted tree Tv ∈ R do

if the root v is not an anchor of a useful sibling gate then
R = R \ {Tv};

end

end
//STEP 4;
for each rooted tree Tv ∈ R do

Compute C(Tv) of Tv;
end
//STEP 5;
C = C(Tz) such that Tz ∈ R corresponds to min

Tv∈R
|C(Tv)|;

return C;

Lemma 2. If there exists a sibling gate Γsib(û, v̂, ŵ) in any of the sub-trees
rooted at vu and vw, then the set of vertices consistently covered by {u,w} is
a subset of vertices consistently covered by {û, ŵ}. In that case, the size of the
consistent set of Tv cannot be smaller than that of Tv̂, and hence there is no
point in computing C(Tv).

We first note that there may be several useful sibling gates that are anchored
at the root v of Tv. Traverse each pair of bi-colored runs incident at v in Tv.
Let Πred and Πblue be a pair of such runs, and k = min{|Πred|, |Πblue|}. Let
u ∈ Πred and w ∈ Πblue be two vertices having hop-distance k from v along the
paths Πred and Πblue. Now, every pair of vertices (ui, wi) forms a useful sibling
gate Γsib(ui, v, wi), where i = 1, 2, . . . , k, ui ∈ Πred, wi ∈ Πblue. Next we outline
the computation of MCS with respect to one of these useful sibling gates. Overall
MCS of Tv is the minimum among MCS for all these sibling gates.

210 S. Dey et al.

The MCS C(Tv) for a useful sibling gate Γsib(u, v, w) is computed using the
following equation:

C(Tv) = {u,w}
⋃

∪ui∈U Cu(T−u
ui

)
⋃

∪wi∈W Cw(T−w
wi

), (1)

where U = {u0 = u, u1, . . . , uk = vu}, and W = {w0 = w,w1, . . . , wk = vw} (see
Fig. 2(b)), and Ca(T−a

x) for a pair of vertices a, x ∈ Tv, where a and x belong to
the same block, is defined as follows.

Definition 5. Let a and x be two vertices in a block. We use Ca(T−a
x) to denote

the MCS of a subtree T−a
x , assuming that the vertex x is consistently covered by

the vertex a ∈ Ca(T−a
x) (see Fig. 3(a)). In other words, there does not exist y ∈

Ca(T−a
x) with color(y) = color(x) = color(a) such that dist(x, y) < dist(x, a).

Surely, in order to maintain the consistent covering of x, there does not exist any
vertex ζ ∈ Ca(T−a

x) of color(ζ) �= color(a) (i.e., ζ in an adjacent block z −→ z′

of the block containing x) with dist(x, ζ) < dist(a, x).

Remark 1. There may not exist any such consistent set of the tree T−a
x . This

occurs when the run of different color z −→ z′ in T−a
x closest to x satisfies

dist(x, z′) < dist(x, a). Here, in order to consistently cover the vertices on the
path z −→ z′ one needs to choose a vertex in the run {z −→ z′} in Ca(T−a

x),
which will make the vertex x inconsistent (see Fig. 3(b)).

Remark 2. There may exist a situation where the length of the run x −→ x′ (of
color(a)) is greater than the length of its adjacent run (of other color) z −→ z′

(see Fig. 3(c)). In such a case, one chooses another vertex a′ ∈ {x −→ x′}
(satisfying dist(x, a′) ≥ dist(x, a), i.e., maintaining x to cover by a) to include
in Ca(T−a

x), such that a vertex ζ ∈ {z −→ z′} may be chosen to have a gate
(a′, ζ), and the vertices in z −→ z′ be covered by including ζ ∈ Ca(T−a

x).

Lemma 3. For a useful sibling gate Γsib(u, v, w), following holds:

(a) Let z, y ∈ U , and z �= y. The computation of the consistent subset Cu(T−u
z)

does not affect the computation of Cu(T−u
y), and vice-versa.

(b) Similarly, if z ∈ U and y ∈ W , then the computation of the consistent subset
Cu(T−u

z) does not affect the computation of Cw(T−w
y), and vice-versa.

Fig. 3. Demonstration of Ca(T −a
x): (a) dist(x, z) > dist(a, x), (b) dist(x, z′) <

dist(x, a), and (c) dist(x, x′) >> dist(z, z′); we choose another vertex a′ ∈ x −→ x′

(satisfying dist(x, a′) ≥ dist(x, a)) to have a next feasible gate Γ (a, ζ), ζ ∈ z −→ z′.

Minimum Consistent Subset Problem for Trees 211

3.1 Computation of C(Tz)

Recall Eq. 1, and consider the processing of the uncovered sub-trees Tz rooted
at every vertex z on the path v −→ u of the sibling gate Γsib(u, v, w). The
processing of the uncovered sub-trees rooted at the vertices on the path v −→ w
is analogous. While processing the vertex z on the path v −→ u, we will consider
Tz = T ′

z ∪ T ′′
z , where T ′

z = T−u
z , and T ′′

z = the path z −→ u. Note that the set
C(Tv) contains u, and z is covered by the vertex u (see Fig. 4(a)). We know that
Tz does not contain any sibling gate, as Γsib(u, v, w) is a useful sibling gate.
However, it may have ordinary gates (see Definition 2). If Observation 1 holds
for T ′

z, then C(Tz) is easy to compute. Otherwise, the following characterizations
are required to formulate the algorithm for computing C(Tz).

Fig. 4. (a) Computation of C(Tz): Tz = T ′
z ∪ T ′′

z , and demonstration of the graph
GΠ for the path Π = u −→ z −→ τ for processing the tree T −u

z – (b) where GΠ is
connected, and (c) where GΠ is disconnected as the red run z −→ z′ is much longer
than the next blue run so that there is no edge from u (Color figure online)

Lemma 4. C(Tz) contains at least one vertex that belongs to a leaf block of Tz.

Lemma 5. The set C(Tz) contains a subset of vertices C′ whose elements can be
arranged in increasing order of their names, say {χ1, χ2, . . . , χm}, such that (i)
χm is in a leaf block of Tz, (ii) at least one vertex from each block on the path
from z to χm is present in C′, and (iii) χi is the predecessor (not necessarily
immediate predecessor) of χi+1 in Tz for each i = 1, 2, . . . ,m − 1.

Proof. Part (i) follows from Lemma 4. Part (ii) follows trivially since if there
exists a block on the path from z to χm which has no representative in C′, then
the nearest neighbor of each vertex (of color, say red) in that block is of color
blue, and hence it becomes inconsistent.

We prove part (iii) by contradiction. Assume that, χ ∈ C(Tz) is the repre-
sentative of a leaf block. Consider a sequence of vertices Ψ = {ψ1, ψ2, . . . , ψm′ =
χ} ∈ C′ such that for each pair (ψj , ψj+1) either they are in the same block,
or they are in the adjacent block, j = 1, 2, . . . ,m′ − 1. Let (ψi, ψi+1) be
the first pair observed in the sequence Ψ such that ψi is not the predeces-
sor of ψi+1. Here, if ψi lies in a partial leaf block, the path from z to ψi

212 S. Dey et al.

Fig. 5. Illustration of part (iii) of Lemma 5

satisfies the lemma. If ψi lies in a non-leaf block, say B, two cases may hap-
pen: (a) color(ψi+1) = color(ψi), i.e., ψi, ψi+1 ∈ B (see Fig. 5(a)), and (b)
color(ψi+1) �= color(ψi) (ψi ∈ B and ψi+1 ∈ B′, where B and B′ are adja-
cent blocks) (see Fig. 5(b)). In either case, as B is a non-leaf block, there exists
another block B′′ adjacent to B which can be reached from B using a gate
Γ (ψ′, φ′) (where dist(z, ψi) < dist(z, ψ′)) and ψ′ is reachable from ψi using
the successor links in T . So instead of considering the path Ψ , we will consider
the path Ψ ′ = {ψ1, . . . , ψi, . . . ψ

′ . . . φ′ . . .} (see the thick edges in Fig. 5(a,b)).
Proceeding in this way, we will reach a leaf block. Thus, the result follows. ��

As demonstrated in Fig. 3(c), there may exist multiple vertices of a block in
C(Tz). Moreover, from the definition of the gate (of odd length), it is also clear
that the representative of all the blocks may not have representatives in C(Tz).
Thus, we consider each leaf τ of Tz and compute the size of the MCS assuming
that the � block λ containing τ has a representative in C(Tz).

Consider the path Π = u −→ z −→ τ , where τ is a leaf of Tz; τ belongs
to the leaf block λ. We formulate the problem as a shortest path problem in
a directed weighted graph GΠ = (X,E), called the consistency graph. Here X
contains the vertices on the path Π and two vertices {u, t}, where u defines the
sibling gate Γsib(u, v, w) under process, and t is a dummy sink vertex, and z is
a vertex on the path u −→ v. We assume that u ∈ C(Tz) and define the edge set
E = E0

z ∪ E1
z ∪ E2

z ∪ E3
z , as follows (see Fig. 4(b,c)).

E0
z : It consists of consistency edges (colored orange) from u to the next run (of

color different from that of u) in Π. We may have at most three such edges
in E0

z depending on the size of that run. See Figs. 4(b) and 4(c) for two
different situations depending on the length of the run u −→ z −→ z′.

E1
z : It consists of consistency edges (colored orange) between every pair of adja-

cent runs in Π.
E2

z : It consists of the edges (colored pink) of a complete graph among the vertices
of each run on the path Π.

Minimum Consistent Subset Problem for Trees 213

E3
z : The vertex t is connected with every vertex of the leaf block λ (these edges

are not shown in Fig. 4).

For an edge
−→
ab ∈ E1

z , if the number of vertices on the path a −→ b is odd, then
the subtree T

−(a,b)
c rooted at the anchor c of gate(a, b) are consistently covered.

Thus, the weight of the edge (a, b) is

w(a, b) =
ca∑

x=a

|Ca(T−a
x)| +

b′
∑

x=cb

|Cc(T−b
z)|, (2)

where b′ is the neighbor of b on the path a −→ b, ca and cb are the neighbors of
c along the path a −→ c and c −→ b respectively1.

For an edge
−→
ab ∈ E1

z , if the number of vertices on the path a −→ b is even,
then

w(a, b) =
ca∑

x=a

|Ca(T−a
x)| +

b′
∑

x=cb

|Cb(T−b
x)|, (3)

where ca and cb are the pair of middle-most vertices along the path segment
a −→ b. To avoid the confusion, we mention that T−a

a = Ta.
The weight computation of the edges (u, b) ∈ E0

z are done with a minor
change in the first sum in Eqs. 2 and 3; here the range of the first sum is from
vertex z to ca instead of u to ca.

For an edge (a, b) ∈ E2
z ,

w(a, b) =
ca∑

x=a

|Ca(T−a
x)| +

b′
∑

x=cb

|Cb(T−b
x)|. (4)

Here, if the number of vertices on the path a −→ b is odd then we assume ca = c
and cb is the immediate successor of c along the path c −→ b; and if it is even
then ca and cb are as defined in Eq. 3. Each edge (a, t) ∈ E3

z will have weight
w(a, t) = 0.

The graph GΠ may not be connected as the vertex u may not be connected
to a vertex b ∈ X in the next run on the path Π. This situation happens when
the path u −→ c is much longer than the path c −→ b. In such a case the path Π
(or the corresponding leaf τ) contributes ∞ in C(Tz). Thus, it remains to explain
the computation of Ca(T−a

x), where a and x are in the same block on Π.
We use the bottom-up dynamic programming to compute C(Tx) for all ver-

tices x ∈ Π. Let M(x) denote the members in the run containing vertex x, and
m(x) = |M(x)|. These vertices are named as M(x) = {b1 = x, b2, . . . , bm(x)} in
order. The vertex x is attached with an array Ax of size M(x). For each ele-
ment bi ∈ M(x), Ax(bi) contains Cbi(T

−bi
x). While processing a vertex x ∈ Tz,

we assume that the Ax(bi) parameters of all the vertices bi ∈ M(x) in the run
containing x are available; otherwise we recurse. We initialize Ax(bi) = ∞ for all
1 The subtree rooted at b will be considered when another edge from b to a successor

vertex will be considered.

214 S. Dey et al.

bi ∈ M(x). Next, we consider every leaf vertex θ of the tree T−bi
x , and construct

the graph GΦ for the path Φ = β −→ bi −→ θ, where β is the m(x)-th vertex
in the run containing bi. The edges in the graph GΦ are similar to those in GΠ

constructed while processing the vertex z on the path Π = u −→ z as described
earlier2. If for every vertex y on the path Φ the Ay(.) values are available, then
the edge costs of those edges can be computed using Eqs. 2 and 3 as described for
z. Otherwise, this will lead to a further recursive call. Finally, Ax(bi) is updated
by comparing the existing value of Ax(bi) and the shortest path cost of GΦ.

4 Analysis of Algorithm

Theorem 1. Algorithm1 correctly computes a minimum consistent subset of a
bi-colored tree T on n vertices in O(n4) time.

Proof. From the property of sibling gates, it follows that the presence of {u,w}
in C(Tv) of any sibling gate, say Γsib(u, v, w) anchored at v, will consistently
cover all the vertices of T \ (Tvu

∪Tvw
). We have chosen the one of minimum size

among all possible useful sibling gates anchored at v. Now, it remains to prove
the correctness and minimality of computing C(Tv).

Again {u,w} consistently covers the vertices on the paths v −→ u and v −→
w. We added the MCS’ Cu(T−u

x) for each x ∈ {v −→ u} and Cw(T−w
y) for each

y ∈ {v −→ w}. The computation of consistent subsets for the sub-trees rooted
at the vertices on the path v −→ u and v −→ w, under the condition that u,w ∈
C(Tv), can be done independently (see Lemma 3). Now, we prove Cu(T−(u)

x) is
correctly computed. By Lemmas 4 and 5, there is a path Π from vertex x to a leaf
of the tree T−u

x such that the vertices on a path of the consistency graph GΠ are
in the consistent subset Cu(T−u

x), and {u}∪Cu(T−u
x) covers all the vertices on Π.

The recursive argument of computing the MCS for the uncovered sub-trees of Tx

justifies the correctness of computing the C(Tv). The minimality is ensured from
the fact that for each leaf τ of Tx, we considered the path Π = u −→ x −→ τ ,
and considered the shortest path of the graph GΠ , and have chosen the result
for a leaf that produces the minimum cost.

Now, we will analyze the time complexity. Step 1 of Algorithm 1 can be
implemented in O(n) time. Step 2 requires O(n2) time as we are constructing
O(n) rooted trees. Step 3, for each tree Tv, can be implemented in O(n) time.
Now we analyze Step 4.

While processing a vertex z on the path u −→ v of a sibling gate Γsib(u, v, w),
assuming that the array Ax(.) of every vertex on x ∈ Tv are available, the time
of processing a path Π = u −→ z −→ τ , where τ is a leaf of T−u

z , needs
computation of edge costs of GΠ and the computation of shortest path in GΠ .
In the graph GΠ , the vertex u and each vertex of the path z −→ τ has at most
three orange edges to its successor run in Π. Thus the total number of orange
edges in GΠ is O(mΠ), where mΠ is the length of Π. Moreover, the span of an
edge (ai, bj) covers the span of another edge (ai+1, bj−1) (if it exists). Thus, the

2 for vertex u defining the sibling gate Γsib(u, v, w).

Minimum Consistent Subset Problem for Trees 215

total time needed for computation of edge costs of all these pink edges in GΠ is
O(mΠ). However, we may have O(m2

Π) pink edges in GΠ . Processing each leaf
vertex τ in T−u

z incurs O(m2
Π) time. The shortest path computation of a directed

graph needs time proportional to its number of edges. As the number of leaves
of the tree Tz is O(nz) in the worst case, where nz is the number of vertices in
Tz, the total time of processing the vertex z is O(n3

z). Since the trees for the
vertices along the path u −→ z are disjoint, the time complexity of processing
these vertices are additive. Again, as the vertices in the subtree rooted at the
anchor of useful sibling gates in T are also disjoint, the total time for processing
all the sibling gates is O(n3) in the worst case, provided the Ax(.) values of every
vertex on x ∈ T are available.

Now, we consider the computation of Ax(.) values of every vertex x ∈ Tv.
We consider the vertices in each level of the rooted tree Tv separately, and
compute their Ax(.) values. While processing the vertices in its predecessor level,
we will use those without recomputing. Similar to the processing of the vertex
z ∈ {u −→ v} discussed earlier, the processing of every vertex x ∈ Tz for the
computation of their Ax(.) values requires O(n3

x) time, where nx is the number
of vertices in Tx. The sub-trees rooted at the vertices in a particular level are
disjoint, and the total computation time for the vertices in a level is additive.
Thus, the overall time complexity of the algorithm is O(n3h), where h is the
maximum number of levels among the sub-trees rooted at the anchor of all
possible useful sibling gates in T . Though we will consider the anchor of every
gate as a sibling gate and do the above computation, this will not increase the
time complexity since the result of a sibling gate once computed can be used
later when it is needed. ��

5 Conclusion

In this paper, we present a polynomial-time algorithm for computing a minimum
consistent subset of bi-chromatic trees. The problem remains unsolved for trees
with more than two colors and outerplanar graphs.

References

1. Banerjee, S., Bhore, S., Chitnis, R.: Algorithms and hardness results for nearest
neighbor problems in bicolored point sets. In: Proceedings LATIN 2018: Theoretical
Informatics, pp. 80–93 (2018)

2. Biniaz, A., et al.: On the minimum consistent subset problem. To appear in Algo-
rithmica, Preliminary version in Proceedings of the WADS 2019, pp. 155–167 (2019)

3. Bonnet, É., Cabello, S., Mohar, B., Pérez-Rosés, H.: The inverse Voronoi problem
in graphs I: hardness. Algorithmica 82(10), 3018–3040 (2020)

4. Bonnet, É., Cabello, S., Mohar, B., Pérez-Rosés, H.: The inverse Voronoi problem
in graphs II: trees. Algorithmica 83(5), 1165–1200 (2021)

5. Dey, S., Maheshwari, A., Nandy, S.C.: Minimum consistent subset of simple graph
classes. In: Proceedings of the CALDAM 2021, pp. 471–484 (2021)

216 S. Dey et al.

6. Hart, P.: The condensed nearest neighbor rule (corresp.). IEEE Trans. Inf. Theory,
14(3), 515–516 (1968)

7. Khodamoradi, K., Krishnamurti, R., Roy, B.: Consistent subset problem with two
labels. In: Proceedings of the CALDAM 2018, pp. 131–142 (2018)

8. Wilfong, G.: Nearest neighbor problems. In: Proceedings of the SCG 1991, pp. 224–
233 (1991)

9. Ritter, G.L., Woodruff, H.B., Lowry, S.R., Isenhour, T.L.: An algorithm for a selec-
tive nearest neighbor decision rule (corresp.). IEEE Trans. Inform. Theor. 21(6),
665–669 (1975)

Parameterized Complexity of Finding
Subgraphs with Hereditary Properties

on Hereditary Graph Classes

David Eppstein1, Siddharth Gupta2, and Elham Havvaei1(B)

1 Department of Computer Science, University of California Irvine, Irvine, USA
{eppstein,ehavvaei}@uci.edu

2 Department of Computer Science, Ben-Gurion University of the Negev,
Be’er Sheva, Israel

siddhart@post.bgu.ac.il

Abstract. We investigate the parameterized complexity of finding sub-
graphs with hereditary properties on graphs belonging to a hereditary
graph class. Given a graph G, a non-trivial hereditary property Π and an
integer parameter k, the general problem P (G, Π, k) asks whether there
exists k vertices of G that induce a subgraph satisfying property Π. This
problem, P (G, Π, k) has been proved to be NP-complete by Lewis and
Yannakakis. The parameterized complexity of this problem is shown to
be W[1]-complete by Khot and Raman, if Π includes all trivial graphs
(graphs with no edges) but not all complete graphs and vice versa; and
is fixed-parameter tractable, otherwise. As the problem is W[1]-complete
on general graphs when Π includes all trivial graphs but not all complete
graphs and vice versa, it is natural to further investigate the problem on
restricted graph classes.

Motivated by this line of research, we study the problem on graphs
which also belong to a hereditary graph class and establish a framework
which settles the parameterized complexity of the problem for various
hereditary graph classes. In particular, we show that:

– P (G, Π, k) is solvable in polynomial time when the graph G is co-
bipartite and Π is the property of being planar, bipartite or triangle-
free (or vice-versa).

– P (G, Π, k) is fixed-parameter tractable when the graph G is planar,
bipartite or triangle-free and Π is the property of being planar, bipar-
tite or triangle-free, or graph G is co-bipartite and Π is the property
of being co-bipartite.

– P (G, Π, k) is W[1]-complete when the graph G is C4-free, K1,4-free
or a unit disk graph and Π is the property of being either planar or
bipartite.

Keywords: Hereditary properties · Ramsey’s theorem ·
Fixed-parameter tractable · W-hardness

1 Introduction

In this paper, we study the parameterized complexity of finding k-vertex induced
subgraphs in a given hereditary class of graphs, within larger graphs belonging to
c© Springer Nature Switzerland AG 2021
E. Bampis and A. Pagourtzis (Eds.): FCT 2021, LNCS 12867, pp. 217–229, 2021.
https://doi.org/10.1007/978-3-030-86593-1_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86593-1_15&domain=pdf
https://doi.org/10.1007/978-3-030-86593-1_15

218 D. Eppstein et al.

a different hereditary class of graphs. A prototypical instance of the induced sub-
graph problem is the k-clique problem, which asks whether a given graph G has
a clique of size k. Although k-clique is W[1]-complete for general graphs [15], and
NP-complete even when the input graph is constrained to be a multiple-interval
graph, [6], it is fixed-parameter tractable1 in this special case [20]. This example,
of a W[1]-complete problem for general graphs which becomes fixed-parameter
tractable on constrained inputs, motivates us to seek additional examples of this
phenomenon, and more broadly to attempt a classification of induced subgraph
problems which can determine in many cases whether a constrained induced
subgraph problem is tractable or remains hard. We denote by FPT the class of
all fixed-parameter tractable problems.

We formalize a graph property as a set Π of the graphs that have the prop-
erty. A property is nontrivial if it neither is empty nor contains all the graphs,
and more strongly it is interesting if infinitely many graphs have the property
and infinitely many graphs do not have the property. A nontrivial graph prop-
erty Π is hereditary if it is closed under taking induced subgraphs. That is, if
Π is hereditary and a graph G belongs to Π, then every induced subgraph of G
also belongs to Π. Given a hereditary property Π, let Π be the complementary
property, the set of graphs which do not belong to Π. The forbidden set FΠ

of Π is the set of graphs that are minimal for Π: they belong to Π, but all of
their proper induced subgraphs belong to Π. For a hereditary property Π, a
graph G belongs to Π if and only if G has no induced subgraph in FΠ . Khot
and Raman [26] studied the parameterized complexity of the following unified
formulation of the induced-subgraph problem, without constraints on the input
graph: Given a graph G, an interesting hereditary property Π and a positive
integer k, the problem P (G,Π, k) asks whether there exists an induced sub-
graph of G of size k that belongs to Π. They proved a dichotomy theorem for
this problem: If Π includes all trivial graphs (graphs with no edges) but not all
complete graphs, or vice-versa, then the problem is W[1]-complete. However, in
all remaining cases, the problem is fixed-parameter tractable.

Our work studies the parameterized complexity of the problem P (G,Π, k),
in cases for which it is W[1]-complete for general graphs, under the constraint
that the input graph G belongs to a hereditary graph class ΠG. (Note that ΠG

should be a different class than Π, for otherwise the problem is trivial: just return
any k-vertex induced subgraph of the input.) Given a graph G, the interesting
hereditary properties ΠG and Π, and an integer k, we denote our problem by
P (G,ΠG,Π, k). The main tool that we use for finding efficient algorithms for
P (G,ΠG,Π, k) is Ramsey’s theorem, which allows us to prove the existence of
either large cliques or large independent sets in arbitrary graphs, allowing some
combinations of input graph size and parameter to be answered immediately
without performing a search. For the cases where we find hardness results, we
do so by reductions from P (G,ΠG, IS, k) to P (G,ΠG,Π, k), where IS is the
property of being an independent set. We believe our framework has interest
in its own right, as a way to settle a wide class of induced-subgraph properties

1 For basic notions in parameterized complexity, see Sect. 2.

Parameterized Complexity of Finding Subgraphs with Hereditary Properties 219

while avoiding the need to develop many tedious hardness proofs for individual
problems.

1.1 Our Contributions

We partition interesting hereditary properties into four classes named AA, AS,
SA, and SS as follows. A hereditary property Π belongs to:

– AA, if it includes all complete graphs and all independent sets.
– AS, if it includes all complete graphs but excludes some independent sets.
– SA, if it excludes some complete graphs but includes all independent sets.
– SS, if it excludes some complete graphs as well as some independent sets.

By Ramsey’s theorem, an interesting hereditary property cannot belong to
SS. The interesting cases for the problem P (G,ΠG,Π, k) with respect to Π are
either Π ∈ SA or Π ∈ AS. In the other two cases, when Π ∈ AA or Π ∈ SS the
problem P (G,ΠG,Π, k) is known to be fixed-parameter tractable regardless of
ΠG [26]. We prove the following results related to the problem P (G,ΠG,Π, k),
for these interesting cases:

– If ΠG ∈ AS and Π ∈ SA or vice versa, then the problem P (G,ΠG,Π, k) is
solvable in polynomial time (Theorem 1). Although the exponent of the poly-
nomial depends in general on Π, some classes ΠG for which subgraph iso-
morphism is in FPT also have polynomial-time algorithms for P (G,ΠG,Π, k)
whose exponent is fixed independently of Π (Theorem 2). The key insight
for these problems is that these assumptions cause ΠG ∩ Π to be a finite set,
limiting the value of k and making it possible to perform a brute-force search
for an induced subgraph while remaining within polynomial time.
A class of problems of this form that have been extensively studied involve
finding cliques in sparse graphs or sparse classes such as planar graphs; beyond
being polynomial for any fixed hereditary sparse AS or class of graphs, it is
fixed-parameter tractable for general graphs when parameterized by degen-
eracy, a parameter describing the sparsity of the given graph [19]. Another
example problem of this type that is covered by this result is finding planar
induced subgraphs of co-bipartite graphs; here, Π is the property of being
planar, in SA, and ΠG is the property of being co-bipartite, in AS. Simi-
larly, this result covers finding a k-vertex bipartite or triangle-free induced
subgraph of a co-bipartite graph, or finding a k-vertex co-bipartite induced
subgraph of a planar, bipartite, or triangle-free graph.

– If both ΠG and Π belong either to AS or both belong to SA, then the prob-
lem P (G,ΠG,Π, k) is in FPT (Theorem 3). The insight that leads to this
result is that large-enough graphs in ΠG necessarily contain k-vertex cliques
(for properties in AS) or independent sets (for properties in SA), which also
belong to Π. Therefore, the only instances for which a more complicated
search is needed are those for which k is large enough relative to G that the
existence of a k-vertex clique or independent set cannot be guaranteed. For
that range of the parameter k, the search complexity is in FPT.

220 D. Eppstein et al.

Problems of this type that have been studied previously include finding inde-
pendent sets in sparse graph families, as well as finding planar induced sub-
graphs of sparse classes of graphs [4]. Finding a k-vertex graph that belongs to
one of the four classes of forests, planar graphs, bipartite graphs, or triangle-
free graphs, as an induced subgraph of a graph G that belongs to another of
these three classes, belongs to the problems of this type.

– If ΠG ∈ SS, then the problem P (G,ΠG,Π, k) is solvable in polynomial time
(Theorem 4). This case is trivial: there can be only finitely many graphs in
ΠG and we can precompute the answers to each one.

– In the remaining cases, ΠG ∈ AA, while Π belongs to AS or to SA. These cases
include both problems known to be polynomial, such as finding independent
sets in various classes of perfect graphs, problems known to be fixed-parameter
tractable, including several other cases of independent sets [13], and problems
known to be hard for parameterized computation, such as finding independent
sets in unit disk graphs [28]. Therefore, we cannot expect definitive results
that apply to all cases of this form, as we obtained in the previous cases.
Instead, we provide partial results suggesting that in many natural cases the
complexity of P (G,ΠG,Π, k) is controlled by the complexity of the simpler
problem of finding independent sets:

• If ΠG is closed under duplication of vertices (strong products with com-
plete graphs), and Π contains the graphs n · Kχ(Π) (disjoint unions of
complete graphs with the maximum chromatic number for Π), then
P (G,ΠG,Π, k) is as hard as P (G,ΠG, IS, k) (Theorem 5).
Families ΠG that meet these conditions, for which finding independent
sets is W[1]-complete, include the property of being a unit disk graph, the
property of being C4-free, and the property of being K1,4-free. Families
Π that meet these conditions include the property of being either pla-
nar or bipartite. Therefore, P (G,ΠG,Π, k) is also W[1]-complete in these
families.

• If ΠG ∈ AA and is closed under joins with disjoint unions of cliques,
and if Π contains all joins of an independent set with a disjoint union of
cliques that have size at most ω(Π) − 1, then P (G,ΠG,Π, k) is as hard
as P (G,ΠG, IS, k) (Theorem 6).

1.2 Other Related Work

Before the investigation of the parameterized complexity of P (G,Π, k), Lewis
and Yannakakis had studied the dual of this problem, the Node Deletion

problem, for interesting hereditary properties, which is defined as follows: Given
a graph G and an interesting hereditary property Π, find the minimum number
of nodes to delete from G such that the resulting graph belongs to Π. They
proved that the Node Deletion problem is NP-complete [27]. Cai [7] studied
the parameterized version of Node Deletion and proved that the problem is
fixed-parameter tractable, parameterized by the number of deleted vertices, for
an interesting hereditary property with a finite forbidden set.

Parameterized Complexity of Finding Subgraphs with Hereditary Properties 221

Related to our line of work on the parameterized complexity of hereditary
properties, finding an independent set with the maximum cardinality (MIS) on
a general graph, has been proved to be NP-hard even for planar graphs of degree
at most three [21], unit disk graphs [11], and C4-free graphs [1]. Fellows et al.
proved that finding a k-Independent Set is W[1]-hard for 2-interval graphs while
its complementary problem, k-clique, as mentioned before is fixed-parameter
tractable for multiple-interval graphs [20].

2 Preliminaries

Throughout the paper, we consider finite undirected graphs. Given a graph G,
we denote its vertex set and edge set by V (G) and E(G), respectively. For a
vertex v ∈ V (G), we denote the set of all adjacent vertices of v in G by NG(v),
i.e. NG(v) = {u ∈ V (G) | {u, v} ∈ E(G)}. The degree of a vertex v ∈ V (G)
in G is denoted by degG(v). Given a vertex set S ⊆ V (G), G[S] represents
the subgraph of G induced by S. The maximum clique size of G is denoted by
ω(G). The maximum clique size of a graph property Π, denoted by ω(Π), is the
maximum clique size of any graph G ∈ Π. The chromatic number, χ(G), of G
is the minimum number of colors needed to color the vertices such that no two
adjacent vertices get the same color. The chromatic number, χ(Π), of a graph
property Π is the maximum chromatic number of any graph G ∈ Π.

Let Π be a hereditary graph property. If Π ∈ AS or Π ∈ SS, then we
denote the size of the smallest independent set that does not belong to Π by
iΠ . Similarly, if Π ∈ SA or Π ∈ SS, then we denote the number of vertices
in the smallest clique that does not belong to Π by cΠ . Observe that, cΠ =
ω(Π)+1. We denote the property of being an independent set (the family of all
all independent sets) as IS.

The use of parameterized complexity has been growing remarkably, in recent
decades. What has emerged is a very extensive collection of techniques in diverse
areas on numerous parameters. A problem L is a parameterized problem if each
problem instance of L is associated with a parameter k. For simplicity, we rep-
resent an instance of a parameterized problem L as a pair (I, k) where k is the
parameter associated with input I. Formally, we say that L is fixed-parameter
tractable if any instance (I, k) of L is solvable in time f(k) · |I|O(1), where |I|
is the number of bits required to specify input I and f is a computable func-
tion of k. We remark that this framework also provides methods to show that
a parameterized problem is unlikely to be fixed-parameter tractable. The main
technique is the one of parameterized reductions analogous to those employed in
classical complexity, with the concept of W[1]-hardness replacing NP-hardness.
For problems whose solution is a set (for instance of vertices or edges), the size
of this set is a natural parameter for the study of the parameterized complexity
of the problem. Various problems such as k-vertex cover [5,8,9], k-directed feed-
back vertex set [10] have been studied under this definition of natural parameter.
There are numerous examples of other studies not solely parameterized by the
size of the solution [2,18,22,32]. In this paper, we study our problems under their

222 D. Eppstein et al.

natural parameter, the number of vertices of the subgraph we are seeking. For
more information on parameterized complexity, we refer the reader to [12,16].

3 Tractability Results

In this section, we identify pairs of hereditary properties ΠG and Π for which the
problem P (G,ΠG,Π, k) is either in P or FPT. Our proofs use Ramsey numbers
which we begin by defining. For any positive integers r and s, there exists a
minimum positive integer R(r, s) such that any graph on at least R(r, s) vertices
contains either a clique of size r or an independent set of size s. It is well known
that R(r, s) ≤ (

r+s−2
r−1

)
[23]. It will also be convenient in our analysis to have

a notation for the time to test whether a given k-vertex graph (typically, a
subgraph of our given graph G) has property Π; we let tΠ(k) denote this time
complexity.

Theorem 1. If ΠG ∈ AS and Π ∈ SA or vice versa, then the problem
P (G,ΠG,Π, k) is solvable in polynomial time.

Proof. We give a proof for the case when ΠG ∈ AS and Π ∈ SA. The proof for the
other case is symmetric under reversal of the roles of cliques and independent
sets. Recall that every graph on R(cΠ , iΠG

) vertices contains either a clique
of size cΠ , too large to have property Π, or it contains an independent set
of size iΠG

, too large to have property ΠG. Therefore, when k ≥ R(cΠ , iΠG
),

it is impossible for a k-vertex induced subgraph of a graph G in ΠG to also
have property Π, because such a subgraph would either have a large clique
(contradicting the membership of the subgraph in Π) or a large independent
set (contradicting the membership of G in ΠG). Therefore, for such large values
of k, an algorithm for P (G,ΠG,Π, k) can simply answer No without doing any
searching.

When k < R(cΠ , iΠG
), then we can use a brute force search to test if there

exists a k-vertex induced subgraph having property Π. Specifically, we enumer-
ate all k-vertex subsets of the vertices of G, construct the induced subgraph for
each subset, and test whether any of these induced subgraphs belongs to Π.
Given a representation of G for which we can test adjacency in constant time,
the time to construct each subgraph is O(k2), so the total time taken by this
search is (

n

k

)
(
O(k2) + tΠ(k)

) ≤ nr
(
O(r2) + tΠ(r)

)
,

where r = R(cΠ , iΠG
) − 1. As the right hand side of this time bound is a poly-

nomial of n without any dependence on k, this is a polynomial time algorithm.
Thus, the problem P (G,ΠG,Π, k) is solvable in polynomial time. ��

Although polynomial, the time bound of Theorem 1 has an exponent r that
depends on Π and ΠG, and may be large. An alternative approach, which we
outline next, may lead to better algorithms for properties ΠG for which the
induced subgraph isomorphism problem is in FPT, as it is for instance for planar
graphs [17] or more generally for nowhere-dense families of graphs [30].

Parameterized Complexity of Finding Subgraphs with Hereditary Properties 223

Theorem 2. If ΠG ∈ AS and Π ∈ SA or vice versa, and induced subgraph iso-
morphism is in FPT in ΠG with time tsgi(n, k) to find k-vertex induced subgraphs
of n-vertex graphs, then the problem P (G,ΠG,Π, k) is solvable in polynomial
time O(tsgi(n, r)), for the same constant r (depending on Π and ΠG but not on
k or G) as in Theorem 1.

Proof. If k > r, we answer No immediately as in Theorem 1. Otherwise, we
generate all k-vertex graphs, test each of them for having property Π, and if
so apply the subgraph isomorphism algorithm for graphs with property ΠG to
G and the generated graph. There are 2O(r2) graphs to generate, testing for
property Π takes time tΠ(r) for each one, and testing for being an induced
subgraph of G takes time tsgi(n, r) for each one, so the time is as stated. ��

In particular, these problems can be solved in linear time for planar graphs.

Theorem 3. If both ΠG and Π belong to AS, or if both belong to SA, then the
problem P (G,ΠG,Π, k) is in FPT.

Proof. We give a proof for the case when both ΠG and Π belong to AS.
The proof for the other case is again symmetric under reversal of the roles of
cliques and independent sets. For a graph G ∈ ΠG that is large enough that
|V (G)| ≥ R(k, iΠG

), it must be the case that G contains a clique C of size k, for
it cannot contain an independent set of size iΠG

without violating the assump-
tion that it belongs to ΠG. Because Π is assumed to be in AS, it contains all
cliques, so this k-vertex clique belongs to Π. Therefore, for graphs with this
many vertices, it is safe to answer Yes. There is a small subtlety here, in that
we do not know an efficient method to calculate R(k, iΠG

), and an inefficient
method would unnecessarily increase the dependence of our time bounds on the
parameter k. However, we can use the inequality

R(k, iΠG
) ≤

(
k + iΠG

− 2
k − 1

)

to get a bound on this number that is easier to calculate. Our algorithm can
simply test whether |V | ≥ (k+iΠG

−2

k−1

)
, and if so we return Yes without doing any

searching.
If |V (G)| <

(k+iΠG
−2

k−1

)
, then constructing and checking all induced subgraphs

of G of size k to detect whether there exists such a subgraph belonging to Π
takes time (

k + iΠG
− 2

k − 1

)k (
O(k2) + tΠ(k)

)
,

a time complexity that is bounded by a function of k but independent of n. As
the times for both cases are of the appropriate form, the problem P (G,ΠG,Π, k)
is in FPT. ��

The following corollaries can be directly obtained from Theorem 1 and The-
orem 3.

224 D. Eppstein et al.

Table 1. Summary of Theorems 1, 3 and 4.

Π ∈ SA Π ∈ AS

ΠG ∈ AS If k < R(cΠ , iΠG) check all
induced subgraphs of size k,
otherwise return No

If |V (G)| <
(k+iΠG

−2

k−1

)
check all

induced subgraphs of size k,
otherwise return Yes

ΠG ∈ SA If |V (G)| <
(k+cΠG

−2

k−1

)
check all

induced subgraphs of size k,
otherwise return Yes

If k < R(cΠG , iΠ) check all
induced subgraphs of size k,
otherwise return No

ΠG ∈ SS |V (G)| < R(cΠG , iΠG), precompute all possible inputs

Corollary 1. If ΠG is the property of being co-bipartite and Π is the property of
being a forest, planar, bipartite or triangle-free (or vice versa), then the problem
P (G,ΠG,Π, k) is solvable in polynomial time.

Corollary 2. If ΠG and Π are the properties of being planar, bipartite or
triangle-free, then the problem P (G,ΠG,Π, k) is fixed-parameter tractable.

For completeness, we state the following (trivial) theorem:

Theorem 4. If ΠG ∈ SS, then the problem P (G,ΠG,Π, k) is solvable in poly-
nomial time.

Proof. We have |V (G)| < R(cΠG
, iΠG

), because otherwise G has either a clique of
size cΠG

or a trivial graph of size iΠG
, a contradiction. Because V (G) is bounded,

there are only finitely many valid inputs to the problem P (G,ΠG,Π, k) and we
can precompute the solutions to each one. ��

Table 1 briefly summarizes the results of Theorems 1, 3 and 4.

4 Hardness from Strong Products

In this section, we prove some hardness results for the problem P (G,ΠG,Π, k),
when ΠG ∈ AA and Π ∈ SA.

4.1 Hardness from Strong Products with Cliques

To formulate the first of these results in full generality, we need some definitions.
The strong product G � H is defined as a graph whose vertex set V (G) × V (H)
consists of the ordered pairs of a vertex in G and a vertex in H, with two of these
ordered pairs (u, v) and (u′, v′) adjacent if u and u′ are adjacent or equal, and v
and v′ are adjacent or equal. In particular, the strong product with a complete
graph, G�Ki, can be thought of as making i copies of each vertex in G, with two
copies of the same vertex always adjacent, and with adjacency between copies
of different vertices remaining the same as in G. We use the notation n · Ki to
denote the disjoint union of n copies of an i-vertex complete graph; this is the
strong product of an n-vertex independent set with an i-vertex clique.

Parameterized Complexity of Finding Subgraphs with Hereditary Properties 225

Observation 1. Given a graph G on n vertices, there exists an independent set
of G of size at least n/χ(G).

Namely, the large independent set of the observation can be chosen as the
largest color class of any optimal coloring of G.

Theorem 5. Let ΠG ∈ AA be a hereditary property which is closed under strong
products with complete graphs, and let Π ∈ SA be a hereditary property such that,
for all n, the graph n · Kχ(Π) belongs to Π. Then, the problem P (G,ΠG,Π, k)
is as hard as P (G,ΠG, IS, k).

Proof. We describe a polynomial-time parameterized reduction from instances
of P (G,ΠG, IS, k) to equivalent instance of P (G′,ΠG,Π, k′), where k′ depends
only on k (and not on G). The reduction transforms the graph G of the instance
into a new graph G′ = G � Kχ(Π), and transforms the parameter k into a new
parameter value k′ = k · χ(Π). As Π ∈ SA and for all n, the graph n · Kχ(Π)

belongs to Π, χ(Π) is exactly equal to ω(Π) and hence constantly bounded.
As we have assumed that ΠG is closed under strong products with complete

graphs, it follows that G′ ∈ ΠG, so the reduction produces a valid instance of
P (G,ΠG,Π, k′). To show that this instance is equivalent to the starting instance,
we show that G has an independent set of size k if and only if G′ has an induced
subgraph of size k′ belonging to Π.

(⇒) Let I be an independent set of G of size k, and let X = I � Kχ(Π) be
the subgraph of G′ induced by the set of all copies of vertices in I. Then
|V (X)| = k′ and, as a graph of the form k · Kχ(Π), X belongs to Π by
assumption.

(⇐) Let H ∈ Π be an induced subgraph of G′ of size k′. By Observation 1, it has
an independent set I ′ of size k′/χ(Π) ≥ k. This independent set can include
at most one copy of each vertex in G, so the set I of vertices in G whose
copies are used in I ′ must also have size ≥ k. Further, I is independent, for
any edge between its vertices would be copied as an edge in G′, contradicting
the assumption that we have an independent set in G′. Therefore, I is an
independent set of size ≥ k in G, as desired. ��
The families of unit-disk graphs, C4-free graphs, and K1,4-free graphs all

belong to AA, and are closed under strong products with complete graphs.
Finding independent sets is also known to be W[1]-complete for unit-disk
graphs [28,29], C4-free graphs [3], and K1,4-free graphs [24]. Moreover, the
families of planar graphs and of bipartite graphs both have the property that
n · Kχ(Π) ∈ Π. For instance, in planar graphs, the graph n · Kχ(Π) consists of
n disjoint copies of K4, a planar graph, and forming disjoint unions preserves
planarity. Therefore, we have the following corollary:

Corollary 3. If ΠG is the property of being (a) unit-disk, (b) C4-free, or (c)
K1,4-free , and Π is the property of being either planar or bipartite, then the
problem P (G,ΠG,Π, k) is W[1]-complete.

226 D. Eppstein et al.

4.2 Hardness from Joins with Cliques

The join of two graphs G+H is a graph formed from the disjoint union of G and
H by adding edges from each vertex of G to each vertex of H. The reduction
that we consider in this section involves the join with a disjoint union of cliques,
G + t · Kc. That is, starting from G we add t cliques of size c, with each vertex
in G connected to all vertices in these cliques.

Observation 2. Given a graph G and two positive integers t and c, the maxi-
mum clique size of G + t · Kc is ω(G) + c.

Theorem 6. Let ΠG ∈ AA be a hereditary property which is closed under joins
with disjoint unions of cliques, and Π ∈ SA be a hereditary property which
includes all subgraphs I + n · Kω(Π)−1 for an independent set I and positive
integer n. Then the problem P (G,ΠG,Π, k) is as hard as P (G,ΠG, IS, k).

Proof. We first construct a new graph G′ = G+r ·Kc, where r = R(ω(Π)+1, k)
and c = ω(Π) − 1, and a new parameter value k′ = k + rc. By the assumption
that ΠG is closed under joins with disjoint unions of cliques, G′ ∈ ΠG. Now, we
show that G has an independent set of size k if and only if G′ has an induced
subgraph of size k′ belonging to Π.

(⇒) Let I be an independent set of G of size k. Consider the induced subgraph
I + r · Kc of G′, formed by including all vertices that were added to G. This
subgraph has size k′ = k + rc, and by assumption it belongs to Π.

(⇐)] Let H ∈ Π be an induced subgraph of G′ of size k′. The vertices of H can
be partitioned into two sets S1 ⊂ V (G) and S2 ⊂ r · Kc. The following two
cases can occur:

– If S1 is not an independent set, let uv be an edge in S1. Then S2 must
have at most c − 1 vertices in each clique of r · Kc, for if it contained
all c vertices of one of these cliques, then these c vertices together with
u and v would form a clique of size ω(Π) + 1, which is disallowed in Π.
Therefore, S2 has at most r(c−1) vertices, and to obtain total size k′, S1

must have at least k + r vertices. By the definition of r and by Ramsey’s
theorem, S1 has either a clique of size ω(Π) + 1 (again, an impossibility)
or an independent set of size k, as desired.

– If S1 is an independent set, we observe that, even if S2 includes all of
the vertices added to G to form G′, it has only rc vertices. Therefore,
to obtain total size k′, S1 must have at least k vertices, and contains an
independent set of size k, as desired. ��

There are many families ΠG that meet the requirements on ΠG in this the-
orem, but do not meet the requirements of Theorem 5: this will be true, for
instance, when the forbidden subgraphs of ΠG do not include disjoint unions of
cliques, and are co-connected (so they cannot be formed by joins, which produce
co-disconnected graphs) but at least one of these graphs contains two adjacent
twin vertices (with the same neighbors other than each other). The requirement

Parameterized Complexity of Finding Subgraphs with Hereditary Properties 227

on Π in this theorem is met, for instance, by the family Π of bipartite graphs.
In this case, ω(Π) = 2, so the graphs I +n ·Kω(Π)−1 are just complete bipartite
graphs, which are of course bipartite.

As an example, finding k-independent sets in K1,3-free graphs (the comple-
ments of claw-free graphs) is known to be NP-complete, from the completeness
of the same problem in triangle-free graphs [31]. Theorem 6 then shows that
finding k-vertex bipartite induced subgraphs of K1,3-free graphs is also NP-
complete. However, we cannot use this method to prove parameterized hardness
for this example, because the k-independent set problem in K1,3-free graphs can
be solved in FPT by applying a fixed-parameter tractable algorithm for (k − 1)-
independent sets in triangle-free graphs [13] to the sets of non-neighbors of all
vertices.

5 Conclusion

We have further narrowed down the parameterized complexity of the problem
P (G,Π, k) for the case when it is W[1]-complete. In particular, restricting the
input graph G to belong to a hereditary graph class ΠG helps us to settle param-
eterized complexity of numerous graph classes circumventing long and tedious
reduction proofs. It remains an open problem to determine the parameterized
complexity of the problem P (G,ΠG,Π, k) when ΠG ∈ AA with fewer restric-
tions. It would be also interesting to investigate this problem under other graph
parameters beyond the size of the solution. Further, related to our line of work,
the problem of counting all induced subgraphs of size k in a graph G that sat-
isfy the property Π has been introduced and shown to be W[1]-hard by Jerrum
and Meeks [25]. Recently, it is shown that, given any graph property Π that is
closed under the removal of vertices and edges, and that is non-trivial for bipar-
tite graphs, the problem is W[1]-hard [14]. It would be interesting to revisit this
counting problem for the case when both the graph and the property belong to
hereditary graph classes.

Acknowledgments. The second author is supported in part by the Zuckerman STEM
Leadership Program.

References

1. Alekseev, V.E.: The effect of local constraints on the complexity of determination
of the graph independence number. Combin.-Algebraic Methods Appl. Math. 3–13
(1982)

2. Bannister, M.J., Eppstein, D.: Crossing minimization for 1-page and 2-page draw-
ings of graphs with bounded treewidth. J. Graph Algorithms Appl. 22(4), 577–606
(2018)

3. Bonnet, É., Bousquet, N., Charbit, P., Thomassé, S., Watrigant, R.: Parameter-
ized complexity of independent set in h-free graphs. In: 13th International Sympo-
sium on Parameterized and Exact Computation, IPEC 2018, 20–24 August 2018,
Helsinki, Finland, pp. 17:1–17:13 (2018)

228 D. Eppstein et al.

4. Borradaile, G., Eppstein, D., Zhu, P.: Planar induced subgraphs of sparse graphs.
J. Graph Algorithms Appl. 19(1), 281–297 (2015). https://doi.org/10.7155/jgaa.
00358

5. Buss, J.F., Goldsmith, J.: Nondeterminism within P. SIAM J. Comput. 22(3),
560–572 (1993)

6. Butman, A., Hermelin, D., Lewenstein, M., Rawitz, D.: Optimization problems in
multiple-interval graphs. In: Bansal, N., Pruhs, K., Stein, C. (eds.) Proceedings
of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2007, New Orleans, Louisiana, USA, 7–9 January 2007, pp. 268–277. SIAM (2007)

7. Cai, L.: Fixed-parameter tractability of graph modification problems for hereditary
properties. Inf. Process. Lett. 58(4), 171–176 (1996)

8. Chen, J., Kanj, I.A., Jia, W.: Vertex cover: further observations and further
improvements. J. Algorithms 41(2), 280–301 (2001)

9. Chen, J., Kanj, I.A., Xia, G.: Improved parameterized upper bounds for vertex
cover. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp.
238–249. Springer, Heidelberg (2006). https://doi.org/10.1007/11821069 21

10. Chen, J., Liu, Y., Lu, S., O’Sullivan, B., Razgon, I.: A fixed-parameter algorithm
for the directed feedback vertex set problem. In: Dwork, C. (ed.) Proceedings of
the 40th Annual ACM Symposium on Theory of Computing, Victoria, British
Columbia, Canada, 17–20 May 2008, pp. 177–186. ACM (2008)

11. Clark, B.N., Colbourn, C.J., Johnson, D.S.: Unit disk graphs. Discret. Math. 86(1–
3), 165–177 (1990)

12. Cygan, M., et al.: Parameterized Algorithms. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-319-21275-3

13. Dabrowski, K., Lozin, V., Müller, H., Rautenbach, D.: Parameterized algorithms
for the independent set problem in some hereditary graph classes. In: Iliopoulos,
C.S., Smyth, W.F. (eds.) IWOCA 2010. LNCS, vol. 6460, pp. 1–9. Springer, Hei-
delberg (2011). https://doi.org/10.1007/978-3-642-19222-7 1

14. Dörfler, J., Roth, M., Schmitt, J., Wellnitz, P.: Counting induced subgraphs: an
algebraic approach to #w[1]-hardness. In: Rossmanith, P., Heggernes, P., Katoen,
J. (eds.) 44th International Symposium on Mathematical Foundations of Computer
Science, MFCS 2019, 26–30 August 2019, Aachen, Germany. LIPIcs, vol. 138, pp.
26:1–26:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019). https://doi.
org/10.4230/LIPIcs.MFCS.2019.26

15. Downey, R.G., Fellows, M.R.: Fixed-parameter tractability and completeness II:
on completeness for W[1]. Theor. Comput. Sci. 141(1 & 2), 109–131 (1995)

16. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Texts in
Computer Science, Springer, London (2013). https://doi.org/10.1007/978-1-4471-
5559-1

17. Eppstein, D.: Subgraph isomorphism in planar graphs and related problems. J.
Graph Algorithms Appl. 3(3), 1–27 (1999)

18. Eppstein, D., Havvaei, E.: Parameterized leaf power recognition via embedding
into graph products. Algorithmica 82(8), 2337–2359 (2020)

19. Eppstein, D., Strash, D., Löffler, M.: Listing all maximal cliques in large sparse
real-world graphs in near-optimal time. J. Exp. Algorithmics 18(3), 3.1 (2013).
https://doi.org/10.1145/2543629

20. Fellows, M.R., Hermelin, D., Rosamond, F.A., Vialette, S.: On the parameterized
complexity of multiple-interval graph problems. Theor. Comput. Sci. 410(1), 53–61
(2009)

21. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman (1979)

https://doi.org/10.7155/jgaa.00358
https://doi.org/10.7155/jgaa.00358
https://doi.org/10.1007/11821069_21
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-642-19222-7_1
https://doi.org/10.4230/LIPIcs.MFCS.2019.26
https://doi.org/10.4230/LIPIcs.MFCS.2019.26
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1145/2543629

Parameterized Complexity of Finding Subgraphs with Hereditary Properties 229

22. Gomes, G.C.M., dos Santos, V.F., da Silva, M.V.G., Szwarcfiter, J.L.: FPT and
kernelization algorithms for the induced tree problem. In: Calamoneri, T., Corò, F.
(eds.) CIAC 2021. LNCS, vol. 12701, pp. 158–172. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-75242-2 11

23. Harary, F.: Graph Theory. Addison-Wesley, Boston (1991)
24. Hermelin, D., Mnich, M., van Leeuwen, E.J.: Parameterized complexity of induced

graph matching on claw-free graphs. Algorithmica 70(3), 513–560 (2014)
25. Jerrum, M., Meeks, K.: The parameterised complexity of counting connected sub-

graphs and graph motifs. J. Comput. Syst. Sci. 81(4), 702–716 (2015). https://
doi.org/10.1016/j.jcss.2014.11.015

26. Khot, S., Raman, V.: Parameterized complexity of finding subgraphs with heredi-
tary properties. Theor. Comput. Sci. 289(2), 997–1008 (2002)

27. Lewis, J.M., Yannakakis, M.: The node-deletion problem for hereditary properties
is NP-complete. J. Comput. Syst. Sci. 20(2), 219–230 (1980)

28. Marx, D.: Efficient approximation schemes for geometric problems? In: Brodal,
G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 448–459. Springer, Hei-
delberg (2005). https://doi.org/10.1007/11561071 41

29. Marx, D.: Parameterized complexity of independence and domination on geomet-
ric graphs. In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS,
vol. 4169, pp. 154–165. Springer, Heidelberg (2006). https://doi.org/10.1007/
11847250 14

30. Nešetřil, J., de Mendez, P.O.: 18.3 the subgraph isomorphism problem and boolean
queries. In: Nešetřil, J., de Mendez, P.O. (eds.) Sparsity: Graphs, Structures, and
Algorithms, Algorithms and Combinatorics, vol. 28, pp. 400–401. Springer, Hei-
delberg (2012). https://doi.org/10.1007/978-3-642-27875-4

31. Poljak, S.: A note on stable sets and colorings of graphs. Comment. Math. Univ.
Carolinae 15, 307–309 (1974)

32. Szeider, S.: On fixed-parameter tractable parameterizations of SAT. In:
Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 188–202.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24605-3 15

https://doi.org/10.1007/978-3-030-75242-2_11
https://doi.org/10.1007/978-3-030-75242-2_11
https://doi.org/10.1016/j.jcss.2014.11.015
https://doi.org/10.1016/j.jcss.2014.11.015
https://doi.org/10.1007/11561071_41
https://doi.org/10.1007/11847250_14
https://doi.org/10.1007/11847250_14
https://doi.org/10.1007/978-3-642-27875-4
https://doi.org/10.1007/978-3-540-24605-3_15

The Space Complexity of Sum Labelling

Henning Fernau1 and Kshitij Gajjar2(B)

1 Universität Trier, FB 4 – Informatikwissenschaften, Trier, Germany
fernau@uni-trier.de

2 National University of Singapore, Singapore, Singapore

Abstract. A graph is called a sum graph if its vertices can be labelled by
distinct positive integers such that there is an edge between two vertices
if and only if the sum of their labels is the label of another vertex of
the graph. Most papers on sum graphs consider combinatorial questions
like the minimum number of isolated vertices that need to be added to
a given graph to make it a sum graph. In this paper, we initiate the
study of sum graphs from the viewpoint of computational complexity.
Note that every n-vertex sum graph can be represented by a sorted list
of n positive integers where edge queries can be answered in O(log n)
time. Thus, limiting the size of the vertex labels upper-bounds the space
complexity of storing the graph.

We show that every n-vertex, m-edge, d-degenerate graph can be made
a sum graph by adding at most m isolated vertices to it such that the size
of each vertex label is at most O(n2d). This enables us to store the graph
using O(m log n) bits of memory. For sparse graphs (graphs with O(n)
edges), this matches the trivial lower bound of Ω(n log n). Since planar
graphs and forests have constant degeneracy, our result implies an upper
bound of O(n2) on their label size. The previously best known upper
bound on the label size of general graphs with the minimum number of
isolated vertices was O(4n), due to Kratochv́ıl, Miller & Nguyen [23].
Furthermore, their proof was existential whereas our labelling can be
constructed in polynomial time.

Keywords: Sum labelling · Exclusive labelling · Graph databases ·
Sparse graphs · Graph representations · Space complexity

1 Introduction

There is a vast body of literature on graph labelling, testified by a dynamic survey
on the topic maintained by Gallian [11]. The 553-page survey (last updated in
2020) mentions over 3000 papers on different ways of labelling graphs. We focus
on a type of labelling introduced by Harary [16] in 1990, called sum labelling.

Part of this work was done when the author was a researcher at Technion, Israel. This
project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No. 682203-ERC-[Inf-Speed-Tradeoff].

c© Springer Nature Switzerland AG 2021
E. Bampis and A. Pagourtzis (Eds.): FCT 2021, LNCS 12867, pp. 230–244, 2021.
https://doi.org/10.1007/978-3-030-86593-1_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86593-1_16&domain=pdf
http://orcid.org/0000-0002-4444-3220
http://orcid.org/0000-0003-0890-199X
https://doi.org/10.1007/978-3-030-86593-1_16

The Space Complexity of Sum Labelling 231

Definition 1. A simple, undirected, unweighted graph G is a sum graph if there
exists an injective function λ : V (G) → N such that for all vertices v1, v2 ∈ V (G),

(v1, v2) ∈ E(G) ⇐⇒ ∃ v3 ∈ V (G) s.t. λ(v1) + λ(v2) = λ(v3).

Then we say that λ is a sum labelling of (the vertices of) G.

Note that Definition 1 implies that the edge set of a sum graph G can be recov-
ered completely using the labels on its vertex set given by λ.

Gould & Rödl [14] showed that every n-vertex graph can be made a sum
graph by adding at most n2 isolated vertices to it. In fact, certain graphs can be
encoded much more succinctly with sum labelling than with the more traditional
methods of storing a graph (e.g., adjacency matrix, incidence matrix, adjacency
list). This makes sum labelling an intriguing concept not just to mathemati-
cians but to computer scientists, as well. Sum labelling could also be of interest
in graph databases [1,2,24] and in collections of benchmark graphs [6,18,25].
However, no systematic study of this question has been undertaken so far. With
this paper, we intend to start such a line of research, bringing sum labellings
closer to the research in labelling schemes [19]. To the best of our knowledge,
the only known application of sum labelling before our work is in secret sharing
schemes [38].

The idea of using sum labelling to efficiently store graphs was already con-
sidered by Sutton [40]. However, Sutton focused on the number of additional
isolated vertices needed to store a given graph, whereas our focus is on the
number of bits that are needed to store the graph.

In other words, while Sutton’s work attempts to minimize the number of
additional vertices, it does not take into account the size of the vertex labels
required to do so. This is crucial because it is known that there are several
graph families for which the size of the vertex labels grows exponentially with
the number of vertices. One popular example is the sum labelling scheme for
trees presented by Ellingham [9]. Another example is the more esoteric graph
family known as the generalised friendship graph [10].

Another parameter associated with sum graphs is the difference between the
largest and smallest label, called spum (also called range in [23]). Interestingly,
while the concept of spum was around for quite some time (Gallian’s survey [11]
refers to an unpublished manuscript by a group of six students), the first pub-
lication that studies spum for different basic classes of graphs is a very recent
one [37]. Unfortunately, this measure also does not reflect the whole truth about
storing graphs, as it neglects the number of additional vertices that need to be
stored. Moreover, spum is somewhat dependent on the definition of the sum
number (see below for a formal definition), which might be slightly unnatural
for the purpose of storing a graph.

In this paper, we introduce a new graph parameter σstore that takes into
account both the number of additional vertices and their label size. We explain
this formally in the next section.

232 H. Fernau and K. Gajjar

2 Definitions and Main Result

Let us now fix some notation in order to formally introduce the concepts in this
paper.

As isolated vertices (i.e., vertices of degree zero) are usually irrelevant in
applications, λ(V) can be also viewed as the description of G − I, where I
collects all isolates of G. Then, λ(V) is called the sum number encoding of G−I.
Conversely, given a graph G without isolates, the minimum number of isolates
needed to be added in order to turn G into a sum graph is called the sum number
of G, written σ(G), i.e., G + Kσ(G) is a sum graph. Here, + is used to denote
the disjoint union of graphs, H denotes the complement of graph H, and Kn is
the complete graph on n vertices, so that Kn is the null (i.e., edgeless) graph
on n vertices. The spum of G, written spum(G), is defined as the minimum over
all sum labellings of G + Kσ(G) of the difference between the maximum and
minimum labels.

A labelling function λ can be also seen as operating on edges by the summa-
bility condition: λ(e) for an edge e = xy ∈ E is defined as λ(x)+λ(y). A labelling
of a sum graph G = (V,E) is called an exclusive sum labelling [27,29,34,44] if
for every e ∈ E, λ(e) = λ(i) for some i ∈ I, where I is the set of isolated vertices
of G. Accordingly, ε(G) denotes the exclusive sum number of G.

Are substantial savings possible when considering sum number encodings
of graphs? As most research in the area of sum labellings went into studying
quite specific families of graphs, some partial answers are possible. For instance,
analyzing the expositions in [33,45], one sees that for the complete bipartite
graph Kn,n+1, with n vertices in one partition and n + 1 vertices in the other,
σ(Kn,n+1) = 2n − 1. In other words, in order to represent Kn,n+1, we need
4n numbers. Ignoring the size of these numbers, this is a clear advantage over
any traditional way to store the complete bipartite graph Kn,n+1, which would
need O(n2) bits. However, after a closer look at the labelling presented in [33],
it becomes clear that the numbers needed to label a Km,n are of size O(nm).
Therefore, it is clear that storing the complete bipartite graph Kn,n+1 needs
O(n log n) bits only, if we take its sum graph encoding. As we will see later, this
is in fact storage-optimal in a certain sense.

Similarly, σ(Kn) = 2n − 3 is known for n ≥ 4, i.e., 3n − 3 numbers are
necessary to store the information about the complete graph Kn, while again
traditional methods would need O(n2) bits. As mentioned in [39], this can be
obtained by labelling vertex xi with 4i − 3, with 1 ≤ i ≤ n, leading to isolate
labels 4j + 2 for 1 ≤ j ≤ 2n − 3. Hence, the sizes of the labels are in fact linear
in n, which is, in a sense, even better than what is known for complete bipartite
graphs. We will continue our discussions on storage issues in the next section. It
is known that the sum number of general graphs will grow with the order of its
edges, see [31]. In fact, this can happen even with sparse graphs, see [17,42].

As we have seen so far, neither the sum number of a graph nor the spum
of a graph models the storage requirements of storing graphs with the help
of sum numberings in a faithful manner. Therefore, we suggest another graph
parameter, based on

The Space Complexity of Sum Labelling 233

storage(λ,G) =
∑

v∈V

	log2(λ(v))
 ≤ |V |max
v∈V

	log2(λ(v))
 (1)

for a labelling λ : V → N of a sum graph G = (V,E). (Recall that one can store
variable-size numbers using at most two times as many bits when compared to
Eq. (1) with Elias prefix codes [8].) Now, define

storage(G) = min{storage(λ,G) | ∃λ : V → N : λ labels G} .

Then, for an arbitrary graph G′ = (V ′, E′) one could define

σstore(G′) = min{storage(G) | ∃s ∈ N : G = G′ + Ks is a sum graph} .

For instance, the construction of Ellingham can be used to state: For an n-vertex
tree T , Ellingham’s construction leads to σstore(T) ∈ O(n2). This should be
compared to a standard representation of trees by adjacency lists that obviously
needs O(n log(n)) space. However, our results prove that also with sum label
representations, this upper bound can be obtained. In our construction, it is
crucial that we also consider labellings that do not lead to a minimum sum
number. This is also a difference concerning the definition of spum.

As we are mostly interested in upper-bounding σstore(G′) in this paper, we
are in fact mostly discussing

σmax
store(G

′) = min{storagemax(G) | ∃s ∈ N : G = G′ + Ks is a sum graph} ,

where for a sum graph G = (V,E),

storagemax(G) = min{storagemax(λ,G) | ∃λ : V → N : λ labels G} ,

with

storagemax(λ,G) = |V | · max
v∈V

	log2(λ(v))
 = |V | · 	log2 (max λ(V))
 .

By Eq. (1), σstore(G′) ≤ σmax
store(G

′).
We are now ready to formulate the main result of this paper.

Theorem 1. Let G′ be a graph on n vertices and m edges with minimum degree
at least one. Then, σmax

store(G
′) ∈ O(m · log(n)). More specifically,

σmax
store(G

′) ≤ 9m(log2(n) + 1)

for general graphs and

σmax
store(G

′) ≤ 3m(2 log2(n) + log2(12d)) < 3dn(2 log2(n) + log2(12d))

for d-degenerate graphs. Furthermore, the corresponding sum labellings can be
computed in polynomial time.

In particular, this means that only O(n log(n)) bits are necessary to store trees
with sum labellings, as they are 1-degenerate graphs. A similar result holds
for planar graphs, as they are 5-degenerate. We also show that these bounds are
optimal for storing graphs, up to constant factors. We also relate to the literature
on adjacency labelling schemes, see, e.g., [19,32], or, more recently [4,7].

234 H. Fernau and K. Gajjar

3 Labelling a Disjoint Collection of Edges

This section should be treated as an introductory exercise on sum labelling, and
has no bearing on our main result. A reader familiar with sum labelling schemes
may skip to the next section.

It is known that trees have sum number 1; according to a remark following
Theorem 5.1 in [9], this result translates to forests. However, the label sizes may
grow exponentially in these constructions. As a warm-up and to explain the diffi-
culties encountered when designing sum labellings, we are going to present three
constructions that label a disjoint collection of edges, or, more mathematically
speaking, how to label a 1-regular graph Mn on n vertices.

Exponential Solution. If you have n vertices (hence n/2 edges), label the first
edge with 2− 3, the second one starts with the sum of the labels of the previous
edge, i.e., in the beginning, this is 5, we continue with the successor 6, then we
add up the previous two labels, continue with the successor, etc. . . .

This can be brought into the following sum labelling scheme λ : N → N that
is meant to work for any 1-regular graph:

λ(n) =

⎧
⎨

⎩

2 if n = 1
λ(n − 1) + 1 if n is even
λ(n − 2) + λ(n − 1) if n is odd and n > 1

(2)

Lemma 1. For the labelling defined in Eq. (2), we find that λ(n) ∈ Θ(
√

2
n
).

Linear Solution. Assume that n is an even number. Consider the following sum
labelling scheme for 1-regular graphs on n vertices. We group endpoint labels of
each edge together by parentheses.

(n, 2n − 1), (n + 1, 2n − 2), . . . ,
(

3n

2
− 1,

3n

2

)
.

All edge labels sum up to 3n − 1 (which is the isolate), and even the sum of the
two smallest labels, i.e., n + (n + 1) = 2n + 1, is smaller than 3n − 1 but bigger
than any other label in the graph. As each label is in Θ(n), the overall space
requirement of this labelling scheme is Θ(n log(n)). Moreover, σ(Mn) = 1.

The Union of Many Identical Components. The previous consideration was quite
special to 1-regular graphs. We are now developing an argument that can be gen-
eralised towards a certain type of graph operation. One can think of Mn as being
the disjoint graph union of n/2 times M2. For simplicity of the exposition, assume
n/2 = 2d in the following. Label the vertices v1,1, v2,1, v1,2, v2,2, . . . , v1,2d , v2,2d

of Mn (with edges between v1,j and v2,j) as follows, for j = 1, . . . , 2d:

λ(v1,j) = 1 + 8 · (j − 1) + 24+d · (2d − j)

λ(v2,j) = 2 + 8 · (2d − j) + 25+d · (j − 1)

The Space Complexity of Sum Labelling 235

For instance, for d = 2, we get λ(v1,1) = 1+8 ·0+64 ·3, λ(v2,1) = 2+8 ·3+64 ·0,
so that the connecting edge is testified by the isolate label 3+8·3+64·3 = 219 =
(11011011)2. Also, λ(v1,2) = 1+8 ·1+64 ·2, λ(v2,2) = 2+8 ·2+64 ·1, adding up
again to 219. Likewise, λ(v1,3) = 1 + 8 · 2 + 64 · 1, λ(v2,3) = 2 + 8 · 1 + 64 · 2, and
finally λ(v1,4) = 1+8 ·3+64 ·0 and λ(v2,4) = 2+8 ·0+64 ·3. By construction, all
numbers need at most 2d + 4 bits for labelling 2d+1 vertices. Hence, the overall
space requirement for storing Mn is again O(n log(n)) bits.

Notice that the zero bit introduced in the third and sixth binary position in
the example is important to avoid that any labels add up to another valid label
but the ones of the edge endpoints. This technique can be easily generalised to
obtain the following result:

Lemma 2. Let G be any fixed graph. Then, the n-fold disjoint graph union Gn

of G with itself obeys σstore(Gn) ∈ O(n log(n)). Moreover, σ(Gn) ≤ σ(G). �

4 Storing Graphs Using Sum Labelling

Alternative Notions. One of our motivations to return to sum labellings was the
idea that one can use them to efficiently store graphs. This idea was already
expressed in [23]. There, they consider the notion of the range of a sum graph G
that is realizing σ(G′), which happens to coincide with the notion called spum
later. But following this motivation (to store graphs), let us define the range of
a labelling λ of a sum graph G = (V,E) as the difference between max λ(V)
and minλ(V). The idea behind is that it would suffice to store the numbers
λ(v) − min λ(V) for all vertices v ∈ V , plus the value of minλ(V) once, instead
of storing all values λ(v), which could help us save some bits. The following
lemma tells us that this variation in our considerations (which could also lead to
variations of the our definition of σstore and related notions) is not essential for
our current considerations, as we mostly neglect constant factors. In particular,
we might consider |V | · 	log2(max λ(V) − min λ(V))
 + 	log2(min λ(V))
 as a
more appropriate definition of the maximum estimate of the storage requirements
of a sum graph G = (V,E) with respect to a sum labelling λ.

Lemma 3. Let λ be a sum labelling of a non-empty sum graph G = (V,E), and
let range(λ(V)) = max λ(V) − min λ(V). Then,

range(λ(V)) > min λ(V);
2 · range(λ(V)) > max λ(V).

Hence, we know that max λ(V) ∈ Θ(range(λ(V))).
What is the main purpose of a graph database? Clearly, one has to access

the graphs. A basic operation would be to answer the query if there is an edge
between two vertices. Now, if max λ(V) of a sum graph is polynomial in the
number n = |V | of its vertices, we can answer this query in time O(log(n)),
a property also discussed as adjacency labelling scheme by Peleg [32]. Namely,
assuming the polynomial bound on the size of the labels, we would need time

236 H. Fernau and K. Gajjar

O(log(n)) to add the two labels of the vertices, and we also need time O(log(n))
to search for the sum in the ordered list of numbers, using binary search, because
there are only O(n2) many numbers needed to describe a graph. If max λ(V)
would be super-polynomial, then the additional time O(log(max λ(V))) would
be quite expensive, which probably makes the idea of storing large graphs as sum
graphs in databases unattractive. This motivates in particular also considering
max λ(V) of the labelling λ of a sum graph.

Lower Bounds. How many bits are really necessary to store graphs? We will
discuss lower and upper bounds in the following, starting with a lower bound.

Lemma 4. Given an n-vertex graph G, σmax
store(G), σstore(G) ∈ Ω(n log n).

This proves that, up to constants, a sum labelling that uses O(n log(n)) bits
only is storage-optimal. This gives one of the motivations underlying the discus-
sions in the next section. Moreover, O(n log(n)) is also the space requirement
that is needed for storing sparse graphs in traditional graph storing methods.
More precisely, just for writing down the names of the vertices, Ω(n log n) bits
are needed, as can be seen by a calculation similar to Lemma 4. But we have
already seen examples like the complete graphs or the complete bipartite graphs,
where we also find sum labellings that use only O(n log(n)) bits for storing them.
Labellings using O(n log(n)) bits will be shown for graphs of fixed degeneracy
in Theorem 3.

Upper Bounds. Here, we start our discussion on upper bounds for the storage
requirement of storing graphs with sum labellings. First, we briefly discuss the
number of isolates in this respect. Based on some probabilistic arguments, it is
known that the number of isolates is about the number of edges of the graph to
be encoded [14,31] for nearly all graphs.

Remark 1. As there are 2Θ(n2) many graphs on n vertices, we cannot hope for a
sum labelling scheme that uses only n2−ε many isolates and only polynomial-size
labels and hence a polynomial range, because we need at least Ω(n2) many bits
just to write down n-vertex graphs. As an aside, allowing for n2 many isolates
also means always allowing exclusive labellings. �
Conversely, assuming that we can sum-label each n-vertex graph with m edges
with labels of polynomial size, then we can upper-bound σstore by O(m log(n)).
By our discussions from Lemma 4 and Remark 1, we cannot hope for anything
substantially better. Can we reach this bound? Unfortunately, this seems to
be an open question that we will answer to some extent below in our main
result. In [23], it was shown that each n-vertex graph without isolates can be
represented by a sum labelling that uses number not bigger than 4n. In other
words, one would need at most 2n bits to represent each vertex of an n-vertex
graph. This also shows that sum graphs have a constrained 1-labelling scheme
as defined in [19]. Hitherto, it was unknown how to sum-label arbitrary graphs
with polynomial-size labels. As our main result, we are going solve this problem
affirmatively, with nice consequences for d-degenerate graphs.

The Space Complexity of Sum Labelling 237

5 A Novel Algorithm for Sum Labelling

We will now prove our main result, showing that sum labellings can be used to
store graphs (without isolated vertices) as efficiently as traditional methods can
do. Notice that the two theorems shown in this section (Theorems 2, 3) imply
Theorem 1.

Theorem 2. Every n-vertex graph G of minimum degree at least one can be
turned into a sum graph H by adding at most m isolates to G, such that H
admits a sum labelling scheme λ satisfying

λ(v) ≤ 4 · n3 ∀ v ∈ V (G); (3)

λ(v) ≤ 8 · n3 ∀ v ∈ V (H). (4)

Our sum labelling is an exclusive labelling, computable in polynomial time.

Proof. Note that Eq. (3) implies Eq. (4), as isolate labels are sums of labels of
V (G). So we will focus on showing Eq. (3) in this proof. Let the vertices of G be
{v1, v2, . . . , vn}. Let Gi be the induced subgraph on the first i vertices of G, i.e.,

V (Gi) = {v1, v2, . . . , vi}.

For each Gi (2 ≤ i ≤ n), we will show that there is a sum graph Hi which can
be obtained by adding ri ≤ (

i
2

)
isolates to Gi (since Gi has at most

(
i
2

)
edges),

satisfying λ(v) ≤ 4 · i3 for each v ∈ V (Gi). Moreover, all vertices of Gi will carry
labels that equal 1 modulo 4, and all isolates in Hi will carry labels that equal
2 modulo 4. This modulo condition ensures that our labelling is external. Our
proof is by induction on i, yielding the claimed polynomial-time algorithm.

Although the statement of the theorem makes sense only from n ≥ 2 onwards
to meet the minimum-degree requirement, it is convenient for our inductive proof
to start with i = 1:

Base Case (i = 1): We set λ(v1) = 1. Notice that λ(v1) = 13. Set r1 = 0.

Induction Hypothesis: There is a sum graph Hi for Gi such that Hi has ri

isolates (in other words, Hi = Gi ∪ {iso1, iso2, . . . , isori
}), where ri ≤ (

i
2

)
, and

λ(v) ≤ 4 · i3 for each v ∈ V (Gi). Moreover, all vertices of Gi carry labels that
equal 1 modulo 4, and all isolates in Hi carry labels that equal 2 modulo 4.

Induction Step: We add the vertex vi+1 to the graph Hi and connect it to its
neighbours in Gi. Suppose vi+1 has ti neighbours {vj1 , vj2 , . . . , vjti

} in Gi. Then
add ti isolates {isor+1, isor+2, . . . , isori+ti} to Hi, giving the graph Hi+1. Thus,

Hi+1 = Gi+1 ∪ {iso1, iso2, . . . , isori+ti} .

We define ri+1 = ri + ti. Next, we set the labels for the newly added vertices. If
λ is not a valid sum labelling for Hi+1, then we will change their λ-values of the
newly added vertices. We will show that their λ-values only need to be changed
less than i3 times until we reach a valid sum labelling for Hi+1.

λ(vi+1) = 5; (5)
λ(isori+k) = λ(vi+1) + λ(vjk) ∀ k ∈ {1, 2, . . . , ti}. (6)

238 H. Fernau and K. Gajjar

Claim. λ is a valid sum labelling of Hi+1 if and only if it has none of the
following violations.

(i) A violating pair: an ordered set of two vertices (u,w) from Gi such that
λ(u) = λ(w).

(ii) A violating triple: an ordered set of three vertices (u,w, y) such that λ(u) <
λ(w) < λ(y) and λ(u) + λ(w) = λ(y) and (u,w) /∈ E(Hi+1).

Observations. Notice that it could happen that some of the ‘new’ isolates in Hi+1

carry labels that are already labels of isolates from Hi. In that case, we implicitly
merge these isolates, which automatically avoids violating pairs among them.
Then, the number ti is decreased accordingly. Also, the modulo 4 arithmetics
prevent vertices from Gi and the isolates to pair up as a violating pair. (∗)

Proof (of the claim). It is easy to see that if Hi+1 has any of the above violations,
then λ is not a valid sum labelling of Hi+1. Now we will prove the other direction:
if λ is not a valid sum labelling of Hi+1, then it either has a violating pair or a
violating triple.

Note that Hi+1 has i + ri + ti + 1 = (i + 1) + ri+1 many vertices, each with
its corresponding λ-value. If two of the vertices have the same λ-value, then it
is a type (i) violation, and we are done. So, we assume that all the λ-values
are distinct. Given these (i + 1) + ri+1 distinct numbers, we construct their
corresponding sum graph H ′

i+1 on (i+1)+ ri+1 vertices using the sum labelling
property.

Both Hi+1 and H ′
i+1 have the same set of vertices and the same labelling

scheme λ. However, since λ is a valid labelling scheme for H ′
i+1 but not for Hi+1,

they cannot have the same set of edges. Furthermore, Hi+1 is a subgraph of H ′
i+1.

This is because every edge e = (u,w) of Hi+1 is either an edge that was also
present in Hi (in which case there is a vertex labelled u + w in Hi+1 and H ′

i+1,
since Hi is a sum graph by the induction hypothesis), or it is one of the ti new
edges added (in which case one of the ti new isolates {isori+1, isori+2, . . . , isori+1}
is labelled u + w by Eq. (6)).

Due to (∗), the only way for the edge sets of Hi+1 and H ′
i+1 to differ is

if there is an edge e = (u,w) such that e ∈ E(H ′
i+1) and e /∈ E(Hi+1). This

means there are three vertices {u,w, y} in H ′
i+1 (and so also in Hi+1) such that

λ(u) + λ(w) = λ(y), a type (ii) violation. ♦

Now, if Hi+1 is a sum graph with the labelling scheme derived from Eq. (5) and
Eq. (6), then we are done. Otherwise, we will (slightly) modify these labels to
obtain a new labelling scheme, as follows.

λ(vi+1) ← λ(vi+1) + 4; (7)
λ(isori+k) ← λ(isori+k) + 4. (8)

We again check if with these new labels, Hi+1 is a sum graph. If not, we increment
these values by 4 again. We keep doing this until Hi+1 becomes a sum graph.

The Space Complexity of Sum Labelling 239

The crucial point to note is that each time we increment by 4, at least one of
the violations disappears, never to occur again.

To fully understand this last sentence, we need to refine our analysis of poten-
tial conflicts that might occur when running our algorithm. Namely, following
up on the proof of the previous claim, consider three vertices {u,w, y} in Hi+1

such that (erroneously) λ(u) + λ(w) = λ(y) in the labelling λ of Hi+1. First
observe that not all vertices from {u,w, y} can be isolates, as all isolates carry
labels that are 2 modulo 4. As we know that λ, restricted to the vertices of Hi,
turns Hi into a sum graph, not all of the vertices {u,w, y} belong to Hi. If y
is one of the isolates of Hi, then its labelling will not change when updating λ
according to Eq. (8). As one of the vertices u,w does not belong to Hi, we have,
w.l.o.g., u ∈ V (Hi) and w = vi+1, because if w would be among the isolates, the
sum of the labels of u and w would equal 0 modulo 4, but all isolates carry labels
that are 2 modulo 4. This means that out of the three labels of u,w, y, exactly
one will change according to Eq. (7) and as it will also be the only one that
might increase in further modifications, a violation will never re-appear in the
triple {u,w, y}. Assume now that y is one of the new isolates, say, y = isori+1.
If exactly one of the two other vertices, say, u, already belongs to Hi, then the
other one, w, must be vi+1. As λ(u) + λ(w) = λ(y) = λ(isori+1), we must have
u = vj1 , as we have no violating pairs. However, this means that the edge {u,w}
belongs both to Hi+1 and to H ′

i+1, contradicting our assumption. Therefore, if
y is one of the new isolates, then both u and w must belong to Hi. This means
that the labellings of u and of w will never change by the re-labellings described
in Eqs. (7) and (8), while the labelling of y will only (further) increase, so that
indeed a violation will never re-appear in the triple {u,w, y}.

How often might we have to update a labelling when moving from Hi to
a valid sum graph Hi+1? Our previous analysis shows that the following two
scenarios could be encountered for a violating triple {u,w, y}:

– y is an isolate of Hi and exactly one of {u,w} belongs to V (Hi). There are
i · ri many cases when this might occur.

– y is a new isolate and {u,w} ⊆ V (Hi). There are ti · (i
2

)
= ti · i(i−1)/2 many

possibilities for this situation.

Recall that ri isolates are contained in the sum graph Hi and ti = ri+1 − ri

isolates are newly added to yield Hi+1. Our analysis shows that after at most
si = i · ri + ti · i(i − 1)/2 many steps, a valid sum labelling of Hi+1 was found.
By observing that ri cannot be bigger than the number

(
i
2

)
= i(i − 1)/2 of

hypothetical edges in Hi, and ti is upper-bounded by the number i of vertices
in Hi, we can furthermore estimate:

si ≤ i · i(i − 1)/2 + i · i(i − 1)/2 = i3 − i2 .

By induction hypothesis, we know that for each of the i vertices v in Hi, we
have λ(v) ≤ i3. As Hi contains only i vertices that are labelled with numbers
that are equal to 1 modulo 4, within at most i3 − i2 increment steps, we will find
a label for vi+1 that is no bigger than 4 · (i3 − i2) + 1 ≤ (3

√
4(i + 1))3, basically

240 H. Fernau and K. Gajjar

using the pigeon hole principle. As all labels of isolates are sums of labels of
vertices from Gi, their sizes are upper-bounded by 4i3 + 4(i − 1)3 < 8 · i3. �
Proof (of Theorem 1.1). Theorem 2 gives an upper bound of (n + m)(log(8n3))
on the total number of bits needed to store H. Since every vertex in the graph G
has degree at least one, we have n ≤ 2m. Substituting, we get an upper bound
of 3m(log(8n3)) ≤ 3m(3 log n+3) = 9m(log n+1), as required by Theorem 1. �

As we always start with setting the label of the first vertex to one, the
obtained labelling uses the number one as a label. Notice that this is related to
the (to the best of our knowledge, still open) question if every graph G (without
isolates) can be embedded into a sum graph H with σ(G) many isolates such
that there is a sum labelling λ of H such that 1 ∈ λ(V (H)), see [28] (also, the
authors of [21] study a relaxation of this question).

We will now look into a specific class of sparse graphs, namely, into d-
degenerate graphs. Recall that a graph G = (V,E) is d-degenerate if its vertices
can be ordered like V = {v1, v2, . . . , vn} such that, considering the graph Gi

induced by the vertex set Vi = {v1, . . . , vi}, vi has degree at most d in Gi. We
will call such an ordering a d-degenerate vertex ordering. Similar to Theorem 2,
we can show the following result.

Theorem 3. Every d-degenerate n-vertex graph G of minimum degree at least
one can be made a sum graph H by adding at most m isolates to G, such that
H admits a sum labelling scheme λ satisfying

λ(v) ≤ 6d · n2 ∀ v ∈ V (G); (9)

λ(v) ≤ 12d · n2 ∀ v ∈ V (H). (10)

This sum labelling is an exclusive labelling, computable in polynomial time.

Proof (of Theorem 1.2). Theorem 3 gives an upper bound of (n+m)(log(12dn2))
on the total number of bits needed to store H. Since every vertex in the graph G
has degree at least one, we have n ≤ 2m. Substituting, we get an upper bound
of 3m(log(12dn2)) ≤ 3m(2 log2(n) + log2(12d)), as required by Theorem 1. �
Remark 2. As planar graphs are 5-degenerate [26], this sum labelling needs labels
with 2 log2(n)+O(1) bits for storing planar graphs, improving on previous pub-
lished bounds for implicit representations of planar graphs [5,13,19,20,30,35,36],
except the very last proposal [4], also see [7]. However, our approach gener-
alises to sum graphs of arbitrary fixed degeneracy, which is unclear for other
approaches from the literature on adjacency labelling schemes.

On the other hand, in adjacency labelling, the labels of two vertices alone
are enough to decide whether the vertices are adjacent or not; for sum labelling,
one needs to additionally check the labels of all the other vertices. Hence, sum
labelling is not a type of adjacency labelling.

While our approach needs only O(n log(n)) bits to store trees, it is unknown
if this can be achieved by a labelling that uses one isolate only; compare with [9].

The Space Complexity of Sum Labelling 241

6 Discussions

It is an interesting question how bad the labelling produced by our algorithm
could get if it comes to determining the exclusive sum number of a graph. To
give another example, when labelling the complete bipartite graph K|P |,|Q|, with
its vertex set V split into two independent sets P , Q, the ordering that first
lists P and then Q will actually produce the optimal exclusive sum labelling as
suggested in [27,34]. Also by presenting the vertices of P and Q alternatingly
to our algorithm, one can produce a labelling that realizes the exclusive sum
number |P | + |Q| − 1 of K|P |,|Q|, but the range will then be nearly twice as big.

This brings us to the following interesting question: Is there always a vertex
ordering such that our algorithm yields an optimal exclusive sum labelling?

Proposition 1. There exists a family of graphs (Gn) such that, if our algorithm
is presented with a certain ordering of V (Gn), where |V (Gn)| = n ≥ 3, then it
will produce a labelling λn matching ε(Gn), but if presented with a different
ordering, it will yield a labelling λ′

n requiring |E(Gn)| many isolates. The ratio
between the number of isolates produced by λ′

n and ε(Gn) grows beyond any limit.

Namely, the family of paths on n vertices gives such a graph family. The
labelling that is optimal with respect to the exclusive sum number is different
from the one proposed in [27,34].

Moreover, the following computational complexity questions are of interest,
in particular, if one wants to apply sum labellings for storing real-world graphs.
Are there polynomial time algorithms for (any of) the following questions, given
a graph G without isolates as input?

– Find the sum number σ(G), and output a sum labelling.
– Find the exclusive sum number ε(G), and output an exclusive sum labelling.
– Output a sum labelling minimizing the range of the labels.
– Output a sum labelling minimizing the storage needs σmax

store(G) or σstore(G).

In particular, if a question of the suggested form would be NP-hard, it would
be interesting to know if there are good heuristics that order the vertices of a
graph in a way that our algorithm produces a provable approximation to the
best graph parameter value. As the proof of Proposition 1 shows, for instance
the strategy behind the proof of Theorem 3 would actually produce a worst-case
labelling in a sense, i.e., even labellings that have some good properties can be
really bad with respect to another criterion. If it comes to giving an NP-hardness
proof for any of these questions, one of the difficulties is that the graph param-
eters related to sum labelling have a non-local flavour in the sense that local
modifications of a graph could have tremendous effect on the graph parame-
ters. It seems important to further study different typical graph operations with
respect to these parameters. Here, more results like Lemma 2 are needed [22].

There are hundreds of variants of graph labellings [11], some of which
can be also used to store graphs (e.g., integral sum labellings [15], mod sum
labellings [16,40,41,43], product labellings [3]), leading to further questions as
discussed above for sum labellings, also bridging to adjacency labellings [19,32].

242 H. Fernau and K. Gajjar

Acknowledgments. The authors are grateful to the organisers of Graphmasters

2020 [12] for providing the virtual environment that initiated this research.

References

1. Angles, R.: A comparison of current graph database models. In: 2012 IEEE 28th
International Conference on Data Engineering Workshops, pp. 171–177. IEEE
(2012)

2. Angles, R., Gutierrez, C.: Survey of graph database models. ACM Comput. Surv.
(CSUR) 40(1), 1–39 (2008)

3. Bergstrand, D., Hodges, K., Jennings, G., Kuklinski, L., Wiener, J., Harary, F.:
Product graphs are sum graphs. Math. Mag. 65(4), 262–264 (1992)

4. Bonamy, M., Gavoille, C., Pilipczuk, M.: Shorter labeling schemes for planar
graphs. In: Chawla, S. (ed.) Proceedings of the 2020 ACM-SIAM Symposium on
Discrete Algorithms, SODA, pp. 446–462. SIAM (2020)

5. Bonichon, N., Gavoille, C., Hanusse, N., Poulalhon, D., Schaeffer, G.: Planar
graphs, via well-orderly maps and trees. Graph. Combin. 22(2), 185–202 (2006)

6. Dominguez-Sal, D., Urbón-Bayes, P., Giménez-Vañó, A., Gómez-Villamor, S.,
Mart́ınez-Bazán, N., Larriba-Pey, J.L.: Survey of Graph Database Performance
on the HPC Scalable Graph Analysis Benchmark. In: Shen, H.T., et al. (eds.)
WAIM 2010. LNCS, vol. 6185, pp. 37–48. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-16720-1 4. http://graphanalysis.org/index.html

7. Dujmovic, V., Esperet, L., Gavoille, C., Joret, G., Micek, P., Morin, P.: Adjacency
labelling for planar graphs (and beyond). In: 61st IEEE Annual Symposium on
Foundations of Computer Science, FOCS, pp. 577–588. IEEE (2020)

8. Elias, P.: Universal codeword sets and representations of the integers. IEEE Trans.
Inf. Theory 21(2), 194–203 (1975)

9. Ellingham, M.N.: Sum graphs from trees. Ars Combin. 35, 335–349 (1993)
10. Fernau, H., Ryan, J.F., Sugeng, K.A.: A sum labelling for the generalised friendship

graph. Discret. Math. 308, 734–740 (2008)
11. Gallian, J.A.: A dynamic survey of graph labeling, version 23. Electron. J.

Combin. DS 6 (2020). https://www.combinatorics.org/ojs/index.php/eljc/article/
view/DS6/pdf

12. Ga̧sieniec, L., Klasing, R., Radzik, T.: Combinatorial Algorithms: 31st International
Workshop, IWOCA 2020, Bordeaux, France, June 8–10, 2020, Proceedings, vol.
12126. Springer, Heidelberg (2020). https://doi.org/10.1007/978-3-030-48966-3

13. Gavoille, C., Labourel, A.: Shorter implicit representation for planar graphs and
bounded treewidth graphs. In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007.
LNCS, vol. 4698, pp. 582–593. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-75520-3 52

14. Gould, R.J., Rödl, V.: Bounds on the number of isolated vertices in sum graphs.
In: Alavi, Y., Chartrand, G., Ollermann, O.R., Schwenk, A.J. (eds.) Graph The-
ory, Combinatorics, and Applications, 1988. Two Volume Set, pp. 553–562. Wiley
(1991)

15. Harary, F.: Sum graphs over all the integers. Discret. Math. 124(1–3), 99–105
(1994)

16. Harary, F.: Sum graphs and difference graphs. Congr. Numer. 72, 101–108 (1990)
17. Hartsfield, N., Smyth, W.F.: A family of sparse graphs of large sum number. Dis-

cret. Math. 141(1–3), 163–171 (1995)

https://doi.org/10.1007/978-3-642-16720-1_4
https://doi.org/10.1007/978-3-642-16720-1_4
http://graphanalysis.org/index.html
https://www.combinatorics.org/ojs/index.php/eljc/article/view/DS6/pdf
https://www.combinatorics.org/ojs/index.php/eljc/article/view/DS6/pdf
https://doi.org/10.1007/978-3-030-48966-3
https://doi.org/10.1007/978-3-540-75520-3_52
https://doi.org/10.1007/978-3-540-75520-3_52

The Space Complexity of Sum Labelling 243

18. Jouili, S., Vansteenberghe, V.: An empirical comparison of graph databases. In:
2013 International Conference on Social Computing, pp. 708–715. IEEE (2013)

19. Kannan, S., Naor, M., Rudich, S.: Implicit representation of graphs. SIAM J. Dis-
cret. Math. 5(4), 596–603 (1992)

20. Keeler, K., Westbrook, J.R.: Short encodings of planar graphs and maps. Discret.
Appl. Math. 58(3), 239–252 (1995)

21. Konečný, M., Kučera, S., Novotná, J., Pekárek, J., Šimsa, Š, Töpfer, M.: Minimal
sum labeling of graphs. J. Discrete Algorithms 52–53, 29–37 (2018)

22. Korman, A., Peleg, D., Rodeh, Y.: Constructing labeling schemes through universal
matrices. In: Asano, T. (ed.) ISAAC 2006. LNCS, vol. 4288, pp. 409–418. Springer,
Heidelberg (2006). https://doi.org/10.1007/11940128 42

23. Kratochv́ıl, J., Miller, M., Nguyen, H.M.: Sum graph labels - an upper bound and
related problems. In: 12th Australasian Workshop on Combinatorial Algorithms,
AWOCA, pp. 126–131. Institut Teknologi Bandung, Indonesia (2001)

24. Kumar Kaliyar, R.: Graph databases: a survey. In: International Conference on
Computing, Communication & Automation, pp. 785–790. IEEE (2015)

25. Lancichinetti, A., Fortunato, S., Radicchi, F.: Benchmark graphs for testing com-
munity detection algorithms. Phys. Rev. E 78(4), 046110 (2008)

26. Lick, D.R., White, A.T.: k-degenerate graphs. Can. J. Math. 22(5), 1082–1096
(1970)

27. Miller, M., Patel, D., Ryan, J., Sugeng, K.A., Slamin, Tuga, M.: Exclusive sum
labeling of graphs. J. Comb. Math. Comb. Comput. 55, 137–148 (2005)

28. Miller, M., Ryan, J., Smith, W.F.: The sum number of the cocktail party graph.
Bull. Inst. Combin. Appl. 22, 79–90 (1998)

29. Miller, M., Ryan, J.F., Ryjácek, Z.: Characterisation of graphs with exclusive sum
labelling. Electron. Notes Discrete Math. 60, 83–90 (2017)

30. Munro, J.I., Raman, V.: Succinct representation of balanced parentheses and static
trees. SIAM J. Comput. 31(3), 762–776 (2001)

31. Nagamochi, H., Miller, M., Slamin: On the number of isolates in graph labeling.
Discret. Math. 243, 175–185 (2001)

32. Peleg, D.: Proximity-preserving labeling schemes. J. Graph Theory 33(3), 167–176
(2000)

33. Pyatkin, A.V.: New formula for the sum number for the complete bipartite graphs.
Discret. Math. 239(1–3), 155–160 (2001)

34. Ryan, J.: Exclusive sum labeling of graphs: a survey. AKCE Int. J. Graphs Comb.
6(1), 113–136 (2009)

35. Schnyder, W.: Planar graphs and poset dimension. Order 5, 323–343 (1989)
36. Schnyder, W.: Embedding planar graphs on the grid. In: Johnson, D.S. (ed.) Pro-

ceedings of the First Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA, pp. 138–148. SIAM (1990)

37. Singla, S., Tiwari, A., Tripathi, A.: Some results on the spum and the integral
spum of graphs. Discrete Math. 344(5), 112311 (2021)

38. Slamet, S., Sugeng, K.A., Miller, M.: Sum graph based access structure in a secret
sharing scheme. J. Prime Res. Math. 2, 113–119 (2006)

39. Smyth, W.F.: Sum graphs of small sum number. Colloq. Math. Soc. János Bolyai
60, 669–678 (1991)

40. Sutton, M.: Summable graph labellings and their applications. Ph.D. thesis,
Department of Computer Science, University of Newcastle, Australia (2000)

41. Sutton, M., Miller, M.: Mod sum graph labelling of Hm,n and Kn. Aust. J. Combin.
20, 233–240 (1999)

https://doi.org/10.1007/11940128_42

244 H. Fernau and K. Gajjar

42. Sutton, M., Miller, M.: On the sum number of wheels. Discret. Math. 232, 185–188
(2001)

43. Sutton, M., Miller, M., Ryan, J., Slamin: Connected graphs which are not mod
sum graphs. Discret. Math. 195(1), 287–293 (1999)

44. Tuga, M., Miller, M.: Delta-optimum exclusive sum labeling of certain graphs with
radius one. In: Akiyama, J., Baskoro, E.T., Kano, M. (eds.) IJCCGGT 2003. LNCS,
vol. 3330, pp. 216–225. Springer, Heidelberg (2005). https://doi.org/10.1007/978-
3-540-30540-8 23

45. Wang, Y., Liu, B.: The sum number and integral sum number of complete bipartite
graphs. Discret. Math. 239(1–3), 69–82 (2001)

https://doi.org/10.1007/978-3-540-30540-8_23
https://doi.org/10.1007/978-3-540-30540-8_23

On Minimizing Regular Expressions
Without Kleene Star

Hermann Gruber1, Markus Holzer2(B), and Simon Wolfsteiner3

1 Knowledgepark GmbH, Leonrodstr. 68, 80636 Munich, Germany
hermann.gruber@kpark.de

2 Institut für Informatik, Universität Giessen, Arndtstr. 2, 35392 Giessen, Germany
holzer@informatik.uni-giessen.de

3 Institut für Diskrete Mathematik und Geometrie, TU Wien,
Wiedner Hauptstr. 8–10, 1040 Vienna, Austria

Abstract. Finite languages lie at the heart of literally every regular
expression. Therefore, we investigate the approximation complexity of
minimizing regular expressions without Kleene star, or, equivalently,
regular expressions describing finite languages. On the side of approx-
imation hardness, given such an expression of size s, we prove that it
is impossible to approximate the minimum size required by an equiv-

alent regular expression within a factor of O
(

s
(log s)δ

)
if the running

time is bounded by a quasipolynomial function depending on δ, for
every δ > 1, unless the exponential time hypothesis (ETH) fails. For
approximation ratio O(s1−δ), we prove an exponential-time lower bound
depending on δ, assuming ETH. The lower bounds apply to alphabets
of constant size. On the algorithmic side, we show that the problem can
be approximated in polynomial time within O(s log log s

log s
), with s being

the size of the given regular expression. For constant alphabet size, the
bound improves to O(s

log s
). Finally, we devise a family of superpolyno-

mial approximation algorithms with approximation ratios matching the
lower bounds, while the running times are just above the lower bounds
excluded by the exponential time hypothesis.

1 Introduction

Regular expressions are used in many applications and it is well known that
for each regular expression, there is a finite automaton that defines the same
language and vice versa. Automata are very well suited for programming tasks
and immediately translate to efficient data structures. On the other hand, regular
expressions are well suited for human users and therefore are often used as
interfaces to specify certain patterns or languages.

Regarding performance optimization, putting effort into the internal repre-
sentation inside the regex engine is of course a natural choice. On the other hand,
most of the time, developers use existing APIs but are not willing, or able, to
change the source code of these. Thus, sometimes practitioners, as well as theory
researchers, see a need for optimizing the input regular expressions, as witnessed
c© Springer Nature Switzerland AG 2021
E. Bampis and A. Pagourtzis (Eds.): FCT 2021, LNCS 12867, pp. 245–258, 2021.
https://doi.org/10.1007/978-3-030-86593-1_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86593-1_17&domain=pdf
https://doi.org/10.1007/978-3-030-86593-1_17

246 H. Gruber et al.

by questions in pertinent Q&A forums.1 More often than not, the regular expres-
sions under consideration are in fact without Kleene star, that is, they describe
only finite languages. Moreover, recently the descriptional complexity of finite
languages attracted new attention because of its close connection to well-known
measures for the complexity of formal proofs in first-order predicate logic [6].

The problem of minimizing regular expressions accepting infinite languages is
PSPACE-complete, and even attaining a sublinear approximation ratio is already
equally hard [10]. When restricting to finite languages, there is of course the clas-
sical reduction from 3-SAT to the equivalence problem for regular expressions
without star [18, Theorem 2.3]. It is sometimes overlooked that, unlike the case
of infinite languages, the classical reduction does not imply hardness of the corre-
sponding minimization problem. In fact, no lower bounds for minimizing regular
expressions without Kleene star were known prior to the present work at all.2

Also, there are hardness results for minimizing acyclic nondeterministic finite
automata [3,11], and also for minimizing acyclic context-free grammars [15]—
but nothing thus far for regular expressions without star. In this work, we fill
this gap by proving tight lower and upper approximability bounds.

As a byproduct of our proofs, we also substantially improve the inapproxima-
bility bound for minimizing nondeterministic finite automata in the case of finite
languages, and give the first nontrivial approximation guarantee. The results are
summarized in Table 1.

Recent years have seen a renewed interest in the analysis of computational
problems, among others, on formal languages, since more fine-grained hardness
results can be achieved based on the exponential time hypothesis (ETH) than
with more traditional proofs based on the assumption P �= NP [1,2,5,8,23,24].
Namely, ETH posits that there is no algorithm that decides 3-SAT formulae
with n variables in time 2o(n), and is just one among other strong hypotheses
that were used during the last decade to perform fine-grained complexity studies;
for a short survey on results obtained by some of these hypotheses, we refer
to [25].

We contribute a fine-grained analysis of approximability and inapproxima-
bility for minimizing regular expressions without Kleene star. On the side of
approximation hardness, given such an expression of size s, we prove that it is
impossible to approximate the minimum size required by an equivalent regular
expression within a factor of O

(
s

(log s)δ

)
if the running time is bounded by a

1 See for example the following questions drawn from various sites: (i) P. Krauss:
Minimal regular expression that matches a given set of words, URL: https://cs.
stackexchange.com/q/72344, Accessed: 2021-01-02, (ii) J. Mason: A released perl
with trie-based regexps! URL: http://taint.org/2006/07/07/184022a.html, Accessed:
2020-07-21, (iii) pdanese (StackOverflow username): Speed up millions of regex
replacements in Python 3, URL: https://stackoverflow.com/q/42742810, Accessed:
2021-01-02, (iv) P. Scheibe: RegEx performance: Alternation vs Trie, URL: https://
stackoverflow.com/q/56177330, Accessed: 2021-01-02, and (v) Ch. Xu: Minimizing
size of regular expression for finite sets, URL: https://cstheory.stackexchange.com/
q/16860, Accessed: 2021-01-02.

2 See, e.g., item (v) of the previous footnote.

https://cs.stackexchange.com/q/72344
https://cs.stackexchange.com/q/72344
http://taint.org/2006/07/07/184022a.html
https://stackoverflow.com/q/42742810
https://stackoverflow.com/q/56177330
https://stackoverflow.com/q/56177330
https://cstheory.stackexchange.com/q/16860
https://cstheory.stackexchange.com/q/16860

On Minimizing Regular Expressions Without Kleene Star 247

Table 1. Coarse-grained overview of known and new results for minimization problems.
For better comparability, approximability is understood to be in polynomial time, and
hardness results are under classical assumptions such as P �= NP.

General Unary languages Finite languages

DFA Exactly solvable in P [17]

NFA PSPACE-complete [22],
not approximable
within o(n) [10],
trivially approximable
within O(n)

coNP-hard [22], not
approximable
within o(n) [10,11],
trivially approximable
within O(n)

DP-hard [11], not
approximable within√

n

2(log n)7/8−ε [3,12], trivially

approximable within O(n)

Not approximable within
n1−ε (Corollary 16),
approximable within n

log n
for

fixed alphabet (Theorem 18)

RE coNP-hard (Corollary 7), not
approximable within n1−ε

(Corollary 7), approximable
within n log log n

log n
(Theorem

11)

quasipolynomial function depending on δ, for every δ > 1, unless the ETH fails.
For approximation ratio O(s1−δ), we prove an exponential-time lower bound
depending on δ, assuming ETH. These lower bounds apply to alphabets of con-
stant size. On the algorithmic side, we show that the problem can be approx-
imated in polynomial time within O(s log log s

log s), where s is the size of the given
regular expression. For constant alphabet size, the bound improves to O(s

log s).
Finally, we devise a family of superpolynomial approximation algorithms that
attain the performance ratios of the lower bounds, while their running times are
just above those excluded by the ETH. For instance, we attain an approxima-
tion ratio of O

(
s

(log s)δ

)
in time 2O((log s)δ) for δ > 1, and a ratio of s1−δ in

time 2O(sδ) for δ > 0. These running times nicely fit with the excluded running
times of 2o((log s)δ) and of 2o(sδ), respectively, for these approximation ratios.

This paper is organized as follows: in the next section, we define the basic
notions relevant to this paper. Section 3 covers approximation hardness results
for various runtime regimes based on the ETH. Then in Sect. 4, these nega-
tive results are complemented with approximation algorithms that neatly attain
these lower bounds. In Sect. 5, we transfer some of these results to the minimiza-
tion problem for nondeterministic finite automata. To conclude this work, we
indicate possible directions for further research in the last section. Due to space
constraints, some of the proofs are omitted.

2 Preliminaries

We assume that the reader is familiar with the basic notions of formal language
theory as contained in [17]. In particular, let Σ be an alphabet and Σ∗ the set

248 H. Gruber et al.

of all words over the alphabet Σ including the empty word ε. The length of a
word w is denoted by |w|, where |ε| = 0, and the total number of occurrences of
the alphabet symbol a in w is denoted by |w|a. In this paper, we mainly deal with
finite languages. The order of a finite language L is the length of a longest word
belonging to L. A finite language L ⊆ Σ∗ is called homogeneous if all words in the
language have the same length. We say that a homogeneous language L ⊆ Σn is
full if L is equal to Σn. For languages L1, L2 ⊆ Σ∗, the left quotient of L1 and L2

is defined as L−1
1 L2 = { v ∈ Σ∗ | there is some w ∈ L1 such that wv ∈ L2 }.

If L1 is a singleton, i.e., L1 = {w}, for some word w ∈ Σ∗, we omit braces,
that is, we write w−1L2 instead of {w}−1L2. The set w−1L2 is also called the
derivative of L2 w.r.t. the word w. In order to fix the notation, we briefly recall
the definition of regular expressions and the languages described by them.

The regular expressions over an alphabet Σ are defined inductively in the
usual way:3 ∅, ε, and every letter a ∈ Σ is a regular expression; and when E
and F are regular expressions, then (E + F), (E · F), and (E)∗ are also regular
expressions. The language defined by a regular expression E, denoted by L(E), is
defined as follows: L(∅) = ∅, L(ε) = {ε}, L(a) = {a}, L(E +F) = L(E) ∪ L(F),
L(E · F) = L(E) · L(F), and L(E∗) = L(E)∗. The alphabetic width or size of a
regular expression E over an alphabet Σ, denoted by awidth(E), is defined as the
total number of occurrences of letters of Σ in E. For a regular language L, we
define its alphabetic width, awidth(L), as the minimum alphabetic width among
all regular expressions describing L.

We are interested in regular expression minimization w.r.t. its alphabetic
width (or, equivalently, its size). An algorithm that returns near-optimal solu-
tions is called an approximation algorithm. Assume that we are working on a
minimization problem in which each potential solution has a positive cost and
that we wish to find a near-minimal solution. We say that an approximation
algorithm for the problem has a performance guarantee of ρ(n) if for any input
of size n, the cost C of the solution produced by the approximation algorithm
is within a factor of ρ(n) of the cost C∗ of a minimal solution: C

C∗ ≤ ρ(n).
If the approximation algorithm is running in polynomial time, we speak of a
polynomial-time approximation algorithm. For most of our hardness results, we
assume the exponential time hypothesis (ETH) introduced in [19].

Exponential Time Hypothesis. There is a positive constant c such that the
satisfiability of a formula in 3-CNF with n variables and m clauses cannot be
decided in time 2cn(m + n)O(1).

In particular, using the Sparsification Lemma [19], the ETH implies that
there is no algorithm running in time 2o(m) that decides satisfiability of a 3-
SAT formula with m clauses. This is of course a much stronger assumption
than P �= NP. For more background on the topic, see, e.g., the survey [20].

3 For convenience, parentheses in regular expressions are sometimes omitted and con-
catenation is sometimes simply written as juxtaposition. The priority of operators
is specified in the usual fashion: concatenation is performed before union, and star
before both concatenation and union.

On Minimizing Regular Expressions Without Kleene Star 249

3 Inapproximability

In this section, we will show that, for a given regular expression without Kleene
star, the minimum size required by an equivalent regular expression cannot be
approximated within a certain factor if the running time is within certain bounds,
assuming the ETH. We start off with an estimate of the required regular expres-
sion size for a language which we shall use as gadget.

Lemma 1. Let Pr = {xy ∈ {0, 1}∗ | |x| = |y| = r and x = yR } denote the
language of all binary palindromes of length 2r. Then 2r ≤ awidth(Pr) ≤ 2r+2−4.

The upper bound is in fact tight, yet proving this takes a lot more effort [14].
Notwithstanding, the simple lower bound above suffices for the purpose of the
present work.

It was shown in [13] that taking the quotient of a regular language can cause
at most a quadratic blow-up in required regular expression size. Vice versa, the
alphabetic width of a language can be lower-bounded by the order of the square
root of the alphabetic width of any of its quotients. For our reduction, we need a
tighter relationship. This is possible if we resort to special cases. Let us consider
homogeneous languages and expressions in more detail. First, we need a simple
observation that turns out to be very useful in the forthcoming considerations.

Lemma 2. Let L ⊆ Σn be a homogeneous language. If E is a regular expression
describing L, then any subexpression of E describes a homogeneous language, too.

Now we are ready to consider the descriptional complexity of quotients of
homogeneous languages in detail.

Lemma 3. Let L ⊆ Σn be a homogeneous language. Then awidth(w−1L) ≤
awidth(L), for any word w ∈ Σ∗.

We build upon the classical coNP-completeness proof of the inequality prob-
lem for regular expressions without star given in [18, Theorem 2.3]. We recall
the reduction to make this paper more self-contained.

Theorem 4. Let ϕ be a formula in 3-DNF with n variables and m clauses. Then
a regular expression ζ can be computed in time O(m · n) such that the language
Z = L(ζ) is homogeneous and Z is full if and only if ϕ is a tautology.

Proof. Let ϕ =
∨m

i=1 ci be a formula in 3-DNF. We can assume without loss
of generality that no clause ci contains both xj and xj as a literal. For each
clause ci, let ζi = ζi1ζi2 · · · ζin, where

ζij =

⎧
⎪⎨
⎪⎩

(0 + 1) if both xj and xj are not literals in ci,

0 if xj is a literal in ci,

1 if xj is a literal in ci.

Let ζ = ζ1 +ζ2 + · · ·+ζm. Clearly, Z = L(ζ) ⊆ {0, 1}n. Let w in {0, 1}n. Then w
is in Z if and only if w satisfies some clause ci. Thus Z = {0, 1}n if and only if ϕ
is a tautology. This completes the reduction. �	

250 H. Gruber et al.

Now if we wanted to apply the reduction from Theorem 4 to the minimization
problem for regular expressions, the trouble is that we cannot predict the mini-
mum required regular expression size for Z = L(ζ) in case it is not full. To make
this happen, we use a similar trick as recently used in [15] for the analogous case
of context-free grammars. In the following lemma, we embed the language Pr

of all binary palindromes of length 2r together with the language Z = L(ζ) (as
defined in Theorem 4) into a more complex language Y . Depending on whether
or not Z is full, the alphabetic width of Y is at most linear or at least quadratic,
respectively, in m. Recall that m refers to the number of clauses in the given 3-
DNF formula ϕ.

Lemma 5. Let ϕ be a formula in 3-DNF with n variables and m clauses and
let ζ be the regular expression constructed in Theorem 4. Furthermore, let

Y = Z · {0, 1}2r ∪ {0, 1}n · Pr,

where Z = L(ζ) and Pr, for r ≤ m, is defined as in Lemma 1. Then awidth(Y) =
O(m) if Z is full, and awidth(Y) = Ω(2r) if Z is not full.

The above lemma can serve as a gap introducing reduction. For example, if
we take r = 2 log m, then Ω(2r) is in Ω(m2). Now we are in the position to state
our first inapproximability result.

Theorem 6. Let E be a regular expression without Kleene star of size s, and
let δ be a constant such that 0 < δ ≤ 1

2 . Then no deterministic 2o(sδ)-time
algorithm can approximate awidth(L(E)) within a factor of o(s1−δ), unless ETH
fails.

Proof. We give a reduction from the 3-DNF tautology problem as in Lemma 5.
That is, given a formula ϕ in 3-DNF with n variables and m clauses, we construct
a regular expression that generates the language Y = Z · {0, 1}2r ∪ {0, 1}n · Pr.
The sets Pr and Z are defined as in Lemma 1 and Theorem 4, respectively. Here,
the set Y features some carefully chosen parameter r, which will be fixed later
on. For now, we only assume 2 log m ≤ r ≤ m.

Next, we need to show that the reduction is correct in the sense that if Z is
full, then awidth(Y) is asymptotically strictly smaller than in the case where
it is not full. By Lemma 5, it follows that awidth(Y) = O(m) if Z is full
and awidth(Y) = Ω(2r), otherwise. Thus, the reduction is correct, since we have
assumed that r ≥ 2 log m, and consequently 2r = ω(m).

It is easy to see that the running time of the reduction is linear in the size
of the constructed regular expression describing Y . Now we estimate the size of
that regular expression. Recall from Theorem 4 that the regular expression ζ
has size O(m · n). Because formula ϕ is a 3-DNF, we have m ≥ n/3, and so
the size of ζ is in O(m2). The set {0, 1}n+2r admits a regular expression of size
O(m+n) = O(m); and awidth(Pr) = Θ(2r) by Lemma 1. Since we have assumed
that r ≥ 2 log m, the order of magnitude of the constructed regular expression
is s = Θ(2r).

On Minimizing Regular Expressions Without Kleene Star 251

Now we need to fix the parameter r in our reduction; let us pick r = 1
δ · log m.

Recall that the statement of the theorem requires 1
δ ≥ 2, thus we have r ≥

2 log m. So this is a valid choice for the parameter r—in the sense that the
reduction remains correct.

Towards a contradiction with the ETH, assume that there is an algorithm Aδ

approximating the alphabetic width within o
(
s1−δ

)
running in time 2o(sδ).

Then Aδ could be used to decide whether Z is full as follows: the putative
approximation algorithm Aδ returns a cost C that is at most o(s1−δ) times the
optimal cost C∗, that is, C = o(s1−δ) · C∗ = o(s1−δ) · awidth(Y).

On the one hand, if Z is full, then awidth(Y) = O(m) by Lemma 5. In this
case, the hypothetical approximation algorithm Aδ returns a cost C with C =

o(m · s1−δ) = o

(
m · Θ

(
m

1
δ

)1−δ
)

= o
(
m

1
δ (1−δ)+1

)
= o

(
m

1
δ

)
= o (2r). In the

second step of the above calculation, we used the fact that s = Θ(2r) = Θ(m
1
δ)

and in the last step, we used the fact that we chose r as r = 1
δ · log m, which is

equivalent to 2r = m
1
δ .

On the other hand, in case Z is not full, then Lemma 5 states that
awidth(Y) = Ω (2r). Using the constants implied by the O-notation, the size
returned by algorithm Aδ could thus be used to decide, for large enough m,
whether Z is full, and thus by Theorem 4 whether the 3-DNF formula ϕ is a
tautology.

It remains to show that the running time of Aδ in terms of m is in
2o(m), which contradicts the ETH. Recall again that s = Θ(m

1
δ); we thus can

express the running time of the algorithm Aδ in terms of m, namely, 2o(sδ) =

2o
(

Θ(m
1
δ)δ

)
= 2o

(
(c·m 1

δ)δ
)

= 2o(m), for some constant c, which yields the desired
contradiction. �	

Assuming ETH, the above proof also implies that the problem cannot be
solved exactly in time 2o(

√
s). The inapproximability result can be stated more

simply when using the classical hardness assumption P �= NP:

Corollary 7. Let E be a regular expression without Kleene star of size s, and
let δ be a constant with 0 < δ < 1. Then no deterministic polynomial-time
algorithm can approximate awidth(L(E)) within a factor of s1−δ, unless P=NP.

Proof. The reduction in Theorem 6 is from a coNP-complete problem and runs
in polynomial time for every choice of δ ≥ 1

2 . Observe that it suffices to show
approximation hardness for δ ≤ 1

2 , since the weaker hardness result for δ > 1
2 is

then implied. �	
Again, assuming ETH, we can change the parameter r in the reduction in

Theorem 6 to trade a sharper inapproximability ratio against a weaker lower
bound on the running time.

Theorem 8. Let E be a regular expression without Kleene star of size s, and
let δ be a constant with δ > 1. Then no deterministic 2o(log s)δ

-time algorithm can
approximate awidth(L(E)) within a factor of o

(
s/(log s)δ

)
, unless ETH fails.

252 H. Gruber et al.

4 Approximability

From the previous section, we know that there are severe limits on what we
can expect from efficient approximation algorithms. In this section, we present
different approximation algorithms for minimizing regular expressions describing
finite languages. Each of them introduces a new algorithmic hook, some of which
might be useful in implementations. We start off with an algorithm that requires
the input to be specified non-succinctly as a list of words. In case the alphabet
size is sufficiently large, listing simply all words is enough; otherwise we construct
a deterministic finite automaton and further distinguish on the number of states.
This leads to the following result.

Theorem 9. Let L be a finite language given as a list of words, with s being the
sum of the word lengths. Then awidth(L) can be approximated in deterministic
polynomial time within a factor of O(s√

log s
).

Recall that the minimal deterministic finite automaton can be exponentially
larger than regular expressions in the worst case, also for finite languages [21].
Also, the conversion from deterministic finite automata to regular expressions
is only quasipolynomial in the worst case. These facts of course affect the per-
formance guarantee. Nevertheless, we believe that the scheme from the proof
of Theorem 9 is worth a look, since the minimal deterministic finite automa-
ton may eliminate a lot of redundancy in practice. Furthermore, the algorithm
works equally if we are able to construct a nondeterministic finite automaton
which is smaller than the minimal deterministic finite automaton. To this end,
some recently proposed effective heuristics for size reduction of nondeterministic
automata could be used [4].

Admittedly, regular expressions are exponentially more succinct than a list
of words and our inapproximability results crucially rely on that. So, we now
turn to the second approximation algorithm. It makes use of the fact that if a
given regular expression E describes very short words only, then it is not too
difficult to produce a regular expression that is noticeably more succinct than E.
In that case, the algorithm builds a trie, which then can be converted into an
equivalent regular expression of size linear in the trie.

For the purpose of this paper, a trie (also known as prefix tree) is simply a
tree-shaped deterministic finite automaton with the following properties:

1. The edges are directed away from the root, i.e., towards the leaves.
2. The root is the start state.
3. All leaves are accepting states.
4. Each edge is labelled with a single alphabet symbol.

The last condition is needed if we want to bound the size of an equivalent regular
expression in terms of the nodes in the trie. The following lemma seems to be
folklore; the observation is used, e.g., in [16].

Lemma 10. Let T be a trie with n nodes accepting L. Then an equivalent regular
expression of alphabetic width at most n − 1 can be constructed in deterministic
polynomial time from T .

On Minimizing Regular Expressions Without Kleene Star 253

Now we have collected all tools for an approximation algorithm that works
with regular expressions as input, which even comes with an improved approxi-
mation ratio.

Theorem 11. Let E be a regular expression without Kleene star of alphabetic
width s. Then awidth(L(E)) can be approximated in deterministic polynomial
time within a factor of O

(
s log log s

log s

)
.

Proof. We again start with a case distinction by alphabet size.

1. The size of the alphabet used in L is at most log s. We further distinguish the
cases in which the order of L(E), i.e., the length of a longest word in L(E), is
less than log s

log log s or not. The order of L(E) can be easily computed recursively,
in polynomial time, by traversing the syntax tree of E. We consider two
subcases:
(a) The order of L(E) is less than log s

log log s . We enumerate the words in L(E),
e.g., by performing a membership test for each word of length less than

log s
log log s . Then we use a standard algorithm to construct a trie for L(E).
The worst case for the size of T is when L contains all words of length
less than log s

log log s . Then T is a full (log s)-ary trie of height log s
log log s . All

nodes are accepting, giving a one-to-one correspondence between the
number of nodes in T and the number of words in L(T). That is, the

number of nodes in T is equal to
∑ log s

log log s −1

i=0 (log s)i = O

(
(log s)

log s
log log s

log s

)
.

Using the fact that (log s)
log s

log log s = s, this is in O
(

s
log s

)
and we can

construct an equivalent regular expression of that size in deterministic
polynomial time by virtue of Lemma 10.

(b) The order of L(E) is at least log s
log log s . We make use of the observation

that the order of L(E), i.e., the length of a longest word in L(E), is a
lower bound on the required regular expression size, as observed, e.g.,
in [7, Proposition 6]. That is, the optimal solution is at least of size

log s
log log s and thus the regular expression E given as input is already a
feasible solution that is at most s log log s

log s times larger than the optimal
solution.

2. The size of the alphabet used in L is greater than log s. The size of the
alphabet used in L is likewise a lower bound on the required regular expression
size and, similarly to the previous case, the input is a feasible solution that
is at most s

log s times greater than the optimal solution size.

This proves the stated claim. �	
For alphabets of constant size, the performance ratio can be slightly im-

proved—by a factor of log log s.

Theorem 12. Let E be a regular expression without Kleene star of alphabetic
width s over a fixed k-ary alphabet. Then awidth(L(E)) can be approximated in
deterministic polynomial time within a factor of O

(
s

log s

)
.

254 H. Gruber et al.

A better performance ratio can be achieved if we allow a superpolynomial
running time.

Theorem 13. Let E be a regular expression without Kleene star of alphabetic
width s, and let f(s) be a time constructible4 function with f(s) = Ω(log s).
Then awidth(L(E)) can be approximated in deterministic time 2O(f(s)) within a
factor of O

(
s log f(s)

f(s)

)
.

Proof. First, as in Theorem 11, we make a case distinction by alphabet size,
and then distinguish by the order of the language. Recall that the order of
the language can be computed in polynomial time in a recursive manner on
the syntax tree of E. The main new ingredient of this proof is a brute-force
search for an optimal solution, powered by a context-free grammar that efficiently
generates the search space of candidate regular expressions. So, we again start
with distinguishing by alphabet size:

1. The size k of the alphabet used in L(E) is at most f(s). Again, we consider
two subcases:
(a) The order of L(E) is less than f(s)/ log f(s). We make use of the fact

that there is a context-free grammar generating all regular expressions
describing finite languages over the alphabet used in E. Such a gram-
mar can be used to enumerate all regular expressions of size less than
f(s)/ log f(s) with polynomial delay [9]. For finite languages, there is
an efficient grammar generating at most O(f(s))f(s)/ log f(s) of these
candidates5 in total [16, Prop. 8.3]. Observe that O(f(s))f(s)/ log f(s) =
2O(f(s)). For each enumerated candidate regular expression C and each
word w of length less than f(s)/ log f(s), we test whether w ∈ L(E),
and if so, we verify that w ∈ L(C). If C passes all these tests, we can
safely conclude that L(E) ⊆ L(C). To verify whether L(C) ⊆ L(E),
we enumerate the words in L(E) and build a trie T that accepts the
language. Notice that the trie has at most f(s)O(f(s)/ log f(s)) = 2O(f(s))

nodes. Since T is a deterministic finite automaton, it can be easily com-
plemented, and we can apply the usual product construction—with the
position automaton of C—to check whether L(C) ∩ Σ∗\L(T) = ∅. In
this way, each candidate regular expression can be tested with a running
time bounded by a polynomial in 2O(f(s)). Recall that the total number
of candidates is in 2O(f(s)), and that the candidates can be enumerated

4 We say that a function f(n) is time constructible if there exists an f(n) time-bounded
multitape Turing machine M such that for each n there exists some input on which M
actually makes f(n) moves [17].

5 The grammar in [16, Proposition 8.3] does not generate all valid regular expressions,
but incorporates some performance tweaks. These tweaks perfectly fit our purpose:
while the grammar does not generate all feasible solutions, it still generates at least
one optimal solution. More precisely, given a finite language L with awidth(L) =
k, the context-free grammar is guaranteed to enumerate a regular expression of
alphabetic width k for it.

On Minimizing Regular Expressions Without Kleene Star 255

with polynomial delay. We conclude that in this case, if L(E) admits
an equivalent regular expression of size at most f(s)/ log f(s), an opti-
mal solution can be found by exhaustive search with a running time
bounded by 2(O(f(s)))O(1) · 2(O(f(s)))O(1)

= 2O(f(s)). The performance
ratio is s log f(s)

f(s) .
(b) The order of L(E) is at least f(s)/ log f(s). Again, the order of L(E)

is a lower bound on required regular expression size. Thus the regular
expression E given as input is already a feasible solution with perfor-
mance ratio s log f(s)

f(s) .
2. The size of the alphabet used in L(E) is greater than f(s). Similarly, the size

of the used alphabet is a lower bound on the required regular expression size.
Thus, the regular expression E given as input is a feasible solution, whose
performance ratio is s

f(s) in this case.

This completes the proof. �	
Observe that although the statement of Theorem 13 specializes to Theo-

rem 11 if we set f(s) = log s, the two proofs nevertheless use different algorithms.
Both approaches will have their own merits and their own tradeoffs between run-
ning time and performance guarantees when put to practice. Again, in case the
alphabet size is bounded, we can slightly improve the performance guarantee of
the previous theorem—compare with Theorem 12.

Theorem 14. Let E be a regular expression without Kleene star of alphabetic
width s over a fixed k-ary alphabet, and let f(s) be a time constructible function
with f(s) = Ω(log s). Then awidth(L(E)) can be approximated in deterministic
time 2O(f(s)) within a factor of O

(
s

f(s)

)
.

To compare this with our inapproximability results, we pick f(s) = sδ, for
some δ ≤ 1

2 , to obtain an approximation ratio of s1−δ in time 2O(sδ). Here, Theo-

rem 6 rules out an approximation ratio of o(s1−δ) within a running time of 2o(sδ).
Another pick is f(s) = (log s)δ, for some δ > 1, yielding an approximation
ratio O

(
s

(log s)δ

)
in time 2O(log s)δ

. In contrast, Theorem 8 rules out an approx-

imation ratio of o
(

s
(log s)δ

)
in time 2o(log s)δ

. In both cases, the upper bound
asymptotically matches the obtained lower bounds, and thus there remains lit-
tle room for improvements, unless the ETH fails.

5 Minimizing Nondeterministic Finite Automata

In this section, we show that several of our results apply mutatis mutandis to
the problem of minimizing acyclic nondeterministic finite automata, i.e., those
accepting finite languages.

256 H. Gruber et al.

Theorem 15. Let A be an s-state acyclic nondeterministic finite automaton,
and let δ be a constant such that 0 < δ ≤ 1

2 . Then no deterministic 2o(sδ)-time
algorithm can approximate the nondeterministic state complexity of L(A) within
a factor of O(s1−δ), unless ETH fails.

Corollary 16. Let A be an s-state acyclic nondeterministic finite automaton,
and let δ be a constant with 0 < δ < 1. Then no deterministic polynomial-time
algorithm can approximate the nondeterministic state complexity of L(A) within
a factor of O(s1−δ), unless P=NP. �	

The quasipolynomial-time inapproximability result carries over as well:

Theorem 17. Let A be an s-state acyclic nondeterministic finite automaton,
and let δ be a constant with δ > 1. Then no deterministic 2o(log s)δ

-time algorithm
can approximate the nondeterministic state complexity of L(A) within a factor
of o(s/(log s)δ), unless ETH fails. �	

Regarding positive approximability results, we cannot use the entire toolkit
that we have developed for regular expressions. For instance, the size of the used
alphabet does not bound the number of states needed. Also, even for binary
alphabets, the number of nondeterministic s-state finite automata is in 2Ω(s2),
which renders the enumeration of automata with few states less feasible. At least,
the polynomial-time approximation for bounded alphabet size carries over:

Theorem 18. Let A be an s-state acyclic nondeterministic finite automaton
over a fixed k-ary alphabet. Then the nondeterministic state complexity of
L(A) can be approximated in deterministic polynomial time within a factor
of O

(
s

log s

)
.

6 Conclusion

We conclude by indicating some possible directions for further research. First,
we would like to continue with investigating inapproximability bounds within
polynomial time based on the strong exponential time hypothesis (SETH). Fur-
ther topics are exact exponential-time algorithms and parameterized complexity.
In addition to the natural parameter of desired solution size, the order of the
finite language and the alphabet size seem to be natural choices.

Given the practical relevance of the problem we investigated, we think that
implementing some of the ideas from the above approximation algorithms is
worth a try. Also, POSIX regular expressions restricted to finite languages are
a more complex model than the one we investigated, but a more practical one
as well. Although we would rather not expect better approximability bounds in
that model, we suspect that character classes and other mechanisms can offer
practical hooks for reducing the size of regular expressions.

Acknowledgments. We would like to thank Michael Wehar for some discussion, and
the anonymous reviewers for their valuable comments.

On Minimizing Regular Expressions Without Kleene Star 257

References

1. Abboud, A., Backurs, A., Williams, V.V.: If the current clique algorithms are
optimal, so is Valiant’s parlser. SIAM J. Comput. 47(6), 2527–2555 (2015)

2. Bringmann, K., Grønlund, A., Larsen, K.G.: A dichotomy for regular expression
membership testing. In: Proceedings of the 58th Annual IEEE Symposium on
Foundations of Computer Science, pp. 307–318. IEEE, Berkeley, October 2017

3. Chalermsook, P., Heydrich, S., Holm, E., Karrenbauer, A.: Nearly tight approxima-
bility results for minimum biclique cover and partition. In: Schulz, A.S., Wagner,
D. (eds.) ESA 2014. LNCS, vol. 8737, pp. 235–246. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-44777-2 20

4. Clemente, L., Mayr, R.: Efficient reduction of nondeterministic automata with
application to language inclusion testing. Log. Methods Comput. Sci. 15(1) (2019)

5. de Oliveira Oliveira, M., Wehar, M.: On the fine grained complexity of finite
automata non-emptiness of intersection. In: Jonoska, N., Savchuk, D. (eds.) DLT
2020. LNCS, vol. 12086, pp. 69–82. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-48516-0 6

6. Eberhard, S., Hetzl, St.: On the compressibility of finite languages and formal
proofs. Inform. Comput. 259, 191–213 (2018)

7. Ellul, K., Krawetz, B., Shallit, J., Wang, M.: Regular expressions: new results and
open problems. J. Autom. Lang. Comb. 10(4), 407–437 (2005)

8. Fernau, H., Krebs, A.: Problems on finite automata and the exponential time
hypothesis. Algorithms 10(1), 24 (2017)

9. Florêncio, Ch.C., Daenen, J., Ramon, J., Van den Bussche, J., Van Dyck, D.: Naive
infinite enumeration of context-free languages in incremental polynomial time. J.
Univ. Comput. Sci. 21(7), 891–911 (2015)

10. Gramlich, G., Schnitger, G.: Minimizing NFA’s and regular expressions. J. Comput.
Syst. Sci. 73(6), 908–923 (2007)

11. Gruber, H., Holzer, M.: Computational complexity of NFA minimization for finite
and unary languages. In: Preproceedings of the 1st International Conference on
Language and Automata Theory and Applications, Technical Report 35/07, pp.
261–272. Research Group on Mathematical Linguistics, Universitat Rovira i Virgili,
Tarragona, March 2007

12. Gruber, H., Holzer, M.: Inapproximability of nondeterministic state and transition
complexity assuming P �= NP. In: Harju, T., Karhumäki, J., Lepistö, A. (eds.) DLT
2007. LNCS, vol. 4588, pp. 205–216. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-73208-2 21

13. Gruber, H., Holzer, M.: Language operations with regular expressions of polyno-
mial size. Theoret. Comput. Sci. 410(35), 3281–3289 (2009)

14. Gruber, H., Holzer, M.: Optimal regular expressions for palindromes of given
length. In: Bonchi, F., Puglisi, S.J. (eds.) Proceedings of the 46th International
Symposium on Mathematical Foundations of Computer Science, Leibniz Inter-
national Proceedings in Informatics. Schloss Dagstuhl-Leibniz-Zentrum für Infor-
matik, Dagstuhl (2021, accepted)

15. Gruber, H., Holzer, M., Wolfsteiner, S.: On minimal grammar problems for finite
languages. In: Hoshi, M., Seki, S. (eds.) DLT 2018. LNCS, vol. 11088, pp. 342–353.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98654-8 28

16. Gruber, H., Lee, J., Shallit, J.: Enumerating regular expressions and their lan-
guages. arXiv:1204.4982 [cs.FL], April 2012

https://doi.org/10.1007/978-3-662-44777-2_20
https://doi.org/10.1007/978-3-030-48516-0_6
https://doi.org/10.1007/978-3-030-48516-0_6
https://doi.org/10.1007/978-3-540-73208-2_21
https://doi.org/10.1007/978-3-540-73208-2_21
https://doi.org/10.1007/978-3-319-98654-8_28
http://arxiv.org/abs/1204.4982

258 H. Gruber et al.

17. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and
Computation. Addison-Wesley, Boston (1979)

18. Hunt III, H.B.: On the time and tape complexity of languages I. In: Proceedings
of the 5th Annual ACM Symposium on Theory of Computing, pp. 10–19. ACM,
Austin, April-May 1973

19. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential
complexity? J. Comput. Syst. Sci. 63(4), 512–530 (2001)

20. Lokshtanov, D., Marx, D., Saurabh, S.: Lower bounds based on the exponential
time hypothesis. Bull. Eur. Assoc. Theor. Comput. Sci. 105, 41–72 (2011)

21. Mandl, R.: Precise bounds associated with the subset construction on various
classes of nondeterministic finite automata. In: Proceedings of the 7th Princeton
Conference on Information and System Sciences, pp. 263–267, March 1973

22. Meyer, A.R., Stockmeyer, L. J.: The equivalence problem for regular expressions
with squaring requires exponential time. In: Proceedings of the 13th Annual Sym-
posium on Switching and Automata Theory, pp. 125–129. IEEE Society Press,
October 1972

23. Mráz, F., Pr̊uša, D., Wehar, M.: Two-dimensional pattern matching against basic
picture languages. In: Hospodár, M., Jirásková, G. (eds.) CIAA 2019. LNCS, vol.
11601, pp. 209–221. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
23679-3 17

24. Wehar, M.: Hardness results for intersection non-emptiness. In: Esparza, J., Fraig-
niaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014, Part II. LNCS, vol.
8573, pp. 354–362. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
662-43951-7 30

25. Williams, V.V.: On some fine-grained questions in algorithms and complexity. In:
Sirakov, B., de Souza, P.N., Viana, M. (eds.) Proceedings of the International
Congress of Mathematicians, pp. 3447–3487. World Scientific, Rio de Janeiro, April
2018

https://doi.org/10.1007/978-3-030-23679-3_17
https://doi.org/10.1007/978-3-030-23679-3_17
https://doi.org/10.1007/978-3-662-43951-7_30
https://doi.org/10.1007/978-3-662-43951-7_30

Computational Complexity of Computing
a Quasi-Proper Equilibrium

Kristoffer Arnsfelt Hansen1(B) and Troels Bjerre Lund2

1 Aarhus University, Aarhus, Denmark
arnsfelt@cs.au.dk

2 IT-University of Copenhagen, Copenhagen, Denmark
trbj@itu.dk

Abstract. We study the computational complexity of computing or
approximating a quasi-proper equilibrium for a given finite extensive
form game of perfect recall. We show that the task of computing a sym-
bolic quasi-proper equilibrium is PPAD-complete for two-player games.
For the case of zero-sum games we obtain a polynomial time algorithm
based on Linear Programming. For general n-player games we show that
computing an approximation of a quasi-proper equilibrium is FIXPa-
complete. Towards our results for two-player games we devise a new
perturbation of the strategy space of an extensive form game which in
particular gives a new proof of existence of quasi-proper equilibria for
general n-player games.

1 Introduction

A large amount of research has gone into defining [1,13,18,22,23] and comput-
ing [5,7,8,10,17,25] various refinements of Nash equilibria [19]. The motivation
for introducing these refinements has been to eliminate undesirable equilibria,
e.g., those relying on playing dominated strategies.

The quasi-proper equilibrium, introduced by van Damme [1], is one of the
more refined solution concepts for extensive form games. Any quasi-proper equi-
librium is quasi-perfect, and therefore also sequential, and also trembling hand
perfect in the associated normal form game. Beyond being a further refinement
of the quasi-perfect equilibrium [1], it is also conceptually related in that it
addresses a deficiency of the direct translation of a normal form solution con-
cept to extensive form games. One of the most well known refinements is Selten’s
trembling hand perfect equilibrium, originally defined [22] for normal form games,
and the solution concept is usually referred to as normal-form perfect. This can
be translated to extensive form games, by applying the trembling hand defini-
tion to each information set of each player, which yields what is now known
as extensive-form perfect equilibria [23]. However, this translation introduces
undesirable properties, first pointed out by Mertens [16]. Specifically, Mertens

The first author is supported by the Independent Research Fund Denmark under grant
no. 9040-00433B.

c© Springer Nature Switzerland AG 2021
E. Bampis and A. Pagourtzis (Eds.): FCT 2021, LNCS 12867, pp. 259–271, 2021.
https://doi.org/10.1007/978-3-030-86593-1_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86593-1_18&domain=pdf
http://orcid.org/0000-0002-1155-8072
https://doi.org/10.1007/978-3-030-86593-1_18

260 K. A. Hansen and T. B. Lund

presents a certain two-player voting game where all extensive-form perfect equi-
libria have weakly dominated strategies in their support. That is, extensive-form
perfection is in general inconsistent with admissibility. Mertens argues that quasi-
perfection is conceptually superior to Selten’s notion of extensive-form perfection,
as it avoids the cause of the problem in Mertens’ example. It achieves this with
a subtle modification of the definition of extensive-form perfect equilibria, which
in effect allows each player to plan as if they themselves were unable to make
any future mistakes. Further discussion of quasi-perfection can be found in the
survey of Hillas and Kohlberg [11].

One of the most restrictive equilibrium refinements of normal-form games is
that of Myerson’s normal-form proper equilibrum [18], which is a refinement of
Selten’s normal-form perfect equilibrium. Myerson’s definition can similarly be
translated to extensive form, again by applying the definition to each informa-
tion set of each player, which yields the extensive-form proper equilibria. Not
surprisingly, all extensive-form proper equilibria are also extensive-form perfect.
Unfortunately, this also means that Merten’s critique applies equally well to
extensive-form proper equilibria. Again, the definition can be subtely modified
to sidestep Merten’s example, which then gives the definition for quasi-proper-
equilibria [1]. It is exactly this solution concept that is the focus of this paper.

1.1 Contributions

The main novel idea of the paper is a new perturbation of the strategy space
of an extensive form game of perfect recall, in which a Nash equilibrium is an
ε-quasi-proper equilibrium of the original game. This construction works for any
number of players and in particular directly gives a new proof of existence of
quasi-proper equilibria for general n-player games.

From a computational perspective we can, in the important case of two-player
games, exploit the new pertubation in conjunction with the sequence form of
extensive form games [12] to compute a symbolic quasi-proper equilibrium by
solving a Linear Complementarity Problem. This immediately implies PPAD-
membership for the task of computing a symbolic quasi-proper equilibrium. For
the case of zero-sum games a quasi-proper equilibrium can be computed by
solving just a Linear program which in turn gives a polynomial time algorithm.

For games with more than two players there is, from the viewpoint of compu-
tational complexity, no particular advantage in working with the sequence form.
Instead we work directly with behavior strategies and go via so-called δ-almost
ε-quasi-proper equilibrium, which is a relaxation of ε-quasi-proper equilibrium.
We show FIXPa-membership for the task of computing an approximation of
a quasi-proper equilibrium. We leave the question of FIXP-membership as an
open problem similarly to previous results about computing Nash equilibrium
refinements in games with more than two players [2,3,8].

Since we work with refinements of Nash equilibrium, PPAD-hardness for two-
player games and FIXPa-hardness for n-player games, with n ≥ 3 follow directly.
This combined with our membership results for PPAD and FIXPa implies PPAD-
completeness and FIXPa-completeness, respectively.

Computational Complexity of Computing a Quasi-Proper Equilibrium 261

1.2 Relation to Previous Work

Any strategic form game may be written as an extensive form game of compara-
ble size, and any quasi-proper equilibrium of the extensive form representation is
a proper equilibrium of the strategic form game. Hence our results fully general-
ize previous results for computing [24] or approximating [8] a proper equilibrium.
The generalization is surprisingly clean, in the sense that if a bimatrix game is
translated into an extensive form game, the strategy constraints introduced in
this paper will end up being identical to those defined in [24] for the given bima-
trix game. This is surprising, since a lot of details have to align for this structure
to survive through a translation to a different game model. Likewise, if a strate-
gic form game with more than two players is translated into an extensive form
game, the fixed point problem we construct in this paper is identical to that for
strategic form games [8].

The quasi-proper equilibria are a subset of the quasi-perfect equilibria, so
our positive computational results also generalize the previous results for quasi-
perfect equilibria [17]. Again, the generalization is clean; if all choices in the game
are binary, then quasi-perfect and quasi-proper coincide, and the constraints
introduced in this paper work out to be exactly the same as those for computing
a quasi-perfect equilibrium. The present paper thus manages to cleanly generalize
two different constructions in two different game models.

2 Preliminaries

2.1 Extensive Form Games

A game Γ in extensive form of imperfect information with n players is given as
follows. The structure of Γ is determined by a finite tree T . For a non-leaf node
v, let S(v) denote the set of immediate successor nodes. Let Z denote the set
of leaf nodes of T . In a leaf-node z ∈ Z, player i receives utility ui(z). Non-leaf
nodes are either chance-nodes or decision-nodes belonging to one of the players.
To every chance node v is associated a probability distribution on S(v). The
set Pi of decision-nodes for Player i is partitioned into information sets. Let Hi

denote the information sets of Player i. To every decision node v is associated a
set of |S(v)| actions and these label the edges between v and S(v). Every decision
node belonging to a given information set h shares the same set Ch of actions.
Define mh = |Ch| to be the number of actions of every decision node of h. The
game Γ is of perfect recall if every node v belonging to an information set h of
Player i share the same sequence of actions and information sets of Player i that
are observed on the path from the root of T to v. We shall only be concerned
with games of perfect recall [14].

A local strategy for Player i at information set h ∈ Hi is a probability
distribution bih on Ch assigning a behavior probability to each action in Ch and
in turn induces a probability distribution on S(v) for every v ∈ h. A local strategy
bih for every information set h ∈ Hi defines a behavior strategy bi for Player i.
The behavior strategy bi is fully mixed if bih(c) > 0 for every h ∈ Hi and every

262 K. A. Hansen and T. B. Lund

c ∈ Ch. Given a local strategy b′
ih denote by bi/b′

ih the result of replacing bih

by b′
ih. In particular if c ∈ Ch we let bi/c prescribe action c with probability 1

in h. For another behavior strategy b′
i and an information set h for Player i

we let bi/hb′
i denote the behavior strategy that chooses actions according to bi

until h is reached after which actions are chosen according to b′
i. We shall also

write bi/hb′
i/c = bi/h(b′

i/c). A behavior strategy profile b = (b1, . . . , bn) consists
of a behavior strategy for each player. Let B be the set of all behavior strategy
profiles of Γ . We let b−i = (b1, . . . , bi−1, bi+1, . . . , bn) and (b−i; b′

i) = b/b′
i =

(b1, . . . , bi−1, b
′
i, bi+1, . . . , bn). Furthermore, for simplicity of notation, we define

b/hb′
i = b/(bi/hb′

i), and b/hb′
i/c = b/(bi/hb′

i/c).
A behavior strategy profile b = (b1, . . . , bn) gives together with the probability

distributions of chance-nodes a probability distribution on the set of paths from
the root-node to a leaf-node of T . We let ρb(v) be the probability that v is
reached by this path and for an information set h we let ρb(h) =

∑
v∈h ρb(v) be

the total probability of reaching a node of h. Note that we define ρb(v) for all
nodes v of T . When ρb(h) > 0 we let ρb(v | h) be the conditional probability
that node v is reached given that h is reached. The realization weight ρbi(h) for
Player i of an information set h ∈ Hi is the product of behavior probabilities
given by bi on any path from the root to h. Note that this is well-defined due to
the assumption of perfect recall.

Given a behavior strategy profile b = (b1, . . . , bn), the payoff to Player i is
Ui(b) =

∑
z∈Z ui(z)ρb(z). When ρb(h) > 0 the conditional payoff to Player i

given that h is reached is then Uih(b) =
∑

z∈Z ui(z)ρb(z | h).
Realization weights are also defined on actions, to correspond to Player i’s

weight assigned to the given action:

∀h ∈ Hi, c ∈ Ch : ρbi(c) = ρbi(h)bi(c) (1)

We note that the realization weight of an information set is equal to that of
the most recent action by the same player, or is equal to 1, if no such action
exists.

A realization plan for Player i is a strategy specified by its realization weights
for that player. As shown by Koller et al. [12], the set of valid realization weights
for Player i can be expressed by the following set of linear constraints

∀h ∈ Hi : ρbi(h) =
∑

c∈Ch

ρbi(c) ∧ ∀c ∈ Ch : ρbi(c) ≥ 0 (2)

in the variables ρbi(c) letting ρbi(h) refer to the realization weight of the most
recent action of Player i before reaching information set h or to the constant 1
if h is the first time Player i moves. This formulation is known as the sequence
form [12], and has the advantage that for two-player games, the utility of each
player is bilinear, i.e., linear in the realization weights of each player. As shown
by Koller et al. this allows the equilibria to be characterized by the solutions to
a Linear Complementarity Problem for general sum games, and as solutions to a
Linear Program for zero-sum games. We will build on this insight for computing
quasi-proper equilibria of two-player games.

Computational Complexity of Computing a Quasi-Proper Equilibrium 263

Given a behavior strategy for a player, the corresponding realization plan
can be derived by multiplying the behavior probability of an action with the
realization weight of its information set. However, it is not always the case that
the reverse is possible. The behavior probability of an action is the ratio of the
realization weight of an action to the realization weight of its information set, but
if any of the preceeding actions by the player have probability 0, the ratio works
out to 0

0 . In the present paper, the restriction on the strategy space ensures that
no realization weight is zero, until we have retrieved the behavior probabilities.

A strategy profile b is a Nash equilibrium if for every i and every behavior
strategy profile b′

i of Player i we have Ui(b) ≥ Ui(b/b′
i). Our object of study is

quasi-proper equilibrium defined by van Damme [1] refining the Nash equilibrium.
We first introduce a convenient notation for quantities used in the definition.
Let b be a behavior strategy profile, h an information set of Player i such that
ρb(h) > 0, and c ∈ Ch. We then define

Kh,c
i (b) = max

b′
i

Uih(b/hb′
i/c) . (3)

When b′
i is a pure behavior strategy we say that b/hb′

i is a h-local purification of
b. We note that Uih(b/hb′

i/c) always assumes its maximum for a pure behavior
strategy b′

i.

Definition 1 (Quasi-proper equilibrium). Given ε > 0, a behavior strategy
profile b is an ε-quasi-proper equilibrium if b is fully mixed and satisfies for
every i, every information set h of Player i, and every c, c′ ∈ Ch, that bih(c) ≤
εbih(c′) whenever Kh,c

i (b) < Kh,c′
i (b).

A behavior strategy profile b is a quasi-proper equilibrium if and only if it is
a limit point of a sequence of ε-quasi-proper equilibria with ε →+ 0.

We shall also consider a relaxation of quasi-proper equilibrium in analogy to
relaxations of other equilibrium refinements due to Etessami [2].

Definition 2. Given ε > 0 and δ > 0, a behavior strategy profile b is a δ-almost
ε-quasi-proper equilibrium if b is fully mixed and satisfies for every Player i,
every information set h of Player i, and every c, c′ ∈ Ch that bih(c) ≤ εbih(c′)
whenever Kh,c

i (b) + δ ≤ Kh,c′
i (b).

2.2 Strategic Form Games

A game Γ in strategic form with n players is given as follows. Player i has a
set Si of pure strategies. To a pure strategy profile a = (a1, . . . , an) Player i is
given utility ui(a). A mixed strategy xi for Player i is a probability distribution
on Si. We identify a pure strategy with the mixed strategy that selects the pure
strategy with probability 1. A strategy profile x = (x1, . . . , xn) consists of a
mixed strategy for each player. To a strategy profile x Player i is given utility
Ui(x) =

∑
a∼x ui(a)

∏
j xj(aj). A strategy profile x is fully mixed if xi(ai) > 0 for

all i and all ai ∈ Si. We let x−i = (x1, . . . , xi−1, xi+1, . . . , xn). Given a strategy x′
i

for Player i we define (x−i;x′
i) = x/x′

i = (x1, . . . , xi−1, x
′
i, xi+1, . . . , xn).

264 K. A. Hansen and T. B. Lund

A strategy profile x is a Nash equilibrium if for every i and every strategy x′
i

of Player i we have Ui(x/x′
i) ≤ Ui(x). Myerson defined the notion of proper

equilibrium [18] refining the Nash equilibrium.

Definition 3 (Proper equilibrium). Given ε > 0, a strategy profile x is an ε-
proper equilibrium if x is fully mixed and satisfies for every i and every c, c′ ∈ Si

that xi(c) ≤ εxi(c′) whenever Ui(x−i; c) < Ui(x−i; c′).
A strategy profile x is a proper equilibrium if and only if it is a limit point of

a sequence of ε-proper equilibria with ε →+ 0.

For proper equilibrium we also consider a relaxation as suggested by Etessami [2].

Definition 4. Given ε > 0 and δ > 0, a strategy profile x is a δ-almost ε-proper
equilibrium if x is fully mixed and satisfies for every i and every c, c′ ∈ Si that
xi(c) ≤ εxi(c′) whenever Ui(x−i; c) + δ ≤ Ui(x−i; c′).

2.3 Complexity Classes

We give here only a brief description of the classes PPAD and FIXP and refer
to Papadimitriou [20] and Etessami and Yannakakis [4] for detailed definitions
and discussion of the two classes.

PPAD is a class of discrete total search problems, whose totality is guaranteed
based on a parity argument on a directed graph. More formally PPAD is defined
by a canonical complete problem EndOfTheLine. Here a directed graph is
given implicitly by predecessor and successor circuits, and the search problem is
to find a degree 1 node different from a given degree 1 node. We do not make
direct use of the definition of PPAD but instead prove PPAD-membership indi-
rectly via Lemke’s algorithm [15] for solving a Linear Complementarity Problem
(LCP).

FIXP is the class of real-valued total search problems that can be cast as
Brouwer fixed points of functions represented by {+,−, ∗, /,max,min}-circuits
computing a function mapping a convex polytope described by a set of linear
inequalities to itself. The class FIXPa is the class of discrete total search problems
that reduce in polynomial time to approximate Brouwer fixed points. We will
prove FIXPa membership directly by constructing an appropriate circuit.

3 Two-Player Games

In this section, we prove that computing a single quasi-proper equilibrium of a
two-player game Γ can be done in PPAD, and in the case of zero-sum games, it
can be computed in P. We are using the same overall approach as has been used
for computing quasi-perfect equilibria of extensive form games [17], proper equi-
libria of two-player games [24], and proper equilibria of poly-matrix games [8].

The main idea is to construct a new game Γε, where the strategy space is
slightly restricted for both players, in such a way that equilibria of the new game

Computational Complexity of Computing a Quasi-Proper Equilibrium 265

are ε-quasi-proper equilibria of the original game. This construction also provides
a new proof of existence for quasi-proper equilibria of n-player games, since there
is nothing in neither the construction nor the proof that requires the game to
have only two players. However, for two players, the strategy constraints can
be enforced using a symbolic infinitesimal ε, which can be part of the solution
output, thereby providing a witness of the quasi-properness of the computed
strategy.

We will first describe the strategy constraints. At a glance, the construction
consists of fitting the strategy constraints for ε-proper equilibria [24] into the
strategy constraints of each of the information sets of the sequence form [12],
discussed in the preliminaries section, Eq. (2).

The constraints for ε-proper equilibria [24] restricts the strategy space of
each player to be an ε-permutahedron. Before the technical description of this,
we define the necessary generalization of the permutahedron. A permutahedron
is traditionally over the vector (1, . . . , n), but it generalizes directly to any other
set as well.

Definition 5 (Permutahedron). Let α ∈ R
m with all coordinates being dis-

tinct. A permutation π ∈ Sm acts on α by permuting the coordinates of α,
i.e. (π(α))i = απ(i). We define the permutahedron Perm(α) over α to be the
convex hull of the set {π(α) | π ∈ Sm} of the m! permutations of the coordinates
of α.

A very useful description of the permutahedron is by its 2m − 2 facets.

Proposition 1 (Rado [21]). Suppose α1 > α2 > · · · > αm. Then

Perm(α) =
{

x ∈ R
m

∣
∣
∣
∣

m∑

i=1

xi =
m∑

i=1

αi ∧ ∀S /∈ {∅, [m]} :
∑

c∈S

xc ≥
|S|∑

i=1

αm−i+1

}

.

As each inequality of Proposition 1 define a facet of the permutahedron, any
direct formulation of the permutahedron over n elements requires 2n −2 inequal-
ities. Goemans [6] gave an asymptotically optimal extended formulation for
the permutahedron, using O(n log n) additional constraints and variables. This
allows a compact representation, which allows us to use ε-permutahedra [24] as
building blocks for our strategy constraints.

The ε-permutahedron defined in [24] is a permutahedron over the vector
(1, ε, ε2, . . . , εm−1), normalized to sum to 1. We need to generalize this, so that
it can sum to any value ρ, and in a way that does not require normalization. In
the following, we will abuse notation slightly, and use ρ without subscript as a
real number, since it will shortly be replaced by a realization weight for each
specific information set.

Definition 6 (ε-Permutahedron). For real ρ > 0, integers k ≥ 0 and m ≥ 1,
and ε > 0 such that ρ ≥ εk, define the vector pε(ρ, k,m) ∈ R

m by

(pε(ρ, k,m))i =

{
ρ − (εk+1 + · · · + εk+m−1) , i = 1
εk+i−1 , i > 1

,

266 K. A. Hansen and T. B. Lund

and define the ε-permutahedron Πε(ρ, k,m) = Perm(pε(ρ, k,m)) ⊆ R
m.

We shall be viewing ε as a variable. Note that, by definition, ‖pε(ρ, k,m)‖1 = ρ.

Lemma 1. Assume 0 < ε ≤ 1/3 and ρ ≥ εk, for a given integer k ≥ 0. Then
for every 1 ≤ i < m we have (pε(ρ, k,m))i ≥ (pε(ρ, k,m))i+1/(2ε).

Proof. The statement clearly holds for i > 1. Next we see that (pε(ρ, k,m))1 =
ρ − εk+1(1 − εm−1)/(1 − ε) ≥ εk − εk+1/(1 − ε) = (1/ε − 1/(1 − ε))εk+1 ≥
εk+1/(2ε) = (pε(ρ, k,m))2/(2ε). �
We are now ready to define the perturbed game Γε.

Definition 7 (Strategy constraints). For each player i, and each informa-
tion set h ∈ Hi, let kh =

∑
h′<h mh′ be the sum of the sizes of the action

sets at information sets visited by Player i before reaching information set h.
Now, in the perturbed game Γε, restrict (ρbi(c1), ρbi(c2), . . . , ρbi(cmh

)) to be in
Πε(ρbi(h), kh,mh).

Notice that the strategy constraints for the first information set a player visits
is identical to the strategy constraints for proper equilibria of bimatrix games.

The next three lemmas describe several ways we may modify coordinates of
points of Πε(ρ, k,m) while staying within Πε(ρ′, k,m) for appropriate ρ′. These
are needed for the proof of our main technical result, Proposition 2, below.

Lemma 2. Let 0 < ε < 1/3, ρ ≥ εk, and x ∈ Πε(ρ, k,m). Suppose for distinct
c and c′ we have xc > 2εxc′ . Then there exists δ > 0 such that x + δ(ec′ − ec) ∈
Πε(ρ, k,m) (here as usual ei denotes the i-unit vector).

Proof. By definition of Πε(ρ, k,m) we may write x as a convex combination of
the corner points of Πε(ρ, k,m), x =

∑
π∈Sm

wππ(pε(ρ, k,m)), where wπ ≥ 0
and

∑
π∈Sm

wπ = 1. There must exist a permutation π such that wπ > 0 and
π−1(c) < π−1(c′), since otherwise xc ≤ 2εxc′ by Lemma 1. Let π′ ∈ Sm such
that π′(π−1(c)) = c′, π′(π−1(c′)) = c, and π′(i) = π(i) when π(i) /∈ {c, c′}. We
then have that

x′ = x + wπ(π′(pε(ρ, k,m)) − π(pε(ρ, k,m))) ∈ Πε(ρ, k,m) .

Note now that π′(pε(ρ, k,m)) − π(pε(ρ, k,m)) is equal to

((pε(ρ, k,m))π−1(c) − (pε(ρ, k,m))π−1(c′))(ec′ − ec) .

Since (pε(ρ, k,m))π−1(c) > (pε(ρ, k,m))π−1(c′), the statement follows. �

Lemma 3. Let x ∈ Πε(ρ, k,m) where ρ ≥ εk. Then x+ δec ∈ Π(ρ+ δ, k,m) for
any δ > 0 and c.

Proof. This follows immediately from Proposition 1 since the inequalities defin-
ing the facets of Πε(ρ, k,m) and Πε(ρ + δ, k,m) are exactly the same. �

Computational Complexity of Computing a Quasi-Proper Equilibrium 267

Lemma 4. Let x ∈ Πε(ρ, k,m) where 0 < ε ≤ 1/2 and ρ > max(εk, 2mεk+1).
Let c be such that xc ≥ xc′ for all c′. Then x − δec ∈ Πε(ρ − δ, k,m) for any
δ ≤ min(ρ − εk, ρ/m − 2εk+1).

Proof. Since δ ≤ ρ − εk we have ρ − δ ≥ εk, thereby satisfying the definition of
Πε(ρ − δ, k,m). By the choice of c we have that xc ≥ ρ/m. Since we also have
δ ≤ ρ/m−2εk+1 it follows that xc−δ ≥ 2εk+1. Thus xc−δ ≥ εk+1+· · ·+εk+m−1.
It then follows immediately from Proposition 1 that x − δec ∈ Πε(ρ − δ, k,m),
since any inequality given by S with c ∈ S is trivially satisfied, and any inequality
with c /∈ S is unchanged from Πε(ρ, k,m). �
We are now in position to prove correctness of our approach.

Proposition 2. Any Nash equilibrium of Γε is a 2ε-quasi-proper equilibrium of
Γ , for any sufficiently small ε > 0.

Proof. Let b be a Nash equilibrium of Γε. Consider Player i for any i, any infor-
mation set h ∈ Hi, and let c, c′ ∈ h be such that bih(c) > 2εbih(c′). We are then
to show that Kh,c

i (b) ≥ Kh,c′
i (b), when ε > 0 is sufficiently small. Let b′

i be such
that Uih(b/hb′

i/c′) = Kh,c′
i (b). We may assume that b′

i is a pure behavior strategy
thereby making b/b′

i a h-local purification. Let Hi,c′ be the set of those infor-
mation sets of Player i that follow after h when taking action c′ in h. Similarly,
let Hi,c be the set of those information sets of Player i that follow after taking
action c in h. Note that by perfect recall of Γ we have that Hi,c′ ∩ Hi,c = ∅.
Let b∗

i be any pure behavior strategy of Player i choosing c∗
h ∈ Ch maximizing

bih(c∗
h), for all h ∈ Hi. We claim that Uih(b/hb∗

i /c) ≥ Kh,c′
i (b) for all sufficiently

small ε > 0.
Let xi be the realization plan given by bi, let x′ be the realization plan given

by bi/hb′
i/c′, and let x∗

i be the realization plan given by bi/hb∗
i /c. We shall next

apply Lemma 2 to h, Lemma 3 to all h′ ∈ Hi,c′ , and Lemma 4 to all h∗ ∈ Hi,c

assigned positive realization weight by bi/hb∗
i /c, to obtain that for all sufficiently

small ε > 0 there is δ > 0 such that x̃i = xi + δ(x′
i − x∗

i) is a valid realization
plan of Γε.

Lemma 3 can be applied whenever ε > 0 is sufficiently small, whereas
Lemma 2 in addition makes use of the assumption that bih(c) > 2εbih(c′). To
apply Lemma 4, we need to prove that the player’s realization weight is suffi-
ciently large for the relevant information sets, specifically ρh′ > εkh′ for each
relevant information set h′. Since b∗

i is pure, Player i’s realization weight, ρh′ for
each information set h′ in Hi,c is either 0 or ρc. Since bih(c) > 2εbih(c′), we have
that ρc > εkh+|Ch|−1 ≥ εkh′ as needed.

Thus, consider ε > 0 and δ > 0 such that x̃i is a valid realization plan and
let b̃i be the corresponding behavior strategy. Since b is a Nash equilibrium we
have Ui(b/ b̃i) ≤ Ui(b). But Ui(b/ b̃i) = Ui(b) + δ(Ui(b/hb′

i/c′) − Ui(b/hb∗
i /c)).

It follows that δ(Ui(b/hb′
i/c′) − Ui(b/hb∗

i /c)) ≤ 0, and since δ > 0 we have
Ui(b/hb∗

i /c) ≥ Ui(b/hb′
i/c′). Equivalently, Uih(b/hb∗

i /c) ≥ Uih(b/hb′
i/c′), which was

to be proved. Since i and h ∈ Hi were arbitrary, it follows that b is a 2ε-quasi-
proper equilibrium in Γ , for any sufficient small ε > 0. �

268 K. A. Hansen and T. B. Lund

Theorem 1. A symbolic ε-quasi-proper equilibrium for a given two-player
extensive form game with perfect recall can be computed by applying Lemke’s
algorithm to an LCP of polynomial size, and can be computed in PPAD.

Proof. Given an extensive form game Γ , construct the game Γε. The strategy
constraints (Definition 7) are all expressed directly in terms of the realization
weights of each player. Using Goemans’ [6] extended formulation, the strategy
constraints require only O(

∑
h |Ch| log |Ch|) additional constraints and variables,

which is linearithmic in the size of the game. Furthermore, all occurrences of ε are
on the right-hand side of the linear constraints. These constraints fully replace
the strategy constraints of the sequence form [12]. In the sequence form, there
is a single equality per information set, ensuring conservation of the realization
weight. In our case, this conservation is ensured by the permutahedron constraint
for each information set.

In the case of two-player games, the equilibria can be captured by an LCP of
polynomial size, which can be solved using Lemke’s algorithm [15], if the strategy
constraints are sufficiently well behaved. Since the added strategy constraints is a
collection of constraints derived from Goemans’ extended formulation, the proof
that the constraints are well behaved is identical to the proofs of [24, Theorem
5.1 and 5.4], which we will therefore omit here. Following the approach of [17] the
solution to the LCP can be made to contain the symbolic ε, with the probabilities
of the strategies being formal polynomials in the variable ε.

By Proposition 2, equilibria of Γε are ε-quasi-proper equilibria of Γ . All real-
ization weights of the computed realization plans are formal polynomials in ε.
Finally, from this we may express the ε-quasi-proper equilibrium in behavior
strategies, where all probabilities are rational functions in ε. �

Having computed a symbolic ε-quasi-proper equilibrium for Γ it is easy to
compute the limit for ε → 0, thereby giving a quasi-proper equilibrium of Γ . It
is crucial here that we first convert into behavior strategies before computing
the limit. In the case of zero-sum games, the same construction can be used
to construct a linear program of polynomial size, whose solution would provide
quasi-proper equilibria of the given game. This is again analogous to the app-
roach of [17] and further details are hence omitted.

Theorem 2. A symbolic ε-quasi-proper equilibrium for a given two-player
extensive form zero-sum game with perfect recall can be computed in polynomial
time.

4 Multi-player Games

In this section we argue that approximating a quasi-proper equilibrium for a
finite extensive-form game Γ with n ≥ 3 players is FIXPa-complete. As for
two-player games, by Proposition 2 an ε-quasi-proper equilibrium for Γ could be
obtained by computing an equilibrium of the perturbed game Γε. But for more
than two players we do not know how to make efficient use of this connection.

Computational Complexity of Computing a Quasi-Proper Equilibrium 269

Indeed, from the viewpoint of computational complexity there is no advantage
in doing so. Our construction instead works by directly combining the approach
and ideas of the proof of FIXPa-completeness for quasi-perfect equilibrium in
extensive form games by Etessami [2] and of the proof of FIXPa-completeness for
proper equilibrium in strategic form games by Hansen and Lund [8]. We explain
below how these are modified and combined to obtain the result. The approach
obtains FIXPa membership, leaving FIXP-membership as an open problem. A
quasi-proper equilibrium is defined as a limit point of a sequence of ε-quasi-
proper equilibria, whose existence was obtained by the Kakutani fixed point
theorem by Myerson [18]. This limit point operation in itself poses a challenge
for FIXP membership. The use of the Kakutani fixed point theorem presents a
further challenge. In fact, it is not known if the set of ε-quasi-proper equilibria
can be characterized as a set of Brouwer fixed points. However, as we show below
analougous to the case of proper equilibria [8], these may be approximated by
δ-almost ε-quasi-proper equilibria, which in turn can be expressed as a set of
Brouwer fixed points. In fact we show that the corresponding search problem is
in FIXP.

To see how to adapt the result of Hansen and Lund [8] for strategic form
games to the setting of extensive form games, it is helpful to compare the def-
initions of ε-proper equilibrium and δ-almost ε-proper equilibrium in strategic
form games to the corresponding definitions of ε-quasi-proper equilibrium and
δ-almost ε-proper equilibrium in extensive form games.

In a strategic form game, Player i is concerned with the payoffs Ui(x−i, c),
which we may think of as valuations of all pure strategies c ∈ Si. The relation-
ship between these valuations in turn place constraints on the strategy xi chosen
by Player i in an ε-proper equilibrium or a δ-almost ε-proper equilibrium. In an
extensive form game, Player i is in a given information set h considering the
payoffs Kh,c

i , which we may similarly think of as valuations of all actions c ∈ Ch.
The relationship between these valuations place constraints on the local strat-
egy bih chosen by Player i in a ε-quasi-proper equilibrium or a δ-almost ε-proper
equilibrium. These constraints are completely analogous to those placed on the
strategies in strategic form games. This fact will allow us to adapt the construc-
tions of Hansen and Lund by essentially just changing the way the valuations
are computed. Etessami [2] observed that these may be computed using dynamic
programming and gave a construction of formulas computing them.

Lemma 5 (cf. [2, Lemma 7]). Given an extensive form game of perfect
recall Γ , a player i, an information set h of Player i, and c ∈ Ch there is a polyno-
mial size {+,−, ∗, /,max}-formula V h,c

i computable in polynomial time satisfying
that for any fully mixed behavior strategy profile b it holds that V h,c

i (b) = Kh,c
i (b).

With this we can now state our result for multi-player games.

Theorem 3. Given as input a finite extensive form game of perfect recall Γ
with n players and a rational γ > 0, the problem of computing a behavior strategy
profile b′ such that there is a quasi-proper equilibrium b of Γ with ‖b′ − b‖∞ < γ
is FIXPa-complete.

270 K. A. Hansen and T. B. Lund

While the adaptation of the results of Hansen and Lund [8] to extensive-form
games is conceptually simple, changes must be made in all parts of the construc-
tion and technical proof. We refer to the full version of the paper [9] for further
details.

References

1. van Damme, E.: A relation between perfect equilibria in extensive form games
and proper equilibria in normal form games. Int. J. Game Theory 13, 1–13 (1984).
https://doi.org/10.1007/BF01769861

2. Etessami, K.: The complexity of computing a (quasi-)perfect equilibrium for an
n-player extensive form game. Games Econ. Behav. 125, 107–140 (2021). https://
doi.org/10.1016/j.geb.2019.03.006

3. Etessami, K., Hansen, K.A., Miltersen, P.B., Sørensen, T.B.: The complexity of
approximating a trembling hand perfect equilibrium of a multi-player game in
strategic form. In: Lavi, R. (ed.) SAGT 2014. LNCS, vol. 8768, pp. 231–243.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44803-8 20

4. Etessami, K., Yannakakis, M.: On the complexity of Nash equilibria and other
fixed points. SIAM J. Comput. 39(6), 2531–2597 (2010). https://doi.org/10.1137/
080720826

5. Farina, G., Gatti, N.: Extensive-form perfect equilibrium computation in two-
player games. In: AAAI, pp. 502–508. AAAI Press (2017)

6. Goemans, M.X.: Smallest compact formulation for the permutahedron. Math. Pro-
gram. 153(1), 5–11 (2014). https://doi.org/10.1007/s10107-014-0757-1

7. Hansen, K.A.: The real computational complexity of minmax value and equilibrium
refinements in multi-player games. Theory Comput. Syst. 63(7), 1554–1571 (2018).
https://doi.org/10.1007/s00224-018-9887-9

8. Hansen, K.A., Lund, T.B.: Computational complexity of proper equilibrium. In:
Proceedings of the 2018 ACM Conference on Economics and Computation, EC
2018, pp. 113–130. ACM, New York (2018). https://doi.org/10.1145/3219166.
3219199

9. Hansen, K.A., Lund, T.B.: Computational complexity of computing a quasi-proper
equilibrium. arXiv:2107.04300 [cs.GT] (2021)

10. Hansen, K.A., Miltersen, P.B., Sørensen, T.B.: The computational complexity of
trembling hand perfection and other equilibrium refinements. In: Kontogiannis, S.,
Koutsoupias, E., Spirakis, P.G. (eds.) SAGT 2010. LNCS, vol. 6386, pp. 198–209.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16170-4 18

11. Hillas, J., Kohlberg, E.: Foundations of strategic equilibria. In: Aumann, R.J.,
Hart, S. (eds.) Handbook of Game Theory, vol. 3, chap. 42, pp. 1597–1663. Elsevier
Science (2002)

12. Koller, D., Megiddo, N., von Stengel, B.: Efficient computation of equilibria for
extensive two-person games. Games Econom. Behav. 14, 247–259 (1996). https://
doi.org/10.1006/game.1996.0051

13. Kreps, D.M., Wilson, R.: Sequential equilibria. Econometrica 50(4), 863–894
(1982). https://doi.org/10.2307/1912767

14. Kuhn, H.W.: Extensive games and the problem of information. In: Kuhn, H.W.,
Tucker, A.W. (eds.) Contributions to the Theory of Games II, pp. 193–216. Prince-
ton University Press, Princeton (1953)

https://doi.org/10.1007/BF01769861
https://doi.org/10.1016/j.geb.2019.03.006
https://doi.org/10.1016/j.geb.2019.03.006
https://doi.org/10.1007/978-3-662-44803-8_20
https://doi.org/10.1137/080720826
https://doi.org/10.1137/080720826
https://doi.org/10.1007/s10107-014-0757-1
https://doi.org/10.1007/s00224-018-9887-9
https://doi.org/10.1145/3219166.3219199
https://doi.org/10.1145/3219166.3219199
http://arxiv.org/abs/2107.04300
https://doi.org/10.1007/978-3-642-16170-4_18
https://doi.org/10.1006/game.1996.0051
https://doi.org/10.1006/game.1996.0051
https://doi.org/10.2307/1912767

Computational Complexity of Computing a Quasi-Proper Equilibrium 271

15. Lemke, C.: Bimatrix equilibrium points and mathematical programming. Manag.
Sci. 11, 681–689 (1965). https://doi.org/10.1287/mnsc.11.7.681

16. Mertens, J.F.: Two examples of strategic equilibrium. Games Econ. Behav. 8(2),
378–388 (1995). https://doi.org/10.1016/S0899-8256(05)80007-7

17. Miltersen, P.B., Sørensen, T.B.: Computing a quasi-perfect equilibrium of a two-
player game. Econ. Theor. 42(1), 175–192 (2010). https://doi.org/10.1007/s00199-
009-0440-6

18. Myerson, R.B.: Refinements of the Nash equilibrium concept. Int. J. Game Theory
15, 133–154 (1978). https://doi.org/10.1007/BF01753236

19. Nash, J.: Non-cooperative games. Ann. Math. 2(54), 286–295 (1951)
20. Papadimitriou, C.H.: On the complexity of the parity argument and other ineffi-

cient proofs of existence. J. Comput. Syst. Sci. 48(3), 498–532 (1994). https://doi.
org/10.1016/S0022-0000(05)80063-7

21. Rado, R.: An inequality. J. Lond. Math. Soc. s1–27(1), 1–6 (1952). https://doi.
org/10.1112/jlms/s1-27.1.1

22. Selten, R.: Spieltheoretische behandlung eines oligopolmodells mit nach-
frageträgheit. Zeitschrift für die gesamte Staatswissenshaft 12, 301–324 (1965)

23. Selten, R.: A reexamination of the perfectness concept for equilibrium points in
extensive games. Int. J. Game Theory 4, 25–55 (1975). https://doi.org/10.1007/
BF01766400

24. Sørensen, T.B.: Computing a proper equilibrium of a bimatrix game. In: Falt-
ings, B., Leyton-Brown, K., Ipeirotis, P. (eds.) ACM Conference on Electronic
Commerce, EC ’12, pp. 916–928. ACM (2012). https://doi.org/10.1145/2229012.
2229081

25. von Stengel, B., van den Elzen, A., Talman, D.: Computing normal form perfect
equilibria for extensive two-person games. Econometrica 70(2), 693–715 (2002).
https://doi.org/10.1111/1468-0262.00300

https://doi.org/10.1287/mnsc.11.7.681
https://doi.org/10.1016/S0899-8256(05)80007-7
https://doi.org/10.1007/s00199-009-0440-6
https://doi.org/10.1007/s00199-009-0440-6
https://doi.org/10.1007/BF01753236
https://doi.org/10.1016/S0022-0000(05)80063-7
https://doi.org/10.1016/S0022-0000(05)80063-7
https://doi.org/10.1112/jlms/s1-27.1.1
https://doi.org/10.1112/jlms/s1-27.1.1
https://doi.org/10.1007/BF01766400
https://doi.org/10.1007/BF01766400
https://doi.org/10.1145/2229012.2229081
https://doi.org/10.1145/2229012.2229081
https://doi.org/10.1111/1468-0262.00300

Computational Complexity
of Synchronization Under Sparse

Regular Constraints

Stefan Hoffmann(B)

Informatikwissenschaften, FB IV, Universität Trier, Trier, Germany
hoffmanns@informatik.uni-trier.de

Abstract. The constrained synchronization problem (CSP) asks for a
synchronizing word of a given input automaton contained in a regular
set of constraints. It could be viewed as a special case of synchronization
of a discrete event system under supervisory control. Here, we study
the computational complexity of this problem for the class of sparse
regular constraint languages. We give a new characterization of sparse
regular sets, which equal the bounded regular sets, and derive a full
classification of the computational complexity of CSP for letter-bounded
regular constraint languages, which properly contain the strictly bounded
regular languages. Then, we introduce strongly self-synchronizing codes
and investigate CSP for bounded languages induced by these codes. With
our previous result, we deduce a full classification for these languages as
well. In both cases, depending on the constraint language, our problem
becomes NP-complete or polynomial time solvable.

Keywords: Automata theory · Constrained synchronization ·
Computational complexity · Sparse languages · Bounded languages ·
Strongly self-synchronizing codes

1 Introduction

A deterministic semi-automaton is synchronizing if it admits a reset word, i.e.,
a word which leads to a definite state, regardless of the starting state. This
notion has a wide range of applications, from software testing, circuit synthe-
sis, communication engineering and the like, see [13,45,47]. The famous Černý
conjecture [11] states that a minimal synchronizing word, for an n state automa-
ton, has length at most (n ´ 1)2. We refer to the mentioned survey articles for
details [45,47].

Due to its importance, the notion of synchronization has undergone a range
of generalizations and variations for other automata models. The paper [19]
introduced the constrained synchronization problem (CSP1). In this problem,
1 In computer science the acronym CSP is usually used for the constraint satisfaction

problem [35]. However, as here we are not concerned with constrained satisfaction
problems at all, no confusion should arise.

c© Springer Nature Switzerland AG 2021
E. Bampis and A. Pagourtzis (Eds.): FCT 2021, LNCS 12867, pp. 272–286, 2021.
https://doi.org/10.1007/978-3-030-86593-1_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86593-1_19&domain=pdf
http://orcid.org/0000-0002-7866-075X
https://doi.org/10.1007/978-3-030-86593-1_19

Synchronization Under Sparse Regular Constraints 273

we search for a synchronizing word coming from a specific subset of allowed
input sequences. To sketch a few applications:

Reset State. In [19] one motivating example was the demand that a system,
or automaton thereof, to synchronize has to first enter a “directing” mode,
perform a sequence of operations, and then has to leave this operating mode
and enter the “normal operating mode” again. In the most simple case, this
constraint could be modelled by ab˚a, which, as it turns out [19], yields an
NP-complete CSP. Even more generally, it might be possible that a system
– a remotely controlled rover on a distant planet, a satellite in orbit, or a
lost autonomous vehicle – is not allowed to execute all commands in every
possible order, but certain commands are only allowed in certain order or
after other commands have been executed. All of this imposes constraints on
the possible reset sequences.

Part Orienters. Suppose parts arrive at a manufacturing site and they need to
be sorted and oriented before assembly. Practical considerations favor meth-
ods which require little or no sensing, employ simple devices, and are as
robust as possible. This could be achieved as follows. We put parts to be
oriented on a conveyor belt which takes them to the assembly point and let
the stream of the parts encounter a series of passive obstacles placed along
the belt. Much research on synchronizing automata was motivated by this
application [12,17,18,25,37,38,47] and I refer to [47] for an illustrative exam-
ple. Now, furthermore, assume the passive components could not be placed at
random along the belt, but have to obey some restrictions, or restrictions in
what order they are allowed to happen. These could be due to the availability
of components, requirements how to lay things out or physical restrictions.

Supervisory Control. The CSP could also be viewed of as supervisory control
of a discrete event system (DES) that is given by an automaton and whose
event sequence is modelled by a formal language [10,42,50]. In this framework,
a DES has a set of controllable and uncontrollable events. Dependent on the
event sequence that occurred so far, the supervisor is able to restrict the set
of events that are possible in the next step, where, however, he can only limit
the use of controllable events. So, if we want to (globally) reset a finite state
DES [2] under supervisory control, this is equivalent to CSP.

Biocomputing. In [4,5] DNA molecules have been used as both hardware and
software for finite automata of nanoscaling size, see also [47]. For instance,
Benenson et al. [4] produced “a ‘soup of automata’, that is, a solution con-
taining 3ˆ1012 identical automata per μ1. All these molecular automata can
work in parallel on different inputs, thus ending up in different and unpre-
dictable states. In contrast to an electronic computer, one cannot reset such
a system by just pressing a button; instead, in order to synchronously bring
each automaton to its start state, one should spice the soup with (sufficiently
many copies of) a DNA molecule whose nucleotide sequences encodes a reset
word” [47]. Now, it might be possible that certain sequences, or subsequences,
are not possible as they might have unwanted biological side-effects, or might
destroy the molecules at all.

274 S. Hoffmann

Reduction Procedure. This example is more formal and comes from attempts
to solve the Černý conjecture [47]. In [27] a special rank factorization [41] for
automata was introduced from which smaller automata could be derived.
Then, it was shown that the original automaton is synchronizing if and only
if the reduced automaton admits a synchronizing word in a certain regular
constraint language, and the reset threshold, i.e., the lengths of the shortest
synchronizing word, of the original automaton could be bounded by that of
the shortest one in the constraint language for the reduced automaton.

In [19], a complete analysis of the complexity landscape when the constraint
language is given by small partial automata was done. It is natural to extend
this result to other language classes.

In general there exist constraint languages yielding PSPACE-complete con-
strained problems [19]. A language is polycyclic [31], if it is recognizable by an
automaton such that every strongly connected component forms a single cycle,
and a language is sparse [51] if only polynomially many words of a specific length
are in the language. As shown in [31] for polycyclic languages, which, as we show,
equal the sparse regular languages, the problem is always in NP. This motivates
investigating this class further. Also, as written in more detail in Remark 1, a
subclass of these languages has a close relation to the commutative languages,
and as for commutative constraint languages a trichotomy result has been estab-
lished [30], tackling the sparse languages seems to be the next logical step. In
fact, we show a dichotomy result for a subclass that contains the class corre-
sponding to the commutative languages. Additionally, as has been noted in [19],
the constraint language ab˚a is the smallest language, in terms of a recognizing
automaton, giving an NP-complete CSP. The class of languages for which our
dichotomy holds true contains this language.

Let us mention that restricting the solution space by a regular language
has also been applied in other areas, for example to topological sorting [3],
solving word equations [15,16], constraint programming [39], or shortest path
problems [43]. The famous road coloring theorem [1,46] states that every finite
strongly connected and directed aperiodic graph of uniform out-degree admits
a labelling of its edges such that a synchronizing automaton results. A related
problem to our problem of constrained synchronization is to restrict the possible
labelling(s), and this problem was investigated in [49].

Outline and Contribution. Here, we look at the complexity landscape for sparse
regular constraint languages. In Sect. 3 we introduce the sparse languages and
show that the regular sparse languages are characterized by polycyclic automata
introduced in [31]. A similar characterization in terms of non-deterministic
automata was already given in [21, Lemma 2]. In this sense, we extend this
characterization to the deterministic case. As for polycyclic constraint automata
the constrained problem is always in NP, see [31, Theorem 2], we can deduce the
same for sparse regular constraint languages, which equal the bounded regular
languages [34].

Synchronization Under Sparse Regular Constraints 275

In Sect. 4 we introduce the letter-bounded languages, a proper subset of the
sparse languages, and show that for letter-bounded constraint languages, the
constrained synchronization problem is either in P or NP-complete.

The difficulty why we cannot handle the general case yet lies in the fact that
in the reductions, in the general case, we need auxiliary states and it is not
clear how to handle them properly, i.e., how to synchronize them properly while
staying inside the constraint language.

In Sect. 5 we introduce the class of strongly self-synchronizing codes. The
strongly self-synchronizing codes allow us to handle these auxiliary states men-
tioned before. We show that for homomorphisms given by such codes, the con-
strained problem for the homomorphic image of a language has the same com-
putational complexity as for the original language. This result holds in general,
and hence is of independent interest. Here we apply it to the special case of
bounded, or sparse, regular languages given by such codes.

Lastly, we present a bounded language giving an NP-complete constrained
problem that could not be handled by our methods so far.

2 Preliminaries and Definitions

We assume the reader to have some basic knowledge in computational complexity
theory and formal language theory, as contained, e.g., in [32]. For instance, we
make use of regular expressions to describe languages. By Σ we denote the
alphabet, a finite set. For a word w P Σ˚ we denote by |w| its length, and, for
a symbol x P Σ, we write |w|x to denote the number of occurrences of x in the
word. We denote the empty word, i.e., the word of length zero, by ε. For L Ď Σ˚,
we set Pref(L) “ {u P Σ˚ | ∃v P Σ˚ : uv P L}. A word u P Σ˚ is a factor (or
infix) of w P Σ˚ if there exist words x, y P Σ˚ such that w “ xuy. For U, V Ď Σ˚,
we set U · V “ UV “ {uv | u P U, v P V } and U0 “ {ε}, U i`1 “ U iU , and
U ˚ “ ⋃

iě0 U i and U` “ ⋃
ią0 U i. We also make use of complexity classes like

P, NP, or PSPACE. With ďlog
m we denote a logspace many-one reduction. If for

two problems L1, L2 it holds that L1 ďlog
m L2 and L2 ďlog

m L1, then we write
L1 ”log

m L2.
A partial deterministic finite automaton (PDFA) is a tuple A “

(Σ,Q, δ, q0, F), where Σ is a finite set of input symbols, Q is the finite state
set, q0 P Q the start state, F Ď Q the final state set and δ : Q ˆ Σ á Q the par-
tial transition function. The partial transition function δ : Q ˆ Σ á Q extends
to words from Σ˚ in the usual way. Furthermore, for S Ď Q and w P Σ˚, we
set δ(S,w) “ { δ(q, w) | δ(q, w) is defined and q P S }. We call A complete if δ is
defined for every (q, a) P Q ˆ Σ. If |Σ| “ 1, we call A a unary automaton and
L Ď Σ˚ is also called a unary language. The set L(A) “ {w P Σ˚ | δ(q0, w) P F }
denotes the language recognized by A.

A deterministic and complete semi-automaton (DCSA) A “ (Σ,Q, δ) is a
deterministic and complete finite automaton without a specified start state and
with no specified set of final states. When the context is clear, we call both
deterministic finite automata and semi-automata simply automata.

276 S. Hoffmann

A complete automaton A is called synchronizing if there exists a word w P Σ˚
with |δ(Q,w)| “ 1. In this case, we call w a synchronizing word for A. We call a
state q P Q with δ(Q,w) “ {q} for some w P Σ˚ a synchronizing state. For a semi-
automaton (or PDFA) with state set Q and transition function δ : Q ˆ Σ á Q,
a state q is called a sink state, if for all x P Σ we have δ(q, x) “ q. Note that,
if a synchronizing automaton has a sink state, then the synchronizing state is
unique and must equal the sink state.

In [19] the constrained synchronization problem (CSP) was defined for a fixed
PDFA B “ (Σ,P, μ, p0, F).

Decision Problem 1: [19] L(B)-Constr-Sync

Input: DCSA A “ (Σ,Q, δ).
Question: Is there a synchronizing word w P Σ˚ for A with w P L(B)?

The automaton B will be called the constraint automaton. If an automaton A
is a yes-instance of L(B)-Constr-Sync we call A synchronizing with respect
to B. Occasionally, we do not specify B and rather talk about L-Constr-Sync.
For example, for the unconstrained case, we have Σ˚-Constr-Sync P P [11,47].

In our NP-hardness reduction, we will need the following problem from [31].

Decision Problem 2: DisjointSetTransporter

Input: DCSA A “ (Σ,Q, δ) and disjoint S, T Ď Q.
Question: Is there a word w P Σ˚ such that δ(S,w) Ď T?

Theorem 1. For unary deterministic and complete input semi-automata the
problem DisjointSetTransporter is NP-complete.

A PDFA A “ (Σ,Q, δ, q0, F) is called polycyclic, if for each q P Q there
exists u P Σ˚ such that {w P Σ˚ | δ(q, w) “ q} Ď u˚. A PDFA is polycyclic if
and only if every strongly connected component consists of a single cycle [31,
Proposition 3], where each transition in the cycle is labelled by precisely one
letter. Formally, for each strongly connected component S Ď Q and q P S, we
have2 |{x : x P Σ and δ(q, x) is defined and in S}| ď 1 (note that in the special
case |S| “ 1, the aforementioned set might be empty if the single state in S has
no self-loops). A precursor of this characterization of polycyclic automata in a
special case was given in [20] under the term linear cycle automata.

The following slight generalization of [19, Theorem 27] will be needed.

Proposition 2. Let ϕ : Σ˚ Ñ Γ ˚ be a homomorphism. Then, for each regular
L Ď Σ˚, we have ϕ(L)-Constr-Sync ďlog

m L-Constr-Sync.

3 Sparse and Bounded Regular Languages

Here, in Theorem 5, we establish that for constraint languages from the class
of sparse regular languages, which equals the class of the bounded regular lan-
guages [34], the constrained problem is always in NP.
2 In [31], I made an error in my formalization by writing |{δ(q, x) : x P

Σ, δ(q, x) is defined } X S| ď 1.

Synchronization Under Sparse Regular Constraints 277

A language L Ď Σ˚ is sparse, if there exists c ě 0 such that, for every n ě 0,
we have L X Σn P O(nc). Sparse languages were introduced into computational
complexity theory by Berman & Hartmanis [6]. Later, it was established by
Mahaney that if there exists a sparse NP-complete set (under polynomial-time
many-one reductions), then P “ NP [36]. For a survey on the relevance of sparse
sets in computational complexity theory, see [28].

A language L Ď Σ˚ is called bounded, if there exist w1, . . . , wk P Σ˚ such that
L Ď w1̊ . . . wk̊. Bounded languages were introduced by Ginsburg & Spanier [23].

We will need the following representation of the bounded regular languages.

Theorem 3 ([24]). A language L Ď w1̊ · · · wk̊ is regular if and only if it is a
finite union of languages of the form L1 · · · Lk, where each Li Ď wi̊ is regular.

It is known that the class of sparse regular languages equals the class of
bounded regular languages [34], or see [40,51], where the bounded languages are
not mentioned but the equivalence is implied by their results and Theorem 3.
The next results links this class to the polycylic PDFAs.

Proposition 4. Let L Ď Σ˚ be regular. Then, L is sparse if and only if it is
recognizable by a polycyclic PDFA.

In [31, Theorem 2] it was shown that for polycyclic constraint languages, the
constrained problem is always in NP. So, we can deduce the next result.

Theorem 5. If L Ď Σ˚ is sparse and regular, then L-Constr-Sync P NP.

We will need the following closure property stated in [51, Theorem 3.8] of
the sparse regular languages.

Proposition 6. The class of sparse regular languages is closed under homomor-
phisms.

Note that the connection of the polycyclic languages to the sparse or bounded
languages was not noted in [31]. However, a condition characterizing the sparse
regular languages in terms of forbidden patterns was given in [40], and it was
remarked that “a minimal deterministic automaton recognises a sparse language
if and only if it does not contain two cycles reachable from one another”. This
is quite close to our characterization.

4 Letter-Bounded Constraint Languages

Fix a constraint automaton B “ (Σ,P, μ, p0, F). Let a1, . . . , ak P Σ be a sequence
of (not necessarily distinct) letters. In this section, we assume L(B) Ď a1̊ · · · ak̊.
A language which fulfills the above condition is called letter-bounded. Note that
the language ab˚a given in the introduction as an example is letter-bounded.
In fact, it is the language with the smallest recognizing automaton yielding an
NP-complete constrained problem [19].

278 S. Hoffmann

A language such that the ai are pairwise distinct, i.e., ai �“ aj for i �“ j, is
called strictly bounded. The class of strictly bounded languages has been exten-
sively studied [9,14,22–24,29], where in [22–24] no name was introduced for
them and in [29] they were called strongly bounded. The class of letter-bounded
languages properly contains the strictly bounded languages.

Remark 1. Let Σ “ {b1, . . . , br} be an alphabet of size r. Then, the mappings

Φ(L) “ L X b˚
1 · · · b˚

r and perm(L) “ {w P Σ˚ | ∃u P L ∀a P Σ : |u|a “ |w|a}
for L Ď Σ˚ are mutually inverse and inclusion preserving between the languages
in b1̊ · · · br̊ and the commutative languages in Σ˚, where a language L Ď Σ˚
is commutative if perm(L) “ L. Furthermore, for strictly bounded languages
of the form B1 · · · Br Ď b1̊ · · · br̊ with Bj Ď {bj}˚, j P {1, . . . , r}, we have
perm(B1 · · · Br) “ B1 � · · · � Br, where U � V “ {u1v1 · · · unvn | ui, vi P
Σ˚, u1 · · · un P U, v1 · · · vn P V } for U, V Ď Σ˚. Hence, perm(L) is regularity-
preserving for strictly bounded languages. More specifically, the above correspon-
dence between the two language classes is regularity-preserving in both direc-
tions. For commutative constraint languages, a classification of the complexity
landscape has been achieved [30]. By the close relationship between commuta-
tive and certain strictly bounded languages, it is natural to tackle this language
class next. However, as shown in [30], for commutative constraint languages, we
can realize PSPACE-complete problems, but, by Theorem 5, for strictly bounded
languages, the constrained problem is always in NP. However, by the above rela-
tions, Theorem 3 for languages in b1̊ · · · br̊ is equivalent to [30, Theorem 5], a
representation result for commutative regular languages.

Our first result says, intuitively, that if in A1 · · · Ak with Aj unary and reg-
ular, if no infinite unary language Aj over {aj} lies between non-empty unary
languages over a distinct letter3 than aj , then (A1 · · · Ak)-Constr-Sync is in P.

Proposition 7. Let Aj Ď {aj}˚ be unary regular languages for j P {1, . . . , k}.
Set L “ A1 · . . . ·Ak. If for all j P {1, . . . , k}, Aj infinite implies that Ai Ď {aj}˚
for all i ă j or Ai Ď {aj}˚ for all i ą j (or both), then L-Constr-Sync P P.

Now, we state a sufficient condition for NP-hardness over binary alphabets.
This condition, together with Proposition 2, allows us to handle the general case
in Theorem 9. Its application together with Proposition 2 shows, in some respect,
that the language ab˚a is the prototypical language giving NP-hardness. We give
a proof sketch of Lemma 8 at the end of this section.

Lemma 8. Suppose Σ “ {a, b}. Let L(B) Ď Σ˚ be letter-bounded. Then,
L(B)-Constr-Sync is NP-hard if L(B) X Σ˚ab|P |b˚aΣ˚ �“ H.

So, finally, we can state our main theorem of this section. Recall that by The-
orem 5, and as the class of bounded regular languages equals the class of sparse
regular languages [34], for bounded regular constraint languages, the constrained
problem is, in our case, in NP.
3 Hence different from {ε}, as {ε} Ď {a}˚ for a P Σ.

Synchronization Under Sparse Regular Constraints 279

Theorem 9 (Dichotomy Theorem). Let a1, . . . , ak P Σ be a sequence of let-
ters and L Ď a1̊ · · · ak̊ be regular. The problem L-Constr-Sync is NP-complete
if

L X

⎛

⎜
⎜
⎝

⋃

1ďj1ăj2ăj3ďk
aj2 /P{aj1 ,aj3}

Lj1,j2,j3

⎞

⎟
⎟
⎠ �“ H

with Lj1,j2,j3 “ Σ˚aj1Σ
˚a|P |

j2
Σ˚aj3Σ

˚ for 1 ď j1 ă j2 ă j3 ď k and solvable in
polynomial time otherwise.

As the languages Lj1,j2,j3 are regular, we can devise a polynomial-time algorithm
which checks the condition mentioned in Theorem 9.

Corollary 10. Given a PDFA B and a sequence of letters a1, . . . , ak as input
such that L(B) Ď a1̊ · · · ak̊, the complexity of L(B)-Constr-Sync is decidable
in polynomial-time.

Proof. An automaton for each Lj1,j2,j3 has size linear in |P |. So, by the product
automaton construction [32], non-emptiness of L(B) with each Lj1,j2,j3 could be
checked in time O(|P |2). Doing this for every Lj1,j2,j3 gives a polynomial-time
algorithm to check non-emptiness of the language written in Theorem 9. ��
Example 1. For the following constraint languages CSP is NP-complete: ab˚a,
aa(aaa)˚bbb˚d Y a˚b Y d˚, bbcc˚d˚ Y a.

For the following constraint languages CSP is in P: a5bd Y cd4, a5bd Y cd˚,
aa˚bbbbcd˚ Y bbbdd˚d.

Proof (Proof Sketch for Lemma 8). We construct a reduction from an instance
of DisjointSetTransporter

4 for unary input automata.
To demonstrate the basic idea, we only do the proof in the case L Ď a˚b˚a˚. By

assumption we can deduce ar1br2ar3 P L(B) with p2 ě |P | and r1, r3 ě 1. By the
pigeonhole principle, in B, when reading the factor br2 , at least one state has to
be traversed twice. Hence, we find 0 ă p2 ď |P | such that ar1br2`i·p2ar3 Ď L(B)
for each i ě 0.

Let A “ ({c}, Q, δ) and (A, S, T) be an instance of DisjointSetTrans-

porter. We can assume S and T are non-empty, as for S “ H it is solv-
able, and if T “ H we have no solution. Construct A′ “ (Σ,Q′, δ′) by set-
ting Q′ “ Sr2 Y . . . Y S1 Y Q Y Q1 Y . . . Y Qp2´1 Y {t}, where t is a new
state, Si “ {si | s P S} for i P {1, . . . , r2} are pairwise disjoint copies of S
and Qi “ {qi | q P Q} are5 also pairwise disjoint copies of Q. Note that also

4 Note that the problem DisjointSetTransporter is over a unary alphabet, but for
L-Constr-Sync we have |Σ| ą 1. Indeed, we need the additional letters in Σ.

5 Observe that by the indices a correspondence between the sets is implied. The index
in Qi at the top to distinguish, for s P S and i P {1, . . . , min{r2, p2 ´ 1}}, between
si P Si and si P Qi. Hence, for each s P S and i P {1, . . . , r2}, the states s and si
correspond to each other, and for q P Q and i P {1, . . . , p2 ´ 1} the states q and qi.

280 S. Hoffmann

Si X Qj “ H for i P {1, . . . , r2} and j P {1, . . . , p2 ´ 1}. Set S0 “ S as a short-
hand. Choose any ŝ P Sr2 , then, for q P Q and x P Σ, the transition function is
given by

δ′(q, x) “

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

si´1 if x “ b and q “ si P Si for some i P {1, . . . , r2};
ŝ if x “ a and q P (Q Y Q1 Y . . . Y Qp2´1) \ S;
sr2 if x “ a and q “ si P Si for some i P {0, . . . , r2};
t if x “ a and q P T ;
qp2´1 if x “ b and q P Q;
qi´1 if x “ b and q “ qi P Qi for some i P {2, . . . , p2 ´ 1};
δ(q, c) if x “ b and q “ q1 P Q1;
q otherwise.

Fig. 1. The reduction from the proof sketch sketch of Lemma 8. The letter a transfers
everything surjectively onto Sr2 , indicated by four large arrows at the top and bottom
and labelled by a. The auxiliary states Q1, . . . , Qp2´1, which are meant to interpret
a sequence bp2 like a single symbol in the original automaton, are also only indicated
inside of A, but not fully written out.

Please see Fig. 1 for a sketch of the reduction. For the constructed automaton
A′, the following could be shown: ∃m ě 0 : δ(S, cm) Ď T if and only if A′ has a
synchronizing word in abr2(bp2)˚a if and only if A′ has a synchronizing word in
ab˚a if and only if A′ has a synchronizing word in a˚b˚a˚.

Now, suppose δ(s, cm) Ď T for some m ě 0. By the above, A′ has a synchro-
nizing word u in abr2(bp2)˚a. Then, ar1´1uar3´1 P L(B) also synchronizes A′.

Conversely, suppose we have a synchronizing word w P L for A′. As L Ď
a˚b˚a˚ by the above equivalences, δ(S, cm) Ď T for some m ě 0. ��

Synchronization Under Sparse Regular Constraints 281

5 Constraints from Strongly Self-synchronizing Codes

Here, we introduce strongly self-synchronizing codes and investigate L-Constr-
Sync for bounded constraint languages L Ď w1̊ · · · wk̊ where {w1, . . . , wk} is
such a code.

Let C Ď Σ` be non-empty. Then, C is called a self-synchronizing code [7,8,
33], if C2 X Σ`CΣ` “ H. If, additionally, C Ď Σn for some n ą 0, then it is
called6 a comma-free code [26]. Every self-synchronizing code is an infix code,
i.e., no proper factor of a word from C is in C [33]. A strongly self-synchronizing
code is a self-synchronizing code C Ď Σ` such that, additionally, (Pref(C) \
C)C X Σ˚CΣ` “ H.

To give some intuition for the strongly self-synchronizing codes, we also
present an alternative characterization, a few examples and a way to construct
such codes.

Proposition 11. A non-empty C Ď Σ` is a strongly self-synchronizing code if
and only if, for all u P Pref(C) and v P C, if we write uv “ x1 · · · xn with xi P Σ
for i P {1, . . . , n}, then, for all j P {1, . . . , n} and k ě 1 where j ` k ´ 1 ď n,
we have that xjxj`1 · · · xj`k´1 P C implies j “ |u| ` 1 and k “ |v| or j “ 1
and k “ |u|. Intuitively, in uv only the last |v| symbols form a factor in C and
possibly the first |u| symbols.

When passing from letters to words by applying a homomorphism, in the
reductions, we have to introduce additional states. The definition of the strongly
synchronizing codes was motivated by the demand that these states also have
to be synchronized, which turns out to be difficult in general.

Example 2. The code {aacc, bbc, bac} is strongly self-synchronizing. The code
{aab, bccc, abc} is self-synchronizing, but not strongly self-synchronizing as, for
example, (a)(abc) contains aab or (aa)(bccc) contains abc.

Remark 2 (Construction). Take any non-empty finite language X Ď Σn, n ą 0,
and a symbol c P Σ such that {c}Σ˚ X X “ H. Let k “ max{ � ě 0 | ∃u, v P
Σ˚ : uc�v P X }. Then, Y “ ck`1X is a strongly self-synchronizing code.

Example 3. Let Σ “ {a, b, c} and C “ {ab, ba, aa}. Then, {cab, cba, caa} or
{bbab, bbaa} are strongly self-synchronizing codes by Remark 2.

Our next result, which holds in general, states conditions on a homomorphism
such that we not only have a reduction from the problem for the homomorphic
image to our original problem, as stated in Proposition 2, but also a reduction
in the other direction.

Theorem 12. Let ϕ : Σ˚ Ñ Γ ˚ be a homomorphism such that ϕ(Σ) is a
strongly self-synchronizing code and |ϕ(Σ)| “ |Σ|. Then, for each regular L Ď Σ˚
we have L-Constr-Sync ”log

m ϕ(L)-Constr-Sync.

6 In [33] this distinction is not made and self-synchronizing codes are also called
comma-free codes.

282 S. Hoffmann

Finally, we apply Theorem 12 to bounded languages such that {w1, . . . , wk}
forms a strongly self-synchronizing code.

Theorem 13. Let L Ď w1̊ · · · wk̊ be regular such that {w1, . . . , wk} is a strongly
self-synchronizing code. Then, L-Constr-Sync is either NP-complete or in P.

Example 4. (1) ((aacc)(bbc)˚(bac))-Constr-Sync is NP-complete.
(2) ((bbc)(aacc)(bac)˚ Y (bbc)˚)-Constr-Sync is in P.

6 Conclusion and Discussion

We have looked at the constrained synchronization problem (Problem 1) – CSP
for short – for letter-bounded regular constraint languages and bounded lan-
guages induced by strongly self-synchronizing codes, thereby continuing the
investigation started in [19]. The complexity landscape in these cases is com-
pletely understood. Only the complexity classes P and NP-complete arise. In [31]
the question was raised if we can find sparse constraint languages that give
constrained problems complete for some candidate NP-intermediate complexity
class. At least for the language classes investigated here this is not the case. For
general sparse regular languages, it is still open if a corresponding dichotomy the-
orem holds, or candidate NP-intermediate problems arise. By the results obtained
so far and the methods of proofs, we conjecture that in fact a dichotomy result
holds true.

Let us relate our results to the previous work [31], where partial results for
NP-hardness and containment in P were given. Namely, by setting Fact(L) “
{v P Σ˚ | ∃u,w P Σ˚ : uvw P L} and Bp,E “ (Σ,P, μ, q, E) for B “
(Σ,P, μ, p0, F) with E Ď P and q P P , the following was stated.

Proposition 14 ([31]). Suppose we find u, v P Σ˚ such that we can write
L “ uv˚U for some non-empty language U Ď Σ˚ with u /P Fact(v˚), v /P
Fact(U) and Pref(v˚) X U “ H. Then L-Constr-Sync is NP-hard.

Proposition 15 ([31]). Let B “ (Σ,P, μ, p0, F) be a polycyclic PDFA. If
for every reachable p P P with L(Bp,{p}) �“ {ε} we have L(Bp0,{p}) Ď
Suff(L(Bp,{p})), then the problem L(B)-Constr-Sync is solvable in polynomial
time.

Note that Proposition 14 implies that ab˚a gives an NP-complete CSP. However,
in the letter-bounded case there exist constraint languages giving NP-complete
problems for which this is not implied by Proposition 14, for example: ab˚ba,
ab˚ab, aa˚abb˚a or ba˚bYa. Also, Proposition 15 is weaker than our Proposition 7
in the case of letter-bounded constraints. For example, it does not apply to ab˚b,
every PDFA for this languages has a loop exclusively labelled by the letter b and
reachable after reading the letter a from the start state, and so words along this
loop cannot have a word starting with a as a suffix.

For general bounded languages, let us note the following implication of Propo-
sitions 2 and 7.

Synchronization Under Sparse Regular Constraints 283

Proposition 16. Let u, v P Σ˚. If L Ď u˚v˚ is regular, then L-Constr-Sync
is solvable in polynomial time.

Next, in Proposition 17, we give an example of a bounded regular language
yielding an NP-complete synchronization problem, but for which this is not
directly implied by the results we have so far.

Proposition 17. The problem ((ab)(ba)˚(ab))-Constr-Sync is NP-complete.

By Proposition 17, for the homomorphism ϕ : {a, b}˚ Ñ {a, b}˚ given by
ϕ(a) “ ab and ϕ(b) “ ba both problems ab˚a and ϕ(ab˚a) “ ab(ba)˚ab are
NP-complete. So, this is a homomorphisms which preserves, in this concrete
instance, the computational complexity. But its image {ab, ba} is not even a
self-synchronizing code. However, I do not know if this homomorphism always
preserves the complexity. Similary, I do not know if the condition from Theo-
rem 12 characterizes those homomorphisms which preserve the complexity.

In the reduction used in Lemma 8 the resulting automaton has a sink state.
However, in general, for questions of synchronizability it makes a difference if
we have a sink state or not, at least with respect to the Černý conjecture [11],
as for automata with a sink state this conjecture holds true, even with the bet-
ter bound7 n(n´1)

2 [44,48]. However, even in [19] certain reductions establishing
PSPACE-completeness use only automata with a sink state. Hence, for hard-
ness these automata are sufficient at least in certain instances. So, it might be
interesting to know if in terms of computational complexity of the CSP, we can,
without loss of generality, limit ourselves to input automata with a sink state.
The methods of proof for the letter-bounded constraints show that in this case,
we can actually do this, as these input automata are sufficient to establish all
cases of intractability.

Lastly, let us mention the following related problem8 one could come up with.
Fix a deterministic and complete semi-automaton A. Then, for input PDFAs B,
what is the computational complexity to determine if A “ (Σ,Q, δ) has a syn-
chronizing word in L(B)? As the set of synchronizing words {w P Σ˚ : |δ(Q,w)| “
1} “ ⋃

qPQ

⋂
q′PQ L((Σ,Q, δ, q′, {q})) is a regular language, we have to test for

non-emptiness of intersection of this fixed regular language with L(B). This could
be done in NL, hence in P.

Acknowledgement. I thank anonymous reviewers of a previous version for detailed
feedback. I also sincerely thank the reviewers of the current version (at least one review-
ers saw both versions) for careful reading and giving valuable feedback to improve my
scientific writing and pointing to two instances were I overlooked, in retrospect, two
simple conclusions.

7 In [44] erroneously the bound n(n`1)/2 was reported as being sharp, but the overall
argument in fact works to yield the sharp bound n(n ´ 1)/2.

8 This was actually suggested by a reviewer of a previous version.

284 S. Hoffmann

References

1. Adler, R., Weiss, B.: Similarity of Automorphisms of the Torus. American Mathe-
matical Society: Memoirs of the American Mathematical Society, American Math-
ematical Society (1970)

2. Alves, L.V., Pena, P.N.: Synchronism recovery of discrete event systems. IFAC-
PapersOnLine 53(2), 10474–10479 (2020). 21th IFAC World Congress

3. Amarilli, A., Paperman, C.: Topological sorting with regular constraints. In:
Chatzigiannakis, I., Kaklamanis, C., Marx, D., Sannella, D. (eds.) 45th Inter-
national Colloquium on Automata, Languages, and Programming, ICALP 2018.
LIPIcs, Prague, Czech Republic, 9–13 July 2018, vol. 107, pp. 115:1–115:14. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik (2018)

4. Benenson, Y., Adar, R., Paz-Elizur, T., Livneh, Z., Shapiro, E.: DNA molecule
provides a computing machine with both data and fuel. Proc. Natl. Acad. Sci.
U.S.A. 100, 2191–2196 (2003)

5. Benenson, Y., Paz-Elizur, T., Adar, R., Keinan, E., Livneh, Z., Shapiro, E.: Pro-
grammable and autonomous computing machine made of biomolecules. Nature
414, 430–434 (2001)

6. Berman, L., Hartmanis, J.: On isomorphisms and density of NP and other complete
sets. SIAM J. Comput. 6(2), 305–322 (1977)

7. Berstel, J., Perrin, D.: Theory of Codes. Pure and Applied Mathematics, vol. 117.
Academic Press, Inc., Orlando, XIV, 433 (1985)

8. Berstel, J., Perrin, D., Reutenauer, C.: Codes and Automata, Encyclopedia of
Mathematics and its Applications, vol. 129. Cambridge University Press (2010)

9. Blattner, M., Cremers, A.B.: Observations about bounded languages and develop-
mental systems. Math. Syst. Theory 10, 253–258 (1977)

10. Cassandras, C.G., Lafortune, S.: Introduction to Discrete Event Systems, 2nd edn.
Springer, Heidelberg (2008)

11. Černý, J.: Poznámka k homogénnym experimentom s konečnými automatmi.
Matematicko-fyzikálny časopis 14(3), 208–216 (1964)

12. Chen, Y., Ierardi, D.: The complexity of oblivious plans for orienting and distin-
guishing polygonal parts. Algorithmica 14(5), 367–397 (1995)

13. Cho, H., Jeong, S., Somenzi, F., Pixley, C.: Synchronizing sequences and symbolic
traversal techniques in test generation. J. Electron. Test. 4(1), 19–31 (1993)

14. Dassow, J., Paun, G.: On the regularity of languages generated by context-free
evolutionary grammars. Discret. Appl. Math. 92(2–3), 205–209 (1999)

15. Diekert, V.: Makanin’s algorithm for solving word equations with regular con-
straints. Report, Fakultät Informatik, Universität Stuttgart, March 1998

16. Diekert, V., Gutiérrez, C., Hagenah, C.: The existential theory of equations with
rational constraints in free groups is PSPACE-complete. Inf. Comput. 202(2), 105–
140 (2005)

17. Eppstein, D.: Reset sequences for monotonic automata. SIAM J. Comput. 19(3),
500–510 (1990)

18. Erdmann, M.A., Mason, M.T.: An exploration of sensorless manipulation. IEEE
J. Robot. Autom. 4(4), 369–379 (1988)

19. Fernau, H., Gusev, V.V., Hoffmann, S., Holzer, M., Volkov, M.V., Wolf, P.: Compu-
tational complexity of synchronization under regular constraints. In: Rossmanith,
P., Heggernes, P., Katoen, J. (eds.) 44th International Symposium on Mathemat-
ical Foundations of Computer Science, MFCS 2019. LIPIcs, Aachen, Germany,
26–30 August 2019, vol. 138, pp. 63:1–63:14. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik (2019)

Synchronization Under Sparse Regular Constraints 285

20. Ganardi, M., Hucke, D., König, D., Lohrey, M., Mamouras, K.: Automata theory
on sliding windows. In: Niedermeier, R., Vallée, B. (eds.) 35th Symposium on
Theoretical Aspects of Computer Science, STACS 2018. LIPIcs, Caen, France,
28 February–3 March 2018, vol. 96, pp. 31:1–31:14. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2018)

21. Gawrychowski, P., Krieger, D., Rampersad, N., Shallit, J.O.: Finding the growth
rate of a regular or context-free language in polynomial time. Int. J. Found. Com-
put. Sci. 21(4), 597–618 (2010)

22. Ginsburg, S.: The Mathematical Theory of Context-free Languages. McGraw-Hill,
New York (1966)

23. Ginsburg, S., Spanier, E.H.: Bounded ALGOL-like languages. Trans. Am. Math.
Soc. 113(2), 333–368 (1964)

24. Ginsburg, S., Spanier, E.H.: Bounded regular sets. Proc. Am. Math. Soc. 17(5),
1043–1049 (1966)

25. Goldberg, K.Y.: Orienting polygonal parts without sensors. Algorithmica 10(2–4),
210–225 (1993)

26. Golomb, S.W., Gordon, B., Welch, L.R.: Comma-free codes. Can. J. Math. 10,
202–209 (1958)

27. Gusev, V.V.: Synchronizing automata of bounded rank. In: Moreira, N., Reis, R.
(eds.) CIAA 2012. LNCS, vol. 7381, pp. 171–179. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-31606-7 15

28. Hartmanis, J., Mahaney, S.R.: An essay about research on sparse NP complete sets.
In: Dembiński, P. (ed.) MFCS 1980. LNCS, vol. 88, pp. 40–57. Springer, Heidelberg
(1980). https://doi.org/10.1007/BFb0022494

29. Herrmann, A., Kutrib, M., Malcher, A., Wendlandt, M.: Descriptional complexity
of bounded regular languages. J. Autom. Lang. Comb. 22(1–3), 93–121 (2017)

30. Hoffmann, S.: Computational complexity of synchronization under regular com-
mutative constraints. In: Kim, D., Uma, R.N., Cai, Z., Lee, D.H. (eds.) COCOON
2020. LNCS, vol. 12273, pp. 460–471. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-58150-3 37

31. Hoffmann, S.: On a class of constrained synchronization problems in NP. In: Cor-
dasco, G., Gargano, L., Rescigno, A. (eds.) Proceedings of the 21th Italian Confer-
ence on Theoretical Computer Science, ICTCS 2020, Ischia, Italy. CEUR Workshop
Proceedings, CEUR-WS.org (2020)

32. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley Publishing Company (1979)

33. Hsieh, C., Hsu, S., Shyr, H.J.: Some algebraic properties of comma-free codes.
Technical report. Kyoto University Research Information Repository (KURENAI)
(1989)

34. Latteux, M., Thierrin, G.: On bounded context-free languages. Elektronische Infor-
mationsverarbeitung und Kybernetik (J. Inf. Process. Cybern.) 20(1), 3–8 (1984)

35. Lecoutre, C.: Constraint Networks: Techniques and Algorithms. Wiley, Hoboken
(2009)

36. Mahaney, S.R.: Sparse complete sets of NP: solution of a conjecture of Berman
and Hartmanis. J. Comput. Syst. Sci. 25(2), 130–143 (1982)

37. Natarajan, B.K.: An algorithmic approach to the automated design of parts orien-
ters. In: 27th Annual Symposium on Foundations of Computer Science, Toronto,
Canada, 27–29 October 1986, pp. 132–142. IEEE Computer Society (1986)

38. Natarajan, B.K.: Some paradigms for the automated design of parts feeders. Int.
J. Robot. Res. 8(6), 98–109 (1989)

https://doi.org/10.1007/978-3-642-31606-7_15
https://doi.org/10.1007/BFb0022494
https://doi.org/10.1007/978-3-030-58150-3_37
https://doi.org/10.1007/978-3-030-58150-3_37

286 S. Hoffmann

39. Pesant, G.: A regular language membership constraint for finite sequences of vari-
ables. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 482–495. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-30201-8 36

40. Pin, J.: Mathematical Foundations of Automata Theory (2020). https://www.irif.
fr/∼jep/PDF/MPRI/MPRI.pdf

41. Piziak, R., Odell, P.L.: Full rank factorization of matrices. Math. Mag. 72(3),
193–201 (1999)

42. Ramadge, P.J., Wonham, W.M.: Supervisory control of a class of discrete event
processes. SIAM J. Control Optim. 25, 206–230 (1987)

43. Romeuf, J.: Shortest path under rational constraint. Inf. Process. Lett. 28(5), 245–
248 (1988)

44. Rystsov, I.: Reset words for commutative and solvable automata. Theor. Comput.
Sci. 172(1–2), 273–279 (1997)

45. Sandberg, S.: 1 homing and synchronizing sequences. In: Broy, M., Jonsson, B.,
Katoen, J.-P., Leucker, M., Pretschner, A. (eds.) Model-Based Testing of Reactive
Systems. LNCS, vol. 3472, pp. 5–33. Springer, Heidelberg (2005). https://doi.org/
10.1007/11498490 2

46. Trahtman, A.N.: The road coloring problem. Israel J. Math. 172(1), 51–60 (2009).
https://doi.org/10.1007/s11856-009-0062-5

47. Volkov, M.V.: Synchronizing automata and the Černý conjecture. In: Mart́ın-Vide,
C., Otto, F., Fernau, H. (eds.) LATA 2008. LNCS, vol. 5196, pp. 11–27. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-88282-4 4

48. Volkov, M.V.: Synchronizing automata preserving a chain of partial orders. Theor.
Comput. Sci. 410(37), 3513–3519 (2009)

49. Vorel, V., Roman, A.: Complexity of road coloring with prescribed reset words. J.
Comput. Syst. Sci. 104, 342–358 (2019)

50. Wonham, W.M., Cai, K.: Supervisory Control of Discrete-Event Systems. CCE,
Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77452-7

51. Yu, S.: Regular languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of
Formal Languages, pp. 41–110. Springer, Heidelberg (1997). https://doi.org/10.
1007/978-3-642-59136-5 2

https://doi.org/10.1007/978-3-540-30201-8_36
https://www.irif.fr/~jep/PDF/MPRI/MPRI.pdf
https://www.irif.fr/~jep/PDF/MPRI/MPRI.pdf
https://doi.org/10.1007/11498490_2
https://doi.org/10.1007/11498490_2
https://doi.org/10.1007/s11856-009-0062-5
https://doi.org/10.1007/978-3-540-88282-4_4
https://doi.org/10.1007/978-3-319-77452-7
https://doi.org/10.1007/978-3-642-59136-5_2
https://doi.org/10.1007/978-3-642-59136-5_2

On Dasgupta’s Hierarchical Clustering
Objective and Its Relation to Other

Graph Parameters

Svein Høgemo1(B), Benjamin Bergougnoux1, Ulrik Brandes3,
Christophe Paul2, and Jan Arne Telle1

1 Department of Informatics, University of Bergen, Bergen, Norway
svein.hogemo@uib.no

2 LIRMM, CNRS, Univ Montpellier, Montpellier, France
3 Social Networks Lab, ETH Zürich, Zürich, Switzerland

Abstract. The minimum height of vertex and edge partition trees are
well-studied graph parameters known as, for instance, vertex and edge
ranking number. While they are NP-hard to determine in general, linear-
time algorithms exist for trees. Motivated by a correspondence with Das-
gupta’s objective for hierarchical clustering we consider the total rather
than maximum depth of vertices as an alternative objective for mini-
mization. For vertex partition trees this leads to a new parameter with a
natural interpretation as a measure of robustness against vertex removal.

As tools for the study of this family of parameters we show that
they have similar recursive expressions and prove a binary tree rotation
lemma. The new parameter is related to trivially perfect graph comple-
tion and therefore intractable like the other three are known to be. We
give polynomial-time algorithms for both total-depth variants on cater-
pillars and on trees with a bounded number of leaf neighbors. For general
trees, we obtain a 2-approximation algorithm.

1 Introduction

Clustering is a central problem in data mining and statistics. Although many
objective functions have been proposed for (flat) partitions into clusters, hier-
archical clustering has long been considered from the perspective of iterated
merge (in agglomerative clustering) or split (in divisive clustering) operations.
In 2016, Dasgupta [9] proposed an elegant objective function, hereafter referred
to as DC-value, for nested partitions as a whole, and thus facilitated the study of
hierarchical clustering from an optimization perspective. This work has sparked
research on other objectives, algorithms, and computational complexity, and
drawn significant interest from the data science community [8].

It is customary to represent the input data as an edge-weighted graph, where
the weights represent closeness (in similarity clustering) or distance (in dissim-
ilarity clustering). The bulk of work that has been done on DC-value has con-
centrated on assessing the performance of well-known clustering algorithms in
c© Springer Nature Switzerland AG 2021
E. Bampis and A. Pagourtzis (Eds.): FCT 2021, LNCS 12867, pp. 287–300, 2021.
https://doi.org/10.1007/978-3-030-86593-1_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86593-1_20&domain=pdf
https://doi.org/10.1007/978-3-030-86593-1_20

288 S. Høgemo et al.

Table 1. A family of graph parameters based on nested graph decompositions.

Vertex depth
partition tree

Maximum (max) Total (sum)

Edge (EPT) Edge ranking number [18] Dasgupta’s clustering
objective [9]

Vertex (VPT) Tree-depth [23,24]
vertex ranking number [12,27]
minimum elimination
tree height [3]

[new in this paper]

terms of this objective. In Dasgupta’s original paper, a simple divisive clustering
algorithm for similarity clustering, recursively splitting the input graph along an
α-approximated sparsest cut, was shown to give a O(α · log n)-approximation to
DC-value. In later papers, this result was further improved upon: Charikar and
Chatziafratis [4] show that this algorithm in fact achieves an O(α)-approximation
of DC-value, and complement this result with a hardness result for approximating
DC-value. They also provide new approximation algorithms by way of linear and
semi-definite relaxations of the problem statement. The former is also pointed out
by Roy and Pokutta [26]. For dissimilarity clustering (maximizing the objective
function), several algorithms achieve constant approximation ratio, including
average-linkage (the most commonly used agglomerative clustering method) [8],
although a semi-definite relaxation again can do a little better [5].

In a recent paper showing that Dasgupta’s objective remains intractable
even if the input dissimilarities are binary, i.e., when hierarchically clustering an
unweighted undirected graph, Høgemo, Paul and Telle [15] initiated the study of
Dasgupta’s objective as a graph parameter. By the nature of Dasgupta’s objec-
tive, the associated cluster trees are binary, and admit a mapping from the inner
nodes to the edges of the graph such that every edge connects two vertices from
different subtrees. We relate such trees to so-called edge partition trees [18],
and show that minimizing Dasgupta’s objective is equal to minimizing the total
depth of all leaves in an edge partition tree.

If we consider the maximum depth of a leaf (the height of the tree) instead,
its minimum over all edge partition trees of a graph is known as the edge ranking
number of that graph [18]. The same concept applies to vertex partition trees,
in which there is a one-to-one correspondence between all of its nodes (leaves
and inner nodes) and the vertices of the graph such that no edge connects two
vertices whose corresponding nodes are in disjoint subtrees. The minimum height
of any vertex partition tree is called the vertex ranking number [12,27], but also
known as tree-depth [23,24] and minimum elimination tree height [3].

The above places Dasgupta’s objective, applied to unweighted graphs, into
a family of graph parameters as shown in Table 1. It also suggests a new graph
parameter, combining the use of vertex partition trees with the objective of
minimizing the total depth of vertices. All three previously studied parameters
are NP-hard to determine [15,20,25], and we show that the same holds for the

On Dasgupta’s Hierarchical Clustering Objective 289

new parameter. Interestingly, the proof relies on a direct correspondence with
trivially perfect graph completion and thus provides one possible interpretation
of the parameter in terms of intersecting communities in social networks [22].
We give an alternative interpretation in terms of robustness against network
dismantling.

For both parameters based on tree height, efficient algorithms have been
devised in case the input graph is a tree. For the edge ranking number, it took a
decade from a polynomial-time 2-approximation [18] and an exact polynomial-
time algorithm [10] to finally arrive at a linear-time algorithm [21]. Similarly, a
polynomial-time algorithm for the vertex ranking number [17] was later improved
to linear time [27]. No such algorithms for the input graph being a tree are known
for the total-depth variants.

Our paper is organized as follows. In Sect. 2 we give formal definitions, and
give a rotation lemma for general graphs to improve a given clustering tree.
This allows us to show that if a clustering tree for a connected graph has an
edge cut which is not minimal, or has a subtree defining a cluster that does not
induce a connected subgraph, then it cannot be optimal for DC-value. In Sect. 3
we go through the 4 problems in Table 1 and prove the equivalence with the
standard definitions. We also show an elegant and useful recursive formulation
of each of the 4 problems. In Sect. 4 we consider the situation when the input
graph is a tree. We give polynomial-time algorithms to compute the total depth
variants, including DC-value, for caterpillars and more generally for trees having
a bounded number of leaves in the subtree resulting from removing its leaves.
We then consider the sparsest cut heuristic used by Dasgupta [9] to obtain an
approximation on general graphs. When applied to trees, even to caterpillars,
this does not give an optimal algorithm for DC-value. However, we show that
it does give a 2-approximation on trees, which improves on an 8-approximation
due to Charikar and Chatziafratis [5].

We leave as open the question if any of the two total depth variants can be
solved in polynomial time on trees. On the one hand it would be very surprising
if a graph parameter with such a simple formulation was NP-hard on trees. On
the other hand, the graph-theoretic footing of the algorithms for the two max
depth variants on trees does not seem to hold. The maximum depth variants
are amenable to greedy approaches, where any vertex or edge that is reasonably
balanced can be made root of the partition tree, while this is not true for the
total depth variants.

2 Preliminaries

We use standard graph theoretic notation [13]. In this paper, we will often talk
about several different trees: an unrooted tree which is the input to a problem,
and a rooted tree which is a decompositional structure used in the problem
formulation. To differentiate the two, we will denote an unrooted tree as any
graph, G, while a rooted tree is denoted T . Furthermore, V (G) are called the
vertices of G, while V (T) are called the nodes of T .

290 S. Høgemo et al.

A rooted tree has the following definition; a tree (connected acyclic graph)
T equipped with a special node called the root r, which produces an ordering
on V (T). Every node v in T except r has a parent, which is the neighbor that
lies on the path from v to r. Every node in T that has v as its parent is called
a child of v. A node with no children is called a leaf. Leaves are also defined on
unrooted trees as vertices which have only one neighbor. The set of leaves in a
tree T is denoted L(T). The subtree induced by the internal vertices of T , i.e.
T\L(T), is called the spine-tree of T . A caterpillar is a tree whose spine-tree is
a path; this is the spine of the caterpillar.

In a rooted tree, the set of nodes on the path from v to r is called the ancestors
of v, while the set of all nodes that include v on their paths to r is called the
descendants of v. We denote by T [v] the subtree induced by the descendants of
v (naturally including v itself). As can be seen already for the paragraph above,
we reserve the name node for the vertices in rooted trees. In unrooted trees and
graphs in general we only use vertex ; this is to avoid confusion. For a given graph
G, we use n(G) and m(G) to denote |V (G)| and |E(G)|, respectively, or simply n
and m if clear from context. Let A be a subset of V (G). Then G[A] is the induced
subgraph of G by A, i.e. the graph (A, {uv ∈ G | u, v ∈ A}). If B is a subset of
V (G) disjoint from A, then G[A,B] is the bipartite subgraph of G induced by
A and B, i.e. the graph (A ∪ B, {uv ∈ G | u ∈ A ∧ v ∈ B}). A cut in a graph is
a subset of the edges that, if removed, leaves the graph disconnected. If G is an
unrooted tree, then every single edge uv forms a cut, and we let Gu (respectively
Gv) denote the connected component of G − uv containing u (respectively v).
We use [k] to denote the set of integers from 1 to k.

Definition 1 (Edge-partition tree, Vertex-partition tree). Let G be a
connected graph. An edge-partition tree (EPT for short) T of G is a rooted
tree where:

– The leaves of T are V (G) and the internal nodes of T are E(G).
– Let r be the root of T . If G′ = G − r has k connected components G′

1, . . . , G
′
k

(note that k ≤ 2), then r has k children c1, . . . , ck.
– For all 1 ≤ i ≤ k, T [ci] is an edge partition tree of G′

i.

A vertex-partition tree (VPT for short) T of G is a rooted tree where:

– The nodes of T are V (G).
– Let r be the root of T . If G′ = G− r has k connected components G′

1, . . . , G
′
k,

then r has k children c1, . . . , ck.
– For all 1 ≤ i ≤ k, T [ci] is a vertex partition tree of G′

i.

The set of all edge partition trees of G is denoted EPT (G) and the set of all
vertex partition trees of G is denoted V PT (G).

For each node x in a tree T , we denote by edT (x) the edge depth of x in T ,
i.e. the number of tree edges on the path from the root of T to x, and by vdT (x)
the vertex depth of x in T , equal to edT (x) + 1, i.e. the number of nodes on
the path from the root of T to x. We make this distinction as the measures on

On Dasgupta’s Hierarchical Clustering Objective 291

a

b c

ed f

1 2
3

4 5

6

7 8

9 a b

c d

e f a b
c

d
e f

b

c

a
e

d f

4
5
7
8

2
3

1

6
9

a

Vertex partition tree Clustering tree Edge partition tree

VPT-sum = 17
VPT-max = 4 DC-value = 37 EPT-max = 7

EPT-sum = 37

Fig. 1. This figure shows the different types of partition trees on a small graph (the 3-
sun). Vertices are marked with letters and edges with numbers. The clustering tree and
the edge partition tree have the same structure. All trees are optimal for the measures
defined in Sect. 3.

VPT’s are defined in terms of vertex depth and vice versa for EPT’s. The vertex
height of a tree T is equal to the maximum vertex depth of the nodes in T , and
the edge height of a tree T is equal to the maximum edge depth of the nodes
in T . We generally assume that the graph G is connected; if G is disconnected,
then any VPT (or EPT) is a forest, consisting of the union of VPTs (EPTs) of
the components of G (Fig. 1).

A graph G is trivially perfect if there is a vertex partition tree T of G such
that for any two vertices u, v, if u is an ancestor of v (or vice versa) in T , then uv
is an edge in G. We call T a generating tree for G. Trivially perfect graphs are
also known as quasi-threshold graphs or comparability graphs of trees (see [19]).

Definition 2 (Clustering tree). A binary tree T is a clustering tree of G if:

– The leaves of T are V (G). The clustering tree of K1 is that one vertex.
– Let r be the root of T , with children a and b. Then A = L(T [a]) and B =

L(T [b]) is a partition of V (G).
– T [a] and T [b] are clustering trees of G[A] and G[B], respectively.

For any node x ∈ T , we define G[x] as shorthand for G[L(T [x])], and for two
siblings a, b ∈ T we define G[a, b] as shorthand for G[L(T [a]), L(T [b])].

Definition 3 (DC-value). The Dasgupta Clustering value of a graph G and a
clustering tree T of G is

DC-value(G,T) =
∑

x∈V (T)\L(T)

m(G[ax, bx]) · n(G[x])

where ax and bx are the children of x in T . The DC-value of G, DC-value(G), is
the minimum DC-value over all of its clustering trees.

The following lemma gives a condition under which one can improve a given
hierarchical clustering tree by performing either a left rotation or a right notation
at some node of the tree. See Fig. 2. First off, it is easy to see that performing
such a rotation maintains the property of being a clustering tree.

292 S. Høgemo et al.

u

t

a b

c

T ′: u

ta

b c

T :
left rotation

right rotation

Fig. 2. Here T ′ is derived from T by a left tree rotation, or equivalently T is derived
from T ′ by a right tree rotation.

Lemma 1 (Rotation Lemma). Let G be a graph with clustering trees T and
T ′ such that T ′ is the result of left rotation in T and T of a right rotation in T ′.
Let T and T ′ have nodes a, b, c, t, u as in Fig. 2. We have

DC-value(T) − DC-value(T ′) = n(G[c]) · m(G[a, b]) − n(G[a]) · m(G[b, c]).

Proof. The DC-value of T [u] is equal to

(n(G[a]) + n(G[b]) + n(G[c])) · (m(G[a, b]) + m(G[a, c])) + (n(G[b]) + n(G[c]))·
m(G[b, c])+DC-value(T [a]) + DC-value(T [b]) + DC-value(T [c])

and the DC-cost of the rotated tree T ′[t] is equal to

(n(G[a]) + n(G[b]) + n(G[c])) · (m(G[a, c]) +m(G[b, c])) + (n(G[a]) + n(G[b])) ·m(G[a, b])

+ DC-value(T [a]) + DC-value(T [b]) + DC-value(T [c])

See Fig. 2 for reference. By substituting the costs written above and cancelling
out, we get the equality in the statement of the lemma. ��

This lemma proves useful anywhere where we would like to manipulate clus-
tering trees. We first use it to prove an important fact about DC-value:

Theorem 1. Let G be a connected graph, and let T be an optimal hierarchical
clustering of G. Then, for any node t ∈ T , the subgraph G[t] is connected.

Proof. We assume towards a contradiction that there exists a connected graph
G and an optimal hierarchical clustering T of G, with some node t ∈ T such that
the subgraph G[t] is not connected. Observe that for r, the root in T , G[r] = G
is connected. Then there must exist a node t′ such that G[t′] is not connected
and for every ancestor u �= t′ (of which there is at least one) G[u] is connected.
We focus on t′, its parent u′, its children b and c, and its sibling, a. The following
claim is useful:

Claim ([9], Lemma 2). Let G be a disconnected graph. In an optimal clustering
tree of G, the cut induced by the root is an empty cut.

On Dasgupta’s Hierarchical Clustering Objective 293

Since T is optimal, by Claim 2 there are no edges going between the subgraphs
G[b] and G[c] in G. Since G[u′] is connected, there must be at least one edge
going between G[a] and G[b] in G. We thus have n(G[a]) · m(G[b, c]) = 0 and
n(G[c]) · m(G[a, b]) > 0. But now, by Lemma 1, we can perform a tree rotation
on T to obtain a clustering with strictly lower cost than T . This implies that T
cannot be optimal after all. Thus, the theorem is true as stated. ��
Corollary 1. Let T be an optimal clustering tree of a graph G (not necessar-
ily connected). Then, for every internal node t ∈ T with children u, v, the cut
E(G[u, v]) is an inclusion-wise minimal cut in G[t].

That all optimal clustering trees have this property is hardly surprising, but
is still worth pointing out. It is hard to imagine a scenario where this property
would be unwanted in an application of similarity-based hierarchical clustering.
Also, going forward in this paper, we will be exclusively working with this kind
of clustering trees. Therefore we give it the name:

Definition 4 (Viable clustering tree). Let T be a clustering tree of some
graph. We say that T is a viable clustering tree if it has the added restriction
that for every internal node x ∈ T with children ax, bx, the cut induced by the
partition (L(T [ax]), L(T [bx])) is an inclusion-wise minimal cut in G[L(T [x])].

3 Four Related Problems

We define four measures on partition trees of a graph G, three of them well-
known in the literature. To give a unified presentation, throughout this paper
we will call them VPT-sum, VPT-max, EPT-sum and EPT-max, with no intention
to replace the more well-known names. All four measures can be defined with
very simple recursive formulas.

Definition 5. VPT-max(G) is the minimum vertex height over trees T ∈
V PT (G).

This is arguably the most well-known of the four measures. It is known under
several names, such as tree-depth, vertex ranking number, and minimum elimi-
nation tree height. The definition of tree-depth and minimum elimination tree
height is exactly the minimum height of a vertex partition tree (an elimination
tree is a vertex partition tree). The equivalence of vertex ranking number and
minimum elimination tree height is shown in [11], while it is known from [24]
that

VPT-max(G) = min
v∈V (G)

(1 + max
C∈cc(G−v)

VPT-max(C)).

Definition 6. EPT-max(G) is the minimum edge height over trees T ∈EPT (G).

It is known that EPT-max(G) is equivalent to the edge ranking number [18].
Statements with a � have proofs omitted due to space constraints; see full version
[16] for the proofs.

294 S. Høgemo et al.

Theorem 2. For any connected graph G,

EPT-max(G) = min
e∈E(G)

(1 + max
C∈cc(G−e)

EPT-max(C)).

Definition 7. EPT-sum(G) is the minimum over every tree T ∈ EPT (G) of
the sum of the edge depth of all leaves in T .

The following equivalence between EPT-sum and DC-value, and the very sim-
ple recursive formula, forms the motivation for the results we present here.

Theorem 3. For any connected graph G, EPT-sum(G) = DC-value(G) and

EPT-sum(G) = min
e∈E(G)

(n(G) +
∑

C∈cc(G−e)

EPT-sum(C)).

Proof. We begin proving the equivalence between EPT-sum and its recursive
formulation. For T ∈ EPT (G), we denote EPT-sum(G,T) =

∑
�∈L(T) edT (�).

Let T ∗ be an optimal EPT of G. Since G is connected, T ∗ has only one root r.
We let c1, . . . , ck be the children of r. We denote by T ∗

i the subtree T ∗[ci] and
by Ci the induced subgraph G[L(T ∗

i)]. Observe that we have:

EPT-sum(G,T ∗) =
∑

�∈L(T ∗) edT ∗(�)
= n(G) +

∑
i∈[1,k]

∑
�i∈L(T ∗i) edT ∗

i
(�i)

= n(G) +
∑

i∈[1,k] EPT-sum(Ci, T
∗
i).

Suppose er is the edge of G mapped to r in T ∗. As T ∗ is optimal, for every
i ∈ [1, k], T ∗

i is an optimal EPT of Ci. We have

EPT-sum(G,T ∗) = n(G) +
∑

i∈[1,k] EPT-sum(Ci)
= n(G) +

∑
C∈cc(G−er)

EPT-sum(C)
= mine∈E(G)(n(G) +

∑
C∈cc(G−e) EPT-sum(C))

where the first two equalities follow from the definition of EPT’s and the last
from the optimality of T ∗, and we conclude that the recursive formula holds.

Now, we prove the equivalence between DC-value and EPT-sum. Given a clus-
tering tree CT of a graph G, which by Theorem 1 can be assumed to be viable,
it is easy to construct an EPT T such that DC-value(G,CT) = EPT-sum(G,T).
For each internal node x of CT with children ax, bx, we replace x with a path
Px on m(G[ax, bx]) nodes, connect one end to the parent of x and the other
end to the two children. Then we construct an arbitrary map between the nodes
on the path Px and the edges in G[ax, bx]. As CT is viable, E(G[ax, bx]) is
an inclusion-wise minimal cut of G[x] and thus T is an EPT of G. We have
DC-value(G,CT) = EPT-sum(G,T) because when we replace x by the path
Px, we increase the edge depth of the n(G[x]) leaves of the subtree rooted at
x by m(G[ax, bx]). Conversely, given an EPT T of G, contracting every path
with degree-two internal nodes into a single edge results in a clustering tree CT
(not necessarily viable unless T is optimal) and we have DC-value(G,CT) =
EPT-sum(G,T) by the same argument as above. We conclude from these con-
structions that DC-value(G) = EPT-sum(G). ��

On Dasgupta’s Hierarchical Clustering Objective 295

Definition 8. VPT-sum(G) is the minimum over every tree T ∈ V PT (G) of
the sum of the vertex depth of all nodes in T .

Theorem 4. For any connected graph G, we have

VPT-sum(G) = min
v∈V (G)

(n(G) +
∑

C∈cc(G−v)

VPT-sum(C)).

When comparing the definition of VPT-sum with the definition of trivially
perfect graphs, it is not hard to see that a tree minimizing VPT-sum(G) is a
generating tree of a trivially perfect supergraph of G where as few edges as
possible have been added.

Theorem 5. For any graph G, there exists a trivially perfect completion of G
with at most k edges iff VPT-sum(G) ≤ k + n(G) + m(G).

It is interesting that this formal relation, in addition to tree-depth, connects
the class of trivially perfect graphs to another one of the four measures. Note that
VPT-max (i.e. tree-depth) is also related to trivially perfect completion where
the objective is to minimize the clique number of the completed graph. This
parallels definitions of the related graph parameters treewidth and pathwidth as
the minimum clique number of any chordal or interval supergraph, respectively.
Nastos and Gao [22] have indeed proposed to determine a specific notion of com-
munity structure in social networks, referred to as familial groups, via trivially
perfect editing, i.e., by applying the minimum number of edge additions and edge
removals to turn the graph into a trivially perfect graph. The generating tree
of a closest trivially perfect graph is then interpreted as a vertex partition tree,
and thus a hierarchical decomposition into nested communities that intersect
at their cores. For both familial groups and VPT-sum, an imperfect structure is
transformed into an idealized one, with the difference that VPT-sum only allows
for the addition of edges. Nastos and Gao [22] prefer the restriction to addition
when one is “interested in seeing how individuals in a community are organized”.

Viewed from the opposite perspective, another interpretation of VPT-sum
is as a measure of network vulnerability under vertex removal. The capability
of a network to withstand series of failures or attacks on its nodes is often
assessed by observing changes in the size of the largest connected component, the
reachability relation, or average distances [14]. An optimal vertex partition tree
under VPT-sum represents a worst-case attack scenario in which, for all vertices
simultaneously, the average number of removals in their remaining component
that it takes to detach a vertex is minimized.

The problem of adding the fewest edges to make a trivially perfect graph was
shown NP-hard by Yannakakis in [28] and so Theorem 5 implies the following.

Corollary 2. Computing VPT-sum is NP-hard.

4 VPT-sum and EPT-sum of Trees

In this section we consider the case when the input graph G is a tree. In this
case, every minimal cut consists of one edge, and hence by Corollary 1 the

296 S. Høgemo et al.

optimal clustering trees are edge partition trees, i.e. the internal nodes of T are
E(G). This allows us to prove that the cut at any internal node t of an optimal
clustering tree is an internal edge of G[t], unless G[t] is a star, which in turn
allows us to give an algorithm for caterpillars.

Lemma 2. Let T an optimal clustering tree of a tree G. For any internal node
t ∈ T with children u, v, if G[t] is not a star, then neither u nor v are leaves in
T . This implies that the edge associated with t is an internal edge of G.

Theorem 6. The DC-value of a caterpillar can be computed in O(n3) time.

Proof. We view a caterpillar G as a collection of stars (X1, . . . , Xp) that are
strung together. The central vertices of the stars (x1, . . . , xp) form the spine of
G. Thus, every internal edge xixi+1 in G lies on the spine, and removing such
an edge we get two sub-caterpillars, (X1, . . . , Xi) and (Xi+1, . . . , Xp). For every
i, j ∈ [p] with i ≤ j, we define DC[i, j] to be the DC-value of the sub-caterpillar
(Xi,Xi+1, . . . , Xj). Note that for a star X on n vertices we have DC-value(X) =(
n+1
2

)−1 (one less than the n’th triangle number) as DC-value(K1) = 0 =
(
2
2

)−1,
and whichever edge we cut in a star on n vertices we end up with a single vertex
and a star on n − 1 vertices. Therefore DC[i, i] =

(
n(Xi)+1

2

) − 1 for every i ∈ [p].
From Theorem 1 and Lemma 2, we deduce the following for every i, j ∈ [p] with
i < j.

DC[i, j] =
∑

k∈[i,j]

n(Xk) + min
k∈{i,i+1,...,j−1}

DC[i, k] + DC[k + 1, j]

Hence, to find DC(G), we compute DC[i, j] for every i, j ∈ [p] with i < j in order
of increasing j − i and return DC[1, p]. For the runtime, note that calculating a
cell DC[i, j] takes time O(n) and there are O(n2) such cells in the table. ��

This dynamic programming along the spine of a caterpillar can be generalized
to compute the DC-value of any tree G in time nO(dG), where dG is the number
of leaves of the spine-tree G′ of G. Note that for a caterpillar G we have dG = 2.

In addition, we can show analogues of Theorem 1 and Lemma 2 for VPT-sum,
which enables us to form a polynomial-time algorithm for the VPT-sum of cater-
pillars, and by the same generalization as above, for any tree G where dG is
bounded.

Theorem 7. DC-value and VPT-sum of a tree G is found in nO(dG) time.

Lastly, we discuss the most well-studied approximation algorithm for
DC-value [9], recursively partitioning the graph along a sparsest cut. A spars-
est cut of a graph G is a partition (A,B) of V (G) that minimizes the measure
m(G[A,B])

|A|·|B| . A sparsest cut must be a minimal cut.
For general graphs, finding a sparsest cut is NP-hard and must be approx-

imated itself. On trees however, every minimal cut consists of one edge, and a
sparsest cut is a balanced cut, minimizing the size of the largest component. The

On Dasgupta’s Hierarchical Clustering Objective 297

f e
x y u v

Gx Guy GvGu Gy

Fig. 3. Inclusion relations between the subtrees Gu, Gv, Gx, Gy and Guy.

optimal cut can therefore in trees be found efficiently. We call an edge of a tree
balanced, if it induces a balanced cut.

The results by Charikar and Chatziafratis [4] already indicate that the bal-
anced cut algorithm gives an 8-approximation of the DC-value of trees (and other
graph classes for which the sparsest cut can be found in polynomial time, like
planar graphs, see [1] for more information). In the following, we prove that for
trees, we can guarantee a 2-approximation. We start by showing an upper bound
on the DC-value of the two subtrees resulting from removing an arbitrary edge
of a tree, and follow up with a stronger bound if the removed edge is balanced.

Lemma 3. If G is a tree and e = uv ∈ E(G), then
DC-value(Gu) + DC-value(Gv) ≤ DC-value(G) − min{n(Gu), n(Gv)}.

Lemma 4. If G is a tree and e = uv ∈ E(G) balanced, then DC-value(Gu) +
DC-value(Gv) ≤ DC-value(G) − max{n(Gu), n(Gv)} ≤ DC-value(G) − n(G)

2 .

Proof. The proof is by induction on the number of edges in the tree G. The single
edge e = uv of a K2 induces a balanced cut and DC-value(Gu)+DC-value(Gv) =
0 + 0 ≤ 2 − 1 = DC-value(G) − max{n(Gu), n(Gv)}.

For the induction step assume that G is a tree with at least two edges
and choose any balanced edge e = uv. Let f = xy be the edge at the root
of an optimal clustering of G. If e = f , then by definition DC-value(G) =
DC-value(Gu) + DC-value(Gv) + n and the lemma holds. Assume therefore that
e �= f and w.l.o.g. f ∈ E(Gu) and e ∈ E(Gy), as in Fig. 3. We let Guy denote
the subgraph induced by V (Gu) ∩ V (Gy).

By definition, DC-value(Gu) ≤ DC-value(Gx)+DC-value(Guy)+(n−n(Gv)),
and together with DC-value(Guy) + DC-value(Gv) ≤ DC-value(Gy) − η where

η =

{
max{n(Guy), n(Gv)} if e is balanced in Gy (from induction hypothesis)
min{n(Guy), n(Gv)} otherwise (from Lemma 3)

we get

DC-value(Gu) + DC-value(Gv)
≤ DC-value(Gx) + DC-value(Gy) + n

︸ ︷︷ ︸
=DC-value(G)

− n(Gv) − η.

It remains to show that n(Gv) + η ≥ max{n(Gu), n(Gv)}, which is obvious if
n(Gu) ≤ n(Gv). So we suppose that n(Gu) > n(Gv) and proceed to show that
n(Gv) + η ≥ n(Gu). Since e is balanced in G, we have by definition

298 S. Høgemo et al.

max{n(Gx) + n(Guy), n(Gv)} ≤ max{n(Gx), n(Guy) + n(Gv)},

implying that n(Gv) ≥ n(Gx). It follows that

n(Gv) + n(Guy) ≥ n(Gx) + n(Guy) = n(Gu).

See Fig. 3. We have two cases to consider. If n(Guy) ≤ n(Gv), then n(Guy) =
min{n(Guy), n(Gv)} ≤ η, implying that n(Gv)+η ≥ n(Gu). If n(Guy) > n(Gv),
then e is balanced in Gy, so η is the maximum of n(Gv) and n(Guy) and we are
done since n(Gu) ≤ n(Gv) + η. ��

Let a balanced clustering of a tree G be a clustering tree T̂ such that for every
internal node e in T̂ , the edge corresponding to e is a balanced edge in G[e]. As
discussed earlier, a balanced clustering of a tree can be found efficiently. We now
prove the guarantee of 2-approximation:

Theorem 8. Let G be a tree, and T̂ a balanced clustering of G. We then have
DC-value(G, T̂) ≤ 2 · DC-value(G).

Proof. The overall proof goes by strong induction. For the base case, we easily
see that for every tree on at most 2 vertices, all the balanced clustering trees are
actually optimal; for these trees the statement follows trivially. For the induction
step, we assume that for all trees on at most some k vertices, the statement
holds. We then look at a tree G on n = k + 1 vertices. We focus on two different
clustering trees of G: T ∗, which is an optimal clustering tree and has DC-value
W ∗ = DC-value(G), and T̂ , which is a balanced clustering tree and has DC-value
Ŵ . Our aim is now to prove that Ŵ ≤ 2 · W ∗.

We denote the root of T̂ by r = uv and its two children by cu and cv. By defini-
tion, T̂ [cu] and T̂ [cv] are balanced clustering trees of Gu and Gv, respectively. By
our induction hypothesis, we know that DC-value(Gu, T̂ [cu]) ≤ 2 · DC-value(Gu)
and respectively for cv. By definition we have Ŵ = DC-value(Gu, T̂ [cu]) +
DC-value(Gv, T̂ [cv])+n which gives Ŵ ≤ 2 · (DC-value(Gu)+DC-value(Gv))+n.
By Lemma 4 we have DC-value(Gu) + DC-value(Gv) ≤ DC-value(G) − n

2 and so
Ŵ ≤ 2 · (DC-value(G) − n

2) + n = 2 · W ∗ and we are done. ��
On the other hand, the recursive sparsest cut algorithm will not necessarily

compute the optimal value on trees. Actually, it fails already for caterpillars.

Theorem 9. There is an infinite family of caterpillars {Bk | k ≥ 3} such that
DC-value(Bk) ≥ 2k and for any balanced clustering tree T̂k of Bk has the property
that DC-value(Bk, T̂k)/DC-value(Bk) = 1 + Ω(1/

√
DC-value(Bk)).

We conjecture that the actual performance of the balanced cut algorithm on
trees is 1+O(1/ log n)), which would substantially improve the 2-approximation
ratio given by Theorem 8.

Note: After we submitted this paper to FCT 2021, it has come to our atten-
tion that parameters equivalent to EPT-sum and VPT-sum have been studied

On Dasgupta’s Hierarchical Clustering Objective 299

before in a completely different context, with edge and vertex partition trees
seen as a generalization of binary search trees. Relevant results include: finding
the EPT-sum of a node-weighted tree is NP-hard [6]; the balanced cut-approach
gives a 1.62-approximation for EPT-sum on (node-weighted) trees [7] (this sur-
passes the upper bound found in this paper); and VPT-sum on (node-weighted)
trees admits a PTAS [2].

References

1. Abboud, A., Cohen-Addad, V., Klein, P.N.: New hardness results for planar graph
problems in p and an algorithm for sparsest cut. In: Proceedings of the 52nd Annual
ACM SIGACT Symposium on Theory of Computing, STOC 2020, pp. 996–1009.
ACM (2020). https://doi.org/10.1145/3357713.3384310

2. Berendsohn, B.A., Kozma, L.: Splay trees on trees. CoRR, abs/2010.00931 (2020).
arXiv:2010.00931

3. Bodlaender, H.L., et al.: Rankings of graphs. SIAM J. Discret. Math. 11(1), 168–
181 (1998). https://doi.org/10.1137/S0895480195282550

4. Charikar, M., Chatziafratis, V.: Approximate hierarchical clustering via sparsest
cut and spreading metrics. In: Annual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA), pp. 841–854 (2017)

5. Charikar, M., Chatziafratis, V., Niazadeh, R.: Hierarchical clustering better than
average-linkage. In: Proceedings of the Thirtieth Annual ACM-SIAM Symposium
on Discrete Algorithms, pp. 2291–2304 (2019)

6. Cicalese, F., Jacobs, T., Laber, E., Molinaro, M.: On the complexity of searching in
trees and partially ordered structures. Theoret. Comput. Sci. 412(50), 6879–6896
(2011)

7. Cicalese, F., Jacobs, T., Laber, E., Molinaro, M.: Improved approximation algo-
rithms for the average-case tree searching problem. Algorithmica 68(4), 1045–1074
(2014)

8. Cohen-Addad, V., Kanade, V., Mallmann-Trenn, F., Mathieu, C.: Hierarchical
clustering: objective functions and algorithms. J. ACM 66(4), 26:1–26-42 (2019)

9. Dasgupta, S.: A cost function for similarity-based hierarchical clustering. In:
Annual ACM symposium on Theory of Computing (STOC), pp. 118–127 (2016)

10. de la Torre, P., Greenlaw, R., Schäffer, A.A.: Optimal edge ranking of trees in
polynomial time. Algorithmica 13(6), 592–618 (1995)

11. Deogun, J.S., Kloks, T., Kratsch, D., Müller, H.: On vertex ranking for permutation
and other graphs. In: Enjalbert, P., Mayr, E.W., Wagner, K.W. (eds.) STACS
1994. LNCS, vol. 775, pp. 747–758. Springer, Heidelberg (1994). https://doi.org/
10.1007/3-540-57785-8 187

12. Deogun, J.S., Kloks, T., Kratsch, D., Müller, H.: On the vertex ranking problem
for trapezoid, circular-arc and other graphs. Discret. Appl. Math. 98(1), 39–63
(1999). https://doi.org/10.1016/S0166-218X(99)00179-1

13. Diestel, R.: Graph Theory, 5th edn. Springer, Heidelberg (2017). https://doi.org/
10.1007/978-3-662-53622-3

14. Dong, S., Wang, H., Mostafavi, A., Gao, J.: Robust component: a robustness mea-
sure that incorporates access to critical facilities under disruptions. J. R. Soc.
Interface 16(157), 20190149 (2019)

https://doi.org/10.1145/3357713.3384310
http://arxiv.org/abs/2010.00931
https://doi.org/10.1137/S0895480195282550
https://doi.org/10.1007/3-540-57785-8_187
https://doi.org/10.1007/3-540-57785-8_187
https://doi.org/10.1016/S0166-218X(99)00179-1
https://doi.org/10.1007/978-3-662-53622-3
https://doi.org/10.1007/978-3-662-53622-3

300 S. Høgemo et al.

15. Høgemo, S., Paul, C., Telle, J.A.: Hierarchical clusterings of unweighted graphs.
In: International Symposium on Mathematical Foundations of Computer Science
(MFCS 2020), vol. 170, pp. 47:1–47:13 (2020). https://doi.org/10.4230/LIPIcs.
MFCS.2020.47

16. Høgemo, S., Bergougnoux, B., Brandes, U., Paul, C., Telle, J.A.: On dasgupta’s
hierarchical clustering objective and its relation to other graph parameters. arXiv
preprint arXiv:2105.12093 (2021)

17. Iyer, A.V., Ratliff, H.D., Vijayan, G.: Optimal node ranking of trees. Inf. Process.
Lett. 28(5), 225–229 (1988). https://doi.org/10.1016/0020-0190(88)90194-9

18. Iyer, A.V., Ratliff, H.D., Vijayan, G.: On an edge ranking problem of trees and
graphs. Discret. Appl. Math. 30(1), 43–52 (1991). https://doi.org/10.1016/0166-
218X(91)90012-L

19. Jing-Ho, Y., Jer-Jeong, C., Chang, G.J.: Quasi-threshold graphs. Discret. Appl.
Math. 69(3), 247–255 (1996). https://doi.org/10.1016/0166-218X(96)00094-7

20. Lam, T.W., Yue, F.L.: Edge ranking of graphs is hard. Discret. Appl. Math. 85(1),
71–86 (1998). https://doi.org/10.1016/S0166-218X(98)00029-8

21. Lam, T.W., Yue, F.L.: Optimal edge ranking of trees in linear time. Algorithmica
30(1), 12–33 (2001)

22. Nastos, J., Gao, Y.: Familial groups in social networks. Soc. Netw. 35(3), 439–450
(2013). https://doi.org/10.1016/j.socnet.2013.05.001

23. Nešetřil, J., Ossona de Mendez, P.: On low tree-depth decompositions. Graph.
Combin. 31(6), 1941–1963 (2015)

24. Nešetřil, J., Ossona de Mendez, P.: Tree-depth, subgraph coloring and homomor-
phism bounds. Eur. J. Combin. 27(6), 1022–1041 (2006). https://doi.org/10.1016/
j.ejc.2005.01.010

25. Pothen, A.: The complexity of optimal elimination trees. Technical report (1988)
26. Roy, A., Pokutta, S.: Hierarchical clustering via spreading metrics. In: Proceedings

of the 30th International Conference on Neural Information Processing Systems,
NIPS 2016, pp. 2324–2332 (2016)

27. Schäffer, A.A.: Optimal node ranking of trees in linear time. Inf. Process. Lett.
33(2), 91–96 (1989). https://doi.org/10.1016/0020-0190(89)90161-0

28. Yannakakis, M.: Computing the minimum fill-in is NP-complete. SIAM J. Alge-
braic Discret. Methods 2, 77–79 (1981)

https://doi.org/10.4230/LIPIcs.MFCS.2020.47
https://doi.org/10.4230/LIPIcs.MFCS.2020.47
http://arxiv.org/abs/2105.12093
https://doi.org/10.1016/0020-0190(88)90194-9
https://doi.org/10.1016/0166-218X(91)90012-L
https://doi.org/10.1016/0166-218X(91)90012-L
https://doi.org/10.1016/0166-218X(96)00094-7
https://doi.org/10.1016/S0166-218X(98)00029-8
https://doi.org/10.1016/j.socnet.2013.05.001
https://doi.org/10.1016/j.ejc.2005.01.010
https://doi.org/10.1016/j.ejc.2005.01.010
https://doi.org/10.1016/0020-0190(89)90161-0

Mengerian Temporal Graphs Revisited

Allen Ibiapina(B) and Ana Silva

ParGO Group - Parallelism, Graphs and Optimization, Departamento de
Matemática, Universidade Federal do Ceará, Fortaleza, Brazil

allen.ibiapina@alu.ufc.br, anasilva@mat.ufc.br
https://www.ufc.br/

Abstract. A temporal graph G is a graph that changes with time. More
specifically, it is a pair (G, λ) where G is a graph and λ is a function
on the edges of G that describes when each edge e ∈ E(G) is active.
Given vertices s, t ∈ V (G), a temporal s, t-path is a path in G that
traverses edges in non-decreasing time; and if s, t are non-adjacent, then
a vertex temporal s, t-cut is a subset S ⊆ V (G) whose removal destroys
all temporal s, t-paths.

It is known that Menger’s Theorem does not hold on this context, i.e.,
that the maximum number of internally vertex disjoint temporal s, t-
paths is not necessarily equal to the minimum size of a vertex temporal
s, t-cut. In a seminal paper, Kempe, Kleinberg and Kumar (STOC’2000)
defined a graph G to be Mengerian if equality holds on (G, λ) for every
function λ. They then proved that, if each edge is allowed to be active
only once in (G, λ), then G is Mengerian if and only if G has no gem as
topological minor. In this paper, we generalize their result by allowing
edges to be active more than once, giving a characterization also in terms
of forbidden structures. We also provide a polynomial time recognition
algorithm.

Keywords: Temporal graphs · Menger’s Theorem · Forbidden minors

1 Introduction

Temporal graphs have been the subject of a lot of interest in recent years (see
e.g. the surveys [9,11,14,15]). They appear under many distinct names (tem-
poral networks [9], edge-scheduled networks [1], dynamic networks [17], time-
varying graphs [4], stream graphs, link streams [11], etc.), but with very little (if
any) distinction between the various models. Here, we favor the name temporal
graphs.

An example where one can apply a temporal graph is the modeling of prox-
imity of people within a region, with each vertex representing a person, and two
people being linked by an edge at a given moment if they are close to each other.

Supported by CNPq grants 303803/2020-7 and 437841/2018-9, FUNCAP/CNPq grant
PNE-0112-00061.01.00/16, and CAPES (PhD student funding).

c© Springer Nature Switzerland AG 2021
E. Bampis and A. Pagourtzis (Eds.): FCT 2021, LNCS 12867, pp. 301–313, 2021.
https://doi.org/10.1007/978-3-030-86593-1_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86593-1_21&domain=pdf
http://orcid.org/0000-0002-6584-7718
http://orcid.org/0000-0001-8917-0564
https://doi.org/10.1007/978-3-030-86593-1_21

302 A. Ibiapina and A. Silva

This and similar ideas have been used also to model animal proximity networks,
human communication, collaboration networks, travel and transportation net-
works, etc. We refer the reader to [9] for a plethora of applications, but just to
cite a simple (and trendy) example where these structures could be used, imagine
one wants to track, in the proximity network previously described, the spreading
of a contagious disease. In this case it is important to be able to detect whether
there was an indirect contact between two people, and of course the contact
is only relevant if it occurred after one of these people got sick (see e.g. [6]).
Therefore, when studying temporal graphs, it makes sense to be concerned with
paths between vertices that respect the flow of time; these are called temporal
paths and are essentially different from the traditional concept in static graphs,
allowing even for multiple definitions of minimality (see e.g. [5,13,17]).

Temporal graphs are being used in practice in a variety of fields for many
decades now, with the first appearances dating back to the 1980’s, but only
recently there seems to be a bigger effort to understand these structures from a
more theoretical point of view. An issue that is often raised is whether results
on the static version of a certain problem are inherited. This is not always the
case, as has been shown for the temporal versions of connected components [2],
Menger’s Theorem [1,10], and Edmonds’ Theorem [3,10].

In particular, in [10] they define and characterize a Mengerian graph as being
a graph1 for which all assignment of activity times for its edges produces a
temporal graph on which Menger’s Theorem holds. However, their definition
does not allow for a certain edge to be active multiple times, which is the case
in most of the recent studies. In this paper, we fill this gap, giving a complete
characterization of Mengerian graphs. Like the characterization given in [10],
ours is in terms of forbidden structures. We also provide a polynomial-time
recognition algorithm for these graphs.

Related Work and Results. Given a graph G, and a time labeling λ : E(G) →
N\{0}, we call the pair (G,λ) a temporal graph. Also, given vertices s, t ∈ V (G),
a temporal s, t-path in (G,λ) is a path between s and t in G such that if edge e
appears after e′ in the path, then λ(e′) ≤ λ(e). We say that two such paths are
vertex disjoint if their internal vertices are distinct. Also, a subset S ⊂ V (G)
(S ⊆ E(G)) is a vertex temporal s, t-cut if there is no temporal s, t-path in
(G − S, λ′), where λ′ is equal to λ restricted to E(G − S). From now on, we
make an abuse of language and write simply (G − S, λ). The analogous notions
on static graphs, and on edges, can be naturally defined and the following is one
of the most celebrated theorems in Graph Theory.

Theorem 1 (Menger [12]). Let G be a graph, and s, t ∈ V (G) be such that
st /∈ E(G). Then, the maximum number of vertex (edge) disjoint s, t-paths in G
is equal to the minimum size of a vertex (edge) cut in G.

In [1], the author already pointed out that this might not be the case for
temporal paths. Here, we present the example given later in [10]; see Fig. 1(a).
1 We adopt the definition of [16], where a graph can have multiple edges incident to
the same pair of vertices. This is sometimes called multigraph.

Mengerian Temporal Graphs Revisited 303

Observe that the only temporal s, t-path using sw also uses v, and since {w, v}
separates s from t, we get that there are no two vertex disjoint temporal s, t-
paths. At the same time, no single vertex among u,v and w breaks all temporal
s, t-paths, i.e., there is no vertex temporal s, t-cut of size 1.

(a) Simple graph. (b) General graph.

Fig. 1. Examples of graphs where the temporal version of Menger’s Theorem applied
to vertices does not hold.

Inspired by this, in [10] the authors define the Mengerian graphs, which are
those graphs G for which, no matter what is the time labeling λ, we get that
the maximum number of temporal s, t-paths in (G,λ) is equal to the minimum
size of a vertex temporal s, t-cut in (G,λ), for every pair s, t ∈ V (G) such that
st /∈ E(G). They then give a very interesting characterization for when the
graph is simple: a simple graph G is Mengerian if and only if G does not have
the graph depicted in Fig. 1(a) (also known as the gem) as a topological minor.
Despite being a very nice result, it does not allow for an edge of a simple graph
to be active more than once, which is generally the case in practice. Indeed,
as the graph depicted in Fig. 1(b) tells us, if an edge can be active more than
once, then a graph which does not contain the gem as a topological minor might
still be non-Mengerian. In this paper, we allow G to be a general graph (i.e.,
it can contain multiple edges incident to the same pair of vertices; this is also
sometimes called multigraph), and give a similar characterization below. The
formal definition of an m-topological minor is given in Sect. 2, but for now it
suffices to say that, when subdividing an edge e, the multiplicity of the obtained
edges is the same as e.

Theorem 2. Let G be any graph. Then, G is a Mengerian graph if and only if
G does not have one of the graphs in Fig. 2 as an m-topological minor.

We also provide a polynomial time recognition algorithm to decide whether
a given graph G is Mengerian. We use the algorithm in [8] that decides whether
H is a topological minor of a given graph G in time FPT when parameterized
by |V (H)| to solve a number of subproblems, getting the complexity below.

Theorem 3. Let G be a graph on n vertices. Then, one can decide whether G
is a Mengerian graph in time O(n3m), where m is the number of edges of the
underlying graph of G.

304 A. Ibiapina and A. Silva

(a) F1 (b) F2 (c) F3 (d) F4

Fig. 2. Forbidden m-topological minors.

Now, we comment on other papers that attack related problems. In [1], the
author proves that the temporal version of Menger’s Theorem applied to edges
always holds. In [13], the authors give an alternative formulation of Menger’s
Theorem that holds on the temporal context. There, they define the notion of
out-disjointness, where two paths are disjoint if they do not share the same
departure time for a given vertex, and the notion of node departure time cut,
where one removes a time label from the possible departure times of a vertex.
They then prove that the maximum number of out-disjoint paths between s, t is
equal to the minimum size of a node departure time cut. In [1], the author also
proves that deciding whether there are k vertex disjoint temporal s, t-paths is
NP-complete. This was improved for fixed k = 2 in [10], where they also prove
that deciding whether there is a vertex temporal s, t-cut of size at most k is NP-
complete, for given k. Observe that the latter problem can be easily solved in
time O(|V (G)|k), which raises the question about whether it can be FPT when
parameterized by k. This is answered negatively in [18], where they prove that
this is W[1]-hard. Finally, in [7], the authors further investigate the cut problem,
giving some more strict hardness results (e.g. that the problem is hard even
if G is a line graph), as well as some positive ones (e.g., that the problem is
polynomial when G has bounded treewidth).

Our paper is organized as follows. We give the formal definitions in Sect. 2,
and outlines of the proofs in Sect. 3 (necessity of Theorem 2), Sect. 4 (sufficiency
of Theorem 2), and Sect. 5 (Theorem 3).

2 Preliminaries

A graph is a tuple G = (V,E) together with a function that associates each e ∈ E
with two (not necessarily distinct) elements in V . We do not refer explicitly to
this function, and instead we write e has endpoints uv to denote the fact that e
is mapped to {u, v}; we also write uv to represent the pair of endpoints {u, v}.
The elements in V are called vertices, and the elements in E, edges. If the graph
is denoted by G, we also use V (G), E(G) to denote its vertex and edge sets,
respectively. A graph H such that V (H) ⊆ V (G) and E(H) ⊆ V (G) is called a
subgraph of G, and we write H ⊆ G.

The degree of a vertex v ∈ V is the number of edges having v as endpoint,
and it is denoted by dG(v). The maximum degree of G is then the maximum
among the degree of vertices of G; it is denoted by Δ(G).

Mengerian Temporal Graphs Revisited 305

An edge with equal endpoints is called a loop. Also, if there are exactly k
edges in E(G) with endpoints uv, then we say that uv has multiplicity k; we also
call uv a multiple edge. A graph is simple if it does not have loops nor multiple
edges. For further basic definitions, we refer the reader to [16].

Given a graph G, we relate to G a simple graph G′ such that V (G′) = V (G)
and E(G′) is obtained from E(G) by removing loops and multiple edges, i.e.,
E(G′) = {uv | there exists e ∈ E(G) with endpoints uv and u �= v}. We call G′

the underlying simple graph of G, and denote it by U(G).
A temporal graph is a pair (G,λ) such that G is a graph and λ is a time labeling

function that assigns to each edge e the time where e is active (i.e., λ : E(G) →
N\{0}). Given S ⊆ E(G), we denote by max λ(S) the value maxe∈S λ(e). We
say that (G,λ) has lifetime T if T = max λ(E(G)). We call a value i ∈ [T] a
timestamp. In the literature, the model found more often uses a simple graph
G and a time labeling function that allows each edge to appear more than once
during the lifetime of (G,λ). Observe that this is equivalent to our model.

We refer the reader to the introduction for the definition of temporal s, t-path
and of vertex temporal s, t-cut. We say that s reaches t in (G,λ) if there exists
a temporal s, t-path in (G,λ). Given S ⊆ V (G), we denote by (G − S, λ) the
temporal graph obtained by removing S from G and restricting λ to E(G − S).

The maximum number of vertex disjoint temporal s, t-walks is denoted by
pG,λ(s, t) (recall that by vertex disjoint, we mean internally vertex disjoint). If
s, t ∈ V (G) are non-adjacent, then cG,λ(s, t) denotes the minimum size of a
vertex temporal s, t-cut. And if s, t ∈ V (G) are adjacent, then cG,λ(s, t) denotes
|S|+|E′|, where E′ is the set of edges of G with endpoints st and S is a minimum
vertex temporal s, t-cut in (G − E′, λ).

A graph G is Mengerian if pG,λ(s, t) = cG,λ(s, t) for every time labeling
λ : E(G) → N\{0}, and every pair of vertices s, t ∈ V (G). In order to present
our characterization of Mengerian graphs, we first need to define a new type of
graph subdivision.

Given a graph H and an edge e ∈ E(H) with endpoints uv, a subdivision of
e is the graph obtained from H by removing e, adding a new vertex w and edges
uw and vw; and given an edge uv ∈ E(U(H)) with multiplicity k, a multiple
subdivision of uv (or m-subdivision for short) is the graph obtained by removing
every e ∈ E(H) with endpoints uv, adding a new vertex w, and k edges with
endpoints uw, as well as k edges with endpoints wv. If a graph G is obtained
from H by a series of edge subdivisions, we say that G is a subdivision of H,
and if G is obtained from H by a series of edge m-subdivisions, we say that
G is an m-subdivision of H. Also, if G has a subgraph that is a subdivision of
H, we say that H is a topological minor of G, writing H � G; and if G has a
subgraph that is an m-subdivision of H, we say that H is an m-topological minor
of G, writing H �m G. Denote by F the set of graphs in Fig. 2. Observe that
the relations � and �m are distinct. For instance, the graph G obtained from
F1 by m-subdividing the multiple edge once does not contain a subdivision of
F1, i.e., F1 �m G and F1 � G. This explains the need for Theorem 3, since

306 A. Ibiapina and A. Silva

the algorithm to recognize topological minors [8] cannot be directly applied to
m-topological minors.

A chain in a graph G is a path (z0, · · · , zq) in U(G) such that zi−1zi has
multiplicity at least 2, for each i ∈ [q]. Note that any m-subdivision H of a graph
in {F1,F2,F3} contains a unique chain, which we call the chain of H.

The following lemma is used in Sects. 3 and 4.

Lemma 1. G is Mengerian if and only if every H ⊆ G is Mengerian.

Proof. Sufficiency is trivial since G ⊆ G. To prove necessity, suppose that H ⊆ G
is non-Mengerian, and let s, t, λ be such that pH,λ(s, t) < cH,λ(s, t). Consider the
time labeling function λ′ for E(G) defined as follows.

λ′(e) =

⎧
⎨

⎩

λ(e) + 1 , if e ∈ E(H),
1 , if e ∈ E(G)\E(H) has endpoints yt, and
max λ(E(H)) + 2 , otherwise.

Let E′ be the set of edges of H with endpoints in s, t and E′′, the set of edges
of G with endpoints s, t that are not in H. Also, let H ′ = H−E′ and G′ = G−E′′.
We first prove that pG′,λ(s, t) = pH′,λ(s, t) and cG′,λ(s, t) = cH′,λ(s, t). Because
H ′ ⊆ G′, we clearly have pG′,λ(s, t) ≥ pH′,λ(s, t) and cG′,λ(s, t) ≥ cH′,λ(s, t).
For the other way around, suppose that P is a temporal s, t-path in G′ not
contained in H ′. This means that P contains at least one edge e ∈ E(G′)\E(H ′).
This is a contradiction because either e is not incident to t, and hence appear
after all the edges incident to t, or e is incident to t and appears before all the
other edges of P . Because the set of temporal s, t-paths in G′ and H ′ are the
same, the desired equalities follow. Finally, observe that pG,λ(s, t) = pG′,λ(s, t)+
|E′| + |E′′| = pH′,λ(s, t) + |E′| + |E′′| = pH,λ(s, t) + |E′′|, while cG,λ(s, t) =
cG′,λ(s, t) + |E′| + |E′′| = cH′,λ(s, t) + |E′| + |E′′| = cH,λ(s, t) + |E′′|. It thus
follows that pG,λ(s, t) < cG,λ(s, t), and G is non-Mengerian, as we wanted to
prove.

Finally, given a simple graph G and vertices Z = {z1, · · · , zk} ⊆ V (G), the
identification of Z is the simple graph obtained from G − Z by adding a new
vertex z and edges zw for every w ∈ NG(Z). This operation will be used in some
of our proofs.

3 Outline of the Proof of Necessity of Theorem 2

We prove the contraposition, i.e., that if F �m G for some F ∈ F , then G is
non-Mengerian. Observe that, because of Lemma 1, it suffices to prove that each
F ∈ F is non-Mengerian and that if G is an m-topological subdivision of F ,
then G is non-Mengerian. Observe Fig. 3 to see that the graphs in F are non-
Mengerian. For the second part, we prove that a single m-subdivision preserves
the property of being non-Mengerian.

Lemma 2. If F is non-Mengerian, and G is obtained from F by an m-subdi-
vision, then G is non-Mengerian.

Mengerian Temporal Graphs Revisited 307

(a) F1 (b) F2

(c) F3 (d) F4

Fig. 3. Forbidden m-topological minors and a function such that p(s, t) < c(s, t).

4 Outline of the Proof of Sufficiency of Theorem 2

Again because of Lemma 1, we only need to prove that if G is a minimal non-
Mengerian graph, then G is an m-subdivision of some F ∈ F . Before we start,
we present a definition and a result from [10] that will be used in our proofs.
Given a simple graph G, vertices v, w ∈ V (G), and a positive integer d, a graph
G is called (v, w, d)-separable if:

– v and w each have degree exactly d.
– Either G−{v, w} consists of d components or vw ∈ E(G) and G−{v, w} has

d − 1 components.

Lemma 3 ([10]). Let G be a 2-connected simple graph with Δ(G) ≥ 4. If F4 ��
G, then G is (v, w, d)-separable for some v, w ∈ V (G) and integer d ≥ 4.

The following lemma is also useful in our proof.

Lemma 4. Let G be a minimal non-Mengerian graph, and s, t, λ be such that
pG,λ(s, t) < cG,λ(s, t). Then, G is 2-connected, st /∈ E(U(G)) and every edge
incident in s or t has multiplicity 1.

We first investigate graphs whose underlying simple graph has maximum
degree 3. It is known that if G is a simple graph of maximum degree 3, then the
number of edges and the number of vertices needed to disconnect s, t ∈ V (G)
are equal. Therefore, by the result in [1] that says that the edge version of
Menger’s Theorem holds on temporal graphs, we get that every simple graph
with maximum degree 3 is Mengerian. In other words, this case did not need to
be investigated in [10]. This cannot be directly applied to our case, as indeed
there are graphs in F that are non-Mengerian whose underlying simple graph
has degree at most 3.

308 A. Ibiapina and A. Silva

Lemma 5. Let G be a minimal non-Mengerian graph such that Δ(U(G)) ≤ 3.
Then F �m G for some F ∈ {F1,F2,F3}.
Proof. Let s, t, λ be such that pG,λ(s, t) < cG,λ(s, t). We first find a useful sub-
structure inside of G.

Claim 1. There exists a chain (z0, . . . , zq) in G, q ≥ 1, such that dU(G)(z0) =
dU(G)(zq) = 3, and zi /∈ {s, t} for every i ∈ {0, · · · , q}.

Proof (of Claim 1). Denote by c′
G,λ(s, t) the minimum cardinality of a subset

S ⊆ E(G) such that s does not reach t in (G − S, λ), and by p′
G,λ(s, t) the

maximum number of edge disjoint temporal s, t-paths. Observe that, since by
Lemma 4 we get that st /∈ E(U(G)), then it is possible to remove one endpoint
of each e ∈ S distinct from s and t that also destroys every temporal s, t-path;
hence c′

G,λ(s, t) ≥ cG,λ(s, t) > pG,λ(s, t). Using the equality c′
G,λ(s, t) = p′

G,λ(s, t)
proved in [1], one can find at least cG,λ(s, t) edge disjoint temporal s, t-paths.
Because cG,λ(s, t) > pG,λ(s, t), at least two of these paths, say J1, J2, must
intersect in an internal vertex. Let z0 be the vertex in V (J1) ∩ V (J2) which
is closest to s in J1. By Lemma 4 and the fact J1, J2 intersect in an internal
vertex, we get that z0 /∈ {s, t}. For each i ∈ {1, 2}, let yi be the neighbor of
z0 in sJiz0. Since dU(G)(z0) ≤ 3, z0 �= t and y1 �= y2 by the choice of z0, it
follows that dU(G)(z0) = 3 and the next vertex in J1 and J2 also coincides,
i.e., that there exists z1 ∈ (N(z0) ∩ V (J1) ∩ V (J2))\{y1, y2}. Now consider
(z0, z1, · · · , zq) be maximal such that (z0, e1, z1, · · · , eq, zq) is a subpath in J1

and (z0, e′
1, z1, · · · , e′

q, zq) is a subpath in J2. Since J1 and J2 are edge disjoint,
we get that ei �= e′

i for every i ∈ [q], and again by Lemma 4 we have zi /∈ {s, t}
for every i ∈ {0, · · · , q}. Observe that it also follows that dU(G)(zq) = 3.

Now let P = (v = z0, · · · , zq = w) be the path given by the above claim, and
suppose that dU(G)(zi) = 2 for every i ∈ [q − 1]; otherwise, it suffices to take
the subpath (z0, · · · , zi) where i ≥ 1 is smallest such that d(zi) = 3. Let G′ be
obtained by the identification of {z0, · · · , zq}, and let Z denote the new vertex.
Notice that U(G′) is 2-connected and has exactly one vertex of degree at least 4,
namely Z. Applying Lemma 3 we get a subdivision H ⊆ U(G′) of F4, since the
other possibility would imply existence of two vertices of degree at least 4. Let
h1, · · · , h5 be the vertices of H such that h5 corresponds to the degree-4 vertex
of F4 (hence h5 = Z), and h1, · · · , h4 correspond to the path on 4 vertices in F4,
in this order. By definition of subdivision, we know that for each i ∈ [4], there
exists a path Pi between hi and Z in H corresponding to the subdivision of an
edge of F4. Let uiZ denote the last edge in Pi, for each i ∈ [4]. Notice that each
of these edges corresponds to an edge of G with endpoints uizji for some zji in
P . Now recall that dU(G)(zi) = 2 for every i ∈ [q − 1]. In other words, we have
NU(G)(zi) = {zi−1, zi+1} for every i ∈ [q − 1], which implies that zji ∈ {z0, zq}
for every i ∈ [4]. All the possible cases are depicted in Fig. 4, each giving rise to
some F ∈ {F1,F2,F3}.

The following lemma finishes our proof. The case analysis is similar to the one
made in [10], making use of the fact that U(G) is (v, w, d)-separable. However,

Mengerian Temporal Graphs Revisited 309

(a) u1, u2 incident to z0. (b) u1, u3 incident to z0. (c) u1, u4 incident to z0.

Fig. 4. Possible adjacencies of u1, · · · , u4 in {z0, zq}. The cases u1, u2 incident to zq,
u1, u3 incident to zq, and u1, u4 incident to zq are clearly analogous.

the fact that the edges between v, w and the components of G − {v, w} might
be multiple edges complicates the proof. Indeed, unlike the proof in [10], one
of our cases is not reducible and this is why we needed a separate theorem to
prove the polynomial-time solvability of the recognition problem. Because of
space constraints, we give only a general idea of the proof.

Lemma 6. Let G be a minimal non-Mengerian graph such that Δ(U(G)) ≥ 4.
Then F �m G for some F ∈ {F3,F4}.
Proof (Outline). Consider s, t ∈ V (G) such that pG,λ(s, t) < cG,λ(s, t), and
suppose F4 �� G, as otherwise we are done. It is possible to prove that U(G) must
be 2-connected, which by Lemma 3 gives us that U(G) is (v, w, d)-decomposable,
for some v, w ∈ V (G) and d ≥ 4. If s /∈ {v, w}, let H be the component of
G − {v, w} containing s, and if t /∈ {v, w}, let H ′ be the one containing t. The
proof consists of analysing the cases where: H and H ′ are defined and H = H ′;
H and H ′ are defined and H �= H ′; v ∈ {s, t} and w /∈ {s, t} (i.e. exactly one
between H,H ′ is defined); and v = s and w = t (none is defined). For each
of these cases, if the edges linking v, w to the case in point components have
multiplicity 1, we fall back in the cases analyzed in [10]. And when at least one
of them has multiplicity greater than 1, say vv′, we find a chain containing vv′

with endpoints z0, zq, two disjoint cycles C1, C2 containing z0, zq, respectively,
and a path P between these cycles that is disjoint from the chain (see Fig. 5(a)).
Because of space constraints, we give only an outline of the case where H = H ′,
which is the case that differs the most from the proof in [10].

In what follows, we say that a temporal x, y-path J = (x = z0, e1, · · · , ep, y =
zp) can be concatenated with a temporal y, z-path J ′ = (y = z′

0, e
′
1, · · · , e′

q, z =
z′
q) if λ(ep) ≤ λ(e′

1). Observe that the union of J and J ′ must contain a temporal
x, z-path (it suffices to remove eventual vertex repetitions).

First, notice that there must exist a temporal s, t-path not contained in H
as otherwise H would be a proper subgraph of G which is also non-Mengerian.
So, let P be a maximum set of vertex disjoint temporal s, t-paths of (G,λ), and
let J1 ∈ P be such that J1 is not contained in H. Without loss of generality, we
can suppose that J1 visits v before w. Now let G∗ be the subgraph of G induced
by V (H) ∪ V (J1). As any set of vertex disjoint temporal s, t-paths contains
at most one such path passing out of H, and by the choice of J1, we have

310 A. Ibiapina and A. Silva

(a) Structure of an
m-subdivision of F3.

(b) m-sudbdivision of
F3 when H = H and
V (sJ1v) = V (sJ2v).

Fig. 5. General structure of F3 to the left, and particular case to the right.

pG,λ(s, t) = pG∗,λ(s, t). Also, because G∗ ⊆ G, we get cG,λ(s, t) ≥ cG∗,λ(s, t),
and by the minimality of G, we have that: (*) cG,λ(s, t) > cG∗,λ(s, t). Then, let
S be a minimum vertex temporal s, t-cut in (G∗, λ); note that S is not a cut in
(G,λ) as this would contradict (*). Similarly, if there is a vertex u ∈ S out of H,
then (S\{u}) ∪ {v} is a vertex temporal s, t-cut in (G,λ), again contradicting
(*). Therefore we get that S ⊂ V (H), and also that there must exist a temporal
s, t-path J2 in (G,λ) not passing by S. Because H ⊆ G∗, such temporal path is
not contained in H. We first analyse the case where J2 visits v before w.

Let v1 be the neighbor of v in H, and w1, the neighbor of w in H. Suppose
first that V (sJ2v) = V (sJ1v), and notice that the part of sJ1w contained in
V (H) does not intersect S, as this has vertex set equal to sJ2v1. This implies
that we cannot concatenate sJ1w with wJ2t, as otherwise we obtain a temporal
s, t-path contained in G∗ that does not intersect S. Therefore the edges of J1 and
J2 with endpoints ww1 must be distinct. This also implies that S ∩ V (wJ1t) �=
∅ since S ⊆ V (H) and S ∩ V (J1) �= ∅. Since S ∩ V (J2) = ∅, we get that
V (w1J2t) �= V (w1J1t). Now, let (w = z0, w1 = z2, · · · , zq) be maximal such that
{z0, · · · , zq} ⊆ V (wJ1t) ∩ V (wJ2t). By the same reason why ww1 must have
multiplicity at least two, we get that the same holds for every pair zizi+1, i ∈
[q−1]. Also, because V (w1J2t) �= V (w1J1t) and these paths must intersect again
after zq, namely in t, there exists a cycle C ⊆ V (w1J1t) ∪ V (w1J2t) containing
zq of size at least 3, and disjoint from {z0, · · · , zq−1}. Now, note that if there
is no temporal s, t-path contained in H, then we would get pG,λ(s, t) = 1, and
cG,λ(s, t) = 1 as {v} would be a vertex temporal s, t-cut. Since this cannot
occur, we know that there is at least one temporal s, t-path disjoint from J1, i.e.,
|P| ≥ 2. Observe that this implies the existence of a path P1 between v1 and
C not passing by {z0, · · · , zq}. Finally, let P2, P3 be vertex disjoint v, w-paths,
each passing by components distinct from H (recall that G−{v, w} has at least
3 components). Observe Fig. 5(b) to see that V (C ∪ P1 ∪ P2 ∪ P3) contains an
m-subdivision of F3. In the figure, only P3 is shown to have at least one internal
vertex, but that also holds for P2, giving us the second desired cycle of size at
least 3. A similar argument can be made when sJ2v1 can be concatenated with
v1J1w, and when neither applies, then we get vv1 with multiplicity at least 2
and again a similar argument can be made.

Mengerian Temporal Graphs Revisited 311

Now, suppose that J2 visits w before v, and for each a ∈ {1, 2}, denote by ev
a

(ew
a) the edge in Ja with endpoints vv1 (ww1). First, suppose that there exists

e ∈ E(sJ1v)∩E(vJ2t). Because e appears before ew
1 in J1 and after ew

2 in J2, we
get that: (**) λ(ew

1) ≥ λ(e) ≥ λ(ew
2). Suppose that ww1 has multiplicity 1 and

note that (**) gives us that λ(e′) = λ(e) for every e′ ∈ E(v1J1w1) ∪ E(w1J2v1).
This implies that sJ2w1, w1J1v1 and v1J2t can be concatenated to obtain a
temporal s, t-path, contradicting the fact that S is a vertex temporal s, t-cut in
G∗. Therefore, ww1 has multiplicity at least 2. Now, observe that if the neighbor
z1 of w1 in J1\{w} is equal to the neighbor of w1 in J2\{w}, then a similar
argument can be applied to conclude that the edge w1z1 has multiplicity at
least 2, and so on. More formally, let P = (w = z0, wi = z1, · · · , zq) be maximal
such that z0, · · · , zq appears consecutively in this order in wJ1t and consecutively
in the reverse order in sJ2w. Applying the previous argument inductively, we get
that all internal edges in P have multiplicity at least 2. Now, for each a ∈ {1, 2},
let ya be the neighbor of zq in Ja\{zq−1}. Because w1J1t and sJ2w1 have only
one common endpoint, namely w1, we get that y1 �= y2. Also, observe that the
union of sJ1v1, v1J2t, sJ2zq and zqJ1t contains a closed walk W disjoint of P .
Therefore, there exists a cycle C of length at least 3 in H intersecting P exactly
in zq. One can see that W also implies the existence of a path P ′ between v1
and C disjoint from P . One can finish building an m-subdivision of F3 by taking
a cycle containing v and w not intersecting H (which exists because p ≥ 3).
Finally, suppose that E(sJ1v) ∩ E(vJ2t) = ∅. In particular this implies that vv1
has multiplicity at least 2, since an edge with endpoints vv1 must be contained
in both J1 and J2. By taking a maximal subpath P with endpoint v common
to sJ1v and vJ2t we can apply the same argument as before to get the desired
m-subdivision of F3.

5 Mengerian Graphs Recognition

In [8], they show that given two simple graphs G,H, one can check if H is a
topological minor of G in time O(f(|V (H)|)|V (G)|3). Thus, for a finite family of
graphs H = {H1, . . . , Hk} each of constant size, the problem of deciding whether
H � G for some H ∈ H can be solved in polynomial time. If the same holds for
m-topological minor, then Theorem 2 implies that we can recognize Mengerian
graphs in polynomial time. We prove that this is indeed the case by giving an
algorithm that makes use of the one presented in [8]. The following lemma is the
key for reaching polynomial time.

Lemma 7. Let G be a graph such that F �m G for some F ∈ {F1,F2,F3}.
Then there is an m-subdivision H ⊆ G of a graph in {F1,F2,F3} such that
dU(G)(v) = 2 for every v ∈ V (H) that is an internal vertex of the chain of H.

Proof (of Theorem 3). By Theorem 2, it suffices to decide whether F �m G
for some F ∈ F . If G is not 2-connected, we simply apply the algorithm to
each 2-connected component of G; so suppose G is 2-connected. Also, note that
F4 �m G if and only if F4 � G, as F4 has no multiple edges; so we also suppose

312 A. Ibiapina and A. Silva

that F4 �� G, which can be tested in time O(n3) by the result in [8]. We first
do a preprocessing of G as follows. For every u ∈ V (G) such that dU(G)(u) = 2,
let N(u) = {v, w}. If either uv and uw have both multiplicity greater than 1, or
both multiplicity 1, then contract u with either one of its neighbors, maintaining
the multiplicity of the new edge equal to the multiplicity of uv. Observe that
if we find an m-subdivision containing the new edge, then we can easily restore
the edges of G to obtain the m-subdivision in G. We can then suppose that if
N(u) = {v, w} then uv has multiplicity 1, while uw has multiplicity at least 2.
By Lemma 7, we get that if F �m G for some F ∈ {F1,F2,F3}, then there
exists an m-subdivision H of F in G whose chain is a single multiple edge.
Observe that this implies that G′ obtained from contracting this edge has F4

as a topological minor. A case analysis equal to the one that was made in the
proof of Lemma 5 gives us that the other way around is also true, i.e., if G′ has
F4 as a topological minor, then G has an m-topological minor in {F1,F2,F3}.
We therefore apply the algorithm in [8] to such a graph G′ obtained by the
contraction of a multiple edge, and we do this for every multiple edge of G,
obtaining therefore an algorithm that runs in time O(n3m), since the previous
steps have complexity dominated by this.

6 Conclusion

We have characterized general Mengerian graphs and provided a recognition
algorithm for them, thus generalizing a result given in the seminal paper [10].

Here, we allowed the graph G to have multiple edges, which can also be seen
as allowing the edges of a simple graph to appear more than once in the lifetime
of (G,λ). Observe that this can also be modeled by letting λ be a subset of
positive integers instead, and indeed this model is usually the one applied in the
literature. If we use this definition of temporal graph instead, and consider only
simple graphs, then our theorem says that G is Mengerian if and only if F �� G
for every F ∈ {U(F1), U(F2), U(F3),F4}. But observe that this might be too
restrictive. Indeed, if G does not have F4 as a topological minor, there could
still be an assignment that allows edges to appear more than once and still have
a Mengerian graph, as long as one takes care not to create a bad m-topological
minor. A good question therefore is:

Problem 1. Let G be a simple graph. Can one find, in polynomial time, a function
α : E(G) → N\{0} such that G′ is Mengerian, where G′ is the graph obtained
from G by making each e ∈ E(G) have multiplicity α(e)?

Observe also that, even if G is non-Mengerian, it could still happen that
Menger’s Theorem holds on (G,λ) for a given function λ. Up to our knowledge
this has not been investigated yet.

Problem 2. Given a temporal graph (G,λ), and a pair of vertices s, t ∈ V (G),
can one decide in polynomial time whether pG,λ(s, t) = cG,λ(s, t)?

Mengerian Temporal Graphs Revisited 313

References

1. Berman, K.A.: Vulnerability of scheduled networks and a generalization of
Menger’s theorem. Netw.: Int. J. 28(3), 125–134 (1996)

2. Bhadra, S., Ferreira, A.: Complexity of connected components in evolving graphs
and the computation of multicast trees in dynamic networks. In: Pierre, S., Bar-
beau, M., Kranakis, E. (eds.) ADHOC-NOW 2003. LNCS, vol. 2865, pp. 259–270.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39611-6 23

3. Campos, V., Lopes, R., Marino, A., Silva, A.: Edge-disjoint branchings in temporal
graphs. In: G ↪asieniec, L., Klasing, R., Radzik, T. (eds.) IWOCA 2020. LNCS, vol.
12126, pp. 112–125. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
48966-3 9

4. Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-varying graphs
and dynamic networks. Int. J. Parallel Emergent Distrib. Syst. 27(5), 387–408
(2012)

5. Casteigts, A., Himmel, A.-S., Molter, H., Zschoche, P.: Finding temporal paths
under waiting time constraints. In: 31st International Symposium on Algorithms
and Computation, ISAAC, volume 181 of LIPIcs, pp. 30:1–30:18 (2020)

6. Jessica Enright and Rowland Raymond Kao: Epidemics on dynamic networks.
Epidemics 24, 88–97 (2018)

7. Fluschnik, T., Molter, H., Niedermeier, R., Renken, M., Zschoche, P.: Temporal
graph classes: a view through temporal separators. Theoret. Comput. Sci. 806,
197–218 (2020)

8. Grohe, M., Kawarabayashi, K., Marx, D., Wollan, P.: Finding topological sub-
graphs is fixed-parameter tractable. In: Proceedings of the 43rd Annual ACM
Symposium on Theory of Computing, pp. 479–488 (2011)

9. Holme, P.: Modern temporal network theory: a colloquium. Eur. Phys. J. B 88(9),
1–30 (2015). https://doi.org/10.1140/epjb/e2015-60657-4

10. Kempe, D., Kleinberg, J., Kumar, A.: Connectivity and inference problems for
temporal networks. J. Comput. Syst. Sci. 64, 820–842 (2002)

11. Latapy, M., Viard, T., Magnien, C.: Stream graphs and link streams for the mod-
eling of interactions over time. Soc. Netw. Anal. Min. 8(1), 1–29 (2018). https://
doi.org/10.1007/s13278-018-0537-7

12. Menger, K.: Zur allgemeinen kurventheorie. Fundam. Math. 10(1), 96–115 (1927)
13. Mertzios, G.B., Michail, O., Spirakis, P.G.: Temporal network optimization subject

to connectivity constraints. Algorithmica 81(4), 1416–1449 (2019). https://doi.
org/10.1007/s00453-018-0478-6

14. Michail, O.: An introduction to temporal graphs: an algorithmic perspective. Inter-
net Math. 12(4), 239–280 (2016)

15. Nicosia, V., Tang, J., Mascolo, C., Musolesi, M., Russo, G., Latora, V.: Graph
metrics for temporal networks. In: Holme, P., Saramäki, J. (eds.) Temporal Net-
works. Understanding Complex Systems, pp. 15–40. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-36461-7 2

16. Douglas Brent West: Introduction to Graph Theory, vol. 2. Prentice Hall, Upper
Saddle River (1996)

17. Bui Xuan, B., Ferreira, A., Jarry, A.: Computing shortest, fastest, and foremost
journeys in dynamic networks. Int. J. Found. Comput. Sci. 14(02), 267–285 (2003)

18. Zschoche, P., Fluschnik, T., Molter, H., Niedermeier, R.: The complexity of finding
small separators in temporal graphs. J. Comput. Syst. Sci. 107, 72–92 (2020)

https://doi.org/10.1007/978-3-540-39611-6_23
https://doi.org/10.1007/978-3-030-48966-3_9
https://doi.org/10.1007/978-3-030-48966-3_9
https://doi.org/10.1140/epjb/e2015-60657-4
https://doi.org/10.1007/s13278-018-0537-7
https://doi.org/10.1007/s13278-018-0537-7
https://doi.org/10.1007/s00453-018-0478-6
https://doi.org/10.1007/s00453-018-0478-6
https://doi.org/10.1007/978-3-642-36461-7_2

Faster FPT Algorithms for Deletion
to Pairs of Graph Classes

Ashwin Jacob1(B), Diptapriyo Majumdar2, and Venkatesh Raman1

1 The Institute of Mathematical Sciences, HBNI, Chennai, India
{ajacob,vraman}@imsc.res.in

2 Royal Holloway, University of London, Egham, UK
diptapriyo.majumdar@rhul.ac.uk

Abstract. Let Π be a hereditary graph class. The problem of deletion
to Π, takes as input a graph G and asks for a minimum number (or
a fixed integer k) of vertices to be deleted from G so that the result-
ing graph belongs to Π. This is a well-studied problem in paradigms
including approximation and parameterized complexity. This problem,
for example, generalizes vertex cover, feedback vertex set, clus-
ter vertex deletion, perfect deletion to name a few. The study of
this problem in parameterized complexity has resulted in several power-
ful algorithmic techniques including iterative compression and important
separators.

Recently, the study of a natural extension of the problem was initiated
where we are given a finite set of hereditary graph classes, and the goal
is to determine whether k vertices can be deleted from a given graph, so
that the connected components of the resulting graph belong to one of the
given hereditary graph classes. The problem has been shown to be FPT
as long as the deletion problem to each of the given hereditary graph
classes is fixed-parameter tractable, and the property of being in any
of the graph classes can be expressible in the counting monodic second
order (CMSO) logic. While this was shown using some black box theo-
rems, faster algorithms were shown when each of the hereditary graph
classes has a finite forbidden set.

In this paper, we do a deep dive on pairs of specific graph classes
(Π1, Π2) in which we would like the connected components of the result-
ing graph to belong to, and design simpler and more efficient FPT algo-
rithms. We design two general algorithms for pairs of graph classes (pos-
sibly having infinite forbidden sets) satisfying certain conditions on their
forbidden sets. These algorithms cover a number of pairs of popular graph
classes.

Our algorithms make non-trivial use of the branching technique and
as black box, FPT algorithms for deletion to individual graph classes.

1 Introduction

Graph modification problems are the class of problems in which the input
instance is a graph, and the goal is to check if the input can be transformed into
c© Springer Nature Switzerland AG 2021
E. Bampis and A. Pagourtzis (Eds.): FCT 2021, LNCS 12867, pp. 314–326, 2021.
https://doi.org/10.1007/978-3-030-86593-1_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86593-1_22&domain=pdf
https://doi.org/10.1007/978-3-030-86593-1_22

Deletion to Pairs of Graph Classes 315

a graph of a specified graph class by using some specific number of “allowed”
graph operations. Depending on the allowed operations, vertex or edge deletion
problems, edge editing or contraction problems have been extensively studied in
various algorithmic paradigms.

In the last two decades, graph modification problems, specifically vertex dele-
tion problems have been extensively studied in the field of parameterized com-
plexity. Examples of vertex deletion problems include Vertex Cover, Clus-

ter Vertex Deletion, Feedback Vertex Set and Chordal deletion

set. We know from the classical result by Lewis and Yannakakis [8] that the
problem of whether removing a set of at most k vertices results in a graph satis-
fying a hereditary property π is NP-complete for every non-trivial property π. It
is well-known that any hereditary graph class1 can be described by a forbidden
set of graphs, finite or infinite, that contains all minimal forbidden graphs in the
class. It is also well-known [1] that if a hereditary graph class has a finite forbid-
den set, then deletion to the graph class has a simple fixed-parameter tractable
(FPT) algorithm using a hitting set based approach.

Recently Jacob et al. [4], building on the work of Ganian et al. [3] for con-
straint satisfaction problems, introduced a natural extension of vertex deletion
problems to deletion to scattered graph classes. Here we want to delete vertices
from a given graph to put the connected components of the resulting graph to
one of a few given graph classes. A scattered graph class (Π1, . . . , Πd) consists of
graphs whose connected components are in one of the graph classes Π1, . . . , Πd.
The vertex deletion problem to this class cannot be solved by a hitting set based
approach, even if the forbidden graphs for these classes are finite. For example,
the solution could possibly be disjoint from the forbidden subgraphs present, as
long as it separates them so that the forbidden subgraphs of the d classes don’t
belong to the same component.

Jacob et al. [4] proved that the vertex deletion problem for the scattered
graph class (Π1, . . . , Πd) is FPT when the vertex deletion problem to each of
the individual graph classes is FPT and for each graph class, the property that
a graph belongs to the graph class is expressible by Counting Monadic Second
Order logic. Unfortunately the running of the algorithm incurs a gargantuan
constant factor (a function of k) overhead. The authors also proved that if the
forbidden families corresponding to all the graph classes Π1, . . . , Πd are finite,
then the problem is FPT with running time 2poly(k)nO(1). The technique involves
iterative compression and important separators.

Since the algorithms in [4] incur a huge running time and use sophisticated
techniques, it is interesting to see whether we can get simpler and faster algo-
rithms for some special cases of the problem. In this paper we do a deep dive on
the vertex deletion problems to a pair of graph classes when at least one of the
graph classes has an infinite forbidden family.

Our Problems, Results and Techniques: We look at specific variants of the
following problem.

1 A hereditary graph class is a class of graphs that is closed under induced subgraphs.

316 A. Jacob et al.

Π1 or Π2 Deletion Parameter: k
Input: An undirected graph G = (V,E), two hereditary graph classes Π1

and Π2 defined by forbidden graphs F1 and F2 respectively.
Question: Is there a set S ⊆ V (G) of size at most k such that every con-
nected component of G − S is in Π1 or in Π2?

The authors in [5] studied one such specific case where Π1 is the class of
forests (having infinite forbidden set of all cycles) and Π2 is the class of cluster
graphs, to which they gave an O∗(4k)2 algorithm. Here, we describe two general
algorithms covering pairs of a variety of graph classes. While the specific condi-
tions, on the pairs of classes to be satisfied by these algorithms, are somewhat
technical and are explained in the appropriate sections, we give a high level
description here.

We first make the reasonable assumption that the vertex deletion problems to
the graph class Π1 and to Π2 have FPT algorithms. As we want every connected
component of the graph after removing the solution vertices to be in Π1 or
in Π2, any pair of forbidden subgraphs H1 ∈ F1 and H2 ∈ F2 cannot both
be in a connected component of G. Let us look at such a component C with
J1, J2 ⊆ V (C) such that G[Ji] is isomorphic to Hi for i ∈ {1, 2} and look at a
path P between the sets J1 and J2. We know that the solution has to hit the
set J1 ∪ J2 ∪ P .

The first generalization comes up from our observation that for certain pairs
of graph classes, if we focus on a pair of forbidden subgraphs H1 ∈ F1 and
H2 ∈ F2 that are “closest” to each other, then there is always a solution that
does not intersect the shortest path P between them. This helps us to branch
on the vertex sets of these forbidden graphs. However, note that the forbidden
graphs may have unbounded sizes. We come up with a notion of forbidden pair
(Definition 2 in Sect. 2) and show that there are pairs of graph classes that
have finite number of forbidden pairs even if each of them has infinite forbidden
sets. For some of them, we are able to bound the branching step to obtain the
FPT algorithm. This problem variant covers a number of pairs of graph classes
including (Interval, Trees) and (Chordal, Bipartite Permutation). We observe
that this class of algorithms also yield good approximation algorithms for the
deletion problem.

In the second general algorithm, we assume that F1 is finite and has a path
Pi for a constant i, and the family of graphs of F2 that is present in the graph
class Π1 obtained after a pruning step (details in Sect. 4) is finite. Note that this
restricts the length of P to i. Under these assumptions, we come up with a finite
family of graphs to branch on and we complete the algorithm (at the leaf level
of the branching algorithms) with the FPT algorithm for the deletion to each
of the individual graph classes. The variant satisfying these conditions covers a
number of pairs of graph classes including when Π1 is the class of all cliques,
and Π2 is the class of planar or bounded treewidth graphs.

2 O∗ notation suppresses polynomial factors.

Deletion to Pairs of Graph Classes 317

The running time of all the algorithms that we come up in this paper are
substantially better than those in [4].

2 Forbidden Characterization for Π1 or Π2 Deletion

We use Π(1,2) to denote the class of graphs whose connected components are in
the graph classes Π1 or Π2. The following characterization for Π(1,2) is easy to
see.

Lemma 1 (�). A graph G is in the graph class Π(1,2) if and only if no connected
component C of G contains H1 and H2 as induced graphs in C, where (H1,H2) ∈
F1 × F2.

We now define the notion of super-pruned family which gives us a minimal
family of graphs which are forbidden in the graph class Π(1,2).

We say that family of graphs is minimal if no element of it is an induced
subgraph of some other element of the family.

Definition 1 (Super-Pruned Family).
An element of super-pruned family sp(G1,G2) of two minimal families of

graphs G1 and G2 is a graph that (i) belongs to one of the two families and (ii)
has an element of the other family as induced subgraph.

The family sp(G1,G2) can be obtained from an enumeration of all pairs in
G1 × G2 and adding the supergraph if one of the graph is induced subgraph of the
other. The family obtained is made minimal by removing the elements that are
induced subgraphs of some other elements.

For example, let (Π1,Π2) be (Interval, Trees), with the forbidden families
F1 = {net, sun, long claw, whipping top,† -AW, ‡-AW}∪{Ci : i ≥ 4} (See Fig. 2
in [2]) and F2 as the set of all cycles. Note that all graphs Ci with i ≥ 4 are
in sp(F1,F2) as they occur in both F1 and F2. The remaining pairs of F1 × F2

contain triangles from F2. If the graph from F1 is a net, sun, whipping top,
†-AW or ‡-AW, it contains triangle as an induced subgraph. Hence these graphs
are also in the family sp(F1,F2).

We now show that graphs in sp(F1,F2) are forbidden in the graph class
Π(1,2).

Lemma 2 (�).3 If a graph G is in the graph class Π(1,2), then no connected
component of G contains a graph in sp(F1,F2) as induced subgraphs.

The family sp(F1,F2) does not cover all the pairs in F1 ×F2. We now define
the following to capture the remaining pairs.

Definition 2 (Forbidden Pair). A forbidden pair of F1 and F2 is a pair
(H1,H2) ∈ F1 × F2 such that both H1 /∈ sp(F1,F2) and H2 /∈ sp(F1,F2).
3 Proofs of Theorems and Lemmas marked � are moved to the full version due to lack

of space.

318 A. Jacob et al.

For example, if Π1 is the class of interval graphs and Π2 is the class of forests,
we have already shown that sp(F1,F2) contains all the graphs in F1 except long-
claw. The only remaining pair is (long-claw, triangle) which is a forbidden pair.

Now we characterize Π(1,2) based on the super-pruned family and a family
of forbidden pairs associated to F1 and F2. This is used in the algorithms in
Sect. 3.

Lemma 3 (�). The following statements are equivalent.

– Each connected component of G is in Π1 or Π2.
– The graph G does not contain graphs in the super-pruned family sp(F1,F2)

as induced subgraphs. Furthermore, for each forbidden pair (H1,H2) of F1

and F2, the graphs H1 and H2 both cannot appear as induced subgraphs in a
connected component of G.

We now define a useful notion of forbidden sets for the graph class Π(1,2),
and the notion of closest forbidden pairs.

Definition 3. We call a minimal vertex subset Q ⊆ V (G) as a forbidden set
corresponding to the graph class Π(1,2) if G[Q] is isomorphic to a graph in
sp(F1,F2) or G[Q] is connected and contains both H1 and H2 as induced sub-
graphs for some forbidden pair (H1,H2) of Π(1,2).

Definition 4. We say that a forbidden pair (H1,H2) is a closest forbidden pair
in a graph G if there exists subsets J1, J2 ⊆ V (G) such that G[J1] is isomorphic
to H1, G[J2] is isomorphic to H2 and the distance between J1 and J2 in G
is the smallest among all such pairs J1, J2 corresponding to all forbidden pairs
of F1 and F2. We call the pair of vertex subsets (J1, J2) as the vertex subsets
corresponding to the closest forbidden pair.

3 Π1 or Π2 Deletion with a Constant Number of
Forbidden Pairs

We start with the following reduction rule for Π1 or Π2 Deletion whose
correctness easily follows.

Reduction Rule 1. If a connected component C of G is in Π1 or in Π2, then
delete C from G. The new instance is (G − V (C), k).

In this section we assume that the forbidden pair family (as defined in Sect. 2)
for Π1 and Π2 is finite. Before we define the further conditions, we give an algo-
rithm for an example pair of graph classes that satisfy our problem conditions.

Deletion to Pairs of Graph Classes 319

3.1 Interval or Trees

We define the problem.

Interval-or-Tree Deletion Parameter: k
Input: An undirected graph G = (V,E) and an integer k.
Question: Is there S ⊆ V (G) of size at most k such that every connected
component of G − S is either an interval graph, or a tree?

We have the following forbidden subgraph characterization of interval graphs.

Lemma 4 ([7]). A graph is an interval graph if and only if it does not contain
net, sun, hole, whipping top, long-claw, †-AW, or ‡-AW as its induced subgraphs.
See Fig. 2 in [2] for an illustration of the forbidden subgraphs for interval graph.

Let G1 be the family of graphs in sp(F1,F2) of size at most 10. We now
define the following branching rule where we branch on all induced subgraphs of
G isomorphic to a member in G1. The correctness follows as G1 is a finite family
of finite-sized graphs.

Branching Rule 1. Suppose that (G, k) be the input instance and there exist
a forbidden set Q ⊆ V (G) such that G[Q] is isomorphic to a member in G1.
Then, for each v ∈ V (Q), we delete v from G and decrease k by 1. The resulting
instance is (G − v, k − 1).

From here on we assume that Branching Rule 1 is not applicable for G and
so it is G1-free.

We now focus on connected components of G which contain both long-claw
and triangle as induced subgraphs. We describe a branching rule corresponding
to the closest forbidden pair.

Branching Rule 2. Let (J∗, T ∗) be the vertex subsets of a closest long-claw,
triangle pair in a connected component of G, where J∗ is a long-claw, and T ∗ is
a triangle. Then for each v ∈ J∗ ∪ T ∗, delete v and decrease k by 1, resulting in
the instance (G − v, k − 1).

We now prove that Branching Rule 2 is sound. Let P ∗ = {u =
x0, x1, . . . , xd−1, xd = v} be a shortest path of length dG(J∗, T ∗) = d that wit-
nesses a path from u ∈ J∗ to v ∈ T ∗.

A caterpillar graph is a tree in which all the vertices are within distance 1 of a
central path. In the graph G, let C be the connected component of G−(J∗ ∪ T ∗)
containing the internal vertices of P ∗. We have the following lemma.

Lemma 5 (�). The graph C is a caterpillar with the central path being P ∗.
Furthermore, the only vertices of C adjacent to J∗ ∪ T ∗ are x1 and xd−1 which
are only adjacent to x0 and xd respectively.

We now use Lemma 5 to prove that Branching Rule 2 is sound.

Lemma 6 (�). Branching Rule 2 is sound.

320 A. Jacob et al.

From here on, assume that (G, k) is an instance for which Reduction Rule 1,
Branching Rule 1, and Branching Rule 2 are not applicable. The following results
are now easy to see.

Lemma 7 (�). Let C be a connected component of G that has no triangle, but
has a long-claw as induced subgraph. If G[C] has no feedback vertex set of size
k, then (G, k) is a no-instance. Otherwise, let X be a minimum feedback vertex
set of G[C]. Then (G, k) is a yes-instance if and only if (G − V (C), k − |X|) is
a yes-instance.

Lemma 8 (�). Let C be a connected component of G that has no long-claw, but
has a triangle as induced subgraph. If G[C] has no interval vertex deletion set
of size k, then (G, k) is a no-instance. Otherwise, let X be a minimum interval
vertex deletion set of G[C]. Then (G, k) is a yes-instance if and only if (G −
V (C), k − |X|) is a yes-instance.

We are ready to prove our main theorem statement of this section.

Theorem 1 (�). Interval-or-Tree Deletion can be solved in O∗(10k)-
time.

We can also give an approximation algorithm for Interval-or-Tree Dele-

tion.

Theorem 2 (�). Interval-or-Tree Deletion has a 10-approximation algo-
rithm.

3.2 Algorithm for Special Infinite-(Π1, Π2)-Deletion

Now, we show that the algorithm idea of the last section is applicable for a larger
number of pairs of graph classes by identifying the properties that enabled the
algorithm. We now define the variant of Π1 or Π2 Deletion satisfying the
following properties.

1. The vertex deletion problems for the graph classes Π1 and Π2 are FPT with
algorithms to respective classes being A1 and A2.

2. The number of forbidden pairs of F1 and F2 is a constant.
3. All graphs in F1 and F2 are connected.
4. Let (H1,H2) be a closest forbidden pair in the graph G with (J1, J2) being

the vertex subsets corresponding to the pair and P being a shortest path
between J1 and J2. There is a subfamily G1 ⊆ sp(F1,F2) such that

– G1 is a finite family of finite-sized (independent of the size of G) graphs
and

– in the graph G that is G1-free, if a forbidden set Q intersects the internal
vertices of P , then V (P) ⊆ Q where V (P) is the vertex set of the path
P .

Deletion to Pairs of Graph Classes 321

Special Infinite-(Π1,Π2)-Deletion Parameter: k
Input: An undirected graph G = (V,E), graph classes Π1,Π2 with forbid-
den families F1 and F2 such that conditions 1–4 are satisfied and an integer
k.
Question: Is there a vertex set S of size at most k such that every connected
component of G − S is either in Π1 or in Π2?

Towards an FPT algorithm for Special Infinite-(Π1,Π2)-Deletion, We
define the following branching rule whose soundness is easy to see.

Branching Rule 3. Let (G, k) be the input instance and let Q ⊆ V (G) such
that G[Q] is isomorphic to a graph in G1. Then, for each v ∈ V (Q), delete v
from G and decrease k by 1. The resulting instance is (G − v, k − 1).

From here on we assume that Branching Rule 3 is not applicable for G and
so G is G1-free.

We now focus on connected components of G which contain forbidden pairs.
For i ∈ {1, 2}, let F i

p denote the family of graphs Hi where (H1,H2) is a forbidden
pair.

We have the following branching rule.

Branching Rule 4. Let (J∗, T ∗) be the vertex subsets of a closest forbidden
pair (H1,H2) of F1 and F2. Then for each v ∈ J∗ ∪ T ∗, we delete v and
decrease k by 1, resulting in the instance (G − v, k − 1).

The soundness of the above branching rule comes from condition 4 where
we assume that if a forbidden set Q intersects the internal vertices of a shortest
path P between J∗ and T ∗, then V (P) ⊆ Q.

Lemma 9 (�). Branching Rule 4 is sound.

From here on, assume that (G, k) is an instance for which Reduction Rule 1,
Branching Rule 3, and Branching Rule 4 are not applicable. Note that any
component of G is now free of forbidden pairs. Hence it is F1

p -free or F2
p -free.

The following results are now easy to see.

Lemma 10 (�). Let C be a connected component of G that is F1
p -free. If G[C]

has no Π1-deletion vertex set of size k, then (G, k) is a no-instance. Otherwise,
let X be a minimum Π1-deletion vertex set of G[C]. Then (G, k) is a yes-instance
if and only if (G − V (C), k − |X|) is a yes-instance.

The proof of the following lemma is similar to that of Lemma 10.

Lemma 11. Let C be a connected component of G that is F2
p -free. If G[C] has

no Π2-deletion vertex set of size k, then (G, k) is a no-instance. Otherwise, let
X be a minimum Π2-deletion vertex set of G[C]. Then (G, k) is a yes-instance
if and only if (G − V (C), k − |X|) is a yes-instance.

322 A. Jacob et al.

We are ready to prove our main theorem statement of this section. Let f(k) =
max{f1(k), f2(k)} where O∗(fi(k)) is the running time for the algorithm Ai. Also
let c the maximum among the size of graphs in G1 and max(H1,H2)(|H1| + |H2|)
where (H1,H2) is a forbidden pair.

Theorem 3 (�). Special Infinite-(Π1,Π2)-Deletion can be solved in
O∗(max{f(k), ck})-time.

We now give an approximation algorithm for Special Infinite-(Π1,Π2)-
Deletion when for i ∈ {1, 2}, Πi Vertex Deletion has an approximation
algorithm with approximation factor ci.

Theorem 4 (�). Special Infinite-(Π1,Π2)-Deletion has a d-approxima-
tion algorithm where d = max(c, c1, c2).

The problem Special Infinite-(Π1,Π2)-Deletion applies for a number of
pairs of graphs of Π1 or Π2 Deletion. We list a few below.

Corollary 1 (�).

– Proper Interval-or-Tree Deletion can be solved in O∗(7k)-time and
has a 7-approximation algorithm.

– Chordal-or-Bipartite Permutation Deletion can be solved in
O∗(kO(k))-time and has a log2(|OPT |)-approximation algorithm where OPT
denotes the optimal solution.

4 Π1 or Π2 Deletion When F2 is Infinite and Pi is
Forbidden in Π1

Here, we give an algorithm for another variant of Π1 or Π2 Deletion where
Π1 has a finite forbidden set with Pi a path of length i, for a constant i, being
one of them. To explain the further conditions necessary for the pair of classes to
be satisfied, we define the following notion of sub-pruned family which is similar
to the super-pruned family defined before.

Definition 5 (Sub-Pruned Family). We define a family Fp associated with
F1 × F2 as follows.

A graph H is in Fp if there exists a graph G such that (a) H is an induced
subgraph of G and (H,G) or (G,H) is in F1 × F2 and (b) there is no graph G′

such that G′ is an induced subgraph of H and (G′,H) or (H,G′) is in F1 × F2.
Fp can be obtained from an enumeration of all pairs (H1,H2) ∈ F1 × F2,

and for each such pair, adding H1 to Fp and removing H2 from Fp (if it already
exists) whenever H1 is an induced subgraph of H2, and adding H2 to Fp and
removing H1 from Fp (if it already exists) if H2 is an induced subgraph of H1.
The resulting family Fp is called the sub-pruned family of F1 × F2 denoted by
SubPrune(F1 × F2).

Deletion to Pairs of Graph Classes 323

Example. Let (Π1,Π2) be (Interval, Trees). Note that all graphs Ci with i ≥ 4
are in SubPrune(F1 ×F2) as they occur in both F1 and F2. The remaining pairs
contain triangles from F2. If the graph from F1 is a net, sun, whipping top,
†-AW or ‡-AW, it contains triangle as subgraphs. Hence triangle is also added
to the family SubPrune(F1 × F2).

A key difference in the definitions of super-pruned family and sub-pruned
family is that for the latter, we do not assume that the associated families are
minimal. If for some H ∈ F for a family F of graphs, we have that H is an
induced subgraph of some other element of F , we call the graph H an irrelevant
graph. In the following lemma, we prove that applying the sub-pruning operation
to F × F helps us to remove the irrelevant graphs from F if F is not minimal.

Lemma 12 (�). If F is a forbidden family for Π, then SubPrune(F × F) is a
forbidden family for Π.

We now define the variant of Π1 or Π2 Deletion that we look at in this
section. Let F ′ = Π1 ∩ F2. We assume that

1. F1 is finite.
2. Pi, for some constant i, is forbidden in Π1 where Pi is the path on i vertices.
3. there is an FPT algorithm A for Π2-vertex deletion problem and
4. SubPrune(F ′ × F ′) is known to be finite.

Special Mixed-(Π1,Π2)-Deletion Parameter: k
Input: An undirected graph G = (V,E), two graph classes Π1 and Π2

defined by forbidden graphs F1 and F2 respectively. Furthermore, conditions
1–4 above are satisfied.
Question: Is there S ⊆ V (G) of size at most k such that every connected
component of G − S is either in Π1 or in Π2?

Before we develop the algorithm for this general version of scattered ver-
tex deletion, we explain the algorithm for a specific example pair in the next
subsection.

4.1 Clique or Planar Graphs

Clique or Planar Vertex Deletion Parameter: k
Input: An undirected graph G = (V,E) and an integer k.
Question: Is there S ⊆ V (G) of size at most k such that every connected
component of G − S is a clique or a planar graph?

We first show that the problem is indeed an example of Special Mixed-

(Π1,Π2)-Deletion problem. We have F1 = {2K1} which is finite. Since P3

is forbidden in cliques, condition 2 is satisfied. The condition 3 is satisfied as
there is an FPT algorithm with O∗(kO(k)) running time for Planar Vertex

Deletion [6].

324 A. Jacob et al.

Finally we have F ′ = F2∩Π1 = {K5,K6, . . . , } as planar graphs are K5-free.
We have SubPrune(F ′ × F ′) = {K5} which being finite satisfies condition 4.

Let F ′
h be the family of graphs that contain P3 and K5 as induced subgraphs.

We define the family Fh = SubPrune(F ′
h × F ′

h).

Lemma 13. The family Fh is of finite size with graphs of size at most 8.

Proof. Let H be a graph in Fh. Let J1 and J2 be vertex subsets of H such that
H[J1] is isomorphic to P3 and H[J2] is isomorphic to K5. First, we observe that
dH(J1, J2) ≤ 1. Suppose not. Then there is a path P between J1 and J2 of length
at least 2. Let J3 be the last three vertices of P . Note that G[J3] is isomorphic
to P3 as well. Then H[J2 ∪ J3] ∈ Fh is also a graph that contains P3 and K5 as
induced subgraphs. This contradicts that H ∈ Fh as it will be removed from Fh

for the pair (H,H[J2 ∪ J3]). Furthermore, note that H[J1 ∪ J2] is a connected
graph which has P3 and K5 as induced subgraphs. Hence H = H[J1 ∪ J2] as
otherwise it will be removed from Fh for the pair (H,H[J1 ∪ J2]). This proves
the lemma as |J1 ∪ J2| ≤ 8. �	

We now describe the algorithm. The following branching rule and its sound-
ness is easy to see.

Branching Rule 5. Suppose the graph G of the input instance (G, k) has a
graph Ĥ ∈ Fh as its induced subgraph. Then for each v ∈ V (Ĥ), we delete v and
decrease k by 1, resulting in the instance (G − v, k − 1).

The following lemma is easy to see.

Lemma 14 (�). Let G be a graph such that Branching Rule 5 is not applicable.
Let C be a component of G which contains K5 as an induced subgraph. Then C
is a clique.

Since Reduction Rule 1 removes components of G that are cliques, we have
the following corollary.

Corollary 2. If Reduction Rule 1 and Branching Rule 5 are not applicable, then
no connected component of the graph G has K5 as induced subgraph.

The following lemma allows us to apply the algorithm for Planar Vertex

Deletion in the remaining components of G to solve the problem.

Lemma 15 (�). Let (G, k) be the resulting instance after applying the reduction
rules. If G has no planar vertex deletion set of size k, then (G, k) is a no-instance.
Otherwise, let X be a minimum sized set such that G − X is planar. Then X is
also a solution (G, k).

The main theorem now follows.

Theorem 5 (�). Clique or Planar Vertex Deletion has a O∗(kO(k))
time FPT algorithm.

Deletion to Pairs of Graph Classes 325

4.2 Algorithm for Special Mixed-(Π1, Π2)-Deletion

We now give the algorithm of Special Mixed-(Π1,Π2)-Deletion. The ideas
here can be seen as generalizations of the algorithm for Clique or Planar

Vertex Deletion.
Let F ′

h denote the family of graphs H that satisfies the following.

– there exists a pair (H1,H2) ∈ F1 ×SubPrune(F ′ ×F ′) such that both H1 and
H2 occur as induced subgraphs of H.

– Let Q1, Q2 ⊆ V (H) such that H[Q1] is isomorphic to H1 and H[Q2] is iso-
morphic to H2. Then dH(Q1, Q2) ≤ i.

We define Fh = SubPrune(F ′
h × F ′

h).
We give algorithm Special Mixed-(Π1,Π2)-Deletion} by branching over

graphs in Fh and later applying algorithm A for vertex deletion to graph class
Π2. The details are moved to the full version of the paper.

Theorem 6 (�). Special Mixed-(Π1,Π2)-Deletion has an FPT algorithm
with running time (d1 + i + d2)kf(k)poly(n) where d1 = max{|F | : F ∈ F1},
d2 = max{|H| : H ∈ Fh} and supposing algorithm A takes O∗(f(k)) time.

The problem Special Mixed-(Π1,Π2)-Deletion applies for a number of
pairs of graphs of Π1 or Π2 Deletion. We list a few below. Note that the
second algorithm in the list covers a number of graph classes for Π2. For example
Π2 can be the class of all planar graphs, or the class of all graphs with treewidth
t.

Corollary 3 (�). Π1 or Π2 Deletion is FPT for the following pairs (Π1,Π2)
of graph classes.

1. Π1 is the class of cliques and Π2 is the class of cactus graphs. The FPT
algorithm has running time O∗(26k).

2. Π1 is the class of cliques and Π2 is the class of graphs that has an FPT algo-
rithm with O∗(f(k)) running time for its deletion problem and its forbidden
family F2 contains the graph Kt for some constant t. The FPT algorithm has
running time O∗((t + 1)kf(k)).

3. Π1 is the class of split graphs and Π2 is the class of bipartite graphs. The
FPT algorithm has running time O∗(13k).

5 Conclusion

We gave faster algorithms for some vertex deletion problems to pairs of scattered
graph classes with infinite forbidden families. The existence of a polynomial
kernel for all the problems studied are open. It is even open when all the scattered
graph classes have finite forbidden families.

326 A. Jacob et al.

References

1. Cai, L.: Fixed-parameter tractability of graph modification problems for hereditary
properties. Inf. Process. Lett. 58(4), 171–176 (1996)

2. Cao, Y., Marx, D.: Interval deletion is fixed-parameter tractable. ACM Trans. Algo-
rithms (TALG) 11(3), 1–35 (2015)

3. Ganian, R., Ramanujan, M.S., Szeider, S.: Discovering archipelagos of tractability
for constraint satisfaction and counting. ACM Trans. Algorithms 13(2), 29:1-29:32
(2017)

4. Jacob, A., de Kroon, J.J., Majumdar, D., Raman, V.: Parameterized complexity of
deletion to scattered graph classes. arXiv preprint arXiv:2105.04660 (2021)

5. Jacob, A., Majumdar, D., Raman, V.: Parameterized complexity of deletion to scat-
tered graph classes. In: 15th International Symposium on Parameterized and Exact
Computation (IPEC 2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2020)

6. Jansen, B.M., Lokshtanov, D., Saurabh, S.: A near-optimal planarization algorithm.
In: Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 1802–1811. SIAM (2014)

7. Lekkeikerker, C., Boland, J.: Representation of a finite graph by a set of intervals
on the real line. Fundam. Math. 51(1), 45–64 (1962)

8. Lewis, J.M., Yannakakis, M.: The node-deletion problem for hereditary properties
is NP-complete. J. Comput. Syst. Sci. 20(2), 219–230 (1980)

http://arxiv.org/abs/2105.04660

Fast Algorithms for the Rooted Triplet
Distance Between Caterpillars

Jesper Jansson1,2 and Wing Lik Lee1(B)

1 Department of Computing, The Hong Kong Polytechnic University,
Hung Hom, Kowloon, Hong Kong

jesper.jansson@polyu.edu.hk, wing-lik.lee@connect.polyu.hk
2 Graduate School of Informatics, Kyoto University, Kyoto, Japan

Abstract. The rooted triplet distance measures the structural dissimi-
larity between two rooted phylogenetic trees (unordered trees with dis-
tinct leaf labels and no outdegree-1 nodes) having the same leaf label set.
It is defined as the number of 3-subsets of the leaf label set that induce
two different subtrees in the two trees. The fastest currently known algo-
rithm for computing the rooted triplet distance was designed by Brodal et
al. (SODA 2013). It runs in O(n log n) time, where n is the number of leaf
labels in the input trees, and a long-standing open question is whether
this is optimal or not. In this paper, we present two new o(n log n)-time
algorithms for the special case of caterpillars (rooted phylogenetic trees
in which every node has at most one non-leaf child), thus breaking the
O(n log n)-time bound for a fundamental class of trees. Our first algo-
rithm makes use of a dynamic rank-select data structure by Raman et
al. (WADS 2001) and runs in O(n log n/ log log n) time. Our second algo-
rithm relies on an efficient orthogonal range counting algorithm invented
by Chan and Pǎtraşcu (SODA 2010) and runs in O(n

√
log n) time.

Keywords: Phylogenetic tree · Caterpillar · Rooted triplet distance ·
Dynamic rank-select data structure · Orthogonal range counting

1 Introduction

Phylogenetics is the study of evolutionary relationships between different species
or groups. To describe a set of inferred evolutionary relationships, scientists com-
monly use a phylogenetic tree, which is a leaf-labeled tree where each leaf repre-
sents one entity such as a biological species. It is a diagrammatic representation
of evolutionary history such that the more closely related two species are, the
closer they are to each other in the tree.

Similarity measures between phylogenetic trees are frequently used in phylo-
genetics. For instance, analysis methods such as Bayesian inference [9] produce
a set of phylogenetic trees that are the most likely to represent true evolutionary
history. A consensus method is then applied to condense them into a single tree
which is close to the original set based on some well-defined measure. Another
c© Springer Nature Switzerland AG 2021
E. Bampis and A. Pagourtzis (Eds.): FCT 2021, LNCS 12867, pp. 327–340, 2021.
https://doi.org/10.1007/978-3-030-86593-1_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86593-1_23&domain=pdf
https://doi.org/10.1007/978-3-030-86593-1_23

328 J. Jansson and W. L. Lee

use case of similarity measures is for evaluating new phylogenetic tree or network
reconstruction methods. As explained in [15], in one evaluation method, some
biomolecular sequences are evolved according to a model of evolution represented
by a base tree and then the new reconstruction method generates a tree from
these evolved sequences. The similarity between the base tree and the generated
tree then gives an indicator of the quality of the reconstruction method.

One of the earliest similarity measures proposed that is still popular today
is the Robinson–Foulds metric [19], which counts the number of clusters (leaf
label sets of subtrees rooted at the nodes in the trees) that can only be found
in one tree and not the other. It can be computed in linear time [7], but has
the disadvantage that a small change in the input trees can lead to a huge
change in the value. As an example, suppose the input consists of two identical
caterpillars. If we were to move a single leaf from the bottom of one tree to
the top, the Robinson-Foulds distance would go from zero to near its maximum
possible value even though the two trees still share a lot of branching structure.

Another previously well-studied measure is the is the NNI (nearest neigh-
bor interchange) distance [18], which counts the number of branch-swapping
transformations needed to turn one input tree into the other. However, it has
remained of mostly theoretical interest as it has been proved that computing the
NNI distance is NP-hard [6].

The Kendall-Colijn metric [12] is computed by finding the lowest common
ancestors of each leaf pair in the two input trees, and comparing the difference
in distance to the root node. This measure can be computed in O(n2) time, but
has the disadvantage that leaves close to the root will influence the score more
than leaves further away from the root.

Finally, the rooted triplet distance [8] (defined formally in Sect. 1.1 below)
counts the number of 3-subsets of the leaf label set that induce two different
subtrees in the two trees. Its main advantages are that it is robust to small
changes in the input [1] and that it can be computed in polynomial time (see
Sect. 1.2). The rooted triplet distance has since its inception found a wide range
of practical applications in phylogenetics, as well as in other fields of biology.
See [13,14,16] for examples.

In this paper, we focus on fast algorithms for the rooted triplet distance.

1.1 Problem Definitions

A rooted phylogenetic tree (from here on called a tree for short) is a rooted,
unordered tree where each internal node has at least two children, and the leaves
are distinctly labeled by a set of leaf labels. A caterpillar is a tree where every
node has at most one non-leaf child. To simplify the presentation below, we will
identify every leaf in a tree with its unique label.

A rooted triplet is a tree with exactly three leaves. A resolved triplet is a
rooted triplet where two of its leaves, say x, y, have a common parent that is
not a parent of the remaining leaf z. We write xy|z to denote such a resolved
triplet. In contrast, an unresolved triplet is a rooted triplet where all three leaves
have the same parent. An unresolved triplet with leaves x, y, z will be denoted
by x|y|z. Unresolved triplets are also referred to as fan triplets in the literature.

Fast Algorithms for the Rooted Triplet Distance Between Caterpillars 329

a eb c d a eb c d

T1 T2

Fig. 1. An example: T1 and T2 are two rooted phylogenetic trees with leaf label set
{a, b, c, d, e}, and T1 is a caterpillar. Observe that, e.g., the resolved triplet ac|d is consis-
tent with T1 but not T2, while the unresolved triplet a|c|e is consistent with T2 but not
T1. Since rt(T1) = {ab|c, ab|d, ab|e, ac|d, ac|e, ad|e, bc|d, bc|e, bd|e, cd|e} and rt(T2) =
{ab|c, ab|d, ab|e, cd|a, a|c|e, a|d|e, cd|b, b|c|e, b|d|e, cd|e}, we have drt(T1, T2) = 6.

A resolved triplet xy|z is said to be consistent with a tree T if the lowest
common ancestor (LCA) of x, y in T is a proper descendant of the LCA of all
three leaves in T . An unresolved triplet x|y|z is said to be consistent with T if
the LCA of all three leaves are the same in T as the LCA of any two leaves.
Define rt(T) to be the set of all rooted triplets that are consistent with T . If
T1, T2 share the same set of leaf labels, define the rooted triplet distance between
T1 and T2, written as drt(T1, T2), as 1

2 |rt(T1)�rt(T2)|, where � denotes the
symmetric difference. See Fig. 1 for an example.

The rooted triplet distance problem can be stated as follows:

The Rooted Triplet Distance Problem
Input: Two rooted phylogenetic trees T1, T2 with the same leaf label set Λ.
Output: The rooted triplet distance drt(T1, T2).

In the rest of the paper, we let n be the number of leaves in each input tree.

1.2 Previous Results

The rooted triplet distance was introduced in 1975 by Dobson [8]. A straightfor-
ward algorithm for computing it runs in O(n3) time. In 1996, Critchlow et al. [5]
presented an O(n2)-time algorithm for the special case of two binary trees which
categorizes triplets based on their potential ancestor pairs. In 2011, Bansal et
al. [1] gave an O(n2)-time algorithm that computes the distance between two
unrestricted trees by using postorder tree traversals. In 2013, Sand et al. [20]
described an O(n log2 n)-time algorithm for binary trees using a data structure
called the hierarchical decomposition tree (HDT). Brodal et al. [2] developed an
HDT-based O(n log n)-time algorithm that works for trees of arbitrary degrees.
Jansson and Rajaby [11] later proposed an O(n log3 n)-time algorithm, modified
from [2] by using a simpler data structure called the centroid path decomposi-
tion tree, that although slower in theory, runs faster in practice for values of n
up to 4, 000, 000. Subsequently, Brodal and Mampentzidis [3] designed an even
more practical O(n log n)-time algorithm that scales to external memory, using a

330 J. Jansson and W. L. Lee

Table 1. Previous results on the rooted triplet distance problem

Year Reference Degree Time complexity

1975 Dobson [8] Arbitrary O(n3)

1996 Critchlow et al. [5] Binary O(n2)

2011 Bansal et al. [1] Arbitrary O(n2)

2013 Sand et al. [20] Binary O(n log2 n)

2013 Brodal et al. [2] Arbitrary O(n log n)

2017 Jansson and Rajaby [11] Arbitrary O(n log3 n)

2017 Brodal and Mampentzidis [3] Arbitrary O(n log n)

2019 Jansson et al. [10] Arbitrary O(qn)

further modified centroid decomposition technique. Recently, an algorithm with
time complexity O(qn), where at least one of the input trees has at most q
internal nodes, was given by Jansson et al. [10]. See Table 1 for a summary.

1.3 New Results and Organization of Paper

We present two new algorithms for the rooted triplet distance problem restricted
to caterpillars. The first algorithm is simple to implement and performs well in
practice, while the second algorithm is even faster in theory, having a lower
time complexity. These two algorithms are the first to achieve sub-O(n log n)
time complexity for any non-trivial special cases of the rooted triplet distance
problem when the number of internal nodes is unrestricted.

In Sect. 2 we give definitions, preliminary results, and summaries of data
structures that will be used in the following sections. The first algorithm, pre-
sented in Sect. 3, computes the distance in O(n log n/ log log n) time by defining
a series of steps to transform one input tree to the other, and counts the number
of rooted triplets that change in each step using the rank-select data structure by
Raman et al. [17]. The second algorithm, presented in Sect. 4, uses the orthogonal
range counting algorithm by Chan and Pǎtraşcu [4], and computes the distance
in O(n

√
log n) time by mapping each leaf label onto a 2-D grid and then making

O(n) orthogonal range counting queries on the grid. Finally, Sect. 5 summarizes
our new results and lists some open problems.

2 Preliminaries

First, we describe the tree transformation steps to be used in the first algorithm.
They allow us to break down the transformation of one input tree into the other
into a series of steps, and compute the rooted triplet distance by adding up the
changes in triplets that occur in each step.

Fast Algorithms for the Rooted Triplet Distance Between Caterpillars 331

Given two input trees on label set Λ, call one of them the start tree Tstart,
and the other one the goal tree Tgoal. Fixing Tgoal, define good(T) to be the
set of all 3-subsets of Λ that induce the same rooted triplet in T as in Tgoal.
Define bad(T) to be the set of all 3-subsets of Λ that induce different triplets
in T and Tgoal. Then, given trees T, T ′, define Φ(T, T ′) = |bad(T) ∩ good(T ′)|−
|good(T) ∩ bad(T ′)|.

We may view Φ(T, T ′) as the change in drt with respect to Tgoal as we
transform T into T ′. Φ counts the number of triplets that are turned from
bad to good, and subtracts the number of triplets turning from good to bad.
Rewriting drt(T, Tgoal) = |bad(T)| and drt(T ′, Tgoal) = |bad(T ′)|, we see that
drt(T, Tgoal) = Φ(T, T ′) + drt(T ′, Tgoal).

If we can find a sequence of trees and the Φ-values between any two adjacent
trees, then we can compute the triplet distance between any two trees in the
sequence by summing up these Φ-values. This gives us a method for computing
drt(Tstart, Tgoal):

Lemma 1. Let T1 = Tstart, T2, . . . , Tk−1, Tk = Tgoal be a sequence of trees. Then
drt(Tstart, Tgoal) =

∑k−1
i=1 Φ(Ti, Ti+1).

Next, we demonstrate that we can ignore most leaves of a tree if the changes
in a transformation step are contained in some small subsets:

Lemma 2. Given trees Ta, Tb, u ∈ Ta, and v ∈ Tb, let T ′
a, T ′

b be subtrees of
Ta, Tb rooted at u, v respectively. Obtain T ′′

a , T ′′
b by replacing T ′

a, T ′
b each by a

single node. Then Φ(Ta, Tb) = Φ(T ′
a, T ′

b) if T ′′
a and T ′′

b are isomorphic.

The lemma holds because the condition implies that only those rooted triplets
whose three leaves all lie inside T ′

a and T ′
b will affect Φ(Ta, Tb).

Our first algorithm makes use of a data structure based on the dynamic rank-
select data structure by Raman et al. [17]. A query tree Q stores a multiset of
integers in [1..n], and supports the following operations:

– insert(a): insert a value a to Q.
– query(a): output the number of inserted values less than a.

The insert, query operations are respectively direct analogs to the update,
sum operations in [17]. The next lemma summarizes its time complexity.

Lemma 3. There is a data structure that supports the insert and query oper-
ations in O(log n/ log log n) time.

Finally, in our second algorithm, we will use an orthogonal range counting
result given by Chan and Pǎtraşcu [4]. We restate Corollary 2.3 from [4] here:

Lemma 4. Given n points and n axis-aligned rectangles on the grid, we can
obtain the number of points inside each rectangle in O(n

√
log n) total time.

332 J. Jansson and W. L. Lee

3 The First Algorithm

The main idea behind this algorithm is to treat the input caterpillars as lists
of leaves, and transform one list into the other by performing insertion sort on
the list while moving one group of leaves at a time. See Algorithm 1 for the
pseudocode. We first describe the sequence of intermediate caterpillars used in
the transformation from Tstart to Tgoal. We then show how drt(Tstart, Tgoal) can
be computed by performing O(n) insertions and queries to the rank-select query
tree, which by Lemma 3 yields a total time complexity of O(n log n/ log log n).

Algorithm 1: Rank-Select Method
Input: Caterpillars Tstart, Tgoal on label set Λ.
Output: drt(Tstart, Tgoal)

1 Relabel Tstart, Tgoal;
2 Build query tree Q according to input size n;
3 Parse Tstart to obtain leaf groups G1, . . . , Gm;
4 foreach Gi do
5 Perform insertions and queries to Q to get values |Ai|, |Bi|, . . .;
6 Compute Φ(Ti−1, Ti) using values |Ai|, . . .;
7 end
8 Compute and output

∑
Φ(Ti−1, Ti);

Define a mapping Λ → Z such that the labels of each leaf in Tgoal is mapped
to the distance from the leave to the internal node that is the farthest from
the root. Then, apply this mapping to both Tgoal and Tstart. See Fig. 2 for an
example. Note that the leaves will no longer be distinctly labeled and that all
leaves in Tgoal having the same parent will receive the same label.

Define a leaf group of a tree T as a maximal multiset of identical leaf labels
in which each element corresponds to a distinct leaf in T and the leaves corre-
sponding to its elements all have the same parent in T . In Fig. 2, the multisets
{5}, {2, 2}, {1, 1} are leaf groups in Tstart, while {2} and {4, 4} are not. Two
leaf groups G1, G2 are said to be connected if their leaves are siblings in T .

Let U, V be multisets of Λ. Define U ≺ V if for all u ∈ U, v ∈ V , u < v by
their value. Write U � V if u = v, and U 	 V if u ≤ v, for all u ∈ U, v ∈ V .

1
1

1
2

2
3

3
4

4
4

5

3
1

4
2

2
5

4
4

1
1

3

Tgoal Tstart

Fig. 2. In this example, after relabeling the leaves according to Tgoal, the leaf groups
in Tstart are {3}, {1}, {4}, {2, 2}, {5}, {4}, {4}, {1, 1}, {3}.

Fast Algorithms for the Rooted Triplet Distance Between Caterpillars 333

3.1 Algorithm Description

To apply the insertion sort strategy, represent trees as lists of leaf groups. Given
any T , define the ordering of T to be a list of leaf groups in T , subject to the
following additional rules:

– The ordering of the leaf groups follows a post order traversal.
– A set of connected leaf groups appear in the list in ascending order, so that

if G1, G2, . . . , Gk are connected groups listed in this order, then G1 	 G2 	
· · · 	 Gk.

In Fig. 2, the ordering of Tgoal is ({1, 1, 1}, {2, 2}, {3, 3}, {4, 4, 4}, {5}), and
the ordering of Tstart is ({1}, {3}, {4}, {2, 2}, {5}, {4}, {1, 1}, {3}, {4}).

Suppose Tstart has m leaf groups, so that its ordering is (G1, G2, . . . , Gm).
We define a sequence of trees T1 = Tstart, T2, . . . , Tm = Tgoal, where each Ti is
the tree with ordering (Gσi(1), . . . , Gσi(i), Gi+1, . . . , Gm), σi being a permutation
of {1, . . . , i}, and:

– Gσi(1) 	 Gσi(2) 	 · · · 	 Gσi(i).
– Leaf groups Gσi(i) and Gi+1 are not connected.
– Leaf groups in {Gi+1, . . . , Gm} are connected if and only if they are also

connected in Tstart.
– Adjacent leaf groups Gσi(j), Gσi(j+1) are connected if and only if Gσi(j) �

Gσi(j+1).

By Lemma 1, drt(Tstart, Tgoal) =
∑m−1

i=1 Φ(Ti, Ti+1).
Consider leaf group Gi in Ti. Gi may be connected with some Gi+1, . . . , Gi+j .

By Lemma 2, to compute Φ(Ti, Ti+1) it suffices to consider the subtree of Ti

containing G1, . . . , Gi+j . Separate the leaves in this subtree minus Gi into four
(possibly empty) subsets, Ai, Bi, Ci,Di, so that Gi+1, . . . , Gi+j ⊂ Di, Bi � Gi,
and Ai ≺ Gi ≺ Ci.

To transform Ti into Ti+1, we may think of detaching Gi and attaching it
to the parent of Bi, or, if Bi = ∅, attaching it to a new internal node at the
appropriate position. Figure 3 illustrates this process.

Ai

Bi

Ci

Di

Gi

Ti Ai

Bi

Ci

Di

Gi

Ti+1

Fig. 3. Moving Gi in step i

334 J. Jansson and W. L. Lee

Table 2. Listing for each type, the induced triplets in Ti, Ti+1, its effects on Φ, and
its counts. Lowercase letters represent leaves in the corresponding subsets, so that
ai ∈ Ai, bi ∈ Bi, . . ., and repeated labels represent distinct leaves. Here, Ei, Fi are
defined as sets of leaves {ci, di} satisfying the given constraints.

Type Ti Ti+1 Effect on Φ Count

{gi, ai, ai} aiai|gi aiai|gi None –

{gi, ai, bi} aibi|gi ai|bi|gi Increased |Gi| |Ai| |Bi|
{gi, ai, ci} aici|gi aigi|ci Increased |Gi| |Ai| |Ci|
{gi, ai, di} ai|gi|di aigi|di Increased |Gi| |Ai| |Di|
{gi, bi, bi} bibi|gi bi|bi|gi Increased |Gi|

(|Bi|
2

)

{gi, bi, ci} bici|gi bigi|ci Increased |Gi| |Bi| |Ci|
{gi, bi, di} bi|gi|di bigi|di Increased |Gi| |Bi| |Di|
{gi, ci, ci} cici|gi gici|ci Increased |Gi|

(|Ci|
2

)

gi|ci|ci
{gi, ci, di} ci|gi|di gici|di Decreased (ci = di) |Gi| |Ei|

None (ci > di) –

Increased (ci < di) |Gi| |Fi|
{gi, di, di} gi|di|di gi|di|di None –

{gi, gi, ai} ai|gi|gi ai|gi|gi None –

{gi, gi, bi} bi|gi|gi bi|gi|gi None –

{gi, gi, ci} ci|gi|gi gigi|ci Increased
(|Gi|

2

) |Ci|
{gi, gi, di} gi|gi|di gigi|di Increased

(|Gi|
2

) |Di|

3.2 Computing Φ

We now show how each Φ can be computed by making O(1) queries to the query
tree Q. Fill the query tree following the ordering of Tstart, where for each leaf
group G of size k and value a, we perform insert(a) k times. By making O(1)
queries at different states of Q, we can get the number of leaves within a range
of values in any continuous range of leaf groups.

By Lemma 2, we only need to consider triplets where each of its leaves are
in one of the subsets Ai, Bi, Ci, Gi,Di. Categorize these triplets based on where
each of its leaves are located. We can immediately disregard most triplet types:
any triplet types not containing at least one leaf from Gi are unchanged, so are
any triplet types where all three of its leaves are in the same subset. For the
remaining types, we list their effect on Φ and counts in Table 2.

The values |Ai|, |Bi|, |Ci| can be found by making O(1) queries to Q for the
number of leaves in G1, . . . , Gi−1 that are less than, equal to, or greater than gi,
respectively. |Gi| can be directly read from each leaf group.

Fast Algorithms for the Rooted Triplet Distance Between Caterpillars 335

The values |D|, |E|, |F | can be found using a similar approach. Let {Gi, . . . ,
Gi+j} be a maximal set of connected leaf groups. |D|-values can be computed
using formulas |Di| =

∑j
k=1 |Gi+k| and |Di+k| = |Di+k−1|− |Gi+k|. For the |E|-

values, first make O(j) queries to Q to obtain the number of all possible {c, d}
leaf pairs, where c = d, c ∈ {G1, . . . , Gi−1}, and d ∈ {Gi, . . . , Gi+j}. Subtract
|Bi||Gi| from this total to get |Ei|, and then subtract |Bi+j+1||Gi+j+1| from each
|Ei+j | to obtain |Ei+j+1|. Modifying the query ranges, the same method can be
used to find the |F |-values. The precomputing steps require a number of queries
proportional to the number of leaf groups in the maximal set, therefore adds
O(1) amortized number of queries per leaf group.

For the time complexity of the algorithm, preprocessing involves building a
label map, applying it to Tstart, and retrieving the list of leaf groups. Each one of
these tasks can be done in O(n) time. Then, O(n) insertion and query operations
are needed to compute all Φ-values. By Lemma 3, this proves:

Theorem 1. Given two caterpillars on the same leaf label set of size n, Algo-
rithm 1 computes the rooted triplet distance between them in O(n log n/ log log n)
time.

4 The Second Algorithm

Our second method maps each leaf label onto a 2-D integer grid of size n × n,
according to their positions in the two input caterpillars. This is done so that
by making O(n) queries, we retrieve the total number of good triplets, triplets
that are consistent with both input trees, and thus the rooted triplet distance.
See Algorithm 2 for the pseudocode.

Algorithm 2: Orthogonal Range Counting Method
Input: Caterpillars T1, T2 on leaf label set Λ.
Output: drt(T1, T2).

1 foreach � ∈ Λ do
2 Compute and store the point f(�);
3 end
4 foreach point p in Im f do
5 Perform range counting queries to get the values A, B, C, D;
6 Compute the number of good triplets rooted at p;

7 end
8 Compute and output drt(T1, T2) using Lemma 5;

4.1 Mapping Leaves to the Grid

First, we define the mapping of leaves into the grid. Index the internal nodes of
each input caterpillar T1, T2 in ascending order from the bottom to top, so that
the lowest internal node is labeled 1, its parent is labeled 2, etc.

336 J. Jansson and W. L. Lee

p1

p1 + 1

p1 − 1

T1

p2

p2 + 1

p2 − 1

T2

p1
p
2

Z
2

f()

Fig. 4. f maps each leaf to a point in Z
2 according to its positions in T1 and T2.

Suppose T1 has h1 internal nodes, and T2 has h2 internal nodes. Let S =
[1, h1] × [1, h2] be a subset of Z

2, and define a mapping f : Λ → S, which
maps each leaf label to a point in the grid according to the indices of its parent
nodes in the two input trees. If for leaf �, its parents in T1, T2 are indexed p1, p2
respectively, then � is mapped to the point (p1, p2). See Fig. 4 for an illustration.

Next, define mapping f ′ from the set of good triplets to S as follows. For each
good triplet τ , if the root node of the induced subtree in T1, T2 is indexed p1, p2
respectively, then f ′(τ) = (p1, p2). Summing up the number of good triplets
mapped to each point in Im f ′, we get the total number of good triplets.

4.2 Counting Good Triplets

Consider any point p = (p1, p2). Write Ap, Bp, Cp,Dp for the number of leaves
mapped to the regions {p1}×{p2}, {p1}× [1, p2−1], [1, p1−1]×{p2}, [1, p1−1]×
[1, p2−1] respectively. See Fig. 5. These values will be used to count the number
of good triplets mapped to p. For clarity of presentation, the p-subscripts will
be omitted below.

A

B

C

D

1 2 (p1 − 1)p1

1
2

(p
2 −

1)
p
2

T1

T
2

Fig. 5. Divide [1, p1] × [1, p2] into four regions, and define A, B, C, D as the number of
leaves mapped to each region.

Fast Algorithms for the Rooted Triplet Distance Between Caterpillars 337

i

p1

j k j

p2

ki

ijk
A
3

i

p1

j k j

p2

ki

jk

i

A
2

· B

j

p1

ki j

p2

ki

jki
A
2

· C

j

p1

ki j

p2

ki

jk

i

A
2

·D

j

p1

ki i

p2

kj

ki

j
ABC

T1 T2 Position Count

Case 1

Case 2

Case 3

Case 4a

Case 4b

(short, short)

(short, long)

(long, short)

(long, long)

(long, long)

Fig. 6. The cases for counting unresolved triplets rooted at point (p1, p2). The Position
column shows the partition of [1, p1] × [1, p2] mirroring Fig. 5, so that the top right
quadrant corresponds to A, etc.

For every resolved triplet, one of its leaves must be a child of node p1 in T1,
and p2 in T2, therefore it is mapped to the area A. The other two leaves are more
related to each other than to the first leaf, which happens only if both leaves
are descendants of an internal node in T1 with index less than p1, and similarly
in T2. This means these leaves are mapped to the area D. To count the number
of good resolved triplets mapped to p, we choose one leaf mapped to A, then
choose two leaves mapped to D. Therefore the number of such triplets is A ·(D

2

)
.

For unresolved triplets, we proceed as follows. An unresolved triplet may
either be short, where all three leaves share the same parent node, or it may be
long, where only two leaves share a parent node, and the third leaf is located
lower in the tree. Counting these triplets splits into four main cases. See Fig. 6.

– Case 1: The triplet is short in both T1, T2. This means that each leaf in such
a triplet must share the same parents, namely, nodes p1, p2 in T1, T2 respec-
tively. Therefore, these leaves are all mapped to the point p. The number of
such triplets is thus

(
A
3

)
.

338 J. Jansson and W. L. Lee

– Case 2: The triplet is short in T1, and long in T2. The number of such triplets
is

(
A
2

) · B.
– Case 3: The triplet is long in T1, and short in T2. The number of such triplets

is
(
A
2

) · C.
– Case 4: The triplet is long in both T1, T2. In this triplet, the leaf that is in the

lower position of T1, T2 may or may not be the same leaf. Thus, two subcases
arise:

• Case 4a: They are the same leaf. The number of such triplets is
(
A
2

) · D.
• Case 4b: They are different leaves. The number of such triplets is ABC.

Repeating the above for each point to calculate the total number of good
triplets subsequently gives us the rooted triplet distance:

Lemma 5.

drt(T1, T2) =
(

n

3

)

−
∑

p∈Im f ′

(

A ·
(

D

2

)

+
(

A

3

)

+
(

A

2

)

(B + C + D) + ABC

)

.

The mapping f can be built in O(n) time. Then, for each point p ∈ Im f ′,
we make four range counting queries to find the values A,B,C,D. Afterwards,
apply Lemma 5 to obtain drt(T1, T2).

If f ′(τ) = p, then there is at least one leaf � ∈ τ where f(�) = p also.
Therefore, we have Im f ′ ⊆ Im f . Since |Im f | ≤ n, applying Lemma 4 yields:

Theorem 2. Given two caterpillars on the same leaf label set of size n, Algo-
rithm 2 computes the rooted triplet distance between them in O(n

√
log n) time.

5 Conclusion

The only known lower bound on the time complexity of computing the rooted
triplet distance is the trivial one of Ω(n), which holds because any algorithm has
to look at all of its input at least once. Thus, there is a gap between the known
upper and lower bounds, and to close this gap is a major open problem. In this
paper, we have presented two algorithms that go below the O(n log n)-time upper
bound for a certain special class of inputs, namely caterpillars. Although this
doesn’t solve the open problem, it makes some partial progress. Whether or not
the techniques developed here can be extended to more general (non-caterpillar)
inputs remains to be seen, but we believe our findings open up an interesting
new research direction and that they show there is hope for an o(n log n)-time
algorithm for the general case.

Initial experiments on the first algorithm show promising practical perfor-
mance. A C++ implementation of the algorithm, running on a computer with
AMD Ryzen 7 2700X, 16 GB RAM, Arch Linux with kernel version 5.10.16, and
g++ compiler version 10.2.0, was able to process inputs of size n = 1, 000, 000
in 3.5 s, using 69 MB of memory. The outcome of the experimental results will
be reported in the full version of this paper.

Fast Algorithms for the Rooted Triplet Distance Between Caterpillars 339

We conclude with some open questions:

– Can the two algorithms be extended to work on a larger class of input trees?
– Our first algorithm uses a dynamic rank-select data structure that provides

additional operations such as delete and select that are not needed by our
algorithm. Is it possible to design a simpler and faster data structure that
still fits our purposes?

– Is a practical implemention of the second algorithm possible? We note that
certain steps such as the mapping and query steps can be parallelized easily.

Acknowledgment. JJ was partially funded by RGC/GRF project 15217019.

References

1. Bansal, M.S., Dong, J., Fernández-Baca, D.: Comparing and aggregating partially
resolved trees. Theoret. Comput. Sci. 412(48), 6634–6652 (2011)

2. Brodal, G.S., Fagerberg, R., Mailund, T., Pedersen, C.N.S., Sand, A.: Efficient
algorithms for computing the triplet and quartet distance between trees of arbitrary
degree. In: Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA 2013), pp. 1814–1832. SIAM (2013)

3. Brodal, G.S., Mampentzidis, K.: Cache oblivious algorithms for computing the
triplet distance between trees. In: 25th Annual European Symposium on Algo-
rithms (ESA 2017). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2017)

4. Chan, T.M., Pătraşcu, M.: Counting inversions, offline orthogonal range counting,
and related problems. In: Proceedings of the Twenty-First Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA 2010), pp. 161–173. SIAM (2010)

5. Critchlow, D.E., Pearl, D.K., Qian, C.: The triples distance for rooted bifurcating
phylogenetic trees. Syst. Biol. 45(3), 323–334 (1996)

6. Dasgupta, B., He, X., Jiang, T., Li, M., Tromp, J.: On computing the nearest neigh-
bor interchange distance. In: Proceedings of the DIMACS Workshop on Discrete
Problems with Medical Applications, DIMACS Series in Discrete Mathematics and
Theoretical Computer Science, vol. 55, pp. 125–143. American Mathematical Soc.
(2000)

7. Day, W.H.E.: Optimal algorithms for comparing trees with labeled leaves. J. Clas-
sif. 2(1), 7–28 (1985)

8. Dobson, A.J.: Comparing the shapes of trees. In: Street, A.P., Wallis, W.D. (eds.)
Combinatorial Mathematics III. LNM, vol. 452, pp. 95–100. Springer, Heidelberg
(1975). https://doi.org/10.1007/BFb0069548

9. Huelsenbeck, J.P., Nielsen, R., Ronquist, F., Bollback, J.P.: Bayesian inference of
phylogeny and its impact on evolutionary biology. Science 294(5550), 2310–2314
(2001)

10. Jansson, J., Mampentzidis, K., T.P, S.: Building a small and informative phyloge-
netic supertree. In: 19th International Workshop on Algorithms in Bioinformatics
(WABI 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2019)

11. Jansson, J., Rajaby, R.: A more practical algorithm for the rooted triplet distance.
J. Comput. Biol. 24(2), 106–126 (2017)

12. Kendall, M., Colijn, C.: Mapping phylogenetic trees to reveal distinct patterns of
evolution. Mol. Biol. Evol. 33(10), 2735–2743 (2016)

https://doi.org/10.1007/BFb0069548

340 J. Jansson and W. L. Lee

13. Liao, W., et al.: Alignment-free transcriptomic and metatranscriptomic comparison
using sequencing signatures with variable length Markov chains. Sci. Rep. 6(1), 1–
15 (2016)

14. Moreno-Dominguez, D., Anwander, A., Knösche, T.R.: A hierarchical method for
whole-brain connectivity-based parcellation. Hum. Brain Mapp. 35(10), 5000–5025
(2014)

15. Nakhleh, L., Sun, J., Warnow, T., Linder, C.R., Moret, B.M.E., Tholse, A.:
Towards the development of computational tools for evaluating phylogenetic net-
work reconstruction methods. In: Biocomputing 2003, pp. 315–326. World Scientific
(2002)

16. Page, R.D.M., Cruickshank, R., Johnson, K.P.: Louse (Insecta: Phthiraptera) mito-
chondrial 12S rRNA secondary structure is highly variable. Insect Mol. Biol. 11(4),
361–369 (2002)

17. Raman, R., Raman, V., Rao, S.S.: Succinct dynamic data structures. In: Dehne,
F., Sack, J.-R., Tamassia, R. (eds.) WADS 2001. LNCS, vol. 2125, pp. 426–437.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44634-6 39

18. Robinson, D.F.: Comparison of labeled trees with valency three. J. Combin. Theory
Ser. B 11(2), 105–119 (1971)

19. Robinson, D.F., Foulds, L.R.: Comparison of phylogenetic trees. Math. Biosci.
53(1–2), 131–147 (1981)

20. Sand, A., Brodal, G.S., Fagerberg, R., Pedersen, C.N.S., Mailund, T.: A practical
O(n log2 n) time algorithm for computing the triplet distance on binary trees. BMC
Bioinform. 14, S18 (2013). https://doi.org/10.1186/1471-2105-14-S2-S18

https://doi.org/10.1007/3-540-44634-6_39
https://doi.org/10.1186/1471-2105-14-S2-S18

Deciding Top-Down Determinism
of Regular Tree Languages

Peter Leupold(B) and Sebastian Maneth

Faculty of Informatics, Universität Bremen, Bremen, Germany
{leupold,maneth}@uni-bremen.de

Abstract. It is well known that for a regular tree language it is decid-
able whether or not it can be recognized by a deterministic top-down
tree automaton (DTA). However, the computational complexity of this
problem has not been studied. We show that for a given deterministic
bottom-up tree automaton it can be decided in quadratic time whether
or not its language can be recognized by a DTA. Since there are finite
tree languages that cannot be recognized by DTAs, we also consider finite
unions of DTAs and show that also here, definability within deterministic
bottom-up tree automata is decidable in quadratic time.

Keywords: Deterministic top-down tree automata · Definability ·
Decision problems

1 Introduction

Unlike for strings, where left-to-right and right-to-left deterministic automata
recognize the same class of languages, this is not the case for deterministic tree
automata: deterministic top-down tree automata (DTA) only recognize a strict
subset of the regular tree languages. The most notorious example of a tree lan-
guage that cannot be recognized by DTA is the language {f(a, b), f(b, a)}. Nev-
ertheless, DTA bear some advantages over their bottom-up counterpart: they
can be implemented more efficiently, because a tree is typically represented top-
down and identified by its root node (also, a DTA may reject a given tree earlier
than a bottom-up tree automaton). For (deterministic) tree transducers it has
recently be shown that given a bottom-up one (with slight restrictions) one can
decide whether or not there exists an equivalent top-down one [10].

Several properties have been defined that characterize DTA within the reg-
ular tree languages. Viragh [18] proves that the regular, “path-closed” tree lan-
guages are exactly the ones that are recognized by DTA. He proves this via the
construction of what he calls the powerset automaton for the path-closure of a
regular language. Gécseg and Steinby use a very similar method in their text-
book [5]. Another approach is Nivat and Podelksi’s homogeneous closure [16].
Also here the constructed tree automaton has as state set the powerset of the
original state set. In neither case an exact running time has been investigated.

c© Springer Nature Switzerland AG 2021
E. Bampis and A. Pagourtzis (Eds.): FCT 2021, LNCS 12867, pp. 341–353, 2021.
https://doi.org/10.1007/978-3-030-86593-1_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86593-1_24&domain=pdf
https://doi.org/10.1007/978-3-030-86593-1_24

342 P. Leupold and S. Maneth

In our approach, starting from a given deterministic bottom-up tree automa-
ton, we first construct an equivalent minimal automaton. This takes quadratic
time, following well known methods. We then lift the “subtree exchange prop-
erty” of Nivat and Podelski [16] to such an automaton; essentially it means, that
if certain transitions are present, e.g., f(q1, q2) → q and f(q2, q1) → q, then also
other transitions must be present (here, also f(qi, qi) → q for i = 1, 2). This
property characterizes the DTA languages and can be decided in linear time.
Finally, if the decision procedure is affirmative, we show how to construct an
equivalent deterministic top-down tree automaton. The construction replaces so
called “conflux groups” (e.g., the four transitions from above), one at a time by
introducing new states. Care has to be taken, because the removal of one con-
flux group may introduce new copies of other conflux groups. However, after all
original conflux groups are eliminated, the removal of newly introduced conflux
groups does not cause new conflux groups to be introduced. We then gener-
alize our results to finite unions of deterministic top-down tree languages. We
show that they are characterized by minimal bottom-up tree automata where a
finite number of “violations” to the above exchange property are present. This
finiteness test can be achieved in linear time.

For unranked trees several classes of deterministic top-down tree languages
have been considered. For all of them, the decision whether a given unranked
regular tree language belongs to one of these classes takes exponential time [6,
11,13]. This is in sharp contrast to our results. The reason is that the unranked
automata use regular expressions in their rules, and that inclusion needs to be
tested for these expressions.

2 Preliminaries

Trees. For a ranked alphabet Σ we denote by Σk the set of all symbols which
have rank k. Let X = {x1, . . . } be a set of constants called variables; for an
integer n we denote by Xn the set {x1, . . . , xn} of n variables. The set T (Σ,X)
of trees over the ranked alphabet Σ and the set X of variables is the smallest set
defined by:

– Σ0 ⊆ T (Σ,X),
– X ⊆ T (Σ,X), and
– if k ≥ 1, f ∈ Σk and t1, . . . , tk ∈ T (Σ,X), then f(t1, . . . , tk) ∈ T (Σ,X).

We denote by T (Σ) the set of trees in T (Σ,X) which do not contain variables.
For a tree t = f(t1, . . . , tk) ∈ T (Σ,X) we define its set of nodes as

N(t) := {ε} ∪ {iu | i ∈ {1, . . . , k}, u ∈ N(ti)}.

Here ε denotes the root node. Let t ∈ T (Σ,Xn) and t1, . . . , tn ∈ T (Σ,X). Then
t[x1 ← t1, . . . , xn ← tn] denotes the tree obtained from t by replacing each
occurrence of xi by ti.

Deciding Top-Down Determinism of Regular Tree Languages 343

Tree Automata and Transducers. A (bottom-up) tree automaton (BA) is
a tuple A = (Q,Σ,Qf , δ) where Q is a finite set of states, Qf ⊆ Q is a set of
final states, and δ is a set of transition rules of the following form:

f(q1, . . . , qk) → q,

where k ≥ 0, f ∈ Σk, and q, q1 , . . . , qk ∈ Q.
A tree automaton is deterministic (DBA) if there are no two rules with the

same left-hand side. By A(t) we denote the unique state that is reached in a
deterministic bottom-up tree automaton by processing the tree t. For a bottom-
up tree automaton A, by Aq we denote the same automaton just with q as the
single final state, that is Qf = {q}.

A top-down tree automaton (TA) is a tuple A = (Q,Σ, I, δ) where Q is a set
of states, I ⊆ Q is a set of initial states, and δ is a set of transition rules of the
following form:

q(f) → f(q1, . . . , qk),

where k ≥ 0, f ∈ Σk, and q, q1 , . . . , qk ∈ Q. A top-down tree automaton
(Q,Σ, I, δ) is deterministic (DTA) if there is one initial state and there are no
two rules with the same left-hand side.

A run of a BA on a tree t is a mapping β : N(t) → Q which fulfills the
following properties: for all nodes u ∈ N(t), if u of rank k has label f , β(u) = q
and for all i ∈ {1, . . . , k} we have β(ui) = qi, then f(q1, . . . , qk) → q is a
transition in δ. We denote the transition that corresponds to β(u) by τ(β(u)).
Sometimes we will view β as a tree and refer to nodes β(u); here we mean a
relabeling of t where every node u is labeled by β(u).

For a bottom-up tree automaton A the run β recognizes the tree t if β(ε) ∈
Qf . A tree is recognized by A if there exists an accepting run for it. The language
recognized by the automaton denoted by L(A) is the set of all trees which are
recognized. A tree language is regular, if it is recognized by some bottom-up tree
automaton.

For an BA A its corresponding TA c(A) is obtained by reading A’s transitions
from right to left and taking A’s final states as initial states. In the same way
for a TA its corresponding BA is defined. The language of a TA B is defined as
L(c(B)).

Syntactic Congruence. A tree C ∈ T (Σ,X1) is called a context, if it contains
exactly one occurrence of the variable x1. Because there is only one fixed variable,
we write C[t] instead of C[x1 ← t]. We denote by C(Σ) the set of all contexts.
For a given tree language L we define the syntactic congruence ≡L on T (Σ) by:
s ≡L t if for all contexts C ∈ C(Σ) we have C[s] ∈ L iff C[t] ∈ L.

In the case of string languages the Myhill-Nerode-Theorem states that a
language is regular if and only if its syntactic congruence is of finite index [14,15].
An analogous result exists for tree languages and was long regarded as folklore;
Kozen explains its history and provides a rigorous proof [8].

A concept closely related to the syntactic congruence is the minimal deter-
ministic bottom-up automaton (MDBA). It is defined as follows: Let Q be the

344 P. Leupold and S. Maneth

finite set of equivalence classes of ≡L for a language L minus the unique equiva-
lence class C⊥ of all trees t for which there does not exist any context C such that
C[t] ∈ L. We denote by [t] the equivalence class of a tree t and define the transi-
tion function δ by: δ(f([t1], . . . , [tk]) = [f(t1, . . . , tk)] for all t1, . . . , tk ∈ T (Σ)\C⊥
and [f(t1, . . . , tk)] 	= C⊥. With Qf = {[u] | u ∈ L} the DBA ML := (Q,Σ,Qf , δ)
recognizes the tree language L. So the states of the MDBA for a language cor-
respond to the equivalence classes of the syntactic congruence [3].

Proposition 1. Let L ⊆ T (Σ) and M = (Q,Σ,Qf , δ) be the corresponding
MDBA. Then the following properties hold.

(i) For all q ∈ Q the language L(Mq) is not empty,
(ii) every transition in δ is useful, i.e., it is used in some accepting run,
(iii) for all t ∈ T (Σ) we have |{q ∈ Q | t ∈ L(Mq)}| ≤ 1.

(i) holds because the syntactic congruence does not have empty classes. For
every tree, which is not in the class C⊥ there exists a context C such that
C[x1 ← t] ∈ L by the definition of the equivalence classes, which proves (ii).
ML’s determinism has (iii) as a direct consequence.

Subtree Exchange Property. The class of all languages that are recognized
by DTAs is defined via these automata. However, there are several other char-
acterizations by different means. An early one that later became known as the
path-closed languages was provided by Viragh [18]. The path language π(t) of a
tree t, is defined inductively by:

– if t ∈ Σ0 , then π(t) = t

– if t = f(t1, . . . , tk), then π(t) =
⋃i=k

i=1{fiw | w ∈ π(ti)}

For a tree language L the path language of L is defined as π(L) =
⋃

t∈L π(t),
the path closure of L is defined as pc(L) = {t | π(t) ⊆ π(L)}. A tree language
is path-closed if pc(L) = L. Viragh proved that the regular, path-closed tree
languages are exactly the ones that are recognized by deterministic top-down
automata. Nivat and Podelski argued that in these languages it must be possible
to exchange certain subtrees [16]. We will extensively use this so-called exchange
property in a formulation by Martens et al. [12].

Definition 2. A regular tree language L fulfills the exchange property if, for
every t ∈ L and every node u ∈ N(t), if t[u ← f(t1, . . . , tk)] ∈ L and also
t[u ← f(s1, . . . , sk)] ∈ L, then t[u ← f(t1, . . . , ti−1, si, ti+1, . . . , tk)] ∈ L for each
i = 1, . . . , k.

From the references cited above we obtain the following statement.

Proposition 3. A regular tree language fulfills the exchange property if and only
if it is recognized by a deterministic top-down tree automaton.

Deciding Top-Down Determinism of Regular Tree Languages 345

3 Decidability of Top-Down Determinism

It is well-known that it is decidable for a regular tree language whether or not
it is top-down deterministic. Viragh proved this via the construction of what
he calls the powerset automaton for the path-closure of a regular language; the
language is deterministic top-down, if it is equal to the language of the pow-
erset automaton [18]. Gécseg and Steinby used a very similar method in their
textbook [5].

Another approach can be taken via an application of Nivat and Podelksi’s
homogeneous closure [16]. A tree language is homogeneous if, for every t ∈ L
and every node u ∈ N(t), if t[u ← f(t1, t2)] ∈ L, t[u ← f(s1, t2)] ∈ L and
also t[u ← f(t1, s2)] ∈ L, then t[u ← f(s1, s2)] ∈ L. The smallest homogeneous
set containing a tree language is its homogeneous closure. One could construct
the automaton for the language’s homogeneous closure. The original language is
deterministic top-down, if it is equal to its homogeneous closure.

In both approaches the automaton of the respective closure has as state set
the powerset of the original state set. Thus already computing this automaton
takes an exponential amount of time and even space. The second step is in both
cases the decision of the equivalence of two non-deterministic automata, which
is EXPTIME-complete in the size of these automata (Corollary 1.7.9 in [3]). In
neither case the exact running time has been investigated. Also the approach
of Cristau et al. [4] for unranked trees follows similar lines and does not have a
better runtime.

We present a new method for deciding whether a regular tree language is
top-down deterministic which runs in polynomial time.

In corresponding BAs and TAs, non-determinism in one direction corresponds
to different transitions converging to the same right-hand side in the other direc-
tion. We now formalize this phenomenon.

Definition 4. Let A be a deterministic, minimal bottom-up tree automaton.
A pair of distinct transitions f(q1,1, . . . , q1,k) → q and f(q2,1, . . . , q2,k) → q is
called a conflux. A maximal set of transitions, which pairwise form confluxes (on
the same input symbol f and with same right-hand side q), is called a conflux
group.

The subtree exchange property from Definition 2 essentially states that trees
that appear in the same positions can be interchanged. For states in a TA an
analogous property would say that these must be exchangeable on the right-
hand sides of rules; but this is not the case, because despite its determinism the
runs for distinct occurrences of the same subtree can be distinct. However, when
we look at the minimal deterministic bottom-up automaton for a deterministic
top-down tree language, then we can establish a kind of exchange property for
its states.

Lemma 5. Let L be a deterministic top-down tree language and let M be the
minimal deterministic bottom-up automaton recognizing it. If M has a conflux

346 P. Leupold and S. Maneth

of the transitions f(q1,1, . . . , q1,k) → q and f(q2,1, . . . , q2,k) → q, then all the
transitions from the set

{f(qi1,1, . . . , qik,k) → q | i1, . . . , ik ∈ {1, 2}}

are also present in M .

Proof. Let ti,1, . . . ti,k be trees such that ti,j ∈ L(Mqi,j) for all j ∈ {1, . . . , k} and
i ∈ {1, 2}. Such trees exist by Proposition 1 (i). It follows from Proposition 1 (ii)
that there exists a context C ∈ C(Σ) such that C[f(ti,1, . . . ti,k)] ∈ L for i ∈
{1, 2}. Because the transitions f(q1,1, . . . , q1,k) → q and f(q2,1, . . . , q2,k) → q are
distinct there exists a j ∈ {1, . . . , k} such that q1,j 	= q2,j . By Proposition 1 (iii)
this implies that t1,j 	= t2,j .

The tree t = C[f(t1,1, . . . , t1,j−1, t2,j , t1,j+1, . . . , t1,k)] must be in L by Propo-
sition 3, because L is deterministic top-down. Thus M must apply a transition
of the form f(q1,1, . . . , q1,j−1, q2,j , q1,j+1, . . . , q1,n) → p for some state p distinct
from q at the node v where f occurs.

The two corresponding subtrees t̂1 = t/v and t̂2 = t̂1[vj ← t2,j] rooted in v
are not syntactically equivalent, because M ’s states correspond to the equiva-
lence classes of the syntactic congruence. Thus there is some context C such that
C[t̂1] ∈ L but C[t̂2] 	∈ L. If there is no such context, then there is one such that
C[t̂1] 	∈ L but C[t̂2] ∈ L, because otherwise the two trees would be syntactically
equivalent; without loss of generality we treat only the former case.

Because L is a deterministic top-down tree language, by the exchange prop-
erty from Proposition 3 the tree C[t̂2] should be in L if C[t̂1] is, since one is
obtained from the other by exchanging t1,j for t2,j or the other way around,
while the context C remains equal. This shows that no context distinguishing
the trees t̂1 and t̂2 can exist, and thus p must actually be equal to q. Abso-
lutely symmetrically we can show that also f(q2,1, . . . , q1,j , . . . , q2,k) → q must
be present in M . The same argument applies to each one of the k positions in
the conflux, which proves the statement. ��

Lemma 5 provides us with a necessary condition for a language to be deter-
ministic top-down. We introduce the notion of violation for the case where the
conditions of the lemma are not met.

Definition 6. Let M be a minimal deterministic bottom-up tree automaton. If
there is a pair of transitions f(q1,1, . . . , q1,k) → q and f(q2,1, . . . , q2,k) → q in M
which constitute a conflux, but not all the transitions from the set

{f(qi1,1, . . . , qik,k) → q | i1, . . . , ik ∈ {1, 2}}

are also present in M , then we say that this conflux constitutes a violation.
The transitions that form part of violations, which read the same symbol

and result in the same state on the right-hand side form the corresponding
violating group. For such a transition f(q1,1, . . . , q1,k) → q its violating group is
{x(p1, . . . , pk) → p ∈ δ | x = f and p = q)}.

Deciding Top-Down Determinism of Regular Tree Languages 347

As the symbol, which is read, and the resulting state uniquely identify each
violating group, each transition of a violation belongs to exactly one group.

Now in the terminology of Definition 6 the statement of Proposition 5 says
that the MDBA for a deterministic top-down tree language cannot contain any
violation. Now we show that the absence of violations in the minimal automaton
necessarily means that the language is top-down deterministic.

Lemma 7. If the minimal deterministic bottom-up automaton M for a language
L contains no violation, then L is top-down deterministic.

Proof. If M does not contain any conflux, then its corresponding TA is determin-
istic and the statement holds. Otherwise we construct an equivalent automaton
without confluxes. The first step in this construction is the elimination of one
arbitrary conflux group.

So let the set {f(qi,1, . . . , qi,k) → q | i ∈ {1, . . . , �}} be the conflux group,
which we choose to eliminate, where � is the number of transitions in this group.
We construct a new automaton without this conflux group that recognizes the
same language.

– Its set of states is Q ∪ {pj | j ∈ {1, . . . , k}} with one new state for each
position on the left-hand sides of the transitions of the conflux.

– We remove all the transitions of the conflux group.
– Instead we add the single substitute transition f(p1, . . . , pk) → q.
– Then for every transition λ → qi,j that has one of the states qi,j on its right

hand side we add the transition λ → pj that has pj instead, while the left-
hand side is identical; we call these copies adapter transitions.

Let M ′ = (Q ∪ {pj | j ∈ {1, . . . , k}}, Σ,Qf , δ′) be the resulting automaton,
where δ′ is obtained from δ by removing the conflux transitions and adding the
substitution and adapter transitions as described. In what follows we will call
the components of M the original ones.

The idea behind this construction is the following: M ′ essentially does the
same runs as M . Only when M applies a transition of the eliminated conflux
group M ′ applies the substitute transition instead. In order to be able to do
this, M ′ must guess in the previous steps that instead of the original transitions
applied by M it should use the corresponding adapter transitions.

Claim 1. The tree automaton M ′ recognizes the same language as M .

The accepting runs of M and M ′ are in one-to-one correspondence. This is
proved in detail in the extended version available online [9].

We have seen how to eliminate one conflux group. Unfortunately, this elimi-
nation does not necessarily reduce the number of conflux groups. If the state q′,
which is on the right-hand side of all rules of a different conflux group, appears
as one of the qi,j in the eliminated conflux group, then a copy of the entire group
with q′ is made in the adapter transitions. Note that also the newly introduced
f(p1, . . . , pk) → q could be a transition with one of the qi,j on its right hand

348 P. Leupold and S. Maneth

side if this qi,j is equal to q, see also Example 9. In this case, however, the con-
flux group is not copied, because its transitions are removed before the adapter
transitions are introduced.

So the number of conflux groups can stay the same and even increase.
Nonetheless we start by removing all the original conflux groups in the way
described.

Claim 2. After all the original conflux groups are removed, further removals
always decrease the number of conflux groups.

New conflux groups can only be added in the step where the adapter transi-
tions are introduced, because the substitute transition obviously creates no new
conflux group. So all non-original conflux groups consist of adapter transitions
and thus do not have states from the original Q on their right-hand sides. But
these new states never occur on the left-hand side of any transition except their
corresponding substitute transitions, which cannot form part of any conflux.
Consequently they are never copied for new adapter transitions. Therefore only
original conflux groups can be copied and Claim 2 holds.

Summarizing, we do one elimination step for each original conflux group.
After this a number of copies of original conflux groups can have appeared.
During their elimination their number decreases by one in every step. Therefore
this process terminates and we obtain a bottom-up automaton, which does not
have any confluxes and is equivalent to the original MDBA. It is not deterministic
anymore, but now its corresponding TA is, because only confluxes result in
nondeterministic choices in the reversal. ��

We illustrate the construction in the proof of Lemma 7 with two examples.

Example 8. Consider the language

L = {f(a, f(a, b)), f(a, f(b, a)), f(a, f(a, a)), f(a, f(b, b))}.

It is deterministic top-down, but its MDBA contains a conflux, which is not a
violation. Its transitions are q0(a) → qa, q0(b) → qb, f(qa, qb) → q, f(qb, qa) → q,
f(qa, qa) → q, f(qb, qb) → q, and f(qa, q) → qf . The four transitions with q on
the right-hand side constitute a conflux but not a violation.

Applying the construction we introduce the new states p1 and p2. The four
transitions of the conflux are replaced by the substitute transition f(p1, p2) → q.
Further the adapter transitions q0(a) → p1, q0(b) → p1, q0(a) → p2, and q0(b) →
p2 are added. The resulting automaton has the same number of transitions and
two additional states. In this case qb could be deleted, because it can only be
read by the transitions of the conflux; in general original states do not become
obsolete as shown by qa. The recognized language is the same, but on leaves
labeled a there is the non-deterministic choice of going into state qa, p1, or p2,
similarly for leaves labeled by b. ��

Example 9. An interesting case for the construction in the proof of Lemma 7
is the occurrence of a state on both the left-hand and the right-hand side of a

Deciding Top-Down Determinism of Regular Tree Languages 349

transition of the conflux. Let f(q′, q) → q be such a transition. When it (along
with the other ones) is removed, it is replaced by f(p1, p2) → q. Then also
f(p1, p2) → p2 is added. If we did the latter step before adding f(p1, p2) → q,
then this recursiveness would be lost. So the order in which transitions are added
and removed is essential. ��

Together, Lemmas 7 and 5 provide us with a characterization of the deter-
ministic top-down tree languages.

Theorem 10. A regular tree language is top-down deterministic if and only if
its minimal deterministic bottom-up automaton contains no violations.

This provides us with a new method to decide whether a regular tree language
L given as a deterministic bottom-up automaton is top-down deterministic:

(i) Compute the minimal deterministic bottom-up tree automaton M for L.
(ii) Find all confluxes in M ’s set of transitions.
(iii) For each conflux check whether it constitutes a violation.

Step (i) can be computed in quadratic time. Carrasco et al. [2] showed in
detail how to minimize a deterministic bottom-up automaton within this time
bound. Minimization algorithms were already known early on, but their runtime
was not analyzed in detail [1,5].

Both Steps (ii) and (iii) are purely syntactical analyses of the set of transi-
tions. To optimize the runtime we can group the strings describing transitions
into classes T (qf) = {(q1, . . . , qk) | f(q1, . . . , qk) → q ∈ δ} for all states q and all
node labels f in linear time in the style of bucket sort. The different transitions
of a possible conflux group are all in the same class which, on the other hand,
is not longer than the total description of the automaton. Thus linearly many
transitions need to be compared in order to determine whether there is a conflux
and whether it constitutes a violation. Also this takes an amount of time at most
quadratic in the size of the input.

Theorem 11. For a regular tree language given as a DBA it is decidable in
quadratic time whether it is also deterministic top-down.

4 Finite Unions of Deterministic Top-Down Tree
Languages

In the preceding section we have provided a new characterization of the class
of top-down deterministic tree languages. One deficiency of this class is that it
is not closed under basic operations such as set-theoretic union. Moreover, even
simple finite languages such as {f(a, b), f(b, a)} are not included in this class.
To remedy these deficiencies, we consider finite unions of top-down deterministic
tree languages. They contain many common examples for non-top-down deter-
ministic tree languages, but still are characterized by deterministic top-down
tree automata. We denote this class by FU-DT .

350 P. Leupold and S. Maneth

In Sect. 3 we have seen that violations in the minimal deterministic bottom-
up automaton can be used to decide whether a language is deterministic top-
down. Among the automata with violations, some recognize languages that are
still in FU-DT while other ones recognize languages outside this class. We now
explore how an analysis of the occurring violations can be used to determine to
which one of the classes a given language belongs.

To this end we use a context-free grammar G(M) to analyze where and how
a given MDBA M uses the transitions of its violations. This violation grammar

– has M ’s state set plus a new start symbol S as its set of non-terminals.
– The terminals are [,] and one distinct violation symbol for each of the violating

groups of M .
– For every transition f(q1, . . . , qk) → q from a violating group ν we add the

production q → ν[q1 · · · qk];
– for all transitions that are not from any violating group we add the production

q → q1 · · · qk. Hence for initial states q0 there are rules q0 → ε.
– Finally, there is the transition S → [qf] for each final state qf of M .

For a run β of M we call its corresponding string θ(β) the terminal string that is
generated by G by using the productions corresponding to the transitions used
in β in the corresponding order. The violation tree of β is obtained from θ(β)
as follows: All brackets [] without any other non-terminals between them are
removed from θ(β). A root note is added and the bracket structure is seen as a
tree. For example, a string [η1[]η2[η1[]]] results in the tree ε(η1, η2(η1)). Nodes
with symbols of violations are called violation nodes.

Lemma 12. Let M be an MDBA and let n be the number of transitions that
form part of violations and are applied in the run β of M on a tree t. Then the
corresponding string θ(β) for this run has length 3n + 2.

Proof. The unique production for the start state adds two terminals, namely [
and]. The only other productions that generate terminals are the ones corre-
sponding to transitions that form part of violations. Each one adds three termi-
nals one of which is a violation symbol. ��

So the language L(G(M)) is finite if and only if there is some number n such
that every accepting run of M uses at most n times transitions that form part
of some violation.

Lemma 13. Let M be an MDBA. If M ’s violation grammar G(M) generates
an infinite language, then L is not in FU-DT .

Essentially, every violation symbol represents a choice that cannot be made in a
top-down deterministic way. All of these choices are pairwise independent in the
sense that for each one a new DTA is necessary. So if there is no bound on their
number, no finite union can be found. See [9] for more details. If the violation
grammar’s language is not infinite as in Lemma 13, then we can construct a
family of DTAs that demonstrate that the given language is in FU-DT .

Deciding Top-Down Determinism of Regular Tree Languages 351

Lemma 14. Let M be an MDBA. If M ’s violation grammar produces a finite
language, then L is a finite union of deterministic top-down tree languages.

Proof. We first treat the case where L(G(M)) is a singleton set. If the vio-
lation tree contains at most one violation node per group, then we decom-
pose the MDBA M as follows: for every possible combination of transitions
from the violating groups that contains exactly one transition from each group
we make one automaton that contains exclusively these transitions from the
respective violating groups. In addition it contains all the other transitions
that do not belong to any violating group. The total number of automata is∏

{|η| | η is a violating group in M}.

These automata do not contain violations any more, because all the existing
ones have been removed and no new transitions have been added. Thus their
corresponding TAs are deterministic top-down automata or can be transformed
as in the proof of Lemma 7 by eliminating all confluxes. Finally, let K be the
union of the languages of all the new automata. K ⊆ L, because every run in one
of the new automata can be done by exactly the same transitions in M ; on the
other hand, also for every run of M there is one new automaton that contains
all the transitions that are used, and thus L ⊆ K and consequently L = K. So
we have decomposed L into a union of deterministic top-down tree languages.

From the proof of Lemma 13 we can see that for every pair (L1, L2) of these
languages there is a pair of trees that show that L1 ∪ L2 can never be part of
a deterministic top-down subset of L. Thus there cannot be any decomposition
with fewer components.

We only sketch how to generalize this construction to several occurrences
of the same violating group in the string and then to L(G(M)) consisting of
several strings. If some violating group ν appears several times in the string s,
at each occurrence of ν a different transition from ν could be used in a run of
M . So instead of choosing one fixed transition from the group, we independently
choose one for each occurrence and with it its position in the tree; we index
the transition with the position of the occurrence in the violation tree. When
the new automaton applies one of these transitions, it remembers its position
and verifies it, while moving up in the input tree. Similarly, occurrences of ν in
distinct strings can be distinguished. See [9] for more details. ��

The number of automata introduced in the proof of Lemma 14 is exponential
in the number of nodes in the violation grammar’s output language. This might
seem bad at first sight; however, from the proof of Lemma 13 we can see that
for a single tree in the output language this number cannot be improved.

Theorem 15. For a regular tree language given as a DBA M it is decidable in
quadratic time whether or not it belongs to the class FU-DT .

Proof. We proceed as follows:

(i) Construct the minimal deterministic bottom-up automaton M ′ for L.
(ii) Detect all violations in M ′.

352 P. Leupold and S. Maneth

(iii) Construct the violation grammar for M ′.
(iv) Decide whether the grammar’s language is finite.

Steps (i) and (ii) are just as in the procedure following Theorem 10. The con-
struction of the violation grammar has been described above. Now the question
of Step (iv) is equivalent to our decision problem by Lemmas 13 and 14. For
this decision we first eliminate all deleting rules from the grammar, which can
be done in linear time [7]. With this reduced grammar the finiteness of the lan-
guage can be decided essentially by detecting cycles in the transition graph. This
can be done in time linear in the number of edges and nodes of the graph by
detecting the strongly connected components (SCC) [17]. If in any SCC a rule is
used that produces more than one non-terminal, then the grammar’s language
is infinite, otherwise it is not. Also this check and therefore the entire Step (iv)
can be done in linear time. See [9] for more details ��

Acknowledgment. We are grateful to Wim Martens, Helmut Seidl, Magnus Steinby,
and Martin Lange for pointing us to some of the literature.

References

1. Brainerd, W.S.: The minimalization of tree automata. Inf. Control 13(5), 484–491
(1968)

2. Carrasco, R.C., Daciuk, J., Forcada, M.L.: An implementation of deterministic
tree automata minimization. In: Holub, J., Ždárek, J. (eds.) CIAA 2007. LNCS,
vol. 4783, pp. 122–129. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-76336-9 13

3. Comon, H., et al.: Tree automata techniques and applications (2007). http://www.
grappa.univ-lille3.fr/tata. Accessed 12 October 2007

4. Cristau, J., Löding, C., Thomas, W.: Deterministic automata on unranked trees.
In: Lískiewicz, M., Reischuk, R. (eds.) FCT 2005. LNCS, vol. 3623, pp. 68–79.
Springer, Heidelberg (2005). https://doi.org/10.1007/11537311 7

5. Gécseg, F., Steinby, M.: Tree automata. Akadéniai Kiadó, Budapest (1984)
6. Gelade, W., Idziaszek, T., Martens, W., Neven, F., Paredaens, J.: Simplifying XML

schema: single-type approximations of regular tree languages. J. Comput. Syst. Sci.
79(6), 910–936 (2013)

7. Harrison, M.A., Yehudai, A.: Eliminating null rules in linear time. Comput. J.
24(2), 156–161 (1981)

8. Kozen, D.: On the Myhill-Nerode theorem theorem for trees. Bull. EATCS 47,
170–173 (1992)

9. Leupold, P., Maneth, S.: Deciding top-down determinism of regular tree languages.
ArXiv e-prints 2107.03174 (2021). https://arxiv.org/abs/2107.03174

10. Maneth, S., Seidl, H.: When is a bottom-up deterministic tree translation top-down
deterministic? In: ICALP, pp. 134:1–134:18 (2020)

11. Martens, W.: Static analysis of XML transformation and schema languages. Ph.D.
thesis, Hasselt University (2006)

12. Martens, W., Neven, F., Schwentick, T.: Deterministic top-down tree automata:
past, present, and future. In: Logic and Automata: History and Perspectives, pp.
505–530 (2008)

https://doi.org/10.1007/978-3-540-76336-9_13
https://doi.org/10.1007/978-3-540-76336-9_13
http://www.grappa.univ-lille3.fr/tata
http://www.grappa.univ-lille3.fr/tata
https://doi.org/10.1007/11537311_7
http://arxiv.org/abs/2107.03174
https://arxiv.org/abs/2107.03174

Deciding Top-Down Determinism of Regular Tree Languages 353

13. Martens, W., Neven, F., Schwentick, T., Bex, G.J.: Expressiveness and complexity
of XML schema. ACM Trans. Database Syst. 31(3), 770–813 (2006)

14. Myhill, J.: Finite automata and the representation of events. Technical report 57–
264, WADC (1957)

15. Nerode, A.: Linear automaton transformations. Proc. AMS 9, 541–544 (1958)
16. Nivat, M., Podelski, A.: Minimal ascending and descending tree automata. SIAM

J. Comput. 26(1), 39–58 (1997). https://doi.org/10.1137/S0097539789164078
17. Tarjan, R.E.: Depth-first search and linear graph algorithms. SIAM J. Comput.

1(2), 146–160 (1972)
18. Virágh, J.: Deterministic ascending tree automata I. Acta Cyb. 5(1), 33–42 (1980)

https://doi.org/10.1137/S0097539789164078

Propositional Gossip Protocols

Joseph Livesey and Dominik Wojtczak(B)

University of Liverpool, Liverpool, UK
{joseph.livesey,d.wojtczak}@liverpool.ac.uk

Abstract. Gossip protocols are programs that can be used by a group of
n agents to synchronise what they know. Namely, assuming each agent
holds a secret, the goal of a protocol is to reach a situation in which
all agents know all secrets. Distributed epistemic gossip protocols use
epistemic formulas in the component programs for the agents. In this
paper, we solve open problems regarding one of the simplest classes of
such gossip protocols: propositional gossip protocols, in which whether an
agent can make a call depends only on his currently known set of secrets.
Specifically, we show that all correct propositional gossip protocols, i.e.,
the ones that always terminate in a situation where all agents know
all secrets, require the underlying undirected communication graph to
be complete and at least 2n − 3 calls to be made. We also show that
checking correctness of a given propositional gossip protocol is a co-NP-
complete problem. Finally we report on implementing such a check with
model checker nuXmv.

1 Introduction

Gossip protocols have the goal of spreading information through a network via
point-to-point communications (which we refer to as calls). Each agent holds
initially a secret and the aim is to arrive at a situation in which all agents
know each other secrets. During each call the caller and callee exchange all
secrets that they know at that point. Such protocols were successfully used in a
number of domains, for instance communication networks [18], computation of
aggregate information [22], and data replication [24]. For a more recent account
see [21] and [23]. One of the early results established by a number of authors
in the seventies, e.g., [25], is that for n agents 2n − 4 calls are necessary and
sufficient when every agent can communicate with any other agent. When such
a communication graph is not complete, 2n − 3 calls may be needed [11] but
are sufficient for any connected communication graph [17]. However, all such
protocols considered in these papers were centralised.

In [10] a dynamic epistemic logic was introduced in which gossip protocols
could be expressed as formulas. These protocols rely on agents’ knowledge and
are distributed, so they are distributed epistemic gossip protocols. This also means
that they can be seen as special cases of knowledge-based programs introduced
in [15].

c© Springer Nature Switzerland AG 2021
E. Bampis and A. Pagourtzis (Eds.): FCT 2021, LNCS 12867, pp. 354–370, 2021.
https://doi.org/10.1007/978-3-030-86593-1_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86593-1_25&domain=pdf
http://orcid.org/0000-0001-5560-0546
https://doi.org/10.1007/978-3-030-86593-1_25

Propositional Gossip Protocols 355

In [2] a simpler modal logic was introduced that is sufficient to define these
protocols and to reason about their correctness. This logic is interesting in its
own rights and was subsequently studied in a number of papers. In this paper,
we are going to focus on its simplest propositional fragment.

Propositional gossip protocols are a particular type of epistemic gossip pro-
tocol in which all guards are propositional. This means that calls being made
by each agent are dependent only on the secrets that the agent have had access
to. Clearly, this can lead to states where multiple calls are possible at the same
time. Then a scheduler would decide which call takes priority. Throughout this
paper, we assume that the scheduler is demonic and it picks the order of calls in
a way such that the protocol fails or to maximise the number of calls made before
termination. In other words, we study these gossip protocols in their worst-case
scenario.

In [9], many challenging open problems about general as well as propositional
gossip protocols were listed. In the paper we manage to resolve some of them.
In particular, we solve its Problem 5, which asks for a characterisation of the
class of graphs for which propositional protocols exist. In Sect. 3 we show that,
when we ignore the direction of edges in the communication graph, the only
class possible is complete graphs. In order to show that we need to establish
many interesting properties of computations of such protocols. We also partially
resolve its Problem 6, which asks to show that a gossip protocol needs at least
2n − 3 calls to be correct. We prove this is indeed the case at least for the class
of propositional gossip protocols. Note that, unlike what was shown in [11], this
lower bound holds even if the communication graph is a complete graph. Finally,
we also partially address Problem 7, which asks for the precise computational
complexity of checking the correctness of such protocols. It is known that for
gossip protocols without nesting of modalities this problem is in coNPNP [4]. We
improve this to co-NP-completeness for propositional ones.

Related Work. Much work has been done on general epistemic gossip protocols.
The various types of calls used in [10] and [2] were presented in a uniform
framework in [3], where in total 18 types of communication were considered
and compared w.r.t. their epistemic strength. In [5], and its full version [8], the
decidability of the semantics of the gossiping logic and truth was established for
its limited fragment (namely, without nesting of modalities). Building upon these
results it was proved in [5] that the distributed gossip protocols, the guards of
which are defined in this logic, are implementable, that their partial correctness
is decidable, and in [7] that termination and two forms of fair termination of
these protocols are decidable, as well. Building on that, [29] showed decidability
of the full logic for various variants of the gossiping model. Further, in [4] the
computational complexity of this fragment was studied and in [6] an extension
with the common knowledge operator was considered and analogous decidability
results were established there.

Despite how simple this modal logic seems to be, there remain natural open
problems about it and the gossip protocols defined using it. These problems were
discussed at length in [9], where partial results were also presented that be build

356 J. Livesey and D. Wojtczak

upon in this paper. Some of these open problems were subsequently tackled in
[29], but propositional protocols were not studied there and questions regarding
them were left open.

Centralised gossip protocols were studied in [19] and [20]. These had the goal
to achieve higher-order shared knowledge. This was investigated further in [13],
where optimal protocols for various versions of such a generalised gossip problem
were given. These protocols depend on various parameters, such as the type of
the underlying graph or communication. Additionally, different gossip problems
which contained some negative goals, for example that certain agents must not
know certain secrets, were studied. Such problems were further studied in [14]
with temporal constraints, i.e., a given call has to (or can only) be made within
a given time interval.

The number of calls needed to reach the desired all expert situation in the
distributed but synchronous setting was studied in [26]. In the synchronous set-
ting, agents are notified if a call was made, but may not necessary know which
agents were involved. In this paper we study the more complex fully distributed
asynchronous setting, where agents are not aware of the calls they do not partic-
ipate in. In [27,28] the expected time of termination of several gossip protocols
for complete graphs was studied.

Dynamic distributed gossip protocols were studied in [30], in which the calls
allow the agents to transmit the links as well as share secrets. These protocols
were characterised in terms of the class of graphs for which they terminate.
Various dynamic gossip protocols were proposed and analysed in [31]. In [16]
these protocols were analysed by embedding them in a network programming
language NetKAT [1].

Structure of the Paper. We first introduce the logic, originally defined in [2],
and then move on to tackle some open problems for the propositional gossip
protocols. The first aim is to look at the communication graph required for the
existence of a correct propositional gossip protocol (Sect. 3) and then a lower
bound on the number of calls needed by such a protocol (Sect. 4). We then
move on to looking at the complexity of the natural decision problems for these
protocols (Sect. 5), before touching on some computational attempts to see how
quickly a computer can determine the correctness of a given propositional gossip
protocol. Due to the space limit some details of the proofs are omitted and will
be published in a journal version of this paper later.

2 Gossiping Logic

We recall here the framework of [2], which we restrict to the propositional setting.
We assume a fixed set A of n ≥ 3 agents and stipulate that each agent holds
exactly one secret , and that there exists a bijection between the set of agents
and the set of secrets. We denote by S the set of all secrets.

The propositional language Lp is defined by the following grammar:

φ ::= FaS | ¬φ | φ ∧ φ,

Propositional Gossip Protocols 357

where S ∈ S and a ∈ A. We will distinguish the following sublanguage La
p, where

a ∈ A is a fixed agents, which disallow all Fb operators for b �= a.
So FaS is an atomic formula, which we read as ‘agent a is familiar with the

secret S’. Note that in [2], a compound formula Kaφ, i.e., ‘agent a knows the
formula φ is true’, was used. Dropping Kaφ from the logic simplifies greatly
its semantics and the execution of a gossip protocol, while it is still capable
of describing a rich class of protocols. Below we shall freely use other Boolean
connectives that can be defined using ¬ and ∧ in a standard way. We shall use
the following formula

Expi ≡
∧

S∈S

FiS,

that denotes the fact that agent i is an expert , i.e., he is familiar with all the
secrets.

Each call , written as ab or a, b, concerns two different agents, the caller ,
a, and the callee , b. After the call the caller and the callee learn each others
secrets. Calls are denoted by c, d. Abusing notation we write a ∈ c to denote
that agent a is one of the two agents involved in the call c. We refer to any such
call an a-call (b-call for agent b, etc.).

In what follows we focus on call sequences. Unless explicitly stated each call
sequence is assumed to be finite. The empty sequence is denoted by ε. We use
c to denote a call sequence and C to denote the set of all finite call sequences.
Given call sequences c and d and a call c we denote by c.c the outcome of adding
c at the end of the sequence c and by c.d the outcome of appending the sequences
c and d. We say that c′ is an extension of a call sequence c if for some call
sequence d we have c′ = c.d.

To describe what secrets the agents are familiar with, we use the concept
of a gossip situation . It is a sequence s = (Qa)a∈A, where {A} ⊆ Qa ⊆ S for
each agent a. Intuitively, Qa is the set of secrets a is familiar with in the gossip
situation s. The initial gossip situation is the one in which each Qa equals
{A} and is denoted by root. It reflects the fact that initially each agent is familiar
only with his own secret. Note that an agent a is an expert in a gossip situation
s iff Qa = S.

Each call transforms the current gossip situation by modifying the sets of
secrets the agents involved in the call are familiar with as follows. Consider a
gossip situation s := (Qd)d∈A and a call ab.

Then
ab(s) := (Q′

d)d∈A,

where Q′
a = Q′

b = Qa ∪ Qb, and for c �∈ {a, b}, Q′
c = Qc.

So the effect of a call is that the caller and the callee share the secrets they
are familiar with.

The result of applying a call sequence to a gossip situation s is defined induc-
tively as follows:

ε(s) := s, (c.c)(s) := c(c(s)).

358 J. Livesey and D. Wojtczak

Example 1. We will use the following concise notation for gossip situations. Sets
of secrets will be written down as lists. e.g., the set {A,B,C} will be written as
ABC. Gossip situations will be written down as lists of lists of secrets separated
by a comma. e.g., if there are three agents, a, b and c, then root = A,B,C and
the gossip situation ({A,B}, {A,B}, {C}) will be written as AB,AB,C.

Let A = {a, b, c}. Consider the call sequence ac.cb.ac. It generates the follow-
ing successive gossip situations starting from root:

A,B,C
ac−→ AC,B,AC

cb−→ AC,ABC,ABC
ac−→ ABC,ABC,ABC.

Hence (ac.cb.ac)(root) = (ABC,ABC,ABC). �

Definition 2. Consider a call sequence c ∈ C. We define the satisfaction rela-
tion |= inductively as follows:

c |= FaS iff S ∈ c(root)a,
c |= ¬φ iff c �|= φ,

c |= φ1 ∧ φ2 iff c |= φ1 and c |= φ2.

So a formula FaS is true after the call sequence c whenever secret S belongs
to the set of secrets agent a is familiar with in the situation generated by the
call sequence c applied to the initial situation root. Hence c |= Expa iff agent a
is an expert in c(root).

By a propositional component program , in short a program , for an
agent a we mean a statement of the form

∗[[]mj=1 ψj → cj],

where m ≥ 0 and each ψj → cj is such that

– a is the caller in the call cj ,
– ψj ∈ La

p.

We call each such construct ψ → c a rule and refer in this context to ψ as
a guard .

Intuitively, ∗ denotes a repeated execution of the rules, one at a time, where
each time non-deterministically a rule is selected whose guard is true.

We assume that in each gossip protocol the agents are the nodes of a directed
graph (digraph) and that each call ab is allowed only if a → b is an edge in this
digraph. A minimal digraph that satisfies this assumption is uniquely determined
by the syntax of the protocol and we call this digraph the communication
graph of a given protocol. Given that the aim of each gossip protocol is that all
agents become experts it is natural to consider connected communication graphs
only. On the other hand, the underlying undirected communication graph
of a given protocol is the undirected graph we obtain when all directed edges
in the communication graph are replaced with undirected ones connecting the
same nodes.

Propositional Gossip Protocols 359

Consider a propositional gossip protocol, P , that is a parallel composition
of the propositional component programs ∗[[]ma

j=1 ψa
j → caj], one for each agent

a ∈ A.
The computation tree of P is a directed tree defined inductively as follows.

Its nodes are call sequences and its root is the empty call sequence ε. Further,
if c is a node and for some rule ψa

j → caj we have c |= ψa
j , then c.caj is a node

that is a direct descendant of c. Intuitively, the arc from c to c.caj records the
effect of the execution of the rule ψa

j → caj performed after the call sequence c
took place.

By a computation of a gossip protocol P we mean a maximal rooted path
in its computation tree. In what follows we identify each computation with the
unique call sequence it generates. Any prefix of such a call sequence is called a
prefix of P . We say that the gossip protocol P is partially correct if for all
leaves c of the computation tree of P , and all agents a, we have c |= Expa, i.e.,
if each agent is an expert in the gossip situation c(root).

We say furthermore that P terminates if all its computations are finite and
say that P is correct if it is partially correct and terminates.

In [10] the following correct propositional gossip protocol, called Learn New
Secrets (LNS in short), for complete digraphs was proposed.

Example 3 (LNS protocol). The following program is used by agent i:

∗[[]j∈A¬FiJ → ij].

Informally, agent i calls agent j if agent i is not familiar with j’s secret. �

We now define a new propositional protocol whose communication graph is
not complete. First of all, agents will only be able to call agents with a higher
“index”, which for instance can be his phone number or name, with the corre-
sponding total order (>) on A. Second, just like in the LNS protocol, agents can
only call another agent if they do not know their secret. Finally, we require that
an agent can make a call to another agent only if he already knows all the secrets
of agents with the index value lower than the agent to be called. We will call
this protocol Learn Next Secret (LXS) and its formal definition is as follows.

Example 4 (LXS protocol). The following program is used by agent i:

∗[[]{j∈A|j>i}¬FiJ ∧
∧

{k∈A|k<j}
FiK → ij].

�

Note that although the communication graph of LXS protocol is not com-
plete, its underlying undirected communication graph is, which we show is always
the case for correct propositional protocols in the next section.

360 J. Livesey and D. Wojtczak

3 Required Communication Graph

We now show that for natural classes of connected graphs no correct proposi-
tional gossip protocol exists. We first show that by carefully removing some of
the calls in a prefix of P one can get another prefix of P .

Lemma 5 (Call Removal). Consider a propositional gossip protocol P . Let
c.d be a prefix of P such that c.d �|= FaB. Let d′ be d where all calls that
involve an agent familiar with B are removed, then c.d′ is also a prefix of P
and, moreover, (c.d)(root)a = (c.d′)(root)a.

Proof. It suffices to show that we can remove the last such call in d, because
that clearly preserves the c.d′ �|= FaB property and then we can simply repeat
this procedure until no such calls are left in d.

Let d = d1.cd.c1.c2 . . . ck, where cd is the last call that involves an agent that
is familiar with B, i.e., c.d1 |= FcB ∨ FdB. Straight from the definition of the
outcome of the cd call, for all agents x �∈ {c, d}, c.d1(root)x = (c.d1.cd)(root)x. At
the same time, agents c, d cannot be involved in any of the calls c1, . . . , ck. There-
fore, we also have for all agents x �∈ {c, d}, (c.d1.c1)(root)x = (c.d1.cd.c1)(root)x,
and by induction (c.d1.c1 . . . ci)(root)x = (c.d1.cd.c1 . . . ci)(root)x for all i ≤ k.
Note that a �∈ {c, d}, because c.d �|= FaB, so (c.d)(root)a = (c.d′)(root)a holds
as desired.

Now consider the guard φi associated with the call ci where i ≤ k. By
assumption on P , φi is a propositional formula built out of the atomic formulas
of the form FxS where x �∈ {c, d} is the agent making the call ci. We already
showed that (c.d1.c1 . . . ci−1)(root)x = (c.d1.cd.c1 . . . ci−1)(root)x, so the truth
of these atomic formulas is not affected by the removal of the call cd from d.
This shows that we have c.d1.cd.c1 . . . ci−1 |= φi iff c.d1.c1 . . . ci−1 |= φi and so
ci can also be made by the protocol P after c.d1.c1 . . . ci−1. �

We establish now what the correctness of a propositional protocol implies for
the order of calls.

Lemma 6 (Initiation). Consider any call sequence c which is a prefix of a
computation of a correct propositional gossip protocol P such that c |= FaB.
There does not exist a call sequence d such that c.d.ab is a prefix of P . (In other
words, agent a will never call agent b if agent a already knows B).

Proof. Suppose such a call sequence d exists. If c.d(root)b ⊆ c.d(root)a, then
we have c.d(root)a = c.d.ab(root)a and so the guard φ of the call ab is still
true after ab is made. As a result, ab could be repeated indefinitely after c.d; a
contradiction with the assumption that P is terminating.

Otherwise, there exists a secret, X, such that c.d |= FbX ∧¬FaX before the
call ab takes place. Let us now remove all calls from c.d that involve agents that
are familiar with the secret X, which results in a call sequence c′.d′. Lemma 5
then implies that c′.d′ is also a prefix of P and c.d(root)a = c′.d′(root)a, so the
call ab can still be made after c′.d′. At the same time, c′.d′(root)b � c.d(root)b,

Propositional Gossip Protocols 361

because agent b is no longer familiar with secret X and possibly other secrets as
well.

If there is still a secret Y left such that c′.d′ |= FbY ∧ ¬FaY then we again
remove all calls from c′.d′ that involve agents that are familiar with the secret Y ,
which results in a call sequence c′′.d′′. We keep repeating this process until we
reach a call sequence c∗.d∗ such that c∗.d∗(root)b ⊆ c∗.d∗(root)a and c∗.d∗.ab is
a prefix of P , because c.d(root)a = c∗.d∗(root)a. Just like before, we arrive to a
contradiction, because the call ab can now be repeated indefinitely. �

Already these two lemmas allow us to show non-existence of a correct propo-
sitional gossip protocol for a wide range of natural communication graph classes.
The first graph class that we consider is the star graph, i.e., when communica-
tion is only possible via a single central agent. This was already shown in [9],
however our proof is much more simplistic.

Theorem 7. Suppose that the underlying undirected communication graph
forms a star graph with at least 3 agents. No correct propositional protocol exists.

Proof. Suppose such a protocol P exists. From Lemma 6 each agent, apart from
the central agent, is involved in at most one call, as otherwise the protocol will
not be correct. Therefore, the non-central agent involved in the first call will not
have any further calls, and so will never become an expert. �

We now proceed to show that no correct propositional protocol exists when
the underlying undirected communication graph is not complete. Note that if
there are only two agents then this statement is trivial. In the case of three
agents, a undirected connected graph with a missing link is a star graph so the
statement follows from Theorem 7. The proof of this statement in the general
case is quite complex, so we break it down into several lemmas. In all these
lemmas, we make the assumption that a correct protocol P exists where there
is no link between two agents denoted by a and b. Theorem 11 will later show
how this assumption leads to a contradiction.

Lemma 8. There exists a computation of P such that agent b learns A by receiv-
ing a call from another agent.

Proof. We prove this by contradiction and so assume instead that in all compu-
tations agent b learns A by calling another agent.

Let us pick a computation where b knows the greatest number of secrets
before learning A. In other words, if c.bc is a prefix of P where b learns A during
the call bc, we require the size of c(root)b to be the largest possible. This is
well-defined as this value is an integer between 1 and |A| and agent b has learn
to A in every computation as P is correct.

We know that c |= ¬FbC, because otherwise bc would not be possible due
to Lemma 6. We can then remove all calls of agents familiar with C in c and
obtain c′. Due to Lemma 5, c′.bc is still a prefix of P . Note that c does not know
A (nor any other secret apart from his own for that matter) after c′, because all
his calls were removed. At the same time we know that c(root)b = c′(root)b. If P

362 J. Livesey and D. Wojtczak

is indeed correct, then it has to be possible to extend c′.bc to a prefix c′.bc.d.bd
of P , for some d and d, such that b finally learns A during bd. (Note that due
to our original assumption, it cannot be db.) But then c(root)b is smaller than
c′.bc.d(root)b, because the latter includes at least one more secret (namely C);
this is a contradiction with the pick of the prefix c.bc of P as the one where b
knows the most number of secrets before learning A. �
Lemma 9. For any call sequence c without a-calls and any agent c ∈ A\{a, b},
if c.ca is a prefix of P such that c |= FcB (i.e., a learns B from c), then c.d.bc
is also a prefix of P for some call sequence d.

Proof. Let us pick any prefix of P c.ca where c is without a-calls, such that
c |= FcB. Note that after c.ca, all agents that know A (agents a and c, only)
also know B. As in every call all secrets are exchanged, any extension of c.ca
would also have this property.

Due to Lemma 6, no agent that knows A would call b after c.ca, because he
already knows B. Moreover, b will never call a (missing link) and let us assume
she does not call c either. Then, as b must learn A eventually, she must call a
different agent. From here the proof follows similarly as in Lemma 8, but with
an initial call sequence c.ca.

Let us pick a computation that starts with c.ca where b knows the greatest
number of secrets before learning A. In other words, if c.ca.d.bd is a prefix of P
where b learns A during the call bd for some d ∈ A\{a, b, c}, we require the size
of (c.ca.d)(root)b to be the largest possible. This is well-defined as this value is
an integer between 1 and |A|.

We know that c.ca.d |= ¬FbD, because otherwise bd would not be possible
due to Lemma 6. We can then remove all calls of agents familiar with D in d
and obtain d′. Due to Lemma 5, c.ca.d(root)b = c.ca.d′(root)b, so c.ca.d′.bd is
also a prefix of P .

Note that d does not know A after c.ca.d′, because c and d′ have no calls
involving agents familiar with A. Hence c.ca.d′.bd |= ¬FbA. So if P is indeed
correct, then it has to be possible to extend c.ca.d′ to a prefix c.ca.d′.bd.e.be
of P , for some call sequence e and agent e, such that b finally learns A during
be. (Note that it cannot be eb, because no agent familiar with A would call b
after c.ca.) But then c.ca.d(root)b is smaller than c.ca.d′.bd.e(root)b, because the
latter includes at least one more secret (namely D); this is a contradiction with
the pick of the prefix c.ca.d.bd of P as the one where b knows the most number
of secrets before learning A. In conclusion, it must be possible for b to call c after
c.ca.

We have shown so far that c.ca.d.bc has to be a prefix of P for some call
sequence d. Note that c.ca.d �|= FbC due to Lemma 6. We can then remove all
calls of agents familiar with C from the suffix ca.d of c.ca.d, to obtain c.d′. Then
due to Lemma 5, c.d′.bc is also a prefix of P . �

Propositional Gossip Protocols 363

Using very similar techniques we can show the following.

Lemma 10. For any call sequence c without a-calls and any agent c ∈ A\{a, b},
if c.ca is a prefix of P such that c |= FcB, and d is the last agent in a call with
c before call ca takes place, then c.ca.d.da is also a prefix of P for some d.

We now have all the ingredients needed to prove the main result of this
section.

Theorem 11. Suppose that the underlying undirected communication graph is
not complete. No correct propositional protocol exists.

Proof. Suppose such a correct propositional protocol P exists and there are two
agents, say a and b, which cannot call each other.

From Lemma 8 there exists an agent c ∈ A\{a, b} and a prefix c.ca of P such
that c |= FcB. We know that c, �|= FcA, because otherwise ca would not be
possible due to Lemma 6. We can then remove all calls of agents familiar with
A in c and obtain c′. Due to Lemma 5, c(root)c = c′(root)c, so c′.ca is also a
prefix of P , with a not yet having been in a call until ca takes place.

Since c′.ca is a prefix of P where c′ has no a-calls and c′ |= FcB then from
Lemma 9 we get that c′.d.bc is also a prefix of P for some d. Therefore, c′ cannot
have bc nor cb call due to Lemma 6.

Note that there has to be at least one c-call in c′, because c′ |= FcB. We
already excluded bc and cb. It cannot be ac nor ca either as ca takes place after
c′. Therefore, the last agent to be in a c-call in c′ is some d ∈ A\{a, b, c}. From
Lemma 10 we get that c′.ca.e.da must also be a prefix of P for some e. Note that
also c′ |= FdB, because when the call between d and c takes place, c already
has to know B.

We know that c′.ca.e |= ¬FdA, because otherwise da would not be possible
due to Lemma 6. We can then remove all calls of agents familiar with A in e
and obtain e′. Due to Lemma 5, c′.ca.e(root)d = c′.ca.e′(root)d, so c′.ca.e′.da is
also a prefix of P . As e has had all calls to agents familiar with A removed, e′

contains no c-calls. Hence, c′(root)c = c′.e′(root)c, and so c′.e′.ca is also a prefix
of P . (As e′ contains no call to or from agents familiar with A, e′ can now occur
before ca, because none of the calls can involve c or a.) As ca does not change
the set of secrets known by d, and da does not change the set of secrets known
by c, we get that both c′.e′.ca.da and c′.e′.da.ca are also prefixes of P .

As c′.e′.ca is prefix of P , c′.e′ does not have any a-calls and c′.e′ |= FcB
then from Lemma 9 we get that c′.e′.f.bc is also a prefix of P for some f.

We know that c′.e′.f |= ¬FbC, because otherwise bc would not be possible
due to Lemma 6. We can then remove all calls of agents familiar with C in f and
obtain f ′. Due to Lemma 5, c′.e′.f(root)b = c′.e′.f ′(root)b, so c′.e′.f ′.bc is also a
prefix of P .

Note that c′.e′.f ′.bc(root)d = c′.e′(root)d, because all calls of agents familiar
with C were removed from f ′ and d is familiar with C already after c′. Hence,
c′.e′.f ′.bc.da is also a prefix of P , because da can take place immediately after c′.e′.

Now due to Lemma 9 we get that c′.e′.f ′.bc.da.g.bd is also a prefix of P ,
because c′.e′.f ′.bc does not have any a-calls and c′.e′.f ′.bc |= FdB, because

364 J. Livesey and D. Wojtczak

c′ |= FdB. We now get a contradiction with Lemma 6, because in this prefix b
calls d even though b already knows D after the bc call in c′.e′.f ′.bc.da.g.bd. �

4 Minimal Number of Calls

In this section we establish a lower bound on the number of calls needed for a
propositional protocol to terminate in a state were all agents are experts. First,
we start with one very useful observation.

Lemma 12 (Conversation). For a protocol on n agents to correctly terminate
in m calls, every agent must be involved in a call after at most m − n + 2 calls.
Furthermore, after m−n+p calls, each secret must be known by at least p agents.

Proof. For an agent a and its secret A, each call can increase the number of
agents that know A by at most 1. If a has not yet been involved in any calls,
then the only agent which knows A is a. If after m − n + 2 calls, a has not yet
been involved in a call, then a is the only agent which knows A. However, only
n − 2 calls remain for n − 1 agents to learn A, which is impossible.

Similarly, if after m−n+p calls, fewer than p know A, then n−p calls remain
for at least n − p + 1 agents to learn A. Again this is impossible as at most 1
agent can learn A in each call. �

We are now ready to partially resolve Problem 6 from [9] for the special case
of propositional protocols.

Theorem 13. No correct proposition protocol on n agents exists with fewer than
2n − 3 calls.

Proof. Let us assume a correct propositional protocol P exists which always
terminates after at most 2n − 4 calls.

First, Lemma 5 in [9] shows that every gossip protocol has a computation
that starts with the same agent being involved in its first two calls. By relabelling
the names of the agents, we can assume that we have a call between a and b,
followed by a call between b and c. W.l.o.g., we can assume that these two calls
are ab.bc, because the resulting gossip situation is always (AB,ABC,ABC) for
a, b, c, respectively, and all other agents know just their own secret.

We claim that there must be a prefix of P of the form ab.bc.c.ac where c does
not involve agents familiar with C. First of all, a has to learn C eventually. From
Lemma 6, we know that after ab.bc agent c will not call a, because he already
knows A. Furthermore, due to Lemma 6, no agent that will learn C later will
initiate a call with a, because he will learn A at the same time as C. So the only
option left is that a learns C by calling another agent. Let ab.bc.d.ad be such a
prefix of P where a learns C from d. Clearly d cannot be b due to Lemma 6 and if
d is c we are done. Thanks to Lemma 5 we can remove all calls in d that involve
agents familiar with C and get a new prefix ab.bc.d′.ad of P after which a still
does not know C. Therefore, there has to be an extension ab.bc.d′.ad.e.ae of this
prefix after which a learns C. If e is c we are done. Otherwise, we again remove

Propositional Gossip Protocols 365

all calls in e that involve agents familiar with C. We continue this process until
finally a calls c. This has to happen eventually, because a can call each agent at
most once and a has to learn C at some point.

Now, consider any prefix ab.bc.c.ac of P where c does not involve agents
familiar with C, or any agents familiar with a secret which a is not familiar with
after ac. This can be done by repeated use of Lemma 5 on c as necessary.

The length of c can be between 0 and n−4, by Lemma 12. If more calls were
in c then after n − 1 calls only two agents would know C, leaving at most n − 3
calls for n − 2 agents to learn C. This implies not every agent can be involved
in c.

Let the number of calls in c be p. At most p agents (not including a) can be
involved in c. Hence, after ac, at most p + 3 agents have been involved in a call,
after p+3 calls. This leaves n− p− 5 calls for all remaining agents to have been
involved in a call, with at least n − p − 3 agents still to have a call.

From here, if we take every call either directly from or directly to this con-
nected component which we shall now refer to a CC. These calls must be made
and be available without any calls between two agents not in CC. Hence, at most
1 extra agent can be involved in a call for each of these call. Therefore, we can
say that after q + 3 calls, we have n − q − 5 calls remaining before all must have
been in a call with at least n − q − 3 agents still to have a call. We shall now
refer to all agents yet to be in a call when there are no calls left directly to or
from CC as NCC. The next call then must be between two NCC agents (if any
such agents exist).

If NCC is empty, then either the last agent called was called after n calls and
hence we are done by Lemma 12, or ac was the final call, in which case after n
calls only three agents know C after n calls, and we are also done by Lemma 12.

Assume then that NCC is non-empty. We know that the next call cannot be
directly involved with CC, hence the call must be between two agents in NCC,
say a′ and b′. If a′ or b′ can now make a call to CC, then we have added 2
agents and their secrets to CC, whilst having 2 extra calls, so we are in the same
situation and can repeat. If we ever end up with 2 or fewer agents in NCC then
by Lemma 12 this can no longer be completed in 2n − 4 calls, as at least n − 2
calls will have now taken place.

Again, due to Lemma 5 in [9] it must be possible for the next two calls
between agents in NCC to involve the same agent (denoted by b̄). If this was
not the case then the protocol would either terminate, or these agents would be
communicating with CC, as NCC is initially totally disconnected. Let ā and c̄ be
the other agents involved. By relabelling the names of the agents, we can assume
that these two calls are āb̄.b̄c̄. We now repeat the process as for CC, noting that
ā must call c̄ eventually. This includes another r calls involving at most r agents
and their secrets. By repeating this argument we get the desired result. �

We can even strengthen our lower bound further in the case of 4 agents.

Theorem 14. No correct proposition protocol for 4 agents exists with fewer than
6 calls.

366 J. Livesey and D. Wojtczak

5 Decision Problems for Propositional Protocols

We now move on to analysing the computation complexity of important decision
problems for propositional gossip protocols such as checking termination, partial
correctness and correctness. We say a protocol terminates if all computations are
finite, i.e., there is no way for the scheduler to force the protocol to make an
infinite number of calls. We first establish the necessary and sufficient condition
for a propositional protocol to terminate.

Lemma 15. A protocol will not terminate if and only if a call is made without
the caller gaining new information within the first |A|2 calls.

Proof. (⇐) Consider a propositional gossip protocol P . Let c.ab be a prefix
of P such that c(root)a = c.ab(root)a. Hence there exists a rule ψ → ab for
agent a such that c |= ψ. But we clearly have then c.ab |= ψ, because ψ
only depends on the secrets agent a knows and they do not change after ab is
made. Therefore, call ab can be performed again after c.ab. It is easy to see that
c(root)a = c.(ab)k(root)a and that c.(ab)k is a prefix of P for any k, so P may
not terminate.

(⇒) Consider any infinite computation c of P . Along this computation, the
current gossip situation can change at most |A|2 times, because each agent can
be familiar with at most A secrets. So within the first |A|2 calls of c there has to
be a call after which the caller does not learn any new secrets. �

As we will see, the previous lemma suffices to establish that all the decision
problems studied in this section are in co-NP. To show them to be co-NP-hard, we
show three different but similar reductions from the well-known 3-SAT problem.

Theorem 16. The problem of checking if a given propositional gossip protocol
P terminates is co-NP-complete.

Proof (sketch). First, we show the problem to be in co-NP. Due to Lemma 15,
to show non-termination, it suffices to guess a call sequence c of length |A|2 and
a rule ψ → ab of P such that c |= ψ and c(root)a = c.ab(root)a. All of that is
of polynomial size and can be checked in polynomial time.

To show the problem is co-NP-hard we will create a polynomial time reduc-
tion from the 3-SAT problem, such that termination’s NO instances match with
3-SAT’s YES instances. The basic idea of this is to have an agent which will
become an expert iff the original problem is satisfiable. Once this agent becomes
an expert, the scheduler can make that call indefinitely.

One final agent, f , is created. Three agents are created for each variable,
one for true (true agent), one for false (false agent), and one to decide the
truth assignment to this variable (trigger agent). One agent is created for each
variable for each clause, to pass on information for the option above not chosen
to the final agent (loser agents). One agent is created for each variable for each
clause, to pass on information for the option above chosen to relevant clauses
(winner agents). One agent is created for each variable for each clause, to pass

Propositional Gossip Protocols 367

on information for the option chosen to the final agent (pass agents). One agent
is created for each clause.

The protocol is now set up in such a way that the scheduler has very few
options, and each agent has very few calls. For each trigger agent, t, while this
agent only knows its own secret T , t wants to call agent tv (variable true) or
agent tf (variable false) and the scheduler will choose which. This is essentially
the same as determining if the variable is true or false. Whichever is called first,
we will take the opposite. Whichever is called first will know only its only secret,
and T . At this stage the agent knows it has lost, as it does not know its negation’s
secret. It still calls the same agents as if it has won, however, these become losers
agents when they realise they do not know the extra secret. These now call f
and terminate.

t now makes a second call to the winner, and terminates. The winner now
knows secrets TV and F . It calls the winner agents in turn. Firstly, these agents
call its unique pass agent, which then passes the secrets on to f . This is to
ensure that f can become an expert even if a variable is not used to satisfy
any clauses. There is one winner agent for every clause. A call is made to the
particular clause agent if it will satisfy the clause. This would be easy to do in
the set up, as we know what is needed to satisfy each clause. Once a clause is
satisfied, it will initiate a call with f . This call is only made once. If we assume
the scheduler wants the protocol to not terminate, we just need 3 functions,
one for each variable (and accompanying secrets), however, as there are only
7 permutations, we can include all of these to ensure the clause calls f in any
circumstance.

Now, f will learn all secrets, apart from clause secrets in any scenario, but
will only learn a clause secret if that clause is satisfied. Therefore, f becomes an
expert iff all clauses are satisfied. f only makes a call if it becomes an expert,
and trivially once this call is made the protocol will never terminate, as it can be
repeated indefinitely. It is easy to see that this whole construction can be done
in polynomial time and size. �

Using similar techniques we can show the other two problems are co-NP-
complete.

Theorem 17. The problem of checking if a given propositional gossip protocol
P is partially correct is co-NP-complete.

Theorem 18. The problem of checking if a given propositional gossip protocol
P is correct is co-NP-complete.

Experimental Evaluation. With the knowledge that the correctness check
for a propositional gossip protocol is co-NP-complete, we ran experiments using
nuXmv [12] in order to see for how many agents a computer can solve this
problem in a reasonable amount of time. The experiments were run on an OMEN
by HP Laptop PC - 15-ax000na (ENERGY STAR), with Intel R© CoreTM i5-
6300HQ (2.3 GHz, up to 3.2 GHz, 6 MB cache, 4 cores) microprocessor and 8
GB DDR4-2133 SDRAM (2 × 4 GB) memory.

368 J. Livesey and D. Wojtczak

Experiments were carried out on LNS protocol, which would return a positive
result, and LNS with a single link missing between two agents, which would
return a negative result. We simulate the behaviour of the LNS gossip protocol
with several optimization as nuXmv processes.

For the correct LNS protocol on 3 and 4 agents the results were almost
instant, however on 5 agents results took 4 min, rising to over an hour and a
half by 6 agents. At the same time, running the program on the incorrect LNS
(when one edge was removed) on 6 agents gave a result in 9 min. This suggests
that on large protocols simply running a model checker on the direct encoding
of the gossip protocol is not a practical algorithm for checking its correctness.

6 Conclusions

In this paper we solved several open problems about propositional gossip prob-
lems proposed in [9], but many interesting questions remain open. One is to
further increase the lower bound on the minimal number of calls needed by a cor-
rect propositional protocol. No linear upper bound is known at the moment (the
2n − 3 upper bound from [9] applies to general gossip protocols only). Another
is to study simulation and bisimulation between such protocols as proposed in
[9]. Finally, finding a practical correctness checking algorithm for propositional
protocols would be a challenge as we established its co-NP-hardness.

Acknowledgments. We would like to thank the anonymous reviewers whose com-
ments helped to improve this paper. The first author was supported by EPSRC NPIF
PhD studentship. The second author was supported by EPSRC grant EP/P020909/1.

References

1. Anderson, C.J., et al.: NetKAT: semantic foundations for networks. In: The 41st
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL 2014, pp. 113–126. ACM (2014)

2. Apt, K.R., Grossi, D., van der Hoek, W.: Epistemic protocols for distributed gossip-
ing. In: Proceedings of the 15th Conference on Theoretical Aspects of Rationality
and Knowledge (TARK 2015). EPTCS, vol. 215, pp. 51–66 (2016)

3. Apt, K.R., Grossi, D., van der Hoek, W.: When are two gossips the same? In:
Barthe, G., Sutcliffe, G., Veanes, M. (eds.) LPAR-22. 22nd International Confer-
ence on Logic for Programming, Artificial Intelligence and Reasoning. EPiC Series
in Computing, vol. 57, pp. 36–55. EasyChair (2018)

4. Apt, K.R., Kopczyński, E., Wojtczak, D.: On the computational complexity of gos-
sip protocols. In: Proceedings of the Twenty-Sixth International Joint Conference
on Artificial Intelligence, IJCAI 2017, pp. 765–771 (2017)

5. Apt, K.R., Wojtczak, D.: On decidability of a logic of gossips. In: Michael, L.,
Kakas, A. (eds.) JELIA 2016. LNCS (LNAI), vol. 10021, pp. 18–33. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-48758-8 2

6. Apt, K.R., Wojtczak, D.: Common knowledge in a logic of gossips. In: Proceed-
ings of the 16th Conference on Theoretical Aspects of Rationality and Knowledge
(TARK 2017). EPTCS, vol. 251, pp. 10–27 (2017)

https://doi.org/10.1007/978-3-319-48758-8_2

Propositional Gossip Protocols 369

7. Apt, K.R., Wojtczak, D.: Decidability of fair termination of gossip protocols. In:
Proceedings of the 21st International Conference on Logic for Programming, Arti-
ficial Intelligence and Reasoning (LPAR 21). Kalpa Publications in Computing,
vol. 1, pp. 73–85 (2017)

8. Apt, K.R., Wojtczak, D.: Verification of distributed epistemic gossip protocols. J.
Artif. Intell. Res. (JAIR) 62, 101–132 (2018)

9. Apt, K.R., Wojtczak, D.: Open problems in a logic of gossips. In: Proceedings Sev-
enteenth Conference on Theoretical Aspects of Rationality and Knowledge (TARK
2019). EPTCS, vol. 297, pp. 1–18 (2019)

10. Attamah, M., Van Ditmarsch, H., Grossi, D., van der Hoek, W.: Knowledge and
gossip. In: Proceedings of ECAI 2014, pp. 21–26. IOS Press (2014)

11. Bumby, R.T.: A problem with telephones. SIAM J. Algebraic Discrete Methods
2(1), 13–18 (1981)

12. Cavada, R., et al.: The nuXmv symbolic model checker. In: Biere, A., Bloem, R.
(eds.) CAV 2014. LNCS, vol. 8559, pp. 334–342. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-08867-9 22

13. Cooper, M.C., Herzig, A., Maffre, F., Maris, F., Régnier, P.: Simple epistemic plan-
ning: generalised gossiping. In: Proceedings of ECAI 2016. Frontiers in Artificial
Intelligence and Applications, vol. 285, pp. 1563–1564. IOS Press (2016)

14. Cooper, M.C., Herzig, A., Maris, F., Vianey, J.: Temporal epistemic gossip prob-
lems. In: Slavkovik, M. (ed.) EUMAS 2018. LNCS (LNAI), vol. 11450, pp. 1–14.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14174-5 1

15. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Knowledge-based programs. Dis-
trib. Comput. 10(4), 199–225 (1997)

16. Gattinger, M., Wagemaker, J.: Towards an analysis of dynamic gossip in Netkat.
In: Desharnais, J., Guttmann, W., Joosten, S. (eds.) RAMiCS 2018. LNCS, vol.
11194, pp. 280–297. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
02149-8 17

17. Harary, F., Schwenk, A.J.: The communication problem on graphs and digraphs
(1974)

18. Hedetniemi, S.M., Hedetniemi, S.T., Liestman, A.L.: A survey of gossiping and
broadcasting in communication networks. Networks 18(4), 319–349 (1988)

19. Herzig, A., Maffre, F.: How to share knowledge by gossiping. In: Rovatsos, M.,
Vouros, G., Julian, V. (eds.) EUMAS/AT -2015. LNCS (LNAI), vol. 9571, pp.
249–263. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-33509-4 20

20. Herzig, A., Maffre, F.: How to share knowledge by gossiping. AI Commun. 30(1),
1–17 (2017)

21. Hromkovič, J., Klasing, R., Pelc, A., Ruzicka, P., Unger, W.: Dissemination of
Information in Communication Networks - Broadcasting, Gossiping, Leader Elec-
tion, and Fault-Tolerance. Texts in Theoretical Computer Science. An EATCS
Series, Springer, Heidelbergt (2005). https://doi.org/10.1007/b137871

22. Kempe, D., Dobra, A., Gehrke, J.: Gossip-based computation of aggregate infor-
mation. In: Proceedings of the 44th Annual IEEE Symposium on Foundations of
Computer Science, FOCS 2003, pp. 482–491. IEEE (2003)

23. Kermarrec, A., van Steen, M.: Gossiping in distributed systems. Oper. Syst. Rev.
41(5), 2–7 (2007)

24. Ladin, R., Liskov, B., Shrira, L., Ghemawat, S.: Providing high availability using
lazy replication. ACM Trans. Comput. Syst. (TOCS) 10(4), 360–391 (1992)

25. Tijdeman, R.: On a telephone problem. Nieuw Arch. voor Wiskunde 3(XIX), 188–
192 (1971)

https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1007/978-3-030-14174-5_1
https://doi.org/10.1007/978-3-030-02149-8_17
https://doi.org/10.1007/978-3-030-02149-8_17
https://doi.org/10.1007/978-3-319-33509-4_20
https://doi.org/10.1007/b137871

370 J. Livesey and D. Wojtczak

26. van Ditmarsch, H., Grossi, D., Herzig, A., van der Hoek, W., Kuijer, L.B.: Parame-
ters for epistemic gossip problems. In: Proceedings of the 12th Conference on Logic
and the Foundations of Game and Decision Theory (LOFT 2016) (2016)

27. van Ditmarsch, H., Kokkinis, I.: The expected duration of sequential gossiping.
In: Belardinelli, F., Argente, E. (eds.) EUMAS/AT -2017. LNCS (LNAI), vol.
10767, pp. 131–146. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
01713-2 10

28. van Ditmarsch, H., Kokkinis, I., Stockmarr, A.: Reachability and expectation in
gossiping. In: An, B., Bazzan, A., Leite, J., Villata, S., van der Torre, L. (eds.)
PRIMA 2017. LNCS (LNAI), vol. 10621, pp. 93–109. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-69131-2 6

29. van Ditmarsch, H., van Der Hoek, W., Kuijer, L.B.: The logic of gossiping. Artif.
Intell. 286, 103306 (2020)

30. van Ditmarsch, H., van Eijck, J., Pardo, P., Ramezanian, R., Schwarzentruber, F.:
Epistemic protocols for dynamic gossip. J. Appl. Log. 20(C), 1–31 (2017)

31. van Ditmarsch, H., van Eijck, J., Pardo, P., Ramezanian, R., Schwarzentruber, F.:
Dynamic gossip. Bull. Iran. Math. Soc. 45, 1–28 (2018)

https://doi.org/10.1007/978-3-030-01713-2_10
https://doi.org/10.1007/978-3-030-01713-2_10
https://doi.org/10.1007/978-3-319-69131-2_6

Complexity of Word Problems
for HNN-Extensions

Markus Lohrey(B)

Universität Siegen, Siegen, Germany
lohrey@eti.uni-siegen.de

Abstract. The computational complexity of the word problem in HNN-
extension of groups is studied. HNN-extension is a fundamental construc-
tion in combinatorial group theory. It is shown that the word problem
for an ascending HNN-extension of a group H is logspace reducible to
the so-called compressed word problem for H. The main result of the
paper states that the word problem for an HNN-extension of a hyperbolic
group H with cyclic associated subgroups can be solved in polynomial
time. This result can be easily extended to fundamental groups of graphs
of groups with hyperbolic vertex groups and cyclic edge groups.

Keywords: Word problems · HNN-extensions · Hyperbolic groups

1 Introduction

The study of computational problems in group theory goes back more than 100
years. In a seminal paper from 1911, Dehn posed three decision problems [8]:
The word problem, the conjugacy problem, and the isomorphism problem. In this
paper, we mainly deal with the word problem: It is defined for a finitely generated
group G. This means that there exists a finite subset Σ ⊆ G such that every
element of G can be written as a finite product of elements from Σ. This allows
to represent elements of G by finite words over the alphabet Σ. For the word
problem, the input consists of such a finite word w ∈ Σ∗ and the goal is to check
whether w represents the identity element of G.

In general the word problem is undecidable. By a classical result of Boone
[5] and Novikov [28], there exist finitely presented groups (finitely generated
groups that can be defined by finitely many equations) with an undecidable
word problem; see [32] for an excellent exposition. On the positive side, there
are many classes of groups with decidable word problems. In his paper from 1912
[9], Dehn presented an algorithm that solves the word problem for fundamental
groups of orientable closed 2-dimensional manifolds. This result was extended
to one-relator groups (finitely generated groups that can be defined by a single
equation) by Dehn’s student Magnus [22]. Other important classes of groups
with a decidable word problem are:

– automatic groups [11] (including important classes like braid groups [1], Cox-
eter groups [4], right-angled Artin groups [7], hyperbolic groups [13]),

c© Springer Nature Switzerland AG 2021
E. Bampis and A. Pagourtzis (Eds.): FCT 2021, LNCS 12867, pp. 371–384, 2021.
https://doi.org/10.1007/978-3-030-86593-1_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86593-1_26&domain=pdf
https://doi.org/10.1007/978-3-030-86593-1_26

372 M. Lohrey

– finitely generated linear groups, i.e., finitely generated groups that can be
faithfully represented by matrices over some field [29] (including polycyclic
groups and nilpotent groups), and

– finitely generated metabelian groups (they can be embedded in direct prod-
ucts of linear groups [34]).

With the rise of computational complexity theory in the 1960’s, also the compu-
tational complexity of group theoretic problems moved into the focus of research.
From the very beginning, this field attracted researchers from mathematics as
well as computer science. It turned out that for many interesting classes of groups
the word problem admits quite efficient algorithms. Lipton and Zalcstein [18] and
Simon [31] proved that deterministic logarithmic space (and hence polynomial
time) suffices to solve the word problem for a linear group. For automatic groups,
the word problem can be solved in quadratic time [11], and for the subclass of
hyperbolic groups the word problem can be solved in linear time [16] and belongs
to the complexity class LogCFL [19]. For one-relator groups in general, only a
non-elementary algorithm is known for the word problem, but for important sub-
classes polynomial time algorithms are known, see [23,27] for recent progress.

The complexity of the word problem is also preserved by several important
group theoretic constructions, e.g. graph products (which generalize free prod-
ucts and direct products) [10] and wreath products [33]. Two other important
constructions in group theory are HNN-extensions and amalgamated free prod-
ucts. A theorem of Seifert and van Kampen links these constructions to algebraic
topology. Moreover, HNN-extensions are used in all modern proofs for the unde-
cidability of the word problem in finitely presented groups. For a base group H
with two isomorphic subgroups A and B and an isomorphism ϕ : A → B, the
corresponding HNN-extension is the group

G = 〈H, t | t−1at = ϕ(a) (a ∈ A)〉. (1)

Intuitively, it is obtained by adjoing to H a new generator t (the stable letter) in
such a way that conjugation of A by t realizes ϕ. The subgroups A and B are also
called the associated subgroups. If H has a decidable word problem, A and B are
finitely generated subgroups of H, and the subgroup membership problems for
A and B are decidable, then also the word problem for G in (1) is decidable via
Britton reduction [6] (iterated application of rewriting steps t−1at → ϕ(a) and
tbt−1 = ϕ−1(b) for a ∈ A and b ∈ B). For the special case where A = B and ϕ
is the identity, it is shown in [33] that the word problem for the HNN-extension
G in (1) is NC1-reducible to the following problems: (i) the word problem for
H, (ii) the word problem for the free group of rank two, and (iii) the subgroup
membership problem for A. On the other hand, it is not clear whether this result
can be extended to arbitrary HNN-extensions (even if we allow polynomial time
Turing reductions instead of NC1-reductions). A concrete open problem is the
complexity of the word problem for an HNN-extension 〈F, t | t−1at = ϕ(a) (a ∈
A)〉 of a free group F with finitely generated associated subgroups A and B. The
word problem for a free group is known to be in logspace (it is a linear group) [18]
and the subgroup membership problem for finitely generated subgroups of a free

Complexity of Word Problems for HNN-Extensions 373

group can be solved in polynomial time [2]. The problem with Britton reduction
in the group 〈F, t | t−1at = ϕ(a) (a ∈ A)〉 is that every Britton reduction step
may increase the length of the word by a constant multiplicative factor. This
may lead to words of exponential length. One might try to solve this problem
by representing the exponentially long words by so-called straight-line programs
(context-free grammars that produce a single word). This idea works for the word
problems of automorphism groups and certain group extensions [20, Section 4.2].
But it is not clear whether the words that arise from Britton reduction can be
compressed down to polynomial size using straight-line programs. The problem
arises from the fact that both A and B might be proper subgroups of H. On
the other hand, if one of the associated subgroups A and B coincides with
the base group H (G is then called an ascending HNN-extension) then one
can show that the word problem for G is logspace-reducible to the so-called
compressed word problem for H (Theorem 4). The latter problem asks whether
a given straight-line program that produces a word over the generators of H
evaluates to the group identity of H. The compressed word problem is known to
be solvable in polynomial time for nilpotent groups, virtually special groups, and
hyperbolic groups. For every linear group one still has a randomized polynomial
time algorithm for the compressed word problem; see [20] for details.

Our main result deals with HNN-extensions, where the associated subgroups
A and B are allowed to be proper subgroups of the base group H but are cyclic
(i.e., generated by a single element) and undistored in H (the latter is defined in
Sect. 4). We show that in this situation the word problem for G is polynomial
time Turing-reducible to the compressed power problem for H (Theorem 7). In the
compressed power problem for H, the input consists of two elements p, q ∈ H,
where p is given explicitly as a word over a generating set and q is given in
compressed form by a straight-line program over a generating set. The question
is whether there exists an integer z ∈ Z such that pz = q in H. Moreover, in the
positive case we also want to compute such a z.

Our main application of Theorem7 concerns hyperbolic groups. We show
that the compressed power problem for a hyperbolic group can be solved in
polynomial time (Theorem 6). For this, we make use of the well-known fact that
cyclic subgroups of hyperbolic groups are undistorted. As a consequence of The-
orems 6 and 7, the word problem for an HNN-extension of a hyperbolic group
with cyclic associated subgroups can be solved in polynomial time (Corollary 1).
One should remark that HNN-extensions of hyperbolic groups with cyclic asso-
ciated subgroups are in general not even automatic; a well-known example is the
Baumslag-Solitar group BS(1, 2) = 〈a, t | t−1at = a2〉 [11, Section 7.4].

Corollary 1 can be generalized to fundamental groups of graphs of groups
(which generalize HNN-extensions and amalgamated free products) with hyper-
bolic vertex groups and cyclic edge groups, see the full version [21]. For the
special case where all vertex groups are free, the existence of a polynomial time
algorithm for the word problem has been stated in [35, Remark 5.11] without
proof. For a fundamental group of a graph of groups, where all vertex groups
are copies of Z, the word problem can be even solved in logspace [36].

374 M. Lohrey

2 Groups

For real numbers a ≤ b we denote with [a, b] = {r ∈ R | a ≤ r ≤ b} the closed
interval from a to b. For k, � ∈ N we write [k : �] for {i ∈ N | k ≤ i ≤ �}. We use
standard notations for words (over some alphabet Σ). As usual, the empty word
is denoted with ε. Given a word w = a1a2 · · · an (where a1, a2, . . . , an ∈ Σ) and
numbers i, j ∈ N with 1 ≤ i ≤ j we define w[i : j] = aiai+1 · · · amin{j,n}.

For a group G and a subset Σ ⊆ G, we denote with 〈Σ〉 the subgroup of G
generated by Σ. It is the smallest subgroup of G containing Σ. If G = 〈Σ〉 then
Σ is a generating set for G. The group G is finitely generated (f.g.) if it has a
finite generating set. We mostly consider f.g. groups in this paper.

Assume that G = 〈Σ〉 and let Σ−1 = {a−1 | a ∈ Σ}. For a word w =
a1 · · · an with ai ∈ Σ ∪ Σ−1 we define the word w−1 = a−1

n · · · a−1
1 . This defines

an involution on the free monoid (Σ ∪ Σ−1)∗. We obtain a surjective monoid
homomorphism π : (Σ ∪ Σ−1)∗ → G that preserves the involution: π(w−1) =
π(w)−1. We also say that the word w represents the group element π(w). For
words u, v ∈ (Σ ∪ Σ−1)∗ we say that u = v in G if π(u) = π(v). For g ∈ G
one defines |g|Σ = min{|w| : w ∈ π−1(g)} as the length of a shortest word over
Σ ∪Σ−1 representing g. If Σ is clear, we also write |g| for |g|Σ . If Σ = Σ−1 then
Σ is a finite symmetric generating set for G.

We will describe groups by presentations. In general, if H is a group and
R ⊆ H is a set of so-called relators, then we denote with 〈H | R〉 the quotient
group H/NR, where NR is the smallest normal subgroup of H with R ⊆ NR.
Formally, we have NR = 〈{hrh−1 | h ∈ H, r ∈ R}〉. For group elements gi, hi ∈ H
(i ∈ I) we also write 〈H | gi = hi (i ∈ I)〉 for the group 〈H | {gih

−1
i | i ∈ I}〉.

In most cases, one takes a free group for the group H from the previous
paragraph. Fix a set Σ and let Σ−1 = {a−1 | a ∈ Σ} be a set of formal inverses
of the elements in Σ with Σ ∩ Σ−1 = ∅. A word w ∈ (Σ ∪ Σ−1)∗ is called
freely reduced if it neither contains a factor aa−1 nor a−1a for a ∈ Σ. For every
word w ∈ (Σ ∪ Σ−1)∗ there is a unique freely reduced word that is obtained
from w by deleting factors aa−1 and a−1a (a ∈ Σ) as long as possible. The
free group generated by Σ consists of all freely reduced words together with
the multiplication defined by u · v = nf(uv) for u, v freely reduced. For a set
R ⊆ F (Σ) of relators we also write 〈Σ | R〉 for the group 〈F (Σ) | R〉. Every
group G that is generated by Σ can be written as 〈Σ | R〉 for some R ⊆ F (Σ).
A group 〈Σ | R〉 with Σ and R finite is called finitely presented, and the pair
(Σ,R) is a presentation for the group 〈Σ | R〉. Given two groups G1 = 〈Σ1 | R1〉
and G2 = 〈Σ2 | R2〉, where w.l.o.g. Σ1 ∩ Σ2 = ∅, we define their free product
G1 ∗ G2 = 〈Σ1 ∪ Σ2 | R1 ∪ R2〉.

Consider a group G with the finite symmetric generating set Σ. The word
problem for G w.r.t. Σ is the following decision problem:

input: a word w ∈ Σ∗.
question: does w = 1 hold in G?

It is well known that if Σ′ is another finite symmetric generating set for G, then
the word problem for G w.r.t. Σ′ is logspace many-one reducible to the word

Complexity of Word Problems for HNN-Extensions 375

problem for G w.r.t. Σ. This justifies one to speak just of the word problem for
the group G.

HNN-extensions. HNN-extension is an extremely important operation for con-
structing groups that arises in all parts of combinatorial group theory. Take
a group H and a generator t �∈ H, from which we obtain the free product
H∗〈t〉 ∼= H∗Z. Assume that A,B ≤ H are two isomorphic subgroups of H and let
ϕ : A → B be an isomorphism. Then, the group 〈H ∗ 〈t〉 | t−1at = ϕ(a) (a ∈ A)〉
is called the HNN-extension of A with associated subgroups A and B (usually,
the isomorphism ϕ is not mentioned explicitly). The above HNN-extension is
usually written as 〈H, t | t−1at = ϕ(a) (a ∈ A)〉. Britton [6] proved the following
fundamental result for HNN-extensions. Let us fix a finite symmetric generating
set Σ for H.

Theorem 1 (Britton’s lemma [6]). Let G = 〈H, t | t−1at = ϕ(a) (a ∈ A)〉
be an HNN-extension. If a word w ∈ (Σ ∪ {t, t−1})∗ represents the identity of
G then w contains a factor of the form t−1ut (resp., tut−1), where u ∈ Σ∗

represents an element of A (resp., B).

A subword of the form t−1ut (resp., tut−1), where u ∈ Σ∗ represents an element
of A (resp., B) is also called a pin.

A simple corollary of Britton’s lemma is that H is a subgroup of the HNN-
extension 〈H, t | t−1at = ϕ(a) (a ∈ A)〉. Britton’s lemma can be also used to
solve the word problem for an HNN-extension 〈H, t | t−1at = ϕ(a) (a ∈ A)〉. For
this we need several assumptions:

– The word problem for H is decidable.
– There is an algorithm that decides whether a given word u ∈ Σ∗ represents

an element of A (resp., B).
– Given a word u ∈ Σ∗ that represents an element a ∈ A (resp., b ∈ B), one

can compute a word v ∈ Σ∗ that represents the element ϕ(a) (resp., ϕ−1(b)).
Let us denote this word v with ϕ(u) (resp., ϕ−1(u)).

Then, given a word w ∈ (Σ ∪ {t, t−1})∗ one replaces pins t−1ut (resp., tut−1)
by ϕ(u) (resp., ϕ−1(u)) in any order, until no more pins occur. If the final word
does not belong to Σ∗ then we have w �= 1 in the HNN-extension. If the final
word belongs to Σ∗ then one uses the algorithm for the word problem of H
to check whether it represents the group identity. This algorithm is known as
Britton reduction.

An HNN-extension G = 〈H, t | t−1at = ϕ(a) (a ∈ A)〉 with ϕ : A → B is
called ascending if A = H (it is also called the mapping torus of ϕ). Note that
we do not require B = H. Ascending HNN-extensions play an important role in
many group theoretical results. For instance, Bieri and Strebel [3] proved that
if N is a normal subgroup of a finitely presented group G such that G/N ∼= Z

then G is an ascending HNN-extension of a finitely generated group or contains
a free subgroup of rank two.

Hyperbolic Groups. Let G be a f.g. group with the finite symmetric generating
set Σ. The Cayley-graph of G (with respect to Σ) is the undirected graph Γ =

376 M. Lohrey

p q

r

Pp,q

Pp,r Pq,r

Fig. 1. The shape of a geodesic triangle in a hyperbolic group

Γ (G) with node set G and all edges (g, ga) for g ∈ G and a ∈ Σ. We view Γ
as a geodesic metric space, where every edge (g, ga) is identified with a unit-
length interval. It is convenient to label the directed edge from g to ga with the
generator a. The distance between two points p, q is denoted with dΓ (p, q). Note
that |g|Σ = dΓ (1, g) for g ∈ G. For r ≥ 0, let Br(1) = {g ∈ G | dΓ (1, g) ≤ r}.

Paths can be defined in a very general way for metric spaces, but we only need
paths that are induced by words over Σ. Given a word w ∈ Σ∗ of length n, one
obtains a unique path P [w] : [0, n] → Γ , which is a continuous mapping from the
real interval [0, n] to Γ . It maps the subinterval [i, i+1] ⊆ [0, n] isometrically onto
the edge (gi, gi+1) of Γ , where gi (resp., gi+1) is the group element represented
by the word w[1 : i] (resp., w[1 : i+1]). The path P [w] starts in 1 = g0 and ends
in gn (the group element represented by w). We also say that P [w] is the unique
path that starts in 1 and is labelled with the word w. More generally, for g ∈ G
we denote with g · P [w] the path that starts in g and is labelled with w. When
writing u · P [w] for a word u ∈ Σ∗, we mean the path g · P [w], where g is the
group element represented by u.

Let λ, ζ > 0, ε ≥ 0 be real constants. A path P colon[0, n] → Γ of the above
form is geodesic if dΓ (P (0), P (n)) = n; it is a (λ, ε)-quasigeodesic if for all points
p = P (a) and q = P (b) we have |a − b| ≤ λ · dΓ (p, q) + ε; and it is ζ-local (λ, ε)-
quasigeodesic if for all points p = P (a) and q = P (b) with |a − b| ≤ ζ we have
|a − b| ≤ λ · dΓ (p, q) + ε.

A word w ∈ Σ∗ is geodesic if the path P [w] is geodesic, which means that
there is no shorter word representing the same group element from G. Similarly,
we define the notion of (ζ-local) (λ, ε)-quasigeodesic words. A word w ∈ Σ∗ is
shortlex reduced if it is the length-lexicographically smallest word that represents
the same group element as w. For this, we have to fix an arbitrary linear order
on Σ. Note that if u = xy is shortlex reduced then x and y are shortlex reduced
too. For a word u ∈ Σ∗ we denote with shlex(u) the unique shortlex reduced
word that represents the same group element as u (the underlying group G will
be always clear from the context).

Complexity of Word Problems for HNN-Extensions 377

P1

P2

Fig. 2. Paths that asynchronously K-fellow travel

A geodesic triangle consists of three points p, q, r ∈ G and geodesic paths
P1 = Pp,q, P2 = Pp,r, P3 = Pq,r (the three sides of the triangle), where Px,y

is a geodesic path from x to y. We call a geodesic triangle δ-slim for δ ≥ 0,
if for all i ∈ {1, 2, 3}, every point on Pi has distance at most δ from a point
on Pj ∪ Pk, where {j, k} = {1, 2, 3} \ {i}. The group G is called δ-hyperbolic,
if every geodesic triangle is δ-slim. Finally, G is hyperbolic, if it is δ-hyperbolic
for some δ ≥ 0. Figure 1 shows the shape of a geodesic triangle in a hyperbolic
group. Finitely generated free groups are for instance 0-hyperbolic. The property
of being hyperbolic is independent of the chosen generating set Σ. The word
problem for every hyperbolic group can be decided in real time [16].

Fix a δ-hyperbolic group G with the finite symmetric generating set Σ for
the rest of the section, and let Γ be the corresponding geodesic metric space.
Consider two paths P1 : [0, n1] → Γ , P2 : [0, n2] → Γ and let K ∈ R, K ≥ 0.
The paths P1 and P2 asynchronously K-fellow travel if there exist two contin-
uous non-decreasing mappings ϕ1 : [0, 1] → [0, n1] and ϕ2 : [0, 1] → [0, n2] such
that ϕ1(0) = ϕ2(0) = 0, ϕ1(1) = n1, ϕ2(1) = n2 and for all 0 ≤ t ≤ 1,
dΓ (P1(ϕ1(t)), P2(ϕ2(t))) ≤ K. Intuitively, this means that one can travel along
the paths P1 and P2 asynchronously with variable speeds such that at any
time instant the current points have distance at most K. If P1 and P2 asyn-
chronously K-fellow travel, then by slightly increasing K one obtains a subset
E ⊆ [0 : n1] × [0 : n2] with (i) (0, 0), (n1, n2) ∈ E, dΓ (P1(i), P2(j)) ≤ K for all
(i, j) ∈ E and (iii) if (i, j) ∈ E\{(n1, n2)} then (i+1, j) ∈ E or (i, j+1) ∈ E. We
write P1 ≈K P2 in this case. Intuitively, this means that a ladder graph as shown
in Fig. 2 exists, where the edges connecting the horizontal P1- and P2-labelled
paths represent paths of length ≤ K that connect elements from G.

Lemma 1 (c.f. [25, Lemma 1]). Let P1 and P2 be (λ, ε)-quasigeodesic paths
in Γ and assume that Pi starts in gi, ends in hi, and dΓ (g1, g2), dΓ (h1, h2) ≤ h.
Then there is a constant K = K(δ, λ, ε, h) ≥ h such that P1 ≈K P2.

2.1 Compressed Words and the Compressed Word Problem

Straight-line programs offer succinct representations of long words that contain
many repeated substrings. We here review the basics, referring to [20] for a more
in-depth introduction.

378 M. Lohrey

Fix a finite alphabet Σ. A straight-line program G (SLP for short) is a context-
free grammar that generates exactly one word val(G) ∈ Σ∗. More formally, an
SLP over Σ is a triple G = (V, S, ρ) where

– V is a finite set of variables, disjoint from Σ,
– S ∈ V is the start variable, and
– ρ : V → (V ∪Σ)∗ is the right-hand side mapping, which is acyclic in the sense

that the binary relation {(A,B) ∈ V × V | B appears in ρ(A)} is acyclic.

We define the size |G| of G as
∑

A∈V |ρ(A)|. The evaluation function val =
valG : (V ∪ Σ)∗ → Σ∗ is the unique homomorphism between free monoids such
that (i) val(a) = a for a ∈ Σ, and (ii) val(A) = val(ρ(A)) for A ∈ V . We finally
take val(G) = val(S). We call val(G) the word defined by the SLP G.

Example 1. Let Σ = {a, b} and fix n ≥ 0. We define Gn = ({A0, . . . , An}, An, ρ),
where ρ(A0) = ab and ρ(Ai+1) = AiAi for 0 ≤ i ≤ n − 1. It is an SLP of
size 2(n + 1). We have val(A0) = ab and more generally val(Ai) = (ab)2

i

. Thus
val(Gn) = val(An) = (ab)2

n

.

The SLP G = (V, S, ρ) is trivial if S is the only variable and ρ(S) = ε = val(G).
An SLP is in Chomsky normal form if it is either trivial or all right-hand sides
ρ(A) are of the form a ∈ Σ or BC with B,C ∈ V . There is a linear-time
algorithm that transforms a given SLP G into an SLP G′ in Chomsky normal
such that val(G) = val(G′); see [20, Proposition 3.8].

The following theorem is the technical main result from [17]:

Theorem 2 (c.f. [17]). Let G be a hyperbolic group with the finite symmetric
generating set Σ. Given an SLP G over Σ one can compute in polynomial time
an SLP H over Σ such that val(H) = shlex(val(G)).

If G is a f.g. group with the finite and symmetric generating set Σ, then we
define the compressed word problem of G as the following problem:

input: an SLP G over Σ.
question: does val(G) represent the group identity of G?

An immediate consequence of Theorem 2 is the following result:

Theorem 3 (c.f. [17]). The compressed word problem for a hyperbolic group
can be solved in polynomial time.

The compressed word problem turns out to be useful for the solution of the word
problem for an ascending HNN-extension:

Theorem 4. Let H be a finitely generated group. The word problem for an
ascending HNN-extension G = 〈H, t | t−1at = ϕ(a) (a ∈ H)〉 is logspace-
reducible to the compressed word problem for H.

Complexity of Word Problems for HNN-Extensions 379

The proof is similar to corresponding results for automorphism groups and semi-
direct products [20, Section 4.2]; see the full version [21] for details.

We will also need a generalization of straight-line programs, known as com-
position systems [14, Definition 8.1.2] (in [20] they are called cut straight-line
programs). A composition system over Σ is a tuple G = (V, S, ρ), with V and S
as for an SLP, and where we also allow, as right-hand sides for ρ, expressions
of the form B[i : j], with B ∈ V and i, j ∈ N, 1 ≤ i ≤ j. The numbers i
and j are stored in binary encoding. We again require ρ to be acyclic. When
ρ(A) = B[i : j] we define val(A) = val(B)[i : j]. We define the size |G| of the
composition system G as the total number of occurrences of symbols from V ∪Σ
in all right-hand sides. Hence, a right-hand B[i : j] contributes 1 to the size, and
we ignore the numbers i, j. Adding the bit lengths of the numbers i and j to
the size |G| would only lead to a polynomial blow-up for |G|. To see this, first
normalize the composition system so that all right-hand sides have the form a,
BC or B[i : j] with a ∈ Σ and B,C ∈ V ; analogously to the Chomsky normal
form of SLPs this can be achieved in polynomial time. If n is the number of
variables of the resulting composition system, then every variable produces a
string of length at most 2n. Hence, we can assume that all numbers i, j that
appear in a right-hand side B[i : j] are of bit length O(n).

We can now state an important result of Hagenah; see [14, Algorithmus 8.1.4]
as well as [20, Theorem 3.14].

Theorem 5. There is a polynomial-time algorithm that, given a composition
system G, computes an SLP G′ such that val(G) = val(G′).

It will be convenient to allow in composition systems also more complex right-
hand sides. For instance (ABC)[i : j]D would first concatenate the strings pro-
duced from A, B, and C. From the resulting string the substring from position
i to position j is cut out and this substring is concatenated with the string
produced by D.

3 The Compressed Power Problem

In the next section we want to study the word problem in HNN-extensions with
cyclic associated subgroups. For this, the following computational problem turns
out to be important. Let G be a f.g. group with the finite symmetric generating
set Σ. We define the compressed power problem for G as the following problem:

input: a word w ∈ Σ∗ and an SLP G over Σ.
output: the binary coding of an integer z ∈ Z such that wz = val(G) in G if

such an integer exists, and no otherwise.

Theorem 6. For every hyperbolic group G, the compressed power problem can
be solved in polynomial time.

Proof. Fix the word w ∈ Σ∗ and the SLP G = (V, ρ, S) over Σ, w.l.o.g. in
Chomsky normal form. We have to check whether the equation

wz = val(G) (2)

380 M. Lohrey

has a solution in G, and compute in the positive case a solution z ∈ Z. Let g be
the group element represented by w.

In a hyperbolic group G the order of torsion elements is bounded by a fixed
constant that only depends on G, see also the proof of [26, Theorem 6.7]. This
allows to check in polynomial time whether g has finite order in G. If g has finite
order, say d, then it remains to check for all 0 ≤ i ≤ d − 1 whether wi = val(G)
in G, which can be done in polynomial time by Theorem3. This solves the case
where g has finite order in G.

Now assume that g has infinite order in G. Then (2) has at most one solution.
By considering also the equation (w−1)z = val(G), it suffices to search for a
solution z ∈ N. We can also assume that w is shortlex-reduced. Using techniques
from [12] one can further ensure that for every n ∈ N, wn is (λ, ε)-quasigeodesic
for fixed constants λ and ε that only depend on the group G; see [21] for details.
Finally, by Theorem2 we can also assume that the word val(G) (and hence every
word val(X) for X a variable of G) is shortlex-reduced. Hence, if wz = val(G) for
some z ∈ N, then by Lemma 1 we have P [wz] ≈K P [val(G)] for a fixed constant
K that only depends on G. We proceed in two steps.

Step 1. We compute in polynomial time for all variables X ∈ V of the SLP G, all
group elements a, b ∈ BK(1) (there are only constantly many), and all factors w′

of w a bit β[X, a, b, w′] ∈ {0, 1} which is set to 1 if and only if (i) val(X) = aw′b
in G and (ii) P [val(X)] ≈K a · P [w′].

We compute these bits β[X, a, b, w′] in a bottom-up process where we begin
with variables X such that ρ(X) is a terminal symbol and end with the start
variable S. So, let us start with a variable X such that ρ(X) = c ∈ Σ and let
a, b, w′ as above. Then we have to check whether c = aw′b in G and P [c] ≈K

a ·P [w′]. The former can be checked in linear time (it is an instance of the word
problem) and the latter can be done in polynomial time as well: we have to check
whether the path a · P [w′] splits into two parts, where all vertices in the first
(resp., second) part belong to BK(1) (resp., BK(c)).

Let us now consider a variable X with ρ(X) = Y Z such that all bits
β[Y, a, b, w′] and β[Z, a, b, w′] have been computed. Let us fix a, b ∈ BK(1) and a
factor w′ of w. We have β[X, a, b, w′] = 1 if and only if there exists a factorization
w′ = w′

1w
′
2 and c ∈ BK(1) such that β[Y, a, c, w′

1] = 1 and β[Z, c−1, b, w′
2] = 1.

This allows us to compute β[X, a, b, w′] in polynomial time.

Step 2. We compute in polynomial time for all variables X ∈ V , all group
elements a, b ∈ BK(1), all proper suffixes w2 of w, and all proper prefixes w1

of w the unique number z = z[X, a, b, w2, w1] ∈ N (if it exists) such that (i)
val(X) = aw2w

zw1b in G and (ii) P [val(X)] ≈K a · P [w2w
zw1]. If such an

integer z does not exist we set z[X, a, b, w2, w1] = ∞. Note that the integers
z[X, a, b, w2, w1] are unique since w represents a group element of infinite order.
We represent z[X, a, b, w2, w1] in binary encoding. As in step 1, the computation
of the numbers z[X, a, b, w2, w1] begins with variables X such that ρ(X) is a
terminal symbol and ends with the start variable S; see [21] for details. The bits
β[X, a, b, w′] from step 1 are needed in the computation. Finally, z[S, 1, 1, ε, ε] is
the unique solution of Eq. (2) if z[S, 1, 1, ε, ε] < ∞. ��

Complexity of Word Problems for HNN-Extensions 381

4 HNN-extensions with Cyclic Associated Subgroups

Let H be a f.g. group and fix a generating set Σ for H. We say that a cyclic
subgroup 〈g〉 ≤ H is undistorted in H if there exists a constant δ such that for
every h ∈ 〈g〉 there exists z ∈ Z with h = gz and |z| ≤ δ · |h|Σ (this definition
does not depend on the choice of Σ).1 This is clearly the case if 〈g〉 is finite.

Note that if g, h ∈ H are elements of the same order then the group 〈H, t |
t−1gt = h〉 is the HNN-extension 〈H, t | t−1at = ϕ(a) (a ∈ 〈g〉)〉, where ϕ : 〈g〉 →
〈h〉 is the isomorphism with ϕ(gz) = hz for all z ∈ Z. In the following theorem we
consider a slight extension of the word problem for such an HNN-extension G =
〈H, t | t−1gt = h〉 which we call the semi-compressed word problem for G. In this
problem the input is a sequence G0t

ε1G1t
ε2G2 · · · tεnGn where every Gi (0 ≤ i ≤ n)

is an SLP (or a composition system) over the alphabet Σ and εi ∈ {−1, 1} for
1 ≤ i ≤ n. The question is whether val(G0)tε1val(G1)tε2val(G2) · · · tεnval(Gn) = 1
in G.

Theorem 7. Let H be a fixed f.g. group and let g, h ∈ H be elements with the
same order in H (so that the cyclic subgroups 〈g〉 and 〈h〉 are isomorphic) such
that 〈g〉 and 〈h〉 are undistorted. Then the semi-compressed word problem for
the HNN-extension 〈H, t | t−1gt = h〉 is polynomial-time Turing-reducible to the
compressed power problem for H.

Proof. The case where 〈g〉 and 〈h〉 are both finite is easy. In this case, by the
main result of [15], even the compressed word problem for 〈H, t | t−1gt = h〉 is
polynomial time Turing-reducible to the compressed word problem for H, which
is a special case of the compressed power problem.

Let us now assume that 〈g〉 and 〈h〉 are infinite. Fix a symmetric finite
generating set Σ for H. Let W = G0t

ε1G1t
ε2G2 · · · tεnGn be an input for the

semi-compressed word problem for 〈H, t | t−1gt = h〉, where Gi is a composition
system over Σ for 0 ≤ i ≤ n and εi ∈ {−1, 1} for 1 ≤ i ≤ n. Basically, we do Brit-
ton reduction in any order on the word val(G0)tε1val(G1)tε2val(G2) · · · tεnval(Gn).
The number of Britton reduction steps is bounded by n/2. After the i-th step we
have a sequence U = H0t

ζ1H1t
ζ2H2 · · · tζmHm where m ≤ n, Hi = (Vi, Si, ρi) is

a composition system over Σ, and ζi ∈ {−1, 1}. Let ui = val(Hi), si = |Hi| and
define s(U) = m+

∑m
i=0 si, which is a measure for the encoding length of U . We

then search for an 1 ≤ i ≤ m − 1 such that one of the following two cases holds:

(i) ζi = −1, ζi+1 = 1 and there is an � ∈ Z such that ui = g� in H.
(ii) ζi = 1, ζi+1 = −1 and there is an � ∈ Z such that ui = h� in H.

Using oracle access to the compressed power problem for H we can check in
polynomial time whether one of these cases holds and compute the corresponding
integer �. We then replace the subsequence Hi−1t

ζiHit
ζi+1Hi+1 by a composition

system H′
i where val(H′

i) is ui−1h
�ui+1 in case (i) and ui−1g

�ui+1 in case (ii).
Let U ′ be the resulting sequence. It remains to bound s(U ′). For this we have to
1 The concept of undistorted subgroups is defined for arbitrary finitely generated sub-
groups but we will need it only for the cyclic case.

382 M. Lohrey

bound the size of the composition system H′
i. Assume that ζi = −1, ζi+1 = 1, and

ui = g� in H (the case where ζi = 1, ζi+1 = −1 and ui = h� in H is analogous).
It suffices to show that h� can be produced by a composition system H′′

i of size
si + O(1). Then we can easily bound the size of H′

i by si−1 + si + si+1 + O(1),
which yields s(U ′) ≤ s(U)+O(1). This shows that every sequence V that occurs
during the Britton reduction satisfies S(V) ≤ S(W)+O(n) (recall that W is the
initial sequence and that the number of Britton reductions is bounded by n/2).

Fix the constant δ such that for every g′ ∈ 〈g〉 the unique (since g has infinite
order) z ∈ Z with g′ = gz satisfies |z| ≤ δ · |g′|Σ . Hence, we have |�| ≤ δ · |ui|.
W.l.o.g. we can assume that δ ∈ N. The variables of H′′

i are the variables of
Hi plus two new variables Ah and S′

i. Define a morphism η by η(a) = Ah for
all a ∈ Σ and η(A) = A for every variable A of Hi. We define the right-hand
side mapping ρ′′

i of H′′
i by: ρ′′

i (Ah) = h if � ≥ 0 and ρ′′
i (Ah) = h−1 if � < 0,

ρ′′
i (S′

i) = (Sδ
i)[1 : |�| · |h|] and ρ′′

i (A) = η(ρi(A)) for all variables A of Hi. Note
that Sδ

i derives to hδ·|ui| if � ≥ 0 and to h−δ·|ui| if � < 0. Since |�| ≤ δ · |ui|,
(Sδ

i)[1 : |�| · |h|] derives to h�. The start variable of H′′
i is S′

i. The size of H′′
i is

si + |h| + δ = si + O(1), since |h| and δ are constants. ��
A subgroup of a hyperbolic group is undistorted if and only if it is quasiconvex
[24, Lemma 1.6]. That cyclic subgroups in hyperbolic groups are quasiconvex
was shown by Gromov [13, Corollary 8.1.D]. Hence, infinite cyclic subgroups of
a hyperbolic group are undistorted. Together with Theorems 6 and 7 we get:

Corollary 1. Let H be a hyperbolic group and let g, h ∈ H have the same order.
Then the word problem for 〈H, t | t−1gt = h〉 can be solved in polynomial time.

5 Future Work

There is no hope to generalize Corollary 1 to the case of finitely generated asso-
ciated subgroups (there exists a finitely generated subgroup A of a hyperbolic
group G such that the membership problem for A is undecidable [30]). On the
other hand, it is known that the membership problem for quasiconvex subgroups
of hyperbolic groups is decidable. What is the complexity of the word problem
for an HNN-extension of a hyperbolic group H with finitely generated quasicon-
vex associated subgroups? Even for the case where H is free (where all subgroups
are quasiconvex) the existence of a polynomial time algorithm is not clear.

The best known complexity bound for the word problem of a hyperbolic group
is LogCFL, which is contained in the circuit complexity class NC2. This leads to
the question whether the complexity bound in Corollary 1 can be improved to
NC. Also the complexity of the compressed word problem for an HNN-extension
of a hyperbolic group H with cyclic associated subgroups is open (even in the
case where the base group H is free). Recall that the compressed word problem
for a hyperbolic group can be solved in polynomial time [17].

Acknowledgments. This work is supported by the DFG project LO748/12-1.

Complexity of Word Problems for HNN-Extensions 383

References

1. Artin, E.: Theorie der Zöpfe. Abh. Math. Semin. Univ. Hambg. 4(1), 47–72 (1925)
2. Avenhaus, J., Madlener, K.: The Nielsen reduction and P-complete problems in

free groups. Theoret. Comput. Sci. 32(1–2), 61–76 (1984)
3. Bieri, R., Strebel, R.: Almost finitely presented soluble groups. Commentarii Math-

ematici Helvetici 53, 258–278 (1978)
4. Björner, A., Brenti, F.: Combinatorics of Coxeter Groups. Graduate Texts in

Mathematics, vol. 231. Springer, New York (2005). https://doi.org/10.1007/3-540-
27596-7

5. Boone, W.W.: The word problem. Ann. Math. Second Series 70, 207–265 (1959)
6. Britton, J.L.: The word problem. Ann. Math. 77(1), 16–32 (1963)
7. Charney, R.: An introduction to right-angled Artin groups. Geom. Dedicata. 125,

141–158 (2007). https://doi.org/10.1007/s10711-007-9148-6
8. Dehn, M.: Über unendliche diskontinuierliche Gruppen. Math. Ann. 71, 116–144

(1911)
9. Dehn, M.: Transformation der Kurven auf zweiseitigen Flächen. Math. Ann. 72,

413–421 (1912)
10. Diekert, V., Kausch, J.: Logspace computations in graph products. J. Symb. Com-

put. 75, 94–109 (2016)
11. Epstein, D.B.A., Cannon, J.W., Holt, D.F., Levy, S.V.F., Paterson, M.S.,

Thurston, W.P.: Word Processing in Groups. Jones and Bartlett (1992)
12. Epstein, D.B.A., Holt, D.F.: The linearity of the conjugacy problem in word-

hyperbolic groups. Internat. J. Algebra Comput. 16(2), 287–306 (2006)
13. Gromov, M.: Hyperbolic groups. In: Gersten, S.M. (ed.) Essays in Group The-

ory. Mathematical Sciences Research Institute Publications, vol. 8, pp. 75–263.
Springer, Heidelberg (1987). https://doi.org/10.1007/978-1-4613-9586-7 3

14. Hagenah, C.: Gleichungen mit regulären Randbedingungen über freien Gruppen.
Ph.D. thesis, University of Stuttgart (2000)

15. Haubold, N., Lohrey, M.: Compressed word problems in HNN-extensions and amal-
gamated products. Theory Comput. Syst. 49(2), 283–305 (2011). https://doi.org/
10.1007/s00224-010-9295-2

16. Holt, D.: Word-hyperbolic groups have real-time word problem. Internat. J. Alge-
bra Comput. 10, 221–228 (2000)

17. Holt, D.F., Lohrey, M., Schleimer, S.: Compressed decision problems in hyper-
bolic groups. In: 36th International Symposium on Theoretical Aspects of Com-
puter Science, STACS 2019, Berlin, Germany, 13–16 March 2019, LIPIcs, vol. 126,
pp. 37:1–37:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019). http://
www.dagstuhl.de/dagpub/978-3-95977-100-9

18. Lipton, R.J., Zalcstein, Y.: Word problems solvable in logspace. J. ACM 24(3),
522–526 (1977)

19. Lohrey, M.: Decidability and complexity in automatic monoids. Int. J. Found.
Comput. Sci. 16(4), 707–722 (2005)

20. Lohrey, M.: The Compressed Word Problem for Groups. Springer Briefs in Math-
ematics, Springer, Heidelberg (2014). https://doi.org/10.1007/978-1-4939-0748-9

21. Lohrey, M.: Complexity of word problems for HNN-extensions. CoRR
abs/2107.01630 (2021). https://arxiv.org/abs/2107.01630

22. Magnus, W.: Das Identitätsproblem für Gruppen mit einer definierenden Relation.
Math. Ann. 106(1), 295–307 (1932). https://doi.org/10.1007/BF01455888

https://doi.org/10.1007/3-540-27596-7
https://doi.org/10.1007/3-540-27596-7
https://doi.org/10.1007/s10711-007-9148-6
https://doi.org/10.1007/978-1-4613-9586-7_3
https://doi.org/10.1007/s00224-010-9295-2
https://doi.org/10.1007/s00224-010-9295-2
http://www.dagstuhl.de/dagpub/978-3-95977-100-9
http://www.dagstuhl.de/dagpub/978-3-95977-100-9
https://doi.org/10.1007/978-1-4939-0748-9
https://arxiv.org/abs/2107.01630
https://doi.org/10.1007/BF01455888

384 M. Lohrey

23. Mattes, C., Weiß, A.: Parallel algorithms for power circuits and the word problem
of the Baumslag group. CoRR abs/2102.09921 (2021). https://arxiv.org/abs/2102.
09921

24. Minasyan, A.: On products of quasiconvex subgroups in hyperbolic groups. Int. J.
Algebra Comput. 14(2), 173–195 (2004)

25. Myasnikov, A., Nikolaev, A.: Verbal subgroups of hyperbolic groups have infinite
width. J. Lond. Math. Soc. 90(2), 573–591 (2014)

26. Myasnikov, A., Nikolaev, A., Ushakov, A.: Knapsack problems in groups. Math.
Comput. 84, 987–1016 (2015)

27. Myasnikov, A., Ushakov, A., Won, D.W.: The word problem in the Baumslag group
with a non-elementary Dehn function is polynomial time decidable. J. Algebra
345(1), 324–342 (2011)

28. Novikov, P.S.: On the algorithmic unsolvability of the word problem in group
theory. Am. Math. Soc. Transl. II. Ser. 9, 1–122 (1958)

29. Rabin, M.O.: Computable algebra, general theory and theory of computable fields.
Trans. Am. Math. Soc. 95, 341–360 (1960)

30. Rips, E.: Subgroups of small cancellation groups. Bull. Lond. Math. Soc. 14, 45–47
(1982)

31. Simon, H.U.: Word problems for groups and contextfree recognition. In: Proceed-
ings of Fundamentals of Computation Theory, FCT 1979, pp. 417–422. Akademie-
Verlag (1979)

32. Stillwell, J.: Classical Topology and Combinatorial Group Theory, 2nd edn.
Springer, Heidelberg (1995). https://doi.org/10.1007/978-1-4612-4372-4

33. Waack, S.: The parallel complexity of some constructions in combinatorial group
theory. J. Inf. Process. Cybern. EIK 26, 265–281 (1990)

34. Wehrfritz, B.A.F.: On finitely generated soluble linear groups. Math. Z. 170, 155–
167 (1980)

35. Weiß, A.: On the complexity of conjugacy in amalgamated products and HNN
extensions. Ph.D. thesis, University of Stuttgart (2015)

36. Weiß, A.: A logspace solution to the word and conjugacy problem of generalized
Baumslag-Solitar groups. In: Algebra and Computer Science. Contemporary Math-
ematics, vol. 677. American Mathematical Society (2016)

https://arxiv.org/abs/2102.09921
https://arxiv.org/abs/2102.09921
https://doi.org/10.1007/978-1-4612-4372-4

On Finding Separators in Temporal Split
and Permutation Graphs

Nicolas Maack1, Hendrik Molter1,2(B) , Rolf Niedermeier1 ,
and Malte Renken1

1 Algorithmics and Computational Complexity, TU Berlin, Berlin, Germany
nicolas.km.maack@campus.tu-berlin.de,

{rolf.niedermeier,m.renken}@tu-berlin.de
2 Department of Industrial Engineering and Management,

Ben-Gurion University of the Negev, Beer-Sheva, Israel
molterh@post.bgu.ac.il

Abstract. Disconnecting two vertices s and z in a graph by removing
a minimum number of vertices is a fundamental problem in algorith-
mic graph theory. This (s, z)-Separation problem is well-known to be
polynomial solvable and serves as an important primitive in many appli-
cations related to network connectivity.

We study the NP-hard Temporal (s, z) -Separation problem on
temporal graphs, which are graphs with fixed vertex sets but edge sets
that change over discrete time steps. We tackle this problem by restrict-
ing the layers (i.e., graphs characterized by edges that are present at a
certain point in time) to specific graph classes.

We restrict the layers of the temporal graphs to be either all split
graphs or all permutation graphs (both being perfect graph classes) and
provide both intractability and tractability results. In particular, we show
that in general Temporal (s, z) -Separation remains NP-hard both
on temporal split and temporal permutation graphs, but we also spot
promising islands of fixed-parameter tractability particularly based on
parameterizations that measure the amount of “change over time”.

Keywords: Temporal graphs · Connectivity problems · Special graph
classes · NP-hardness · Fixed-parameter tractability

1 Introduction

Finding a smallest set of vertices whose deletion disconnects two designated
vertices—the separation problem—is a fundamental problem in algorithmic
graph theory. The problem, which is a backbone of numerous applications related
to network connectivity, is well-known to be polynomial-time solvable in (static)

Based on the Bachelor thesis of N. Maack. H. Molter was supported by the DFG, project
MATE (NI 369/17), and by the ISF, grant No. 1070/20. Main part of this work was
done while H. Molter was affiliated with TU Berlin. M. Renken was supported by the
DFG, project MATE (NI 369/17).

c© Springer Nature Switzerland AG 2021
E. Bampis and A. Pagourtzis (Eds.): FCT 2021, LNCS 12867, pp. 385–398, 2021.
https://doi.org/10.1007/978-3-030-86593-1_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86593-1_27&domain=pdf
http://orcid.org/0000-0002-4590-798X
http://orcid.org/0000-0003-1703-1236
http://orcid.org/0000-0002-1450-1901
https://doi.org/10.1007/978-3-030-86593-1_27

386 N. Maack et al.

graphs. Driven by the need of understanding and mastering dynamically chang-
ing network structures, in recent years the study of temporal graphs—graphs
with a fixed vertex set but edge sets that may change over discrete time steps—
has enjoyed an enormous growth. One of the earliest systematic studies on tem-
poral graphs dealt with the separation problem [15], where it turned out to
be NP-hard. This motivates the study of parameterized complexity aspects as
well as of the complexity behavior on special temporal graph classes [12,21].
Continuing and extending this line of research, we provide a first in-depth
study on temporal versions of split and permutation graphs, two classes of per-
fect graphs on which many generally NP-hard problems become polynomial-
time solvable [5,13]. We present both intractability as well as (fixed-parameter)
tractability results.

Formally, a temporal graph is an ordered triple G = (V, E , τ), where V denotes
the set of vertices, E ⊆ (

V
2

)×{1, 2, ..., τ} the set of time-edges where ({v, w}, t) ∈
E represents an edge between vertices v and w available at time t, and τ ∈ N is
the maximum time label. We can think of it as a series of τ static graphs, called
layers. The graph containing the union of the edges of all layers is called the
underlying graph of G.

Recently, connectivity and path-related problems have been extensively stud-
ied on temporal graphs [2,6–10,12,18,21]. In the temporal setting, paths, walks,
and reachability are defined in a time-respecting way [15]: A temporal (s, z)-
walk (or temporal walk) of length � from vertex s = v0 to vertex z = vk in a
temporal graph G is a sequence P = ((vi−1, vi, ti))

�
i=1 such that ({vi−1, vi}, ti) is

a time-edge of G for all i ∈ {1, 2, . . . , �} and ti ≤ ti+1 for all i ∈ {1, 2, . . . , �−1}.1

A temporal walk is a temporal path if it visits every vertex at most once.
We study the Temporal (s, z)-Separation problem. Here, a temporal

(s, z)-separator is a set of vertices (not containing s and z) whose removal
destroys all temporal paths from s to z.

Temporal (s, z)-Separation

Input: A temporal graph G = (V, E , τ), two distinct vertices s, z ∈ V ,
and k ∈ N.

Question: Does G admit a temporal (s, z)-separator of size at most k?

Temporal (s, z)-Separation is NP-complete [15] and W[1]-hard when
parameterized by the separator size k [21]. On the positive side, one can ver-
ify a solution in O(|G|) time (see e.g. Bui-Xuan et al. [6]). Zschoche et al. [21]
investigated the differences between the computational complexity of finding
temporal separators that remove (non-strict) temporal paths vs. strict temporal
paths. Fluschnik et al. [12] studied the impact of restrictions on the layers or the
underlying graph on the computational complexity of Temporal (s, z)-Sepa-
ration and found that it remains NP-complete even under severe restrictions. In
particular, the problem stays NP-complete and W[1]-hard when parameterized
by the separator size even if every layer contains only one edge and for sev-
eral restrictions of the underlying graph [12]. They further investigated the case
1 Such walks are also called “non-strict”, whereas “strict” walks require ti < ti+1. We

focus on non-strict walks in this work.

On Finding Separators in Temporal Split and Permutation Graphs 387

where every layer of the temporal graph is a unit interval graph and obtained
fixed-parameter tractability for Temporal (s, z)-Separation when parame-
terized by the lifetime τ and the so-called “shuffle number”, a parameter that
measures how much the relative order of the intervals changes over time. This
result initiated research on the amount of “change over time” measured by a
parameter that is tailored to the graph class into which all layers fall.

In our work, we follow this paradigm of restricting each layer to a certain
graph class and measuring the amount of change over time with parameters that
are tailored to the graph class of the layers. More specifically, we investigate the
complexity of Temporal (s, z)-Separation on temporal graphs where every
layer is a split graph or every layer is a permutation graph.

Temporal Split Graphs. In a split graph, the vertex set can be partitioned into
a clique and an independent set. Split graphs can be used to model an idealized
form of core-periphery structures, in which there exists a densely connected
core and a periphery that only has connections to that core [4]. Core-periphery
structures can be observed in social contact networks in which one group of
people meets at some location, forming a fully connected core. Meanwhile, other
people associated with the group may have contact with some of its members,
but otherwise do not have any interactions relevant to the observed network.
Such applications are naturally subject to change over time, for example due to
vertices entering or leaving the network.2 This temporal aspect is captured by
temporal split graphs, where each layer has a separate core-periphery split.

We prove that Temporal (s, z)-Separation remains NP-complete on tem-
poral split graphs, even with only four layers. On the positive side, we show
that Temporal (s, z)-Separation is solvable in polynomial time on temporal
graphs where the partition of the vertices into a clique and an independent set
stays the same in every layer. We use this as a basis for a “distance-to-triviality”-
parameterization [14,19], also motivated by the assumption that in application
cases the core-periphery structure of a network will roughly stay intact over
time with only few changes. Intuitively, we parameterize on how many vertices
may switch between the two parts over time and use this parameterization to
obtain fixed-parameter tractability results. Formally, we show fixed-parameter
tractability for the combined parameter “number of vertices different from s
and z that switch between the clique and the independent set at some point in
time” and the lifetime τ .

Temporal Permutation Graphs. A permutation graph on an ordered set of
vertices is defined by a permutation of that ordering. Two vertices are connected
by an edge if their relative order is inverted by the permutation. They were intro-
duced by Even et al. [11] and appear in integrated circuit design [20], memory
layout optimization [11], and other applications [13]. In a temporal permutation
graph, the edges of each layer are given by a separate permutation. We prove
that Temporal (s, z)-Separation remains NP-complete on temporal permu-
tation graphs. We then parameterize on how much the permutation changes over

2 While the vertex set of a temporal graph formally remains unchanged, isolated ver-
tices are equivalent to non-existing vertices as far as separators are concerned.

388 N. Maack et al.

time to obtain fixed-parameter tractability results. We use the Kendall tau dis-
tance [16] to measure the dissimilarity of the permutations. More precisely, we
obtain fixed-parameter tractability for the combined parameter “sum of Kendall
tau distances between consecutive permutations” and the separator size k. We
remark that in a similar context, the Kendall tau distance has also been used by
Fluschnik et al. [12] to measure the amount of change over time in a temporal
graph.

We remark that most of our results are not tight in the sense that our fixed-
parameter tractability results use combined parameters and we currently cannot
exclude fixed-parameter tractability for all single parameters. We point out open
questions in the conclusion. Some proofs (marked by �) are deferred to a full
version [17].

2 Split Graphs

In this section, we study the computational complexity of finding temporal sep-
arators in temporal split graphs. Split graphs represent an idealized model of
core-periphery structures with a well-connected core and a periphery only con-
nected to that core [4]. In terms of numbers, they also constitute the majority
of all chordal graphs [1].

Formally, a graph G = (V,E) is called a split graph if V can be partitioned
into two sets C, I such that C induces a clique and I induces an independent set.
Then, (C, I) is called a split partition of G. In general, a split graph may admit
multiple split partitions. A temporal split graph is a temporal graph G of which
every layer is a split graph. A temporal split partition (Ct, It)τ

t=1 then contains
a split partition of every layer of G.

2.1 Hardness Results

The fact that Temporal (s, z)-Separation on temporal split graphs is NP-
hard can be derived from a result of Fluschnik et al. [12] stating that Temporal

(s, z)-Separation is hard on temporal graphs containing a single edge per layer.
This is due to the fact that a graph with a single edge is clearly a split graph.

We now strengthen this result, showing that Temporal (s, z)-Separation
is NP-hard on temporal split graphs with only a constant number of layers. We
do this by building on a reduction by Zschoche et al. [21] showing NP-hardness
of Temporal (s, z)-Separation on general temporal graphs.

Here and in the following we use “separator” as a shorthand for “temporal
(s, z)-separator” when no ambiguity arises.

Theorem 1 (�). Temporal (s, z)-Separation is NP-hard on temporal split
graphs with four layers.

Theorem 1 shows that Temporal (s, z)-Separation on temporal split
graphs is NP-hard when τ ≥ 4. Evidently, Temporal (s, z)-Separation is
polynomial-time solvable for τ = 1. The computational complexity for the cases
τ = 2 and τ = 3 remains open.

On Finding Separators in Temporal Split and Permutation Graphs 389

2.2 Fixed-Parameter Tractability Results

The defining characteristic of temporal split graphs is that for each layer t
they can be split into a clique Ct and an independent set It. While temporal
split graphs allow for changes of this partition, for several application scenarios
described in the introduction it is reasonable to assume that only a few of these
changes occur while most vertices retain their role throughout all layers.

We will prove that Temporal (s, z)-Separation can be solved efficiently in
this setting, that is, if the number of switching vertices

⋃
t,t′ Ct ∩ It′ is low. Note

that the set of switching vertices depends on the choice of partitions (Ct, It)—we
will subsequently show how to compute these partitions.

We start by proving that Temporal (s, z)-Separation is polynomial-time
solvable if the only switching vertices are s and z.

Lemma 2. Let G = (V ∪ {s, z}, E , τ) be a temporal split graph with a given
temporal split partition having no switching vertices except possibly s and z.
Then all minimal temporal (s, z)-separators in G can be found in O(|G| · τ) time.

Proof. We assume that there is never an edge between s and z, otherwise the
problem is trivial. Let the given temporal split partition be (Ct, It)t. Let C :=
Ct \ {s, z} and I := It \ {s, z} (for some and thus all layers t). We show that all
minimal temporal (s, z)-separators are given by the set

S :=

⎧
⎨

⎩

⋃

0<t≤i

(NGt
(s) ∩ C) ∪

⋃

i<t≤τ

(NGt
(z) ∩ C) ∪ T

∣
∣
∣
∣
∣
∣
0 ≤ i ≤ τ

⎫
⎬

⎭
, where

T :=
⋃

1≤t≤t′≤τ

NGt
(s) ∩ NGt′ (z).

The set S can be constructed in O(|G| · τ) time and contains at most τ + 1
elements. This proves the stated time bound. It remains to verify that S contains
all minimal separators.

First, note that T contains exactly those vertices which form temporal (s, z)-
paths of length 2. Thus T has to be contained in any separator.

So it only remains to consider temporal (s, z)-paths of length at least 3. If
such a path P contains a vertex v ∈ I, then let ({u, v}, t) and ({v, w}, t′) be
the two time-edges of P containing v. Then we must have u ∈ C or w ∈ C and
thus the above two time-edges can be replaced by either ({u,w}, t) or ({u,w}, t′),
shortening P by one. Consequently, if G contains a temporal (s, z)-path of length
at least 3, then there is also a temporal (s, z)-path in G − I.3 So it suffices to
consider temporal paths in G − I.

Thus it becomes clear that each element of S is in fact a temporal (s, z)-
separator. Now let S be an arbitrary temporal (s, z)-separator and i maxi-
mal with S ⊇ ⋃

0<t≤i NGt
(s) ∩ C. Thus, S does not contain some vertex v ∈

3 We denote by G −X the temporal graph resulting from removing vertices in X from
the vertex set of G.

390 N. Maack et al.

NGi+1(s)∩C. Then, G −S contains a path from s to every vertex in C \S since v
is connected to all other vertices in C. So starting from layer i+1, all edges to z
from a vertex in C \ S would complete a temporal path from s to z. Hence,
S ⊇ ⋃

i<t≤τ NGt
(z) ∩ C, concluding the proof. 	

Next, we first show that this is still an NP-hard problem and then give an
FPT-algorithm for the solution size parameter.

Proposition 3 (�). For temporal split graphs, it is NP-hard to compute a
minimum-size set of switching vertices.

Proposition 4 (�). For a temporal split graph G = (V, E , τ), one can find a
temporal split partition minimizing the number of switching vertices in O(|E|+τ ·
|V |+ |V |2 · (1.2738p +p · |V |)) time, where p is the minimum number of switching
vertices.

Based on Lemma 2 and Proposition 4, we can now develop a fixed-parameter
algorithm for the parameter lifetime τ combined with the parameter number p
of switching vertices apart from s, z.

Theorem 5. Let G be a temporal split graph with at most p switching vertices
apart from s and z. Then Temporal (s, z)-Separation on G can be solved
in O (

(τ + 1)3
p(p+1)|G| + 1.2738p · |V |2 + p · |V |3) time.

Proof. We begin with using Proposition 4 to compute a temporal split partition
of G. We then use induction to show that for all values of p there are at most (τ +
1)3

p(p+1) minimal temporal (s, z)-separators, which can all be found in D(τ +
1)3

p(p+1)|G| time for some constant D.
For the case p = 0, by Lemma 2, we can find all minimal separators of which

there are at most τ + 1, in O(|G| · τ) time.
Now for the induction step suppose that our claim holds whenever the number

of switching vertices (apart from s, z) is at most p − 1. We choose a switching
vertex v from G (v /∈ {s, z}). The subgraph G − v then contains p − 1 switching
vertices apart from s, z, therefore we can find all its minimal separators in D(τ +
1)3

p−1p|G| time. Since a separator of G is also a separator of G −v, every minimal
separator of G must contain a separator of G − v. We will base our separators
for G on the minimal separators of G − v, henceforth called base separators, by
finding all possible combinations of vertices that can be added to turn them into
minimal separators of G.

Because we only added v, all temporal (s, z)-paths left in G after removing
a separator of G − v must pass through v. Thus any separator of G must either
contain v or some other set of vertices that cuts all these paths. To do the
latter, it has to ensure that all remaining temporal (s, v)-paths arrive after the
latest layer in which a temporal (v, z)-path can begin. In other words, such a
separator of G needs to contain a temporal (s, v)-separator for the layers from 1
to some layer t, and a temporal (v, z)-separator from t+1 to τ . We can compute
all minimal separators of this form by applying the induction hypothesis to
enumerate all temporal (s, v)-separators in layers 1 through t of G − {z} and all

On Finding Separators in Temporal Split and Permutation Graphs 391

temporal (v, z)-separators in layers t + 1 through τ of G − {s}. Note that both
of these are temporal split graphs with at most p − 1 switching vertices (not
counting s, v, and z).

So for any given t, there are no more than ((τ + 1)3
p−1p)2 possible separator

combinations. Additionally we have the option of simply taking v. As there
are τ + 1 options for t and (τ + 1)3

p−1p base separators to choose from, the
overall number of minimal temporal (s, z)-separators is thus upper-bounded by

(τ + 1)3
p−1p

((
(τ + 1)3

p−1p
)2

(τ + 1) + 1
)

≤ (τ + 1)3
p(p+1).

We require D(τ + 1)3
p−1p|G| time to find all base separators. In addition, for

each t ∈ {0, . . . , τ} we need 2D(τ + 1)3
p−1p|G| time to compute all minimal

(s, v)- and (v, z)-separators. Afterwards we need O(|V |) time to output each
found separator. The overall time required thus is

D(τ + 1)3
p−1p|G| · (1 + 2(τ + 1)) + D(τ + 1)3

p−12p|V |
≤ D(τ + 1)3

p(p+1)|G|

where we assumed τ ≥ 3. This completes the induction. Together with the time
required for Proposition 4, we obtain an overall upper time bound of

O
(
(τ + 1)3

p(p+1)|G| + |E| + τ · |V | + |V |2 · (1.2738p + p · |V |)
)

⊆ O
(
(τ + 1)3

p(p+1)|G| + 1.2738p · |V |2 + p · |V |3
)

.

	

We leave open whether Temporal (s, z)-Separation is fixed-parameter trac-
table for the single parameter number p of switching vertices.

3 Permutation Graphs

In this section, we investigate the complexity of finding temporal separators in
temporal permutation graphs. A permutation graph is defined by a ordered set
of vertices (say 1, . . . , n) and any permutation of that vertex set. Two vertices
are connected by an edge if and only if their relative order is inverted by the
permutation.

Formally, we call a graph G = (V,E) with vertex set V = [n] := {1, 2, . . . , n}
a permutation graph, if there exists a permutation π : V → V of the vertices such
that for any two vertices v < w, we have {v, w} ∈ E if and only if π(w) < π(v).
Clearly, π is then uniquely determined by G. Note that we follow the definition
of Even et al. [11] in which the vertices are already labeled; some authors also
define a permutation graph as any (unlabeled) graph for which such a labeling
can be found [13].

392 N. Maack et al.

v1 v2 v3 v4 v5

Fig. 1. An example of a permutation graph and the corresponding matching diagram.

We call a temporal graph G = ([n], E , τ) a temporal permutation graph if there
exist τ permutations π1, . . . , πτ of the vertices such that, for any two vertices
v < w, we have ({v, w}, t) ∈ E if and only if πt(w) < πt(v).4

One can visualize a permutation with a matching diagram [11]. A matching
diagram for a given permutation graph G = ([n], E) with permutation π can
be constructed by drawing n points on a horizontal line and another n points
on a parallel line below it. Then each vertex i is represented by a straight line
segment connecting the i-th point on the top line to the π(i)-th point on the
bottom line. Observe that two vertices share an edge in G if and only if their
corresponding line segments cross in the matching diagram. Figure 1 provides an
example for a permutation graph and the matching diagram of its underlying
permutation.

First, we prove in Sect. 3.1 that Temporal (s, z)-Separation on tempo-
ral permutation graphs is NP-complete. In Sect. 3.2, we use the Kendall tau
distance [16] to measure the dissimilarity of the permutations. Recall that the
Kendall tau distance is a metric that counts the number of pairwise disagree-
ments between two total orderings; it is also known as “bubble sort distance”
since it measures the number of swaps needed to transform one permutation
into the other. We show that Temporal (s, z)-Separation becomes fixed-
parameter tractable when parameterized by the combined parameter “sum of
Kendall tau distances between consecutive permutations” and the separator
size k.

3.1 Hardness Results

As is the case for split graphs, the class of permutation graphs contains all
graphs with only one edge. This means that Temporal (s, z)-Separation for
temporal graphs in which every layer is a permutation graph is NP-hard [12].
We can also show that Temporal (s, z)-Separation remains NP-hard when
restricted to the temporal permutation graphs (note that this means that the
vertex ordering is the same for all layers).

4 Note that it is not sufficient for each layer to be isomorphic to a permutation graph.

On Finding Separators in Temporal Split and Permutation Graphs 393

Theorem 6 (�). Temporal (s, z)-Separation is NP-complete on temporal
permutation graphs.

We remark that the reduction we use to obtain Theorem 6 uses an unbounded
number of time steps and also the maximum Kendall tau distance between any
two consecutive permutations is unbounded. However, by introducing additional
layers, one can decrease the Kendall tau distance between any two consecutive
layers to one. The main idea is to gradually change a layer to an independent
set and then gradually to the next layer. This can be done in a way that does
not introduce any new temporal paths.

3.2 Fixed-Parameter Tractability Results

In this section, we examine the effect of limiting how much the permutations
of the layers of the temporal permutation graph change. We can do so by mea-
suring the Kendall tau distance τK(π, π′) between the permutations π, π′ of two
consecutive layers, which is defined as

τK(π, π′) = |{(i, j) | i < j ∧ (π(i) − π(j))(π′(i) − π′(j)) < 0}|.

We will show that Temporal (s, z)-Separation on temporal permutation
graphs is fixed-parameter tractable with respect to the sum of Kendall tau dis-
tances between all pairs of consecutive permutations plus separator size k. For
this we need to demonstrate that these parameters limit the number of (s, z)-
separators that a layer does not have in common with another layer.

First, we introduce the concept of scanlines. A scanline is any line segment
in the matching diagram of a permutation with one end on each horizontal line.
If s lies on one side of the scanline and z on the other, then the set of all
vertices whose line segments cross the scanline is an (s, z)-separator. We call
such a separator a scanline separator. Bodlaender et al. [3] have shown that
every minimal separator in a permutation graph is a scanline separator and that
there are at most (n − 1)(2k + 3) scanline separators of size at most k [3, Proof
of Lemma 3.6], where n is the number of vertices.

Lemma 7. Let G1 = ([n], E1) and G2 = ([n], E2) be two permutation graphs.
If the two corresponding permutations have Kendall tau distance d, then the
number of scanline separators of size at most k in G2 that are not also scanline
separators in G1 is at most d · (2k + 1).

Proof. We begin by showing that for every endpoint on the bottom line, there
are at most 2k + 1 separators of size at most k defined by a scanline with that
endpoint. For a given bottom endpoint, we look at the leftmost endpoint on
the top line that defines such a separator. Moving right, every time we pass an
element of the permutation, its line is added to those crossed by the scanline if
it was completely to the right of it before, and removed from them if it crossed
the scanline before. This corresponds to adding or removing one vertex from the
defined separator.

394 N. Maack et al.

Since our scanline can pass every element only once, the vertices that were
added in this process will not be removed again. If we have already passed more
than 2k points on the top line, then more than k of these represent vertices
which were not present in the initial separator and were thus added. Therefore
the resulting separator contains more than k vertices. Therefore, all separators
of size at most k must be produced in the first 2k steps of this process. Together
with the separator defined by the initial scanline, this gives us at most 2k + 1
scanline separators as claimed.

Upon moving from G1 to G2, the set of lines crossing any given scanline only
changes, if any of the d swaps swapped the two points immediately to the left
and right of the lower end of the scanline. By the above, this means at most
d · (2k + 1) many scanlines produce different separators in G1 and G2. Hence,
the number of new scanline separators in G2 does not exceed d · (2k + 1). 	

Now we show that reachability in temporal permutation graphs follows the
vertex order: If a vertex reaches another vertex, then it also reaches all vertices
in between.

Lemma 8 (�). Let G = ([n], E) be a permutation graph and v, w, x ∈ [n] three
vertices with v < w < x. If there exists a path from v to x, then there also exist
paths from w to both, v and x.

We now present a parameterized algorithm for solving Temporal (s, z)-Se-
paration on a temporal permutation graph G. For this, we introduce the param-
eter dΣ :=

∑τ−1
t=1 dKt(πt, πt+1), where dKt denotes the Kendall tau distance and

πt is the t-th permutation of G. Note that taking the maximum instead of the
sum does not provide a helpful parameter since the hardness reduction we used
to obtain Theorem 6 can be modified such that the Kendall tau distance of any
two consecutive layers is one.

Theorem 9. Temporal (s, z)-Separation can be solved on a temporal per-
mutation graph in O((dΣ(2k + 1))kn · |E| + τn2) time.

Proof. We present an algorithm that runs in O((dΣ(2k +1))kn · |E|+ τn2) time,
which determines whether a given Temporal (s, z)-Separation-instance has
a solution (see Algorithm 1).

Remember that the total number of scanline separators of size at most k
in layer 1 is at most (n − 1)(2k + 3). Furthermore, in all layers after layer 1,
the number of minimal (i.e., scanline) separators which are not shared with the
previous layer is at most dΣ(2k + 1) (see Algorithm 7). Hence the first call of
GetSeparator iterates at most (n−1)(2k+3)+dΣ(2k+1) ∈ O (dΣ(2k + 1) · n)
times and every recursive call iterates at most dΣ(2k + 1) times.

Due to the condition in Line 14, every time a recursive call is made, the set
passed to S contains at least one vertex more than before, but never exceeds
the size k. Thus the maximum recursion depth is k. In every call of GetSep-

arator it is checked in O(|E|) time whether S is a temporal (s, z)-separator.
This results in a running time of O (

(dΣ(2k + 1))kn · |E|) for the initial call of
GetSeparator.

On Finding Separators in Temporal Split and Permutation Graphs 395

Algorithm 1
Input: A Temporal (s, z)-Separation-instance I = (G = ([n], E , τ), s, z, k), where G

is a temporal permutation graph and s, z ∈ [n]
Output: true if I is a yes-instance, false otherwise
1: compute π1, . . . , πτ

2: let seplist be an empty list
3: append the set of scanline separators of size at most k in G1(G) to seplist

4: for i ∈ {2, ..., τ} do
5: let seps be the set of scanline separators of size at most k in Gi(G) that are

not scanline separators in Gi−1(G)
6: if seps is not empty then
7: append seps to seplist

8: output GetSeparator(∅, 1)

9: function GetSeparator(S, i)
10: if S is a temporal (s, z)-separator of G then
11: return true

12: for j ∈ {i, . . . , τ} do
13: for S′ ∈ seplist[j] do
14: if |S| < |S ∪ S′| ≤ k then
15: if GetSeparator(S ∪ S′, j + 1) then
16: return true

17: return false

It remains to show that Lines 1 through 7 can be executed in O(τn2) time.
To construct some permutation πi, we first iterate once through the edges of Gi

and build, for each vertex v ∈ [n], the set I(v) := {w ∈ [n] | w < v and {v, w} ∈
E(Gi)}. Then we can incrementally construct πi from an empty tuple by going
through all vertices in ascending order and inserting each vertex v exactly to the
left of all elements of I(v). If I(v) is implemented using a hash set, then this takes
O(n2) time for each layer. Afterwards, building seplist again takes O(n2) time
for each layer as there are n2 potential scanlines and each only requires constant
checking time if they are all iterated in order.

Correctness. It is easy to see that Algorithm 1 will never output true when I
is a no-instance, as the condition in Line 10 can only evaluate to true if there
exists a temporal (s, z)-separator.

It remains to be shown that Algorithm 1 will always output true when I is
a yes-instance. Without loss of generality we assume that s < z. We also assume
that there exists a minimal temporal (s, z)-separator S∗ of size at most k in G.
Due to Lemma 8, every layer t in G − S∗ has some farthest reachable vertex ft

between s and z such that until time t, s can reach all vertices v with s ≤ v ≤ ft

via temporal paths but no vertex v with v > ft. Clearly ft ≤ ft+1. This means
that in each layer t, S∗ must contain a scanline separator that separates ft from
all vertices v > ft. We denote this scanline separator by S∗

t . By minimality of S∗,
S∗ =

⋃τ
t=1 S∗

t .

396 N. Maack et al.

Trivially, the following property holds for the initial call of GetSeparator:

i−1⋃

t=1

S∗
t ⊆ S ⊆ S∗ (∗)

We next show that whenever (∗) holds for a call of GetSeparator, then
either S = S∗ or (∗) also holds for some recursive call. This implies that some
recursive call will eventually produce S∗.

So assume now (∗) holds with S �= S∗. Since S is then not a temporal
(s, z)-separator, GetSeparator(S, i) iterates through all scanline separators
in seplist[i] through seplist[τ], one of which must be the first scanline sepa-
rator S∗

t which is not already contained in S. When it gets to that separator it
makes a recursive call GetSeparator(S ∪ S∗

t , i + 1). This recursive call then
again satisfies (∗). 	

We leave open whether Temporal (s, z)-Separation is fixed-parameter trac-
table or becomes W[1]-hard when parameterized by either only the separator
size k or only the sum dΣ of Kendall tau distances of permutations of consecutive
layers.

4 Conclusion

We showed that Temporal (s, z)-Separation remains NP-complete on tem-
poral split graphs even when there are only τ ≥ 4 layers, but it becomes fixed-
parameter tractable when parameterized by the lifetime τ combined with the
number p of “switching vertices”, that is, vertices that switch between the
independent set and the clique. We leave open whether one can obtain fixed-
parameter tractability when only parameterizing by p. Another natural restric-
tion we can place on temporal split graphs is limiting the size of the independent
set for all layers. We conjecture that Temporal (s, z)-Separation is fixed-
parameter tractable with respect to the maximum size of the independent set.

We also showed that Temporal (s, z)-Separation remains NP-complete
on temporal permutation graphs, but becomes fixed-parameter tractable with
respect to the separator size k plus the sum dΣ of Kendall tau distances of
permutations of consecutive layers. We left open the complexity of Temporal

(s, z)-Separation on temporal permutation graphs when parameterized by the
lifetime τ . Whether the problem stays fixed-parameter tractable or becomes
W[1]-hard when parameterized by either only the separator size k or only the
sum dΣ of Kendall tau distances of permutations of consecutive layers remains
open as well.

Lastly, we leave for future research whether our results also hold in the strict
case, that is, when the temporal paths that are to be destroyed by the separator
have strictly increasing time labels. Most of our algorithms heavily rely on the

On Finding Separators in Temporal Split and Permutation Graphs 397

fact that temporal paths may use several time edges with the same label, and
hence they can presumably not be adapted to the strict setting in a straightfor-
ward way.

References

1. Bender, E.A., Richmond, L.B., Wormald, N.C.: Almost all chordal graphs split.
38(2), 214–221 (1985). https://doi.org/10.1017/S1446788700023077

2. Bentert, M., Himmel, A.-S., Nichterlein, A., Niedermeier, R.: Efficient computation
of optimal temporal walks under waiting-time constraints. Appl. Netw. Sci. 5(1),
73 (2020). https://doi.org/10.1007/s41109-020-00311-0

3. Bodlaender, H.L., Kloks, T., Kratsch, D.: Treewidth and pathwidth of permutation
graphs. 8, 606–616 (1995). https://doi.org/10.1137/S089548019223992X

4. Borgatti, S.P., Everett, M.G.: Models of core/periphery structures. 21(4), 375–395
(2000). https://doi.org/10.1016/S0378-8733(99)00019-2

5. Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes–A Survey (1999). https://
doi.org/10.1137/1.9780898719796

6. Xuan, B.B., Ferreira, A., Jarry, A.: Computing shortest, fastest, and foremost
journeys in dynamic networks. 14(02), 267–285 (2003). https://doi.org/10.1142/
S0129054103001728

7. Buß, S., Molter, H., Niedermeier, R., Rymar, M.: Algorithmic aspects of temporal
betweenness, pp. 2084–2092 (2020). https://doi.org/10.1145/3394486.3403259

8. Enright, J., Meeks, K., Mertzios, G.B., Zamaraev, V.: Deleting edges to restrict
the size of an epidemic in temporal networks, 119, 60–77 (2021) https://doi.org/
10.1016/j.jcss.2021.01.007

9. Enright, J., Meeks, K., Skerman, F.: Assigning times to minimise reachability in
temporal graphs, 115, 169–186 (2021). https://doi.org/10.1016/j.jcss.2020.08.001

10. Erlebach, T., Hoffmann, M., Kammer, F.: On temporal graph exploration. 119,
1–18 (2021). https://doi.org/10.1016/j.jcss.2021.01.005

11. Even, S., Pnueli, A., Lempel, A.: Permutation graphs and transitive graphs. 19(3),
400–410 (1972). https://doi.org/10.1145/321707.321710

12. Fluschnik, T., Molter, H., Niedermeier, R., Renken, M., Zschoche, P.: Temporal
graph classes: a view through temporal separators. 806, 197–218 (2020). https://
doi.org/10.1016/j.tcs.2019.03.031

13. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs (2004). ISBN
978-0-444-51530-8

14. Guo, J., Hüffner, F., Niedermeier, R.: A structural view on parameterizing prob-
lems: distance from triviality. In: Downey, R., Fellows, M., Dehne, F. (eds.) IWPEC
2004. LNCS, vol. 3162, pp. 162–173. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-28639-4 15

15. Kempe, D., Kleinberg, J., Kumar, A.: Connectivity and inference problems for
temporal networks. 64(4), 820–842 (2002). https://doi.org/10.1006/jcss.2002.1829

16. Kendall, M.G.: A new measure of rank correlation. 30(1/2), 81–93 (1938). https://
doi.org/10.2307/2332226

17. Maack, N., Molter, H., Niedermeier, R., Renken, M.: On finding separators in
temporal split and permutation graphs (2021). http://arxiv.org/abs/2105.12003

18. Mertzios, G.B., Michail, O., Chatzigiannakis, I., Spirakis, P.G.: Temporal network
optimization subject to connectivity constraints. In: Fomin, F.V., Freivalds, R.,
Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013. LNCS, vol. 7966, pp. 657–668.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39212-2 57

https://doi.org/10.1017/S1446788700023077
https://doi.org/10.1007/s41109-020-00311-0
https://doi.org/10.1137/S089548019223992X
https://doi.org/10.1016/S0378-8733(99)00019-2
https://doi.org/10.1137/1.9780898719796
https://doi.org/10.1137/1.9780898719796
https://doi.org/10.1142/S0129054103001728
https://doi.org/10.1142/S0129054103001728
https://doi.org/10.1145/3394486.3403259
https://doi.org/10.1016/j.jcss.2021.01.007
https://doi.org/10.1016/j.jcss.2021.01.007
https://doi.org/10.1016/j.jcss.2020.08.001
https://doi.org/10.1016/j.jcss.2021.01.005
https://doi.org/10.1145/321707.321710
https://doi.org/10.1016/j.tcs.2019.03.031
https://doi.org/10.1016/j.tcs.2019.03.031
https://doi.org/10.1007/978-3-540-28639-4_15
https://doi.org/10.1007/978-3-540-28639-4_15
https://doi.org/10.1006/jcss.2002.1829
https://doi.org/10.2307/2332226
https://doi.org/10.2307/2332226
http://arxiv.org/abs/2105.12003
https://doi.org/10.1007/978-3-642-39212-2_57

398 N. Maack et al.

19. Niedermeier, R.: Invitation to fixed-parameter algorithms. (2006). https://doi.org/
10.1093/ACPROF:OSO/9780198566076.001.0001

20. Sen, A., Deng, H., Guha, S.: On a graph partition problem with application to
VLSI layout. 43(2), 87–94 (1992). https://doi.org/10.1016/0020-0190(92)90017-P

21. Zschoche, P., Fluschnik, T., Molter, H., Niedermeier, R.: The complexity of finding
small separators in temporal graphs. 107, 72–92 (2020). https://doi.org/10.1016/
j.jcss.2019.07.006

https://doi.org/10.1093/ACPROF:OSO/9780198566076.001.0001
https://doi.org/10.1093/ACPROF:OSO/9780198566076.001.0001
https://doi.org/10.1016/0020-0190(92)90017-P
https://doi.org/10.1016/j.jcss.2019.07.006
https://doi.org/10.1016/j.jcss.2019.07.006

The Possible Winner Problem with Uncertain
Weights Revisited

Marc Neveling, Jörg Rothe , and Robin Weishaupt(B)

Institut für Informatik, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
{marc.neveling,rothe,robin.weishaupt}@hhu.de

Abstract. Baumeister et al. [8] introduced the possible winner with uncertain
weights problem which, given a weighted election with the weights of some vot-
ers as yet unspecified, asks whether one can assign weights to these voters such
that a distinguished candidate wins. Solving all questions they specifically left
open for nonnegative integer weights, we show that two variants of this problem
for 3-approval and four variants for plurality with runoff can be solved efficiently.
In addition, we study variants of this problem for Borda, k-veto, and veto with
runoff in terms of their computational complexity. Finally, we also prove that
the problem of constructive control by adding voters in succinct representation
belongs to P for plurality with runoff and veto with runoff.

1 Introduction

Over the previous two decades, computational social choice—with its many applica-
tions to collective decision making—has evolved into a central subarea of artificial
intelligence and, in particular, multiagent systems. Looking into the textbook edited
by Brandt et al. [12], one of the most intensively studied problems in computational
social choice alongside manipulation, control, and bribery is the possible winner prob-
lem that Konczak and Lang [24] were the first to study. Generalizing the (unweighted)
coalitional manipulation problem [13] and being a special case of swap bribery [14], in
this problem we are given an election with only partial (not total) preferences over the
candidates and a designated candidate c, and we ask whether one can extend the partial
preferences to total ones to make c a winner. This problem and variations thereof as well
as its companion, the necessary winner problem [24,33], have been studied by many
authors for many voting rules—see, e.g., the very recent survey by Lang [26] and the
references cited therein. The idea underlying the possible and necessary winner prob-
lems (to determine the winners in the presence of incomplete preferences for some or for
all extensions to total preferences) is so fundamental that it has been applied success-
fully to many other areas, including judgment aggregation [3,4], fair division [2,25],
hedonic games [23], and abstract argumentation [5,6,28,32].

While most work on the possible winner problem is concerned with an unweighted
variant of the problem, Baumeister et al. [7] were the first to consider its weighted vari-
ant. Baumeister et al. [8] also introduced and studied another variant of the weighted
possible winner problem, the possible winner with uncertain weights problem, where
the uncertainty concerns the voters’ weights instead of their preferences: Given a
c© Springer Nature Switzerland AG 2021

E. Bampis and A. Pagourtzis (Eds.): FCT 2021, LNCS 12867, pp. 399–412, 2021.
https://doi.org/10.1007/978-3-030-86593-1_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86593-1_28&domain=pdf
http://orcid.org/0000-0002-0589-3616
https://doi.org/10.1007/978-3-030-86593-1_28

400 M. Neveling et al.

weighted election with (total preferences over the candidates and) the weights of some
voters as yet unspecified, can one assign weights to these voters such that a designated
candidate wins?

Based on the ever-increasing exchange of—almost real-time—data in our modern
society, the possible winner with uncertain weights model can be applied to all kinds
of elections today better than ever. For almost every election taking place, some pre-
election or some polls are done and the results are published. These results can be
translated by suitable probability-based methods into ranges for likely weights, upper
bounds on the total weight, etc., so that the results presented here, together with the
previous results by Baumeister et al. [8], provide powerful means to improve election
forecasts in efficient ways.

Furthermore, with blockchain-related technologies advancing and experiencing
more and more mainstream adoption, some elections start to take place on-chain
entirely. Characteristic for these elections is that they satisfy full transparency, i.e.,
everyone can check who is eligible to vote, who has voted and how, who has not voted,
etc. In this setting, the possible winner with uncertain weights problem can be applied
quite beneficially: If there is an efficient algorithm available to determine, given uncer-
tainty about the voters’ weights, whether some distinguished candidate has a chance of
winning or whether there is no hope, such an algorithm could be run periodically to
make a good prediction.

Baumeister et al. [8] introduced a general framework for the possible winner
with uncertain weights problem, both for nonnegative integer and nonnegative rational
weights, with and without upper bounds on the total weight to be distributed, and with
and without ranges to choose the weights from, and they studied the resulting problems
in terms of their computational complexity for scoring protocols such as k-approval, for
plurality with runoff, Copeland, ranked pairs, and (a simplified variant of) Bucklin and
fallback voting.

Continuing this line of research, we solve all questions they specifically left open
for nonnegative integer weights:

(a) with no restriction whatsoever (apart from nonnegative integer weights);
(b) with both an upper bound on the total weight to be distributed and with ranges to

choose the weights from;
(c) with only an upper bound on the total weight; and
(d) with only ranges to choose the weights from.

Specifically, we provide polynomial-time algorithms for the variants (b) and (c) of this
problem for 3-approval (Sect. 3) and for all four variants (a)–(d) for plurality with runoff
(Sect. 4). Furthermore, we study the complexity of the same four variants of this prob-
lem for veto with runoff (Sect. 5) and for other prominent scoring protocols—namely,
k-veto (Sect. 6) and Borda (Sect. 7)—and establish both NP-completeness results (for
Borda in cases (a)–(d) and for k-veto in cases (b) and (c) for k≥ 3) and polynomial-time
algorithms (in all other cases). Relatedly, in Sects. 4 and 5, we also prove that the prob-
lem of constructive control by adding voters in succinct representation can be solved in
polynomial time for plurality with runoff and veto with runoff. Finally, in Sect. 8, we
summarize our results in Table 1.

The Possible Winner Problem with Uncertain Weights Revisited 401

2 Preliminaries

An election (C,V) is given by its set C of candidates and its list V of votes expressing
the voters’ preferences over the candidates. We assume that each vote is represented
by a (strict) linear preference order. For example, if there are four candidates in C =
{a,b,c,d} and a voter prefers b to c, c to d, and d to a, we write this vote as b > c >
d > a. When possible, we represent elections succinctly, i.e., identical votes are not
listed one by one but just once along with a number in binary representation giving the
multiplicity of this vote.

A voting rule determines the winner(s) of a given election. Most voting rules we
consider are scoring protocols: For m candidates, a scoring vector (α1,α2, . . . ,αm) of
integers with α1 ≥ α2 ≥ ·· · ≥ αm specifies the points the candidates receive from each
vote based on their position in it, i.e., a candidate in the ith position of a vote receives αi

points from it, and the score of candidate c∈C in election (C,V), denoted by scoreV (c),
is the sum of the points c receives from the votes in V . Specifically, we consider the
prominent scoring protocols (for m candidates) that are based on the following scoring
vectors:

k-approval: (1, . . . ,1,0, . . . ,0), where the first k≤m entries are ones (1-approval is also
known as plurality);

k-veto: (1, . . . ,1,0, . . . ,0), where the last k ≤ m entries are zeros (1-veto is also simply
known as veto); and

Borda: (m−1,m−2, . . . ,0).

In addition to these scoring protocols, we consider the following rules:

Plurality with runoff: proceeds in two stages. In the first stage, all candidates except
the two candidates with the highest and the second highest plurality score are elim-
inated. In the second stage (the runoff), among the two remaining candidates and
with votes restricted to these, the candidate with the highest plurality score wins. In
both stages, we use some predefined tie-breaking rule to determine the two candi-
dates that proceed to the runoff and the overall winner in case there are ties.

Veto with runoff: works just like plurality with runoff, except it uses veto scores in
both stages to determine who proceeds to the runoff and who is the overall winner.

In an unweighted election, each vote has unit weight. We will consider weighted
elections where each vote comes with a weight. For example, if a vote has weight
two, the scores that the candidates receive from this vote are doubled. Note further
that we consider the nonunique-winner model, which means that it is enough for the
distinguished candidate to be one among possibly several candidates with the highest
(possibly weighted) score to win the election.

In our proofs, we make use of the following notation. Let S ⊆C be a set of candi-
dates. When

−→
S appears in a vote, the candidates from S are ranked in any fixed (e.g., the

lexicographical) order; when
←−
S appears in a vote, the candidates from S are ranked in

the reverse order; when S appears in a vote (without an arrow on top), the order in which
the candidates from S are ranked here does not matter for our argument; and when · · ·
appears in a vote, the order in which the remaining candidates occur does not matter.

402 M. Neveling et al.

For example, if C = {a,b,c,d}, S = {b,c} and we use a lexicographical order, then−→
S > d > a means b> c> d > a;

←−
S > d > a means c> b> d > a; and both S > d > a

and · · · > d > a indicate any one of b> c> d > a and c> b> d > a. Further, for an elec-
tion (C,V) and two candidates c,d ∈C, we use diff (C,V)(c,d) = scoreV (c)− scoreV (d)
to denote the difference of the scores of c and d in (C,V). By diff ({c,d},V)(c,d) we
denote the difference of the scores of c and d in the head-to-head contest which is
({c,d},V) with the votes in V being tacitly reduced to only c and d.

We now recall the definition of the problems introduced by Baumeister et al. [8]
that we are interested in. For a given voting rule E , define the problem:1

E -POSSIBLE-WINNER-WITH-UNCERTAIN-WEIGHTS-N (E -PWUW-N)

Given: A set C of candidates, a list V1 of unit-weight votes over C, a list V0 of votes
over C with unspecified weights, and a distinguished candidate c.

Question: Is there an assignment of weights wi ∈N for all vi ∈V0, 1 ≤ i≤ |V0|, such that
c wins the weighted election (C,V1 ∪V0) under E?

Baumeister et al. [8] also introduced the following problem variants:

– E-PWUW-RW-N: In addition to the components of a E-PWUW-N instance, we
are given a set R= {R1, . . . ,R|V0|} of regions (or, intervals) Ri = [li,ri] ⊆ N, and the
question is the same as for E-PWUW-N, except that each weight wi is additionally
required to be chosen from Ri.

– E-PWUW-BW-N: In addition to the components of a E-PWUW-N instance, we
are given a bound B, and the question is the same as for E-PWUW-N, except that
the total weight of the votes in V0 is additionally required to not exceed B, i.e.,

∑|V0|
i=1wi ≤ B.

– E-PWUW-BW-RW-N incorporates both the restrictions of E-PWUW-RW-N and
E-PWUW-BW-N.

Baumeister et al. [8] comprehensively discuss these definitions and justify their
choices (for example, why votes in V1 have unit weight and why weight-zero votes
in V0 are allowed and that this corresponds to modeling control by deleting voters as
defined by Bartholdi et al. [1] and Hemaspaandra et al. [21]), and we refer the reader to
this discussion.

We assume the reader to be familiar with the basic concepts of computational com-
plexity, such as the complexity classes P and NP and the notions of NP-hardness and
NP-completeness, based on polynomial-time many-one reductions, denoted by A≤p

m B.
For more background on complexity theory, we refer to the textbooks by Garey and
Johnson [18], Papadimitriou [29], and Rothe [30].

1 Baumeister et al. [8] define and study these problems for nonnegative integer and nonnegative
rational weights, and accordingly append either N or Q+ to their problems. We will consider
the case of nonnegative integer weights only, but for clarity and consistency with the literature,
we append the suffix “-N” to our problems.

The Possible Winner Problem with Uncertain Weights Revisited 403

3 3-Approval

Baumeister et al. [8] have shown that PWUW-RW-N and PWUW-N are in P for
3-approval but left it open how hard it is to solve PWUW-BW-N or PWUW-BW-RW-
N for this voting rule. Solving these open questions, we show that these two problems
are in P as well. Our proof also shows that 3-approval-PWUW-RW-N is in P, estab-
lishing an alternative proof for this already known result. We first define the problem
GENERALIZED-WEIGHTED-B-EDGE-MATCHING (GWBEM), which belongs to P
and which we will use to prove membership of 3-approval-PWUW-BW-RW-N in P.2

GENERALIZED-WEIGHTED-B-EDGE-MATCHING (GWBEM)

Given: An undirected multigraph G= (N,E) without loops, capacity-bounding func-
tions a�,au : E → N and b�,bu : N → N, a weight function w : E → N, and a
target integer r ∈ N.

Question: Does there exist a function x : E → N with ∑e∈E w(e)x(e) ≥ r such that for
every edge e∈ E it holds that a�(e)≤ x(e)≤ au(e) and for every node z∈N it
holds that b�(z)≤ ∑e∈δ(z) x(e)≤ bu(z), where δ(z) is the set of edges incident
to node z?

Next, we define a useful notation to simplify our proofs.

Definition 1. Let (C,V1 ∪V0) be a weighted election for a scoring protocol. For each
c ∈C, scoreV1(c) denotes the score of c according to the (unit-weight) votes in V1, and
scoreV0(c) denotes the score of c according to the weighted votes in V0 once they are
specified.

We now present two lemmas (their proofs and some other proofs are omitted
due to space limitations) that enable us to make generic assumptions about the prob-
lem instances used later on. By the first lemma, we may assume that, w.l.o.g., all
intervals Ri = [li,ri] ∈ R fulfill li = 0 for every E-PWUW-BW-RW-N instance I =
(C,V1,V0,R,B,c).

Lemma 1. Let I = (C,V1,V0,R,B,c) be an E-PWUW-BW-RW-N instance for a scor-
ing protocol E . Then there exists an instance I ′ = (C,V ′

1,V0,R′,B′,c) with l′i = 0 for all
R′
i = [l′i ,r′i]∈ R′ such that I ∈E-PWUW-BW-RW-N if and only if I ′ ∈E-PWUW-BW-

RW-N.

Next, we present a lemma that allows us to make a statement about which weights
for which votes in V0 are greater than 0.

Lemma 2. Let C, c, V1, and V0 be elements of a E-PWUW instance for some scoring
protocol E . If there exist weights wi ∈ N for vi ∈ V0, 1 ≤ i ≤ |V0|, such that c wins the
weighted E election (C,V1 ∪V0), then there exists an alternative weight assignment,
where c still wins the election, with weights w′

i ∈ N for the votes in V0, such that w′
i > 0

holds if and only if vi assigns a positive score to c.

2 Formally, Gabow [17] and Grötschel et al. [20, p. 259] define a maximization variant of
GWBEM and show its polynomial-time solvability, which immediately implies that GWBEM
is in P. The same problem was first used by Lin [27] in the context of voting and later on also,
for example, by Erdélyi et al. [15].

404 M. Neveling et al.

With Lemma 2 we may assume that, without loss of generality, for any 3-approval-
PWUW-BW-RW-N instance I = (C,V1,V0,R,B,c) where c wins, only votes in V0 with
c among the top three candidates have positive weight.

We are now ready to prove that 3-approval-PWUW-BW-RW-N is efficiently solv-
able. We do so by reducing this problem to GWBEM.

Theorem 1. 3-approval-PWUW-BW-RW-N is in P.

Proof. In order to prove that 3-approval-PWUW-BW-RW-N is in P, we show
that 3-approval-PWUW-BW-RW-N ≤p

m GWBEM. Let I = (C,V1,V0,R,B,c) be a
3-approval-PWUW-BW-RW-N instance. According to Lemma 1, we assume for all

vi ∈V0 that Ri = [0,ri] holds. We can also assume ∑|V0|
i=1 ri ≥ B, since the sum over the ri

provides an upper bound for the overall weight distributed among the votes in V0.3 We
construct a GWBEM instance I ′ = (G,a�,au,b�,bu,w,r) with multigraph G = (C′,E)
whose set of nodesC′ =C\{c} consists of all candidates except c. Furthermore, denote
the subset of votes from V0 where candidate c is among the top three positions by
V ′

0 = {x1 > x2 > x3 > · · · ∈V0 | c ∈ {x1,x2,x3}} and define the set of edges for G as

E = {{x1,x2,x3}\{c} | x1 > x2 > x3 > · · · ∈V ′
0}.

That is, for every vote from V0 with c among the top three positions we add an edge
between the vote’s remaining two candidates. This can result in a multigraph, of course,
but is in line with the problem definition. We set the target integer r = B and, for
every edge e ∈ E linked to vi ∈ V0, we define the edge capacity bounds by a�(e) = 0
and au(e) = ri and the weight function by w(e) = 1 for the corresponding interval
Ri = [0,ri]. For every c′ ∈ C′, we define the node capacity bounds by b�(c′) = 0 and
bu(c′) = scoreV1(c)+B−scoreV1(c

′). We can assume for every candidate c′ ∈C′ (which
is, recall, a node in G) that bu(c′) ≥ 0 holds, as otherwise I would be a trivial NO-
instance. That is the case, since bu(c′) < 0 implies scoreV1(c

′)− scoreV1(c) > B, which
makes it impossible for c to beat c′ with votes from V0 having a total weight of at most
B. Obviously, the construction of I ′ can be realized in time polynomial in |I |. We now
provide our intuition on how to prove that I ∈ 3-approval-PWUW-BW-RW-N if and
only if I ′ ∈ GWBEM. The full proof of correctness is omitted due to space constraints.

From left to right, we know that there exist weights wi ∈ N such that c wins the
weighted election and we can assume that the sum of these weights equals B. By
Lemma 2, we know that only votes having c among its top three candidates have posi-
tive weight. Assigning these weights to the edges of G according to the corresponding
votes allows us to obtain a weight allocation for I ′. One can now validate that this
weight assignment satisfies all requirements of I ′. That the sum of the edges’ weights
in G equals r is easy to see. Furthermore, the edges’ weights satisfy their upper and
lower limits as these limits correspond to the corresponding intervals from I . Finally,
every node in G satisfies its upper and lower limits because of the facts that c is a winner
of the weighted election and c’s overall score equals to scoreV1(v)+B. Hence, I ′ is a
YES-instance.
3 This assumption does make sense indeed: Otherwise, the parameter B would be meaningless

and our instance becomes a PWUW-RW-N instance which, as mentioned earlier, is efficiently
solvable.

The Possible Winner Problem with Uncertain Weights Revisited 405

From right to left, we know that there exists a weight assignment for the edges in G
satisfying all requirements. By transferring these weights to the votes in V ′

0 and setting
the weights of all remaining votes in V0\V ′

0 to 0, we obtain a weight assignment for
I . All weights are within their intervals since the edges’ weights fulfill their upper and
lower limits, too. From the fact that all vertices in G satisfy their upper and lower limits,
one can conclude by a simple calculation that c is a winner of the weighted election.
Finally, we can calculate that c has a point lead over all other candidates, such that we
can reduce some of the positively weighted weights in order to have the overall sum of
weights assigned to the votes in V0 to equal B. Consequently, all requirements of I are
satisfied and therefore, I is a YES-instance.
�

From this result it immediately follows that the remaining two problem variants
belong to P, too. The proof of Corollary 1 (omitted here due to space constraints) uses
the reductions given by Baumeister et al. [8] and can be analogously applied to other
rules as well, as we will do later on.4

Corollary 1. For 3-approval, the problems PWUW-BW-N and PWUW-RW-N are
in P.

Let E be a scoring protocol. We say that E is a binary scoring protocol if all entries
of its score vector are from {0,1}. For example, k-veto and k-approval are binary scor-
ing protocols for all k ∈ N.

Theorem 2. For any binary scoring protocol E , the problems E-PWUW-RW-N and
E-PWUW-N are in P.

The proof of Theorem 2 (omitted due to space constraints) is also used later on in
the proof that E-PWUW-RW-N or -PWUW-N for some voting rule E is in P. Note
that this result also provides an alternative proof that 3-approval-PWUW-RW-N and
3-approval-PWUW-N are in P, as 3-approval is a binary voting protocol.

4 Plurality with Runoff

For plurality with runoff, Baumeister et al. [8] showed that all four possible winner
problems with uncertain weights are in P when the weights can be rational. For non-
negative integer weights, however, they left the complexity of these four problems open.
We solve these open questions.

Baumeister et al. [8] showed that PWUW-BW-RW-N ≤p
m CCAV for every E if

CCAV is used in succinct representation (which, recall, means that identical votes are

4 As pointed out by Zack Fitzsimmons and Edith Hemaspaandra, for 3-approval, that PWUW-
BW-N is (and, possibly, other of our problems are) in P also follows immediately from the
results of Baumeister et al. [8] and Fitzsimmons and Hemaspaandra [16]. Even more, they
note that since the dichotomy for the problem CCAV (the definition of which is recalled in
Footnote 5 in the next section) shown by Hemaspaandra et al. [22] is exactly the same as
for its succinct variant CCAVsuccinct [16], it follows that the same dichotomy holds for all
problems X such that CCAV ≤p

m X ≤p
m CCAVSUCCINCT. Hence, this immediately gives the

same dichotomy for PWUW-BW-N (both its general and its succinct variant), for example.

406 M. Neveling et al.

not listed one by one but just once along with a binary number giving the multiplicity
of this vote).5 Together with the facts that PWUW-BW-N ≤p

m PWUW-BW-RW-N and
PWUW-RW-N≤p

m PWUW-BW-RW-N it follows that if CCAV for plurality with runoff
(in succinct representation) is in P, each of PWUW-BW-RW-N, PWUW-BW-N, and
PWUW-RW-N is in P for plurality with runoff as well. Erdélyi et al. [15] showed that
CCAV in classical representation is in P for plurality with runoff. Alas, their approach
cannot be easily adapted for succinct representation as their algorithm iterates over all
possible values �′ ≤ � and � is not polynomially bounded in succinct representation.
Instead, after some preprocessing steps we will solve the problem with an integer linear
program (ILP) similarly to how Fitzsimmons and Hemaspaandra [16] have handled
election problems in succinct representation. Regarding tie-breaking, we assume that
whenever a tie occurs we can freely choose how it is broken. The technically rather
involved proof of Theorem 3 is omitted due to space constraints.

Theorem 3. Plurality-with-runoff-CCAV in succinct representation is in P.

Corollary 2. For plurality with runoff, the problems PWUW-BW-RW-N, PWUW-RW-
N, and PWUW-BW-N are in P.

Lastly, we consider PWUW-N for this rule, for which we can use Corollary 2.

Theorem 4. For plurality with runoff, PWUW-N is in P.

Proof. For plurality with runoff, a given instance I = (C,V1,V0,c) of PWUW-N can
be solved in polynomial time as follows. If there is a vote in V0 with c on top, we
have a YES-instance, as we can simply assign this vote a large enough weight (e.g.,
|V1|) and other votes a weight of zero for c to win the runoff. Otherwise, we define
a PWUW-RW-N instance I ′ = (C,V1,V0,R,c) (for plurality with runoff), with each
region Ri ∈ R ranging from zero to |V0||V1|. We can solve this instance in polynomial
time (see Corollary 2) and then use that I is a YES-instance of PWUW-N if and only if
I ′ is a YES-instance of PWUW-RW-N. To see this, we show that we can never assign a
weight greater than |V0||V1| to a vote in V0 if c wins. Assume for a contradiction that a
vote v ∈V0 was given a weight greater than |V0||V1| and c won the runoff. Let d be the
candidate on top of v. We know that none of the votes in V0 has c on top; otherwise, we
would already be done. So c has a score of at most |V1| in the first round. As c reaches
the runoff and the score of d is greater than c’s score, all other candidatesC\{c,d} have
at most the same score as c. Thus the weight of each other vote in V0 \ {v} that does
not have d on top is at most |V1| (i.e., the upper bound on c’s score). Then the score c
gains in the runoff from the eliminated candidates is at most (|V0|−1)|V1| which sums
up to an upper bound of |V0||V1| of c’s score in the runoff. But d’s score is greater than
|V0||V1|, since the vote v with weight greater than |V0||V1| has d on top, so c loses the

5 As a reminder, CCAV is a shorthand for the problem CONSTRUCTIVE-CONTROL-BY-
ADDING-VOTERS introduced by Bartholdi et al. [1]. The input of E -CCAV consists of a
set C of candidates with a distinguished candidate c ∈ C, a list V of registered (unit-weight)
votes over C, an additional list W of as yet (unit-weight) unregistered votes, and a positive
integer �. The question is whether it is possible to make c win the election under E by adding
at most � votes from W to the election.

The Possible Winner Problem with Uncertain Weights Revisited 407

runoff, which is a contradiction. Note that there might be other votes in V0 that have d
on top, but their weight is irrelevant for our argument as d already wins the first round
and the runoff even without additional points from them.
�

5 Veto with Runoff

Next, we turn to veto with runoff and solve all four cases. Again, we assume that if any
ties occur, we can freely choose how to break these. Similarly to the previous section
we will use the result of Baumeister et al. [8] that PWUW-BW-RW-N, PWUW-BW-
N, and PWUW-RW-N reduce to CCAV for any voting rule E if CCAV is in succinct
representation. For veto with runoff, CCAV in classical representation was shown to
be in P by Erdélyi et al. [15] as well, but we run into the same issue as in the previous
section when trying to adapt their proof assuming succinct representation. Therefore,
we prove the following theorem with a different approach; the proof is again omitted
here.

Theorem 5. For veto with runoff, CCAV in succinct representation is in P.

Corollary 3. For veto with runoff, the problems PWUW-RW-N, PWUW-BW-N, and
PWUW-BW-RW-N are in P.

Lastly, we consider PWUW-N for veto with runoff, omitting the proof of Theorem 6
as well.

Theorem 6. For veto with runoff, PWUW-N is in P.

6 k-Veto

In this section, we focus on k-veto. For k = 1 (i.e., veto), we can give polynomial-time
algorithms for all four problem variants, omitting the proof of Theorem 7.

Theorem 7. For veto, the problems PWUW-BW-RW-N and PWUW-BW-N are in P.

Using Theorem 2 from Sect. 3, we obtain the following corollary, as veto is a binary
scoring protocol.

Corollary 4. For veto, the problems PWUW-RW-N and PWUW-N are in P.

In order to prove that our problems are in P for 2-veto as well, we introduce another
variant of the earlier presented polynomial-time solvable GWBEM problem. According
to Gabow [17] and Grötschel et al. [20, p. 259], the following variant of this problem is
in P, too.6

6 Again, Gabow [17] and Grötschel et al. [20, p. 259] formalize this problem variant as a mini-
mization problem. Since this problem is polynomial-time solvable, the decision problem vari-
ant that we introduce is in P as well.

408 M. Neveling et al.

GENERALIZED-B-EDGE-COVER (GBEC)

Given: An undirected multigraph G= (N,E) without loops, capacity-bounding func-
tions a�,au : E → N and b�,bu : N → N, and a target integer r ∈ N.

Question: Is there a function x : E → N with ∑e∈E x(e) ≤ r, such that for every edge
e ∈ E it holds that a�(e) ≤ x(e) ≤ au(e) and for every node z ∈ N it holds that
b�(z)≤ ∑e∈δ(z) x(e)≤ bu(z), where δ(z) is the set of edges incident to node z?

The difference to the earlier introduced GWBEM problem is that this time the weights
assigned to the edges of G are not weighted and we want the sum to be at most r
instead of at least r. Especially the last difference seems to be a bit subtle but is crucial
for the ensuing proof, as this time we work with a veto rule and, thus, construct the
corresponding graph in such a way that positively weighted edges in the graph cause
candidates to not obtain points.

Theorem 8. For 2-veto, each of PWUW-BW-RW-N, PWUW-BW-N, PWUW-RW-N,
and PWUW-N is in P.

Proof. In order to prove that 2-veto-PWUW-BW-RW-N is in P, we reduce this problem
to GBEC. Let I = (C,V1,V0,R,B,c) be a PWUW-BW-RW-N instance for 2-veto with
Ri = [0,ri] for 1 ≤ i ≤ |V0|, according to Lemma 1. We construct a GBEC instance
I ′ = (G,a�,au,b�,bu,r) similar to the GWBEM instance in the proof of Theorem 1. We
define the multigraph G = (C \{c},E), where in order to specify E we first define the
set

V ′
0 = {· · · > x1 > x2 ∈V0 | {x1,x2}∩{c} = /0}

consisting of all votes from V0 with c not being ranked in one of the last two positions.
Then we define the edge set of G as

E = {{x1,x2} | · · · > x1 > x2 ∈V ′
0}.

Doing so, every edge in the graph corresponds to some vote in V0, i.e., when we write
ei, we implicitly refer to the corresponding vote vi from V0 (re-indexing the indices as
needed). For every edge ei ∈ E, we define a�(ei) = 0 and au(ei) = ri for Ri = [0,ri]. For
every node d ∈C \{c}, we define

b�(d) = max{0,scoreV1(d)− scoreV1(c)}

and bu(d) = B. Lastly, we define r = B. This completes the construction of I ′, which
can be realized in time polynomial in |I |. The proof to show that I ∈ 2-veto-PWUW-
BW-RW-N holds if and only if I ′ ∈ GBEC is true is almost the same as the one for
Theorem 1, adjusted for the different voting rule. We simply refer to the earlier proof;
the reader can easily fill in the necessary details.

Using the same approach as already used in Corollary 1, it immediately follows
that PWUW-BW-N and PWUW-RW-N are in P, too. Finally, to see that PWUW-N is
in P, we can once again refer to Theorem 2, since 2-veto is a binary scoring protocol as
well.
�

The Possible Winner Problem with Uncertain Weights Revisited 409

Turning to k-veto for k ≥ 3, we show that PWUW-N and PWUW-RW-N are in P,
while PWUW-BW-RW-N and PWUW-BW-N are NP-complete. For the first two prob-
lems, PWUW-N and PWUW-RW-N, we refer to Theorem 2, since 3-veto is a binary
scoring protocol.

Corollary 5. For each k ≥ 3, k-veto-PWUW-N and k-veto-PWUW-RW-N are in P.

For the other two problems, PWUW-BW-N and PWUW-BW-RW-N, we have NP-
completeness results. The proof of Theorem 9 is again omitted.

Theorem 9. For each k ≥ 3, k-veto-PWUW-BW-N is NP-complete.

By the reduction CCAV ≤p
m PWUW-BW-RW-N of Baumeister et al. [8], we imme-

diately obtain the following result, as Lin [27] has shown that CCAV is NP-hard for
k-veto.

Corollary 6. For each k ≥ 3, k-veto-PWUW-BW-RW-N is NP-complete.

7 Borda

Finally, we turn to the voting rule due to Borda [11], which perhaps is the most famous
scoring protocol and has been intensively studied in social choice theory and in compu-
tational social choice (see the survey by Rothe [31]). As for k-veto, k ≥ 3, we establish
hardness results for Borda, but now even for all four of our problem variants.

Theorem 10. For Borda, each of PWUW-BW-N, PWUW-RW-N, PWUW-BW-RW-N,
and PWUW-N is NP-complete.

Proof. Membership in NP is obvious for all problems but Borda-PWUW-N. For
Borda-PWUW-N, it is not trivial to show that a solution that can be used as a wit-
ness is polynomial in the input size. But in this case we can construct in polynomial
time an integer linear program that solves the problem similarly to the linear programs
that were constructed by Baumeister et al. [8] for the variants with rational weights.
Then membership in NP of Borda-PWUW-N follows from this reduction from Borda-
PWUW-N to the NP-complete problem INTEGER-PROGRAMMING-FEASIBILITY. We
note in passing that with this technique we can show NP-membership of E-PWUW-N
for every scoring protocol E .

Regarding the four NP-hardness results, we will prove them for Borda-PWUW-
N first and then describe how the reduction can be altered to show NP-hardness for
the other cases. So, in order to prove that Borda-PWUW-N is NP-hard, from X3C.
Let I = (X ,S) be a given X3C instance with X = {x1, . . . ,x3q} and S = {S1, . . . ,Sm}.
We construct a Borda-PWUW-N instance I ′ = (C,V1,V0,c) as follows. Define C =
{c,d,d′} ∪ X ∪ B with B being a set of 9q2 buffer candidates. For each xi ∈ X and
b j ∈ B, we add the two votes

−−−−−−−→
C \{xi,b j} > xi > b j and xi > b j >

←−−−−−−−
C \{xi,b j}

410 M. Neveling et al.

and q times two votes of the form

−−−−−−→
C \{d,d′} > d′ > d and d′ > d >

←−−−−−−
C \{d,d′}

to V1. Doing so, we construct the following point distances between c and each of
the other candidates in the election (C,V1): diff (C,V1)(c,d) = q, diff (C,V1)(c,d

′) = −q,
diff (C,V1)(c,xi) = −|B| for every xi ∈ X , and diff (C,V1)(c,b j) = 3q for every b j ∈ B. For
each i, 1 ≤ i ≤ m, we add a vote of the form vi = d > c > X \ Si > B > Si > d′ to V0.
Obviously, this construction of I ′ is possible in time polynomial in |I |.

The proof of correctness for this reduction for Borda-PWUW-N is again omitted, as
well as NP-hardness of the other three problem variants, which follows by augmenting
the above construction appropriately.
�

8 Conclusions and Open Questions

Table 1. Overview of complexity results. Our results are in boldface. Known results of Baumeis-
ter et al. [8] (who also settle all cases of k-approval, k = 3) are in gray. “NP-c.” stands for NP-
complete.

PWUW- 3-App. Plurality/Veto
with runoff

k-Veto for
k ∈ {1,2}

k-Veto for
k ≥ 3

Borda

N P P P P NP-c.

BW-RW-N P P P NP-c. NP-c.

BW-N P P P NP-c. NP-c.

RW-N P P P P NP-c.

We have continued the research initiated by Baumeister et al. [8] regarding the com-
putational complexity of four variants of the possible winner with uncertain weights
problem, solving all of their open problems for nonnegative integer weights. In addi-
tion, we have established results for other very prominent voting rules, namely Borda,
k-veto, and veto with runoff. In the course of our research we also further completed
the landscape of results with respect to CCAV in succinct representation by showing
that for both, plurality and veto with runoff, this problem can be solved in P. Table 1
presents a summary of previously known and our new results.

As to open problems, like for the possible winner problem studied by Betzler and
Dorn [10] and Baumeister and Rothe [9], it is desirable to have a dichotomy result for
our problems with respect to all scoring protocols.

.

Acknowledgments. This work was supported in part by Deutsche Forschungsgemeinschaft
under grants RO 1202/14-2 and RO 1202/21-1.

The Possible Winner Problem with Uncertain Weights Revisited 411

References

1. Bartholdi III, J., Tovey, C., Trick, M.: How hard is it to control an election? Math. Comput.
Model. 16(8/9), 27–40 (1992)

2. Baumeister, D., et al.: Positional scoring-based allocation of indivisible goods. J. Auton.
Agents Multi-Agent Syst. 31(3), 628–655 (2017). https://doi.org/10.1007/s10458-016-
9340-x

3. Baumeister, D., Erdélyi, G., Erdélyi, O., Rothe, J.: Complexity of manipulation and bribery
in judgment aggregation for uniform premise-based quota rules. Math. Soc. Sci. 76, 19–30
(2015)

4. Baumeister, D., Erdélyi, G., Erdélyi, O., Rothe, J., Selker, A.: Complexity of control in judg-
ment aggregation for uniform premise-based quota rules. J. Comput. Syst. Sci. 112, 13–33
(2020)

5. Baumeister, D., Järvisalo, M., Neugebauer, D., Niskanen, A., Rothe, J.: Acceptance in
incomplete argumentation frameworks. Artif. Intell. 295 (2021). Article No. 103470

6. Baumeister, D., Neugebauer, D., Rothe, J., Schadrack, H.: Verification in incomplete argu-
mentation frameworks. Artif. Intell. 264, 1–26 (2018)

7. Baumeister, D., Roos, M., Rothe, J.: Computational complexity of two variants of the pos-
sible winner problem. In: Proceedings of the 10th International Conference on Autonomous
Agents and Multiagent Systems, pp. 853–860. IFAAMAS (2011)

8. Baumeister, D., Roos, M., Rothe, J., Schend, L., Xia, L.: The possible winner problem with
uncertain weights. In: Proceedings of the 20th European Conference on Artificial Intelli-
gence, pp. 133–138. IOS Press (2012)

9. Baumeister, D., Rothe, J.: Taking the final step to a full dichotomy of the possible winner
problem in pure scoring rules. Inf. Process. Lett. 112(5), 186–190 (2012)

10. Betzler, N., Dorn, B.: Towards a dichotomy for the possible winner problem in elections
based on scoring rules. J. Comput. Syst. Sci. 76(8), 812–836 (2010)

11. Borda, J.: Mémoire sur les élections au scrutin. Histoire de L’Académie Royale des Sciences,
Paris (1781). English translation appears in the paper by de Grazia [19]

12. Brandt, F., Conitzer, V., Endriss, U., Lang, J., Procaccia, A. (eds.): Handbook of Computa-
tional Social Choice. Cambridge University Press, Cambridge (2016)

13. Conitzer, V., Sandholm, T., Lang, J.: When are elections with few candidates hard to manip-
ulate? J. ACM 54(3), Article 14 (2007)

14. Elkind, E., Faliszewski, P., Slinko, A.: Swap bribery. In: Mavronicolas, M., Papadopoulou,
V.G. (eds.) SAGT 2009. LNCS, vol. 5814, pp. 299–310. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-04645-2 27

15. Erdélyi, G., Reger, C., Yang, Y.: Towards completing the puzzle: Solving open problems for
control in elections. In: Proceedings of the 18th International Conference on Autonomous
Agents and Multiagent Systems, IFAAMAS, pp. 846–854 (2019)

16. Fitzsimmons, Z., Hemaspaandra, E.: High-multiplicity election problems. Auton. Agent.
Multi-Agent Syst. 33(4), 383–402 (2019). https://doi.org/10.1007/s10458-019-09410-4

17. Gabow, H.: An efficient reduction technique for degree-constrained subgraph and bidirected
network flow problems. In: Proceedings of the 15th ACM Symposium on Theory of Com-
puting, pp. 448–456. ACM Press (1983)

18. Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of NP-
Completeness. W. H Freeman and Company, New York (1979)

19. de Grazia, A.: Mathematical deviation of an election system. Isis 44(1–2), 41–51 (1953)
20. Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial Opti-

mization. Springer, Heidelberg (1988). https://doi.org/10.1007/978-3-642-97881-4

https://doi.org/10.1007/s10458-016-9340-x
https://doi.org/10.1007/s10458-016-9340-x
https://doi.org/10.1007/978-3-642-04645-2_27
https://doi.org/10.1007/978-3-642-04645-2_27
https://doi.org/10.1007/s10458-019-09410-4
https://doi.org/10.1007/978-3-642-97881-4

412 M. Neveling et al.

21. Hemaspaandra, E., Hemaspaandra, L., Rothe, J.: Anyone but him: the complexity of pre-
cluding an alternative. Artif. Intell. 171(5–6), 255–285 (2007)

22. Hemaspaandra, E., Hemaspaandra, L., Schnoor, H.: A control dichotomy for pure scoring
rules. In: Proceedings of the 28th AAAI Conference on Artificial Intelligence, pp. 712–720.
AAAI Press (2014)

23. Kerkmann, A., Lang, J., Rey, A., Rothe, J., Schadrack, H., Schend, L.: Hedonic games with
ordinal preferences and thresholds. J. Artif. Intell. Res. 67, 705–756 (2020)

24. Konczak, K., Lang, J.: Voting procedures with incomplete preferences. In: Proceedings of
the Multidisciplinary IJCAI-05 Workshop on Advances in Preference Handling, pp. 124–
129 (2005)

25. Kuckuck, B., Rothe, J.: Duplication monotonicity in the allocation of indivisible goods. AI
Commun. 32(4), 253–270 (2019)

26. Lang, J.: Collective decision making under incomplete knowledge: Possible and necessary
solutions. In: Proceedings of the 29th International Joint Conference on Artificial Intelli-
gence, pp. 4885–4891. ijcai.org (2020)

27. Lin, A.: Solving hard problems in election systems. Ph.D. thesis, Rochester Institute of Tech-
nology, Rochester, NY, USA (2012)

28. Niskanen, A., Neugebauer, D., Järvisalo, M., Rothe, J.: Deciding acceptance in incomplete
argumentation frameworks. In: Proceedings of the 34th AAAI Conference on Artificial Intel-
ligence, pp. 2942–2949. AAAI Press (2020)

29. Papadimitriou, C.: Computational Complexity, 2nd edn. Addison-Wesley, Boston (1995)
30. Rothe, J.: Complexity Theory and Cryptology. An Introduction to Cryptocomplexity. EATCS

Texts in Theoretical Computer Science, Springer, Heidelberg (2005). https://doi.org/10.
1007/3-540-28520-2

31. Rothe, J.: Borda count in collective decision making: a summary of recent results. In: Pro-
ceedings of the 33rd AAAI Conference on Artificial Intelligence, pp. 9830–9836. AAAI
Press (2019)

32. Skiba, K., Neugebauer, D., Rothe, J.: Complexity of nonempty existence problems in incom-
plete argumentation frameworks. IEEE Intell. Syst. 36(2), 13–24 (2021)

33. Xia, L., Conitzer, V.: Determining possible and necessary winners given partial orders. J.
Artif. Intell. Res. 41, 25–67 (2011)

https://doi.org/10.1007/3-540-28520-2
https://doi.org/10.1007/3-540-28520-2

Streaming Deletion Problems
Parameterized by Vertex Cover

Jelle J. Oostveen(B) and Erik Jan van Leeuwen

Department of Information and Computing Sciences,
Utrecht University, Utrecht, The Netherlands

{j.j.oostveen,e.j.vanleeuwen}@uu.nl

Abstract. Streaming is a model where an input graph is provided one
edge at a time, instead of being able to inspect it at will. In this work, we
take a parameterized approach by assuming a vertex cover of the graph is
given, building on work of Bishnu et al. [COCOON 2020]. We show the
further potency of combining this parameter with the Adjacency List
streaming model to obtain results for vertex deletion problems. This
includes kernels, parameterized algorithms, and lower bounds for the
problems of Π-free Deletion, H-free Deletion, and the more spe-
cific forms of Cluster Vertex Deletion and Odd Cycle Transver-

sal. We focus on the complexity in terms of the number of passes over
the input stream, and the memory used. This leads to a pass/memory
trade-off, where a different algorithm might be favourable depending on
the context and instance. We also discuss implications for parameterized
complexity in the non-streaming setting.

1 Introduction

Streaming is an algorithmic paradigm to deal with data sets that are too large
to fit into main memory [22]. Instead, elements of the data set are inspected in
a fixed order1 and aggregate data is maintained in a small amount of memory
(much smaller than the total size of the data set). It is possible to make multiple
passes over the data set. The goal is to design algorithms that analyze the data
set while minimizing the combination of the number of passes and the required
memory. We note that computation time is not measured in this paradigm.
Streaming has proved very successful and is extensively studied in many diverse
contexts [27,29]. In this work, we focus on the case where the data sets are
graphs and the streamed elements are the edges of the graph.

1 We consider insertion-only streams throughout this paper.

This work is based on the master thesis “Parameterized Algorithms in a Streaming
Setting” by the first author. This work is partially supported by the NWO grant
OCENW.KLEIN.114 (PACAN).

c© Springer Nature Switzerland AG 2021
E. Bampis and A. Pagourtzis (Eds.): FCT 2021, LNCS 12867, pp. 413–426, 2021.
https://doi.org/10.1007/978-3-030-86593-1_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86593-1_29&domain=pdf
https://doi.org/10.1007/978-3-030-86593-1_29

414 J. J. Oostveen and E. J. van Leeuwen

A significant body of work on graph streaming works in the semi-streaming
model, where Õ(n) memory2 is allowed, with the aim of limiting the number of
necessary passes to one or two. This memory requirement might still be too much
for the largest of networks. Unfortunately, many basic problems in graphs require
Ω(n) or even worse space [18,19] to compute in a constant number of passes.
Therefore, Fafianie and Kratsch [17] and Chitnis et al. [13] introduced concepts
and analysis from parameterized complexity [16] to the streaming paradigm. For
example, it can be decided whether a graph has a vertex cover of size at most K
using one pass and Õ(K2) space, which is optimal. This led to various further
works [4,6,11] and the first systematic study by Chitnis and Cormode [10].

Our work continues this line of research and follows up on recent work by
Bishnu et al. [5,6]3. They made two important conceptual contributions. First,
they analyzed the complexity of parameterized streaming algorithms in three
models that prescribe the order in which the edges arrive in the stream and that
are commonly studied in the literature [6,14,27,28]. The Edge Arrival (EA)
model prescribes some permutation of all the edges of the graph. The Vertex
Arrival (VA) requires that the edges appear per vertex: if we have seen the
vertices V ′ ⊆ V already, and the next vertex is w, then the stream contains the
edges between w and the vertices in V ′. Finally, the Adjacency List (AL) gives
the most information, as it requires the edges to arrive per vertex, but when
vertex v appears in the stream, we also see all edges incident to v. This means
we effectively see every edge twice in a single pass, once for both of its endpoints.

The second and more important contribution of Bishnu et al. [5] was to
study the size K of a vertex cover in the graph as a parameter. This has
been broadly studied in parameterized complexity (see e.g. the PhD thesis of
Jansen [25]). They showed that the very general F-Subgraph Deletion and
F-Minor Deletion problems all admit one pass, Õ(Δ(F) · KΔ(F)+1) space
streaming algorithms in the AL model, by computing small kernels to which
then a straightforward exhaustive algorithm is applied. On the other hand, such
generic streaming algorithms are not possible in the EA and VA models, as then
(super-) linear lower bounds exist even if the size of a smallest vertex cover is
constant [5].

We focus on the induced subgraph version of the vertex deletion problem,
parameterized by the size of a vertex cover. Here, Π is a collection of graphs.

Π-free Deletion [VC]

Input: A graph G with a vertex cover X, and an integer � ≥ 1.
Parameter: The size K := |X| of a vertex cover.
Question: Is there a set S ⊆ V (G) of size at most � such that G[V (G)\S]
does not contain a graph in Π as an induced subgraph?

2 Throughout this paper, memory is measured in bits. The Õ notation hides factors
polylogarithmic in n. Note that O(log n) bits is the space required to store (the
identifier of) a single vertex or edge.

3 As the Arxiv version contains more results, we refer to this version from here on.

Streaming Deletion Problems Parameterized by Vertex Cover 415

To avoid triviality4, we assume every graph in Π is edgeless or K ≥ �. We
assume the vertex cover is given as input; if only the size is given, we can use
one pass and Õ(K2) space or 2K passes and Õ(K) space to obtain it [10,13]
(this does not meaningfully impact our results). The unparameterized version of
this problem is well known to be NP-hard [26] for any nontrivial and hereditary
property Π. It has also been well studied in the parameterized setting (see e.g. [9,
20,31]). When parameterized by the vertex cover number, it has been studied
from the perspective of kernelization: while a polynomial kernel cannot exist in
general [8,21], polynomial kernels exist for broad classes of families Π [21,24].
As far as we are aware, parameterized algorithms for this parameterization have
not been explicitly studied.

In the streaming setting, Chitnis et al. [11] showed for the unparameter-
ized version of this problem in the EA model that any p-pass algorithm needs
Ω(n/p) space if Π satisfies a mild technical constraint. For some Π-free Dele-

tion [VC] problems, the results by Bishnu et al. [5] imply single-pass, poly(K)
space streaming algorithms (through their kernel for F-Subgraph Deletion

[VC]) in the AL model and lower bounds in the EA/VA model. They also pro-
vide an explicit kernel for Cluster Vertex Deletion [VC] in the AL/EA/VA
models. However, this still leaves the streaming complexity of many cases of the
Π-free Deletion [VC] problem open.

Our Contributions. We determine the streaming complexity of the general Π-

free Deletion [VC] problem. Our main positive result is a unified approach
to a single-pass polynomial kernel for Π-free Deletion [VC] for a broad class
of families Π. In particular, we show that the kernelization algorithms by Fomin
et al. [21] and Jansen and Kroon [24] can be adapted to the streaming setting.
The kernels of Fomin et al. [21] consider the case when Π can be characterized
by few adjacencies, which intuitively means that for any vertex of any member of
Π, adding or deleting edges between all but a few (say at most cΠ) distinguished
other vertices does not change membership of Π. The exponent of the polynomial
kernels depends on cΠ . Jansen and Kroon [24] considered even more general
families Π. We show that these kernels can be computed in the AL model using
a single pass and polynomial space (where the exponent depends on cΠ). This
generalizes the previous results by Bishnu et al. [5] as well as their kernel for
F-Subgraph Deletion [VC].

To complement the kernels, we take a direct approach to find more memory-
efficient algorithms, at the cost of using many passes. We show novel parame-
terized streaming algorithms that require Õ(K2) space and O(K)O(K) passes.
Here, all hidden constants depend on cΠ . Crucially, however, the exponent of
the space usage of these algorithms does not, which provides an advantage over
computing the kernel. We also provide explicit streaming algorithms for Clus-

ter Vertex Deletion [VC] and Odd Cycle Transversal [VC] that require
Õ(K) space (both) and 2KK2 and 3K passes respectively, as well as streaming
algorithms for Π-free Deletion [VC,|V (H)|] when Π = {H} and the problem
is parameterized by K and |V (H)|. A crucial ingredient to these algorithms is a

4 Otherwise, removing the entire vertex cover is a trivial solution.

416 J. J. Oostveen and E. J. van Leeuwen

streaming algorithm that finds induced subgraphs isomorphic to a given graph
H. Further details are provided in Sect. 3.

The above results provide a trade-off in the number of passes and memory
complexity of the algorithm used. However, we should justify using both the
AL model and the parameter vertex cover. To this end, in Sect. 4, we investigate
lower bounds for streaming algorithms for Π-free Deletion [VC]. The (unpa-
rameterized) linear lower bound of Chitnis et al. [11] in the EA model requires
that Π contains a graph H for which |E(H)| ≥ 2 and no proper subgraph is a
member of Π. We prove that the lower bound extends to both the VA and AL
models, with only small adjustments. Hence, parameterization is necessary to
obtain sublinear passes and memory for most Π. Since Vertex Cover is one
of the few natural graph parameters that has efficient parameterized streaming
algorithms [13,17], this justifies the use of the vertex cover parameter. We also
extend the reductions by Bishnu et al. [5] to general hardness results for Π-

free Deletion in the VA and EA model when the size of the vertex cover is a
constant (dependent on Π), justifying the use of the AL model for most Π.

We also consider the parameterized complexity of H-free Deletion [VC]
in the non-streaming setting. While polynomial kernels were known in the non-
streaming setting [21], we are unaware of any investigation into explicit parame-
terized algorithms for these problems. We give a general 2O(K2)poly(n, |V (H)|)
time algorithm. This contrasts the situation for H-free Deletion parame-
terized by the treewidth t of the graph, where a 2o(t|V (H)|−2)poly(n, |V (H)|)
time lower bound is known under the Exponential Time Hypothesis (ETH) [31].
We also construct a graph property Π for which we provide a lower bound
of 2o(K log K)poly(n, |V (H)|) for Π-free Deletion [VC] under ETH. Further
details are provided in Sect. 3.

Preliminaries. We work on undirected graphs G = (V,E), where |V | = n, |E| =
m. We denote an edge e ∈ E between v ∈ V and u ∈ V with uv ∈ E. For a
set of vertices V ′ ⊆ V , denote the subgraph induced by V ′ as G[V ′]. Denote
the neighbourhood of a vertex v with N(v) and for a set S denote N(S) as⋃

v∈S N(v). We write N [v] for N(v) including v, so N [v] = N(v) ∪ {v}.
We denote the parameters of a problem in [·] brackets, a problem A param-

eterized by vertex cover number and solution size is denoted by A [VC, �].

2 Adapting Existing Kernels

We first show that very general kernels for vertex cover parameterization admit
straightforward adaptations to the AL streaming model. The kernels considered
are those by Fomin et al. [21] and by Jansen and Kroon [24]. Fomin et al. [21] pro-
vide general kernelization theorems that make extensive use of a single property,
namely that some graph properties can be characterized by few adjacencies.

Definition 1. ([21, Definition 3]) A graph property Π is characterized by cΠ ∈
N adjacencies if for all graphs G ∈ Π, for every vertex v ∈ V (G), there is a set
D ⊆ V (G) \ {v} of size at most cΠ such that all graphs G′ that are obtained
from G by adding or removing edges between v and vertices in V (G) \ D, are
also contained in Π.

Streaming Deletion Problems Parameterized by Vertex Cover 417

Fomin et al. show that graph problems such as Π-free Deletion [VC], can
be solved efficiently through kernelization when Π is characterized by few adja-
cencies (and meets some other demands), by making heavy use of the Reduce

algorithm they provide. The idea behind the Reduce algorithm is to save enough
vertices with specific adjacencies in the vertex cover, and those vertices that we
forget have equivalent vertices saved to replace them. The sets of adjacencies
we have to consider can be reduced by making use of the characterization by
few adjacencies, as more than cΠ adjacencies are not relevant. The number of
vertices we retain is ultimately dependent on � ≤ K.

In the AL streaming model, we have enough information to compute this
kernel, by careful memory management in counting adjacencies towards specific
subsets of the vertex cover. The following theorem then shows how this algorithm
leads to streaming kernels for Π-free Deletion [VC] as an adaptation of [21,
Theorem 2]. We call a graph G vertex-minimal with respect to Π if G ∈ Π and
for all S � V (G), G[S] /∈ Π.

Theorem 1 (♣5). If Π is a graph property such that:

(i) Π is characterized by cΠ adjacencies,
(ii) every graph in Π contains at least one edge, and
(iii) there is a non-decreasing polynomial p : N → N such that all graphs G that

are vertex-minimal with respect to Π satisfy |V (G)| ≤ p(K),

then Π-free Deletion [VC] admits a kernel on O((K + p(K))KcΠ) vertices
in the AL streaming model using one pass and O((K + KcΠ) log(n)) space.

We note that the theorem applies to F-Subgraph Deletion [VC] when Δ(F)
(the maximum degree) is bounded as well as to Cluster Vertex Dele-

tion [VC]. As such, our streaming kernels generalize the kernels of Bishnu
et al. [5] for these problems, while the memory requirements and kernel sizes
are fairly comparable. A discussion and further implications for several general
problems, following Fomin et al. [21], appear in the full version of the paper.

We also give an adaptation (♣) of a more recent kernel by Jansen and
Kroon [24], which has another broad range of implications for streaming ker-
nels. This kernel uses a different characterization of the graph family, however,
the adaptation to the AL streaming model is very similar. We observe that the
adaptation of this kernel leads to a streaming algorithms for problems like Per-

fect Deletion [VC], AT-free Deletion [VC], Interval Deletion [VC],
and Wheel-free Deletion [VC].

3 A Direct FPT Approach

In this section, we give direct FPT streaming algorithms for Π-free Dele-

tion [VC] for the same cases as Theorem 1. This is motivated by the fact that
Chitnis and Cormode [10] found a direct FPT algorithm for Vertex Cover

5 Further discussions and proofs for results marked with ♣ appear in the full online
version of the paper.

418 J. J. Oostveen and E. J. van Leeuwen

y1 y2

Y
y1 y2

Y

v v

Y

y

v

Case 1 Case 2 Case 3

Fig. 1. The different cases how a P3 can exists with respect to Y , part of the vertex
cover. Notice that the case where the entire P3 is contained in Y is not included here.
Case 3 assumes there are no Case 1 or Case 2 P3’s in the graph anymore.

using O(2k) passes and only Õ(k) space in contrast to the kernel of Chitnis
et al. [11] using one pass and Õ(k2) space. Therefore, we aim to explore the
pass/memory trade-off for Π-free Deletion [VC] as well.

3.1 P3-free Deletion

We start with the scenario where Π = {P3}, which means we consider the
problem Cluster Vertex Deletion [VC]. The general idea of the algorithm
is to branch on what part of the given vertex cover should be in the solution.
For managing the branching correctly, we use a black box enumeration technique
also used by Chitnis and Cormode [10]. In a branch, we first check whether the
‘deletion-free’ part of the vertex cover (Y) contains a P3, which invalidates a
branch. Otherwise, what remains is some case analysis where either one or two
vertices of a P3 lie outside the vertex cover, for which we deterministically know
which vertices have to be removed to make the graph P3-free. We illustrate this
step in Fig. 1. Case 1 and 2 have only one option for removal of a vertex. After
Case 1 and 2 no longer occur, we can find Case 3 occurrences and show that we
can delete all but one of the vertices in such an occurrence. So, if this process
can be executed in a limited number of passes, the algorithm works correctly.

To limit the number of passes, the use of the AL model is crucial. Notice
that for every pair of vertices y1, y2 in the vertex cover, we can identify a Case 1
or 2 P3 of Fig. 1, or these cases but with v in the vertex cover as well, in a
constant number of passes. This is because we can first use a pass to check the
presence of an edge between y1 and y2, and afterwards use a pass to check the
edges of every other vertex towards y1 and y2 (which are given together because
of the AL model). This means we can find P3’s contained in the vertex cover
or corresponding to Case 1 or 2 P3’s in O(K2) passes total. The remaining
Case 3 can be handled in O(K) passes from the viewpoint of each y ∈ Y . So
this algorithm takes O(2KK2) passes (including branching).

Theorem 2 (♣). We can solve Cluster Vertex Deletion [VC] in the AL

streaming model using O(2KK2) passes and O(K log n) space.

Let us stress some details. The use of the AL model is crucial, as it allows us
to locally inspect the neighbourhood of a vertex when it appears in the stream.
The same approach would require more memory or more passes in other models

Streaming Deletion Problems Parameterized by Vertex Cover 419

Algorithm 1. The procedure FindH.
1: function FindH(solution set S, forbidden set Y ⊆ X, integer i)
2: for each Set O of i vertices of H that can be outside X do � Check non-edges
3: Denote H ′ = H \ O
4: for each Occurrence of H ′ in Y do � Check O(

(|X|
|H|−i

)
(|H| − i)!) options

5: S′ ← ∅, O′ ← O
6: for each Vertex v ∈ V \ (S ∪ X) do
7: Check the edges/non-edges towards H ′ ∈ Y
8: if v is equivalent to some w ∈ O′ for H ′ then
9: S′ ← S′ ∪ {v}, O′ ← O′ \ {w}

10: if O′ = ∅ then return S′ � We found an occurrence of H

11: return ∅ � No occurrence of H found

to accomplish this result. Also note that we could implement this algorithm in a
normal setting (the graph is in memory, and not a stream) to get an algorithm for
Cluster Vertex Deletion [VC] with a running time of O(2K ·K2 · (n+m)).

3.2 H-free Deletion

We now consider a more generalized form of Π-free Deletion [VC], where
Π = {H}, a single graph. Unfortunately, the approach when H = P3 does not
seem to carry over to this case, because the structure of a P3 is simple and local.

Theorem 3 (♣). We can solve H-free Deletion [VC] in 2O(K2) poly(n, |
V (H)|) time, where H contains at least one edge and K is the size of the vertex
cover.

In the proof, we rely on the assumption that � < K and use that the vertices
outside the vertex cover can be partitioned into at most 2K equivalence classes.
Moreover, we use the algorithm implied by the work of Abu-Khzam [1] to find
occurrences of H in G.

In order to analyze the complexity with respect to H more precisely and to
obtain a streaming algorithm, we present a different algorithm that works off a
simple idea. We branch on the vertex cover, and then try to find occurrences of H
of which we have to remove a vertex outside the vertex cover. We branch on these
removals as well, and repeat this find-and-branch procedure. In an attempt to
keep the second branching complexity low, we start by searching for occurrences
of H such that only one vertex lies outside the vertex cover, and increase this
number as we find no occurrences. For briefness, we only present the occurrence
detection part of the algorithm here, a procedure we call FindH. Note that this
is not (yet) a streaming algorithm.

Lemma 1 (♣). Given a graph G with vertex cover X, graph H with at least
one edge, and sets S, Y ⊆ X, and integer i, Algorithm1 finds an occurrence
of H in G that contains no vertices in S and X \ Y and contains |V (H)| − i

vertices in Y . It runs in O
((

h
i

)
[i2 +

(
K

h−i

)
(h − i)!((h − i)2 + Kn + (h − i)in)]

)

time, where |V (H)| = h and |X| = K.

420 J. J. Oostveen and E. J. van Leeuwen

FindH is adaptable to the streaming setting, as is the complete algorithm.
All the actions FindH takes are local inspection of edges, and many enumeration
actions, which lend itself well to usage of the AL streaming model. The number
of passes of the streaming version is closely related to the running time of the
non-streaming algorithm. This then leads to the full find-and-branch procedure.

Theorem 4 (♣). We can solve H-free Deletion [VC] in the AL model,
where H contains at least one edge, using O(2KhK+2Khh!) or alternatively
O(2KhK+2K!h!) passes and O((K + h2) log n) space, where |V (H)| = h.

3.3 Towards Π-free Deletion

An issue with extending the previous approach to the general Π-free Dele-

tion problem is the dependence on the maximum size h of the graphs H ∈ Π.
Without further analysis, we have no bound on h. However, we can look to the
preconditions used by Fomin et al. [21] on Π in e.g. Theorem 1 to remove this
dependence.

The first precondition is that the set Π ′ ⊆ Π of graphs that are vertex-
minimal with respect to Π have size bounded by a function in K, the size of the
vertex cover. That is, for these graphs H ∈ Π ′ we have that |V (H)| ≤ p(K),
where p(K) is some function. We can prove (♣) that it suffices to only remove
vertex-minimal elements of Π to solve Π-free Deletion. Note that Fomin et
al. [21] require that this is a polynomial, we have no need to demand this. If we
also assume that we know the set Π ′, we obtain the following result.

Theorem 5 (♣). If Π is a graph property such that:

(i) we have explicit knowledge of Π ′ ⊆ Π, which is the subset of q graphs that
are vertex-minimal with respect to Π, and

(ii) there is a non-decreasing function p : N → N such that all graphs G ∈ Π ′

satisfy |V (G)| ≤ p(K), and
(iii) every graph in Π contains at least one edge,

then Π-free Deletion [VC] can be solved using O(q · 2K · p(K)K · K! · K ·
p(K)! · p(K)2 · n) time.

We argue this algorithm is essentially tight, under the Exponential Time
Hypothesis (ETH) [23], by augmenting a reduction by Abu-Khzam et al. [2].

Theorem 6 (♣). There is a graph property Π for which we cannot solve Π-

free Deletion [VC] in 2o(K log K)poly(n) time, unless ETH fails, where K is
the vertex cover number of G, even if each graph that has property Π has size
quadratic in its vertex cover number.

Next, we look to further improve the bound of Theorem5. Note that so far,
we have made no use at all of the characterization by few adjacencies of Π, as
in Theorem 1. We now argue that there may be graphs in Π that cannot occur
in G simply because it would not fit with the vertex cover.

Streaming Deletion Problems Parameterized by Vertex Cover 421

Lemma 2 (♣). If Π is a graph property such that

(i) every graph in Π is connected and contains at least one edge, and
(ii) Π is characterized by cΠ adjacencies,

and G is some graph with vertex cover X, |X| = K, and S ⊆ V (G) some vertex
set. Then G[V (G) \ S] is Π-free if and only if G[V (G) \ S] is Π ′-free, where
Π ′ ⊆ Π contains only those graphs in Π with ≤ (cΠ + 1)K vertices.

The precondition that every graph in Π is connected is necessary to obtain
this result. We can use Lemma 2 in combination with Theorem5 to obtain a new
result. Alternatively, using a streaming version of the algorithm instead of the
non-streaming one, immediately also provides a streaming result.

Theorem 7 (♣). Given a graph G with vertex cover X, |X| = K, if Π is a
graph property such that

(i) every graph in Π is connected and contains at least one edge, and
(ii) Π is characterized by cΠ adjacencies, and
(iii) we have explicit knowledge of Π ′ ⊆ Π, which is the subset of q graphs of at

most size (cΠ + 1)K that are vertex-minimal with respect to Π,

then Π-free Deletion [VC] can be solved using O(q · 2K · ((cΠ + 1)K)K · K! ·
K · ((cΠ +1)K)! · ((cΠ +1)K)2 ·n) time. Assuming cΠ ≥ 1 this can be simplified
to O(q ·2K · cΠ

K ·KK+3 ·K! · (cΠK)! ·n) time. In the streaming setting, Π-free

Deletion [VC] can be solved using O(q · 2K · cK
Π · KK+2 · K! · (cΠK)!) passes

in the AL streaming model, using Õ((cΠK)2 + q · (cΠ + 1)K) space.

The required explicit knowledge of Π ′ might give memory problems. That
is, we have to store Π ′ somewhere to make this algorithm work, which takes
Õ(q · (cΠ + 1)K) space. Note that q can range up to KO(K). We adapt the
streaming algorithm to the case when we have oracle access to Π in ♣.

3.4 Odd Cycle Transversal

Specific forms of Π-free Deletion [VC] allow for improvement over Theo-
rem 7, which we illustrate for the problem of Odd Cycle Transversal [VC].
Note that odd cycle-free and induced odd cycle-free are equivalent.

Odd Cycle Transversal [VC]

Input: A graph G with a vertex cover X, and an integer �.
Parameter: The size K := |X| of the vertex cover.
Question: Is there a set S ⊆ V (G) of size at most � such that G[V (G)\S]
contains no induced odd cycles?

The interest in this problem comes from the FPT algorithm using iterative
compression provided in [15, Section 4.4], based on work by Reed et al. [30].
Although Chitnis and Cormode [10] have shown how iterative compression can

422 J. J. Oostveen and E. J. van Leeuwen

be used in the streaming setting, adapting the algorithm out of Reed et al. seems
difficult. The main cause for this is the use of a maximum-flow algorithm, which
does not seem to lend itself well to the streaming setting because of its memory
requirements. Instead, we present the following approach.

It is well known that a graph without odd cycles is a bipartite graph (and
thus 2-colourable) and vice versa. In the algorithm, we guess what part of the
vertex cover is in the solution, and then we guess the colouring of the remaining
part. Then vertices outside the vertex cover for which not all neighbours have
the same colour must be deleted. This step can be done in one pass if we use the
AL streaming model. In the same pass, we can also check if the colouring is valid
within the vertex cover. If the number of deletions does not exceed the solution
size and the colouring is valid within the vertex cover, then the resulting graph
is bipartite and thus odd cycle free.

The total number of guesses comes down to O(3K) options, as any vertex in
the vertex cover is either in the solution, coloured with colour 1 or coloured with
colour 2. This directly corresponds to the number of passes, as only one pass is
needed per guessed colouring.

Theorem 8 (♣). Given a graph G given as an AL stream with vertex cover X,
|X| = K, we can solve Odd Cycle Transversal [VC] using O(3K) passes
and O(K log n) space.

If we think about this algorithm, we can notice that often the colouring we
guess on the vertex cover is invalid. An alternative approach (♣) follows by
noting that a connected component within the vertex cover can only have two
possible valid colourings. We can exploit this to decrease the number of passes
when the number of connected components in the vertex cover is low. This comes
at a price: to easily find components of the vertex cover, we store it in memory,
which increases the memory complexity. Alternatively, we can use O(K) passes
to find the connected components of the vertex cover in every branch.

4 Lower Bounds

We show lower bounds for Π-free Deletion. To prove lower bounds for stream-
ing, we can show reductions from problems in communication complexity, as first
shown by Henzinger et al. [22]. An example of such a problem is Disjointness.

Disjointness

Input: Alice has a string x ∈ {0, 1}n given by x1x2 . . . xn. Bob has a
string y ∈ {0, 1}n given by y1y2 . . . yn.
Question: Bob wants to check if ∃1 ≤ i ≤ n such that xi = yi = 1.
(Formally, the answer is NO if this is the case.)

The following proposition is given and used by Bishnu et al. [5], and gives
us one important consequence of reductions from a problem in communication
complexity to a problem for streaming algorithms.

Streaming Deletion Problems Parameterized by Vertex Cover 423

Proposition 1. (Rephrasing of item (ii) of [5, Proposition 5.6]) If we can show
a reduction from Disjointness to problem Π in streaming model M such that
the reduction uses a 1-pass streaming algorithm of Π as a subroutine, then any
streaming algorithm working in the model M for Π that uses p passes requires
Ω(n/p) bits of memory, for any p ∈ N [3,7,12].

The structure of these reductions is relatively simple: have Alice and Bob
construct the input for a streaming algorithm depending on their input to Dis-

jointness. If we do this in such a manner that the solution the streaming algo-
rithm outputs gives us exactly the answer to Disjointness, we can conclude
that the streaming algorithm must abide the lower bound of Disjointness.

Chitnis et al. [11, Theorem 6.3] prove hardness for many Π, those that obide
to a small precondition. However, Chitnis et al. do not describe in their reduction
how Alice and Bob give their ‘input’ as a stream to the algorithm for Π-free

Deletion, and thus it would apply only to the EA streaming model. However,
if we observe the proof closely, we can see it extends to the VA model.

We would also like it to extend to the AL model. However, this requires a
slightly stronger precondition on the graph class Π.

Theorem 9. If Π is a set of graphs such that each graph in Π is connected,
and there is a graph H ∈ Π such that

– H is a minimal element of Π under the operation of taking subgraphs, i.e.,
no proper subgraph of H is in Π, and

– H has at least two disjoint edges,

then any p-pass (randomized) streaming algorithm working on the AL streaming
model for Π-free Deletion [�] needs Ω(n/p) bits of space.

Proof. We add onto the proof of [11, Theorem 6.3], by specifying how Alice and
Bob provide the input to the p-pass streaming algorithm.

Let H be a minimal graph in Π which has at least two disjoint edges, say e1
and e2. Let H ′ := H \ {e1, e2}. Create as an input for the streaming algorithm n
copies of H ′, where in copy i we add the edges e1 and e2 if and only if the input
of Disjointness has a 1 for index i for Alice and Bob respectively.

As e1 and e2 are disjoint, e2 is incident on two vertices v, w which are not
incident to e1. For every pass the algorithm requires, we do the following. We
provide all the copies of H as input to the streaming algorithm by letting Alice
input all vertices V (H) \ {v, w} as an AL stream. Note that Alice has enough
information to do this, as the vertices incident on the edge e2 in each copy of H
is never included in this part of the stream. Then Alice passes the memory of
the streaming algorithm to Bob, who inputs the edges incident to the vertices
v, w for each copy of H (which includes e2 if and only if the respective bit in the
input of Disjointness is 1). This ends a pass of the stream.

Note that Alice and Bob have input the exact specification of a graph as
described by Chitnis et al. [11, Theorem 6.3], but now as a AL stream. Hence,
the correctness follows. �

424 J. J. Oostveen and E. J. van Leeuwen

Theorem 9 provides a lower bound for, for example, Even Cycle

Transversal [�] (where Π is the set of all graphs that contain a C4, C6, . . .),
and similarly Odd Cycle Transversal [�] and Feedback Vertex Set [�].
Theorem 9 does not hold for the scenario where Π contains only stars.

Notice that the lower bound proof makes a construction with a vertex cover
size linear in n. Therefore, these bounds do not hold when the vertex cover size
is bounded. We can prove lower bounds with constant vertex cover size for H-

free Deletion with specific requirements on H, for the EA and VA models.
These results follow by adapting the known lower bound construction by Bishnu
et al. [5]. Here, we give a summarizing theorem for these lower bounds.

Theorem 10. (♣). If H is such that either:

1. H is a connected graph with at least 3 edges and a vertex of degree 2, or,
2. H is a graph with a vertex of degree at least 2 for which every neighbour has

an equal or larger degree,

then any algorithm for solving H-free Deletion [VC] on a graph G with
K ≥ |VC(H)| + 1 requires Ω(n/p) bits when using p passes in the VA/EA
models, even when the solution size � = 0.

Theorem 10 proves lower bounds for Odd Cycle Transversal [VC], Even
Cycle Transversal [VC], Feedback Vertex Set [VC], and Cograph

Deletion [VC]. Examples for which Theorem 10 does not give a lower bound
include Cluster Vertex Deletion [VC] (indeed, then a kernel is known [5]),
or more generally, H-free Deletion [VC] when H is a star.

5 Conclusion

We have seen different streaming algorithms and lower bounds for Π-free

Deletion and its more specific forms, making use of the minimum vertex cover
as a parameter. We have seen the potency of the AL streaming model in com-
bination with the vertex cover, where in other streaming models lower bounds
arise. It is interesting that for very local structures like a P3, this combination
works effortlessly, giving a very efficient memory-optimal algorithm. For more
general structures troubles arise, but nonetheless, we can solve the more general
problems with a many-pass, low-memory approach. Alternatively, the adapta-
tions of kernels gives rise to a few-pass, high-memory algorithm, which provides
a possible trade-off when choosing an algorithm.

We also propose the following open problems. Can lower bounds be found
expressing a pass/memory trade-off in the vertex cover size for the Π-free

Deletion [VC] problem? Or alternatively, can we find an upper bound for Π-

free Deletion [VC] using O(K log n) bits of memory but only a polynomial
in K number of passes? Essentially, here we ask whether or not our algorithm
is reasonably tight, or can be improved to only use a polynomial number of
passes in K. A lower bound expressing a trade-off in terms of the vertex cover

Streaming Deletion Problems Parameterized by Vertex Cover 425

size is a standalone interesting question, as most lower bound statements about
streaming algorithms express a trade-off in terms of n.

We also ask about the unparameterized streaming complexity of Cluster

Vertex Deletion in the AL model. While lower bounds for most other Π-

free Deletion problems in the AL model follow from our work (Theorem9)
and earlier work of Bishnu et al. [5], this appears an intriguing open case.

Finally, we ask if there is a 2o(K log K) lower bound for Π-free Dele-

tion [VC] when Π is characterized by few adjacencies?

References

1. Abu-Khzam, F.N.: Maximum common induced subgraph parameterized by vertex
cover. Inf. Process. Lett. 114(3), 99–103 (2014)

2. Abu-Khzam, F.N., Bonnet, É., Sikora, F.: On the complexity of various parame-
terizations of common induced subgraph isomorphism. Theor. Comput. Sci. 697,
69–78 (2017)

3. Agarwal, D., McGregor, A., Phillips, J.M., Venkatasubramanian, S., Zhu, Z.: Spa-
tial scan statistics: approximations and performance study. In: Proceedings of
SIGKDD 2006, pp. 24–33. ACM (2006)

4. Agrawal, A., et al.: Parameterized streaming algorithms for min-ones d-sat. In:
Proceedings of FSTTCS 2019. LIPIcs, vol. 150, pp. 8:1–8:20. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik (2019)

5. Bishnu, A., Ghosh, A., Kolay, S., Mishra, G., Saurabh, S.: Fixed-parameter
tractability of graph deletion problems over data streams. CoRR abs/1906.05458
(2019)

6. Bishnu, A., Ghosh, A., Kolay, S., Mishra, G., Saurabh, S.: Fixed parameter
tractability of graph deletion problems over data streams. In: Kim, D., Uma, R.N.,
Cai, Z., Lee, D.H. (eds.) COCOON 2020. LNCS, vol. 12273, pp. 652–663. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-58150-3 53

7. Bishnu, A., Ghosh, A., Mishra, G., Sen, S.: On the streaming complexity of fun-
damental geometric problems. CoRR abs/1803.06875 (2018)

8. Bodlaender, H.L., Jansen, B.M.P., Kratsch, S.: Kernelization lower bounds by
cross-composition. SIAM J. Discret. Math. 28(1), 277–305 (2014)

9. Cai, L.: Fixed-parameter tractability of graph modification problems for hereditary
properties. Inf. Process. Lett. 58(4), 171–176 (1996)

10. Chitnis, R., Cormode, G.: Towards a theory of parameterized streaming algorithms.
In: Proc. IPEC 2019. LIPIcs, vol. 148, pp. 7:1–7:15. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2019)

11. Chitnis, R., et al.: Kernelization via sampling with applications to finding match-
ings and related problems in dynamic graph streams. In: Proceedings of SODA
2016, pp. 1326–1344. SIAM (2016)

12. Chitnis, R.H., Cormode, G., Esfandiari, H., Hajiaghayi, M., Monemizadeh, M.:
Brief announcement: New streaming algorithms for parameterized maximal match-
ing & beyond. In: Proceedings of SPAA 2015, pp. 56–58. ACM (2015)

13. Chitnis, R.H., Cormode, G., Hajiaghayi, M.T., Monemizadeh, M.: Parameterized
streaming: Maximal matching and vertex cover. In: Proceedings of SODA 2015,
pp. 1234–1251. SIAM (2015)

https://doi.org/10.1007/978-3-030-58150-3_53

426 J. J. Oostveen and E. J. van Leeuwen

14. Cormode, G., Dark, J., Konrad, C.: Independent sets in vertex-arrival streams. In:
Proceedings of ICALP 2019. LIPIcs, vol. 132, pp. 45:1–45:14. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik (2019)

15. Cygan, M., et al.: Parameterized Algorithms. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-319-21275-3

16. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Monographs in Com-
puter Science, Springer, Heidelberg (1999). https://doi.org/10.1007/978-1-4612-
0515-9

17. Fafianie, S., Kratsch, S.: Streaming kernelization. In: Csuhaj-Varjú, E., Dietzfel-
binger, M., Ésik, Z. (eds.) MFCS 2014. LNCS, vol. 8635, pp. 275–286. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-44465-8 24

18. Feigenbaum, J., Kannan, S., McGregor, A., Suri, S., Zhang, J.: Graph distances
in the streaming model: the value of space. In: Proceedings of SODA 2005, pp.
745–754. SIAM (2005)

19. Feigenbaum, J., Kannan, S., McGregor, A., Suri, S., Zhang, J.: On graph problems
in a semi-streaming model. Theor. Comput. Sci. 348(2–3), 207–216 (2005)

20. Fomin, F.V., Golovach, P.A., Thilikos, D.M.: On the parameterized complexity
of graph modification to first-order logic properties. Theory Comput. Syst. 64(2),
251–271 (2020). https://doi.org/10.1007/s00224-019-09938-8

21. Fomin, F.V., Jansen, B.M.P., Pilipczuk, M.: Preprocessing subgraph and minor
problems: when does a small vertex cover help? J. Comput. Syst. Sci. 80(2), 468–
495 (2014)

22. Henzinger, M.R., Raghavan, P., Rajagopalan, S.: Computing on data streams. In:
Abello, J.M., Vitter, J.S. (eds.) Proceedings of DIMACS 1998. DIMACS, vol. 50,
pp. 107–118. DIMACS/AMS (1998)

23. Impagliazzo, R., Paturi, R.: On the complexity of k-SAT. J. Comput. Syst. Sci.
62(2), 367–375 (2001)

24. Jansen, B.M.P., de Kroon, J.J.H.: Preprocessing vertex-deletion problems: charac-
terizing graph properties by low-rank adjacencies. In: Proceedings of SWAT 2020,
LIPIcs, vol. 162, pp. 27:1–27:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik
(2020)

25. Jansen, B.M.: The power of data reduction: Kernels for fundamental graph prob-
lems. Ph.D. thesis, Utrecht University (2013)

26. Lewis, J.M., Yannakakis, M.: The node-deletion problem for hereditary properties
is NP-complete. J. Comput. Syst. Sci. 20(2), 219–230 (1980)

27. McGregor, A.: Graph stream algorithms: a survey. SIGMOD Rec. 43(1), 9–20
(2014)

28. McGregor, A., Vorotnikova, S., Vu, H.T.: Better algorithms for counting triangles
in data streams. In: Proceedings of PODS 2016, pp. 401–411. ACM (2016)

29. Muthukrishnan, S.: Data streams: algorithms and applications. Found. Trends
Theor. Comput. Sci. 1(2) (2005)

30. Reed, B.A., Smith, K., Vetta, A.: Finding odd cycle transversals. Oper. Res. Lett.
32(4), 299–301 (2004)

31. Sau, I., dos Santos Souza, U.: Hitting forbidden induced subgraphs on bounded
treewidth graphs. In: Proceedings of MFCS 2020. LIPIcs, vol. 170, pp. 82:1–82:15.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020)

https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-1-4612-0515-9
https://doi.org/10.1007/978-1-4612-0515-9
https://doi.org/10.1007/978-3-662-44465-8_24
https://doi.org/10.1007/s00224-019-09938-8

On the Hardness of the Determinant:
Sum of Regular Set-Multilinear Circuits

S. Raja(B) and G. V. Sumukha Bharadwaj

IIT Tirupati, Tirupati, India
{raja,cs21d003}@iittp.ac.in

Abstract. In this paper, we study the computational complexity of
the commutative determinant polynomial computed by a class of set-
multilinear circuits which we call regular set-multilinear circuits. Reg-
ular set-multilinear circuits are commutative circuits with a restriction
on the order in which they can compute polynomials. A regular circuit
can be seen as the commutative analogue of the ordered circuit defined
by Hrubes, Wigderson and Yehudayoff [5]. We show that if the commu-
tative determinant polynomial has small representation in the sum of
constantly many regular set-multilinear circuits, then the commutative
permanent polynomial also has a small arithmetic circuit.

Keywords: Hardness of determinant · Set-multilinear circuits ·
Regular set-multilinear circuits

1 Introduction

Arithmetic circuit complexity studies the complexity of computing polynomi-
als using arithmetic operations. Arithmetic circuits are a natural computational
model for computing and describing polynomials. Arithmetic circuit is a directed
acyclic graph with internal nodes labeled by + or ×, and leaves labeled by either
variables or elements from a underlying field F. The complexity measures asso-
ciated with arithmetic circuits are size, which measures number of gates in the
circuit, and depth, which measures length of the longest path from a leaf to the
output gate in the circuit. Two important examples of polynomial family are
the determinant and the permanent polynomials. The determinant polynomial
is ubiquitous in linear algebra, and it can be computed by polynomial-sized arith-
metic circuits (see e.g., [3]). On the other hand, the permanent of 0/1 matrices
is #P-complete [10], where #P corresponds to the counting class in the world of
Boolean complexity classes. Thus, it is believed that, over fields of characteristic
different from 2, the permanent PERM = (PERMn) polynomial family cannot
be computed by any polynomial-sized circuit family. A central open problem of
the field is proving super-polynomial size lower bounds for arithmetic circuits
that compute the permanent polynomial PERMn. Motivated by this problem,
Valiant, in his seminal work [9], defined the arithmetic analogues of P and NP:
denoted by VP and VNP. Informally, VP consists of multivariate (commutative)
c© Springer Nature Switzerland AG 2021
E. Bampis and A. Pagourtzis (Eds.): FCT 2021, LNCS 12867, pp. 427–439, 2021.
https://doi.org/10.1007/978-3-030-86593-1_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86593-1_30&domain=pdf
https://doi.org/10.1007/978-3-030-86593-1_30

428 S. Raja and G. V. S. Bharadwaj

polynomials that have polynomial size circuits. Valiant showed that PERM
is VNP-complete w.r.t. projection reductions. Thus, V P �= V NP iff PERMn

requires arithmetic circuits of size super-polynomial in n.
Set-multilinear circuits are introduced in the work of [7]. Let F be a field and

X = X1 � X2 � · · · � Xd be a partition of the variable set X. A set-multilinear
polynomial f ∈ F[X] w.r.t. this partition is a homogeneous degree d multilinear
polynomial such that every nonzero monomial of f has exactly one variable
from Xi, for all 1 ≤ i ≤ d. Some of the well-known polynomial families like
the permanent PERMn and the determinant DETn, are set-multilinear. The
variable set is X = {xij}1≤i,j≤n and the partition can be taken as the row-wise
partition of the variable set. I.e. Xi = {xij | 1 ≤ j ≤ n} for 1 ≤ i ≤ n. In
this work, we study the set-multilinear circuit complexity of the determinant
polynomial DETn. A set-multilinear arithmetic circuit C computing f w.r.t.
the above partition of X, is a directed acyclic graph such that each in-degree 0
node of the graph is labeled with an element from X ∪ F. Each internal node
v of C is of in-degree 2, and is either a + gate or × gate. With each gate v
we can associate a subset of indices Iv ⊆ [d] and the polynomial fv computed
by the circuit at v is set-multilinear over the variable partition

⊔
i∈Iv

Xi. If v
is a + gate then for each input u of v, Iu = Iv. If v is a × gate with inputs
v1 and v2 then Iv = Iv1 � Iv2 . Clearly, in a set-multilinear circuit every gate
computes a set-multilinear polynomial (in a syntactic sense). The output gate of
C computes the polynomial f , which is set-multilinear over the variable partition⊔

i∈[d] Xi. The size of C is the number of gates in it and its depth is the length
of the longest path from an input gate to the output gate of C. Additionally, a
set-multilinear circuit C is called a set-multilinear formula if out-degree of every
gate is bounded by 1.

Set-multilinear arithmetic circuits are a natural model for computing set-
multilinear polynomials. It can be seen that each set-multilinear polynomial can
be computed by a set-multilinear arithmetic circuit. For set-multilinear formu-
las, super-polynomial size lower bounds are known [8]. Super-polynomial lower
bounds for a class of set-multilinear ABPs computing the determinant DETn is
shown in [1]. It is known that proving super-polynomial lower bound result for
general set-multilinear circuits computing the permanent polynomial PERMn

would imply that PERMn requires super-polynomial size non-commutative
arithmetic circuits, and this is an open problem for over three decades. Non-
commutative circuits are a restriction on the computational power of circuits.
Though non-commutative circuits compute non-commutative polynomials, one
can study what is the power of commutativity in computing the DETn poly-
nomial. Noncommutative arithmetic circuit models are well studied, see e.g.,
[2,5,6]. In [2], it was shown that computing the non-commutative determinant
polynomial is as hard as computing the commutative permanent polynomial.

1.1 Our Results

To explain our results, we first define the computational model that we study.
Let Sn denote the set of all permutations over the set {1, 2..., n}.

On the Hardness of the Determinant: Sum of RSM Circuits 429

Definition 1 (Regular Set-Multilinear Circuits). Let X = X1 �X2 � · · · �
Xd be a partition of the variable set X. Let σ ∈ Sd. A set-multilinear circuit C
that computes a set-multilinear polynomial f ∈ F [X] w.r.t the above partition
is called regular set-multilinear circuit w.r.t σ ∈ Sd, if every gate v in C is
associated with an interval Iv w.r.t σ ∈ Sd. In other words, σ ∈ Sd defines
an ordering (σ(1), σ(2), · · · , σ(d)) and every gate v in C is associated with an
interval Iv w.r.t σ-ordering (σ(1), σ(2), · · · , σ(d)).

Let C be a regular set-multilinear circuit w.r.t σ computing a commutative
polynomial f of degree d. Let v be a gate in C computing the polynomial fv of
degree k. By definition, fv is a set-multilinear polynomial w.r.t Iv = [σ(i), σ(i +
1), · · · , σ(i+k)], where i <= d−k. Let order(fv) = Iv = (σ(i), σ(i+1), · · · , σ(i+
k)).

Since for each gate v in C, Iv can be viewed as an interval w.r.t σ ∈ Sd, the
two children u and w of v can be designated as left and right child. In particular,
for each product gate v with children u and w such that Iv = Iu � Iw, we refer
to u as the left child of v, and w as the right child of v.

We make the following observations about regular set-multilinear circuits:

– If v is an input gate (leaf node) labeled by a field constant, then order(fv) =
(), where () is the empty sequence. If v is an input gate labeled by a variable
xi,j , then order(fv) = (i).

– If v is an product gate, then order(fv) = order(fu) � order(fw), where the
interval order(fv) is obtained by appending order(fu) with order(fw).

– If v is a sum gate, then order(fv) = order(fu) = order(fw).

One can define several versions of non-commutative DETn polynomial. Non-
commutative circuits computing the DETn polynomial, where the first index
of the variables in each monomial is in increasing order, can be seen as reg-
ular set-multilinear w.r.t the identity permutation. In [2], it was shown that
computing the non-commutative determinant polynomial is as hard as comput-
ing the commutative permanent polynomial. A natural next step is to find the
set-multilinear circuit complexity of the commutative determinant polynomial.

We study the computational complexity of the commutative determinant
polynomial DETn computed by a sum of regular set-multilinear circuits. We
show that if the determinant polynomial DETn is computed by a circuit C of
size s, where C is a sum of constantly-many regular set-multilinear circuits, then
we can modify C to compute the permanent polynomial PERMnε , where ε > 0,
such that the new circuit size is polynomially related to the size of C. We remark
that in our result, there is no restriction on the number of different parse tree
types/shapes (see e.g., [1]) allowed in each regular circuits.

One can view this as a generalization of the result shown in [2] to a class
of set-multilinear circuits computing the determinant polynomial DETn. We
obtain our result by carefully combining Erdös-Szekeres theorem [4] and some
properties that we prove about regular set-multilinear circuits and the result of
[2].

430 S. Raja and G. V. S. Bharadwaj

2 Preliminaries

2.1 Determinant and Permanent

Definition 2 (Commutative Determinant and Permanent). Given the set of
variables X = {xi,j | 1 ≤ i, j ≤ n}, the n × n commutative determinant and the
n × n commutative permanent over X, denoted by DETn(X) and PERMn(X)
respectively, are n2-variate polynomials of degree n given by:

DETn(X) =
∑

σ∈Sn

sgn(σ)
n∏

i=1

xi,σ(i)

PERMn(X) =
∑

σ∈Sn

n∏

i=1

xi,σ(i),

Non-commutative determinant can be defined in various ways depending on
the order in which variables are multiplied. One natural type of non-commutative
determinant, called the Cayley determinant CDETn, is one where the order of
multiplication is the identity permutation w.r.t first index of the variable.

2.2 Erdös-Szekeres Theorem

Theorem 1 (Erdös-Szekeres Theorem, [4]). Let n be a positive integer. Let
S be a sequence of distinct integers of length at least n2 + 1. Then, there exists
a monotonically increasing subsequence of S of length n + 1, or a monotonically
decreasing subsequence of S of length n + 1.

Let A,B be two n × n matrices. The following are known facts about the deter-
minant and permutations.

Fact 1: det(A × B) = det(A) × det(B).
Fact 2: The determinant of a permutation matrix is either +1 or −1.
Fact 3: Let τ, σ ∈ Sn. Then sign(τ ◦ σ) = sign(τ) × sign(σ).

For n ∈ N, let [n] = {1, 2, · · · , n}.

3 Hardness of the Determinant: Sum of Two Regular
Set-Multilinear Circuits

In this section, we show that if the determinant polynomial is computed by a
sum of two regular set-multilinear circuits then the permanent polynomial can
also be represented as a regular set-multilinear circuit. This result involves all
the techniques which will be used in the main result and it is easy to explain
in this sum of two regular circuits model. In the next section, we will prove
the result for sum of constantly many regular set-multilinear circuits. We note
that all our polynomials are commutative. For the purpose of readability, we
sometimes ignore the floor operation.

On the Hardness of the Determinant: Sum of RSM Circuits 431

Let X = {xi,j | 1 ≤ i, j ≤ n} be the set of variables. Let Xi = {xij | 1 ≤
j ≤ n} for 1 ≤ i ≤ n. Our aim is to show that if C = Cσ1

1 + Cσ2
2 computing

the determinant polynomial DETn(X) ∈ F[X], where the circuits Cσ1
1 , Cσ2

2 are
regular set-multilinear circuits w.r.t σ1, σ2 ∈ Sn respectively, then there is an
efficient transformation that converts the given circuit C to another circuit C ′

computing the permanent polynomial of degree
√

n/2. Given C = Cσ1
1 + Cσ2

2

computing DETn(X), if σ1 = σ2 then we can directly adapt the result of [2]
and get a circuit C ′ computing the permanent polynomial of degree n/2. If n
is not even then we can substitute variables in the set Xn suitably from {0, 1}
such that C computes DETn−1(X) before using the result of [2].

The case of σ1 �= σ2 needs more work that we explain now. The idea is to use
the well known Erdös-Szekeres Theorem [4] that guarantees that any sequence
of n distinct integers contains a subsequence of length at least

√
n that is either

monotonically increasing or decreasing. By viewing σ = (σ(1), σ(2), · · · , σ(n))
as a sequence of integers, we apply the above result to permutations σ1, σ2 ∈ Sn.
We first apply it to σ1 = (σ1(1), σ1(2), ..., σ1(n)) and let A = {i1, i2, · · · , i√n} be
the set of indices that appear in this monotone subsequence. If the subsequence
is monotonically increasing then we do substitutions in DETn(X) so that it com-
putes the determinant polynomial of

√
n × √

n matrix whose rows and columns
are labeled by the elements of set A. This is done by making suitable substitu-
tions to the variables in X from X ∪ {0, 1} in the given circuit C. After this we
get a circuit C ′ from C that computes DET√

n(X ′) where X ′ =
⊔

i∈A Xi.
We note that C ′ = Cσ1′

1 + Cσ2′
2 where σ1′, σ2′ ∈ S√

n and σ1′ =
(σ1′(1), σ1′(2), · · · , σ1′(

√
n)) is in increasing order. If σ1′ = σ2′, then we can use

[2] and get the permanent of degree
√

n/2. Otherwise, we apply Erdös-Szekeres
Theorem to permutations σ1′, σ2′. In particular, this will give us a monotone
subsequence in σ2′ = (σ2′(1), σ2′(2), · · · , σ2′(

√
n)) with length at least n1/4. If

this sequence is increasing, then the same subsequence is also increasing in σ1′

as we already noted that it is in increasing order. Let A1 = {j1, j2, · · · , jn1/4} be
the set of indices that appear in this monotone subsequence. Now we project, as
before so that it computes the determinant polynomial of a n1/4 × n1/4 matrix
whose rows and columns are labeled by the elements in set A1. After substituting
from X ′ ∪{0, 1} for each variable in the given circuit C ′, we get a regular circuit
C

′′
that computes DETn1/4(X ′′), where X ′′ =

⊔
i∈A1

Xi.
The important thing to note here is that in the new circuit C

′′
= Cσ1′′

1 +Cσ2′′
2 ,

where σ1′′, σ2′′ ∈ Sn1/4 , both σ1′′ and σ2′′ are the same, i.e., σ1′′ = σ2′′. We can
rename the variable sets in X ′′ =

⊔
i∈A1

Xi to X1,X2, · · · ,Xn1/4 . For example,
if i1 ∈ A1 is the lowest index then we can rename Xi1 to X1, and for all j,
rename Xi1,j to X1,j . Similarly, the k-th lowest index is modified. After these
modifications, we can assume that X̂ =

⊔
i∈[n1/4] Xi.

As we noted before, any non-commutative circuit computing DETn, where
the first index of the variables in each monomial is in increasing order, can be
seen as regular set-multilinear w.r.t identity permutation. Now we can apply the
following theorem (Theorem 10 from [2]) to get our result.

432 S. Raja and G. V. S. Bharadwaj

Theorem 2 (Theorem 10, [2]). For any n ∈ N, if there is a non-commutative
circuit C of size s computing the Cayley determinant DET2n(X) then there is
a circuit C ′ of size polynomial in s and n that computes the Cayley permanent
PERMn(Y).

If n′ =
n1/4� is not an even number then we ignore the Xn′ variable set
in X̂ by following substitutions: Xn′,n′ = 1 and for all j ∈ [n′ − 1], Xn′,j = 0
and Xj,n′ = 0. After this substitutions, we have a circuit that computes the
determinant DETn′−1 polynomial. Now applying the above theorem we get a
circuit Ĉ that computes the permanent polynomial of degree n′−1

2 .
We now explain how to handle if Erdös-Szekeres Theorem guarantees only

monotonically decreasing sequence. For that we define the reverse of a regular
set-multilinear circuit C w.r.t σ ∈ Sn computing a polynomial f . This results in
a regular set-multilinear circuit Crev w.r.t σrev ∈ Sn, where σrev = (σ(n), σ(n−
1), ..., σ(1)), computing the same commutative polynomial f as circuit C. We
note that if σ has monotonically decreasing subsequence of length k then σrev

has a monotonically increasing subsequence of same length k. We obtain Crev

by interchanging the left and right children of product gates in C. This is proved
in the following lemma.

Lemma 1 (Reversal Lemma). Let X = {xi,j | 1 ≤ i, j ≤ n} be a set of vari-
ables and X = X1 � X2 � ... � Xn be a partition of X, where for all 1 ≤ i ≤ n,
Xi = {xi,1, xi,2, ..., xi,n}. Let C be a regular set-multilinear circuit w.r.t a permu-
tation σ ∈ Sn computing the polynomial f ∈ F [X]. Then, there exists a regular
set-multilinear circuit Crev w.r.t σrev ∈ Sn where σrev = (σ(n), σ(n−1), ..., σ(1))
computing the same commutative polynomial f as circuit C. Moreover, the size
of Crev is same as that of C.

Proof. First, we describe the construction of the circuit Crev, and then prove its
correctness. Let v be a gate in C. As C is a regular set-multilinear circuit w.r.t
σ ∈ Sn, we have an interval Iv w.r.t the permutation σ associated with the gate
v.

Construction of Crev: Starting with the product gates at the bottom of C
and gradually moving up level-by-level, swap the left and right children of each
product gate.

Correctness: We show by induction on depth d of C that both circuits C
and Crev compute the same polynomial f ∈ F [X] and Crev is a regular set-
multilinear circuit w.r.t σrev ∈ Sn, where σrev = (σ(n), σ(n − 1), ..., σ(1)). Let
fv and frev

v denote the polynomials computed at any node v in C and Crev,
respectively. Let order(fv) = Iv. We will show that fv and frev

v are the same
polynomial and the only difference is in their orders. That is, order(frev

v) =
rev(order(fv)), where rev(order(fv)) is order(fv) written in reverse (i.e., the
interval Iv is reversed).

The proof is by induction on the depth d of the circuit Crev. Let frev denote
the polynomial computed by Crev.

On the Hardness of the Determinant: Sum of RSM Circuits 433

Base Case: The base case is any node at depth 0, i.e., a leaf node. Consider
any leaf node l. Then fl, the polynomial computed at l, is either a variable or
a field constant in F . If fl is a field constant, then order(fl) = (). Therefore,
order(frev

l) = (). If fl is a variable xi,j , 1 ≤ i, j ≤ n, then order(fl) = (i).
Therefore, the order(frev

l) = (i). In both cases, frev
l = fl and order(frev

l) =
rev(order(fl)).

Induction Hypothesis: Assume for any node u at depth d′, 1 ≤ d′ ≤ d − 1,
that frev

u = fu and order(frev
u) = rev(order(fu)).

Induction Step: Consider any node v at depth d′ + 1, with vL and vR as
its left and right children, respectively. By induction hypothesis, frev

vL
= fvL

and order(frev
vL

) = rev(order(fvL
)). Similarly, frev

vR
= fvR

and order(frev
vR

) =
rev(order(fvR

)).
If v is a product gate, then frev

v = frev
vR

× frev
vL

, which is equivalent to
fvR

× fvL
= fv by induction hypothesis. By induction hypothesis, order(frev

v)
is order(frev

vR
) appended with order(frev

vL
). The order(frev

vL
) = rev(order(fvL

)),
and order(frev

vR
) = rev(order(fvR

)). Therefore, order(frev
v) = rev(order(fv)).

If v is a sum gate, then frev
v = frev

vL
+frev

vR
, which is equivalent to fvL

+fvR
=

fv by induction hypothesis. As v is a sum gate, order(fv) = order(fvL
) =

order(fvR
). As order(frev

vL
) = rev(order(fvL

)) by induction hypothesis, we have
that order(frev

v) = rev(order(fv)) and order(frev
vR

) = rev(order(fvR
)). Thus,

order(frev
v) = order(frev

vL
) = order(frev

vR
).

The size of Crev is same as that of C because the only modification we are
doing to C is swapping the children of product gates. This completes proof of
the lemma.

Using Lemma 1, we can handle the monotonically decreasing sequence with-
out modifying the polynomial computed by a regular set-multilinear circuit. This
gives us a circuit Ĉ that computes the permanent polynomial of degree

4√n
2 . We

remark that Lemma 1 can be adapted for non-commutative circuits as well.
We now explain how to get the permanent polynomial of degree

√
n
2 instead of

4√n
2 . This gives us quadratic improvement in the degree of the permanent polyno-

mial. This is based on the observation that if C is a regular set-multilinear circuit
w.r.t a permutation σ ∈ Sn computing the determinant polynomial DETn(X),
then for any permutation τ ∈ Sn, there is another regular set-multilinear circuit
C ′ w.r.t τ ◦ σ ∈ Sn computing the same determinant polynomial DETn(X).
Moreover, the size of C ′ is at most one more than the size of C.

In other words, composition of permutations can be efficiently carried
out for regular set-multilinear circuits computing the determinant polynomial
DETn(X).

Lemma 2 (Composition Lemma). Let C = C1 + C2 be the sum of two
regular set-multilinear circuits computing the determinant polynomial DETn(X),
where the circuits C1, C2 are regular set-multilinear circuits w.r.t σ1, σ2 ∈ Sn

respectively. Then for any permutation τ ∈ Sn, there exists another circuit C ′

that computes DETn(X). C ′ is also a sum of two regular set-multilinear circuits

434 S. Raja and G. V. S. Bharadwaj

(regular set-multilinear w.r.t τ ◦ σ1, τ ◦ σ2 ∈ Sn). Moreover, the size of C ′ is at
most one more than the size of C.

Proof. First, we describe the construction of the circuit C ′ = C ′
1 + C ′

2 and then
prove its correctness.

Construction of C
′
: For every variable xi,j in C = C1 + C2, substitute the

variable xτ(i),j . Let Ĉ be this modified circuit. If sgn(τ) is -1, then add a leaf
node labeled -1 and multiply the root node of Ĉ with this leaf node. Let C ′ be
this modified circuit. The size of C ′ is at most one more than the size of C.

Correctness: Now we will prove that C ′ computes DETn(X). Let m1 and m2

be any two monomials in DETn(X) computed by C. Let m′
1 and m′

2 be the
monomials obtained by applying τ to the first index of each of the variables
in m1 and m2 respectively. The permutations corresponding to m′

1 and m′
2 are

τ ◦ σ1 and τ ◦ σ2 respectively.

– Case 1: m1 = m2. We show that m′
1 = m′

2 in C ′. We note that m1 and m2

could be computed by circuits C1 and C2 respectively. Thus, the order of
variables appearing in m1 and m2 could be different in general. By construc-
tion of C ′, xi,j is substituted by the variable xτ(i),j . Since m1 = m2, we get
m′

1 = m′
2.

– Case 2: m1 �= m2. We show that m′
1 �= m′

2 in C ′. Since m1 �= m2, there
exists a variable xi1,j1 in m1 and a variable xi2,j2 in m2 such that xi1,j1 �=
xi2,j2 . Suppose j1 = j2, then i1 �= i2. Then, xτ(i1),j1 �= xτ(i2),j2 . This implies
m′

1 �= m′
2. Suppose j1 �= j2, then xτ(i1),j1 �= xτ(i2),j2 , which again implies that

m′
1 �= m′

2.

By construction of C ′, we note that coefficients of monomials are not affected.
Now we will prove that C ′ computes DETn(X). Let AX be a n×n matrix where
row i contains all variables of the set Xi. In other words, the entry of i-th row
and j-th column of the matrix AX is xi,j . Let β ∈ Sn. By changing xi,j to xβ(i),j ,
in effect it permutes the rows of AX . In other words, the determinant is equal
to the determinant of Pβ × AX , where Pβ is the n × n permutation matrix. The
entry of i-th and j-th column of Pβ is 1 iff j = β(i) and 0 otherwise. By Fact 1
and 2, we have det(Pβ × AX) = det(Pβ) × det(AX) = sign(β) × det(AX).

Thus, composing the permutation τ with σ1, σ2 maps different monomials
to different monomials and in effect does not change the determinant computed
except that the sign changes. Note that sgn(τ ◦β) = sgn(τ).sgn(β) (by Fact 3).
Therefore, if sgn(τ) = −1, then the coefficients of m′

1 and m′
2 are the negatives

of the coefficients of m1 and m2 respectively. Therefore, if sgn(τ) = −1, C ′

computes DETn(X), as the leaf gate labeled -1 multiplied to the output gate
ensures that C ′ computes DETn(X). However, the coefficients of m′

1 and m′
2

are the same as the coefficients of m1 and m2 respectively, if sgn(τ) = +1. In
the case that sgn(τ) = +1, there is no need of this leaf gate. In both cases, the
polynomial computed by C ′ is DETn(X).

Now we will show that order(Cj) = (τ(σj(1)), τ(σj(2)), ..., τ(σj(n))), j ∈
{1, 2}. The proof is by induction on the depth d of the circuit. We will prove

On the Hardness of the Determinant: Sum of RSM Circuits 435

it for C1. The proof is similar for the circuit C2. Recall that C1 is regular set-
multilinear circuit w.r.t σ1. Let v be a gate in the circuit. We denote polynomial
computed at v in C and C ′ by fv and f ′

v respectively.

Base Case: The base case is any node at depth 0, i.e., a leaf node. Let � be
any leaf node. Then f� is either a field constant or a variable xi,j . If f� ∈ F ,
then the order(f�) is the empty sequence (). As there is no variable in f�, there
is no change to be made. Therefore, order(f ′

�) = (), and therefore the claim
trivially holds. If f� is a variable xi,j , then order(f�) = (i) = (σ1(k)), for some
k ∈ {1, 2, ..., n}. We change xi,j to xτ(i),j , which means order(f ′

�) = (τ(σ1(k))).

Induction Hypothesis: Suppose the claim holds for any node at depth d′, 1 ≤
d′ < d.

Induction Step: Consider any node v at depth d′ + 1. Let u and w be its left
and right children with degrees du, dw respectively.

– Case 1: v is a sum gate. Thus, f ′
v = f ′

u + f ′
w. Then order(f ′

u) = order(f ′
w) =

order(f ′
v).

– Case 2: v is a product gate. Thus, f ′
v = f ′

u × f ′
w. Let 0 ≤ a ≤ n − du − dw,

where du, dw denote degrees of fu, fw respectively.
Let order(fu) = (σ1(a + 1), σ1(a + 2), · · · , σ1(a + du)) and
order(fw) = (σ1(a + du + 1), σ1(a + du + 2), · · · , σ1(a + du + dv)). By IH,
order(f ′

u) = (τ(σ1(a+1)), τ(σ1(a+2)), ..., τ(σ1(a+du))), and let order(f ′
w) =

(τ(σ1(a+du +1)), τ(σ1(a+du +2)), ..., τ(σ1(a+du +dv))). Then order(f ′
v) =

(τ(σ1(a + 1)), · · · , τ(σ1(a + du)), τ(σ1(a + du + 1)), · · · , τ(σ1(a + du + dv))).

Thus, in both cases, the claim holds. This completes the proof of the lemma.

Unlike Lemma 1, we note that in general this composition operation may not
hold for any polynomial f computed by a regular circuit. For example, if C is a
regular set-multilinear circuit computing the polynomial f = x1,1x2,0x3,0x4,1

then by swapping the 3rd and 4th indices, we get a different polynomial
f ′ = x1,1x2,0x4,0x3,1. Now we have all results needed to the case where the
determinant polynomial is computed by a sum of two regular set-multilinear
circuits.

Theorem 3. Let X = {xi,j}n
i=1,j=1. If the determinant polynomial over X

is computed by a circuit C of size s, where C is the sum of two regular set-
multilinear circuits, then the permanent polynomial of degree

√
n/2 can be com-

puted by a regular set-multilinear circuit C ′ of size polynomial in n and s.

Proof. Let C = Cσ1
1 +Cσ2

2 , where the circuits Cσ1
1 , Cσ2

2 are regular set-multilinear
circuits w.r.t σ1, σ2 ∈ Sn respectively. We show that there is an efficient trans-
formation that converts the given circuit C to another circuit C ′ computing the
permanent polynomial of degree

√
n/2.

Without loss of generality, we can assume that σ1 is the identity permutation.
This is because otherwise by Lemma 2 we can get a new circuit Ĉ = C

σ−1
1 ◦σ1

1 +

436 S. Raja and G. V. S. Bharadwaj

C
σ−1
1 ◦σ2

2 with σ−1
1 ◦σ1, σ

−1
1 ◦σ2 ∈ Sn as the two permutations used. This does not

increase the circuit size. By the Erdös-Szekeres Theorem, there is a monotone
subsequence of length

√
n. Let A be the set of all such indices.

– Case 1: Subsequence is increasing. As σ1 is the identity, the same subsequence
of indices in σ1 is also increasing. We do the following substitutions. For all
j /∈ A, set xj,j = 1 and for all i ∈ [n] and i �= j, set xj,i = 0 and xi,j = 0.
After this substitutions, the circuit computes the determinant polynomial
over A′ =

⊔
i∈A Xi and the order of the subsequence in both C1 and C2 are the

same. We rename the variable sets in A′ as follows: if i1 ∈ A1 is the j-th lowest
index in the subsequence then we rename Xi1 to Xj , and for all k, rename
Xi1,k to Xj,k. The modified circuit C ′ computes the determinant polynomial
over X̂ =

⊔
i∈[n1/2] Xi and it is regular w.r.t the identity permutation in S√

n.
– Case 2: Subsequence is decreasing. Then by Lemma 1, we modify the circuit

Cσ2
2 to get a new circuit computing the same polynomial as computed by the

circuit Cσ2
2 but the new circuit is regular set-multilinear w.r.t the permutation

σrev
2 = (σ2(n), σ2(n− 1), · · · , σ2(1)). We note that, by applying Lemma 1, no

sign change occurs to the determinant polynomial. In this modified (second)
circuit, the corresponding subsequence now becomes increasing. This reduces
this case to case 1.

Thus, after this modifications we have a new regular circuit C ′, that computes
the determinant polynomial of degree

√
n, w.r.t the identity permutation. If

√n� is not an even number then we substitute variables in X√
n as explained

before. Thus, C ′ computes the determinant polynomial of even degree. Now by
the result of [2], we can compute the permanent polynomial of degree

√
n
2 by a

circuit of size polynomial in s and n. This completes the proof of the theorem.

4 Hardness of the Determinant: Sum of Constantly-Many
Regular Set-Multilinear Circuits

In this section, we show that if the determinant polynomial DETn(X) is com-
puted by a sum of constantly many regular set-multilinear circuits then the
permanent polynomial PERMnε/2(X), ε > 0 depends on k, computed a regular
circuit. The proof of the following lemma is omitted due to lack of space. This is
a generalization of the (composition) Lemma 2 but idea of the proof is similar.

Lemma 3. Let C = C1 + C2 + · · · + Ck be a sum of k regular set-multilinear
circuits such that C computes DETn(X). Let C1, C2, ..., Ck be regular set-
multilinear w.r.t σ1, σ2, ..., σk respectively, where each σi ∈ Sn. For any τ ∈
Sn, let C

τ(σ1)
1 , C

τ(σ2)
2 ,, C

τ(σk)
k be the circuits obtained by substituting xτ(i),j

for each variable in xi,j in each of the k circuits. Let C ′ be the sum of
C

τ(σ1)
1 , C

τ(σ2)
2 ,, C

τ(σk)
k . Then C ′ also computes DETn(X). Moreover, the size

of C ′ is at most one more than the size of C.

On the Hardness of the Determinant: Sum of RSM Circuits 437

Without loss of generality we can assume that for each i �= j ∈ [k], σi �= σj .
Otherwise, we can combine all Ci’s which use same σi into a single Ci using
addition gates and get a circuit C that is a sum of k′ regular set-multilinear
circuits, where k′ < k. Therefore, C is the sum of k′ regular set-multilinear
circuits such that no two permutations used by any two of these k′ circuits is
same. We call such a circuit C as k′-regular circuit.

Theorem 4. Let C be the sum of k-many regular set-multilinear circuits, of size
s, computing the determinant polynomial DETn(X). Then there exists a regular
set-multilinear circuit whose size is at most s+1 that computes the determinant
polynomial DETnε(X ′), where X ′ = {xi,j}nε

i=1,j=1 and ε ≥ 1/2k−1.

Proof. Let C = Cσ1
1 + Cσ2

2 + · · · + Cσk

k , where the circuits Cσi
i are regular

set-multilinear circuits w.r.t σi ∈ Sn, i ∈ [k]. We show that there is an efficient
transformation that converts the given circuit C to another circuit C ′ computing
the determinant polynomial of degree nε, ε = 1/2k−1 .

Without loss of generality, we can assume that σ1 is the identity permutation.
This is because otherwise by Lemma 2 we can get a new circuit Ĉ = Ĉ1 + Ĉ2 +
· · · + Ĉk′ where Ĉi is a regular set-multilinear circuit w.r.t the permutation
σ−1
1 ◦ σi ∈ Sn, where i ∈ [k]. We note that Ĉ computes the same polynomial as

circuit C and both circuits have the same size.
Denote by C(�) the circuit obtained after the �-th iteration, where 0 ≤ � < k.

We will show that C(�) computes the determinant polynomial of degree n1/2�

and C(�) is a (k − �)-regular circuit.
At iteration 0, this condition holds, as C(0) = C computes the determinant

polynomial over X and C(0) is a k-regular circuit.
Suppose the condition is true for some m, where 0 ≤ m < k. We will show

that C(m+1) computes the determinant polynomial of degree n1/2m+1
and C(m+1)

is a k − (m + 1)-regular circuit. Note that C1, C2, · · · , Ck have been modified
during the first m iterations. Let us denote these modified circuits at the end of
the m-th iteration by C ′

1, C
′
2, · · · , C ′

k. Thus, C(m) = C ′
1 + C ′

2 + · · · + C ′
k.

Without loss of generality, we will assume that each variable in the deter-
minant computed by C(m) has both its indices in X(m) = {1, 2, · · · , km},
where km = n

1
2m . We note that the first m regular set-multilinear circuits

C ′
1, C

′
2, · · · , C ′

m are regular w.r.t identity permutation id ∈ Skm
. As noted before,

we can combine all C ′
i’s which has same σi as single Ci using addition gates.

By Erdös-Szekeres Theorem [4], in σ′
m+1, there is a monotone subsequence of

length n
1

2m+1 . There are two cases to handle based on whether the subsequence
is increasing or decreasing.

– Case 1: Suppose σ′
m+1 has an increasing subsequence. Let S(m+1) =

{i1, i2, · · · , ikm+1} be the set of indices in this increasing subsequence, where
km+1 = n

1
2m+1 . We do the following substitutions. For all j /∈ S(m+1),

set xj,j = 1 and for all i ∈ [km] and i �= j, set xj,i = 0 and xi,j = 0.
After these substitutions, the circuit computes the determinant polynomial
over A′ =

⊔
i∈S(m+1) Xi. We rename the variable sets in A′ as follows: if

438 S. Raja and G. V. S. Bharadwaj

i1 ∈ S(m+1) is the j-th lowest index in the subsequence then we rename Xi1

to Xj , and for all k, rename xi1,k to xj,k. The modified circuit C(m+1) com-
putes the determinant polynomial over X̂ =

⊔
i∈[km+1]

Xi. It is clear that
σ′
1 = σ′

2 = · · · = σ′
m = σ′

m+1 = identity. This shows that C(m+1) is a
k − (m + 1)-regular circuit.

– Case 2: Suppose σ′
m+1 has only a decreasing subsequence, then, we mod-

ify the sub-circuit C ′
m+1 by Lemma 1 to get a new circuit computing the

same polynomial as computed by the (m + 1)-th sub-circuit in the previous
iteration but the new circuit is regular set-multilinear w.r.t the permutation
σrev

m+1 = (σ′
m+1(km), σ′

m+1(km − 1), · · · , σ′
m+1(1)). Note that after reversal

operation, Lemma 1 guarantees that the polynomial computed by the circuit
C ′

m+1 does not change. In σrev
m+1, the corresponding subsequence now becomes

increasing. It is clear that the same sequence of indices in σ′
1, σ

′
2, · · · , σ′

m are
also increasing. This reduces this case to case 1.

Clearly, C(m+1), obtained at the end of the (m+1)-th iteration, computes the
determinant over X(m+1) = {xi,j | i, j ∈ S(m+1)}. This implies that at the end of
(k − 1)-th iteration, C(k−1) computes the determinant of degree nε over X(k−1),
where ε = 1/2k−1. Moreover, C(k−1) is a 1-regular set-multilinear circuit. This
completes the proof of the theorem.

Let d be the degree of the determinant polynomial computed by the circuit
C(k−1) in the above theorem. Clearly, d ≥ n

1
2k−1 . If
d� is not an even number

then like before we substitute variables in the set X�d	 such that the modified
circuit computes the determinant of even degree
d� − 1. Now by the result of
[2], we can compute the permanent polynomial of degree d/2 by a circuit of size
polynomial in s and n. Thus, we get the following main result as a corollary.

Corollary 1. Let C be the sum of k-many regular set-multilinear circuits com-
puting the determinant polynomial DETn(X). Let s denote the size of the circuit
C. Then there exists a regular set-multilinear circuit Ĉ computing the permanent
polynomial PERMnε/2, where ε = 1/2k−1. Moreover, the size of Ĉ is polynomial
in s and n.

We note that to compute the permanent polynomial of degree n, we need to
consider the determinant polynomial of degree n2k−1

computed by a k-regular
circuit. So, our methods need k to be a constant.

5 Discussion

In this paper we studied the complexity of computing the determinant polyno-
mial using sum of constant number of regular set-multilinear circuits. We showed
that computing the determinant in this model is at least as hard as computing
the commutative permanent polynomial. An interesting open question is whether
our results can be extended to the sum of a non-constant (some function of the
degree of the determinant) number of regular set-multilinear circuits. Another
question is: What is the complexity of computing the determinant polynomial
using set-multilinear circuits?. This question was also raised in [1].

On the Hardness of the Determinant: Sum of RSM Circuits 439

References

1. Arvind, V., Raja, S.: Some lower bound results for set-multilinear arithmetic com-
putations. Chicago J. Theor. Comput. Sci. 2016(6)

2. Arvind, V., Srinivasan, S.: On the hardness of the noncommutative determinant.
In: Proceedings of the 42nd ACM Symposium on Theory of Computing, STOC
2010, Cambridge, Massachusetts, USA, 5–8 June 2010, pp. 677–686 (2010)

3. Berkowitz, S.J.: On computing the determinant in small parallel time using a small
number of processors. Inf. Process. Lett. 18(3), 147–150 (1984)

4. Erdös, P., Szekeres, G.: A combinatorial problem in geometry. Compos. Math. 2,
463–470 (1935)

5. Hrubes, P., Wigderson, A., Yehudayoff, A.: Non-commutative circuits and the sum-
of-squares problem. In: Proceedings of the 42nd ACM Symposium on Theory of
Computing, STOC 2010, Cambridge, Massachusetts, USA, 5–8 June 2010, pp.
667–676 (2010)

6. Nisan, N.: Lower bounds for non-commutative computation (extended abstract).
In: STOC, pp. 410–418 (1991)

7. Nisan, N., Wigderson, A.: Lower bounds for arithmetic circuits via partial deriva-
tives (preliminary version). In: 36th Annual Symposium on Foundations of Com-
puter Science, Milwaukee, Wisconsin, 23–25 October 1995, pp. 16–25 (1995)

8. Raz, R.: Multi-linear formulas for permanent and determinant are of super-
polynomial size. J. ACM 56(2), 1–17 (2009)

9. Valiant, L.G.: Completeness classes in algebra. In: Proceedings of the 11h Annual
ACM Symposium on Theory of Computing, 30 April–2 May 1979, Atlanta, Geor-
gia, USA, pp. 249–261 (1979)

10. Valiant, L.G.: The complexity of computing the permanent. Theor. Comput. Sci.
8, 189–201 (1979)

Concentration of the Collision Estimator

Maciej Skorski(B)

University of Luxembourg, Luxembourg City, Luxembourg

Abstract. This work establishes strong concentration properties of the
natural collision estimator, which counts the number of co-occurrences
within a random sample from a discrete distribution.

Although this estimator has a wide range of applications, including
uniformity testing and entropy assessment, prior works don’t give any
insights into its stochastic properties beyond the variance bounds.

We circumvent technical difficulties, applying elegant techniques to
bound higher moments and conclude concentration properties. Remark-
ably, this shows that the simple unbiased estimator in many settings
achieves desired accuracy on its own, with no need for confidence
boosting.

Keywords: Entropy estimation · Collision estimation · Birthday
paradox

1 Introduction

1.1 Background

In a number of important applications, such as derivation of cryptographic keys
and security analysis [11,37], randomness extraction [19,20], property testing [4,
14] and others [1] one needs to estimate the collision probability of an unknown
distribution X [7]:

P2 � P[X ′ = X ′′], X ′,X ′′ ∼iid X. (1)

Given a sample X1, . . . , Xn ∼iid X of size n, the “natural” collision estimator is

P̂2 � 1
(
n
2

)
∑

1�i<j�n

I(Xi = Xj). (2)

This estimator is intuitive, equal to the average number of collisions within a
sample. It is unbiased, that is EP̂2 = P2. Although the sum consists of dependent
terms, correlations are weak (each term is correlated to at most 2n out of

(
n
2

)

possible) so the weak law of large numbers holds: P̂2 → P2 in probability when
n → ∞. In fact, with more powerful machinery it is possible to establish the

The work was supported by the FNR grant C17/IS/11613923. The full version is avail-
able at https://arxiv.org/abs/2006.07366.

c© Springer Nature Switzerland AG 2021
E. Bampis and A. Pagourtzis (Eds.): FCT 2021, LNCS 12867, pp. 440–456, 2021.
https://doi.org/10.1007/978-3-030-86593-1_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86593-1_31&domain=pdf
https://arxiv.org/abs/2006.07366
https://doi.org/10.1007/978-3-030-86593-1_31

Concentration of the Collision Estimator 441

asymptotic normality [18]. We want to go beyond that and established strong
concentration for a finite sample, namely a bound of the following form

P[|P̂2 − P2| > ε] � δ (3)

for possibly small accuracy ε and error probability δ.
The motivation behind this work is poor understanding of concentration

properties of this estimator. The problem has been touched by the research
on property testing, Rényi entropy estimation; in principle it could be also
attacked by concentration bounds for quadratic forms. However, none of these
approaches gives a satisfactory answer to the posed problem. Works on property
testing [10,15,34] and Rényi entropy estimation [2,31] established only weak
bounds on (2) and used it rather as a building block of other, biased, estimators.

To close this gap, this work establishes sharp concentration bounds in form
of (3) for the collision estimator, along with applications.

1.2 Main Result

Below we give exponentially strong concentration for the collision estimator (2)
under any distribution X, and quantifies the error term δ in (3).

Theorem 1 (Collision Estimator Tails). The concentration holds with the
error probability

P[|P̂2 − P2| > ε] = O(1) exp(−Ω(min(ε2/v2, n
√

ε))) (4)

for any ε, absolute constants under O(·) and Ω(·), and the factor v2 defined as

v2 � 1
n2

∑

k

P[X = k]2 +
1
n

∑

k

P[X = k]3. (5)

Below we discuss the obtained estimate in more detail.

Remark 1 (Subgaussian behavior). For sufficiently small ε the tail behaves like
exp(−Ω(ε2/v2)), e.g. as gaussian with variance Θ(v2); in fact Var[P̂2] = O(v2).

Remark 2 (Heavy-tail behavior). For bigger values of ε the tail behavior is like
exp(−Ω(n

√
ε)). This dependency is necessary, and is caused by small probability

masses of X. We will clarify this phenomena later, when discussing applications.

Remark 3 (Sharp tails). The bound in Theorem 1 is sharp in the following sense:
to have a gaussian-like tail for small ε the variance proxy has to satisfy v2 =
Ω(Var[P̂2]); but for a “typical” distribution we have v2 = O(Var[P̂2]) and then
the exponent is optimal up to a constant. Specifically, from [10] we get

Var[P̂2] = Θ

(

n−2
∑

x

P[X = x]2 + n−1(
∑

x

P[X = k]3 − (
∑

x

P[X = k]2)2)

)

and comparing this with our v2 we see that V[P̂2] = Θ(v2) when (
∑

k P[X =
k]2)2 < 0.99 · ∑

k P[X = k]3. Jensen’s inequality, applied to u → u
1
2 , gives

(
∑

k P[X = k]2)2 <
∑

x P[X = k]3 for any non-uniform X; thus the condition
holds when X is not “too close” to the uniform distribution.

442 M. Skorski

1.3 Related Work

To the best author’s knowledge, there has been no works on concentration of
the collision estimator (2). Although its variance has been studied extensively
in the context of uniformity testing [4,10,14,15,34], and Rényi entropy estima-
tion [1,2,31], we lack of understanding of the higher moments and concentration
properties. The techniques used to study the variance in prior works are merely
manipulation of algebraic expressions with some combinatorics to carry out term
cancellations, and do not scale to higher moments.

Outline of Techniques. Our findings are valuable not only because of strong
quantitative guarantees (this becomes more apparent when discussing applica-
tions) but also because of elegant proof techniques that are of broader interest.
We elaborate on that below, presenting the proof roadmap.

Handling Correlations: Negative Dependence. Negative dependency of random
variables, roughly speaking, captures the property that one of them increases
others are more likely to decrease. This property is a very strong form of neg-
ative correlation, known to imply concentration bounds comparable to those
for independent random variables; essentially (in the context of concentration
bounds) one works with negatively dependent random variables as if they were
independent. Best-known from applications to balls and bin problems, the theory
of negative dependence has been extensively investigated in [25] and [12].

We leverage the negative dependence to address the problem of correlations
among estimatorcontributions. We group estimator’s contributions Q̃k (thought
as loads) on possible outcomes of the samples x (thought as bins), obtaining

P̂2 =
1

n(n − 1)

∑

k

Q̃k, Q̃k �
∑

i�=j

I(Xi = Xj = k) (6)

and then we prove that Q̃k (indexed by k) are negatively dependent. This reduces
the problem to studying sums of independent random variables distributed as
Q̃k. We note that this trick can be used to simplify a bulk of complicated com-
putations studied in higher-order Rényi entropy estimators [1,2,31].

Estimating Quadratic Forms. In order to understand the behavior of P̂2(X), we
have to establish the concentration properties of the components contributing to
this sum. The contribution from the bin k given by Q̃k =

∑
i�=j I(Xi = Xj = k)

can be seen as a quadratic form in Q̃k =
∑

i�=j ξk,iξk,j where ξk,i = P[Xi = k].
In order to apply the probability machinery, we need to center these forms, that
is to express them in zero-mean random variables. Specifically, fixing the k-th
bin and denoting pk = P[X = k] we have the following decomposition:

Q̃k − EQ̃k = U2 + 2(n − 1)pk · U1 (7)

Concentration of the Collision Estimator 443

where U1 and U2 are the elementary symmetric polynomials in ξ′
i = ξk,i − pk:

U1 =
∑

i

ξ′
i, U2 =

∑

i�=j

ξ′
iξ

′
j , . (8)

We use this decomposition to derive the final bound. While the linear term
U1 is easy to handle, the quadratic one U2 requires a subtle treatment, involv-
ing decoupling (reducing quadratic to bilinear forms), symmetrization (replacing
components by symmetrized versions), and accurate moment estimates.

The state-of-the art moment bounds for quadratic forms are essentially estab-
lished by the two groups of results: a) General Hypercontractivity [32], which
extends the celebrated result of Bonami [6] the cornerstone technique in research
on boolean functions and b) Hanson-Wright inequality [17] and its refinements
[5,36], better known the theoretical statisticians. Although these bounds are
very powerful in general, they require much of work to be applied in our setup.
The hypercontractivity does not produce good bounds because it yields sub-
exponential type bounds, while we need more flexibility (our bounds are much
of sub-gamma type, depending on two parameters). In turn, the Hanson-Wright
inequality was developed for the symmetric case (sub-gaussian random vari-
ables), so that an accurate reduction from our case requires much of work and
auxiliary results (Fig. 1).

Collision probability

Fractional moment of histogram

Sum of independent degree-2 bool polynomials

Bounds on degree-2 polynomials

binomial fractional moments

convex majorization

Hanson-Wright + subtle moment bounds

Fig. 1. The proof roadmap.

Estimation of Sum of Independent Random Variables. Most of concentration
results in TCS papers are obtained by a black-box application of Chernoff-like
bounds, but sometimes these inequalities fail to produce good results. The con-
centration of collision estimator is such an interesting use-case. The problem is
that the estimator may be heavy tailed, with d-th moments growing faster than
O(d)d, so that the moment generating function does not exist. Furthermore, the
sum terms are of different magnitude (when the distribution of X is “dispersed”);
classical inequalities are not well-suited to such heterogenic setups.

What to do when standard concentration inequalities fail? The solution are
subtle moment methods. The corollary below slightly extends the state-of-art
result of Latala [26], which estimates moments of sums by controlling moments
of the individual components (such bounds are called Rosenthal-type [35]).

444 M. Skorski

Corollary 1. Let (Wx)x be zero-mean and independent random variables
(indexed by x), d be even and positive, and define the auxiliary function φ(u) �
(1+u)d+(1−u)d

2 . Then

‖
∑

x

Wx‖d = Θ(1) · inf{t :
∑

x

logEφ(Wx/t) � d}.

The bounds can be used when classical concentration bounds are not sharp
enough, for example the missing mass problem [33] or random projections [13].

Applications

Binomial Majorization. Recall the notation of stochastic convex order : a distri-
bution Y majorizes X, denoted by X ≺cvx Y iff Ef(X) � C ·Ef(Y) for all convex
functions f and some absolute constant C. Below we link the performance of
the estimator to an explicit binomial-like random variable.

Theorem 2 (Binomial Majorization). The following bound holds for the
collision estimator

P̂2 ≺cvx

(
n

2

)−1 ∑

k

(
Sk

2

)
, Sk ∼iid Binom(n,P[X = k]). (9)

where k runs over the alphabet of X.

Remark 4 (Implications). What the majorization really means is that P̂2 has,
roughly speaking, same or better concentration properties as the right-hand
side of (9). This is because virtually all existing tail bounds are derived by an
application of Markov’s inequality to a carefully chosen function f which happen
to be convex (this is the case of the moment or exponential moment method, in
particular all classical probabilistic inequalities).

Remark 5 (Evaluation). The inequality provides us with a framework to esti-
mate the right-hand side, which is a sum of independent random variables, with
explicit distributions. As demonstrated later, under some structural assumption
on X one can get bounds in a more closed-form or other interesting insights.

Remark 6 (Optimality). The result is sharp in the sense that both sides would be
identically distributed if the terms in the estimator sum were truly independent
(we know that they are weakly correlated).

Understanding Limitations to High-Confidence Estimation. There has been
recently a trend to re-examine state-of-art results in property testing with the
intent to further improve bounds in high-confidence regimes (see [9] and follow-
up works). Such constructions are quite involved, much beyond the simplic-
ity of intuitive estimators. This motivates the question about the performance
of (2) if one wants small δ. The best we could get in (3) is the sample size

Concentration of the Collision Estimator 445

n = Θε,v(log1/2(1/δ)) by benchmarking with the CLT. We now show that in
certain regimes the best we can get is only n = Θε,v(log(1/δ)).

We know that for S ∼ Binom(n, p) the tail P[S > t] is only like e−O(t log t)

when p is small t � np (this follows from sharp binomial tails obtained in [28,29],
see also the survey [23]). Now in Theorem 2 we have terms S2 − S which are
necessarily heavy tailed, because P[S2−S > t] for large t behaves like e−O(

√
t log t).

Using t = n(n − 1)ε we obtain P[
(
n
2

)−1(S
2

)
> ε] = exp(−Õ(nε1/2)) (logarithmic

terms hidden under Õ) and indeed we need n = Ωε(log(1/δ)), thus worse in
terms of δ by a factor log1/2(1/δ) than suggested by the CLT. Note that already
one x with too small probability P[X = x] 	 t/n makes P̂2 heavy-tailed.

High-Entropy Estimation with High-Confidence. We now discuss an important
use-case where high-confidence estimation, that is n = Θε(log1/2(1/δ)) (match-
ing the CLT), is actually possible. As opposed to the negative example before,
here we will fall in the regime of “moderate” deviations and “light” tails.

For simplicity consider X ∈ {0, 1}m and recall that min-entropy and collision-
entropy are defined, respectively, as H∞(X) � − log maxx P[x = x] and H2(X) �
− log

∑
x P[X = x]2. The previous section shows that estimation of H2(X) within

error of ε and with confidence 1 − δ costs n = O(log(1/δ)2
1
2H2(X)ε−2) samples.

The dependency on H2(X) and ε are in general optimal, but the factor log(1/δ)
can be improved in certain regimes. One example is when the min-entropy is
slightly more than one half of the maximal value.

Corollary 2 (High-Confidence High-Entropy Estimation). With nota-
tion as above, we can estimate H2(X) within an additive error of ε and correct-
ness probability 1 − δ given

n = O(log1/2(1/δ)2
1
2H2(X)/ε2)

samples, provided that H∞(X) � m+log log(1/δ)
2 and that ε = O(log−1(1/δ)).

Remark 7 (On improvement). The improvement in Corollary 2, due to the
restriction on H∞(X), is by the factor of log1/2(1/δ), which is significant when
very high confidence is desired, e.g. in cryptography. The restriction on H∞(X)
in cryptography is considered mild, for example randomness sources are often
required to have at least half of full min-entropy.

Optimal Rényi Entropy Estimation. Consider the problem of relative estimation,
where ε := εQ, Q = P2. This can be seen as estimation of collision entropy
H2(X) � − log Q within an additive error of ε [2]. We prove that the estimator
achieves high-probability guarantee on its own, without parallel runs.

Corollary 3 (Collision Estimation). We have

P[|P̂2 − Q| > εQ] � O(1) exp(−Ω(nε2Q1/2)), 0 � ε � 1.

446 M. Skorski

In particular the estimator in Listing 1.1 achieves relative error of ε and cor-
rectness probability of 1 − δ when the number of samples is:

n = O(log(1/δ)Q−1/2/ε2)

Remark 8 (Comparison with [2,31]). When a close bound on Q is known, we
obtain the same bound on n as in [31]. When no bound on Q is known, we
have n = O(m1/2/ε2) where m is the size of the domain of X, matching the
bound from [2]. Our novelty is to show that the simple estimator Q̃ suffices,
while previous works used it only as a building block [2,31].

Remark 9 (Difference from Uniformity Testing: Phase Transition). The bounds
for collision estimation are sharp when Q = Ω(1/m), however for uniformity
testing one considers the extreme regime of Q = 1/m · (1 + o(1)), so the lower
bounds [2] no longer apply. Indeed, uniformity testing allows a better dependency
on ε that suggested by the general collision estimation. This is an interesting
phenomena that could be seen as a “phase transition”.

Beating Median-of-Means Trick. The multiplicative penalty of log(1/δ) in the
sample bound is typical for the “median trick” [3,24,30] and appears in a number
of works on various estimators. The novelty of this work is in providing inter-
esting examples where the median trick can be avoided, or even significantly
improved (as in Corollary 2), by the natural concentration.

Optimal and Unbiased Collision Entropy Estimation. Another consequence of
the lack of concentration bounds was that collision estimators in prior works
were biased (due to confidence boosting). This motivates the question if a biased
estimator is necessary to improve the accuracy. Interestingly, we show that one
can achieve at the same time optimal efficiency and unbiased estimation.

Estimation of Quadratic Forms. In a follow-up work we show how the techniques
developed here can be used to simplify to a great extent the analysis of sparse
random projections. The bottleneck in prior works was the problem with estima-
tion of quadratic forms, which our bounds can handle (these forms were found
many times [13,21,22] not working well with existing variants of Hanson-Wright
lemma). The resulting analysis is simpler and quantitatively stronger.

Sublinear Uniformity Testing. In uniformity testing one wants to know, based on
random samples, how close is some unknown distribution to the uniform one. An
appealing idea is to relate the closeness to the collision probability Q: for X over
m elements the smallest value of Q is 1/m realized by the uniform distribution
Um, and (intuitively) the closer is Q to 1/m, the closer is X to Um. This test
was studied in many works [4,10,14,15,34] with optimal bounds found in [10].
Although more sophisticated constructions may perform bit better in certain
regimes [9], it is of interest to know the performance of the natural “birthday”
estimator P̂2, which fits the long line of research gradually improving its variance
properties [10,15,34]. We analyze the test using our concentration bounds.

Concentration of the Collision Estimator 447

def l 2 c l o s e n e s s t o un i f o rm (X ,n ,ε) :
m ← |dom(X)| /∗ domain s i z e ∗/
x[1] . . . x[n] ← X /∗ ge t i i d samples ∗/
Q ← #{(i, j) : x[i] = x[j], i �= j} /∗ count c o l l i s i o n s ∗/
Q ← Q/n(n − 1) /∗ normal ize ∗/
i f Q > (1 + ε)/m :

return False
e l i f Q < (1 + ε)/m :

return True

Listing 1.1. Uniformity Tester for Discrete Distributions.

Corollary 4 (Optimal Sublinear Collision Tester). If X is distributed
over m elements, with

n = O(log(1/δ)m1/2/ε)

samples the algorithm in Listing 1.1 distinguishes with probability 1 − δ between
a) ‖PX − Um‖22 � ε

2m and b) ‖PX − Um‖22 � 2ε
m , when 1/

√
m � ε � 1.

Remark 10. (Comparison with [10]). Our analysis is optimal in terms of depen-
dency on the alphabet m and the error ε under the mild assumption that n =
O(m), that is that the sample size is sublinear with respect to the alphabet, which
is what we usually want in applications (this means ε = Ω(m−1/2) = Ω(2−d/2)
where d = �log m� is the alphabet length; accuracy exponentially small in the
alphabet length is more than enough, say, for security applications). In this
regime we improve upon [10] by proving that there is no need for confidence
boosting (parallel runs) of P̂2, as the estimator concentrates well on its own.

Sharp Binomial Estimates. To our best knowledge, the problem of determining
closed-form sharp bounds for binomial moments has not been fully solved in the
literature. The demand for such bounds comes from applications where the subtle
moment calculations are needed to approximate tail probabilities, for example
in analyses of random projections [21] or missing mass [33].

Binomial moments cannot be estimated accurately and easily from, much
better understood, tail bounds such as the Chernoff bound (with exponent
sharp up to a constant for the binomial case [8]) or the strong result of Lit-
tlewood [28,29] (with exponent sharp up to a sub-constant error); the difficulty
is in handling complicated integrals that appear in the tail-expectation formula.
Sharp binomial moments in closed-form are known in certain regimes, for exam-
ple a) under the assumptions of the Central Limit Theorem, b) for the very
special case of the symmetric binomial, by Khintchine’s Inequaltiy [16]; they are
also combinatorial formulas, but not of closed-form [39]. As pointed out in [21],
no simple formula covering all the regimes is known. We close this gap with the
following result:

448 M. Skorski

Theorem 3 (Binomial Moments). For S ∼ Binom(p), p � 1
2 and d � 2:

‖S − ES‖d = Θ(1)

⎧
⎪⎨

⎪⎩

(dnp)1/2 log(d/np) < max(2, d/n)
d/ log(d/np) max(2, d/n) � log(d/np) � d

(np)1/d d < log(d/np).
(10)

1.4 Organization

Preliminaries are presented in Sect. 2, the main result is proved in Section 3.
Section 4 concludes the work. Some details appear in the full version.

2 Preliminaries

2.1 Negative Dependence

For a thoughtful discussion of negatively dependent variables we refer the reader
to [12,25]. Below we overview basic properties used in this paper.

Definition 1 (Negatively Dependent Random Variables [12,25]). A col-
lection of real-valued random variables (Zx)x∈X is negatively dependent when
for any two disjoint subsets X1,X2 of X and any two real functions fi : R|Xi| → R

for i = 1, 2 both increasing or both decreasing in each coordinate, we have

Cov[f1(Zx : x ∈ X1), f2(Zx : x ∈ X2)] � 0.

Proposition 1 (Zero-One Principle (cf Lemma 8 in [12])). 0–1 valued
random variables (Wx)x such that

∑
x Wx = 1, are negatively dependent.

Proposition 2 (Augmentation Property (cf Proposition 7 in [12])). If
(Wx)x are negatively dependent and (Zx)x are negatively dependent and inde-
pendent of (Wx)x, then the collection (Wx)x ∪ (Zx)x is negatively dependent.

Proposition 3 (Aggregation by Monotone Functions (cf Proposition
7 in [12])). If (Wx)x are negatively dependent, X1, . . . ,Xk are non-overlapping
sets and f1, . . . , fk are functions all increasing or decreasing then the random
variables fi(Wx : x ∈ Xi) are negatively dependent.

Proposition 4 (Majorization by IID variables (cf main result of [38]
or Section 11.6 in [27])). If (Wx)x are negatively dependent and (W ′

x)x are
distributed as (Wx)x but independent, then Ef((Wx)x) � Ef((W ′

x)x) for any
convex function f . In other words

∑
x Wx ≺cvx

∑
x W ′

x.

2.2 Symmetrization and Decoupling

We need the following decoupling inequality ([40,41]), which essentially allows
for replacing quadratic forms by bi-linear forms (much easier to handle).

Concentration of the Collision Estimator 449

Proposition 5 (Decoupling for Quadratic Forms). Let ξ = (ξ1, . . . , ξn) be
a random vector with zero-mean independent components, A be a n × n matrix
with zero diagonal, ξ′ be an independent copy of ξ and f be convex. Then

Ef(ξT Aξ) � Ef4(ξT Aξ′).

We also need the following fact on symmetrization (cf. Lemma 6.1.2 in [41])

Proposition 6 (Symmetrization). Let Y,Z be independent and EZ = 0,
then Ef(Y) � Ef(Y + Z) for any convex f .

3 Proofs

3.1 Proof of Theorem 1

Negative Dependency and Decomposition. Denote pk = Pr[X = k] and
ξi,k = I(Xi = k). Then we can write

P̂2 =
2

n(n − 1)

∑

k

Qk, Qk �
∑

i�=j

ξi,kξj,k. (11)

Let Q̃k be independent with same marginal distributions as Qk. We claim that

Ef(P̂2) � Ef

(
2

n(n − 1)

∑

k

Q̃k

)

, Q̃k ∼iid
∑

i�=j

ξiξj , ξi ∼iid Bern(pk) (12)

for any convex f . In particular 2
n(n−1)

∑
k E[Q̃k] = EP̂2. Thus the claim implies:

‖P̂2 − EP̂2‖d � O(n−2) · ‖
∑

k

[Q̃k − EQ̃k]‖d. (13)

To prove the claim, we need prove that Q̃k are negatively dependent. Then the
inequality follows by Proposition 4. Let Sk =

∑
i ξi, then we have Q̃k = S2

k − Sk

For any fixed i the random variables I(Xi = k), indexed by k, are negatively
dependent because they are boolean and add up to one (see Proposition 1) Since
Xi for different i are independent, we obtain that (I(Xi = k))i,k indexed by both
i and x are negatively dependent (by augmentation property, see Proposition 2).
Observe that S2

k −Sk = f((I(Xi = k))i) with f(u1, . . . , un) =
∑

i�=j uiuj increas-
ing in each ui when ui � 0. Applying increasing functions to non-overlapping
subsets of negatively dependent variables produces negatively dependent vari-
ables (see Proposition 3), so S2

k − Sk are negatively dependent. Same holds for
Q̃k (differ by a scaling factor). This proves the negative dependency.

Observe that this property combined with Proposition 4 implies
∑

k Q̃k ≺cvx
∑

x(S2
k − Sk) where Sx ∼ Binom(n,P[X = x]). This proves Theorem 2, we need

only to rescale by the constant n(n − 1) (which preserves the convex order).

450 M. Skorski

Observe that we can decompose

Q̃k − EQ̃k ∼
∑

i�=j

ξ′
iξ

′
j + 2npk

∑

i

ξ′
i, ξ′

i ∼iid ξ′ = Bern(pk) − pk, (14)

by plugging ξi = ξ′
i + p into

∑
i�=j ξiξj , expanding and grouping linear and

second-order terms separately. Therefore we obtain:
∑

k

[Q̃k − EQ̃k] =
∑

k

∑

i�=j

ξ′
k,iξ

′
k,j + 2n

∑

k

∑

i

pkξ′
k,i, ξ′

k,i ∼iid Bern(pk) − pk.

(15)

We shall estimate separately moments for the second-order and the linear terms.

Bounding Second-Order Chaos. Fix an even integer d > 1. We first prove

‖
∑

k

∑

i�=j

ξ′
k,iξ

′
k,j‖d � 4‖

∑

k

∑

i�=j

ξ′
k,iξ

′′
k,j‖d, (16)

where ξ′′
k,j are distributed as ξ′

k,j but independent. This follows by the decoupling
theorem (Proposition 5), applied to the family ξ′

k,i indexed by the tuples (k, i).
The matrix A has rows indexed by (k, i), columns indexed by (k′, j) and has
entries 1 when k = k′, i �= j and 0 otherwise; it is clearly off-diagonal.

In the next step we prove the Rademacher symmetrization inequality:

‖
∑

k

∑

i�=j

ξ′
k,iξ

′′
k,j‖d � 4‖

∑

k

∑

i�=j

ξ′
k,iξ

′′
k,jr

′
k,ir

′′
k,j‖d, r′

k,i, r
′′
k,j ∼iid {−1, 1}. (17)

We achieve this in the following two steps: we apply the symmetrization
(Proposition 6) to f(

∑
k

∑
i�=j ξ′

k,iξ
′′
k,j) but conditionally on values of ξ′

k,i.
With these values fixed, the function argument is linear in ξ′′

k,j and thus the
theorem for sums of random variables applies. With f(u) = |u|d we have
E[f(

∑
k

∑
i�=j ξ′

k,iξ
′′
k,j)|ξ′

k,i] � 2dE[f(
∑

k

∑
i�=j ξ′

k,iξ
′
k,jr

′′
k,j)|ξ′

k,i] and thus also
uncoditionally: Ef(

∑
k

∑
i�=j ξ′

k,iξ
′′
k,j) � 2dEf(

∑
k

∑
i�=j ξ′

k,iξ
′
k,jr

′′
k,j). In the sec-

ond step we proceed analogously, but conditioning on all values of ξ′′
k,j and also

r′′
k,j ; this gives Ef(

∑
k

∑
i�=j ξ′

k,iξ
′
k,jr

′′
k,j) � 2dEf(

∑
k

∑
i�=j ξ′

k,iξ
′
k,jr

′
k,ir

′′
k,j) which

proves the claim.
Applying the Hanson-Wright inequality [36] to the right-hand side of (17),

conditionally on fixed values of ξi, ξ
′
j , we obtain the following inequality:

∑

k

∑

i�=j

ξ′
k,iξ

′
k,j � O(

√
d)d · E(ξ′

i),(ξ
′′
j)[‖A(ξ′

k,i, ξ
′′
k′,j)(k,i),(k′,j)‖d

F]

+ O(d)d · E(ξ′
i),(ξ

′′
j)[A(ξ′

k,i, ξ
′′
k′,j)(k,i),(k′,j)‖d

2], (18)

for the following matrix (note it is indexed by tuples!):

A(ξ′
k′,i, ξ

′′
k′,j)(k,i),(k′,j) = I(k = k′, i �= j)ξ′

k,iξ
′′
k,j . (19)

Concentration of the Collision Estimator 451

It remains to bound these matrix norms. We start with the ‖ · ‖F term:

‖A(ξ′
k,i, ξ

′′
k′,j)(k,i),(k′,j)‖F =

⎛

⎝
∑

k,i �=j

ξ′2
k,iξ

′′2
k,j

⎞

⎠

1/2

. (20)

We know claim the following majorization by Bernoulli variables, for even d:

⎛

⎝
∑

k,i �=j

ξ′2
k,iξ

′′2
k,j

⎞

⎠

d/2

�

⎛

⎝
∑

k,i �=j

η′
k,iη

′′
k,j

⎞

⎠

d/2

, η′
k,i, η

′′
k,j ∼iid Bern(pk). (21)

Indeed, since d is even, this follows by the multinomial expansion, independence
and that |ξ| � 1 implies Eξ2� � Eξ for integer 	 � 1 (applied to ξ = ξ′

k,i and
ξ′′
k,j , this yields ξ′2�

k,i � p � η′�
k,i and ξ′′2�

k,i � p � η′′�
k,i accordingly). This gives:

E‖A(ξ′
k,i, ξ

′′
k′,j)(k,i),(k′,j)‖d

F � E

⎛

⎝
∑

k,i �=j

η′
k,iη

′′
k,j

⎞

⎠

d/2

. (22)

By adding extra non-negative terms for i = j and observing that we have∑
k,i η′

k,i ∼ Binom(pk),
∑

k,i η′′
k,i ∼ Binom(pk) we can further bound this as:

E‖A(ξ′
k,i, ξ

′′
k′,j)(k,i),(k′,j)‖d

F � E

(
∑

k

S′
kS′′

k

)d/2

, S′
k, S′′

k ∼iid Binom(n, pk).

(23)

We now move to the ‖ · ‖2 term. Instead of estimating it directly, we use the
matrix norm inequality ‖A‖2 � ‖A‖F . This, for even d, gives:

E‖A(ξ′
k,i, ξ

′′
k′,j)(k,i),(k′,j)‖d

F � E

(
∑

k

S′
kS′′

k

)d/2

. (24)

Plugging (24) and (23) back in (18), and using the elementary bound (a+b)1/d <
a1/d + b1/d for a, b > 0 we conclude the bound in terms of binomial moments:

‖
∑

k

∑

i�=j

ξ′
k,iξ

′
k,j‖d � O(d) · ‖

∑

k

S′
kS′′

k ‖1/2
d/2. (25)

In the final part, we estimate the expression with binomials. Denote Wk =
S′

kS′′
k , we are interested in moments of

∑
k Wk. By the moment bound from [26]:

∑

k

logE(1 + S′
kS′′

k /t)d) =
∑

k

log

⎛

⎝1 + (npk)2/t ·
∑

��2

(
d

	

)
/t�−1

⎞

⎠ . (26)

452 M. Skorski

Assuming that t � d and using log(1 + u) � u we obtain:
∑

k

logE(1 + S′
kS′′

k /t)d � d/t · n2
∑

k

p2k, (27)

and we see that this is smaller than c · d when t � n2
∑

k p2k/c. Thus:

‖
∑

k

∑

i�=j

ξ′
k,iξ

′
k,j‖d � O(d + n2

∑

k

p2k), (28)

and we finally get the desired bound on the quadratic contributions:

‖
∑

k

∑

i�=j

ξ′
k,iξ

′
k,j‖d � O(d1/2) · (n2

∑

k

p2k)1/2 + O(d)3/2. (29)

Bounding First-Order Chaos. By symmetrization (Proposition 6) we obtain:

‖
∑

i

ξ′
k,i‖d = Θ(1)‖

∑

i

ξ′
k,ir

′
i‖d, r′

i ∼iid {−1, 1}. (30)

Observe that the LHS equals ‖S − ‖ES‖d, for S ∼ Binom(n, p) with p = pk. We
start by deriving the binomial estimates in Theorem 3.

Latala pointed out [26] that for symmetric and IID r.vs. Zi, the moment
framework gives the following more handy estimate:

‖
n∑

i=1

Zi‖d = Θ(1) sup{d/q · (n/d)1/q · ‖Z‖q : max(2, d/n) � q � d}.

Let ξi, ξ
′
i ∼ Bern(p) with p � 1/2, and let Zi = ξi − ξ′

i. Since ‖Z‖q = Θ(p1/q):

‖S − S′‖d = Θ(1) sup{d/q · (np/d)1/q : max(2, d/n) � q � d}.

Now it all boils down to the auxiliary function g(q) = 1/q · a1/q (in our case a =
np/d). When a > 1 the function is decreasing for q > 0; when a < 1 it achieves
its global maximum at q = log(1/a) with the value 1

e log(1/a) (by the derivative
test). By comparing the global maximum with the interval max(2, d/n) � q � d,

log(1/a)

1
e log(1/a) g(q) = 1/q · a1/q

Fig. 2. The function g(q) = 1/q ·a1/q appearing in binomial moment estimates (a < 1).

Concentration of the Collision Estimator 453

we obtain the bounds for ‖S −S′‖d with the same formula as in Theorem 3, and
thus for ‖S −ES‖d because ‖S −S′‖d � ‖S −ES‖d +‖S′ −ES′‖d = 2‖S −ES‖d

and ‖S − ES‖d = ‖S − ES′‖d � ‖S − S′‖d respectively by the triangle and
Jensen’s inequality. The proof works for also real d (Fig. 2).

Let Sk, S′
k ∼iid Binom(n, pk). Then:

‖2n
∑

k

∑

i

pkξ′
k,i‖d = 2n‖

∑

k

pk(Sk − ESk)‖. (31)

Let Wk = npk(Sk − ESk). The bound in Theorem 3 implies ‖Sk − ESk‖d �
O(1)max{√dnpk, d}, so ‖Wk‖d � npk max{√dnpk, d}.

logE(1 + Wk/t)d � log

⎛
⎝1 +

∑
q�2,q even

(
d

q

)
(npk)

2q2q−2/tq + qq/2((n3p3
k/t2)1/2)q

⎞
⎠ .

(32)

We will make use of the following inequalities:

∑

q�2,q even

(
d

q

)√
qu

q � cosh(O(du1/2)) − 1 � exp(O(d2u)), u > 0

∑

q�2,q even

(
d

q

)
(q2u)q � 1 + O(1),

1
2d2

> u > 0.

(33)

The first follows by Taylor’s expansion of exp(·), the bound
(
d
q

)
= O(d/q)q

and Stirling’s approximation q! = Θ(q)q, and the second by the formula on the
geometric progression. We apply the first one to u = n3p3k/t2 and the second
one to u = 1/t. Since log(1 + a + b) < log(1 + a) + log(1 + b) for positive a, b
(equivalent to 1 + a + b < (1 + a)(1 + b)), we obtain for t > 2d2:

logE(1 + Wk/t)d � O(d2(n3p3k)/t2) + O(n2p2k/t2). (34)

This gives us the desired bound:

‖2n
∑
k

∑
i

pkξ′
k,i‖d = 2‖

∑
k

Wk‖d � O(d1/2) · (n3
∑
k

p3
k + n2

∑
k

p2
k)

1/2 + O(d2).

(35)

Putting Bounds Together. By the results of the two previous sections and
(14) we obtain:

‖
∑

k

[Q̃k − EQ̃k]‖d � O(vd1/2) + O(d2), v2 � n2
∑

k

p2k + n3
∑

k

p3k.

By Markov’s inequality, for some constant C > 0, we obtain:

P[|
∑

k

(Q̃k − EQ̃k)| > ε] � (Cd2/ε + C
√

dv/ε)d.

454 M. Skorski

Setting d so that a) d2 � ε/4C and b) d � ε2/v2/16C2, gives the tail of 2−d.
Since d has to be even and at least 2, if ε/4C � 4 and ε2/v2/16C2 � 2 we
obtain the tail of 2−Ω(min(ε2/v2,ε1/2)). Otherwise ε = O(1) or ε = O(v) so that
2−Ω(min(ε2/v2,ε1/2)) = 2−O(1) = Ω(1), and the claimed bound holds trivially,
because B · 2−Ω(min(ε2/v2,ε1/2)) � 1 for an appropriate constant B.

The result in Theorem 1 follows because ‖P̂2−P2‖d = 1
n(n−1)

∑
k(Q̃k−EQ̃k),

so it suffices to change ε := n(n − 1)ε and scale the formula for v accordingly.

4 Conclusion

We have obtained, for the first time, strong concentration guarantees for the
collision estimator. This subsumes variance bounds from previous works. Such
concentration bounds, for example, eliminate the need for the median trick.

References

1. Acharya, J., Orlitsky, A., Suresh, A.T., Tyagi, H.: The complexity of estimating
rényi entropy. In: Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium
on Discrete Algorithms, pp. 1855–1869. SIAM (2014)

2. Acharya, J., Orlitsky, A., Suresh, A.T., Tyagi, H.: Estimating rényi entropy of
discrete distributions. IEEE Trans. Inf. Theory 63(1), 38–56 (2016)

3. Alon, N., Matias, Y., Szegedy, M.: The space complexity of approximating the
frequency moments. J. Comput. Syst. Sci. 58(1), 137–147 (1999)

4. Batu, T., Fischer, E., Fortnow, L., Kumar, R., Rubinfeld, R., White, P.: Test-
ing random variables for independence and identity. In: Proceedings 42nd IEEE
Symposium on Foundations of Computer Science, pp. 442–451. IEEE (2001)

5. Bellec, P.C.: Concentration of quadratic forms under a Bernstein moment assump-
tion. arXiv preprint arXiv:1901.08736 (2019)

6. Bonami, A.: Étude des coefficients de fourier des fonctions de lp(g). In: Annales
de l’institut Fourier, vol. 20, pp. 335–402 (1970)

7. Cachin, C.: Entropy measures and unconditional security in cryptography. Ph.D.
thesis, ETH Zurich (1997)

8. Csiszár, I.: The method of types [information theory]. IEEE Trans. Inf. Theory
44(6), 2505–2523 (1998)

9. Diakonikolas, I., Gouleakis, T., Peebles, J., Price, E.: Optimal identity testing with
high probability. arXiv preprint arXiv:1708.02728 (2017)

10. Diakonikolas, I., Gouleakis, T., Peebles, J., Price, E.: Collision-based testers are
optimal for uniformity and closeness. Chicago J. Theor. Comput. Sci. 1, 1–21
(2019)

11. Dodis, Y., Yu, Yu.: Overcoming weak expectations. In: Sahai, A. (ed.) TCC 2013.
LNCS, vol. 7785, pp. 1–22. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-36594-2 1

12. Dubhashi, D.P., Ranjan, D.: Balls and bins: a study in negative dependence. BRICS
Rep. Ser. 3(25) (1996). https://www.brics.dk/RS/96/25/BRICS-RS-96-25.pdf

13. Freksen, C.B., Kamma, L., Larsen, K.G.: Fully understanding the hashing trick.
In: Advances in Neural Information Processing Systems, pp. 5389–5399 (2018)

http://arxiv.org/abs/1901.08736
http://arxiv.org/abs/1708.02728
https://doi.org/10.1007/978-3-642-36594-2_1
https://doi.org/10.1007/978-3-642-36594-2_1
https://www.brics.dk/RS/96/25/BRICS-RS-96-25.pdf

Concentration of the Collision Estimator 455

14. Goldreich, O.: Introduction to Property Testing. Cambridge University Press,
Cambridge (2017)

15. Goldreich, O., Ron, D.: On testing expansion in bounded-degree graphs. In: Gol-
dreich, O. (ed.) Studies in Complexity and Cryptography. Miscellanea on the Inter-
play between Randomness and Computation. LNCS, vol. 6650, pp. 68–75. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-22670-0 9

16. Haagerup, U.: The best constants in the khintchine inequality. Stud. Math. 70,
231–283 (1981)

17. Hanson, D.L., Wright, F.T.: A bound on tail probabilities for quadratic forms in
independent random variables. Ann. Math. Stat. 42(3), 1079–1083 (1971)

18. Hoeffding, W., et al.: A class of statistics with asymptotically normal distribution.
Ann. Math. Stat. 19(3), 293–325 (1948)

19. Impagliazzo, R., Levin, L.A., Luby, M.: Pseudo-random generation from one-way
functions. In: Proceedings of the Twenty-First Annual ACM Symposium on Theory
of Computing, pp. 12–24 (1989)

20. Impagliazzo, R., Zuckerman, D.: How to recycle random bits. FOCS 30, 248–253
(1989)

21. Jagadeesan, M.: Simple analysis of sparse, sign-consistent JL. In: APPROX/RAN-
DOM 2019. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2019)

22. Jagadeesan, M.: Understanding sparse JL for feature hashing. In: Advances in
Neural Information Processing Systems, pp. 15203–15213 (2019)

23. Janson, S.: Large deviation inequalities for sums of indicator variables. arXiv
preprint arXiv:1609.00533 (2016)

24. Jerrum, M.R., Valiant, L.G., Vazirani, V.V.: Random generation of combinatorial
structures from a uniform distribution. Theoret. Comput. Sci. 43, 169–188 (1986)

25. Joag-Dev, K., Proschan, F.: Negative association of random variables with appli-
cations. Ann. Stat., 286–295 (1983)

26. Lata�la, R., et al.: Estimation of moments of sums of independent real random
variables. Ann. Probab. 25(3), 1502–1513 (1997)

27. Lin, Z., Bai, Z.: Probability Inequalities. Springer, Heidelberg (2011). https://doi.
org/10.1007/978-3-642-05261-3

28. Littlewood, J.E.: On the probability in the tail of a binomial distribution. Adv.
Appl. Probab. 1(1), 43–72 (1969)

29. McKay, B.D.: On littlewood’s estimate for the binomial distribution. Adv. Appl.
Probab. 21(2), 475–478 (1989)

30. Nemirovsky, A.S., Yudin, D.B.: Problem complexity and method efficiency in opti-
mization (1983)

31. Obremski, M., Skorski, M.: Renyi entropy estimation revisited. In: APPROX-
/RANDOM 2017, volume 81 of Leibniz International Proceedings in Informatics
(LIPIcs), pp. 20:1–20:15 (2017)

32. O’Donnell, R.: Analysis of Boolean Functions. Cambridge University Press, Cam-
bridge (2014)

33. Ortiz, L.E., McAllester, D.A.: Concentration inequalities for the missing mass and
for histogram rule error. In: Advances in Neural Information Processing Systems,
pp. 367–374 (2003)

34. Paninski, L.: A coincidence-based test for uniformity given very sparsely sampled
discrete data. IEEE Trans. Inf. Theory 54(10), 4750–4755 (2008)

35. Rosenthal, H.P.: On the subspaces of Lp (p > 2) spanned by sequences of inde-
pendent random variables. Israel J. Math. 8(3), 273–303 (1970). https://doi.org/
10.1007/BF02771562

https://doi.org/10.1007/978-3-642-22670-0_9
http://arxiv.org/abs/1609.00533
https://doi.org/10.1007/978-3-642-05261-3
https://doi.org/10.1007/978-3-642-05261-3
https://doi.org/10.1007/BF02771562
https://doi.org/10.1007/BF02771562

456 M. Skorski

36. Rudelson, M., Vershynin, R., et al.: Hanson-wright inequality and sub-Gaussian
concentration. Electron. Commun. Probab. 18, 1–9 (2013)

37. Schaub, A., Rioul, O., Boutros, J.J.: Entropy estimation of physically unclonable
functions via chow parameters. In: 57th Annual Allerton Conference on Commu-
nication, Control, and Computing, pp. 698–704. IEEE (2019)

38. Shao, Q.-M.: A comparison theorem on moment inequalities between negatively
associated and independent random variables. J. Theor. Probab. 13(2), 343–356
(2000). https://doi.org/10.1023/A:1007849609234

39. Skorski, M.: Handy formulas for binomial moments. arXiv preprint
arXiv:2012.06270 (2020)

40. Vershynin, R.: A simple decoupling inequality in probability theory (2011)
41. Vershynin, R.: High-Dimensional Probability: An Introduction with Applications

in Data Science, vol. 47. Cambridge University Press, Cambridge (2018)

https://doi.org/10.1023/A:1007849609234
http://arxiv.org/abs/2012.06270

Valency-Based Consensus Under Message
Adversaries Without Limit-Closure

Kyrill Winkler1(B) , Ulrich Schmid2 , and Thomas Nowak3

1 University of Vienna, Vienna, Austria
2 TU Wien, Vienna, Austria

3 Université Paris-Saclay, CNRS, Orsay, France

Abstract. We introduce a novel two-step approach for developing a
distributed consensus algorithm, which does not require the designer to
identify and exploit intricacies of the underlying system model explicitly.
In a first step, which is typically done off-line only once, labels represent-
ing valid decision values (valencies) are assigned to suitable prefixes of
all possible runs. The challenge here is to assign them consistently for
indistinguishable runs. The second step consists in deploying a simple
generic distributed consensus algorithm, which just uses the previously
computed labeling. If it observes that all runs that may lead to a local
state that is indistinguishable from the current local state have the same
label, it decides on the value determined by this label, otherwise it has to
keep on checking. We demonstate the power of our approach by develop-
ing a new and asymptotically optimal consensus algorithm for dynamic
networks under eventually stabilizing message adversaries for arbitrary
system sizes.

1 Introduction

The focus of this paper is on the classic deterministic distributed consensus
problem [11], where each process starts with an input value and has to eventually,
deterministically and irrevocably select (“decide on”) an output value that was
the input of some process, such that the same value is selected at every process.
The literature on consensus is abundant: besides impossibility and lower bound
results, many different consensus algorithms have specifically been tailored to a
wide variety of system models.

In sharp contrast to the traditional “tailoring” design paradigm, we propose
a generic approach for developing consensus algorithms, which consists of two
steps: (i) the centralized problem of assigning labels to the tree of (prefixes of)
admissible runs of a message-passing protocol, in a way that is consistent for
indistinguishable runs, and (ii) a simple distributed observation routine that
uses this labeling for determining a decision value in the current run. Labels

K. Winkler—Supported by the Vienna Science and Technology Fund (WWTF), grant
number ICT19-045 (WHATIF), 2020–2024, and by the Austrian Science Fund (FWF)
under project ADynNet (P28182).

c© Springer Nature Switzerland AG 2021
E. Bampis and A. Pagourtzis (Eds.): FCT 2021, LNCS 12867, pp. 457–474, 2021.
https://doi.org/10.1007/978-3-030-86593-1_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86593-1_32&domain=pdf
http://orcid.org/0000-0002-7310-1748
http://orcid.org/0000-0001-9831-8583
http://orcid.org/0000-0003-1690-9342
https://doi.org/10.1007/978-3-030-86593-1_32

458 K. Winkler et al.

are typically, but not necessarily, sets of processes, whose input values are valid
decision values, i.e., values that everyone has learned in the run. Needless to
say, consensus algorithms designed via our approach are very different from any
possibly existing tailored solution.

In essence, our approach thus reduces the task of finding a distributed con-
sensus algorithm for a given model to labeling the tree of prefixes of admissible
runs, which is, fundamentally, an off-line problem.1 Alternatively, however, pro-
cesses could also iteratively compute the labels of those finite prefixes that they
actually need to check in the observation routine at runtime. The main advan-
tages of our approach are its genericity and hence its wide applicability, as well
as the unconventional view of the runs of a distributed algorithm, which may be
of independent theoretical interest.

In this paper, we will specialize our approach to the case of full-information
protocols2 in directed dynamic networks, i.e., lock-step synchronous message-
passing systems consisting of a possibly unknown number of processes, where
the communication in every round is controlled by a message adversary [1].
The solution power of our approach will be demonstrated by providing the first
asymptotically optimal algorithm for an eventually stabilizing message adver-
sary.

Main Contributions and Paper Organization. After introducing some
related work below, and our formal model in Sect. 2, we define our determin-
istic labeling function Δ(.) in Sect. 3. It acts on prefixes of the communication
graph sequences that can be produced by a given message adversary: In round
r of a given run, it applies a permanent label to the prefix consisting of the first
r rounds of the corresponding communication graph sequence. This is done in
a way that guarantees that all communication graph sequences extending this
prefix keep this label, such that indistinguishable runs will never receive inconsis-
tent labels. This labeling is used by the generic distributed algorithm presented
as Algorithm 1.

In Sect. 4, we apply our approach to the non-limit-closed eventually sta-
ble message adversary ♦STABLEn(n) from [13]. This results in the first consen-
sus algorithm with asymptotically optimal termination time under this message
adversary. We round off our paper by some conclusions in Sect. 5.

Related Work. Our approach has been stimulated by our paper [10], where
it was proved that the solvability of consensus in the message-adversary model
corresponds to a connectivity property of a suitable topological space defined
on the set of infinite runs. The constructive side of this result, i.e., a consensus
algorithm, relies on the existence of a partition of the (usually uncountable) set
of runs. Unfortunately, this cannot be considered an “operational” algorithm

1 It may require infinite space, however, for storing the system specification required
for constructing the admissible runs.

2 Full-information protocols, where everyone stores and forwards its entire view to
everybody all the time, simplify the presentation and align perfectly with our goal
of designing optimal algorithms.

Valency-Based Consensus Under Message Adversaries Without Limit-Closure 459

in general, as it is not clear how a process with its bounded resources could
maintain/construct the sets of this partition. Also considering its topological
basis, the approach [10] must be considered far away from being practical.

Interestingly, however, for the restricted class of limit-closed message adver-
saries (where the limits of growing sequences of prefixes of admissible executions
are also admissible), which are compact in the topological sense, a purely com-
binatorial treatment and algorithmic operationalization has been provided by
Winkler, Schmid and Moses in [12]. We showed that there is some “uniform”
prefix length, that is, some round r, by which all admissible runs can be labeled
by the kernel (the set of processes that have reached everyone) in the equivalence
class of all indistinguishable runs. Since such a “uniform” prefix length (which
also allows all processes to decide simultaneously) does not exist for non-limit-
closed message adversaries like the eventually stabilizing message adversary from
[13], however, the approach of [12] cannot be applied in our context.

The same is true for all the related work on combinatorial topology in dis-
tributed consensus we are aware of, in particular, [2,5]: Whereas studying the
indistinguishability relation of prefixes of runs is closely connected to connectiv-
ity properties of the r-round protocol complex, we need to go beyond a uniform
prefix length r that is inherently assumed here. Indeed, the models considered
in topological studies of consensus like [2,5] are all limit-closed.

By contrast, our paper addresses the considerably more complex case of gen-
eral non-limit-closed message adversaries, albeit without any explicit topological
machinery. In more detail, our approach is based on an algorithmic assignment
of labels to finite prefixes of infinite runs. This assignment is done in a way that
guarantees consistent labels even for longer indistinguishable prefixes later on.
Our assignment procedure effectively guarantees that all runs that are indistin-
guishable for some process will receive the same label. Note that, in the spirit of
[2], our labels can be seen as sets of valencies for the consensus valency task.

2 Model and Notations

Dynamic networks consist of a finite set Π of synchronous processes, modeled as
state machines, which communicate by exchanging messages over an unreliable
network. Conceptually, it is assumed that the communication environment is
under the control of an omniscient, malevolent message adversary [1] that may
suppress certain messages. In particular, message adversaries allow modeling of
dynamic networks with time-varying communication, ranging from systems with
transient link failures due to, e.g., wireless interference phenomena, to systems
where an attacker has gained the ability to control the communication links.
Obviously, in order to solve a non-trivial distributed computing problem, the
message adversary needs to be restricted in some way.

We assume that the processes in Π are always correct and operate in lock-
step synchronous rounds, where each round r = 1, 2, . . . consists of a phase
of message exchange according to a directed communication graph (see Fig. 1),
followed by a phase of local, deterministic and instantaneous computations of

460 K. Winkler et al.

p1

p2

p3

p4

p5

G1 for round 1

p1

p2

p3

p4

p5

G2 for round 2

p1

p2

p3

p4

p5

G3 for round 3

Fig. 1. Communication graphs G1, G2, G3 for 3 rounds. Self-loops are assumed but not
shown.

all processes that depend only on the current state and the messages received.
Rounds are communication-closed, i.e., messages are only delivered in the same
round or dropped altogether. We use the convenient convention that time t is
precisely the moment where round t ends (i.e., after the round t computation),
and the next round t + 1 (i.e., sending the round t + 1 messages) begins.

We will adopt the terminology used in most existing papers, including [6–8,
13], which relies on the round r communication graph Gr as the crucial structure
of a message adversary. Every communication graph is a directed graph, where
every process of Π is represented by a node (see Fig. 1). An edge (p, q) in the
communication graph Gr represents the fact that q receives the message from p
in round r. By convention, it is assumed that processes always receive their own
messages, so (p, p) ∈ Gr for every p ∈ Π.

A communication pattern is then a dynamic graph, that is, a sequence of
communication graphs G1, G2, . . ., and a message adversary is just a set of infi-
nite communication patterns. Note that the message adversary has no control
over the input values of the processes (see below). The communication patterns
that are in a message adversary are called admissible. Given some distributed
algorithm, an admissible execution or admissible run is a sequence of global
states, or configurations C0, C1, . . ., which is constructed as follows: Given some
initial configuration C0 and an admissible communication pattern σ, for i > 0,
Ci results from exchanging the messages according to the round i communica-
tion graph of σ and performing the deterministic computations according to the
algorithm based on Ci−1.

Perhaps the most crucial insight for this model is that the execution of a
deterministic distributed algorithm under a message adversary is completely
determined by the initial configuration and the communication pattern. It thus
makes sense to denote an execution as 〈C0, σ〉, and a configuration C ′ as C ′ =
〈C, ρ〉, where C is a configuration of an admissible execution and C ′ can be
reached from C via ρ. That is, ρ is a graph sequence that, when starting from
C and exchanging the messages according to the communication graphs of ρ,
as well as performing the state transitions according to the algorithm and the
received messages, results in C ′. Since most of our runs will start from the same
initial configuration C0, we will usually use executions and corresponding graph
sequences interchangably.

Consensus. We study deterministic consensus, a classic distributed computing
problem [9,11], where each process p ∈ Π initially holds an input value xp ∈ I

Valency-Based Consensus Under Message Adversaries Without Limit-Closure 461

from a set I, which we assume w.l.o.g. to be a subset of integers, and has an
output or decision variable yp, which is initially yp = ⊥ and may be written to
only once. An algorithm solves consensus if it satisfies, for all p, q ∈ Π,

(i) eventually yp �= ⊥ (termination),
(ii) if yp �= ⊥ then yp = xk for some k ∈ Π (validity), and
(iii) if yp �= ⊥ and yq �= ⊥ then yp = yq (agreement).

The special case where I = {0, 1} is called binary consensus.

Local Views. In addition to the basic model outlined above, we introduce some
essential terminology, most of which is taken from [6–8,13]. We use lower case
Greek letters ρ, σ, τ, . . . to denote finite or infinite communication patterns and
σ(r) to denote the round-r communication graph of σ. We call the communica-
tion pattern that consists of the first r communication graphs of a communication
pattern σ the round-r prefix of σ, which is denoted by σ|r := σ(1), . . . , σ(r). By
convention, for r < 1, we let σ|r be the empty sequence.

At the heart of our proofs lies the indistinguishability of two different exe-
cution prefixes ε, ε′ for some process p, denoted by ε ∼p ε′, which denotes that
p ∈ Π is in the same state, i.e., has the same local view, in each round r config-
uration of ε and ε′. We will use ε ∼ ε′ if ε ∼p ε′ holds for some p ∈ Π.

Most of the time, however, we will use the corresponding indistinguishability
relation σ ∼p σ′ defined on the communication patterns σ resp. σ′ leading to ε
resp. ε′ when starting from the same initial configuration C0. As already argued,
σ ∼p σ′ and ε ∼p ε′ are equivalent here, since our algorithms are deterministic
and full-information. Formally, this indistinguishability can be defined as follows:
For a single communication graph G, the view of a process p is simply the set
of its in-neighbors InG(p). For evolving views, we use the convenient notion of
a process-time graph (c.f. [3]) of a communication pattern. For a finite commu-
nication pattern σ that consists of r communication graphs with nodes Π, the
process-time graph3 PTσ is defined as

PTσ := 〈V,E〉 : V = Π × {0, . . . , r},

((p, r′), (q, r′′)) ∈ E ⇔ (r′′ = r′ + 1) ∧ (p, q) ∈ σ(r′′).

We say (p, r′) influences (q, r′′), written as (p, r′) �σ (q, r′′), if there is a path
from (p, r′) to (q, r′′) in PTσ and denote the set of processes that managed to
reach some process p in σ as p’s heard-of set [6]

HOσ(p) := {q : (q, r′) �σ (p, r)}.

Those processes that managed to reach everyone in a finite communication pat-
tern σ are called the kernel of σ. It is of central importance, as the decision must
be on an input value of some process in the kernel: If a decision were made on
the input value of a process that is not in the kernel, some process would need

3 Note that, in contrast to [10], our process time graphs do not incorporate initial
values, since we usually start from the same initial configuration.

462 K. Winkler et al.

to decide on a value of which it cannot be sure that it really was the input value
of another process, thus violating validity. A more formal argument for this can
be found in the proof of Theorem 1. The kernel is denoted by

Ker(σ) :=
⋂

p∈Π

HOσ(p). (1)

For an infinite communication pattern τ , we write

Ker(τ) =
⋃

r≥1

Ker(τ |r) = lim
r→∞ Ker(τ |r)

Using this notation, the view of a process p in a finite communication pat-
tern σ that consists of r communication graphs can be formally defined as the
subgraph of PTσ that is induced by the vertex-set {(q, r′) : (q, r′) �σ (p, r)} and
denoted as PTσ(p). Two finite communication patterns ρ, σ are thus indistin-
guishable for process p, written as ρ ∼p σ if PTρ(p) = PTσ(p). We write ρ ∼ σ
if ρ ∼p σ for some p ∈ Π and ρ �∼ σ if �p : ρ ∼p σ.

3 A Generic Consensus Algorithm

The Function Δ

Our algorithm will rely on a labeling function Δ(.), which is a member of the class
of Δ-functions introduced in the following Definition 1. Fixing some admissible
communication pattern σ of a message adversary, Δ(σ|r) assigns a label to every
round r prefix σ|r of σ as follows: Going from shorter prefixes to longer ones,
the label is initially ∅ until it becomes a fixed, non-empty subset of the kernel
of σ. As this subset consists of processes of which, by definition of the kernel,
every other process has heard of eventually in σ, the input value of each process
from this subset is a valid decision value. Note that we do not a priori restrict
the range of Δ(.) to one of these processes to provide some flexibility of choice
here. It is in this sense that Δ(σ|r) assigns a valency to σ|r, as the decision value
of all extensions of σ|r can be fixed to the input value of some deterministically
chosen process from Δ(σ|r).
Definition 1. Let MA be a message adversary. The class of Δ-functions for MA

is made up by all functions

Δ :
⋃

r≥1

{σ|r : σ ∈ MA} → 2Π

such that, for every admissible communication pattern σ ∈ MA, there is a round
s ≥ 0 and a set K ⊆ Ker(σ) with K �= ∅ such that

Δ(σ|r) =

{
∅, for r ≤ s,

K for r > s.

Valency-Based Consensus Under Message Adversaries Without Limit-Closure 463

As shown in Theorem 1 below, already the solvability of binary consensus
implies the existence of a Δ-function, thus the non-emptiness of the class of
Δ-functions (for a given MA) is ensured if consensus (for any non-trivial set of
input values) is solvable (under MA).

Theorem 1. If binary consensus is solvable under MA, then there exists a func-
tion Δ(.) such that Δ(.) is a member of the class of Δ-functions for MA.

Proof. First, we show that if binary consensus is solvable under MA, then every
σ ∈ MA satisfies Ker(σ) �= ∅. Suppose that some algorithm A solves consensus
in a communication pattern σ in spite of Ker(σ) = ∅. By termination, for every
input configuration C, there is a round t such that all processes have decided
when executing A in 〈C, σ|t〉. In fact, since there are only finitely many processes
and hence input assignments, for every σ ∈ MA there exists a round t′ such
that all processes have decided when running A in 〈C, σ|t′〉, irrespective of the
input value assignment in the initial configuration C. Assuming that the set
of input values is I = {0, 1}, by validity, when all processes start with input
0, they must also decide 0, and when all processes start with 1, they must
decide 1. Starting from the input configuration where all processes start with
0 and flipping, one by one, the input values to 1, reveals that there exist two
input configurations C ′, C ′′ that differ in the input value assignment of a single
process p but all processes decided 0 in 〈C ′, σ|t′〉, whereas all processes decided
1 in 〈C ′′, σ|t′〉. Since Ker(σ|t′) = ∅ by our supposition, there is a process q such
that p /∈ HOσ|t′ (q). But then 〈C ′, σ|t′〉 ∼q 〈C ′′, σ|t′〉 and q decides the same in
both executions, a contradiction.

We conclude the proof by showing that the existence of Δ(.) follows if every
σ ∈ MA has Ker(σ) �= ∅, which implies that for every σ ∈ MA there is a round r
such that Ker(σ|r) �= ∅. Given σ ∈ MA, let s be the smallest such round where
K = Ker(σ|s) �= ∅. Then

Δ(σ|r) =

{
∅, for r ≤ s

K for r > s

is a Δ-function according to Definition 1: Because Ker(σ|s) = K �= ∅ and the
kernel of a communication pattern prefix monotonically increases with increasing
prefix length, i.e., if r ≤ r′ then Ker(σ|r) ⊆ Ker(σ|r′), every ρ ∈ MA with
ρ|s = σ|s satisfies K ⊆ Ker(ρ). ��

One might argue that the core statement of Theorem 1 is not very strong, as
the definition of Δ(.) is almost equivalent to the consensus problem specification
itself. However, the point is not that this formulation is very deep, but rather
that it is a very useful abstraction: We show in the remainder of our paper
how, by means of encapsulating the model (i.e., MA) in the computation of Δ(.),
consensus can be solved quickly and using relatively simple algorithms. So rather
than tailoring a consensus algorithm to the intricacies of a particular model, we
abstract the model into Δ(.) and use a simple and generic consensus algorithm
on top of it.

464 K. Winkler et al.

Solving Consensus with Δ

From the contraposition of Theorem 1, it immediately follows that the existence
of a Δ-function Δ(.) is necessary for solving consensus. At a first glance, it might
seem that the existence of Δ(.) is also sufficient for consensus, i.e., that Theorem
1 can actually be extended to an equivalence, thus providing an efficient consen-
sus solvability characterization. The reason why this is not the case, however, is
that the local uncertainty, i.e., the incomplete view a process has of the actual
communication pattern, makes it unsure of the latter. Thus, the mere existence
of Δ(σ|r) is not enough, since process p may be uncertain of the actual σ|r:
The actual communication pattern may in fact be ρ, with σ|r ∼p ρ|r, but still
Δ(ρ|r) = ∅. In order to make consensus solvable, we thus require an additional
consistency condition, stated in Assumption 1, which guarantees that the label
that will eventually be assigned to ρ later on is the same as Δ(σ|r):
Assumption 1. ∀σ ∈ MA ∃r ∈ N ∀σ′ ∈ MA : σ′|r ∼ σ|r ⇒ Δ(σ′|r) =
Δ(σ|r) �= ∅ .

Assumption 1 states that every admissible communication pattern has a
round r after which the values of Δ(.) are the same for every indistinguish-
able prefix. Note carefully, however, that this neither implies (i) that σ and σ′

must get their labels in the same round (before or at r) nor (ii) that there is a
uniform round r that holds for all σ ∈ MA.

We do not know whether Assumption 1 is necessary for solving consensus.
The following Algorithm 1 will show that it is sufficient, however. Our algorithm
works as follows: Every process p waits until it detects that all prefixes ρ that it
still considers possible, i.e., those prefixes that do not contradict what p observed
so far, have the same value Δ(ρ) = K �= ∅. When this occurs, p waits until it
has heard from the process p ∈ K with the largest identifier and decides on p’s
input value. Obviously, the processes also need to know the input values of all
processes that they have heard of so far, which is inherently the case wenn using
a full-information algorithm.4

We note that the algorithm uses both (i) the pre-computed Δ-functions and
(ii) the set P of communication pattern prefixes process p considers possible
in the current round r, which can be determined from its view, given the mes-
sage adversary specification MA (for example, via the finite sets of admissible
r-prefixes, for r = 1, 2, . . .).

Note carefully that a way to compute Δ(.), together with Algorithm 1, gives
us a purely on-line solution algorithm for consensus, which operates in two phases
per round: In a run with actual communication pattern σ, in its round r com-
putation step, every process p first pre-computes Δ(ρ) for all communication
pattern prefixes ρ that are compatible with its view, i.e., all ρ ∈ P , where P is
the set of round r prefixes that p considers possible, as in Line 1 of Algorithm
1. Process p then proceeds to run Algorithm 1, using these pre-computed values
instead of actual calls to Δ(.).
4 Obviously, just communicating and keeping track of the input values received so far

would also suffice.

Valency-Based Consensus Under Message Adversaries Without Limit-Closure 465

Algorithm 1: Consensus algorithm, given Δ(.) for process p and round r
when run under communication pattern σ of message adversary MA.
1 Let P = {ρ|r : ρ ∈ MA ∧ ρ|r ∼p σ|r} be the prefixes that are indistinguishable

for p from the actual prefix
2 if yp = ⊥ and ∃K ⊆ Π ∀ρ ∈ P : Δ(ρ) = K 	= ∅ then
3 Let q ∈ Π be the process in K with the largest identifier
4 if heard from q then yp ← xq

The correctness of Algorithm 1 is stated by the following Theorem 2.

Theorem 2. Algorithm 1 solves consensus under a message adversary MA,
given that Δ(.) is a Δ-Function for MA that satisfies Assumption 1.

Proof. We show that the consensus properties are satisfied by Algorithm 1 when
it is run in an admissible communication pattern σ ∈ MA. In the proof, we use
vr

p to denote the value of variable v at process p at time r (i.e., at the end of
round r).

Validity follows immediately, since every decision in Line 4 is on some other
process’s input value.

Termination follows because, when run under a communication pattern σ ∈
MA, Assumption 1 guarantees that there is a set K �= ∅ and a round r such that
Δ(ρ) = K for all ρ with ρ ∼ σ|r. Furthermore, K ⊆ Ker(σ), thus the guard of
Line 4 will eventually be passed.

In order to show agreement, let r be the round where some process, say p,
passes the guard in Line 2 for the first time. This implies that Kr

p �= ∅ and p has
Δ(ρ) = Kr

p for all ρ ∼p σ|r so, in particular, Δ(σ|r) = Kr
p . Definition 1 implies

that for all s ≥ r, Δ(σ|s) = Kr
p as well. Thus, if some process p′ passes Line 2

again in round s, because it clearly has σ|s ∈ P s
p′ , every decision via Line 4 must

be on the input of the process with the largest identifier in Ks
p′ = Δ(σ|s) = Kr

p .
��

Whereas Algorithm 1 is generic, i.e., independent of MA, this is not the case
for the computation of Δ(.), which depends heavily on the MA specification. In
Sect. 4, we will show how Δ(.) can be computed under the message adversaries
from [13].

4 Computing Δ(.) for the Eventually Stable Message
Adversary

One of the most severe restrictions of limit-closed message adversaries is that
they cannot express any guarantees of the form “eventually something good
will happen”, that is, guarantees that hold only after a finite but unbounded
number of rounds. Limit-closed message adversaries cannot hence be used for
modeling systems with chaotic boot-up behavior, where it takes an unknown

466 K. Winkler et al.

number of rounds until reasonably reliable synchronous communication could
be established, as well as systems with massive transient faults during periods
of unknown duration.

The Message Adversary ♦STABLEn(x)
One instance of a non-closed message adversary is the eventually stable message
adversary ♦STABLEn(n) from [13], which we will now briefly describe.

p1 p2

p3 p4

p5

p1 p2

p3 p4

p5

p1 p2

p3 p4

p5

. . .

round 1 round 2 round 3

Fig. 2. The root component of round 1 consists of the node p1. In round 2 and 3 there
exists a vertex-stable root component consisting of the vertex set {p1, p2, p3, p4}.

It is based on the notion of a root component (see Fig. 2), a strongly connected
component, where no node has an incoming edge from a node outside of the com-
ponent. A root component is called vertex-stable if it consists of the same set of
nodes for multiple consecutive rounds of a communication pattern. We note that
the connectivity inside of a vertex-stable root component may vary significantly,
as long as it remains a root component of the respective communication graphs.

The message adversary ♦STABLEn(x) from [13], as illustrated in Fig. 3, con-
sists of message patterns with n processes and is subject to the following two
conditions5:

(i) Every communication graph is rooted, i.e., has precisely one root component
and

(ii) every admissible communication pattern σ ∈ ♦STABLEn(x) has a root com-
ponent that remains vertex stable for at least x rounds.

In our analysis, we will denote the round where the first such vertex-stable
root component occurs as rstab(σ). Furthermore, we denote the member nodes
of this vertex-stable root component as Root(σ) and use Root(σ|r) to denote
the vertex-stable root component of σ if the stability phase already occurred by
round r, i.e., Root(σ|r) = Root(σ) if r ≥ rstab(σ) + n − 1 and Root(σ|r) = ∅
5 Technically, the message adversary from [13] has an additional parameter, the

dynamic diameter D, which we will neglect here for simplicity. Since it was shown in
[4, Corollary 1] that D < n, we will just conservatively assume D = n − 1. This has
the downside of the lower bound established in Theorem 15 being formally weaker
in those cases where D = o(n).

Valency-Based Consensus Under Message Adversaries Without Limit-Closure 467

Fig. 3. An admissible communication pattern σ of the message adversary
♦STABLEn(x). The vertex-stable root component (highlighted in black) occurs in round
r = rstab(σ) and lasts until round r + x − 1.

otherwise. Note that the processes have no a priori knowledge of it in a given
execution 〈C, σ〉.

The central result of [13] was a consensus solvability characterization wrt. the
parameter x, i.e., the duration of the stability phase, rephrased in Theorem 3.

Theorem 3 ([13, Theorem 3 and 4]). Consensus is solvable under ♦STABLEn(x)
if and only if x ≥ n.

The consensus algorithm of [13, Algorithm 2] is able to decide Θ(n2) rounds
after rstab(σ) in σ ∈ ♦STABLEn(n) in the worst case. In the next section, we
will present a computation for Δ(.) that, combined with Algorithm 1, leads to
a consensus algorithm that terminates already after rstab(σ) + Θ(n) rounds, for
which we also provide a matching lower bound.

An Algorithm for Computing Δ(.)

We now introduce Algorithm 2 to compute Δ under the message adversary
♦STABLEn(n). Starting from round r = 1, it operates by assigning labels to
selected round-r prefixes σ|r. In order to satisfy monotonicity of the labels, the
algorithm first preserves the labels from the previous round (Line 4). Subse-
quently, it checks whether there is a prefix that was not assigned a label yet and
whose vertex-stable root component lasted from round r − 3n + 1 to (at least)
round r − 2n (Line 9). If such a “mature” prefix σ|r is found, and there is an
indistinguishable prefix that already had its label assigned, Δ(σ|r) adopts this
label (Line 10). If, on the other hand, there is no such indistinguishable prefix,
Δ(σ|r) is set to the vertex-stable root component of σ|r (Line 12). Finally, a
prefix that was not assigned a label in the current round adopts the label of an
indistinguishable prefix that was “mature” already n rounds ago (Line 7).

Correctness Proof

We first establish some important basic properties of vertex-stable root compo-
nents and rooted communication graphs. We will use the notation from Sect. 2

468 K. Winkler et al.

Algorithm 2: Computing Δ for each r-prefix σ|r, r = 0, 1, 2, . . . , for a
given σ ∈ ♦STABLEn(n).
1 Initially, let Δ(σ|0) = ∅
2 for r = 1, 2, . . . do
3 foreach σ|r do
4 Δ(σ|r) ← Δ(σ|r−1)
5 foreach σ|r with Δ(σ|r) = ∅ do
6 if ∃ρ|r ∼ σ|r with Δ(ρ|r) 	= ∅ and rstab(ρ) ≤ r − 4n then
7 Δ(σ|r) ← Δ(ρ|r)
8 foreach σ|r with rstab(σ) ≤ r − 3n and Δ(σ|r) = ∅ do
9 if ∃ρ|r ∼ σ|r with Δ(ρ|r) 	= ∅ then

10 Δ(σ|r) ← Δ(ρ|r)
11 else
12 Δ(σ|r) ← Root(σ)

(p, r) �σ (q, r′), or simply (p, r) � (q, r′) if σ is understood, to denote that
there is a path from (p, r) to (q, r′) in the process-time graph of σ, i.e., that p

at round r is in the causal past CPr′
q r of q at round r′. In the following proofs,

let ρ, σ denote two arbitrary communication patterns of ♦STABLEn(n) and r be
an arbitrary round.

We will rely on the following generic result from [13]:

Theorem 4 (Root propagation [13, Theorem 1]). Let G = {Gr1 , . . . , Grn} be
an ordered set of rooted communication graphs on the same vertex set Π where
|Π| = n > 1. Pick an arbitrary mapping f : [1, n] �→ Π s.t. f(i) ∈ Root(Gri).
Then ∀p ∈ Π\{f(n)}, ∃i ∈ [1, n − 1] : f(i) ∈ CPrn

p (ri).

Corollary 5. For all q ∈ Root(σ), for all p ∈ Π, we have that (q, rstab(σ)) �
(p, rstab(σ) + n − 1).

Proof. For every q ∈ Root(σ), just take G = {Grstab(σ), . . . , Grstab(σ)+n−1} and
pick the mapping f(i) = q for all i in Theorem 4 to show that (q, rstab(σ)) �
(p, rstab(σ) + n − 1) for every p ∈ Π. ��
Corollary 6. If ρ|r ∼ σ|r and rstab(σ) = r − n + 1 then for all p ∈ Root(σ|r)
we have ρ|r−n+1 ∼p σ|r−n+1.

Proof. Suppose ρ|r−n+1 �∼p σ|r−n+1 for some p ∈ Root(σ|r). Since (p, r − n +
1) � (q, r) for every process q by Corollary 5, we have ρ|r �∼ σ|r, a contradiction.

��
Corollary 7. Let r ≥ n and τ ∈ {ρ|r, σ|r}. If ρ|r ∼p σ|r and ρ|r−n+1 ∼P

σ|r−n+1 for the maximal set P containing p, then for every q ∈ Π there is some
p′ ∈ P such that (p′, r − n + 1) �τ (q, r).

Proof. For k ∈ [r−n+1, r], consider the set of processes Pk such that ρ|k ∼Pk
σ|k,

and the set of processes Qk that did not hear from at least one process in P by

Valency-Based Consensus Under Message Adversaries Without Limit-Closure 469

round k in τ . Clearly, Pr−n+1 = P and Qr−n+1 ⊆ Π\P . Given Pk and Qk, if
the root component Rk+1 of round k+1 in τ contains only processes in Pk, then
at least one process in Qk hears from a member of Rk+1 and thus leaves, i.e.,
Qk+1 ⊂ Qk. Similarly, if Rk+1 ⊆ Qk, then at least one process p′ ∈ Pk can now
distinguish ρ|k+1 �∼p′ σ|k+1, so Pk+1 ⊂ Pk. If Rk+1 contains both processes from
Pk and Qk, at least one of Pk+1 and Qk+1 shrinks. So, after round r, at least
one of Pr and Qr must be empty. Since we know that |Pr| ≥ 1 as ρ|r ∼p σ|r, we
must have Qr = ∅, which proves Corollary 7. ��
Corollary 8. If σ|r ∼ ρ|r and r ≥ rstab(σ) + n − 1 then for every q ∈ Root(σ),
for every p ∈ Π we have (q, rstab(σ)) �ρ (p, r) and thus the root component of
ρ in round rstab(σ) is Root(σ).

Proof. Due to Corollary 5, for all q ∈ Root(σ) and all p ∈ Π, (q, rstab(σ)) �σ

(p, rstab(σ) + n − 1). And since σ|r ∼p ρ|r for some p, we must also have
(q, rstab(σ)) �ρ (p, rstab(σ) + n − 1). This implies that the members of Root(σ)
must also form a strongly connected component without incoming edges in round
rstab(σ) in run ρ. Since all graphs in ρ are single-rooted, Root(σ) must hence be
the root component of this round. ��

This leads to our first instrumental result, namely, that indistinguishable
communication patterns cannot have overlapping stability phases:

Theorem 9. Let s = rstab(σ) and s′ = rstab(ρ). If σ|s+n−1 ∼ ρ|s+n−1 then
s = s′ or s′ ≤ s − n or s′ ≥ s + n.

Proof. Let us suppose that σ|s+n−1 ∼ ρ|s+n−1 and s′ ∈ [s − n + 1, s − 1] ∪ [s +
1, s + n − 1]. By Corollary 8, we thus have that the root component of round s
in ρ is Root(σ) = R, which implies Root(σ) = Root(ρ) = R. If, w.l.o.g. s′ < s,
the root component of σ in all rounds k ∈ [s′, s] consists of the processes of R
as well: By Corollary 5, we have (q, s) �σ (p, s + n − 1) for all q ∈ R, p ∈ Π,
i.e., everyone has learned the in-neighborhood of q for all rounds ≤ s. Since
σ|s+n−1 ∼ ρ|s+n−1 implies σ|k ∼ ρ|k, the in-neighborhood of every such q must
be the same in σ and in ρ in round k. But then the stability phase of σ actually
starts in round s′ (or before) and we have s′ ≥ rstab(σ) �= s, a contradiction.

The most important prerequisite for our correctness proof is Theorem 10,
which says that that transitive indistinguishability in round r implies direct
indistinguishability at round r − n + 1 for at least one process. Note carefully
that this implies that, by going (k − 2)n rounds up in a chain of transient indis-
tinguishability σ1|r ∼ σ2|r ∼ · · · ∼ σk|r guarantees σi|r−(k−1)n ∼p σj |r−(k−1)n

for some process p, for any choice of i, j.

Theorem 10. Suppose the round r prefixes ρ|r, σ|r, τ |r with r ≥ n satisfy
ρ|r �∼ τ |r and ρ|r ∼p σ|r ∼q τ |r. Let P and Q be the maximal sets
guaranteeing ρ|r−n+1 ∼P σ|r−n+1 resp. σ|r−n+1 ∼Q τ |r−n+1. Then, either
ρ|r−n+1 ∼p τ |r−n+1and ∀s ∈ Π ∃p′ ∈ P such that (p′, r − n + 1) �σ (s, r), or
ρ|r−n+1 ∼q τ |r−n+1, and and ∀s ∈ Π ∃q′ ∈ Q such that (q′, r −n+1) �σ (s, r).

470 K. Winkler et al.

Proof. For a contradiction, suppose that (ρ|r−n+1 �∼p τ |r−n+1) ∧ (ρ|r−n+1 �∼q

τ |r−n+1) for any p ∈ P and any q ∈ Q. This assumption prohibits any feasible
choice p ∈ P ∪ Q, since it also implies (ρ|r−n+1 �∼q σ|r−n+1) ∧ (σ|r−n+1 �∼p

τ |r−n+1).
Since ρ|r �∼ τ |r and hence ρ|r−n+1 �∼ τ |r−n+1 must hold due to ρ|r �∼ τ |r,

our assumption implies that σ|r−n+1 �∼P τ |r+n−1 and ρ|r−n+1 �∼Q σ|r−n+1.
Consequently, P ⊆ Π\Q and Q ⊆ Π\P , P ∩ Q = ∅ and |P | + |Q| ≤ n.

Now consider the sets of processes Pk and Qk, such that ρ|k ∼Pk
σ|k resp.

σ|k ∼Qk
τ |k. Clearly, Pr−n+1 = P and Qr−n+1 = Q, and given Pk and Qk, if

the root component Rk+1 of round k + 1 in σ contains only processes in Pk,
then at least one process in Qk hears from a member of Rk+1 and thus leaves,
i.e., Qk+1 ⊂ Qk. Similarly, if Rk+1 ⊆ Qk, then Pk+1 ⊂ Pk. If Rk+1 contains
both processes from Pk and Qk or none of those, at least one of Pk+1 and Qk+1

shrinks. So, after round r, at least one of Pr and Qr must be empty, which
contradicts (ρ|r ∼p σ|r) ∧ (σ|r ∼q τ |r).

Corollary 7 applied to the “winning” set, say, P where p ∈ P satisfies
ρ|r−n+1 ∼p τ |r−n+1 reveals that every s ∈ Π hears from some p′ ∈ P such
that (p′, r − n + 1) �σ (s, r) in σ (and in τ). ��

The following corollary, in conjunction with Corollary 6, shows that ρ|r ∼
σ|r ∼ τ |r in round r = rstab(σ|r) + n − 1 (at the end of the VSRC stability)
implies that ρ|r−n ∼Root(σ) σ|r−n ∼Root(σ) τ |r−n (at the beginning of VSRC
stability).

Corollary 11. Suppose the round r prefixes ρ|r, σ|r, τ |r with r ≥ n satisfy
ρ|r ∼p σ|r ∼q τ |r and (p, r − n + 1) �σ (q, r). Then, (p, r − n + 1) �τ (q, r) and
ρ|r−n+1 ∼p σ|r−n+1 ∼p τ |r−n+1.

Proof. Since σ|r ∼q τ |r, (p, r−n+1) �τ (q, r) follows immediately. If σ|r−n+1 �∼p

τ |r−n+1 would hold, then σ|r �∼q τ |r since (q, r) would be different in σ|r and
τ |r. ��

We can now prove our main result:

Theorem 12. The function Δ(σ) computed by Algorithm 2 outputs ∅ until it
eventually outputs Δ(σ) �= ∅ forever, which happens by round rstab(σ)+3n, where
every process has heard from every member of Root(σ) already. Furthermore,
Δ(σ) satisfies Assumption 1 with r = rstab(σ) + 4n.

Proof. It follows immediately from the code of Algorithm 2 that every σ gets its
label by r ≤ rstab(σ) + 3n. Moreover, if ρ is assigned a label R �= ∅ in round r,
then every σ that satisfies σ|r+n ∼ ρ|r+n also gets the label R in round r + n,
which secures Assumption 1.

We still need to prove that the labels are correctly assigned, however. First
of all, in Algorithm 2, Δ(σ|0) gets initialized to ∅ in Line 1. Once a non-empty
label is assigned, it is never modified again, since each assignment, except the
one in Line 4, may only be performed if the label was still ∅. In accordance with

Valency-Based Consensus Under Message Adversaries Without Limit-Closure 471

Assumption 1, we must hence show that if a label Δ(σ|r) ← R �= ∅ is assigned
to a round r prefix σ|r, then every indistinguishable prefix ρ|r ∼ σ|r has either
Δ(ρ|r) = Δ(σ|r) or Δ(ρ|r) = ∅.

We prove this by induction on r = 0, 1, The base case is the “virtual”
round r = 0, where Δ(σ|0) gets initialized to ∅ in Line 1 and our statement is
vacuously true.

For the induction step from r − 1 to r, assume by hypothesis that, for all
rounds k < r prefixes that already have some label R �= ∅ assigned, all their
indistinguishable prefixes have label R or ∅.

For the purpose of deriving a contradiction, suppose that two r-round prefixes
ρ|r ∼ σ|r end up with non-empty labels Δ(ρ|r) = R �= R′ = Δ(σ|r). They can
be assigned via Line 4, Line 12, Line 10 or Line 7. Note that we must have
r ≥ 3n + 1 here, as no non-empty labels are assigned before.

If both ρ|r and σ|r get their label via Line 4, the induction hypothesis guar-
antees R = R′.

If both ρ|r and σ|r get their label via Line 12, Theorem 9 implies that both
rstab(ρ) = rstab(σ) and Root(ρ) = Root(σ) and hence R = R′, which pro-
vides a contradiction. However, we can show an even stronger result: Consider
a chain of transitively indistinguishable r-round prefixes ω|r ∼ ρ|r ∼ σ|r ∼ τ |r.
Applying Theorem 10 yields ρ|r−n ∼p σ|r−n ∼p σ|r−n for some process p, and
hence ω|r−n ∼ σ|r−n ∼ τ |r−n. Another application of Theorem 10 then pro-
vides τ |r−2n ∼ ω|r−2n. Consequently, if both ω|r and τ |r get their label via
Line 12, Theorem 9 shows that even rstab(ω) = rstab(τ) and Root(ω) = Root(τ)
holds. In addition, if ρ|r and σ|r get their labels Δ(ρ|r+n) = Δ(ω|r+n) and
Δ(σ|r+n) = Δ(τ |r+n) via Line 7, n rounds later, we end up with R = R′ also in
this case.

If ω|r and τ |r′ get different labels R and R′ via Line 12 in different iterations
r′ < r, the above arguments show that this requires r′ ≤ r − n. Line 7 causes
Δ(σ|r′+n) = Δ(τ |r′+n), as well as Δ(ρ|r+n) = Δ(ω|r+n), and applying Theorem
10 to the chain ρ|r′+n ∼ σ|r′+n ∼ τ |r′+n reveals ρ|r′ ∼ τ |r′ . Consequently,
Line 10 is first used to set the label Δ(ρ|r′) = Δ(τ |r′) = R′ and also to set
Δ(ω|r) = Δ(ρ|r) = R′, so R = R′ also here. Note that this scenario also covers
the simpler case where σ|r gets its label via Line 4. Moreover, it also covers the
case where σ|r′ gets its label directly via Line 12, and/or when ρ|r gets its label
directly via Line 12.

However, if ρ|r and σ|r get their labels via “forwarding” via Line 10 and/or
Line 7, we also need to consider the possibility that the “exporting” prefixes ω|r
and τ |r may have got non-empty labels R = Δ(ω|r) �= Δ(τ |r) = R′ via Line 10
or Line 7. To deal with these cases, we need the following technical lemma:

Lemma 13. Algorithm 2 can forward a label R over a chain of indistinguishable
prefixes with root components different from R, via Line 10 or Line 7, at most
once every n iterations.

Proof. Since Line 10 can only import a label to σ|r with rstab(σ) ≤ r−3n whereas
Line 7 can only export a label from ρ|r with rstab(ρ) ≤ r − 4n, it follows from

472 K. Winkler et al.

Theorem 9 that a label R that is different from the root component Root(σ)
of the importing prefix σ|r must originate from an exporting prefix ρ|r with
|rstab(σ) − rstab(ρ)| ≥ n. This immediately implies our lemma. ��

So if ω|r and τ |r′ have got labels R �= Root(ω) and R′ �= Root(τ) either in
Line 12 and/or Line 7, Lemma 13 reveals that they may at most originate from
some ω′|r ∼ ω|r and τ ′|r′ ∼ τ |r′ , but may not be further apart w.r.t. transitive
indistinguishability. On the other hand, applying Theorem 10 to the resulting
5-chain reduces it to the 3-chain ω′|r−n ∼ ρ|r−n ∼ σ|r−n ∼ τ ′|r−n. We can
repeat this argument iteratively until we reach the 3-chain ωk|r−kn ∼ ρ|r−kn ∼
σ|r−kn ∼ τk|r−kn where ωk|r−kn and τk|r−kn got their labels R and R′ assigned
in one of the cases analyzed above, i.e., do not get them via forwarding. Since
we have shown that R = R′ here, we obtain the required contradiction also for
this case.

Finally, we must show that every process in ρ has heard from every member
of its label R, which need not be equal to Root(ρ), of course: Ultimately, R
must have been generated via Line 12 in iteration r = rstab(σ) + 3n for some
prefix σ|r+3n, but it could have been forwarded to some indistinguishable pre-
fix ρ|r+3n ∼ σ|r+3n. However, Corollary 8 implies that every process both in
ρ|rstab(σ)+n−1 and σ|rstab(σ)+n−1 has already heard from Root(σ). If this for-
warding of R happened transitively, we can again use Lemma 13 to show that
the latter also holds in this case.

This finally concludes the proof of Theorem 12. ��
Corollary 14. The consensus Algorithm 1 when run with Δ(.), as computed by
Algorithm 2, terminates for σ ∈ ♦STABLEn by round rstab(σ) + 4n.

Finally, we provide a lower bound that matches asymptotically the termina-
tion time of Algorithm 1 when run with Δ(.), as computed by Algorithm 2.

Theorem 15. For n ≥ 3, solving binary consensus under σ ∈ ♦STABLEn takes
rstab(σ) + n + Ω(n) rounds.

Proof. Fix an arbitrary input assignment C0 and suppose some binary consensus
algorithm A terminates in round rstab(σ) + 2n − 3 in every run 〈C0, σ〉. Let σ
be the communication pattern where each communication graph consists of the
same cycle, thus rstab(σ) = 1. Starting from the initial configuration, where all
input values are 0 and toggling, one at a time, the input assignments to 1 until
we arrive at the initial configuration where all inputs are 1, the validity condition
shows that there are two initial configurations C, C ′ that differ only in the input
value of a single process p, yet all processes decide 0 in 〈C, σ|2n−3〉 and 1 in
〈C ′, σ|2n−3〉.

Consider the graph sequence ρ that is σ|n−2, followed by at least n − 1
repetitions of a directed line graph that starts from the in-neighbor p′ of p in
the cycle, i.e., from p′, such that (p′, p) is in the cycle (see Fig. 4). It is not hard
to see that ρ|2n−3 ∼q σ|2n−3, where q is the process at the end of the line graph.

Valency-Based Consensus Under Message Adversaries Without Limit-Closure 473

Fig. 4. Communication patterns ρ, σ for Theorem 15. Note the missing in-edge of p′

in the last few rounds of ρ.

Thus q, and by agreement, all processes, decide 0 in ε = 〈C, ρ〉 and 1 in
ε′ = 〈C ′, ρ〉. This is a contradiction, however, since ε ∼p′ ε′. ��

5 Conclusions

We presented a new generic algorithmic technique for solving consensus in
dynamic networks controlled by a message adversary, and demonstrated its
power by devising the first algorithm for the message adversary ♦STABLEn with
assymptotically optimal termination time. The simplicity arguably stems mainly
from dividing the task of solving consensus into two separate tasks: A centralized
task that assigns labels to the admissible communication pattern prefixes of a
given message adversary, and a simple generic distributed algorithm Algorithm
1 that uses this labeling to compute a valid decision value. Future work will be
devoted to applying our labeling approach also to other distributed computing
models.

References

1. Afek, Y., Gafni, E.: Asynchrony from synchrony. In: Frey, D., Raynal, M., Sarkar,
S., Shyamasundar, R.K., Sinha, P. (eds.) ICDCN 2013. LNCS, vol. 7730, pp. 225–
239. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35668-1 16

2. Attiya, H., Castañeda, A., Rajsbaum, S.: Locally solvable tasks and the limita-
tions of valency arguments. In: Bramas, Q., Oshman, R., Romano, P. (eds.) 24th
International Conference on Principles of Distributed Systems, OPODIS 2020, 14–
16 December 2020, Strasbourg, France (Virtual Conference). LIPIcs, vol. 184, pp.
18:1–18:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020). https://doi.
org/10.4230/LIPIcs.OPODIS.2020.18

3. Ben-Zvi, I., Moses, Y.: Beyond Lamport’s happened-before: on time bounds and
the ordering of events in distributed systems. J. ACM 61(2), 13:1–13:26 (2014)

4. Biely, M., Robinson, P., Schmid, U., Schwarz, M., Winkler, K.: Gracefully degrad-
ing consensus and k-set agreement in directed dynamic networks. Theor. Comput.
Sci. 726, 41–77 (2018)

https://doi.org/10.1007/978-3-642-35668-1_16
https://doi.org/10.4230/LIPIcs.OPODIS.2020.18
https://doi.org/10.4230/LIPIcs.OPODIS.2020.18

474 K. Winkler et al.

5. Castañeda, A., Fraigniaud, P., Paz, A., Rajsbaum, S., Roy, M., Travers, C.: Syn-
chronous t-resilient consensus in arbitrary graphs. In: Ghaffari, M., Nesterenko,
M., Tixeuil, S., Tucci, S., Yamauchi, Y. (eds.) SSS 2019. LNCS, vol. 11914, pp.
53–68. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34992-9 5

6. Charron-Bost, B., Schiper, A.: The heard-of model: computing in distributed sys-
tems with benign faults. Distrib. Comput. 22(1), 49–71 (2009)

7. Coulouma, É., Godard, E., Peters, J.G.: A characterization of oblivious message
adversaries for which consensus is solvable. Theor. Comput. Sci. 584, 80–90 (2015)

8. Fevat, T., Godard, E.: Minimal obstructions for the coordinated attack problem
and beyond. In: Proceedings of IPDPS 2011, pp. 1001–1011 (2011)

9. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus
with one faulty process. J. ACM 32(2), 374–382 (1985)

10. Nowak, T., Schmid, U., Winkler, K.: Topological characterization of consensus
under general message adversaries. In: Proceedings of PODC 2019, pp. 218–227.
ACM (2019)

11. Pease, M., Shostak, R., Lamport, L.: Reaching agreement in the presence of faults.
J. ACM 27(2), 228–234 (1980)

12. Winkler, K., Schmid, U., Moses, Y.: A characterization of consensus solvability
for closed message adversaries. In: Proceedings of OPODIS 2019, pp. 17:1–17:16.
LIPIcs (2019)

13. Winkler, K., Schwarz, M., Schmid, U.: Consensus in rooted dynamic networks with
short-lived stability. Distrib. Comput. 32(5), 443–458 (2019). https://doi.org/10.
1007/s00446-019-00348-0

https://doi.org/10.1007/978-3-030-34992-9_5
https://doi.org/10.1007/s00446-019-00348-0
https://doi.org/10.1007/s00446-019-00348-0

Author Index

Adsul, Bharat 39

Behrendt, Lukas 53
Bender, Max 67
Bergougnoux, Benjamin 287
Bharadwaj, G. V. Sumukha 427
Bok, Jan 85
Borowiecki, Piotr 100
Bousquet, Nicolas 114
Brandes, Ulrik 287

Cai, Jin-Yi 135
Casel, Katrin 53
Chodil, Miroslav 149
Conte, Alessio 162
Crespelle, Christophe 176

Dave, Vrunda 190
Dereniowski, Dariusz 100
Dey, Sanjana 204
Dohmen, Taylor 190

Eppstein, David 217

Fan, Austen Z. 135
Fernau, Henning 230
Ferreira, Francisco 18
Fiala, Jiří 85
Friedrich, Tobias 53

Gajjar, Kshitij 230
Gilbert, Jacob 67
Gimbert, Hugo 3
Gregor Lagodzinski, J. A. 53
Grossi, Roberto 162
Gruber, Hermann 245
Gupta, Siddharth 217

Hansen, Kristoffer Arnsfelt 259
Havvaei, Elham 217
Hoffmann, Stefan 272
Høgemo, Svein 287
Holzer, Markus 245

Ibiapina, Allen 301

Jacob, Ashwin 314
Jansson, Jesper 327
Jedličková, Nikola 85
Joffard, Alice 114

Kratochvíl, Jan 85
Krishna, Shankara Narayanan 190
Kučera, Antonín 149

Lee, Wing Lik 327
Leupold, Peter 341
Liu, Yin 135
Livesey, Joseph 354
Lohrey, Markus 371
Löser, Alexander 53
Loukides, Grigorios 162
Lund, Troels Bjerre 259

Maack, Nicolas 385
Maheshwari, Anil 204
Majumdar, Diptapriyo 314
Maneth, Sebastian 341
Mathieu, Claire 3
Mauras, Simon 3
Molter, Hendrik 385

Nandy, Subhas C. 204
Neveling, Marc 399
Niedermeier, Rolf 385
Nowak, Thomas 457

Oostveen, Jelle J. 413
Osula, Dorota 100

Paul, Christophe 287
Pisanti, Nadia 162
Pissis, Solon P. 162
Pruhs, Kirk 67
Punzi, Giulia 162

Raja, S. 427
Raman, Venkatesh 314
Renken, Malte 385
Rothe, Jörg 399

476 Author Index

Sarkar, Saptarshi 39
Schmid, Ulrich 457
Seifrtová, Michaela 85
Silva, Ana 301
Skorski, Maciej 440
Sreejith, A. V. 39

Telle, Jan Arne 287
Trivedi, Ashutosh 190

van Leeuwen, Erik Jan 413

Weishaupt, Robin 399
Wilhelm, Marcus 53
Winkler, Kyrill 457
Wojtczak, Dominik 354
Wolfsteiner, Simon 245

Yoshida, Nobuko 18

Zhou, Fangyi 18

	Preface
	Organization
	Plenary Talks
	Min-Max Optimization: From von Neumann to Deep Learning Plenary Talks
	Tight Complexity Results for Algorithms Using Tree Decompositions
	The Complexity of Counting Problems (Tutorial)
	Contents
	Invited Papers
	Two-Sided Matching Markets with Strongly Correlated Preferences
	1 Introduction
	1.1 Definitions and Main Theorems
	1.2 Related Work

	2 Strongly Correlated Preferences: Proof of Theorem 1
	2.1 Separators and Blocks
	2.2 Conditioning on the Man Optimal Stable Matching When Preferences Are Random
	2.3 Analyzing the Number x of Men from Other Blocks
	2.4 Analyzing the Block Size
	2.5 Putting Everything Together

	3 Unique Stable Partner: Proof of Theorem 2
	References

	Communicating Finite State Machines and an Extensible Toolchain for Multiparty Session Types
	1 Introduction
	1.1 Communicating Finite State Machines and Session Types
	1.2 Scr: An Extensible Toolchain for Multiparty Session Types

	2 Multiparty Session Types (MPST)
	3 Scr: An Extensible Implementation of Multiparty Session Types in OCaml
	4 Extending Scr
	5 Related and Future Work
	References

	II Contributed Papers
	First-Order Logic and Its *Infinitary Quantifier Extensions over *Countable Words
	1 Introduction
	2 Preliminaries
	3 Small Fragments of FO
	3.1 FO with Single Variable
	3.2 Boolean Closure of Existential

	4 First Order Logic with *infinitary quantifiers
	4.1 with single variable
	4.2 The General logic

	5 No Finite Basis Theorems
	6 Conclusion
	References

	From Symmetry to Asymmetry: Generalizing TSP Approximations by Parametrization
	1 Introduction
	1.1 Motivation
	1.2 Our Results
	1.3 Related Work

	2 Preliminaries
	3 Generalized Christofides Algorithm
	4 Generalized Tree Doubling Algorithm
	5 Trading Approximation Quality for Runtime
	5.1 Relaxed Generalized Christofides Algorithm
	5.2 Relaxed Generalized Tree Doubling Algorithm

	6 Experimental Results
	6.1 Implementation Details
	6.2 Experiments
	6.3 Evaluation

	References

	A Poly-log Competitive Posted-Price Algorithm for Online Metrical Matching on a Spider
	1 Introduction
	1.1 Motivation and Problem Statement
	1.2 Past Work
	1.3 Our Contribution

	2 Intuitive Overview on a Simple Instance
	3 Notation and Terminology
	4 The Spider-Match Algorithm Design
	5 Analysis of the Spider-Match Algorithm
	6 Conclusion
	References

	Computational Complexity of Covering Disconnected Multigraphs
	1 Introduction
	2 Covers of Connected Graphs
	2.1 Covers of Connected Graphs
	2.2 A Special Relation Regarding Covers

	3 What is a Cover of a Disconnected Graph?
	4 Complexity Results
	4.1 Locally Bijective Homomorphisms
	4.2 Surjective Covers
	4.3 Equitable Covers

	5 Covering Colored Two-Vertex Graphs
	5.1 Covers of Colored Graphs
	5.2 Two-Vertex Graphs

	6 Conclusion
	References

	The Complexity of Bicriteria Tree-Depth
	1 Introduction
	2 Preliminaries
	3 NP-completeness of BTD
	4 The Approximation Algorithm
	References

	TS-Reconfiguration of Dominating Sets in Circle and Circular-Arc Graphs
	1 Introduction
	2 Preliminaries
	3 A Polynomial Time Algorithm for Circular-Arc Graphs
	4 PSPACE-Hardness for Circle Graphs
	4.1 The Reduction
	4.2 Basic Properties of GF
	4.3 Safeness of the Reduction

	5 Open Questions
	A Appendix
	A.1 Proofs of Section3
	A.2 Proofs of Section4
	A.3 Detailed Construction of GF

	References

	Bipartite 3-Regular Counting Problems with Mixed Signs
	1 Introduction
	2 Preliminaries
	3 Main Theorem
	References

	The Satisfiability Problem for a Quantitative Fragment of PCTL
	1 Introduction
	2 Preliminaries
	3 Results
	3.1 Progress Measure
	3.2 Progressive PCTL Fragments

	4 Conclusions
	References

	Beyond the BEST Theorem: Fast Assessment of Eulerian Trails
	1 Introduction
	2 Definitions and Notation
	3 Structure and Properties of Directed Eulerian Graphs
	4 Assessment Algorithm for #ET(G)
	5 Improved Assessment Algorithm
	5.1 Introducing Function BranchingSource
	5.2 Linear-Time Computation of BranchingSource

	References

	Linear-Time Minimal Cograph Editing
	1 Introduction
	2 Preliminaries
	3 Characterisation of Minimal Cograph Editings of G+x
	4 An O(n+m)-time Algorithm for Minimal Cograph Editing
	4.1 Determining Diff-Above
	4.2 Final Stage of the Algorithm and Overall Complexity

	5 Conclusion and Perspectives
	References

	Regular Model Checking with Regular Relations
	1 Introduction
	2 Regular Relations for Infinite Strings
	2.1 MSO Definable Relations
	2.2 Nondeterministic Streaming String Transducers

	3 Equivalence of -NMSOT and -NSST
	4 MSO-Definable Regular Model Checking
	5 Conclusion
	References

	Minimum Consistent Subset Problem for Trees
	1 Introduction
	2 Preliminaries
	3 Computing MCS of a Tree Rooted at an Anchor
	3.1 Computation of C(Tz)

	4 Analysis of Algorithm
	5 Conclusion
	References

	Parameterized Complexity of Finding Subgraphs with Hereditary Properties on Hereditary Graph Classes
	1 Introduction
	1.1 Our Contributions
	1.2 Other Related Work

	2 Preliminaries
	3 Tractability Results
	4 Hardness from Strong Products
	4.1 Hardness from Strong Products with Cliques
	4.2 Hardness from Joins with Cliques

	5 Conclusion
	References

	The Space Complexity of Sum Labelling
	1 Introduction
	2 Definitions and Main Result
	3 Labelling a Disjoint Collection of Edges
	4 Storing Graphs Using Sum Labelling
	5 A Novel Algorithm for Sum Labelling
	6 Discussions
	References

	On Minimizing Regular Expressions Without Kleene Star
	1 Introduction
	2 Preliminaries
	3 Inapproximability
	4 Approximability
	5 Minimizing Nondeterministic Finite Automata
	6 Conclusion
	References

	Computational Complexity of Computing a Quasi-Proper Equilibrium
	1 Introduction
	1.1 Contributions
	1.2 Relation to Previous Work

	2 Preliminaries
	2.1 Extensive Form Games
	2.2 Strategic Form Games
	2.3 Complexity Classes

	3 Two-Player Games
	4 Multi-player Games
	References

	Computational Complexity of Synchronization Under Sparse Regular Constraints
	1 Introduction
	2 Preliminaries and Definitions
	3 Sparse and Bounded Regular Languages
	4 Letter-Bounded Constraint Languages
	5 Constraints from Strongly Self-synchronizing Codes
	6 Conclusion and Discussion
	References

	On Dasgupta's Hierarchical Clustering Objective and Its Relation to Other Graph Parameters
	1 Introduction
	2 Preliminaries
	3 Four Related Problems
	4 VPT-sum and EPT-sum of Trees
	References

	Mengerian Temporal Graphs Revisited
	1 Introduction
	2 Preliminaries
	3 Outline of the Proof of Necessity of Theorem 2
	4 Outline of the Proof of Sufficiency of Theorem 2
	5 Mengerian Graphs Recognition
	6 Conclusion
	References

	Faster FPT Algorithms for Deletion to Pairs of Graph Classes
	1 Introduction
	2 Forbidden Characterization for 1 or 2 Deletion
	3 1 or 2 Deletion with a Constant Number of Forbidden Pairs
	3.1 Interval or Trees
	3.2 Algorithm for Special Infinite-(1, 2)-Deletion

	4 1 or 2 Deletion When F2 is Infinite and Pi is Forbidden in 1
	4.1 Clique or Planar Graphs
	4.2 Algorithm for

	5 Conclusion
	References

	Fast Algorithms for the Rooted Triplet Distance Between Caterpillars
	1 Introduction
	1.1 Problem Definitions
	1.2 Previous Results
	1.3 New Results and Organization of Paper

	2 Preliminaries
	3 The First Algorithm
	3.1 Algorithm Description
	3.2 Computing

	4 The Second Algorithm
	4.1 Mapping Leaves to the Grid
	4.2 Counting Good Triplets

	5 Conclusion
	References

	Deciding Top-Down Determinism of Regular Tree Languages
	1 Introduction
	2 Preliminaries
	3 Decidability of Top-Down Determinism
	4 Finite Unions of Deterministic Top-Down Tree Languages
	References

	Propositional Gossip Protocols
	1 Introduction
	2 Gossiping Logic
	3 Required Communication Graph
	4 Minimal Number of Calls
	5 Decision Problems for Propositional Protocols
	6 Conclusions
	References

	Complexity of Word Problems for HNN-Extensions
	1 Introduction
	2 Groups
	2.1 Compressed Words and the Compressed Word Problem

	3 The Compressed Power Problem
	4 HNN-extensions with Cyclic Associated Subgroups
	5 Future Work
	References

	On Finding Separators in Temporal Split and Permutation Graphs
	1 Introduction
	2 Split Graphs
	2.1 Hardness Results
	2.2 Fixed-Parameter Tractability Results

	3 Permutation Graphs
	3.1 Hardness Results
	3.2 Fixed-Parameter Tractability Results

	4 Conclusion
	References

	The Possible Winner Problem with Uncertain Weights Revisited
	1 Introduction
	2 Preliminaries
	3 3-Approval
	4 Plurality with Runoff
	5 Veto with Runoff
	6 k-Veto
	7 Borda
	8 Conclusions and Open Questions
	References

	Streaming Deletion Problems Parameterized by Vertex Cover
	1 Introduction
	2 Adapting Existing Kernels
	3 A Direct FPT Approach
	3.1 P3-free Deletion
	3.2 H-free Deletion
	3.3 Towards -free Deletion
	3.4 Odd Cycle Transversal

	4 Lower Bounds
	5 Conclusion
	References

	On the Hardness of the Determinant: Sum of Regular Set-Multilinear Circuits
	1 Introduction
	1.1 Our Results

	2 Preliminaries
	2.1 Determinant and Permanent
	2.2 Erdös-Szekeres Theorem

	3 Hardness of the Determinant: Sum of Two Regular Set-Multilinear Circuits
	4 Hardness of the Determinant: Sum of Constantly-Many Regular Set-Multilinear Circuits
	5 Discussion
	References

	Concentration of the Collision Estimator
	1 Introduction
	1.1 Background
	1.2 Main Result
	1.3 Related Work
	1.4 Organization

	2 Preliminaries
	2.1 Negative Dependence
	2.2 Symmetrization and Decoupling

	3 Proofs
	3.1 Proof of Theorem 1

	4 Conclusion
	References

	Valency-Based Consensus Under Message Adversaries Without Limit-Closure
	1 Introduction
	2 Model and Notations
	3 A Generic Consensus Algorithm
	4 Computing Delta for the Eventually Stable Message Adversary
	5 Conclusions
	References

	Author Index

