
Towards an Efficient Framework for Data
Extraction from Chart Images

Weihong Ma1, Hesuo Zhang1, Shuang Yan2, Guangshun Yao2, Yichao Huang2,
Hui Li3, Yaqiang Wu3, and Lianwen Jin1,4(B)

1 South China University of Technology, Guangzhou, China
{eeweihong ma,eehesuo.zhang}@mail.scut.edu.cn, eelwjin@scut.edu.cn

2 IntSig Information Co. Ltd., Shanghai, China
{shuang yan,guangshun yao,charlie huang}@intsig.net

3 Lenovo Research, Beijing, China
{lihuid,wuyqe}@lenovo.com

4 Guangdong Artificial Intelligence and Digital Economy Laboratory (Pazhou Lab),
Guangzhou, China

Abstract. In this paper, we fill the research gap by adopting state-
of-the-art computer vision techniques for the data extraction stage in a
data mining system. As shown in Fig. 1, this stage contains two subtasks,
namely, plot element detection and data conversion. For building a robust
box detector, we comprehensively compare different deep learning-based
methods and find a suitable method to detect box with high precision.
For building a robust point detector, a fully convolutional network with
feature fusion module is adopted, which can distinguish close points com-
pared to traditional methods. The proposed system can effectively handle
various chart data without making heuristic assumptions. For data con-
version, we translate the detected element into data with semantic value.
A network is proposed to measure feature similarities between legends
and detected elements in the legend matching phase. Furthermore, we
provide a baseline on the competition of Harvesting raw tables from Info-
graphics. Some key factors have been found to improve the performance
of each stage. Experimental results demonstrate the effectiveness of the
proposed system.

Keywords: Data extraction · Box detection · Point detection · Data
conversion

1 Introduction

Chart data is one of the important information transmitted medium that clarifies
and integrates difficult information concisely [26]. In recent years, an increas-
ing number of chart images have emerged in multimedia, scientific papers,

This research is supported in part by NSFC (Grant No.: 61936003, 61771199), GD-NSF
(no. 2017A030312006).

c© Springer Nature Switzerland AG 2021
J. Lladós et al. (Eds.): ICDAR 2021, LNCS 12821, pp. 583–597, 2021.
https://doi.org/10.1007/978-3-030-86549-8_37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86549-8_37&domain=pdf
https://doi.org/10.1007/978-3-030-86549-8_37


584 W. Ma et al.

Fig. 1. Generic pipeline for extracting data in a data mining system. We mainly discuss
the sixth stage (data extraction) assuming that the previous output has been obtained.

and business reports. Therefore, the issue of automatic data extraction from
chart images has gathered significant research attention [3,15,16,19].

As shown in Fig. 1, in general, a chart data mining system [8] includes the
following six stages: chart classification, text detection and recognition, text role
classification, axis analysis, legend analysis and data extraction. Among all the
aforementioned stages, data extraction is conducted as the most crucial and
difficult part, whose performance depends on the quality of localization. In this
work, we mainly discuss the data extraction stage. The goal in this stage is to
detect elements in the plot area and convert them into data marks with semantic
value. As shown in Fig. 2, this task has two subtasks: plot element detection and
data conversion.

Fig. 2. Illustration of the data extraction stage.

To build a robust data extraction system, we can learn methods from the
field of object detection. However, it should be clear that chart images differ
significantly from natural images. As shown in Fig. 3, (a) is an image from COCO
dataset [12], and (b) is an image from synthetic chart dataset [8]. First, compared
with general object, elements in the chart images have a large range of aspect
ratios and sizes. Chart images contain a combination of different elements. These
elements can be either very short, such as numerical tick points or long, such as
in-plot titles. Second, chart images are highly sensitive to localization accuracy.
While the intersection-over-union (IoU) values in the range of 0.5 to 0.7 are



Towards an Efficient Framework for Data Extraction from Chart Images 585

acceptable for general object detection, it is unacceptable for chart images. As
shown in Fig. 3b, even when the IoU is 0.9, there is still a small numerical
deviation on bar images, which shows the sensitivity of chart images to IoU.
Therefore, for chart data extraction, highly precise bounding boxes or points,
i.e., with high IoU values are required for the detection system.

Fig. 3. Visualization when intersection-over-union (IoU) values range from 0.5 to 0.9 on
(a) COCO and (b) synthetic chart images. An IoU value of 0.5 is acceptable on natural
images; a higher IoU value, such as 0.7, is redundant. However, for chart images, such
values are unacceptable. Even if the IoU is 0.9, there is still a small numerical deviation
on bar charts.

Currently, state-of-the-art computer vision techniques have not been fully
adopted by chart mining approaches. Moreover, there have been very few com-
parisons using deep learning-based methods for chart mining. It is believed that
deep learning-based methods can avoid hard heuristic assumptions and more
robust when handling various real chart data. In this study, using published real-
world datasets1, we attempt to fill this research gap in the data extraction stage.
In the proposed framework, elements in the main plot area are first detected.
Based on axis analysis and legend analysis results from previous stages in a
data mining system, we then convert detected elements into data marks with
semantic value. The contribution of this work can be summarized as follows.
(i) For building a robust box detector, we comprehensively compare different
deep learning-based methods. We mainly study whether existing object detec-
tion methods are adequate for box-type element detection. In particular, they
should be capable of (a) detecting elements with a large aspect ratio range and
(b) localizing objects with a high IoU value. (ii) For building a robust point detec-
tor, we use a fully convolutional network (FCN) with feature fusion module to
output a heatmap mask. It can distinguish close points well while traditional
methods and detection-based methods easily fail. (iii) For data conversion, in
1 http://tc11.cvc.uab.es/datasets/ICPR2020-CHART-Info 1.

http://tc11.cvc.uab.es/datasets/ICPR2020-CHART-Info_1


586 W. Ma et al.

the legend matching phase, a network is trained to measure feature similarities.
It is robust than image-based features when noise exists in feature extracting
phase. Finally, we provide a baseline on a public dataset which can facilitate
further research. Experimental results demonstrate the effectiveness of the pro-
posed system. The implementation of our pipeline will be available to the public
for reproducing these results.

2 Related Work

In this section, we review previous works on data extraction in a chart mining
system. We mainly focus on related works of classification, element detection
and data conversion.

According to the types of detection data, we can divide the chart data into
box-type and point-type data. Box-type data includes bars and boxplots. These
charts are commonly used to visualize data series that have a categorical indepen-
dent variable. For the task of box detection, some methods have been proposed
to detect elements through the characteristics of bars [1,2,7,23]. Assuming that
the bar mark is solidly shaded using a single color, Savva et al. [23] used con-
nected component (CC) analysis method and heuristic rules to extract the data
mark. Balaji et al. [2] and Dai et al. [7] also used image processing methods to
detect bars. They first obtained the binary image and used open morphological
operation to filter noise. Next, they performed the CC labeling algorithm to find
the bars. Rabah et al. [1] used heuristic features based on shape, pixel densi-
ties, color uniformity, and relative distances to the axes. However, these methods
may fail when detecting small bars. In response to this problem, some methods
based on deep neural networks use object detection architectures to locate the
bars [5,14,18], which are more robust to extract features.

Point-type data, including charts such as scatter, line, and area, are seman-
tically similar because they present one or more sequences of 2D points on a
given Cartesian plane. The scatter chart is the most basic type in these charts.
A line chart is created when the points are connected to form curves. An area
chart highlights the area under the curve, typically using coloring or texture pat-
terns. Assuming that only detected data and text elements are in the plot area,
Khademul et al. [17] proposed a system for extracting data from a line chart.
The system first detected axes by projection method and then used CC analysis
to filter text elements inside the plot area. Finally, data are extracted using a
sequential scanning process. Considering that the chart might have grid lines,
Viswanath et al. [21] proposed an image processing-based method and developed
a semi-supervised system. However, the method assumes that grid lines should
not be more visually distinctive than the data marks. Thus, these approaches
make multiple assumptions and often fail when processing images with a complex
background. Cliche et al. [6] used object detection model [27] to detect scatter
points. This method is more robust than the image processing-based method.
However, this method may fail when points are close to each other.

In the data conversion stage, legend analysis and axis analysis should be
obtained. If legends exist, the shape and color of elements will be used to identify



Towards an Efficient Framework for Data Extraction from Chart Images 587

data marks by data series. Choudhury et al. [20] proposed clustering based on
shape and color for line graphs. Each cluster is output as a curve. Using the axes
analysis results, these relative coordinates can be projected onto the original
data space. To recover data from the bar chart, Savva et al. [23] considered
linear mapping and calculated the scaling factor between image space and data
space.

Fig. 4. The overall architecture of the proposed framework. First, the input chart image
is classified by the pre-trained classification model. Second, two detectors, named box
detector and point detector, are built for different chart types. Third, in legend match-
ing phase, elements are divided into corresponding legends by comparing their features
similarities. Their semantic value are calculated by interpolation method. Finally, the
value of elements are output into tables.

3 Methodology

The overall architecture of our proposed method is presented in Fig. 4. Func-
tionally, the framework consists of three components: a pre-trained chart classi-
fication model, element detection module for detecting box or point, and data
conversion for determining element values. In the following sections, we first
introduce the details of the box and point detectors. Next, we provide imple-
mentation details of the data conversion.

3.1 Box Detector

To extract robust features at different scales, we use a ResNet-50 [10] with a
feature pyramid network (FPN) [11]. FPN uses a top-down architecture with
lateral connections to fuse features of different resolutions from a single scale
input, enabling it to detect elements with a large aspect ratio range. To detect
a box with high IoU, we choose the Cascade R-CNN [4] as our box detector. As
shown in Fig. 5(a), the box detector has four stages, one region proposal network
(RPN) and three for detection with IoU = 0.5, 0.6, 0.7. The sampling of the first
detection stage follows [22]. In the following stages, resampling is implemented
by simply using the regressed outputs from the previous stage.



588 W. Ma et al.

Fig. 5. Network architecture of box detector and point detector.

3.2 Point Detector

Points are another common chart elements in chart data. As mentioned earlier,
the corresponding chart types include scatter, line, and area. Generally, points
are densely distributed in the plot area, and the data is represented as the format
of (x, y). In this work, we use segmentation-based method to detect points, which
can help distinguish close points.

Network Architecture. As shown in Fig. 5(b), four levels of feature maps,
denoted as fi, are extracted from the backbone network, whose sizes are 1/16,
1/8, 1/4 and 1/2 of the input image, respectively. Then, the features from differ-
ent depths are fused in the up-sampling stage. In each merging stage, the feature
map from the last stage is first fed to the up-sampling module to double its size,
and then concatenated with the current feature map. Next, the fusion module,
which is built using two consecutive conv3×3 layers, produces the final output of
this merging stage. Following the last merging stage, the head module, built by
two conv3×3 layers, is then used. Finally, the feature map is upsampled to the
image size.

Label Generation. To train the FCN network, we generate a heatmap mask.
The binary map, which sets all pixels inside the contour to the same value,
can not reflect the relationship between each pixel. In contrast to the binary
segmentation map, we draw Gaussian heatmap for these points on the mask.
The Gaussian value Yxy is calculated using the Gaussian kernel function. If two
Gaussians overlap and one point has two values, we use the maximum value.



Towards an Efficient Framework for Data Extraction from Chart Images 589

Yxy = e− (x−px)2+(y−py)2

2σ2 (1)

where (x, y) is the point coordinate on the mask, (px, py) is the center of the
target point. σ is a Gaussian kernel parameter that determines the size. Here,
we set the value of σ as 2.

Post-processing. In the testing phase, the point detector outputs a heatmap
mask. We first filter the output noise outside the main plot area. Then, we use
a high confidence threshold to output positive region. The final points output
are obtained by finding the center of connected components. In the process
of connected component analysis, when we detect a larger connected area, it
indicates points are close and the model cannot accurately separate these points.
Therefore, in order to improve the recall rate, we also randomly sample points
inside the connected area, where number of points is linearly related to the size.

3.3 Data Conversion

Fig. 6. Pipeline of data conversion.

After detecting the elements, we need to determine the element values. In this
stage, the goal is to convert detected elements in the plot area into data marks
with semantic value. As shown in Fig. 6, legend matching and value calculation
are performed in this stage.

Legend Matching: Based on the legend analysis result, which is obtained from
the fifth stage in a data mining system, we can get the position of the legends.
If there exists legends, we need to extract features of elements and legends.
Then we use L2 distance to measure feature similarities and divide elements into
corresponding legends. Image-based features, such as RGB features and HSV
features, is not robust when the detection result is not tight enough. Therefore,
we propose to train a feature model to measure feature similarity.



590 W. Ma et al.

The network directly learns a mapping f(x) from patch input image x into
embedding vectors Rd. It is comprised of multiple modules, which are built using
conv-BN-ReLU layers, and finally outputs a 128-D embedding vector for each
patch input. In the training phase, the network is optimized using a triplet-
based loss [24]. This loss aims to separate the positive pair from the negative
by a distance margin. Embedding vectors of the same cluster should have small
distances and different clusters should have large distances. In the testing phase,
the cropped legend patch and element patch are fed into the model. For each
element, the legend with the smallest distance on feature dimension is the cor-
responding class.

Value Calculation: Based on the axis analysis result, which is obtained from
the forth stage, we can get the position of the detected tick points and their corre-
sponding semantic values. Then, we analyze the numerical relationship between
adjacent tick points, including the case of linear or exponential. Finally, we cal-
culate the value of the unit scale and use the interpolation method to determine
the element value.

4 Experiments

4.1 Datasets

Table 1. Distribution of the two datasets used for the experiments

Dataset Chart type Num. of
training set

Num. of
validation set

Total num.

Synth2020 Bar 4, 264 536 4, 800

Boxplot 2, 132 268 2, 400

Line 1, 066 134 1, 200

Scatter 1, 066 134 1, 200

UB PMC2020 Bar 781 98 879

Boxplot 174 22 196

Line 658 83 741

Scatter 272 35 307

There are two sets of datasets used in this work, which are named Synth2020 and
UB PMC2020, respectively. The earlier version of these two datasets are pub-
lished in [8]. Thanks to the ICPR2020 Competition on Harvesting Raw Tables
from Infographics2, more challenging images have been added and the size of
the dataset has been extended. The first dataset, Synth2020, is the extended
version of Synth2019. Multiple charts of different types are created using the
2 https://chartinfo.github.io.

https://chartinfo.github.io


Towards an Efficient Framework for Data Extraction from Chart Images 591

Matplotlib library. The second dataset is curated from real charts in scientific
publications from PubMedCentral [8], which has different image resolutions and
more uncertainties in the images. We divide the official training dataset into a
training set and validation set with a ratio of 8:1 randomly. Details of the split
of these two datasets are given in Table 1. The specific training and validation
sets will be published.

4.2 Evaluation

We use the competition evaluation script3 to measure the model performance.
Two metrics for measuring the detector performance and data conversion perfor-
mance are proposed. For different types of chart data, the script has a different
evaluation mechanism. Details of the evaluation mechanism are mentioned in
the competition. For box detection evaluation, to accurately evaluate the model
performance under different IoU, we also refer to the field of object detection
and calculate F-measure when IoU is equal to 0.5, 0.7, and 0.9.

4.3 Implementation Details

The synthetic and UB PMC datasets are trained and tested separately. In this
section, we introduce the details of our implementation.

In the box detector experiment, we choose bar type data for training. The
backbone feature extractor is ResNet-50 pre-trained on ImageNet. In the regres-
sion stage, we adopt RoIAlign to sample proposals to a 7 × 7 fixed size. The
batch size is 8 and the initial learning rate is set to 0.01. The model is optimized
with stochastic gradient descent(SGD) and the maximum epochs for training
is 20. In the inference stage, non-maximum suppression (NMS) is utilized to
suppress the redundant outputs.

In the point detector experiment, we choose scatter type data for training.
In the training stage, we use MSE loss to optimize the network. Multiple data
augmentations are adopted, including random crop, random rotate, random flip,
and image distortion, to avoid overfitting. We adopt the OHEM [25] strategy to
learn hard samples. The ratio of positive and negative samples is 1:3. The model
is optimized with Adam optimizer and the maximum iterations is 30k with a
batch size of 4.

In the data conversion experiment, we train the model to extract features for
clustering. The input size for training is 24 × 24, and the embedding dimension
is set to 128. The model is optimized with Adam optimizer and the maximum
iterations is 50k. The batch size is 8 and the initial learning rate is set to 0.001.

4.4 Result and Analysis

Evaluation of Box Detector. In this section, the performance of the box
detector is evaluated in terms of Score a and F-measure when the value of IoU
3 https://github.com/chartinfo/chartinfo.github.io/tree/master/metrics.

https://github.com/chartinfo/chartinfo.github.io/tree/master/metrics


592 W. Ma et al.

is set to 0.5, 0.7, 0.9, respectively. Score a uses the evaluation mechanism from
ICPR2020 competition. The trained models are tested on the Synth2020 valida-
tion set and UB PMC2020 testset, respectively. Since the testset of Synth2020
is currently unavailable, we use validation set to test the model performance on
the Synth2020 dataset.

Table 2. Evaluation results of box detector on bar type data

Dataset Model IoU = 0.5 IoU = 0.7 IoU = 0.9 Score a

Synth2020
validation bar

SSD 80.98 69.56 28.79 67.87

YOLO-v3 85.30 76.54 38.55 90.96

Faster R-CNN 94.80 92.47 48.92 92.33

Faster R-CNN+FPN 96.46 94.39 52.30 92.89

Cascade R-CNN+FPN 96.86 96.25 93.97 93.36

UB PMC2020
testset bar

SSD 43.65 26.28 2.67 25.83

YOLO-v3 58.84 36.14 4.14 60.97

Faster R-CNN 66.37 60.88 29.13 70.03

Faster R-CNN+FPN 85.81 78.05 31.30 89.65

Cascade R-CNN+FPN 86.92 83.53 55.32 91.76

Fig. 7. Detection result of different models on an example bar image from Synth2020.

For comparison, we implement different detection models, including one-stage
and two-stage detection models. The one-stage models are SSD [13] and YOLO-
v3 [9], whereas the two-stage model is Faster R-CNN [22]. As listed in Table 2, the
performance of the one-stage model performs worst, and the multi-stage regress



Towards an Efficient Framework for Data Extraction from Chart Images 593

heads help to obtain high accuracy. Furthermore, the additional FPN structure
effectively helps to detect elements with a large aspect ratio range. On both
Synth2020 and UB PMC2020 dataset, the Cascade R-CNN model with FPN
structure performs the best. Therefore, for bar type data detection, models with
multiple regression heads and FPN structure achieve impressive performance.

One-stage models output poor results in earlier iterations. At the same time,
NMS can not filter these error outputs effectively, which can be best viewed in
Fig. 7(b). NMS can not suppress these outputs because the IoU between these
long rectangles is smaller than 0.5. Owing to these reasons, the model can not
reach the global optimal solution.

Table 3. Evaluation results of point detector on scatter type data

CC based Detect based Pose ResNet Proposed

Synth2020 validation set 57.84 72.34 78.98 87.20

UB PMC2020 validation set 53.36 82.12 82.46 86.46

UB PMC2020 testset 51.58 84.54 84.58 88.58

Fig. 8. Visualization of the detection results on chart data from different models.
Patches are shown for visualization. The detected points are drawn as red dots on
the input image. The data of first row is from Synth2020 and the data of second row
is from UB PMC2020. Circles in red show some key differences between these models.
(Color figure online)

Evaluation of Point Detector. In this section, the performance of the point
detector is evaluated in terms of the evaluation mechanism published in the com-
petition. The trained models are tested on Synth2020 validation, UB PMC2020
validation and testset.

We compare our method with traditional image processing method, such
as connected component analysis and detection-based method. The detection



594 W. Ma et al.

model is based on Faster R-CNN. To train the Faster R-CNN model, we expand
the point (x, y) into a rectangle (x − r, y − r, x + r, y + r) whose data for-
mat is (left, top, right, bottom). We also implement another segmentation-based
method Pose ResNet [28], which is initially proposed for pose keypoint detec-
tion. The Pose ResNet model adopts the structure of down-sampling and then
up-sampling, without considering the feature fusion of different depths.

As listed in Table 3, the proposed method, which is simple and effective, out-
performs other methods on three testsets. As shown in Fig. 8, on the Synth2020
validation set, there are many cases where scatter points are connected and
form a larger connected component. On the UB PMC2020 testset, there are
many noises in the plot area such as text elements. Traditional image process-
ing method can not distinguish close points which form a large component.
The detection-based method fails when the number of points is large or adjacent
points are connected. Compared to Pose ResNet, the feature fusion method helps
to distinguish adjacent points, as shown in Fig. 8(d). The proposed method can
effectively deal with these situations and locate adjacent points accurately.

Robustness of Feature on Data Conversion. We choose line type data to
evaluate the performance of data conversion. The performance of data conver-
sion depends on the legend matching phase and value calculation phase. The
performance in the value calculation phase depends on whether OCR engine can
recognize tick point value correctly. Ignored the errors caused by the OCR engine,
we discuss the robustness of extracted features in legend matching phase from
the trained network. As listed in Table 4, we compare the performance when the
legend matching phase is performed on the groundtruth and prediction result.
For short notation, here s1, s2, s3 represent average name score, average data
series score, and average score, respectively, which is claimed in the evaluation
script.

When using groundtruth as input, the position of the elements is quite accu-
rate. Features extracted from trained network are comparable with features from
the concatenation of RGB and HSV features. The performance can be further
improved by considering the cascading of features. When prediction detection
results are used, the position of elements may not be tight enough, which will
bring in noise while extracting features. Experiments show that features from
our proposed method are more robust than image-based features.

Evaluation Result of Proposed System. As listed in Table 5, we provide
our proposed system performance on ICPR2020 Competition which can serve as
a baseline and facilitate further research. For short notation, here s0, s1, s2, and
s3 represent visual element detection score, average name score, average data
series score and average score, respectively. In this work, no additional data or
model ensemble strategy is adopted. It is shown that our system outperforms
the Rank1 and Rank2 result of the competition on UB PMC2020 testset, which
demonstrate the effectiveness of the proposed system.



Towards an Efficient Framework for Data Extraction from Chart Images 595

Table 4. Evaluation results of data conversion on line type data

Features Groundtruth Prediction

s1 s2 s3 s1 s2 s3

Baseline (RGB) 83.40 75.32 77.34 83.50 55.61 69.68

RGB+HSV 83.48 77.58 79.06 83.50 52.52 68.16

RGB+HSV+CNN 83.48 78.31 79.60 83.06 53.81 68.83

CNN 82.71 77.78 79.02 83.53 67.19 75.36

Table 5. Evaluation results of proposed system

Chart types Synth2020 validation set UB PMC2020 testset

s0 s1 s2 s3 s0 s1 s2 s3

Bar 93.36 99.82 99.11 99.29 91.75 96.96 94.20 94.89

Scatter 87.19 100.00 82.97 87.23 88.58 86.61 65.20 70.55

Boxplot 100.00 99.83 98.37 98.73 98.62 92.57 81.62 84.36

Line 99.29 99.09 98.81 98.88 84.03 83.24 67.01 71.06

Average (Rank1*) – – – – 88.23 90.42 76.73 80.15

Average (Rank2*) – – – – 87.00 78.54 55.40 61.18

Average (proposed) 94.96 99.69 94.82 96.03 90.75 89.85 77.00 80.22
∗ From https://chartinfo.github.io/leaderboards 2020.html

5 Conclusion

In this work, we discuss the data extraction stage in a data mining system.
For building a robust box detector, we compare different object detection meth-
ods and find a suitable method to solve the special issues that characterize
chart data. Models with multiple regression heads and FPN structure achieve
impressive performance. For building a robust point detector, compared with
image processing-based methods and detection-based methods, the proposed
segmentation-based method can avoid hard heuristic assumptions and distin-
guish close points well. For data conversion, we propose a network to measure
feature similarities which is more robust compared with image-based features.
In the experiments, we conduct experiments in each stage of data extraction.
We find the key factors that improve the performance of each stage. The overall
performance on a public dataset demonstrates the effectiveness of the proposed
system. Because an increasing number of charts have appeared in recent years,
we believe the field of automatic extraction from chart data will develop quickly.
We expect this work to provide useful insights and provide a baseline for com-
parison.

References

1. Al-Zaidy, R.A., Giles, C.L.: A machine learning approach for semantic structuring
of scientific charts in scholarly documents. In: Proceedings of the AAAI Conference
on Artificial Intelligence, pp. 4644–4649 (2017)

https://chartinfo.github.io/leaderboards_2020.html


596 W. Ma et al.

2. Balaji, A., Ramanathan, T., Sonathi, V.: Chart-Text: a fully automated chart
image descriptor. arXiv preprint arXiv:1812.10636 (2018)

3. Böschen, F., Scherp, A.: A comparison of approaches for automated text extraction
from scholarly figures. In: Amsaleg, L., Guðmundsson, G.Þ, Gurrin, C., Jónsson,
B.Þ, Satoh, S. (eds.) MMM 2017. LNCS, vol. 10132, pp. 15–27. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-51811-4 2

4. Cai, Z., Vasconcelos, N.: Cascade R-CNN: delving into high quality object detec-
tion. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 6154–6162 (2018)

5. Choi, J., Jung, S., Park, D.G., Choo, J., Elmqvist, N.: Visualizing for the non-
visual: enabling the visually impaired to use visualization. In: Computer Graphics
Forum, vol. 38, pp. 249–260. Wiley Online Library (2019)

6. Cliche, M., Rosenberg, D., Madeka, D., Yee, C.: Scatteract: automated extraction
of data from scatter plots. In: Ceci, M., Hollmén, J., Todorovski, L., Vens, C.,
Džeroski, S. (eds.) ECML PKDD 2017. LNCS (LNAI), vol. 10534, pp. 135–150.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71249-9 9

7. Dai, W., Wang, M., Niu, Z., Zhang, J.: Chart decoder: generating textual and
numeric information from chart images automatically. J. Vis. Lang. Comput. 48,
101–109 (2018)

8. Davila, K., et al.: ICDAR 2019 competition on harvesting raw tables from info-
graphics (chart-infographics). In: Proceedings of the IEEE Conference on Docu-
ment Analysis and Recognition, pp. 1594–1599. IEEE (2019)

9. Farhadi, A., Redmon, J.: Yolov3: an incremental improvement. In: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition (2018)

10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778 (2016)

11. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature
pyramid networks for object detection. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 2117–2125 (2017)

12. Lin, T.Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D.,
Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp.
740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1 48

13. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe,
N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-46448-0 2

14. Liu, X., Klabjan, D., NBless, P.: Data extraction from charts via single deep neural
network. arXiv preprint arXiv:1906.11906 (2019)

15. Liu, Y., Lu, X., Qin, Y., Tang, Z., Xu, J.: Review of chart recognition in document
images. In: Visualization and Data Analysis 2013. vol. 8654, p. 865410. Interna-
tional Society for Optics and Photonics (2013)

16. Mei, H., Ma, Y., Wei, Y., Chen, W.: The design space of construction tools for
information visualization: a survey. J. Vis. Lang. Comput. 44, 120–132 (2018)

17. Molla, M.K.I., Talukder, K.H., Hossain, M.A.: Line chart recognition and data
extraction technique. In: Liu, J., Cheung, Y., Yin, H. (eds.) IDEAL 2003. LNCS,
vol. 2690, pp. 865–870. Springer, Heidelberg (2003). https://doi.org/10.1007/978-
3-540-45080-1 120

18. Methani, N., Ganguly, P., Khapra, M.M., Kumar, P.: Data interpretation over
plots. In: Proceedings of the IEEE Winter Conference on Applications of Computer
Vision (2020)

http://arxiv.org/abs/1812.10636
https://doi.org/10.1007/978-3-319-51811-4_2
https://doi.org/10.1007/978-3-319-71249-9_9
https://doi.org/10.1007/978-3-319-10602-1_48
https://doi.org/10.1007/978-3-319-46448-0_2
http://arxiv.org/abs/1906.11906
https://doi.org/10.1007/978-3-540-45080-1_120
https://doi.org/10.1007/978-3-540-45080-1_120


Towards an Efficient Framework for Data Extraction from Chart Images 597

19. Purchase, H.C.: Twelve years of diagrams research. J. Vis. Lang. Comput. 25(2),
57–75 (2014)

20. Choudhury, S.R., Wang, S., Giles, C.L.: Curve separation for line graphs in schol-
arly documents. In: Proceedings of the 16th ACM/IEEE-CS on Joint Conference
on Digital Libraries, pp. 277–278 (2016)

21. Reddy, V.K., Kaushik, C.: Image processing based data extraction from graphical
representation. In: Proceedings of the IEEE Conference on Computer Graphics,
Vision and Information Security, pp. 190–194. IEEE (2015)

22. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object
detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell.
39(6), 1137–1149 (2016)

23. Savva, M., Kong, N., Chhajta, A., Fei-Fei, L., Agrawala, M., Heer, J.: Revision:
automated classification, analysis and redesign of chart images. In: Proceedings of
the 24th Annual ACM Symposium on User Interface Software and Technology, pp.
393–402 (2011)

24. Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: a unified embedding for face
recognition and clustering. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 815–823 (2015)

25. Shrivastava, A., Gupta, A., Girshick, R.: Training region-based object detectors
with online hard example mining. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 761–769 (2016)

26. Siricharoen, W.V.: Infographics: the new communication tools in digital age.
In: The International Conference on e-technologies and Business on the Web
(EBW2013), pp. 169–174 (2013)

27. Stewart, R., Andriluka, M., Ng, A.Y.: End-to-end people detection in crowded
scenes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 2325–2333 (2016)

28. Xiao, B., Wu, H., Wei, Y.: Simple baselines for human pose estimation and tracking.
In: Proceedings of the European Conference on Computer Vision, pp. 466–481
(2018)


	Towards an Efficient Framework for Data Extraction from Chart Images
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Box Detector
	3.2 Point Detector
	3.3 Data Conversion

	4 Experiments
	4.1 Datasets
	4.2 Evaluation
	4.3 Implementation Details
	4.4 Result and Analysis

	5 Conclusion
	References




