
RDF Data Management is an Analytical
Market, not a Transaction One

Olivier Curé1(B), Christophe Callé1,2, and Philippe Calvez2

1 LIGM Univ. Paris Est Marne la Vallée, CNRS, 77454 Marne la Vallée, France
{olivier.cure,christophe.calle}@univ-eiffel.fr

2 ENGIE LAB CRIGEN, Saint-Denis, France
philippe.calvez1@engie.com

Abstract. In recent years, the Resource Description Framework data
model has seen an increasing adoption in Web applications and IT in
general. This has contributed to the establishment of standards such
as the SPARQL query language and the emergence of production-ready
database management systems based on this data model. In this paper,
we however argue that by concentrating on transaction related function-
alities rather than analytical operations, most of these systems address
the wrong data market. We motivate this claim by presenting several
concrete arguments.

1 Introduction

The Resource Description Framework (RDF) data model has attracted lot of
attention during these last few years. It enabled the design and implementation of
many Web and IT applications. For instance, it supports innovative approaches
for artificial intelligence’s knowledge representation and web search. This is due
to the publication of some of the largest and most popular knowledge graphs
(KG), e.g., DBpedia, Wikidata, Bio2RDF, UniProt, which are represented using
this data model. As such, RDF is now recognized has one of the leading data
model in the graph database management ecosystem. Compared to its direct
competitor, the Labelled Property Graph (LPG) data model, RDF presents
great support for data integration and reasoning services. These two features
are due (i) to the omnipresence of Internationalized Resource Identifiers (IRI)
in RDF graphs which serve as a common identifying solution at the scale of
the Web and (ii) to associations with semantically-rich vocabularies, generally
denoted ontologies, which together with reasoners enable to compute inferences.

This increase of interest for RDF has led to the emergence of efficient,
production-ready RDF stores (see Table 1’s first column for a list of the most
prominent systems). In addition to natively providing reasoning services in dif-
ferent ontology languages, these systems possess some important functionali-
ties that one can expect from a standard relational database management sys-
tem (DBMS), e.g., optimized query processing for a declarative language (typ-
ically SPARQL). These functionalities also include on line transaction process-
c© Springer Nature Switzerland AG 2021
M. Golfarelli et al. (Eds.): DaWaK 2021, LNCS 12925, pp. 109–115, 2021.
https://doi.org/10.1007/978-3-030-86534-4_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86534-4_9&domain=pdf
https://doi.org/10.1007/978-3-030-86534-4_9


110 O. Curé et al.

ing (OLTP) through the support of ACID properties. Hence, they have been
designed to process high rates of (update) SPARQL queries per second.

In this paper, we argue that the support for ACID transactions is not fre-
quently used in RDF stores. This is mainly due to the fact it is not being con-
sidered as a critical feature for most RDF-based application development. We
motivate this claim in Sect. 2.1 from technical and contextual aspects as well as
interviews conducted with project leaders. In Sect. 2.2, we highlight that analyti-
cal operations, not generally present in RDF stores, are highly expected in many
applications. In Sect. 3, we present two general forms of analytics and empha-
size that one is more needed than the other. Finally, we conclude the paper and
present some perspectives.

Table 1. RDF stores characteristics, considering reasoning, RDFS:r, RDFS+: r+,
OWL Lite: l n OWL QL: q, OWLRL: d, OWL Horst: h, OWLDL: dl)

Name Transaction (ACID) Reasoning Analytic features Materialized views

AllegroGrapha Yes r+, d No No

AnzoGraph DBb Yes r+ Graph analytics + OLAP style Yes

Blazegraphc Yes r+, l No No

GraphDBd Yes r, q, d, h No No

MarkLogice Yes r, r+, h No No

Oraclef Yes r, q, d No No

RDFoxg Yes r+, d No No

Stardogh Yes All No No

Virtuosoi Yes r+ No No
ahttps://franz.com/agraph/allegrograph/.
bhttps://www.cambridgesemantics.com/anzograph/.
chttps://blazegraph.com/.
dhttps://www.ontotext.com/products/graphdb/.
ehttps://www.marklogic.com/.
fhttps://www.oracle.com/.
ghttps://www.oxfordsemantic.tech/product.
hhttps://www.stardog.com/.
ihttps://virtuoso.openlinksw.com/.

2 Arguments for OLAP RDF Stores

2.1 Why RDF Stores Do Need ACID Transactions?

In this section, we motivate the fact that many RDF-based applications do not
require full ACID transaction guarantees.

SPARQL and Update Operations. Since 2008 and its first W3C recommen-
dation release, SPARQL is the established query language for RDF data. In 2013,
a set of new features to the query language were added, leading to the SPARQL
1.1 recommendation. Among these features, update operations were introduced.
This means that for over five years, end-users had to either programmatically

https://franz.com/agraph/allegrograph/
https://www.cambridgesemantics.com/anzograph/
https://blazegraph.com/
https://www.ontotext.com/products/graphdb/
https://www.marklogic.com/
https://www.oracle.com/
https://www.oxfordsemantic.tech/product
https://www.stardog.com/
https://virtuoso.openlinksw.com/


RDF Data Management is an Analytical Market 111

update RDF data sets or use a non-standard, i.e., system specific, declarative
update solution. In a data management market anchored in transaction process-
ing is seems unreal to leave application developers in such a situation for over
five years. Hence, one can doubt that OLTP is really the market for RDF stores.
One obvious question is: are the workload generally dealt with in RDF stores
transactional in nature?

Linked Data Update Frequency. The popularity of RDF is partly due to
its ability to integrate data and thus to break data silos. This is mainly made
possible by linking these silos based on relating nodes of different graphs. The
Linked Data movement and the creation of very large KGs are the most concrete
examples of such an approach. The Linked Open Data cloud1 currently connects
over 1.200 graphs with an estimation of tens of billions triples over domains
as diverse as life sciences, media, social networking, government, etc. Some of
these KGs are produced out of extractions from open data repositories and Web
scraping from Web sites. Although these sources, e.g., Wikipedia, are updated at
a per second rate, popular KGs are generally updated in term of days to weeks,
e.g., a release frequency for DBpedia, UniProt and Wikidata occurs respectively
every 6 months, 4 weeks and every couple of days. So, we are far from the kind
of transaction rates that ACID-compliant DBMS can support, e.g., in the range
of several thousands to millions of transactions per second. In fact, we are closer
to the bulk loading approach of data warehouses where the main purpose of the
system is to analyze data sets rather than manage the freshest data. We can
then ask ourselves what is inherently complex about executing updates on an
RDF graph?

Reasoning Issues. Together with data integration, the main benefit of using
the RDF data model for a graph database is to benefit from reasoning ser-
vices. These services depend on ontologies that can be defined with more or less
expressive ontology languages (from RDFS to OWLDL to at least stay within
decidable fragments). As displayed in the ‘reasoning’ column of Table 1, most
production-ready RDF stores address rather low ontology expressiveness. This
is mainly due to the practical cost of computing inferences which is already
high for the least expressive languages, e.g., RDFS entailment is a NP-complete
problem [6]. In RDF stores, reasoning is commonly addressed via either a mate-
rialization or a query rewriting approach. In the former, whenever some updates
are submitted to the DBMS, a reasoner computes the corresponding inferences
and updates the stored graph accordingly. We can easily understand that this
approach, although efficient considering query processing, has its limitations
when the rate of updates is high. In fact, for any updates, the system needs to
check whether some inferences can be deduced. So reasoning is invoked for each
update operation. Incremental reasoning as proposed in RDFox [4] potentially
improves the cost of materialization but it nevertheless does not enable high rate

1 https://lod-cloud.net/.

https://lod-cloud.net/


112 O. Curé et al.

of update transactions. In the latter approach, i.e., query rewriting, reasoning
is performed at query run time. Hence, handling updates is much more efficient
than in the materialization approach but query processing is much less efficient.
For this reason, more systems are adopting materialization than query rewriting,
but some systems adopt both (e.g., Allegrograph). We can thus understand that
computing inferences at the rate of tens to hundreds of transactions per second
is not realistic.

Real-World Use Cases. During the last few years, we have conducted several
interviews and discussions with large organizations that are intensively manag-
ing RDF databases of up to several TB, e.g., Publication Office of the Euro-
pean Union, French ministry of culture, institutes dealing with sensus in France
and Italy. We found out that these companies are not updating their databases
through high transaction rates but are rather bulk loading data in manner rem-
iniscent to data warehouses, i.e., at a per day or per week frequency rate. The
main reasons for this update pattern is mainly due to the cost of live reasoning
over incoming triples. Moreover, the companies that were not using any form of
reasoning on RDF data, while their ontologies would permit to, were not using
high transaction rates.

2.2 RDF Stores Should Support Analytical Operations

We now provide some arguments toward enriching RDF stores with analytical
operations. These arguments come from the companies and end-users of RDF
stores.

Use Cases Emphasized by RDF Sellers. We have collected the list of the
most commonly encountered use cases of Table 1’s RDF stores. Since, these sys-
tems have all commercial editions (Blazegraph is now AWS Neptune), we can
believe that the use cases correspond to the needs of theirs customers. Among
the top nine entries, we are finding the following: Advanced search and dis-
covery, analytics/Business Intelligence, fraud detection and recommendations.
These tasks are clearly relevant in analytical oriented DBMS. It is interesting to
note that none of the other common use cases are really requiring ACID trans-
action guarantees but are rather related to data integration or smart metadata
management.

End-User Point of Views. VLDB 2017’s best paper [5] provides a nice sur-
vey on the usage of graph processing and graph data management system (for
both LPG and RDF data models). It highlights that analytics is the task where
end-users are spending the most hours (more than testing, debugging, main-
tenance, ETL and cleaning). Moreover, the top graph computations performed
on these systems, DBMS including, are finding connected components, neighbor-
hood queries, finding shortest paths, subgraph matching (i.e., SPARQL), ranking



RDF Data Management is an Analytical Market 113

and centrality scores, reachability queries. These operations are quite useful in
queries performing some kind of recommendations, e.g., in medicine to identify
a certain molecule or in culture to find a popular artist or art form.

3 The Road to Analytics in RDF Stores

3.1 Kind of Analytical Operations

Two forms of analytical operations can be considered for RDF stores. In the for-
mer, the idea is to adapt the multidimensional aspects that we can find in rela-
tional OLAP systems (ROLAP). They enable the management of information
cubes and are generally extending the SQL query language with new operations
such as roll-up, drill-down, pivot, slice and dice. In order to facilitate this man-
agement, they rely on a specific kinds of schemata that organize database tables
in a certain manner. These schemata correspond to so-called star, snowflake
or constellation. The adaptation of this approach to the RDF data model is
not straightforward due to the schemaless nature of RDF, and graph models in
general (e.g., LPG). Moreover, in these schemata, the fact table(s) is (are) sup-
posed to store data originating from OLTP systems. Although these data can
be bulk loaded in the RDF stores, we consider that it would be better to leave
them in the relational DBMS and organize some linkage solution with the RDF
stores in the style of virtual KG [7]. The low frequency of update operations
on ROLAP systems favors the use of materialized views (as opposed to virtual
views of OLTP). Such views can be useful in RDF stores where it can impact
query processing. They can be created via the SPARQL CONSTRUCT query
form and hence enable RDF compositional queries. The work presented in [1]
is an attempt to integrate these cube operations in SPARQL and RDF data
management. The same researchers have implemented the SPADE [2] system on
top of this approach but the code is not available and the approach does not
seem to have been adopted in existing systems.

The second form of analytical operations correspond to graph algorithms.
Until recently, they were generally present in large graph processing systems,
i.e., GraphX, Giraph, Gelly, but definitely make sense in a graph oriented DBMS
where the data management is given much more attention. These graphs algo-
rithms correspond to finding connected components and shortest paths, getting
centrality and ranking scores, counting and enumerating connected components.
Again, these algorithms are quite relevant for RDF stores since they meet the
high expectations of typical end-users.

3.2 Emerging Systems

One DBMS adopting the RDF data model has in fact started to consider the ana-
lytical direction proposed in this paper. It corresponds to AnzoGraph DB which
happens to be the most recent store among our list of production-ready system
(only RDFox is more recent). AnzoGraph DB proposes a complete support of



114 O. Curé et al.

SPARQL 1.1 with RDFS+ and OWLRL inferencing (via triple materialization),
OLAP style analytics with windowed aggregates, cube, rollup, grouping sets and
large set of functions. Moreover, it supports graph algorithms such as page rank,
betweenness centrality, connected components, triangle enumeration, shortest
and all paths. To the best of our knowledge, AnzoGraph DB is the only DBMS
to support materialized views.

Among other production-ready RDF stores, we see the first movement toward
analytics. For instance, Stardog in its 7.5 release (january 2021) provides a beta
graph analytics component which contains operations such as page rank, label
propagation, (strongly) connected components. Finally, outside of pure RDF
store players, a similar trend is catching up with SANSA [3]. It is defined by its
creators as a “big data engine for scalable processing of large-scale RDF data”
and takes the form of a set of libraries. It is able to perform reasoning, query-
ing and analytic operations. Considering analytics, it relies on either Apache
Spark2 or Apache Flink3 distributed computing frameworks. Hence, it benefits
from their respective GraphX and Gelly graph components to compute graph
algorithms. Nevertheless, this can only be specified by mixing some SPARQL
queries with some programs compiling over a Java environment.

4 Conclusion

In this vision paper, we have motivated the fact that the playground of RDF
stores consists more of analytical than transactional processing. The limitation
toward processing high rates of transaction mainly lies in the cost of inferences,
the schemaless characteristic of RDF data considering multidimensional-based
analytics. We believe that analytical operations based on standard graph pro-
cessing are the most relevant for end-users. Potentially, some very interesting
features should emerge for RDF analytical DBMS, e.g., mixing reasoning with
analytical operations and analytic-based data integration. Obtaining such ser-
vices will come at the price of providing a seamless collaboration between rela-
tional DBMS for managing transactional data and RDF stores for computing
graph analytics.

Finally, a similar trend is occurring in systems based on the LPG data model.
Among the plethora of production-ready systems, e.g., Neo4J, JanusGraph,
RedisGraph, currently only TigerGraph seems to consider graph analytics as
a promising market.

2 https://spark.apache.org/.
3 https://flink.apache.org/.

https://spark.apache.org/
https://flink.apache.org/


RDF Data Management is an Analytical Market 115

References

1. Colazzo, D., Goasdoué, F., Manolescu, I., Roatis, A.: RDF analytics: lenses over
semantic graphs. In: Chung, C., Broder, A.Z., Shim, K., Suel, T. (eds.) 23rd Inter-
national World Wide Web Conference, WWW 2014, Seoul, Republic of Korea, 7–11
April, 2014, pp. 467–478. ACM (2014)

2. Diao, Y., Guzewicz, P., Manolescu, I., Mazuran, M.: Spade: a modular framework
for analytical exploration of RDF graphs. Proc. VLDB Endow. 12(12), 1926–1929
(2019)

3. Lehmann, J., et al.: Distributed semantic analytics using the SANSA stack. In:
d’Amato, C., et al. (eds.) ISWC 2017. LNCS, vol. 10588, pp. 147–155. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-68204-4 15

4. Nenov, Y., Piro, R., Motik, B., Horrocks, I., Wu, Z., Banerjee, J.: RDFox: a highly-
scalable RDF store. In: Arenas, M., et al. (eds.) ISWC 2015. LNCS, vol. 9367, pp.
3–20. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25010-6 1

5. Sahu, S., Mhedhbi, A., Salihoglu, S., Lin, J., Özsu, M.T.: The ubiquity of large
graphs and surprising challenges of graph processing. Proc. VLDB Endow. 11(4),
420–431 (2017)

6. ter Horst, H.J.: Completeness, decidability and complexity of entailment for RDF
schema and a semantic extension involving the owl vocabulary. Web Semant. 3(2–3),
79–115 (2005)

7. Xiao, G., Ding, L., Cogrel, B., Calvanese, D.: Virtual knowledge graphs: an overview
of systems and use cases. Data Intell. 1(3), 201–223 (2019)

https://doi.org/10.1007/978-3-319-68204-4_15
https://doi.org/10.1007/978-3-319-25010-6_1

	RDF Data Management is an Analytical Market, not a Transaction One
	1 Introduction
	2 Arguments for OLAP RDF Stores
	2.1 Why RDF Stores Do Need ACID Transactions?
	2.2 RDF Stores Should Support Analytical Operations

	3 The Road to Analytics in RDF Stores
	3.1 Kind of Analytical Operations
	3.2 Emerging Systems

	4 Conclusion
	References




