
Universal Storage Adaption for
Distributed RDF-Triple Stores

Ahmed Al-Ghezi(B) and Lena Wiese

Goethe University Frankfurt, Robert-Mayer-Str. 10,
60629 Frankfurt am Main, Germany

{alghezi,lwiese}@cs.uni-frankfurt.de

Abstract. The publication of machine-readable information has been
significantly increasing both in the magnitude and complexity of the
embedded relations. The Resource Description Framework (RDF) plays
a big role in modelling and linking web data and their relations. Ded-
icated systems (RDF stores/triple stores) were designed to store and
query the RDF data. Due to the size of RDF data, a distributed RDF
store may use several federated working nodes to store data in a parti-
tioned manner. After partitioning, some of the data need to be replicated
to avoid communication cost. In order to efficiently answer queries, each
working node needs to put its share of data into multiple indexes. Those
indexes have a data-wide size and consume a considerable amount of
storage space. The third storage-consuming structure is the join cache –
a special index where the frequent join results are cached.

We present a novel adaption approach to the storage management of
a distributed RDF store. The system aims to find optimal data assign-
ments to the different indexes, replications, and join cache within the
limited storage space. To achieve this, we present a cost model based
on the workload that often contains frequent patterns. The workload
is dynamically and continuously analyzed to evaluate predefined rules
considering the benefits and costs of all options of assigning data to the
storage structures. The objective is to reduce query execution time. Our
universal adaption approach outperformed the in comparison to state-
of-the-art competitor systems.

Keywords: RDF · Workload-aware · Space-adaption

1 Introduction

The Resource Description Framework (RDF) [10] has been widely used to model
the data on the web. Despite its simple triple-based structure (each triple con-
sisting of subject, predicate and object), RDF showed a high ability to model
the complex relationships between the web entities and preserve their seman-
tic. It provided the scalability that allowed the RDF data to grow big from the
range of billions to the range of trillions of triples [17]. As a result, RDF data
experienced a rapid increase both in the size and complexity of the embedded
c© Springer Nature Switzerland AG 2021
M. Golfarelli et al. (Eds.): DaWaK 2021, LNCS 12925, pp. 97–108, 2021.
https://doi.org/10.1007/978-3-030-86534-4_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86534-4_8&domain=pdf
http://orcid.org/0000-0003-3515-9209
https://doi.org/10.1007/978-3-030-86534-4_8


98 A. Al-Ghezi and L. Wiese

relationships [6]. That emphasises more challenges on the RDF triple stores in
terms of managing and structuring that complex and huge data while still show-
ing acceptable query execution performance. These stores have to have multiple
data-wide indexes, cache, and replications (in case of distributed triple stores).
The highly important constraint to be considered in managing these structures
is the storage space. Thus, many research works tried to optimize their usage by
depending on workload analysis (see Sect. 3). However, they focused on the prob-
lems of indexes, replication, and cache separately, despite the fact that the three
optimization problems are basically modeling an integrated single optimization
problem. They share the same constraint (the storage space) and objective func-
tion (maximizing the performance).

We propose a universal adaption approach for the storage layer of RDF-triple
store. It uses the workload to evaluate the benefits of indexes, replication, and
cache and selects the most beneficial items to fill the limited storage space.
The rest of this paper is organized as follows: Sect. 2 provides descriptions of the
adaption components. Section 3 reviews the related work. In Sect. 4 we formulate
our cost model. In Sect. 5 we describe our method of analysing the workload.
In Sect. 6 we derive the benefits of the adaptions components. We provide the
universal adaption algorithm in Sect. 7. We practically evaluation the approach
in Sect. 8. Finally we state our conclusion in Sect. 9.

2 Background

RDF Indexing. The most important data structure in an RDF store is the index.
Systems like RDF-3X [16] and Hexastore [20] decided to build the full set of 6
possible indexes to have the full flexibility in query planning. This strategy fully
supports the performance at the high expense of storage space. To deal with this
high cost, other RDF stores preferred to choose only a limited number of indexes.
These indexes are chosen based on some observations of the workload and the
system has to live with it. However, the storage availability and workload trends
are variable parameters. Thus fixed prior decisions about the indexes might be
very far from optimal. Instead, our adaptable system evaluates the status of the
workload and space at runtime and adjusts its indexing layer accordingly.

Replications. Due to the huge size and relation complexity of the RDF data,
many RDF stores moved towards distributed systems. Instead of a single node,
multiple federated nodes are used to host and query the data. However, the RDF
data-set needs to be partitioned and assigned to those working nodes. Due to
the complexity of this operation, replications are often needed to decrease the
communication cost between the nodes. However, those replications may require
a lot of storage space, and RDF stores had to manage this problem by trying
to select only limited data for replication with the highest expected benefits.
That benefit is derived from the workload and the relative locality of the data.
However, all of the related works either assume the existence of some initial
workload, or fixed parameters and thresholds which are not clearly connected or



Universal Storage Adaption for Distributed RDF-Triple Stores 99

calculated from the workload. Moreover, the replication and indexes share the
same storage space, and the space optimizing process needs to consider both of
them in the same process.

Join Cache. Executing a SPARQL query often requires multiple costly join
operations. The size of the join results could be much smaller than the processed
triples. Moreover, the real workload typically contains frequent patterns [17].
That makes a join cache very beneficial to the performance. However, it consumes
a lot of storage space. Since the cache shares the same storage space of indexes
and replication, and shares the same objective of query performance, it should
be integrated into the same optimization problem.

Workload Analysis. RDF stores have to manage their needs to indexes and repli-
cations with the limited storage space. Historical workload played a vital role
in such management [1,17]. The analysis of the workload can be classified into
active and passive. The active analysis is carried out on a collected workload
aiming to derive its trends, detect future behaviour, then adapt its structures
accordingly. However, such an adaption could highly degrade the system per-
formance if the workload does not contain the expected frequent patterns. To
avoid this problem, many systems preferred making fixed decisions about their
indexes and replications upon passive analysis to some workload samples to draw
average behaviour. The systems have to live with these decisions on any status
of workload and storage space.

Universal Adaption. Instead of separate space optimization towards replication,
indexes, or cache, we put the three types of structures into a single optimization
process. The system chooses the most beneficial options to fill its limited storage
space. We define a single cost model for the three types based on workload
analysis.

3 Related Work

RDF-3X [16] is one of the first native RDF store. it uses an excessive index-
ing scheme by implementing all the 6 possible index permutations besides extra
3 aggregate indexes. The six-indexes scheme was also by Hexastore [20]. To
decrease the storage overhead, RDF-3X uses a dictionary [4], where each textual
element in the RDF data set is mapped to a small integer code. The H-RDF-3X
system by Huang et al. [12] was the first distributed system that used a grid
of nodes, such that each node is hosting an RDF-3X triple store. The data is
partitioned using METIS graph partitioning [13]. To reduce the communication
cost, H-RDF-3X forces uniform k-hop replication on the partitions’ borders. Any
query shorter than k is guaranteed to be executed locally. Unfortunately, the stor-
age overhead of the replication increases exponentially with k, and H-RDF-3X
did not provide any systematic method to practically calculate the optimal value
of k. Partout [7] implemented workload awareness on the level of partitioning.



100 A. Al-Ghezi and L. Wiese

It horizontally partitions the data set inspired by the classical approaches of
partitioning relational tables [3]. The system tries to assign the most related
fragments to same partitions. Unfortunately, the results of such a partitioning
are highly affected by the quality of the used workload. It could end up with
small fragments representing the workload and a big single fragment containing
everything else. WARP [11] proposed to use a combination of Partout and H-
RDF-3X. Initially, the system is partitioned and replicated using the H-RDF-3X
approach with a small value of k. Then, it uses workload to recognize the high-
est accessed triples for further border replications. Besides lacking the method-
ology to determine k, WARP supposes sharp threshold between frequent and
non frequent triples. Peng et al. [17] proposed a partitioning approach inspired
by Partout [7] but supported by replications. AdPart [9] is an in-memory dis-
tributed triple store. It aggressively partitions the data set by hashing the subject
of each triple. As this is known to produce high communication costs, AdPart
proposes two solutions. The first is by updating the dynamic programming algo-
rithm [8,14,16] that is used to find the optimal query execution plan, to include
the communication cost. However, this algorithm depends on the accuracy of
the cost estimation which is already a challenging issue regarding calculating
the optimal join plan in a centralized system like RDF-3X [16]. The second
solution to the communication cost problem is by adding workload-driven repli-
cations. AdPart collects queries at runtime, builds the workload, and adapts its
replications with time dynamically. Yet, AdPart requires a fixed setting of a fre-
quency threshold that is used to differentiate between frequent and non-frequent
items, making it a only a semi-automated system. TriAd [8] performs hash-
based partitioning on both the subject and the object. That allows it to have
a two-way locality awareness of each triple. Similar to AdPart, TriAd employs
this to decrease the high communication cost caused by the hash partitioning.
Aluç et al. [2] uses Tunable-LSH to cluster the workload and assigns the most
related patterns to the same page. However, the approach does not count for the
distributed replication and join cache.

4 Our Flexible Universal Cost Model

Our system aims to make its storage resources adaptable with the current status
of the space and workload. The data set is divided into a set of units called the
consumers. Each consumer may be assigned to a storage resource equal to its
size based on one out of the different index options. The goal now is to find
an optimal assignment based on a function that calculates a benefit for each
setting. The optimization problem can be reduced to the Knapsack problem [5],
where the local storage space is a knapsack of size n, which we want to fill with
the most beneficial assignments (the items). However, since that the size of the
assignments is small with respect to the total storage size, we may relax the
condition of requiring a totally filled knapsack. That allows the problem to be
solved greedily (instead of a more costly dynamic programming [15]). That is
carried out by dividing the benefit of each item by its size and greedily filling the



Universal Storage Adaption for Distributed RDF-Triple Stores 101

knapsack with most beneficial items. To reduce our model to this problem we
need to derive the benefit of each assignment. To achieve the universal adaption,
we derive such benefits for indexes, join cache, and replication. However, the
effective benefit is related to how often the system is going to use that assignment.
We call this the access rate ρ and calculate it from the workload analysis. Based
on this, the effective benefit of each assignment g that has a performance benefit
η, and an access rate ρ is given by the following:

benefit(g) =
η(g) · ρ(g)
size(g)

(1)

The size in the above formula is given in number of triples that are affected
by the assignment. By applying the formula on a set of assignment options, we
may sort them and select the most beneficial option. In the next sections, we
describe detecting the access rates and deriving the performance benefits

5 Workload Analysis

The aim of our workload analysis module is to find the access rate for each
option of storage assignment – that is, ρ in Formula 1. First, we generate from
the workload general access rules, which measures the average behaviour (e.g.
the average index usage). Second, we detect the frequent items in the workload
using a special structure called heat query resulting in a set of specific rules.
The system actively measures the effectiveness of these rules, and prunes the
impact of the rule of low effectiveness. By using this approach, our system gets
the benefits of frequent patterns in the workload, and avoids their drawbacks by
relying on average workload behaviour.

5.1 Heat Queries

A workload is a collection of the previous queries. However, we need to store
the workload in a structure that keeps the relationships between the queries as
well as their frequencies. A heat query is inspired from the concept of a heat
map but instead of the matrix of heat values, we have a graph of heat values
representing access rates. The workload is then seen as a set of heat queries. The
heat query extends the original concept of global query graph originally proposed
by Partout [7]. Each heat query is implemented as hashed map, where the key
is a triple pattern and the value is a statistics object representing the frequency
of appearance for that pattern, and the used indexes to evaluate it as well as
performance-benefits values explained in the Sect. 6. heatQueryAccess(v, χ) is a
function that returns the heat value of v ∈ V for the index χ in the heat queries
set.



102 A. Al-Ghezi and L. Wiese

5.2 Heat Query Generation

We explain in this subsection the generation of the heat query set out of a
workload Q and an RDF graph G illustrated in Fig. 1. Each time a query q
is executed, it forms a new heat query h, with heat (frequency) set to 1 for
its vertices. Next, h is either added to the current heat query set H or com-
bined with H, if there is a heat query hi ∈ H that has at least one shared
element; the shared element is either a single vertex or an entire triple pattern.

C1 ?x C3

C4 C5

P1 P2

P3P3

Q1:

?y C3

C5

P2

P3

Q2:

C6 ?z

C5

P2

P3

Q3:

Evolving Heat Query

C1 C3

C4 C5

P1 P2

P3P3

?x

C1 C3

C4 C5

P1 P2

P3P3

?x

C1 C3

C4 C5

P1 P2

P3P3

?x C6 ?xP2

P3

Workload Queries

?x ?yP1
Q4:

C1 C3

C4 C5

P1 P2

P3P3

?x
P1

C6 ?xP2

P3?x

Fig. 1. Heat query evolving from four
queries

When combining two heat queries, the
shared vertices become “hotter” by
summing up the heats of the heat
query graph and the new heat query.
The combining process is shown in
Fig. 1 for a workload 〈Q1, Q2, Q3, Q4〉.
When Q2 is received, it makes the
matching part (to which Q2 is com-
bined) of the previous heat query hot-
ter – which is illustrated by a darker
color. The same applies for Q3 and
Q4. Any variable in the query (here
?x, ?y and ?z) is replaced (“uni-
fied”) by a single variable ?x to allow
the variables to be directly combined.
Note that in the case that a variable
subsumes a constant, both the con-
stant and the variable exist as sepa-
rate vertices in the heat query. This
also happens when Q4 is combined. It increases the heat value of C1 in Fig. 1
and creates a node of variable ?x with a heat value equal to 1. By this process, a
heat query would be bigger in size with more workload queries getting combined
regardless of their order in the workload.

6 Elements of Adaption

In this section, we describe the performance benefits of the indexes, join cache,
and replication. We use these benefits besides the access rates and the storage
cost to perform our universal adaption in Sect. 7.

6.1 Indexes

In any typical key-value RDF store, the data resides basically in indexes. An
index is implemented as a hash table. For instance, the SPO index stores all the
triples by hashing them on the subject. We can get a set of all triples that match
a given subject by one lookup operation. This set is ordered on the predicate then
on the object. Thus we can search that set for a certain predicate in logarithmic



Universal Storage Adaption for Distributed RDF-Triple Stores 103

time. That index is optimal to answer any triple pattern1 in the form (s1, p1,
?o1). However, if the triple pattern is in the form (s1, ?p1, o1), then we can
still use SPO to answer it, but with an extra linear search for o1 within the set
returned from the hash-table lookup operation on s1. We refer to this extra cost
as scanLookupT ime and is recorded in the heat query as performance benefits
to the missing index. Another performance benefit of indexes comes from join.
A SPARQL query is typically composed of multiple triple patterns that require
join operation. The join planner selects a potential optimal join plan given that it
implements all the possible 6 indexes. However, in case some indexes are missing,
the query can still be executed using a sub-optimal join plan (i.e. the best plan
that uses only available indexes). We refer to the cost difference between the two
plans as treeT ime. That cost is considered as performance benefits accounted
for the missing indexes for the triple patterns been joined.

The performance benefit of a triple pattern t in an index χ is then the sum-
mation of the both given benefits:

ηidx(t, χ) = scanLookupT ime(t, χ) + treeT ime(t, χ) (2)

6.2 Join Cache

Besides the six basic indexes, a triple store can have more cache-indexes to
speed up the join process. However, those indexes require even more storage
space. Fortunately, our adaptive system can measure and compare the cost-
effectiveness of the cache indexes with other indexes and choose to build them
only for the data that delivers higher benefits with respect to other indexes.
We use two cache indexes: PPX and typeIndex. The PPX is hashed on two
predicates. Given that the predicate is mostly constant in any triple pattern [9],
PPX can store the results of almost any two joined patterns. The typeIndex is
especially helpful in the queries that heavily use the predicate “type” like the
LUBM benchmark [18]. Consider for instance the query: (?x :graduatedFrom ?y.
?x :type :student. ?y :type :university). Its result can be cached in typeIndex
with the key (:student,:graduatedFrom,:university), and the benefit is the value
of the saved join cost. Similar to the basic indexes, our system records the benefit
and the usage values of the cache indexes in the heat queries and retrieves them
at the adaption time.

6.3 Replication

In a federated distributed triple store with n working nodes, the system needs
to generate at least n partitions out of the global RDF graph. For this purpose,
a graph-based partitioning approach is widely used based on graph min-cut
algorithms. The aim is to decrease the communication cost among the resulted
partitions [8,11,12,19,21]. However, the problem is shifted to the border region
where the edges are connecting multiple partitions. That problem is overcome

1 According to SPARQL syntax ?o1 is a variable and others are constants or literals.



104 A. Al-Ghezi and L. Wiese

by replication in [11,12] at the cost of more storage space. Our adaptive system
integrates the replication decision with the indexes by modeling it in the cost
model Sect. 4. For that, we need the benefit, access rate, and size. The perfor-
mance benefit of replicating a block of triples is saving the communication cost
of transferring the block over the network. Such a cost is related to the network
speed and status. We derive the access rate of replications using the workload
analysis module explained in Sect. 5. From the perspective of a certain working
node i, the general access rate to a remote triple is related to its distance from
the border. This can be formulated in the following:

prem(v, i) =
1

outdepth(v, i)
· pborder (3)

Where outdepth(v, i) is the distance to reach vertex v (minimum number of
hops) from the border of partition i, and pborder is the probability of a query
at partition i to access its border region. The value of pborder is initially set to
1, but is going to be further updated depending on the workload by counting
the rate of accessing the border region by all the executed queries in the system
so far. This value is related to the average length of the query. The longer the
query the more its probability to touch the border region. Next, we derive a
specific access rate for replication, again from the heat queries. This is achieved
by recording the replication usage rate for each triple pattern which requires
border data. That allows the heat query to extend to the remote data over the
border region. Finally, the aggregation phase takes place. Any remote triple that
resides in index χ gets the following aggregate access value from node i:

repAccess(v, i) = prem(v, i) + heatQueryAccess(v, χ) (4)

7 Universal Adaption

We have formulated the cost model of the indexes, replications, and join cache
in terms of benefits, access rates, and storage costs. Our optimizer builds their
statistics during query execution in stat phase. It performs an adaption phase
using Algorithm 1 at each node. The input to the algorithm is two sets of oper-
ation rules. We define an operation rule in the following:

Definition 1 (Operational Rule). An operational rule is defined as �op =
(χ, s, a,Δ), where χ is an index, s is a set of patterns that defines a set of triples
D, a and Δ are functions that assign an access and benefit values to each d ∈ D.
According to Formula 1, the benefit of each source can be calculated. We refer to
s̄ as the source with the maximum benefit in s, and:

b(�op) =
a(s̄) · Δ(s̄)

size(s̄)

We define one rule for each basic and cache index for the local data, and
another for the replicated data. Each rule is put in the assigned rules set Ra and



Universal Storage Adaption for Distributed RDF-Triple Stores 105

the proposed rules set Rp. Ra represents what is already assigned to memory and
Rp represents the proposed. The algorithm starts by a loop which first process
the workload stats stored in the heat queries in Line 2, and updates the access
functions of the rules accordingly. Line 3 sorts ascendingly the patterns of each
ra ∈ Ra by relative benefits such that s̄ is the pattern at the top. The sort
is descendingly for Rp. The relative benefit is calculated using Formula 1 and
Definition 1. Line 6 and 7 find the worst rule from Rp and the best from Ra,
and swap them in Line 13. The algorithm terminates in Line 9, when the benefit
of the best assigned rule is higher than of the worst of the proposed. The time
required for the sort operation is bounded by the number of patterns which
is limited. Most of the algorithm time is spent on evaluating the patterns and
swapping the triples. However, the adaption phase takes place only when the
system is idle and has no query to execute.

Algorithm 1: Rules-based space adaption algorithm
input : RDF graph G = {V, E}, heat queries set H and two sets of the system operational

rules: proposed rules Rp and assigned rules Ra

1 for each r ∈ Rp ∪ Ra do
2 r ← updateRulesAccess(r, H);
3 r ← sortRuleBySource(r);

4 end
5 while true do
6 rp ← �op|�op = (χ, sp, ap, Δp) : ∀ri ∈ Rp, b(�op) ≥ b(ri) ;
7 ra ← �op|�op = (χ, sa, aa, Δa) : ∀ri ∈ Ra, b(�op) < b(ri) ;
8 if b(ra) ≥ b(rp) then
9 break

10 end

11 V̂p ← evaluate(s̄p);

12 V̂a ← evaluate(s̄a);

13 swapAssignment((rp, V̂p), (ra, V̂a));

14 end

8 Evaluation

In this section, we evaluate the universal adaption approach implemented in
UniAdapt. We use the LUBM [18] is a generated RDF data set that contains
data about universities. The size of the generated data is over 1 billion triples.
The benchmark contains 14 test queries2 that are labeled L1 to L14. The queries
can be classified into 2 categories: bounded and unbounded. The bounded queries
contain at least one constant vertex (subject or object) excluding the triple
pattern that has “type” as predicate. The unbounded queries are L2 and L9,
and all the others are bounded. The execution of a bounded query is limited to
certain part of the RDF graph. Those parts can be efficiently recognized during
query execution given the existence of a proper index.

2 http://swat.cse.lehigh.edu/projects/lubm/queries-sparql.txt.

http://swat.cse.lehigh.edu/projects/lubm/queries-sparql.txt


106 A. Al-Ghezi and L. Wiese

No Storage Limit. Since the systems used in comparison do not have space
adaption, we run this part of the tests under no storage restrictions. We “train”
the systems by an initial workload of 100 queries similar to the 14 queries of
LUBM. Then we run a batch that contains 64 repetitions of each query on the
systems shown in Table 1, and record the average runtime for the given queries.
There was a clear superiority in the performance regarding the unbounded
queries L2 and L9, and the bounded query L8. However, the other bounded
queries L3 to L6 behaved very closely for both UniAdapt and AdPart due to
their relative simplicity. For the bounded queries L4, L6, L7 and L8, the running
times were generally much less than the previous unbounded queries (Table 2).
Both systems performed closely for L4 and L6. But Unidapt was superior in
adapting to L8, while AdPart showed better performance to L7.

Table 1. Runtimes (ms) of LUBM
queries

L2 L3 L4 L5 L6 L7 L8 L9

UniAdapt 178 1 1 1 5 45 10 347

AdPart 7K 4 2 3 4 88 370 1K

H-RDF-3X 12K 3K 3K 3K 3K 7K 5K 9K

H-RDF-3X+ 11K 3K 3K 3K 3K 5K 5K 8K

Table 2. Runtimes (ms) of bounded
queries with 2 batches (b1 and b2)

L4 L6 L7 L8

b1 b2 b1 b2 b1 b2 b1 b2

UniAdapt 2 1 5 4 45 15 10 1

AdPart 3 1 4 4 88 1 370 1.5

Table 3. Generated workload properties of
LUBM data set

Workload Bounding Length Distribution
WLu1 No 3–4 Uniform
WLu2 No 3–4 50% to 50%
WLu3 No 3–4 90% to 10%
WLb1 Yes 3–4 Uniform
WLb2 Yes 3–4 50% to 50%
WLb3 Yes 3–4 90% to 10%

Storage-Workload Adaption.
In this part, we evaluate the unique
adaption capabilities of UniAdapt
with the storage space and the
workload. In this context, we set
three levels of storage capacity:
S2.5, S5, and S7. With capacity S5

the system can potentially main-
tain 5 full indexes but may also
decide to use the free space for join
cache or replication. Moreover, we
generated six types of workload from the LUBM data-set that are given by
Table 3. The fact that all the queries have the “type” predicates allowed the
UniAdapt to maintain only two indexes that are type indexes. One is sorted on
the subject while the other is sorted on the object. The first run of the WLu1
in the space capacity of S2.5 took relatively long (Fig. 2), due to the lack of the
OPS or SPO indexes that are used to decrease the cost of further join; besides
the difficulties to perform enough replications on the limited space to save the
communication cost. The uniform workload distribution amplifies the problem
by hardening the task of the optimizer to detect highly accessed data using its
specific rules. Moving from S2.5 to S5 allows the system to have enough replica-
tions, as well as two more indexes besides its two type indexes. This is reflected



Universal Storage Adaption for Distributed RDF-Triple Stores 107

in an obvious decrease in the execution time. Upgrading the capacity to S7, pro-
vides enough space for more and better cache. That showed the highest decrease
in the query execution time. In addition, moving towards better workload qual-
ity helped the specific rules to better detect the highly accessed data. This is
seen when moving from WLu1, WLu2 to WLu3. The workload impact was much
higher on the bounded queries in workloads WLb1, WLb2, and WLb3. Starting
with WLb1 at capacity level of S2.5 caused a high increase of the query execution
time. This is because the space is only enough for two full indexes. Increasing
the space to S5 relaxed the optimization process and allowed the system to have
both OPS and SPO indexes for most of the data, and overrides the issue of the
low workload quality.

0

50

100

150

200

250

WLu1 WLu2 WLu3

S7 S5 S2.5

1

10

100

1000

WLb1 WLb2 WLb3

S7 S5 S2.5

Fig. 2. Adaption with workload and space (average
running time per query in milliseconds

However, given a low
workload quality the system
achieves a useful cache only
for storage level of s7. Mov-
ing towards the better-quality
workload WLb2 resulted in a
high decrease in the execu-
tion time, even for the lim-
ited storage level of s2.5, as
the system is able to detect
the hotter parts of the data
using the specific rules. Moving to the excellent workload of WLb3 flattened the
differences between the storage levels, as most of the workload is now targeting
a very small region of the data, which can be efficiently indexed, replicated, and
cached using the specific rules. That results in a high boost to the performance.

9 Conclusion and Future Work

In this paper, we presented the universal adaption approach for the storage layer
of a distributed RDF triple store called UniAdapt. The adaption process aims
to adapt the limited storage to store the most beneficial data within indexes,
replication, and join caches. We defined a dynamic cost model that engages the
benefit of each data assignment with its usage rate as well as its storage cost. Our
experimental results showed the impact of the universal adaption on the query
execution in different levels of storage space and workload quality. UniAdapt
was able to excel in difficult levels of storage space capacity. On the other hand,
it was able to flexibly adapt to space abundance for more query performance.
For a future work, we consider adding the temporal effect of the workload in the
heat query structures.

References

1. Aluc, G., Özsu, M.T., Daudjee, K.: Workload matters: why RDF databases need
a new design. Proc. VLDB Endow. 7(10), 837–840 (2014)



108 A. Al-Ghezi and L. Wiese

2. Aluç, G., Özsu, M.T., Daudjee, K.: Building self-clustering RDF databases using
tunable-LSH. VLDB J. 28(2), 173–195 (2019)

3. Ceri, S., Negri, M., Pelagatti, G.: Horizontal data partitioning in database design.
In: SIGMOD Conference, pp. 128–136. ACM Press (1982)

4. Chong, E.I., Das, S., Eadon, G., Srinivasan, J.: An efficient SQL-based RDF query-
ing scheme. In: VLDB, pp. 1216–1227. ACM (2005)

5. Dasgupta, S., Papadimitriou, C.H., Vazirani, U.V.: Algorithms. McGraw-Hill, New
York (2008)

6. Erxleben, F., Günther, M., Krötzsch, M., Mendez, J., Vrandečić, D.: Introducing
wikidata to the linked data web. In: Mika, P., et al. (eds.) ISWC 2014. LNCS,
vol. 8796, pp. 50–65. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
11964-9 4

7. Galárraga, L., Hose, K., Schenkel, R.: Partout: a distributed engine for efficient
RDF processing. In: Proceedings of the 23rd International Conference on World
Wide Web (New York, NY, USA, 2014), WWW 2014 Companion, pp. 267–268.
ACM (2014)

8. Gurajada, S., Seufert, S., Miliaraki, I., Theobald, M.: TriAD: a distributed shared-
nothing RDF engine based on asynchronous message passing. In: SIGMOD, pp.
289–300. ACM (2014)

9. Harbi, R., Abdelaziz, I., Kalnis, P., Mamoulis, N., Ebrahim, Y., Sahli, M.: Acceler-
ating SPARQL queries by exploiting hash-based locality and adaptive partitioning.
VLDB J. 25(3), 355–380 (2016)

10. Hayes, P.: RDF semantics, W3C Recommendation 10 February (2004). https://
www.w3.org/TR/rdf-mt/

11. Hose, K., Schenkel, R.: WARP: workload-aware replication and partitioning for
RDF. In: ICDE Workshops, pp. 1–6. IEEE Computer Society (2013)

12. Huang, J., Abadi, D.J., Ren, K.: Scalable SPARQL querying of large RDF graphs.
Proc. VLDB Endow. 4(11), 1123–1134 (2011)

13. Karypis Lab: METIS: family of graph and hypergraph partitioning software (2020).
http://glaros.dtc.umn.edu/gkhome/views/metis

14. Moerkotte, G., Neumann, T.: Analysis of two existing and one new dynamic pro-
gramming algorithm for the generation of optimal bushy join trees without cross
products. In: VLDB, pp. 930–941. VLDB Endowment (2006)

15. Monaci, M., Pferschy, U., Serafini, P.: Exact solution of the robust knapsack prob-
lem. Comput. Oper. Res. 40(11), 2625–2631 (2013)

16. Neumann, T., Weikum, G.: The RDF-3X engine for scalable management of RDF
data. VLDB J. 19(1), 91–113 (2010)

17. Peng, P., Zou, L., Chen, L., Zhao, D.: Query workload-based RDF graph fragmen-
tation and allocation. In: EDBT, pp. 377–388. OpenProceedings.org (2016)

18. SWAT Projects: The Lehigh University Benchmark (LUBM). http://swat.cse.
lehigh.edu/projects/lubm/

19. Wang, L., Xiao, Y., Shao, B., Wang, H.: How to partition a billion-node graph. In:
ICDE, pp. 568–579. IEEE Computer Society (2014)

20. Weiss, C., Karras, P., Bernstein, A.: Hexastore: sextuple indexing for semantic web
data management. Proc. VLDB Endow. 1(1), 1008–1019 (2008)

21. Zhang, X., Chen, L., Tong, Y., Wang, M.: EAGRE: towards scalable I/O efficient
SPARQL query evaluation on the cloud. In: ICDE, pp. 565–576. IEEE Computer
Society (2013)

https://doi.org/10.1007/978-3-319-11964-9_4
https://doi.org/10.1007/978-3-319-11964-9_4
https://www.w3.org/TR/rdf-mt/
https://www.w3.org/TR/rdf-mt/
http://glaros.dtc.umn.edu/gkhome/views/metis
http://swat.cse.lehigh.edu/projects/lubm/
http://swat.cse.lehigh.edu/projects/lubm/

	Universal Storage Adaption for Distributed RDF-Triple Stores
	1 Introduction
	2 Background
	3 Related Work
	4 Our Flexible Universal Cost Model
	5 Workload Analysis
	5.1 Heat Queries
	5.2 Heat Query Generation

	6 Elements of Adaption
	6.1 Indexes
	6.2 Join Cache
	6.3 Replication

	7 Universal Adaption
	8 Evaluation
	9 Conclusion and Future Work
	References




