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Abstract. Detecting out-of-distribution (OOD) inputs is critical for
safely deploying deep learning models in an open-world setting. However,
existing OOD detection solutions can be brittle in the open world, fac-
ing various types of adversarial OOD inputs. While methods leveraging
auxiliary OOD data have emerged, our analysis on illuminative exam-
ples reveals a key insight that the majority of auxiliary OOD examples
may not meaningfully improve or even hurt the decision boundary of the
OOD detector, which is also observed in empirical results on real data.
In this paper, we provide a theoretically motivated method, Adversar-
ial Training with informative Outlier Mining (ATOM), which improves
the robustness of OOD detection. We show that, by mining informative
auxiliary OOD data, one can significantly improve OOD detection per-
formance, and somewhat surprisingly, generalize to unseen adversarial
attacks. ATOM achieves state-of-the-art performance under a broad
family of classic and adversarial OOD evaluation tasks. For example, on
the CIFAR-10 in-distribution dataset, ATOM reduces the FPR (at TPR
95%) by up to 57.99% under adversarial OOD inputs, surpassing the
previous best baseline by a large margin.

Keywords: Out-of-distribution detection · Outlier mining ·
Robustness

1 Introduction

Out-of-distribution (OOD) detection has become an indispensable part of build-
ing reliable open-world machine learning models [2]. An OOD detector deter-
mines whether an input is from the same distribution as the training data, or
different distribution. As of recently a plethora of exciting literature has emerged
to combat the problem of OOD detection [16,20,21,24,26–29,33].
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org/pdf/2006.15207.pdf.
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Despite the promise, previous methods primarily focused on clean OOD
data, while largely underlooking the robustness aspect of OOD detection. Con-
cerningly, recent works have shown the brittleness of OOD detection methods
under adversarial perturbations [5,16,37]. As illustrated in Fig. 1, an OOD image
(e.g., mailbox) can be perturbed to be misclassified by the OOD detector as
in-distribution (traffic sign data). Failing to detect such an adversarial OOD
example1 can be consequential in safety-critical applications such as autonomous
driving [12]. Empirically on CIFAR-10, our analysis reveals that the false pos-
itive rate (FPR) of a competitive method Outlier Exposure [19] can increase
from 3.66% to 99.94% under adversarial attack.

Motivated by this, we make an important step towards the robust OOD detec-
tion problem, and propose a novel training framework, Adversarial Training
with informative Outlier Mining (ATOM). Our key idea is to selectively utilize
auxiliary outlier data for estimating a tight decision boundary between ID and
OOD data, which leads to robust OOD detection performance. While recent
methods [16,19,32,33] have leveraged auxiliary OOD data, we show that ran-
domly selecting outlier samples for training yields a large portion of uninforma-
tive samples, which do not meaningfully improve the decision boundary between
ID and OOD data (see Fig. 2). Our work demonstrates that by mining low OOD
score data for training, one can significantly improve the robustness of an OOD
detector, and somewhat surprisingly, generalize to unseen adversarial attacks.

We extensively evaluate ATOM on common OOD detection benchmarks,
as well as a suite of adversarial OOD tasks, as illustrated in Fig. 1. ATOM
achieves state-of-the-art performance, significantly outperforming competitive
methods using standard training on random outliers [19,32,33], or using adver-
sarial training on random outlier data [16]. On the classic OOD evaluation task
(clean OOD data), ATOM achieves comparable and often better performance
than current state-of-the-art methods. On L∞ OOD evaluation task, ATOM
outperforms the best baseline ACET [16] by a large margin (e.g. 53.9% false
positive rate deduction on CIFAR-10). Moreover, our ablation study underlines
the importance of having both adversarial training and outlier mining (ATOM)
for achieving robust OOD detection.

Lastly, we provide theoretical analysis for ATOM, characterizing how outlier
mining can better shape the decision boundary of the OOD detector. While hard
negative mining has been explored in different domains of learning, e.g., object
detection, deep metric learning [11,13,38], the vast literature of OOD detection
has not explored this idea. Moreover, most uses of hard negative mining are on
a heuristic basis, but in this paper, we derive precise formal guarantees with
insights. Our key contributions are summarized as follows:

– We propose a novel training framework, adversarial training with outlier min-
ing (ATOM), which facilitates efficient use of auxiliary outlier data to regu-
larize the model for robust OOD detection.

1 Adversarial OOD examples are constructed w.r.t the OOD detector, which is differ-
ent from the standard notion of adversarial examples (constructed w.r.t the classifi-
cation model).
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Fig. 1. Robust out-of-distribution detection. When deploying an image classifi-
cation system (OOD detector G(x) + image classifier f(x)) in an open world, there
can be multiple types of OOD examples. We consider a broad family of OOD inputs,
including (a) Natural OOD, (b) L∞ OOD, (c) corruption OOD, and (d) Compositional
OOD. A detailed description of these OOD inputs can be found in Sect. 4.1. In (b-d), a
perturbed OOD input (e.g., a perturbed mailbox image) can mislead the OOD detec-
tor to classify it as an in-distribution sample. This can trigger the downstream image
classifier f(x) to predict it as one of the in-distribution classes (e.g., speed limit 70).
Through adversarial training with informative outlier mining (ATOM), our method
can robustify the decision boundary of OOD detector G(x), which leads to improved
performance across all types of OOD inputs. Solid lines are actual computation flow.

– We perform extensive analysis and comparison with a diverse collection of
OOD detection methods using: (1) pre-trained models, (2) models trained
on randomly sampled outliers, (3) adversarial training. ATOM establishes
state-of-the-art performance under a broad family of clean and adversarial
OOD evaluation tasks.

– We contribute theoretical analysis formalizing the intuition of mining infor-
mative outliers for improving the robustness of OOD detection.

– Lastly, we provide a unified evaluation framework that allows future research
examining the robustness of OOD detection algorithms under a broad family
of OOD inputs. Our code and data are released to facilitate future research on
robust OOD detection: https://github.com/jfc43/informative-outlier-mining.

2 Preliminaries

We consider the setting of multi-class classification. We consider a training
dataset Dtrain

in drawn i.i.d. from a data distribution PX ,Y , where X is the sample
space and Y = {1, 2, · · · ,K} is the set of labels. In addition, we have an aux-
iliary outlier data Dauxiliary

out from distribution UX. The use of auxiliary outliers
helps regularize the model for OOD detection, as shown in several recent works
[16,25,29,32,33].

Robust Out-of-Distribution Detection. The goal is to learn a detector G :
x → {−1, 1}, which outputs 1 for an in-distribution example x and output −1

https://github.com/jfc43/informative-outlier-mining


ATOM: Robustifying Out-of-Distribution Detection Using Outlier Mining 433

for a clean or perturbed OOD example x. Formally, let Ω(x) be a set of small
perturbations on an OOD example x. The detector is evaluated on x from PX

and on the worst-case input inside Ω(x) for an OOD example x from QX. The
false negative rate (FNR) and false positive rate (FPR) are defined as:

FNR(G) = Ex∼PX
I[G(x) = −1], FPR(G; QX, Ω) = Ex∼QX

max
δ∈Ω(x)

I[G(x + δ) = 1].

Remark. Note that test-time OOD distribution QX is unknown, which can
be different from UX. The difference between the auxiliary data UX and test
OOD data QX raises the fundamental question of how to effectively leverage
Dauxiliary

out for improving learning the decision boundary between in- vs. OOD
data. For terminology clarity, we refer to training OOD examples as outliers,
and exclusively use OOD data to refer to test-time anomalous inputs.

3 Method

In this section, we introduce Adversarial Training with informative Outlier Min-
ing (ATOM). We first present our method overview, and then describe details
of the training objective with informative outlier mining.

Method Overview: A Conceptual Example. We use the terminology outlier
mining to denote the process of selecting informative outlier training samples
from the pool of auxiliary outlier data. We illustrate our idea with a toy exam-
ple in Fig. 2, where in-distribution data consists of class-conditional Gaussians.
Outlier training data is sampled from a uniform distribution from outside the
support of in-distribution. Without outlier mining (left), we will almost sample
those “easy” outliers and the decision boundary of the OOD detector learned
can be loose. In contrast, with outlier mining (right), selective outliers close
to the decision boundary between ID and OOD data, which improves OOD
detection. This is particularly important for robust OOD detection where the
boundary needs to have a margin from the OOD data so that even adversarial
perturbation (red color) cannot move the OOD data points across the bound-
ary. We proceed with describing the training mechanism that achieves our novel
conceptual idea and will provide formal theoretical guarantees in Sect. 5.

3.1 ATOM: Adversarial Training with Informative Outlier Mining

Training Objective. The classification involves using a mixture of ID data
and outlier samples. Specifically, we consider a (K +1)-way classifier network f ,
where the (K + 1)-th class label indicates out-of-distribution class. Denote by
Fθ(x) the softmax output of f on x. The robust training objective is given by

minimize
θ

E(x,y)∼Dtrain
in

[�(x, y;Fθ)] + λ · Ex∼Dtrain
out

max
x′∈Ω∞,ε(x)

[�(x′,K + 1;Fθ)]

(1)
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Fig. 2. A toy example in 2D space for illustration of informative outlier mining. With
informative outlier mining, we can tighten the decision boundary and build a robust
OOD detector.

where � is the cross entropy loss, and Dtrain
out is the OOD training dataset. We use

Projected Gradient Descent (PGD) [30] to solve the inner max of the objective,
and apply it to half of a minibatch while keeping the other half clean to ensure
performance on both clean and perturbed data.

Once trained, the OOD detector G(x) can be constructed by:

G(x) =

{
−1 if F (x)K+1 ≥ γ,

1 if F (x)K+1 < γ,
(2)

where γ is the threshold, and in practice can be chosen on the in-distribution
data so that a high fraction of the test examples are correctly classified by G.
We call F (x)K+1 the OOD score of x. For an input labeled as in-distribution by
G, one can obtain its semantic label using F̂ (x):

F̂ (x) = arg max
y∈{1,2,··· ,K}

F (x)y (3)

Informative Outlier Mining. We propose to adaptively choose OOD training
examples where the detector is uncertain about. Specifically, during each training
epoch, we randomly sample N data points from the auxiliary OOD dataset
Dauxiliary

out , and use the current model to infer the OOD scores2. Next, we sort
the data points according to the OOD scores and select a subset of n < N
data points, starting with the qN th data in the sorted list. We then use the
selected samples as OOD training data Dtrain

out for the next epoch of training.

2 Since the inference stage can be fully parallel, outlier mining can be applied with
relatively low overhead.
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Algorithm 1: ATOM: Adv. Training with informative Outlier Mining
Input: Dtrain

in , Dauxiliary
out , Fθ, m, N , n, q

Output: F̂ , G
1 for t = 1, 2, · · · ,m do

2 Randomly sample N data points from Dauxiliary
out to get a candidate set S;

3 Compute OOD scores on S using current model Fθ to get set
V = {F (x)K+1 | x ∈ S}. Sort scores in V from the lowest to the highest;

4 Dtrain
out ← V [qN : qN + n] ; /* q ∈ [0, 1 − n/N ] */

5 Train Fθ for one epoch using the training objective of (1);

6 end

7 Build G and F̂ using (2) and (3) respectively;

Intuitively, q determines the informativeness of the sampled points w.r.t the
OOD detector. The larger q is, the less informative those sampled examples
become. Note that informative outlier mining is performed on (non-adversarial)
auxiliary OOD data. Selected examples are then used in the robust training
objective (1).

We provide the complete training algorithm using informative outlier mining
in Algorithm 1. Importantly, the use of informative outlier mining highlights
the key difference between ATOM and previous work using randomly sampled
outliers [16,19,32,33].

4 Experiments

In this section, we describe our experimental setup and show that ATOM can
substantially improve OOD detection performance on both clean OOD data
and adversarially perturbed OOD inputs. We also conducted extensive ablation
analysis to explore different aspects of our algorithm.

4.1 Setup

In-Distribution Datasets. We use CIFAR-10, and CIFAR-100 [22] datasets
as in-distribution datasets. We also show results on SVHN in Appendix B.8.

Auxiliary OOD Datasets. By default, we use 80 Million Tiny Images (Tiny-
Images) [45] as Dauxiliary

out , which is a common setting in prior works. We also
use ImageNet-RC, a variant of ImageNet [7] as an alternative auxiliary OOD
dataset.

Out-of-Distribution Datasets. For OOD test dataset, we follow com-
mon setup in literature and use six diverse datasets: SVHN, Textures [8],
Places365 [53], LSUN (crop), LSUN (resize) [50], and iSUN [49].

Hyperparameters. The hyperparameter q is chosen on a separate validation
set from TinyImages, which is different from test-time OOD data (see Appendix
B.9). Based on the validation, we set q = 0.125 for CIFAR-10 and q = 0.5 for
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CIFAR-100. For all experiments, we set λ = 1. For CIFAR-10 and CIFAR-100,
we set N = 400, 000, and n = 100, 000. More details about experimental set up
are in Appendix B.1.

Robust OOD Evaluation Tasks. We consider the following family of OOD
inputs, for which we provide details and visualizations in Appendix B.5:

– Natural OOD: This is equivalent to the classic OOD evaluation with clean
OOD input x, and Ω = Ø.

– L∞ attacked OOD (white-box): We consider small L∞-norm bounded
perturbations on an OOD input x [1,30], which induce the model to produce
a high confidence score (or a low OOD score) for x. We denote the adversarial
perturbations by Ω∞,ε(x), where ε is the adversarial budget. We provide
attack algorithms for all eight OOD detection methods in Appendix B.4.

– Corruption attacked OOD (black-box): We consider a more realistic
type of attack based on common corruptions [17], which could appear natu-
rally in the physical world. For each OOD image, we generate 75 corrupted
images (15 corruption types × 5 severity levels), and then select the one with
the lowest OOD score.

– Compositionally attacked OOD (white-box): Lastly, we consider apply-
ing L∞-norm bounded attack and corruption attack jointly to an OOD input
x, as considered in [23].

Evaluation Metrics. We measure the following metrics: the false positive rate
(FPR) at 5% false negative rate (FNR), and the area under the receiver operating
characteristic curve (AUROC).

4.2 Results

ATOM vs. Existing Methods. We show in Table 1 that ATOM outperforms
competitive OOD detection methods on both classic and adversarial OOD eval-
uation tasks. There are several salient observations. First, on classic OOD eval-
uation task (clean OOD data), ATOM achieves comparable or often even better
performance than the current state-of-the-art methods. Second, on the existing
adversarial OOD evaluation task, L∞ OOD, ATOM outperforms current state-
of-the-art method ACET [16] by a large margin (e.g. on CIFAR-10, our method
outperforms ACET by 53.9% measured by FPR). Third, while ACET is some-
what brittle under the new Corruption OOD evaluation task, our method can
generalize surprisingly well to the unknown corruption attacked OOD inputs,
outperforming the best baseline by a large margin (e.g. on CIFAR-10, by up to
30.99% measured by FPR). Finally, while almost every method fails under the
hardest compositional OOD evaluation task, our method still achieves impres-
sive results (e.g. on CIFAR-10, reduces the FPR by 57.99%). The perfor-
mance is noteworthy since our method is not trained explicitly on corrupted
OOD inputs. Our training method leads to improved OOD detection while pre-
serving classification performance on in-distribution data (see Appendix B.14).
Consistent performance improvement is observed on alternative in-distribution
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Table 1. Comparison with competitive OOD detection methods. We use DenseNet as
network architecture for all methods. We evaluate on four types of OOD inputs: (1)
natural OOD, (2) corruption attacked OOD, (3) L∞ attacked OOD, and (4) composi-
tionally attacked OOD inputs. The description of these OOD inputs can be found in
Sect. 4.1. ↑ indicates larger value is better, and ↓ indicates lower value is better. All
values are percentages and are averaged over six different OOD test datasets described
in Sect. 4.1. Bold numbers are superior results. Results on additional in-distribution
dataset SVHN are provided in Appendix B.8. Results on a different architecture,
WideResNet, are provided in Appendix B.12.

Dtest
in Method FPR AUROC FPR AUROC FPR AUROC FPR AUROC

(5% FNR) (5% FNR) (5% FNR) (5% FNR)

↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑
Natural OOD Corruption OOD L∞ OOD Comp. OOD

CIFAR-10 MSP [18] 50.54 91.79 100.00 58.35 100.00 13.82 100.00 13.67

ODIN [27] 21.65 94.66 99.37 51.44 99.99 0.18 100.00 0.01

Mahalanobis [26] 26.95 90.30 91.92 43.94 95.07 12.47 99.88 1.58

SOFL [33] 2.78 99.04 62.07 88.65 99.98 1.01 100.00 0.76

OE [19] 3.66 98.82 56.25 90.66 99.94 0.34 99.99 0.16

ACET [16] 12.28 97.67 66.93 88.43 74.45 78.05 96.88 53.71

CCU [32] 3.39 98.92 56.76 89.38 99.91 0.35 99.97 0.21

ROWL [37] 25.03 86.96 94.34 52.31 99.98 49.49 100.00 49.48

ATOM (ours) 1.69 99.20 25.26 95.29 20.55 88.94 38.89 86.71

CIFAR-100 MSP [18] 78.05 76.11 100.00 30.04 100.00 2.25 100.00 2.06

ODIN [27] 56.77 83.62 100.00 36.95 100.00 0.14 100.00 0.00

Mahalanobis [26] 42.63 87.86 95.92 42.96 95.44 15.87 99.86 2.08

SOFL [33] 43.36 91.21 99.93 45.23 100.00 0.35 100.00 0.27

OE [19] 49.21 88.05 99.96 45.01 100.00 0.94 100.00 0.59

ACET [16] 50.93 89.29 99.53 54.19 76.27 59.45 99.71 38.63

CCU [32] 43.04 90.95 99.90 48.34 100.00 0.75 100.00 0.48

ROWL [37] 93.35 53.02 100.00 49.69 100.00 49.69 100.00 49.69

ATOM (ours) 32.30 93.06 93.15 71.96 38.72 88.03 93.44 69.15

datasets (SVHN and CIFAR-100), alternative network architecture (WideRes-
Net, Appendix B.12), and with alternative auxiliary dataset (ImageNet-RC, see
Appendix B.11).

Adversarial Training Alone is not Able to Achieve Strong OOD
Robustness. We perform an ablation study that isolates the effect of outlier
mining. In particular, we use the same training objective as in Eq. (1), but with
randomly sampled outliers. The results in Table 2 show AT (no outlier mining)
is in general less robust. For example, under L∞ OOD, AT displays 23.76% and
31.61% reduction in FPR on CIFAR-10 and CIFAR-100 respectively. This vali-
dates the importance of outlier mining for robust OOD detection, which provably
improves the decision boundary as we will show in Sect. 5.

Effect of adversarial Training. We perform an ablation study that isolates the
effect of adversarial training. In particular, we consider the following objective
without adversarial training:

minimize
θ

E(x,y)∼Dtrain
in

[�(x, y; F̂θ)] + λ · Ex∼Dtrain
out

[�(x,K + 1; F̂θ)], (4)

which we name Natural Training with informative Outlier Mining (NTOM). In
Table 2, we show that NTOM achieves comparable performance as ATOM on
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Table 2. Ablation on ATOM training objective. We use DenseNet as network archi-
tecture. ↑ indicates larger value is better, and ↓ indicates lower value is better. All
values are percentages and are averaged over six different OOD test datasets described
in Sect. 4.1.

Dtest
in Method FPR AUROC FPR AUROC FPR AUROC FPR AUROC

(5% FNR) (5% FNR) (5% FNR) (5% FNR)

↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑
Natural OOD Corruption OOD L∞ OOD Comp. OOD

CIFAR-10 AT (no outlier mining) 2.65 99.11 42.28 91.94 44.31 68.64 65.17 72.62

NTOM (no adversarial training) 1.87 99.28 30.58 94.67 99.90 1.22 99.99 0.45

ATOM (ours) 1.69 99.20 25.26 95.29 20.55 88.94 38.89 86.71

CIFAR-100 AT (no outlier mining) 51.50 89.62 99.70 58.61 70.33 58.84 99.80 34.98

NTOM (no adversarial training) 36.94 92.61 98.17 65.70 99.97 0.76 100.00 0.16

ATOM (ours) 32.30 93.06 93.15 71.96 38.72 88.03 93.44 69.15

natural OOD and corruption OOD. However, NTOM is less robust under L∞
OOD (with 79.35% reduction in FPR on CIFAR-10) and compositional OOD
inputs. This underlies the importance of having both adversarial training and
outlier mining (ATOM) for overall good performance, particularly for robust
OOD evaluation tasks.

Effect of Sampling Parameter q. Table 3 shows the performance with differ-
ent sampling parameter q. For all three datasets, training on auxiliary outliers
with large OOD scores (i.e., too easy examples with q = 0.75) worsens the per-
formance, which suggests the necessity to include examples on which the OOD
detector is uncertain. Interestingly, in the setting where the in-distribution data
and auxiliary OOD data are disjoint (e.g., SVHN/TinyImages), q = 0 is optimal,
which suggests that the hardest outliers are mostly useful for training. However,
in a more realistic setting, the auxiliary OOD data can almost always contain
data similar to in-distribution data (e.g., CIFAR/TinyImages). Even without
removing near-duplicates exhaustively, ATOM can adaptively avoid training on
those near-duplicates of in-distribution data (e.g. using q = 0.125 for CIFAR-10
and q = 0.5 for CIFAR-100).

Ablation on a Different Auxiliary Dataset. To see the effect of the aux-
iliary dataset, we additionally experiment with ImageNet-RC as an alternative.
We observe a consistent improvement of ATOM, and in many cases with per-
formance better than using TinyImages. For example, on CIFAR-100, the FPR
under natural OOD inputs is reduced from 32.30% (w/TinyImages) to 15.49%
(w/ImageNet-RC). Interestingly, in all three datasets, using q = 0 (hardest out-
liers) yields the optimal performance since there are substantially fewer near-
duplicates between ImageNet-RC and in-distribution data. This ablation sug-
gests that ATOM’s success does not depend on a particular auxiliary dataset.
Full results are provided in Appendix B.11.

5 Theoretical Analysis

In this section, we provide theoretical insight on mining informative outliers for
robust OOD detection. We proceed with a brief summary of our key results.
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Table 3. Ablation study on q. We use DenseNet as network architecture. ↑ indicates
larger value is better, and ↓ indicates lower value is better. All values are percentages
and are averaged over six natural OOD test datasets mentioned in Sect. 4.1. Note:
the hyperparameter q is chosen on a separate validation set, which is different from
test-time OOD data. See Appendix B.9 for details.

Dtest
in Model FPR AUROC FPR AUROC FPR AUROC FPR AUROC

(5% FNR) (5% FNR) (5% FNR) (5% FNR)

↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑
Natural OOD Corruption OOD L∞ OOD Comp. OOD

SVHN ATOM (q = 0.0) 0.07 99.97 5.47 98.52 7.02 98.00 96.33 49.52

ATOM (q = 0.125) 1.30 99.63 34.97 94.97 39.61 82.92 99.92 6.30

ATOM (q = 0.25) 1.36 99.60 41.98 94.30 52.39 71.34 99.97 1.35

ATOM (q = 0.5) 2.11 99.46 44.85 93.84 59.72 65.59 99.97 3.15

ATOM (q = 0.75) 2.91 99.26 51.33 93.07 66.20 57.16 99.96 2.04

CIFAR-10 ATOM (q = 0.0) 2.24 99.20 40.46 92.86 36.80 73.11 66.15 73.93

ATOM (q = 0.125) 1.69 99.20 25.26 95.29 20.55 88.94 38.89 86.71

ATOM (q = 0.25) 2.34 99.12 22.71 95.29 24.93 94.83 41.58 91.56

ATOM (q = 0.5) 4.03 98.97 33.93 93.51 22.39 95.16 45.11 90.56

ATOM (q = 0.75) 5.35 98.77 41.02 92.78 21.87 93.37 43.64 91.98

CIFAR-100 ATOM (q = 0.0) 44.38 91.92 99.76 60.12 68.32 65.75 99.80 49.85

ATOM (q = 0.125) 26.91 94.97 98.35 71.53 34.66 87.54 98.42 68.52

ATOM (q = 0.25) 32.43 93.93 97.71 72.61 40.37 82.68 97.87 65.19

ATOM (q = 0.5) 32.30 93.06 93.15 71.96 38.72 88.03 93.44 69.15

ATOM (q = 0.75) 38.56 91.20 97.59 58.53 62.66 78.70 97.97 54.89

Results Overview. At a high level, our analysis provides two important
insights. First, we show that with informative auxiliary OOD data, less in-
distribution data is needed to build a robust OOD detector. Second, we show
using outlier mining achieves a robust OOD detector in a more realistic case
when the auxiliary OOD data contains many outliers that are far from the deci-
sion boundary (and thus non-informative), and may contain some in-distribution
data. The above two insights are important for building a robust OOD detec-
tor in practice, particularly because labeled in-distribution data is expensive to
obtain while auxiliary outlier data is relatively cheap to collect. By performing
outlier mining, one can effectively reduce the sample complexity while achiev-
ing strong robustness. We provide the main results and intuition here and refer
readers to Appendix A for the details and the proofs.

5.1 Setup

Data Model. To establish formal guarantees, we use a Gaussian N(μ, σ2I) to
model the in-distribution PX and the test OOD distribution can be any dis-
tribution largely supported outside a ball around μ. We consider robust OOD
detection under adversarial perturbation with bounded �∞ norm, i.e., the per-
turbation ‖δ‖∞ ≤ ε. Given μ ∈ R

d, σ > 0, γ ∈ (0,
√

d), ετ > 0, we consider the
following data model:

– PX (in-distribution data) is N(μ, σ2I). The in-distribution data {xi}n
i=1

is drawn from PX.
– QX (out-of-distribution data) can be any distribution from the family
Q = {QX : Prx∼QX

[‖x − μ‖2 ≤ τ ] ≤ ετ}, where τ = σ
√

d + σγ + ε
√

d.
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– Hypothesis class of OOD detector: G = {Gu,r(x) : Gu,r(x) = 2 · I[‖x −
u‖2 ≤ r] − 1, u ∈ R

d, r ∈ R+}.

Here, γ is a parameter indicating the margin between the in-distribution and
OOD data, and ετ is a small number bounding the probability mass the OOD
distribution can have close to the in-distribution.

Metrics. For a detector G, we are interested in the False Negative Rate FNR(G)
and the worst False Positive Rate supQX∈Q FPR(G;QX,Ω∞,ε(x)) over all the test
OOD distributions Q under �∞ perturbations of magnitude ε. For simplicity, we
denote them as FNR(G) and FPR(G;Q).

While the Gaussian data model may be simpler than the practical data, its
simplicity is desirable for our purpose of demonstrating our insights. Finally,
the analysis can be generalized to mixtures of Gaussians which better models
real-world data.

5.2 Learning with Informative Auxiliary Data

We show that informative auxiliary outliers can reduce the sample complexity
for in-distribution data. Note that learning a robust detector requires to estimate
μ to distance γσ, which needs Θ̃(d/γ2) in-distribution data, for example, one can
compute a robust detector by:

u = x̄ =
1
n

n∑
i=1

xi, r = (1 + γ/4
√

d)σ̂, (5)

where σ̂2 = 1
n

∑n
i=1 ‖xi − x̄‖2

2. Then we show that with informative auxiliary
data, we need much less in-distribution data for learning. We model the auxiliary
data UX as a distribution over the sphere {x : ‖x − μ‖2

2 = σ2
od} for σo > σ, and

assume its density is at least η times that of the uniform distribution on the
sphere for some constant η > 0, i.e., it’s surrounding the boundary of PX. Given
{xi}n

i=1 from PX and {x̃i}n′
i=1 from UX, a natural idea is to compute x̄ and r

as above as an intermediate solution, and refine it to have small errors on the
auxiliary data under perturbation, i.e., find u by minimizing a natural “margin
loss”:

u = arg min
p:‖p−x̄‖2≤s

1
n′

n′∑
i=1

max
‖δ‖∞≤ε

I [‖x̃i + δ − p‖2 < t] (6)

where s, t are hyper-parameters to be chosen. We show that with Õ(d/γ4) in-
distribution data and sufficient auxiliary data can give a robust detector. See
proof in Appendix A.2.

5.3 Learning with Informative Outlier Mining

In this subsection, we consider a more realistic data distribution where the aux-
iliary data can contain non-informative outliers (far away from the boundary),
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and in some cases mixed with in-distribution data. The non-informative out-
liers may not provide useful information to distinguish a good OOD detector
statistically, which motivates the need for outlier mining.

Uninformative Outliers can Lead to Bad Detectors. To formalize, we
model the non-informative (“easy” outlier) data as Qq = N(0, σ2

qI), where σq is
large to ensure they are obvious outliers. The auxiliary data distribution Umix

is then a mixture of UX, Qq and PX, where Qq has a large weight. Formally,
Umix = νUX + (1 − 2ν)Qq + νPX for a small ν ∈ (0, 1). Then we see that the
previous learning rule cannot work: those robust detectors (with u of distance
O(σγ) to μ) and those bad ones (with u far away from μ) cannot be distinguished.
There is only a small fraction of auxiliary data from UX for distinguishing the
good and bad detectors, while the majority (those from Qq) do not differentiate
them and some (those from PX) can even penalize the good ones and favor the
bad ones.

Informative Outlier Mining Improves the Detector with Reduced
Sample Complexity. The above failure case suggests that a more sophisti-
cated method is needed. Below we show that outlier mining can help to identify
informative data and improve the learning performance. It can remove most data
outside UX, and keep the data from UX, and the previous method can work after
outlier mining. We first use in-distribution data to get an intermediate solution
x̄ and r by Eqs. (5). Then, we use a simple thresholding mechanism to only
pick points close to the decision boundary of the intermediate solution, which
removes non-informative outliers. Specifically, we only select outliers with mild
“confidence scores” w.r.t. the intermediate solution, i.e., the distances to x̄ fall
in some interval [a, b]:

S := {i : ‖x̃i − x̄‖2 ∈ [a, b], 1 ≤ i ≤ n′} (7)

The final solution uom is obtained by solving Eq. (6) on only S instead of all
auxiliary data. We can prove:

Proposition 1. (Error bound with outlier mining). Suppose σ2γ2 ≥
Cεσod and σ

√
d + Cσγ2 < σo

√
d < Cσ

√
d for a sufficiently large constant C,

and σq

√
d > 2(σo

√
d + ‖μ‖2). For some absolute constant c and any α ∈ (0, 1),

if the number of in-distribution data n ≥ Cd
γ4 log 1

α and the number of auxiliary

data n′ ≥ exp(Cγ4)
ν2η2 log dσ

α , then there exist parameter values s, t, a, b such that
with probability ≥ 1 − α, the detector Guom,r computed above satisfies:

FNR(Guom,r) ≤ exp(−cγ2), FPR(Guom,r;Q) ≤ ετ .

This means that even in the presence of a large amount of uninformative or even
harmful auxiliary data, we can successfully learn a good detector. Furthermore,
this can reduce the sample size n by a factor of γ2. For example, when γ =
Θ(d1/8), we only need n = Θ̃(

√
d), while in the case without auxiliary data, we

need n = Θ̃(d3/4).
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Remark. We note that when UX is as ideal as the uniform distribution over
the sphere (i.e., η = 1), then we can let u be the average of points in S after
mining, which will require n′ = Θ̃(d/(ν2γ2)) auxiliary data, much less than that
for more general η. We also note that our analysis and the result also hold for
many other auxiliary data distributions Umix, and the particular Umix used here
is for the ease of explanation; see Appendix A for more discussions.

6 Related Work

OOD Detection. [18] introduced a baseline for OOD detection using the
maximum softmax probability from a pre-trained network. Subsequent works
improve the OOD uncertainty estimation by using deep ensembles [24], the cali-
brated softmax score [27], the Mahalanobis distance-based confidence score [26],
as well as the energy score [29]. Some methods regularize the model with auxiliary
anomalous data that were either realistic [19,33,35] or artificially generated by
GANs [25]. Several other works [3,31,41] also explored regularizing the model to
produce lower confidence for anomalous examples. Recent works have also stud-
ied the computational efficiency aspect of OOD detection [28] and large-scale
OOD detection on ImageNet [21].

Robustness of OOD Detection. Worst-case aspects of OOD detection have
been studied in [16,37]. However, these papers are primarily concerned with L∞
norm bounded adversarial attacks, while our evaluation also includes common
image corruption attacks. Besides, [16,32] only evaluate adversarial robustness
of OOD detection on random noise images, while we also evaluate it on natural
OOD images. [32] has shown the first provable guarantees for worst-case OOD
detection on some balls around uniform noise, and [5] studied the provable
guarantees for worst-case OOD detection not only for noise but also for images
from related but different image classification tasks. Our paper proposes ATOM
which achieves state-of-the-art performance on a broader family of clean and
perturbed OOD inputs. The key difference compared to prior work is introducing
the informative outlier mining technique, which can significantly improve the
generalization and robustness of OOD detection.

Adversarial Robustness. Adversarial examples [4,14,36,44] have received
considerable attention in recent years. Many defense methods have been pro-
posed to mitigate this problem. One of the most effective methods is adversarial
training [30], which uses robust optimization techniques to render deep learning
models resistant to adversarial attacks. [6,34,46,52] showed that unlabeled data
could improve adversarial robustness for classification.

Hard Example Mining. Hard example mining was introduced in [43] for
training face detection models, where they gradually grew the set of background
examples by selecting those examples for which the detector triggered a false
alarm. The idea has been used extensively for object detection literature [11,
13,38]. It also has been used extensively in deep metric learning [9,15,39,42,47]
and deep embedding learning [10,40,48,51]. Although hard example mining has
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been used in various learning domains, to the best of our knowledge, we are the
first to explore it to improve the robustness of out-of-distribution detection.

7 Conclusion

In this paper, we propose Adversarial Training with informative Outlier Mining
(ATOM), a method that enhances the robustness of the OOD detector. We show
the merit of adaptively selecting the OOD training examples which the OOD
detector is uncertain about. Extensive experiments show ATOM can significantly
improve the decision boundary of the OOD detector, achieving state-of-the-art
performance under a broad family of clean and perturbed OOD evaluation tasks.
We also provide a theoretical analysis that justifies the benefits of outlier mining.
Further, our unified evaluation framework allows future research to examine the
robustness of the OOD detector. We hope our research can raise more attention
to a broader view of robustness in out-of-distribution detection.
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