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Abstract. Stochastic Gradient Descent has been widely studied with
classification accuracy as a performance measure. However, these
stochastic algorithms are not applicable when non-decomposable pair-
wise performance measures are used, such as Area under the ROC curve
(AUC), a standard performance metric used when the classes are imbal-
anced. Several algorithms have been proposed for optimizing AUC as a
performance metric, one of the recent being a Stochastic Proximal Gra-
dient Algorithm (SPAM). However, the downside of stochastic gradient
descent is that it suffers from high variance leading to very slow con-
vergence. Several variance reduced methods have been proposed with
faster convergence guarantees than vanilla stochastic gradient descent
to combat this issue. Again, these variance reduced methods are not
applicable when non-decomposable performance measures are used. In
this paper, we develop a Variance Reduced Stochastic Proximal algo-
rithm for AUC Maximization (VRSPAM) that combines the two areas
of analyzing non-decomposable performance metrics with and optimiza-
tion efforts to guarantee faster convergence. We perform an in-depth
theoretical and empirical analysis to demonstrate that our algorithm
converges faster than existing state-of-the-art algorithms for the AUC
maximization problem.
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1 Introduction

With the wide application of machine learning, there has been significant focus
in recent times on applications that involve class imbalance—the case where
one of the classes (the majority class) occurs much more frequently than the
other class (the minority class) [6]. A concrete example is a medical diagnosis
for a rare disease where far fewer instances from the disease class are observed
than the healthy class. Traditional classification accuracy is not an appropriate
performance metric in this setting, as predicting the majority class will give a
high classification accuracy, even if the model always gives the wrong prediction
on the minority class. To overcome this drawback, the Area under the ROC
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curve (AUC) [7] is used as a standard metric for quantifying the performance
of a binary classifier in this setting. AUC measures the ability of a family of
classifiers to correctly rank an example from the positive class with respect to a
randomly selected example from the negative class.

Several algorithms have been proposed for AUC maximization in the batch
setting, where all the training data is assumed to be available at the beginning
[12,25]. However, this assumption is unrealistic in several cases, especially for
streaming data analysis, where examples are observed one at a time. For the
usual classification accuracy metric, there exists online algorithms for such a
streaming setting where the per iteration complexity is low [18,21]. However,
despite several studies on online algorithms for classification accuracy, the case
of maximizing AUC as a performance measure has been looked at only recently
[14,26]. The main challenge for optimizing the AUC metric in the online setting
is the pairwise nature of the AUC metric which, compared to classification accu-
racy, does not decompose over individual instances. In the AUC maximization
framework, in each step the algorithm needs to pair the current datapoint with
all previously observed datapoints leading to O(td) space and time complex-
ity at step t, where the dimension of the instance space is d. The problem was
not alleviated by the technique of buffering [14,26] since, good generalization
performance depends on maintaining a large buffer.

From an optimization perspective, the AUC metric is non-convex and thus
hard to optimize. Instead, it is attractive to optimize the convex surrogate,
which is consistent, such as the pairwise squared surrogate [1,10,16]. Recently,
[24] reformulated the pairwise squared loss surrogate of AUC as a saddle point
problem and gave an algorithm that has a convergence rate of O( 1√

t
). How-

ever, they only consider smooth regularization (penalty) terms such as Frobe-
nius norm. Further, their convergence rate is sub-optimal to what stochastic
gradient descent (SGD) achieves with classification accuracy as a performance
measure O(1t ). [17] improves on this with a stochastic proximal algorithm for
AUC maximization, which under assumptions of strong convexity can achieve a
convergence rate of O( log t

t ) and has per iteration complexity of O(d) i.e., one
datapoint and applies to general, non-smooth regularization terms.

Although [17] improves convergence for surrogate-AUC maximization, it still
suffers from a high variance of the gradient in each iteration. Due to the large
variance in random sampling, the stochastic gradient algorithm wastes time
bouncing around, leading to worse performance and a slower sub-linear con-
vergence rate of O( 1t ) (even if we ignore the log(t) term). Thus, we have the
following trade-off: low per iteration complexity for the stochastic algorithm
but slow convergence contrasted with high per iteration complexity and fast
convergence for full gradient descent. Thus, it will take longer to get a good
approximation of the solution to the AUC optimization problem if we employ
the algorithm proposed by [17]. It is precisely this problem that we tackle in
this paper: can we design an algorithm for AUC optimization that also enjoys
fast convergence (potentially by controlling the variance of the iterates from the
stochastic gradient algorithm).
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In the relatively well-studied context of classification accuracy, techniques to
reduce the variance of SGD have been proposed—SAG [19], SDCA [20], SVRG
[13]. While SAG and SDCA require the storage of all the gradients and dual vari-
ables respectively, for complex models SVRG enjoys the same fast convergence
rates as SDCA and SAG but has a much simpler analysis and does not require
storage of gradients. This allows SVRG to be applicable in complex problems
where the storage of all gradients would be infeasible.

Several works have explored ways to apply SVRG on classification problems
involving a regularizer: the overall objective consists of the sum of a regularizer
term and the average of several smooth component function terms in SVRG.
Two simple strategies commonly used are the Proximal Full Gradient and the
Proximal Stochastic Gradient method. While the Proximal Stochastic Gradient
is much faster since it computes only the gradient of a single component func-
tion per iteration, it convergences much slower than the Proximal Full Gradient
method, alluding to the same trade-off we mentioned earlier. The proximal gra-
dient methods can be viewed as a particular case of splitting methods [2,3].
However, both the proximal methods do not fully exploit the problem structure.
Proximal SVRG [22] is an extension of the SVRG [13] technique and can be used
whenever the objective function is composed of two terms- the first term is an
average of smooth functions (decomposable across the individual instances), and
the second term admits a simple proximal mapping. Prox-SVRG needs far fewer
iterations to achieve the same approximation ratio than the proximal full and
stochastic gradient descent methods. However, all the existing techniques dis-
cussed that guarantee faster convergence by controlling the variance, including
Prox-SVRG and the proximal full and stochastic gradient descent methods, all
have a very restrictive assumption - they require the metric and the loss func-
tion to be decomposable over instances (for example, classification accuracy and
the corresponding decomposable pointwise surrogate loss functions) and are not
directly applicable to non-decomposable pairwise loss functions as in surrogate-
AUC optimization (refer to Sect. 2); this is the gap that we close in this paper.

In this paper, we present Variance Reduced Stochastic Proximal algorithm
for AUC Maximization (VRSPAM). VRSPAM builds upon previous work for
surrogate-AUC maximization by using the SVRG algorithm. We provide the-
oretical analysis for the VRSPAM algorithm showing that it achieves a linear
convergence rate with a fixed step size (much faster than SPAM [17], which has
a sub-linear convergence rate and a decreasing step size). Also, the theoretical
analysis provided in this paper simplifies the convergence analysis of SPAM. We
perform numerical experiments to show that the VRSPAM algorithm converges
significantly faster than SPAM.
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2 AUC Formulation

The AUC score associated with a linear scoring function g(x) = wT x, is defined
as the probability that the score of a randomly chosen positive example is higher
than a randomly chosen negative example [5,11] and is denoted by AUC(w). If
z = (x, y) and z′ = (x′, y′) are drawn independently from an unknown distribu-
tion Z = X × Y, then

AUC(w) = Pr(wT x ≥ wT x′|y = 1, y′ = −1)
= E[IwT (x−x′)≥0|y = 1, y′ = −1]

Since AUC(w) in the above form is not convex because of the 0–1 loss, it is
a common practice to replace this by a convex surrogate loss. In this paper,
we focus on the least square loss which is known to be consistent (consistency
of a surrogate loss function w.r.t the AUC metric means that, maximizing the
surrogate function also maximizes the AUC).
Let f(w) = p(1 − p)E[(1 − wT (x − x′))2|y = 1, y′ = −1] and Ω be the convex
regularizer where p = Pr(y = +1) and 1 − p = Pr(y = −1) are the class priors.
We consider the following objective for surrogate-AUC maximization :

min
w∈Rd

f(w) + Ω(w) (1)

The form for f(w) follows from the definition of AUC : expected pairwise loss
between a positive instance and a negative instance. Throughout this paper we
assume

1. Ω is β strongly convex i.e. for any w,w′ ∈ R
d,

Ω(w) ≥ Ω(w′) + ∂Ω(w′)T (w − w′) +
β

2
‖w − w′‖2

2. ∃M such that ‖x‖ ≤ M ∀x ∈ X .

In this paper we have used Frobenius norm Ω(w) = β‖w‖2 and Elastic Net
Ω(w) = β‖w‖2 + ν‖w‖1 as the convex regularizers where β, ν �= 0 are the
regularization parameters.

It is important to note that standard stochastic gradient based algorithms
cannot be applied to Eq. 1 directly, because of the pairwise nature of f(·). Instead
we will use a reformulation that will allows us to apply stochastic gradient
descent to find the optimum value of w. We write Eq. 1 in a pointwise manner
rather than the above pairwise form, as originally proposed in [17], as follows:

min
w,a,b

max
ζ∈R

E[F (w, a, b, ζ; z)] + Ω(w) (2)

where the expectation is with respect to z = (x, y) and

F (w,a, b, ζ; z) = (1 − p)(wT x − a)2I[y=1] + p(wT x − b)2I[y=−1]+

2(1 + ζ)wT x(pI[y=−1] − (1 − p)I[y=1]) − p(1 − p)ζ2
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Thus, f(w) = mina,b maxζ∈R E[F (w, a, b, ζ; z)]. The optimal choices for a, b, ζ
satisfy :

a(w) = wT
E[x|y = 1]

b(w) = wT
E[x|y = −1]

ζ(w) = wT (E[x′|y′ = −1] − E[x|y = 1])

It is important to note here that we differentiate the objective function only
with respect to w and do not compute the gradient with respect to the other
parameters (a, b, ζ) which themselves depend on w. Since, a, b, ζ are expressible
in a closed-form, stochastic gradient algorithms can now be applied to Eq. 2.
This is the SPAM algorithm [17].

3 Method

In the previous section, we discussed a stochastic gradient based algorithm for
AUC maximization, that uses an alternative formulation of the objective, to
make it decomposable. However, the SPAM algorithm suffers from very slow
convergence in most real world problems which are high dimensional and consists
of a large number of instances. The major issue that slows down convergence
for SGD is the decay of the step size to 0 as the iteration increase. This is a
necessary evil for mitigating the effect of variance introduced by random sam-
pling in SGD. Thus, in this paper we directly attack the variance problem for
SGD in the AUC maximization framework. We apply the Prox-SVRG method
on the reformulation of AUC to derive the proximal SVRG algorithm for AUC
maximization described in Algorithm 1. We store a w̃ after every m Prox-SGD
iterations that is progressively closer to the optimal w (essentially an estimate of
the optimal value of (1). Full gradient µ̃ is computed whenever w̃ gets updated
i.e. after every m iterations of Prox-SGD:

µ̃ =
1
n

n∑

i=1

G(w̃, zi)

where G(w; z) = ∂wF (w, a(w), b(w), ζ(w); z), n is the number of samples and
µ̃ is used to update next m gradients.
Next m iterations are initialized by w0 = w̃. For each iteration, we randomly
pick it ∈ {1, ..., n} and compute

ŵt = wt−1 − ηvt

where vt = G(wt−1, zit) − G(w̃, zit) + µ̃ and then the proximal step is taken

wt = proxη,Ω(ŵt)
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Notice that if we take expectation of G(w̃, zit) with respect to it we get
E[G(w̃, zit)] = µ̃. Now if we take expectation of vt with respect to it condi-
tioned on wt−1, we can get the following:

E[vt|wt−1] = E[G(wt−1, zit−1)] − E[G(w̃, zit−1)] + µ̃

=
1
n

n∑

i=1

G(w̃t−1, zi)

Hence the modified direction vt is the stochastic gradient of G at wt−1. However,
the variance E‖vt − ∂f(wt−1)‖2 can be much smaller than E‖G(wt−1, zit) −
∂f(wt−1)‖2, shown in Sect. 4.1. We will also show that the variance goes to 0 as
the algorithm converges. Thus, this is a multi-stage scheme to explicitly reduce
the variance of the modified proximal gradient.

Algorithm 1. Proximal SVRG for AUC maximization
Input Constant step size η and update frequency m
Initialize w̃0

for s = 1, 2, ... do
w̃ = w̃s−1

µ̃ = 1
n

∑n
i=1 G(w̃, zi)

w0 = w̃
for t = 1, 2, ..., m do

Randomly pick it ∈ {1, .., n} and update weight
ŵt = wt−1 − η(G(wt−1, zit) − G(w̃, zit) + µ̃)
wt = proxηΩ(ŵt)

w̃s = wm

4 Convergence Analysis

In this section, we formally analyze the convergence rate of VRSPAM. We first
present some lemmas which will be used for proving the Theorem 1 which is
the main theorem proving the geometric convergence of Algorithm 1. Lemma 1
states that
∂wF (wt, a(wt), b(wt), α(wt); zt) is an unbiased estimator of the true gradient.
As we are not calculating the true gradient in VRSPAM, we need the following
lemma to prove the convergence result.

Lemma 1 [17]. Let wt be given by VRSPAM in Algorithm 1. Then, we have

∂f(wt) = Ezt
[∂wF (wt, a(wt), b(wt), α(wt); zt)]

This lemma is directly applicable in VRSPAM since the proof of the lemma
hinges on the objective function reformulation and not on the algorithm specifics.

The next lemma provides an upper bound on the norm of the difference of
gradients at different time steps.
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Lemma 2 [17]. Let wt be described as above. Then, we have

‖G(wt′ , zt) − G(wt′′ , zt)‖ ≤ 8M2‖wt′ − wt′′‖

Proof.

‖G(wt′ ; zt) − G(wt′′ ; zt)‖ ≤ 4M2p‖wt′ − wt′′‖1[yt=−1]

+ 4M2p‖wt′ − wt′′‖1[yt=−1] + 4M2(1 − p)‖wt′ − wt′′‖1[yt=1]

+ 4M2|p − 1[yt=1]|‖wt′ − wt′′‖
≤ 8M2‖wt′ − wt′′‖

The proof directly follows by writing out the difference and using the second
assumption on the boundedness of ‖x‖.

We now present and prove a key result that will be necessary in showing
convergence in Theorem 1

Lemma 3. Let C = 1+128M4η2

(1+ηβ)2 and D = 128M4η2

(1+ηβ)2 ; if η ≤ β
128M4 then Cm +

DC Cm−1
C−1 ≤ 1 holds true.

Proof. We start with:

η ≤ β

128M4

⇒128M4η2 ≤ ηβ

⇒128M4η2(2 + 128M4η2) ≤ ηβ(2 + 1ηβ)

⇒128M4η2 + (128M4η2)2 ≤ (ηβ)2 + 2ηβ − 128M4η2

⇒128M4η2 ≤ (1 + ηβ)2 − 1 − 128M4η2

1 + 128M4η2

⇒128M4η2 ≤
1 − 1+128M4η2

(1+ηβ)2

1+128M4η2

(1+ηβ)2

Substituting values of C and D and using the condition that D ≤ 128M4η2, we
get

⇒D ≤ 1 − C

C

⇒DC
Cm − 1
C − 1

≤ 1 − Cm

⇒Cm + DC
Cm − 1
C − 1

≤ 1

Now we present and prove the main theorem of this paper that gives the con-
vergence rate of Algorithm 1 and its analysis.
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Theorem 1. Consider VRSPAM (Algorithm 1) and let w∗ = argminwf(w)+
Ω(w); if η < β

128M4 , then the following inequality holds true

α = Cm + DC
Cm − 1
C − 1

< 1

and we have the geometric convergence in expectation:

E[‖w̃s − w∗‖2] ≤ αs
E[‖w0 − w∗‖2]

For proving the above theorem, first we upper bound the variance of the gradient
step and show that it approaches zero as ws approaches w∗.

4.1 Bounding the Variance

In this section, we will derive a bound on the variance of the modified gradient
vt = G(wt−1, zit)−G(w̃, zit)+ µ̃. We first present a lemma that will help derive
the bound in Lemma 5.

Lemma 4. Consider VRSPAM (Algorithm 1), then E[‖vt−∂f(w∗)]‖2 is upper
bounded as:

E[‖vt − ∂f(w∗)]‖2] ≤ 2(8M2)2‖wt−1 − w∗‖2 + 2(8M2)2‖w̃ − w∗‖2

Proof. Let the variance reduced update be denoted as vt = G(wt−1, zit) −
G(w̃, zit) + µ̃.
As we know E[vt] = ∂f(wt−1), the variance of vt can be written as below

E[‖vt − ∂f(w∗))‖2] ≤2E[‖G(w∗, zit) − G(w̃, zit) + µ̃ − ∂f(w∗))‖2]
+ 2E[‖G(wt−1, zit) − G(w∗, zit)‖2]

Also, E[G(w∗, zit)−G(w̃, zit)] = ∂f(w∗)−∂f(w̃) from Lemma 1 and using the
property that E[(X − E[X])2] ≤ E[X2] we get

E[‖vt − ∂f(w∗))‖2] ≤2E[‖G(wt−1, zit) − G(w∗, zit)‖2]
+ 2E[‖G(w∗, zit) − G(w̃, zit)‖2]

From Lemma 2, we have ‖G(wt−1, zit) − G(w∗, zit)‖ ≤ 8M2‖wt−1 − w∗‖ and
‖G(w∗, zit) − G(w̃, zit)‖ ≤ 8M2‖w̃ − w∗‖. Using this, we can upper bound the
variance of gradient step as:

E[‖vt − ∂f(w∗)]‖2] ≤ 2(8M2)2‖wt−1 − w∗‖2 + 2(8M2)2‖w̃ − w∗‖2 (3)

We have the desired result.

We now present the lemma that gives the bound on the variance of modified
gradient vt.
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Lemma 5. Consider VRSPAM (Algorithm 1), then the variance of the vt is
upper bounded as:

E[‖vt−∂f(wt−1)]‖2] ≤ 4(8M2)2‖wt−1 − w∗‖2 + 2(8M2)2‖w̃ − w∗‖2

Proof.

E[‖vt − ∂f(wt−1)‖2] ≤ 2E[‖vt − ∂f(w∗)‖2] + 2E[‖∂f(w∗) − ∂f(wt−1)]‖2]
≤ 2(8M2)2‖wt−1 − w∗‖2 + 2(8M2)2‖w̃ − w∗‖2
+ 2E[‖G(wt−1, zit) − G(w∗, zit)‖2]
≤ 4(8M2)2‖wt−1 − w∗‖2 + 2(8M2)2‖w̃ − w∗‖2

where the second inequality uses Lemma 4 and last inequality uses Lemma 2.

At convergence, w̃ = w∗ and wt = w∗. Thus, the variance of the updates
are bounded and go to zero as the algorithm converges whereas in the case of
the SPAM algorithm, the variance of the gradient does not go to zero (which is a
characteristic of a stochastic gradient descent based algorithm). We now present
the proof of Theorem 1 using the above lemmas.

4.2 Proof of Theorem 1

From the first order optimality condition, we can directly write

w∗ = proxηΩ(w∗ − η∂f(w∗))

Using the above we can write

‖wt+1 − w∗‖2 = ‖proxηΩ(ŵt+1) − proxηΩ(w∗ − η∂f(w∗))‖2

Using Proposition 23.11 from [2], we have proxηΩ is (1+ηβ)-cocoercieve and for
any u and w using Cauchy Schwartz we can get the following inequality

‖proxηΩ(u) − proxηΩ(w)‖ ≤ 1
1 + ηβ

‖u − w‖

From above we get

‖wt+1−w∗‖2 ≤ 1

(1 + ηβ)2
‖(ŵt+1) − (w∗ − η∂f(w∗))‖2

≤ 1

(1 + ηβ)2
‖(wt − w∗) − η(G(wt, zit+1) − G(w̃, zit+1) + µ̃ − ∂f(w∗))‖2

Taking expectation on both sides we get

E‖wt+1 − w∗‖2 ≤ 1

(1 + ηβ)2
(
η2

E[‖G(wt, zit+1) − G(w̃, zit+1) + µ̃ − ∂f(w∗))‖2]

+ E[‖wt − w∗‖2] − 2ηE[〈wt − w∗, G(wt, zit+1) − G(w̃, zit+1) + µ̃ − ∂f(w∗)〉])
(4)
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Now, we first bound the last term T = E[〈wt −w∗, G(wt, zit+1)−G(w̃, zit+1)+
µ̃ − ∂f(w∗)〉] in Eq. 4. Using Lemma 1 we can write

T = E[〈wt − w∗,Ezt+1 [G(wt−1, zit+1)] − Ezt+1 [G(w̃, zit+1)] + µ̃ − ∂f(w∗)〉]
= E[〈wt − w∗,Ezt+1 [G(wt, zit+1)] − ∂f(w∗)〉]
= E[〈wt − w∗, ∂f(wt) − ∂f(w∗)〉]
≥ 0

Now, E‖wt+1 − w∗‖2 can be bounded by using above bound and Lemma 4 as
below

E‖wt+1 − w∗‖2 ≤ 1
(1 + ηβ)2

(E[‖wt − w∗‖2]

+ 2(8M2)2η2(E[‖wt − w∗‖2] + E[‖w̃ − w∗‖2]))

≤ 1 + 128M4η2

(1 + ηβ)2
E[‖wt − w∗‖2] +

128M4η2

(1 + ηβ)2
E[‖w̃ − w∗‖2]

Let C = 1+128M4η2

(1+ηβ)2 and D = 128M4η2

(1+ηβ)2 , then after m iterations wt = w̃s and
w0 = w̃s−1. Substituting this in the above inequality, we get

E‖w̃s − w∗‖2 ≤ Cm
(
E‖w̃s−1 − w∗‖2 +

m−1∑

i=0

D

Ci
E‖w̃s−1 − w∗‖2)

≤ (
Cm +

m−1∑

i=0

DCm

Ci

)
E‖w̃s−1 − w∗‖2

≤ (
Cm + DCm 1 − (1/Cm)

1 − (1/C)
)
E‖w̃s−1 − w∗‖2

≤ (
Cm + DC

Cm − 1
C − 1

)
E‖w̃s−1 − w∗‖2

≤ αE‖w̃s−1 − w∗‖2

where α = Cm+DC Cm−1
C−1 is the decay parameter, and α < 1 by using Lemma 3.

After s steps in outer loop of Algorithm 1, we get E‖w̃s−w∗‖2 ≤ αs
E‖w0−w∗‖2

where α < 1. Hence, we get geometric convergence of αs which is much stronger
than the O(1t ) convergence obtained in [17]. In the next section we derive the
time complexity of the algorithm and investigate dependence of α on the problem
parameters.

4.3 Complexity Analysis

To have E‖w̃s − w∗‖2 ≤ ε, the number of iterations s must satisfy:

s ≥ 1
log 1

α

log
E‖w0 − w∗‖2

ε
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At each stage, the number of gradient evaluations are n + 2m where n is the
number of samples and m is the iterations in the inner loop and the complexity
is O(n+m)(log(1ε )) i.e. Algorithm 1 takes O(n+m)(log(1ε )) gradient complexity
to achieve accuracy of ε. Here, the complexity is dependent on M and β as m
itself is dependent on M and β.

Now we find the dependence of α and m on M and β. Let η = θβ
128M4 where

0 < θ < 1. Then,

C =
1 + 128M4η2

(1 + ηβ)2
=

1 + θ2β2

128M4

(1 + θβ2

128M4 )2

<
1 + θβ2

128M4

(1 + θβ2

128M4 )2

=
1

(1 + θβ2

128M4 )

= E

Therefore, D = θ(E−E2) and DC < θE2(1−E), and using the above equations
we can simplify α as

α = Cm + DC
1 − Cm

1 − C

< Cm + θE2(1 − E)
1 − Cm

1 − C

< Cm + θE2(1 − Cm) ∵ 1 − E

1 − C
< 1

= θE2 + Cm − θE2 Cm

In the above equation, only Cm − θE2Cm depends on m. If we choose m to
be sufficiently large then α = θE2. An important thing to note here is that
θE < C < E, now if we choose m ≈ 2 log θ

log E then α ≈ 2θE2. Thus, the time
complexity of the algorithm is

O(n + 2
log θ

log E
)(log(

1
ε
)) when m = Θ(

log θ

log E
).

As the order has inverse dependency on log E = log 128M4

128M4+θβ2 , increase in M
will result in increase in number of iterations i.e. as the maximum norm of
training samples is increased, larger m is required to reach ε accuracy.

Comparison of Time Complexities: Now let us compare the time complexi-
ties of our algorithm with that of the SPAM algorithm. First, we derive the time
complexity of SPAM. We will use Theorem 3 from [17] which states that SPAM
achieves the following:

E[‖wT+1−w∗‖2] ≤ t0
T
E[‖wt0 − w∗‖2] + c

log T

T
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Fig. 1. The left column shows that VRSPAM (SPAM-L2-SVRG) has lower variance
than SPAM-L2 across different datasets. The right column shows VRSPAM (SPAM-
L2-SVRG) converges faster and performs better than existing algorithms on AUC
maximization

where t0 = max
(
2,

⌈
1 + (128M4+β2)2

128M4β2

⌉)
, T is the number of iterations and c is

a constant. Using the averaging scheme developed by [15], the following can be
obtained:

E[‖wT+1−w∗‖2] ≤ t0
T
E[‖wt0 − w∗‖2] (5)

where

E[‖wt0 − w∗‖2] ≤ 2σ2
∗

C̃2
β,M

+ exp
(128M4

C̃2
β,M

)
= F,

C̃2
β,M =

β

(1 + β2

128M4 )2
and E[‖G(w∗; z) − ∂f(w∗)‖2] = σ2

∗.

Using Eq. 5, the time complexity of the SPAM algorithm can be written as
O( t0F

ε ) i.e. SPAM takes O( t0F
ε ) iterations to achieve ε accuracy. Thus, SPAM
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has lower per iteration complexity but slower convergence rate when compared
to VRSPAM. In other words, VRSPAM will take less time to get a good
approximation of the solution.

Table 1. Datasets used for evaluating vrspam and the different state-of-the-art algo-
rithms for AUC maximization.

N Name Instances Features

1 DIABETES 768 8

2 GERMAN 1000 24

3 SPLICE 3,175 60

4 USPS 9,298 256

5 LETTER 20,000 16

Data Name Instances Features

6 A9A 32,561 123

7 W8A 64,700 300

8 MNIST 60,000 780

9 ACOUSTIC 78,823 50

10 IJCNN1 141,691 22

5 Experiment

In this section, we empirically compare the performance of VRSPAM with other
existing algorithms for AUC maximization, on several standard benchmarks. We
use the following two variants of our proposed algorithm based on the regularizer
used:

1. VRSPAM − L2 : Ω(w) = β
2 ‖w‖2 (Frobenius Norm Regularizer)

2. VRSPAM − NET : Ω(w) = β
2 ‖w‖22 + β1‖w‖1 (Elastic Net Regularizer

[27]). The proximal step for elastic net is given as arg minw{ 1
2‖w− ŵt+1

ηtβ+1‖2 +
ηtβ1

ηtβ+1‖w‖1}
VRSPAM is compared with several baselines: SPAM, SOLAM [24] and one-

pass AUC optimization algorithm (OPAUC) [9], which are state-of-the-art meth-
ods for AUC maximization. SOLAM was modified to have the Frobenius Norm
Regularizer (as in [17]). VRSPAM is compared against OPAUC with the least
square loss.

Table 2. Comparison of AUC values (mean±std) achieved by the different algorithms
on the test data of the different datasets described in Table 1.

N VRSPAM-L2 VRSPAM-NET SPAM-L2 SPAM-NET SOLAM OPAUC

1 .8299±.0323 .8305±.0319 .8272±.0277 .8085±.0431 .8128±.0304 .8309±.0350

2 .7902±0386 .7845±.0398 .7942±.0388 .7937±.0386 .7778±.0373 .7978±.0347

3 .9640±.0156 .9699±.0139 .9263±.0091 .9267±.0090 .9246±.0087 .9232±.0099

4 .8552±.006 .8549±.0059 .8542±.0388 .8537±.0386 .8395±.0061 .8114±.0065

5 .9834±.0023 .9804±.0032 .9868±.0032 .9855±.0029 .9822±.0036 .9620±.0040

6 .9003±.0045 .8981±.0046 .8998±.0046 .8980±.0047 .8966±.0043 .9002±.0047

7 .9876±.0008 .9787±.0013 .9682±.0020 .9604±.0020 .9817±.0015 .9633±.0035

8 .9465±.0014 .9351±.0014 .9254±.0025 .9132±.0026 .9118±.0029 .9242±.0021

9 .8093±.0033 .8052±.033 .8120±.0030 .8109±.0028 .8099±.0036 .8192±.0032

10 .9750±.001 .9745±.002 .9174±.0024 .9155±.0024 .9129±.0030 .9269±.0021
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All datasets are publicly available from [4] and [8]. Some of the datasets,
like MNIST, are multiclass, and we convert them to binary labels by numbering
the classes and assigning all the even labels to one class and all the odd labels
to another. The results are the mean AUC score and standard deviation of 20
runs on each dataset. All the datasets were randomly divided into training and
test splits with 80% and 20% of the data. The parameters β ∈ 10[−5:5] and
β1 ∈ 10[−5:5] for VRSPAM − L2 and VRSPAM − NET are chosen by a 5 fold
cross-validation on the training set. All the code is implemented in matlab. We
measured the algorithm’s computational time using an Intel i7 CPU with a clock
speed of 3538 MHz.

5.1 VRSPAM Has Lower Variance

Theoretically, we derived that VRSPAM has lower variance than the base-
line SPAM algorithm. Here, we see empirically this holds across the different
datasets. In the left column of Fig. 1, we show the variance of the VRSPAM
update (vt) in comparison with the variance of SPAM update (G(wt−1, zit−1)) .
We observe that the variance of VRSPAM is lower than the variance of SPAM
and decreases to the minimum value faster, which is in line with Theorem 1.

5.2 VRSPAM Has Faster Convergence

Theoretically, we derived that VRSPAM converges faster than the base-
line SPAM algorithm. Here, we see empirically this holds across the dif-
ferent datasets. In the right column of Fig. 1, we show the performance of
VRSPAM compared to existing methods for AUC maximization. We observe
that VRSPAM converges to the maximum value faster than the other methods,
and in some cases, this maximum value itself is higher for VRSPAM.

We found that the best results were obtained when the initial weights of
VRSPAM were set to be the output generated by SPAM after one iteration,
which happens to be standard practice in related problems in optimization [13].
Table 2 summarizes the results of the performance of different algorithms as
measured by the AUC metric, across different datasets. AUC values for SPAM-
L2, SPAM-NET, SOLAM and OPAUC were taken from [17]. It is seen that
in almost all the datasets, one of the two versions of VRSPAM has the best
performance and this gain is consistent across multiple runs, as seen by the
standard error. This shows that under finite computational time, VRSPAM is
able to converge to the global optimum faster than the other algorithms.

6 Conclusion

In this paper, we propose a variance reduced stochastic proximal algorithm for
AUC maximization (VRSPAM). We theoretically analyze the proposed algo-
rithm and derive a much faster convergence rate of O(αt) where α < 1 (lin-
ear convergence rate), improving upon state-of-the-art methods [17] which have
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a convergence rate of O( 1t ) (sub-linear convergence rate), for strongly convex
objective functions with per iteration complexity of one data-point. We gave a
theoretical analysis of this and showed empirically VRSPAM converges faster
than other methods for AUC maximization.

For future work, it will be interesting to explore if other algorithms used
to accelerate SGD can be used in this setting and if they lead to even faster
convergence. It is also interesting to apply the proposed methods in practice to
non-decomposable performance measures other than AUC. It would be inter-
esting to extend the analysis to a non-convex and non-smooth regularizer using
method presented in [23].

References

1. Agarwal, S.: Surrogate regret bounds for the area under the roc curve via strongly
proper losses. In: Conference on Learning Theory, pp. 338–353 (2013)

2. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory
in Hilbert Spaces. CBM, Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-48311-5

3. Beck, A., Teboulle, M.: A fast iterative shrinkage-threshold algorithm for linear
inverse problems. Technion-Israel Institute of Technology, Technical Report (2008)

4. Chang, C.C., Lin, C.J.: Libsvm: a library for support vector machines. ACM Trans.
Intell. Syst. Technol. (TIST) 2(3), 27 (2011)
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