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Abstract. We propose a fast, model agnostic method for finding inter-
pretable counterfactual explanations of classifier predictions by using
class prototypes. We show that class prototypes, obtained using either
an encoder or through class specific k-d trees, significantly speed up
the search for counterfactual instances and result in more interpretable
explanations. We quantitatively evaluate interpretability of the gener-
ated counterfactuals to illustrate the effectiveness of our method on an
image and tabular dataset, respectively MNIST and Breast Cancer Wis-
consin (Diagnostic). Additionally, we propose a principled approach to
handle categorical variables and illustrate our method on the Adult (Cen-
sus) dataset. Our method also eliminates the computational bottleneck
that arises because of numerical gradient evaluation for black box models.

Keywords: Interpretation · Transparency/Explainability ·
Counterfactual explanations

1 Introduction

Humans often think about how they can alter the outcome of a situation. What
do I need to change for the bank to approve my loan? or Which symptoms
would lead to a different medical diagnosis? are common examples. This form
of counterfactual reasoning comes natural to us and explains how to arrive at a
desired outcome in an interpretable manner. Moreover, examples of counterfac-
tual instances resulting in a different outcome can give powerful insights of what
is important to the underlying decision process, making it a compelling method
to explain predictions of machine learning models (Fig. 1).

In the context of predictive models, given a test instance and the model’s
prediction, a counterfactual instance describes the necessary change in input
features that alter the prediction to a predefined output [21]. For classification
models the predefined output can be any target class or prediction probability
distribution. Counterfactual instances can then be found by iteratively perturb-
ing the input features of the test instance until the desired prediction is reached.
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In practice, the counterfactual search is posed as an optimization problem—we
want to minimize an objective function which encodes desirable properties of
the counterfactual instance with respect to the perturbations. The key insight
of this formulation is the need to design an objective function that allows us
to generate high quality counterfactual instances. A counterfactual instance xcf

should have the following desirable properties:
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Original CF
Workclass Private State-gov
Education High school Bachelors
Marital Status Married Married
Occupation Blue-Collar Blue-Collar
Relationship Husband Husband
Race White White
Sex Male Male
Country United-States United-States
Age 46 46
Capital Gain 0 0
Capital Loss 0 0
Hours p/w 40 40
Prediction ≤ $50k/y > $50k/y

(b)

Fig. 1. (a) Examples of original and counterfactual instances on the MNIST dataset
along with predictions of a CNN model. (b) A counterfactual instance on the Adult
(Census) dataset highlighting the feature changes required to alter the prediction of
an NN model.

1. The model prediction on xcf needs to be close to the predefined output.
2. The perturbation δ changing the original instance x0 into xcf = x0 + δ should

be sparse.
3. The counterfactual xcf needs to be interpretable. We consider an instance xcf

interpretable if it lies close to the model’s training data distribution. This
definition does not only apply to the overall data set, but importantly also
to the training instances that belong to the counterfactual class. Let us illus-
trate this with an intuitive example. Assume we are predicting house prices
with features including the square footage and the number of bedrooms. Our
house is valued below £500,000 and we would like to know what needs to
change about the house in order to increase the valuation above £500,000.
By simply increasing the number of bedrooms and leaving the other features
unchanged, the model predicts that our counterfactual house is now worth
more than £500,000. This sparse counterfactual instance lies fairly close to
the overall training distribution since only one feature value was changed.
The counterfactual is however out-of-distribution with regards to the subset
of houses in the training data valued above £500,000 because other relevant
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features like the square footage still resemble a typical house valued below
£500,000. As a result, we do not consider this counterfactual to be very inter-
pretable. We show in the experiments that there is often a trade-off between
sparsity and interpretability.

4. The counterfactual instance xcf needs to be found fast enough to ensure it
can be used in a real life setting.

An overly simplistic objective function may return instances which satisfy prop-
erties 1. and 2., but where the perturbations are not interpretable with respect
to the counterfactual class.

In this paper we propose using class prototypes in the objective function
to guide the perturbations quickly towards an interpretable counterfactual. The
prototypes also allow us to remove computational bottlenecks from the opti-
mization process which occur due to numerical gradient calculation for black
box models. In addition, we propose two novel metrics to quantify interpretabil-
ity which provide a principled benchmark for evaluating interpretability at the
instance level. We show empirically that prototypes improve the quality of coun-
terfactual instances on both image (MNIST) and tabular (Wisconsin Breast
Cancer) datasets. Finally, we propose using pairwise distance measures between
categories of categorical variables to define meaningful perturbations for such
variables and illustrate the effectiveness of the method on the Adult (Census)
dataset.

2 Related Work

Counterfactual instances—synthetic instances of data engineered from real
instances to change the prediction of a machine learning model—have been sug-
gested as a way of explaining individual predictions of a model as an alternative
to feature attribution methods such as LIME [23] or SHAP [19].

Wacther et al. [27] generate counterfactuals by minimizing an objective func-
tion which sums the squared difference between the predictions on the perturbed
instance and the desired outcome, and a scaled L1 norm of the perturbations.
Laugel et al. [15] find counterfactuals through a heuristic search procedure by
growing spheres around the instance to be explained. The above methods do
not take local, class specific interpretability into account. Furthermore, for black
box models the number of prediction calls during the search process grows pro-
portionally to either the dimensionality of the feature space [27] or the num-
ber of sampled observations [9,15], which can result in a computational bottle-
neck. Dhurandhar et al. [7,9] propose the framework of Contrastive Explanations
which find the minimal number of features that need to be changed/unchanged
to keep/change a prediction.

A key contribution of this paper is the use of prototypes to guide the counter-
factual search process. Kim et al. [14], Gurumoorthy et al. [11] use prototypes as
example-based explanations to improve the interpretability of complex datasets.
Besides improving interpretability, prototypes have a broad range of applica-
tions like clustering [13], classification [4,26], and few-shot learning [25]. If we
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have access to an encoder [24], we follow the approach of [25] who define a class
prototype as the mean encoding of the instances which belong to that class. In
the absence of an encoder, we find prototypes through class specific k-d trees [3].

To judge the quality of the counterfactuals we introduce two novel metrics
which focus on local interpretability with respect to the training data distribu-
tion. This is different from [8] who define an interpretability metric relative to a
target model. Kim et al. [14] on the other hand quantify interpretability through
a human pilot study measuring the accuracy and efficiency of the humans on a
predictive task. Luss et al. [20] also highlight the importance of good local data
representations in order to generate high quality explanations.

Another contribution of this paper is a principled approach to handling cat-
egorical variables during the counterfactual generation process. Some previously
proposed solutions are either computationally expensive [27] or do not take rela-
tionships between categories into account [9,22]. We propose using pairwise dis-
tance measures to define embeddings of categorical variables into numerical space
which allows us to define meaningful perturbations when generating counterfac-
tuals.

3 Methodology

3.1 Background

The following section outlines how the prototype loss term is constructed and
why it improves the convergence speed and interpretability. Finding a counter-
factual instance xcf = x0+δ, with both xcf and x0 ∈ X ⊆ R

D where X represents
the D-dimensional feature space, implies optimizing an objective function of the
following form:

min
δ

c · fκ(x0, δ) + fdist(δ). (1)

fκ(x0, δ) encourages the predicted class i of the perturbed instance xcf to be
different than the predicted class t0 of the original instance x0. Similar to [7],
we define this loss term as:

Lpred := fκ(x0, δ)
= max([fpred(x0 + δ)]t0 − max

i�=t0
[fpred(x0 + δ)]i,−κ), (2)

where [fpred(x0 + δ)]i is the i-th class prediction probability, and κ ≥ 0 caps
the divergence between [fpred(x0 + δ)]t0 and [fpred(x0 + δ)]i. The term fdist(δ)
minimizes the distance between x0 and xcf with the aim to generate sparse
counterfactuals. We use an elastic net regularizer [28]:

fdist(δ) = β · ‖δ‖1 + ‖δ‖22 = β · L1 + L2. (3)

While the objective function (1) is able to generate counterfactual instances, it
does not address a number of issues:
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1. xcf does not necessarily respect the training data manifold, resulting in out-
of-distribution counterfactual instances. Often a trade off needs to be made
between sparsity and interpretability of xcf.

2. The scaling parameter c of fκ(x0, δ) needs to be set within the appropriate
range before a potential counterfactual instance is found. Finding a good
range can be time consuming.

[7] aim to address the first issue by adding in an additional loss term LAE which
represents the L2 reconstruction error of xcf evaluated by an autoencoder AE
which is fit on the training set:

LAE = γ · ‖x0 + δ − AE(x0 + δ)‖22. (4)

The loss L to be minimized now becomes:

L = c · Lpred + β · L1 + L2 + LAE. (5)

The autoencoder loss term LAE penalizes out-of-distribution counterfactual
instances, but does not take the data distribution for each prediction class i
into account. This can lead to sparse but uninterpretable counterfactuals, as
illustrated by Fig. 2. The first row of Fig. 2(b) shows a sparse counterfactual 3
generated from the original 5 using loss function (5). Both visual inspection and
reconstruction of the counterfactual instance using AE in Fig. 2(e) make clear
however that the counterfactual lies closer to the distribution of a 5 and is not
interpretable as a 3. The second row adds a prototype loss term to the objective
function, leading to a less sparse but more interpretable counterfactual 6.
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Fig. 2. First row: (a) original instance and (b) uninterpretable counterfactual 3. (c),
(d) and (e) are reconstructions of (b) with respectively AE3, AE5 and AE. Second
row: (a) original instance and (b) interpretable counterfactual 6. (c), (d) and (e) are
reconstructions of (b) with respectively AE6, AE5 and AE.

The LAE loss term also does not consistently speed up the counterfactual
search process since it imposes a penalty on the distance between the proposed
xcf and its reconstruction by the autoencoder without explicitly guiding xcf

towards an interpretable solution. We address these issues by introducing an
additional loss term, Lproto.
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3.2 Prototype Loss Term

By adding in a prototype loss term Lproto, we obtain the following objective
function:

L = c · Lpred + β · L1 + L2 + LAE + Lproto, (6)

where LAE becomes optional. The aim of Lproto is twofold:

1. Guide the perturbations δ towards an interpretable counterfactual xcf which
falls in the distribution of counterfactual class i.

2. Speed up the counterfactual search process without too much hyperparameter
tuning.

To define the prototype for each class, we can reuse the encoder part of the
autoencoder from LAE. The encoder ENC(x) projects x ∈ X onto an E-
dimensional latent space R

E . We also need a representative, unlabeled sample
of the training dataset. First the predictive model is called to label the dataset
with the classes predicted by the model. Then for each class i we encode the
instances belonging to that class and order them by increasing L2 distance to
ENC(x0). Similar to [25], the class prototype is defined as the average encoding
over the K nearest instances in the latent space with the same class label:

protoi :=
1
K

K∑

k=1

ENC(xi
k) (7)

for the ordered {xi
k}K

k=1 in class i. It is important to note that the prototype is
defined in the latent space, not the original feature space.

The Euclidean distance is part of a class of distance functions called Bregman
divergences. If we consider that the encoded instances belonging to class i define
a cluster for i, then protoi equals the cluster mean. For Bregman divergences the
cluster mean yields the minimal distance to the points in the cluster [1]. Since we
use the Euclidean distance to find the closest class to x0, protoi is a suitable class
representation in the latent space. When generating a counterfactual instance
for x0, we first find the nearest prototype protoj of class j �= t0 to the encoding
of x0:

j = arg min
i�=t0

‖ENC(x0) − protoi‖2. (8)

The prototype loss Lproto can now be defined as:

Lproto = θ · ‖ENC(x0 + δ) − protoj‖22, (9)

where ENC(x0 +δ) is the encoding of the perturbed instance. As a result, Lproto

explicitly guides the perturbations towards the nearest prototype protoj �=t0 ,
speeding up the counterfactual search process towards the average encoding
of class j. This leads to more interpretable counterfactuals as illustrated by the
experiments. Algorithm 1 summarizes this approach.
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Algorithm 1. Counterfactual search with encoded prototypes
1: Parameters: β, θ (required) and c, κ and γ (optional)
2: Inputs: AE (optional) and ENC models. A sample X = {x1, . . . , xn} from training

set. Instance to explain x0.
3: Label X and x0 using the prediction function fpred:

Xi ← {x ∈ X | argmax fpred(x) = i} for each class i t0 ← argmax fpred(x0)
4: Define prototypes for each class i:

protoi ← 1
K

∑K
k=1 ENC(xi

k) for xi
k ∈ Xi where xi

k is ordered by increasing
‖ENC(x0) − ENC(xi

k)‖2 and K ≤ |Xi|
5: Find nearest prototype j to instance x0 but different from original class t0:

j ← argmini�=t0
‖ENC(x0) − protoi‖2.

6: Optimize the objective function:
δ∗ ← argminδ∈X c ·Lpred +β ·L1 +L2 +LAE +Lproto where Lproto = θ · ‖ENC(x0 +
δ) − protoj‖2

2.
7: Return xcf = x0 + δ∗

Algorithm 2. Counterfactual search with k-d trees
1: Parameters: β, θ, k (required) and c, κ (optional)
2: Input: A sample X = {x1, . . . , xn} from training set. Instance to explain x0.
3: Label X and x0 using the prediction function fpred:

Xi ← {x ∈ X | argmax fpred(x) = i} for each class i t0 ← argmax fpred(x0)
4: Build separate k-d trees for each class i using Xi

5: Find nearest prototype j to instance x0 but different from original class t0:
j ← argmini�=t0

‖x0 − xi,k‖2 where xi,k is the k-th nearest item to x0 in the k-d
tree of class i.
protoj ← xj,k

6: Optimize the objective function:
δ∗ ← argminδ∈X c ·Lpred +β ·L1 +L2 +Lproto where Lproto = θ · ‖x0 +δ −protoj‖2

2.
7: Return xcf = x0 + δ∗

3.3 Using K-D Trees as Class Representations

If we do not have a trained encoder available, we can build class representations
using k-d trees [3]. After labeling the representative training set by calling the
predictive model, we can represent each class i by a separate k-d tree built
using the instances with class label i. This approach is similar to [12] who use
class specific k-d trees to measure the agreement between a classifier and a
modified nearest neighbour classifier on test instances. For each k-d tree j �= t0,
we compute the Euclidean distance between x0 and the k-nearest item in the
tree xj,k. The closest xj,k across all classes j �= t0 becomes the class prototype
protoj . Note that we are now working in the original feature space. The loss
term Lproto is equal to:

Lproto = θ · ‖x0 + δ − protoj‖22. (10)

Algorithm 2 outlines the k-d trees approach.
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3.4 Categorical Variables

Creating meaningful perturbations for categorical data is not straightforward as
the very concept of perturbing an input feature implies some notion of rank and
distance between the values a variable can take. We approach this by inferring
pairwise distances between categories of a categorical variable based on either
model predictions (Modified Value Distance Metric) [6] or the context provided
by the other variables in the dataset (Association-Based Distance Metric) [16].
We then apply multidimensional scaling [5] to project the inferred distances into
one-dimensional Euclidean space, which allows us to perform perturbations in
this space. After applying a perturbation in this space, we map the resulting
number back to the closest category before evaluating the classifier’s prediction.

3.5 Removing Lpred

In the absence of Lproto, only Lpred encourages the perturbed instance to predict
class i �= t0. In the case of black box models where we only have access to the
model’s prediction function, Lpred can become a computational bottleneck. This
means that for neural networks, we can no longer take advantage of automatic
differentiation and need to evaluate the gradients numerically. Let us express the
gradient of Lpred with respect to the input features x as follows:

∂Lpred

∂x
=

∂fκ(x)
∂x

=
∂fκ(x)
∂fpred

∂fpred
∂x

, (11)

where fpred represents the model’s prediction function. The numerical gradient
approximation for fpred with respect to input feature k can be written as:

∂fpred
∂xk

≈ fpred(x + εk) − fpred(x − εk)
2ε

, (12)

where εk is a perturbation with the same dimension as x and taking value ε
for feature k and 0 otherwise. As a result, the prediction function needs to be
evaluated twice for each feature per gradient step just to compute ∂fpred

∂xk
. For a

28×28 MNIST image, this translates into a batch of 28 ·28 ·2 = 1568 prediction
function calls. Eliminating Lpred would therefore speed up the counterfactual
search process significantly. By using the prototypes to guide the counterfactuals,
we can remove Lpred and only call the prediction function once per gradient
update on the perturbed instance to check whether the predicted class i of x0+δ
is different from t0. This eliminates the computational bottleneck while ensuring
that the perturbed instance moves towards an interpretable counterfactual xcf

of class i �= t0.

3.6 FISTA Optimization

Like [7], we optimize our objective function by applying a fast iterative shrinkage-
thresholding algorithm (FISTA) [2] where the solution space for the output xcf =
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x0 + δ is restricted to X . The optimization algorithm iteratively updates δ with
momentum for N optimization steps. It also strips out the β · L1 regularization
term from the objective function and instead shrinks perturbations |δk| < β for
feature k to 0. The optimal counterfactual is defined as xcf = x0 + δn∗

where
n∗ = arg minn∈1,...,Nβ · ‖δn‖1 + ‖δn‖22 and the predicted class on xcf is i �= t0.

4 Experiments

The experiments are conducted on an image and tabular dataset. The first exper-
iment on the MNIST handwritten digit dataset [17] makes use of an autoencoder
to define and construct prototypes. The second experiment uses the Breast Can-
cer Wisconsin (Diagnostic) dataset [10]. The latter dataset has lower dimension-
ality so we find the prototypes using k-d trees. Finally, we illustrate our approach
for handling categorical data on the Adult (Census) dataset [10].

4.1 Evaluation

The counterfactuals are evaluated on their interpretability, sparsity and speed
of the search process. The sparsity is evaluated using the elastic net loss term
EN(δ) = β · ‖δ‖1+‖δ‖22 while the speed is measured by the time and the number
of gradient updates required until a satisfactory counterfactual xcf is found. We
define a satisfactory counterfactual as the optimal counterfactual found using
FISTA for a fixed value of c for which counterfactual instances exist.

In order to evaluate interpretability, we introduce two interpretability met-
rics IM1 and IM2. Let AEi and AEt0 be autoencoders trained specifically on
instances of classes i and t0, respectively. Then IM1 measures the ratio between
the reconstruction errors of xcf using AEi and AEt0 :

IM1(AEi,AEt0 , xcf) :=
‖x0 + δ − AEi(x0 + δ)‖22

‖x0 + δ − AEt0(x0 + δ)‖22 + ε
. (13)

A lower value for IM1 means that xcf can be better reconstructed by the autoen-
coder which has only seen instances of the counterfactual class i than by the
autoencoder trained on the original class t0. This implies that xcf lies closer to
the data manifold of counterfactual class i compared to t0, which is considered
to be more interpretable.

The second metric IM2 compares how similar the reconstructed counterfac-
tual instances are when using AEi and an autoencoder trained on all classes,
AE. We scale IM2 by the L1 norm of xcf to make the metric comparable across
classes:

IM2(AEi,AE, xcf) :=
‖AEi(x0 + δ) − AE(x0 + δ)‖22

‖x0 + δ‖1 + ε
. (14)

A low value of IM2 means that the reconstructed instances of xcf are very similar
when using either AEi or AE. As a result, the data distribution of the counter-
factual class i describes xcf as good as the distribution over all classes. This
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implies that the counterfactual is interpretable. Figure 2 illustrates the intuition
behind IM1 and IM2.

The uninterpretable counterfactual 3 (xcf,1) in the first row of Fig. 2(b) has
an IM1 value of 1.81 compared to 1.04 for xcf,2 in the second row because the
reconstruction of xcf,1 by AE5 in Fig. 2(d) is better than by AE3 in Fig. 2(c). The
IM2 value of xcf,1 is higher as well—0.15 compared to 0.12 for xcf,2)—since the
reconstruction by AE in Fig. 2(e) yields a clear instance of the original class 5.

Finally, for MNIST we apply a multiple model comparison test based on
the maximum mean discrepancy [18] to evaluate the relative interpretability of
counterfactuals generated by each method.

4.2 Handwritten Digits

The first experiment is conducted on the MNIST dataset. The experiment ana-
lyzes the impact of Lproto on the counterfactual search process with an encoder
defining the prototypes for K equal to 5. We further investigate the importance
of the LAE and Lpred loss terms in the presence of Lproto. We evaluate and
compare counterfactuals obtained by using the following loss functions:

A = c · Lpred + β · L1 + L2

B = c · Lpred + β · L1 + L2 + LAE

C = c · Lpred + β · L1 + L2 + Lproto

D = c · Lpred + β · L1 + L2 + LAE + Lproto

E = β · L1 + L2 + Lproto

F = β · L1 + L2 + LAE + Lproto

(15)

For each of the ten classes, we randomly sample 50 numbers from the test
set and find counterfactual instances for 3 different random seeds per sample.
This brings the total number of counterfactuals to 1,500 per loss function.

The model used to classify the digits is a convolutional neural network with
2 convolution layers, each followed by a max-pooling layer. The output of the
second pooling layer is flattened and fed into a fully connected layer followed by a
softmax output layer over the 10 possible classes. For objective functions B to F ,
the experiment also uses a trained autoencoder for the LAE and Lproto loss terms.
The autoencoder has 3 convolution layers in the encoder and 3 deconvolution
layers in the decoder. Full details of the classifier and autoencoder, as well as
the hyperparameter values used can be found in the supplementary material.

Results. Table 1 summarizes the findings for the speed and interpretability
measures.

Speed. Figure 3(a) shows the mean time and number of gradient steps required
to find a satisfactory counterfactual for each objective function. We also show
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Fig. 3. (a) Mean time in seconds and number of gradient updates needed to find a
satisfactory counterfactual for objective functions A to F across all MNIST classes. The
error bars represent the standard deviation to illustrate variability between approaches.
(b) Mean IM1 and IM2 for objective functions A to F across all MNIST classes (lower
is better). The error bars represent the 95% confidence bounds. (c) Sparsity measure
EN(δ) for loss functions A to F . The error bars represent the 95% confidence bounds.

the standard deviations to illustrate the variability between the different loss
functions. For loss function A, the majority of the time is spent finding a good
range for c to find a balance between steering the perturbed instance away from
the original class t0 and the elastic net regularization. If c is too small, the L1

regularization term cancels out the perturbations, but if c is too large, xcf is not
sparse anymore.

The aim of LAE in loss function B is not to speed up convergence towards a
counterfactual instance, but to have xcf respect the training data distribution.
This is backed up by the experiments. The average speed improvement and
reduction in the number of gradient updates compared to A of respectively 36%
and 54% is significant but very inconsistent given the high standard deviation.
The addition of Lproto in C however drastically reduces the time and iterations
needed by respectively 77% and 84% compared to A. The combination of LAE

and Lproto in D improves the time to find a counterfactual instance further: xcf

is found 82% faster compared to A, with the number of iterations down by 90%.

Table 1. Summary statistics with 95% confidence bounds for each loss function for
the MNIST experiment.

Method Time (s) Gradient steps IM1 IM2 (×10)

A 13.06 ± 0.23 5158 ± 82 1.56 ± 0.03 1.65 ± 0.04

B 8.40 ± 0.38 2380 ± 113 1.36 ± 0.02 1.60 ± 0.03

C 3.06 ± 0.11 835 ± 36 1.16 ± 0.02 1.09 ± 0.02

D 2.31 ± 0.04 497 ± 10 1.21 ± 0.02 1.26 ± 0.03

E 1.93 ± 0.10 777 ± 44 1.10 ± 0.02 1.10 ± 0.03

F 4.01 ± 0.05 1116 ± 14 1.19 ± 0.02 1.27 ± 0.03
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So far we have assumed access to the model architecture to take advantage
of automatic differentiation during the counterfactual search process. Lpred can
however form a computational bottleneck for black box models because numer-
ical gradient calculation results in a number of prediction function calls propor-
tionate to the dimensionality of the input features. Consider A′ the equivalent
of loss function A where we can only query the model’s prediction function.
E and F remove Lpred which results in approximately a 100x speed up of the
counterfactual search process compared to A′. The results can be found in the
supplementary material.

Quantitative Interpretability. IM1 peaks for loss function A and improves by
respectively 13% and 26% as LAE and Lproto are added (Fig. 3(b)). This implies
that including Lproto leads to more interpretable counterfactual instances than
LAE which explicitly minimizes the reconstruction error using AE. Removing
Lpred in E yields an improvement over A of 29%. While Lpred encourages the
perturbed instance to predict a different class than t0, it does not impose any
restrictions on the data distribution of xcf. Lproto on the other hand implic-
itly encourages the perturbed instance to predict i �= t0 while minimizing the
distance in latent space to a representative distribution of class i.
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Fig. 4. (a) Shows the original instance, (b) to (g) on the first row illustrate counter-
factuals generated by using loss functions A to F . (b) to (g) on the second row show
the reconstructed counterfactuals using AE.

The picture for IM2 is similar. Adding in Lproto brings IM2 down by 34%
while the combination of LAE and Lproto only reduces the metric by 24%. For
large values of K the prototypes are further from ENC(x0) resulting in larger
initial perturbations towards the counterfactual class. In this case, LAE ensures
the overall distribution is respected which makes the reconstructed images of AEi

and AE more similar and improves IM2. The impact of K on IM1 and IM2 is
illustrated in the supplementary material. The removal of Lpred in E and F has
little impact on IM2. This emphasizes that Lproto—optionally in combination
with LAE—is the dominant term with regards to interpretability.

Finally, performing kernel multiple model comparison tests [18] indicates
that counterfactuals generated by methods not including the prototype term (A
and B) result in high rejection rates for faithfully modelling the predicted class
distribution (see supplementary material).
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Visual Interpretability. Figure 4 shows counterfactual examples on the first
row and their reconstructions using AE on the second row for different loss func-
tions. The counterfactuals generated with A or B are sparse but uninterpretable
and are still close to the manifold of a 2. Including Lproto in Fig. 4(d) to (g)
leads to a clear, interpretable 0 which is supported by the reconstructed coun-
terfactuals on the second row. More examples can be found in the supplementary
material.

Sparsity. The elastic net evaluation metric EN(δ) is also the only loss term
present in A besides Lpred. It is therefore not surprising that A results in the
most sparse counterfactuals (Fig. 3(c)). The relative importance of sparsity in
the objective function goes down as LAE and Lproto are added. Lproto leads to
more sparse counterfactuals than LAE (C and E), but this effect diminishes for
large K.

4.3 Breast Cancer Wisconsin (Diagnostic) Dataset

The second experiment uses the Breast Cancer Wisconsin (Diagnostic) dataset
which describes characteristics of cell nuclei in an image and labels them as
malignant or benign. The real-valued features for the nuclei in the image are the
mean, error and worst values for characteristics like the radius, texture or area
of the nuclei. The dataset contains 569 instances with 30 features each. The first
550 instances are used for training, the last 19 to generate the counterfactuals.
For each instance in the test set we generate 5 counterfactuals with different
random seeds. Instead of an encoder we use k-d trees to find the prototypes.
We evaluate and compare counterfactuals obtained by using the following loss
functions:

A = c · Lpred + β · L1 + L2

B = c · Lpred + β · L1 + L2 + Lproto

C = β · L1 + L2 + Lproto

(16)

The model used to classify the instances is a 2 layer feedforward neural network
with 40 neurons in each layer. More details can be found in the supplementary
material.

Results. Table 2 summarizes the findings for the speed and interpretability
measures.

Speed. Lproto drastically reduces the time and iterations needed to find a sat-
isfactory counterfactual. Loss function B finds xcf in 13% of the time needed
compared to A while bringing the number of gradient updates down by 91%.
Removing Lpred and solely relying on the prototype to guide xcf reduces the
search time by 92% and the number of iterations by 93%.
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Quantitative Interpretability. Including Lproto in the loss function reduces
IM1 and IM2 by respectively 55% and 81%. Removing Lpred in C results in
similar improvements over A.

Sparsity. Loss function A yields the most sparse counterfactuals. Sparsity and
interpretability should however not be considered in isolation. The dataset has
10 attributes (e.g. radius or texture) with 3 values per attribute (mean, error
and worst). B and C which include Lproto perturb relatively more values of the
same attribute than A which makes intuitive sense. If for instance the worst
radius increases, the mean should typically follow as well. The supplementary
material supports this statement.

Table 2. Summary statistics with 95% confidence bounds for each loss function for
the Breast Cancer Wisconsin (Diagnostic) experiment.

Method Time (s) Gradient steps IM1 IM2 (×10)

A 2.68 ± 0.20 2752 ± 203 2.07 ± 0.16 7.65 ± 0.79

B 0.35 ± 0.03 253 ± 33 0.94 ± 0.10 1.47 ± 0.15

C 0.22 ± 0.02 182 ± 30 0.88 ± 0.10 1.41 ± 0.15

−0.05 0.00 0.05
Numerical value

Dropout
High School grad

Associates
Bachelors
Masters

Prof-School
Doctorate

0.0 0.5 1.0
Numerical value

High School grad
Bachelors
Dropout
Associates
Masters
Prof-School
Doctorate

Fig. 5. Left: Embedding of the categorical variable “Education” in numerical space
using association based distance metric (ABDM). Right: Frequency based embedding.

4.4 Adult (Census) Dataset

The Adult (Census) dataset consists of individuals described by a mixture of
numerical and categorical features. The predictive task is to determine whether
a person earns more than $50k/year. As the dataset contains categorical features,
it is important to use a principled approach to define perturbations over these
features. Figure 5 illustrates our approach using the association based distance
metric [16] (ABDM) to embed the feature “Education” into one dimensional
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numerical space over which perturbations can be defined. The resulting embed-
ding defines a natural ordering of categories in agreement with common sense
for this interpretable variable. By contrast, the frequency embedding method
as proposed by [9] does not capture the underlying relation between categorical
values.

Since ABDM infers distances from other variables by computing dissimilarity
based on the K-L divergence, it can break down if there is independence between
categories. In such cases one can use MVDM [6] which uses the difference between
the conditional model prediction probabilities of each category. A counterfactual
example changing categorical features is shown in Fig. 1.

5 Discussion

In this paper we introduce a model agnostic counterfactual search process guided
by class prototypes. We show that including a prototype loss term in the objec-
tive results in more interpretable counterfactual instances as measured by two
novel interpretability metrics. We demonstrate that prototypes speed up the
search process and remove the numerical gradient evaluation bottleneck for black
box models thus making our method more appealing for practical applications.
By fixing selected features to the original values during the search process we
can also obtain actionable counterfactuals which describe concrete steps to take
to change a model’s prediction. To facilitate the practical use of counterfactual
explanations we provide an open source library with our implementation of the
method.
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