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Abstract. In graph analysis community detection and node representa-
tion learning are two highly correlated tasks. In this work, we propose an
efficient generative model called J-ENC for learning Joint Embedding
for Node representation and Community detection. J-ENC learns a
community-aware node representation, i.e., learning of the node embed-
dings are constrained in such a way that connected nodes are not only
“closer” to each other but also share similar community assignments.
This joint learning framework leverages community-aware node embed-
dings for better performance on these tasks: node classification, overlap-
ping community detection and non-overlapping community detection. We
demonstrate on several graph datasets that J-ENC effectively outper-
forms many competitive baselines on these tasks. Furthermore, we show
that J-ENC not only has quite robust performance with varying hyper-
parameters but also is computationally efficient than its competitors.

1 Introduction

Graphs are flexible data structures that model complex relationships among
entities, i.e. data points as nodes and the relations between nodes via edges.
One important task in graph analysis is community detection, where the objec-
tive is to cluster nodes into multiple groups (communities). Each community
is a set of densely connected nodes. The communities can be overlapping or
non-overlapping, depending on whether they share some nodes or not. Several
algorithmic [1,5] and probabilistic approaches [9,20,34,38] to community detec-
tion have been proposed. Another fundamental task in graph analysis is learning
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the node embeddings. These embeddings can then be used for downstream tasks
like graph visualization [8,28,33,34] and classification [3,27].

In the literature, these tasks are usually treated separately. Although the
standard graph embedding methods capture the basic connectivity, the learning
of the node embeddings is independent of community detection. For instance, a
simple approach can be to get the node embeddings via DeepWalk [23] and get
community assignments for each node by using k-means or Gaussian mixture
model. Looking from the other perspective, methods like Bigclam [36], that
focus on finding the community structure in the dataset, perform poorly for
node-representation tasks e.g. node classification. This motivates us to study
the approaches that jointly learn community-aware node embeddings.

Recently several approaches, like CNRL [30], ComE [4], vGraph [26] etc., have
been proposed to learn the node embeddings and detect communities simultane-
ously in a unified framework. Several studies have shown that community detec-
tion is improved by incorporating the node representation in the learning process
[3,18]. The intuition is that the global structure of graphs learned during commu-
nity detection can provide useful context for node embeddings and vice versa.

The joint learning methods (CNRL, ComE and vGraph) learn two embed-
dings for each node. One node embedding is used for the node representation task.
The second node embedding is the “context” embedding of the node which aids
in community detection. As CNRL and ComE are based on Skip-Gram [22] and
DeepWalk [23], they inherit “context” embedding from it for learning the neigh-
bourhood information of the node. vGraph also requires two node embeddings for
parameterizing two different distributions. In contrast, we propose learning a sin-
gle community-aware node representation which is directly used for both tasks.

In this paper, we propose an efficient generative model called J-ENC for
jointly learning both community detection and node representation. The under-
lying intuition behind J-ENC is that every node can be a member of one or more
communities. However, the node embeddings should be learned in such a way
that connected nodes are “closer” to each other than unconnected nodes. More-
over, connected nodes should have similar community assignments. Formally, we
assume that for i-th node, the node embeddings zi are generated from a prior dis-
tribution p(z). Given zi, the community assignments ci are sampled from p(ci|zi),
which is parameterized by node and community embeddings. In order to generate
an edge (i, j), we sample another node embedding zj from p(z) and respective
community assignment cj from p(cj |zj). Afterwards, the node embeddings and
the respective community assignments of node pairs are fed to a decoder. The
decoder ensures that embeddings of both the nodes and the communities of con-
nected nodes share high similarity. This enables learning such node embeddings
that are useful for both community detection and node representation tasks.

We validate the effectiveness of our approach on several real-world graph
datasets. In Sect. 4, we show empirically that J-ENC is able to outperform the
baseline methods including the direct competitors on all three tasks i.e. node
classification, overlapping community detection and non-overlapping community
detection. Furthermore, we compare the computational cost of training different
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algorithms. J-ENC is up to 40x more time-efficient than its competitors. We also
conduct hyperparameter sensitivity analysis which demonstrates the robustness
of our approach. Our main contributions are summarized below:

– We propose an efficient generative model called J-ENC for joint community
detection and node representation learning.

– We adopt a novel approach and argue that a single node embedding is suffi-
cient for learning both the representation of the node itself and its context.

– Training J-ENC is extremely time-efficient in comparison to its competitors.

2 Related Work

2.1 Community Detection

Early community detection algorithms are inspired from clustering algorithms
[35]. For instance, spectral clustering [29] is applied to the graph Laplacian
matrix for extracting the communities. Similarly, several matrix factorization
based methods have been proposed to tackle the community detection problem.
For example, Bigclam [36] treats the problem as a non-negative matrix factoriza-
tion (NMF) task. Another method CESNA [38] extends Bigclam by modelling
the interaction between the network structure and the node attributes. Some
generative models, like vGraph [26], Circles [20] etc., have also been proposed to
detect communities in a graph.

2.2 Node Representation Learning

Many successful algorithms which learn node representation in an unsupervised
way are based on random walk objectives [10,11,23]. Some known issues with
random-walk based methods (e.g. DeepWalk, node2vec etc.) are: (1) They sacri-
fice the structural information of the graph by putting over-emphasis on the
proximity information [24] and (2) great dependence of the performance on
hyperparameters (walk-length, number of hops etc.) [10,23]. Some interesting
GCN based approaches include graph autoencoders e.g. GAE and VGAE [17]
and DGI [32].

2.3 Joint Community Detection and Node Representation Learning

In the literature, several attempts have been made to tackle both these tasks
in a single framework. Most of these methods propose an alternate optimiza-
tion process, i.e. learn node embeddings and improve community assignments
with them and vice versa [4,30]. Some approaches (CNRL [30], ComE [4]) are
inspired from random walk, thus they inherit the issues discussed above. Others,
like GEMSEC [25], are limited to the detection of non-overlapping communi-
ties. Some generative models like CommunityGAN [13] and vGraph [26] also
jointly learn community assignments and node embeddings. CNRL, ComE and
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vGraph require learning two embeddings for each node for simultaneously tack-
ling the two tasks. Unlike them, J-ENC learns a single community-aware node
representation which is directly used for both tasks.

It is pertinent to highlight that although both vGraph and J-ENC adopt
a variational approach but the underlying models are quite different. vGraph
assumes that each node can be represented as a mixture of multiple communi-
ties and is described by a multinomial distribution over communities, whereas
J-ENC models the node embedding by a single distribution. For a given node,
vGraph, first draws a community assignment and then a connected neighbor
node is generated based on the assignment. Whereas, J-ENC draws the node
embedding from prior distribution and then community assignment is condi-
tioned on a single node only. In simple terms, vGraph also needs edge infor-
mation in the generative process whereas J-ENC does not require it. J-ENC
relies on the decoder to ensure that embeddings of the connected nodes and their
communities share high similarity with each other.

3 Methodology

3.1 Problem Formulation

Suppose an undirected graph G = (V, E) with the adjacency matrix A ∈ R
N×N

and a matrix X ∈ R
N×F of F -dimensional node features, N being the number of

nodes. Given K as the number of communities, we aim to jointly learn the node
embeddings and the community embeddings following a variational approach
such that:

– One or more communities can be assigned to every node.
– The node embeddings can be used for both community detection and node

classification.

3.2 Variational Model

Generative Model: Let us denote the latent node embedding and community
assignment for i-th node by the random variables zi ∈ R

d and ci respectively.
The generative model is given by:

p(A) =
∫ ∑

c

p(Z, c,A)dZ, (1)

where c = [c1, c2, · · · , cN ] and the matrix Z = [z1,z2, · · · ,zN ] stacks the node
embeddings. The joint distribution in (1) is mathematically expressed as

p(Z, c,A) = p(Z) pθ(c|Z) pθ(A|c,Z), (2)

where θ denotes the model parameters. Let us denote elements of A by aij . Fol-
lowing existing approaches [14,17], we consider zi to be i.i.d random variables.
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Furthermore, assuming ci|zi to be i.i.d random variables, the joint distributions
in (2) can be factorized as

p(Z) =
N∏

i=1

p(zi) (3)

pθ(c|Z) =
N∏

i=1

pθ(ci|zi) (4)

pθ(A|c,Z) =
∏
i,j

pθ(aij |ci, cj ,zi,zj), (5)

where Eq. (5) assumes that the edge decoder pθ(aij |ci, cj ,zi,zj) depends only
on ci, cj ,zi and zj .

Inference Model: We aim to learn the model parameters θ such that
log(pθ(A)) is maximized. In order to ensure computational tractability, we intro-
duce the approximate posterior

qφ(Z, c|I) =
∏

i

qφ(zi, ci|I) (6)

=
∏

i

qφ(zi|I)qφ(ci|zi, I), (7)

where I = (A,X) if node features are available, otherwise I = A. We maxi-
mize the corresponding ELBO bound (for derivation, refer to the supplementary
material), given by

LELBO ≈ −
N∑

i=1

DKL

(
qφ(zi|I) || p(zi)

)

−
N∑

i=1

1
M

M∑
m=1

DKL

(
qφ(ci|z(m)

i , I) || pθ(ci|z(m)
i )

)

+
∑

(i,j)∈E
E(z i,zj ,ci,cj)∼qφ(z i,zj ,ci,cj |I)

{
log

(
pθ(aij |ci, cj ,zi,zj)

)}
, (8)

where DKL(.||.) represents the KL-divergence between two distributions. The
distribution qφ(zi,zj , ci, cj |I) in the third term of Eq. (8) is factorized into two
conditionally independent distributions i.e.

qφ(zi,zj , ci, cj |I) = qφ(zi, ci|I)qφ(zj , cj |I). (9)
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3.3 Design Choices

In Eq. (3), p(zi) is chosen to be the standard gaussian distribution for all i. The
corresponding approximate posterior qφ(zi|I) in Eq. (7), used as node embed-
dings encoder, is given by

qφ(zi|I) = N (
μi(I),diag(σ2

i(I))
)
. (10)

The parameters of qφ(zi|I) can be learnt by any encoder network e.g. graph
convolutional network [16], graph attention network [31], GraphSAGE [11] or
even two matrices to learn μi(I) and diag(σ2

i(I)). Samples are then generated
using reparametrization trick [6].

For parameterizing pθ(ci|zi) in Eq. (4), we introduce community embeddings
{g1, · · · , gK}; gk ∈ R

d. The distribution pθ(ci|zi) is then modelled as the soft-
max of dot products of zi with gk, i.e.

pθ(ci = k|zi) =
exp(< zi, gk >)

K∑
�=1

exp(< zi, g� >)
. (11)

The corresponding approximate posterior qφ(ci = k|zi, I) in Eq. (7) is
affected by the node embedding zi as well as the neighborhood. To design this,
our intuition is to consider the similarity of gk with the embedding zi as well
as with the embeddings of the neighbors of the i-th node. The overall similarity
with neighbors is mathematically formulated as the average of the dot products
of their embeddings. Afterwards, a hyperparameter α is introduced to control
the bias between the effect of zi and the set Ni of the neighbors of the i-th node.
Finally, a softmax is applied, i.e.

qφ(ci = k|zi, I) = softmax
(
α < zi, gk >

+ (1 − α)
1

|Ni|
∑
j∈Ni

< zj , gk >
)
. (12)

Hence, Eq. (12) ensures that graph structure information is employed to learn
community assignments instead of relying on an extraneous node embedding as
done in [4,26]. Finally, the choice of edge decoder in Eq. (5) is motivated by the
intuition that the nodes connected by edges have a high probability of belonging
to the same community and vice versa. Therefore we model the edge decoder as:

pθ(aij |ci = �, cj = m,zi,zj) =
σ(< zi, gm >) + σ(< zj , g� >)

2
. (13)

For better reconstructing the edges, Eq. (13) makes use of the community
embeddings, node embeddings and community assignment information simul-
taneously. This helps in learning better node representations by leveraging the
global information about the graph structure via community detection. On the
other hand, this also forces the community assignment information to exploit
the local graph structure via node embeddings and edge information.
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3.4 Practical Aspects

The third term in Eq. (8) is estimated in practice using the samples generated by
the approximate posterior. This term is equivalent to the negative of binary cross-
entropy (BCE) loss between observed edges and reconstructed edges. Since com-
munity assignment follows a categorical distribution, we use Gumbel-softmax
[12] for backpropagation of the gradients. As for the second term of Eq. (8), it
is also enough to set M = 1, i.e. use only one sample per input node.

For inference, non-overlapping community assignment can be obtained for
i-th node as

Ci = arg max
k∈{1,··· ,K}

qφ(ci = k|zi, I). (14)

To get overlapping community assignments for i-th node, we can threshold its
weighted probability vector at ε, a hyperparameter, as follows

Ci =
{

k

∣∣∣∣ qφ(ci = k|zi, I)
max

�
qφ(ci = �|zi, I)

≥ ε
}

, ε ∈ [0, 1]. (15)

3.5 Complexity

Computation of dot products for all combinations of node and community
embeddings takes O(NKd) time. Solving Eq. (12) further requires calculation
of mean of dot products over the neighborhood for every node, which takes
O(|E|K) computations overall as we traverse every edge for every community.
Finally, we need softmax over all communities for every node in Eq. (11) and
Eq. (12) which takes O(NK) time. Equation (13) takes O(|E|) time for all edges
as we have already calculated the dot products. As a result, the overall complex-
ity becomes O(|E|K + NKd). This complexity is quite low compared to other
algorithms designed to achieve similar goals [4,39].

4 Experiments

4.1 Synthetic Example

We start with a synthetic dataset, consisting of 3 communities with 5 points
per community. This dataset is actually a random partition graph generated by
the python package networkx. The encoder simply consists of two matrices that
give μi(I) and diag(σ2

i(I)). The results of the community assignments discov-
ered by J-ENC are given in Fig. 1, where the node sizes are reciprocal to the
confidence of J-ENC in the community assignments. We choose 3 communities
for demonstration because the probabilistic community assignments in such case
can be thought of as rgb values for coloring the nodes. It can be seen that J-
ENC discovers the correct community structure. However, the two bigger nodes
in the center can be assigned to more than one communities as J-ENC is not
very confident in case of these nodes. This is evident from the colors that are a
mix of red, green and blue. We now proceed to the experiments on real-world
datasets.
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4.2 Datasets

We have selected 18 different datasets ranging from 270 to 126,842 edges. For
non-overlapping community detection and node classification, we use 5 the cita-
tion datasets [2,40]. The remaining datasets [20,37], used for overlapping com-
munity detection, are taken from SNAP repository [19]. Following [26], we take
5 biggest ground truth communities for youtube, amazon and dblp. Moreover,
we also analyse the case of large number of communities. For this purpose, we
prepare two subsets of amazon dataset by randomly selecting 500 and 1000 com-
munities from 2000 smallest communities in the amazon dataset (Table 1).

Fig. 1. Visualization of community
assignments discovered by J-ENC in
the synthetic dataset of 15 points
divided in three communities.

Table 1. Every dataset has |V| nodes, |E|
edges, K communities and |F | features.
|F | = N/A means that either the features
were missing or not used.

Dataset |V| |E| K |F | Overlap

CiteSeer 3327 9104 6 3703 N

CiteSeer-full 4230 10674 6 602 N

Cora 2708 10556 7 1433 N

Cora-ML 2995 16316 7 2879 N

Cora-full 19793 126842 70 8710 N

fb0 333 2519 24 N/A Y

fb107 1034 26749 9 N/A Y

fb1684 786 14024 17 N/A Y

fb1912 747 30025 46 N/A Y

fb3437 534 4813 32 N/A Y

fb348 224 3192 14 N/A Y

fb414 150 1693 7 N/A Y

fb698 61 270 13 N/A Y

Youtube 5346 24121 5 N/A Y

Amazon 794 2109 5 N/A Y

Amazon500 1113 3496 500 N/A Y

Amazon1000 1540 4488 1000 N/A Y

Dblp 24493 89063 5 N/A Y

4.3 Baselines

For overlapping community detection, we compare with the following compet-
itive baselines: MNMF [34] learns community membership distribution by
using joint non-negative matrix factorization with modularity based regulariza-
tion. BIGCLAM [36] also formulates community detection as a non-negative
matrix factorization (NMF) task. It simultaneously optimizes the model likeli-
hood of observed links and learns the latent factors which represent community
affiliations of nodes. CESNA [38] extends BIGCLAM by statistically modelling
the interaction between the network structure and the node attributes. Circles
[20] introduces a generative model for community detection in ego-networks by
learning node similarity metrics for every community. SVI [9] formulates mem-
bership of nodes in multiple communities by a Bayesian model of networks.
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vGraph [26] simultaneously learns node embeddings and community assign-
ments by modelling the nodes as being generated from a mixture of commu-
nities. vGraph+, a variant further incorporates regularization to weigh local
connectivity. ComE [4] jointly learns community and node embeddings by using
gaussian mixture model formulation. CNRL [30] enhances the random walk
sequences (generated by DeepWalk, node2vec etc.) to jointly learn community
and node embeddings. CommunityGAN (ComGAN)is a generative adversar-
ial model for learning node embeddings such that the entries of the embedding
vector of each node refer to the membership strength of the node to different
communities. Lastly, we compare the results with the communities obtained by
applying k-means to the learned embeddings of DGI [32].

For non-overlapping community detection and node classification, in addi-
tion to MNMF, DGI, CNRL, CommunityGAN, vGraph and ComE, we compare
J-ENC with the following baselines: DeepWalk [23] makes use of SkipGram
[22] and truncated random walks on network to learn node embeddings. LINE
[27] learns node embeddings while attempting to preserve first and second order
proximities of nodes. Node2Vec [10] learns the embeddings using biased ran-
dom walk while aiming to preserve network neighborhoods of nodes. Graph
Autoencoder (GAE) [17] extends the idea of autoencoders to graph datasets.
We also include its variational counterpart i.e. VGAE. GEMSEC is a sequence
sampling-based learning model which aims to jointly learn the node embeddings
and clustering assignments.

4.4 Settings

For overlapping community detection, we learn mean and log-variance
matrices of 16-dimensional node embeddings. We set α = 0.9 and ε = 0.3 in all
our experiments. Following [17], we first pre-train a variational graph autoen-
coder. We perform gradient descent with Adam optimizer [15] and learning rate
= 0.01. Community assignments are obtained using Eq. (15). For the baselines,
we employ the results reported by [26]. For evaluating the performance, we use
F1-score and Jaccard similarity.

For non-overlapping community detection, since the default imple-
mentations of most the baselines use 128 dimensional embeddings, for we use
d = 128 for fair comparison. Equation (14) is used for community assignments.
For vGraph, we use the code provided by the authors. We employ normalized
mutual information (NMI) and adjusted random index (ARI) as evaluation met-
rics.

For node classification, we follow the training split used in various previous
works [16,32,40], i.e. 20 nodes per class for training. We train logistic regression
using LIBLINEAR [7] solver as our classifier and report the evaluation results
on rest of the nodes. For the algorithms that do not use node features, we train
the classifier by appending the raw node features with the learnt embeddings.
For evaluation, we use F1-macro and F1-micro scores.

All the reported results are the average over five runs. Further implementa-
tion details can be found in: https://github.com/RayyanRiaz/gnn comm det.

https://github.com/RayyanRiaz/gnn_comm_det
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4.5 Discussion of Results

Tables 2 and 3 summarize the results of the performance comparison for the
overlapping community detection tasks.

Table 2. F1 scores (%) for overlapping communities. Best and second best values are
bold and underlined respectively.

Dataset MNMF Bigclam CESNA Circles SVI vGraph vGraph+ ComE CNRL ComGan DGI J-ENC

fb0 14.4 29.5 28.1 28.6 28.1 24.4 26.1 31.1 11.5 35.0 27.4 34.7

fb107 12.6 39.3 37.3 24.7 26.9 28.2 31.8 39.7 20.2 47.5 35.8 59.7

fb1684 12.2 50.4 51.2 28.9 35.9 42.3 43.8 52.9 38.5 47.6 42.8 56.4

fb1912 14.9 34.9 34.7 26.2 28.0 25.8 37.5 28.7 8.0 35.6 32.6 45.8

fb3437 13.7 19.9 20.1 10.1 15.4 20.9 22.7 21.3 3.9 39.3 19.7 50.2

fb348 20.0 49.6 53.8 51.8 46.1 55.4 53.1 46.2 34.1 55.8 54.7 58.2

fb414 22.1 58.9 60.1 48.4 38.9 64.7 66.9 55.3 25.3 43.9 56.9 69.6

fb698 26.6 54.2 58.7 35.2 40.3 54.0 59.5 45.8 16.4 58.2 52.2 64.0

Youtube 59.9 43.7 38.4 36.0 41.4 50.7 52.2 65.5 51.4 43.6 47.8 67.3

Amazon 38.2 46.4 46.8 53.3 47.3 53.3 53.2 50.1 53.5 51.4 44.7 58.1

Amazon500 30.1 52.2 57.3 46.2 41.9 61.2 60.4 59.8 38.4 59.3 33.8 67.6

Amazon1000 19.3 28.6 30.8 25.9 21.6 54.3 47.3 50.3 27.1 52.7 37.7 60.5

Dblp 21.8 23.6 35.9 36.2 33.7 39.3 39.9 47.1 46.8 34.9 44.0 53.9

Table 3. Jaccard scores (%) for overlapping communities. Best and second best values
are bold and underlined respectively.

Dataset MNMF Bigclam CESNA Circles SVI vGraph vGraph+ ComE CNRL ComGan DGI J-ENC

fb0 08.0 18.5 17.3 18.6 17.6 14.6 15.9 19.5 06.8 24.1 16.8 24.7

fb107 06.9 27.5 27.0 15.5 17.2 18.3 21.7 28.7 11.9 38.5 25.3 46.8

fb1684 06.6 38.0 38.7 18.7 24.7 29.2 32.7 40.3 25.8 37.9 38.8 42.5

fb1912 08.4 24.1 23.9 16.7 20.1 18.6 28.0 18.5 04.6 13.5 22.5 37.3

fb3437 07.7 11.5 11.7 05.5 09.0 12.0 13.3 12.5 02.0 33.4 11.6 36.2

fb348 11.3 35.9 40.0 39.3 33.6 41.0 40.5 34.4 21.7 23.2 41.8 43.5

fb414 12.8 47.1 47.3 34.2 29.3 51.8 55.9 42.2 15.4 53.6 46.4 58.4

fb698 16.0 41.9 45.9 22.6 30.0 43.6 47.7 33.8 09.6 46.9 42.1 50.4

Youtube 46.7 29.3 24.2 22.1 28.7 34.3 34.8 52.5 35.5 44.0 32.7 53.3

Amazon 25.2 35.1 35.0 36.7 36.4 36.9 36.9 34.6 38.7 38.0 29.1 41.9

Amazon500 20.8 51.2 53.8 47.2 45.0 59.1 59.6 58.4 41.1 57.3 23.3 64.9

Amazon1000 20.3 26.8 28.9 24.9 23.6 54.3 49.7 52.0 26.9 54.1 23.2 57.1

Dblp 20.9 13.8 22.3 23.3 20.9 25.0 25.1 27.9 32.8 25.0 29.2 37.3
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Table 4. Non-overlapping community detection results. Best and second best values
are bold and underlined respectively.

Alg. NMI(%) ARI(%)

CiteSeer CiteSeer-full Cora Cora-ML Cora-full CiteSeer CiteSeer-full Cora Cora-ML Cora-full

MNMF 14.1 09.4 19.7 37.8 42.0 02.6 00.4 02.9 24.1 06.1

DeepWalk 08.8 15.4 39.7 43.2 48.5 09.5 16.4 31.2 33.9 22.5

LINE 08.7 13.0 32.8 42.3 40.3 03.3 03.7 14.9 32.7 11.7

Node2Vec 14.9 22.3 39.7 39.6 48.1 08.1 10.5 25.8 27.9 18.8

GAE 17.4 55.1 39.7 48.3 48.3 14.1 50.6 29.3 41.8 18.3

VGAE 16.3 48.4 40.8 48.3 47.0 10.1 40.6 34.7 42.5 17.9

DGI 37.8 56.7 50.1 46.2 39.9 38.1 50.8 44.7 42.1 12.1

GEMSEC 11.8 11.1 27.4 18.1 10.0 00.6 01.0 04.8 01.0 00.2

CNRL 13.6 23.3 39.4 42.9 47.7 12.8 20.2 31.9 32.5 22.9

ComGAN 03.2 16.2 05.7 11.5 15.0 01.2 04.9 03.2 06.7 00.6

vGraph 09.0 07.6 26.4 29.8 41.7 05.1 04.2 12.7 21.6 14.9

ComE 18.8 32.8 39.6 47.6 51.2 13.8 20.9 34.2 37.2 19.7

J-ENC 38.5 59.0 52.7 56.3 55.2 35.2 60.3 45.1 49.8 28.8

Table 5. Node classification results. Best and second best values are bold and under-
lined respectively.

Alg. F1-macro (%) F1-micro (%)

CiteSeer CiteSeer-full Cora Cora-ML Cora-full CiteSeer CiteSeer-full Cora Cora-ML Cora-full

MNMF 57.4 68.6 60.9 64.2 30.4 60.8 68.1 62.7 64.2 32.9

DeepWalk 49.0 56.6 69.7 75.8 41.7 52.0 57.3 70.2 75.6 48.3

LINE 55.0 60.2 68.0 75.3 39.4 57.7 60.0 68.3 74.6 42.1

Node2Vec 55.2 61.0 71.3 78.4 42.3 57.8 61.5 71.4 78.6 48.1

GAE 57.9 79.9 71.2 76.5 36.6 61.6 79.6 73.5 77.6 41.8

VGAE 59.1 74.4 70.4 75.2 32.4 62.2 74.4 72.0 76.4 37.7

DGI 62.6 82.1 71.1 72.6 16.5 67.9 81.8 73.3 75.4 21.1

GEMSEC 37.5 53.3 60.3 70.6 35.8 39.4 53.5 59.4 72.5 38.9

CNRL 50.0 58.0 70.4 77.8 41.3 53.2 57.9 70.4 78.4 45.9

ComGAN 55.9 65.7 56.6 62.5 27.7 59.1 64.9 58.5 62.8 29.4

vGraph 30.8 28.5 44.7 59.8 33.4 32.1 28.5 44.6 62.3 37.6

ComE 59.6 69.9 71.6 78.5 42.2 63.1 70.2 74.2 79.5 47.8

J-ENC 64.8 76.8 73.1 80.2 43.1 68.2 77.0 75.6 82.0 49.6

First, we note that our proposed method J-ENC outperforms the competi-
tors on all datasets in terms of Jaccard score as well as F1-score, with the dataset
(fb0 ) being the only exception where J-ENC is the second best. These results
demonstrate the capability of J-ENC to learn multiple community assignments
quite well and hence reinforces our intuition behind the design of Eq. (12).

Second, we observe that there is no consistent performing algorithm among
the competitive methods. That is, excluding J-ENC , the best performance is
achieved by vGraph/vGraph+ on 5, ComGAN on 4 and ComE on 3 out of 13
datasets in terms of F1-score. A a similar trend can be seen in Jaccard Similarity.
It is worth noting that all the methods, which achieve the second-best perfor-
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mance, are solving the task of community detection and node representation
learning jointly.

Third, we observe that vGraph+ results are generally better than vGraph.
This is because vGraph+ incorporates a regularization term in the loss function
which is based on Jaccard coefficients of connected nodes as edge weights. How-
ever, it should be noted that this prepossessing step is computationally expensive
for densely connected graphs.

Table 4 shows the results on non-overlapping community detection. First, we
observe that MNMF, DeepWalk, LINE and Node2Vec provide a good baseline
for the task. However, these methods are not able to achieve comparable per-
formance on any dataset relative to the frameworks that treat the two tasks
jointly. Second, J-ENC consistently outperforms all the competitors in NMI
and ARI metrics, except for CiteSeer where it achieves second best ARI. Third,
we observe that GCN based models i.e. GAE, VGAE and DGI show competitive
performance. That is, they achieve second best performance in all the datasets
except CiteSeer. In particular, DGI achieves second best NMI results in 3 out
of 5 datasets and 2 out of 5 datasets in terms of ARI. Nonetheless, DGI results
are not very competitive in Table 2 and Table 3, showing that while DGI can
be a good choice for learning node embeddings for attributed graphs with non-
overlapping communities, it is not the best option for non-attributed graphs or
overlapping communities.

The results for node classification are presented in Table 5. J-ENC achieves
best F1-micro and F1-macro scores on 4 out of 5 datasets. We also observe that
GCN based models i.e. GAE, VGAE and DGI show competitive performance,
following the trend in results of Table 4. Furthermore, we note that the node
classification results of CommunityGan (ComGAN) are quite poor. We think a
potential reason behind it is that the node embeddings are constrained to have
same dimensions as the number of communities. Hence, different components
of the learned node embeddings simply represent the membership strengths of
nodes for different communities. The linear classifiers may find it difficult to
separate such vectors.

4.6 Hyperparameter Sensitivity

We study the dependence of J-ENC on ε and α by evaluating on four datasets
of different sizes: fb698 (N = 61), fb1912 (N = 747), amazon1000 (N=1540) and
youtube(N = 5346).

Effect of ε: We sweep for ε = {0.1, 0.2, · · · , 0.9}. For demonstrating effect of
α, we fix ε = 0.3 and sweep for α = {0.1, 0.2, · · · , 0.9}. The average results of five
runs for ε and α are given in Fig. 2a and Fig. 2b respectively. Overall J-ENC
is quite robust to the change in the values of ε and α. In case of ε, we see a
general trend of decrease in performance when the threshold ε is set quite high
e.g. ε > 0.7. This is because the datasets contain overlapping communities and
a very high ε will cause the algorithm to give only the most probable commu-
nity assignment instead of potentially providing multiple communities per node.
However, for a large part of sweep space, the results are almost consistent.
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Effect of α: When ε is fixed and α is changed, the results are mostly con-
sistent except when α is set to a low value. Equation (12) shows that in such a
case the node itself is almost neglected and J-ENC tends to assign communities
based upon neighborhood only, which may cause a decrease in the performance.
This effect is most visible in amazon1000 dataset because it has only 1.54 points
on average per community. This implies a decent chance for neighbours of a
point of being in different communities. Thus, sole dependence on the neighbors
will most likely result in poor results.

4.7 Training Time

Now we compare the training times of different algorithms in Fig. 3. As some
of the baselines are more resource intensive than others, we select aws instance
type g4dn.4xlarge for fair comparison of training times. For vGraph, we train
for 1000 iterations and for J-ENC for 1500 iterations. For all other algorithms

Fig. 2. Effect of hyperparameters on the performance. F1 and Jaccard scores are in
solid and dashed lines respectively.
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Fig. 3. Comparison of running times of different algorithms. We can see that J-ENC
outperforms the direct competitors. The time on y-axis is in log scale.

we use the default parameters as used in Sect. 4.4. We observe that the methods
that simply output the node embeddings take relatively less time compared to
the algorithms that jointly learn node representations and community assign-
ments e.g. J-ENC , vGraph and CNRL. Among these algorithms J-ENC is
the most time efficient. It consistently trains in less time compared to its direct
competitors. For instance, it is about 12 times faster than ComE for CiteSeer-
full and about 40 times faster compared to vGraph for Cora-full dataset. This
provides evidence for lower computational complexity of J-ENC in Sect. 3.5.

4.8 Visualization

Our experiments demonstrate that a single community-aware node embedding
is sufficient to aid in both the node representation and community assignment
tasks. This is also qualitatively demonstrated by graph visualizations of node
embeddings (obtained via t-SNE [21]) and inferred communities for two datasets,
fb107 and fb3437, presented in Fig. 4.

(a) fb107
(b) fb3437

Fig. 4. Graph visualization with community assignments (better viewed in color)
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5 Conclusion

We propose a scalable generative method J-ENC to simultaneously perform
community detection and node representation learning. Our novel approach
learns a single community-aware node embedding for both the representation
of the node and its context. J-ENC is scalable due to its low complexity,
i.e. O(|E|K + NKd). The experiments on several graph datasets show that J-
ENC consistently outperforms all the competitive baselines on node classifica-
tion, overlapping community detection and non-overlapping community detec-
tion tasks. Moreover, training the J-ENC is highly time-efficient than its com-
petitors.
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