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Preface

This edition of the European Conference on Machine Learning and Principles and
Practice of Knowledge Discovery in Databases (ECML PKDD 2021) has still been
affected by the COVID-19 pandemic. Unfortunately it had to be held online and we
could only meet each other virtually. However, the experience gained in the previous
edition joined to the knowledge collected from other virtual conferences allowed us to
provide an attractive and engaging agenda.

ECML PKDD is an annual conference that provides an international forum for the
latest research in all areas related to machine learning and knowledge discovery in
databases, including innovative applications. It is the leading European machine
learning and data mining conference and builds upon a very successful series of
ECML PKDD conferences. Scheduled to take place in Bilbao, Spain, ECML PKDD
2021 was held fully virtually, during September 13–17, 2021. The conference attracted
over 1000 participants from all over the world. More generally, the conference received
substantial attention from industry through sponsorship, participation, and also the
industry track.

The main conference program consisted of presentations of 210 accepted conference
papers, 40 papers accepted in the journal track and 4 keynote talks: Jie Tang (Tsinghua
University), Susan Athey (Stanford University), Joaquin Quiñonero Candela (Face-
book), and Marta Kwiatkowska (University of Oxford). In addition, there were 22
workshops, 8 tutorials, 2 combined workshop-tutorials, the PhD forum, and the dis-
covery challenge. Papers presented during the three main conference days were
organized in three different tracks:

– Research Track: research or methodology papers from all areas in machine learning,
knowledge discovery, and data mining.

– Applied Data Science Track: papers on novel applications of machine learning, data
mining, and knowledge discovery to solve real-world use cases, thereby bridging
the gap between practice and current theory.

– Journal Track: papers that were published in special issues of the Springer journals
Machine Learning and Data Mining and Knowledge Discovery.

We received a similar number of submissions to last year with 685 and 220 sub-
missions for the Research and Applied Data Science Tracks respectively. We accepted
146 (21%) and 64 (29%) of these. In addition, there were 40 papers from the Journal
Track. All in all, the high-quality submissions allowed us to put together an excep-
tionally rich and exciting program.

The Awards Committee selected research papers that were considered to be of
exceptional quality and worthy of special recognition:

– Best (Student) Machine Learning Paper Award: Reparameterized Sampling for
Generative Adversarial Networks, by Yifei Wang, Yisen Wang, Jiansheng Yang
and Zhouchen Lin.



– First Runner-up (Student) Machine Learning Paper Award: “Continual Learning
with Dual Regularizations”, by Xuejun Han and Yuhong Guo.

– Best Applied Data Science Paper Award: “Open Data Science to fight COVID-19:
Winning the 500k XPRIZE Pandemic Response Challenge”, by Miguel Angel
Lozano, Oscar Garibo, Eloy Piñol, Miguel Rebollo, Kristina Polotskaya, Miguel
Angel Garcia-March, J. Alberto Conejero, Francisco Escolano and Nuria Oliver.

– Best Student Data Mining Paper Award: “Conditional Neural Relational Inference
for Interacting Systems”, by Joao Candido Ramos, Lionel Blondé, Stéphane
Armand and Alexandros Kalousis.

– Test of Time Award for highest-impact paper from ECML PKDD 2011: “Influence
and Passivity in Social Media”, by Daniel M. Romero, Wojciech Galuba, Sitaram
Asur and Bernardo A. Huberman.

We would like to wholeheartedly thank all participants, authors, Program Com-
mittee members, area chairs, session chairs, volunteers, co-organizers, and organizers
of workshops and tutorials for their contributions that helped make ECML PKDD 2021
a great success. We would also like to thank the ECML PKDD Steering Committee and
all sponsors.

September 2021 Jose A. Lozano
Nuria Oliver

Fernando Pérez-Cruz
Stefan Kramer

Jesse Read
Yuxiao Dong

Nicolas Kourtellis
Barbara Hammer
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Non-exhaustive Learning Using Gaussian
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Abstract. Supervised learning, while deployed in real-life scenarios,
often encounters instances of unknown classes. Conventional algorithms
for training a supervised learning model do not provide an option to
detect such instances, so they miss-classify such instances with 100%
probability. Open Set Recognition (OSR) and Non-Exhaustive Learning
(NEL) are potential solutions to overcome this problem. Most existing
methods of OSR first classify members of existing classes and then iden-
tify instances of new classes. However, many of the existing methods
of OSR only makes a binary decision, i.e., they only identify the exis-
tence of the unknown class. Hence, such methods cannot distinguish test
instances belonging to incremental unseen classes. On the other hand,
the majority of NEL methods often make a parametric assumption over
the data distribution, which either fail to return good results, due to
the reason that real-life complex datasets may not follow a well-known
data distribution. In this paper, we propose a new online non-exhaustive
learning model, namely, Non-Exhaustive Gaussian Mixture Generative
Adversarial Networks (NE-GM-GAN) to address these issues. Our pro-
posed model synthesizes Gaussian mixture based latent representation
over a deep generative model, such as GAN, for incremental detection
of instances of emerging classes in the test data. Extensive experimental
results on several benchmark datasets show that NE-GM-GAN signifi-
cantly outperforms the state-of-the-art methods in detecting instances
of novel classes in streaming data.

Keywords: Open set recognition · Non-exhaustive learning

1 Introduction

Numerous machine learning models are supervised, relying substantially on
labeled datasets. In such datasets, the labels of training instances enable a super-
vised model to learn the correlation between the labels and the patterns in the
features, thus helping the model to achieve the desired performance in differ-
ent kinds of classification or recognition tasks. However, many realistic machine
learning problems originate in non-stationary environments where instances of
unseen classes may emerge naturally. The presence of such instances weakens
the robustness of conventional machine learning algorithms, as these algorithms
c© Springer Nature Switzerland AG 2021
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do not account for the instances from unknown classes, either in the train or
the test environments. To overcome this challenge, a series of related research
activities has become popular in recent years; examples include anomaly detec-
tion (AD) [13,15,27,34], few-shot learning (FSL) [12,25], zero-shot learning
(ZSL) [21,29], open set recognition (OSR) and open-world classification (OWC)
[1,2,4,5,8,11,14,17,19,20,23,26,30,31]. Collectively, each of these works belongs
to one of the four different categories [6], differing on the kind of instances
observed by the model during train and test. If L refers to labeling and I refers
to self-information (e.g., semantic information in image dataset), the categories
C can be denoted as the Cartesian product of two sets L and I, as shown below:

C = L × I = {(l, i) : l ∈ L & i ∈ I}, (1)

both L and I have two elements: known (K) and unknown (U). Thus, there are
four categories in C: (K, K), (K, U), (U, K), (U, U). For example, (U, U) refers
to the learning problem in which instances belonging to unknown classes having
no self-information.

Conventional supervised learning task belongs to the first category, as for
such a task all instances in train and test datasets belong to (K, K). The anomaly
detection (AD) task, a.k.a. one-class classification or outlier detection, detects
a few (U, U) instances from the majority of (K, K) instances; for AD, the (U,
U) instances may only (but not necessary) exist in the test set. FSL and ZSL
are employed to identify (U, K) instances in the test set. The main difference
between FSL and ZSL is that the training set of FSL contains a limited number
of (U, K) instances while for the case of ZSL, the number of (U, K) instances
in the train set is zero. In other words, ZSL identifies (U, K) instances in the
test set only by associating (K, K) instances with (U, K) instances through self-
information. Finally, works belonging to open set recognition (OSR) identify (U,
U) instances in the test set. These works are the most challenging; unlike AD,
whose objective is to detect only one class (outlier), OSR handles both (K, K)
and (U, U) in the test set. Similar to OSR, OWC also incrementally learns the
new classes and rejects the unseen class. Nevertheless, most existing methods of
OSR or OWC do not distinguish the test instances among incremental unseen
classes, which is more close to the realistic scenario. The scope of our work falls
in the OSR category which only deals with (K, K) and (U, U) instances. In
Table 1, we present a summary of the discussion of this paragraph.

Some works belonging to OSR have also been referred as Non-Exhaustive
Learning (NEL). The term, Non-Exhaustive, means that the training data does
not have instances of all classes that may be expected in the test data. The
majority of early research works of NEL employ Bayesian methods with Gaussian
mixture model (GMM) or infinite Gaussian mixture model (IGMM) [24,33].
However, these works suffer from some limitations; for instance, they assume
that the data distribution in each class follows a mixture of Gaussian, which
may not be true in many realistic datasets. Also, in the case of GMM, its ability
to recognize unknown classes depends on the number of initial clusters that it
uses. IGMM can mitigate this restriction by allowing cluster count to grow on the
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Table 1. The background of related tasks (conv. for conventional method)

Tasks Training set Testing set GOAL

Conv. (K, K) (K, K) Supervised learning with (K, K)

AD (K, K) w./wo. outliers (K, K) w. outliers Detect outliers

FSL (K, K) w. limited (U, K) (U, K) Identify (U, K) in test set

ZSL (K, K) w. self-info. (U, K) Identify (U, K) in test set

OSR (K, K) (K, K) & (U, U) Distinguish (U, U) from (K, K)

NEL (K, K) (K, K) & (U, U) Incrementally learn (U, U)

fly, but the inference mechanism of IGMM is time-consuming, no matter what
kind of sampling method it uses for inferring the probabilities of the posterior
distribution.

To address these issues, in this work we propose a new non-exhaustive
learning model, Non-exhaustive Gaussian mixture Generative Adversarial Net-
works (NE-GM-GAN), which synthesizes the Bayesian method and deep learning
technique. Comparing to the existing methods for OSR, our proposed method
has several advantages: First, NE-GM-GAN takes multi-modal prior as input
to better fit the real data distribution; Second, NE-GM-GAN can deal with
class-imbalance problem with end-to-end offline training; Finally, NE-GM-GAN
can achieve accurate and robust online detection on large sparse dataset while
avoiding noisy distraction. Extensive experiments demonstrate that our pro-
posed model has superior performance over competing methods on benchmark
datasets. The contribution of this paper can be summarized as follows:

• We propose a new model for non-exhaustive learning, namely NE-GM-GAN,
which can detect novel classes in online test data accurately and defy the
class-imbalance problem effectively.

• NE-GM-GAN integrates Bayesian inference with the distance-based and the
threshold-based method to estimate the number of emerging classes in the test
data. It also devises a novel scoring method to distinguish the UCs (unknown
classes) from KCs (known classes).

• Extensive experiments on four datasets (3 real and 1 synthetic) demonstrate
that our model is superior to existing methods for accurate and robust online
detection of emerging classes in streaming data.

2 Related Work

Anomaly detection (AD) basically can be divided into two categories, conven-
tional methods, and deep learning techniques. Majority of conventional meth-
ods widely focus on distance-based approaches [15,28], reconstruction-based
approaches [9], and unsupervised clustering. Deep learning techniques usually
include autoencoder and GAN. An autoencoder identifies the outlier instances
through reconstruction loss [34]. GAN has also been used as another means for
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computing reconstruction loss and then identifying anomalies [27,32]. In our app-
roach, we use bi-directional GAN (BiGAN) with multi-modal prior distribution
to improve the performance of UCs extraction.

AD mainly detects one class of anomalies whereas realistic data often con-
tains multiple UCs. OSR is the right technique that solves this kind of problem.
According to [6], OSR models are categorized into two types, discriminative and
generative. The first type includes SVM-based methods [26] and distance-based
method [1,2]. A collection of recent OSR works venture towards the generative
direction [4,11,19,31]. A subset of OSR methods, named NEL, mainly employ
Bayesian methods, such as infinite Gaussian mixture model (IGMM) [24] to
learn the UCs. For example, Zhang et al. [33] use a non-parametric Bayesian
framework with different posterior sampling strategies, such as one sweep Gibbs
sampling, for detecting novel classes in online name disambiguation. However,
IGMM-type methods can only handle small datasets that follow Gaussian distri-
bution. To address this issue, we propose a novel algorithm that can achieve high
accuracy on the large sparse dataset, which does not necessarily follow Gaussian
distribution.

3 Background

Generative Adversarial Networks (GAN). Vanilla GAN [7] consists of two
key components, a generator G, and a discriminator D. Given a prior distribution
Z as input, G maps an instance z ∼ Z from the latent space to the data space
as G(z). On the other hand, D attempts to distinguish a data instance x from a
synthetic instance G(z), generated by G. We use the terminology pZ(z) to denote
that z is a sampled instance from the distribution Z. The training process is set
up as if G and D are playing a zero-sum game, a.k.a. minimax game; G tries
to generate the synthetic instances that are as close as possible to actual data
instances; on the other hand, D is responsible for distinguishing the real instances
from the synthetic instances. In the end, GAN converges when both G and D
reach a Nash equilibrium; at that stage, G learns the data distribution and is
able to generate data instances that are very close to the actual data instances.
The objective function of GAN can be written as follows:

min
G

max
D

V (D,G) = E
x∼X

[log D(x)] + E
z∼Z

[log(1 − D(G(z)))] (2)

where X is the distribution of x and Z is the distribution from which G samples.

Bidirectional Generative Adversarial Networks (BiGAN). Besides train-
ing a generator G, BiGAN [10] also trains an encoder E , that maps real instances
x into latent feature space E(x). Its discriminator D takes both x and pZ(z) as
input in order to match the joint distribution pG(x, z) and pE(x, z). The objective
function of BiGAN can be written as follows:

min
G,E

max
D

V (D, E ,G) = E
x∼X

[log D(x, E(x))] + E
z∼Z

[log(1 − D(G(z), z))] (3)

The objective function achieves the global minimum if and only if the distribution
of both generator and encoder matches, i.e., pG(x, z) = pE(x, z).
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4 Methodology

In this paper, we propose a novel model, Non-Exhaustive Gaussian Mixture Gen-
erative Adversarial Networks (NE-GM-GAN) for online non-exhaustive learning.
The whole process is displayed in Fig. 1. Given a training set Xtrain with k0 KCs,
in the training step (offline), the proposed NE-GM-GAN employs a bidirectional
GAN to train its encoder E and generator G, by matching the joint distribution of
encoder (X,Z) with the same of the generator. Note that the prior distribution
Z of G is a multi-modal Gaussian (shown as Gaussian clusters on the top-middle
part of the figure). After training, the generator and encoder of the GAN can
take z and x as input and generate G(z) and E(x) as output, respectively.

Fig. 1. The model architecture of NE-GM-GAN (left-hand side) and the workflow of
I-means in Algorithm (2) (right-hand side)

The test step (online) shown on the right side of the model architecture and it
is run on a batch of input instances, Xtest. For all data instance from a batch (say,
x is one such instance), NE-GM-GAN computes the UCS(x) (unknown class
score) of all instances in that batch; UCS score is derived from the reconstruction
loss Lrec = |x−G(E(x))|. Using this score, the instances of a batch are partitioned
into two groups: KCs and UCs. Elements in KCs belong to the known class,
whereas the elements in UCs are potential UC instances. Using instances of UCs
group, the model estimates the number of emerging class, knew. After estimation,
the model updates the prior of the G by adding the number of new classes knew

to k0 as shown in the top right part of the model architecture. The GMM is
then retrained for clustering both KCs and UCs. At this stage, the online test
process for one test batch is finished.

In subsequent discussion, Xtrain ∈ R
r×d is considered to be training data,

containing r data instances, each of which is represented as a d-dimensional
vector. K is the total number of known classes in Xtrain. Xtest is test data that
may contain instances of KCs and also instances of UCs. The dimensionality of
latent space is denoted by p.
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Offline Training: Computing Multi-modal Prior Distribution
In the vanilla form, generators of both GAN and BiGAN has a unimodal dis-
tribution as prior; in other words, the random variables pZ(z) is an instance
from a unimodal distribution. Enlightened by [16], in this paper, we consider
a multi-modal distribution as prior since this prior can better fit the real-life
distribution of multi-class datasets. Thus,

pZ(z) =
K∑

k=1

α{k} · pk(z) (4)

We assume that the number of initial clusters in the Gaussian distribution
matches with the number of known classes (K) in Xtrain. α{k} is the mixing
parameter, pk(z) denotes the multivariate Normal distribution N (u{k},Σ{k}),
where u{k} and Σ{k} are mean vector and co-variance matrix, respectively.

The model assumes that the number of instances and the number of known
classes in the training set are given at the beginning. During training (offline),
the parameters u{k} and Σ{k} of each Gaussian cluster is learned by GMM and
they are used as the sampling distribution of the latent variable for generating
the adversarial instances. Suggested by [16], we also use the re-parameterization
trick in this paper. Instead of sampling the latent variable z ∼ N(u{k},Σ{k}),
the model samples z = A{k}ε + u{k}, where ε ∼ N(0, I), A ∈ R

p×p, u{k} ∈ R
p.

In this scenario, u(z) = u{k} and Σ(z) = A{k}A{k}T .
Similar to [10], the GM-GAN (Gaussian Mixture-GAN) learning proceeds

as follows. The model takes sampled instance z, sampled from the Gaussian
multi-modal prior and a real instances x as input. Generator G attempts to map
this sampled pZ(z) to data space as G(z). Encoder E maps real instances x into
latent feature space as E(x). Discriminator D takes both pZ(z) and x as input
for matching their joint distributions. After the model converges, theoretically,
G(z) ∼ x and E(x) ∼ pZ(z). Note that NE-GM-GAN encodes Xtrain for offline
training. To do so, GMM takes encoded Xtrain as input and then generates
encoded u and Σ.

Extracting Potential Unknown Class
UC extraction of NE-GM-GAN is an online process that works on unlabeled
data. During online detection, the model assumes that the test instance x is
coming in a batch of the test set Xtest ∈ R

b×d, where b is batch size and d
is the dimension of feature space. Unlike [10], whose purpose is to generate
the fake images as real as possible, our model aims at extracting the UC as
accurately as possible. More specifically, our model generates the reconstructed
instance G(E(x)) at first and then computes the reconstruction loss between x
and G(E(x)). This step returns a size-b 1-D vector, consisting of reconstruction
losses of the b points in the current batch, which is defined below:

Lrec = ‖x − G(E(x))‖ (5)

To distinguish the UC from KC in each test batch, we propose a metric,
unknown class score, in short, UCS; the larger the score for an instance, the
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more likely that the instance belongs to an unknown class. To compute UCS of
a test instance x, NE-GM-GAN first computes, for each KC (out of K KCs), a
baseline reconstruction loss, which is equal to the median of reconstruction losses
of all train objects belonging to that known class. Then, UCS of x is equal to the
minimum of the differences between x’s reconstruction loss and each of the K
baseline reconstruction losses. The pseudo-code of UCS computation is shown
in Algorithm 1.

The intuition of UCS function is that GAN models instances of KCs with
smaller reconstruction loss than the instances of UCs, but different known classes
may have different baseline reconstruction loss, so we want an unknown class’s
reconstruction loss larger than the worst loss among all the KCs. This mechanism
is inspired by [32]. Nevertheless, unlike [32], which assumes the prior as unimodal
distribution and the UC must be far away from KC, our approach considers a
multi-modal prior. After computing the UCS, the model extracts the potential
UC from KC with a given threshold. For online detection, the threshold for the
first test batch is empirically given whereas subsequent thresholds are decided
by the percentage of UCs from previous test batches. Note that, the UCs objects
may belong to multiple classes, but the model has no knowledge yet about the
number of classes.

Algorithm 1: UCS for multi-modal prior
Input: Matrix Xtrain ∈ R

r×d and Xtest ∈ R
b×d

1 Compute Ltest(xtest) with Eq. (5);
2 for i ← 1 to b do
3 for k ← 1 to K do

4 Compute Ltrain(xtrain){k} with Eq. (5);

5 Select the median of Ltrain(xtrain){k};

6 UCS(xtest)
{k} =

∣
∣
∣Ltest(xtest)

{i} − Ltrain(xtrain)
{k}
median

∣
∣
∣;

7 end

8 UCS
{i}
min = min

(

UCS(xtest)
{1}, ..., UCS(xtest)

{K}
)

;

9 end

10 UCS = [UCS
{1}
min, ..., UCS

{b}
min];

11 return Vector UCS ∈ R
b×1

Estimating the Number of Emerging Class
The previous extraction only extracts potential UCs. In practice, a small number
of anomalous KC instances may be selected as UC instances. So, we use a subse-
quent step that distinctly identifies instances of unknown classes together with
the number of UC and their parameters (mean, and covariance matrix of each
of the UCs). We name this step as Infinite Means (I-means); the name reflects
the fact that the number of unknown classes can increase as large as needed
based on the test instances. Using I-means, a test instance is assigned to a new
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class if it is positioned far from the mean of all the KCs, and discovered novel
classes prior to seeing that instance. To achieve this, for i-th test instance x

{i}
test,

as shown in Eq. (6), I-means computes the distance L
{k}
μ between x

{i}
test and the

mean vector μ{k} for the k-th KC and then selects the minimum of these values
as lossmin in Eq. (7).

L{k}
μ = ‖x

{i}
test − μ{k}‖,∀k ∈ [1..K] (6)

lossmin = min
(

L{1}
µ , L{2}

µ , ..., L{K}
µ

)

, idx = arg min
(

L{1}
µ , L{2}

µ , ..., L{K}
µ

)

(7)

A small value of lossmin indicates that x
{i}
test may potentially be a member of

class idx; on the other hand, a large value lossmin indicates that x
{i}
test possibly

belongs to a UC. To make the determination, we use a Bayesian approach, which
dynamically adjusts the probability that a test point that is closest to cluster
idx’s mean vector belongs to cluster idx or not. The process is described below.

For a test instance, x
{i}
test for which idx = k, the binary decision whether the

instance belongs to k-th existing cluster or an emerging cluster follows Bernoulli
distribution with parameter θk, which is modeled by using a Beta prior with
parameter αk, and βk, where αk, βk ≥ 1 and θk = αk

αk+βk
. The value of αk and

βk are updated using Bayes rule. Based on the Bayes’ theorem, the posterior
distribution p(θk|x{i}

test), where θk ∈ [0, 1], is proportional to the prior distribution
p(θk) multiplied by the likelihood function p(x{i}

test|θk):

p(θk|x{i}
test) ∝ p(x{i}

test|θk) · p(θk) (8)

The posterior p(θk|x{i}
test) in Eq. (8) can be re-written as following:

p(θk|x{i}
test) ∝ θαk0

k (1 − θk)βk0 · θαk−1
k (1 − θk)βk−1

= θαk0+αk−1
k · (1 − θk)βk0+βk−1

= beta(θk|αk0 + αk, βk0 + βk)

(9)

As the test instances are coming in streaming fashion, for any subsequent test
instance for which idx = k, the posterior p(θk|x{i}

test) will act as prior for the
next update. For the very first iteration, αk0 and βk0 are shape parameters of
beta prior, which we learn in a warm-up stage. In the warm-up stage, we apply
the three-sigma rule to compute the beta priors, αk0, and βk0. Each test point
in the warm-up stage, for which idx = k, contributes a count of 1 to αk0 if
the point is further than 3 standard deviation away from the mean, otherwise
it contributes a count of 1 to βk0. After the warm-up stage, we employ the
Maximum-A-Posteriori (MAP) estimation to obtain the θMAPk

at which the
posterior p(θk|x{i}

test) reaches its maximum value. According to the property of
beta distribution, the θMAPk

is most likely to occur at the mean of posterior
p(θk|x{i}

test). Thus, we can estimate the θMAPk
by:

θMAPk
= arg max

θk

p(θk|x{i}
test) =

αk0 + αk

αk0 + αk + βk0 + βk
(10)
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After estimating the θMAPk
by Eq. (10), I-means makes a cluster member-

ship decision for each x
{i}
test based on θMAPk

. This decision simulates the Bernoulli
process, i.e., among the test instances which are close to the k-th cluster, approx-
imately θMAPk

fraction of those will belong to the emerging cluster, whereas
the remaining (1 − θMAPk

) fractions of such instances will belongs to the k-th
cluster. After each decision, corresponding parameters will be updated. If x

{i}
test

is clustered as a member of KC{k}, we update the parameters μ
{i}
k ∈ R

1×d,
σ

{i}
k ∈ R

d×d of the k-th cluster by Eq. (11) and Eq. (12), respectively. The shape
parameter βk is increased by 1. Otherwise, if x

{i}
test is considered as a member

of UC, the shape parameter αk, knew are increased by 1, and the mean and
covariance matrix of this new class are initialized by assigning current x

{i}
test as

new mean vector and creating a zero vector with the same shape of x
{i}
test as new

standard deviation vector.

μ
{i}
k = μ

{i−1}
k +

x
{i}
test − μ

{i−1}
k

i
(11)

v
{i}
k = v

{i−1}
k +

(
x

{i}
test − μ

{i−1}
k

) (
x

{i}
test − μ

{i}
k

)
, σ

{i}
k =

√
v

{i}
k

(i − 1)
(12)

The entire process of this paragraph is summarized I-means in Algorithm 2.

Table 2. Statistics of datasets (#Inst. denotes the number of instances; #F. denotes
to the number of features after one-hot embedding or dropping for network intrusion
dataset; #C. denotes to the number of classes.)

Dataset #Inst. #F. #C. Selected UCs

KDD99 494,021 121 23 Neptune, normal, back, satan, ipsweep,
portsweep, warezclient, teardrop

NSL-KDD 148,517 121 40 Neptune, satan, ipsweep, smurf, portsweep,
nmap, back, guess passwd

UNSW-NB15 175,341 169 10 Generic, exploits, fuzzers, DoS,
reconnaissance, analysis, backdoor, shellcode

Synthetic 100,300 121 16 No. 3, 4, 5, 6, 7, 8, 9, 10

5 Experiments

In this section, we show experimental results for validating the superior perfor-
mance of our proposed NE-GM-GAN over different competing methods for mul-
tiple capabilities. Firstly, we compare the performance of potential UCs extrac-
tion. Furthermore, we compare the estimation of the number of distinct unknown
classes. Finally, we show some experimental results for studying the effect of
user-defined parameters on the algorithm’s performance.
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Algorithm 2: Infinite Means (I-means)

Input: Testing batch Xtest ∈ R
b×d, mean matrix, co-variance matrix

1 for all x{i} ∈ Xtest do

2 for all μ{k} ∈ M do

3 Compute L
{k}
µ by Eq. (6);

4 end
5 Get the index, idx, of minimum loss by Eq. (7);
6 if warm-up stage then
7 Select beta prior αidx0 and βidx0 based on Three-sigma Rule;
8 end
9 else

10 Estimate the θMAPk by Eq. (10);
11 end
12 if Uniform (0, 1) ≤ θMAPk then
13 Update corresponding μ and σ by Eq. (11) and Eq. (12);
14 βidx ← βidx + 1;

15 end
16 else
17 αidx ← αidx + 1;
18 knew ← knew + 1;

19 end

20 end
21 return The number of new emerging clusters knew

Dataset. We evaluate NE-GM-GAN on four datasets. Three of the datasets
are real-life network intrusion datasets and the remaining one is a synthetic
dataset. The network intrusion is very common for non-exhaustive classification
because attackers constantly update their attack methods, so the classification
model must adapt to novel class scenarios. The datasets are: (1) KDD Cup 1999
network intrusion dataset (KDD99), which contains 494,021 instances and 41
features with 23 different classes. One of the class represents “Normal” activity
and the rest 22 represent various network attacks; (2) NSL-KDD dataset (NSL-
KDD) [3], which is also a network intrusion dataset built by filtering some
records from KDD99; (3) UNSW-NB15 dataset (UNSW-NB15) [18], which
hybridizes real normal network activities with synthetic attack; (4) Synthetic
dataset (Synthetic), which contains non-isotropic Gaussian clusters. Many of
the features in the intrusion datasets are categorical or binary, so we employ
one-hot embedding for such features. We also drop some columns which are
redundant or whose values are almost zero or missing along the column. After
that, we select eight of the classes as unknown classes (UCs) for each dataset.
The test set is constructed from two parts. The first part is randomly sampled
20% of KCs instances and the second part is all the instances of the UCs. Rest
80% of KC instances are left for the training set. In the synthetic dataset, noises
are injected into Gaussian clusters, each cluster representing a class. The injected
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noise is homocentric to the corresponding normal class but with a larger variance.
The detailed statistics of the datasets are provided in Table 2.

Competing Methods. The performance of UCs extraction is evaluated with
three competing methods, AnoGAN [27], DAGMM [34], and ALAD [32].
AnoGAN is the first GAN-based model for UC detection. Similarly, ALAD is
another GAN-based model, which uses reconstructed errors to determine the UC.
In contrast, DAGMM implements the autoencoder for the same task instead.
The experimental setting follows [32] for this experiment. On the other hand,
the capability of estimating the number of new emerging classes is compared
against two competing methods, X-means [22], and IGMM [24,33]. X-means is
a classical distance-based algorithm that can efficiently search the data space
without knowing the initial number of clusters. On the contrary, IGMM is a
Bayesian mixture model which uses the Dirichlet process prior and Gibbs sam-
pler to efficiently identify new emerging entities. This experiment uses one sweep
Gibbs sampler for IGMM [33]. For IGMM, we select the tunable parameters as
following; h = 10, m = h + 100, κ = 100 and α = 100, which is identical to the
parameter values in [33]. Both models can return the number of online classes
as NE-GM-GAN does, so they are selected as competing methods.

Evaluation Metrics. We use an external clustering evaluation metric, such
as F1-score, to evaluate the performance of UCs extraction. For evaluating the
prediction of the number of UCs (a regression task), we propose a new met-
ric, Symmetrical R-squared (S-R2). To obtain this, the root mean square error
(RMSE) for both NE-GM-GAN and a competing method are computed and
plugged into Eq. 13. S-R2 ∈ [−1, 1] gets more close to 1 if NE-GM-GAN defeats
the competing method. On the contrary, its value will become more close −1.
S-R2 is exactly equal to 1 when the proposed model gets perfect prediction while
the competing method doesn’t. S-R2 is zero when both methods have similar
performance. The motivation to propose a new metric rather than using R-
squared (R2) is that R2 would be less distinctive if two methods get much worse
predictions because of using mean square error (MSE) inside. Besides, baseline
sometimes achieves better performance, but R2 cannot reflect this scenario as
its range is from negative infinity to positive one.

S-R2 =

⎧
⎪⎪⎨

⎪⎪⎩

1 − RMSEm

RMSEbl
, RMSEm < RMSEbl

RMSEbl

RMSEm
− 1, RMSEm > RMSEbl

(13)

where RMSEm and RMSEbl denote the RMSE of our model and baseline
model, respectively.

The Capability of Unknown Class Extraction. In Table 3, we show the
F1-score values of NE-GM-GAN and the competing methods for detecting the
unknown class instances (the best results are shown in bold font). The result is
computed by running each model 10 times and then taking the average. Out of
the four datasets, NE-GM-GAN has the best performance in three with a healthy
margin over the second-best method. In the largest dataset, our model received a
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0.99 F1-score, a very good performance considering the fact that unknown class
instances are assembled from 8 different classes. Only in the NSL-KDD dataset,
NE-GM-GAN came out as the second-best. The performance of the other three
models is mixed without a clear winner. One observation is that all the methods
perform better on the larger dataset (KDD99).

To understand NE-GM-GAN’s performance further, we perform an ablation
study by switching the prior, as shown in Table 4. As we can see Gaussian multi-
modal prior used in NE-GM-GAN is better suited than Unimodal prior generally
used in traditional GAN. For all datasets multi-modal prior has 1% to 2% better
F-score. A possible reason is that multi-modal prior is more closer to the real
distribution of the training data.

Table 3. The F1-score of four models for UCs extraction

Data NE-GM-GAN AnoGAN DAGMM ALAD

KDD99 0.99 0.87 0.97 0.94

NSL-KDD 0.75 0.68 0.79 0.73

UNSW-NB15 0.57 0.49 0.53 0.51

Synthetic 0.74 0.51 0.70 0.56

Table 4. F1 score from our proposed model by using different prior

Prior KDD99 NSL-KDD UNSW-NB15 Synthetic

Unimodal 0.98 0.74 0.55 0.72

Multi-modal 0.99 0.75 0.57 0.74

The Estimation of the Number of New Classes. In this experiment, we
compare NE-GM-GAN against two competing methods on all four datasets. To
extend the scope of experiments, we vary the number of unknown classes from
2 to 6 by choosing all possible combinations of UCs and build multiple copies of
one dataset and report performance results over all those copies. The motivation
of using a combination of different UCs is to validate the robustness of the
methods against varying numbers of UC counts. The result is shown in Table 5
using S-R2 metric discussed earlier. The result close to 1 (the majority of the
values in the table are between 0.85 and 0.95) means NE-GM-GAN substantially
outperforms the competing methods. We argue that both competing methods
assume that data distribution in each class follows mixture of Gaussian and
thus fail to achieve good performance on realistic datasets. In only one dataset
(Synthetic), X-means was able to obtain identical performance as ours’ method,
as both methods have the perfect prediction.

The same results are also shown in Fig. 2 as bar charts. In this Figure, y-axis
is the number of predicted clusters, and each group of bars denotes the number of
actual clusters for different methods. As we can see, NE-GM-GAN’s prediction
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is very close to the actual prediction, whereas the results of the completing
methods are way-off, except for the X-means method on the synthetic dataset.
These experimental results demonstrate that our NE-GM-GAN outperforms the
competing methods in terms of accuracy and robustness.

Table 5. The S-R2 between NE-GM-GAN and baselines on 4 datasets (We denote
“UCs” as the number of unknown classes in this table)

Datasets Methods UCs = 2 UCs = 3 UCs = 4 UCs = 5 UCs = 6

KDD99 X-means 0.8301 0.8805 0.8628 0.9105 0.8812

IGMM 0.9528 0.8991 0.8908 0.9303 0.9248

NSL-KDD X-means 0.8892 0.8604 0.9539 0.9228 0.9184

IGMM 0.8771 0.8647 0.9517 0.9285 0.9238

UNSW-NB15 X-means 0.8892 0.8604 0.9539 0.9228 0.9184

IGMM 0.8771 0.8647 0.9517 0.9285 0.9238

Synthetic X-means 0 0 0 0 0

IGMM 1 1 1 1 1

Fig. 2. Comparison on the estimation of new emerging class among three methods

Study of User-Defined Parameters. We perform a few experiments to justify
some of our parameter design choices. For instance, to build the initial beta priors
we used three-sigma rule. In Table 6, we present the percentage of instances of
points that falls within the three standard deviations of the mean. The four
columns correspond to the four datasets. As can be seen in the third row of the
table, for all datasets, almost 100% of the points falls within the three standard
deviations away from the mean. So, the priors selected in the warm-up stage
based on three-sigma rule can sufficiently distinguish the UCs from the known
class instances.

We also show unknown class prediction results over different values of WS
(epochs of the warm-up stage) for different (between 2 to 6) unknown class that
counts for all datasets. In Fig. 3, each curve represent a specific UC count. As can
be seen, the prediction of the unknown class gets better with a larger number of
WS. In most cases, the prediction converges when the number of epochs in the
warm-up stage (WS) reaches 200 or above. In all our experiments, we select the
WS value 200 for all datasets.
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Table 6. Test of three-sigma rule (%)

Range KDD99 NSL-KDD UNSW-NB15 Synthetic

μ ± 1σ 94.37 61.17 58.67 56.64

μ ± 2σ 99.58 99.87 99.92 99.81

μ ± 3σ 99.60 100.00 100.00 100.00

Fig. 3. Investigation on the number of epochs in the warm-up stage (WS) for I-means
on four datasets

Table 7. Model architectures

Layers Units Activation Batch norm. Dropout

E(x) Dense 64 LReLU (0.2) × 0.0

Dense 1 None × 0.0

G(z) Dense 64 LReLU (0.2) × 0.0

Dense 128 LReLU(0.2) × 0.0

Dense 121 Tanh × 0.0

D(x, z) Dense 128 LReLU (0.2) � 0.5

Dense 128 LReLU(0.2) � 0.5

Dense 1 Sigmoid × 0.0

Reproducibility of the Work. The model is implemented using Python 3.6.9
and Keras 2.2.4. For optimization, Adam is used with α = 10−5 and β = 0.5;
mini-batch size is 50, latent dimension is 32, and the number of training epochs
equal to 1000. The source code is available at https://github.com/junzhuang-
code/NEGMGAN. The details of the BiGAN model architecture is given in
Table 7.

6 Conclusion

In this paper, we propose a new online non-exhaustive model, Non-Exhaustive
Gaussian Mixture Generative Adversarial Network (NE-GM-GAN), that syn-
thesizes Bayesian method and deep learning technique for incremental learning
the new emerging classes. NE-GM-GAN consists of three main components: (1)
Gaussian mixture clustering generating multi-modal prior and re-clusters both
KCs and UCs for parameter updating. (2) Bidirectional adversarial learning

https://github.com/junzhuang-code/NEGMGAN
https://github.com/junzhuang-code/NEGMGAN
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reconstructs the loss for extracting imbalanced UCs from KCs in an online test-
ing batch. (3) A novel algorithm, I-means, estimates the number of new emerging
classes for incremental learning the UCs on large sparse datasets. Experimen-
tal results illustrate that NE-GM-GAN significantly outperforms the competing
methods for online detection across several benchmark datasets.
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Abstract. In graph analysis community detection and node representa-
tion learning are two highly correlated tasks. In this work, we propose an
efficient generative model called J-ENC for learning Joint Embedding
for Node representation and Community detection. J-ENC learns a
community-aware node representation, i.e., learning of the node embed-
dings are constrained in such a way that connected nodes are not only
“closer” to each other but also share similar community assignments.
This joint learning framework leverages community-aware node embed-
dings for better performance on these tasks: node classification, overlap-
ping community detection and non-overlapping community detection. We
demonstrate on several graph datasets that J-ENC effectively outper-
forms many competitive baselines on these tasks. Furthermore, we show
that J-ENC not only has quite robust performance with varying hyper-
parameters but also is computationally efficient than its competitors.

1 Introduction

Graphs are flexible data structures that model complex relationships among
entities, i.e. data points as nodes and the relations between nodes via edges.
One important task in graph analysis is community detection, where the objec-
tive is to cluster nodes into multiple groups (communities). Each community
is a set of densely connected nodes. The communities can be overlapping or
non-overlapping, depending on whether they share some nodes or not. Several
algorithmic [1,5] and probabilistic approaches [9,20,34,38] to community detec-
tion have been proposed. Another fundamental task in graph analysis is learning
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the node embeddings. These embeddings can then be used for downstream tasks
like graph visualization [8,28,33,34] and classification [3,27].

In the literature, these tasks are usually treated separately. Although the
standard graph embedding methods capture the basic connectivity, the learning
of the node embeddings is independent of community detection. For instance, a
simple approach can be to get the node embeddings via DeepWalk [23] and get
community assignments for each node by using k-means or Gaussian mixture
model. Looking from the other perspective, methods like Bigclam [36], that
focus on finding the community structure in the dataset, perform poorly for
node-representation tasks e.g. node classification. This motivates us to study
the approaches that jointly learn community-aware node embeddings.

Recently several approaches, like CNRL [30], ComE [4], vGraph [26] etc., have
been proposed to learn the node embeddings and detect communities simultane-
ously in a unified framework. Several studies have shown that community detec-
tion is improved by incorporating the node representation in the learning process
[3,18]. The intuition is that the global structure of graphs learned during commu-
nity detection can provide useful context for node embeddings and vice versa.

The joint learning methods (CNRL, ComE and vGraph) learn two embed-
dings for each node. One node embedding is used for the node representation task.
The second node embedding is the “context” embedding of the node which aids
in community detection. As CNRL and ComE are based on Skip-Gram [22] and
DeepWalk [23], they inherit “context” embedding from it for learning the neigh-
bourhood information of the node. vGraph also requires two node embeddings for
parameterizing two different distributions. In contrast, we propose learning a sin-
gle community-aware node representation which is directly used for both tasks.

In this paper, we propose an efficient generative model called J-ENC for
jointly learning both community detection and node representation. The under-
lying intuition behind J-ENC is that every node can be a member of one or more
communities. However, the node embeddings should be learned in such a way
that connected nodes are “closer” to each other than unconnected nodes. More-
over, connected nodes should have similar community assignments. Formally, we
assume that for i-th node, the node embeddings zi are generated from a prior dis-
tribution p(z). Given zi, the community assignments ci are sampled from p(ci|zi),
which is parameterized by node and community embeddings. In order to generate
an edge (i, j), we sample another node embedding zj from p(z) and respective
community assignment cj from p(cj |zj). Afterwards, the node embeddings and
the respective community assignments of node pairs are fed to a decoder. The
decoder ensures that embeddings of both the nodes and the communities of con-
nected nodes share high similarity. This enables learning such node embeddings
that are useful for both community detection and node representation tasks.

We validate the effectiveness of our approach on several real-world graph
datasets. In Sect. 4, we show empirically that J-ENC is able to outperform the
baseline methods including the direct competitors on all three tasks i.e. node
classification, overlapping community detection and non-overlapping community
detection. Furthermore, we compare the computational cost of training different
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algorithms. J-ENC is up to 40x more time-efficient than its competitors. We also
conduct hyperparameter sensitivity analysis which demonstrates the robustness
of our approach. Our main contributions are summarized below:

– We propose an efficient generative model called J-ENC for joint community
detection and node representation learning.

– We adopt a novel approach and argue that a single node embedding is suffi-
cient for learning both the representation of the node itself and its context.

– Training J-ENC is extremely time-efficient in comparison to its competitors.

2 Related Work

2.1 Community Detection

Early community detection algorithms are inspired from clustering algorithms
[35]. For instance, spectral clustering [29] is applied to the graph Laplacian
matrix for extracting the communities. Similarly, several matrix factorization
based methods have been proposed to tackle the community detection problem.
For example, Bigclam [36] treats the problem as a non-negative matrix factoriza-
tion (NMF) task. Another method CESNA [38] extends Bigclam by modelling
the interaction between the network structure and the node attributes. Some
generative models, like vGraph [26], Circles [20] etc., have also been proposed to
detect communities in a graph.

2.2 Node Representation Learning

Many successful algorithms which learn node representation in an unsupervised
way are based on random walk objectives [10,11,23]. Some known issues with
random-walk based methods (e.g. DeepWalk, node2vec etc.) are: (1) They sacri-
fice the structural information of the graph by putting over-emphasis on the
proximity information [24] and (2) great dependence of the performance on
hyperparameters (walk-length, number of hops etc.) [10,23]. Some interesting
GCN based approaches include graph autoencoders e.g. GAE and VGAE [17]
and DGI [32].

2.3 Joint Community Detection and Node Representation Learning

In the literature, several attempts have been made to tackle both these tasks
in a single framework. Most of these methods propose an alternate optimiza-
tion process, i.e. learn node embeddings and improve community assignments
with them and vice versa [4,30]. Some approaches (CNRL [30], ComE [4]) are
inspired from random walk, thus they inherit the issues discussed above. Others,
like GEMSEC [25], are limited to the detection of non-overlapping communi-
ties. Some generative models like CommunityGAN [13] and vGraph [26] also
jointly learn community assignments and node embeddings. CNRL, ComE and
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vGraph require learning two embeddings for each node for simultaneously tack-
ling the two tasks. Unlike them, J-ENC learns a single community-aware node
representation which is directly used for both tasks.

It is pertinent to highlight that although both vGraph and J-ENC adopt
a variational approach but the underlying models are quite different. vGraph
assumes that each node can be represented as a mixture of multiple communi-
ties and is described by a multinomial distribution over communities, whereas
J-ENC models the node embedding by a single distribution. For a given node,
vGraph, first draws a community assignment and then a connected neighbor
node is generated based on the assignment. Whereas, J-ENC draws the node
embedding from prior distribution and then community assignment is condi-
tioned on a single node only. In simple terms, vGraph also needs edge infor-
mation in the generative process whereas J-ENC does not require it. J-ENC
relies on the decoder to ensure that embeddings of the connected nodes and their
communities share high similarity with each other.

3 Methodology

3.1 Problem Formulation

Suppose an undirected graph G = (V, E) with the adjacency matrix A ∈ R
N×N

and a matrix X ∈ R
N×F of F -dimensional node features, N being the number of

nodes. Given K as the number of communities, we aim to jointly learn the node
embeddings and the community embeddings following a variational approach
such that:

– One or more communities can be assigned to every node.
– The node embeddings can be used for both community detection and node

classification.

3.2 Variational Model

Generative Model: Let us denote the latent node embedding and community
assignment for i-th node by the random variables zi ∈ R

d and ci respectively.
The generative model is given by:

p(A) =
∫ ∑

c

p(Z, c,A)dZ, (1)

where c = [c1, c2, · · · , cN ] and the matrix Z = [z1,z2, · · · ,zN ] stacks the node
embeddings. The joint distribution in (1) is mathematically expressed as

p(Z, c,A) = p(Z) pθ(c|Z) pθ(A|c,Z), (2)

where θ denotes the model parameters. Let us denote elements of A by aij . Fol-
lowing existing approaches [14,17], we consider zi to be i.i.d random variables.
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Furthermore, assuming ci|zi to be i.i.d random variables, the joint distributions
in (2) can be factorized as

p(Z) =
N∏

i=1

p(zi) (3)

pθ(c|Z) =
N∏

i=1

pθ(ci|zi) (4)

pθ(A|c,Z) =
∏
i,j

pθ(aij |ci, cj ,zi,zj), (5)

where Eq. (5) assumes that the edge decoder pθ(aij |ci, cj ,zi,zj) depends only
on ci, cj ,zi and zj .

Inference Model: We aim to learn the model parameters θ such that
log(pθ(A)) is maximized. In order to ensure computational tractability, we intro-
duce the approximate posterior

qφ(Z, c|I) =
∏

i

qφ(zi, ci|I) (6)

=
∏

i

qφ(zi|I)qφ(ci|zi, I), (7)

where I = (A,X) if node features are available, otherwise I = A. We maxi-
mize the corresponding ELBO bound (for derivation, refer to the supplementary
material), given by

LELBO ≈ −
N∑

i=1

DKL

(
qφ(zi|I) || p(zi)

)

−
N∑

i=1

1
M

M∑
m=1

DKL

(
qφ(ci|z(m)

i , I) || pθ(ci|z(m)
i )

)

+
∑

(i,j)∈E
E(z i,zj ,ci,cj)∼qφ(z i,zj ,ci,cj |I)

{
log

(
pθ(aij |ci, cj ,zi,zj)

)}
, (8)

where DKL(.||.) represents the KL-divergence between two distributions. The
distribution qφ(zi,zj , ci, cj |I) in the third term of Eq. (8) is factorized into two
conditionally independent distributions i.e.

qφ(zi,zj , ci, cj |I) = qφ(zi, ci|I)qφ(zj , cj |I). (9)
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3.3 Design Choices

In Eq. (3), p(zi) is chosen to be the standard gaussian distribution for all i. The
corresponding approximate posterior qφ(zi|I) in Eq. (7), used as node embed-
dings encoder, is given by

qφ(zi|I) = N (
μi(I),diag(σ2

i(I))
)
. (10)

The parameters of qφ(zi|I) can be learnt by any encoder network e.g. graph
convolutional network [16], graph attention network [31], GraphSAGE [11] or
even two matrices to learn μi(I) and diag(σ2

i(I)). Samples are then generated
using reparametrization trick [6].

For parameterizing pθ(ci|zi) in Eq. (4), we introduce community embeddings
{g1, · · · , gK}; gk ∈ R

d. The distribution pθ(ci|zi) is then modelled as the soft-
max of dot products of zi with gk, i.e.

pθ(ci = k|zi) =
exp(< zi, gk >)

K∑
�=1

exp(< zi, g� >)
. (11)

The corresponding approximate posterior qφ(ci = k|zi, I) in Eq. (7) is
affected by the node embedding zi as well as the neighborhood. To design this,
our intuition is to consider the similarity of gk with the embedding zi as well
as with the embeddings of the neighbors of the i-th node. The overall similarity
with neighbors is mathematically formulated as the average of the dot products
of their embeddings. Afterwards, a hyperparameter α is introduced to control
the bias between the effect of zi and the set Ni of the neighbors of the i-th node.
Finally, a softmax is applied, i.e.

qφ(ci = k|zi, I) = softmax
(
α < zi, gk >

+ (1 − α)
1

|Ni|
∑
j∈Ni

< zj , gk >
)
. (12)

Hence, Eq. (12) ensures that graph structure information is employed to learn
community assignments instead of relying on an extraneous node embedding as
done in [4,26]. Finally, the choice of edge decoder in Eq. (5) is motivated by the
intuition that the nodes connected by edges have a high probability of belonging
to the same community and vice versa. Therefore we model the edge decoder as:

pθ(aij |ci = �, cj = m,zi,zj) =
σ(< zi, gm >) + σ(< zj , g� >)

2
. (13)

For better reconstructing the edges, Eq. (13) makes use of the community
embeddings, node embeddings and community assignment information simul-
taneously. This helps in learning better node representations by leveraging the
global information about the graph structure via community detection. On the
other hand, this also forces the community assignment information to exploit
the local graph structure via node embeddings and edge information.
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3.4 Practical Aspects

The third term in Eq. (8) is estimated in practice using the samples generated by
the approximate posterior. This term is equivalent to the negative of binary cross-
entropy (BCE) loss between observed edges and reconstructed edges. Since com-
munity assignment follows a categorical distribution, we use Gumbel-softmax
[12] for backpropagation of the gradients. As for the second term of Eq. (8), it
is also enough to set M = 1, i.e. use only one sample per input node.

For inference, non-overlapping community assignment can be obtained for
i-th node as

Ci = arg max
k∈{1,··· ,K}

qφ(ci = k|zi, I). (14)

To get overlapping community assignments for i-th node, we can threshold its
weighted probability vector at ε, a hyperparameter, as follows

Ci =
{

k

∣∣∣∣ qφ(ci = k|zi, I)
max

�
qφ(ci = �|zi, I)

≥ ε
}

, ε ∈ [0, 1]. (15)

3.5 Complexity

Computation of dot products for all combinations of node and community
embeddings takes O(NKd) time. Solving Eq. (12) further requires calculation
of mean of dot products over the neighborhood for every node, which takes
O(|E|K) computations overall as we traverse every edge for every community.
Finally, we need softmax over all communities for every node in Eq. (11) and
Eq. (12) which takes O(NK) time. Equation (13) takes O(|E|) time for all edges
as we have already calculated the dot products. As a result, the overall complex-
ity becomes O(|E|K + NKd). This complexity is quite low compared to other
algorithms designed to achieve similar goals [4,39].

4 Experiments

4.1 Synthetic Example

We start with a synthetic dataset, consisting of 3 communities with 5 points
per community. This dataset is actually a random partition graph generated by
the python package networkx. The encoder simply consists of two matrices that
give μi(I) and diag(σ2

i(I)). The results of the community assignments discov-
ered by J-ENC are given in Fig. 1, where the node sizes are reciprocal to the
confidence of J-ENC in the community assignments. We choose 3 communities
for demonstration because the probabilistic community assignments in such case
can be thought of as rgb values for coloring the nodes. It can be seen that J-
ENC discovers the correct community structure. However, the two bigger nodes
in the center can be assigned to more than one communities as J-ENC is not
very confident in case of these nodes. This is evident from the colors that are a
mix of red, green and blue. We now proceed to the experiments on real-world
datasets.
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4.2 Datasets

We have selected 18 different datasets ranging from 270 to 126,842 edges. For
non-overlapping community detection and node classification, we use 5 the cita-
tion datasets [2,40]. The remaining datasets [20,37], used for overlapping com-
munity detection, are taken from SNAP repository [19]. Following [26], we take
5 biggest ground truth communities for youtube, amazon and dblp. Moreover,
we also analyse the case of large number of communities. For this purpose, we
prepare two subsets of amazon dataset by randomly selecting 500 and 1000 com-
munities from 2000 smallest communities in the amazon dataset (Table 1).

Fig. 1. Visualization of community
assignments discovered by J-ENC in
the synthetic dataset of 15 points
divided in three communities.

Table 1. Every dataset has |V| nodes, |E|
edges, K communities and |F | features.
|F | = N/A means that either the features
were missing or not used.

Dataset |V| |E| K |F | Overlap

CiteSeer 3327 9104 6 3703 N

CiteSeer-full 4230 10674 6 602 N

Cora 2708 10556 7 1433 N

Cora-ML 2995 16316 7 2879 N

Cora-full 19793 126842 70 8710 N

fb0 333 2519 24 N/A Y

fb107 1034 26749 9 N/A Y

fb1684 786 14024 17 N/A Y

fb1912 747 30025 46 N/A Y

fb3437 534 4813 32 N/A Y

fb348 224 3192 14 N/A Y

fb414 150 1693 7 N/A Y

fb698 61 270 13 N/A Y

Youtube 5346 24121 5 N/A Y

Amazon 794 2109 5 N/A Y

Amazon500 1113 3496 500 N/A Y

Amazon1000 1540 4488 1000 N/A Y

Dblp 24493 89063 5 N/A Y

4.3 Baselines

For overlapping community detection, we compare with the following compet-
itive baselines: MNMF [34] learns community membership distribution by
using joint non-negative matrix factorization with modularity based regulariza-
tion. BIGCLAM [36] also formulates community detection as a non-negative
matrix factorization (NMF) task. It simultaneously optimizes the model likeli-
hood of observed links and learns the latent factors which represent community
affiliations of nodes. CESNA [38] extends BIGCLAM by statistically modelling
the interaction between the network structure and the node attributes. Circles
[20] introduces a generative model for community detection in ego-networks by
learning node similarity metrics for every community. SVI [9] formulates mem-
bership of nodes in multiple communities by a Bayesian model of networks.



J-ENC 27

vGraph [26] simultaneously learns node embeddings and community assign-
ments by modelling the nodes as being generated from a mixture of commu-
nities. vGraph+, a variant further incorporates regularization to weigh local
connectivity. ComE [4] jointly learns community and node embeddings by using
gaussian mixture model formulation. CNRL [30] enhances the random walk
sequences (generated by DeepWalk, node2vec etc.) to jointly learn community
and node embeddings. CommunityGAN (ComGAN)is a generative adversar-
ial model for learning node embeddings such that the entries of the embedding
vector of each node refer to the membership strength of the node to different
communities. Lastly, we compare the results with the communities obtained by
applying k-means to the learned embeddings of DGI [32].

For non-overlapping community detection and node classification, in addi-
tion to MNMF, DGI, CNRL, CommunityGAN, vGraph and ComE, we compare
J-ENC with the following baselines: DeepWalk [23] makes use of SkipGram
[22] and truncated random walks on network to learn node embeddings. LINE
[27] learns node embeddings while attempting to preserve first and second order
proximities of nodes. Node2Vec [10] learns the embeddings using biased ran-
dom walk while aiming to preserve network neighborhoods of nodes. Graph
Autoencoder (GAE) [17] extends the idea of autoencoders to graph datasets.
We also include its variational counterpart i.e. VGAE. GEMSEC is a sequence
sampling-based learning model which aims to jointly learn the node embeddings
and clustering assignments.

4.4 Settings

For overlapping community detection, we learn mean and log-variance
matrices of 16-dimensional node embeddings. We set α = 0.9 and ε = 0.3 in all
our experiments. Following [17], we first pre-train a variational graph autoen-
coder. We perform gradient descent with Adam optimizer [15] and learning rate
= 0.01. Community assignments are obtained using Eq. (15). For the baselines,
we employ the results reported by [26]. For evaluating the performance, we use
F1-score and Jaccard similarity.

For non-overlapping community detection, since the default imple-
mentations of most the baselines use 128 dimensional embeddings, for we use
d = 128 for fair comparison. Equation (14) is used for community assignments.
For vGraph, we use the code provided by the authors. We employ normalized
mutual information (NMI) and adjusted random index (ARI) as evaluation met-
rics.

For node classification, we follow the training split used in various previous
works [16,32,40], i.e. 20 nodes per class for training. We train logistic regression
using LIBLINEAR [7] solver as our classifier and report the evaluation results
on rest of the nodes. For the algorithms that do not use node features, we train
the classifier by appending the raw node features with the learnt embeddings.
For evaluation, we use F1-macro and F1-micro scores.

All the reported results are the average over five runs. Further implementa-
tion details can be found in: https://github.com/RayyanRiaz/gnn comm det.

https://github.com/RayyanRiaz/gnn_comm_det
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4.5 Discussion of Results

Tables 2 and 3 summarize the results of the performance comparison for the
overlapping community detection tasks.

Table 2. F1 scores (%) for overlapping communities. Best and second best values are
bold and underlined respectively.

Dataset MNMF Bigclam CESNA Circles SVI vGraph vGraph+ ComE CNRL ComGan DGI J-ENC

fb0 14.4 29.5 28.1 28.6 28.1 24.4 26.1 31.1 11.5 35.0 27.4 34.7

fb107 12.6 39.3 37.3 24.7 26.9 28.2 31.8 39.7 20.2 47.5 35.8 59.7

fb1684 12.2 50.4 51.2 28.9 35.9 42.3 43.8 52.9 38.5 47.6 42.8 56.4

fb1912 14.9 34.9 34.7 26.2 28.0 25.8 37.5 28.7 8.0 35.6 32.6 45.8

fb3437 13.7 19.9 20.1 10.1 15.4 20.9 22.7 21.3 3.9 39.3 19.7 50.2

fb348 20.0 49.6 53.8 51.8 46.1 55.4 53.1 46.2 34.1 55.8 54.7 58.2

fb414 22.1 58.9 60.1 48.4 38.9 64.7 66.9 55.3 25.3 43.9 56.9 69.6

fb698 26.6 54.2 58.7 35.2 40.3 54.0 59.5 45.8 16.4 58.2 52.2 64.0

Youtube 59.9 43.7 38.4 36.0 41.4 50.7 52.2 65.5 51.4 43.6 47.8 67.3

Amazon 38.2 46.4 46.8 53.3 47.3 53.3 53.2 50.1 53.5 51.4 44.7 58.1

Amazon500 30.1 52.2 57.3 46.2 41.9 61.2 60.4 59.8 38.4 59.3 33.8 67.6

Amazon1000 19.3 28.6 30.8 25.9 21.6 54.3 47.3 50.3 27.1 52.7 37.7 60.5

Dblp 21.8 23.6 35.9 36.2 33.7 39.3 39.9 47.1 46.8 34.9 44.0 53.9

Table 3. Jaccard scores (%) for overlapping communities. Best and second best values
are bold and underlined respectively.

Dataset MNMF Bigclam CESNA Circles SVI vGraph vGraph+ ComE CNRL ComGan DGI J-ENC

fb0 08.0 18.5 17.3 18.6 17.6 14.6 15.9 19.5 06.8 24.1 16.8 24.7

fb107 06.9 27.5 27.0 15.5 17.2 18.3 21.7 28.7 11.9 38.5 25.3 46.8

fb1684 06.6 38.0 38.7 18.7 24.7 29.2 32.7 40.3 25.8 37.9 38.8 42.5

fb1912 08.4 24.1 23.9 16.7 20.1 18.6 28.0 18.5 04.6 13.5 22.5 37.3

fb3437 07.7 11.5 11.7 05.5 09.0 12.0 13.3 12.5 02.0 33.4 11.6 36.2

fb348 11.3 35.9 40.0 39.3 33.6 41.0 40.5 34.4 21.7 23.2 41.8 43.5

fb414 12.8 47.1 47.3 34.2 29.3 51.8 55.9 42.2 15.4 53.6 46.4 58.4

fb698 16.0 41.9 45.9 22.6 30.0 43.6 47.7 33.8 09.6 46.9 42.1 50.4

Youtube 46.7 29.3 24.2 22.1 28.7 34.3 34.8 52.5 35.5 44.0 32.7 53.3

Amazon 25.2 35.1 35.0 36.7 36.4 36.9 36.9 34.6 38.7 38.0 29.1 41.9

Amazon500 20.8 51.2 53.8 47.2 45.0 59.1 59.6 58.4 41.1 57.3 23.3 64.9

Amazon1000 20.3 26.8 28.9 24.9 23.6 54.3 49.7 52.0 26.9 54.1 23.2 57.1

Dblp 20.9 13.8 22.3 23.3 20.9 25.0 25.1 27.9 32.8 25.0 29.2 37.3
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Table 4. Non-overlapping community detection results. Best and second best values
are bold and underlined respectively.

Alg. NMI(%) ARI(%)

CiteSeer CiteSeer-full Cora Cora-ML Cora-full CiteSeer CiteSeer-full Cora Cora-ML Cora-full

MNMF 14.1 09.4 19.7 37.8 42.0 02.6 00.4 02.9 24.1 06.1

DeepWalk 08.8 15.4 39.7 43.2 48.5 09.5 16.4 31.2 33.9 22.5

LINE 08.7 13.0 32.8 42.3 40.3 03.3 03.7 14.9 32.7 11.7

Node2Vec 14.9 22.3 39.7 39.6 48.1 08.1 10.5 25.8 27.9 18.8

GAE 17.4 55.1 39.7 48.3 48.3 14.1 50.6 29.3 41.8 18.3

VGAE 16.3 48.4 40.8 48.3 47.0 10.1 40.6 34.7 42.5 17.9

DGI 37.8 56.7 50.1 46.2 39.9 38.1 50.8 44.7 42.1 12.1

GEMSEC 11.8 11.1 27.4 18.1 10.0 00.6 01.0 04.8 01.0 00.2

CNRL 13.6 23.3 39.4 42.9 47.7 12.8 20.2 31.9 32.5 22.9

ComGAN 03.2 16.2 05.7 11.5 15.0 01.2 04.9 03.2 06.7 00.6

vGraph 09.0 07.6 26.4 29.8 41.7 05.1 04.2 12.7 21.6 14.9

ComE 18.8 32.8 39.6 47.6 51.2 13.8 20.9 34.2 37.2 19.7

J-ENC 38.5 59.0 52.7 56.3 55.2 35.2 60.3 45.1 49.8 28.8

Table 5. Node classification results. Best and second best values are bold and under-
lined respectively.

Alg. F1-macro (%) F1-micro (%)

CiteSeer CiteSeer-full Cora Cora-ML Cora-full CiteSeer CiteSeer-full Cora Cora-ML Cora-full

MNMF 57.4 68.6 60.9 64.2 30.4 60.8 68.1 62.7 64.2 32.9

DeepWalk 49.0 56.6 69.7 75.8 41.7 52.0 57.3 70.2 75.6 48.3

LINE 55.0 60.2 68.0 75.3 39.4 57.7 60.0 68.3 74.6 42.1

Node2Vec 55.2 61.0 71.3 78.4 42.3 57.8 61.5 71.4 78.6 48.1

GAE 57.9 79.9 71.2 76.5 36.6 61.6 79.6 73.5 77.6 41.8

VGAE 59.1 74.4 70.4 75.2 32.4 62.2 74.4 72.0 76.4 37.7

DGI 62.6 82.1 71.1 72.6 16.5 67.9 81.8 73.3 75.4 21.1

GEMSEC 37.5 53.3 60.3 70.6 35.8 39.4 53.5 59.4 72.5 38.9

CNRL 50.0 58.0 70.4 77.8 41.3 53.2 57.9 70.4 78.4 45.9

ComGAN 55.9 65.7 56.6 62.5 27.7 59.1 64.9 58.5 62.8 29.4

vGraph 30.8 28.5 44.7 59.8 33.4 32.1 28.5 44.6 62.3 37.6

ComE 59.6 69.9 71.6 78.5 42.2 63.1 70.2 74.2 79.5 47.8

J-ENC 64.8 76.8 73.1 80.2 43.1 68.2 77.0 75.6 82.0 49.6

First, we note that our proposed method J-ENC outperforms the competi-
tors on all datasets in terms of Jaccard score as well as F1-score, with the dataset
(fb0 ) being the only exception where J-ENC is the second best. These results
demonstrate the capability of J-ENC to learn multiple community assignments
quite well and hence reinforces our intuition behind the design of Eq. (12).

Second, we observe that there is no consistent performing algorithm among
the competitive methods. That is, excluding J-ENC , the best performance is
achieved by vGraph/vGraph+ on 5, ComGAN on 4 and ComE on 3 out of 13
datasets in terms of F1-score. A a similar trend can be seen in Jaccard Similarity.
It is worth noting that all the methods, which achieve the second-best perfor-
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mance, are solving the task of community detection and node representation
learning jointly.

Third, we observe that vGraph+ results are generally better than vGraph.
This is because vGraph+ incorporates a regularization term in the loss function
which is based on Jaccard coefficients of connected nodes as edge weights. How-
ever, it should be noted that this prepossessing step is computationally expensive
for densely connected graphs.

Table 4 shows the results on non-overlapping community detection. First, we
observe that MNMF, DeepWalk, LINE and Node2Vec provide a good baseline
for the task. However, these methods are not able to achieve comparable per-
formance on any dataset relative to the frameworks that treat the two tasks
jointly. Second, J-ENC consistently outperforms all the competitors in NMI
and ARI metrics, except for CiteSeer where it achieves second best ARI. Third,
we observe that GCN based models i.e. GAE, VGAE and DGI show competitive
performance. That is, they achieve second best performance in all the datasets
except CiteSeer. In particular, DGI achieves second best NMI results in 3 out
of 5 datasets and 2 out of 5 datasets in terms of ARI. Nonetheless, DGI results
are not very competitive in Table 2 and Table 3, showing that while DGI can
be a good choice for learning node embeddings for attributed graphs with non-
overlapping communities, it is not the best option for non-attributed graphs or
overlapping communities.

The results for node classification are presented in Table 5. J-ENC achieves
best F1-micro and F1-macro scores on 4 out of 5 datasets. We also observe that
GCN based models i.e. GAE, VGAE and DGI show competitive performance,
following the trend in results of Table 4. Furthermore, we note that the node
classification results of CommunityGan (ComGAN) are quite poor. We think a
potential reason behind it is that the node embeddings are constrained to have
same dimensions as the number of communities. Hence, different components
of the learned node embeddings simply represent the membership strengths of
nodes for different communities. The linear classifiers may find it difficult to
separate such vectors.

4.6 Hyperparameter Sensitivity

We study the dependence of J-ENC on ε and α by evaluating on four datasets
of different sizes: fb698 (N = 61), fb1912 (N = 747), amazon1000 (N=1540) and
youtube(N = 5346).

Effect of ε: We sweep for ε = {0.1, 0.2, · · · , 0.9}. For demonstrating effect of
α, we fix ε = 0.3 and sweep for α = {0.1, 0.2, · · · , 0.9}. The average results of five
runs for ε and α are given in Fig. 2a and Fig. 2b respectively. Overall J-ENC
is quite robust to the change in the values of ε and α. In case of ε, we see a
general trend of decrease in performance when the threshold ε is set quite high
e.g. ε > 0.7. This is because the datasets contain overlapping communities and
a very high ε will cause the algorithm to give only the most probable commu-
nity assignment instead of potentially providing multiple communities per node.
However, for a large part of sweep space, the results are almost consistent.
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Effect of α: When ε is fixed and α is changed, the results are mostly con-
sistent except when α is set to a low value. Equation (12) shows that in such a
case the node itself is almost neglected and J-ENC tends to assign communities
based upon neighborhood only, which may cause a decrease in the performance.
This effect is most visible in amazon1000 dataset because it has only 1.54 points
on average per community. This implies a decent chance for neighbours of a
point of being in different communities. Thus, sole dependence on the neighbors
will most likely result in poor results.

4.7 Training Time

Now we compare the training times of different algorithms in Fig. 3. As some
of the baselines are more resource intensive than others, we select aws instance
type g4dn.4xlarge for fair comparison of training times. For vGraph, we train
for 1000 iterations and for J-ENC for 1500 iterations. For all other algorithms

Fig. 2. Effect of hyperparameters on the performance. F1 and Jaccard scores are in
solid and dashed lines respectively.
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Fig. 3. Comparison of running times of different algorithms. We can see that J-ENC
outperforms the direct competitors. The time on y-axis is in log scale.

we use the default parameters as used in Sect. 4.4. We observe that the methods
that simply output the node embeddings take relatively less time compared to
the algorithms that jointly learn node representations and community assign-
ments e.g. J-ENC , vGraph and CNRL. Among these algorithms J-ENC is
the most time efficient. It consistently trains in less time compared to its direct
competitors. For instance, it is about 12 times faster than ComE for CiteSeer-
full and about 40 times faster compared to vGraph for Cora-full dataset. This
provides evidence for lower computational complexity of J-ENC in Sect. 3.5.

4.8 Visualization

Our experiments demonstrate that a single community-aware node embedding
is sufficient to aid in both the node representation and community assignment
tasks. This is also qualitatively demonstrated by graph visualizations of node
embeddings (obtained via t-SNE [21]) and inferred communities for two datasets,
fb107 and fb3437, presented in Fig. 4.

(a) fb107
(b) fb3437

Fig. 4. Graph visualization with community assignments (better viewed in color)
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5 Conclusion

We propose a scalable generative method J-ENC to simultaneously perform
community detection and node representation learning. Our novel approach
learns a single community-aware node embedding for both the representation
of the node and its context. J-ENC is scalable due to its low complexity,
i.e. O(|E|K + NKd). The experiments on several graph datasets show that J-
ENC consistently outperforms all the competitive baselines on node classifica-
tion, overlapping community detection and non-overlapping community detec-
tion tasks. Moreover, training the J-ENC is highly time-efficient than its com-
petitors.

References

1. Ahn, Y.Y., Bagrow, J.P., Lehmann, S.: Link communities reveal multiscale com-
plexity in networks. Nature 466(7307), 761–764 (2010)
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Abstract. Finding anomalous snapshots from a graph has garnered
huge attention recently. Existing studies address the problem using shal-
low learning mechanisms such as subspace selection, ego-network, or
community analysis. These models do not take into account the mul-
tifaceted interactions between the structure and attributes in the net-
work. In this paper, we propose GraphAnoGAN, an anomalous snapshot
ranking framework, which consists of two core components – generative
and discriminative models. Specifically, the generative model learns to
approximate the distribution of anomalous samples from the candidate
set of graph snapshots, and the discriminative model detects whether
the sampled snapshot is from the ground-truth or not. Experiments on 4
real-world networks show that GraphAnoGAN outperforms 6 baselines
with a significant margin (28.29% and 22.01% higher precision and recall,
respectively compared to the best baseline, averaged across all datasets).

Keywords: Anomaly detection · Graph snapshot · Generative
adversarial network

1 Introduction

Anomaly detection on graphs is a well-researched problem and plays a critical
role in cybersecurity, especially network security [13]. Majority of the proposed
approaches focus on anomalous nodes [2,24,27,34], anomalous edges [18,38,43],
community structures [44], or sudden surprising changes in graphs [8,10,14].

However, we focus our attention on detecting anomalous snapshots from
attributed graphs. This problem is motivated by the following cybersecurity
threats: (a) fraudulent customers controlling the sentiment (customers operate
in a way that they can not be tracked individually), (b) hackers targeting the
network (attacks such as DDOS, phishing), (c) black-market syndicates in online
social media [17], and (d) camouflaged financial transactions.

Detecting anomalous snapshots in a graph has received little attention; Spot-
Light [19] is one of them. However, SpotLight does not take into account the

c© Springer Nature Switzerland AG 2021
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patterns being formed in the graph even if there is no outburst of edges. More-
over, it tends to ignore the node features as well. On the other hand, convolu-
tional architectures nicely capture the complex interactions between the struc-
ture and the attributes, taking data sparsity and non-linearity into account.

Therefore, we propose GraphAnoGAN, a generative adversarial network
(GAN) based framework that takes advantage of its structure in the following
two ways: (i) the generative model learns to find the anomalous snapshots via
the signals from the discriminative model and the global graph topology; (ii) the
discriminative model achieves the improved classification of snapshots by mod-
eling the data provided by the generative model and ground-truth. To the best
of our knowledge, GraphAnoGAN is the first GAN-based method for detecting
anomalous snapshots in graphs.

Our convolutional architecture plays an integral role in choosing the required
feature descriptors, to be utilized in identifying anomalous snapshots. Moreover,
we demonstrate that GraphAnoGAN is able to learn complex structures and
typical patterns required in such problem settings.

Finally, we evaluate the performance of GraphAnoGAN on 4 datasets and
compare it with 6 state-of-the-art baselines. Experimental results show that
GraphAnoGAN outperforms all the baselines by a significant margin – it achieves
65.75% precision (resp. 66.5% recall) on average across all the datasets, which
is 28.29% (resp. 22.01%) higher than the best baseline.

Reproducibility: Our code and datasets are publicly available at https://github.
com/LCS2-IIITD/GraphAnoGAN-ECMLPKDD21.

2 Related Work

Readers are encouraged to go through [3] and [31] for extensive surveys on graph-
based and GAN-based anomaly detection. Traditional methods for anomaly
detection can be (i) reconstruction-based: PCA [25], kernel PCA [22]; (ii)
clustering-based: GMM [49], KDE [1]; (iii) one class classification-based: OC-
SVM [40]. More recently, deep learning based methods for anomaly detection
have been popular. These methods include (i) energy-based: DSEBM [48], MEG
[29]; (ii) autoencoder-based: DAGMM [50]; and (iii) GAN-based: AnoGAN [39],
Ganomaly [4], FenceGAN [32], MemGAN [47], TAnoGAN [7,23], and ExGAN
[11]. There has been work on attributed graphs as well [5,6,9,33,36,37,42]. How-
ever, these methods do not detect graph anomalies.

Graph-Based GAN Frameworks: GraphGAN [45] has two components –
Generator which tries to model the true connectivity distribution for all the
vertices, and Discriminator which detects whether the sampled vertex is from
the ground-truth or generated by the Generator. NetGAN [12] uses a novel
LSTM architecture and generates graphs via random walks. Generator in such
models tries to form the whole graph which is computationally challenging and
not scalable. Instead of generating the whole graph, our proposed Generator in
GraphAnoGAN learns to retrieve anomalous snapshots from a pool via signals
from the Discriminator.

https://github.com/LCS2-IIITD/GraphAnoGAN-ECMLPKDD21
https://github.com/LCS2-IIITD/GraphAnoGAN-ECMLPKDD21
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Graph-Based Anomaly Detection: These methods can be divided into four
categories. (i) Using community or ego-network analysis to spot the anomaly.
AMEN [35] detects anomalous neighborhoods in attributed graphs. A neigh-
borhood is considered normal if it is internally well-connected and nodes are
similar to each other on a specific attribute subspace as well as externally well
separated from the nodes at the boundary. SpotLight [19] used a randomized
sketching-based approach, where an anomalous snapshot is placed at a larger dis-
tance from the normal snapshot. (ii) Utilizing aggregated reconstruction error of
structure and attribute. Dominant [15] has a GCN and autoencoder network,
where an anomaly is reported if aggregated error breaches the threshold. (iii)
Using residuals of attribute information and its coherence with graph informa-
tion. Anomalous [34] is a joint framework to conduct attribute selection and
anomaly detection simultaneously based on cut matrix decomposition [30] and
residual analysis. (iv) Performing anomaly detection on edge streams. SSKN [38]
takes neighbors of a node, and historic edges into account to classify an edge.
We consider all of these as baselines.

Since we focus on attributed graphs, the abnormality is determined jointly
by mutual interactions of nodes (i.e., topological structure) and their features
(i.e., node attributes). As shown in Table 1, GraphAnoGAN satisfies all the four
aspects – it takes into account node attributes; it classifies graph snapshots; it
can be generalized for weighted/unweighted and directed/undirected graphs; and
it considers structures/patterns exhibited by anomalies.

Table 1. Comparison of GraphAnoGAN with baseline approaches.

SpotLight AMEN Anomalous Dominant SSKN GraphAnoGAN

Node attribute � � � �

Snapshot anomaly � � �

Generalizable � � � � � �

Structure/pattern �

3 Problem Definition

Let g = {g1, · · · , gT } be T different snapshots1 of an attributed graph G =
{V,E,X} with |V | = n nodes, |E| = m edges, and |X| = d node attributes.
Each snapshot gt = {Vt, Et,Xt} contains |Vt| = nt nodes, |Et| = mt edges, and
each node in Vt is associated with a d-dimensional attribute vector Xt. A and At

indicate the adjacency matrices of G and gt, respectively. Each graph snapshot
gt is associated with a label, yt ∈ Y, where Y ∈ {0, 1} (0 represents normal and
1 represents anomalous snapshot). Our goal is to detect anomalous snapshots by

1 A ‘snapshot’ of a graph is used as a general term and can refer to any subgraph of
the graph, e.g., a particular area of the graph, a temporal snapshot of the graph, an
egonet of a node, etc.
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leveraging node attributes, structure, and complex interactions between different
information modalities. The aim is to learn a model which could utilise the above
information, analyse and identify snapshots that are anomalous in behaviour.

The problem of detecting anomalous graph snapshots from attributed graphs
is as follows: Given a set of snapshots {g1, · · · , gT } from a graph G = {V,E,X}
with node attributes, analyze the structure and attributes of every snapshot,
and return the top K anomalous snapshots.

4 Proposed Algorithm

We introduce GraphAnoGAN to detect anomalous snapshots of a given graph.
GraphAnoGAN captures complex structures and unusual patterns to rank the
snapshots according to the extent of their anomalous behavior. GraphAnoGAN
follows a typical GAN architecture. There are two components: a Generator
and a Classifier/Discriminator. The Generator will select those snapshots from
the candidate pool which it deems to be anomalous (similar to the ground-
truth), and therefore, fools the Discriminator; whereas the Discriminator will
distinguish between the ground-truth and the generated snapshots. Essence of
our architecture is that the Discriminator will try to classify the graph snapshots,
and in doing so, learn the representation of anomalous/normal snapshots. On the
other hand, the Generator will learn to find a list of anomalous snapshots from
the candidate set. Figure 1 depicts the schematic architecture of GraphAnoGAN.

Fig. 1. Illustration of GraphAnoGAN. The aim of Generator is to report K anoma-
lous snapshots from a pool of samples. Discriminator is fed with samples, of which it
identifies if the sample belongs to the ground-truth or is produced by Generator.
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4.1 GAN Modeling

Given the set of T candidate snapshots {g1, · · · , gT } of G, we want to detect
k anomalous snapshots where k � T . We unify two different types of models
(i.e., Generator and Discriminator) through a minimax game. The formulation
is described below [46]:

J = minθ maxφ

(
Egt∼ptrue(g)[log D(gt)] + Egt∼pθ(g)[log(1 − D(gt))]

)
(1)

Here we represent parameters for Generator and Discriminator as θ and
φ, respectively. ptrue(g) represents the distribution of anomalous snapshots in
the ground-truth. Generator and Discriminator are written as pθ(g) and fφ(gt),
respectively. Discriminator score, D captures the probability of the snapshot
being sampled from the ground-truth, calculated using sigmoid function repre-
sented below:

D(gt) = σ(fφ(gt)) =
exp(fφ(gt))

1 + exp(fφ(gt))
(2)

Discriminator fφ(gt) is trained on the labeled snapshots and instances
received from the Generator. The objective of Discriminator is to maximize
the log-likelihood of correctly distinguishing anomalous snapshots from the ones
provided by Generator.

Generator pθ(g) tries to generate (or select) anomalous snapshots from the
candidate pool, i.e., approximates ptrue(g) as much as possible. Generator learns
the distribution of the anomalous snapshots using the information of the entire
graph and relative placement of the snapshots within it. Explicit architecture and
details are mentioned in Sect. 4.2. Equation 1 shows that the optimal parame-
ters of Generator and Discriminator, which are learned in a way such that the
Generator minimizes the objective function, while the Discriminator maximizes
the objective function.

Our GAN structure is heavily inspired by IRGAN [46]. We here adopt it for
the problem of detecting anomalous graphs, and describe the learning algorithm
for application in this context.

Discriminator Optimization: With the observed anomalous snapshots, and the
ones sampled from the current optimal Generator pθ(g), we obtain the optimal
parameters for the Discriminator:

φ∗ = arg maxφ(Egt∼ptrue(g)[log(σ(fφ(gt))]+Egt∼pθ∗ (g)[log(1 − σ(fφ(gt))]
)

(3)

Generator Optimization: Generator minimizes the following objective function
to obtain optimal parameters for the model:

θ∗ = arg min
θ

Egt∼ptrue(g)[log σ(fφ(gt))] + Egt∼pθ(g)[log(1 − σ(fφ(gt)))] (4)
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Taking reference of Eq. 2, Eq. 4 can be rewritten as:

θ∗ = arg min
θ

Egt∼pθ(g)[log
exp(fφ(gt))

(1 + exp(fφ(gt)))2
]

� arg max
θ

Egt∼pθ(g)[log(1 + exp(fφ(gt)))]
︸ ︷︷ ︸

denoted as J

(5)

We keep fφ(g) fixed. Note that we can not employ gradient descent to solve
the problem as g is discrete. We approach the problem using policy gradient
based reinforcement learning [46] as follows:

∇θJ = ∇θEgt∼pθ(g)[log(1 + exp(fφ(gt)))]

=

T∑

i=1

∇θpθ(gi) log(1 + exp(fφ(gi)))

=
T∑

i=1

pθ(gi)∇θ log pθ(gi) log(1 + exp(fφ(gi)))

� 1

K

K∑

k=1

∇θ log pθ(gk) log(1 + exp(fφ(gk)))

(6)

where we perform a sampling approximation in the last step of Eq. 6 in which
gk is the kth snapshot sampled from the output obtained from the Generator,
i.e., pθ(g). With reinforcement learning, the term log(1 + exp(fφ(gk))) acts as a
reward for the policy pθ(g) taking an action gk.

4.2 Architecture

The convolutional architecture used in GAN comprises the following compo-
nents: a graph convolutional layer, a DegPool layer, 1D convolutional layer and
a fully connected layer. We discuss individual components below:

Graph Convolution Layers: We use Graph Convolutional Network (GCN) [26].
The forward convolution operation used layer-wise is represented below:

Zl+1 = σ(D̂t
− 1

2 ÂtD̂t
− 1

2 ZlWl)

Zl and Zl+1 represent the input and output at layer l, respectively. Z0 is ini-
tialised with Xt for the graph snapshot gt. At depicts the adjacency matrix for
the specified snapshot. Dt is the diagonal matrix corresponding to At, used to
normalise in order to scale down the factor introduced by At. Ât is represented
by At + I, where I is the identity matrix. Wl is the trainable weights corre-
sponding to the layer, and σ(.) signifies the activation function (ReLU in our
case).
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Fig. 2. Visualization of DegPool layer.

DegPool Layer: Before feeding the convolved input to a 1D convolutional layer,
we want its size to be consistent, and here DegPool plays an important role. The
principle of the DegPool layer is to sort the feature descriptors according to the
degree of vertices. We sort the vertices in decreasing order of their outdegree.
Vertices with the same outdegree are sorted according to the convolutional out-
put. In this layer, the input is a concatenated tensor Z1:h of size n×∑h

1 ct, where
h represents graph convolution layers, each row corresponds to a vertex feature
descriptor, each column corresponds to a feature channel, and ct represents the
number of output channels at layer l. For vertices having the same degree, we
keep on preceding the channel until the tie is broken. The output of DegPool is
a k × ∑h

1 ct tensor, where k is a user-defined integer. We use the degree as the
first order of sorting since the nodes emitting denser edges are more probable of
being part of anomalous snapshots.

To make size of the output consistent, DegPool evicts or extends the output
tensor, makes the number of vertices from n to k. This is done to feed consistent
and equal tensors to 1D convolution. If n > k, extra n − k vertices are evicted;
whereas if n < k, the output is extended by appending zeros. Figure 2 visualises
the layer when n = 7 and k = 3. The numbers in rectangles, attributed to each
vertex represent the convolution input to DegPool layer.

Model: The architecture of Generator and that of Discriminator are similar to
each other, the difference being the adjacency matrix utilized. Generator forms
a graph by combining edges over all timesteps and then applies a convolution over
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the entire graph. Before feeding to the DegPool layer, the global structure is used
which allows overall placement and broader structural details to be taken into
account. DegPool only considers the vertices present in the snapshot, and it is
followed by a 1D convolutional and fully connected layer. It helps the Generator
to effectively model features and learn the distribution using complete graph
information. Discriminator takes the snapshot into consideration and takes
only features and structure as input.

Discriminator-Only Architecture vs. GAN: One may argue – What is the require-
ment of Generator if we consider only Discriminator which can use certain acti-
vation function (i.e., softmax) and predict top K anomalous snapshots from the
pool? Although Discriminator can be trained to choose top anomalous snap-
shots, it requires a massive amount of labeled data to generate representations
of the snapshots. On unlabeled data, the Discriminator may not be able to mine
the signals and representations required. We have observed that Generators are
able to successfully learn the distribution of data (i.e., node attribute and struc-
ture), and thus act as an important component in our model. In GraphAnoGAN,
Generator utilizes the complete graph information, as opposed to the Discrimi-
nator. The snapshot placement in the whole graph is of utmost importance and
plays a crucial role in determining its state. Generator and Discriminator help
each other through minimax game and learn through signals received from each
other. Comparative analysis in Table 3 shows that Discriminator-only model
(henceforth, Discriminator) is not as effective as GraphAnoGAN.

4.3 Training Procedure

How do the Generator and Discriminator train each other? Consider Discrimina-
tor to be an obstacle, which restricts non-anomalous samples passing through.
Generator aims to misguide Discriminator by pushing instances through the
obstacle, while the obstacle tries to allow only anomalous samples to pass
through. Generator learns to push positive but unobserved samples (which have
not passed through the obstacle yet), and Discriminator learns to allow only
anomalous samples to pass through. Figure 3 visually represents the training
procedure. Convergence is obtained when positive (anomalous) and negative
(normal) snapshots are separated. Since the unobserved positive examples are
linked to the observed positive examples, eventually they should be able to pass
through the obstacle, and (unobserved) negative samples should settle.

In a normal two-player game, Generator and Discriminator have their own loss
functions and they try to minimize them. However, in the current scenario, Gen-
erator tries to select top anomalous snapshots, and the Discriminator identifies
whether the output is from the ground-truth or from the Generator. Generator
ultimately learns to identify snapshots that represent top anomalous examples.



44 S. Bhatia et al.

Fig. 3. Visualization of the training procedure.

Time Complexity: The time complexity of GraphAnoGAN is similar to other
GANs [21]. Complexity of training each GAN iteration is O(CT ), where T rep-
resents the number of iterations, and C is the complexity of convolution filters,
where the time taken by filter l is O(|E|dcl) [26].

5 Datasets

We utilise four attributed graphs, namely ACM, BlogC, DARPA, and Enron
– we inject anomalies synthetically in first two graphs; for the remaining two,
the ground-truth anomalies are already annotated. Table 2 shows the statistics
of the graphs.

Table 2. Statistics of the datasets used in our experiments.

Dataset # nodes # edges # attributes

ACM 16,484 71,980 8,337

BlogC 5,196 171,743 8,189

DARPA 32,000 4,500,000 24

Enron 13,533 176, 987 20

ACM: This graph is constructed using citations among papers published before
2016. Attributes are obtained by applying bag-of-words on the content of paper
[16].
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Table 3. Performance (precision@K, recall@K) of the competing methods on different
datasets. First (second) row corresponding to each model indicates precision (recall).
Best value in bold.

Method ACM BlogC DARPA Enron

50 100 150 200 50 100 150 200 50 100 150 200 50 100 150 200

SpotLight 0.56 0.52 0.49 0.42 0.57 0.53 0.46 0.43 0.55 0.48 0.45 0.49 0.58 0.51 0.46 0.44

0.36 0.46 0.51 0.58 0.26 0.34 0.43 0.54 0.33 0.43 0.48 0.56 0.39 0.45 0.52 0.56

AMEN 0.61 0.56 0.51 0.49 0.63 0.59 0.49 0.44 0.60 0.55 0.53 0.51 0.62 0.56 0.52 0.48

0.37 0.49 0.54 0.60 0.34 0.42 0.51 0.62 0.36 0.48 0.57 0.61 0.42 0.49 0.56 0.59

Anomalous 0.51 0.47 0.40 0.37 0.53 0.49 0.43 0.40 0.50 0.45 0.37 0.32 0.53 0.48 0.44 0.35

0.35 0.42 0.49 0.52 0.28 0.37 0.45 0.50 0.41 0.45 0.48 0.51 0.31 0.36 0.45 0.52

Dominant 0.49 0.43 0.39 0.32 0.50 0.45 0.40 0.37 0.47 0.39 0.35 0.31 0.48 0.42 0.36 0.30

0.33 0.40 0.46 0.51 0.31 0.40 0.46 0.49 0.37 0.44 0.49 0.50 0.35 0.41 0.42 0.49

SSKN 0.46 0.41 0.35 0.29 0.41 0.43 0.39 0.30 0.45 0.37 0.32 0.28 0.44 0.38 0.31 0.27

0.28 0.39 0.45 0.49 0.26 0.35 0.41 0.45 0.31 0.37 0.41 0.46 0.29 0.33 0.38 0.45

Discriminator 0.64 0.60 0.56 0.53 0.67 0.62 0.55 0.52 0.65 0.60 0.58 0.55 0.68 0.60 0.56 0.52

0.36 0.48 0.55 0.61 0.35 0.45 0.55 0.63 0.40 0.50 0.58 0.65 0.43 0.50 0.58 0.61

GraphAnoGAN 0.74 0.70 0.65 0.61 0.76 0.71 0.66 0.59 0.74 0.70 0.68 0.66 0.75 0.69 0.64 0.58

0.42 0.59 0.69 0.74 0.44 0.56 0.66 0.73 0.43 0.55 0.64 0.77 0.49 0.58 0.67 0.72

BlogC: Blogcatalog is an online website that is designed to share blogs, arti-
cles, and content. Users act as nodes, and ‘follow’ relationships are used to draw
edges. Attributes are obtained from the content of users’ blogs [15]. We extract T
snapshots from each graph by randomly sampling P vertices and taking their ego
networks [35]. Since the ground-truth anomalies are not annotated in both these
graphs, we inject anomalies. Initially, normal snapshots, i.e., having low conduc-
tance cuts [20] are chosen. These snapshots are considered to have the lowest
anomaly factor. Of the chosen set, we add structural and attribute anomaly. The
former is injected by forming a clique in the network, while the latter is injected
by sampling random nodes, and replacing their features with the node having
maximum dissimilarity in the network.

DARPA: This graph is composed of known graph attacks, e.g., portsweep,
ipsweep, etc. Each communication is a directed edge, and attribute set constitutes
duration, numFailedLogins, etc. [41]. We obtain 1463 snapshots of the graph by
aggregating edges on an hourly basis. The snapshot is considered as anomalous if
it contains at least 50 edges [19]. Enron: The dataset is used to form a graph hav-
ing 50k relationships, having emails over a three year period among 151 employees
of the company. Each email is a directed edge, and the attributes include average
content length, average number of recipients, etc. We create graph snapshots on
a per-day basis and obtain a stream of 1139 snapshots. The anomalies are labeled
by verifying with the major events of the scandal2 [19].

2 http://www.agsm.edu.au/bobm/teaching/BE/Enron/timeline.html.

http://www.agsm.edu.au/bobm/teaching/BE/Enron/timeline.html
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6 Experiments

6.1 Baselines

We consider 6 baselines for comparison – first two (AMEN and SpotLight) focus
on detecting snapshots of a graph as anomalies; the next two (Anomalousand
Dominant) focus on anomaly detection of nodes on attributed graphs; while the
fifth one (SSKN) focuses on detecting edges as anomalies (see Sect. 2). The last one
(Discriminator) is the model which uses only Discriminator to detect anomalous
snapshots (as discussed in Sect. 4.2).

AMEN considers egonets of the constituent nodes in the snapshot and then
takes geometric mean of their anomaly scores to classify the snapshot. ForAnoma-
lousãndDominant, an anomalous snapshot is determined using geometric mean
of the per-node anomaly scores. An anomaly score is assigned to the snapshot
according to the following formula, anomalyScore(gt) = − log �(gt), where �(gt) =∏

v∈Vt
�(v). For SSKN, the likelihood of a snapshot gt(Vt, Et) is computed as the

geometric mean of the per-edge likelihoods �(gt) =
(∏

e∈Et
�(e)w

)1/W , where W
and w represent the total edge weight and the edge weight of e, respectively. A
graph is less anomalous if it is more likely, i.e., anomalyScore (gt) = − log �(gt).

6.2 Comparative Evaluation

For a fair evaluation, we keep the same test set for all the competing methods; we
use 10-fold cross-validation; for each fold, the same test set is used for all com-
peting methods to measure the performance. The experiment is then performed
10 times, and the average performance is reported.

GraphAnoGAN has five graph convolutional layers with 64, 64, 64, 32, 1
output channels, respectively. The convolutional layer corresponding to DegPool
has one channel and ensures that k in DegPool constitutes at least 70% nodes
of the snapshot. It is followed by two 1-D convolutional layers consisting of 32
and 16 output channels. Finally, the dense layer is composed of 32 nodes. It is
followed by softmax for Generator, while sigmoid is used in the Discriminator.
Softmax allows to sort the vertices and pick top K; whereas sigmoid helps for
binary classification. A dropout layer with a dropout rate of 0.3 is used after
the dense layer. The nonlinear function ReLU is used in the GCN layers. We
observe that after 100 epochs, the Generator becomes stable. Similar behavior
is observed for Discriminator after 60 epochs.

Comparison: Table 3 shows the comparative analysis of the competing meth-
ods. In general, GraphAnoGAN outperforms all baselines.3 AMEN turns out
to be the best baseline across all the datasets. However, GraphAnoGAN beats
AMEN with a relative improvement of (21–27)%, (20–34)%, (11–21)%, and (20–
23)% in precision for ACM, BlogC, DARPA and Enron, respectively. Similar

3 All the improvements in the results are significant at p < 0.05 with paired t-test.
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results are obtained in recall where GraphAnoGAN beats AMEN with a rel-
ative improvement of (10–23)%, (20–34)%, (11–21)%, and (20–23)% for ACM,
BlogC, DARPA and Enron, respectively.

6.3 Side-by-Side Diagnostics

We further dive deeper to analyze why GraphAnoGAN performs better than
state-of-the-art baselines. Figure 4 shows a detailed comparison of the competing
methods at every timestep to detect anomalous snapshots on DARPA. A time
period between 0–200 is used as the training period for the models, and the
remaining period is used for testing.

Fig. 4. Anomaly examples identified by GraphAnoGAN and baselines on the graph
carved out of DARPA at different timesteps.

SpotLight captures the situation well when edges (dis)appear in a large
amount. As it does not take node attributes into account, it does not work
well in the given setting. Buffer overflow, rootkit, or ipsweep which depend upon
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Fig. 5. Graph projection of DARPA dataset, drawn at two timestamps: (a) graph
having anomalous attributes, and (b) graph having anomalous structure.

attributes instead of the sudden appearance of edges, were not detected by Spot-
Light. The specified attacks occurred around timesteps, t = 205, 230, 300, 320,
450, 620. GraphAnoGAN was able to successfully detect these attacks.

AMEN quantifies the quality of the structure and the focus (attributes) of
neighborhoods in attributed graphs, using the following features: (i) internal
consistency and (ii) external separability. However, it does not take into account
different patterns (discussed below in detail) observed in anomalous graphs.
Therefore, AMEN performs poorly at t = 370, 430, 650, 690, 790, where majorly
structure and patterns play an integral role. In comparison, GraphAnoGAN
works well since it does not rely on shallow learning mechanisms and captures
network sparsity and data non-linearity efficiently.

Anomalous and Dominant do not capture situations when nodes have cam-
ouflaged in such a way that individually they are not anomalous but the whole
structure represents an anomaly, i.e., star, cycle, etc. To verify this, we check the
ground-truth anomalous snapshots detected by GraphAnoGAN which Anoma-
lous and Dominant are unable to detect. We notice certain patterns [2,28]
present in the dataset which GraphAnoGAN is able to expose. There are many
interesting patterns which GraphAnoGAN can identify, but the two baselines do
not. For brevity, we discuss a few such critical structures: (i) densely connected
components: vertices are densely connected (near-cliques) or centrally connected
(stars); (ii) strongly connected neighborhood: the edge weight corresponding
to one connection is extremely large, and (iii) camouflaged topology: there are
certain shapes like a barbell, cycle, and wheel-barbell, which are densely connected
at a certain area but may depict normal behavior in other areas. We visualise the
graph formed around timesteps, t = 370, 650, 710, 790, 840, and see the above given
patterns within the graph. Specifically, attacks such as portsweep, udpstorm, and
mscan occurred during these timesteps, which GraphAnoGANdetected success-
fully (see Fig. 4).

Figure 5 shows the two detected anomalies by GraphAnoGAN from DARPA
at two different timestamps. Specifically, Fig. 5(a) denotes the anomaly detected
using attributes present in the dataset when the structure did not behave
abnormally. Figure 5(b) demonstrates the capability of GraphAnoGAN to cap-
ture anomalous patterns, near-clique in the given example. In a nutshell,
GraphAnoGAN can help us find the anomalous snapshot of different patterns.
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SSKN performed poorly in detecting attacks, specifically neptune, which
majorly appear in the DARPA network. SSKN considers the following three
aspects to detect a snapshot as normal: (i) snapshots with edges present before,
(ii) nodes densely connected, and (iii) nodes sharing neighbors. These aspects
work fine on the graph evolving slowly, which does not hold for most of the
real-world networks; thus, it performs poorly here.

7 Conclusion

In this paper, we addressed the problem of detecting anomalous snapshots from
a given graph. We proposed GraphAnoGAN, a GAN-based framework, that uti-
lizes both the structure and the attribute while predicting whether a snapshot
is anomalous. We demonstrate how GraphAnoGAN is able to learn typical pat-
terns and complex structures. Extensive experiments on 4 datasets showed the
improvement of GraphAnoGAN compared to 6 other baseline methods. Future
work could examine ways to carve out anomalous snapshots from graphs and
analysis in a temporal setting.
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Abstract. Generative Adversarial Networks (GANs) are performant
generative methods yielding high-quality samples. However, under cer-
tain circumstances, the training of GANs can lead to mode collapse or
mode dropping. To address this problem, we use the last layer of the dis-
criminator as a feature map to study the distribution of the real and the
fake data. During training, we propose to match the real batch diver-
sity to the fake batch diversity by using the Bures distance between
covariance matrices in this feature space. The computation of the Bures
distance can be conveniently done in either feature space or kernel space
in terms of the covariance and kernel matrix respectively. We observe
that diversity matching reduces mode collapse substantially and has a
positive effect on sample quality. On the practical side, a very simple
training procedure is proposed and assessed on several data sets.

Keywords: Generative Adversarial Networks · Mode collapse ·
Optimal transport

1 Introduction

In several machine learning applications, data is assumed to be sampled from an
implicit probability distribution. The estimation of this empirical implicit distri-
bution is often intractable, especially in high dimensions. To tackle this issue, gen-
erative models are trained to provide an algorithmic procedure for sampling from
this unknown distribution. Popular approaches are Variational Auto-Encoders
proposed by [16], Generating Flow models by [32] and Generative Adversarial
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Networks (GANs) initially developed by [10]. The latter are particularly success-
ful approaches to produce high quality samples, especially in the case of natural
images, though their training is notoriously difficult. The vanilla GAN consists
of two networks: a generator and a discriminator. The generator maps random
noise, usually drawn from a multivariate normal, to fake data in input space. The
discriminator estimates the likelihood ratio of the generator network to the data
distribution. It often happens that a GAN generates samples only from a few of
the many modes of the distribution. This phenomenon is called ‘mode collapse’.

Contribution. We propose BuresGAN: a generative adversarial network which
has the objective function of a vanilla GAN complemented by an additional term,
given by the squared Bures distance between the covariance matrix of real and
fake batches in a latent space. This loss function promotes a matching of fake and
real data in a feature space R

f , so that mode collapse is reduced. Conveniently,
the Bures distance also admits both a feature space and kernel based expression.
Contrary to other related approaches such as in [4] or [35], the architecture of
the GAN is unchanged, only the objective is modified. We empirically show that
the proposed method is robust when it comes to the choice of architecture and
does not require an additional fine architecture search. Finally, an extra asset of
BuresGAN is that it yields competitive or improved IS and FID scores compared
with the state of the art on CIFAR-10 and STL-10 using a ResNet architecture.

Related Works. The Bures distance is closely related to the Fréchet distance [6]
which is a 2-Wasserstein distance between multivariate normal distributions.
Namely, the Fréchet distance between multivariate normals of equal means is
the Bures distance between their covariance matrices. The Bures distance is also
equivalent to the exact expression for the 2-Wasserstein distance between two
elliptically contoured distributions with the same mean as shown in [8] and [28].
Noticeably, it is also related to the Fréchet Inception Distance score (FID), which
is a popular manner to assess the quality of generative models. This score uses
the Fréchet distance between real and generated samples in the feature space of
a pre-trained inception network as it is explained in [33] and [12].

There exist numerous works aiming to improve training efficiency of gen-
erative networks. For mode collapse evaluation, we compare BuresGAN to the
most closely related works. GDPP-GAN [7] and VEEGAN [35] also try to enforce
diversity in ‘latent’ space. GDPP-GAN matches the eigenvectors and eigenval-
ues of the real and fake diversity kernel. In VEEGAN, an additional recon-
structor network is introduced to map the true data distribution to Gaussian
random noise. In a similar way, architectures with two discriminators are anal-
ysed by [26], while MADGAN [9] uses multiple discriminators and generators.
A different approach is taken by Unrolled-GAN [23] which updates the genera-
tor with respect to the unrolled optimization of the discriminator. This allows
training to be adjusted between using the optimal discriminator in the genera-
tor’s objective, which is ideal but infeasible in practice. Wasserstein GANs [1,11]
leverage the 1-Wasserstein distance to match the real and generated data distri-
butions. In MDGAN [4], a regularization is added to the objective function, so
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that the generator can take advantage of another similarity metric with a more
predictable behavior. This idea is combined with a penalization of the missing
modes. Some other recent approaches to reducing mode collapse are variations
of WGAN [37]. Entropic regularization has been also proposed in PresGAN [5],
while metric embeddings were used in the paper introducing BourGAN [38]. A
simple packing procedure which significantly reduces mode collapse was proposed
in PacGAN [19] that we also consider hereafter in our comparisons.

2 Method

A GAN consists of a discriminator D : R
d → R and a generator G : R

� →
R

d which are typically defined by neural networks and parametrized by real
vectors. The value D(x) gives the probability that x comes from the empirical
distribution, while the generator G maps a point z in the latent space R

� to a
point in the input space R

d. The training of a GAN consists in solving

min
G

max
D

Ex∼pd
[log D(x)] + Ex∼pg

[log(1 − D(x))], (1)

by alternating two phases of training. In (1), the expectation in the first term is
over the empirical data distribution pd, while the expectation in the second term
is over the generated data distribution pg, implicitly given by the mapping by
G of the latent prior distribution N (0, I�). It is common to define and minimize
the discriminator loss by

VD = −Ex∼pd
[log D(x)] − Ex∼pg

[log(1 − D(x))]. (2)

In practice, it is proposed in [10] to minimize generator loss

VG = −Ez∼N (0,I�)[log D(G(z))], (3)

rather than the second term of (1), for an improved training efficiency.

Matching Real and Fake Data Covariance. To prevent mode collapse, we encour-
age the generator to sample fake data of similar diversity to real data. This
is achieved by matching the sample covariance matrices of real and fake data
respectively. Covariance matching and similar ideas were explored for GANs
in [25] and [7]. In order to compare covariance matrices, we propose to use the
squared Bures distance between positive semi-definite � × � matrices [2], i.e.,

B (A,B)2 = min
U∈O(�)

‖A1/2 − B1/2U‖2F
= Tr(A + B − 2(A

1
2 BA

1
2 )

1
2 ).

Being a Riemannian metric on the manifold of positive semi-definite matrices
[21], the Bures metric is adequate to compare covariance matrices. The covari-
ances are defined in a feature space associated to the discriminator. Namely,
let D(x) = σ(w�φ(x)), where w is the weight vector of the last dense layer
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and σ is the sigmoid function. The last layer of the discriminator, denoted
by φ(x) ∈ R

dφ , naturally defines a feature map. We use the normalization
φ̄(x) = φ(x)/‖φ(x)‖2, after the centering of φ(x). Then, we define a covariance
matrix as follows: C(p) = Ex∼p[φ̄(x)φ̄(x)�]. For simplicity, we denote the real
data and generated data covariance matrices by Cd = C(pd) and Cg = C(pg),
respectively. Our proposal is to replace the generator loss by VG + λB(Cd, Cg)2.
The value λ = 1 was found to yield good results in the studied data sets. Two
specific training algorithms are proposed. Algorithm 1 deals with the squared
Bures distance as an additive term to the generator loss, while an alternating
training is discussed in Supplementary Material (SM) and does not introduce
an extra parameter. The training described in Algorithm 1 is analogous to the
training of GDPP GAN, although the additional generator loss is rather differ-
ent. The computational advantage of the Bures distance is that it admits two
expressions which can be evaluated numerically in a stable way. Namely, there
is no need to calculate a gradient update through an eigendecomposition.

Algorithm 1. BuresGAN
Sample a real and fake batch
Update G by minimizing VG + λB(Ĉr, Ĉg)

2

Update D by maximizing −VD;

Feature Space Expression. In the training procedure, real x
(d)
i and fake data

x
(g)
i with 1 ≤ i ≤ b are sampled respectively from the empirical distribution and

the mapping of the normal distribution N (0, I�) by the generator. Consider the
case where the batch size b is larger than the feature space dimension. Let the
embedding of the batches in feature space be Φα = [φ(x(α)

1 ), . . . ,φ(x(α)
b )]� ∈

R
b×dφ with α = d, g. The covariance matrix of one batch in feature space1 is

Ĉ = Φ̄�Φ̄, where Φ̄ is the �2-normalized centered feature map of the batch.
Numerical instabilities can be avoided by adding a small number, e.g. 1e−14, to
the diagonal elements of the covariance matrices, so that, in practice, we only
deal with strictly positive definite matrices. From the computational perspective,
an interesting alternative expression for the Bures distance is given by

B (Cd, Cg)
2 = Tr

(
Cd + Cg − 2(CgCd)

1
2
)
, (4)

whose computation requires only one matrix square root. This identity can be
obtained from Lemma 1. Note that an analogous result is proved in [27].

Lemma 1. Let A and B be symmetric positive semidefinite matrices of the same
size and let B = Y �Y . Then, we have: (i) AB is diagonalizable with nonnegative
eigenvalues, and (ii) Tr((AB)

1
2 ) = Tr((Y AY �)

1
2 ).

1 For simplicity, we omit the normalization by 1
b−1

in front of the covariance matrix.
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Proof. (i) is a consequence of Corollary 2.3 in [13]. (ii) We now follow [27].
Thanks to (i), we have AB = PDP−1 where D is a nonnegative diagonal and
the columns of P contain the right eigenvectors of AB. Therefore, Tr((AB)1/2) =
Tr(D1/2). Then, Y AY � is clearly diagonalizable. Let us show that it shares its
nonzero eigenvalues with AB. a) We have ABP = PD, so that, by multiplying
of the left by Y , it holds that (Y AY �)Y P = Y PD. b) Similarly, suppose that we
have the eigenvalue decomposition Y AY �Q = QΛ. Then, we have BAY �Q =
Y �QΛ with B = Y �Y . This means that the non-zero eigenvalues of Y AY � are
also eigenvalues of BA. Since A and B are symmetric, this completes the proof.

Kernel Based Expression. Alternatively, if the feature space dimension f is larger
than the batch size b, it is more efficient to compute B(Ĉd, Ĉg) thanks to b × b

kernel matrices: Kd = Φ̄dΦ̄
�
d , Kg = Φ̄gΦ̄�

g and Kdg = Φ̄dΦ̄�
g . Then, we have the

kernel based expression

B(Ĉd, Ĉg)2 = Tr
(
Kd + Kg − 2

(
KdgK

�
dg

) 1
2

)
, (5)

which allows to calculate the Bures distance between covariance matrices by
computing a matrix square root of a b × b matrix. This is a consequence of
Lemma 2.

Lemma 2. The matrices X�XY �Y and Y X�XY � are diagonalizable with
nonnegative eigenvalues and share the same non-zero eigenvalues.

Proof. The result follows from Lemma 1 and its proof, where A = X�X and
B = Y �Y .

Connection with Wasserstein GAN and Integral Probability Metrics. The Bures
distance is proportional to the 2-Wasserstein distance W2 between two ellipically
contoured distributions with the same mean [8]. For instance, in the case of
multivariate normal distributions, we have

B (A,B)2 = min
π

E(X,Y )∼π‖X − Y ‖22 s.t.

{
X ∼ N (0, A)
Y ∼ N (0, B),

where the minimization is over the joint distributions π. More precisely, in this
paper, we make the approximation that the implicit distribution of the real
and generated data in the feature space R

dφ (associated to φ(x)) are ellipti-
cally contoured with the same mean. Under different assumptions, the Gen-
erative Moment Matching Networks [18,31] work in the same spirit, but use
a different approach to match covariance matrices. On the contrary, WGAN
uses the Kantorovich dual formula for the 1-Wasserstein distance: W1(α, β) =
supf∈Lip

∫
fd(α − β), where α, β are signed measures. Generalizations of such

integral formulae are called integral probability metrics (see for instance [3]).
Here, f is the discriminator, so that the maximization over Lipschitz functions
f plays the role of the maximization over discriminator parameters in the min-
max game of (1). Then, in the training procedure, this maximization alternates
with a minimization over the generator parameters.
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We can now discuss the connection with Wasserstein GAN. Coming back
to the definition of BuresGAN, we can now explain that the 2-Wasserstein
distance provides an upper bound on an integral probability metric. Then, if
we assume that the densities are elliptically contoured distributions in feature
space, the use of the Bures distance to calculate W2 allows to spare the maxi-
mization over the discriminator parameters – and this motivates why the opti-
mization of B only influences updates of the generator in Algorithm 1. Going
more into detail, the 2-Wasserstein distance between two probability densities
(w.r.t. the same measure) is equivalent to a Sobolev dual norm, which can be
interpreted as an integral probability metric. Indeed, let the Sobolev semi-norm
‖f‖H1 = (

∫ ‖∇f(x)‖2dx)1/2. Then, its dual norm over signed measures is defined
as ‖ν‖H−1 = sup‖f‖H1≤1

∫
fdν. It is then shown in [29] and [28] that there exist

two positive constants c1 and c2 such that

c1‖α − β‖H−1 ≤ W2(α, β) ≤ c2‖α − β‖H−1 .

Hence, the 2-Wasserstein distance gives an upper bound on an integral proba-
bility metric.

Algorithmic Details. The matrix square root in (4) and (5) is obtained thanks
to the Newton-Schultz algorithm which is inversion free and can be efficiently
calculated on GPUs since it involves only matrix products. In practice, we found
15 iterations of this algorithm to be sufficient for the small scale data sets, while
20 iterations were used for the ResNet examples. A small regularization term
1e−14 is added to the matrix diagonal for stability. The latent prior distribution
is N (0, I�) with � = 100 and the parameter in Algorithm 1 is always set to λ = 1.
In the tables hereafter, we indicate the largest scores in bold, although we invite
the reader to also consider the standard deviation.

3 Empirical Evaluation of Mode Collapse

BuresGAN’s performances on synthetic data, artificial and real images are com-
pared with the standard DCGAN [33], WGAN-GP, MDGAN, Unrolled GAN,
VEEGAN, GDPP and PacGAN. We want to emphasize that the purpose of
this experiment is not to challenge these baselines, but to report the improve-
ment obtained by adding the Bures metric to the objective function. It would
be straightforward to add the Bures loss to other GAN variants, as well as most
GAN architectures, and we would expect an improvement in mode coverage and
generation quality. In the experiments, we notice that adding the Bures loss to
the vanilla GAN already significantly improves the results.

A low dimensional feature space (dφ = 128) is used for the synthetic data so
that the feature space formula in (4) is used, while the dual formula in (5) is used
for the image data sets (Stacked MNIST, CIFAR-10, CIFAR-100 and STL-10)
for which the feature space is larger than the batch size. The architectures used
for the image data sets are based on DCGAN [30], while results using ResNets
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are given in Sect. 4. All images are scaled in between -1 and 1 before running the
algorithms. Additional information on the architectures and data sets is given in
SM. The hyperparameters of other methods are typically chosen as suggested in
the authors’ reference implementation. The number of unrolling steps in Unrolled
GAN is chosen to be 5. For MDGAN, both versions are implemented but only
MDGAN-v2 gives interesting results. The first version, which corresponds to the
mode regularizer, has hyperparameters λ1 = 0.2 and λ2 = 0.4, for the second
version, which corresponds to manifold diffusion training for regularized GANs,
has λ = 10−2. WGAN-GP uses λ = 10.0 and ncritic = 5. All models are trained
using Adam [15] with β1 = 0.5, β2 = 0.999 and learning rate 10−3 for both
the generator and discriminator. Unless stated otherwise, the batch size is 256.
Examples of random generations of all the GANs are given in SM. Notice that
in this section we report the results achieved only at the end of the training.

3.1 Artificial Data

Synthetic. Ring is a mixture of eight two-dimensional isotropic Gaussians in the
plane with means 2.5 × (cos((2π/8)i), sin((2π/8)i)) and std 0.01 for 1 ≤ i ≤ 8.
Grid is a mixture of 25 two-dimensional isotropic normals in the plane with
means separated by 2 and with standard deviation 0.05. All models have the
same architecture, with � = 256 following [7], and are trained for 25k iterations.
The evaluation is done by sampling 3k points from the generator network. A
sample is counted as high quality if it is within 3 standard deviations of the
nearest mode. The experiments are repeated 10 times for all models and their
performance is compared in Table 1.

BuresGAN consistently captures all the modes and produces the highest qual-
ity samples. The training progress of the BuresGAN is shown on Fig. 1, where
we observe that all the modes early on in the training procedure, afterwards
improving the quality. The training progress of the other GAN models listed in
Table 1 is given in SM. Although BuresGAN training times are larger than most
other methods for this low dimensional example, we show in SM that BuresGAN
scales better with the input data dimension and architecture complexity.

Stacked MNIST. The Stacked MNIST data set is specifically constructed to
contain 1000 known modes. This is done by stacking three digits, sampled uni-
formly at random from the original MNIST data set, each in a different channel.
BuresGAN is compared to the other methods and are trained for 25k iterations.
For the performance evaluation, we follow [23] and use the following metrics: the
number of captured modes measures mode collapse and the KL divergence, which
also measures sample quality. The mode of each generated image is identified by
using a standard MNIST classifier which is trained up to 98.43% accuracy on the
validation set (see Supplementary Material), and classifies each channel of the
fake sample. The same classifier is used to count the number of captured modes.
The metrics are calculated based on 10k generated images for all the models.
Generated samples from BuresGAN are given in Fig. 2. As it was observed by
previous papers such as in [19] and [38], even the vanilla GAN can achieve an
excellent mode coverage for certain architectures.



The Bures Metric for Generative Adversarial Networks 59

Step 0 Step 2k Step 4k Step 6k Step 8k Step 25k

Fig. 1. Figure accompanying Table 1, the progress of BuresGAN on the synthetic exam-
ples. Each column shows 3k samples from the training of the generator in blue and 3k
samples from the true distribution in green (Color figure online).

Table 1. Experiments on the synthetic data sets. Average (std) over 10 runs. All the
models are trained for 25k iterations.

Grid (25 modes) Ring (8 modes)

Nb modes % in 3σ Nb modes % in 3σ

GAN 22.9 (4) 76 (13) 7.4 (2) 76 (25)

WGAN-GP 24.9 (0.3) 77 (10) 7.1 (1) 9 (5)

MDGAN-v2 25 (0) 68 (11) 5 (3) 20 (15)

Unrolled 19.7 (1) 78 (19) 8(0) 77 (18)

VEEGAN 25 (0) 67 (3) 8 (0) 29 (5)

GDPP 20.5 (5) 79 (23) 7.5 (0.8) 73 (25)

PacGAN2 23.6 (4) 65 (28) 8 (0) 81 (15)

BuresGAN (ours) 25 (0) 82 (1) 8 (0) 82(4)

To study mode collapse on this data set, we performed extensive experiments
for multiple discriminator layers and multiple batch sizes. In the main section,
the results for a 3 layer discriminator are reported in Table 2. Additional experi-
ments can be found in SM. An analogous experiment as in VEEGAN [35] with a
challenging architecture including 4 convolutional layers for both the generator
and discriminator was also included for completeness; see Table 3. Since different
authors, such as in the PacGAN’s paper, use slightly different setups, we also
report in SM the specifications of the different settings. We want to emphasize
the interests of this simulation is to compare GANs in the same consistent set-
ting, while the results may vary from those reported in e.g. in [35] since some
details might differ.

Interestingly, for most models, an improvement is observed in the quality of
the images – KL divergence – and in terms of mode collapse – number of modes
attained – as the size of the batch increases. For the same batch size, architecture
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Stacked MNIST CIFAR-10 CIFAR-100

Fig. 2. Generated samples from a trained BuresGAN, with a DCGAN architecture.

Table 2. KL-divergence between the generated distribution and true distribution for
an architecture with 3 conv. layers for the Stacked MNIST dataset. The number of
counted modes assesses mode collapse. The results are obtained after 25k iterations
and we report the average(std) over 10 runs.

Batch size Nb modes (↑) KL div. (↓)

64 128 256 64 128 256

3 conv. layers GAN 993.3(3.1) 995.4(1.7) 998.3(1.2) 0.28(0.02) 0.24(0.02) 0.21(0.02)

WGAN-GP 980.2 (57) 838.3 (219) 785.1 (389) 0.26 (0.34) 1.05 (1) 1.6 (2.4)

MDGAN-v1 233.8 (250) 204.0 (202) 215.5 (213) 5.0(1.6) 4.9 (1.3) 5.0 (1.2)

MDGAN-v2 299.9 (457) 300.4 (457) 200.0 (398) 4.8(3.0) 4.7 (3.0) 5.5 (2.6)

UnrolledGAN 934.7 (107) 874.1 (290) 884.9 (290) 0.72(0.51) 0.98 (1.46) 0.90 (1.4)

VEEGAN 974.2 (10.3) 687.9 (447) 395.6 (466) 0.33(0.05) 2.04 (2.61) 3.52 (2.64)

GDPP 894.2 (298) 897.1 (299) 997.5 (1.4) 0.92(1.92) 0.88 (1.93) 0.20 (0.02)

PacGAN2 989.8 (4.0) 993.3 (4.8) 897.7 (299) 0.33(0.02) 0.29 (0.04) 0.87 (1.94)

BuresGAN (ours) 993.5(2.7) 996.3 (1.6) 997.1 (2.4) 0.29 (0.02) 0.25 (0.02) 0.23 (0.01)

and iterations, the image quality is improved by BuresGAN, which consistently
performs well over all settings. The other methods show a higher variability over
the different experiments. MDGANv2, VEEGAN, GDPP and WGAN-GP often
have an excellent single run performance. However, when increasing the number
of discriminator layers, the training of these models has a tendency to collapse
more often as indicated by the large standard deviation. Vanilla GAN is one of
the best performing models in the variant with 3 layers.

We observe in Table 3 for the additional experiment that vanilla GAN and
GDPP collapse for this architecture. WGAN-GP yields the best result and is fol-
lowed by BuresGAN. However, as indicated in Table 2, WGAN-GP is sensitive to
the choice of architecture and hyperparameters and its training time is also longer
as it can be seen from the corresponding timings table in SM. More generally, these
results depend heavily on the precise architecture choice and to a lesser extent on
the batch size. These experiments further confirm the finding that most GAN mod-
els, including the standard version, can learn all modes with careful and sufficient
architecture tuning [19,22]. Finally, it can be concluded that BuresGAN performs
well for all settings, showing that it is robust when it comes to batch size and archi-
tecture.
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Table 3. Stacked MNIST experiment for an architecture with 4 conv. layers. All the
models are trained for 25k iterations with a batch size of 64, a learning rate of 2×10−4

for Adam and a normal latent distribution. The evaluation is over 10k samples and we
report the average(std) over 10 runs.

Nb modes (↑) KL div. (↓)

4 conv. layers GAN 21.6 (25.8) 5.10 (0.83)

WGAN-GP 999.7 (0.6) 0.11 (0.006)

MDGAN-v2 729.5 (297.9) 1.76 (1.65)

UnrolledGAN 24.3 (23.61) 4.96 (0.68)

VEEGAN 816.1 (269.6) 1.33 (1.46)

GDPP 33.3 (39.4) 4.92 (0.80)

PacGAN2 972.4 (12.0) 0.45 (0.06)

BuresGAN (ours) 989.9 (4.7) 0.38 (0.06)

3.2 Real Images

Metrics. Image quality is assessed thanks to the Inception Score (IS), Fréchet
Inception Distance (FID) and Sliced Wasserstein Distance (SWD). The latter was
also used in [7] and [14] to evaluate image quality as well as mode-collapse. In a
word, SWD evaluates the multiscale statistical similarity between distributions of
local image patches drawn from Laplacian pyramids. A small Wasserstein distance
indicates that the distribution of the patches is similar, thus real and fake images
appear similar in both appearance and variation at this spatial resolution. The
metrics are calculated based on 10k generated images for all the models.

CIFAR Data Sets. We evaluate the GANs on the 32×32×3 CIFAR data sets, for
which all models are trained for 100k iterations with a convolutional architecture.
In Table 4, the best performance is observed for BuresGAN in terms of image qual-
ity, measured by FID and Inception Score, and in terms of mode collapse, measured
by SWD. We also notice that UnrolledGAN, VEEGAN and WGAN-GP have dif-
ficulty converging to a satisfactory result for this architecture. This is contrast to
the ‘simpler’ synthetic data and the Stacked MNIST data set, where the models
attain a performance comparable to BuresGAN. Also, for this architecture and
number of training iterations, MDGAN did not converge to a meaningful result in
our simulations. In [1], WGAN-GP achieves a very good performance on CIFAR-
10 with a ResNet architecture which is considerably more complicated than the
DCGAN used here. Therefore, results with a Resnet architecture are reported in
Sect. 4.
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Table 4. Generation quality on CIFAR-10, CIFAR-100 and STL-10 with DCGAN
architecture. For the CIFAR images, Average(std) over 10 runs and 100k iterations for
each. For the STL-10 images, Average(std) over 5 runs and 150k iterations for each.
For improving readability, SWD score was multiplied by 100. The symbol ‘∼’ indicates
that no meaningful result could be obtained for these parameters.

CIFAR-10 CIFAR-100 STL-10

IS (↑) FID (↓) SWD (↓) IS (↑) FID (↓) SWD (↓) IS (↑) FID (↓) SWD (↓)

GAN 5.67 (0.22) 59 (8.5) 3.7 (0.9) 5.2 (1.1) 91.7 (66) 7.8 (4.9) 2.9 (1.8) 237 (54) 12.3 (4.1)

WGAN-GP 2.01 (0.47) 291 (87) 8.3 (1.9) 1.2 (0.5) 283 (113) 9.7 (2.5) ∼ ∼ ∼
UnrolledGAN 3.1 (0.6) 148 (42) 9.0 (5) 3.2 (0.7) 172.9 (40) 13.1 (9.2) ∼ ∼ ∼
VEEGAN 2.5 (0.6) 198 (33.5) 12.0 (3) 2.8 (0.7) 177.2 (27) 12.8 (3.9) ∼ ∼ ∼
GDPP 5.76 (0.27) 62.1 (5.5) 4.1 (1.1) 5.9 (0.2) 65.0 (8) 4.4 (1.9) 3.3 (2.2) 232 (84) 8.2 (4.0)

PacGAN2 5.51 (0.18) 60.61 (5.9) 2.95 (1) 5.6 (0.1) 59.9 (5.2) 4.0 (1.8) 4.7 (1.5) 161 (36) 8.1 (4.3)

BuresGAN (ours) 6.34 (0.17) 43.7 (0.9) 2.1 (0.6) 6.5 (0.1) 47.2 (1.2) 2.1 (1.0) 7.6 (0.3) 109 (7) 2.3 (0.3)

CIFAR-100 data set consists of 100 different classes and is therefore more
diverse. Compared to the original CIFAR-10 data set, the performance of the
studied GANs remains almost the same. An exception is vanilla GAN, which
shows a higher presence of mode collapse as measured by SWD.

Fig. 3. Images generated by BuresGAN with a ResNet architecture for CIFAR-10 (left)
and STL-10 (right) data sets. The STL-10 samples are full-sized 96 × 96 images.

STL-10. The STL-10 data set includes higher resolution images of size 96×96×3.
The best performing models from previous experiments are trained for 150k

iterations. Samples of generated images from BuresGAN are given on Fig. 3.
The metrics are calculated based on 5k generated images for all the models.
Compared to the previous data sets, GDPP and vanilla GAN are rarely able
to generate high quality images on the higher resolution STL-10 data set. Only
BuresGANs are capable of consistently generating high quality images as well
as preventing mode collapse, for the same architecture.
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Timings. The computing times for these data sets are in SM. For the same num-
ber of iterations, BuresGAN training time is comparable to WGAN-GP training
for the simple data in Table 1. For more complicated architectures, BuresGAN
scales better and the training time was observed to be significantly shorter with
respect to WGAN-GP and several other methods.

4 High Quality Generation Using a ResNet Architecture

Table 5. Best achieved IS and FID, using a ResNet architecture. Results with an
asterisk are quoted from their respective papers (std in parenthesis). BuresGAN results
were obtained after 300k iterations and averaged over 3 runs. The result indicated with
† are taken from [37]. For all the methods, the STL-10 images are rescaled to 48×48×3
in contrast with Table 4.

CIFAR-10 STL-10

IS (↑) FID (↓) IS (↑) FID (↓)

WGAN-GP ResNet [11]∗ 7.86 (0.07) 18.8† / /

InfoMax-GAN [17]∗ 8.08(0.08) 17.14 (0.20) 8.54 (0.12) 37.49 (0.05)

SN-GAN ResNet [24]∗ 8.22 (0.05) 21.7(0.21) 9.10 (0.04) 40.1 (0.50)

ProgressiveGAN [14]∗ 8.80 (0.05) / / /

CR-GAN [39]∗ 8.4 14.56 / /

NCSN [34]∗ 8.87 (0.12) 25.32 / /

Improving MMD GAN [36]∗ 8.29 16.21 9.34 37.63

WGAN-div [37]∗ / 18.1† / /

BuresGAN ResNet (Ours) 8.81(0.08) 12.91 (0.40) 9.67 (0.19) 31.42 (1.01)

As noted by [20], a fair comparison should involve GANs with the same archi-
tecture, and this is why we restricted in our paper to a classical DCGAN archi-
tecture. It is natural to question the performance of BuresGAN with a ResNet
architecture. Hence, we trained BuresGAN on the CIFAR-10 and STL-10 data
sets by using the ResNet architecture taken from [11]. In this section, the STL-
10 images are rescaled to a resolution of 48 × 48 × 3 according the procedure
described in [17,24,36], so that the comparison of IS and FID scores with other
works is meaningful. Note that BuresGAN has no parameters to tune, except
for the hyperparameters of the optimizers.

The results are displayed in Table 5, where the scores of state-of-the-art
unconditional GAN models with a ResNet architecture are also reported. In
contrast with Sect. 3, we report here the best performance achieved at any time
during the training, averaged over several runs. To the best of our knowledge, our
method achieves a new state of the art inception score on STL-10 and is within a
standard deviation of state of the art on CIFAR-10 using a ResNet architecture.
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The FID score achieved by BuresGAN is nonetheless smaller than the reported
FID scores for GANs using a ResNet architecture. A visual inspection of the
generated images in Fig. 3 shows that the high inception score is warranted, the
samples are clear, diverse and often recognizable. BuresGAN also performs well
on the full-sized STL-10 data set where an inception score of 11.11 ± 0.19 and
an FID of 50.9 ± 0.13 is achieved (average and std over 3 runs).

5 Conclusion

In this work, we discussed an additional term based on the Bures distance which
promotes a matching of the distribution of the generated and real data in a
feature space R

dφ . The Bures distance admits both a feature space and kernel
based expression, which makes the proposed model time and data efficient when
compared to state of the art models. Our experiments show that the proposed
methods are capable of reducing mode collapse and, on the real data sets, achieve
a clear improvement of sample quality without parameter tuning and without
the need for regularization such as a gradient penalty. Moreover, the proposed
GAN shows a stable performance over different architectures, data sets and
hyperparameters.

Acknowledgments. EU: The research leading to these results has received fund-
ing from the European Research Council under the European Union’s Horizon 2020
research and innovation program/ERC Advanced Grants (787960, 885682). This paper
reflects only the authors’ views and the Union is not liable for any use that may be
made of the contained information. Research Council KUL: Optimization frameworks
for deep kernel machines C14/18/068, projects C16/15/059, C3/19/053, C24/18/022,
C3/20/117), Industrial Research Fund (Fellowships 13-0260, IOF/16/004) and several
Leuven Research and Development bilateral industrial projects; Flemish Government:
FWO: projects: GOA4917N (Deep Restricted Kernel Machines: Methods and Founda-
tions), EOS Project no G0F6718N (SeLMA), SBO project S005319N, Infrastructure
project I013218N, TBM Project T001919N; PhD Grants (SB/1SA1319N, SB/1S93918,
SB/1S1319N), EWI: the Flanders AI Research Program. VLAIO: Baekeland PhD
(HBC.20192204) and Innovation mandate (HBC.2019.2209), CoT project 2018.018.
Other funding: Foundation ‘Kom op tegen Kanker’, CM (Christelijke Mutualiteit).
Ford KU Leuven Research Alliance Project KUL0076 (Stability analysis and perfor-
mance improvement of deep reinforcement learning algorithms).

References

1. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks.
In: Proceedings of the 34th International Conference on Machine Learning (ICML)
(2017)

2. Bhatia, R., Jain, T., Lim, Y.: On the Bures-Wasserstein distance between positive
definite matrices. Expositiones Mathematicae 37(2), 165–191 (2019)

3. Binkowski, M., Sutherland, D.J., Arbel, M., Gretton, A.: Demystifying MMD
GANs. In: Proceedings of the International Conference on Learning Representa-
tions (ICLR) (2018)



The Bures Metric for Generative Adversarial Networks 65

4. Che, T., Li, Y., Jacob, A.P., Bengio, Y., Li, W.: Mode regularized generative
adversarial networks. In: Proceedings of the International Conference on Learning
Representations (ICLR) (2017)

5. Dieng, A.B., Ruiz, F.J.R., Blei, D.M., Titsias, M.K.: Prescribed generative adver-
sarial networks. arxiv:1910.04302 (2020)
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Abstract. Joint Energy-based Model (JEM) of [11] shows that a stan-
dard softmax classifier can be reinterpreted as an energy-based model
(EBM) for the joint distribution p(x, y); the resulting model can be opti-
mized to improve calibration, robustness and out-of-distribution detec-
tion, while generating samples rivaling the quality of recent GAN-based
approaches. However, the softmax classifier that JEM exploits is inher-
ently discriminative and its latent feature space is not well formulated
as probabilistic distributions, which may hinder its potential for image
generation and incur training instability. We hypothesize that genera-
tive classifiers, such as Linear Discriminant Analysis (LDA), might be
more suitable for image generation since generative classifiers model the
data generation process explicitly. This paper therefore investigates an
LDA classifier for image classification and generation. In particular, the
Max-Mahalanobis Classifier (MMC) [30], a special case of LDA, fits our
goal very well. We show that our Generative MMC (GMMC) can be
trained discriminatively, generatively or jointly for image classification
and generation. Extensive experiments on multiple datasets show that
GMMC achieves state-of-the-art discriminative and generative perfor-
mances, while outperforming JEM in calibration, adversarial robustness
and out-of-distribution detection by a significant margin. Our source
code is available at https://github.com/sndnyang/GMMC.

Keywords: Energy-based models · Generative models ·
Max-Mahalanobis Classifier

1 Introduction

Over the past few years, deep neural networks (DNNs) have achieved state-
of-the-art performance on a wide range of learning tasks, such as image clas-
sification, object detection, segmentation and image captioning [14,18]. All of
these breakthroughs, however, are achieved in the framework of discriminative
models, which are known to be exposed to several critical issues, such as adver-
sarial examples [10], calibration of uncertainty [13] and out-of-distribution detec-
tion [15]. Prior works have shown that generative training is beneficial to these
c© Springer Nature Switzerland AG 2021
N. Oliver et al. (Eds.): ECML PKDD 2021, LNAI 12976, pp. 67–83, 2021.
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(a) Softmax Classifier (b) JEM

(c) GMMC (Dis) (d) GMMC (Gen)

Fig. 1. t-SNE visualization of the latent feature spaces learned by different models
trained on CIFAR10.

models and can alleviate some of these issues at certain levels [5,7]. Yet, most
recent research on generative models focus primarily on qualitative sample qual-
ity [3,33,36], and the discriminative performances of state-of-the-art generative
models are still far behind discriminative ones [2,6,8].

Recently, there is a flurry of interest in closing the performance gap
between generative models and discriminative models [1,8,9,11]. Among them,
IGEBM [8] and JEM [11] are the two most representative ones, which reinter-
pret CNN classifiers as the energy-based models (EBMs) for image generation.
Since the CNN classifier is the only trained model, which has a high compo-
sitionality, it is possible that a single trained CNN model may encompass the
generative capabilities into the discriminative model without sacrificing its dis-
criminative power. Their works realize the potential of EBMs in hybrid model-
ing and achieve improved performances on discriminative and generative tasks.
Specifically, JEM [11] reinterprets the standard softmax classifier as an EBM and
achieves impressive performances in image classification and generation simul-
taneously, and ignites a series of follow-up works [9,12,41].

However, the softmax classifier that JEM exploits is inherently discrimina-
tive, which may hinder its potential in image generation. To investigate this, we
visualize the latent feature spaces learnt by a standard softmax classifier and
by JEM through t-SNE [21] in Figs. 1(a) and 1(b), respectively. Apparently, the
feature space of the softmax classifier has been improved significantly by JEM as
manifested by higher inter-class separability and intra-class compactness. How-
ever, JEM’s latent space is not well formulated as probabilistic distributions,
which may limit its generative performance and incur training instability as
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observed in [11]. We hypothesize that generative classifiers (e.g., LDA) might be
more suitable for image classification and generation. This is because generative
classifiers model the data generation process explicitly with probabilistic dis-
tributions, such as mixture of Gaussians, which aligns well with the generative
process of image synthesis. Therefore, in this paper we investigate an LDA classi-
fier for image classification and generation. In particular, the Max-Mahalanobis
Classifier (MMC) [30], a special case of LDA, fits our goal very well since MMC
formulates the latent feature space explicitly as the Max-Mahalanobis distribu-
tion [29]. Distinct to [30], we show that MMC can be trained discriminatively,
generatively or jointly as an EBM. We term our algorithm Generative MMC
(GMMC) given that it is a hybrid model for image classification and generation,
while the original MMC [30] is only for classification.

As a comparison, Figs. 1(c) and 1(d) illustrate the latent feature spaces of
GMMC optimized with discriminative training and generative training (to be dis-
cussed in Sect. 3), respectively. It can be observed that the latent feature spaces of
GMMC are improved even further over that of JEM’s with higher inter-class sep-
arability and intra-class compactness. Furthermore, the explicit generative mod-
eling of GMMC leads to many auxiliary benefits, such as adversarial robustness,
calibration of uncertainty and out-of-distribution detection, which will be demon-
strated in our experiments. Our main contributions can be summarized as follows:

1. We introduce GMMC, a hybrid model for image classification and generation.
As an alternative to the softmax classifier utilized in JEM, GMMC has a well-
formulated latent feature distribution, which fits well with the generative
process of image synthesis.

2. We show that GMMC can be trained discriminatively, generatively or jointly
with reduced complexity and improved stability as compared to JEM.

3. Our model matches or outperforms prior state-of-the-art hybrid models on
multiple discriminative and generative tasks, including image classification,
image synthesis, calibration of uncertainty, out-of-distribution detection and
adversarial robustness.

2 Background and Related Work

2.1 Energy-Based Models

Energy-based models (EBMs) [20] define an energy function that assigns low
energy values to samples drawn from data distribution and high values other-
wise, such that any probability density pθ (x) can be expressed via a Boltzmann
distribution as

pθ (x) = exp (−Eθ (x)) /Z(θ), (1)

where Eθ (x) is an energy function that maps each input x ∈ R
D to a scalar,

and Z(θ) is the normalizing constant (also known as the partition function) such
that pθ (x) is a valid density function.

The key challenge of training EBMs lies in estimating the partition func-
tion Z(θ), which is notoriously intractable. The standard maximum likelihood
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estimation of parameters θ is not straightforward, and a number of sampling-
based approaches have been proposed to approximate it effectively. Specifically,
the gradient of the log-likelihood of a single sample x w.r.t. θ can be expressed as

∂ log pθ (x)
∂θ

= Epθ (x′)
∂Eθ (x′)

∂θ
− ∂Eθ (x)

∂θ
, (2)

where the expectation is over model distribution pθ (x′), sampling from which
is challenging due to the intractable Z(θ). Therefore, MCMC and Gibbs sam-
pling [17] have been proposed previously to estimate the expectation efficiently. To
speed up the mixing for effective sampling, recently Stochastic Gradient Langevin
Dynamics (SGLD) [38] has been used to train EBMs by exploiting the gradient
information [8,11,28]. Specifically, to sample from pθ (x), SGLD follows

x0 ∼ p0(x), xi+1 = xi − α

2
∂Eθ (xi)

∂xi
+ αε, ε ∼ N (0, 1), (3)

where p0(x) is typically a uniform distribution over [−1, 1], whose samples are
refined via noisy gradient decent with step-size α, which should be decayed
following a polynomial schedule.

Besides JEM [11] that we discussed in the introduction, [39] is an earlier work
that derives a generative CNN model from the commonly used discriminative
CNN by treating it as an EBM, where the authors factorize the loss function
log p(x|y) as an EBM. Following-up works, such as [8,27], scale the training
of EBMs to high-dimensional data using SGLD. However, all of these previous
methods define p(x|y) or p(x) as an EBM, while our GMMC defines an EBM
on p(x, y) by following a mixture of Gaussian distribution, which simplifies the
maximum likelihood estimation and achieves improved performances in many
discriminative and generative tasks.

2.2 Alternatives to the Softmax Classifier

Softmax classifier has been widely used in state-of-the-art models for discrim-
inative tasks due to its simplicity and efficiency. However, softmax classifier is
known particularly vulnerable to adversarial attacks because the latent feature
space induced by softmax classifier is typically not well separated (as shown
in Fig. 1(a)). Some recent works propose to use generative classifiers to better
formulate the latent space distributions in order to improve its robustness to
adversarial examples. For example, Wan et al. [37] propose to model the latent
feature space as mixture of Gaussians and encourages stronger intra-class com-
pactness and larger inter-class separability by introducing large margins between
classes. Different from [37], Pang et al. [29] pre-design the centroids based on the
Max-Mahalanobis distribution (MMD), other than learning them from data. The
authors prove that if the latent feature space distributes as an MMD, the LDA
classifier will have the best robustness to adversarial examples. Taking advantage
of the benefits of MMD, Pang et al. [30] further propose a max-Mahalanobis cen-
ter regression loss, which induces much denser feature regions and improves the
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robustness of trained models. Compared with softmax classifier, all these works
can generate better latent feature spaces to improve the robustness of models for
the task of classification. Our GMMC is built on the basic framework of MMC,
but we reinterpret MMC as an EBM for image classification and generation.
Moreover, we show that the generative training of MMC can further improve
calibration, adversarial robustness and out-of-distribution detection.

3 Methodology

We assume a Linear Discriminant Analysis (LDA) classifier is defined as: φ(x),
μ = {μy, y = 1, 2, · · · , C} and π = {πy = 1

C , y = 1, 2, · · · , C} for C-class clas-
sification, where φ(x) ∈ R

d is the feature representation of x extracted by a
CNN, parameterized by φ1, and μy ∈ R

d is the mean of a Gaussians distri-
bution with a diagonal covariance matrix γ2I, i.e., pθ (φ(x)|y) = N (μy, γ2I).
Therefore, we can parameterize LDA by θ = {φ,μ}2. Instead of using this reg-
ular LDA classifier, in this paper the max-Mahalanobis classifier (MMC) [30],
a special case of LDA, is considered. Different from the LDA modeling above,
in MMC μ = {μy, y = 1, 2, · · · , C} is pre-designed to induce compact feature
representations for model robustness. We found that the MMC modeling fits our
goal better than the regular LDA classifier due to its improved training stability
and boosted adversarial robustness. Therefore, in the following we focus on the
MMC modeling for image classification and generation. As such, the learnable
parameters of MMC reduce to θ = {φ}, and the pseudo-code of calculating
pre-designed μ can be found in Algorithm 1 of the supplementary material3.
Figure 2 provides an overview of the training and test of our GMMC algorithm,
with the details discussed below.

Instead of maximizing pθ (y|x) as in standard softmax classifier, following
JEM [11] we maximize the joint distribution pθ (x, y), which follows a mixture
of Gaussians distribution in GMMC. To optimize log pθ (x, y), we can consider
three different approaches.

3.1 Approach 1: Discriminative Training

According to the MMC modeling above, the joint distribution pθ (x, y) can be
expressed as

pθ (x, y) = p(y)pθ (x|y) ∝ 1
C

(2πγ2)−d/2 exp(− 1
2γ2

||φ(x) − μy||22)

=
exp(− 1

2γ2 ||φ(x) − μy||22)
Z(θ)

=
exp(−Eθ (x, y))

Z(θ)
(4)

1 To avoid notational clutter in later derivations, we use φ to denote a CNN feature
extractor and its parameter. But the meaning of φ is clear given the context.

2 We can treat γ as a tunable hyperparameter or we can estimate it by post-processing.
In this work, we take the latter approach as discussed in Sect. 3.1.

3 Supplementary material: https://arxiv.org/abs/2101.00122.

https://arxiv.org/abs/2101.00122
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Fig. 2. Overview of GMMC for training and test, where the model can be trained
discriminatively, generatively or jointly. {μ∗

1, μ
∗
2, · · · , μ∗

C} are pre-designed according
to MMD [29]. Only θ = {φ} is learned from data.

where we define Eθ (x, y) = 1
2γ2 ||φ(x) − μy||22, and Z(θ) =

∫
exp(−Eθ (x,

y))dxdy, which is an intractable partition function. To avoid the expense of
evaluating the partition function, we follow Mnih and Teh [23] and approximate
Z(θ) as a constant (e.g., Z(θ) = 1). This turns out to be an effective approxi-
mation for neural networks with lots of parameters as it encourages the model
to have “self-normalized” outputs. With this approximation, the log of the joint
distribution can be simplified as

log pθ (x, y) = − 1
2γ2

||φ(x) − μy||22 − log Z(θ)

≈ −Eθ (x, y) + constant. (5)

To optimize the parameters θ, we can simply compute gradient of Eq. 5 w.r.t.
θ, and update the parameters by stochastic gradient descent (SGD) [31].
Note that γ is a constant in Eq. 5, its effect can be absorbed into the learn-
ing rate when optimizing Eq. 5 via SGD. After convergence, we can estimate
γ2 = 1

d

(
1
N

∑N
i=1 ||φ(xi) − μi||22

)
from training set by using optimized φ and

pre-designed μ.
Note that Eq. 5 boils down to the same objective that MMC [30] proposes, i.e.

the center regression loss. While MMC reaches to this objective from the perspec-
tive of inducing compact feature representations for model robustness, we arrive
at this objective by simply following the principle of maximum likelihood estima-
tion of model parameter θ of joint density pθ (x, y) with the “self-normalization”
approximation [23].
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3.2 Approach 2: Generative Training

Comparing Eq. 4 with the definition of EBM (1), we can also treat the joint
density

pθ (x, y) =
exp(− 1

2γ2 ||φ(x) − μy||22)
Z(θ)

(6)

as an EBM with Eθ (x, y) = 1
2γ2 ||φ(x) − μy||22 defined as an energy function of

(x, y).
Following the maximum likelihood training of EBM (2), to optimize Eq. 6,

we can compute its gradient w.r.t. θ as

∂ log pθ (x, y)
∂θ

=βEpθ (x′,y′)
∂Eθ (x′, y′)

∂θ
− ∂Eθ (x, y)

∂θ
, (7)

where the expectation is over the joint density pθ (x′, y′), sampling from which
is challenging due to the intractable Z(θ), and β is a hyperparameter that bal-
ances the contributions from the two terms. Different value of β has a significant
impact to the performance. From our experiments, we find that β = 0.5 works
very well in all our cases. Therefore, we set β=0.5 as the default value. Notably,
the two terms of our GMMC (Eq. 7) are both defined on the same energy func-
tion Eθ (x, y), while the two terms of JEM [11] are defined on p(x) and p(y|x),
respectively, which are computationally more expensive and might incur training
instability as we will discuss in Sect. 3.3.

The tricky part is how to generate samples (x′, y′) ∼ pθ (x′, y′) to estimate
the first term of Eq. 7. We can follow the mixture of Gaussians assumption of
MMC. That is, pθ (x′, y′) = p(y′)pθ (x′|y′): (1) sample y′ ∼ p(y′) = 1

C , and then
(2) sample x′ ∼ pθ (x′|y′) ∝ N (μy′ , γ2I). To sample x′, again we can consider
two choices.

(1) Staged Sampling. We can first sample zx′ ∼ N (μy′ , γ2I), and then find
an x′ to minimize Eθ (x′) = 1

2γ2 ||φ(x′) − zx′ ||22. This can be achieved by

x′
0 ∼ p0(x′), x′

t+1 = x′
t − α

∂Eθ (x′
t)

∂x′
t

, (8)

where p0(x) is typically a uniform distribution over [−1, 1]. Note that this is
similar to SGLD (see Eq. 3) but without a noisy term. Thus, the training could
be more stable. In addition, the function Eθ (x′) = 1

2γ2 ||φ(x′) − zx′ ||22 is just an
L2 regression loss (not an LogSumExp function as used in JEM [11]). This may
lead to additional numerical stability.

(2) Noise Injected Sampling. We can first sample z ∼ N (0, I), then by the
reparameterization trick we have zx′ = γz + μy′ . Finally, we can find an x′ to
minimize
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Eθ (x′)=
1

2γ2
||φ(x′) − zx′ ||22=

1
2γ2

||φ(x′) − μy′ − γz||22

=
1

2γ2
||φ(x′)−μy′ ||22+

1
2
||z||22 − 1

γ2
<φ(x′)−μy′ ,γz>

=Eθ (x′, y′)+
1
2
||z||22 − 1

γ
<φ(x′) − μy′ ,z> . (9)

This can be achieved by

x′
0 ∼ p0(x′),

x′
t+1 = x′

t − α
∂Eθ (x′

t)
∂x′

t

= x′
t − α

∂Eθ (x′
t, y

′)
∂x′

t

+ α
1
γ

<
∂φ(x′

t)
∂x′

t

,z >, (10)

where we sample a different z at each iteration. As a result, Eq. 10 is an analogy
of SGLD (see Eq. 3). The difference is instead of using an unit Gaussian noise
ε ∼ N (0, 1) as in SGLD, a gradient-modulated noise (the 3rd term) is applied.

Algorithm 1. Generative training of GMMC: Given model parameter θ = {φ},
step-size α, replay buffer B, number of steps τ , reinitialization frequency ρ

1: while not converged do
2: Sample x and y from dataset D
3: Sample (x′

0, y
′) ∼ B with probability 1 − ρ, else x′

0 ∼ U(−1, 1), y′ ∼ p(y′) = 1
C

4: Sample zx ′ ∼ N (μy′ , γ2I) if staged sampling
5: for t ∈ [1, 2, · · · , τ ] do
6: Sample z ∼ N (0, I), zx ′ = μy′ + γz if noise injected sampling

7: x′
t = x′

t−1 − α
∂Eθ (x ′

t−1)

∂x ′
t−1

(Eq. 8)

8: end for
9: Calculate gradient with Eq. 7 from (x, y) and (x′

τ , y′) for model update
10: Add / replace updated (x′

τ , y′) back to B
11: end while

Algorithm 1 provides the pseudo-code of the generative training of GMMC,
which follows a similar design of IGEBM [8] and JEM [11] with a replay buffer
B. For brevity, only one real sample (x, y) ∼ D and one generated sample
(x′, y′) ∼ pθ (x′, y′) are used to optimize the parameter θ. It is straightforward
to generalize the pseudo-code above to a mini-batch training, which is used in
our experiments. Compared to JEM, GMMC needs no additional calculation of
pθ (y|x) and thus has reduced computational complexity.

3.3 Approach 3: Joint Training

Comparing Eq. 5 and Eq. 7, we note that the gradient of Eq. 5 is just the sec-
ond term of Eq. 7. Hence, we can use (Approach 1) discriminative training to
pretrain θ, and then finetune θ by (Approach 2) generative training. The tran-
sition between the two can be achieved by scaling up β from 0 to a predefined
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value (e.g., 0.5). Similar joint training strategy can be applied to train JEM as
well. However, from our experiments we note that this joint training of JEM
is extremely unstable. We hypothesize that this is likely because the two terms
of JEM are defined on p(x) and p(y|x), respectively, while the two terms of
our GMMC (Eq. 7) are defined on the same energy function Eθ (x, y). Hence,
the learned model parameters from the two training stages are more compatible
in GMMC than in JEM. We will demonstrate the training issues of JEM and
GMMC when we present results.

3.4 GMMC for Inference

After training with one of the three approaches discussed above, we get the
optimized GMMC parameters θ = {φ}, the pre-designed μ and the estimated
γ2 = 1

d

(
1
N

∑N
i=1 ||φ(xi) − μi||22

)
from training set. We can then calculate class

probabilities for classification

pθ (y|x) =
exp(− 1

2γ2 ||φ(x) − μy||22)
∑

y′ exp(− 1
2γ2 ||φ(x) − μy′ ||22)

. (11)

4 Experiments

We evaluate the performance of GMMC on multiple discriminative and genera-
tive tasks, including image classification, image generation, calibration of uncer-
tainty, out-of-distribution detection and adversarial robustness. Since GMMC
is inspired largely by JEM [11], for a fair comparison, our experiments closely
follow the settings provided in the source code of JEM4. All our experiments are
performed with PyTorch on Nvidia RTX GPUs. Due to page limit, details of the
experimental setup are relegated to the supplementary material.

4.1 Hybrid Modeling

We train GMMC on three benchmark datasets: CIFAR10, CIFAR100 [18] and
SVHN [26], and compare it to the state-of-the-art hybrid models, as well as
standalone generative and discriminative models. Following the settings of JEM,
we use the Wide-ResNet [40] as the backbone CNN model for JEM and GMMC.
To evaluate the quality of generated images, we adopt Inception Score (IS) [32]
and Fréchet Inception Distance (FID) [16] as the evaluation metrics.

4 https://github.com/wgrathwohl/JEM.

https://github.com/wgrathwohl/JEM
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Table 1. Hybrid modeling results on CIFAR10.

Class Model Acc % ↑ IS ↑ FID ↓
Hybrid Residual Flow 70.3 3.60 46.4

Glow 67.6 3.92 48.9

IGEBM 49.1 8.30 37.9

JEM 92.9 8.76 38.4

GMMC (Ours) 94.08 7.24 37.0

Disc. WRN w/BN 95.8 N/A N/A

WRN w/o BN 93.6 N/A N/A

GMMC (Dis) 94.3 N/A N/A

Gen. SNGAN N/A 8.59 25.5

NCSN N/A 8.91 25.3

Table 2. Test accuracy (%) on
SVHN and CIFAR100.

Model SVHN CIFAR100

Softmax 96.6 72.6

JEM 96.7 72.2

GMMC (Dis) 97.1 75.4

GMMC (Gen) 97.2 73.9

The results on CIFAR10, CIFAR100 and SVHN are shown in Table 1 and
Table 2, respectively. It can be observed that GMMC outperforms the state-
of-the-art hybrid models in terms of accuracy (94.08%) and FID score (37.0),
while being slightly worse in IS score. Since no IS and FID scores are commonly
reported on SVHN and CIFAR100, we present the classification accuracies and
generated samples on these two benchmarks. Our GMMC models achieve 97.2%
and 73.9% accuracy on SVHN and CIFAR100, respectively, outperforming the
softmax classifier and JEM by notable margins. Example images generated by
GMMC for CIFAR10 are shown in Fig. 3. Additional GMMC generated images
for CIFAR100 and SVHN can be found in the supplementary material.

4.2 Calibration

While modern deep models have grown more accurate in the past few years,
recent researches have shown that their predictions could be over-confident [13].

(a) Unconditional Samples (b) Class-conditional Samples

Fig. 3. Generated CIFAR10 Samples.
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Outputting an incorrect but confident decision can have catastrophic conse-
quences. Hence, calibration of uncertainty for DNNs is a critical research topic.
Here, the confidence is defined as maxy p(y|x) which is used to decide when to
output a prediction. A well-calibrated, but less accurate model can be consider-
ably more useful than a more accurate but less-calibrated model.

We train GMMC on the CIFAR10 dataset, and compare its Expected Cal-
ibration Error (ECE) score [13] to that of the standard softmax classifier
and JEM. Results are shown in Fig. 4 with additional results on SVHN and
CIFAR100 provided in the supplementary material. We find that the model
trained by GMMC (Gen) achieves a much smaller ECE (1.33% vs. 4.18%),
demonstrating GMMC’s predictions are better calibrated than the competing
methods.

(a) Softmax (b) JEM (c) GMMC (Dis) (d) GMMC (Gen)

Fig. 4. Calibration results on CIFAR10. The smaller ECE is, the better.

4.3 Out-Of-Distribution Detection

The OOD detection is a binary classification problem, which outputs a score
sθ (x) ∈ R for a given query x. The model should be able to assign lower scores
to OOD examples than to in-distribution examples, such that it can be used
to distinguish two sets of examples. Following the settings of JEM [11], we use
the Area Under the Receiver-Operating Curve (AUROC) [15] to evaluate the
performance of OOD detection. In our experiments, three score functions are
considered: the input density pθ (x) [24], the predictive distribution pθ (y|x) [15],
and the approximate mass ‖∂ log pθ (x)

∂x ‖ [11].

(1) Input Density. A natural choice of sθ (x) is the input density pθ (x). For
OOD detection, intuitively we consider examples with low p(x) to be OOD.
Quantitative results can be found in Table 3 (top). The corresponding distri-
butions of scores are visualized in Table 4. The GMMC model assigns higher
likelihoods to in-distribution data than to the OOD data, outperforming all the
other models by a significant margin.
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(2) Approximate Mass. Recent work of [25] has found that likelihood may
not be enough for OOD detection in high-dimensional space. Real samples from
a distribution form the area of high probability mass. But a point may have a
high density while the surrounding area has a very low density, which indicates
the density can change rapidly around it and that point is likely not a sample
from the real data distribution. Thus, the norm of gradient of the log-density
will be large compared to examples in the area mass. Based on this reasoning,
Grathwohl et al. propose a new OOD score: θ(x) = −‖∂ log pθ (x)

∂x ‖2. Adopting
this score function, we find that our model still outperforms the other competing
methods (JEM and IGEBM), as shown in Table 3 (bottom).

(3) Predictive Distribution. Another useful OOD score is the maximum prob-
ability from a classifier’s predictive distribution: sθ (x) = maxy pθ (y|x). Hence,
OOD performance using this score is highly correlated with a model’s classi-
fication accuracy. The results can be found in Table 3 (middle). Interestingly,
with this score function, there is no clear winner over four different benchmarks
consistently, while GMMC performs similarly to JEM in most of the cases.

Table 3. OOD detection results. Models are trained on CIFAR10. Values are AUROC.

sθ (x) Model SVHN CIFAR10 Interp CIFAR100 CelebA

log pθ (x) Unconditional Glow .05 .51 .55 .57

Class-Conditional Glow .07 .45 .51 .53

IGEBM .63 .70 .50 .70

JEM .67 .65 .67 .75

GMMC (Gen) .84 .75 .84 .86

maxy pθ (y|x) Wide-ResNet .93 .77 .85 .62

Class-Conditional Glow .64 .61 .65 .54

IGEBM .43 .69 .54 .69

JEM .89 .75 .87 .79

GMMC (Gen) .84 .72 .81 .31

‖ ∂ log pθ (x)
∂x

‖ Unconditional Glow .95 .27 .46 .29

Class-Conditional Glow .47 .01 .52 .59

IGEBM .84 .65 .55 .66

JEM .83 .78 .82 .79

GMMC (Gen) .88 .79 .85 .87
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Table 4. Histograms of logθ p(x) for OOD detection. Green corresponds to in-
distribution dataset, while red corresponds to OOD dataset.

In summary, among all three different OOD score functions, GMMC out-
performs the competing methods by a notable margin with two of them, while
being largely on par with the rest one. The improved performance of GMMC
on OOD detection is likely due to its explicit generative modeling of pθ (x, y),
which improves the evaluation of pθ(x) over other methods.

4.4 Robustness

DNNs have demonstrated remarkable success in solving complex prediction
tasks. However, recent works [10,19,34] have shown that they are particularly
vulnerable to adversarial examples, which are in the form of small perturba-
tions to inputs but can lead DNNs to predict incorrect outputs. Adversarial
examples are commonly generated through an iterative optimization procedure,
which resembles the iterative sampling procedure of SGLD in Eq. 3. GMMC
(and JEM) further utilizes sampled data along with real data for model train-
ing (see Eq. 7). This again shares some similarity with adversarial training [10],
which has been proved to be the most effective method for adversarial defense.
In this section, we show that GMMC achieves considerable robustness compared
to other methods thanks to the MMC modeling [30] and its generative training.

(1) PGD Attack. We run the white-box PGD attack [22] on the models trained
by standard softmax, JEM and GMMC. We use the same number of steps (40)
with different ε’s as the settings of JEM for PGD. Table 5 reports the test accu-
racies of different methods. It can be observed that GMMC achieves much higher
accuracies than standard softmax and JEM under all different attack strengths.
The superior defense performance of GMMC (Dis) over JEM mainly attributes
to the MMC modeling [30], while GMMC (Gen) further improves its robustness
over GMMC (Dis) due to the generative training.
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Table 5. Classification accuracies when models are under L∞ PGD attack with dif-
ferent ε’s. All models are trained on CIFAR10.

Model Clean (%) PGD-40 ε = 4/255 PGD-40 ε = 8/255 PGD-40 ε = 16/255 PGD-40 ε = 32/255

Softmax 93.56 19.05 4.95 0.57 0.06

JEM 92.83 34.39 21.23 5.82 0.50

GMMC (Dis) 94.34 44.83 42.22 41.76 38.69

GMMC (Gen) 94.13 56.29 56.27 56.13 55.02

(2) C&W Attack. Pang et al. [29] reveal that when applying the C&W
attack [4] on their trained networks some adversarial noises have clearly inter-
pretable semantic meanings to the original images. Tsipras et al. [35] also dis-
cover that the loss gradient of adversarially trained robust model aligns well
with human perception. Interestingly, we observe similar phenomenon from our
GMMC model. Table 6 shows some examples of adversarial noises generated from
the GMMC (Gen) model under the C&W attack, where the noises are calculated
as (xadv − x)/2 to keep the pixel values in [−0.5, 0.5]. We observe around 5% of
adversarial noises have clearly interpretable semantic meanings to their original
images. These interpretable adversarial noises indicate that GMMC (Gen) can
learn robust features such that the adversarial examples found by the C&W
attack have to weaken the features of the original images as a whole, rather than
generating salt-and-pepper like perturbations as for models of lower robustness.

To have a quantitative measure of model robustness under C&W attack, we
apply the C&W attack to the models trained by the standard softmax, JEM and
GMMC. In terms of classification accuracy, all of them achieve almost 100% error
rate under the C&W attack. However, as shown in Table 7, the adversarial noises
to attack the GMMC (Gen) model have a much larger L2 norm than that of
adversarial noises for other models. This indicates that to attack GMMC (Gen),
the C&W attack has to add much stronger noises in order to successfully evade
the network. In addition, GMMC (Dis) achieves a similar robustness as JEM
under the C&W attack, while GMMC (Gen) achieves an improved robustness
over GMMC (Dis) likely due to the generative training of GMMC.

Table 6. Example adversarial
noises generated from the GMMC
(Gen) model under C&W attack on
CIFAR10.

Original 
Examples

Adversarial 
Noises

Original 
Examples

Adversarial 
Noises

Table 7. L2 norms of adversarial perturbations
under C&W attack on CIFAR10.

Model Untarget iter= 100 Target iter= 1000

Softmax 0.205 0.331

JEM 0.514 0.905

GMMC (Dis) 0.564 0.784

GMMC (Gen) 1.686 1.546
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4.5 Training Stability

Compared to JEM, GMMC has a well-formulated latent feature distribution,
which fits well with the generative process of image synthesis. One advantage we
observed from our experiments is that GMMC alleviates most of the instability
issues of JEM. Empirically, we find that JEM can train less than 60 epochs
before running into numerical issues, while GMMC can run 150 epochs smoothly
without any numerical issues in most of our experiments.

4.6 Joint Training

Finally, we compare the joint training of JEM and GMMC on CIFAR10. The
results show that joint training of GMMC is quite stable in most of our experi-
ments, while JEM experiences substantial numerical instability issues. However,
the quality of generated images from joint training of GMMC is not as good
as generative training of GMMC from scratch. Due to page limit, details of the
comparison are relegated to the supplementary material.

5 Conclusion and Future Work

In this paper, we propose GMMC by reinterpreting the max-Mahalanobis clas-
sifier [30] as an EBM. Compared to the standard softmax classifier utilized in
JEM, GMMC models the latent feature space explicitly as the max-Mahalanobis
distribution, which aligns well with the generative process of image synthesis.
We show that GMMC can be trained discriminative, generatively or jointly with
reduced complexity and improved stability compared to JEM. Extensive exper-
iments on the benchmark datasets demonstrate that GMMC can achieve state-
of-the-art discriminative and generative performances, and improve calibration,
out-of-distribution detection and adversarial robustness.

As for future work, we plan to investigate the GMMC models trained by dif-
ferent methods: discriminative vs. generative. We are interested in the differences
between the features learned by different methods. We also plan to investigate
the joint training of GMMC to improve the quality of generated images further
because joint training speeds up the learning of GMMC significantly and can
scale up GMMC to large-scale benchmarks, such as ImageNet.
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Abstract. Variational autoencoders are a versatile class of deep latent
variable models. They learn expressive latent representations of high
dimensional data. However, the latent variance is not a reliable estimate
of how uncertain the model is about a given input point. We address
this issue by introducing a sparse Gaussian process encoder. The Gaus-
sian process leads to more reliable uncertainty estimates in the latent
space. We investigate the implications of replacing the neural network
encoder with a Gaussian process in light of recent research. We then
demonstrate how the Gaussian Process encoder generates reliable uncer-
tainty estimates while maintaining good likelihood estimates on a range
of anomaly detection problems. Finally, we investigate the sensitivity to
noise in the training data and show how an appropriate choice of Gaus-
sian process kernel can lead to automatic relevance determination.

Keywords: Variational Autoencoder · Uncertainty estimation ·
Anomaly detection · Gaussian process

1 Introduction

Generative models can represent a joint probability distribution over observed
and latent variables. Modern generative models often combine the representa-
tional power of deep neural networks with the structured representations encoded
by probabilistic graphical models [12]. One popular class of deep latent variable
models are Variational Autoencoders (VAEs) [14,22]. VAEs generate samples of
the data distribution by transforming a sample from a simple noise distribution,
the prior, into an output distribution in data space with the help of a neural
network (NN), the decoder network. To determine the latent variable distribu-
tion for a given data point, an encoder network, representing the approximate
posterior, is used to determine the form of the latent variable of each data point.
VAEs are trained using the Evidence Lower BOund (ELBO), which regularizes
the data likelihood under the approximate posterior with the Kullback-Leibler
divergence (KL) between the approximate posterior and a prior distribution.

While this inference scheme usually works well for the mean parameter of
the latent variable, it often fails to learn an informative variance parameter for
each data point [3]. In many cases, the latent variance fails to correlate with how
c© Springer Nature Switzerland AG 2021
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Fig. 1. The latent variance of a (a) VAE encoder and (b) GP-VAE encoder trained
on the two-moon dataset and evaluated over a grid of points around the training data
points. The red dots visualize the latent mean of the training data. (Color figure online)

uncertain the model is about the input. An example of this is shown in Fig. 1(a),
which depicts the latent variance estimates of a VAE trained on the two-moon
dataset [15]. Contrary to expectation, the uncertainty is decaying the further
away from the training data we evaluate.

This behavior becomes problematic when one relies on the estimates of the
latent uncertainty. For example in reinforcement learning, when sampling in
the latent space of a temporal VAE to predict the next observation given an
uncertain input, it is important to sample a variety of possible futures [7]. Note
that the problem of modelling latent uncertainty is different to modelling an
accurate variance in the data space using the decoder as discussed in e.g. [24].
The output uncertainty of a VAE centers around a single data point, while
a high latent variance produces a larger variety of samples. Another example
that requires reliable estimates of the latent uncertainty is anomaly or out-of-
distribution (OOD) detection using generative models. As demonstrated in [9,17]
the likelihood distribution of a VAE cannot reliably detect OOD data. Variance
estimates in the latent space can be an alternative.

In this work, we extend VAEs to enable reliable latent uncertainty estimates
for in-distribution (ID) and OOD data. We replace the neural network encoder
traditionally used in VAEs with a Gaussian process (GP) encoder (Sect. 2.1). We
refer to this model as a GP-VAE. Our formulation considers the GP encoder as
a drop-in replacement of neural networks. With this, we retain the versatility of
VAEs while gaining several advantages: reliable uncertainty estimates, reduced
overfitting, and increased robustness to noise. For scalability, we parameterize
the GP by using a small number of inducing points, similar to sparse variational
GPs [26]. This enables us to learn a compact mapping from the data space to
the latent space.

The GP encoder learns to represent data points in the latent space based on
their similarity, by using a kernel function. It produces principled uncertainty
estimates as shown for the moon dataset in Fig. 1(b). In contrast to the standard
VAE in Fig. 1(a), the latent variance of the GP-VAE increases with the distance
to the latent means of the training data.
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We evaluate our GP-VAE model both in terms of how well it fits the ID
data distribution as well as how informative the latent variance is compared to
baselines (Sects. 4.1 and 4.2). To test the reliability of the latent variance, we
evaluate our proposed model on a variety of anomaly detection tasks (Sect. 4.3).
We also show that the model’s ability to identify OOD data is robust to OOD
noise in the training data (Sect. 4.4). We further demonstrate how the reliable
latent variance estimates of the GP-VAE allow for meaningful synthesized vari-
ants of encoded data (Sect. 4.5). Finally, we demonstrate how a specific choice
of the GP kernel, namely an additive kernel, leads to interpretable models and
allows us to identify which input features are important to distinguish between
ID and OOD data (Sect. 4.6).

1.1 Contributions

Our contributions are threefold: a) we introduce a Gaussian process encoder for
VAEs that infers reliable uncertainty estimates in the latent space of a VAE;
b) we derive a scalable inference scheme for the GP encoder using a set of
inducing points; and finally c) we describe how to use additive kernels to create
interpretable models that can be used to identify features that distinguish ID
from OOD data.

2 Background

We begin by introducing the general ideas behind variational autoencoders. We
then discuss why the common choice of a neural network encoder leads to poor
latent uncertainty estimates. In Sect. 3.2 we relate back to this section and discuss
the implications of replacing the NN with a GP encoder after having introduced
the GP encoder formally in Sect. 3.1.

2.1 Variational Autoencoder

Let {x1, . . . ,xN} be a set of N data points, where xn ∈ RK , and X ∈ RN×K

be the collection of data points as a stacked matrix. We construct a generative
model of the data with parameters θ that maximizes the data log-likelihood
log pθ (X). We follow the same generative model as assumed for VAEs, i.e., that
each data point x is generated independently and is conditioned on a latent
variable z ∈ RD, where typically D � K.

pθ (X) =
∏

n

∫
pθ (xn | z)p(z)dz. (1)

As commonly assumed for VAEs, we assume an i.i.d. zero-mean and spherical
Gaussian prior for the latent variables p(z) = N (z | 0, σ2I), and model the
conditional likelihood of the data by using pθ (x | z) = N [μθ (z), σ2

θ (z)], where
μθ (·) and σ2

θ (·) are feed-forward neural networks. The choice of the likelihood
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distribution depends on the dataset and does not need to be Gaussian. When
generating the data, we first sample a latent variable from the prior p(z) and
subsequently sample a data point using the decoder pθ (x | z).

Directly maximizing Eq. 1 (or the log thereof) is intractable. Therefore, fol-
lowing the derivation of VAEs, we use Jensen’s inequality to derive the evidence
lower-bound

log pθ (X) ≥
∑

n

{
Eq(z |xn) [log pθ(xn | z)] − KL[q(z | xn)‖p(z)]

}
, (2)

where q(z | x) is an auxiliary distribution that approximates the posterior dis-
tribution p(z | x) [14]. This variational distribution is commonly chosen to be
a Gaussian with diagonal covariance where the mean and covariance matrix are
functions of the input data point:

q(z | x) = N {
μφ(x),diag[σ2

φ(x)]
}

. (3)

These functions are paramterized by φ. As such, we can think of the functions
μφ(·) and σ2

φ(·) as encoding the data point into the latent space. In the literature
on VAEs, these functions are usually chosen to be neural networks, as illustrated
in Fig. 3(a).

Training a VAE entails maximizing Eq. (2) over θ and φ. In contrast to
Eq. (1), this can be done efficiently, provided that the encoder and decoder are
differentiable. We refer to [13] for more background on VAEs.

2.2 Latent Variance Estimates of NN

Neural Network encoders can exhibit different learning behaviors when optimiz-
ing the ELBO. For example, one common phenomenon occurs when the KL
divergence in the ELBO is too strong in the early stages of training, which
then forces the approximate posterior to be equal to the prior. This can impact
either all latent dimensions, called posterior collapse [8], or a subset of latent
dimensions, called the dying units problem [31].

A second behavior discussed by [3] is that the ELBO pushes both the encoder
and decoder variance to zero to achieve minimal reconstruction errors. Consider
the KL divergence part of the ELBO in Equation (2). In the case of Gaussian
latent variables with a standard normal prior we have KL[q(z | xn)‖p(z)] =
1
2

∑D
d=1[σ

2
d,φ(x) + μd,φ(x)2 − 1 − log(σd,φ(x)2)]. The part of the KL concerned

with the latent variance rarely dominates the ELBO even when the latent vari-
ance values are relatively small. Therefore, a NN encoder can neglect that part
of the KL divergence and set the latent variance to very small values. This allows
the model to focus on maximizing the expected log likelihood while simultane-
ously minimizing the distance of the latent means and the prior mean as dictated
by the KL, i.e. μd,φ(x)2. We can view this vanishing latent variance as a form of
overfitting. This behavior is illustrated in Fig. 2(a), which depicts 250 encoded
mean and variance values of a VAE trained on the FashionMnist dataset [30].
The latent mean is clustered around the prior mean, namely zero, while the
latent variance is too small to be visible.
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Fig. 2. Latent space mean (blue) and variance (red) of 250 data points of the Fashion-
Mnist dataset. (a) The latent variance of the VAE is too small to be visible. (b) The
GP-VAE spreads its probability mass to accommodate larger latent variance estimates.
(Color figure online)

2.3 Mismatch Between the Prior and Approximate Posterior

The preference of the VAE to minimize the reconstruction error can lead to inac-
curate inference, where the approximate posterior aggregated over all training
data points is no longer equal to the prior. When this is the case, sampling from
the prior will not reconstruct the entire data distribution. The authors of [3]
propose a two-stage approach that consists of a standard VAE and a second
generative model trained to emulate samples from the aggregated approximate
posterior. Instead of a two-stage solution, it has also been proposed to approxi-
mate the aggregated posterior by a mixture of variational posteriors with pseudo-
inputs during training [27].

An alternative solution to the misalignment between prior and the aggre-
gated approximate posterior is proposed by [32] who suggest to add an addi-
tional loss term, namely the mutual information between the data and the latent
variables. In their experiments, they remove the KL term from the ELBO alto-
gether and implement the mutual information as the Maximum Mean Discrep-
ancy (MMD). They show that the aggregated approximate posterior of their
model, the InfoVAE, is closer to the prior compared to the VAE’s. However, this
is only attributable to the latent mean, not the latent variance which converges
to zero. Since the MMD is only concerned with samples from the latent distri-
bution and not the latent variance parameters, the InfoVAE is free to set the
latent variance essentially to zero.

3 Methodology

We suggest to use the predictive equations of a Gaussian process to parametrize
the encoder. At a high level, we define the encoder as the posterior distribution
of a Gaussian process, given a small number of pseudo-observations that we treat
as parameters. The variance in the latent space is thus estimated in a principled
way, by using Bayes’ rule in a well-defined probabilistic model. In contrast to
using a neural network encoder, using a GP encoder leads to inductive biases
that prevent the variance from vanishing.

In this section we describe how we replace a neural network encoder with
a sparse Gaussian process. In short, we learn a number of representative data
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Fig. 3. Model structure: (a) The usual structure of a VAE with neural networks as
encoder and decoder. (b) Our proposed VAE with a sparse GP as encoder and a neural
network as decoder.

points, so called inducing points, and their corresponding value in the latent
space. This allows us to employ a Gaussian process to infer the latent distribution
for ID data points, which in turn can be decoded by a neural network into the
data space.

3.1 Gaussian Process Encoder

In contrast to the common formulation of VAEs, we propose using a sparse Gaus-
sian process encoder instead of a neural network, as depicted in Fig. 3(b). We
can view the encoder as the output of an auxiliary Gaussian process recognition
model ẑ(x) that maps from the data space to the latent space. We assume, for
simplicity, that the D dimensions of the multivariate GP’s output are a priori
identically and independently distributed, i.e.,

ẑ(x) ∼ GP[0, k(x,x′)I], (4)

where k(x,x′) is a positive-definite kernel. We assume that the correlation
between data points can be captured by a set of M pseudo-inputs or inducing
points u1, . . . ,uM ∈ RK . Suppose that, for each inducing point m = 1, . . . , M ,
we observe that, at input um, the GP has value ym ∈ RD with Gaussian mea-
surement noise vm ∈ RD

>0. Then, we can formalize the distribution of ẑ at a
new input x as the predictive distribution of a GP.

To this end, we stack these vectors into matrices Y ,V ∈ RM×D and
denote by yd and vd the dth column of the respective matrix. Finally, let
K = [k(um,um′)] be the M × M matrix obtained by evaluating the kernel
at each pair of inducing points.

Given these, we define the dth dimension of the encoder (Eq. (3)) by

μd,φ(x) = k� [
K + diag(vd)

]−1
yd,

σ2
d,φ(x) = k(x,x) − k� [

K + diag(vd)
]−1

k, (5)

where k = [k(x,U)]. As in Eq. (3), we therefore have can formalize the encoder
as q(z | x) = N (μφ(x),diag[σ2

φ(x)]), where μφ(x) and σ2
φ(x) are the stacked
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outputs of Eq. (5). The parameters of the encoder are given by φ = {U ,Y ,V },
to which we can add hyperparameters of the kernel function. Since the functions
in Eq. (5) are differentiable with respect to φ, we can use them to replace the
neural networks typically used in the literature. The VAE is trained as previously,
by optimizing the evidence lower bound over θ and φ.

Optimizing the parameters of the predictive distribution of a sparse GP
directly as we do here has recently been proposed by [10]. The authors show
that Parametric Predictive GP Regression exhibits significantly better cali-
brated uncertainties than e.g. Fully Independent Training Conditional approxi-
mations [10,25]

Aggregated Approximated Posterior. As discussed in Sect. 2.3, to sample from
VAEs effectively, we need to make use of the aggregated approximated posterior,
when it is not equal to the prior. Our formulation of a sparse VAE lends itself to
represent the aggregated approximated posterior using the inducing points as

q̂(z) =
1
M

∑

m

q(z | um) =
1
M

∑

m

N (ym,diag(vm)). (6)

This formulation is similar to the aggregated approximated posterior using
pseudo-inputs proposed by [27]. Contrary to a neural network encoder, the sparse
GP learns these pseudo-inputs in form of the inducing points automatically.

3.2 The Implications of a Gaussian Process Encoder

As discussed in Sect. 2.2, neural networks can fail to learn reliable uncertainty
estimates. The latent variance of a GP encoder on the other hand reflects how
close a data point is to the training data or inducing points. It is therefore
constraint in its ability to set the latent variance to zero. To accommodate
reliable latent variance estimates while minimizing the reconstruction error, the
GP-VAE needs to minimize both the latent mean and the latent variance part
of the KL. The loss connected to the variance will be smaller, allowing the
KL loss connected to the mean to be larger, i.e. the latent mean spreads more
than in the case of a VAE. As shown in Fig. 2(b), the GP-VAE trained on the
FashionMnist dataset spreads the probability mass of the approximate posterior
more than encouraged by the prior, while maintaining reliable latent variance
estimates. Thus, to reconstruct the data distribution we cannot sample from the
prior, falling back to the problem discussed in Sect. 2.3. In contrast to a two-
stage solution however, the use of inducing points in the GP encoder allows us
to formulate an aggregated approximate posterior without the need of fitting a
separate model (see Sect. 3.1).

3.3 Out-of-Distribution Detection

Given a test dataset {x∗
1, . . . ,x

∗
Nt

}, we want to evaluate whether the latent
variance can be used to determine whether a data point has been drawn from
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the same distribution as the training data or is a OOD data point. To this
end, we average over the D values of the diagonal of covariance matrix σ∗

n
.=

1
D

∑D
d=1 σ2

φ(x∗
n)d of the Gaussian approximate posterior q(z | x∗

n) in Eq. (5).
These values can be interpreted as a measure of how uncertain the model is
about the data point and should therefore distinguish between ID and OOD
test data. In the experiments, we report the area under the Receiver Operating
Characteristics roc and Precision-Recall curve pr for {σ∗

1, . . . ,σ
∗
Nt

}. To use the
values for OOD detection in practice, one needs to determine an appropriate
threshold, e.g. with a small number of labeled data points.

4 Experiments

We evaluate the GP-VAE both in terms of how well it models the training
data distribution as well as how reliable the estimates of the latent variance
are compared to other models. We evaluate our approach on a number of OOD
detection datasets (Sects. 4.1, 4.2 and 4.3). To test for the robustness of the latent
variance, we introduce OOD examples into the training ID data and analyze
how this noise impacts OOD detection on the test data (Sect. 4.4). We also
demonstrate that informative uncertainty estimates can be used to generate a
diverse set of data samples (Sect. 4.5). Finally, we describe how the choice of an
additive kernel function leads to an interpretable model that allows identifying
the input features contributing to OOD detection (Sect. 4.6).

Datasets. To compare the ability of our model to detect OOD data sam-
ples, we run extensive experiments on the Outlier Detection DataSets (ODDS)
Library [20]. This library contains a number of datasets from different domains.
We test our approach on 20 datasets in the ODDS library. Each dataset con-
sists of ID data points and OOD data points. We create an ID training set by
randomly selecting half of the ID data points and test on the remaining ID
data points and the OOD data points. The exact specifics for the datasets are
described in the Appendix. We also test our approach on an image dataset,
namely the FashionMnist (FM) [30] and Mnist (M) [16] dataset, as done in [17].

Model Specifics. We compare our GP-VAE model to baselines trained under
the same conditions as ours. The two generative models that we compare to
are the standard VAE and the InfoVAE [32]. The encoder and decoder neural
networks of all VAE-based models consist of two fully connected layers and one
latent variable layer. As a kernel function for the GP-VAE, we use the squared
exponential kernel. More specifics on the model architecture and training pro-
tocols can be found in the Appendix. Additionally, we train a recent supervised
approach based on deviation networks (Dev-Net) [19] on all datasets as a state-
of-the-art baseline for OOD detection. We evaluate the models after training the
VAE-based models for 200 epochs and the Dev-Net for 50 epochs and repeat the
experiment with five different seeds.
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4.1 Log Likelihood

We start by comparing the ability to model the ID data distribution by com-
puting the log likelihood for all test datasets. We approximate the log likelihood
with the help of importance sampling by

log(p(xn)) = log
(
Eq(z |xn)

[
pθ(xn | z)

p(z)
q(z | xn)

])
. (7)

As shown in the first three columns in Table 1, the GP-VAE performs similar to
the VAE and InfoVAE in terms of likelihood estimates. The small latent variance
values of the VAE and InfoVAE result in high denominator values in the above
equation, which can impact their likelihood estimate negatively. The standard
deviations across runs and reconstruction errors of all three models for the OOD
datasets are presented in the Appendix.

4.2 Uncertainty in the Latent Space

We introduced the GP encoder as a means to reliably express uncertainty about
unfamiliar data points. A model should be more uncertain about data points
that have low similarity to the training data compared to more typical examples.
Thus, we expect a positive correlation between the average distance of a data
point to all training data points and its latent variance. To test how well the
different VAE-based models follow this behavior, we train an VAE, InfoVAE
and GP-VAE on all 20 datasets selected from the ODDS. We then compute
the average euclidean distance of each ID and OOD test data point to all data
points in the ID training dataset and infer the latent variance values using the
specific encoders. Finally we compute the Pearson correlation coefficient (PCC)
between the distances and the latent variances. As shown in Fig. 4, both the VAE
and InfoVAE fail to capture the similarity of a data point to the training data
as the average correlation is PCC =−0.069 and PCC =−0.0019 respectively. In
contrast, the GP-VAE correlates positively with an average of PCC = 0.48.

4.3 Benchmarking OOD Detection

To test whether the latent variance reliably indicates if a data point is ID or
OOD, we use the latent variance values for OOD detection. We repeat model

Fig. 4. The Pearson correlation coefficient between the latent variance of each test
point (X test) and the average distance between X test and the all data points in the
training dataset (ID train).
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Table 1. OOD detection performance of the GP-VAE, a standard VAE, a InfoVAE
and deviation network models on the OODS datasets and FashionMnist vs Mnist. We
present both roc and pr. Bold values indicate the best performing OOD detection
mechanism.

training after randomly splitting the ID data into train and test set with five ran-
dom seeds and report the average performance. The standard deviations across
runs are depicted in the Appendix. Compared to supervised OOD methods, we
do not actively train the VAE-based models to detect OOD data.

The area under the Receiver Operating Characteristics roc and Precision-
Recall curve pr values are presented in column 4–11 of Table 1. The bold values
indicate the best performing models. A general observation is that the GP-VAE
outperforms the other VAE-based models on all datasets. This indicates that
the GP-VAE produces more reliable latent variance estimates than the standard
VAE and InfoVAE. The GP-VAE also outperforms the supervised Dev-Net on
17 out of the 20 OOD datasets. This suggests that our approach is well suited
for OOD detection while not requiring labeled training data.

FashionMnist vs Mnist. We train each model on the training data of FashionM-
nist (FM) and test on the test data of FashionMnist and Mnist (M). As before,
we compare our approach to a standard VAE, the InfoVAE and Dev-Net. The
roc and pr values are listed in the last row of Table 1. We see that the latent
variance of the standard VAE and InfoVAE have no discriminative power. To
understand this discrepancy, we depict the VAE’s and GP-VAE’s latent uncer-
tainty values over the FashionMnist training and testing data and the Mnist
testing data in Fig. 5. While the OOD data (Mnist) has lower latent uncertainty
values than the ID data in the case of the standard VAE, the GP-VAE assigns
higher latent uncertainty values to the OOD data compared to the ID data.
The extreme behavior of the VAE might be explained by similar arguments as
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Fig. 5. Histograms of latent uncertainties σ∗1 of the first latent dimension generated
by the GP-VAE and the VAE models trained on the FM dataset.

brought forward in [21]; from a statistical viewpoint the Mnist density lies within
the FashionMnist density with lower variance of pixel values. The NN encoder
of the VAE might be influenced by these low-level statistics and therefore under-
estimate the uncertainty over OOD data points.

4.4 OOD Polution of the Training Data

While we investigated whether the latent uncertainty estimates of the GP-VAE
can reliably distinguish between ID and OOD data in Sect. 4.3, in this section we
look at how stable the latent uncertainty estimates are in the presence of OOD
noise in the ID training data. We therefore analyze how the GP-VAE reacts to
different levels of data pollution and compare the behavior to standard VAEs.
To this end, we take a look at the Breast Cancer Wisconsin (Original) dataset
(breastw) in the ODDS library. The dataset consists of 444 ID data points (split
into 222 training and 222 testing points) and 239 OOD data points. Except for
introducing OOD noise into the training data, we keep all other settings the
same as described in Sect. 4.3.

We compare the behavior of the GP-VAE to the VAE in Fig. 6 by removing
0, 10, 50, 100 and 200 OOD samples from the testing data and adding these to
the ID training data. This data split is performed randomly, with ten different
seeds over which we average the performance in terms of OOD detection (mea-
sured in roc and pr). The standard deviation between trials is visualized by the

Fig. 6. Performance of the GP-VAE compared to a VAE under the influence of noise
in the training data. We present roc (left) and pr values (right) average and variance
over ten random seeds. The between-run variance of the GP-VAE is very small.
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Fig. 7. Decoded samples from the encoded latent variables for the Input image (left
row). The top row shows an intact image of the FM dataset. The three bottom rows
show OOD images.

colored shadows in Fig. 6. We see that the GP-VAE is less susceptible to noise. In
addition, the performance of the VAE is random seed dependent, which causes
the large variations between trials while the across-trial variance of the GP-VAE
is too small to be visible in the Figure. This implies that the GP-VAE’s reaction
to noise is more stable across different noise samples.

4.5 Synthesizing Variants of Input Data

As described in the introduction, VAEs are used to generate different variants
of an encoded data point. We would expect the model to generate a larger
variety when it is uncertain about the input. To demonstrate how the GP-VAE
compares to a VAE in that regard, we use the FM dataset. We generate OOD
data points by concatenating two halves of different FM images as shown in the
three bottom rows of the Input column in Fig. 7. We then sample variants of
these inputs as shown in columns 1–5 in Fig. 7. For comparison, we also sample
around an ID image from the FM dataset in the top row. We can see that the
VAE fails to sample a larger variety for OOD data as the latent variance is
not reliably expressing uncertainty. In contrast, the GP-VAE samples a larger
variety and even generates samples from both fashion items that constitute the
input image, e.g. a high heel or trousers in the second row.

4.6 Interpretable Kernels

One advantage of GPs is that we are free to choose the kernel function. Building
on [5], we use additive kernels of the form k(x,x′) =

∑
d kd(xd,x′d), that is,

summing over separate kernels for each feature. This gives rise to interpretable
models and automatic relevance determination as each feature dimension is
treated independently. We use the same approach to determine which features
distinguish ID and OOD data on the thyroid dataset. We choose a squared expo-
nential kernel for each input feature dimension and keep the remaining settings
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Fig. 8. The similarityd =
∑

j k
d(xd, x̂d

j ) score for ID and OOD test data points of the
thyroid dataset.

the same. To determine how close a data point is to the feature representation
learned by the model, we compute the similarity between dimension d of point
x and the inducing points similarityd =

∑
m kd(xd,ud

m). We hypothesize that
feature dimensions that are important for OOD detection, meaning in which ID
and OOD data points differ, will also differ in terms of similarityd.

We analyze whether this hypothesis holds for the thyroid dataset, which
consists of six continuous features describing hormone levels. To determine the
importance of each feature to detect OOD, we train a random forest, a decision
tree and logistic regression to classify ID and OOD data in a supervised fashion.
We normalize the feature importance values determined by these models and
average over the three models (see the Appendix for all values). This gives us
the feature importance values of x1 = 0.01, x2 = 0.39, x3 = 0.11 , x4 = 0.19,
x5 = 0.04, x6 = 0.26, which indicates that the hormone features 2 and 6 are
important for OOD detection.

When inspecting the similarity scores in Fig. 8, it becomes apparent that
these features also exhibit abnormal behavior as determined by the additive
kernel. The similarity score of the OOD data is lower than for the ID data for
these features. To quantify these findings, we fit a Gaussian distribution to the
ID similarity values of each feature and compute the log likelihood of the OOD
similarity values under each Gaussian. This gives us the feature importance
values of ll1 = 83.53, ll2 = −6151.94, ll3 = 120.36, ll4 = 68.84, ll5 = 49.52, ll6 =
−488.53, where smaller values indicate higher importance.

By determining whether a set of test points behaves differently in the simi-
larity space of each dimension, we gain a better understanding of which features
contribute to OOD detection. This knowledge can be used to make subsequent
decisions, e.g. when building a rule-based anomaly detection system.
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5 Related Work

A number of works have identified the problem of small, uninformative latent
variance values and proposed different ways to overcome them. One solution is
to set the latent variance equal to the neural network output plus a small con-
stant value [18]. In a similar manner, the encoded latent variance can be removed
from the model and replaced by a constant that is treated as a hyperparame-
ter [1]. While these approaches achieve the effect that one can sample different
variants of an encoded data point, the variance is not reliably representing how
uncertain the model is over a given data point. In contrast, our proposed GP
encoder learns to express meaningful latent variance estimates for each data
point. Another solution to the latent variance problem is to add an additional
weighted constraint to the ELBO that keeps the latent variance values from
vanishing [23]. However, this additional objective does not ensure reliable uncer-
tainty estimates and comes with the additional burden of having to determine
how to optimally weight the additional constraint in the loss function.

As our approach builds on Gaussian processes, we discuss different
approaches combining Gaussian processes and VAEs proposed in recent years.

Deep Gaussian Processes have been employed as VAEs, replacing all neural
network layers in the decoder network by Gaussian Processes [4] and using neural
networks to infer the variational parameters of these GPs. We propose instead
to replace the encoder by a GP to infer accurate uncertainty estimates while
keeping the neural network structure of the decoder.

Similar to our work, variational Gaussian processes [28] warp samples from
a simple distribution with a GP to model the approximate posterior, which in
turn is regularized by an auxiliary distribution. Our approach relies on inducing
points in the data space and therefore does not require additional auxiliary
distributions.

To model correlations in the latent space, several works have introduced a
GP prior reflecting structural correlations in the data, see e.g. [2,11]. It replaces
the common choice of an i.i.d. standard normal prior. Since the encoder, or
approximate posterior, is still driven by a neural network, obtaining useful latent-
space variance estimates remains problematic. In contrast, our work keeps the
i.i.d. standard normal prior but replaces the neural network encoder with a
sparse GP approximate posterior. It is possible to obtain a model similar to
(but distinct from) ours with a structured prior, as discussed in the Appendix.

Finally, [6] employ Gaussian processes for time-series imputation by modeling
temporal dependencies in the latent space with a GP. However, the encoding and
decoding is performed by neural networks. In contrast, we propose to substitute
the encoder with a GP.

6 Conclusion

In this work, we introduced a Gaussian process encoder with sparse inducing
points for Variational autoencoders. The combination of Gaussian processes and
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neural networks, as proposed in this paper, merges the advantages of GPs, such
as the ability to encode structure through a kernel function and reliable uncer-
tainty estimates, with the advantages coming with neural networks, such as
efficient representation learning and scalability. Our experiments show that GP-
VAEs have additional advantages over standard VAEs, such as robustness to
noise and the freedom to choose the kernel function.

One disadvantage of GPs compared to neural networks is their limited capa-
bility of representing structured, high dimensional data such as images. The
kernel function constraints the generalization capability of GPs to local metrics,
such as the euclidean distance. However, novel kernel functions, such as con-
volutional kernels, can be used to operate even in image spaces [29]. In future
work we plan to extend our approach to include such priors as well as temporal
dynamics and data from multiple sources.
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able gaussian process variational autoencoders. In: International Conference on
Artificial Intelligence and Statistics, vol. 130, pp. 3511–3519. PMLR (2021)

12. Johnson, M.J., Duvenaud, D.K., Wiltschko, A., Adams, R.P., Datta, S.R.: Com-
posing graphical models with neural networks for structured representations and
fast inference. In: Advances in Neural Information Processing Systems, pp. 2946–
2954 (2016)

http://OpenReview.net


Gaussian Process Encoders: VAEs with Reliable Latent-Space Uncertainty 99

13. Kingma, D.P., Welling, M.: An introduction to variational autoencoders. Found.
Trends R© Mach. Learn. 12(4), 307–392 (2019)

14. Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. In: 2nd International
Conference on Learning Representations, ICLR 2014 (2014)

15. scikit learn: two moons dataset. In: https://scikit-learn.org/stable/modules/
generated/sklearn.datasets.make moons.html, scikit-learn dataset make moons
(2021). Accessed 2021

16. LeCun, Y., Cortes, C., Burges, C.: MNIST handwritten digit database. ATT Labs
[Online]. http://yann.lecun.com/exdb/mnist 2 (2010)

17. Nalisnick, E.T., Matsukawa, A., Teh, Y.W., Görür, D., Lakshminarayanan, B.:
Do deep generative models know what they don’t know? In: 7th International
Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, 6–9
May 2019. OpenReview.net (2019)

18. Nash, C., Williams, C.K.: The shape variational autoencoder: a deep generative
model of part-segmented 3D objects. In: Computer Graphics Forum. vol. 36, pp.
1–12. Wiley Online Library (2017)

19. Pang, G., Shen, C., van den Hengel, A.: Deep anomaly detection with deviation
networks. In: Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pp. 353–362 (2019)

20. Rayana, S.: Odds library. In: Stony Brook University, Department of Computer
Sciences (2016)

21. Ren, J., et al.: Likelihood ratios for out-of-distribution detection. In: Advances in
Neural Information Processing Systems, pp. 14680–14691 (2019)

22. Rezende, D.J., Mohamed, S., Wierstra, D.: Stochastic backpropagation and
approximate inference in deep generative models. In: International Conference on
Machine Learning (2014)

23. Rubenstein, P., Schölkopf, B., Tolstikhin, I.: Learning disentangled representations
with Wasserstein auto-encoders. In: International Conference on Learning Repre-
sentations (ICLR 2018) Workshops (2018)

24. Skafte, N., Jørgensen, M., Hauberg, S.: Reliable training and estimation of variance
networks. In: Advances in Neural Information Processing Systems, pp. 6326–6336
(2019)

25. Snelson, E., Ghahramani, Z.: Local and global sparse gaussian process approxima-
tions. In: Artificial Intelligence and Statistics, pp. 524–531 (2007)

26. Titsias, M.: Variational learning of inducing variables in sparse Gaussian processes.
In: Artificial Intelligence and Statistics, pp. 567–574 (2009)

27. Tomczak, J., Welling, M.: VAE with a VampPrior. In: International Conference on
Artificial Intelligence and Statistics, pp. 1214–1223 (2018)

28. Tran, D., Ranganath, R., Blei, D.M.: The variational Gaussian process. In: 4th
International Conference on Learning Representations, ICLR 2016 (2016)

29. Van der Wilk, M., Rasmussen, C.E., Hensman, J.: Convolutional gaussian pro-
cesses. In: Advances in Neural Information Processing Systems, pp. 2849–2858
(2017)

30. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-MNIST: a novel image dataset for bench-
marking machine learning algorithms (2017)
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Abstract. We propose a framework called HyperVAE for encoding dis-
tributions of distributions. When a target distribution is modeled by a
VAE, its neural network parameters are sampled from a distribution in
the model space modeled by a hyper-level VAE. We propose a variational
inference framework to implicitly encode the parameter distributions into
a low dimensional Gaussian distribution. Given a target distribution, we
predict the posterior distribution of the latent code, then use a matrix-
network decoder to generate a posterior distribution for the parameters.
HyperVAE can encode the target parameters in full in contrast to com-
mon hyper-networks practices, which generate only the scale and bias
vectors to modify the target-network parameters. Thus HyperVAE pre-
serves information about the model for each task in the latent space. We
derive the training objective for HyperVAE using the minimum descrip-
tion length (MDL) principle to reduce the complexity of HyperVAE. We
evaluate HyperVAE in density estimation tasks, outlier detection and
discovery of novel design classes, demonstrating its efficacy.

Keywords: Deep generative models · Meta-learning · Hyper networks

1 Introduction

Humans can extract meta knowledge across tasks such that when presented with
an unseen task they can use this meta knowledge, adapt it to the new context
and quickly solve the new task. Recent advance in meta-learning [5,8] shows that
it is possible to learn a single model such that when presented with a new task,
it can quickly adapt to the new distribution and accurately classify unseen test
points. Since meta-learning algorithms are designed for few-shot or one-shot learn-
ing where labeled data exists, it faces challengeswhen there is none1 to assist back-
propagation when testing.

Hyper-networks [9] can generate the weights for a target network given a set
of embedding vectors of those weights. Due to its generative advantage, it can
be used to generate a distribution of parameters for a target network [9,12]. In

1 This is not the same as zero-shot learning where label description is available.
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practice, due to the high dimensional parameter space, it only generates scaling
factors and biases for the target network. This poses a problem that the weight
embedding vectors only encode partial information about the target task, and
thus are not guaranteed to perform well on unseen tasks.

On the other hand, variational autoencoders (VAEs) [11,19] is a class of deep
generative models that can model complex distributions. A major attractive fea-
ture of VAEs is that we can draw from simple, low-dimensional distributions
(such as isotropic Gaussians), and the model will generate high-dimensional data
instantly without going through expensive procedures like those in the classic
MCMC. This suggests VAEs can be highly useful for high dimensional design
exploration [7]. In this work, we lift this idea to one more abstraction level, that is,
using a hyper VAE to generate VAEmodels. While the VAEs work at the individual
design level, the hyper VAE works at the class level. This permits far more flex-
ibility in exploration, because not only we can explore designs within a class, we
can explore multiple classes. The main insight here is that the model parameters
can also be treated as a design in a model design space. Hence, we can generate the
model parameters using another VAE given some latent low-dimensional variable.

We propose HyperVAE, a novel class of VAEs, as a powerful deep generative
model to learn to generate the parameters of VAE networks for modeling the
distribution of different tasks. The versatility of the HyperVAE to produce VAE
models allows it to be applied for a variety of problems where model flexibility
is required, including density estimation, outlier detection, and novelty seeking.
For the latter, since HyperVAE enforces a smooth transition in the model family,
interpolating in this space will enable us to extrapolate to models of new tasks
which are close to trained tasks. Thus as global search techniques can guide
the generation of latent spaces of VAEs, search enables HyperVAE to produce
novel classes of discovery. We use Bayesian Optimization (BO) [20], to search in
the low dimensional encoding space of VAE. Once a low dimensional design is
suggested, we can decode it to the corresponding high dimensional design.

We demonstrate the ability of HyperVAE on three tasks: density estimation,
robust outlier detection and discovery of unseen design classes. Our main contri-
butions and results are: (i) Development of a hyper-encoding framework, guided
through MDL; (ii) Construction of a versatile HyperVAE model that can tackle
density estimation tasks and outlier detection; and (iii) Demonstration of novel
designs produced from our model coupled with BO.

2 Variational Autoencoder (VAE)

Let x denote an X -value random variable associated with a Z-value random vari-
able z through a joint distribution p(x, z). We consider a parametric family P of
generative models p(x, z; θ) factorized as a conditional p(x|z; θ) and a simple prior
p(z), usually chosen as N (0, I). Maximum likelihood estimate (MLE) of θ ∈ Θ,
where Θ is the parameter space, over the marginal log p(x; θ) = log

∫
p(x, z; θ)dz

is intractable, thus requiring alternatives such as expectation-maximization and
variational inference. VAE is an amortized variational inference that jointly learns
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the generative model p(x|z; θ) and the variational inference model q(z|x; θ)2. Its
ELBO objective,

L(x, p, q; θ) = Eq(z|x;θ) log p(x|z; θ) − DKL (q(z|x; θ)‖p(z)) (1)

lower-bounds the marginal log-likelihood log p(x; θ). In practice, Monte Carlo
estimate of the ELBO’s gradient is used to update θ. The form of q and p in
Eq. 1 makes an encoder and a decoder, hence the name auto-encoder [11].

3 Variational Hyper-encoding Networks

We assume a setting where there is a sequence of datasets (or tasks) and model
parameters {(Dt, θt)}t a sender wish to transmit to a receiver using a minimal
combined code length.

3.1 Hyper-auto-encoding Problem

Given a set of T distributions {Dt}T
t=1 called tasks, each containing samples x ∼

pDt
(x), our problem is first fitting each parametric model p(x; θt), parameterized

by θt ∈ Θ, to each Dt:
θ̂t = argmax

θ∈Θ
p(Dt; θ) (2)

then fitting a parametric model p(θ; γ), parameterized by γ ∈ Γ to the set
{θ̂t}T

t=1. However, there are major drawbacks to this approach. First, the number
of tasks may be insufficient to fit a large enough number of θt for fitting p(θ; γ).
Second, although we may resample Dt and refit θt to create more samples, it
is computationally expensive. A more practical approach is to jointly learn the
distribution of θ and D.

3.2 Hyper-encoding Problem

Our problem is to learn the joint distribution p(θ,D; γ) for some parameters γ3.

HyperVAE. We propose a framework for this problem called HyperVAE as
depicted in Fig. 1. The main insight here is that the VAE model parameters
θ ∈ Θ can also be treated as a normal input in the parameter space Θ. Hence,
we can generate the model parameters θ using another VAE at the hyper level
whose generative process is pγ(θ|u) for some low-dimensional latent variable
u ∼ p(u) ≡ N (0, I), the prior distribution defined over the latent manifold U of
Θ. The joint distribution p(θ,D; γ) can be expressed as the marginal over the
latent representation u:

p(θ,D) =
∫

p(θ,D|u)p(u)du =
∫

p(D|θ)p(θ|u)p(u)du (3)

2 We use θ = (θp, θq) to denote the set of parameters for p and q.
3 We assume a Dirac delta distribution for γ, i.e. a point estimate, in this study.
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(a) Generation (b) Inference of z (c) Inference of u

Fig. 1. HyperVAE networks, D = {xn}N
n=1.

Generation of a random data point x is as follows, c.f., Fig. 1(a):

ut ∼ N(0, I)
θt ∼ pγ(θ | ut)
z ∼ N(0, I)
x ∼ pθt

(x | z)

Inference of z given x and θ, Fig. 1(b), is approximated by a Gaussian distri-
bution, q(z|x, θ) = N (z|μθ(x), σ2

θ(x)), where μθ and σ2
θ are neural networks

generating the mean and variance parameter vectors.
Inference of u is shown in Fig. 1(c). We also assume a Gaussian posterior

distribution q(u|D, θ) = N (u|μ(dt), σ2(dt)) parameterized by neural networks
μ(.) and σ2(.). Since θ can be trained on D thus depending on D, we can
approximate this dependency implicitly using the inference network itself, thus
q(u|D, θ) ≈ q(u|D). The next problem is that since Dt is a set, q(u|Dt) is a
function of set, which is an interesting problem on its own. Here we use a simple
method to summarize Dt into a vector,

dt = s(Dt) (4)

and this turns q(u|Dt) into q(u|dt). For example, s(·) can be a mean function, a
random draw from the set, or a description of the set. In this study, we simply
choose a random draw x from the set Dt.

3.3 Minimum Description Length

It is well-known that variational inference is equivalent to the Minimum Descrip-
tion Length (MDL) principle [10]. In this section, we use MDL to compute the
total code length of the model and data misfits. From the total code length, we
show that a shorter code length and a simpler model can be achieved by redesign-
ing the distribution of the model space. We used a Dirac delta distribution cen-
tered at μ(u) for θ given each latent code u, p(θ|u) = δμ(u)(θ) parameterized by
a neural network μ(u) for each latent code u. This results in an implicit distri-
bution for θ represented by the compound distribution p(θ) =

∫
δμ(u)(θ)p(u)du.
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Under the crude 2-part code MDL, the expected code length for transmitting
a dataset D and the model parameters θ in the encoding problem in Eq. 2 is
L(D) = L(D|θ) + L(θ), where L(D|θ) = − log p(D; θ)4 is the code length of the
data given the model θ, and L(θ) = − log p(θ) is the code length of the model
itself. Under the HyperVAE the code length of D is:

L(D) = L(D|θ) + L(θ|u) + L(u) (5)

If we choose a Dirac delta distribution for θ, p(θ|u) = δμ(u)(θ) then θ is
deterministic from u and we can eliminate the code length L(θ|u), thus making
the total code length shorter:

L(D) = L(D|θ(u)) + L(u) (6)

Additionally, bits-back coding can recover the additional information in the
entropy of the variational posterior distribution q(u|D), thus this information
should be subtracted from the total code length [10,22]. The total expected
code length is then:

L(D) = E [L (D|θ(u)) − log p(u) + log q(u|D)]
= E [L (D|θ(u))] + DKL (q(u|D)‖p(u)) (7)

where the expectation is taken over the posterior distribution q(u|D). The
description length of a dataset D = {xi}|D|

i=1 is the summation of the description
length of every data point:

L (D|θ(u)) =
|D|∑

i=1

L (xi|θ(u))

=
|D|∑

i=1

(
Eqθ(z|xi)L (xi|z, θ) + DKL (qθ(z|xi)‖p(z))

)
(8)

where we ignored the dependence of θ on u to avoid clutter. We train the Hyper-
VAE parameters by minimizing the description length in Eq. 7. In our experi-
ment, we scale down this objective by multiplying it by 1/|D| to have a similar
scale as a normal VAE’s objective. The training objective for HyperVAE is then:

L(D) =
1

|D| [L (D|θ(u)) + DKL (q(u|D)‖p(u))] (9)

Mini-batches as Tasks. In practice, the number of tasks is too small to adequately
train the hyper-parameters γ. Here we simulate tasks using data mini-batches
in the typical stochastic gradient learning. That is, each mini-batch is treated as
a task. To qualify as a task, each mini-batch needs to come from the same class.
For example, for handwritten digits, the class is the digit label.
4 We abused the notation and use p to denote both a density and a probability mass

function. Bits-back coding is applicable to continuous distributions [10].
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3.4 Compact Hyper-decoder Architecture

Since neural networks weights are matrices that are highly structured and often
overparameterized, we found that a more efficient method is to use a matrix
generation network [3] for generating the weights. More concretely, a matrix
hyper-layer receives an input matrix H and computes a weight matrix W as W =
σ(UHV +B), where U, V,B are parameters. As an example, if H is a 1D matrix
of size 400×1 and a target weight W of size 400×400, a matrix-layer will require
176 thousand parameters, a 3 order of magnitude reduction from 64.16 million
parameters of the standard fully-connected hyper-layer. This compactness allows
for complex decoder architecture for generating the target network, unlike hyper-
networks methods which rely on a linear layer of an embedding vector for each
target-network layer.

3.5 Applications

We can use the HyperVAE framework for density estimation, outlier detection
and novelty discovery. In the following, we use HyperVAE to denote the whole
VAE-of-VAEs framework, hyper VAE for the hyper level VAE, and main VAE
for the VAE of each target task.

Density Estimation. After training, HyperVAE can be used to estimate the
density of a new dataset/task. Let Dt is the new task data. We first infer the
posterior distribution q(u|Dt) ≈ q(u|dt) = N (u|μ(dt), σ2(dt)), where dt is a
summary of Dt, Eq. 4, which we choose as random in this study. Next we select
the mean of this posterior distribution and decode it into θ using pγ(θ|u). We use
this θ to create the main VAE for Dt then use importance sampling to estimate
the density of x ∈ Dt as follows:

p(x) = Eq(z|x,θ)
p(x|z)p(z)
q(z|x, θ)

≈ 1
N

N∑

i=1

p(x|zi)p(zi)
q(zi|x, θ)

where N is a chosen number of importance samples, {zi}N
i=1 are samples from

the proposal distribution q(z|x, θ) to reduce the variance of the density estimate,
and p(zi)/q(zi|x, θ) is the multiplicative adjustment to compensate for sampling
from q(z|x, θ) instead of p(z).

Outlier Detection. Similar to the density estimation application above, we first
encode a test vector xt into a latent distribution q(u|xt) then decode its mean
vector into θt to create a VAE model. We then use the description length of xt,
c.f. Eq. 8, under this VAE as the outlier score. Our assumption is that outliers are
unseen to the trained model, thus incompressible under this model and should
have longer description lengths.
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Novelty Discovery. HyperVAE provides an extra dimension for exploring the
model space Θ in addition to exploring the design space X . Once trained, the
network can guide exploration of new VAE models for new tasks with certain
similarity to the trained tasks.

Given no prior information, we can freely draw models θ(u) from u ∼ p(u)
and designs x ∼ pθ(x|z) with z ∼ pθ(u)(z) and search for the desired x∗ satis-
fying some property F (x∗). An intuitive approach is to employ a global search
technique such as Bayesian Optimization (BO) in both the model latent space of
u and in the data latent space of z. However searching for both u ∈ U and z ∈ Z
is expensive due to the combined number of dimensions can be very high. Fur-
thermore, reducing the latent dimension would affect the capacity of VAE. To
overcome this major challenge, we use BO for optimizing the z space and replace
the search in u space by an iterative search heuristic. The workflow starts with
an initial exemplar x∗

0 which can be completely uninformative (e.g., an empty
image for digits or a random design), or properly guided (e.g., from the best
choice thus far in the database, or from what is found by VAE+BO itself). The
search process for the optimal design at step t = 1, 2, ..., T is as follows:

ut ∼ q(u | dt−1); θt = gγ(ut);
z∗ ← BO(gθt

(z)); x∗
t ← g(z∗). (10)

where dt−1 ← x∗
t−1.

The optimization step in the z space maximizes a function maxxF (x) =
maxz F ◦ gθt

(z) for a fixed generator θt. Let z∗
t and thus x∗

t = gθt−1(z
∗
t−1) be

the solution found at step t. The generator parameter in the subsequent step is
set as θt ← θ (μ(x∗

t )) where μ is the posterior mean. Thus the HyperVAE step
transforms the objective function with respect to z by shifting θ.

4 Experiments

We evaluate HyperVAE on three tasks: density estimation, robust outlier detec-
tion, and novel discovery.

4.1 Data Sets

We use four datasets: MNIST handwritten digits, Omniglot handwritten char-
acters, Fashion MNIST, and Aluminium Alloys datasets. The MNIST contains
60,000 training and 10,000 test examples of 10 classes ranging from 0 to 9. The
Omniglot contains 24,345 training and 8,070 test examples. The Fashion MNIST
dataset contains the same number of training and test examples as well as the
number of classes. In these three datasets, the images are statically binarized to
have pixel values in {0, 1}.

The Alloys dataset (https://tinyurl.com/tmah538), previously studied in
[16], consists of 15,000 aluminium alloys. Aluminium alloy is a combination of
about 85% aluminium and other elements.

https://tinyurl.com/tmah538
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Phase diagram contains important characteristics of alloys, representing vari-
ations between the states of compounds at different temperatures and pressures.
They also contain thermodynamic properties of the phases. In this experiment,
a phase diagram is coded as a 2D matrix, in which each cell is the prevalence of
a phase at a particular temperature.

4.2 Model Settings

We use a similar architecture for the encoder and decoder of all VAE in all datasets.
The encoder has 2 convolution layers with 32 and 64 filters of size 3 × 3, stride 2,
followed by one dense layer with 100 hidden units, then two parallel dense layers
to output the mean and log variance of q(z|x; θ). The decoder architecture exactly
reverses that of the encoder to map from z to x, with transposed convolution layers
in place of convolution layers, and outputs the Bernoulli mean of p(x|z; θ). For
the alloys dataset, the convolution layers are replaced by matrix layers with size
200×200, as in [4]. We also use a similar architecture for HyperVAE in all datasets.
The encoder uses the same architecture as the VAE’s encoder. The decoder use a
dense layer with 100 hidden units, followed by L parallel matrix layers generating
the weights, biases, and filters of the main VAE network, resembling the parameter
θ. The input to the matrix layer is reshaped into size 20 × 20. All layers except
the last layer use RELU activation. The z-dimension and u-dimension is 10 for all
datasets. We used Adam optimizer with parameters β1 = 0.9, β2 = 0.999, learning
rate η = 0.0003, minibatches of size 100, and ran for 10000 iterations or when the
models converge.

4.3 Model Behavior

We study whether the HyperVAE learns a meaningful latent representation and
data distribution for the MNIST and Omniglot datasets. We use negative log-
likelihood (NLL) and DKL(q(z|x)‖p(z)) as measures. NLL is calculated using
importance sampling with 1024 samples.

Table 1. Negative log-likelihood (−LL), and DKL(q(z|x)‖p(z)) (KL). Smaller values
are better.

VAE MetaVAE HyperVAE

MNIST −LL 99.4 93.0 88.2

KL 18.8 15.5 18.5

Omniglot −LL 111.4 128.1 105.5

KL 17.1 13.2 18.1

Fashion MNIST −LL 237.7 232.7 231.8

KL 14.5 13.7 13.9

Table 1 compares the performance of VAE, MetaVAE, and HyperVAE. As
shown, HyperVAE has better NLL on the three datasets. MetaVAE has smallest
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KL, which is due to it has a separate and fixed generator for each task. HyperVAE
has slightly smaller KL on the MNIST and Fashion MNIST dataset than VAE.
Note that better log-likelihoods can be achieved by increasing the number of
latent dimensions, e.g. dim(z) = 50, instead of dim(z) = 10 in this experiment.

Table 2. Number of parameters (rounded to thousands).

VAE MetaVAE HyperVAE

Inference 445 445 445

Generative 445 445 × #task 445

Total 890 445 + 445 × #task 890

Table 2 compares the number of parameters between networks. Note that
while MetaVAE shares the same inference network for all tasks, it needs a sepa-
rate generative network for each task. For HyperVAE, the trainable parameters
are from the hyper level VAE, whereas the main VAE network of each task
obtains its parameters by sampling from the HyperVAE network. Therefore,
for the comparison we only count the number of trainable parameters, which is
what eventually saved to disk. The real parameters for the target networks will
be generated on-the-fly given a target task. Thus, it will take extra generation
time for each task, c.f. Table 3.

Table 3. Time measured in milliseconds for a batch of 100 inputs.

Generation Inference Total time

VAE 0.12 0.12 0.24

MetaVAE 0.12 0.12 0.24

HyperVAE 0.12 (x) 0.12 (z) 1.11

0.75 (θ) 0.12 (u)

Overfitting. VAE is trained on the combined dataset therefore it is less affected
by overfitting due to high variance in the data. Whereas MetaVAE is more
susceptible to overfitting when the number of examples in the target task is
small, which is the case for Omniglot dataset, c.f. Table 1. While the training of
MetaVAE’s encoder is amortized across all datasets, the training of its decoder is
task-specific. As a result, when a (new) task has a small number of examples, the
low variance data causes overfitting to this task’s decoder. Therefore MetaVAE
is not suitable for transfer learning to new/unseen tasks. HyperVAE can avoid
overfitting by taking a Bayesian approach.

HyperVAE Complexity. The algorithmic complexity of HyperVAE is about dou-
ble that of VAE, since it is a VAE of VAE, plus the extra generation time of
the parameters. Specifically, it runs the VAE at the hyper level to sample a
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weight parameter θ, then it runs the VAE to reconstruct a set of inputs given
this parameter θ. Due to the difference in matrix sizes of different layers in the
target network, we generate each weight matrix and bias vector at a time, result-
ing in O(D) time5 with D being the depth of the target network. Therefore, the
time complexity of the hyper generation network is O(Lhyper+LVAE+D), where
Lhyper and LVAE are the number of layers of the hyper and the primary genera-
tion networks respectively, and we assumed the average hidden size of the layers
is a constant. However, more efficient methods is also possible. For example,
inspired from [9], we can reshape matrices into batches of blocks of the same
size, then stacking along the batch dimension in to a large 3D tensor. Then,
we can use a matrix network to generate this tensor in O(1) time6 whence the
time complex will be O(Lhyper +LVAE). We leave this implementation for future
investigation. Table 3 shows the wall-clock time comparison between methods on
a Tesla P100 GPU.

Table 4. Outlier detection on MNIST. AUC: Area Under ROC Curve, FPR: False
Positive Rate, FNR: False Negative Rate, KL: KL divergence, -EL: mean negative
loglikelihood and KL.

VAE MetaVAE HyperVAE

KL -EL

MNIST AUC 93.0 54.7 52.2 95.3

FPR 16.3 47.5 49.4 15.6

FNR 15.5 45.0 50.5 8.0

Omniglot AUC 98.3 87.3 97.5 98.7

FPR 5.5 18.8 7.2 4.9

FNR 6.4 20.9 9.0 5.9

Fashion MNIST AUC 74.6 58.2 56.8 76.8

FPR 33.5 44.1 45.8 33.6

FNR 32.0 43.5 44.5 28.7

4.4 Robust Outlier Detection

Next, we studyHyperVAEmodel for outlier detection tasks.Weuse three datasets:
MNIST, Omniglot, and Fashion MNIST to create three outlier detection experi-
ments. For each experiment, we select one dataset as the normal class and 20%
random samples from another dataset as outliers. All methods are trained on only
normal data. VAE and HyperVAE use the negative log-likelihood and KL for cal-
culating the outlier score, which is equivalent to the negative ELBO. MetaVAE
does not have a generative network for new data. Therefore we use two scoring

5 We assumed a matrix multiplication takes O(1) time in GPU.
6 Batched matrix multiplication can be paralleled in GPU.
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methods: (1) KL divergence only, and (2) mean negative log-likelihood and KL,
using all trained generative networks. For training MetaVAE and HyperVAE, we
define the task as before, i.e. the data in each task have a similar class label.

Table 4 compares the performance of all methods on the three datasets. Over-
all, HyperVAE has better AUCs compared to VAE and MetaVAE. The MetaVAE
has the lowest AUC. This could be due to the use of a discrete set of generative
networks for each task, making it unable to handle new, unlabeled data.

While the false positive rates of VAE and HyperVAE models are similar, the
false negative rates for HyperVAE are lower than that of VAE. This is because
HyperVAE was trained across tasks, thus it has a better support between tasks.

Novel
digit

VAE Iterations of HyperVAE

1

2

3

4

5

6

7

8

9

0

Fig. 2. Best digits found at iterative steps in searching for a new class of digits, corre-
sponding to the performance curves in Fig. 3.

4.5 Novelty Discovery

We demonstrate the effectiveness of HyperVAE+BO for finding realistic designs
close to an ideal design, which lies outside known design classes. The performance
measure is how close we get to the given ideal design, as measured in cosine
distance for simplicity.

In each of the following two experiments, the BO objective is to search for a
novel unseen design x∗, an unseen digit or alloy, by maximizing a Cosine distance
F (x∗). The maximum number of BO iterations is set to 300 and the search space
is [−5, 5] for each z and u dimension.
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(a) Searching for unseen MNIST digits {1, . . . , 9, 0}, from left to right, top to bottom.

(b) Searching for unseen Alloys.

Fig. 3. Searching for: (a) unseen digits, and (b) unseen alloys designs. Cosine distance
between target and best found vs iterations. Best viewed in color. (Color figure online)

Digit Discovery. This experiment illustrates the capability of HyperVAE+BO
in novel exploration on MNIST. For each experiment, one digit is held out. We
used nine digit classes for training and tested the model ability to search for
high quality digits of the remaining unseen digit class. BO is applied to search
for new digits that are similar to a given new exemplar in the z-space.

In the iterative process, an empty image d1 = 0 is given at the first step, and
subsequently updated as dt = x∗

t−1. After each step t we set ut = μ(x∗
t ). The

quality curves are presented Fig. 3(a). Examples of discovery process are listed
in Fig. 2. The figures show that VAE has a very limited capability to support
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exploration outside the known regions, while HyperVAE is much more flexible,
even without the iterative process (#Step = 1). With more iterative refinements,
the quality of the explored samples improves.

Alloy Discovery. We now use the framework to search for a new class of
alloys. For each experiment, one alloy is held out. Models are trained on the
remaining 29 alloys. We work on the phase space as a representation of the
material composition space, to take advantage of the closeness of phase space to
the target performance. We treat the phase diagrams as matrices whose values
are proportions of phases at different temperatures. The goal is to search for a
new class of alloys that is similar to the “ideal” alloy that has not been seen
in any previous alloy classes. BO is applied to search for new alloys that are
similar to a given new ideal alloy in the space of z. In the iterative process, we
can initialize the search by an uninformative model u1 = 0 or the one found by
VAE+BO (the “Iterative + VAE init”). Subsequently the model is updated by
setting dt = x∗

t−1. The u variable is set to ut = μ(x∗
t ) after each step t.

We utilize the matrix structure of the phase diagram and avoid overfitting by
using matrix representation for the input [4]. To inversely map the phase diagram
back to the element composition, we use the inverse program learned from the
phase-composition dataset, as described in [16]. To verify that the found materials
are realistic (to account for the possible error made by the inverse program), we
run the Thermo-Calc software to generate the phase diagrams. These computed
phase diagrams are compared against the discovered phase diagrams. The result
from Thermo-Calc confirms that the found alloys are in the target class.

To examine the effect of initialization to HyperVAE+BO performance, we
initialized it by either uninformative hypothetical alloy (e.g., with hyper prior
of zeros), with the alloy found by VAE+BO, or with a chosen known alloy. The
performance curves are shown in Fig. 3(b). “Once” means running HyperVAE
for just one step. “Iterative + VAE init” means initialization of d1 = x∗ by VAE.
It shows: (a) For a majority of cases, HyperVAE+BO initialized uninformatively
could find a better solution than VAE+BO, and (b) initializing HyperVAE+BO
with solution found by VAE+BO boosts the performance further, sometimes a
lot more. This suggests that care must be taken for initializing HyperVAE+BO.

We examine the results of the ten most difficult to find alloy targets, i.e. the
alloys whose distance to their nearest alloy are largest, in descending order of dif-
ficulty. Table 5 shows the element composition errors of found alloys. The results
show that most alloys are found to be in the target class and all found alloys are
close to the boundaries of their targets (at ±20%). Table 5 also shows that the
Thermo-Calc phase calculation agrees with the predicted phase, i.e. small errors.
The alloy 6951 and 6463 have the smallest errors compared to others.



Variational Hyper-encoding Networks 113

Table 5. Column A - Element composition errors of found alloys (the composition is
predicted by the method in [16]). The found alloys are expected to reside within ±20%
relative error to the target alloy to stay within its class. Column B - Verification
of phase in Thermo-Calc simulator, where the phase error is calculated as the mean
error relative to the maximum proportion of each phase. The errors of the best method
are reported. Alloys are ranked by their relative distance to the nearest neighbor, in
decreasing order.

Alloy A - Element error (%) B - Phase error (%)

6053 11.3 3.0

2219 26.6 3.0

6951 20.0 0.4

2024 31.5 3.5

2014 18.5 1.4

2025 4.4 2.9

7076 31.8 2.5

2618 23.9 3.6

5 Related Work

Our method can be considered as a lossless compression strategy where the
HyperVAE compresses a family of networks that parameterize the parameters
of distributions across datasets. The total code length of both the model and data
misfits are minimized using HyperVAE, thus help it generalize to unseen data.
This is in contrast to the lossy compression strategy [1] where local information
of images are freely decoded independent of the compressed information.

The HyperVAE shares some insight with the recent MetaVAE [2], but this
is different from ours in the target and modeling, where the latent z is factored
into data latent variable z and the task latent variable u. HyperVAE is related to
Bayesian VAE, where the model is also a random variable generated from some
hyper-prior. There has been some work on priors of VAE [13,21], but using VAE
as a prior for VAE is new.

HyperGAN [18] is a recent attempt to generate the parameters of model
for classification. This framework generates all parameters from a single low
dimension Gaussian noise vector. Bayesian neural networks (BNN) in [23] also
use GAN framework for generating network parameters θ that looks real similar
to one drawn from BNN trained with stochastic gradient Langevin dynamics.
However, GAN is not very successful for exploration but more for generating
realistic samples.

Continual learning are gaining ground in recent years. Variational continual
learning [15], for example, solves catastrophic forgetting problems in supervised
learning, but it still needs a set of prototype points for old tasks. [17] tackles
this problem in unsupervised tasks and also does task inference as ours, how-
ever our settings and approaches are different. Meta-learning frameworks for
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classification and regression [6,14,24] is another direction where the purpose is
to learn agnostic models that can quickly adapt to a new task.

6 Conclusion

We proposed a new method called HyperVAE for encoding a family of neural
network models into a simple distribution of latent representations. A neural net-
work instance sampled from this family is capable of modeling the end task in
which the family is trained on. Furthermore, by explicitly training the variational
hyper-encoder network over a complex distribution of tasks, the hyper-network
learns the smooth manifold of the family encoded in the posterior distribution of
the family. This enables the model to extrapolate to new tasks close to trained
tasks, and to transfer common factors of variation across tasks. In the handwrit-
ten digit example, the transferable factors may include writing styles, font face
and size. It can be thought of as expanding the support of the distribution of
trained model, thus is useful for downstream tasks such as searching for a data
distribution close to existing ones and reducing the false positive error in outlier
detection.
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Abstract. Generative models based on normalizing flows are very suc-
cessful in modeling complex data distributions using simpler ones. How-
ever, straightforward linear interpolations show unexpected side effects,
as interpolation paths lie outside the area where samples are observed.
This is caused by the standard choice of Gaussian base distributions and
can be seen in the norms of the interpolated samples as they are out-
side the data manifold. This observation suggests that changing the way
of interpolating should generally result in better interpolations, but it
is not clear how to do that in an unambiguous way. In this paper, we
solve this issue by enforcing a specific manifold and, hence, change the
base distribution, to allow for a principled way of interpolation. Specif-
ically, we use the Dirichlet and von Mises-Fisher base distributions on
the probability simplex and the hypersphere, respectively. Our experi-
mental results show superior performance in terms of bits per dimension,
Fréchet Inception Distance (FID), and Kernel Inception Distance (KID)
scores for interpolation, while maintaining the generative performance.

Keywords: Generative modeling · Density estimation · Normalizing
flows

1 Introduction

Learning high-dimensional densities is a common task in unsupervised learning.
Normalizing flows [9,26,28,31,32] provide a framework for transforming com-
plex distributions into simple ones: a chain of L parametrized bijective functions
f = f1 ◦ f2 ◦ · · · ◦ fL converts data into another representation that follows a
given base distribution. The likelihood of the data can then be expressed as the
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Fig. 1. Illustration of different interpolation paths of points from a high-dimensional
Gaussian. The figure also shows that, in high dimensions, points are not concentrated
at the origin.

likelihood of the base distribution and the determinants of the Jacobians of the
transformations fi. In contrast to generative adversarial networks (GANs) [12],
the likelihood of the data can be directly optimized, leading to a straightfor-
ward training procedure. Moreover, unlike other approaches, such as variational
autoencoders (VAEs) [17,18], there is no reconstruction error since all functions
fi within this chain are bijections.

In flow-based generative models, data are generated by drawing samples from
a base distribution, where the latter is usually given by a simple distribution,
such as a standard Gaussian [23]. The Gaussian samples are then mapped to real
data using the chain f . A prevalent operation is to linearly interpolate samples
and consider the interpolation path in data space. In generative modeling, inter-
polations are frequently used to evaluate the quality of the learned model and
to demonstrate that the model generalizes beyond what was seen in the training
data [25].

The consequences for interpolation, however, are not immediately apparent
for Gaussian base distributions. Figure 1 shows a linear interpolation (lerp) of
high-dimensional samples from a Gaussian. The squared Euclidean norms of the
samples follow a χ2

d-distribution as indicated by the dashed black line. Data
points have an expected squared Euclidean norm of length d, where d is the
dimensionality. This implies that there is almost no point around the origin. As
seen in the figure, the norms of a linear interpolation path (green line) of two
samples drop significantly and lie in a low-density area w.r.t. the distribution of
the norms (dashed black line) [33].

Instead of a linear interpolation (green line), an interpolation that preserves
the norm distribution of interpolants is clearly preferable (blue and red lines): the
blue and red interpolation paths stay in the data manifold and do not enter low-
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Fig. 2. Interpolation of samples from CelebA. Top: a linear interpolation path. The
central images resemble features of the mean face as annotated in red. Bottom: an
alternative interpolation path using a norm-correction. Note that the first and last
three images are almost identical as annotated in blue. Right : decoded expectation of
base distribution, i.e., the mean face. (Color figure online)

density areas. The observation suggests that interpolated samples with norms
in a specific range should generally result in better interpolations. This can be
achieved, i.e., by shrinking the variance of the density or norms (dashed lines),
which yields a subspace or manifold with a fixed norm.

In this paper, we propose a framework that respects the norm of the samples
and allows for a principled interpolation, addressing the issues mentioned above.
We study base distributions on supports that have a fixed norm. Specifically, we
consider unit p-norm spheres for p ∈ {1, 2}, leading to the Dirichlet (p = 1) and
the von Mises-Fisher (p = 2) distributions, respectively. The conceptual change
naturally implies technical difficulties that arise with restricting the support of
the base distribution to the simplex or the unit hypersphere. We thus need to
identify appropriate bijective transformations into unit p-norm spheres.

The next sections are organized as follows. In Sect. 2, we propose a simple
heuristic to the problem and discuss its problems before we introduce normal-
izing flows in Sect. 3. Section 4 contains the main contribution, a framework for
normalizing flows onto unit p-norm spheres. Empirical results are presented in
Sect. 5, and related work is discussed in Sect. 6. Section 7 provides our conclu-
sions.

2 An Intuitive Solution

The blue path in Fig. 1 is obtained by a norm correction of the linear interpola-
tion via also interpolating the norms. Mathematically, that is

γ(λ) = ((1 − λ)za + λzb)
︸ ︷︷ ︸

linear interpolation

· (1 − λ)‖za‖2 + λ‖zb‖2
‖(1 − λ)za + λzb‖2

︸ ︷︷ ︸

norm correction

, (1)

for endpoints za, zb and λ ∈ [0, 1]. We refer to this approach as norm-corrected
linear interpolation (nclerp). However, the depicted red lines also stay within
the manifold, hence it remains unclear how a unique interpolation path can be
obtained.
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Fig. 3. Two examples showing the issues caused by a norm-corrected linear interpo-
lation (nclerp).

Figure 2 depicts two interpolation paths for faces taken from CelebA [14]
created using Glow [19], a state-of-the-art flow-based model that uses a standard
Gaussian as base distribution. The leftmost and rightmost faces of the paths are
real data, while the other ones are computed interpolants. The face on the right
depicts the so-called mean face, which is given by the mean of the Gaussian
base distribution and is trivially computed by decoding the origin of the space.
The top row shows a linear interpolation similar to the green line in Fig. 1. The
interpolation path is close to the origin, and the interpolants consequentially
resemble features of the mean face, such as the nose, mouth, chin, and forehead
shine, which neither of the women have. We highlighted those features in red in
Fig. 2.

By contrast, the bottom row of Fig. 2 shows the norm-corrected interpolation
sequence (as the blue line in Fig. 1): the background transition is smooth and not
affected by the white of the mean face, and also subtleties like the shadow of the
chin in the left face smoothly disappears in the transition. The norm correction
clearly leads to a better transition from one image to the other. However, the
simple heuristic in Eq. (1) causes another problem: the path after norm correction
is no longer equally spaced when λ values are equally spaced in [0, 1]. Implications
of this can be seen in blue in the bottom row of Fig. 2, where the first and
last three faces are almost identical. We provide additional examples in the
supplementary material.

In Fig. 3, we illustrate two examples, comparing a linear interpolation (lerp)
and a norm-corrected linear interpolation (nclerp) between points from a high-
dimensional Gaussian (green points). For equally-spaced λ values in [0, 1], a
linear interpolation yields an equally-spaced interpolation path (red line). Evi-
dently, the norm-corrected interpolation (blue line) keeps the norms of inter-
polants within the range observed in data.

However, the interpolants are no longer evenly spaced along the interpolation
path. Hence, control over the interpolation mixing is lost. This problem is more
pronounced on the left example, where points 1 through 3 are closer to the start
point, while points 4 and 5 are closer to the endpoint. Consequently, evaluations
such as Fréchet Inception Distance (FID) scores [13] will be affected. Such scores
are computed by comparing two sets of samples, in this case, the real data and
interpolated data. As those points will be clearly more similar to the endpoints,
which are samples from the data set itself, the scores are in favor of the norm-
corrected interpolation.



120 S. G. Fadel et al.

Fig. 4. An example of a one-dimensional normalizing flow.

3 Normalizing Flows

Let X = {x1, . . . ,xn} ⊂ R
d be instances drawn from an unknown distribution

px(x). The goal is to learn an accurate model of px(x). Let f (θ) : R
d → R

d

be a bijective function parametrized by θ. Introducing z = f (θ)(x) and using
the change of variable theorem allows us to express the unknown px(x) by a
(simpler) distribution pz(z), defined on z ∈ R

d, given by

px(x) = pz

(

f (θ)(x)
) ∣

∣

∣det J
(θ)
f (x)

∣

∣

∣ ,

where J
(θ)
f (x) is the Jacobian matrix of the bijective transformation f (θ). We

denote pz(z) as the base distribution and drop the subscript of the distribution
p whenever it is clear from the context.

Representing f (θ) as a chain of L parametrized bijective functions, i.e., f (θ) =
f (θ)L ◦ f (θ)L−1 ◦ · · · ◦ f (θ)1 , creates a normalizing flow that maps observations x into
representations z that are governed by the base distribution p(z). Let z0 = x be
the input data point and zL = z be the corresponding output of the chain, where
every intermediate variable is given by zi = fi(zi−1), where i = 1, . . . , L. A one-
dimensional example is depicted in Fig. 4. The data log-likelihood can then be
expressed as the log-likelihood of the base distribution and the log-determinant
of the Jacobians of each transformation as

log p(x) = log p(z) +
L

∑

i=1

log
∣

∣

∣det J
f
(θ)
i

(zi−1)
∣

∣

∣ .

Flow-based generative models can be categorized by how the Jacobian structure
of each transformation fi is designed since computing its determinant is crucial
to its computational efficiency. The Jacobians either have a lower triangular
structure, such as autoregressive flows [20], or a structured sparsity, such as
coupling layers in RealNVP [10] and Glow [19]. Transformations with free-form
Jacobians allow much higher expressibility by replacing the computation of the
determinant with another estimator for the log-density [6]. For more information
regarding flow-based generative models, we refer the reader to [23].

In the remainder, we simplify the notation by dropping the superscript θ
from f . We also note that a normalizing flow defines a generative process. To
create a new sample x, we first sample z from the base distribution p(z) and
then transform z into x using the inverse chain of transformations f−1.
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4 Base Distributions on p-Norm Spheres

Motivated by earlier observations illustrated in Figs. 1 and 2, we intend to reduce
ambiguity by shrinking the variance of the norms of data. We achieve this by
considering base distributions on restricted subspaces. More specifically, we focus
on unit p-norm spheres defined by

S
d
p =

⎧

⎨

⎩

z ∈ R
d+1

∣

∣

∣

∣

∣

‖z‖p
p =

d+1
∑

j=1

|zj |p = 1

⎫

⎬

⎭

. (2)

We distinguish two choices of p and discuss the challenges and desirable prop-
erties that ensue from their use. We consider p ∈ {1, 2} as those allow us to use
well-known distributions, namely the Dirichlet distribution for p = 1 and the
von Mises-Fisher distribution for p = 2.

4.1 The Case p = 1

For p = 1, the Dirichlet distribution defined on the standard simplex Δd is a
natural candidate. Its probability density function is given by

p(s) =
1

Z(α)

d+1
∏

k=1

sαk−1
k ,

with Z(α) =
∏d+1

k=1 Γ (αk)

Γ
(
∑d+1

k=1 αk

) ,

where Γ is the gamma function and αk > 0 are the parameters. In order to
make use of it, we also need to impose a non-negativity constraint in addition
to Eq. (2).

Let z ∈ R
d be an unconstrained variable. The function φ : R

d → (0, 1)d

transforms z into a representation s by first transforming each dimension zk into
intermediate values vk with

vk = σ (zk − log (d + 1 − k))

which are used to write s as

sk =

(

1 −
k−1
∑

l=1

sl

)

· vk,

where σ(·) denotes the sigmoid function. We note a few details of this transfor-
mation. First, a property of φ is that 0 <

∑d
k=1 sk < 1. Therefore, a point in

Δd can be obtained with an implicit additional coordinate sd+1 = 1 − ∑d
k=1 sk.

Second, the difference in dimensionality does not pose a problem for computing
its Jacobian as φ establishes a bijection within R

d while the mapping to Δd is
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given implicitly. Third, φ maps z = 0 to the center of the simplex s = (d+1)−11.
Fourth, since s consists of solely positive numbers which sum up to one, numeri-
cal problems may arise for high-dimensional settings. We elaborate on this issue
in Sect. 5.

The Jacobian Jφ has a lower triangular structure and solely consists of non-
negative entries. Hence, the log-determinant of this transformation can be effi-
ciently computed in O(d) time via

log |det Jφ| =
d

∑

k=1

log (vk (1 − vk))

+ log

(

1 −
k−1
∑

l=1

sl

)

.

The inverse transformation φ−1 : Rd → R
d is given by

zk = σ−1

(

sk

1 − ∑k−1
l=1 sl

)

+ log(d + 1 − k).

The interpolation of two points a,b ∈ Δd within the unit simplex is straight-
forward. A linear interpolation (1 − λ)a + λb using λ ∈ [0, 1] is guaranteed to
stay within the simplex by definition.

4.2 The Case p = 2

For p = 2, data points lie on the surface of a d-dimensional hypersphere. The von
Mises-Fisher (vMF) distribution, defined on S

d
2, is frequently used in directional

statistics. It is parameterized by a mean direction µ ∈ S
d
2 and a concentration

κ ≥ 0, with a probability density function given by

p(s) = Cd+1(κ) exp(κµ�s),

with Cν(κ) =
κν/2−1

(2π)ν/2Iν/2−1(κ)
,

where Iw denotes the modified Bessel function of the first kind at order w.
Again, let z ∈ R

d be an unconstrained variable. We employ a stereographic
projection, for both its invertibility and its Jacobian, whose log-determinant can
be efficiently computed. The transformation ψ : Rd → S

d
2 maps a point z ∈ R

d

to a point s ∈ S
d
2 ⊂ R

d+1 on the hypersphere via

ψ(z) = s =
[

zρz
1 − ρz

]

, with ρz =
2

1 + ‖z‖2 .
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Fig. 5. A stereographic pro-
jection mapping z ∈ R

1 to
s ∈ S

1
2 using the north pole

depicted as a black dot. The
mean direction µ ∈ S

1
2 is

shown in orange.

The transformation ψ, which has no additional
parameters, ensures that its image is on the unit
hypersphere, allowing the use of a vMF distribu-
tion to model p(s). Two points in S

d
2 are of special

interest, namely the south pole and the north pole,
where the last coordinate of s is either −1 or 1,
respectively. By construction, the transformation is
symmetric around zero and sends z = 0 to the south
pole, which we choose as the mean direction µ. Fur-
thermore, it is bijective up to an open neighbor-
hood around the north pole, as ρz → 0 whenever
‖z‖2 → ∞. For this reason, we avoid choosing a
uniform distribution on the hypersphere, which is
obtained for κ = 0. Figure 5 shows an example.

Contrary to the previous case, the log-
determinant of Jψ alone is not enough to accommodate the density change when
transforming from R

d to S
d
2 [11]. The correct density ratio change is scaled by

√

det J�
ψ Jψ instead, whose logarithm can be computed in O(d) time as

log
√

det J�
ψ (z)Jψ(z) = d log

2
1 + ‖z‖2 = d log ρz,

with ρz given as stated above. The inverse function ψ−1 : Sd
2 ⊂ R

d+1 → R
d is

ψ−1(s) = z =
[s]1:d

1 − [s]d+1
,

where [s]1:d denotes the first d coordinates of s and [s]d+1 is the (d + 1)-th
coordinate of s.

To interpolate points on the hypersphere, a spherical linear interpolation
(slerp) [30] can be utilized. It is defined as follows. Let sa and sb be two unit
vectors and ω = cos−1(s�

a sb) be the angle between them. The interpolation path
is then given by

γ(λ) =
sin((1 − λ)ω)

sin(ω)
sa +

sin(λω)
sin(ω)

sb, for λ ∈ [0, 1].

5 Experiments

We now evaluate the restriction of a normalizing flow to a unit p-norm sphere and
compare them to a Gaussian base distribution. As we focus on a principled way
of interpolating in flow-based generative models, we employ a fixed architecture
per data set instead of aiming to achieve state-of-the-art density estimation. We
use Glow [19] as the flow architecture for the experiments in the remainder of this
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section. However, our approach is not limited to Glow, and the transformations
and changes in the base distribution can also be used in other architectures. We
also do not compare against other architectures as our contribution is a change
of the base distribution, allowing for better interpolations.

5.1 Performance Metrics and Setup

Performance is measured in terms of bits per dimension (BPD), calculated using
log2 p(x) divided by d; Fréchet Inception Distance (FID) scores, which have been
shown to correlate highly with human judgment of visual quality [13]; and Kernel
Inception Distance (KID) scores [3]. KID is similar to FID as it is based on Incep-
tion scores [29]. While the FID first fits a Gaussian distribution on the scores
of a reference set and a set of interest and then compares the two distributions,
the KID score is non-parametric, i.e., it does not assume any distribution and
compares the Inception scores based on Maximum Mean Discrepancy (MMD).
We follow previous work [3] and employ a polynomial kernel with degree three
for our evaluations.

We measure bits per dimension on the test set and on interpolated samples.
FID and KID scores are evaluated on generated and interpolated samples and
then compared to a reference set, which is the training data. When generating
data, we draw as many samples from the base distribution as we have for training.
For interpolation, we focus on interpolation within classes and adopt regular
linear interpolation for Gaussian-distributed samples, while using a spherical
linear interpolation on the sphere for vMF-distributed samples. In this operation,
we sample n/5 pairs of images from the training set and generate five equally
spaced interpolated data instances per pair, resulting in n new images. From
those interpolation paths, we only use the generated points and not the points
which are part of training data. Hence, we are only considering previously unseen
data.

We also compare against the norm-corrected linear interpolation (nclerp)
defined in Eq. (1). Note that a linearly spaced interpolation path is no longer
linearly spaced after norm correction. The resulting interpolation paths are com-
posed of images located closer to the endpoints and thus bias the evaluation. We
include the results nevertheless for completeness.

The reported metrics are averages over three independent runs and include
standard errors. The code is written in PyTorch [24]. All experiments run on an
Intel Xeon CPU with 256GB of RAM using an NVIDIA V100 GPU.

5.2 Data

In our experiments, we utilize MNIST [22], Kuzushiji-MNIST [7], and
Fashion-MNIST [34], which contain gray-scale images of handwritten digits,
Hiragana symbols, and images of Zalando articles, respectively. All MNIST data
sets consist of 60,000 training and 10,000 test images of size 28×28. In addition,
we evaluate on CIFAR10 [21], which contains natural images from ten classes.
The data set has 50,000 training and 10,000 test images of size 32 × 32.
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Table 1. Results for generative modeling averaged over three independent runs includ-
ing standard errors.

Base dist. Test Sample

BPD FID KID

MNIST Gaussian 1.59 ± 0.06 34.53 ± 0.83 0.033 ± 0.001

vMF κ = 1d 1.46 ± 0.07 40.07 ± 2.46 0.037 ± 0.001

vMF κ = 1.5d 1.54 ± 0.09 40.39 ± 1.40 0.036 ± 0.001

vMF κ = 2d 1.82 ± 0.08 39.82 ± 0.26 0.038 ± 0.001

Dirichlet α = 2 1.76 ± 0.12 40.08 ± 0.72 0.039 ± 0.001

K-MNIST Gaussian 2.58 ± 0.11 35.34 ± 0.76 0.041 ± 0.001

vMF κ = 1d 2.63 ± 0.06 36.63 ± 0.37 0.041 ± 0.001

vMF κ = 1.5d 2.48 ± 0.06 35.00 ± 0.61 0.040 ± 0.001

vMF κ = 2d 2.51 ± 0.04 36.45 ± 0.42 0.041 ± 0.001

Dirichlet α = 2 2.50 ± 0.05 35.54 ± 0.39 0.040 ± 0.001

F-MNIST Gaussian 3.24 ± 0.04 66.64 ± 1.29 0.064 ± 0.003

vMF κ = 1d 3.16 ± 0.03 60.45 ± 3.34 0.055 ± 0.005

vMF κ = 1.5d 3.30 ± 0.07 61.89 ± 1.29 0.056 ± 0.002

vMF κ = 2d 3.22 ± 0.06 60.60 ± 3.47 0.055 ± 0.004

CIFAR10 Gaussian 3.52 ± 0.01 71.34 ± 0.45 0.066 ± 0.001

vMF κ = 1d 3.43 ± 0.00 71.07 ± 0.78 0.069 ± 0.001

vMF κ = 1.5d 3.42 ± 0.00 70.58 ± 0.40 0.068 ± 0.001

vMF κ = 2d 3.42 ± 0.01 71.00 ± 0.28 0.068 ± 0.001

5.3 Architecture

We employ the Adam optimizer [16] with a learning rate of 10−3, clip gradients
at 50, and use linear learning rate warm-up for the first ten epochs. Models were
trained on MNIST data and CIFAR10 using mini-batches of size 256 and 128,
respectively. All models are trained for 100 epochs without early stopping. We
keep all architectures as close as possible to Glow, with the following deviations.
For MNIST data, we use random channel permutations instead of invertible
1 × 1 convolutions. The number of filters in the convolutions of the affine cou-
pling layers is 128. In Glow terms, we employ L = 2 levels of K = 16 steps
each. For CIFAR10, our models have L = 3 levels of K = 24 steps each, while
the affine coupling layers have convolutions with 512 filters. The architecture is
kept the same across base distributions, except for the additional parameterless
transformations to the restricted subspaces introduced in Sect. 4.

When comparing base distributions, we consider the following hyperparame-
ters. For the vMF distribution, we use concentration values for which the parti-
tion function is finite. For consistency, the values we use are the same multiples
of the data dimensionality d for each data set. The concentration values for the
Dirichlet distribution are set to α = 2, which refers to 2 · 1d+1 ∈ R

d+1.
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Table 2. Results for interpolation averaged over three independent runs including
standard errors. Interpolations are in-class only and use five intermediate points; lerp
refers to a linear interpolation; nclerp refers to the norm-corrected linear interpolation
(Sect. 1) and slerp refers to the spherical interpolation.

Base dist. Type BPD FID KID

MNIST Gaussian lerp 1.33 ± 0.05 5.10 ± 0.14 0.003 ± 0.000

Gaussian nclerp 1.44 ± 0.06 5.12 ± 0.30 0.003 ± 0.000

vMF κ = 1d slerp 1.31 ± 0.09 3.84 ± 0.36 0.002 ± 0.000

vMF κ = 1.5d slerp 1.40 ± 0.10 4.22 ± 0.12 0.002 ± 0.000

vMF κ = 2d slerp 1.63 ± 0.10 4.45 ± 0.06 0.002 ± 0.000

Dirichlet α = 2 lerp 1.61 ± 0.10 5.81 ± 0.36 0.004 ± 0.001

K-MNIST Gaussian lerp 1.91 ± 0.17 19.71 ± 1.59 0.021 ± 0.002

Gaussian nclerp 2.15 ± 0.15 17.60 ± 1.48 0.020 ± 0.002

vMF κ = 1d slerp 2.08 ± 0.15 17.93 ± 3.72 0.020 ± 0.004

vMF κ = 1.5d slerp 1.80 ± 0.07 22.72 ± 2.65 0.025 ± 0.003

vMF κ = 2d slerp 2.03 ± 0.14 14.54 ± 2.51 0.016 ± 0.003

Dirichlet α = 2 lerp 1.81 ± 0.04 24.09 ± 2.35 0.026 ± 0.003

F-MNIST Gaussian lerp 2.84 ± 0.10 13.06 ± 0.62 0.007 ± 0.001

Gaussian nclerp 2.93 ± 0.03 7.80 ± 0.13 0.004 ± 0.000

vMF κ = 1d slerp 2.66 ± 0.03 12.16 ± 0.13 0.006 ± 0.000

vMF κ = 1.5d slerp 2.84 ± 0.07 12.19 ± 1.07 0.006 ± 0.001

vMF κ = 2d slerp 2.70 ± 0.05 15.11 ± 0.85 0.008 ± 0.001

CIFAR10 Gaussian lerp 2.64 ± 0.06 58.63 ± 1.26 0.053 ± 0.001

Gaussian nclerp 3.32 ± 0.01 14.29 ± 0.16 0.010 ± 0.000

vMF κ = 1d slerp 2.78 ± 0.05 51.08 ± 0.37 0.010 ± 0.000

vMF κ = 1.5d slerp 2.66 ± 0.05 55.23 ± 5.14 0.047 ± 0.005

vMF κ = 2d slerp 2.58 ± 0.08 52.65 ± 3.34 0.044 ± 0.004

5.4 Quantitative Results

We first evaluate the generative modeling aspects of all competitors. Table 1
summarizes the results in terms of bits per dimension on test data and FID
and KID scores on generated samples for all data sets. Experiments with the
Dirichlet base distribution were not successful on all data sets. The restrictions
imposed to enable the use of the distribution demand a high numerical precision
since every image on the simplex is represented as a non-negative vector that
sums up to one. Consequently, we only report results on MNIST and Kuzushiji-
MNIST. Using the vMF as a base distribution clearly outperforms the Gaussian
in terms of bits per dimension on test data. As seen in the FID and KID scores,
we perform competitive compared to the Gaussian for generating new data.
Hence, the generative aspects of the proposed approach are either better or on
par with the default choice of a Gaussian. Note that lower bits per dimension on
test data and lower FID/KID scores on generated data might be obtained with
more sophisticated models.
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Fig. 6. Five interpolation paths of the norm-corrected linear interpolation (nclerp)
depicting the problem of almost repeated endpoints (highlighted in blue) and thus a
biased evaluation on CIFAR10. (Color figure online)

We now evaluate the quality of interpolation paths generated via various
approaches. Table 2 shows the results in terms of bits per dimension, FID, and
KID scores for all data sets. The experiments confirm our hypothesis that an
interpolation on a fixed-norm space yields better results as measured in bits per
dimension, FID, and KID scores. The norm-corrected interpolation yields better
FID and KID scores for Fashion-MNIST and CIFAR10. However, this heuristic
produces interpolation paths that are biased towards the endpoints (cf. Fig. 3)
and hence are naturally closer to observed data, thus yield better FID and KID
scores. This is depicted in Fig. 6 where the first and last interpolant is very close
to real data. More results on general interpolations within classes and across
classes are provided in the supplementary material.

5.5 Qualitative Results

Figure 7 displays interpolation paths with five interpolants of four pairs of data
from CIFAR10, created using the same architecture trained on different base
distributions. We pick the best-performing model on BPD on test data from
the multiple training runs for each base distribution. We visually compare a
linear interpolation using a Gaussian base distribution against a spherical linear
interpolation using a vMF base distribution with different concentration values.
Naturally, the images in the center show the difference and the effects resulting
from the choice of base distribution and, hence, the interpolation procedure.

Overall, the linear interpolation with a Gaussian tends to show mainly darker
objects on brighter background (almost black and white images) in the middle
of the interpolation path. This is not the case for the spherical interpolations
using a vMF base distribution. Specifically, in the second example showing dogs,
the checkerboard background of the left endpoint smoothly fades out for the
vMF (κ = 2d) model while the Gaussian shows an almost white background. A
similar effect happens in the last pair of images, highlighting the weaknesses of
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Fig. 7. Interpolation paths of four pairs of data from CIFAR10 using different models.

Fig. 8. Interpolation paths of two pairs from Fashion-MNIST using different models.

a linear interpolation once again. By contrast, the vMF models generate images
where those effects are either less prominent or non-existent, suggesting a path
that strictly follows the data manifold. We provide more interpolation paths on
CIFAR10 in the supplementary material.

Figure 8 depicts interpolation paths with five interpolants on two pairs of data
from Fashion-MNIST. In both cases, the Gaussian model produces suboptimal
images with visible color changes, which is not consistent with the endpoints.
Furthermore, there is visible deformation of the clothing items.

6 Related Work

Interpolations are commonplace in generative modeling, being particularly useful
for evaluating them. Spherical linear interpolations [30] are also proposed [33]
to circumvent the problems depicted in Fig. 1 in GANs and VAEs. However,
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as the Gaussian is kept as a base distribution, the difference in norms causes
problems similar to the norm corrected approach. The problem of interpolation
is also investigated for GANs [1]. Specifically, they show that the quality of the
generated images in the interpolation path improves when attempting to match
the distribution of norms between interpolants and the GAN prior. The problem
with the distribution mismatch while interpolating is also studied in [15].

Simultaneously learning a manifold and corresponding normalizing flow on it
is also possible [5]. By contrast, in this paper, we employ a prescribed manifold,
i.e., a p-norm sphere, on which the interpolation can be done in a principled way.
Using a vMF distribution as a prior of VAEs is also used to encourage the model
to learn better latent representations on data with hyperspherical structure [8,
35]. While results show improvements over a Gaussian prior, properties of our
interest, such as interpolation, are not addressed.

Employing normalizing flows on non-Euclidean spaces, such as the hyper-
sphere, was first proposed by [11]. They introduce a mapping for doing nor-
malizing flows on hyperspherical data. The main difference from our setting is
that the data is already on a sphere and is moved to R

d, an unrestricted space,
performing the entire flow in there instead, before moving back to the sphere.
This avoids defining a flow on the sphere, which is studied in [27] for tori and
spheres. Besides, normalizing flows on hyperbolic spaces are beneficial for graph-
structured data [4].

A geometric analysis of autoencoders, showing that they learn latent spaces,
which can be characterized by a Riemannian metric, is provided by [2]. With
this, interpolations follow a geodesic path under this metric, leading to higher
quality interpolations. Compared to our contribution, these approaches do not
change the standard priors but propose alternative ways to interpolate samples.
In contrast, we propose an orthogonal approach by changing the base distribu-
tion and imposing constraints on the representation in our training procedure.
Consequently, standard interpolation procedures, such as the spherical linear
interpolation, can be used in a principled way.

7 Conclusion

This paper highlighted the limitations of linear interpolation in flow-based gen-
erative models using a Gaussian base distribution. As a remedy, we proposed
to focus on base representations with a fixed norm where the interpolation nat-
urally overcomes those limitations and introduced normalizing flows onto unit
p-norm spheres. Specifically, we showed for the cases p ∈ {1, 2} that we could
operate on the unit simplex and unit hypersphere, respectively. We introduced
a computationally efficient way of using a Dirichlet distribution as a base distri-
bution for the case of p = 1 and leveraged a von Mises-Fisher distribution using
a stereographic projection onto a hypersphere for the case p = 2. Although the
former suffered from numerical instabilities in a few experiments, our experi-
mental results showed superior performance in terms of bits per dimension on
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test data and FID and KID scores on interpolation paths that resulted in natu-
ral transitions from one image to another. This was also confirmed by visually
comparing interpolation paths on CIFAR10 and Fashion-MNIST.
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Abstract. Unsupervised Domain Translation (UDT) is the problem of
finding a meaningful correspondence between two given domains, with-
out explicit pairings between elements of the domains. Following the
seminal CycleGAN model, variants and extensions have been used suc-
cessfully for a wide range of applications. However, although there have
been some attempts, they remain poorly understood, and lack theoret-
ical guarantees. In this work, we explore the implicit biases present in
current approaches and demonstrate where and why they fail. By explic-
iting these biases, we show that UDT can be reframed as an Optimal
Transport (OT) problem. Using the dynamical formulation of Optimal
Transport, this allows us to improve the CycleGAN model into a simple
and practical formulation which comes with theoretical guarantees and
added robustness. Finally, we show how our improved model behaves on
the CelebA dataset in a standard then in a more challenging setting, thus
paving the way for new applications of UDT. Supplementary material is
available at https://arxiv.org/pdf/1906.01292.

Keywords: Deep learning · Optimal transport · Generative models

1 Introduction

Given pairs of elements from two different domains, domain translation con-
sists in learning a mapping from one domain to another, linking paired elements
together. A wide range of problems can be formulated as translation, includ-
ing image-to-image [16], video-to-video [25], image captioning [30], natural lan-
guage translation [2], etc. However, obtaining paired examples is often difficult
and for this reason has motivated a growing interest towards the more general
unpaired or unsupervised setting where only samples from both domains are
available without pairing. A seminal and influential work for solving Unsuper-
vised Domain Translation (UDT) has been the CycleGAN model [31]. It has
spurred many variants and extensions leading to impressive results in several
application domains [7,8,12,18,28].
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More formally, Unsupervised Domain Translation (UDT) is the problem of
finding, for any element a of a domain A, its best representative b in another given
domain B. Both domains are generally provided in the form of a finite number
of samples and we will model them here as absolutely continuous probability
measures, respectively α and β. We will make the additional hypothesis that both
domain are compact in Rd, with regular boundaries. CycleGAN-like models can
then be framed as follows: Given samples from the two probability measures α
and β, learn transformations T and S that map one distribution onto the other,
while being each other’s mutual inverse. This problem thus involves minimizing
the following loss:

L(T, S,A,B) = Lgan(T, S,A,B) + Lcyc(T, S,A,B) (1)

where Lgan ensures, at optimality, that1

T�α = β and S�β = α

while Lcyc ensures cycle-consistency, namely that both transformations are
mutual inverses.

Despite its popularity and empirical successes, there is no clear understanding
on why CycleGAN is so effective. As shown in [14,21,27], the kernel or null space
of the CycleGAN loss, i.e. the set of couples (T, S) such that L(T, S,A,B) = 0,
is not reduced to a singleton except in trivial cases and is often infinite in most
cases of interest. By studying the kernel of the loss, [21] show more precisely that
elements of the null space as well as solutions obtained through the extended
version of the loss, where the loss is regularized so that the transformations
are close to the identity function, can lead to arbitrarily undesirable solutions
of UDT. Thus, there is a discrepancy between what the loss of CycleGAN-
like models captures and their practical usefulness. [14] postulate that obtained
solutions are of minimal complexity, a notion related in their work to the minimal
number of neural layers necessary to represent a function, and conjecture that
mappings of minimal complexity represent a small subset of the CycleGAN’s
loss kernel. Although their definition of complexity is not satisfying and they
do not explain why these solutions would correspond to satisfactory ones, this
intuition is a valuable one and we build upon it in this work.

More generally, this paper attempts to explain empirically and theoretically
why and in which conditions CycleGAN works, and proposing a framework which
opens the way for more robust and more flexible CycleGAN models. More pre-
cisely,

– We assess the desiderata ensuring satisfactory results for UDT and conduct
an empirical analysis of CycleGAN which shows a systematic implicit bias
towards low energy transformations, i.e. transformations that displace the
inputs as little as possible, and that this bias not only explains its success,
but predicts where it fails.

1 The push-forward measure f�ρ is defined as f�ρ(B) = ρ(f−1(B)), for any measurable
set B. Said otherwise, we need T to map α to β and S does the reverse.



134 E. de Bézenac et al.

– Building on this idea, we reformulate the general problem of UDT as an
Optimal Transport (OT) problem, thus allowing us to use results from OT
theory. This ensures the well-posedness of the problem and regularity of the
solution. We are also able to solve problems where CycleGAN methods fail.

– We illustrate our findings by proposing a simple instance of the formulation
and conducting illustrative experiments. Using the dynamical formulation of
OT, our model is more robust, allows for smooth interpolations and halves
the number of necessary parameters by providing an inverse mapping for free
after training.

2 Desiderata for UDT and Analysis of CycleGAN

Here, we characterize qualitatively then quantitatively how a good UDT model
should behave and show that CycleGAN-like models tend to compute low-energy
transformations.

2.1 What Should Be the Properties of a UDT Solution?

Qualitatively, good solutions of a UDT problem are the ones which translate an
input a from A to B while still conserving as much as possible the character-
istics of a, and conversely from B to A. The CycleGAN seminal paper tries to
enforce this through the cycle-consistency loss but, as discussed above and in
previous papers, this loss is null for any invertible mapping T by taking the cou-
ple (T, T−1), without necessarily conserving any characteristics across domains.
In other words, this loss doesn’t really add any constraints on the mapping and
infinitely many undesirable can still be theoretically recovered by the model.

This intuition has already been formulated in [14] in the notion of “semantics
preserving mappings”. The authors, recognizing that preserving semantics is
a vague notion, propose to measure it through the minimal number of layers
necessary for neural networks to represent the transformation. However, while
we think that it provides a useful step forward in understanding UDT, such a
formulation has several shortcomings: There is no reason why complexity should
always be measured as the number of layers of a non-residual NN [29] and it
is not even clear whether such a minimal number is always finite for relevant
transformations; This notion doesn’t provide theoretical insights on how and why
CycleGAN performs so well in practice or why it seems to work well even with
very deep networks; Crucially, there are no guarantees regarding the uniqueness
of minimal complexity mappings.

It is also interesting to consider the extended loss for CycleGAN introduced
in the original paper [31] as a regularization forcing T and S to be close from the
identity mapping. While, as shown theoretically and empirically in [21], adding
this regularization doesn’t prevent undesirable mappings to be reached by the
model, the fact that it was necessary to further constrain the objective for certain
tasks in this way shows that it can be helpful to have transformations which do
not transform inputs too much. This is coherent with the view of [14]. We aim to
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extend both approaches in a more adaptive, robust and theoretically grounded
formalism.

Generalizing those discussions, in our view, there are two main important
desirable features in UDT models as used in many practical settings:

– The mapping T (and, symmetrically S) should be constrained to be as conser-
vative as is possible, in the sense that they should be as close to the identity
as is possible.

– The mappings T and S should also be regular. Indeed, in the case of image-
to-image translation from paintings to photographs for example, if we take
two paintings a, a′ representing nearly the same scene then we would want the
corresponding photos T (a), T (a′) to be similar as well. This property would
mean that T and S are endowed with some functional regularity, at least a
form of continuity.

While the first feature extends the points of view already discussed in pre-
vious works, the second one is novel, up to our knowledge. It seems difficult to
enforce directly the regularity of the estimated mappings but we show in the
following that our approach seamlessly satisfies both properties.

2.2 CycleGAN Is Biased Towards Low Energy Transformations

In practice, the success of CycleGAN models is made possible by the presence of
inductive biases that constrain the set of solutions and that are imposed through
the combination of the choices made for SGD-based methods, networks archi-
tectures, weight parameterization and initialization. In order to develop a better
understanding and identify implicit biases, we have conducted an exploratory
analysis to characterize the influence of CycleGAN hyperparameters. Our main
finding is that the initialization gain σ, i.e. the standard deviation of the weights
of the residual network (along with a fixed small learning rate), has the most sub-
stantial and consistent impact, among all the hyperparameters, on the retrieved
mappings. These findings are illustrated in the following experiments.

2D Toy Example. Figure 1 shows the effect of changing the gain from a small
value, σ = 0.01, to a higher one, σ = 1 when learning to map one circular distri-
bution to another. This changes the obtained mapping from a simple translation
aligning the two distributions with a minimum displacement to a more disor-
derly one. In other words, it seems that higher initialization gains lead to higher
energy mappings. Further quantifying the effect of initialization gain on the
retrieved mappings, we use a natural characterisation of disorder/complexity of
a mapping: the average distance between a sample x from α and its image T (x).
Using the squared Euclidean distance, this corresponds to the kinetic energy of
the displacement and can be written as

∫
Rd ‖x − T (x)‖22 dα(x). This quantity

is also the quadratic transport cost used in Optimal Transport [22]. Using the
mapping minimizing this cost as a reference, we see, on the left of Fig. 2, that the
larger σ becomes, the further CycleGAN’s mapping (blue curve) is from it. The
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Fig. 1. Pairings between domains obtained with CycleGAN. Both domains correspond
to uniform distributions on a 2d-sphere with shifted centers. Small initialization val-
ues lead to simple and ordered mappings (Left), whereas larger ones yield complex
and disordered ones (Right). Colors highlight original pairing between domains, before
shifting.

right curve confirms this finding: As σ grows, so does the transport cost of the
trained CycleGAN. For both experiments, the variance across runs increases i.e.
the model yields very different mappings across runs, corroborating the ill-posed
nature of CycleGAN’s optimization problem.

Fig. 2. Left: L2 distance to the Optimal Transport mapping “Wasserstein 2 Trans-
port” as a function of the initialization gain (domains are illustrated in Fig. 1). “Ours”
refers to the model presented subsequently. Right: Transport cost of the CycleGAN
mapping as a function of initialization gain. Metrics are averaged across 5 runs, and
the standard deviation is plotted. (Color figure online)

High-Dimensional Analysis. We also conducted a similar analysis with high-
dimensional distributions of images on the CelebA dataset. While in this case
calculating the exact OT map is intractable, we can visualize samples obtained
with the CycleGAN mapping for different values of σ. The task is male to female
transformation where one wants to keep as many characteristics as possible from
the original image in the generated one. The result in Fig. 5 confirms the low-
dimensional findings: while in all cases the distributions have been successfully
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aligned, as all males are transformed into females, the mappings initialized with
low σ values perform a minimal transformation of the input while high σ values
produce unwanted changes in the features (hair color, face, skin color,...). This is
corroborated by measuring the transportation cost incurred by CycleGAN which
goes from 0.15 for σ = 0.01 to 9.7 for σ = 1.5, showing that this behaviour is
linked with high transport costs.

In summary, for common UDT tasks where the input is to be preserved as
much as possible, successful CycleGAN models tend to consistently converge to
low energetic mappings and this bias is induced by a small initialization gain.
However, the CycleGAN model doesn’t give any explicit control over this bias,
thus warranting a blind hyper-parameter / architecture search for each new task.
In the following section, we use OT to define a class of explicitly controllable
models with theoretical guarantees.

3 UDT as Optimal Transport

Using Optimal Transport theory, this section formalizes the findings of the pre-
vious one.

3.1 A (Dynamical) OT Model for UDT

Let us consider the classical Monge problem formulation for OT:

min
T

C(T ) =
∫

Rd

c(x, T (x)) dα(x)

s.t. T�α= β (2)

with the ground cost being defined as c(x, y) = h(x − y) with h strictly convex.
Using OT as a way to solve UDT seems very natural as, for most applications,

the user’s criteria are about preserving input features as much as possible: this
is precisely what is given by the OT mapping, its associated cost defining which
features are to be preserved. Our idea is that any solution of the Monge problem
would be a good candidate for a UDT forward mapping.

Moreover, for a wide range of costs, e.g. cost of the form2 c(x, y) = ‖x −
y‖p for p > 1, there exists a dynamical point of view of OT equivalent to the
Monge formulation3, similar in intuition and formulation to the equations of
fluid dynamics. The general idea is to produce T by using a velocity field v which
gradually transports particles from α to β. The OT map can then be recovered
from a path of minimal length, with v solving the optimization problem:

2 A larger family of costs can be considered at the expense of some technicalities,
see [13].

3 Which was pioneered in [5] and for which a detailed modern presentation is given in
chapters 4 and 5 of [22].
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min
v

Cdyn(v) =
∫ 1

0

‖vt‖p
Lp((φ·

t)�α) dt

s.t ∂tφ
x
t = vt(φx

t )
φ·
0 = idA

(φ·
1)�α = β (3)

where the function φ·
t : A → Rd, induced by the vector field v, is the transport

map at time t. This problem can be treated as a continuous-time optimal control
problem, and can thus be solved using standard techniques [22].

We then have, using results from Optimal Transport theory:

Proposition 1 (Existence, Uniqueness and Interpolation). With the
hypothesis already made for α, β and c, (2) admits a unique minimum realized
with an invertible map T �.

Moreover, for p > 1, when c(x, y) = ‖x − y‖p, (3) also admits a unique
minimal vector field v�. In addition, we have that the corresponding curve (φ·

t)�α
interpolates geodesically between α and β in Wp.

Finally, we have that T � = φ·
1 and we recover the transport cost in the static

Monge formulation, i.e. Cdyn(v�) = C(T �).

Proof. α, β and c verify the hypothesis for [22, Theorem 1.17] which gives
existence and uniqueness of the OT map T �. Its invertibility is justified by
Remark 1.20 of the same reference.

Taking μt = (φ·
t)�α, we have that (μt, vt) solves the continuity equation:

∂tμt + ∇ · (μtvt) = 0

(3) then becomes a problem of finding the curve of minimal length in Wp between
α and β. This space being a geodesic one, such a curve always exists and is
unique. This also justifies the equivalence of (2) and (3) as well as the fact that
T � = φ·

1. A more rigorous justification is given in chapters 4 and 5 of [22]. ��
Here, Wp is the metric space of absolutely continuous probability measures with
finite p-th moment where the distance between two measures μ, ν is defined as
the p−th root of the OT cost between them.

The key claim of this work, which is supported by the experiments conducted
in Sect. 2.2, is the following one: The OT map T for the quadratic cost behaves
very similarly to the solution of UDT approximated by CycleGAN-like models
when they behave correctly.

3.2 Regularity of OT Maps

Let us recall the definition of Hölder continuity: A function f : X → Y is said
to be η-Hölder continuous if:

∀x, y ‖f(x) − f(y)‖ ≤ M‖x − y‖η
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for η ∈]0, 1]. Moreover, the space of functions whose k-th derivative is η-Hölder
continuous is denoted by Ck,η(X ,Y).

Using the same notation as above and recent results obtained for OT maps
[20], we have the following:

Proposition 2 (Regularity). T � is everywhere differentiable, except on a set
of null α measure.

Additionally, if T � does not have singularities, there exists η > 0 and A,
respectively B, relatively closed in A, respectively B, of null Lebesgue measure,
such that T � is η-Hölder continuous from A \ A to B \ B.

Moreover, if the densities of α and β are Ck,η, then T � ∈ Ck+1,η(A\A,B\B).

This notion of regularity is exactly the one that one wants for UDT as the
regularity of the mappings has to be linked to that of their underlying domains.
Here, the recovered map is even one degree more regular than the domains
themselves.

Moreover, the fact that regularity excludes a negligible set of points of
the domains is also coherent with what we should expect: In the transported
domains, there can be points which are close but nevertheless represent ele-
ments from different classes and thus should be transported far from each other.
For example, in image-to-image translation between photographs and paintings,
two images with the same background can represent different objects and thus
be translated into very different paintings. Thus, this regularity result supports
our claim for the transport cost to be the right measure of “complexity” for
UDT mappings.

3.3 Computing the Inverse

Consider the optimal vector field of (3) and the following system of differential
equations, for all x ∈ B: {

∂tψ
x
t = −v�

t (ψx
t )

ψx
0 = x

(4)

Then we have the following:

Proposition 3. The solution curve (ψ·
t)t of (4) geodesically interpolates

between β and α. In particular, S� = ψ·
1 is the inverse of T �, verifies S�

� β = α
and is the OT map between β and α.

Proof. Let us consider νt = (ψ·
t)�β. Then (νt,−vt) solves the continuity equation.

On the other hand, by a direct calculation and taking previous notations, we
have that:

d
dt

∫
fdμ1−t = −

∫
∇f(x) · vt(x)dμ1−t

for any C1 test function f which means that (μ1−t,−vt) also solve the continuity
equation with the same initial condition β. This means, by uniqueness, that we
have νt = μ1−t which proves the result. ��
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This result shows that (T �, S�) does indeed solve the UDT problem and is
in the null space of the CycleGAN loss. Moreover, in order to compute S�, there
is no need to parametrize it nor to solve a difficult optimization problem. It is
only necessary to discretize the associated differential equation which is of the
same nature as the one for the forward mapping, meaning that the same scheme
can be used.

4 A Residual Instantiation from Dynamical OT

This section proposes an instantiation of our model which closely follows the
CycleGAN implementation and experiments are conducted to compare both on
the CelebA dataset.

4.1 Linking the Dynamical Formulation with CycleGAN

Fig. 3. Visualization of the hidden layers of CycleGAN when mapping the yellow
gaussian distribution to the green one with different initializations: As shown by the
colored points representing samples under the histograms, when σ increases, the map-
ping goes from a simple translation (Top) to a more complicated mapping (Bottom),
thus inducing an increase in transport cost. (Color figure online)

Let us show that CycleGAN corresponds to a specific implementation of our
dynamic formulation with the added transport minimization.

Discretization. If vk corresponds to the residual for layer k of the residual block
defined by φx

k = φx
k−1 + vk(φx

k−1), then, taking the continuous time limit, one
recovers the differential equation ∂tφ

x
t = vt(φx

t ) [26] which appears as a con-
straint in Eq. 3. Thus, if we discretize the forward equation in (3) using an Euler
numerical scheme, we recover the forward map in the CycleGAN architecture4.

In CycleGAN, the first boundary condition φ·
0 = id is satisfied by construc-

tion, while the second (φ·
1)�α = β is enforced with the GAN loss.

4 Other schemes could be used, which would lead to other architectures, and could
arguably be more suited for stability reasons but this is beyond the scope of this
work.
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Thus we recover CycleGAN as a particular implementation of this model
when there is no transport cost minimization. We actually construct our instan-
tiation in a similar fashion in order to have meaningful comparisons: The differ-
ential equations are discretized using an Euler scheme and boundary conditions
are enforced using an iterative penalization of the GAN loss. More involved
schemes can be used here such as any suitable parametrized solver [6].

The fully discretized optimization problem is then the following:

min
θ

Cd(θ) =
K∑

k=1

∑

x∈Dataα

‖vθk(φx
k)‖p

p

s.t ∀x, ∀k, φx
k+1= φx

k + Δt vθk(φx
k)

φ·
0 = id, (φ·

1)�α = β (5)

Let us also notice that using small initialization gains for the net-
work (See 2.2) tends to bias the ‖vθ‖s to small values, linking latent trajectories
of residual networks with minimal length ones as in Fig. 3. It remains to be
proven that this fact is indeed stable after training via gradient descent and we
consider this to be an interesting problem to analyze in the future.

Enforcing Boundary Conditions. The constraint (φ·
1)�α = β ensuring that input

domain α maps to the target domain β isn’t straightforward to implement.
We do so by optimizing an iterative Lagrangian relaxation associated to (5),
introducing a measure of discrepancy D between output and target domains:

min
θ

Cd(θ) +
1
λi

D((φ·
1)�α, β) (6)

where the sequence of Lagrange multipliers (λi)i converges linearly to 0 during
optimization. At the limit, as the sequence of multipliers converges to 0, the
constraint is satisfied.

Each λi induces an optimization problem which is solved using stochastic
gradient based techniques. As in most approaches for UDT, D may be imple-
mented using generative adversarial networks, or any other appropriate measure
of discrepancy between measures, such as kernel distances. Moreover, in order
to stabilize the adversarial training which enforces boundary conditions for both
our model and CycleGAN, we use an auto-encoder to a lower dimensional latent
space. This limits the sharpness of output images but produces consistent and
reproducible results, thus allowing meaningful comparisons which is the objec-
tive here.

Algorithm. Training is done only for the forward equation and the reverse is
obtained by iterating yk−1 = yk − Δt vθk(yk), starting from a sample yK from
β, as Sect. 3.3 allows to. Algorithm 1 gives all necessary details of the procedure.
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Algorithm 1. Training procedure
Input: Dataset of unpaired images (IA, IB) sampled from (α, β),

initial coefficient λ0, decay parameter d, initial parameters θ, minimal penalization

ε

Pretrain Encoder E and decoder D

Make dataset of encodings (x = E(IA), y = E(IB))

for i = 1, . . . , M do

Randomly sample a mini-batch of x, y

Solve forward equation φx
k+1 = φx

k + Δt vθk(φx
k) , starting from φx

0 = x

Estimate loss L = Cd(θ) + 1
λi

D((φ·
1)�α, β) on mini-batch

Compute gradient dL
dθ

backpropagating through forward equation

Update θ in the steepest descent direction

λi+1 ← max(λi − d, ε)

end for

Output: Learned parameters θ.

Architectures. Implementation is performed via DCGAN and ResNet architec-
tures as described below. For the Encoder, we use a standard DCGAN architec-
ture5, augmenting it with 2 self-attention layers, mapping the images to a fixed,
128 dimensional latent vector. For the Decoder, we use residual up-convolutions,
also augmented with 2 self-attention layers. We use 9 temporal steps, correspond-
ing to as many residual blocks which consist of a linear layer, batch normaliza-
tion, a non-linearity, and a final linear layer. The discrepancy D is implemented
using generative adversarial networks with the discriminator being a simple MLP
architecture of depth 3, consisting of linear layers with spectral normalization,
and LeakyReLU(p = 0.2).

Moreover, in the experiments below, our dataset is the CelebA dataset, resiz-
ing images to 128×128 pixels, without any additional transformation. The initial
coefficient is λ0 = 1, and the decay factor is set depending on the number of total
iterations M , so as to be ε on the final iteration. Throughout all the experiments,
we use the Adam optimizer with β1 = 0.5 and β2 = 0.999.

4.2 A Typical UDT Task

Taking the CelebA dataset, we consider the male to female task where the objec-
tive is to change the gender of the input image while keeping other characteristics
of the image unchanged as much as possible.

Figure 4 illustrates how our model works for Male to Female translation (for-
ward) and back (reverse) on the CelebA dataset, displaying intermediate images
as the input distribution gradually transforms into the target distribution. No
5 https://github.com/pytorch/examples/tree/master/dcgan.

https://github.com/pytorch/examples/tree/master/dcgan
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Fig. 4. Male to Female translation (top) and the inverse (bottom). Intermediate images
are the interpolations provided by the network’s intermediate layers. The reverse map-
ping is not trained.

cycle-consistency is being explicitly enforced here and the reverse is
not directly parametrized nor trained but still performs well. The model
changes relevant high-level attributes when progressively aligning the distribu-
tions but doesn’t change non-relevant features (hair or skin color, background,...)
which is coherent to what is expected for an optimal map w.r.t. an attractive
cost function (here the squared Euclidean one). All the experiments conducted
in this work with our proposed OT framework have been implemented using this
dynamical formulation.

Figure 5 shows that for a low initialization gain, both our method and Cycle-
GAN give satisfying and similar solutions. When changing the value of this
hyper-parameter, the CycleGAN mapping becomes unstable, producing outputs
very different from the inputs.

The non-uniqueness of the solution of CycleGAN’s optimization problem is
highlighted here by the multiple mappings found for different initializations. It
is also worth noting that, for CycleGAN, using a large σ made convergence of
the optimization harder. As already observed before, the chaotic behavior of
the CycleGAN model correlates with an increase in the transport cost of the
obtained mappings. This validates the L2 OT bias of CycleGAN, showing that
this model only works as an implicit OT mapping for a quadratic cost given a
certain architecture, initialized and trained in a certain way. For this example,
the prior induced by the quadratic transport cost is the right one and correctly
captures the geometry of the task, as one wants to preserve as much as possible
the characteristics of the input. By explicitly enforcing optimality w.r.t. the
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Fig. 5. Each column associates one input image to its outputs for different models:
CycleGAN and our model with different initial gain parameters. We have ensured
convergence of all models to the same fit to the target distribution.

quadratic cost, the model becomes robust to changes in the initialization as the
OT problem admits a unique solution for this cost.

4.3 Imbalanced CelebA task

Here, we tackle the case of a corrupted dataset where structural bias is present
in the target domain, which can be an important use case of UDT when fairness
of the datasets is an issue [11]: samples from the target dataset are systematically
corrupted. We consider a subset of the CelebA dataset, where domains corre-
spond, respectively, to female faces with black hair which are non-smiling for
α, and smiling for β. However, we only have access to biased samples from β,
where female faces have blond instead of black hair.

In Fig. 6, we report results with CycleGAN and our approach with the
quadratic cost: the hair color is modified along with the smile feature, and black-
haired non smiling faces are mapped to blond smiling ones as should be expected
from both. This highlights a particular case where CycleGAN’s implicit bias fails.

Using our presented formulation, we are able to solve this task by chang-
ing the cost function: We use a non-standard cost which is more suited to the
geometry of the problem:

c(x, y) = ‖H(x) − H(y)‖22 (7)
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Fig. 6. Results for imbalanced CelebA task. We wish to map faces that have the Non-
Smiling and Black Hair attributes to Smiling, Black-Hair faces, while only access-
ing Smiling, Blond Hair faces for the target domain.

where H(I) is a histogram function of the image I. More precisely, H is computed
as a soft histogram over the colors of the image of 20 bins, using a Gaussian
kernel with σ = 0.05 for the smoothing. This cost allows to take into account
the texture of the image, thus helping to find an OT map which preserves hair
color in this case and re-balances the dataset as needed.

This task is an example of a case where a simple cost may help achieve non-
trivial results when appropriate information is injected into it. In other words,
by using prior knowledge on the corruption of the dataset, a cost function can
be tailored to correct it.

More generally, it is not difficult to prove that a cost can almost always be
designed to find the right solution for a given task between two distributions α
and β among the infinity of candidates in the kernel of CycleGAN’s loss.

5 Related Work

As discussed before, our work is motivated by the observations of works such as
[3,14] which have linked well-behaved UDT models with a notion of simplicity
which we tried here to frame in a more rigorous and more useful formulation,
making it task dependant. Moreover, similarly to us, [4,14] show that learning
a one-sided mapping is possible but do not directly obtain the inverse mapping
as we do. Others have tried a hybrid approach between paired and unpaired
translation [24], which still doesn’t solve the problem of ill-posedness as there
generally still are infinitely many possible mappings. Also similar to us, [15]
uses a progressive interpolation. In the domain adaptation field, using Optimal
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Transport to help a classifier extrapolate has been around for some years, e.g.
[9,10] use a transport cost to align two distributions. The task, although related,
is clearly different and so are the methods they develop. Finally, [19] also try
to regularize CycleGAN through OT but use barycenters from the optimal plan
obtained in the discrete, static setting in order to guide the mapping instead of
seeing it directly as an OT map (or as biased towards it), thus not explaining
why CycleGAN works in practice.

6 Discussion and Conclusion

We start by formalizing what should be expected of a UDT mapping, namely
that it should be conservative and regular. We then show empirically that Cycle-
GAN works well when highly biased towards a particular form of conservation,
which is unexpected as this is not enforced explicitly during training. We believe
this is in particular due to gradient descent using residual architectures with
small initializations. A very interesting avenue for research would be to prove
this theoretically, potentially making use of recent developments in the implicit
regularization effect of gradient descent [1,17,23].

We believe the proposed OT formulation is particularly adapted to UDT and
allows us to leverage the plethora of theoretical and practical tools developed in
this community. Typically, we were able to guarantee not only the existence and
uniqueness of the solution, but also provide fine grained regularity results for the
solution map. Moreover, we have also adapted practical algorithms from OT and
have made analogies between residual networks and Dynamical OT which have
resulted in an improved UDT model which is more robust and can be useful in
settings where CycleGAN’s biases fail.
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Abstract. The Dirichlet Belief Network (DirBN) has been proposed as a
promising deep generative model that uses Dirichlet distributions to form
layer-wise connections and thereby construct a multi-stochastic layered
deep architecture. However, the DirBN cannot simultaneously achieve
both sparsity, whereby the generated latent distributions place weights
on a subset of components, and smoothness, which requires that the
posterior distribution should not be dominated by the data. To address
this limitation we introduce the sparse and smooth Dirichlet Belief Net-
work (ssDirBN) which can achieve both sparsity and smoothness simul-
taneously, thereby increasing modelling flexibility over the DirBN. This
gain is achieved by introducing binary variables to indicate whether each
entity’s latent distribution at each layer uses a particular component. As
a result, each latent distribution may use only a subset of components in
each layer, and smoothness is enforced on this subset. Extra efforts on
modifying the models are also made to fix the issues which is caused by
introducing these binary variables. Extensive experimental results on real-
world data show significant performance improvements of ssDirBN over
state-of-the-art models in terms of both enhanced model predictions and
reduced model complexity.

Keywords: Dirichlet belief networks · Markov chain Monte Carlo ·
Sparsity

1 Introduction

The Dirichlet Belief Network (DirBN) [20] was recently proposed as a promis-
ing deep probabilistic framework for learning interpretable hierarchical latent
distributions for entities (or objects). To date, DirBN has been successfully
implemented in two application areas: (1) topic structure learning [20], where
the entities represent topics and the entities’ latent distributions describe the
c© Springer Nature Switzerland AG 2021
N. Oliver et al. (Eds.): ECML PKDD 2021, LNAI 12976, pp. 148–163, 2021.
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topic’s vocabulary distributions; and (2) relational modelling [4,5,12], where the
entities represent individuals and the latent distributions characterise an indi-
vidual’s membership distribution over community structures. By constructing a
deep architecture for the latent distributions, the DirBN can effectively model
high-order dependency between topic-vocabulary distributions (for topic mod-
els) and individual’s membership distributions (for relational models).

Fig. 1. Small Dirichlet concentration parameters generate sparse latent distributions.
1 500 samples (red dots) generated from a 3-dimensional Dirichlet distribution are
shown on the 2-dimensional unit simplex, x1+x2+x3 = 1, with different concentration
parameters ααα. When ααα is small (left and middle panels), most samples reside on vertices
or edges, placing most mass on one or two dimensions. When ααα is not small (right
panel), most samples lie inside the triangle, placing mass on all three dimensions.
(Color figure online)

While promising, DirBN currently has some structural limitations which
reduce their modelling flexibility. One limitation is that the length of each entity’s
latent distribution is restricted to be the same over all entities and all layers.
As constructed, this restriction can reveal inadequate modelling flexibility in the
DirBN when entities are related to different subsets of components in different
layers (e.g. when individuals belong to different communities for different layers
in the relational modelling setting). Since the latent distributions are linearly
scaled (by Gamma-distributed variables) when being propagated into each sub-
sequent layer, the resulting changes in the latent distributions can be too slow
to adequately model the rapid changes inherent in the data.

A second limitation of DirBN is that it is unable to achieve the desirable prop-
erties of sparsity and smoothness simultaneously. Sparsity is achieved when the
generated latent distributions place large weight on a subset of components – for
the Dirichlet distribution, this occurs when the concentration parameters app-
roach zero (see Fig. 1). In this case, however, the resulting posterior distribution
over the latent distributions would be less smooth across layers as the empiri-
cal counts will then dominate the posterior distribution. Typically (though not
exclusively) the posterior distribution is expected to be smooth, so as to reduce
sensitivity to rarely-occurring latent distribution components.

In order to resolve these issues, we propose a sparse and smooth Dirichlet
Belief Network (ssDirBN), which introduces binary variables into the layer-wise
connections of the DirBN. In particular, each binary variable b

(l)
ik , which is gen-

erated by a Bernoulli distribution with entity-specific parameter, determines
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whether entity i’s latent distribution at layer l uses component k (b(l)ik = 1)
or not (b(l)ik = 0). Under this representation, sparsity is achieved through the
Bernoulli distribution that generates the binary variable b

(l)
ik , flexibly permitting

the latent distributions of different layers to solely focus on different subsets of
components. Smoothness can then be enforced over those components with non-
zero b

(l)
ik through the Dirichlet concentration parameters. In this manner sparsity

and smoothness are decoupled, and the benefits of both may be simultaneously
obtained.

To ensure latent distributions to be defined appropriately and enable efficient
posterior inference, we make two further modifications on the model: (1) fixing
b
(l)
iK = 1, so that the last component K is certain to be propagated into the next

layer, which can guarantee latent distributions be defined on at least one compo-
nent; (2) letting those components with b

(l)
ik = 0 be propagated into component

K, which can satisfy the specific condition (specified in the last paragraph of
Sect. 2) for efficient Gibbs sampling algorithms on the membership distributions.

We explore the effectiveness of the ssDirBN in context of relational mod-
els, which use multi-stochastic layered latent distributions to model individual’s
membership distributions over communities. In this setting, the ssDirBN permits
individuals to belong to different subsets of communities within different layers,
and can thereby obviate placing unnecessary small probability masses on unre-
lated communities. Our experimental results on real-world data show significant
performance improvements of ssDirBN over DirBN and other state-of-the-art
models, in terms of reduced model complexity and improved link prediction
performance. Similar to DirBN that can be considered as a self-contained mod-
ule [20], the ssDirBN can be flexibly combined with alternative emission models
and be implemented in these applications such as topic data, collaborative fil-
tering data, etc.

2 Preliminary Knowledge

We first give a brief review on the DirBN model, where we use N to denote the
number of entities (or number of topics in topic modeling) in each layer, K to
denote the number of components in the entity’s latent distributions and L to
denote the number of layers. In general, DirBN assumes each entity has latent
distributions πππ

(l−1)
i at layer l − 1 and uses Dirichlet distributions to generate

entities’ latent distribution at layer l, with the concentration parameters being
the linear sum of entities’ latent distributions at layer l−1. Within the relational
modelling setting, {πππ(l)

i }L
l=1 represent entity i’s membership distributions over K

communities at L layers. The generative process of propagating the membership
distributions {πππ(l−1)

j }j to πππ
(l)
i at layer l can be briefed as follows:

1. β
(l)
ji ∼ Gam(cj , d), ∀i, j = 1, . . . , N

2. πππ
(l)
i ∼ Dir(

∑
j β

(l)
ji πππ

(l−1)
j ), ∀i = 1, . . . , N, l = 1, . . . , L

where Gam(c, d) is the Gamma distribution with mean c/d and variance c/d2.
β
(l)
ji represents the information propagation coefficient from entity j at layer l−1
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to entity i in at layer l, cj , d are the hyper-parameters. After generating entity
i’s membership distribution at layer L, [4] uses counting vectors mmm

(L)
i , which

is sampled from Multinomial distribution with πππ
(L)
i as event probabilities, and

community compatibility matrix to form probability function for generating the
entity-wise relations.

DirBN is mostly inferred through Markov chain Monte Carlo (MCMC) meth-
ods. To enable efficient Gibbs sampling algorithm for DirBN, we note that the
probability density function of πππ

(l)
i is written as:

P (πππ
(l)
i |−) =

Γ (
∑

k

∑
j β

(l)
ji π

(l−1)
jk )

∏
k Γ (

∑
j β

(l)
ji π

(l−1)
jk )

∏

k

(π
(l)
ik )

∑
j β

(l)
ji π

(l−1)
jk

−1 (1)

where (−) refers to the set of conditional variables related to πππ
(l)
i and Γ (·) is

the Gamma function. As {π
(l−1)
jk }j appear in the Gamma function, the prior and

posterior distributions of πππ
(l−1)
i are not conjugate and it is difficult to implement

efficient Gibbs sampling for πππ
(l−1)
i . A strategy of first upward propagating latent

counts and then downward sampling variables has been developed in [20] to
address this issue, which is detailed below.

Upward Propagating Latent Counts. W.l.o.g., we assume the observation
at layer l is the counts mmm

(l)
i , which is obtained through Multinomial distribution

with πππ
(l)
i as event probabilities. We may first integrate πππ

(l)
i out and obtain the

likelihood term of the latent counts mmm
(l)
i as:

P ({m
(l)
ik }k|{π

(l−1)
jk }j,k) ∝

∏

k

Γ (
∑

j β
(l)
ji π

(l−1)
jk + m

(l)
ik )

Γ (
∑

j β
(l)
ji π

(l)
jk )

(2)

The r.h.s. in Eq. (2) can be augmented through a random counts y
(l)
ik from the

Chinese Restaurant Table (CRT) distribution (i.e. y
(l)
ik ∼ CRT(m

(l)
ik ,

∑
j β

(l)
ji π

(l)
jk ))

as:

P ({y
(l)
ik }k, {m

(l)
ik }k|{π

(l−1)
ik }k) ∝

∏

k

[(
∑

j

β
(l)
ji π

(l−1)
jk )y

(l)
ik (m

(l)
ik − y

(l)
ik )!]

By further distributing the ‘derived’ count y
(l)
ik into the entities at layer l − 1

through a Multinomial distribution as: (h
(l)
1ik, . . . , h

(l)
Nik) ∼ Multi(y

(l)
ik ;

{π
(l−1)
jk

B
(l−1)
ji }j

∑
j β

(l)
ji π

(l)
jk

)

and the terms associated with {πππ(l−1)
i }i are abstracted as:

P ({h
(l−1)
jik }j,k|{π

(l−1)
jk }k) ∝

∏

k

(π
(l−1)
jk )

∑
j h

(l−1)
jik

The latent counts mmm
(l−1)
i = (

∑
j h

(l−1)
ji1 , . . . ,

∑
j h

(l−1)
jiK ) can be regarded as a random

draw from a Multinomial distribution, with πππ
(l−1)
i as event probabilities.
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Downward Sampling Variables. After the counts are propagated to entity i

at each layer l as m
(l)
ik , the posterior distribution of πππ

(l)
i follows as:

πππ
(l)
i ∼ Dir(

∑

j

β
(l)
ji πππ

(l−1)
j + mmm

(l−1)
i )

3 Sparse and Smooth Dirichlet Belief Networks

3.1 Generative Process

ssDirBN aims at enabling each entity’s latent distribution at each layer to be
defined on individual subsets of components and thus simultaneously obtain the
benefits of sparsity and smoothness of the Dirichlet distribution. Given N enti-
ties’ latent distributions {πππ(l−1)

i }N
i=1 at layer l − 1, we use the following method

to generate entity i’s latent distribution πππ
(l)
i at layer l:

1. β
(l)
ji ∼ Gam(cj , d), ∀i, j = 1, . . . , N

2. ω
(l)
i ∼ Beta(γ, s), b

(l)
iK = 1, {b

(l)
ik }K−1

k=1 ∼ Bernoulli(ω
(l)
i )

3. πππ
(l)
i ∼ Dir

(∑
j β

(l)
ji (bbb

(l)
i · πππ(l−1)

j + eeeK · (
∑

k π
(l−1)
jk δ

b
(l)
ik

=0
))

)
, ∀i = 1, . . . , N

where eeeK = [0, . . . , 0, 1] is a K-length vector with the last element 1 and 0
elsewhere; the two multiplication operations · in step 3 represents element-
wise vector multiplication and scalar and vector multiplication respectively;
cj , d, γ, s are the hyper-parameters and we set Gamma priors on them as:
cj ∼ Gam(c0/K, d0),d ∼ Gam(e0, f0), γ, s ∼ Gam(g0, h0).

Fig. 2. Example visualisations on propagating latent distributions of πππ
(1)
j at layer 1

to πππ
(2)
i at layer 2. In DirBN (left panel), all the components in πππ

(1)
j are one-to-one

propagated to their corresponding components in πππ
(2)
i . In ssDirBN (right panel), binary

variables are inserted between πππ
(1)
j and πππ

(2)
i . Red entities of b

(2)
ik represent “b

(2)
ik = 0”

and in this case, π
(1)
jk will be propagated to π

(2)
i5 , which is the last component of πππ

(2)
i .

Green b
(2)
ik entities represent that b

(2)
ik = 1 and in this case, π

(1)
jk will be propagated to

π
(2)
ik . Grey dotted entities represent non-existing components. Since π

(1)
j3 is not existing,

πππ
(1)
j can not propagate component 3 to πππ

(2)
i (other entities with existing component 3

will propagate to it.). (Color figure online)
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In this generative process, step 1 generates layer l’s entity-wise information
propagation coefficient β

(l)
ji , which is same as in DirBN and represents the infor-

mation propagation coefficient from entity j’s latent distribution at layer l − 1
to that of entity i at layer l.

Step 2 generates a component including variable ω
(l)
i and a subsequent K-

length binary vector bbb
(l)
i ∈ {0, 1}1×K for entity i at layer l. When larger values of

ω
(l)
i encourage more “1” entries in bbb

(l)
i , the case of b

(l)
ik = 1 denotes that entity

i’s latent distribution at layer l includes component k and vice versa. That is, bbbi

specifies a small simplex through its “1” entries. An exception is the component
K, for which we fix b

(l)
iK as b

(l)
iK = 1 to make sure πππ

(l)
i is well defined (πππ(l)

i will be
problematic if b

(l)
i,k = 0 for k = 1, . . . ,K). bbb(l)i determines the subset of components

for entity i’s latent distribution at layer l, i.e., |πππ(l)
i | =

∑
k b

(l)
ik .

Step 3 also uses Dirichlet distribution to generate πππ
(l)
i at layer l. The related

concentration parameter is a linear sum of the entities’ components weight at
layer l − 1. For component k, its weight propagation would be proceeded dif-
ferently based on the value of b

(l)
ik : (1) when b

(l)
ik = 1, π

(l−1)
jk will be added to

component k of the concentration parameters; (2) when b
(l)
ik = 0, π

(l−1)
jk will be

added to component K of the concentration parameters. Figure 2 shows an exam-
ple to visualise the propagation of latent distributions in DirBN and ssDirBN
respectively.

Our ssDirBN has the following advantages when compared to DirBN:

– Flexible subsets of components. By introducing the binary variables, the
latent distributions for different entities at different layers can be defined on
different subsets of components. The model complexity is reduced as fewer
components are involved. Also, the flexible usage of components may help
each latent distribution focus on closely related components without assigning
weights to unrelated ones.

– Flexible weight ratios between components. Recall that the ratios of
component weights are unchanged when propagated from the current layer to
the next layer. Thus, the concentration parameters of Dirichlet distributions
should also follow these ratios generally. In ssDirBN, since we allow some
components to be non-existing, the ratios of components can thus change
greatly during the layer-wise connections, which enhances the representation
capability of the model.

– Decoupling sparsity and smoothness. The sparsity in our ssDirBN is con-
trolled by the Bernoulli parameter ωi for entity i, with component k retained
only if b

(l)
ik = 1. The smoothing effect is placed on the remaining components

and controlled through the linear coefficient β
(l)
ji . In this way, the sparsity and

smoothness are decoupled and we can obtain the benefits of both properties
at the same time.
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3.2 Necessity of Fixing b
(l)
iK = 1

Fixing b
(l)
iK = 1 (∀i, l) and making component k propagate to component K

when b
(l)
ik = 0 (∀k) are key steps to guarantee the feasibility of upward count

propagation method in ssDirBN. Recall that we have
∑

j β
(l)
ji =

∑
k

∑
j βjiπ

(l)
jk to

ensure that generated counts follow a Multinomial distribution. If we directly
introduce the binary variable b

(l)
ik , which makes b

(l)
ik ∼ Bernoulli(ωi)(∀k), we have

P ({h
(l)
jik}j |{π

(l−1)
jk }k) ∝ [q

(l)
i ]

∑
k

∑
j βjib

(l)
ik

π
(l)
jk

∏

k

(π
(l−1)
jk )

h
(l)
jik

That is, the counts of {h
(l)
jik}j cannot form a Multinomial distribution. However,

we can still obtain
∑

j β
(l)
ji =

∑
k

∑
j βjib

(l)
jk π

(l)
jk in ssDirBN, which enables the

upward count propagation.

4 Related Work

In addition to the DirBN variants mentioned in the introduction, ssDirBN is also
closely related to Gamma Belief Networks (GBN) [22], which is another multi-
stochastic layered deep generative model. Instead of Dirichlet distributions, GBN
used Gamma distributions to propagate scalar variables between layers and was
the first to develop upward latent counts propagation and downward variable
sampling method for model inference. Applications of GBN and the related infer-
ence technique have been observed in natural language modelling [7], Dynamic
Systems [8,13,14,17] and even variational auto-encoder methods [18]. GBN does
not enjoy the unique sparsity property of Dirichlet distribution and cannot be
used to model latent distributions.

The basic idea of our ssDirBN is inspired by the sparse topic mod-
els (sparseTM) [2,16]. Compared with our ssDirBN, sparseTM places binary
variables for all the components of the Dirichlet distribution. However, as a
shallow model, sparseTM cannot model the complex entity-wise dependencies.
Our usage of binary variables may also be similar to the techniques of Bayesian-
dropout [6], which uses binary variables to decide whether or not to propagate
the corresponding neuron to the next layer. In ssDirBN, we propagate the “neu-
ron” to the last component when the binary variable equals to 0, rather than
directly discarding it.

5 ssDirBN for Relational Modelling

We apply our ssDirBN in the setting of relational modelling, which focuses on
constructing multi-stochastic layered membership distributions over communi-
ties for entities. The detail generative process is expressed as follows:

1. πππ
(1)
i ∼ Dirichlet(ααα);

2. For l = 2, . . . , L
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– β
(l−1)
ji

{∼ Gam(ci, d), j ∈ {j : Rji = 1} ∪ {i};
= 0, otherwise; ;

– ω
(l)
i ∼ Beta(γ, s), b

(l)
iK = 1, {b

(l)
ik }K−1

k=1 ∼ Bernoulli(ω
(l)
i )

– πππ
(l)
i ∼ Dir

(∑
j β

(l)
ji (bbb

(l)
i · πππ(l−1)

j + eeeK · (
∑

k π
(l−1)
jk δ

b
(l)
ik

=0
))

)

3. Mi ∼ Poisson(M), (Xi1, . . . , XiK) ∼ Multi(Mi;π
(L)
i1 , . . . , π

(L)
iK );

4. Λk1k2 ∼ Gam(kΛ, 1
θΛ

);
5. Zij,k1k2 ∼ Poisson(Xik1Λk1k2Xjk2);
6. Rij = 111(

∑
k1,k2

Zij,k1k2 > 0).

In this generative process, ααα in line 1 represents the concentration parameter
in the Dirichlet distribution in generate all the entities’ latent distribution at
layer 1; line 2 represents our proposed ssDirBN structure, which can generate
sparse and smooth latent distributions at layer L; line 3 generates latent count
variable (Xi1, . . . , XiK) for entity i’s latent distribution πππ

(L)
i at layer L; Λk1k2

in line 4 is a community compatibility parameter such that a larger value of
Λk1k2 indicates a larger possibility of generating the links between community
k1 and community k2; and Zij,k1k2,t is a community-to-community latent integer
for each relation Rij .

It is noted that, through the Multinomial distributions with πππ
(L)
i as event

probabilities, XXXi can be regarded as an estimator of πππ
(L)
i . Since the sum

also follows a Poisson distribution as Mi ∼ Poisson(M), according to the
Poisson-Multinomial equivalence, each Xik is equivalently distributed as Xi,k ∼
Poisson(Mπ

(L)
ik ). Therefore, both the prior distribution for generating Xik and

the likelihood based on Xik are Poisson distributions. We may form feasible
categorical distribution on its posterior inference. This trick is inspired by the
recent advances in data augmentation and marginalisation techniques [4], which
allows us to implement posterior sampling for Xik efficiently.

The counts XXXi lead to the generation of the K × K integer matrix Zij,k1k2 .
Based on the Bernoulli-Poisson link function [3,21], the observed Rij is mapped
to the latent Poisson count random variable matrix CCCij . It is shown in [4] that
{Cij,k1k2}k1,k2 = 0 if Rij = 0. That is, only the non-zero links are involved during
the inference for CCCij,k1k2 , which largely reduces the computational complexity,
especially for large and sparse dynamic relational data. That is, since we use the
Poisson-Bernoulli likelihood in modeling the relations, the computational cost
of our model scales to the number of positive links.

5.1 Inference

We adopt the Markov chain Monte Carlo (MCMC) algorithm to iteratively
sample the random variables from their posterior distributions. The latent con-
ditional distributions of random variables we are approximating are: {πππ(l)

i }i,l,
which involves upward propagating the counting variable to each layer and down-
ward sampling the variables of πππ, the binary variable b

(l)
ik ; ααα, which is the con-

centration parameters in generating the latent distributions at layer 1; scaling
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parameter M , which controls the latent count variables at layer L; {Λk1k2}k1,k2 ,
which denotes the compatibility values between community k1 and community
k2; {Zij,k1k2}i,j,k1,k2 , which represents the latent integer variable for the relation
from entity i to entity j from community k1 to community k2.

Upward Propagating Latent Counts. Using similar techniques of DirBN,
we first upward propagate entity i’s latent counts mmm

(l)
i at layer l to all the entities

at layer l − 1 via the following steps:

– sample ‘derived latent counts’ y
(l)
ik and Beta random variable q

(l)
i as

y
(t)
ik ∼ CRT(m(s)

ik ,
∑

j

βjiπ
(l−1)
jk ), q(s)i ∼ Beta(

∑

j

β
(l)
ji ,

∑

k

m
(s)
ik ),

y
(t)
iK ∼ CRT(m(s)

iK ,
∑

j

βjiπ
(l−1)
jK +

∑

j,k

βjiπ
(l−1)
jk δbik=0);

– distribute count y
(l)
ik to the entities at layer l − 1 as follows:

{h
(l−1)
ijk

}j ∼ Multi(y
(l)
ik

;
{π

(l−1)
jk

β
(l)
ji

}j
∑

j βjiπ
(l)
jk

), if k = 1, . . . , K − 1;

{{h
(l−1)
ijK

}j , {h
(l−1)
ijk

}
(i,k):b(l)

ik
=0

} ∼ Multi(y
(l)
iK

;

{{π
(l−1)
jK

β
(l)
ji

}j ,{π
(l−1)
jk

β
(l)
ji

}
(j,k):b(l)

jk
=0

}

∑
j βjiπ

(l)
jK

+
∑

(j,k):b(l)
jk

=0
π
(l−1)
jk

β
(l)
ji

), otherwise.

– collect all the latent counts propagated to entity i at layer l − 1 as m
(l−1)
ik =

∑
j h

(l−1)
jik .

Downward Sampling πππ
(l)
i . Given the upward propagated latent counts mmm

(l)
i ,

entity i’s latent distribution at layer l can be sampled as:

πππ
(l)
i ∼ Dir(

∑

j

β
(l)
ji (bbb

(l)
i · πππ(l−1)

j + eeeK · (
∑

k

π
(l−1)
jk δ

b
(l)
ik

=0
)) + mmm

(l)
i )

Sampling b
(l)
ik . We integrate out ω

(l)
i to sample b

(l)
ik . Since new values of b

(l)
ik will

lead to new πππ
(l)
i (the length of πππ

(l)
i is different), we also need to generate new

value for πππ
(l)
i when calculating the acceptance ratio. Given the current binary

value of b
(l)
ik , we use the generative process to generate a new latent distribution

πππ
(l,∗)
i based on the opposite value of b

(l)
ik and then accept the opposite value of

b
(l)
ik and πππ

(l,∗)
i with a ratio of min(1, α), where α is defined as:

α =
P (b

(l,∗)
ik |b(l)i,/k, γ, s)

P (b
(l)
ik |b(l)i,/k, γ, s)

· P ({πππ(l−1)
j ,πππ

(l+1)
j }j |πππ(l,∗)

i , −)

P ({πππ(l−1)
j ,πππ

(l+1)
j }j |πππ(l)

i , −)
(3)

Sampling {β
(l)
ji }j,i,l. For j ∈ {j : Rji �= {i}, the prior for β

(l)
ji is Gam(ci, d), the

posterior distribution is

β
(l)
ji ∼ Gam(cj +

∑

k

h
(l)
jik, d − log q

(l)
i ) (4)
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Sampling {Xik}i,k: We have Mi ∼ Poisson(M),

(Xi1, . . . , XiK) ∼ Multi(Mi;π
(L)
i1 , . . . , π

(L)
iK ) d= Xik ∼ Poisson(Mπ

(L)
ik ),∀k.

Both the prior distribution for generating Xik and the likelihood parametrised by
Xik are Poisson distributions. The full conditional distribution of Xik (assuming
zii,·· = 0,∀i) is then

P (Xik|M,πππ,ΛΛΛ,ZZZ) ∝

[

Mπ
(L)
ik

e
− ∑

j �=i,k2
Xjk2

(Λkk2
+Λk2k)

]Xik

Xik!
(Xik)

∑
j1,k2

Zij1,kk2
+

∑
j2,k1

Zj2i,k1k .

(5)
This follows the form of Touchard polynomials, where 1 = 1

exTn(x)

∑∞
k=0

xkkn

k!

with Tn(x) =
∑n

k=0{
n
k
}xk and where {n

k
} is the Stirling number of the second

kind. A draw from (5) is then available by comparing a Uniform(0, 1) random
variable to the cumulative sum of { 1

exTn(x) · xkkn

k! }k.
Sampling {Zij,k1k2}i,j,k1,k2 . We first sample Zij,·· from a Poisson distribution
with positive support:

Zij,·· ∼ Poisson+(
∑

k1,k2

Xik1Xjk2Λk1k2),where Zij,·· = 1, 2, 3, . . . (6)

Then, {Zij,k1k2}k1,k2 can be obtained through the Multinomial distribution as:

({Zij,k1k2}k1,k2) ∼ Multinomial

⎛

⎝Zij,··;

{
Xik1Xjk2Λk1k2∑

k1,k2
Xik1Xjk2Λk1k2

}

k1,k2

⎞

⎠ (7)

Sampling {Λk1k2}k1,k2 . For Λk1k2 ’s posterior distribution, we get

P (Λk1k2 |−) ∝ exp

⎛

⎝−Λk1k2(
∑

i,j

Xik1Xjk2)

⎞

⎠Λ
∑

i,j Zij,k1k2
k1k2

· exp (−Λk1k2θΛ)ΛkΛ−1

(8)

Thus, we get

Λk1k2 ∼ Gam

⎛

⎝
∑

i,j

Zij,k1k2 + kΛ,
1

θΛ +
∑

i,j Xik1Xjk2

⎞

⎠ (9)

Sampling M . Given Gamma distribution Gam(kM , θM ) as the prior distribu-
tion for M , M ’s posterior distribution is:

P (M |−) = MkM −1 exp(−θMM)
∏

i,k

(
exp(−Mπ

(L)
ik )

)
M

∑
i,k Xik (10)
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Thus, we sample M from:

M ∼ Gam

⎛

⎝kM +
∑

i,k

Xik,
1

θM + N

⎞

⎠ (11)

Sampling α. Similarly, given Gamma distribution Gam(kα, θα) as the prior
distribution for α, α’s posterior distribution is

α ∼ Gam(kα +
∑

i,k

h
(1)
iαk,

1

θα − ∑
i log q

(1)
i

) (12)

Computational Complexity. It is noted that our ssDirBN for relational mod-
eling does not increase the computational scalability of the DirBN for relational
modeling. We have changed the counts allocation in the detailed process of latent
counts propagation, however, the computational complexity remained the same
in our ssDirBN and DirBN. It is easy to see that the complexity of sampling
the binary variable bbb also scales to the number of positive relations. Thus, the
computational complexity of our ssDirBN for relational modeling is the same as
that of DirBN.

Table 1. Dataset information. N is the number of entities, NE is the number of positive
links.

Dataset N NE Dataset N NE Dataset N NE Dataset N NE

Citeer 3 312 4 715 Cora 2 708 5 429 Pubmed 2 000 17 522 PPI 4 000 105 775

5.2 Experimental Results

Dataset Information. We apply our ssDirBN in the following four real-world
sparse datasets: three standard citation networks (Citeer, Cora, Pubmed [15] and
one protein-to-protein interaction network (PPI) [23]. The number of entities N
and the number of relations NE for these datasets are provided in Table 1. In the
citation datasets, entities correspond to documents and edges represent citation
links, whereas in the protein-to-protein dataset, we model the protein-to-protein
interactions [9]. We do not include the feature information of entities in the
experiments. Instead, we use an identity matrix IN as the feature matrix when
these information are needed in specific models.

Evaluation Criteria. We primarily focus on link prediction and use this to
evaluate model performance. We use AUC (Area Under ROC Curve) and Aver-
age Precision value on test relational data as the two comparison criteria. The
AUC value represents the probability that the algorithm will rank a randomly
chosen existing-link higher than a randomly chosen non-existing link. Therefore,
the higher the AUC value, the better the predictive performance. Each reported
criteria value is the mean of 10 replicate analyses.
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Experimental Settings. For hyper-parameters, we let c0 = d0 = e0 = f0 =
g0 = h0 = 0.1 for all the datasets. The re-sampling of hyper-parameters is
specified in the similar way as that of [4]. Each run uses 2 000 MCMC iterations
with the first 1 000 samples discarded as burn-in and the mean value of the
second 1 000 samples’ performance score is used report the required score. Unless
specified, reported AUC values are obtained using 90% (per row) of the relational
data as training data and the remaining 10% as test data. After testing various
scenarios for different settings of L and K, we set the number of layers L = 3 and
the number of communities K = 10 for all the testing cases as the performance
can be obtained in the balance of excellence performance scores and fast running
time.

Comparison Methods: Several Bayesian methods for relational data and
two Graph Auto-Encoder models are used for comparison: the Mixed-
Membership Stochastic Blockmodel [1], the Hierarchical Latent Feature Rela-
tional Model (HLFM) [10], the Node Attribute Relational Model (NARM) [19],
the Hierarchical Gamma Process-Edge Partition Model (HGP-EPM) [21], graph
autoencoders (GAE) and variational graph autoencoders (VGAE) [11]. The
NARM, HGP-EPM, GAE and VGAE methods are executed using their respec-
tive implementations from the authors, under their default settings. The MMSB
and HLFM are implemented to the best of our abilities and we set the number
of layers and length of latent binary representation in HLFM as same as those in
ssDirBN. For the GAE and VGAE, the AUC and Precision values are calculated
based on the pairwise similarities between the entity representations.

Performance of ssDirBN for Different Values of K, L. Figure 3 shows
the link prediction performance of ssDirBN for relational modeling on the cases
of K = 5, 10, 15, 20, 30 and L = 2, 3, 4, 5. In terms of the number of communities
K, we find that the performance of K = 10 is significantly better than the one
of K = 5 and slightly worse than those of K = 15, 20, 30. The performance of
L = 3 has similar behaviours as it is much better than that of L = 2, which is
likely because the insufficient deep structure, and slightly worse than those of
L = 4, 5, which may possibly due to that L = 3 is deep enough. The behaviours
of AUC and Precision are quite consistent in forming these conclusions.

Fig. 3. Link prediction performance (AUC and Precision) of ssDirBN for relational
modelling on different values of K and L.
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Table 2. Link prediction performance comparison. It is noted that we do not use the
entities’ feature information and only use the binary relational data for each dataset.

AUC (mean and standard deviation)

Model Citeer Cora Pubmed PPI

MMSB 0.690 ± 0.004 0.743 ± 0.007 0.774 ± 0.005 0.801 ± 0.003

NARM 0.759 ± 0.003 0.809 ± 0.003 0.808 ± 0.004 0.821 ± 0.002

HGP-EPM 0.763 ± 0.003 0.810 ± 0.003 0.803 ± 0.006 0.834 ± 0.004

HLFM 0.781 ± 0.010 0.829 ± 0.005 0.829 ± 0.005 0.856 ± 0.010

GAE 0.789 ± 0.004 0.846 ± 0.006 0.822 ± 0.004 0.874 ± 0.009

VGAE 0.790 ± 0.003 0.849 ± 0.004 0.826 ± 0.002 0.880 ± 0.007

DirBN 0.779 ± 0.004 0.832 ± 0.008 0.845 ± 0.008 0.892 ± 0.007

ssDirBN 0.815 ± 0.007 0.839 ± 0.007 0.853 ± 0.004 0.912 ± 0.002

Average precision (mean and standard deviation)

Model Citeer Cora Pubmed PPI

MMSB 0.661 ± 0.004 0.704 ± 0.005 0.742 ± 0.004 0.823 ± 0.003

NARM 0.781 ± 0.004 0.831 ± 0.004 0.771 ± 0.005 0.844 ± 0.002

HGP-EPM 0.776 ± 0.002 0.840 ± 0.003 0.786 ± 0.006 0.864 ± 0.004

HLFM 0.793 ± 0.004 0.842 ± 0.003 0.802 ± 0.003 0.883 ± 0.008

GAE 0.839 ± 0.004 0.884 ± 0.007 0.846 ± 0.004 0.889 ± 0.003

VGAE 0.846 ± 0.003 0.889 ± 0.004 0.850 ± 0.003 0.882 ± 0.004

DirBN 0.819 ± 0.004 0.875 ± 0.03 0.860 ± 0.007 0.884 ± 0.002

ssDirBN 0.871 ± 0.007 0.891 ± 0.003 0.889 ± 0.006 0.913 ± 0.005

Link Prediction Performance. Table 2 displays the AUC and Average Preci-
sion values over the testing relational data. As we can see, our ssDirBN performs
the best among all these comparison methods. The performance of deep hierar-
chical models (i.e., VGAE, HLFM, DirBN, ssDirBN) are usually better than the
shallow models, which verifies the advantages of deep structures. The compet-
itive performance of our ssDirBN, as well as the one of DirBN, over GAE and
VGAE verifies the promising aspects of using Dirichlet distributions to construct
the deep generative models.

Sparsity and Smoothness. Figure 4 verifies that our ssDirBN can simultane-
ously obtain sparsity and smoothness. For sparsity, as we can see from the top
row, our ssDirBN can obtain better Average Precision values and lower model
complexity (larger sparsity) than the approach of DirBN. For smoothness, the
bottom row shows that our ssDirBN have larger values of concentration param-
eters in generating the membership distributions than that of DirBN. Given
the same output counts, larger concentration parameters will lead to smoother
posterior distributions. Thus, the posterior distributions of πππ

(l)
i in our ssDirBN

would be smoother than that in DirBN.
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Fig. 4. Top row: model complexity versus Precision value for the datasets of Citeer,
Cora, Pubmed, PPI. We define ‘model complexity’ as the number of community mem-
bership values for all entities. In DirBN, it is calculated as NKL, whereas in ssDirBN,
it is calculated as:

∑
i,k,l δ

b
(l)
ik

=1
. Each dotted line represents that its connected red and

blue dots are evaluated on the same training and testing dataset. Bottom row: boxplot
of concentration parameters {∑

j β
(l)
ji π

(l)
jk }i,k,l in generating membership distributions

for DirBN and ssDirBN on Citeer, Cora, Pubmed, PPI.

Visualizations on Membership Distributions. Figure 5 displays example
membership distributions over the first 50 entities in the Citeer data for DirBN
and ssDirBN. For DirBN, the membership distributions become more dominated
by a few communities from layer 1 to layer 3. However, the components’ weight
ratio does not change too much. For ssDirBN, the membership distributions
clearly show more changes across different layers. The representation capability
of our ssDirBN can be thus enhanced through the larger changes of membership
distributions across different layers.

l = 3

(a) DirBN

node 1 → node 50

l = 2

node 1 → node 50

l = 1

(b) ssDirBN

Fig. 5. Visualizations of the membership distributions ({πππ(l)
i=1:50}3

l=1) on the Citeer
data set for DirBN (left) and ssDirBN (right). The panels in the top, middle and
bottom row represent the membership distributions at layer l = 1, 2, 3. In each panel,
columns represent entities. Colors represent communities (with K = 10) and the length
of color occupations in one column represents the membership value of the particular
community for that entity. (Color figure online)
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6 Conclusion

We have decoupled the sparsity and smoothness in the Dirichlet Belief Net-
works (DirBN) by introducing a binary variable for each component of each
entity’s latent distribution at each layer. Through further model and inference
modifications, we guarantee the proposed ssDirBN is well defined for the latent
distributions and can be inferred by using efficient Gibbs sampling algorithm.
The promising experimental results validate the effectiveness of ssDirBN over
DirBN in terms of reduced model complexity and improved link prediction per-
formance, and its competitive performance against other approaches. Given the
substantial performance improvement over DirBN, we are interested in combin-
ing ssDirBN with other applications (e.g. topic modelling, collaborative filtering)
in the future.
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Abstract. In the PAC-Bayesian literature, the C-Bound refers to an
insightful relation between the risk of a majority vote classifier (under the
zero-one loss) and the first two moments of its margin (i.e., the expected
margin and the voters’ diversity). Until now, learning algorithms devel-
oped in this framework minimize the empirical version of the C-Bound,
instead of explicit PAC-Bayesian generalization bounds. In this paper,
by directly optimizing PAC-Bayesian guarantees on the C-Bound, we
derive self-bounding majority vote learning algorithms. Moreover, our
algorithms based on gradient descent are scalable and lead to accurate
predictors paired with non-vacuous guarantees.

Keywords: Majority vote · PAC-Bayesian · Self-bounding algorithm

1 Introduction

In machine learning, ensemble methods [10] aim to combine hypotheses to make
predictive models more robust and accurate. A weighted majority vote learning
procedure is an ensemble method for classification where each voter/hypothesis
is assigned a weight (i.e., its influence in the final voting). Among the famous
majority vote methods, we can cite Boosting [13], Bagging [5], or Random For-
est [6]. Interestingly, most of the kernel-based classifiers, like Support Vector
Machines [3,7], can be seen as a majority vote of kernel functions. Understand-
ing when and why weighted majority votes perform better than a single hypoth-
esis is challenging. To study the generalization abilities of such majority votes,
the PAC-Bayesian framework [25,34] offers powerful tools to obtain Probably
Approximately Correct (PAC) generalization bounds. Motivated by the fact that
PAC-Bayesian analyses can lead to tight bounds (e.g., [28]), developing algo-
rithms to minimize such bounds is an important direction (e.g., [11,14,15,24]).
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doi.org/10.1007/978-3-030-86520-7 11) contains supplementary material, which is
available to authorized users.
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We focus on a class of PAC-Bayesian algorithms minimizing an upper bound on
the majority vote’s risk called the C-Bound1 in the PAC-Bayesian literature [20].
This bound has the advantage of involving the majority vote’s margin and its
second statistical moment, i.e., the diversity of the voters. Indeed, these ele-
ments are important when one learns a combination [10,19]: A good majority
vote is made up of voters that are “accurate enough” and “sufficiently diverse”.
Various algorithms have been proposed to minimize the C-Bound: MinCq [31],
P-MinCq [2], CqBoost [32], or CB-Boost [1]. Despite being empirically efficient,
and justified by theoretical analyses based on the C-Bound, all these methods
minimize only the empirical C-Bound and not directly a PAC-Bayesian general-
ization bound on the C-Bound. This can lead to vacuous generalization bound
values and thus to poor risk certificates.

In this paper, we cover three different PAC-Bayesian viewpoints on gener-
alization bounds for the C-Bound [20,26,33]. Starting from these three views,
we derive three algorithms to optimize generalization bounds on the C-Bound.
By doing so, we achieve self-bounding algorithms [12]: the predictor returned by
the learner comes with a statistically valid risk upper bound. Importantly, our
algorithms rely on fast gradient descent procedures. As far as we know, this is
the first work that proposes both efficient algorithms for C-Bound optimization
and non-trivial risk bound values.

The paper is organized as follows. Section 2 introduces the setting. Section 3
recalls the PAC-Bayes bounds on which we build our results. Our self-bounding
algorithms leading to non-vacuous PAC-Bayesian bounds are described in Sect. 4.
We provide experiments in Sect. 5, and conclude in Sect. 6.

2 Majority Vote Learning

2.1 Notations and Setting

We stand in the context of learning a weighted majority vote for binary classi-
fication. Let X ⊆R

d be a d-dimensional input space, and Y = {−1,+1} be the
label space. We assume an unknown data distribution D on X×Y, we denote
by DX the marginal distribution on X . A learning algorithm is provided with
a learning sample S = {(xi, yi)}m

i=1 where each example (xi, yi) is drawn i.i.d.
from D, we denote by S∼Dm the random draw of such a sample. Given H a
hypothesis set constituted by so-called voters h : X→Y, and S, the learner aims
to find a weighted combination of the voters from H; the weights are modeled by
a distribution on H. To learn such a combination in the PAC-Bayesian frame-
work, we assume a prior distribution P on H, and—after the observation of
S—we learn a posterior distribution Q on H. More precisely, we aim to learn a
well-performing classifier that is expressed as a Q-weighted majority vote MVQ
defined as

∀x ∈ X , MVQ(x) � sign
(

E
h∼Q

h(x)
)

= sign

(∑
h∈H

Q(h)h(x)

)
.

1 The C-Bound was introduced by Breiman in the context of Random Forest [6].
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We thus want to learn MVQ that commits as few errors as possible on unseen
data from D, i.e., that leads to a low true risk rMV

D (Q) under the 0-1-loss defined
as

rMV
D (Q) � E

(x,y)∼D
I
[
MVQ(x) �= y

]
, where I[a] =

{
1 if the assertion a is true,
0 otherwise.

2.2 Gibbs Risk, Joint Error and C-Bound

Since D is unknown, a common way to try to minimize rMV
D (Q) is the minimiza-

tion of its empirical counterpart rMV
S (Q) = 1

m

∑m
i=1 I [MVQ(xi)�=yi] computed

on the learning sample S through the Empirical Risk Minimization principle.
However, learning the weights by the direct minimization of rMV

S (Q) does not
necessarily lead to a low true risk. One solution consists then in looking for
precise estimators or generalization bounds of the true risk rMV

D (Q) to mini-
mize them. In the PAC-Bayesian theory, a well-known estimator of the true risk
rMV
D (Q) is the Gibbs risk defined as the Q-average risk of the voters as

rD(Q) = E
h∼Q

E
(x,y)∼D

I [h(x) �= y] .

Its empirical counterpart is defined as rS(Q) = 1
m

∑m
i=1 Eh∼QI [h(xi) �= yi].

However, in ensemble methods where one wants to combine voters efficiently,
the Gibbs risk appears to be an unfair estimator since it does not take into
account the fact that a combination of voters has to compensate for the indi-
vidual errors. This is highlighted by the decomposition of rD(Q) in Eq. (1) (due
to Lacasse et al. [20]) into the expected disagreement and the expected joint
error, respectively defined by

dD(Q) = E
h1∼Q

E
h2∼Q

E
x∼DX

I
[
h1(x) �= h2(x)

]
,

and eD(Q) = E
h1∼Q

E
h2∼Q

E
(x,y)∼D

I
[
h1(x) �= y

]
I
[
h2(x) �= y

]
.

Indeed, an increase of the voter’s diversity, captured by the disagreement dD(Q),
have a negative impact on the Gibbs risk, as

rD(Q) = eD(Q) + 1
2dD(Q). (1)

Despite this unfavorable behavior, many PAC-Bayesian results deal only with
the Gibbs risks, thanks to a straightforward upper bound of the majority vote’s
risk which consists in upper-bounding it by twice the Gibbs risk [21], i.e.,

rMV
D (Q) ≤ 2 rD(Q) = 2eD(Q) + dD(Q). (2)

This bound is tight only when the Gibbs risk is low (e.g., when voters with large
weights perform well individually [14,21]). Recently, Masegosa et al. [24] propose
to deal directly with the joint error as

rMV
D (Q) ≤ 4eD(Q) = 2rD(Q) + 2eD(Q) − dD(Q). (3)
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Equation (3) is tighter than Eq. (2) if eD(Q)≤ 1
2dD(Q) ⇔ rD(Q)≤dD(Q); This

captures the fact that the voters need to be sufficiently diverse and commit
errors on different points. However, when the joint error eD(Q) exceeds 1

4 , the
bound exceeds 1 and is uninformative. Another bound—known as the C-Bound
in the PAC-Bayes literature [20]—has been introduced to capture this trade-off
between the Gibbs risk rD(Q) and the disagreement dD(Q), and is recalled in
the following theorem.

Theorem 1 (C-Bound). For any distribution D on X×Y, for any voters
set H, for any distribution Q on H, if rD(Q)< 1

2 ⇐⇒ 2eD(Q)+dD(Q)<1, we
have

rMV
D (Q) ≤ 1 − (1 − 2rD(Q))2

1 − 2dD(Q)
� CD(Q)

= 1 −
(
1 − [2eD(Q) + dD(Q)]

)2
1 − 2dD(Q)

.

The empirical C-Bound is denoted by CS(Q) where the empirical disagreement
is defined by dS(Q) = 1

m

∑m
i=1 Eh1∼QEh2∼QI[h1(xi)�=h2(xi)], and the empirical

joint error is defined by eS(Q) = 1
m

∑m
i=1 Eh1∼QEh2∼QI[h1(xi)�=yi]I[h2(xi)�=yi].

As Eq. (3), the C-Bound is tighter than Eq. (2) when rD(Q) ≤ dD(Q) and
looks for a good trade-off between individual risks and disagreement. The main
interest of the C-bound compared to Eq. (3) is that when eD(Q) is close to
1
4 , the C-Bound can be close to 0 depending on the value of the disagreement
dD(Q): the C-bound is then more precise. Moreover, it is important to notice
that the C-Bound is always tighter than Eq. (3) and tighter than Eq. (2) when
rD(Q) ≤ dD(Q). We summarize the relationships between Eqs. (2), (3) and
CD(Q) in the next theorem.

Theorem 2 (From Germain et al. [32] and Masegosa et al. [24]). For any
distribution D on X × Y, for any voters set H, for any distribution Q on H, if
rD(Q) < 1

2 , we have

(i) CD(Q) ≤ 4eD(Q) ≤ 2rD(Q), if rD(Q) ≤ dD(Q),
(ii) 2rD(Q) ≤ CD(Q) ≤ 4eD(Q), otherwise.

In this paper, we focus on the minimization of PAC-Bayesian generalization
bounds on the C-Bound to get a low-risk majority vote. In Sect. 3, we recall such
PAC-Bayesian bounds that have been introduced in the literature.

2.3 Related Works

Previous algorithms have been developed to minimize the empirical C-Bound
CS(Q). Roy et al. [31] first proposed MinCq where this minimization is expressed
as a quadratic problem. MinCq considers a specific voters’ set to regularize the
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minimization process. One drawback of MinCq is that the optimization problem
is not scalable to large datasets. Lately, Bauvin et al. [1] proposed CB-Boost that
minimizes CS(Q) in a greedy procedure with the advantage to be more scalable
while obtaining sparser majority vote. However, since both MinCq and CB-

Boost minimize the empirical CS(Q), the PAC-Bayesian generalization bound
associated with their learned majority vote predictors can be vacuous. Note that
CB-Boost has been proposed to improve another algorithm called CqBoost [32].

When it comes to deriving a learning algorithm that directly minimizes a
PAC-Bayesian bound, it is mentioned in the literature that optimizing a PAC-
Bayesian bound on the C-bound is not trivial [22,24]. This underlines the need of
other majority vote learning algorithms based on the C-Bound, which motivates
our contributions of Sect. 4.

3 PAC-Bayesian C-Bounds

We recall now three PAC-Bayesian generalization bounds on the C-Bound
referred hereafter as the PAC-Bayesian C-Bounds. Considering these three
approaches has the interest to offer a large coverage of the PAC-Bayesian C-
bound literature. Our contribution, described in Sect. 4, consists in deriving a
self-bounding algorithm for each of these PAC-Bayesian C-Bounds. This shows
that the PAC-Bayesian C-Bound offers various ways to learn majority votes that
might have been overlooked until now.

3.1 An Intuitive Bound—McAllester’s View

We recall the most intuitive and interpretable PAC-Bayesian C-Bound [32]. It
consists in upper-bounding separately the Gibbs risk rD(Q) and the disagree-
ment dD(Q) with the usual PAC-Bayesian bound of McAllester [26] that bounds
the deviation between true and empirical values with the Euclidean distance.

Theorem 3 (PAC-Bayesian C-Bound of Roy et al. [32]). For any distri-
bution D on X×Y, for any prior distribution P on H, for any δ>0, we have

Pr
S∼Dm

(
∀Q on H, CD(Q) ≤ 1−

(
1 − 2min

[
1
2 , rS(Q)+

√
1
2ψr(Q)

])2

1 − 2max
[
0, dS(Q)−

√
1
2ψd(Q)

]
︸ ︷︷ ︸

CM
S(Q)

)
≥ 1−2δ,

(4)

with ψr(Q) = 1
m

[
KL(Q‖P)+ ln2

√
m

δ

]
, and ψd(Q) = 1

m

[
2KL(Q‖P)+ ln2

√
m

δ

]
,

and KL(Q‖P) = Eh∼Q ln Q(h)
P(h) is the KL-divergence between Q and P.

While there is no algorithm that directly minimizes Eq. (4), this kind of inter-
pretable bound can be seen as a justification of the optimization of rS(Q) and
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dS(Q) in the empirical C-Bound such as for MinCq [31] or CB-Boost [1]. In
Sect. 4.1, we derive a first algorithm to directly minimize it.

However, this PAC-Bayesian C-Bound can have a severe disadvantage with
a small m and a Gibbs risk close to 1

2 : even for a KL(Q‖P) close to 0 and a low
empirical C-Bound, the value of the PAC-Bayesian C-Bound will be close to 1. To
overcome this drawback, one solution is to follow another PAC-Bayesian point of
view, the one proposed by Seeger [33] that compares the true and empirical values

through kl(a‖b) = a log
[

a
b

]
+(1−a) log

[
1−a
1−b

]
, knowing that |a−b| ≤

√
1
2kl(a‖b)

(Pinsker’s inequality).
In the next two subsections, we recall such bounds. The first one in Theo-

rem 4 involves the risk and the disagreement, while the second one in Theorem 5
simultaneously bounds the joint error and the disagreement.

3.2 A Tighter Bound—Seeger’s View

The PAC-Bayesian generalization bounds based on the Seeger’s approach [33]
are known to produce tighter bounds [15]. As for Theorem 3, the result below
bounds independently the Gibbs risk rD(Q) and the disagreement dD(Q).

Theorem 4 (PAC-Bayesian C-Bound (PAC-Bound 1) of Germain et
al. [15]). Under the same assumptions and notations as Theorem 3, we have

Pr
S∼Dm

(
∀Q on H, CD(Q) ≤ 1−

(
1−2min

[
1
2 , kl (rS(Q) | ψr(Q))

] )2
1−2max [0, kl (dS(Q) | ψd(Q))]︸ ︷︷ ︸

CS
S(Q)

)
≥ 1−2δ,

(5)

with kl(q|ψ) = max{p∈ (0,1)|kl(q‖p)≤ψ}, and kl(q|ψ) = min{p∈ (0,1)|kl(q‖p)≤
ψ}.

The form of this bound makes the optimization a challenging task: the functions
kl and kl do not benefit from closed-form solutions. However, we see in Sect. 3.2
that the optimization of kl and kl can be done by the bisection method [30],
leading to an easy-to-solve algorithm to optimize this PAC-Bayesian C-Bound.

3.3 Another Tighter Bound–Lacasse’s View

The last theorem on which we build our contributions is described below. Pro-
posed initially by Lacasse et al. [20], its interest is that it simultaneously bounds
the joint error and the disagreement (as explained by Germain et al. [15]). Here,
to compute the bound, we need to find the worst C-Bound value that can be
obtained with a couple of joint error and disagreement denoted by (e, d) belong-
ing to the set AS(Q) that is defined by

AS(Q) =
{

(e, d)
∣∣∣ kl (eS(Q), dS(Q)‖e, d) ≤ κ(Q)

}
,
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Algorithm 1. Minimization of Equation (4) by GD
Given: learning sample S, prior distribution P on H, the objective function GM

S(Q)

Update function2 update-Q
Hyperparameters: number of iterations T
function minimize-Q

Q ← P
for t ← 1 to T do Q ←update-Q(GM

S(Q))
return Q

where κ(Q) = 1
m

[
2KL(Q‖P) + ln2

√
m+m
δ

]
,

and kl(q1,q2‖p1,p2) = q1 ln q1
p1

+ q2 ln q2
p2

+ (1−q1−q2) ln 1−q1−q2
1−p1−p2

.
The set AS(Q) can actually contain some pairs not achievable by any D, it can
then be restricted to the valid subset ˜AS(Q) defined in the theorem below.

Theorem 5 (PAC-Bayesian C-Bound (PAC-Bound 2) of Germain et
al. [15]). Under the same assumptions as Theorem 3, we have

Pr
S∼Dm

(
∀Q on H, CD(Q) ≤ sup

(e,d)∈ ˜AS(Q)

[
1 − (1 − (2e + d))2

1 − 2d

])
≥ 1−δ,

where ÃS(Q) =
{

(e, d)∈AS(Q)
∣∣∣ d ≤ 2

√
e−2e , 2e+d < 1

}
.

Optimizing this bound w.r.t. Q can be challenging, since it boils down to optimize
indirectly the set ˜AS(Q). Hence, a direct optimization by gradient descent is not
possible. In Sect. 4.3 we derive an approximation easier to optimize.

4 Self-bounding Algorithms for PAC-Bayesian C-Bounds

In this section, we present our contribution that consists in proposing three
self-bounding algorithms to directly minimize the PAC-Bayesian C-Bounds.

4.1 Algorithm Based on McAllester’s View

We derive in Algorithm 1 a method to directly minimize the PAC-Bayesian C-
Bound of Theorem 3 by Gradient Descent (GD). An important aspect of the

optimization is that if rS(Q)+
√

1
2ψr(Q) ≥ 1

2 , the gradient of the numerator in
CM

S(Q) with respect to Q is 0 which makes the optimization impossible. Hence,

2 update-Q is a generic update function, i.e., it can be for example a standard update
of GD or the update of another algorithm like Adam [18] or COCOB [27].
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we aim at minimizing the following constraint optimization problem:

min
Q

⎡
⎢⎣1 −

(
1 − 2min

[
1
2 ,rS(Q)+

√
1
2ψr(Q)

])2

1 − 2max
[
0, dS(Q)−

√
1
2ψd(Q)

]
⎤
⎥⎦

︸ ︷︷ ︸
CM

S(Q)

s.t rS(Q)+
√

1
2ψr(Q) ≤ 1

2 .

From this formulation, we deduce a non-constrained optimization problem:

minQ
[
CM

S(Q) + B(rS(Q)+
√

1
2ψr(Q)− 1

2 )
]
, whereB is the barrier function defined

as B(a)=0 if a≤0 and B(a)=+∞ otherwise. Due to the nature of B, this prob-
lem is not suitable for optimization: the objective function will be infinite when
a>0. To tackle this drawback, we replace B by the approximation introduced by
Kervadec et al. [17] called the log-barrier extension and defined as

Bλ(a) =
{

− 1
λ ln(−a), if a ≤ − 1

λ2 ,
λa− 1

λ ln( 1
λ2 )+ 1

λ , otherwise.

In fact, Bλ tends to B when λ tends to +∞. Compared to the standard log-
barrier3, the function Bλ is differentiable even when the constraint is not satis-

fied, i.e., when a > 0. By taking into account the constraint rS(Q)+
√

1
2ψr(Q)≤

1
2 , we solve by GD with Algorithm 1 the following problem:

min
Q

GM
S(Q) = min

Q
CM

S(Q) + Bλ

(
rS(Q)+

√
1
2ψr(Q)− 1

2

)
.

For a given λ, the optimizer will thus find a solution with a good trade-off
between minimizing CM

S(Q) and the log-barrier extension function Bλ. As we
show in the experiments, minimizing the McAllester-based bound does not lead
to the tightest bound. Indeed, as mentioned in Sect. 3, such bound is looser than
Seeger-based bounds, and leads to a looser PAC-Bayesian C-Bound.

4.2 Algorithm Based on Seeger’s View

In order to obtain better generalization guarantees, we should optimize the
Seeger-based C-bound of Theorem 4. In the same way as in the previous section,
we seek at minimizing the following optimization problem:

min
Q

[
1−

(
1−2min

[
1
2 , kl (rS(Q) | ψr(Q))

] )2
1−2max [0, kl (dS(Q) | ψd(Q))]

]

︸ ︷︷ ︸
CS

S(Q)

s.t kl (rS(Q) | ψr(Q)) ≤ 1
2 ,

3 The reader can refer to [4] for an introduction of interior-point methods.
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with kl(q|ψ) = max{p∈ (0,1)|kl(q‖p)≤ψ}, and kl(q|ψ) = min{p∈ (0,1)|kl(q‖p)≤
ψ}. For the same reasons as for deriving Algorithm 1, we propose to solve by
GD:

min
Q

GS
S(Q) = min

Q
CS

S(Q) + Bλ

(
kl (rS(Q) | ψr(Q)) − 1

2

)
.

The main challenge to optimize it is to evaluate kl or kl and to compute their
derivatives. To do so, we follow the bisection method to calculate kl and kl pro-
posed by Reeb et al. [30]. This method is summarized in the functions compute-
kl(q|ψ) and compute-kl(q|ψ) of Algorithm 2, and consists in refining iteratively
an interval [pmin, pmax] with p ∈ [pmin, pmax] such that kl(q‖p)=ψ. For the sake
of completeness, we provide the derivatives of kl and kl with respect to q and ψ,
that are:

∂k(q|ψ)
∂q

=
ln 1−q

1−k(q|ψ) − ln q
k(q|ψ)

1−q
1−k(q|ψ) − q

k(q|ψ)

, and
∂k(q|ψ)

∂ψ
=

1
1−q

1−k(q|ψ) − q
k(q|ψ)

, (6)

with k is either kl or kl. To compute the derivatives with respect to the posterior
Q, we use the chain rule for differentiation with a deep learning framework (such
as PyTorch [29]). The global algorithm is summarized in Algorithm 2.

Algorithm 2. Minimization of Equation (4) by GD
Given: learning sample S, prior distribution P on H, the objective function GM

S(Q)

Update function update-Q
Hyperparameters: number of iterations T
function minimize-Q

Q ← P
for t ← 1 to T do

Compute GS
S(Q) using compute-kl(q|ψ) and compute-kl(q|ψ)

Q ←update-Q(GS
S(Q)) (thanks to the derivatives in Equation (6))

return Q

Hyperparameters: tolerance ε, maximal number of iterations Tmax

function compute-kl(q|ψ) (resp. compute-kl(q|ψ))
pmax←1 and pmin←q (resp. pmax←q and pmin←0)
for t ← 1 to Tmax do

p = 1
2
[pmin+pmax]

if kl(q‖p) = ψ or (pmin−pmax) < ε then return p
if kl(q‖p) > ψ then pmax = p (resp. pmin = p)
if kl(q‖p) < ψ then pmin = p (resp. pmax = p)

return p
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4.3 Algorithm Based on Lacasse’s View

Theorem 5 jointly upper-bounds the joint error eD(Q) and the disagreement
dD(Q); But as pointed out in Sect. 3.3 its optimization can be hard. To ease its
manipulation, we derive below a C-Bound resulting of a reformulation of the
constraints involved in the set ˜AS(Q)={(e, d)∈AS(Q) | d≤2

√
e−2e, 2e+d<1}.

Theorem 6. Under the same assumptions as Theorem 3, we have

P
S∼Dm

(

CD(Q) ≤ sup
(e,d)∈ ̂AS(Q)

[

1 −
[

1 − (2e + d)
]2

1 − 2d

]

︸ ︷︷ ︸

CL(e, d)

)

≥ 1−δ, (7)

where ̂AS(Q) =

{

(e, d)∈AS(Q) | d ≤ 2
√

min
(

e, 1
4

)−2e, d < 1
2

}

,

and AS(Q) =
{

(e,d)
∣

∣kl (eS(Q),dS(Q)‖e,d)≤κ(Q)
}

,with κ(Q) =
2KL(Q‖P)+ ln

2
√

m+m
δ

m
.

Proof. Beforehand, we explain how we fixed the constraints involved in ÂS(Q).
We add to AS(Q) three constraints: d≤2

√
e−2e (from Prop. 9 of [15]), d≤1−2e,

and d< 1
2 . We remark that when e≤ 1

4 , we have 2
√

e−2e≤1−2e. Then, we merge

d≤2
√

e−2e and d≤1−2e into d≤2
√

min
(
e, 1

4

)
−2e. Indeed, we have

d ≤ 2
√

min(e, 1
4 )−2e ⇐⇒

{
d ≤ 2

√
e − 2e if e ≤ 1

4 ,
d < 1−2e if e ≥ 1

4 .

We prove now that under the constraints involved in ÂS(Q), we still have a valid
bound on CD(Q). To do so, we consider two cases.

Case 1: If for all (e, d) ∈ ÂS(Q) we have 2e+d<1.
In this case (eD(Q), dD(Q)) ∈ ÂS(Q), then we have 2eD(Q)+dD(Q) <

1 and Theorem 1 holds. We have CD(Q) = 1 − [1−(2eD(Q)+dD(Q))]2

1−2dD(Q) ≤
sup(e,d)∈ ̂AS(Q) CL(e, d).

Case 2: If there exists (e, d) ∈ ÂS(Q) such that 2e+d=1.
We have sup(e,d)∈ ̂AS(Q) CL(e, d) = 1 that is a valid bound on CD(Q). ��

Theorem 6 suggests then the following constrained optimization problem:

min
Q

⎧⎨
⎩ sup

(e,d)∈
[
0,12

]2

(
1−

[
1−(2e+d)

]2
1−2d

)
s.t. (e, d)∈ÂS(Q)

⎫⎬
⎭ s.t. 2eS(Q)+dS(Q)≤1,
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with ÂS(Q) =
{
(e, d)

∣∣d ≤ 2
√

min
(
e, 1

4

)
−2e, d < 1

2 , kl (eS(Q),dS(Q)‖e,d) ≤
κ(Q)

}
. Actually, we can rewrite this constrained optimization problem into an

unconstrained one using the barrier function. We obtain

min
Q

{
max

(e,d)∈
[
0,12

]2
(

CL(e, d) − B
[
d−2

√
min

(
e, 1

4

)
−2e

]
− B

[
d− 1

2

]

− B
[
kl (eS(Q), dS(Q)‖e, d) −κ(Q)

])
+ B

[
2eS(Q)+dS(Q)−1

]}
, (8)

where CL(e, d) = 1 − (1−(2e+d))2

1−2d if d < 1
2 , and CL(e, d) = 1 otherwise. However,

this problem cannot be optimized directly by GD. In this case, we have a min-
max optimization problem, i.e., for each descent step we need to find the couple
(e, d) that maximizes the CL(e, d) given the three constraints that define ÂS(Q)
before updating the posterior distribution Q.

First, to derive our optimization procedure, we focus on the inner maxi-
mization problem when eS(Q) and dS(Q) are fixed in order to find the optimal
(e, d). However, the function CL(e, d) we aim at maximizing is not concave for
all (e, d) ∈ R

2, implying that the implementation of its maximization can be
hard4. Fortunately, CL(e, d) is quasi-concave [15] for (e, d) ∈ [0, 1] × [0, 1

2 ]. Then
by definition of quasi-concavity, we have:

∀α ∈ [0, 1],

{
(e, d) | 1 −

[
1 − (2e + d)

]2
1 − 2d

≥ 1 − α

}

⇐⇒ ∀α ∈ [0, 1],
{

(e, d) | α(1−2d) −
[
1−(2e+d)

]2
≥ 0

}
.

Hence, for any fixed α ∈ [0, 1] we can look for (e, d) that maximizes CL(e, d)
and respects the constraints involved in ÂS(Q). This is equivalent to solve the
following problem for a given α ∈ [0, 1]:

max(e,d)∈[0, 12 ]2 α(1−2d) −
[

1−(2e+d)
]2

s.t. d ≤ 2
√

min
(

e, 1
4

)−2e and kl (eS(Q), dS(Q)‖e, d) ≤ κ(Q).
(9)

In fact, we aim at finding α ∈ [0, 1] such that the maximization of Eq. (9) leads
to 1−α equal to the largest value of CL(e, d) under the constraints. To do so,
we make use of the “Bisection method for quasi-convex optimization” [4] that is
summarized in maximize-e-d in Algorithm 3. We denote by (e∗, d∗) the solution
of Eq. (9). It remains then to solve the outer minimization problem that becomes:

min
Q
{
B [2eS(Q)+dS(Q)−1] − B [kl (eS(Q), dS(Q)‖e∗, d∗) −κ(Q)]

}
.

4 For example, when using CVXPY [9], that uses Disciplined Convex Programming
(DCP [16]), the maximization of a non-concave function is not possible.
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Algorithm 3. Minimization of Equation (7) by GD

Given: learning sample S, prior P on H, the objective function Ge∗,d∗
S (Q)

Update function update-Q
Hyperparameters: number of iterations T
function minimize-Q

Q ← P
for t ← 1 to T do

(e∗, d∗) ←maximize-e-d(eS(Q), dS(Q))

Q ← update-Q(Ge∗,d∗
S (Q))

return Q

Given: learning sample S, joint error eS(Q), disagreement dS(Q)
Hyperparameters: tolerance ε
function maximize-e-d(eS(Q), dS(Q))

αmin = 0 and αmax = 1
while αmax − αmin > ε do

α = 1
2
(αmin + αmax)

(e, d) ← Solve Equation (9)
if CL(e, d) ≥ 1−α then αmax ← α else αmin ← α

return (e, d)

Since the barrier function B is not suitable for optimization, we approximate
this problem by replacing B by the log-barrier extension Bλ, i.e., we have

minQ Ge∗,d∗
S (Q) = minQ

{
Bλ [2eS(Q)+dS(Q)−1]

−Bλ [kl (eS(Q), dS(Q)‖e∗, d∗) −κ(Q)]
}
.

The global method is summarized in Algorithm 3. As a side note, we mention
that the classic Danskin Theorem [8] used in min-max optimization theory is
not applicable in our case since our objective function is not differentiable for
all (e, d) ∈ [0, 1

2 ]2. We discuss this point in Supplemental.

5 Experimental Evaluation

5.1 Empirical Setting

Our experiments5 have a two-fold objective: (i) assessing the guarantees given
by the associated PAC-Bayesian bounds, and (ii) comparing the performance of
the different C-bound based algorithms in terms of risk optimization. To achieve
this objective, we compare the three algorithms proposed in this paper to the
following state-of-the-art PAC-Bayesian methods for majority vote learning:
5 Experiments are done with PyTorch [29] and CVXPY [9]. The source code is avail-
able at https://github.com/paulviallard/ECML21-PB-CBound.

https://github.com/paulviallard/ECML21-PB-CBound
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TEST RISKS COMPARISON
Alg.3 vs. 2r Alg.3 vs. Masegosa Alg.3 vs. CB-Boost Alg.3 vs. MinCq

BOUND VALUES COMPARISON

Alg.3 vs. 2r Alg.3 vs. Masegosa Alg.3 vs. CB-Boost Alg.3 vs. MinCq

Fig. 1. Pairwise comparisons of the test risks (first line) and the bounds (second line)
between Algorithm 3 and the baseline algorithms. Algorithm 3 is represented on the
x-axis, while the y-axis is used for the other approaches. Each dataset corresponds to a
point in the plot and a point above the diagonal indicates that Algorithm 3 is better.

• MinCq [31] and CB-Boost [1] that are based on the minimization of the
empirical C-Bound. For comparison purposes and since MinCq and CB-
Boost do not explicitly minimize a PAC-Bayesian bound, we report the
bound values of Theorem 6 instantiated with the models learned;

• The algorithm proposed by Masegosa et al. [24] that optimizes a PAC-
Bayesian bound on rMV

D (Q) ≤ 4eD(Q) (see Theorem 9 of [24]);
• An algorithm6, denoted by 2r, to optimize a PAC-Bayesian bound based only

on the Gibbs risk [21]: rMV
D (Q) ≤ 2rD(Q) ≤ 2kl(rS(Q)|ψr(Q)).

We follow a general setting similar to the one of Masegosa et al. [24]. The prior
distribution P on H is set as the uniform distribution, and the voters in H are
decision trees: 100 trees are learned with 50% of the training data (the remaining
part serves to learn the posterior Q). More precisely, for each tree

√
d features

of the d-dimensional input space are selected, and the trees are learned by using
the Gini criterion until the leaves are pure.

In this experiment, we consider 16 classic datasets7 that we split into a train
set S and a test set T . We report for each algorithm in Table 1, the test risks
(on T ) and the bound values (on S, such that the bounds hold with prob. at
least 95%). The parameters of the algorithms are selected as follows. 1) For
Masegosa’s algorithm we kept the default parameters [24]. 2) For all the other
bounds minimization algorithms, we set T = 2, 000 iterations for all the datasets
6 The algorithm 2r is similar to Algorithm 2, but without the numerator of the C-
Bound (i.e., the disagreement). More details are given in the Supplemental.

7 An overview of the datasets is presented in the Supplemental.
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except for adult, fash and mnist where T = 200. We fix the objective functions
with λ = 100, and we use COCOB-Backprop optimizer [27] as update-Q (its
parameter remains the default one). For Algorithm 3, we fix the tolerance ε = .01,
resp. ε = 10−9, to compute kl, resp. kl. Furthermore, the maximal number of
iterations Tmax in maximize-e-d is set to 1, 000. 3) For MinCq, we select the
margin parameter among 20 values uniformly distributed in [0, 1

2 ] by 3-fold cross
validation. Since this algorithm is not scalable due to its high time complexity,
we reduce the training set size to m = 400 when learning with MinCq on the
large datasets: adult, fash and mnist (MinCq is still competitive with less data
on this datasets). For CB-Bound which is based on a Boosting approach, we fix
the maximal number of boosting iterations to 200.

5.2 Analysis of the Results

Beforehand, we compare only our three self-bounding algorithms. From Table 1,
as expected we observe that Algorithm 1 based on the McAllester’s bound (that
is more interpretable but less tight) provides the worst bound. Algorithm 3
always provides tighter bounds than Algorithms 1 and 2, and except for let-
ter:DvsO, fash:COvsSH, and fash:SAvsBO Algorithm 3 leads to the lowest test
risks. We believe that Algorithm 3 based on the Lacasse’s bound provides lower
bounds than Algorithm 2 based on the Seeger’s bound because the Lacasse’s
approach bounds simultaneously the joint error and the disagreement. Algo-
rithm 3 appears then to be the best algorithm among our three self-bounding
algorithms that minimize a PAC-Bayesian C-Bound.

In the following we focus then on comparing our best contribution represented
by Algorithm 3 to the baselines; Fig. 1 summarizes this comparison.

First, 2r gives the lowest bounds among all the algorithms, but at the price
of the largest risks. This clearly illustrates the limitation of considering only the
Gibbs risk as an estimator of the majority vote risk: As discussed in Sect. 2.2,
the Gibbs risk is an unfair estimator since an increase of the diversity between
the voters can have a negative impact on the Gibbs risk.

Second, compared to Masegosa’s approach, the results are comparable: Algo-
rithm 3 tends to provide tighter bounds, and similar performances that lie in the
same order of magnitude, as illustrated in Table 1. This behavior was expected
since minimizing the bound of Masegosa [24] or the PAC-Bayesian C-Bound
boils down to minimize a trade-off between the risk and the disagreement.

Third, compared to empirical C-bound minimization algorithms, we see that
Algorithm 3 outputs better results than CB-Boost and MinCq for which the
difference is significative and the bounds are close to 1 (i.e., non-informative).
Optimizing the risk bounds tend then to provide better guarantees that justify
that optimizing the empirical C-bound is often too optimistic.

Overall, from these experiments, our Algorithm 3 is the one that provides the
best trade-off between having good performances in terms of risk optimization
and ensuring good theoretical guarantees with informative bounds.
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6 Conclusion and Future Work

In this paper, we present new learning algorithms driven by the minimization of
PAC-Bayesian generalization bounds based on the C-Bound. More precisely, we
propose to solve three optimization problems, each one derived from an existing
PAC-Bayesian bound. Our methods belong to the class of self-bounding learning
algorithms: The learned predictor comes with a tight and statistically valid risk
upper bound. Our experimental evaluation has confirmed the quality of the
learned predictor and the tightness of the bounds with respect to state-of-the-
art methods minimizing the C-Bound.

As future work, we would like to study extensions of this work to provide
meaningful bounds for learning (deep) neural networks. In particular, an inter-
esting perspective would be to adapt the C-Bound to control the diversity and
the weights in a neural network.
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Midpoint Regularization: From High
Uncertainty Training Labels

to Conservative Classification Decisions
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Ottawa, ON K1A 0R6, Canada
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Abstract. Label Smoothing (LS) improves model generalization
through penalizing models from generating overconfident output distri-
butions. For each training sample the LS strategy smooths the one-hot
encoded training signal by distributing its distribution mass over the
non-ground truth classes. We extend this technique by considering exam-
ple pairs, coined PLS. PLS first creates midpoint samples by averaging
random sample pairs and then learns a smoothing distribution during
training for each of these midpoint samples, resulting in midpoints with
high uncertainty labels for training. We empirically show that PLS sig-
nificantly outperforms LS, achieving up to 30% of relative classification
error reduction. We also visualize that PLS produces very low winning
softmax scores for both in and out of distribution samples.

Keywords: Label smoothing · Model regularization · Mixup

1 Introduction

Label Smoothing (LS) is a commonly used output distribution regularization
technique to improve the generalization performance of deep learning models [4,
13,15,20,21,23,30]. Instead of training with data associated with one-hot labels,
models with label smoothing are trained on samples with soft targets, where each
target is a weighted mixture of the ground truth one-hot label with the uniform
distribution of the classes. This penalizes overconfident output distributions,
resulting in improved model generalization [16,18,19,26,29].

When smoothing the one-hot training signal, existing LS methods, however,
only consider the distance between the only gold label and the non-ground truth
targets. This motivates our Pairwise Label Smoothing (PLS) strategy, which
takes a pair of samples as input. In a nutshell, the PLS first creates a midpoint
sample by averaging the inputs and labels of a sample pair, and then distributes
the distribution mass of the two ground truth targets of the new midpoint sample
over its non-ground truth classes. Smoothing with a pair of ground truth labels
enables PLS to preserve the relative distance between the two truth labels while

c© Springer Nature Switzerland AG 2021
N. Oliver et al. (Eds.): ECML PKDD 2021, LNAI 12976, pp. 184–199, 2021.
https://doi.org/10.1007/978-3-030-86520-7_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86520-7_12&domain=pdf
https://doi.org/10.1007/978-3-030-86520-7_12


Midpoint Regularization 185

Fig. 1. Average distribution mass (Y-axis) of PLS and Mixup (from sample pairs with
different labels) and ULS on Cifar10’s 10 classes (X-axis). PLS’ class-wise training
signals are spread out, with gold labels probabilities close to 0.35, which has larger
uncertainty than that of 0.5 and 0.9 from Mixup and ULS, receptivity.

being able to further soften that between the truth labels and the other class
targets. Also, unlike current LS methods, which typically require to find a global
smoothing distribution mass through cross-validation search, PLS automatically
learns the distribution mass for each input pair during training. Hence, it effec-
tively eliminates the turning efforts for searching the right level of smoothing
strength for different applications.

Also, smoothing with a pair of labels empowers PLS to be trained with low
distribution mass (i.e., high uncertainty) for the ground truth targets. Figure 1
depicts the average values (over all the midpoint samples created from sam-
ple pairs with different labels) of the 10 target classes in Cifar10 used by PLS
for training. These ground truth targets are smaller than 0.35, which repre-
sents much larger uncertain than the 0.5 and 0.9 in Mixup and the uniform
label smoothing (denoted as ULS), respectively. Owing to such high uncertainty
ground truth target training signals, PLS produces extremely low winning soft-
max scores during testing, resulting in very conservative classification decisions.
Figure 2 depicts the histograms of the winning softmax scores of Mixup, ULS
and PLS on the Cifar10 validation data. Unlike Mixup and ULS, PLS produced
very conservative softmax scores, with extremely sparse distribution in the high
confidence region. Such conservative classifications are produced not only on
in-distribution data but also on out-of-distribution samples.

We empirically show that PLS significantly outperforms LS and Mixup [28],
with up to 30% of relative classification error reduction. We also visualize that
PLS produces extremely conservative predictions in testing time, with many of
its winning predicted softmax scores slightly over 0.5 for both in and out of
distribution samples.
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Fig. 2. Histograms of the winning softmax scores on Cifar10 validation data, generated
by ULS (right Y-axis) and by Mixup and PLS (left Y-axis) where the X-axis depicts
the softmax score. The PLS produces very low softmax winning scores; the differences
versus the ULS and Mixup are striking: the PLS models are extremely sparse in the
high confidence region at the right end.

2 Related Work

Label smoothing has shown to provide consistent model generalization gains
across many tasks [15,16,18,19,21,24]. Unlike the above methods which apply
label smoothing to each single input, our smoothing strategy leverages a pair of
inputs for label smoothing. Furthermore, unlike existing LS approaches which
deploy one static and uniform smoothing distribution for all the training samples,
our strategy automatically learns a dynamic distribution mass for each sample
during training.

Mixup methods [2,8–10,22,27,28] create a large number of synthetic samples
with various features from a sample pair, through interpolating the pair’s both
features and labels with mixing coefficients randomly sampling between [0,1].
In contrast, our approach creates only the midpoint sample of a sample pair
(equivalent to Mixup with a fixed mixing ratio of 0.5). More importantly, our
method adds a label smoothing component on the midpoint samples. That is, we
adaptively learn a distribution mass to smooth the pair of ground truth labels
of each midpoint sample, with the aims of deploying high uncertainty training
targets (much higher than that of Mixup) for output distribution regularization.
Such high uncertain training labels result in PLS producing very conservative
classification decisions and superior accuracy than Mixup.

The generation of the smoothing distribution in our method is also related
to self-distillation [1,6,12,17,25]. However, these approaches treat the final pre-
dictions as target labels for a new round of training, and the teacher and student
architectures are identical [17]. In our method, the classification and the smooth-
ing distribution generator have different network architectures, and the training
targets for the classification are a mixture of the outputs of the two networks.
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3 Label Smoothing over Midpoint Samples

Our proposed method PLS leverages a pair of samples, randomly selected from
the training data set, to conduct label smoothing. It first creates a midpoint
sample for each sample pair, and then adaptively learns a smoothing distribution
for each midpoint sample. These midpoint samples are then used for training to
regularize the learning of the networks.

3.1 Preliminaries

We consider a standard classification setting with a given training data set (X;Y )
associated with K candidate classes {1, 2, · · · ,K}. For an example xi from the
training dataset (X;Y ), we denote the ground truth distribution q over the
labels as q(y|xi) (

∑K
y=1 q(y|xi) = 1). Also, we denote a neural network model

to be trained as fθ (parameterized with θ), and it produces a conditional label
distribution over the K classes as pθ(y|xi):

pθ(y|xi) =
exp(zy)

∑K
k=1 exp(zyk

)
, (1)

with
∑K

y=1 pθ(y|xi) = 1, and z is noted as the logit of the model fθ. The logits
are generated with two steps: the model fθ first constructs the m-dimensional
input embedding Si ∈ Rm for the given input xi, and then passes it through a
linear fully connected layer Wl ∈ RK×m:

Si = fθ(xi), z = WlSi. (2)

During learning, the model fθ is trained to optimize the parameter θ using the
n examples from (X;Y ) by minimizing the cross-entropy loss:

� = −
n∑

i=1

Hi(q, pθ). (3)

Instead of using one-hot encoded vector for each example xi in (X;Y ), label
smoothing (LS) adds a smoothed label distribution (i.e., the prior distribution)
u(y|xi) to each example xi, forming a new target label, namely soft label:

q′(y|xi) = (1 − α)q(y|xi) + αu(y|xi), (4)

where hyper-parameter α is a weight factor (α ∈ [0, 1]) needed to be tuned to
indicate the smoothing strength for the one-hot label. This modification results
in a new loss:

�′ = −
n∑

i=1

[
(1 − α)Hi(q, pθ) + αHi(u, pθ)

]
. (5)

Usually, the u(y|xi) is a uniform distribution, independent of data xi, as
u(y|xi) = 1/K, and hyper-parameter α is tuned with cross-validation.
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3.2 Midpoint Generation

For a sample, denoted as xi, from the provided training set (X;Y ) for training,
PLS first randomly selects1 another training sample xj . For the pair of samples
(xi; yi) and (xj ; yj), where x is the input and y the one-hot encoding of the
corresponding class, PLS then generates a synthetic sample through element-
wisely averaging both the input features and the labels, respectively, as follows:

xij = (xi + xj)/2, (6)

q(y|xij) = (yi + yj)/2. (7)

These synthetic samples can be considered as the midpoint samples of the orig-
inal sample pairs. It is also worth noting that, the midpoint samples here are
equivalent to fixing the linear interpolation mixing ratios as 0.5 in the Mixup [28]
method. Doing so, for the midpoint sample xij we have the ground truth dis-
tribution q over the labels as q(y|xij) (

∑K
y=1 q(y|xij) = 1). The newly result-

ing midpoint xij will then be used for label smoothing (will be discussed in
detail in Sect. 3.3) before feeding into the networks for training. In other words,
the predicted logits as defined in Eq. 2 is computed by first generating the m-
dimensional input embedding Sij ∈ Rm for xij and then passing through the
fully connected linear layer to construct the logit z:

Sij = fθ(xij), (8)

z = WlSij . (9)

Hence, the predicted conditional label distribution over the K classes produced
by the networks is as follows:

pθ(y|xij) =
exp(zy)

∑K
k=1 exp(zyk

)
. (10)

3.3 Learning Smoothing Distribution for Midpoints

PLS leverages a learned distribution, which depends on the input x, to dynam-
ically generate the smoothing distribution mass for midpoint samples to dis-
tribute their ground truth target distribution to the non-target classes. To this
end, the PLS implements this by adding a fully connected layer to the network
fθ. That is, the fθ produces two projections from the penultimate layer repre-
sentations of the network: one for the logits as the original network (Eq. 9), and
another for generating the smoothing distribution as follows.

In specific, an additional fully connected layer Wt ∈ RK×m is added
to the original networks fθ to produce the smoothing distribution over the

1 For efficiency purpose, we implement this by randomly selecting a sample from the
same mini-batch during training.
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K classification classes. That is, for the given input image xij , its smoothing
distributions over the K classification targets, denoted as u′

θ(y|xij), are com-
puted as follows:

u′
θ(y|xij) =

exp(vy)
∑K

k=1 exp(vyk
)
, (11)

v = σ(WtSij), (12)

where σ denotes the Sigmoid function, and Sij is the same input embedding as
that in Eq. 9. In other words, the two predictions (i.e., Eqs. 9 and 12) share the
same networks except the last fully connected layer. That is, the only difference
between PLS and the original networks is the added fully connected layer Wt.
The added Sigmoid function here aims to squash the smoothing distributions
learned for different targets to the same range of [0, 1].

After having the smoothing distributions u′
θ(y|xij), PLS then uses them to

smooth the ground truth labels q(y|xij) as described in Eq. 7, with average:

q′(y|xij) = (q(y|xij) + u′
θ(y|xij))/2. (13)

The loss function of PLS thus becomes the follows:

�′ = −
n∑

i=1

[
0.5 · Hi(q(y|xij), pθ(y|xij)) + 0.5 · Hi(u′

θ(y|xij), pθ(y|xij))
]
. (14)

Coefficient 0.5 here helps prevent the network from over-distributing its
label distribution to the non-ground truth targets. Over-smoothing degrades the
model performance, as will be shown in the experiments. Also, 0.5 here causes
the resulting training signals to have high uncertainty regarding the ground truth
targets. Such high uncertainty helps train the models to make conservative pre-
dictions.

3.4 Optimization

For training, PLS minimizes, with gradient descent on mini-batch, the loss �′.
One more issue needs to be addressed for the training. That is, the midpoint
samples used for training, namely (xij ; y), may lack information on the original
training samples (xi; y) due to the average operation in midpoint generation. To
compensate this, we alternatively feed inputs to the networks with either a mini-
batch from the original inputs, i.e., xi or xii, or a mini-batch from the midpoint
samples, i.e., xij . Note that, when training with the former, the networks still
need to learn to assign the smoothing distribution u′

θ(y|xii) to form the soft
targets q′(y|xii) for the sample xii. As will be shown in the experiment section,
this training strategy is important to PLS’ regularization effect.

4 Experiments

We first show our method’s superior accuracy, and then visualize its high uncer-
tainty training labels and conservative classifications.
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Table 1. Error rate (%) of the testing methods with PreAct ResNet-18 [11] as baseline.
We report mean scores over 5 runs with standard deviations (denoted ±). Best results
are in Bold.

Methods MNIST Fashion SVHN Cifar10 Cifar100 Tiny-ImageNet

PreAct ResNet-18 0.62± 0.05 4.78± 0.19 3.64± 0.42 5.19± 0.30 24.19± 1.27 39.71± 0.08

ULS-0.1 0.63± 0.02 4.81± 0.07 3.20 ± 0.06 4.95± 0.15 21.62± 0.29 38.85± 0.56

ULS-0.2 0.62± 0.02 4.57± 0.05 3.14± 0.11 4.89± 0.11 21.51± 0.25 38.54± 0.32

ULS-0.3 0.60± 0.01 4.60± 0.06 3.12± 0.03 5.02± 0.12 21.64± 0.27 38.32± 0.37

Mixup 0.56± 0.01 4.18± 0.02 3.37± 0.49 3.88± 0.32 21.10± 0.21 38.06± 0.29

Mixup-ULS0.1 0.53± 0.02 4.13± 0.10 2.96± 0.39 4.00± 0.17 21.51± 0.51 37.23± 0.48

Mixup-ULS0.2 0.53± 0.03 4.18± 0.09 3.02± 0.42 3.95± 0.13 21.41± 0.55 38.21± 0.38

Mixup-ULS0.3 0.50± 0.02 4.15± 0.06 2.88± 0.31 4.06± 0.04 20.94± 0.49 38.93± 0.43

PLS 0.47±0.03 3.96±0.05 2.68±0.09 3.63±0.10 19.14±0.20 35.26±0.10

Table 2. Error rate (%) of the testing methods with ResNet-50 [11] as baseline. We
report mean scores over 5 runs with standard deviations (denoted ±). Best results are
in Bold.

Methods MNIST Fashion SVHN Cifar10 Cifar100 Tiny-ImageNet

ResNet-50 0.61± 0.05 4.55± 0.14 3.22± 0.05 4.83± 0.30 23.10± 0.62 35.67± 0.50

ULS-0.1 0.63± 0.02 4.58± 0.16 2.98± 0.02 4.98± 0.25 23.90± 0.99 35.02± 0.39

ULS-0.2 0.62± 0.03 4.52± 0.04 3.08± 0.03 5.00± 0.35 23.88± 0.73 36.19± 0.66

ULS-0.3 0.65± 0.03 4.51± 0.15 3.04± 0.07 5.16± 0.16 23.17± 0.50 36.14± 0.06

Mixup 0.57± 0.03 4.31± 0.05 2.85± 0.07 4.29± 0.28 19.48± 0.48 32.36± 0.53

Mixup-ULS0.1 0.60± 0.04 4.28± 0.12 2.90± 0.09 4.02± 0.27 21.58± 0.86 32.11± 0.09

Mixup-ULS0.2 0.58± 0.02 4.33± 0.09 2.89± 0.07 4.09± 0.10 20.87± 0.51 32.81± 0.48

Mixup-ULS0.3 0.57± 0.04 4.29± 0.11 2.84± 0.10 4.19± 0.18 21.64± 0.41 33.94± 0.56

PLS 0.51±0.02 4.15±0.09 2.36±0.03 3.60±0.18 18.65±1.08 30.73±0.20

4.1 Datasets, Baselines, and Settings

We use six benchmark image classification tasks. MNIST is a digit (1–10) recog-
nition dataset with 60,000 training and 10,000 test 28× 28-dimensional gray-level
images. Fashion is an image recognition dataset with the same scale as MNIST,
containing 10 classes of fashion product pictures. SVHN is the Google street view
house numbers recognition data set. It has 73,257 digits, 32× 32 color images for
training, 26,032 for testing, and 531,131 additional, easier samples. Following lit-
erature, we did not use the additional images. Cifar10 is an image classification
task with 10 classes, 50,000 training and 10,000 test samples. Cifar100 is similar
to Cifar10 but with 100 classes and 600 images each. Tiny-ImageNet [5] has 200
classes, each with 500 training and 50 test 64 × 64 × 3 images.

We conduct experiments using the popular benchmarking networks PreAct
ResNet-18 and ResNet-50 [11]. We compare with the label smoothing meth-
ods [16,18] (denoted as ULS) with various smoothing coefficients (i.e., α in
Eq. 5), where ULS-0.1, ULS-0.2, and ULS-0.3 denote the smoothing coefficient
of 0.1, 0.2, and 0.3, respectively. We also compare with the input-pair based
data augmentation method Mixup [28]. We further compare with methods that
stacking the ULS on top of Mixup, denoted Mixup-ULS0.1, Mixup-ULS0.2, and
Mixup-ULS0.3.
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For Mixup, we use the authors’ code at2 and the uniformly selected mixing
coefficients between [0,1]. For PreAct ResNet-18 and ResNet-50, we use the
implementation from Facebook3. For PLS, the added fully connected layer is the
same as the last fully connected layer of the baseline network with a Sigmoid
function on the top. All models are trained using mini-batched (128 examples)
backprop, with the exact settings as in the Facebook codes, for 400 epochs. Each
reported value (accuracy or error rate) is the mean of five runs on a NVIDIA
GTX TitanX GPU with 12 GB memory.

4.2 Predictive Accuracy

The error rates obtained by ULS, Mixup, Mixup-ULS, and PLS using ResNet-18
as baseline on the six test datasets are presented in Table 1. The results with
ResNet-50 as baselines are provided in Table 2.

Table 1 shows that PLS outperforms, in terms of predictive error, the ResNet-
18, the label smoothing models (ULS-0.1, ULS-0.2, ULS-0.3), Mixup, stacking
ULS on top of Mixup (Mixup-ULS0.1, Mixup-ULS0.2, Mixup-ULS0.3) on all the
six datasets. For example, the relative improvement of PLS over ResNet-18 on
Cifar10 and MNIST are over 30% and 24%, respectively. When considering PLS
and the average error obtained by the three ULS models, on both Cifar10 and
MNIST, the relative improvement is over 23%. It is also promising to see that on
Tiny-ImageNet, PLS reduced the absolute error rates over Mixup, Mixup-ULS,
and ULS from about 38% to 35%.

For the cases with ResNet-50 as baselines, Table 2 indicates that similar error
reductions are obtained by PLS. Again, on all the testing datasets, PLS out-
performs all the comparison baselines. For example, for Cifar10, the relative
improvement achieved by PLS over ResNet-50 and the average of the three
label smoothing strategies (i.e. ULS) are 25.47% and 28.67%, respectively. For
Cifar100 and Tiny-ImageNet, PLS reduced the absolute error rates of ULS from
23% and 36% to 18.65% and 30.73% respectively.

An important observation here is that, stacking label smoothing on top of
Mixup (i.e., Mixup-ULS) did not improve, or even degraded, Mixup’s accuracy.
For example, for Cifar10, Cifar100, and Tiny-ImageNet (the last three columns
in Tables 1 and 2), Mixup-ULS obtained similar or slightly higher error rate than
Mixup. The reason here is that Mixup creates samples with soft labels through
linearly interpolating between [0, 1], which is a form of label smoothing regu-
larization [3]. Consequently, stacking another label smoothing regularizer on top
of Mixup can easily mess up the soft training targets, resulting in underfitting.
Promisingly, PLS was able to improve over Mixup and Mixup-ULS. For exam-
ple, on Tiny-ImageNet PLS outperformed Mixup and Mixup-ULS by reducing
the error from 38.06% to 35.26% and from 32.36% to 30.73%, respectively, when
using ResNet-18 and ResNet-50. Similar error reduction can be observed on
Cifar10 and Cifar100.

2 https://github.com/facebookresearch/mixup-cifar10.
3 https://github.com/facebookresearch/mixup-cifar10/models/.

https://github.com/facebookresearch/mixup-cifar10
https://github.com/facebookresearch/mixup-cifar10/models/
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4.3 Ablation Studies

Impact of Learned Distribution and Original Samples. We evaluate
the impact of the key components in PLS using ResNet-18 and ResNet-50 on
Cifar100. Results are in Table 3. The key components include 1) removing the
learned smoothing distribution mass in Eq. 13, 2) excluding the original training
inputs as discussed in the method section, and 3) replacing the learned smooth-
ing distribution mass with uniform distribution with weight coefficients of 0.1,
0.2, and 0.3 (denoted UD-0.1, UD-0.2 and UD-0.3).

The error rates obtained in Table 3 show that, both the learned smoothing
distribution and the original training samples are critical for PLS. In particular,
when excluding the original samples from training, the predictive error of PLS
dramatically increased from about 19% to nearly 24% for both ResNet-18 and
ResNet-50. The reason, as discussed in the method section, is that, without the
original training samples, the networks are trained with midpoint samples only,
thus may lack information on the validation samples with one-hot labels.

Table 3. Error rates (%) on Cifar100 by PLS while varying its key components: no
learned distribution, no original samples, replacing learned smoothing distribution with
uniform distribution.

PLS ResNet-18 ResNet-50

19.14 18.65

—- no learned distribution 21.06 19.35

—- no original samples 23.84 24.42

—- UD 0.1 19.50 18.91

—- UD 0.2 19.25 18.81

—- UD 0.3 19.31 18.89

Also, Table 3 indicates that, replacing the learned smoothing distribution in
PLS with manually tuned Uniform distribution (i.e., UD) obtained slightly larger
errors. This indicates that PLS is able to learn the distribution to smooth the
two target labels in the midpoint samples, resulting in superior accuracy and
excluding the need for the coefficient search for different applications.

Learning Smoothing Coefficient. We also conducted experiments of learning
the smoothing coefficient, instead of learning the smoothing distribution, for each
midpoint example. That is, we replace Eq. 12 with σ(WtSij) where Wt is R1×m

instead of RK×m. Table 4 presents the error rates (%) obtained using PreAct
ResNet-18 and ResNet-50 on Cifar100 and Cifar10. These results suggest that
learning to predict smoothing distribution significantly better than predicting
the smoothing coefficient in PLS.

Re-weight Smoothing Strength. PLS distributes half of a midpoint sample’s
ground truth distribution mass over the non-ground truth targets (Eq. 13). We
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Table 4. Error rates (%) on Cifar100 and Cifar10 obtained by PLS while predicting
the smoothing coefficient (pred. coeff.) instead of learning the smoothing distribution
(PLS) for each sample pair.

PLS ResNet-18 pred. coeff./PLS ResNet-50 pred. coeff./PLS

Cifar100 21.60/19.14 19.21/18.65

Cifar10 4.67/3.63 4.06/3.60

Fig. 3. Error rates (%, Y-axis) on Cifar100 obtained by varying the weight factor in
PLS from 0.1 to 0.9 (X-axis).

here evaluate the impact of different weight factors between the ground truth
and non-ground truth targets, by varying it from 0.1 to 0.9 (0.5 equals to the
average used by PLS). The results obtained by PLS using ResNet-18 on Cifar100
are in Fig. 3. The error rates in Fig. 3 suggest that average used by midpoints in
PLS provides better accuracy than other weighting ratios. This is expected as
discussed in Sect. 3.3.

4.4 Uncertainty Label and Conservative Classification

This section will show that PLS utilizes high uncertainty labels from midpoint
samples for training and produces very conservative classification decisions in
testing.

High Uncertainty Labels in Training. We visualize, in Fig. 4, the soft target
labels used for training by PLS with ResNet-18 on Cifar100 (top) and Cifar10
(bottom). Figure 4 depicts the soft label values of the training samples for both
the ground truth targets (in green) and their top 5 largest non-ground truth classes
(in orange). The figure presents the average values over all the training samples
resulting from sample pairs with two different one-hot true labels. Here, X-axis
depicts the training targets, and Y-axis the corresponding distribution mass.

Results in Fig. 4 indicate that, PLS uses much smaller target values for the
ground truth labels during training, when compared to the one-hot representation
label used by the baselines and the soft targets used by label smoothing ULS and
Mixup. For example, the largest ground truth targets for PLS are around 0.25 and
0.35 (green bars), respectively, for Cifar100 and Cifar10. These values are much
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smaller than 1.0 used by the baselines and 0.9 and 0.5 used by ULS-0.1 and Mixup
respectively. Consequently, in PLS, the distance between the ground truth targets
and the non-ground truth targets are much smaller than that in the baseline, ULS-
0.1 and Mixup. In addition, the distance between the two ground truth targets in
PLS (green bars) is very small, when compared to the distance between the ground
truth and non-ground truth target values (green vs. orange bars).

Fig. 4. Average distribution of ground truth targets (green bars) and the top 5 largest
non-ground truth targets (orange bars) used by PLS in training with ResNet-18 on
Cifar100 (top) and Cifar10 (bottom). X-axis is the classes and Y-axis the distribution
mass. (Color figure online)

These results indicate that the training samples in PLS have smoother train-
ing targets across classes, and those training signals are far from 1.0 (thus with
much higher uncertainty), which in turn impacts how PLS makes its classifica-
tion decisions as will be discussed next.

Low Predicted Softmax Scores in Testing. One effect of the high uncer-
tainty training signals (far from 1.0) as discussed above was reflected on the
model’s prediction scores made in test time. Figure 5 visualizes the predicted
winning softmax scores made by ResNet-18 (top row), ULS-0.1 (second row),
Mixup (third row) and PLS (bottom row) on all the 10K test data samples in
Cifar100 (left column) and Cifar10 (right column). To have better visualization,
we have removed the predictive scores less than 0.1 for all the methods since all
models obtained similar results for confidences smaller than 0.1.

For Cifar100, results on the left of Fig. 5 indicate that ResNet-18 produced
very confident predictions (top-left subfigure), namely skewing large mass of
its predicted softmax scores on 1.0 (i.e., 100% confidence). On the other hand,
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ULS and Mixup were able to decrease its prediction confidence at test time
(middle rows/left). They spread their predictive confidences to the two ends,
namely moving most of the predicted scores into two bins [0.1–0.2] and [0.8–
1.0]. In contrast, PLS produced very conservative predicted softmax scores, by
distributing many of its predicted scores to the middle, namely 0.5, and with
sparse distribution for scores larger than 0.7 (bottom left subfigure).

For Cifar10, results on the right of Fig. 5 again indicate that ResNet-18 (top)
produced very confident predictions, putting large mass of its predicted softmax
scores near 1.0. For ULS and Mixup (middle rows), the predicted softmax scores
were also distributed near the 1.0, but they are much less than that of ResNet-
18. In contrast, PLS (bottom right) again generated very conservative predicted
softmax scores. Most of them distributes near the middle of the softmax score
range, namely 0.5, with a very few larger than 0.6.

These results suggest that, resulting from high uncertainty training signals
across classes, PLS becomes extremely conservative when generating predicted
scores in test time, producing low winning softmax scores for classification.

Impact on Model Calibration. The conservative predictions generated by
PLS improve the model’s accuracy, but how such low softmax scores affect the
calibration of the output probabilities? In this section, we report the Expected
Calibration Error (ECE) [7] obtained by the baseline PreAct ResNet-18, ULS-
0.1, Mixup and PLS on the test set with 15 bins as used in [18] for both Cifar100
and Cifar10.

Results in Fig. 6 indicate that ULS (dark curve) is able to reduce the miscal-
ibration error ECE on the Cifar100 data set (left subfigure), but for the Cifar10
dataset (right subfigure), ULS has larger ECE error after 100 epochs of training
than the baseline model. Also, Mixup has higher ECE error than ULS on both
Cifar100 and Cifar10. However, the ECE errors obtained by the PLS methods
for both the Cifar100 and Cifar10 are much larger than the baseline, ULS and
Mixup. Note that, although the authors in [7] state that the Batch Normaliza-
tion (BN) strategy [14] also increases the miscalibration ECE errors for unknown
reasons, we doubt that the PLS will have the same reason as the BN approach.
This is because the main characteristic of the PLS model is that it produces
extremely conservative winning softmax scores which is not the case for the BN
strategy. We here suspect that the high ECE score of the PLS method may be
caused by the fact that ECE is an evenly spaced binning metrics but the PLS
produces sparse dispersion of the softmax scores across the range.

To verify the above hypothesis, we further investigate the Temperature Scal-
ing (TS) method [7], which enables redistributing the distribution dispersion
after training with no impact on the testing accuracy. During testing, TS multi-
plies the logits by a scalar before applying the softmax operator. We apply this
TS technique to PLS, and present the results in Fig. 6, depicting by red curve in
the left and right subfigures for the Cifar100 and Cifar10, respectively. The TS
factors was 0.5 and 0.2 respectively for Cifar100 and Cifar10, which were found
by a search with 10% of the training data. Figure 6 indicates that TS can signif-



196 H. Guo

Fig. 5. Histograms of predicted softmax scores on the validation data by ResNet-18
(top row), ULS-0.1 (second row), Mixup (third row), and PLS (bottom row) on Cifar100
(left) and Cifar10 (right).

icantly improve the calibration of PLS for both cases. The ECE errors obtained
by PLS-TS for both Cifar100 and Cifar10 (red curves) are lower than that of
the baseline, ULS, and Mixup.

4.5 Testing on Out-of-Distribution Data

Section 4.4 shows that PLS produces very conservative classification decisions for
in-distribution samples. We here explore the effect of PLS on out-of-distribution
data.

In this experiment, we first train a ResNet-18 or ResNet-50 network (denoted
as vanilla models) with in-distribution data (using either Cifar10 or Cifar100)
and then let the trained networks to predict on the testing samples from the
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Fig. 6. ECE curves on the validation data of Cifar100 (left) and Cifar10 (right) from
ResNet-18, ULS-0.1, Mixup, PLS and PLS with TS. X-axis is the training epoch and
Y-axis the ECE value. (Color figure online)

SVHN dataset (i.e., out-of-distribution samples). We compare our method with
the vanilla baseline (ResNet-18 or ResNet-50), Mixup, and ULS-0.1. The winning
predicted softmax scores on the SVHN testing samples are presented in Fig. 7,
where the top and bottom rows depict the results for ResNet-18 and ResNet-50,
respectively.

Figure 7 shows that, PLS again produces low winning predicted softmax
scores (namely less confident) against the samples from the SVHN dataset when
training with either Cifar10 or Cifar100 data, when compared to Mixup, ULS,
and the vanilla models. For example, when being trained with Cifar10 and
tested on the SVHN data with ResNet-18 (the top-left subfigure), PLS pro-
duced (orange curve) a spike of score distribution near the midpoint 0.5, with

Fig. 7. Winning softmax scores produced by PLS, Mixup, ULS, and baseline models,
when being trained with Cifar10 (left) and Cifar100 (right) and then testing on SVHN
with PreAct ResNet-18 (top) and ResNet-50 (bottom). (Color figure online)
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extremely spare distribution in the regions of high confidence. In contrast, while
Mixup and ULS (yellow/green curves) are more conservative than the vanilla
model on out-of-distribution data, it is noticeably more overconfident than the
PLS strategy by producing a spike of prediction with 90% confidence at the right
end of the figure.

5 Conclusion and Future Work

We proposed a novel output distribution regularization technique, coined PLS,
which learns smoothing distribution for midpoint samples that average random
sample pairs. We empirically showed PLS’ superior accuracy over label smooth-
ing and Mixup models. We visualized the high uncertainty training labels of the
midpoint samples, which cause PLS to produce very low winning softmax scores
for unseen in and out of distribution samples.

Our studies here suggest some interesting directions for future investigation.
For example, what are the other benefits arising from high uncertainty train-
ing labels and conservative classification? Would such uncertain predictions help
with beam search or ranking process for some downstream applications? Does
the proposed method benefit from mixing more than two samples for smoothing?
Another interesting research direction would be providing theoretical explana-
tion on why the method works considering that the synthetic images are not
realistic. We are also interested in applying our strategy to other domains beyond
image.
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Abstract. We introduce the notion of weak convexity in metric spaces,
a generalization of ordinary convexity commonly used in machine learn-
ing. It is shown that weakly convex sets can be characterized by a closure
operator and have a unique decomposition into a set of pairwise disjoint
connected blocks. We give two generic efficient algorithms, an exten-
sional and an intensional one for learning weakly convex concepts and
study their formal properties. Our experimental results concerning vertex
classification clearly demonstrate the excellent predictive performance
of the extensional algorithm. Two non-trivial applications of the inten-
sional algorithm to polynomial PAC-learnability are presented. The first
one deals with learning k-convex Boolean functions, which are already
known to be efficiently PAC-learnable. It is shown how to derive this
positive result in a fairly easy way by the generic intensional algorithm.
The second one is concerned with the Euclidean space equipped with the
Manhattan distance. For this metric space, weakly convex sets form a
union of pairwise disjoint axis-aligned hyperrectangles. We show that a
weakly convex set that is consistent with a set of examples and contains a
minimum number of hyperrectangles can be found in polynomial time. In
contrast, this problem is known to be NP-complete if the hyperrectangles
may be overlapping.

Keywords: Abstract convexity · Concept learning · Vertex
classification

1 Introduction

Several results in the theory of machine learning are concerned with concept
classes defined by various forms of convexity (e.g., polygons formed by the inter-
section of a bounded number of half-spaces [2], conjunctions [14], or geodesic
convexity in graphs [11]). In a broad sense, convex sets constitute contiguous
subsets of the domain. This property can, however, be a drawback when the
target concept cannot be represented by a single convex set. To overcome this
problem, we relax the notion of convexity by introducing that of weak convexity
for metric spaces. More precisely, a subset A of a metric space is weakly convex if
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for all x, y ∈ A and for all points z in the ground set, z belongs to A whenever x
and y are near to each other and the three points satisfy the triangle inequality
with equality. This definition has been inspired by the following relaxation of
convexity in the Hamming metric space [6]: A Boolean function is k-convex for
some positive integer k if for all true points x and y having a Hamming distance
of at most k, all points on all shortest paths between x and y are also true. Our
definition of weak convexity generalizes this notion to arbitrary metric spaces.

We present some properties of weakly convex sets of a metric space. In partic-
ular, we show that they form a convexity space [15] and hence, a closure system.
Furthermore, they give rise to a unique decomposition into a set of “connected”
blocks that have a pairwise minimum distance. We also study two scenarios
for learning weakly convex sets. The first one considers the case that the metric
space is finite and weakly convex sets are given extensionally. For this setting we
define a preclosure operator and show that weakly convex sets can be character-
ized by a closure operator defined by the fixed points of the iterative applications
of this preclosure operator. This characterization gives rise to an efficient algo-
rithm computing the weakly convex hull for any set of points. We then prove
that a weakly convex set that is consistent with a set of examples and has the
smallest number of blocks can be found in polynomial time. This result makes
use of the unique decomposition of weakly convex sets. As a proof of concept,
we experimentally demonstrate on graph vertex classification that a remarkable
accuracy can be obtained already with a relatively small training data set.

The second scenario deals with the case that the metric spaces are not nec-
essarily finite and that weakly convex sets are given intensionally, using some
compact representation. We present a simple generic algorithm, which iteratively
“merges” weakly convex connected blocks and give sufficient conditions for the
efficiency of a more sophisticated version of this näıve algorithm. Similarly to
the extensional setting, we prove that a weakly convex set consistent with a set
of examples and containing a minimum number of blocks can be found in poly-
nomial time if certain conditions are fulfilled. We also present two non-trivial
applications of this general result to polynomial PAC-learnability [14]. The first
one deals with learning k-convex Boolean functions, for which there already exists
a positive PAC result [6]. We still consider this problem because we show that
the same result can be obtained in a very simple way by our intensional learning
algorithm. Furthermore, our general purpose algorithm calculates the k-convex
Boolean function for a set of examples in the same asymptotic time complexity
as the domain specific one in [6]. The second application deals with the metric
space defined by R

d endowed with the Manhattan (or L1) distance. Weakly con-
vex sets for this case are the union of a set of pairwise disjoint axis-aligned closed
hyperrectangles. Using our general learning algorithm, we prove in a very simple
way that the concept class formed by weakly convex sets containing at most k
hyperrectangles is polynomially PAC-learnable. To underline the strength and
utility of our approach, we note that the consistent hypothesis finding problem
for the related problem that the hyperrectangles are not required to be pairwise
disjoint is NP-complete, even for d = 2 (see, e.g., [1]).
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Related Work. To the best of our knowledge, our notion of weak convexity in
metric spaces is new. As mentioned above, it has been inspired by the definition
of k-convex Boolean functions introduced in [6]. In fact, our notion generalizes
that for k-convex Boolean functions to a broad class of metric spaces, including
infinite ones as well. We also mention the somewhat related, but fundamentally
distinct notion of α-hulls (see, e.g., [5]). They are defined as the intersection of
enclosing generalized disks, but only for finite subsets of R2 and R

3. Furthermore,
it is known that the α-hull operator is not idempotent [8]. In contrast, our notion
results in an abstract convexity structure in the sense of [15] and has therefore
a corresponding closure operator defined for arbitrary subsets of a broad class
of metric spaces. Last, but not least, even though our definitions resemble those
of the density-based clustering approach [7], DBSCAN clusters are generally not
weakly convex, except for very specific parameter values.

Outline. The rest of the paper is organized as follows. We collect the necessary
notions and fix the notation in Sect. 2. In Sect. 3 we define weakly convex sets in
metric spaces and prove some of their basic properties. Sections 4 and 5 are devoted
to learning weakly convex sets in the extensional and intensional problem settings.
Finally, we conclude in Sect. 6 and mention some problems for future work. Most
of the proofs are omitted for space limitations. They can be found in [13].

2 Preliminaries

In this section we collect the necessary notions and fix the notation. For any
n ∈ N, [n] denotes the set {1, 2, . . . , n}. The family of all finite subsets of a set
X is denoted by [X]<ω. A metric space is a pair (X,D), where X is a set and D
is a metric on X (i.e., (i) D(x, y) = 0 iff x = y, (ii) D(x, y) = D(y, x), and (iii)
D(x, y) ≤ D(x, z) + D(z, y) for all x, y, z ∈ X).

A closure system over some ground set X is a pair (X, C) with C ⊆ 2X such
that C is closed under arbitrary intersection, where 2X denotes the power set of
X. We require that X ∈ C. The elements of C are called closed sets. One of the
elementary properties of closure systems is that they can be characterized in terms
of closure operators (see, e.g., [3]). More precisely, a function ρ : 2X → 2X is a
closure operator if it satisfies the following properties for all A,B ⊆ X: (i) A ⊆
ρ(A) (extensivity), (ii) ρ(A) ⊆ ρ(B) whenever A ⊆ B (monotonicity), and (iii)
ρ(ρ(A)) = ρ(A) (idempotency). If ρ is extensive and monotone, but not necessarily
idempotent, then it is a preclosure operator. The fixed points of a closure operator
are called closed sets and the set system (X, Cρ) with Cρ = {A ⊆ X : ρ(A) = A}
is always a closure system. Conversely, for any closure system (X, C), the function
ρ : 2X → 2X with ρ : A �→ ⋂{C ∈ C : A ⊆ C} is a closure operator satisfying
C = {ρ(A) : A ⊆ X}. Finally, a convexity space [15] over a set X is a closure
system (X, C) such that (i) ∅,X ∈ C and (ii) C is closed under nested unions (i.e.,⋃ D ∈ C for any D ⊆ C that is totally ordered w.r.t. set inclusion).

Our notion of weak convexity defined in the next section is inspired by that of
k-convexity introduced in the seminal paper by Ekin, Hammer, and Kogan [6].
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More precisely, consider the metric space (Hd,DH), where Hd = {0, 1}d is the
d-dimensional Hamming cube and DH is the Hamming distance. A subset X of
Hd is k-convex for an integer k ≥ 1 if for all x, y ∈ X with DH(x, y) ≤ k and
for all z ∈ Hd, z ∈ X whenever the triangle inequality holds with equality (i.e.,
DH(x, y) = DH(x, z) + DH(z, y)).

An (undirected) graph is a pair G = (V,E), where V is a finite set of vertices
and E ⊆ {e ⊆ V : |e| = 2} is a set of edges. An edge {x, y} will sometimes be
denoted by xy. A graph G′ = (V ′, E′) is a subgraph of G if V ′ ⊆ V and E′ ⊆ E.
A path is a graph P = (VP , EP ) with VP = {v1, . . . , vn} and EP = {vivi+1 : i ∈
[n − 1]}. The length of a path P is the number of edges it contains. A graph
is connected if all pairs of its vertices are connected by a path. If two vertices
of a graph G are connected by a path, we define their geodesic distance by the
length of a shortest path connecting them. Note that it is a metric on the set of
vertices for connected graphs. A subset X ⊆ V is called (geodesically) convex in
a graph G = (V,E) if for all u, v ∈ V and for all shortest paths P = (VP , EP )
connecting u and v, we have VP ⊆ X.

For the standard definitions of concepts, concept classes, VC-dimension, and
polynomial PAC-learnability from computational learning theory, the reader is
referred to some standard text book about learning theory (see, e.g., [9]). Let C
be a concept class over some domain X. The k-fold union of C for some k ≥ 1
integer is defined by Ck

∪ = {C1 ∪ . . . ∪ Ck : Ci ∈ C for all i ∈ [k]}. Note that
the definition does not require the Cis to be pairwise different. The following
problem is central to concept learning:

Problem 1 (The Consistency Problem). Given a concept class C ⊆ 2X over
some domain X and disjoint sets E+, E− ⊆ X of examples, return a concept
C ∈ C that is consistent with E+ and E−, i.e., E+ ⊆ C and E− ∩C = ∅ if such
a concept exists; o/w return “No”.

In order to prove polynomial PAC-learnability, we will use the following results
from computational learning theory [2].

Theorem 2. Let C ⊆ 2X be a concept class over some domain X with VC-
dimension d > 0.

(i) C is polynomially PAC-learnable if d is bounded by a polynomial of its param-
eters and Problem 1 can be solved in polynomial time in the parameters.

(ii) For all k ≥ 1, the VC-dimension of Ck
∪ is at most 2dk log(3k).

3 Weak Convexity in Metric Spaces

In this section we relax the notion of convexity defined for Euclidean spaces
to weak convexity in metric spaces and discuss some basic formal properties of
weakly convex sets. The main result of this section is formulated in Theorem 4. It
states that weakly convex sets have a unique decomposition into a set of weakly
convex “connected” blocks that have a pairwise minimum distance from each
other. To define weak convexity, recall that a subset A ⊆ R

d is convex if

D2(x, z) + D2(z, y) = D2(x, y) implies z ∈ A (1)
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Fig. 1. Illustration of weakly convex sets in the Euclidean plane R
2. (Color figure

online)

for all x, y ∈ A and for all z ∈ R
d, where D2 is the Euclidean distance. Our notion

of weak convexity in metric spaces incorporates a relaxation of (1), motivated
by the fact that convex sets defined by (1) are always “contiguous” and cannot
therefore capture well-separated regions of the domain. We address this problem
by adapting the idea of k-convexity over Hamming metric spaces [6] to arbitrary
ones. Analogously to [6], we do not require (1) to hold for all points x and y, but
only for such pairs which have a distance of at most a user-specified threshold. In
other words, while ordinary convexity is based on a global condition resulting in
a single “contiguous” region, our notion of weak convexity relies on a local one,
resulting in potentially several isolated regions, where the spread of locality is
controlled by the above mentioned user-specified threshold. This consideration
yields the following formal definition of weakly convex sets in metric spaces:

Definition 3. Let (X,D) be a metric space and θ ≥ 0. A set A ⊆ X is θ-convex
(or simply, weakly convex ) if for all x, y ∈ A and z ∈ X it holds that z ∈ A
whenever D(x, y) ≤ θ and z ∈ �=(x, y), where

�=(x, y) = {z ∈ X : D(x, z) + D(z, y) = D(x, y)} . (2)

Notice that (2) does not require x �= y. In particular, �=(x, x) = {x} for all
x ∈ X. The family of all weakly convex sets is denoted by Cθ,D; we omit D if it
is clear from the context. It always holds that C0,D = 2X .

In order to illustrate the notion of weak convexity, consider the finite set of
points A ⊆ R

2 depicted by filled dots in Fig. 1b. The strongly (i.e., ordinary)
convex hull of A is indicated by the gray area. In contrast, the ⊆-smallest θ-
convex set containing A for some suitable θ ≥ 0 is drawn in red. The most obvious
difference is that there are three separated regions A1, A2, and A3, instead of a
single contiguous area. In other words, weakly convex sets need not be connected
despite that strongly convex sets in R

2 do. This is a consequence of considering
only such pairs for membership witnesses that have a distance of at most θ (see,
also, Fig. 1a and 1c). For example, the points p and q in Fig. 1b have a distance
strictly greater than θ, implying that they do not witness the membership of the
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point v. Notice that in the same way as strongly convex sets, (parts of) weakly
convex sets may degenerate. While A2 and A3 are regions with strictly positive
area, A1 is just a segment. We may even have isolated points as shown in Fig. 1a.

Despite this unconventional behavior of weakly convex sets, (X, Cθ) forms
a convexity space. To see this, note that ∅,X ∈ Cθ. Furthermore, Cθ is stable
for arbitrary intersections and nested unions. Indeed, if F ⊆ Cθ is a family of
θ-convex sets, x, y ∈ ⋂ F with D(x, y) ≤ θ then �=(x, y) ⊆ F for all F ∈ F
implying that

⋂ F is θ-convex. If, in addition, F is totally ordered by inclusion
and x, y ∈ ⋃ F with D(x, y) ≤ θ then there are Fx, Fy ∈ F , say Fx ⊆ Fy, such
that x ∈ Fx and y ∈ Fy. Then, according to (2), �=(x, y) ⊆ Fy implying that⋃ F is θ-convex. Hence, Cθ is a convexity space as claimed.

Since Cθ is stable for arbitrary intersections, it has an associated closure
operator ρθ : 2X → 2X with A �→ ⋂{C ∈ Cθ : A ⊆ C} for all A ⊆ X. That is, ρθ

maps a set A to the ⊆-smallest θ-convex set containing A. It is called the weakly
convex hull operator and its fixed points (i.e., the ρθ-closed sets) form exactly
Cθ. Moreover, ρθ is domain finite [15], i.e., ρθ(A) =

⋃{ρθ(F ) : F ⊆ [A]<ω}.

3.1 Some Basic Properties of Weakly Convex Sets

We now present some basic properties of weakly convex sets that make this kind
of closed sets interesting for machine learning from a practical as well as from
a theoretical viewpoint. As already mentioned, weakly convex sets need not be
contiguous (cf. Fig. 1), in contrast to, for instance, ordinary convex sets in the
Euclidean space. Instead, one can observe regions that are separated from each
other. This is again due to the fact that the notion of weak convexity utilizes
a distance threshold θ. As a consequence, separate regions may arise with a
pairwise distance of at least θ. In Theorem 4 below, which is one of our main
technical results for this work, we formally state this property of weakly convex
sets. We note that this result generalizes that stated in [6, Proposition 3.2] for
the Hamming metric space to arbitrary metric spaces.

We first introduce some necessary notions. Let M = (X,D) be a metric
space, θ ≥ 0, and A ⊆ X. Two points a, b ∈ A are θ-connected w.r.t. A, denoted
a ∼θ,A b, if there is a finite sequence a = p1, p2, . . . , pr = b ∈ A such that
D(pi, pi+1) ≤ θ for all i ∈ [r − 1]. A is θ-connected if a ∼θ,A b for all a, b ∈ A.
Note that ∼θ,A is an equivalence relation on A; its equivalence classes, denoted
by [a]∼θ,A

= {b ∈ A : a ∼θ,A b} for all a ∈ A, will be referred to as θ-connected
components.

Theorem 4. Let (X,D) be a metric space and θ ≥ 0. Then A ⊆ X is θ-convex
iff there is a uniquely defined family of non-empty sets (Ai ⊆ A)i∈I for some
index set I satisfying the following conditions:

(i) A =
⋃

i∈I Ai,
(ii) Ai is θ-convex for all i ∈ I,
(iii) Ai is θ-connected for all i ∈ I,
(iv) for all i, j ∈ I with i �= j, D(a, b) > θ for all a ∈ Ai, b ∈ Aj.
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In what follows, the family (Ai)i∈I satisfying conditions (i)–(iv) in Theorem 4
will be referred to as the θ-decomposition of the θ-convex set A. Furthermore, the
sets Ai in the θ-decomposition of A will be called θ-blocks or simply, blocks. The
theorem above tells us that weakly convex sets can be partitioned uniquely into a
family of non-empty blocks in a way that the distance between each pair of such
weakly convex components is at least θ. The uniqueness of the θ-decomposition
in Theorem 4 gives rise to a näıve algorithm for computing the weakly convex
hull of a finite set intensionally (cf. Algorithm 2 in Sect. 5). The idea is to start
with the singletons and enforce conditions (i)–(iv) by repeatedly merging invalid
pairs of blocks. However, that requires the strict inequality in condition (iv) not
only to hold for pairs of points, but also between blocks. Corollary 5 below is
concerned with metric spaces in which this property holds.

Corollary 5. Let M = (X,D) be a metric space, θ ≥ 0, A ⊆ X, and (Ai)i∈I

the θ-decomposition of ρθ(A).

(i) We have |I| ≤ |A|. In particular, if A is finite, then I is finite.
(ii) If M is complete and Ai and Aj are (topologically) closed for some i �= j

then D(Ai, Aj) = inf
a∈Ai,b∈Aj

D(a, b) > θ.

Accordingly, Corollary 5 motivates the following definition of well-behaved metric
spaces. A metric space M = (X,D) is compatible with the convexity space
(X, Cθ) if ρθ(A) is (topologically) closed for all A ∈ [X]<ω [15]. If, in addition,
M is complete, we call it well-behaved.

Finally, we claim that the weakly convex hull operator is monotone w.r.t. θ.
This property will be utilized by our consistent hypothesis finding algorithms.

Proposition 6. Let (X,D) be a metric space and 0 ≤ θ ≤ θ′. Then for all
A ⊆ X, (i) ρθ(A) ⊆ ρθ′(A) and (ii) for all x, y ∈ ρθ(A), x, y are in the same
θ′-block of the θ′-decomposition of ρθ′(A) if they are in the same θ-block of the
θ-decomposition of ρθ(A).

4 Learning in the Extensional Problem Setting

In this section we consider the case that the underlying metric space is finite
and weakly convex sets are represented extensionally, e.g. because they have
no (natural) compact representation. Examples of this scenario include, among
others, the case that the metric space is given by the set of vertices of a graph
together with some distance on vertices. To formulate some basic properties
of ρθ introduced in Sect. 3, we define a preclosure operator ρ̂θ over X. More
precisely, let M = (X,D) be a finite metric space and θ ≥ 0. For all x, y ∈ X,
let Wθ(x, y) = �=(x, y) if D(x, y) ≤ θ; o/w Wθ(x, y) = ∅. Finally, define the
function ρ̂θ : 2X → 2X by ρ̂θ(A) =

⋃

x,y∈A

Wθ(x, y) for all A ⊆ X.

Lemma 7. The function ρ̂θ over M is a preclosure operator.
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Algorithm 1. Extensional Weakly Convex Hull ρ̂θ

Require: finite metric space (X, D) and Sx = {(x′, D(x, x′)) : x′ ∈ X \ {x}} sorted in
increasing order in the second component, for all x ∈ X

Input: A ⊆ X and θ ≥ 0
Output: θ-decomposition of ρθ(A)

1: C, E ← ∅, queue Q ← A
2: mark all elements in A
3: while Q �= ∅ do
4: x ← Dequeue(Q), C ← C ∪ {x}
5: for all y ∈ Nθ(x) ∩ C do
6: E ← E ∪ {xy}
7: for all z ∈ ND(x,y)(x) ∩ ND(x,y)(y) do
8: if z is unmarked and z ∈ 
=(x, y) then
9: mark z, Enqueue(Q, z)

10: return D = {V (Z) : Z is a connected component of Gθ = (C, E)}

Let ρ̂0θ(A) = A and ρ̂i+1
θ (A) = ρ̂θ(ρ̂i

θ(A)) for all i ∈ N and A ⊆ X. Since ρ̂θ

is monotone by Lemma 7 and X is finite, for all A ⊆ X there exists a positive
integer γ(A) such that ρ̂

γ(A)
θ (A) = ρ̂

γ(A)+1
θ (A), implying

ρ̂
γ(A)
θ (A) = ρ̂

γ(A)+l
θ (A) (3)

for all l ≥ 0. Furthermore, Γ = max{γ(A) : A ⊆ X} < ∞. In the theorem below
we claim that ρ̂Γ

θ yields exactly ρθ.

Theorem 8. Let (X,D) be a finite metric space and θ ≥ 0. Then

(i) ρ : 2X → 2X with ρ(A) = ρ̂Γ
θ (A) for all A ⊆ X is a closure operator and

(ii) for all A ⊆ X, ρθ(A) = A iff ρ(A) = A.

We now consider the problem of computing weakly convex sets for the case
that the metric space is finite and weakly convex sets are represented extension-
ally. More precisely, we are interested in the following problem setting:

Problem 9 (The Extensional Weakly Convex Hull Problem). Given a finite met-
ric space M = (X,D) with |X| = n, a set A ⊆ X, and a threshold θ ≥ 0, compute
the θ-decomposition A1, . . . , A� of ρθ(A), where the Ais are given extensionally.

The algorithm solving Problem 9 is given in Algorithm 1. Its input consists
of a set A ⊆ X for some finite metric space (X,D) and a non-negative real
number θ. The algorithm assumes that the pairwise distances for (X,D) are
given explicitly and that each element x ∈ X is associated with a sorted sequence
Sx of pairs (x′,D(x, x′)), for all x′ ∈ X \ {x}. We assume that these sequences
are calculated and stored once in a preprocessing step. The reason behind this
assumption is that in order to solve a related consistency problem defined below,
Algorithm 1 will be called with different values of θ. For any δ ≥ 0, these



208 E. Stadtländer et al.

sequences allow the δ-neighborhood Nδ(x) = {y ∈ X : D(x, y) ≤ δ} of a point
x ∈ X to be calculated in time O(|Nδ(x)|) for all δ ≥ 0 (cf. lines 5 and 7 of
Algorithm 1).

Algorithm 1 maintains three variables. In particular, one can show in the
proof of the theorem below, the set ρθ(A) is calculated in C. All elements of C are
added first to the queue Q, which is initialized with A (cf. line 1). The elements
of Q are processed one by one (cf. lines 4–9). In particular, for the element x of
Q considered in line 4, we move x from Q to C (line 4) and take all elements y
in the θ-neighborhood of x that have already been added to C ⊆ ρθ(A) (line 5).
In variable E we maintain the set of edges of the θ-neighborhood graph over C,
i.e., two elements of C are connected by an edge iff their distance is at most θ.
As x is a new element in C, in line 6 we connect it with all y considered in line 5.
In lines 7–9 we take all z ∈ Wθ(x, y) that have not yet been considered, mark z,
and add it to the queue Q. Regarding line 7, note that the triangle inequality
implies that if z ∈ Wθ(x, y) then D(x, z),D(y, z) ≤ D(x, y). Finally, after we
have processed all elements that have been added to Q, in line 10 we calculate
the connected components of the θ-neighborhood graph Gθ = (C,E) and return
the family formed by the sets of vertices of the connected components.

Theorem 10. Algorithm 1 is correct and solves Problem 9 in O(nd2) time,
where d is the degree of the θ-neighborhood graph Gθ = (C,E).

In Sect. 4.1 we will be concerned with an application scenario of the following
consistent hypothesis finding (CHF) problem:

Problem 11 (The CHF Problem for Extensional Weakly Convex Hulls). Given
a finite metric space M = (X,D) with |X| = n, disjoint sets E+, E− ⊆ X of
positive and negative examples, and an integer k > 0, return “Yes” and the
θ-decomposition of a θ-convex set consistent with E+ and E− that consists of at
most k blocks, if it exists for some θ; o/w the answer “No”.

Remark 12. Note that if Problem 11 can be solved in polynomial time then, as
k cannot be greater than |E+| by (i) of Corollary 5, a consistent hypothesis with
the smallest number of blocks can be found in polynomial time. It always exists,
as ρ0(E+) = E+ and E+ ∩ E− = ∅ by assumption.

Theorem 13. Problem 11 can be solved in O(TP (M) + n3 log n) time, where
TP (M) is the time complexity of computing all pairwise distances for X.

4.1 Application Scenario: Vertex Classification

As a proof of concept, in this section we empirically demonstrate the learnability
of weakly convex concepts over graphs. More precisely, we consider the metric
space M = (V,Dg) for some undirected graph G = (V,E), where Dg is the
geodesic distance on V . In the learning setting, V is partitioned into V + and
V −, such that V + is θ-convex for some θ ≥ 0. The target concept V + as well as θ
are unknown to the learning algorithm. The problem we investigate empirically
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Fig. 2. Example of a graph with 250 vertices and 40 training examples. (Color figure
online)

is to approximate V + given some small labeled set E = E+ ∪ E− of positive
and negative examples.

We solve this learning task by computing the hypothesis C = ρθ′(E+) for the
greatest θ′ ≤ maxu,v∈V D(u, v) that is consistent with E. Such a θ′ always exists
(cf. Remark 12). Furthermore, C is computed by performing a binary search for θ′

(see [13] for the details). To measure the predictive performance, we use accuracy
(i.e., number of correctly classified vertices in V \E over |V \E|) and compare it to
the baseline max{|V +|/|V |, |V −|/|V |} defined by majority vote. We stress that
the only purpose of these experiments is to empirically demonstrate that weakly
convex concepts can be learned with a remarkable accuracy, without utilizing
any domain specific properties and with using only a few training examples.
An adaptation of our approach to the domain specific problem of learning on
graphs and a rigorous empirical comparison of its predictive performance with
state-of-the-art problem specific algorithms goes far beyond the scope of this
paper.

We generated 50 random graphs for |V | = 100, 250, 1000, and 2500 for the
experiments as follows: According to Proposition 6, the diameter of a graph
is an upper bound on the parameter θ. In order to provide a diverse set of
target concepts and possible values for θ, we generated random graphs based
on Delaunay triangulations [4] as follows: After choosing the respective number
of nodes V ⊂ [0, 1]2 uniformly at random, we have computed the Delaunay
triangulation. We then connected two nodes in V by an (undirected) edge iff
they co-occur in at least one simplex of the triangulation. We considered the
two cases that the edges are unweighted or they are weighted with the Euclidean
distance between their endpoints. However, the resulting graph often contains a
small number of very long edges (in terms of the Euclidean distance), especially
near the “outline” of the chosen point set. Since such edges reduce the graph’s
diameter substantially, we removed the longest 5% of the edges, i.e., those that
are not contained in the 95th percentile w.r.t. the Euclidean distance of their
endpoints.



210 E. Stadtländer et al.

Fig. 3. Results for Delaunay-based graphs for varying number of vertices (|V |). (Color
figure online)

For each graph G = (V,E) in the resulting dataset, we have generated ran-
dom partitionings (V +, V −) of V in a way that V + and V − are balanced (i.e.,
|V +| ≈ |V −|) and V + is θ-convex. We note that for all random partitionings
obtained, V + was not strongly (i.e., ordinary) convex. The training examples E+

and E− have been sampled uniformly at random from V + and V −, respectively,
such that |E+| ≈ |E−|. The number of training examples (i.e., |E+ ∪ E−|) was
varied over 20, 40, 60, 80, 100. This overall procedure generates 5,000 learning
tasks (50 graphs × 20 random target concepts × 5 training set sizes), for each
graph size |V | = 100, 250, 1000, 2500. In Fig. 2 we give an example graph with
|V | = 250, together with the node prediction using 40 training examples. The
training examples are marked with black outline and the predictions are encoded
by colors. In particular, dark red corresponds to true positive, dark blue to true
negative, and light red to false negative nodes. In the example we have no false
positive node, which was the case for most graphs.

Figure 3 shows the accuracy (y-axes) of the baseline (blue box plots) and
our learner (orange box plots for unweighted and red ones for weighted edges)
grouped by the number of provided examples (x-axes) and the graph sizes |V |.
In all cases, our learner outperforms the baseline significantly by noting that
for |V | = 100, the high accuracy results obtained from 60 training examples are
less interesting. For |V | > 100 it is remarkable that the learner does not require
much more examples with increasing graph size. For example, for graphs with
2, 500 vertices, already 80 examples are sufficient to achieve an average accuracy
of 0.94 for unweighted graphs. Notice that the baseline is in all cases very close to
0.6. This is due to our construction of the target concepts: We chose θ maximal
such that 2|V +| < |V |. Therefore, in almost all cases there are about 10% less
positive nodes than negative. We have tested the generated weakly convex sets
for strong convexity: almost all of them were not strongly convex. In summary,
our experimental results clearly show that a remarkable predictive accuracy can
be obtained already with relatively small training sets with our generic approach,
without utilizing any domain specific knowledge.
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Algorithm 2. Intensional Weakly Convex Hull (Näıve)

Require: well-behaved metric space M = (X, D) and representation scheme μ for M
Input: A ∈ [X]<ω and θ ≥ 0
Output: μ(θ, A1), . . . , μ(θ, A�), where A1, . . . , A� is the θ-decomposition of ρθ(A)

1: D ← {μ(θ, {x}) : x ∈ A}
2: while ∃Bi, Bj ∈ D such that Bi �= Bj and D(Bi, Bj) ≤ θ do
3: D ← (D \ {Bi, Bj}) ∪ {Merge(θ, A, Bi, Bj)}
4: return D

5 The Intensional Problem Setting

In this section we consider the intensional problem setting, that is, the scenario
that weakly convex sets have some compact representation. In contrast to the
extensional case, the metric spaces in this section are allowed to be infinite.
They are, however, required to be well-behaved (see Sect. 3 for the definition).
To formulate the problem setting considered in this section, we introduce the
following notion for a metric space M = (X,D): A representation scheme for
M is a function μ : R≥0 × [X]<ω → {0, 1}∗ satisfying μ(θ,A) = μ(θ,B) iff
ρθ(A) = ρθ(B) for all A,B ∈ [X]<ω and θ ≥ 0. In other words, μ returns
some representation of ρθ(A) for all finite subsets A ⊆ X. Note that ρθ(A)
can be infinite. Analogously to Problem 9, we are interested in the following
computational problem:

Problem 14 (The Intensional Weakly Convex Hull Problem). Given a well-
behaved metric space M = (X,D), a representation scheme μ for M, a set
A ⊆ [X]<ω with |A| = m, and θ ≥ 0, compute μ(θ,A).

For page limitation, we give a very simple näıve algorithm for Problem 14
(see Algorithm 2), by noting that it is not optimal. It assumes a well-behaved
metric space M = (X,D) and some representation scheme μ for M. The input
to the algorithm consists of a finite subset A ⊆ X and a distance threshold θ ≥ 0.
Its output is the set {μ(θ,A1, ), . . . , μ(θ,A�)} of binary strings representing the
blocks A1, . . . , A� in the θ-decomposition of ρθ(A). The algorithm first initializes
the variable D with the set of the representations of ρθ({x}) = {x} for all x ∈ A
(cf. line 1). It then iteratively selects two different blocks Bi, Bj ∈ D such that
D(Bi, Bj) = minx∈Bi,y∈Bj

D(x, y) ≥ θ. If there are no such Bi and Bj , then it
terminates by returning D; o/w it updates D by removing Bi, Bj and adding
their merge defined by Merge(θ,A,Bi, Bj) = μ(θ, (ext(Bi) ∪ ext(Bj)) ∩ A) if
D(Bi, Bj) ≤ θ; o/w Merge(θ,A,Bi, Bj) =⊥, where ext(Bi), ext(Bj) denote the
extensions of Bi, Bj , respectively. The proof of the proposition below follows by
induction on |D| from Theorem 4 and Corollary 5.

Proposition 15. Algorithm 2 is correct.

Let TS , TD, and TM denote the time complexity of computing μ(θ, {x}), the
distance between Bi and Bj , and the merge of Bi and Bj , respectively, for any
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x ∈ X and θ-blocks Bi and Bj . One can easily check that the time complexity of
Algorithm 2 is O(mTS + m3TD + mTM ). Using a more sophisticated version of
Algorithm 2 not presented for space limitations, we have the following improved
result.

Theorem 16. Problem 14 can be solved in time O(mTS + m2TD + mTM ).

We consider the consistency problem also for the intensional scenario.

Problem 17 (The Consistency Problem for Intensional Weakly Convex Hulls).
Given a well-behaved metric space M = (X,D), representation scheme μ for M,
disjoint finite sets E+, E− ⊆ X of labeled examples with |E+ ∪ E−| = m, and
k > 0, return “Yes” and the representations of the blocks in the θ-decomposition
of a θ-convex set that is consistent with E+ and E− and has at most k blocks,
if such a decomposition exists for some θ > 0; o/w the answer “No”.

Note that Remark 12 applies also to the problem above. Using the same
idea as for the solution of Problem 11 (i.e., to decide whether a desired θ exists,
we perform a binary search on the sorted set of pairwise distances between the
elements in A), we have the following result on the above problem:

Theorem 18. Problem 17 can be solved in O((mTS + m2TD + mTM ) log m)
time.

In Sects. 5.1 and 5.2 below we present two non-trivial applications of Theo-
rem 18 to polynomial PAC-learnability.

5.1 Learning Weakly Convex Boolean Functions

As a first application of Theorem 18, we show that the concept class formed
by weakly convex Boolean functions is efficiently PAC-learnable. This result is
not new, it has been obtained with a domain specific algorithm in [6]. Still, we
present it as an application because, as we show below, we can derive it in a very
simple way by using Theorem 18. Furthermore, our general purpose algorithm
solving Problem 14 has the same asymptotic complexity on this problem as the
domain specific one in [6].

Consider the metric space MH = (Hn,DH) for some n ∈ N (see Sect. 2).
Clearly, the finiteness of Hn implies that MH is well-behaved for all θ ≥ 0. A
Boolean function f : {0, 1}n → {0, 1} (n ∈ N) is θ-convex for some θ ≥ 0 if
for all x, y, z ∈ Hn, f(z) = 1 whenever f(x) = f(y) = 1, DH(x, y) ≤ θ, and
z ∈ �=(x, y). Note that for MH it suffices to consider the values in [n] for θ.

Throughout this section we will use the following notation: Ln denotes the set
{x1,¬x1, . . . , xn,¬xn} of Boolean literals. A term T is a conjunction of literals
from Ln; T is sometimes regarded as the set of literals it contains. A conflict
between two terms Ti and Tj over Ln is an integer p ∈ [n] such that xp ∈ Ti

and ¬xp ∈ Tj or vice versa. Finally, for a Boolean function f , ext(f) denotes the
extension of f (i.e., ext(f) = {x ∈ Hn : f(x) = 1}). We will use the following
auxiliary result:
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Lemma 19. Let A ⊆ Hn be θ-convex and θ-connected for some θ ≥ 2. Then A
is convex (i.e., n-convex) and can be represented by a term T over Ln.

For any n > 0, the concept class Bn,k ⊆ 2Hn is defined as follows: For all A ⊆
Hn, A ∈ Bn,k iff A is θ-convex for some θ ≥ 0 and its θ-decomposition has at most
k blocks. Theorem 4 and Lemma 19 together imply that any such weakly convex
set A can be represented uniquely by a k-term DNF F such that the extensions
of the terms in F represent precisely the blocks in the θ-decomposition of A.
Since the blocks are non-empty, no term contains a variable and its negation.
This gives rise to the following definition of the representation scheme μ for MH :
For all S ⊆ Hn, define μH : R≥0 × Hn → {0, 1}∗ by μR(θ, S) = F , where F is
the unique DNF representation of ρθ(S), if ρθ(S) is θ-connected; o/w by ⊥.

Lemma 20. Problem 17 can be solved in O(nm2 log m) time for MH .

Proof. Let μ in Problem 17 be defined by μH . We show that TS , TD, TM in
Theorem 18 are all in O(n). For TS , the claim follows from μH(θ, {x}) =

∧
i li,

where li = xi if xi = 1; o/w li = ¬xi. Let Ti and Tj be terms over Ln. Their dis-
tance DH(Ti, Tj) is equal to the number of conflicts between Ti and Tj , implying
TD ∈ O(n). Finally, if DH(Ti, Tj) ≤ θ then Merge(Ti, Tj) is the term T with
literals Ti ∩ Tj . Thus, TMerge = O(n). The claim then follows by Theorem 18. ��
Theorem 21. For all d, k ≥ 0, Bn,k is polynomially PAC-learnable.

Proof. Since Bn,k ⊆ (Bn,1)k
∪, VC-dim(Bn,k) ≤ VC-dim((Bn,1)k

∪) ≤ 4nk log(3k)
by VC-dim(Bn,1) ≤ 2n and by (ii) of Theorem 2. Hence, the VC-dimension
of Bn,k is polynomial in n and k. Furthermore, by Lemma 20, the consistency
problem for Bn,k can be solved in time polynomial in n, k, and m = |E+ ∪ E−|.
The theorem then follows by (i) of Theorem 2. ��

Note that if the extensions of the terms in the DNF are not required to be
pairwise disjoint then, in contrast to the positive result in Theorem 21, k-term
DNF formulas are not polynomially PAC-learnable for any k ≥ 2 if P �= RP [10].
In [6] it is shown that the class of θ-convex Boolean functions is not polynomially
PAC-learnable for θ > n/2−1. The reason is that the number of terms having a
pairwise distance greater than n/2 − 1 can be exponential in n. Notice that the
number of terms in Bn,k is bounded by the parameter k in our problem setting.
Finally we note that the time complexity of the domain specific algorithm in
[6] that solves Problem 14 for Hn is O(m2n), which is the same as that of the
sophisticated version of our general purpose Algorithm 2 in [13].

5.2 Learning Weakly Convex Axis-Aligned Hyperrectangles

Our second application of Theorem 18 is concerned with polynomial PAC-
learnability of weakly convex sets in MR = (Rd,D1), where D1 is the Man-
hattan (or L1) distance, i.e., D1(x, y) =

∑
i |xi − yi| for all x = (x1, . . . , xd)

and y = (y1, . . . , yd) ∈ R
d. Note that MR can be regarded as a generalization
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of MH considered in the previos section, as D1 becomes equal to DH over the
domain Hd ⊆ R

d. Clearly, MR is complete. Furthermore, for all x, y, z ∈ R
d,

D1(x, z) + D1(z, y) = D1(x, y) iff z belongs to the smallest axis-aligned (topo-
logically) closed hyperrectangle in R

d that contains x and y. This implies that
all axis-aligned closed hyperrectangles are θ-convex for all θ > 0 and ρθ(A) is
closed for all finite subsets A ⊂ R

d.
All concepts in the concept class Rd,k considered in this section are defined by

the union of at most k pairwise disjoint axis-aligned closed hyperrectangles in R
d,

for some d, k > 0. More precisely, for all R ⊆ R
d, R ∈ Rd,k iff R is θ-convex for

some θ > 0 with respect to MR and the θ-decomposition of R consists of at most
k blocks (i.e., axis-aligned closed hyperrectangles). For all finite sets S ∈ [Rd]<ω,
define μR : R≥0 × R≥0 × [Rd]<ω → {0, 1}∗ by μR(θ, S) = (Smin, Smax) if ρθ(S)
is θ-connected; o/w by ⊥,1 where Smin (resp. Smax) denotes the componentwise
minimum (resp. maximum) of the points in S.

Lemma 22. Problem 17 can be solved in O(dm2 log m) time for M = (Rd,D1).

Proof. Let μ in Problem 17 be defined by μR. We prove the claim by showing
that TS , TD, TMerge in Theorem 18 are all in O(d). In particular, TS ∈ O(d)
follows from μR(θ, {x}) = (x, x). Let Bi (resp. Bj) be an axis-aligned closed
hyperrectangle, u = min Bi, and v = max Bi (resp. x = min Bj and y = max Bj).
We have TD ∈ O(d) by the fact that D1(Bi, Bj) =

∑d
i=1 D′

1([ui, vi], [xi, yi]),
where D′

1([ui, vi], [xi, yi]) = min{|xi − vi|, |ui − yi|} if [ui, vi] ∩ [xi, yi] �= ∅; o/w
D′

1([ui, vi], [xi, yi]) = 0. Finally, if D(Bi, Bj) ≤ θ then Merge(Bi, Bj) is the
smallest axis-aligned closed hyperrectangle containing min{u, x} and max{v, y},
implying TMerge = O(d). The claim then follows by Theorem 18. ��
Theorem 23. For all d, k ≥ 0, Rd,k is polynomially PAC-learnable.

Proof. Since Rd,k ⊆ (Rd,1)k
∪, VC-dim(Rd,k) ≤ VC-dim((Rd,1)k

∪) ≤ 4dk log(3k)
by VC-dim(Rd,1) = 2d and by (ii) of Theorem 2. Hence, the VC-dimension
of Rd,k is polynomial in d and k. Furthermore, by Lemma 22, the consistency
problem for Rd,k can be solved in time polynomial in d, k, and |E+∪E−|. Thus,
the theorem follows by (i) of Theorem 2. ��

While Lemma 22 implies that a consistent hypothesis that has the smallest
number of pairwise disjoint axis-aligned d-dimensional closed hyperrectangles
can be found in polynomial time for all d ≥ 1, this problem becomes NP-complete
even for d = 2, if disjointness is not required (see, e.g., [1]).

6 Concluding Remarks

The theoretical and experimental results of this paper demonstrate the usefulness
of weakly convex sets for machine learning. While our focus in this paper was

1 We assume that real numbers are represented in O(1) space up to a certain precision.
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solely on applications to machine learning, weakly convex sets seem to be useful
for data mining applications (e.g., itemset mining, subgroup discovery) as well.

The notion of weak convexity can be uninteresting for certain metric spaces.
For example, for finite subspaces of (Rd,D2), �=(x, y) = {x, y} holds almost
surely for all points x and y. To overcome this problem, in the long version of
this paper we allow the triangle inequality to hold up to some tolerance ε instead
of equality. All results of Sect. 3 can be generalized to this relaxed definition.

There are several interesting questions for further research. Note, for example,
that Algorithm 2 is very similar to single linkage clustering, raising the following
question: Can the time complexity in Theorem 18 be further improved by using
techniques (e.g., in [12]) designed for single linkage clustering algorithms?
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Abstract. We propose a metric for evaluating the generalization ability
of deep neural networks trained with mini-batch gradient descent. Our
metric, called gradient disparity, is the �2 norm distance between the
gradient vectors of two mini-batches drawn from the training set. It is
derived from a probabilistic upper bound on the difference between the
classification errors over a given mini-batch, when the network is trained
on this mini-batch and when the network is trained on another mini-
batch of points sampled from the same dataset. We empirically show
that gradient disparity is a very promising early-stopping criterion (i)
when data is limited, as it uses all the samples for training and (ii) when
available data has noisy labels, as it signals overfitting better than the
validation data. Furthermore, we show in a wide range of experimental
settings that gradient disparity is strongly related to the generalization
error between the training and test sets, and that it is also very infor-
mative about the level of label noise.

Keywords: Early stopping · Generalization · Gradient alignment ·
Overfitting · Neural networks · Limited datasets · Noisy labels

1 Introduction

Early-stopping using a separate validation set is one of the most popular tech-
niques used to avoid under/over fitting deep neural networks trained with itera-
tive methods, such as gradient descent [1–3]. The optimization is stopped when
the performance of the model on a validation set starts to diverge from its
performance on the training set. Early stopping requires an accurately labeled
validation set, separated from the training set, to act as an unbiased proxy on
the unseen test error. Obtaining such a reliable validation set can be expensive in
many real-world applications as data collection is a time-consuming process that
might require domain expertise. Furthermore, deep learning is becoming popular
in applications for which there is simply not enough available data [4,5]. Finally,
inexperienced label collectors, complex tasks (e.g., distinguishing a guinea pig
from a hamster), and corrupted labels due for instance to adversarial attacks
result in datasets that contain noisy labels [6]. Deep neural networks have the
unfortunate ability to overfit to such small and/or noisy labeled datasets, an
c© Springer Nature Switzerland AG 2021
N. Oliver et al. (Eds.): ECML PKDD 2021, LNAI 12976, pp. 217–232, 2021.
https://doi.org/10.1007/978-3-030-86520-7_14
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issue that cannot be completely solved by popular regularization techniques [7].
A signal of overfitting during training is therefore particularly useful, if it does
not need a separate, accurately labeled validation set, which is the purpose of
this paper.

w
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Fig. 1. An illustration of the penalty term
R2, where the y-axis is the loss, and the x-
axis indicates the parameter of the model.
LS1 and LS2 are the average losses over
mini-batches S1 and S2, respectively. w(t)

is the parameter at iteration t and w
(t+1)
i is

the parameter at iteration t + 1 if batch Si

was selected for the update step at iteration
t, with i ∈ {1, 2}.

Let S1 and S2 be two mini-batches
of points sampled from the available
(training) dataset. Suppose that S1 is
selected for an iteration (step) of the
mini-batch gradient descent (SGD),
at the end of which the parameter vec-
tor is updated to w1. The average loss
over S1 (denoted by LS1(hw1)) is in
principle reduced, given a sufficiently
small learning rate. The average loss
LS2(hw1) over the other mini-batch S2

is not as likely to be reduced. It is
more likely to remain larger than the
loss LS2(hw2) computed over S2, if it
was S2 instead of S1 that had been
selected for this iteration. The differ-
ence R2 = LS2(hw1) − LS2(hw2) is
the penalty that we pay for choosing
S1 over S2 (and similarly, R1 is the
penalty that we would pay for choos-
ing S2 over S1). R2 is illustrated in
Fig. 1 for a hypothetical non-convex loss as a function of a one dimensional
parameter w. The expected penalty measures how much, in an iteration, a model
updated on one batch (S1) is able to generalize on average to another batch (S2)
from the dataset. Hence, we call R the generalization penalty.

We establish a probabilistic upper bound on the sum of the expected penalties
E [R1] + E [R2] by adapting the PAC-Bayesian framework [8–10], given a pair
of mini-batches S1 and S2 sampled from the dataset (Theorem 1). Interestingly,
under some mild assumptions, this upper bound is essentially a simple expression
driven by ‖g1 − g2‖2, where g1 and g2 are the gradient vectors over the two mini-
batches S1 and S2, respectively. We call it gradient disparity : it measures how
much a small gradient step on one mini-batch negatively affects the performance
on the other one.

We propose gradient disparity as an effective early stopping criterion, because
of its computational tractability that makes it simple to use during the course
of training, and because of its strong link with generalization error, as evidenced
in the experiments that we run on state-of-the-art configurations. Gradient dis-
parity is particularly well suited when the available dataset has limited labeled
data, because it does not require splitting the available dataset into training
and validation sets: all the available data can be used during training, unlike
for instance k-fold cross-validation. We observe that using gradient disparity,
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Table 1. The test loss and area under the receiver operating characteristic curve
(AUC score) of the MRNet dataset [11] when using 5-fold cross-validation (5-fold CV)
and gradient disparity (GD) as early stopping criteria for detecting the presence of
abnormally, ACL tears, and meniscal tears from the sagittal plane MRI scans. The
corresponding curves during training are shown in Fig. 15 in the full version [12] (see
Appendix F.3 in the full version [12] for more details). The results of early stopping are
given, both when the metric (GD or validation loss) has increased for 5 epochs from
the beginning of training and between parenthesis when the metric has increased for
5 consecutive epochs. Using GD outperforms 5-fold CV with either choice of the early
stopping threshold. The standard deviations are obtained from 5 runs.

Task Method Test loss Test AUC score (in percentage)

Abnormal 5-fold CV 0.284±0.016(0.307±0.057) 71.016±3.66(87.44±1.35)

GD 0.274±0.004(0.275±0.053) 72.67±3.85(88.12±0.35)

ACL 5-fold CV 0.973±0.111(1.246±0.142) 79.80±1.23(89.32±1.47)

GD 0.842±0.101(1.136±0.121) 81.81±1.64(91.52±0.09)

Meniscal 5-fold CV 0.758±0.04(1.163±0.127) 73.53±1.30(72.14±0.74)

GD 0.726±0.019(1.14±0.323) 74.08±0.79(73.80±0.24)

instead of an unbiased validation set, results in a predictive improvement of at
least 1% for classification tasks with limited and very costly available data, such
as the MRNet dataset, which is a small size image-classification dataset used for
detecting knee injuries (Table 1).

Moreover, we find that gradient disparity is a more accurate early stopping
criterion than validation loss when the available dataset contains noisy labels.
Gradient disparity reflects the label noise level quite well throughout the training
process, especially at early stages of training. Finally, we observe that gradient
disparity has a strong positive correlation with the test error across experimental
settings that differ in training set size, batch size, and network width.

2 Related Work

The coherent gradient hypothesis [13] states that the gradient is stronger in direc-
tions where similar examples exist and towards which the parameter update
is biased. He and Su [14] study the local elasticity phenomenon, which mea-
sures how the prediction over one sample changes, as the network is updated on
another sample. Motivated by [14], reference [15] proposes generalization upper
bounds using locally elastic stability. The generalization penalty introduced in
our work measures how the prediction over one sample (batch) changes when
the network is updated on the same sample, instead of being updated on another
sample.

Finding a practical metric that completely captures the generalization prop-
erties of deep neural networks, and in particular indicates the level of label noise
and decreases with the size of the training set, is still an active research direction
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[16–19]. Recently, there have been a few studies that propose similarity between
gradients as a generalization metric. The benefit of tracking generalization by
measuring the similarity between gradient vectors is its tractability during train-
ing, and the dispensable access to unseen data. Sankararaman et al. [20] propose
gradient confusion, which is a bound on the inner product of two gradient vectors,
and shows that the larger the gradient confusion is, the slower the convergence
is. Gradient interference (when the gradient inner product is negative) has been
studied in multi-task learning, reinforcement learning and temporal difference
learning [21–23]. Yin et al. [24] study the relation between gradient diversity,
which measures the dissimilarity between gradient vectors, and the convergence
performance of distributed SGD algorithms. Fort et al. [25] propose a metric
called stiffness, which is the cosine similarity between two gradient vectors, and
shows empirically that it is related to generalization. Fu et al. [26] study the
cosine similarity between two gradient vectors for natural language processing
tasks. Reference [27] measures the alignment between the gradient vectors within
the same class (denoted by Ωc) , and studies the relation between Ωc and gener-
alization as the scale of initialization (the variance of the probability distribution
the network parameters are initially drawn from) is increased. These metrics are
usually not meant to be used as early stopping criteria, and indeed in Table 2
and Table 12 in the appendix of the full version [12], we observe that none of
them consistently outperforms k-fold cross-validation.

Another interesting line of work is the study of the variance of gradients
in deep learning settings. Negrea et al. [28] derive mutual information gener-
alization error bounds for stochastic gradient Langevin dynamics (SGLD) as a
function of the sum (over the iterations) of square gradient incoherences, which
is closely related to the variance of gradients. Two-sample gradient incoherences
also appear in [29], which are taken between a training sample and a “ghost”
sample that is not used during training and therefore taken from a validation set
(unlike gradient disparity). The upper bounds in [28,29] are cumulative bounds
that increase with the number of iterations and are not intended to be used as
early stopping criteria. As shown in Appendix H (in the full version [12]), gradi-
ent disparity can be used as an early stopping criterion not only for SGD with
additive noise (such as SGLD), but also other adaptive optimizers. Reference [30]
shows that the variance of gradients is a decreasing function of the batch size.
However, reference [31] hypothesizes that gradient variance counter-intuitively
increases with the batch size, by studying the effect of the learning rate on the
variance of gradients, which is consistent with our results on convolutional neural
networks in Sect. 6. References [30,31] mention the connection between variance
of gradients and generalization as promising future directions. Our study shows
that variance of gradients used as an early stopping criterion outperforms k-fold
cross-validation (see Table 12 of the full version [12]).

Liu et al. [32] propose a relation between gradient signal-to-noise ratio (SNR),
called GSNR, and the one-step generalization error, with the assumption that
both the training and test sets are large. Mahsereci et al. [33] also study gradient
SNR and propose an early stopping criterion called evidence-based criterion (EB)
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that eliminates the need for a held-out validation set. Reference [34] proposes an
early stopping criterion based on the signal-to-noise ratio figure, which is further
studied in [35], a study that shows the average test error achieved by standard
early stopping is lower than the one obtained by this criterion. Zhang et al. [36]
empirically show that the variance term in the bias-variance decomposition of
the loss function dominates the variations of the test loss, and hence propose
optimization variance (OV) as an early stopping criterion.

Summary of Comparison to Related Work. In Table 2 and Appendix I of the
full version [12], we compare gradient disparity (GD) to EB, GSNR, gradient
inner product, sign of the gradient inner product, variance of gradients, cosine
similarity, Ωc, and OV. We observe that the only metrics that consistently out-
perform k-fold cross-validation as early stopping criteria across various settings
(see Table 12 in the full version [12]), and that reflect well the label noise level
(see in Figs. 26 and 27 of the full version [12] that metrics such as EB and
sign(gi · gj) do not correctly detect the label noise level), are gradient disparity
and variance of gradients. The two are analytically very close as discussed in
Appendix I.2 of the full version [12]. However, we observe that the correlation
between gradient disparity and the test loss is in general larger than the corre-
lation between variance of gradients and the test loss (see Table 13 in the full
version [12]).

Table 2. The test error (TE) and test loss (TL) achieved by using various metrics
as early stopping criteria for an AlexNet trained on the MNIST dataset with 50%
random labels. See Table 12 in the appendix of the full version [12] for further details
and experiments.

Min GD/Var EB GSNR gi · gj sign(gi · gj) cos(gi · gj) Ωc OV k-fold No ES

TE 13.76 16.66 24.63 35.68 37.92 24.63 35.68 29.40 34.36 17.86 25.72

TL 0.75 1.08 0.86 1.68 1.82 0.86 1.68 1.46 1.65 1.09 0.91

3 Generalization Penalty

Consider a classification task with input x ∈ X := R
n and ground truth label

y ∈ {1, 2, · · · , k}, where k is the number of classes. Let hw ∈ H : X → Y := R
k

be a predictor (classifier) parameterized by the parameter vector w ∈ R
d, and

l(·, ·) be the 0–1 loss function l (hw(x), y) = 1 [hw(x)[y] < maxj �=y hw(x)[j]] for
all hw ∈ H and (x, y) ∈ X × {1, 2, · · · , k}. The expected loss and the empirical
loss over the training set S of size m are respectively defined as

L(hw) = E(x,y)∼D [l (hw(x), y)] , (1)
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and

LS(hw) =
1
m

m∑

i=1

l(hw(xi), yi), (2)

where D is the probability distribution of the data points and S = {(xi, yi)}m

is a collection of m i.i.d. samples drawn from D. Similar to the notation used
in [16], distributions on the hypotheses space H are simply distributions on the
underlying parameterization. With some abuse of notation, ∇LSi

refers to the
gradient with respect to the surrogate differentiable loss function, which in our
experiments is cross entropy1.

In a mini-batch gradient descent (SGD) setting, let mini-batches S1 and S2

have sizes m1 and m2, respectively, with m1 + m2 ≤ m. Let w = w(t) be the
parameter vector at the beginning of an iteration t. If S1 is selected for the next
iteration, w gets updated to w1 = w(t+1) with

w1 = w − γ∇LS1 (hw) , (3)

where γ is the learning rate. The generalization penalty R2 is defined as the gap
between the loss over S2, LS2 (hw1), and its target value, LS2 (hw2), at the end
of iteration t.

When selecting S1 for the parameter update, Eq. (3) makes a step towards
learning the input-output relations of mini-batch S1. If this negatively affects the
performance on mini-batch S2, R2 will be large; the model is learning the data
structures that are unique to S1 and that do not appear in S2. Because S1 and
S2 are mini-batches of points sampled from the same distribution D, they have
data structures in common. If, throughout the learning process, we consistently
observe that, in each update step, the model learns structures unique to only one
mini-batch, then it is very likely that the model is memorizing the labels instead
of learning the common data-structures. This is captured by the generalization
penalty R.

We adapt the PAC-Bayesian framework [8,9] to account for the trajectory
of the learning algorithm; For each learning iteration t we define a prior, and
two possible posteriors depending on the choice of the mini-batch selection. Let
w ∼ P follow a prior distribution P , which is a Ft-measurable function, where
Ft denotes the filtration of the available information at the beginning of iteration
t. Let hw1 , hw2 be the two learned single predictors, at the end of iteration t,
from S1 and S2, respectively. In this framework, for i ∈ {1, 2}, each predictor
hwi

is randomized and becomes hνi
with νi = wi + ui, where ui is a random

variable whose distribution might depend on Si. Let Qi be the distribution of νi,
which is a distribution over the predictor space H that depends on Si via wi

and possibly ui. Let Gi be a σ-field such that σ(Si) ∪ Ft ⊂ Gi and such that the

1 We have also studied networks trained with the mean square error in Appendix E.3
of the full version [12], and we observe that there is a strong positive correlation
between the test error/loss and gradient disparity for this choice of the surrogate
loss function as well (see Fig. 11 of the full version [12]).
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posterior distribution Qi is Gi-measurable for i ∈ {1, 2}. We further assume that
the random variable ν1 ∼ Q1 is statistically independent from the draw of the
mini-batch S2 and, vice versa, that ν2 ∼ Q2 is independent from the batch S1

2,
i.e., G1 ⊥⊥ σ(S2) and G2 ⊥⊥ σ(S1).

Theorem 1. For any δ ∈ (0, 1], with probability at least 1− δ over the sampling
of sets S1 and S2, the sum of the expected penalties conditional on S1, and S2,
respectively, satisfies

E [R1] + E [R2] ≤
√

2KL(Q2||Q1) + 2 ln 2m2
δ

m2 − 2
+

√
2KL(Q1||Q2) + 2 ln 2m1

δ

m1 − 2
.

(4)

In this paper, the goal is to get a signal of overfitting that indicates at the
beginning of each iteration t whether to stop or to continue training. This signal
should track the performance of the model at the end of iteration t by investi-
gating its evolution over all the possible outcomes of the batch sampling process
during this iteration. For simplicity, we consider two possible outcomes: either
mini-batch S1 or mini-batch S2 is chosen for this iteration (we later in the next
section extend to more pairs of mini-batches). If we were to use bounds such
as the ones in [10,38] for one iteration at a time, the generalization error at
the end of that iteration can be bounded by a function of either KL(Q1||P ) or
KL(Q2||P ), depending on the selected mini-batch. Therefore, as each of the two
mini-batches is equally likely to be sampled, we should track KL(Q1||P ) and
KL(Q2||P ) for a signal of overfitting at the end of the iteration, which requires
in turn access to the three distributions P , Q1 and Q2. In contrast, the upper
bound on the generalization penalty given in Theorem 1 only requires the two
distributions Q1 and Q2, which is a first step towards a simpler metric since,
loosely speaking, the symmetry between the random choices for S1 and S2 should
carry over these two distributions, leading us to assume the random perturba-
tions u1 and u2 to be identically distributed. If furthermore we assume them to
be Gaussian, then we show in the next section that KL(Q2||Q1) and KL(Q1||Q2)
are equal and boil down to a very tractable generalization metric, which we call
gradient disparity.

4 Gradient Disparity

In Sect. 3, the randomness modeled by the additional perturbation ui, condi-
tioned on the current mini-batch Si, comes from (i) the parameter vector at
the beginning of the iteration w, which itself comes from the random parameter
initialization and the stochasticity of the parameter updates until that iteration,
and (ii) the gradient vector ∇LSi

(simply denoted by gi), which may also be

2 Mini-batches S1 and S2 are drawn without replacement, and the random selection of
indices of mini-batches S1 and S2 is independent from the dataset S. Hence, similarly
to [28,37], we have σ(S1) ⊥⊥ σ(S2).
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random because of the possible additional randomness in the network structure
due for instance to dropout [39]. A common assumption made in the literature
is that the random perturbation ui follows a normal distribution [38,40]. The
upper bound in Theorem 1 takes a particularly simple form if we assume that
for i ∈ {1, 2}, ui are zero mean i.i.d. normal variables (ui ∼ N (0, σ2I)), and that
wi is fixed, as in the setting of [16].

As wi = w − γgi for i ∈ {1, 2}, the KL-divergence between Q1 = N (w1, σ
2I)

and Q2 = N (w2, σ
2I) (Lemma 1 in Appendix B of the full version [12]) is simply

KL(Q1||Q2) =
1
2

γ2

σ2
‖g1 − g2‖22 = KL(Q2||Q1), (5)

which shows that, keeping a constant step size γ and assuming the same variance
for the random perturbations σ2 in all the steps of the training, the bound in
Theorem 1 is driven by ‖g1 − g2‖2. This indicates that the smaller the �2 distance
between gradient vectors is, the lower the upper bound on the generalization
penalty is, and therefore the closer the performance of a model trained on one
mini-batch is to a model trained on another mini-batch.

For two mini-batches of points Si and Sj , with respective gradient vectors gi

and gj , we define the gradient disparity (GD) between Si and Sj as

Di,j = ‖gi − gj‖2 . (6)

To compute Di,j , a first option is to sample Si from the training set and
Sj from the held-out validation set, which we refer to as the “train-val” setting,
following [25]. The generalization penalty Rj in this setting measures how much,
during the course of an iteration, a model updated on a training set is able
to generalize to a validation set, making the resulting (“train-val”) gradient
disparity Di,j a natural candidate for tracking overfitting. But it requires access
to a validation set to sample Sj , which we want to avoid. The second option
is to sample both Si and Sj from the training set, as proposed in this paper,
to yield now a value of Di,j that we could call “train-train” gradient disparity
(GD) by analogy. Importantly, we observe a strong positive correlation between
the two types of gradient disparities (ρ = 0.957) in Fig. 2. Therefore, we can
expect that both of them do (almost) equally well in detecting overfitting, with
the advantage that the latter does not require to set data aside, contrary to the
former. We will therefore consider GD when both batches are sampled from the
training set and evaluate it in this paper.

To track the upper bound of the generalization penalty for more pairs of
batches, we can compute an average gradient disparity over B batches, which
requires all the B gradient vectors at each iteration, which is computationally
expensive if B is large. We approximate it by computing GD over only a much
smaller subset of the batches, of size s � B,

D =
s∑

i=1

s∑

j=1,j �=i

Di,j

s(s − 1)
.
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Fig. 2. “Train-val” gradient disparity versus “train-train” gradient disparity for 220
experimental settings that vary in architecture, dataset, training set size, label noise
level and initial random seed. Pearson’s correlation coefficient is ρ = 0.957.

In our experiments, s = 5; we observe that such a small subset is already suf-
ficient (see Appendix E.2 of the full version for an experimental comparison of
different values of s).

Consider two training iterations t1 and t2 where t1 � t2. At earlier stages of
the training (iteration t1), the parameter vector (w(t1)) is likely to be located in a
steep region of the training loss landscape, where the gradient vector of training
batches, gi, and the training loss LSi

(hw(t1)) take large values. At later stages
of training (iteration t2), the parameter vector (w(t2)) is more likely in a flatter
region of the training loss landscape where gi and LSi

(hw(t2)) take small values.
To compensate for this scale mismatch when comparing the distance between
gradient vectors at different stages of training, we re-scale the loss values within
each batch before computing D (see Appendix E.1 in the full version [12] for
more details). Note that this re-scaling is only done for the purpose of using GD
as a metric, and therefore does not have any effect on the training process itself.

We focus on the vanilla SGD optimizer. In Appendix H of the full version [12],
we extend the analysis to other stochastic optimization algorithms: SGD with
momentum, Adagrad, Adadelta, and Adam. In all these optimizers, we observe
that GD (Eq. (6)) appears in KL(Q1||Q2) with other factors that depend on
a decaying average of past gradient vectors. Experimental results support the
use of GD as an early stopping metric also for these popular optimizers (see
Fig. 25 in Appendix H of the full version [12]). For vanilla SGD optimizer, we
also provide an alternative and simpler derivation leading to gradient disparity
from the linearization of the loss function in Appendix D of the full version [12].

5 Early Stopping Criterion

In the presence of large amounts of reliable data, it is affordable to split the
available dataset into a training and a validation set and to perform early stop-
ping by evaluating the performance of the model on the held-out validation set.
However, if the dataset is limited, this approach makes an inefficient use of the
data because the model never learns the information that is still present in the
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validation set. Moreover, if the dataset is noisy, held-out validation might poorly
estimate the performance of the model as the validation set might contain a high
percentage of noisy samples. To avoid these issues, k-fold cross-validation [41] is
a solution that makes an efficient usage of the available data while providing an
unbiased estimate of the performance, at the expense of a high computational
overhead and of a possibly underestimated variance [42]. While each of its k
rounds is itself a setting with a held-out validation set, k-fold cross-validation
(as opposed to held-out validation) would be therefore advantageous to use in
the presence of limited and/or noisy data. It extracts more information from the
dataset as it uses all the data samples for both training and validation, and it is
less dependent on how the data is split into training and validation sets.

Table 3. The test loss and accuracy when using gradient disparity (GD) and k-fold
cross-validation (CV) (k =5) as early stopping criteria when the available dataset
is limited: (top) VGG-13 trained on 1.28 k samples of the CIFAR-10 dataset, and
(bottom) AlexNet trained on 256 samples of the MNIST dataset. The corresponding
curves during training are presented in Fig. 13 of the full version [12]. The results below
are obtained by stopping the optimization when the metric (either validation loss or
GD) has increased for 5 epochs from the beginning of training.

Setting Method Test loss Test accuracy

CIFAR-10, VGG-13 5-fold CV 1.846±0.016 35.982±0.393

GD 1.793±0.016 36.96±0.861

MNIST, AlexNet 5-fold CV 1.123±0.25 62.62±6.36

GD 0.656±0.080 79.12±3.04

The baseline to beat is therefore k-fold cross-validation (CV). We compare
gradient disparity to CV in the two target settings: (i) when the available dataset
is limited and (ii) when the available dataset has corrupted labels. Medical appli-
cations are one of the practical examples of setting (i), where datasets are costly
because they require the collection of patient data, and the medical staff’s exper-
tise to label the data. An example of such an application is the MRNet dataset
[11], which contains a limited number of MRI scans to study the presence of
abnormally, ACL tears and meniscal tears in knee injuries. This dataset is by
nature limited and we use the entire available data for both early stopping meth-
ods GD and k-fold CV. In addition, to further simulate setting (i), we use small
subsets of three image classification benchmark datasets: MNIST, CIFAR-10 and
CIFAR-100. Performing early stopping in the presence of label noise (setting (ii))
is also practically very important, because it has been empirically observed that
deep neural networks trained on noisy datasets overfit to noisy labeled samples
at later stages of training. A good early stopping signal can therefore prevent
such an overfitting [43–45]. To simulate setting (ii), we use a corrupted version
of these image classification benchmark datasets, where for a fraction of the
samples (the amount of noise), we choose the labels at random.
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(i) We observe that using gradient disparity instead of a validation loss in
k-fold CV results in an improvement of more than 1% (on average over all three
tasks) in the test AUC score of the MRNet dataset, and therefore adds a correct
detection for more than one patient for each task (see Table 1). Furthermore, we
observe that gradient disparity performs better than k-fold CV as an early stop-
ping criterion for image-classification benchmark datasets as well (see Table 3).
A plausible explanation for the better peformance of GD over k-fold CV is that,
although CV uses the entire set of samples over the k rounds for both training
and validation, it trains the model only on a (1 − 1/k) portion of the dataset in
each individual round. In contrast, GD allows to train the model over the entire
dataset in a single run, which therefore results in a better performance on the
final unseen (test) data when data is limited. For more experimental results refer
to Table 10 and Figs. 13 and 15 in Appendix F of the full version [12].

(ii) We observe that gradient disparity performs better than k-fold cross-
validation as an early stopping criterion when data is noisy (see Table 4). When
the labels of the available data are noisy, the validation set is no longer a reliable
estimate of the test set. Nevertheless, and although it is computed over the noisy
training set, gradient disparity reflects the performance on the test set quite well3

For more experimental results refer to Table 11 and Fig. 14 in Appendix F of the
full version [12].

Quite surprisingly, we observe that GD performs better in terms of accuracy
than an extension of k-fold CV, which we call k+-fold CV, which uses the entire
dataset for training with the early stopping signal found by k-fold CV (see
Table 4, where k = 10 for these settings). More precisely, k+-fold CV is done
in 3 steps: (1) perform k-fold CV, (2) compute the stopping epoch by tracking
the validation loss found in step (1), and (3) retrain the model on the entire
dataset and stop at the epoch obtained in step (2). k+-fold CV uses therefore
k + 1 rounds because of step (3), thus one more round than k-fold CV, but
unlike k-fold CV (and similarly to GD), k+-fold CV produces models that are
trained on the entire dataset. It is therefore interesting to note that using GD
still outperforms k+-fold CV in terms of accuracy (although not in terms of loss).

The metrics used as early stopping criteria, whether they are the validation
loss or gradient disparity, are measured on signals that are subject to random
fluctuations. As a result, they rely on a pre-defined threshold p (sometimes called
patience by practitioners) that sets the number of iterations during which the
metric increases before the algorithm is stopped. We use two popular thresholds:
(t1) the first one is to stop the algorithm when the metric (GD or validation loss)
has increased for p = 5 (possibly non consecutive) epochs from the beginning
of training, and (t2) the second is the same as (t1) but the p = 5 epochs must
be consecutive. Both GD and k-fold CV might be sensitive to the choice of (t1)
or (t2), or even to the value of p itself. It is therefore important to study the
sensitivity of an early stopping metric to the choice of the threshold p, which

3 See for example Fig. 14 (left column) in the full version [12] where the validation
loss fails to estimate the test loss, but where GD (Fig. 14 (middle left column)) does
signal overfitting correctly.
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Table 4. The test loss and accuracy when using gradient disparity (GD) and k-fold
cross-validation (CV) (k =10) as early stopping criteria when the available dataset is
noisy: 50% of the available data has random labels. The corresponding curves during
training are shown in Fig. 14 in the full version [12]. The results below are obtained by
stopping the optimization when the metric (either validation loss or GD) has increased
for 5 epochs from the beginning of training. The last row in each setting, which we
call 10+-fold CV, refers to the test loss and accuracy reached at the epoch suggested
by 10-fold CV, for a network trained on the entire set. Notice that for the CIFAR-
100 experiments (the top rows), for computational reasons, the models are trained on
only 1.28 k samples of the dataset which explains the very low test accuracy for this
experiment. However, for the MNIST experiments (the bottom rows), the models are
trained on the entire dataset, and we observe rather high test accuracies.

Setting Method Test loss Test accuracy

CIFAR-100, ResNet-18 10-fold CV 5.023±0.083 1.59±0.15 (top-5: 6.47±0.52)

GD 4.463±0.038 3.68±0.52 (top-5: 15.22±1.24)

10+-fold CV 4.964±0.057 1.68±0.24 (top-5: 7.05±0.71)

MNIST, AlexNet 10-fold CV 0.656±0.034 97.28±0.20

GD 0.654±0.031 97.32±0.27

10+-fold CV 0.639±0.029 97.31±0.15

is done in Appendix F.1 of the full version [12] for both GD and k-fold CV for
ten different values of p ∈ {1, · · · , 10} and the two thresholds (t1) and (t2). We
observe that GD always gives similar or higher test accuracy than k-fold CV for
all 20 possible thresholds (see Fig. 3 of the full version [12]). More importantly,
GD is much more robust to the choice of the early stopping threshold (see
Table 5).

Table 5. Sensitivity of each method to the choice of the early stopping threshold. The
sensitivity is computed from the reported values of Tables 7 and 8 according to Eq. 14
in the appendix of the full version [12].

Method Sensitivity of the test accuracy Sensitivity of the test loss

GD 0.916 0.886

CV 1.613 1.019

When data is abundant and clean, the validation loss is affordable and trust-
worthy to use as an early stopping signal. GD does also correctly signal overfit-
ting in this case (see for example Fig. 4 in the full version [12]). However, when
data is limited and/or noisy (which is also when early stopping is particularly
important), we observe that the validation loss is costly and unreliable to use
as an early stopping signal. In contrast, in these settings, GD does not cost a
separate held-out validation set and is a reliable signal of overfitting even in the
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presence of label noise. In practice, the label noise level of a given dataset is in
general not known a priori and we do not know whether the size of the dataset is
large enough to afford sacrificing a subset for validation. We often do not know
whether we are in the former setting, with abundant and clean data, or in the
later setting, with limited and/or noisy data. It is therefore important to have a
good early stopping criterion that works for both settings. Unlike the validation
loss, GD is such a signal.

6 Discussion and Final Remarks

We propose gradient disparity (GD), as a simple to compute early stopping
criterion that is particularly well-suited when the dataset is limited and/or noisy.
Beyond indicating the early stopping time, GD is well aligned with factors that
contribute to improve or degrade the generalization performance of a model,
which have an often strikingly similar effect on the value of GD as well. We
briefly discuss in this section some of these observations that further validate
the use of GD as an effective early stopping criterion; more details are provided
in the appendix.

Label Noise Level. We observe that GD reflects well the label noise level
throughout the training process, even at early stages of training, where the
generalization gap fails to do so (see Figs. 5, 17, 21, and 24 in Appendix G of
the full version [12]).

Training Set Size. We observe that GD, similarly to the test error, decreases
with training set size, unlike many previous metrics as shown by [17,18]. More-
over, we observe that applying data augmentation decreases the values of both
GD and the test error (see Figs. 6 and 22 in the full version [12]).

Batch Size. We observe that both the test error and GD increase with batch
size. This observation is counter-intuitive because one might expect that gradient
vectors get more similar when they are averaged over a larger batch. GD matches
the ranking of test errors for different networks, trained with different batch sizes,
as long as the batch sizes are not too large (see Fig. 23 in the full version [12]).

Width. We observe that both the test error and GD (normalized with respect
to the number of parameters) decrease with the network width for ResNet, VGG
and fully connected neural networks (see Figs. 8 and 20 in Appendix G of the
full version [12]).

Gradient disparity belongs to the same class of metrics based on the similarity
between two gradient vectors [20,25–27,31]. A common drawback of all these
metrics is that they are not informative when the gradient vectors are very
small. In practice however, we observe (see for instance Fig. 18 in the appendix
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of the full version [12]) that the time at which the test and training losses start to
diverge, which is the time when overfitting kicks in, does not only coincide with
the time at which gradient disparity increases, but also occurs much before the
training loss becomes infinitesimal. This drawback is therefore unlikely to cause
a problem for gradient disparity when it is used as an early stopping criterion.
Nevertheless, as a future direction, it would be interesting to explore this further
especially for scenarios such as epoch-wise double-descent [46].
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Abstract. With the widespread use of machine learning for classifica-
tion, it becomes increasingly important to be able to use weaker kinds of
supervision for tasks in which it is hard to obtain standard labeled data.
One such kind of supervision is provided pairwise in the form of Similar
(S) pairs (if two examples belong to the same class) and Dissimilar (D)
pairs (if two examples belong to different classes). This kind of supervi-
sion is realistic in privacy-sensitive domains. Although the basic version
of this problem has been studied recently, it is still unclear how to learn
from such supervision under label noise, which is very common when the
supervision is, for instance, crowd-sourced. In this paper, we close this
gap and demonstrate how to learn a classifier from noisy S and D labeled
pairs. We perform a detailed investigation of this problem under two real-
istic noise models and propose two algorithms to learn from noisy SD
data. We also show important connections between learning from such
pairwise supervision data and learning from ordinary class-labeled data.
Finally, we perform experiments on synthetic and real-world datasets
and show our noise-informed algorithms outperform existing baselines in
learning from noisy pairwise data.

Keywords: Classification · Pairwise supervision · Noisy supervision

1 Introduction

In the standard supervised learning framework, a classifier is trained with labeled
data points, which are usually collected through human annotation. While col-
lecting labeled data points is the traditional way to apply supervised classifi-
cation, pairwise comparison is often more appealing for human decision mak-
ing [10], where annotators are requested to compare two instances and give
relative relationships between them; e.g., which instance has stronger stimulus,
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whether two instances belong to the same category, and so on. This is partly
because (a) decision makers tend to be subjective at directly choosing a single
hypothesis,1 and (b) decision makers are often biased about picking an opinion.2

This relative ease of making pairwise comparisons over direct point-wise
labeling has inspired several successful large-scale annotation frameworks, for
example, crowd-clustering [11,26]. There are broadly two ways to incorporate
pairwise comparisons for identifying the latent classes of data:

(1) Semi-Supervised Clustering based methods [5]:, which utilizes pairwise super-
vision indicating whether two instances belong to the same cluster or not
(known as must-link and cannot-link constraints), guiding clustering as deci-
sion makers desire. This class of methods suffer from dataset-dependent
assumptions.

(2) Empirical Risk Minimization (ERM) based methods: [1,23] which trains an
inductive classifier from the pairwise comparisons thereby establishing a con-
nection to standard supervised learning in the ERM framework. These meth-
ods outperform semi-supervised clustering based methods because it does not
make similar assumptions as the latter. In this paper, our primary focus is on
the second class of methods, aiming to learn inductive classifiers from pair-
wise data, and we shall see in Sect. 5 they outperform the first class of meth-
ods empirically. It is important to note that both methods assume that the
pairwise comparisons are noise-free, i.e., instances marked similar are indeed
from the same class.

While learning from pairwise comparisons has been highly successful [8,10,13,
14,21], it is sensitive to the quality of the annotations. Large-scale frameworks
like crowd-clustering are especially prone to noisy annotations [26]. Existing
techniques to learn an inductive classifier from noisy labels [12,15,19,20] are
inapplicable in this setting, since they only work on pointwise, class-labeled
data. Moreover, there lacks a systematic characterization of the kinds of noise
that might arise in pairwise-annotated data. We aim to bridge this gap by char-
acterizing the two unique types of errors that arise in this setting, as depicted
in Fig. 1. The first error results from pairing corruption: some pairs of instances
are hard to identify whether they belong to the same category or not. The sec-
ond error is from labeling corruption: labels of some instances are intrinsically
ambiguous and thus, subsequent pairwise comparison is also affected. Each of
these situations give rise to a specific noise model for pairwise supervision.

In this paper, we thoroughly investigate classification with noisy pairwise
supervision, where the noise is present in pairwise comparison and follows either
pairing corruption or labeling corruption, and provide two distinct strategies to

1 [24] has studied a relationship between relative comparison and a single hypothesis
on stimuli, which is known as the law of comparative judgement.

2 This bias is known as social desirability bias [9]; questionees are unconsciously led to
a socially desirable opinion when they are asked to reveal their opinions in a direct
way. Such a tendency is observed especially in answering their sensitive matters such
as criminal records.
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Fig. 1. The two noise models. Q indicates whether the pair is similar (Q = 1) or
dissimilar (Q = −1)

deal with this problem. In the first strategy, we introduce a corrected loss func-
tion, which induces an unbiased estimator of the classification risk in the presence
of noise for pairwise data. Subsequently, a classifier can be obtained through the
minimization of the corrected loss. This extends previous approaches [19,20] to
the pairwise setting. The second strategy is motivated from the insight that the
Bayes classifier of the classification risk under the noise-free distribution corre-
sponds to that of the weighted risk under the noisy distribution. This extends
cost-sensitive classification [7,22] to the pairwise setting. Each of these strategies
can handle both the pairwise noise models.

We make the following contributions in this paper:

– We provide two distinct, realistic data generating scenarios for SD data: the
pairing corruption noise model and the labeling corruption noise model.

– We provide two algorithms based on loss correction and weighted classification
which can be applied to either data generating scenario mentioned.

– We theoretically analyze performance bounds of our algorithms and provide
two new performance bounds for the noise-free SD learning problem [23].

– We perform extensive experiments on various datasets to show that the pro-
posed algorithms work well in practice and outperform existing methods.

2 Problem Setup

Let X denote the instance space, Y = {+1,−1} the label space and Z the
underlying distribution over (X ,Y). We want to perform well with respect to Z,
i.e., the test data is drawn from Z and we want to minimize the risk of f (a real
valued decision function) w.r.t. the 0-1 loss:

RZ(f) = E(x,y)∼Z [1{sign(f(x)) �=y}], (1)

where 1{·} denotes the indicator function, f ∈ F and F ⊆ R
X is a hypothesis

class. However, we assume that due to the domain constraints we are unable
to procure direct class-labeled data from Z and only have access to pairwise
supervision—whether a pair of instances (X,X ′) is from the same class (Y =
Y ′) or from different classes (Y �= Y ′). There is a latent variable Q dictating
whether the pair is similar (Q = 1) or dissimilar (Q = −1). Our training dataset,
D = {Xi,X

′
i, Qi}n

i=1, consists of n noisy similar or dissimilar pairs which are
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generated from one of the following noise models that reflect what we may expect
in real-world data. Both of them are illustrated in Fig. 1.

Noise Model 1: Pairing Corruption: This model is motivated by the follow-
ing scenario—imagine crowd-workers are given a pool of instances drawn from
X and they annotate pairs (X,X ′) as Q = 1 if they believe Y = Y ′ and Q = −1
otherwise. Since they are not experts, they often make mistakes in this process
and sometimes assigns Q = −1 when it should have been Q = 1 and vice versa.
Formally, this model comprises of the following steps:

1. Two samples (X,Y ),(X ′, Y ′) are drawn from the underlying distribution Z.
2. If Y = Y ′, this pair of samples is labeled as similar (Q = 1) with probability

1 − ρS and if Y �= Y ′ this pair is labeled as dissimilar (Q = −1) with proba-
bility 1−ρD, where ρS and ρD are the noise rate for similar (S) and dissimilar
(D) data respectively and 0 ≤ ρS, ρD ≤ 1.

In this noise model, the S and D samples are drawn from mixtures of the true S
and D distributions: P (Q = 1|Y = Y ′) = 1−ρS and P (Q = −1|Y �= Y ′) = 1−ρD.
We assume that ρS + ρD < 1, without which it is impossible to learn a classifier.

Noise Model 2: Labeling Corruption: Consider that we are dealing with a
privacy sensitive domain where responders do not want to reveal their individual
labels. In such cases, responders may intentionally reveal wrong labels. Hence,
the pointwise labels that we obtain are intrinsically noisy. A moderator converts
the pointwise data (X,Y ) to pairwise data (X,X ′, Q = ±1), to preserve privacy.
Formally, there are the following steps in this noise model:

1. Two samples (X,Y ),(X ′, Y ′) are drawn from the underlying distribution Z.
2. Then the labels are flipped with probability ρ± (this is class conditioned: if

a sample originally has label +1 it is flipped to label −1 with probability ρ+
and respectively, ρ− for the other case). Formally, this can be expressed as
P (Ỹ = +1|Y = −1) = ρ− and P (Ỹ = −1|Y = +1) = ρ+.

3. Then in the next step the similar or dissimilar labels are assigned (there is
assumed to be no noise in this step since the moderator is an expert).

Thus, P (Q = 1|Ỹ = Ỹ ′) = 1 and P (Q = −1|Ỹ �= Ỹ ′) = 1. Again, in this noise
model we assume ρ++ρ− < 1. In the following, we derive the conditional density
functions separately for the noise-free, pairing noise and labeling noise scenarios
and show how one can view the pairwise samples as pointwise samples.

Conditional Density Functions in the Noise-Free Case: We consider the
one-sample case of the problem of learning from noisy SD labels, which means
only one training dataset of SD samples are drawn (as opposed to the two sample
case of separate S and D data) from a joint distribution P (x, x′, Q). Let us
consider the simpler, noise-free scenario first. We can write the joint distribution
as:

P (x, x′, Q) = P (x, x′|Q = 1)P (Q = 1) + P (x, x′|Q = −1)P (Q = −1).

If there were no noise corruption, S data would comprise of two positive instances
or two negative instances and D data would comprise of one positive instance
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and one negative instance. Accordingly, we obtain the following conditional dis-
tributions for the S and D pairs as follows:

P (x, x′|Q = 1) = P (x, x′|y = y′ = 1 ∨ y = y′ = −1),

=
π2P+(x)P+(x′) + (1 − π)2P−(x)P−(x′)

π2 + (1 − π)2
,

P (x, x′|Q = −1) = P (x, x′|y = 1, y′ = −1 ∨ y = −1, y′ = 1),

=
π(1 − π)P+(x)P−(x′) + π(1 − π)P−(x)P+(x′)

2π(1 − π)
.

(2)

where π = P (Y = +1) denotes the class prior, P+(X) = P (X|Y = +1) and
P−(X) = P (X|Y = −1), P (Q = 1) = π2+(1−π)2 and P (Q = −1) = 2π(1−π).
One can further marginalize out x′ and get the densities in terms of a single
data point x. This view is important for our subsequent analysis and has been
previously used in [1]. The implication is that we can now treat the SD data as
pointwise data from the Similar (S) and Dissimilar (D) classes.

PS(x) = P (x|Q = 1) =
π2P+(x) + (1 − π)2P−(x)

π2 + (1 − π)2
,

PD(x) = P (x|Q = −1) =
P+(x) + P−(x)

2
.

(3)

Conditional Density Functions Under Pairwise Noise: The above expres-
sions are derived under the noise-free assumption. Now, we present the expres-
sion for the densities, P̃S(x) and P̃D(x), under each of the noise models presented
above. The derivations follow from the graphical model in Fig. 1 and can be found
in the Appendix 1.

For the pairing corruption model we get:

P̃S(x) = (1 − ρS)PS(x) + ρDPD(x), P̃D(x) = ρSPS(x) + (1 − ρD)PD(x), (4)

and for the labeling corruption model we get,

P̃S(x) =
(π(1 − ρ+)P+(x) + (1 − π)ρ−P−(x))π̃

π̃2 + (1 − π̃)2

+
((1 − π)(1 − ρ−)P−(x) + πρ+P+(x))(1 − π̃)

π̃2 + (1 − π̃)2
,

P̃D(x) =
(πρ+P+(x) + (1 − π)ρ−P−(x))π̃

2

+
(π(1 − ρ+)P−(x) + (1 − π)(1 − ρ−)P+(x))(1 − π̃)

2
,

where π̃ = π(1 − ρ+) + (1 − π)ρ−.

(5)

Let ZQ denote the distribution over (X , Q) where P (X|Q = 1) = P̃S(X) and
P (X|Q = −1) = P̃D(X). Given the marginalized representations in (4) and (5),
we can now think of the training data of n pairwise instances (drawn from either
of the noise models) to be equivalent to a training data of 2n pointwise instances
drawn from ZQ, i.e., D � {Xi,X

′
i, Qi}n

i=1 ≡ D′ � {Xi, Qi}2n
i=1 ∼ ZQ.
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3 Loss Correction Approach

In this section, we present the first of our two proposed algorithms for learning
from noisy pairwise data. In this method, we derive an unbiased estimator of
the classification risk (Eq. 1) on noisy SD data, by modifying the standard loss
function for binary classification. We assume that the noise rates (ρS and ρD
for the pairing corruption model and ρ± for the labeling corruption model) are
available beforehand, which are then used to obtain an unbiased estimator of
the classification risk. [20] studies a technique for loss correction in the standard
classification setting. We adapt this backward-correction technique to handle
noisy SD data. A key step necessary to correct the loss is to write the posterior
over Q in terms of the posterior over Y .

We now present the posterior SD probabilities in terms of the ordinary class
posterior probabilities. The detailed derivation of the following equations can be
found in Appendix 2. For the pairing corruption noise model we obtain:

P (Q = 1|X) = P (Y = 1|X)[(1 − ρS)π + ρD(1 − π)]
+ P (Y = −1|X)[ρDπ + (1 − ρS)(1 − π)],

P (Q = −1|X) = P (Y = −1|X)[(1 − ρD)π + ρS(1 − π)]
+ P (Y = 1|X)[ρSπ + (1 − ρD)(1 − π)].

(6)

On the other hand, for the labeling corruption noise model we obtain:

P (Q = 1|X) = P (Y = 1|X)[(1 − ρ+)π̃ + ρ−(1 − π̃)]
+ P (Y = −1|X)[ρ−π̃ + (1 − ρ+)(1 − π̃)],

P (Q = −1|X) = P (Y = −1|X)[(1 − ρ−)π̃ + ρ+(1 − π̃)]
+ P (Y = 1|X)[ρ+π̃ + (1 − ρ−)(1 − π̃)].

(7)

Thus, in both noise models we can express:

P (Q = 1|x) = α1P (y = 1|x) + α2P (y = −1|x) and

P (Q = −1|x) = β1P (y = 1|x) + β2P (y = −1|x) for some coefficients α1, α2, β1, β2.

It is noteworthy that the structure of the posterior probabilities are remarkably
similar between the two noise models once we introduce the modified class prior
π̃, defined in (5). Hence, the labeling corruption noise model can be interpreted
as the following two-step data generating process: pointwise labels following the
modified class prior π̃ are observed first, then pairwise labels are observed via
the pairing corruption noise model with noise rates ρ+ and ρ−.

Having expressed the posterior probabilities of the noisy SD data in terms
of the original class posteriors, we can adopt the technique of backward cor-
rection to construct the modified loss function such that, the minimizer of the
expected risk with this new loss function over the noisy SD data is the same as
the minimizer of the expected risk with the original loss function over Z (test
distribution).
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Let � : R×Y → R≥0 be a loss function such that �(t, y) measures discrepancy

between the prediction t and the target label y and let T =
[
α1 α2

β1 β2

]
. If �̃(t) =

T−1�(t) denotes the backward corrected loss, then �(t) = E[T �̃(t)]. Note that the
expectation is taken w.r.t Q. �̃(t,Q) can be obtained as the first or the second
row of T−1�(t) corresponding to Q = +1 or Q = −1 respectively.

Remark 1. Here we have assumed T is invertible which almost always holds in
practice. However, if the condition number is large, i.e., T is almost singular, we
can mix T (with an appropriate value of λ) with the matrix T ′ which corresponds
to the noise-free SD case (obtained by setting noise rates to 0 in (6), (7); refer
to (13) below) before inverting it. This is essentially including a noise-free prior.

T ← T + λT ′, where T ′ =
[

π 1 − π
1 − π π

]

The following is the empirical �̃-risk on the observed pairwise training data
D of n instances.

R̂�̃(f) =
1
n

n∑
i=1

�̃(g(Xi,X
′
i), Qi), (8)

where, g ∈ G is a real-valued decision function and G ⊆ R
X × R

X . Further, for
ease of analysis we always deal with the pointwise view of the training dataset
D′ with 2n instances (refer to Sect. 2 above for more details). In this view, the
empirical �̃-risk on the observed pointwise training data D′ of 2n instances is:

R̂�̃(f) =
1
2n

2n∑
i=1

�̃(f(Xi), Qi), (9)

where f ∈ F is a real-valued decision function ,F ⊆ R
X is a hypothesis class.

We can use the corrected loss to train our classifier f on the noisy SD data
directly by empirical risk minimization of (9).

Performance Bounds: Now we discuss the performance bounds for this app-
roach. The following are some important notations used in the following results:

– f̂ = arg minf∈F R̂�̃(f),
– R�̃,ZQ

(f) = E(X,Q)∼ZQ
[�̃(f(X), Q)],

– R�,Z(f) = E(X,Y )∼Z [�(f(X), Y )].

The empirical estimate of the risk is unbiased to R�,Z(f) because �̃ is cor-
rected appropriately. By performing ERM on the noisy SD data using the cor-
rected loss, the empirical risk converges to the true risk on the standard class-
labeled Positive(P)-Negative(N) data drawn from the underlying distribution Z.
Let LQ be the Lipschitz constant of the loss �̃ in its first argument. Note that
LQ ≤ max{α1, α2, β1, β2}L. Let R(F , 2n) be the Rademacher complexity [4] of
the function class F for the 2n noisy SD instances.
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Further, for the following theorem we also need the notion of classification cal-
ibrated surrogate losses. If a surrogate loss �(·, ·) is calibrated, then convergence
of the surrogate excess risk R�,Z(f) − minf R�,Z(f) to zero implies convergence
of the target excess risk RZ(f) − minf RZ(f) to zero. For more details refer
to [3].

Lemma 1. For any δ > 0, we have the following: with probability at least 1− δ,

max
f∈F

|R̂�̃(f) − R�̃,ZQ
(f)| ≤ 2LQR(F , 2n) +

√
log(1/δ)

4n
. (10)

The proof of Lemma 1 can be found in Appendix 3. We see that the generaliza-
tion error of any f w.r.t. ZQ vanishes asymptotically if R(F , 2n) is moderately
controlled as is the case for linear-in-parameter models [18].

Theorem 1. For any δ > 0, we have the following: with probability at least
1 − δ,

R�,Z(f̂) ≤ min
f∈F

R�,Z(f) + 4LQR(F , 2n) + 2

√
log(1/δ)

4n
. (11)

If � is classification calibrated [3], there exists a non-decreasing function ξ� with
ξ�(0) = 0 such that,

RZ(f̂) − R∗ ≤ ξ−1
�

(
min
f∈F

Rl,Z(f) − min
f

Rl,Z(f) + 4LQR(F , 2n) + 2

√
log(1/δ)

4n

)
.

(12)

Detailed proof is available in Appendix 4.
We see that the estimation error of f̂ vanishes asymptotically if R(F , 2n) is

moderately controlled as is the case for linear-in-parameter models [18].

Special Case of Noise-Free SD Learning: When there is no noise ρS = ρD
= 0 or ρ+ = ρ− = 0 and π �= 0.5, for both the noise models,

T =
[

π 1 − π
1 − π π

]
=⇒ T−1 =

[
π

(2π−1)
−(1−π)
(2π−1)

−(1−π)
(2π−1)

π
(2π−1)

]
. (13)

We see this matches the loss function derived for noise-free SD learning in [23]
(on setting X ′ as X and replacing πSEXS

[1] = πDEXD
[1] = 1

2n ):

R̂�̃(f) =
1

2n

2n∑
i=1

[L(f(Xi), Qi)], where L(z, t) =
π

2π − 1
�(z, t) − 1 − π

2π − 1
�(z, −t).

(14)
Our analysis through the lens of loss correction provides an estimation error
bound for noise-free SD learning as a special case of noisy SD learning. The
Lipschitz constant for the corrected loss in the noise-free SD case is LQ = L

|2π−1| ,
where L is the Lipschitz constant for �. An estimation error bound for noise-free
SD learning is:
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Corollary 1. For any δ > 0, we have the following: with probability at least
1 − δ,

R�,Z(f̂) ≤ min
f∈F

R�,Z(f) +
4L

|2π − 1|R(F , 2n) + 2

√
log(1δ )

4n
. (15)

RZ(f̂) − R∗ ≤ ξ−1
�

⎛
⎝min

f∈F
Rl,Z(f) − min

f
Rl,Z(f) +

4LR(F , 2n)
|2π − 1| + 2

√
log(1δ )

4n

⎞
⎠ .

(16)

This is directly obtained from Theorem 1 by plugging in the value of LQ.

Optimization: While we have a performance guarantee, efficient optimization
is a concern especially because the corrected loss �̃(·, ·) may not be convex. We
present a condition which will guarantee the corrected loss to be convex.

Theorem 2. If �(t, y) is convex and twice differentiable almost everywhere in t
(for each y) and also satisfies:

– ∀t ∈ R, �′(t, y) = �′(t,−y), where the differentiation is w.r.t. t.
– sign(α1 − β1) = sign(β2 − α2), where α1, α2, β1, β2 are elements of T .

then �̃(t, y) is convex in t.

Proof of Theorem 2 is available in Appendix 5.
The first condition is satisfied by several common losses such as squared

loss �(t, y) = (1 − ty)2 and logistic loss �(t, y) = log(1 + exp(−ty)). The second
condition depends on the noise rates and the class prior. We can simplify this
for the pairing corruption noise model as:

1 − 2ρS
1 − 2ρD

∈
[
1 − π

π
,

π

1 − π

]
if π ≥ 0.5 ,

1 − 2ρS
1 − 2ρD

∈
[

π

1 − π
,
1 − π

π

]
if π ≤ 0.5 .

(17)

In the case of the labeling corruption noise model, this condition reduces to

1 − 2ρ+
1 − 2ρ−

∈
[
1 − π̃

π̃
,

π̃

1 − π̃

]
if π̃ ≥ 0.5 ,

1 − 2ρ+
1 − 2ρ−

∈
[

π̃

1 − π̃
,
1 − π̃

π̃

]
if π̃ ≤ 0.5 .

(18)

For all cases of noise-free or symmetric-noise (ρS = ρD or ρ+ = ρ−) SD learn-
ing, any noise rates will satisfy this condition and thus, we can always perform
efficient optimization. For cases where the above condition is not satisfied, i.e.,
l̃ is not guaranteed to be convex, this is often not a problem in practice since,
neural networks optimized by stochastic gradient descent (our setup in Sect. 5)
converges efficiently to a globally optimal solution, under certain conditions [6].
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4 Weighted Classification Approach

Now we develop our second algorithm for dealing with noisy S and D data. One
key issue that we investigate here is how the Bayes classifier learned from noisy
SD data relates to the traditional Bayes classifier.

Lemma 2. Denote the modified posterior under a SD noise model as P (Q =
1|x) = ηQ(x) and P (Y = 1|x) = η(x). Then the Bayes classifier under the noisy
SD distribution f̃∗ = arg minf∈F E(X,Q)∼ZQ

[1{sign(f(X)) �=Q}] is given by

f̃∗(x) = sign
(

ηQ(x) − 1
2

)
= sign (η(x) − τ) , (19)

where, τ depends on the noise model, noise rates and π and is presented below.
For the pairwise corruption case, assuming π �= 0.5,

τ =
1
2 − [(1 − ρS)(1 − π) + ρDπ]

(1 − ρS − ρD)(2π − 1)
.

For the label corruption case, threshold τ is:

τ =
1
2 − π(ρ+ + ρ− − ρ+ρ−) − (1 − π)(ρ2+ + (1 − ρ−)2)

(1 − ρ+ − ρ−)[π(1 − 2ρ+) − (1 − π)(1 − 2ρ−)]
,

=
1
2 − π(ρ+ + ρ− − ρ+ρ−) − (1 − π)(ρ2+ + (1 − ρ−)2)

(1 − ρ+ − ρ−)(2π̃ − 1)

assuming π̃ �= 0.5 where π̃ is defined in (5).

These expressions can be derived by using (6) and (7) in (19) and the detailed
proof of Lemma 2 is available in Appendix 6. They give us an important insight:

Remark 2. The Bayes classifier for noisy SD learning uses a different threshold
from 1

2 while the traditional Bayes classifier has η(x) thresholded at 1
2 .

Towards designing an algorithm we note that we can also obtain this Bayes
classifier by minimizing the weighted 0-1 risk defined as follows:

Uα(t, y) = (1 − α)1{y=1}1{t≤0} + α1{y=−1}1{t>0}.

The following lemma from [22] is crucial in connecting the Bayes classifier thresh-
old with the weight α in weighted 0-1 classification.

Lemma 3. [22]: Denote the Uα risk under distribution Z as

Rα,Z(f) = E(x,y)∼Z [Uα(f(x), y)].

Then f∗
α(x) = sign(η(x) − α) minimizes Rα,Z(f).
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We now show that there exists a choice of weight α such that the weighted risk
under the noisy SD distribution is linearly related to the ordinary risk under
distribution Z.

Theorem 3. There exist constants α and A and a function B(X) that only
depends on X but not on f , such that

Rα,ZQ
(f) = ARZ(f) + EX [B(X)].

For the pairing corruption case:

α =
1 − ρS + ρD

2
, A =

1 − ρS − ρD
2

(2π − 1). (20)

For the label corruption case:

α = π(1 − ρ+ + ρ2+ − ρ+ρ−) − 1
2
(1 − ρ+ − ρ−) + (1 − π)(1 − ρ− + ρ2− − ρ+ρ−),

A =
(1 − ρ+ − ρ−)

2
[π(1 − 2ρ+) − (1 − π)(1 − 2ρ−)].

(21)

Proof of Theorem 3 is available in Appendix 7.

Remark 3. The α-weighted Bayes optimal classifier under the noisy SD distri-
bution coincides with the Bayes classifier of the 0-1 loss under the standard
distribution Z.

arg min
f

Rα∗,ZQ
(f) = arg min

f
RZ(f) = sign

(
η(x) − 1

2

)
.

Performance Bounds and Optimization: For the ease of optimization, we
will use a surrogate loss instead of the 0-1 loss to perform weighted ERM.
Any surrogate loss can be used as long as it can be decomposed as �(t,Q) =
1{Q=1}�1(t) + 1{Q=−1}�−1(t), for partial losses �1, �−1 of � [3,22]. The margin-
based surrogate loss functions � such that �(t,Q) = 1{Q=1}φ(t) + 1{Q=−1}φ(−t)
for some φ : R → R≥0 [18] is expressible in this form. The commonly used sur-
rogate losses such as the squared, hinge, and logistic losses are encompassed in
the margin-based surrogate loss. We want to minimize the following empirical
risk using the weighted surrogate loss lα:

min
g∈G

1
n

n∑
i=1

�α(g(Xi,X
′
i), Qi). (22)

Similar to (9) we consider the pointwise version of the empirical risk using the
weighted surrogate loss lα:

min
f∈F

1
2n

2n∑
i=1

�α(f(Xi), Qi), (23)
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and let f̂α denote the minimizer of (23).

f̂α = arg min
f∈F

1
n

n∑
i=1

�α(f(xi), Qi). (24)

We already discussed classification calibration in Sect. 3. For the following
theorem we need the notion of α-classification calibrated losses, developed in
[22], that extends [3] to the asymmetric classification setting where the mis-
classification costs are unequal for the two classes.

Theorem 4. If �α is an α-weighted margin loss [22] of the form: lα(t,Q) = (1−
α)1{Q=1}�(t)+α1{Q=−1}�(−t) and � is convex, classification calibrated (�′(0) < 0
where the derivative is w.r.t. t) and L-Lipschitz, then for the choices of α and A
in (20), (21)(assuming π �= 0.5 or π̂ �= 0.5 for the corresponding noise model),
there exists a non-decreasing function ξ�α

with ξ�α
(0) = 0 such that the following

bound holds with probability at least 1 − δ:

RZ(f̂α) − R∗ ≤ A−1ξ�α

(
min
f∈F

Rα,ZQ(f) − min
f

Rα,ZQ(f) + 4LR(F , n) + 2

√
log( 1

δ
)

2n

)
,

(25)
where R∗ denotes the corresponding Bayes risk under Z.

Note that using Corollary 4.1 from [22] we know lα is α-classification calibrated.
The right-side in (25) is finite because A �= 0 whenever π, π̂ �= 0.5. Proof of
Theorem 4 is available in Appendix 8.

Remark 4. For a fixed Lipschitz constant L, as A decreases we get a weaker
excess risk bound. For the pairing corruption noise model, its easy to see that
as noise rates increase, A decreases. On the other hand, the relationship is more
complicated for the labeling corruption noise model. When the noise is symmetric
(ρ+ = ρ− = ρ), A = (1−2ρ)2(2π−1)

2 . In this case, again we observe as ρ increases,
A decreases and we get a weaker bound.

Remark 5. When ρS = ρD or ρ+ = ρ−, we see that the optimal Bayes classifier
for the (noisy) SD learning problem is the same as the Bayes classifier for the
standard class-labeled binary classification task under distribution Z. In these
settings, this result allows us to learn a classifier for standard class-labeled binary
classification from (noisy) SD data simply by treating the similar and dissimilar
classes as the positive and negative class for any chosen classifier.

Estimation of Prior and Noise Parameters: We briefly discuss the param-
eters (the class prior π and the noise rates ρS and ρD in the pairing corruption
noise model and ρ± in the labeling corruption noise model) that we need to
know or estimate to apply each method for each noise model.

(I) Loss Correction Approach: The noise rate parameters can be tuned by
cross-validation on the noisy SD data. We also need to estimate the class prior to



Learning from Noisy Similar and Dissimilar Data 245

construct the loss correction matrix T , under both noise models. Let nS be the
number of similar pairs and nD be the number of dissimilar pairs in the training
dataset. The class prior π can be estimated from the following equations:

– For the pairing corruption noise model:

nS

nD
≈ (1 − ρS)(π2 + (1 − π)2) + 2ρDπ(1 − π)

ρS(π2 + (1 − π)2) + 2(1 − ρD)π(1 − π)
(26)

– For the labeling corruption noise model:

nS

nD
≈ (1 − ρ+)(ππ̃ + (1 − π)(1 − π̃)) + ρ−(π(1 − π̃) + π̃(1 − π))

ρ+(ππ̃ + (1 − π)(1 − π̃)) + (1 − ρ−)(π(1 − π̃) + π̃(1 − π))
(27)

From each of the above equations we can obtain an estimate π̂ of the class prior
π. The above equations can be derived from (6) and (7) by marginalizing out X

and using nS

nD
≈ P (Q=1)

P (Q=−1) (equality holds for the population).

(II) Weighted Classification Approach: The class prior only appears in
the weight α in the labeling corruption model. In the pairing corruption model,
knowledge of the class prior is not needed to calculate α. However, since we
just have one parameter α for the optimization problem, in practice we can
obtain α directly by cross-validation under both noise models. Note that if we
are given the noise rates, in the pairing corruption noise model we can calculate
the optimum α exactly but in the labeling corruption noise model we still get
only an estimate of the optimum α since, π̂ ≈ π.

5 Experiments

We empirically verify that the proposed algorithms are able to learn a classifier
for the underlying distribution Z from only noisy similar and dissimilar train-
ing data. All experiments are repeated 3 times on random train-test splits of
75:25 and the average accuracies are shown. We conduct experiments on two
noise models independently. In the learning phase, the noise parameters and
the weight α is tuned by cross-validation for the Loss Correction Approach and
the Weighted Classification Approach respectively, for both noise models, by
searching in [0, 0.5] in increments of 0.1. Evaluation is done on the standard
class-labeled test dataset using standard classification accuracy (Eq. 1) as eval-
uation metric which is averaged over the test datasets to reduce variance across
the corruption in the training data. We use a multi-layer perceptron (MLP) with
two hidden layers of 100 neurons, ReLU activation and a single logistic sigmoid
output, as our model architecture for all experiments trained using the squared
loss: �(t, y) = (t − y)2. We use stochastic gradient descent with momentum of
0.9 with a mini-batch size of 32 and a learning rate of 0.001, for 500 epochs.

Synthetic Data: We use a non-separable benchmark “banana” dataset which
has two dimensional attributes and two classes. We perform two kinds of exper-
iments. In the first experiment, for a given noise model, for different settings
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Fig. 2. The left two images depict the gradual decrease in classification accuracy of the
learned classifier (from either algorithm) as the noise rate in the noisy SD training data
increases, for each noise model. The right two images depict the increase in classifica-
tion accuracy of the learned classifier (from the weighted classification method) as the
number of noisy SD training samples increases, for different noise rates in each noise
model. The accuracy achieved by training on standard P-N training data provided by
the banana dataset is 90.8%.

of symmetric noise parameters (ρS = ρD and ρ+ = ρ−) we plot the variation
of standard test accuracy with the number of noisy SD pairs (n) sampled for
training. For this experiment setting, we show the results for the weighted classi-
fication algorithm in Fig. 2. Since the Bayes classifier under the symmetric noise
is identical to that of noise-free case under both the noise models (see Remark 4),
we see that the accuracy improves as we get a better approximation of the Bayes
classifier as we have more SD data-points in training. Note that the number of
original training points in the dataset is fixed—what changes is only the number
of SD points we sample from them. In the second experiment, for each noise
model, for a fixed n we show the gradual degradation of performance of the pro-
posed algorithms (loss correction approach as well as the weighted classification
approach) with increasing symmetric noise rates. These experiments confirm
that higher noise hurts accuracy and more pairwise samples helps it.

Real World Datasets. We further conduct experiments on several benchmark
datasets from the UCI classification tasks.3 All tasks are binary classification
tasks of varying dimensions, class priors, and sample sizes. We compare the
performance of our proposed approaches against two kinds of baselines.

(A) Supervised Baselines: The state-of-the-art algorithm [23] for learning from
pairwise similar-dissimilar data is used and this provides a strong baseline for
the loss-correction approach. We also compare the performance of the weighted
classification approach thresholded at 1

2 , i.e., under the noise-free assumption.
While these baselines have been proved to perform very well in the noise-free
scenario (both theoretically and empirically), here we investigate if they are
robust to noisy annotations, for varying noise rates.

(B) Unsupervised Baselines: We also compare against unsupervised clustering
and semi-supervised clustering based methods. For unsupervised clustering, pair-
wise information is ignored KMeans [16] is applied with K = 2 clusters, directly
on the noisy SD datapoints and the obtained clusters are used to classify the
test data. We also use constrained KMeans clustering [25], where we treat the

3 Available at https://archive.ics.uci.edu/ml/datasets.php.

https://archive.ics.uci.edu/ml/datasets.php
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Table 1. Pairing Noise: The best P-N column denotes the test accuracy after training
on the standard class-labeled train dataset provided. d, π, N denote the feature dimen-
sion, class prior and the size of the entire class-labeled data respectively. Clean S-D
denotes test accuracy after training on noise-free S-D data generated from the train
dataset. T-Loss indicates the test accuracy after training on S-D data with the loss
correction approach (by the matrix T ) and SD-Loss denotes the non-corrected variant
of [23]. Similarly, weighted and unweighted denotes the test accuracy after training on
S-D data using weighted ERM and normal ERM respectively—note, they are identical
for symmetric noise. KM denotes the KMeans baseline and KM-COP is the KMeans
with constraints. Accuracies within 1% of the best in each row are bolded.

Dataset

(d, π)

N

best

P-N

clean

S-D

Noise Rates

(ρS , ρD)

T-Loss SD-Loss Weighted Unweighted KM KM-

COP

diabetes

(8,0.35)

768

77 77 (0.2, 0.2)

(0.1, 0.2)

(0.3, 0.3)

76.57

74.95

75.52

75

75.52

73.95

74.95

77.61

74.48

74.95

76.04

74.48

65.63 64.58

65.10

64.06

adult

(106,0.24)

48842

83.09 83.03 (0.2, 0.2)

(0.1, 0.2)

(0.3, 0.3)

82.49

77.8

81.42

82.22

76.26

80.26

82.35

82.41

81.10

82.35

75.92

81.10

71.25 71.25

71.25

53.14

cancer

(30,0.37)

569

97.2 97.2 (0.2, 0.2)

(0.1, 0.2)

(0.3, 0.3)

97.18

97.18

97.18

96.47

97.18

95.07

95.78

95.78

95.78

95.78

95.78

95.78

88.7 92.95

91.54

92.25

Table 2. Labeling Noise: The setup is same as Table 1 but now we use the labeling
corruption noise model to generate the noisy S-D data.

Dataset

(d, π)

N

best

P-N

clean

S-D

Noise Rates

(ρ+, ρ−)

T-Loss SD-Loss Weighted Unweighted KM KM-

COP

ionosphere

(34,0.64)

351

90.91 90.91 (0.2, 0.2)

(0.1, 0.2)

(0.3, 0.3)

88.67

85.24

87.5

85.23

80.68

80.7

86.4

90.91

88.64

86.4

85.23

88.64

70.45 71.59

71.59

71.59

spambase

(57,0.39)

4601

91.83 89.74 (0.2, 0.2)

(0.1, 0.2)

(0.3, 0.3)

87.56

83.74

85.304

83.22

84.15

75.65

82.78

86.78

78.44

82.78

85.56

78.44

78.08 78.96

79.13

78.61

magic

(10,0.65)

19020

84.12 83.40 (0.2, 0.2)

(0.2, 0.1)

(0.3, 0.3)

80.06

73.27

79.39

81.13

73.61

78.42

82.21

81.67

79.50

82.21

79.70

79.50

59.09 63.28

66.03

62.34

SD pairs as must-link and cannot-link constraints to supervise the clustering of
the SD data pooled together. While constrained clustering is a strong baseline
for pairwise learning [23], here we investigate if it is robust to noisy annotations.

In Tables 1 and 2, we show the performance of our proposed algorithms ver-
sus the baselines. We observe that for both noise models and for almost all
noise rates, our proposed approaches significantly outperform the baselines. We
also observe, that as the noise rates increase, performance degrades for all the
methods. Further, we see that the noise-free SD performances match the best
P-N performance which empirically verifies the optimal classifiers for learning
from noise-free standard P-N and pairwise SD data coincide. The complete set
of experiments along with additional details are provided in Appendix 9.
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6 Conclusion and Future Work

In this paper we theoretically investigated a novel setting that is commonly
encountered in several applications—learning from noisy pairwise labels and
studied it under two distinct noise models. We showed the connections of this
problem to standard class-labeled binary classification, proposed two algorithms
and derived their performance bounds. We empirically showed that they out-
perform state-of-the-art supervised and unsupervised baselines and are able to
handle severe noise corruption. For future work, it is worthwhile to investigate
more complicated noise models such as instance-dependent noise [17] in this
setting.
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Abstract. Knowledge distillation (KD) is one of the most efficient
methods to compress a large deep neural network (called teacher) to
a smaller network (called student). Current state-of-the-art KD methods
assume that the distributions of training data of teacher and student are
identical to maintain the student’s accuracy close to the teacher’s accu-
racy. However, this strong assumption is not met in many real-world
applications where the distribution mismatch happens between teacher’s
training data and student’s training data. As a result, existing KD meth-
ods often fail in this case. To overcome this problem, we propose a novel
method for KD process, which is still effective when the distribution mis-
match happens. We first learn a distribution based on student’s training
data, from which we can sample images well-classified by the teacher.
By doing this, we can discover the data space where the teacher has
good knowledge to transfer to the student. We then propose a new loss
function to train the student network, which achieves better accuracy
than the standard KD loss function. We conduct extensive experiments
to demonstrate that our method works well for KD tasks with or with-
out distribution mismatch. To the best of our knowledge, our method is
the first method addressing the challenge of distribution mismatch when
performing KD process.

Keywords: Knowledge distillation · Model compression · Distribution
mismatch · Distribution shift · Mismatched teacher

1 Introduction

Recently, deep learning has become one of the most successful machine learning
techniques [16], and it has been applied widely to many real-world applications
including face recognition [8], security systems [21], disease detection [18], rec-
ommended systems [25], etc. Deep neural networks (the main component of deep
learning) often have millions of parameters (aka weights) to train, thus require
heavy computation and storage, which can only be executed on powerful servers.
This characteristic renders deep networks inapplicable to many real-time devices,
especially for those edge devices with limited resources such as smart phones,
autonomous cars, and micro robots.
c© Springer Nature Switzerland AG 2021
N. Oliver et al. (Eds.): ECML PKDD 2021, LNAI 12976, pp. 250–265, 2021.
https://doi.org/10.1007/978-3-030-86520-7_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86520-7_16&domain=pdf
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A well-known solution in machine learning to compress a large deep network
to a smaller network is knowledge distillation (KD) [7,9]. The main goal of KD
is to transfer the knowledge learned by a large pre-trained deep network (called
teacher) to a smaller network (called student) such that the student network can
mimic the teacher network, resulting in a comparable classification performance
[9]. Many methods have been proposed for KD, and most of them follow the
method introduced in Hinton et al.’s paper [9], which attempts to map the
predictions of student to both the true labels and the predictions of teacher
on the student’s training data (called student-data). The intuition behind this
method is that the student will improve its classification performance when it
not only learns from its training data but also is guided by a powerful teacher
that was often trained on a larger data (called teacher-data) and achieved very
good performance due to its generalization ability. The idea of standard KD
method is illustrated in Fig. 1.

Fig. 1. Illustration of standard KD method. Given a student-data DS and a teacher
network T pre-trained on teacher-data DT , the student network S is trained on each
image x ∈ DS such that its output yS

x matches both the true label yx via a cross-entropy
loss and the output of teacher yT

x via a Kullback–Leibler (KL) divergence loss.

All current methods following the standard KD method shown in Fig. 1 have
a significant constraint – they assume that both teacher-data DT and student-
data DS come from the same distribution [2,9,10,22]. This strong assumption is
not realistic in real-world applications, where the distribution shift often happens
between DT and DS , and in some cases DT is different from DS e.g. teacher
pre-trained on ImageNet while student trained on CIFAR-100. As a result, the
teacher network performs very poorly on DS . All existing KD methods will
fail when using the knowledge transferred from such mismatched teachers, and
the classification accuracy of student network often drops significantly. Thus,
the ability of applying the KD process when the distribution mismatch between
teacher-data DT and student-data DS exists, is an open problem.
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Our Method. To solve the above problem, we propose a novel KD method
that is still effective when the distribution mismatch happens. In particular,
we first train a generative model to obtain the distribution of a latent variable
representing the student-data. We then adjust this distribution using Bayesian
optimization [14,19] to find an optimized distribution from which we can sample
images that are well-classified by the teacher. By doing this, we can replace the
original student-data where the teacher performs poorly by a new student-data
where the teacher achieves a good performance. Finally, we propose a novel KD
loss function to train the student network to match its predictions to the true
labels of original student-data and to the predictions of teacher network on new
student-data. The intuition behind our method is that the teacher network should
be given the data points on which it has good knowledge and achieves accurate
predictions. By that way, the teacher’s good knowledge on such data points will
be useful when transferred to the student. For other data points on which the
teacher has little/wrong knowledge, the student should learn their information
from its own ground-truth labels. Our KD method is robust as it can be applied
to two settings of KD process: (1) with distribution mismatch and (2) without
distribution mismatch.

To summarize, we make the following contributions:

1. We propose KDDM (Knowledge Distillation with Distribution Mismatch),
a novel method for distilling the knowledge of a large pre-trained teacher net-
work into a smaller student network. To the best of our knowledge, KDDM
is the first method offering a successful KD process even if the distributions
of teacher-data and student-data are different.

2. We develop an efficient framework to generate images well-classified by the
teacher network and a new loss function to train the student network. Both
are very useful for the knowledge transfer.

3. We only treat the teacher as a black-box model where we require no internal
information (e.g. model architecture, weights, etc.) from the teacher except
its probabilistic outputs.

4. We demonstrate the benefits of KDDM in two cases of KD process, namely
with distribution mismatch and without distribution mismatch. Our method
significantly outperforms the standard KD method and is comparable with
recent state-of-the-art KD methods that train teacher and student networks
on data with matching distributions.

2 Related Works

Knowledge distillation (KD) has become an attractive research topic since 2015
when Hinton et al. introduced the concept of KD in their teacher-student frame-
work [9]. The main goal of KD is to transfer the knowledge learned from a teacher
network to a student network such that the student can mimic the teacher, result-
ing in an improvement in its classification performance. In recent years, many
methods have been proposed for KD, which can be categorized into three groups:
relation-based, feature-based, and response-based KD methods.
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Relation-Based KD. These methods not only use the output of teacher but
also explore the relationships between different layers of teacher when training
the student network. Examples include [11,15,24]. One key challenge of these
methods is how to define the correlation function between the teacher and stu-
dent layers.

Feature-Based KD. These methods leverage both the output of last layer and
the output of intermediate layers (i.e. feature map) of teacher when training stu-
dent [1,10,15]. The main benefit of these approaches is that deep neural networks
are often good at representation learning, therefore not only the predictions but
also representations learned by teacher network are useful knowledge to transfer
to student network.

Response-Based KD. These methods directly mimic the final prediction
of teacher network [4,9,12,23]. Compared to relation-based and feature-based
methods, response-based methods have a significant advantage that they only
treat the teacher as a black-box model without requiring access to its inter-
nal information (e.g. model parameters, feature maps, or derivatives), thus are
applicable to any type of deep network.

To successfully train student with the knowledge distilled from teacher, most
KD methods assume that both teacher-data and student-data come from the
same distribution. For example, [3,9] pointed out that the student only achieved
its best accuracy when it had access to the teacher’s original training data. Sim-
ilarly, [13] mentioned the typical setting in existing KD methods is the student
network trained on the teacher-data. Recent state-of-the-art methods [2,10,22]
also train both teacher and student networks on the same dataset.

Although these methods can distill a large deep network into a smaller one,
their success relies on the strong assumption that both teacher-data and student-
data are identical, a condition often not met in many real-world applications.
As far as we know, no KD approach has been proposed to explicitly address the
challenge of distribution mismatch between teacher-data and student-data.

3 Framework

3.1 Problem Definition

Given a student-data DS and a teacher network T pre-trained on a teacher-data
DT , the goal of KD method is to train a student network S on DS such that S
can mimic the prediction of T .

The standard KD method minimizes the following loss function:

LKD =
∑

x∈DS

αCE(yS
x , yx) + (1 − α)KL(yS

x , yT
x ), (1)

where CE(yS
x , yx) is the cross-entropy loss between the output (i.e. the probabil-

ities for all classes) of student and true label, KL(yS
x , yT

x ) is the Kullback–Leibler
(KL) divergence loss between the output of student and the output of teacher,
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and α is a trade-off factor to balance the two loss terms. Note that in Eq. (1)
we do not use the temperature factor as in Hinton’s KD method [9] because
this requires access to the pre-softmax activations of teacher, which violates our
assumption of “black-box” teacher.

From Eq. (1), since the true labels yx in the first loss term are fixed, the
improvement of a KD method mainly relies on the second loss term KL(yS

x , yT
x ).

The predictions of teacher yT
x are assumed to be highly accurate on the student-

data DS so that the classification accuracy of student can be improved. In many
real cases, this assumption is not true, where the performance of teacher on DS

is not good due to the distribution mismatch between DT and DS . For example,
DT and DS can come from two different distributions or DT and DS can be two
different datasets. As a result, the standard KD process makes harmful effects to
student, where the classification accuracy of student drops significantly compared
to the same model trained from scratch on DS (we call this model student-alone).

Problem Statement. Given a student-data DS and a black-box teacher net-
work T pre-trained on a teacher-data DT , we assume there is a distribution
mismatch between DT and DS . Our goal is to train a student network S on DS ,
which achieves two objectives: (1) our student’s classification accuracy is bet-
ter than that of student network trained with the standard KD loss in Eq. (1),
and (2) our student’s classification accuracy is better than that of student-alone
trained from scratch on DS .

3.2 Proposed Method KDDM

To improve the classification performance of student network, one direct solution
is to adjust the trade-off factor α ∈ [0, 1] in Eq. (1), where a small value for α
means the KD process will rely more on the predictions of teacher whereas a large
value for α means the KD process will rely more on the true labels. Typically,
existing KD methods choose α = 0.5 to balance these two objectives. Since
the distribution mismatch exists, a reasonable thinking is that we should trust
the true labels more than the predictions of teacher, leading to choosing large
values for α (e.g. 0.7 or 0.9). Although this simple approach can improve the
accuracy of student, it cannot boost the student’s performance better than the
accuracy of student-alone network that uses α = 1.0. We can see the accuracy
of student-alone network serves as an upper bound on the accuracy obtained by
the standard KD methods when the distribution mismatch occurs.

Our framework to solve the problem in Sect. 3.1 is novel, which has three
main steps: (1) we train a generative model to obtain the distribution of a latent
variable representing the student-data DS , (2) we adjust this distribution using
Bayesian optimization (BO) to find an optimized distribution to generate new
images well-classified by the teacher, and (3) we perform the KD process to train
the student with a new loss function. The overview of our proposed framework
is shown in Fig. 2.

Learning the Distribution of Latent Variable z . We train Conditional
Variational Autoencoder (CVAE) [20] to learn the distribution of latent variable
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Fig. 2. Our framework KDDM consists of three steps. Step 1: it trains a CVAE
model to learn the standard normal distribution of latent variable z representing the
student-data DS . Step 2: it adjusts this distribution using BO to generate the new
student-data D′

S where the teacher achieves the best accuracy. Step 3: it trains the
student to match its output to the true labels in original student-data DS and to the
predictions of teacher on new student-data D′

S .

z that is close to the distribution of student-data DS . CVAE is a generative
model consisting of an encoder and a decoder. We use the encoder network to
map an image along with its label (x, y) ∈ DS to a latent vector z that follows
a standard normal distribution N (0, I). From the latent vector z conditioned
on the label y, we use the decoder network to reconstruct the input image x.
Following [20], we train the CVAE by maximizing the variational lower bound
objective:

log P (x | y) ≥ E(log P (x | z, y)) − KL(Q(z | x, y), P (z | y)),

where Q(z | x, y) is the encoder network mapping input image x and its label
y to the latent vector z, P (x | z, y) is the decoder network reconstructing input
image x from the latent vector z and label y, E(log P (x | z, y)) is the expected
likelihood, which is implemented by a cross-entropy loss between input image
and reconstructed image, and P (z | y) ≡ N (0, I) is the prior distribution of z
conditioned on y.

After training the CVAE model, we obtain the distribution of latent variable
z, which is a standard normal distribution N (0, I). If we sample any z ∼ N (0, I)
and feed it along with a label y to the decoder network, then we can generate an
image that follows the distribution of DS . Since we use CVAE to generate images
with labels, we can find a distribution to sample images that are well-classified
by the teacher in the next step.
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Adjusting the Distribution of Latent Variable z . We sample latent vectors
z ∼ N (0, I); the number of z equals to the number of images in DS . We then feed
these z along with the list of true labels y in DS to the trained decoder network
to generate new images. Since these images are similar to original images in DS ,
they will not be predicted well by the teacher, and therefore would not be useful
for knowledge transfer.

Our goal is to generate new images well-classified by the teacher. Since z are
normally distributed, we adjust the distribution P (z | y) ≡ N (0, I) to P (z′ |
y) ≡ N (μ, σ2) using the following formula:

z′ = μ + σz, (2)

where z′ ∈ R
d are the new latent vectors, μ ∈ R

d is the mean vector, σ ∈ R
d×d

is the standard deviation matrix that is a diagonal matrix, z ∈ R
d are the latent

vectors representing the original images in DS , and d is the dimension of z.
From Eq. (2), we can also use the new latent vectors z′ along with y to

generate images x′ via the trained decoder network. The next question is how to
generate relevant images x′ on which the teacher predicts well. Since the output
of generated images x′ depends on z′ that can be controlled by μ and σ, we use
BO to optimize μ and σ by maximizing the following objective function:

(μ∗, σ∗) = arg max
μ,σ

facc(y, T (x′)), (3)

where x′ = G(z′, y) are the generated images via the trained decoder network
G, T (x′) are the predictions of teacher for generated images x′, and facc is the
function computing the accuracy between true labels y and predicted labels of
teacher on x′. Note that since we set y during the image generation, y are the
true labels of x′. We use BO to optimize Eq. (3) since it is a black-box and
expensive-to-evaluate function.

After the optimization finishes, we obtain the optimal distribution indicated
by μ∗ and σ∗. We compute optimal latent vectors z′ = μ∗ + σ∗z. Using z′ along
with the list of true labels y in DS , we generate images x′ whose labels are y,
and x′ have a higher chance to be correctly predicted by the teacher. On one
hand, we can generate a new student-data D′

S containing images x′ that are
well-classified by the teacher. On the other hand, we can discover the data space
where the teacher has relevant knowledge for the student and achieves accurate
predictions. Note that for each image x ∈ DS we have its corresponding image
x′ ∈ D′

S , and both x and x′ have the same true label y.

Training the Student S Using a New Knowledge Distillation Loss.
After generating the new student-data D′

S , we then use the knowledge of teacher
on D′

S to transfer to the student. Precisely, we train a student network whose
predictions match both the true labels in the original student-data DS and the
predictions of teacher on the new student-data D′

S .
Our new loss function to train the student network is:

LS =
∑

x∈DS ,x′∈D′
S

βCE(yS
x , yx) + (1 − β)KL(yS

x , yT
x′), (4)
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where CE(yS
x , yx) is the cross-entropy loss between the outputs of student and the

true labels in the original student-data DS , KL(yS
x , yT

x′) is the KL divergence loss
between the outputs of student and the outputs of teacher on the new student-
data D′

S , and β is a trade-off factor to balance the two loss terms. Note that the
number of images in both DS and D′

S are the same, and each x′ ∈ D′
S is the

corresponding image of each x ∈ DS .
Compared to the standard KD loss function in Eq. (1), our loss function

uses the knowledge of teacher on the new student-data D′
S to transfer to the

student, which is much better than using the knowledge of teacher on the original
student-data DS . This is because D′

S contains images on which the teacher has
good knowledge and predicts accurately, as ensured by the BO process. For the
knowledge on DS where the teacher does not have good knowledge, our student
network only learns from the true labels of DS . Consequently, our method is
much better than the standard KD method.

Discussion. To create the new student-data D′
S , one can simply select images in

the original student-data DS on which the teacher has accurate predictions (i.e.
the actual classes having the highest probabilities). However, this naive approach
has two disadvantages. First, since the teacher’s accuracy on DS is low e.g. its
accuracy on CIFAR-100 is only 14.46% in our experiment, very few images in DS

provide useful knowledge to transfer to the student via the teacher’s predictions.
Second, since the number of images in D′

S is less than that in DS , D′
S cannot

be used in Eq. (4) to train the student network, which requires |D′
S | = |DS |.

4 Experiments and Discussions

We conduct extensive experiments on three benchmark image datasets to eval-
uate the classification performance (accuracy and F1-score) of our method
KDDM, compared with strong baselines.

4.1 Datasets

We run experiments on MNIST, CIFAR-10, and CIFAR-100. These datasets are
commonly used to evaluate the performance of a KD method [2,5,9,22].

4.2 Baselines

Since there are no existing KD methods dealing with distribution mismatch, we
compare KDDM with two baselines.

– Student-Alone: the student network is trained on the student-data DS from
scratch.

– Standard-KD : the student network is trained with the standard KD loss in
Eq. (1) and with the trade-off factor α = 0.5. We also use larger values α = 0.7
and α = 0.9 to improve the performance of student, as discussed in Sect. 3.2.



258 D. Nguyen et al.

As a reference, we also report the accuracy of current state-of-the-art KD meth-
ods, namely KD [9], VID [2], and CRD [22]. Note that these three methods are
not comparable with ours since they train both teacher and student networks on
the same dataset whereas our method is dealing with the teacher and student
networks trained on teacher- and student-datasets with different distributions.

To have a fair comparison, we use the same teacher-student network archi-
tecture and hyper-parameters (e.g. batch size and the number of epochs) across
all the methods i.e. Student-Alone, Standard-KD, and our KDDM. For other
baselines KD, VID, and CRD, we obtain their accuracy from related papers1.

4.3 Results on MNIST

The first experiment shows the KD results on MNIST dataset, where the distri-
bution shift happens between teacher-data DT and student-data DS .

Experiment Settings. Following [5], we use the HintonNet-1200 network for
the teacher, which has two hidden layers of 1,200 units and the HintonNet-800
network for the student, which has two hidden layers of 800 units. These two
network architectures are feed-forward neural networks (FNNs), where the stu-
dent has much fewer parameters than the teacher. We train the teacher network
with a batch size of 256 and 20 epochs. We train the student network with a
batch size of 64 and 20 epochs. We train the CVAE with FNNs for both encoder
and decoder, using a latent dimension of 2, a batch size of 256, and 100 epochs.
To find the optimal values (μ∗, σ∗), we use Thomson sampling implemented
in the Turbo package [6], with 2,000 iterations, 50 suggestions per batch, and

20 trusted regions. The searching ranges for μ = [μ1, μ2], σ =
[

σ11 0
0 σ22

]
are

μ1, μ2 ∈ [−6.0, 6.0] and σ11, σ22 ∈ [0, 6.0]. The trade-off β in our new loss func-
tion (see Eq. (4)) is set to 0.5, and β = 0.5 is used across all experiments.

The MNIST dataset has 28×28 images from 10 classes ([0, 1, ..., 9]), contain-
ing 60K training images (called Dtrain) and 10K testing images (called Dtest).
We use Dtrain as the student-data DS while we create the teacher-data DT by
randomly removing 98% of images in even classes 0, 2, 4, 6, 8 in Dtrain, leading
to two different distributions for DT and DS . We train the teacher network on
DT and the student network on DS , then evaluate both teacher and student
networks on hold-out Dtest. The distributions of three datasets DT , DS , and
Dtest are illustrated in Fig. 3.

Quantitative Results. From Table 1(a), we can see our KDDM outperforms
both Student-Alone and Standard-KD (α = 0.5). KDDM achieves 98.30%,
which is much better than Standard-KD achieving only 96.61%. The teacher’s
accuracy achieves only 91.52% due to the distribution mismatch between DT

1 This is possible because we use benchmark datasets, and the training and test splits
are fixed.
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Fig. 3. Distributions of teacher-data DT , student-data DS , and test data Dtest. The
distribution of DT is much different from that of DS while the distributions of DS

and Dtest are quite similar (i.e. the number of samples among classes is balanced). We
expect that the teacher trained on DT will achieve low accuracy on DS and Dtest due
to the distribution mismatch.

Table 1. Classification results on MNIST: (a) teacher-data DT and student-data DS

come from two different distributions and (b) DT and DS are identical. The results of
(b) are obtained from [5]. “-” means the result is not available in the original paper.

(a) P (DT ) �= P (DS)

Model Accuracy F1-score

Teacher 91.52% 91.40%

Student-Alone 98.21% 98.19%

Standard-KD (α = 0.5) 96.61% 96.60%

Standard-KD (α = 0.7) 97.93% 97.92%

Standard-KD (α = 0.9) 98.17% 98.15%

KDDM (Ours) 98.30% 98.29%

(b) DT ≡ DS ≡ Dtrain

Model Accuracy F1-score

Teacher 98.39% -

Student-Alone 98.11% -

KD [9] 98.39% -

VID [2] - -

CRD [22] - -

versus DS and Dtest, leading to the poor performance of Standard-KD, as dis-
cussed in Sect. 1. When we increase the value of α to 0.7 and 0.9 (i.e. the student
relies more on the true labels of DS), the accuracy of Standard-KD is improved
as expected (see Sect. 3.2), and approaches the accuracy of Student-Alone.
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We also report the accuracy of KD method [9] in Table 1(b) for a reference.
KD uses the teacher trained on the original MNIST training data Dtrain, which
has more advantages than our KDDM. KD’s teacher achieves 98.39%, which is
much higher than that of our teacher (91.52%). However, our KD framework –
KDDM still achieves a comparable accuracy with KD (98.30% vs. 98.39%).

4.4 Results on CIFAR-10

The second experiment shows the KD results on CIFAR-10 dataset, where the
distribution shift happens between teacher-data DT and student-data DS .

Experiment Settings. We use ResNet-50 and ResNet-20 models for teacher
and student networks respectively. These two network architectures are convolu-
tional neural networks (CNNs), where the teacher has 763K parameters and the
student has 274K parameters. We train the teacher and student networks with a
batch size of 32 and 200 epochs. We train the CVAE with CNNs for both encoder
and decoder, using a latent dimension of 2, a batch size of 64, and 600 epochs.
We find the optimal values (μ∗, σ∗) in the same way as in our experiments on
MNIST.

The CIFAR-10 dataset is set of 32 × 32 pixel RGB images with 10 classes,
and contains 50K training images (called Dtrain) and 10K testing images (called
Dtest). We use Dtrain as the student-data DS while we create the teacher-data
DT by randomly removing 98% of images in even classes in Dtrain, leading to
P (DT ) �= P (DS). We train the teacher network on DT and the student network
on DS , then evaluate both teacher and student networks on hold-out Dtest.

Quantitative Results. From Table 2(a), we can see the accuracy of teacher on
Dtest is only 70.73%, which is much lower than that of Student-Alone trained
on DS . This is because of the distribution mismatch between DT versus DS and
Dtest. Consequently, when this poor teacher is used for KD, it makes harmful
effects to Standard-KD (α = 0.5), where the accuracy significantly drops around
6% from Student-Alone. Even if we use larger values for α to shift the predictions
of Standard-KD to the true labels of DS , its accuracy is only improved to 90.90%,
which is still worse than that of Student-Alone. Our KDDM achieves 91.54%,
which is better than both Student-Alone and Standard-KD baselines, thanks to
the new loss function to train the student in Eq. (4).

Compared to state-of-the-art KD methods in Table 2(b), KDDM is compa-
rable with KD and VID. Note that both KD and VID train teacher and student
networks on the same Dtrain, which obtains a much stronger teacher than our
method. Their teacher achieves 94.26% whereas our teacher achieves only 70.73%
on the test data Dtest. However, the accuracy of our KDDM and those of KD
and VID are comparable (91.54% vs. 91.27% and 91.85%).
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Table 2. Classification results on CIFAR-10: (a) teacher-data DT and student-data
DS come from two different distributions and (b) DT and DS are identical. The results
of (b) are obtained from [2]. “-” means the result is not available in the original paper.

(a) P (DT ) �= P (DS)

Model Accuracy F1-score

Teacher 70.73% 69.36%

Student-Alone 91.22% 91.20%

Standard-KD (α = 0.5) 85.49% 85.60%

Standard-KD (α = 0.7) 89.34% 89.40%

Standard-KD (α = 0.9) 90.90% 90.91%

KDDM (Ours) 91.54% 91.56%

(b) DT ≡ DS ≡ Dtrain

Model Accuracy F1-score

Teacher 94.26% -

Student-Alone 90.72% -

KD [9] 91.27% -

VID [2] 91.85% -

CRD [22] - -

Qualitative Results. In Fig. 4, we show the original images in student-data
DS versus the images generated by our method corresponding to four true labels
“ship”, “deer”, “bird”, and “automobile”. We can see our generated images have
comparable qualities with original images, where the objects are easily recognized
and clearly visualized. These generated images are also correctly classified by the
teacher. In contrast, the original images are wrongly predicted by the teacher
since they may not be similar to any images in DT – the training data of teacher.
Remind that DT has much fewer samples in classes 2 (“bird”), 4 (“deer”), and 8
(“ship”). Consequently, the teacher does not observe a diversity of samples and
often predicts wrong labels for the images belonging to these three classes. To
overcome this problem, our method tries to generate only images best fitting to
the teacher (i.e. the images well-classified by the teacher), and use them for the
KD process.

Fig. 4. Original images in original student-data DS (left) versus generated images in
new student-data D′

S (right) in 4 classes “ship”, “deer”, “bird”, “automobile”.
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4.5 Results on CIFAR-100

The third experiment shows the KD results on CIFAR-100 dataset, where
teacher-data DT and student-data DS are two different datasets.

Experiment Settings. We use a pre-trained ResNet-50 model2 on ImageNet
(i.e. teacher-data DT ) for the teacher network and a ResNet-20 model for the stu-
dent network. We train the student network on the original training set Dtrain

of CIFAR-100 (i.e. student-data DS) with a batch size of 16 and 200 epochs.
DT and DS differ in their distribution as ImageNet has much higher resolu-
tion than CIFAR-100, and two datasets cover different sub-types of a class in
general e.g. “green snake” and “grass snake” in ImageNet vs. “snake” in CIFAR-
100. We train the CVAE and find the optimal values (μ∗, σ∗) in the same way
as in our experiments on CIFAR-10. We evaluate both teacher and student net-
works on the original testing set Dtest of CIFAR-100. Note that the classification
performance is only measured on 56 overlapped classes between ImageNet and
CIFAR-100.

Table 3. Classification results on CIFAR-100: (a) teacher-data DT and student-data
DS are two different datasets and (b) DT and DS are identical. The results of (b) are
obtained from [22]. “-” means the result is not available in the original paper.

(a) DT is ImageNet while DS is CIFAR-100

Model Accuracy F1-score

Teacher 14.46% 12.70%

Student-Alone 71.09% 71.03%

Standard-KD (α = 0.5) 68.21% 68.27%

Standard-KD (α = 0.7) 69.57% 69.53%

Standard-KD (α = 0.9) 70.75% 70.78%

KDDM (Ours) 71.14% 71.13%

(b) Both DT and DS are CIFAR-100

Model Accuracy F1-score

Teacher 72.34% -

Student-Alone 69.06% -

KD [9] 70.66% -

VID [2] 70.38% -

CRD [22] 71.16% -

Quantitative Results. From Table 3(a), we can observe similar results as those
in the experiments on MNIST and CIFAR-10, where our KDDM outperforms
both Student-Alone and Standard-KD methods. KDDM achieves 71.14% of
accuracy, which is better than 71.09% of Student-Alone and 68.21% of Standard-
KD (α = 0.5). Again, using large values for α helps Standard-KD to improve its
performance, but it is still worse than our method. In this experiment, the teacher
performs much worse than student models, achieving only 14.46% of accuracy
on the testing set of CIFAR-100. This behavior can be explained by the fact
that the teacher is pre-trained on ImageNet containing high-resolution images
(224×224 pixel images) whereas CIFAR-100 only contains low-resolution images
(32 × 32 pixel images). This resolution mismatch makes the teacher difficult to

2 https://keras.io/api/applications/.

https://keras.io/api/applications/
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recognize the true objects in CIFAR-100 images [17]. Even using only a very
poor performing teacher, KDDM still achieves an impressive accuracy.

As a reference, we report the accuracy of three current state-of-the-art KD
methods in Table 3(b). Different from our method, these methods train both
teacher and student networks on the same training set of CIFAR-100, leading to
a good performance for the teacher network (72.34%).

4.6 Distillation When Teacher-Data and Student-Data
Are Identical

In this experiment, we show how our method KDDM performs when there
is no distribution mismatch between teacher-data DT and student-data DS , a
common setting used in state-of-the-art KD methods. Here, we use the original
training set Dtrain of CIFAR-10 for both DT and DS .

Table 4 reports the accuracy of our KDDM and other baselines on CIFAR-
10 when both DT and DS are identical. We can see that our teacher improves its
accuracy significantly with the full training set of CIFAR-10. It achieves 92.29%
of accuracy compared to 70.73% when it was trained on DT with distribution
mismatch (see Table 2(a)). This stronger teacher helps Standard-KD (α = 0.5),
which boosts its accuracy to 91.50%. KDDM can also benefit from this strong
teacher, which achieves 91.88% of accuracy slightly better than 91.85% of VID.

Table 4. Classification results on CIFAR-10 when DT and DS are identical (i.e. there
is no distribution mismatch between DT and DS). The accuracy of VID is obtained
from [2]. “-” means the result is not available in the original paper.

DT ≡ DS ≡ Dtrain

Model Accuracy F1-score

Teacher 92.29% 92.28%

Student-Alone 91.22% 91.20%

Standard-KD (α = 0.5) 91.50% 91.48%

VID [2] 91.85% -

KDDM (Ours) 91.88% 91.86%

To summarize, the results in Table 4 confirm the real benefit of our method
not only for the KD process when the distribution mismatch happens but also
for the KD process when both teacher-data and student-data are identical. In
both cases, our method is always better than the standard KD method and the
student network trained from scratch on the student-data.

5 Conclusion

We have presented KDDM – a novel KD method for distilling a large pre-trained
black-box deep network into a smaller network while maintaining a high accuracy.
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Different from existing KD methods, our proposed method is still effective when
the teacher-data and the student-data differ in their distribution. KDDM uses
an efficient framework to generate images well-classified by the teacher network
and a new loss function to train the student network. We demonstrate the real
benefits of KDDM on three standard benchmark image datasets. The empirical
results show that KDDM outperforms both the standard KD method and the
student model trained from scratch. Our accuracy is also comparable with those
of state-of-the-art KD methods that assume no distribution mismatch between
teacher-data and student-data.

Our future work will study how to extend our method to the setting of white-
box teacher, which is expected to further improve our student’s accuracy since we
now can also transfer the representation learned by the teacher to the student.
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Abstract. Active class selection provides machine learning practition-
ers with the freedom to actively choose the class proportions of their
training data. While this freedom can improve the model performance
and decrease the data acquisition cost, it also puts the practical value
of the trained model into question: is this model really appropriate
for the class proportions that are handled during deployment? What
if the deployment class proportions are uncertain or change over time?
We address these questions by certifying supervised models that are
trained through active class selection. Specifically, our certificate declares
a set of class proportions for which the certified model induces a
training-to-deployment gap that is small with a high probability. This
declaration is theoretically justified by PAC bounds. We apply our pro-
posed certification method in astro-particle physics, where a simulation
generates telescope recordings from actively chosen particle classes.

Keywords: Active class selection · Label shift · Model certification ·
Learning theory · Classification · Validation · Imbalanced learning

1 Introduction

The increasing adoption of machine learning in practice motivates model per-
formance reports [2,17,22] that are easily accessible by a diverse group of stake-
holders. One particular concern of this trend is the robustness of trained models
with regard to changing deployment conditions, like distribution shifts [26], input
perturbations [12], or adversarial attacks [25,30]. Ideally, robustness criteria are
certified in the sense of being formally proven or thoroughly tested [12].

The framework of active class selection (ACS; see Fig. 1) [13,16] presumes
a class-conditional training data generator, e.g. an experiment or a simulation
that produces feature vectors for arbitrarily chosen classes. As a consequence,
the developer of a machine learning model must actively decide for the class pro-
portions of the training data set. This freedom can benefit the learning process
in terms of data acquisition cost and model performance. However, the active
decision for class proportions is difficult if the class proportions that occur during
deployment are not precisely known or are subject to changes. In astro-particle
physics, for instance, the ratio between the signal and the background class is

c© Springer Nature Switzerland AG 2021
N. Oliver et al. (Eds.): ECML PKDD 2021, LNAI 12976, pp. 266–281, 2021.
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Fig. 1. Active class selection optimizes class-conditioned data acquisition [5].

only roughly estimated as 1 : 103 or even 1 : 104 [4]. Other use cases of ACS are
brain computer interaction [10,21,29] and gas sensor arrays [16].

Recently, we have studied ACS from an information-theoretic viewpoint [5].
This viewpoint suggests that, in ACS, the training class proportions should be
chosen identically to the deployment class proportions, at least when the sample
size is sufficiently large. However, we also know from imbalanced classification
[7] that highly imbalanced class proportions, as in the astro-particle use case,
are often far from optimal. Moreover, the deployment class proportions may
be uncertain at training time or may be subject to change during deployment.
Therefore, we make the following contributions in the present paper:

– We study ACS through the lens of learning theory. This view-point provides us
with PAC bounds that are more nuanced than previous [5] results. Namely,
our bounds are applicable also to extremely imbalanced domains and they
account for finite data volumes.

– Through these bounds, we quantify the domain gap which results from the
label shift between the ACS-generated training data and the data that is
predicted during deployment.

– We refine these results in a certificate for binary classifiers under label shift.
This certificate verifies the range of class proportions for which an ACS-
trained classifier is accurate (i.e. has a domain-induced error smaller than
some ε > 0) with a high probability (i.e. with probability at least 1− δ). This
certificate is specific, understandable, theoretically justified, and applicable
to any learning method. Users specify ε and δ according to their demands.

In the following, we briefly review the ACS problem statement (Sect. 1.1)
and previous work on the topic (Sect. 1.2). Section 2 presents our theoretical
contributions, followed by their experimental verification in Sect. 3. We present
additional related work in Sect. 4 and conclude with Sect. 5.

1.1 Active Class Selection Constitutes a Domain Gap

Following the terminology of domain adaptation [20,27], we consider a domain
as a probability density function over the labeled data space X ×Y. This density
function stems from some particular data-generating process; a different process
will induce a different domain. To this end, let S be the source domain where
a machine learning model is trained and let T be the target domain where the
trained model is required to be accurate. We are interested in the impact of
deviations S �= T on the deployment performance.
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Here, we assume that S and T only differ in their class proportions, to study
the effect of ACS in isolation from other potential deviations between S and
T . Put differently, we let all data be generated by the same causal mechanism
Y → X, according to the factorization P(x, y) = P(x | y) · P(y). More formally:

Definition 1 (Identical mechanism assumption [5] a.k.a. label shift or
target shift [31]). Assume that all data in the domains S and T is generated
independently by the same class-conditioned mechanism, i.e.

PS(X = x | Y = y) = PT (X = x | Y = y) ∀x ∈ X , ∀y ∈ Y

1.2 A Qualitative Intuition from Information Theory

We have recently studied the domain gap S �= T in the limit of data acquisition,
i.e. when the sample size m → ∞ [5]. In this limit, the deployment proportions
should also be reflected in the ACS-generated training data. However, we have
also observed that certain deviations from this fixed-point are feasible without
impairing the classifier; the range of these feasible deviations depends on the
correlation between features and labels.

Proposition 2 (Information-theoretical bound [5]). The domain S mis-
represents the prediction function PT (Y | X) by the KL divergence dY |X , which
is bounded above by the KL divergence dY between PS(Y ) and PT (Y ):

dY |X = dY − dX ≤ dY

Remarkably, the more data is being acquired by ACS, the less beneficial will
any class proportion other than PT (Y ) be. Beyond these qualitative insights,
however, the information-theoretic perspective has not allowed us to provide
quantitative bounds which precisely assess the impact of the sample size. In the
following, we therefore employ a different perspective on ACS from PAC learning
theory. This perspective accounts for the sample size m, an error margin ε > 0
and a desired probability 1 − δ < 1.

2 A Quantitative Perspective from Learning Theory

We start by recalling a standard i.i.d. bound from learning theory, which we then
extend to the domain gap induced by ACS. The standard i.i.d. bound quantifies
the probability that the estimation error of the loss LS(h), induced by the finite
amount m of data in a data set D = {(xi, yi) ∈ X × Y : 1 ≤ i ≤ m} ∼ Sm

relative to the training domain S, is bounded above by some ε > 0:

Proposition 3 (I.i.d. bound [24]). For any ε > 0 and any fixed h ∈ H, it
holds with probability at least 1 − δ, where δ = 2e−2mε2

, that:

|LD(h) − LS(h)| ≤ ε
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Proof. We repeat the proof by Shalev-Shwartz and Ben-David [24, Sec. 4.2] here
to extract Corollary 4 for later reference. Let LD(h) = 1

m

∑m
i=1 �(yi, h(xi)) be

the empirical loss over a data set D and let LS(h) = E(x,y)∼PS [�(y, h(x))] be the
expected value of LD(h) and every �(yi, h(xi)). Then, by letting θi = �(yi, h(xi))
and μ = LS(h), we apply Hoeffding’s inequality for 0 ≤ θi ≤ 1:

PD∼Sm

(∣
∣
∣
∣
∣

1
m

m∑

i=1

θi − μ

∣
∣
∣
∣
∣
> ε

)

≤ 2e−2mε2
= δ (1)

We see that the converse, i.e.
∣
∣ 1
m

∑m
i1

θi − μ
∣
∣ ≤ ε, holds with probability at

least 1 − δ; taking Eq. 1 for granted would therefore already yield our claim (	
).
Instead, however, we take another step back and prove Eq. 1 from Hoeffding’s
Lemma, which states that for every λ > 0 and any random variable X ∈ [a, b]
with E[X] = 0 it holds that:

E[eλX ] ≤ e
λ2(b−a)2

8 (2)

Letting Xi = θi−μ and X̄ = 1
m

∑m
i=1 Xi, we use i) monotonicity, ii) Markov’s

inequality, iii) independence, and iv) Eq. 2 with a = 0, b = 1, and λ = 4mε:

P[X̄ ≥ ε]
i)
= P[eλX̄ ≥ eλε]

ii)

≤ e−λε
E[eλX̄ ]

iii)
= e−λε

m∏

i=1

E[eλXi/m]
iv)
= e−2mε2

(3)
We apply Eq. 3 to X̄ and −X̄ to yield Eq. 1 via the union bound. 	


Corollary 4 (Asymmetric i.i.d. bound). For any ε(l), ε(u) > 0 and any
fixed h ∈ H, each of the following bounds holds with probability at least 1 − δ(i)

respectively, where δ(i) = e−2m(ε(i))2 and i ∈ {l, u}:

i) LD(h) − LS(h) ≤ ε(l)

ii) LS(h) − LD(h) ≤ ε(u)

Proof. The claim follows from applying Eq. 3 to X̄ and −X̄, just like in the proof
of Proposition 3. This time, however, we use two different ε(l), ε(u) for the two
sides of the bound and we do not combine them via the union bound. 	


To study the ACS problem, we now replace the i.i.d. assumption above with
the identical mechanism assumption from Definition 1. The result is Theorem 5,
in which the factor 4 in δ, as compared to the factor 2 in the δ of Lemma 3,
stems from the fact that either the upper bound or the lower bound might be
violated, each time with at most the same probability. Figure 2 illustrates the
idea.

Theorem 5 (Identical mechanism bound). For any ε > 0 and any fixed
h ∈ H, it holds with probability at least 1 − δ, where δ = 4e−2mε2

, that:

|LT (h) − LS(h)| − ε ≤ |LT (h) − LD(h)| ≤ |LT (h) − LS(h)| + ε
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LT (h)

LD(h)
|LT (h) − LD(h)|

LS(h)|LT (h) − LS(h)|

ε

Fig. 2. Illustration of Theorems 5 and 6. Keeping δ > 0 fixed, we can choose ε → 0 as
m → ∞. What remains is the inter-domain gap |LT (h) − LS(h)|.

Proof. We employ Proposition 3 through the triangle inequality (see Fig. 2):

|LD(h) − LT (h)| ≤ |LD(h) − LS(h)| + |LS(h) − LT (h)|
≤ ε + |LS(h) − LT (h)|,

where the second inequality holds with probability at least 1 − 2e−2mε2
.

Likewise, and with the same probability, we use the triangle inequality for
the other side of the claim:

|LT (h) − LS(h)| ≤ |LT (h) − LD(h)| + |LD(h) − LS(h)|
⇔ |LT (h) − LD(h)| ≥ |LT (h) − LS(h)| − |LD(h) − LS(h)|

≥ |LT (h) − LS(h)| − ε 	

The above bound addresses a single fixed hypothesis h ∈ H, which suits our

goal of certifying any given prediction model. For completeness, however, let us
also mention that Theorem 5 can be extended to entire hypothesis classes H. As
an example, we obtain the following result for finite classes, i.e. for |H| < ∞:

Theorem 6 (Identical mechanism bound; finite hypothesis class). With
probability at least 1−δ, where δ = 4|H|e−2mε2

, the upper and lower bounds from
Theorem 5 hold for all h ∈ H.

Proof. The claim follows from the union bound, being detailed in Appendix 1.

The lower and upper bounds in Theorems 5 and 6 quantify how the total
error |LT (h)−LD(h)| approaches the inter-domain gap |LT (h)−LS(h)| in depen-
dence of the interplay between ε, δ, m, L, and H. It is therefore a quantitative
and thus more nuanced equivalent of Proposition 2. The inter-domain gap is
constant w.r.t. the random draw of the training sample D ∼ Sm and is therefore
independent of ε, of δ, and of m. Consequently, it remains even with an infinite
amount of training data. Depending on the choice of H and L, and in depen-
dence of the data distribution, it may be large or negligible. In the following, we
will therefore study this error in more detail.

2.1 Quantification of the Domain Gap

We begin by factorizing the total error L(h) into label-dependent losses �X(h, y)
that are marginalized over the entire feature space X . These losses only depend
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on the hypothesis h and on the label y and are, under the identical mechanism
assumption from Definition 1, identical among S and T .

L(h) =
∫

Y

∫

X
P(x, y)�(y, h(x)) dx dy

=
∫

Y
P(y)

∫

X
P(x | y)�(y, h(x)) dx

︸ ︷︷ ︸
= �X(h,y)

dy

Plugging �X(h, y) into the domain gap |LT (h)−LS(h)| from the Theorems 5
and 6 allows us to marginalize the label-dependent losses over the label space:

|LT (h) − LS(h)| =
∣
∣
∣
∣

∫

Y
PT (y) �X(h, y) dy −

∫

Y
PS(y) �X(h, y) dy

∣
∣
∣
∣

For classification tasks, i.e. Y = {1, 2, . . . , N} with N ≥ 2, we define the
vectors pS ,pT ∈ [0, 1]N through [p•]i = P•(Y = i), i.e. through the label pro-
babilities in the domains S and T . Furthermore, we define a vector �h ∈ R

N
+ of

class-wise losses through [�h]i = �X(h, i). The computation of the ACS-induced
domain gap then simplifies to an absolute difference between scalar products
L•(h) =

∑
i∈Y [p•]i[�h]i = 〈p•, �h〉. Namely, for classification tasks:

|Lclf
T (h) − Lclf

S (h)| =
∣
∣〈pT , �h〉 − 〈pS , �h〉

∣
∣ (4)

Before we move on to a theorem about what Eq. 4 can mean in practice, let
us build an intuition about the implications of this equation in a more simple
setting: in binary classification.

Example 7 (Binary classification). In binary classification, the situation from
Eq. 4 simplifies to Y = {1, 2} with P•(Y = 1) = p• and P•(Y = 2) = 1 − p•. Let
Δp = |pT − pS | be be the absolute difference of the binary class proportions
between the two domains and let Δ�X = |�X(h, 2) − �X(h, 1)| be the absolute
difference between the class-wise losses. The difference Δ�X is independent of
the class proportions and can be defined over any loss function �. Rearranging
Eq. 4 for binary classification, we obtain

|Lbin
T (h) − Lbin

S (h)|
=

∣
∣
(
pT �X(h, 2) + (1 − pT )�X(h, 1)

)
−

(
pS�X(h, 2) + (1 − pS)�X(h, 1)

)∣
∣

=
∣
∣
(
pT − pS

)
·
(
�X(h, 2) − �X(h, 1)

)∣
∣

= Δp · Δ�X ,

(5)

from which we see that in binary classification, for any loss function, the domain
gap induced by ACS is simply the product of the class proportion difference Δp
and the (true) class-wise loss difference Δ�X . If one of these terms is zero, so
is the inter-domain gap. If one of these terms is non-zero but fixed, the domain
gap will grow linearly with the other term.
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Example 8 (Binary classification with zero-one loss). Let us illustrate Eq. 5 a
little further. The zero-one loss is defined by �(y, h(x)) = 0 if the prediction is
correct, i.e. if y = h(x), and �(y, h(x)) = 1 otherwise. Consequently, �X(h, 2) is
the true rate of false positives and �X(h, 1) is the true rate of false negatives. The
more similar these rates are, the smaller will the inter-domain gap be for any
distribution of classes in the target domain. Supposing that balanced training
sets tend to balance �X(h, 2) and �X(h, 1), we can argue that balanced training
sets (supposedly) maximize the range of feasible target domains with respect to
the zero-one loss.

Example 9 (Cost-sensitive learning). The situation is quite different if the binary
zero-one loss is weighted by the class, i.e. �(y, h(x)) = wy for y �= h(x). Such
a weighting is common in cost-sensitive and imbalanced classification [7]. Here,
Eq. 5 illustrates how counteracting class imbalance with weights can increase the
robustness of the model: balancing �X(h, 2) and �X(h, 1) will increase the range
of target domains that are feasible under the class-based weighting.

For completeness, we extend a part of this intuition from binary classification
to classification tasks with an arbitrary number of classes:

Theorem 10. In classification, the inter-domain gap |Lclf
T (h) − Lclf

S (h)| from
Theorem 5 is equal to zero if one of the following conditions holds:

i) pS = pT
ii) �X(h, i) = �X(h, j) ∀ i, j ∈ Y

Proof. Condition i) trivially yields the claim through Eq. 4. Condition ii) means
that Δ� = |�X(h, i) − �X(h, j)| = 0 for every binary sub-task in a one-vs-one
decomposition of the label set Y. The domain gap of each binary sub-task, and
therefore the total domain gap, is then zero according to Eq. 5. 	


Despite the fact that condition 10.ii) yields a domain gap of zero, one should
not prematurely jump to the conclusion that a learning algorithm should enforce
this condition necessarily. Recall that Theorem 10 addresses the domain gap,
but not the deployment loss which we actually want to minimize; if enforcing
condition 10.ii) results in a high source domain error, all domain robustness
will not help to find an accurate target domain model. We therefore advise
practitioners to carefully weigh out the source domain error with the domain
robustness of the model, depending on the requirements of the use case at hand.
Bayesian classifiers, which allow practitioners to mimic arbitrary pS even after
training, can prove useful in this regard.

2.2 Certification of Domain Robustness for Binary Predictors

We certify the set of class proportions to which a fixed hypothesis h, trained on
S, is safely applicable. By “safely”, we mean that during the deployment on T ,
h induces only a small domain-induced error with a high probability.
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Fig. 3. Estimation of the minimum upper bound Δ�∗
X from data.

Definition 11 (Certified hypothesis). A hypothesis h ∈ H is (ε, δ)-certified
for all class proportions in the set P ⊆ [0, 1]N if with probability at least 1 − δ
and ε, δ > 0:

|LT (h) − LS(h)| ≤ ε ∀ pT ∈ P

For simplicity, we limit our presentation to binary classification, i.e. N = 2
(see Example 7). In this case, P is simply a range [ pmin

T , pmax
T ] of class propor-

tions. According to Eq. 5, this range is defined by the largest Δp∗ for which

Δp · Δ�X ≤ ε ∀ Δp ≤ Δp∗. (6)

Keep in mind that Δ�X is defined over the true class-wise losses. If we knew
them, we could simply rearrange Eq. 6 to find the largest Δp for a given ε; the
equation would then hold with probability one. However, we do not know the true
class-wise losses; instead, we estimate an upper bound that is only exceeded by
the true Δ�X with a small probability of at most δ > 0. Particularly, to maximize
Δp∗, we find the smallest upper bound Δ�∗

X among all such upper bounds.
An empirical estimate Δ�̂X of the true Δ�X is given by the empirical class-

wise losses �̂X(h, y) observed in an ACS-generated validation sample D:

Δ�̂X =
∣
∣
∣�̂X(h, 1) − �̂X(h, 2)

∣
∣
∣ , where �̂X(h, y) = 1

my

∑
i : yi=y �(y, h(xi))

Here, each �̂X(h, y) can be associated with maximum lower and upper errors
ε
(l)
y , ε

(u)
y > 0 that are not exceeded with probabilities at least 1−δ

(l)
y and 1−δ

(u)
y .

By choosing ε
(l)
y , ε

(u)
y for both classes, we can thus find all upper bounds of the

true Δ�X that hold with at least the desired probability 1 − δ.
Figure 3 sketches our estimation of the smallest upper bound Δ�∗

X . For sim-
plicity, we assume that �̂X(h, 2) ≥ �̂X(h, 1). This assumption comes without loss
of generality because we can otherwise simply switch the labels to make the
assumption hold. Now, �̂X(h, 1) shrinks at most by ε1 and �̂X(h, 2) grows at
most by ε2. Minimizing ε1 and ε2 simultaneously, within a user-specified prob-
ability budget δ, yields the desired minimum upper bound Δ�∗

X which the true
Δ�X only exceeds with probability at most δ = δ1+δ2−δ1δ2. We find the values
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of δ1 and δ2 through Corollary 4, letting

− (�̂X(h, 2) − �̂X(h, 1) + ε1)
︸ ︷︷ ︸

= ε
(l)
2

≤ �X(h, 2) − �̂X(h, 2) ≤ ε2︸︷︷︸
= ε

(u)
2

and − (�̂X(h, 2) − �̂X(h, 1) + ε2)
︸ ︷︷ ︸

= ε
(u)
1

≤ �̂X(h, 1) − �X(h, 1) ≤ ε1︸︷︷︸
= ε

(l)
1

,

so that δy = δ
(l)
y + δ

(u)
y − δ

(l)
y δ

(u)
y and δ

(i)
y = e−2my(ε

(i)
y )2 .

During the optimization, strict inequalities are realized through non-strict
inequalities with some sufficiently small τ > 0:

min
ε1, ε2∈R

ε2 + ε1, s.t.

{
ε1, ε2 ≥ τ

δ − (δ1 + δ2 − δ1δ2) ≥ 0
(7)

The minimizer (ε∗
1, ε

∗
2) of this optimization problem defines the smallest

upper bound Δ�∗
X = (�̂X(h, 2)+ε∗

2)− (�̂X(h, 1)−ε∗
1) that is not exceeded by the

true Δ�X with probability at least 1 − δ. Choosing Δp∗ = ε/Δ�∗
X will make Eq. 6

hold with the same probability, so that the range [pS −Δp∗, pS +Δp∗] of binary
deployment class proportions pT is (ε, δ)-certified according to Definition 11.

If only small data volumes are available, it can happen that ε1 must exceed
�̂X(h, 1) to stay within the user-specified probability budget δ. This situation
would mean that the lower bound �X(h, 1) = �̂X(h, 1) − ε1 is below zero, which
does not reflect the basic loss property �(h, y) ≥ 0. If the estimation of Δ�∗ fails
in this way, we fall back to a more simple, one-sided estimation. Namely, we
only minimize the two upper bounds ε

(u)
y that depend only on ε2 and fix the two

lower bounds to ε
(l)
y = 0. Doing so allows us to estimate a valid upper bound

Δ�∗ also for arbitrarily small data sets.

3 Experiments

In the following, we show that an (ε, δ) certified class proportion set P indeed
characterizes an upper bound of the inter-domain gap. Our experiments even
demonstrate that our certificate, being estimated only with source domain data,
is very close to bounds that are obtained with labeled target domain data and
are therefore not accessible in practice.

3.1 Binary (ε, δ) Certificates Are Tight

We randomly subsample the data to generate different deployment class propor-
tions pT while keeping P(x|y) fixed, in accordance to Definition 1. We compare
two ways of estimating the target domain loss:

a) Our baseline is an empirical estimate L̂T of the target domain loss that is
computed with actual target domain data unavailable in practice.



Certification of Model Robustness in Active Class Selection 275

Fig. 4. The target domain loss LT (h) is upper-bounded by our (ε, δ) certificate and
a baseline L̂T + εT with privileged access to target domain data. Each of the above
plots displays a different combination of loss function, learning method, and data set.
The class proportions pT of the target domain are varied over the x axis with a thin
vertical line indicating the source domain proportions pS .

b) We predict the target domain loss LT from an (ε, δ) certificate by adding the
domain gap parameter ε to the empirical source domain loss L̂S . We always
choose the certificates such that they cover the class proportion difference
Δp = |pT − pS |; in fact, we consider ε as a function of Δp in this experiment.

The certificate is correct if L̂S +ε ≥ L̂T holds, i.e. if ε indeed characterizes an
upper bound of the inter-domain gap. If the two values are close to each other,
i.e. if L̂S + ε ≈ L̂T , we speak of a tight upper bound.

Correctness: Our experiments cover a repeated three-fold cross validation on
eight imbalanced data sets, eight loss functions, and three learning algorithms,
to represent a broad range of scenarios. Of all 9000 certificates, only 4.5% fail
the test of ensuring L̂S + ε ≥ L̂T . Since we have used δ = 0.05 in these experi-
ments, this amount of failures is actually foreseen by the statistical nature of our
certificate: if it holds with probability at least 1− δ, it is allowed to fail in 5% of
all tests. This margin is almost completely used but not exceeded. Consequently,
our certificate is correct in the sense of indeed characterizing an upper bound ε
of the inter-domain gap with probability at least 1 − δ.

Tightness: A fair comparison between our certificate and our baseline L̂T
requires us to take the estimation error εT of the baseline into account. This
necessity stems from the fact that L̂T is also just an estimate from a finite
amount of data. Having access to labeled target domain data will thus yield an
upper bound L̂T + εT of the true target domain error LT , according to Propo-
sition 3; this upper bound is then compared to our certificate, which has only
seen the source domain data.

Figure 4 presents this comparison for two of our experiments. For most target
domains pT , the two predictions ( and ) are almost indistinguishable from
each other. This observation means that the certificate, which is based only on
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source domain data, is as accurate as estimating the target domain loss with a
privileged access to labeled target domain data. Over all 9000 certificates, we
find a mean absolute difference between the two predictions of merely 0.049;
in fact, all supplementary plots look highly similar to those displayed in Fig. 4,
despite covering many other data sets, loss functions, and learning methods. The
margin to the left of each vertical line appears because our certificate covers an
absolute inter-domain gap rather than a signed value.

3.2 Binary (ε, δ) Certificates in Astro-Particle Physics

The field of astro-particle physics studies the physical properties of cosmic par-
ticle accelerators such as active galactic nuclei and supernova remnants. Some of
these accelerators produce gamma radiation, which physicists measure through
imaging air Cherenkov telescopes (IACTs). Since IACTs also record non-gamma
particles, it is necessary to separate the relevant gamma recordings from the
non-gamma background. This task is commonly approached with classification
models trained on simulated data [4]. The accurate physical simulations that are
used for training produce telescope readings (feature vectors) from user-chosen
particles (labels). The default approach to this ACS problem is to simulate a
training set with balanced classes and to alter the decision threshold of the
model after its training.

We apply our certification scheme to the FACT telescope [1], an IACT for
which a big data set is publicly available. In particular, we reproduce the default
analysis pipeline, fix δ to a small value (0.01 or 0.1), and select ε such that the
resulting (ε, δ) certificate covers the anticipated class proportion difference Δp =
|pT −pS | between the simulated and the observed domain. For both δ values, we
obtain similar ε values under the zero-one loss, namely ε(δ=0.01) = 0.0315 and
ε(δ=0.1) = 0.0313. We conclude that the ACS-induced zero-one loss of the FACT
pipeline is at most 3.15% with probability at least 99%, and at most 3.13% with
probability at least 90%. The pipeline is trustworthy within these specific ranges
and improvements to these certified values can be achieved by improving the
performance of the pipeline. See Appendix 2 for additional details.

4 Related Work

Most of the previous work on ACS has focused on the empirical evaluation of
heuristic data acquisition strategies [6,10,13,15,16,21,28,29]. A recent theoret-
ical contribution by us [5] is only valid for infinite data and lacks applicability
to imbalanced domains; both of these issues motivate our present paper.

Model certification, in the broad sense of performance reports [2,17,22]
and formal proofs of robustness [11,25,26,30], has motivated us to study model
robustness in ACS. Our certificate is only a single component in the more com-
prehensive reports that are conceived in the literature; yet, the certification of
feasible class proportions is a trust-critical issue when the training class pro-
portions are chosen arbitrarily. A related lane of research is concerned with the
certification of learning algorithms [18,19] instead of trained models.
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Domain adaptation [20,27] assumes data from T with which a source
domain model can be transferred to the target domain. If the data from T are
unlabeled, it becomes necessary to employ additional assumptions about the
differences between S and T . For instance, our identical mechanism assumption
from Definition 1 has also been introduced as the target shift assumption [31].
In ACS, we are free to choose the shift between PS(Y ) and PT (Y ) as small
as permitted by our knowledge about T , instead of having to adapt to T . We
conceive combinations of ACS and domain adaptation for future work.

Imbalanced learning [7] handles majority and minority classes differently
from each other, so that the resulting classifier is not impaired by the dispro-
portion between these classes. For instance, over-sampling the minority class
with synthetic instances [3,8] will achieve more balanced training sets in which
the minority class is not “overlooked” by the learning algorithm. In ACS, we
can generate actual instances instead of synthetic ones; still, the idea of over-
sampling can guide us in selecting the class proportions for an imbalanced target
domain T . Conversely, our certificate can guide imbalanced learners in choos-
ing the amount of over-sampling or under-sampling to apply: the certified class
proportion range [ pmin

T , pmax
T ] should ideally cover the class proportions pT that

are expected during deployment; otherwise the sampling scheme can introduce
a domain gap larger than ε, which impairs the target domain performance.

Cost-sensitive learning is often discussed as a means to tackle imbalanced
learning (e.g. Chap. 4 in [7]) because many applications associate a dispropor-
tionally high cost with mis-classifications in the minority class. Our certificate
supports these settings, without loss of generality, via class-wise loss weights.

Active learning [23] assumes that an oracle X → Y (e.g. a human expert)
can label feature vectors after their acquisition. This assumption is fundamen-
tally different from ACS, where a data generator Y → X produces feature vec-
tors from labels. Still, some acquisition heuristics for ACS borrow from active
learning strategies by aggregating the scores of pseudo-instances [13,15].

Quantification Learning [9] estimates class prevalences in the target
domain, which can help in assessing the amount of label shift that is to be
expected.

5 Conclusion

Motivated by a limited trust in active class selection, we have developed an (ε, δ)
certificate for classifiers, which declares a set of class proportions to which the
certified model can be safely applied. “Safely” means that the inter-domain gap
induced by active class selection (or any other reason for a shift in the class
proportions) is at most ε with probability at least 1 − δ. Our experiments show
that the certificate is correct and bounds the true domain gap tightly.

So far, we have assumed that the loss function is decomposable over X × Y,
like the (weighted) zero-one loss, the hinge loss, and the mean squared error
are. Future work should extend these results to loss functions that do not have
this property, like the Fβ and AUROC scores. We are also looking forward to
extensions of our certificate towards multi-class settings and regression.
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Appendix 1: Proof of the Identical Mechanism Bound

We draw a training set D of size m, where each individual example is drawn
from X × Y, according to PS . Consequently, the full training set is drawn from
(X ×Y)m, according to the probability density P

m
S . We are now interested in the

probability that P
m
S assigns to the event that all h ∈ H admit to the identical

mechanism bound:

P
m
S

({
D : ∀h ∈ H, |LT (h) − LS(h)| − ε ≤ |LT (h) − LD(h)|

≤ |LT (h) − LS(h)| + ε
})

We estimate the above probability from the probability of the converse event; if
the above probability is p, then the following must be 1 − p:

P
m
S

({
D : ∃h ∈ H, |LT (h) − LS(h)| − ε > |LT (h) − LD(h)|

∧ |LT (h) − LD(h)| > |LT (h) − LS(h)| + ε
})

We now apply the union bound twice. This bound states that P(A ∧ B) ≤
P(A) + P(B) for any two events A and B:

. . . ≤ P
m
S

({
D : ∃h ∈ H, |LT (h) − LS(h)| − ε > |LT (h) − LD(h)|

})

+ P
m
S

({
D : ∃h ∈ H, |LT (h) − LD(h)| > |LT (h) − LS(h)| + ε

})

≤
∑

h∈H
P

m
S

({
D : |LT (h) − LS(h)| − ε > |LT (h) − LD(h)|

})

+
∑

h∈H
P

m
S

({
D : |LT (h) − LD(h)| > |LT (h) − LS(h)| + ε

})

We have thus reduced the probability of the identical mechanism bound w.r.t.
an entire hypothesis class H to a sum of probabilities for single hypotheses h ∈ H.
The single-hypothesis case has already been proven in Sect. 1. Let us restate this
result here to clarify the connection: Each of the following statements describes
a violation of the Sect. 1 bound, each having a probability of at most 2e−2mε2

:

• |LT (h) − LS(h)| − ε > |LT (h) − LD(h)|
• |LT (h) − LD(h)| > |LT (h) − LS(h)| + ε

These two events, together with their probabilities, can be plugged into the
above transformation, which proves the claim:

. . . ≤
∑

h∈H
2e−2mε2

+
∑

h∈H
2e−2mε2

= 4|H|e−2mε2
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Appendix 2: Experimental Details and Reproducibility

We provide an implementation of our proposed (ε, δ) certificate with the supple-
mentary material of this paper. This material also contains a 56-page supplement
of plots that can be reproduced with this implementation. All supplements are
hosted at https://github.com/mirkobunse/AcsCertificates.jl.

The experiment in Sect. 3.1 verifies that (ε, δ) certificates are indeed correct
and tight. However, by choosing ε as a function of Δp, we have “turned the
certificate around”; in a usual application, a user would rather fix the ε value and
look for a certified range Δp of feasible class proportions. Therefore, we provide
the certified Δp values for all experiments in the supplementary material. Table 1
provides an excerpt of these values in which the certified target domain ranges
[pS −Δp∗, pS +Δp∗] induce a domain gap of at most ε = 0.01 with a probability
of at least 1 − δ = 0.95. Since the domain gap is at most 0.01, we can expect a
target domain loss of at most LS(h) + 0.01.

Table 1. Feasible class proportions Δp∗, according to (ε, δ) certificates that are com-
puted for a class-weighted zero-one loss with ε = 0.01 and δ = 0.05.

Data Classifier LS(h) pS Δp∗

coil 2000 LogisticRegression 0.0722 0.0597 0.0109

coil 2000 DecisionTree 0.0778 0.0597 0.0107

letter img LogisticRegression 0.0179 0.0367 0.0463

letter img DecisionTree 0.0139 0.0367 0.0504

optical digits LogisticRegression 0.0406 0.0986 0.0437

optical digits DecisionTree 0.0463 0.0986 0.0309

pen digits LogisticRegression 0.038 0.096 0.044

pen digits DecisionTree 0.0216 0.096 0.0695

protein homo LogisticRegression 0.0056 0.0089 0.036

protein homo DecisionTree 0.006 0.0089 0.0291

satimage LogisticRegression 0.1205 0.0973 0.0118

satimage DecisionTree 0.0763 0.0973 0.018

Table 2 presents the results of our astro-particle experiment. The significance
of detection [14] is a domain-specific score which measures the effectiveness of
the telescope. While higher values are better, 25σ are a usual value for accurate
prediction models on the given data set. The fact that all ε values are close to
each other stems from the large amount of source domain data (24000 examples)
we use to certify the model.

https://github.com/mirkobunse/AcsCertificates.jl
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Table 2. The parameters of an (ε, δ) certificate that covers the extreme class propor-
tions pT = 10−4 in astro-particle physics.

Significance of detection [σ] LS(h) δ εδ

25.067 ± 0.268 0.058 ± 0.015 0.01 0.0315

0.025 0.0314

0.05 0.0314

0.1 0.0313
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Abstract. Multi-relational graph is a ubiquitous and important data
structure, allowing flexible representation of multiple types of interac-
tions and relations between entities. Similar to other graph-structured
data, link prediction is one of the most important tasks on multi-
relational graphs and is often used for knowledge completion. When
related graphs coexist, it is of great benefit to build a larger graph via
integrating the smaller ones. The integration requires predicting hid-
den relational connections between entities belonged to different graphs
(inter-domain link prediction). However, this poses a real challenge
to existing methods that are exclusively designed for link prediction
between entities of the same graph only (intra-domain link prediction).
In this study, we propose a new approach to tackle the inter-domain link
prediction problem by softly aligning the entity distributions between
different domains with optimal transport and maximum mean discrep-
ancy regularizers. Experiments on real-world datasets show that optimal
transport regularizer is beneficial and considerably improves the perfor-
mance of baseline methods.

Keywords: Inter-domain link prediction · Multi-relational data ·
Optimal transport

1 Introduction

Multi-relational data represents knowledge about the world and provides a
graph-like structure of this knowledge. It is defined by a set of entities and
a set of predicates between these entities. The entities can be objects, events,
or abstract concepts while the predicates represent relationships involving two
entities. A multi-relational data contains a set of facts represented as triplets
(eh, r, et) denoting the existence of a predicate r from subject entity eh to object
entity et. In a sense, multi-relational data can also be seen as a directed graph
with multiple types of links (multi-relational graph).

A multi-relational graph is often very sparse with only a small subset of true
facts being observed. Link prediction aims to complete a multi-relational graph by

c© Springer Nature Switzerland AG 2021
N. Oliver et al. (Eds.): ECML PKDD 2021, LNAI 12976, pp. 285–301, 2021.
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predicting new hidden true facts based on the existing ones. Many existing meth-
ods follow an embedding-based approach which has been proved to be effective
for multi-relational graph completion. These methods all aim to find reasonable
embedding presentations for each entity (node) and each predicate (type of link).
In order to predict if a fact (eh, r, et) holds true, they use a scoring function whose
inputs are embeddings of the entities eh, et and the predicate r to compute a predic-
tion score. Some of the most prominent methods in that direction are TransE [3],
RESCAL [22], DisMult [35], and NTN [27], to name a few.

TransE [3] model is inspired by the intuition from Word2Vec [18,19] that
many predicates represent linear translations between entities in the latent
embedding space, e.g. aJapan −aTokyo ≈ aGermany −aBerlin ≈ ais capital of. There-
fore, TransE tries to learn low-dimensional and dense embedding vectors so that
ah + ar ≈ at for a true fact (eh, r, et). Its scoring function is defined accordingly
via ‖ah + ar − at‖2. RESCAL [22] is a tensor factorization-based method. It
converts a multi-relational graph data into a 3-D tensor whose first two modes
indicate the entities and the third mode indicates the predicates. A low-rank
decomposition technique is employed by RESCAL to compute embedding vec-
tors a of the entities and embedding matrices R of the predicates. Its scoring
function is the bilinear product a�

h Rrat. DistMult [35] is also a bilinear model
and is based on RESCAL where each predicate is only represented by a diagonal
matrix rather than a full matrix. The neural tensor network (NTN) model [27]
generalizes RESCAL’s approach by combining traditional MLPs and bilinear
operators to represent each relational fact.

Despite achieving state of the art for link prediction tasks, existing methods
are exclusively designed and limited to intra-domain link prediction. They only
consider the case in which both entities belong to the same relational graph
(intra-domain). When the needs for predicting hidden facts between entities
of different but related graphs (inter-domain) arise, unfortunately, the existing
methods are inapplicable. One of such examples is when it is necessary to build a
large relational graph by integrating several existing smaller graphs whose entity
sets are related. This study proposes to tackle the inter-domain link predic-
tion problem by learning suitable latent embeddings that minimize dissimilarity
between the domains’ entity distributions.

Two popular divergences, namely optimal transport’s Wasserstein distance
(WD) and the maximum mean discrepancy (MMD), are investigated. Given
two probability distributions, optimal transport computes an optimal transport
plan that gives the minimum total transport cost to relocate masses between
the distributions. The minimum total transport cost is often known under the
name of Wasserstein distance. In a sense, the computed optimal transport plan
and the corresponding Wasserstein distance provide a reasonable alignment and
quantity for measuring the dissimilarity between the supports/domains of the
two distributions. Minimizing Wasserstein distance has been proved to be effec-
tive in enforcing the alignment of corresponding entities across different domains
and is successfully applied in graph matching [34], cross-domain alignment [7],
and multiple-graph link prediction problems [25]. As another popular statistical
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divergence between distributions, MMD computes the dissimilarity by compar-
ing the kernel mean embeddings of two distributions in a reproducing kernel
Hilbert space (RKHS). It has been widely applied in two-sample tests for differ-
entiating distributions [12,13] and distribution matching in domain adaptation
tasks [6], to name a few.

The proposed method considers a setting of two multi-relational graphs whose
entities are assumed to follow the same underlying distribution. For example, the
multi-relational graphs can be about relationships among users/items in differ-
ent e-commerce flatforms of the same country. They could also be knowledge
graphs of semantic relationships between general concepts that are built from
different common-knowledge sources, e.g. Freebase and DBpedia. In both exam-
ples, it is safe to assume that the entity sets are distributionally identical. This
assumption is fundamental for the regularizers to be effective in connecting the
entity distributions of the two graphs.

2 Preliminary

This section briefly introduces the components that are employed in the proposed
method.

2.1 RESCAL

RESCAL [22] formulates a multi-relational data as a three-way tensor X ∈
R

n×n×m, where n is the number of entities and m is the number of predicates.
Xi,j,k = 1 if the fact (ei, rk, ej) exists and Xi,j,k = 0 otherwise. In order to find
proper latent embeddings for the entities and the predicates, RESCAL performs
a rank-d factorization where each slice along the third mode Xk = X·,·,k is
factorized as

Xk ≈ ARkA�, for k = 1, ...,m.

Here, A = [a1, ...,an]� ∈ R
n×d contains the latent embedding vectors of the

entities and Rk ∈ R
d×d is an asymmetric matrix that represents the interactions

between entities in the k-th predicate.
Originally, it is proposed to learn A and Rk with the regularized squared

loss function
min
A,Rk

g(A,Rk) + reg(A,Rk),

where

g(A,Rk) =
1
2

(∑
k

‖Xk − ARkA�‖2F

)

and reg is the following regularization term

reg(A,Rk) =
1
2
μ

(
‖A‖2F +

∑
k

‖Rk‖2F

)
.

μ > 0 is a hyperparameter.
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It is later proposed by the authors of RESCAL to learn the embeddings with
pairwise loss training [21], i.e. using the following margin-based ranking loss
function

min
A,Rk

L(A,Rk) =
∑

(ei,rk,ej)∈D+

∑
(el,rh,et)∈D−

L(fijk, flth) + reg(A,Rk), (1)

where D+ and D− are the sets of all positive triplets (true facts) and all negative
triplets (false facts), respectively. fijk denotes the score of (ei, rk, ej), fijk =
a�

i Rkaj and L is the ranking function

L(f+, f−) = max(1 + f− − f+, 0).

The negative triplet set D− is often generated by corrupting positive triplets, i.e.
replacing one of the two entities in a positive triplet (ei, rk, ej) with a randomly
sampled entity.

The pairwise loss training aims to learn A and Rk so that the score f+ of
a positive triplet is higher than the score f− of a negative triplet. Moreover,
the margin-based ranking function is more flexible and easier to optimize with
stochastic gradient descent (SGD) than the original squared loss function. In the
proposed method, the pairwise loss training is adopted.

2.2 Optimal Transport

Given two probability vectors π1 ∈ R
n1
+ and π2 ∈ R

n2
+ that satisfy π�

1 1n1 =
π�
2 1n2 = 1, a matrix P ∈ R

n1×n2
+ is called a transport plan between π1 and π2

if P1n2 = π1 and P�1n1 = π2. Here, 1n indicates a n-dimensional vector of
ones. Let’s denote the supports of π1 and π2 as A1 = [a11, ...,a

1
n1

]� ∈ R
n1×d and

A2 = [a21, ...,a
2
n2

]� ∈ R
n2×d, respectively. A transport cost C ∈ R

n1×n2
+ can be

defined as
Cij = ‖a1i − a2j‖22.

Given a transport matrix C, the transport cost of a transport plan P is computed
by

〈P,C〉 =
∑
i,j

PijCij .

A transport plan P∗ that gives the minimum transport cost, P∗ = arg minP

〈P,C〉, is called an optimal transport plan and the corresponding minimum cost
is called the Wasserstein distance. The optimal transport plan P∗ gives a reason-
able “soft” matching between the two distributions (π1,A1) and (π2,A2) while
the Wasserstein distance provides a measurement of how far the two distributions
are from each other.

In the scope of multi-relational graphs, π1 and π2 are predefined over the
sets of entities, normally being set to be uniform and the supports A1 and A2

can be seen as embeddings of the entities.
The computational complexity of computing the optimal transport plan and

Wasserstein distance is often prohibitive. An efficient approach to compute an
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approximation has been proposed by Cuturi et al. [9]. Instead of the exact opti-
mal transport P∗, they compute an entropic-regularized transport plan Pλ via
minimizing a cost M as follows,

Pλ = arg min
P

M(P) = 〈P,C〉 +
1
λ

∑
i,j

Pij log Pij , (2)

where λ > 0 is a hyperparameter controlling the effect of the negative entropy of
matrix P. With large enough λ, emperically when λ > 50, P∗ and the Wasser-
stein distance can be accurately approximated by Pλ and M(Pλ).

Pλ has a unique solution of the following form

Pλ = diag(u)Kdiag(v),

where diag(u) indicates a diagonal matrix whose diagonal elements are elements
of u. The matrix K = e−λC is the element-wise exponential of −λC. Vectors u
and v can be initialized randomly and updated via Sinkhorn iteration

(u,v) ←
( π1

Kv
,

π2

K�u

)
.

2.3 Maximum Mean Discrepancy

Maximum Mean Discrepancy (MMD) is originally introduced as a non-
parametric statistic to test if two distributions are different [12,13]. It is defined
as the difference between mean function values on samples generated from the
distributions. If MMD is large, the two distributions are likely to be distinct. On
the other hand, if MMD is small, the two distributions can be seen to be similar.
Formally, let π1 and π2 be two distributions whose the supports are subsets of
R

d, and F be a class of functions f : Rd → R. Usually, F is selected to be the
unit ball in a universal RKHS H. Then MMD is defined as

M(F ,π1,π2) = sup
f∈F

(Ex∼π1 [f(x)] − Ey∼π2 [f(y)]) .

From sample sets A1 = {a11, ...,a1n1
} and A2 = {a21, ...,a2n2

}, at
i ∈ R

d, sam-
pled from the two distributions, MMD can be unbiasedly approximated using
Gaussian kernels k(·, ·) as follows [12,23].

M(A1,A2) =
1

n1(n1 − 1)

∑
i,i′

k(a1i ,a
1
i′) +

1
n2(n2 − 1)

∑
j,j′

k(a2j ,a
2
j′)

− 2
n1n2

∑
i,j

k(a1i ,a
2
j )

(3)

When A1 and A2 are the embeddings of entities in two domains, MMD repre-
sents a dissimilarity between the domains’ entity distributions.
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3 Problem Setting and Proposed Method

3.1 Problem Setting

The formal problem setting considered in this study is stated as follows. Given
two multi-relational graphs G1 and G2, each graph Gt is defined with a set
of entities (nodes) Et = {et

1, ..., e
t
nt

}, a set of predicates (types of links) Rt =
{rt

1, ..., r
t
mt

}, and a set of true facts (observed links) T t = {(et
i, r

t
k, et

j)} for t ∈
{1, 2}. For simplicity, this study only considers the case where the two graphs
share the same set of predicates, i.e. R1 ≡ R2 ≡ R. The goal is to predict if an
inter-domain fact (e1i , rk, e2j ) or (e2i , rk, e1j ) holds true or not.

The entity embeddings of the two graphs are assumed to follow the same
distribution, i.e. there exists a distribution π such that at

i ∼ π for embedding
at

i of entity et
i ∈ Et. In the experiments, the entity sets E1 and E2 are controlled

so that they are completely disjoint or partially overlapped with only a small
amount of common entities. The common entities are known in overlapping
settings.

3.2 Proposed Objective Function

The proposed method’s objective function consists of two components. The
first component is for learning embedding representations of the entities and
the predicates of each multi-relational graph, which is based on an existing
tensor-factorization method. RESCAL [22] is specifically chosen in the proposed
method. The second component is a regularization term for enforcing the entity
embedding distributions of the two graphs to become similar.

For each graph Gt, lets denote the entity embeddings as At = [at
1, ...,a

t
nt

]� ∈
R

nt×d, where d is the embedding dimension. If the entity sets E1 and E2 overlap,
the embeddings of common entities are set to be identical in both domains, i.e.
At = [A

′t,Ac]� where Ac ∈ R
d×|E1∩E2| is the embeddings of common entities.

The embedding of predicate rk ∈ R is denoted as Rk ∈ R
d×d for k ∈ {1, ...,m}.

The objective function of the proposed method is given as

F (A1,A2,Rk, [P]) = L(A1,Rk) + L(A2,Rk) + αM(A1,A2, [P]). (4)

In (4), the first two terms L(At,Rk) are the loss functions of RESCAL and
are defined as in (1). The third term M(A1,A2, [P]) is the entropic-regularized
Wasserstein distance (WD) or the MMD discrepancy between the entity distri-
butions of the two graphs. In the case of WD regularizer, M = M(A1,A2,P)
is defined as in (2) with P ∈ R

n1×n2
+ . In the case of MMD regularizer,

M = M(A1,A2) is defined as in (3).
Via L(At,Rk), the underlying embedding distribution over each entity set

Et is learned and characterized into At, while M(A1,A2, [P]) helps to drive
these two distributions to become similar. Through the objective function F ,
similar entities of G1 and G2 are expected to lie close to each other on the
latent embedding space, which encourages similar entities to involve in similar
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relations/links. Specifically, if e1i ∈ E1 and e2i ∈ E2 have similar embeddings a1i
and a2i , the inter-domain fact (e1i , rk, e2j ) is likely to exist if the intra-domain fact

(e2i , rk, e2j ) exists thanks to their similar scores a1i
�Rka2j ≈ a2i

�Rka2j .
The objective function F (A1,A2,Rk) (MMD regularizer) is directly opti-

mized with SGD. On the other hand, F (A1,A2,Rk,P) (WD regularizer) is mini-
mized iteratively. In each epoch, the transport plan P is fixed and the embedding
vectors A1 and A2 are updated with SGD. At the end of each epoch, A1 and
A2 are fixed and the plan P is sequentially updated via Sinkhorn algorithm [9].

4 Experiments

4.1 Datasets

The datasets used in the experiments are created from four popular knowl-
edge graph datasets, namely FB15k-237 [30], WN18RR [10], DBbook2014, and
ML1M [5]. The FB15k-237 dataset contains 272k facts about general knowledge.
It has 14k entities and 237 predicates. The WN18RR dataset consists of 86k facts
about 11 lexical relations between 40k word senses. The other two datasets repre-
sent interactions among users and items in e-commerce. The ML1M (MovieLens-
1M) dataset composes of 434k facts with 14k users/items and 20 relations, while
the DBbook2014 has 334k facts with 13k users/items and 13 relations. To create
G1 and G2 for each dataset, two smaller sub-graphs of around 2k to 3k entities
are randomly sampled from the original graph. The two graphs are controlled
to share some amounts of common entities. Different levels of entity overlapping
are investigated, from 0% (non-overlapping setting) to around 1.5%, 3%, and 5%
(overlapping setting). Moreover, different predicates are removed so that G1 and
G2 share the same predicate set, i.e. R1 ≡ R2 ≡ R.

Intra-domain triplets (ei, rk, ej) whose both entities ei, ej belong to the same
graph are used for training. Inter-domain triplets (ei, rk, ej) whose entities ei, ej

belong to different graphs are used for validating and testing inter-domain perfor-
mance. The validation and test ratio is 20 : 80. Even though the goal is to evalu-
ate a model’s ability to perform inter-domain link prediction, both inter-domain
and intra-domain link prediction performances are evaluated. This is because
the proposed method should improve inter-domain link prediction while does
not harm intra-domain link prediction. Therefore, 5% of intra-domain triplets
are further spared from the training data for monitoring intra-domain perfor-
mance.

The details for the case of 3% overlapping are shown in Table 1. In other
cases, the datasets share similar statistics.

4.2 Evaluation Methods and Baselines

In the experiments, Hit@10 score and ROC-AUC score are used for quantifying
both inter-domain and intra-domain performances.
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Table 1. Details of the datasets in the case of 3% overlapping. The other cases share
similar statistics.

Datasets #Ent G1 #Ent G2 #Rel #Train #Inter Valid #Intra Test #Inter Test

FB15k-237 2675 2677 179 24.3k 4.3k 1.3k 17.7k

WN18RR 2804 2720 10 5.1k 105 148 1.1k

DBbook2014 2932 2893 11 34.6k 6.5k 1.8k 26.8k

ML1M 2764 2726 18 39.3k 6.5k 2k 27k

Evaluation with Hit@10. The Hit@10 score is computed by ranking true
entities based on their scores. For each true triplet (ei, rk, ej) in the test sets, one
entity ei (or ej) is hidden to create an unfinished triplet (·, rk, ej) (or (ei, rk, ·)).
All entities ecand are used as candidates for completing the unfinished triplet
and the scores of (ecand, rk, ej) (or (ei, rk, ecand)) are computed. Note that the
candidates ecand are taken from the same entity set as ei (or ej), i.e. if ei (or
ej) ∈ Et then entities ecand are taken from Et. The ranking of ei (or ej) is
computed according to the scores. The higher “true” entities are ranked the
better a model is at predicting hidden true triplets. Hit@10 score is used for
quantifying the link prediction performance and is calculated as the percentage
of “true” entities being ranked inside the top 10.

Evaluation with ROC-AUC. In order to compute the ROC-AUC score,
triplets in the test set are treated as positive samples. An equal number of
triplets are uniformly sampled from the entity sets and the predicate set to cre-
ate negative samples. Due to the sparsity of each graph, it is safe to consider the
sampled triplets as negative. During the sampling process, both sampled entities
are controlled to belong to the same graph in the intra-domain case and belong
to different graphs in the inter-domain case.

Evaluated Models. In the experiments, RESCAL is used as the baseline
method. The proposed method with Wasserstein regularization is denoted as
WD while the one with MMD regularization is denoted as MMD.

4.3 Implementation Details

Negative Sampling. Only intra-domain negative triplets are used in order to
train the pairwise ranking loss (1) with SGD, i.e. negative triplet set D− only con-
tains negative triplets (el, rh, et) whose both entities belong to the same graph.

Warmstarting. Completely learning from scratch might be difficult since the
regularizer M can add noise at the early state. Instead, it is beneficial to warm-
start the proposed method’s embeddings with embeddings roughly learned by
RESCAL. Specifically, we run RESCAL for 100 epochs to learn initial embed-
dings. After that, to maintain the fairness of equal training time, both the proposed
method and RESCAL are warmstarted with the roughly learned embeddings.



Inter-domain Multi-relational Link Prediction 293

Hyperparameters. In the implementation, the latent embedding dimension
is set to equal 100. All experiments are run for 300 epochs. Early stopping
is employed with a patience budget of 50 epochs. Other hyperparameters,
namely α, learning rate, and batch size, are tuned on the inter-domain vali-
dation set using Optuna [1]. During the tuning process, α is sampled to be
between 0.5 and 10.0, while the learning rate and batch size are chosen from
{0.01, 0.005, 0.001, 0.0005} and {100, 300, 500, 700}, respectively. The hyperpa-
rameters of RESCAL is tuned similarly with fixed α = 0.0. The kernel used
in MMD is set to be a mixture of Gaussian kernels with the bandwidth list
of [0.25, 0.5, 1., 2., 4.] ∗ c where c is the mean Euclidean distance between the
entities. All results are averaged over 10 random runs1.

4.4 Experimental Results

The experimental results are shown in Tables 2, 3, 4, and 5. Note that a random
predictor has a Hit@10 score of less than 0.004 and a ROC-AUC score of around
0.5.

Inter-domain Link Prediction. As being demonstrated in Tables 2 and 3, the
proposed method with WD regularizer works well with the FB15k-237 dataset,
which outperforms RESCAL in all settings. Especially in the overlapping cases
where few entities are shared between the graphs, both Hit@10 and ROC-AUC
scores are improved significantly. The WD regularizer also demonstrates its
usefulness with the DBbook2014 and ML1M datasets. The Hit@10 scores are
boosted up in most cases of overlapping settings, while the ROC-AUC scores
are consistently enhanced over that of RESCAL. Most of the time, the improve-
ments are considerable. However, for the case of the ML1M dataset with 3%
overlapping entities, the WD regularizer causes the Hit@10 score to deterio-
rate, from 0.230 to 0.213. On the other hand, the MMD regularizer seems not
to be beneficial for the task. Unexpectedly, the regularizer introduces noise and
reduces the accuracy of inter-domain link prediction. In the case of the WN18RR
dataset, both RESCAL and the proposed method fail to perform, in which all
Hit@10 and ROC-AUC scores are close to random. This might be due to the
extreme sparsity of the dataset, whose amount of observed triplets is only about
one-fifth of that of the other datasets.

In all the four datasets, sharing some common entities, even with a small
number, is helpful and important for predicting inter-domain links. These com-
mon entities act as anchors between the graphs, which guide the regularizer to
learn similar embedding distributions. Without common entities, the learning
process becomes more challenging and often results in uncertain predictors as
being shown in the 0% overlapping cases. The overlapping setting is reason-
able because, in practice, the two graphs often share some amounts of common
entities, e.g. the same users and the same popular items reappear in different
e-commerce platforms.
1 The code is available at https://github.com/phucdoitoan/inter-domain lp.

https://github.com/phucdoitoan/inter-domain_lp
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Table 2. Inter-domain Hit@10 scores. Italic numbers indicate better results while
bold numbers and bold numbers with asterisk ∗ indicate better results at significance
level p = 0.1 and p = 0.05, respectively. The proposed method with WD regularizer
achieves better scores in many settings.

Overlapping Model FB15k-237 WN18RR DBbook2014 ML1M

0% RESCAL 0.110 ± 0.038 0.027 ± 0.003 0.087 ± 0.058 0.062 ± 0.074

MMD 0.111 ± 0.038 0.031 ± 0.004 0.085 ± 0.057 0.063 ± 0.072

WD 0.145 ± 0.063 0.024 ± 0.004 0.084 ± 0.070 0.061 ± 0.067

1.5% RESCAL 0.251 ± 0.031 0.025 ± 0.002 0.107 ± 0.035 0.210 ± 0.034

MMD 0.237 ± 0.043 0.026 ± 0.003 0.109 ± 0.037 0.180 ± 0.067

WD 0.291 ± 0.031∗ 0.024 ± 0.002 0.128 ± 0.059 0.240 ± 0.031∗

3% RESCAL 0.302 ± 0.020 0.028 ± 0.004 0.266 ± 0.056 0.230 ± 0.003∗

MMD 0.292 ± 0.020 0.026 ± 0.004 0.227 ± 0.081 0.228 ± 0.002

WD 0.328 ± 0.011∗ 0.025 ± 0.004 0.318 ± 0.066∗ 0.213 ± 0.006

5% RESCAL 0.339 ± 0.007 0.027 ± 0.005 0.389 ± 0.032 0.237 ± 0.011

MMD 0.334 ± 0.006 0.026 ± 0.004 0.388 ± 0.027 0.236 ± 0.010

WD 0.361 ± 0.010∗ 0.031 ± 0.004 0.389 ± 0.051 0.256 ± 0.006∗

Table 3. Inter-domain ROC-AUC scores. Italic numbers indicate better results
while bold numbers and bold numbers with asterisk ∗ indicate better results at sig-
nificance level p = 0.1 and p = 0.05, respectively. The proposed method with WD
regularizer achieves better scores in many settings.

Overlapping Model FB15k-237 WN18RR DBbook2014 ML1M

0% RESCAL 0.504 ± 0.092 0.504 ± 0.009 0.483 ± 0.097 0.464 ± 0.173

MMD 0.507 ± 0.093 0.500 ± 0.010 0.485 ± 0.095 0.480 ± 0.172

WD 0.548 ± 0.118 0.505 ± 0.009 0.488 ± 0.099 0.495 ± 0.179

1.5% RESCAL 0.793 ± 0.044 0.512 ± 0.009 0.640 ± 0.066 0.805 ± 0.027

MMD 0.770 ± 0.063 0.507 ± 0.009 0.632 ± 0.063 0.754 ± 0.087

WD 0.837 ± 0.033∗ 0.510 ± 0.007 0.671 ± 0.087 0.842 ± 0.017∗

3% RESCAL 0.825 ± 0.022 0.503 ± 0.009 0.762 ± 0.032 0.832 ± 0.006

MMD 0.813 ± 0.030 0.498 ± 0.011 0.714 ± 0.060 0.831 ± 0.007

WD 0.850 ± 0.013∗ 0.502 ± 0.013 0.809 ± 0.030∗ 0.840 ± 0.008

5% RESCAL 0.870 ± 0.008 0.498 ± 0.021 0.824 ± 0.012 0.845 ± 0.007

MMD 0.875 ± 0.007 0.498 ± 0.012 0.823 ± 0.015 0.845 ± 0.006

WD 0.902 ± 0.010∗ 0.498 ± 0.013 0.835 ± 0.020 0.867 ± 0.003∗

Intra-domain Link Prediction. Even though the main goal is to predict inter-
domain links, it is preferable that the regularizers do not harm performance on
intra-domain link prediction when fusing the two domains’ entity distributions.
As being demonstrated in Table 5, the proposed method is able to maintain sim-
ilar or better intra-domain ROC-AUC scores compared to RESCAL. However,
it sometimes requires trade-offs in terms of the Hit@10 score, which is shown in
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Table 4. Intra-domain Hit@10 scores. Bold numbers with asterisk ∗ indicate better
results at significance level p = 0.05. Generally, the proposed method with WD regu-
larizer preserves the intra-domain Hit@10 scores despite requiring trade-offs in some
cases.

Overlapping Model FB15k-237 WN18RR DBbook2014 ML1M

0% RESCAL 0.451 ± 0.031 0.418 ± 0.031 0.468 ± 0.011 0.302 ± 0.076

MMD 0.461 ± 0.029 0.342 ± 0.086 0.449 ± 0.012 0.307 ± 0.070

WD 0.469 ± 0.019 0.421 ± 0.032 0.472 ± 0.014 0.332 ± 0.027

1.5% RESCAL 0.433 ± 0.008 0.390 ± 0.040 0.296 ± 0.039 0.425 ± 0.006∗

MMD 0.438 ± 0.008 0.330 ± 0.067 0.328 ± 0.027 0.423 ± 0.036

WD 0.427 ± 0.009 0.408 ± 0.035 0.291 ± 0.038 0.412 ± 0.008

3% RESCAL 0.433 ± 0.009 0.476 ± 0.074 0.413 ± 0.008 0.447 ± 0.006∗

MMD 0.447 ± 0.011 0.485 ± 0.074 0.411 ± 0.017 0.444 ± 0.008

WD 0.439 ± 0.009 0.620 ± 0.026∗ 0.412 ± 0.009 0.413 ± 0.021

5% RESCAL 0.433 ± 0.009∗ 0.455 ± 0.038 0.418 ± 0.010 0.408 ± 0.005

MMD 0.421 ± 0.009 0.416 ± 0.058 0.420 ± 0.014 0407 ± 0.004

WD 0.413 ± 0.007 0.479 ± 0.076 0.412 ± 0.022 0.401 ± 0.005

Table 5. Intra-domain ROC-AUC scores. Bold numbers with asterisk ∗ indicate
better results at significance level p = 0.05. The propose method maintains similar or
better intra-domain ROC-AUC scores compared to RESCAL.

Overlapping Model FB15k-237 WN18RR DBbook2014 ML1M

0% RESCAL 0.925 ± 0.018 0.819 ± 0.018 0.915 ± 0.004 0.897 ± 0.022

MMD 0.924 ± 0.018 0.818 ± 0.019 0.915 ± 0.005 0.897 ± 0.035

WD 0.928 ± 0.006 0.811 ± 0.017 0.918 ± 0.005 0.932 ± 0.004∗

1.5% RESCAL 0.929 ± 0.003 0.814 ± 0.018 0.871 ± 0.032 0.950 ± 0.003

MMD 0.931 ± 0.003 0.807 ± 0.029 0.892 ± 0.009 0.954 ± 0.003

WD 0.932 ± 0.006 0.818 ± 0.020 0.868 ± 0.040 0.954 ± 0.002

3% RESCAL 0.922 ± 0.006 0.870 ± 0.018 0.885 ± 0.008 0.946 ± 0.005

MMD 0.926 ± 0.005 0.861 ± 0.011 0.877 ± 0.026 0.948 ± 0.003

WD 0.921 ± 0.007 0.860 ± 0.018 0.890 ± 0.005 0.949 ± 0.003

5% RESCAL 0.927 ± 0.007 0.869 ± 0.007 0.878 ± 0.008 0.949 ± 0.003

MMD 0.935 ± 0.005 0.835 ± 0.050 0.879 ± 0.008 0.952 ± 0.003

WD 0.937 ± 0.004∗ 0.860 ± 0.020 0.885 ± 0.009∗ 0.953 ± 0.003

Table 4. Specifically, the WD regularizer worsens the intra-domain Hit@10 scores
compared to RESCAL in FB15k-237 with 5% overlapping and ML1M with 1.5%
overlapping settings despite helping improve the inter-domain counterparts. It
also hurts the intra-domain Hit@10 score in ML1M with 3% overlapping setting.

Summary. The proposed method with WD regularizer significantly improves
the performance of inter-domain link prediction over the baseline method while
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being able to preserve the intra-domain performance in the FB15k-237 and
DBbook2014 datasets. In the ML1M dataset, it benefits the inter-domain perfor-
mance at the risk of decreasing intra-domain Hit@10 scores. Unexpectedly, the
MMD regularizer does not work well and empirically causes deterioration of the
inter-domain performance. These negative results might be due to local optimal
arising when minimizing MMD with a finite number of samples, as recently stud-
ied in [26]. Further detailed analysis would be necessary before one can firmly
judge the performance of the MMD regularizer. We leave this matter for future
works. It is also worth mentioning that, in the experiment setting, the sampling
of G1 and G2 is repeated independently for each overlapping level. Therefore,
it is not necessary for the link prediction scores to monotonically increase when
the overlapping level increases.

Embedding Visualization. Figures 1 and 2 visualize the entity embeddings
learned by RESCAL and the WD regularizer in the case of 3% overlapping. As
being seen in Fig. 1, WD can learn more identical embedding distributions than
RESCAL in the case of the FB15k-237 and DBbook2014 datasets. Especially,
in the DBbook2014 dataset, RESCAL can only learn similar shape distribu-
tions, but the regularizer can learn distributions with both similar shape and
close absolute position. However, as being shown in Fig. 2, in the WN18RR and
ML1M datasets, the WD regularizer seems to only add noise when learning
the embeddings, which results in no improvement or even degradation of both
intra-domain and inter-domain Hit@10 scores.

(a) Learned with RESCAL (b) Learned with RESCAL

(c) Learned with WD regularizer (d) Learned with WD regularizer

Fig. 1. Embedding visualization of FB15k-237 (subfigures a and c) and DBbook2014
(subfigures b and d) datasets with 3% overlapping. The proposed method learns more
identical embedding distributions across both domains.
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5 Related Work

In recent years, the embedding-based approach has become popular in deal-
ing with the link prediction task on a multi-relational knowledge graph (intra-
domain). One of the pioneering works in this direction is TransE [3]. It is
a translation model whose each predicate type corresponds to a translation
between the entities’ embedding vectors. The model is suitable for 1-to-1 rela-
tionships only. Following models such as TransH, TransR, and TransD [14,16,33]
are designed to deal with n-to-1, 1-to-n, and n-to-n relationships. Furthermore,
tensor-based models such that RESCAL, DistMult, and SimplE [15,22,35] also
gain huge interest. They interpret multi-relational knowledge graphs as 3-D ten-
sors and employ tensor factorization to learn the entity and predicate embed-
dings. Besides, neural network and complex vector-based models [27,31] are also
introduced in the literature. Further details can be found in [20].

(a) Learned with RESCAL (b) Learned with RESCAL

(c) Learned with WD regularizer (d) Learned with WD regularizer

Fig. 2. Embedding visualization of WN18RR (subfigures a and c) and ML1M (subfig-
ures b and d) datasets with 3% overlapping. RESCAL is able to learn similar embedding
distributions between the two domains while the proposed method seems to add more
noise.

To the best of our knowledge, the proposed method is the first to consider the
inter-domain link prediction problem between multi-relational graphs. Existing
methods in the literature do not directly deal with the problem. The closest
line of research focuses on entity alignment in multilingual knowledge graphs,
which often aims to match words of the same meanings between different lan-
guages. The first work in this line of research is MTransE [8]. It employs TransE
to independently embed different knowledge graphs and perform matching on
the embedding spaces. Other methods like JAPE [28] and BootEA [29] further
improve MTransE by exploiting additional attributes or description informa-
tion and bootstrapping strategy. MRAEA [17] directly learns multilingual entity
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embeddings by attending over the entities’ neighbors and their meta seman-
tic information. Other methods [4,11] apply Graph Neural Networks for learn-
ing alignment-oriented embeddings and achieve state-of-the-art results in many
datasets. All these entity-matching methods implicitly assume most entities in
one graph to have corresponding counterparts in the other graph, e.g. words in
one lingual graph to have the same meaning words in the other lingual graph.
Meanwhile, the proposed method only assumes the similarity between entity
distributions.

Minimizing a dissimilarity criterion between distributions is a popular strat-
egy for distribution matching and entity alignment problems. Cao et al. pro-
pose Distribution Matching Machines [6] that optimizes maximum mean dis-
crepancy (MMD) between source and target domains for unsupervised domain
adaptation tasks. The criterion is successfully applied in distribution matching
and domain confusion tasks as well [2,32]. Besides Wasserstein distance (WD),
Gromov-Wasserstein distance (GWD) [24] also is a popular optimal transport
metric. It measures the topological dissimilarity between distributions lying on
different domains. GWD often requires much heavier computation than WD due
to nested loops of Sinkhorn algorithm in current implementations [24]. Applying
optimal transport into the graph matching problem, Xu et al. propose Gromov-
Wasserstein Learning framework [34] for learning node embedding and node
alignment simultaneously, and achieve state of the art in various graph match-
ing datasets. Chen et al. [7] propose Graph Optimal Transport framework that
combines both WD and GWD for entity alignment. The framework is shown to
be effective in many tasks such as image-text retrieval, visual question answering,
text generation, and machine translation. Due to the computational complexity
of GWD, each domain considered in [7,34] only contains less than several hun-
dred entities. Phuc et al. [25] propose to apply WD to solve the link prediction
problem on two graphs simultaneously. In terms of technical idea, the method is
the most similar to the proposed method; however, it only focuses on the intra-
domain link prediction problem on undirected homogeneous graphs and requires
most of the nodes in one graph to have corresponding counterparts in the other
graph.

6 Conclusion and Future Work

Inter-domain link prediction is an important task for constructing large multi-
relational graphs from smaller related ones. However, existing methods in the
literature do not directly address this problem. In this paper, we propose a
new approach for the problem via jointly minimizing a divergence between
entity distributions during the embedding learning process. Two regularizers
have been investigated, in which the WD-based regularizer shows promising
results and improves inter-domain link prediction performance considerably. For
future works, we would like to verify the proposed method’s effectiveness using
more baseline embedding methods besides RESCAL. Further analysis on the per-
formance of the MMD-based regularizer will also be conducted. Moreover, the
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proposed method currently assumes that both domains share the same under-
lying entity distribution. This assumption is violated when the domains’ entity
distributions are not completely identical but partially different. One possible
direction for further research is to adopt unbalanced optimal transport as the
regularizer, which flexibly allows mass destruction and mass creation between
distributions.

Acknowledgement. The authors would like to thank the anonymous reviewers for
their insightful suggestions and constructive feedback.
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Université Paris-Saclay, CentraleSupélec, Inria, Giff-sur-Yvette, France
{alexandre.duval,fragkiskos.malliaros}@centralesupelec.fr

Abstract. Graph Neural Networks (GNNs) achieve significant perfor-
mance for various learning tasks on geometric data due to the incorpora-
tion of graph structure into the learning of node representations, which
renders their comprehension challenging. In this paper, we first propose
a unified framework satisfied by most existing GNN explainers. Then,
we introduce GraphSVX, a post hoc local model-agnostic explanation
method specifically designed for GNNs. GraphSVX is a decomposition
technique that captures the “fair” contribution of each feature and node
towards the explained prediction by constructing a surrogate model on a
perturbed dataset. It extends to graphs and ultimately provides as expla-
nation the Shapley Values from game theory. Experiments on real-world
and synthetic datasets demonstrate that GraphSVX achieves state-of-
the-art performance compared to baseline models while presenting core
theoretical and human-centric properties.

1 Introduction

Many aspects of the everyday life involve data without regular spatial struc-
ture, known as non-euclidean or geometric data, such as social networks, molec-
ular structures or citation networks [1,10]. These datasets, often represented
as graphs, are challenging to work with because they require modelling rich
relational information on top of node feature information [37]. Graph Neural
Networks (GNNs) are powerful tools for representation learning of such data.
They achieve state-of-the-art performance on a wide variety of tasks [8,36] due
to their recursive message passing scheme, where they encode information from
nodes and pass it along the edges of the graph. Similarly to traditional deep learn-
ing frameworks, GNNs showcase a complex functioning that is rather opaque to
humans. As the field grows, understanding them becomes essential for well known
reasons, such as ensuring privacy, fairness, efficiency, and safety [20].

While there exist a variety of explanation methods [25,27,29], they are not
well suited for geometric data as they fall short in their ability to incorporate
graph topology information. [2,21] have proposed extensions to GNNs, but in
addition to limited performance, they require model internal knowledge and show
gradient saturation issues due to the discrete nature of the adjacency matrix.

GNNExplainer [33] is the first explanation method designed specifically for
GNNs. It learns a continuous (and a discrete) mask over the edges (and features)
c© Springer Nature Switzerland AG 2021
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of the graph by formulating an optimisation process that maximizes mutual
information between the distribution of possible subgraphs and GNN predic-
tion. More recently, PGExplainer [16] and GraphMask [26] generalize GNNEx-
plainer to an inductive setting; they use re-parametrisation tricks to alleviate
the “introduced evidence” problem [5]—i.e. continuous masks deform the adja-
cency matrix and introduce new semantics to the generated graph. Regarding
other approaches; GraphLIME [12] builds on LIME [22] to provide a non-linear
explanation model; PGM-Explainer [32] learns a simple Bayesian network han-
dling node dependencies; XGNN [34] produces model-level insights via graph
generation trained using reinforcement learning.

Despite recent progress, existing explanation methods do not relate much and
show clear limitations. Apart from GNNExplainer, none consider node features
together with graph structure in explanations. Besides, they do not present core
properties of a “good” explainer [19] (see Sect. 2). Since the field is very recent
and largely unexplored, there is little certified knowledge about explainers’ char-
acteristics. It is, for instance, unclear whether optimising mutual information is
pertinent or not. Overall, this often yields explanations with a poor signification,
like a probability score stating how essential a variable is [16,26,33]. Existing
techniques not only lack strong theoretical grounds, but also do not showcase an
evaluation that is sophisticated enough to properly justify their effectiveness or
other desirable aspects [24]. Lastly, little importance is granted to their human-
centric characteristics [18], limiting the comprehensibility of explanations from
a human perspective.

In light of these limitations, first, we propose a unified explanation framework
encapsulating recently introduced explainers for GNNs. It not only serves as a
connecting force between them but also provides a different and common view of
their functioning, which should inspire future work. In this paper, we exploit it
ourselves to define and endow our explainer, GraphSVX, with desirable proper-
ties. More precisely, GraphSVX carefully constructs and combines the key compo-
nents of the unified pipeline so as to jointly capture the average marginal contribu-
tion of node features and graph nodes towards the explained prediction. We show
that GraphSVX ultimately computes, via an efficient algorithm, the Shapley val-
ues from game theory [28], that we extend to graphs. The resulting unique explana-
tion, thus, satisfy several theoretical properties by definition, while it is made more
human-centric through several extensions. In the end, we evaluate GraphSVX on
real-world and synthetic datasets for node and graph classification tasks. We show
that it outperforms existing baselines in explanation accuracy, and verifies further
desirable aspects such as robustness or certainty.

2 Related Work

Explanations methods specific to GNNs are classified into five categories of
methods according to [35]: gradient-based, perturbation, decomposition, surro-
gate, and model-level. We utilise the same taxonomy in this paper to position
GraphSVX.
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Decomposition methods [2,21] distribute the prediction score among input
features using the weights of the network architecture, through backpropagation.
Despite offering a nice interpretation, they are not specific to GNNs and present
several major limits such as requiring access to model parameters or being sensi-
tive to small input changes, like gradient-based methods discussed in Sect. 1.

Perturbation methods [16,26,33] monitor variations in model prediction with
respect to different input perturbations. Such methods provide as explanation a
continuous mask over edges (features) holding importance probabilities learned
via a simple optimisation procedure, affected by the introduced-evidence prob-
lem.

Surrogate methods [12,32] approximate the black box GNN model locally by
learning an interpretable model on a dataset built around the instance of interest
v (e.g., neighbours). Explanations for the surrogate model are used as explana-
tions for the original model. For now, such approaches are rather intuition-based
and consider exclusively node features or graph topology, not both.

Model level methods [34] provide general insights on the model functioning.
It supports only graph classification, requires passing a candidate node set as
input and is challenged by local methods also providing global explanations [16].

As we will show shortly, GraphSVX bridges the gap between these categories by
learning a surrogate explanation model on a perturbed dataset that ultimately
decomposes the explained prediction among the nodes and features of the graph,
depending on their respective contribution. It also derives model-level insights by
explaining subsets of nodes, while avoiding the respective limits of each category.

Desirable properties of explanations have received subsequent attention
from the social sciences and the machine learning communities, but are often
overlooked when designing an explainer. From a theoretical perspective, good
explanations are accurate, fidel (truthful), and reflect the proportional impor-
tance of a feature on prediction (meaningful) [4,35]. They also are stable and
consistent (robust), meaning with a low variance when changing to a similar
model or a similar instance [19]. Besides, they reflect the certainty of the model
(decomposable) and are as representative as possible of its (global) functioning
[17]. Finally, since their ultimate goal is to help humans understand the model,
explanations should be intuitive to comprehend (human-centric). Many soci-
ological and psychological studies emphasise key aspects: only a few motives
(selective) [31], comparable to other instances (contrastive) [14], and interactive
with the explainee (social).

3 Preliminary Concepts and Background

Notation. We consider a graph G with N nodes and F features defined by
(X,A) where X ∈ R

N×F is the feature matrix and A ∈ R
N×N the adjacency
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matrix. f(X,A) denotes the prediction of the GNN model f , and fv(X,A) the
score of the predicted class for node v. Let X∗j = (X1j , . . . , XNj) with feature
values x∗j = (x1j , . . . , xNj) represent feature j’s value vector across all nodes.
Similarly, Xi = Xi∗ = (Xi1, . . . , XiF ) stands for node i’s feature vector, with
XiS = {Xik|k ∈ S}. 1 is the all-ones vector.

3.1 Graph Neural Networks

GNNs adopt a message passing mechanism [11] where the update at each GNN
layer � involves three key calculations [3]: (i) The propagation step. The model
computes a message m�

ij = Msg(h�−1
i ,h�−1

j , aij) between every pair of nodes
(vi, vj), that is, a function MSG of vi’s and vj ’s representations h�−1

i and h�−1
j in

the previous layer and of the relation aij between the nodes. (ii) The aggregation
step. For each node vi, GNN calculates an aggregated message Mi from vi’s
neighbourhood Nvi

, whose definition vary across methods. M �
i = Agg(m�

ij |vj ∈
Nvi

). (iii) The update step. GNN non-linearly transforms both the aggregated
message M �

i and vi’s representation h�−1
i from the previous layer, to obtain vi’s

representation h�
i at layer �: h�

i = Upd(M �
i ,h�−1

i ). The representation zi = hL
i of

the final GNN layer L serves as final node embedding and is used for downstream
machine learning tasks.

3.2 The Shapley Value

The Shapley value is a method from Game Theory. It describes how to fairly
distribute the total gains of a game to the players depending on their respective
contribution, assuming they all collaborate. It is obtained by computing the aver-
age marginal contribution of each player when added to any possible coalition of
players [28]. This method has been extended to explain machine learning model
predictions on tabular data [13,30], assuming that each feature of the explained
instance (x) is a player in a game where the prediction is the payout.

The characteristic function val : S → R captures the marginal contribution
of the coalition S ⊆ {1, . . . , F} of features towards the prediction f(x) with
respect to the average prediction: val(S) = E[f(X)|XS = xs] − E[f(X)]. We
isolate the effect of a feature j via val(S ∪ {j}) − val(S) and average it over all
possible ordered coalitions S to obtain its Shapley value as:

φj(val) =
∑

S⊆{1,...,F}\{j}

|S|! (F − |S| − 1)!
F !

(
val(S ∪ {j}) − val(S)

)
.

The notion of fairness is defined by four axioms (efficiency, dummy, symmetry,
additivity), and the Shapley value is the unique solution satisfying them. In
practice, the sum becomes impossible to compute because the number of possi-
ble coalitions (2F−1) increases exponentially by adding more features. We thus
approximate Shapley values using sampling [6,15].
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Fig. 1. Overview of unified framework. All methods take as input a given graph G =
(X,A), feed it to a mask generator (Mask) to create three masks over nodes, edges,
and features. These masks are then passed to a graph generator (Gen) that converts
them to the original input space (X′,A′) before feeding them to the original GNN
model f . The resulting prediction f(X′,A′) is used to improve the mask generator,
the graph generator or the downstream explanation generator (Expl), which ultimately
provides the desired explanation using masks and f(X′,A′). This passage through the
framework is repeated many times so as to create a proper dataset D from which
each generator block learns. Usually, only one is optimised with a carefully defined
optimisation process involving the new and original GNN predictions.

4 A Unified Framework for GNN Explainers

As detailed in the previous section, existing interpretation methods for GNNs are
categorised and often treated separately. In this paper, we approach the explana-
tion problem from a new angle, proposing a unified view that regroups existing
explainers under a single framework: GNNExplainer, PGExplainer, GraphLIME,
PGM-Explainer, XGNN, and the proposed GraphSVX. The key differences
across models lie in the definition and optimisation of the three main blocks
of the pipeline, as shown in Fig. 1:

– Mask generates discrete or continuous masks over features MF ∈ R
F , nodes

MN ∈ R
N and edges ME ∈ R

N×N , according to a specific strategy.
– Gen outputs a new graph G′ = (X′,A′) from the masks (ME ,MN ,MF ) and

the original graph G = (X,A).
– Expl generates explanations, often offered as a vector or a graph, using a

function g whose definition vary across baselines.

In the following, we show how each baseline fits the pipeline. � stands for the
element wise multiplication operation, σ the softmax function, || the concatena-
tion operation, and Mext describes the extended vector M with repeated entries,
whose size makes the operation feasible. All three masks are not considered for
a single method; some are ignored as they have no effect on final explanations;
one often studies node feature MF or graph structure (ME or MN ).

GNNExplainer’s key component is the mask generator. It generates both MF

and ME , where ME has continuous values and MF discrete ones. They are both
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randomly initialised and jointly optimised via a mutual information loss function
MI(Y, (ME ,MF )) = H(Y ) − H(Y |A′,X′), where Gen gives A′ = A � σ(ME)
and X′ = X � Mext

F . Y represents the class label and H(·) the entropy term.
Expl simply returns the learned masks as explanations, via the identity function
g(ME ,MF ) = (ME ,MF ).

PGExplainer is very similar to GNNExplainer. Mask generates only an edge
mask ME using a multi-layer neural network MLPψ and the learned matrix Z
of node representations: ME = MLPψ(G,Z). The new graph is constructed with
Gen(X,A,ME) = (X,A � ρ(ME)), where ρ denotes a reparametrisation trick.
The obtained prediction fv(X,A′) is also used to maximise mutual information
with fv(X,A) and backpropagates the result to optimise Mask. As for GNNEx-
plainer, Expl provides ME as explanations.

GraphLIME is a surrogate method with a simple and not optimised mask gen-
erator. Although it measures feature importance, it creates a node mask MN

using the neighbourhood of v (i.e., Nv). The kth mask (or sample) is defined as
Mk

N,i = 1 if vi = Nv[k] and 0 otherwise. Gen(X,A,MN ) = (X,A), so in fact,
it computes and stores the original model prediction. X and f(X,A) are then
combined with the mask MN via simple dot products M�

N ·X and M�
N ·f(X,A)

respectively, to isolate the original feature vector and prediction of the kth neigh-
bour of v. These two elements are treated as input and target of an HSIC Lasso
model g, trained with an adapted loss function. The learned coefficients consti-
tute importance measures that are given as explanations by Expl.

PGM-Explainer builds a probabilistic graphical model on a local dataset
that consists of random node masks MN ∈ {0, 1}N . The associated prediction
fv(X′,A′) is obtained by posing A′ = A and X′ = Mext

N �X+(1−Mext
N �μext),

with μ = (E[X∗1], . . . , E[X∗F ])�. This means that each excluded node feature
(MN,j = 0) is set to its mean value across all nodes. This dataset is fed sequen-
tially to the main component Expl, which learns and outputs a Bayesian Net-
work g with input MN (made sparser by looking at the Markov-blanket of v),
BIC score loss function, and target I(fv(X′,A′)), where I(·) is a specific function
that quantifies the difference in prediction between original and new prediction.

XGNN is a model-level approach that trains an iterative graph generator (add
one edge at a time) via reinforcement learning. This causes two key differences
with previous approaches: (1) the input graph at iteration t (Gt) is obtained from
the previous iteration and is initialised as the empty graph; (2) we also pass a can-
didate node set C, such that XC contains the feature vector of all distinct nodes
across all graphs in dataset. Mask generates an edge mask ME = At and a node
mask MNt

∈ {0, 1}|C| specifying the latest node added to Gt, if any. Gen pro-
duces a new graph Gt+1 from Gt by predicting a new edge, possibly creating a new
node from C. This is achieved by applying a GCN and two MLP networks. Then,
Gt+1 is fed to the explained GNN. The resulting prediction is used to update
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model parameters via a policy gradient loss function. Expl stores nonzero MNt

at each time step and provides g({MNt
}t,XC ,ME)) = (||tMNt

· XC ,ME) as
explanation—i.e. the graph generated at the final iteration, written GT .

GraphSVX. As we will see in the next section, the proposed GraphSVX model
carefully exploits the potential of this framework through a better design and
combination of complex mask, graph and explanation generators–in the perspec-
tive of improving performance and embedding desirable properties in explana-
tions.

5 Proposed Method

GraphSVX is a post hoc model-agnostic explanation method specifically
designed for GNNs, that jointly computes graph structure and node feature
explanations for a single instance. More precisely, GraphSVX constructs a per-
turbed dataset made of binary masks for nodes and features (MN ,MF ), and
computes their marginal contribution f(X′,A′) towards the prediction using
a graph generator Gen(X,A,MF ,MN ) = (X′,A′). It then learns a carefully
defined explanation model on the dataset (MN ||MF , f(X′,A′)) and provides it
as explanation. Ultimately, it produces a unique deterministic explanation that
decomposes the original prediction and has a real signification (Shapley values)
as well as other desirable properties evoked in Sect. 2. Without loss of generality,
we consider a node classification task for the presentation of the method.

5.1 Mask and Graph Generators

First of all, we create an efficient mask generator algorithm that constructs
discrete feature and node masks, respectively denoted by MF ∈ {0, 1}F and
MN ∈ {0, 1}N . Intuitively, for the explained instance v, we aim at studying the
joint influence of a subset of features and neighbours of v towards the associated
prediction fv(X,A). The mask generator helps us determine the subset being
studied. Associating 1 with a variable (node or feature) means that it is con-
sidered, 0 that it is discarded. For now, we let Mask randomly sample from all
possible (2F+N−1) pairs of masks MF and MN , meaning all possible coalitions S
of features and nodes (v is not considered in explanations). Let z be the random
variable accounting for selected variables, z = (MF ‖MN ). This is a simplified
version of the true mask generator, which we will come back to later, in Sect.
5.4.

We now would like to estimate the joint effect of this group of variables
towards the original prediction. We thus isolate the effect of selected variables
marginalised over excluded ones, and observe the change in prediction. We
define Gen : (X,A,MF ,MN ) → (X′,A′), which converts the obtained masks
to the original input space, in this perspective. Due to the message passing
scheme of GNNs, studying jointly node and features’ influence is tricky. Unlike
GNNExplainer, we avoid any overlapping effect by considering feature values
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of v (instead of the whole subgraph around v) and all nodes except v. Several
options are possible to cancel out a node’s influence on the prediction, such as
replacing its feature vector by random or expected values. Here, we decide to
isolate the node in the graph, which totally removes its effect on the prediction.
Similarly, to neutralise the effect of a feature, as GNNs do not handle missing
values, we set it to the dataset expected value. Formally, it translates into:

X′ = X with X′
v = MF � Xv + (1 − MF ) � μ (1)

A′ = (Mext�
N · A · Mext

N ) � I(A), (2)

where μ = (E[X∗1], . . . ,E[X∗F ])� and I(·) captures the indirect effect of k-
hop neighbours of v (k > 1), which is often underestimated. Indeed, if a 3-hop
neighbour w is considered alone in a coalition, it becomes disconnected from
v in the new graph G′. This prevents us from capturing its indirect impact
on the prediction since it does not pass information to v anymore. To remedy
this problem, we select one shortest path P connecting w to v via Dijkstra’s
algorithm, and include P back in the new graph. To keep the influence of the
new nodes (in P \{w, v}) switched off, we set their feature vector to mean values
obtained by Monte Carlo sampling.

To finalize the perturbation dataset, we pass z′ = (X′,A′) to the GNN model
f and store each sample (z, f(z′)) in a dataset D. D associates with a subset of
nodes and features of v their estimated influence on the original prediction.

5.2 Explanation Generator

In this section, we build a surrogate model g on the dataset D = {(z, f(z′))}
and provide it as explanation. More rigorously, an explanation φ of f is normally
drawn from a set of possible explanations, called interpretable domain Ω. It is
the solution of the following optimisation process: φ = arg ming∈Ω Lf (g), where
the loss function attributes a score to each explanation. The choice of Ω has a
large impact on the type and quality of the obtained explanation. In this paper,
we choose broadly Ω to be the set of interpretable models, and more precisely
the set of Weighted Linear Regression (WLR).

In short, we intend our model to learn to calculate the individual effect of
each variable towards the original prediction from the joint effect f(z′), using
many different coalitions S of nodes and features. This is made possible by the
definition of the input dataset D and is enforced by a cross entropy loss function,
as follows:

Lf,π (g) =
∑

z

[
g(z) − f(z′)

]2
πz,

where πz =
F + N − 1

(F + N) · |z| ·
(

F + N − 1
|z|

)−1

.

(3)

π is a kernel weight that attributes a high weight to samples z with small or
large dimension, or in different terms, groups of features and nodes with few or
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many elements—since it is easier to capture individual effects from the combined
effect in these cases.

In the end, we provide the learned parameters of g as explanation. Each
coefficient corresponds to a node of the graph or a feature of v and represents
its estimated influence on the prediction fv(X,A). In fact, it approximates the
extension of the Shapley value to graphs, as shown in next paragraph.

5.3 Decomposition Model

We first justify why it is relevant to extend the Shapley value to graphs. Look-
ing back at the original theory, each player contributing to the total gain is
allocated a proportion of that gain depending on its fair contribution. Since a
GNN model prediction is fully determined by node feature information (X) and
graph structural information (A), both edges/nodes and node features are play-
ers that should be considered in explanations. In practice, we extend to graphs
the four Axioms defining fairness (please see the extended version [9]), and rede-
fine how is captured the influence of players (features and nodes) towards the
prediction as val(S) = EXv

[fv(X,AS)|XvS = xvS ] − E[fv(X,A)]. AS is the
adjacency matrix where all nodes in S (not in S) have been isolated.

Assuming model linearity and feature independence, we show that GraphSVX,
in fact, captures via f(z′) the marginal contribution of each coalition S towards
the prediction:

EXv
[fv(X,AS)|XvS ] = EXvS |XvS

[fv(X,AS)]

≈ EXvS
[fv(X,AS)] by independence

≈ fv(EXvS
[X],AS) by linearity

= fv(X′,A′),

where A′ = AS and X′
ij =

{
E[X∗j ] if i = v and j ∈ S

Xij otherwise.
Using the above, we prove that GraphSVX calculates the Shapley values on
graph data. This builds on the fact that Shapley values can be expressed as an
additive feature attribution model, as shown by [15] in the case of tabular data.

In this perspective, we set πv such that πv(z) → ∞ when |z| ∈ {0, F +N} to
enforce the efficiency axiom: g(1) = fv(X,A) = E[fv(X,A)] +

∑F+N
i=1 φi. This

holds due to the specific definition of Gen and g (i.e., Expl), where g(1) =
fv(X,A) and the constant φ0, also called base value, equals EXv

[fv(X,Av)] ≈
E[fv(X,A)], so the mean model prediction. Av refers to A∅, where v is isolated.

Theorem 1. With the above specifications and assumptions, the solution to
ming∈Ω Lf,π (g) under Eq. (3) is a unique explanation model g whose param-
eters compute the extension of the Shapley values to graphs.

Proof. Please see the extended version of this paper [9].
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5.4 Efficient Approximation Specific to GNNs

Similarly to the euclidean case, the exact computation of the Shapley values
becomes intractable due to the number of possible coalitions required. Especially
that we consider jointly features and nodes, which augments exponentially the
complexity of the problem. To remedy this, we derive an efficient approximation
via a smart mask generator.

Firstly, we reduce the number of nodes and features initially considered to
D ≤ N and B ≤ F respectively, without impacting performance. Indeed, for a
GNN model with k layers, only k-hop neighbours of v can influence the prediction
for v, and thus receive a non-zero Shapley value. All others are allocated a null
importance according to the dummy axiom1 and can therefore be discarded.
Similarly, each feature j of v whose value is comprised in the confidence interval
Ij = [μj − λ · σj , μj + λ · σj ] around the mean value μj can be discarded, where
σj is the corresponding standard deviation and λ a constant.

The complexity is now O(2B+D) and we further drive it down to O(2B +
2D) by sampling separately masks of nodes and features, while still considering
them jointly in g. In other words, instead of studying the influence of possible
combinations of nodes and features, we consider all combinations of features
with no nodes selected, and all combinations of nodes with all features included:
(2B + 2D). We observe empirically that it achieves identical explanations with
fewer samples, while it seems to be more intuitive to capture the effect of nodes
and features on prediction (expressed by Axiom 1).

Axiom 1. (Relative efficiency). Node contribution to predictions can be sep-
arated from feature contribution, and their sum decomposes the prediction with

respect to the average one, as

{∑B
j=1 φj = fv(X,Av) − E[fv(X,A)]∑D
i=1 φB+i = fv(X,A) − fv(X,Av).

Lastly, we approximate explanations using P � 2B + 2D samples, where P
is sufficient to obtain a good approximation. We reduce P by greatly improving
Mask, as evoked in Sect. 5.1. Assuming we have a budget of P samples, we
develop a smart space allocation algorithm to draw in priority coalitions of order
k, where k starts at 0 and is incremented when all coalitions of the order are
sampled. This means that we sample in priority coalitions with high weight, so
with nearly all or very few players. If they cannot all be chosen (for current k) due
to space constraints, we proceed to a smart sampling that favours unseen players.
The pseudocode and an efficiency evaluation lie in the extended version [9].

5.5 Desirable Properties of Explanations

In the end, GraphSVX generates fairly distributed explanations
∑

j φj =
fv(X,A), where each φj approximates the average marginal contribution of a
node or feature j towards the explained GNN prediction (with respect to the

1 Axiom: If ∀S ∈ P({1, . . . , p}) and j /∈ S, val(S ∪ {j}) = val(S), then φj(val) = 0.
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average prediction φ0). By definition, the resulting explanation is unique, con-
sistent, and stable. It is also truthful and robust to noise, as shown in Sect. 6.2.
The last focus of this paper is to make them more selective, global, contrastive
and social; as we aim to design an explainer with desirable properties. A few
aspects are detailed here.

Contrastive. Explanations are contrastive already as they yield the contribu-
tion of a variable with respect to the average prediction φ0 = E[f(X,A)]. To go
futher and explain an instance with respect to another one, we could substitute
Xv in Eq. (1) by X′

v = MF �Xv +(1−MF )�ξ, with ξ being the feature vector
of a specific node w, or of a fictive representative instance from class C.

Global. We derive explanations for a subset U of nodes instead of a single node
v, following the same pipeline. The neighbourhood changes to

⋃U
i Ni, Eq. (1)

now updates XU instead of Xv and f(z′) is calculated as the average prediction
score for nodes in U . Also, towards a more global understanding, we can output
the global importance of each feature j on v’s prediction by enforcing in Eq. (1)
XNv∪{v},j to a mean value obtained by Monte Carlo sampling on the dataset,
when zj = 0. This holds when we discard node importance, otherwise the over-
lapping effects between nodes and features render the process obsolete.

Graph Classification. Until now, we had focused on node classification but the
exact same principle applies for graph classification. We simply look at f(X,A) ∈
R instead of fv(X,A), derive explanations for all nodes or all features (not both)
by considering features across the whole dataset instead of features of v, like our
global extension.

6 Experimental Evaluation

In this section, we conduct several experiments designed to determine the qual-
ity of our explanation method, using synthetic and real world datasets, on both
node and graph classification tasks. We first study the effectiveness of GraphSVX
in presence of ground truth explanations. We then show how our explainer gen-
eralises to more complex real world datasets with no ground truth, by testing
GraphSVX’s ability to filter noisy features and noisy nodes from explanations.
Detailed dataset statistics, hyper-parameter tuning, properties’ check and fur-
ther experimental results including ablation study, are given in the extended
version [9]. The source code is available at https://github.com/AlexDuvalinho/
GraphSVX.

6.1 Synthetic and Real Datasets with Ground Truth

Synthetic Node Classification Task. We follow the same setting as [16,33],
where four kinds of datasets are constructed. Each input graph is a combination
of a base graph together with a set of motifs, which both differ across datasets.

https://github.com/AlexDuvalinho/GraphSVX
https://github.com/AlexDuvalinho/GraphSVX
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Table 1. Evaluation of GraphSVX and baseline GNN explainers on various datasets.
The top part describes the construction of each dataset, with its base graph, the motif
added, and the node features generated. Node labels are represented by colors. Then, we
provide a visualisation of GraphSVX’s explanations, where an important substructure
is drawn in bold, as well as a quantitative evaluation based on the accuracy metric.

The label of each node is determined based on its belonging and role in the motif.
As a consequence, the explanation for a node in a motif should be the nodes in
the same motif, which creates ground truth explanation. This ground truth can
be used to measure the performance of an explainer via an accuracy metric.

Synthetic and Real-World Graph Classification Task. With a similar
evaluation perspective, we measure the effectiveness of our explainer on graph
classification, also using ground truth. We use a synthetic dataset BA-2motifs
that resembles the previous ones, and a real life dataset called MUTAG. It con-
sists of 4, 337 molecule graphs, each assigned to one of 2 classes based on its
mutagenic effect [23]. As discussed in [7], carbon rings with groups NH2 or NO2

are known to be mutagenic, and could therefore be used as ground truth.

Baselines. We compare the performance of GraphSVX to the main explana-
tion baselines that incorporate graph structure in explanations, namely GNNEx-
plainer, PGExplainer and PGM-Explainer. GraphLIME and XGNN are not appli-
cable here, since they do not provide graph structure explanations for such tasks.

Experimental Setup and Metrics. We train the same GNN model – 3 graph
convolution blocks with 20 hidden units, (maxpooling) and a fully connected
classification layer – on every dataset during 1, 000 epochs, with relu activation,
Adam optimizer and initial learning rate 0.001. The performance is measured
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with an accuracy metric (node or edge accuracy depending on the nature of expla-
nations) on top-k explanations, where k is equal to the ground truth dimension.
More precisely, we formalise the evaluation as a binary classification of nodes (or
edges) where nodes (or edges) inside motifs are positive, and the rest negative.

Results. The results on both synthetic and real-life datasets are summarized in
Table 1. As shown both visually and quantitatively, GraphSVX correctly identi-
fies essential graph structure, outperforming the leading baselines on all but one
task, in addition to offering higher theoretical guarantees and human-friendly
explanations. On MUTAG, the special nature of the dataset and ground truth
favours edge explanation methods, which capture slightly more information than
node explainers. Hence, we expect PGExplainer to perform better. For BA-
Community, GraphSVX demonstrates its ability to identify relevant features
and nodes together, as it also identifies important node features with 100% accu-
racy. In terms of efficiency, our explainer is slower than the scalable PGExplainer
despite our efficient approximation, but is often comparable to GNNExplainer.

6.2 Real-World Datasets Without Ground Truth

Previous experiments involve mostly synthetic datasets, which are not totally
representative of real-life scenarios. Hence, in this section, we evaluate
GraphSVX on two real-world datasets without ground truth explanations: Cora
and PubMed. Instead of looking if the explainer provides the correct explanation,
we check that it does not provide a bad one. In particular, we introduce noisy
features and nodes to the dataset, train a new GNN on the latter (which we ver-
ify do not leverage these noisy variables) and observe if our explainer includes
them in explanations. In different terms, we investigate if the explainer filters
useless features/nodes in complex datasets, selecting only relevant information
in explanations.

Datasets. Cora is a citation graph where nodes represent articles and edges
represent citations between pairs of papers. The task involved is document clas-
sification where the goal is to categorise each paper into one out of seven cat-
egories. Each feature indicates the absence/presence of the corresponding term
in its abstract. PubMed is also a publication dataset with three classes and 500
features, each indicating the TF-IDF value of the corresponding word.

Noisy Features. Concretely, we artificially add 20% of new “noisy” features
to the dataset. We define these new features using existing ones’ distribution.
We re-train a 2-layer GCN and a 2-layer GAT model on this noisy data, whose
test accuracy is above 75%. We then produce explanations for 50 test samples
using different explainer baselines, on Cora and PubMed, and we compare their
performance by assessing how many noisy features are included in explanations
among top-k features. Ultimately, we compare the resulting frequency distribu-
tions using a kernel density estimator (KDE). Intuitively, since features are noisy,
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(a) Cora (b) PubMed

(c) Cora (d) PubMed

Fig. 2. Frequency distributions of noisy features (a), (b) and nodes (c), (d) using a
GAT model on Cora and PubMed.

they are not used by the GNN model, and thus are unimportant. Therefore, the
less noisy features are included in the explanation, the better the explainer.

Baselines include GNNExplainer, GraphLIME (described previously) as well
as the well-known SHAP [15] and LIME [22] models. We also compare GraphSVX
to a method based on a Greedy procedure, which greedily removes the most con-
tributory features/nodes of the prediction until the prediction changes, and to
the Random procedure, which randomly selects k features/nodes as the expla-
nations for the prediction being explained.

The results are depicted in Fig. 2 (a)–(b). For all GNNs and on all datasets,
the number of noisy features selected by GraphSVX is close to zero, and in gen-
eral lower than existing baselines—demonstrating its robustness to noise.

Noisy Nodes. We follow a similar idea for noisy neighbours instead of noisy
features. Each new node’s connectivity and feature vector are determined using
the dataset’s distribution. Only a few baselines (GNNExplainer, Greedy, Ran-
dom) among the ones selected previously can be included for this task since
GraphLIME, SHAP, and LIME do not provide explanations for nodes.

As before, this evaluation builds on the assumption that a well-performing
model will not consider as essential these noisy variables. We check the validity
of this assumption for the GAT model by looking at its attention weights. We
retrieve the average attention weight of each node across the different GAT layers
and compare the one attributed to noisy nodes versus normal nodes. We expect
it to be lower for noisy nodes, which proves to be true: 0.11 vs. 0.15.
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As shown in Fig. 2 (c)–(d), GraphSVX also outperforms all baselines, showing
nearly no noisy nodes in explanations. Nevertheless, GNNExplainer achieves
almost as good performance on both datasets (and in several evaluation settings).

7 Conclusion

In this paper, we have first introduced a unified framework for explaining GNNs,
showing how various explainers could be expressed as instances of it. We then
use this complete view to define GraphSVX, which conscientiously exploits the
above pipeline to output explanations for graph topology and node features
endowed with desirable theoretical and human-centric properties, eligible of a
good explainer. We achieve this by defining a decomposition method that builds
an explanation model on a perturbed dataset, ultimately computing the Shapley
values from game theory, that we extended to graphs. After extensive evaluation,
we not only achieve state-of-the-art performance on various graph and node
classification tasks but also demonstrate the desirable properties of GraphSVX.

Acknowledgements. Supported in part by ANR (French National Research Agency)
under the JCJC project GraphIA (ANR-20-CE23-0009-01).
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Abstract. Graph mining tasks often suffer from the lack of supervi-
sion from labeled information due to the intrinsic sparseness of graphs
and the high cost of manual annotation. To alleviate this issue, inspired
by recent advances of self-supervised learning (SSL) on computer vision
and natural language processing, graph self-supervised learning methods
have been proposed and achieved remarkable performance by utilizing
unlabeled information. However, most existing graph SSL methods focus
on homogeneous graphs, ignoring the ubiquitous heterogeneity of real-
world graphs where nodes and edges are of multiple types. Therefore,
directly applying existing graph SSL methods to heterogeneous graphs
can not fully capture the rich semantics and their correlations in hetero-
geneous graphs. In light of this, we investigate self-supervised learning
on heterogeneous graphs and propose a novel model named Multi-View
Self-supervised heterogeneous graph Embedding (MVSE). By encoding
information from different views defined by meta-paths and optimizing
both intra-view and inter-view contrastive learning tasks, MVSE com-
prehensively utilizes unlabeled information and learns node embeddings.
Extensive experiments are conducted on various tasks to show the effec-
tiveness of the proposed framework.

Keywords: Self-supervised learning · Heterogeneous graph
embedding · Graph neural network

1 Introduction

With the proliferation of real-world interaction systems, graph mining has been
a popular topic with many real-world applications such as node classification,
graph classification, and recommendation. Due to the ubiquitous sparseness of
graphs and the deficiency of label supervision, it is vital to fully utilize the unla-
beled information on graphs. However, the current state-of-the-art algorithms,
which are mostly based on Graph Neural Networks (GNNs) [24,36,41], mainly
utilize unlabeled information by simply aggregating their features and cannot
thoroughly take advantage of the abundant unlabeled data [20]. Recently, aim-
ing to fully exploit the unlabeled information for GNNs, self-supervised learning
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(SSL) is naturally harnessed for providing additional supervision and achieves
impressive improvements on various graph learning tasks [27].

The existing graph SSL methods fall into two categories, generative and con-
trastive [27]. However, they mainly focus on designing self-supervised tasks on
homogeneous graphs, overlooking the ubiquitous heterogeneity and rich seman-
tics in graphs. Unlike homogeneous graphs, a heterogeneous graph [34] is com-
posed of multiple types of nodes and edges. To illustrate, consider a bibliography
graph with its network schema shown in Fig. 1 (a), where four types of nodes:
Author (A), Paper (P), Venue (V), and Term (T) along with three types of
edges: an author writes a paper, a paper is published in a venue, and a paper
contains a term.

To fully capture the rich heterogeneity and complex semantics inside hetero-
geneous graph data, we are motivated to study the problem of self-supervised
learning on heterogeneous graphs. However, this is a non-trivial task as there
are several challenges to be addressed. Above all, how to deal with the intrin-
sic heterogeneity of heterogeneous graphs? Different from homogeneous graphs,
heterogeneous graph contains rich semantics for each node. For example, in the
example bibliography graph mentioned above, we can introduce two meta-paths
APA and APVPA to capture the co-author and co-venue semantics respec-
tively. Therefore, how to design self-supervised tasks to fully capture the rich
semantic information is a critical yet challenging problem. What’s more, how
to effectively model the complex correlations between these different seman-
tics? Previous works mainly focus on discriminating the heterogeneous context
instances [2,3,5,12], e.g. whether two authors have a co-author relationship,
preserving the intra-context proximity [43]. However, the complex correlations
between these contexts (inter-context), e.g. whether two authors with co-venue
relationships have co-author relationships, remain less explored. Modeling these
interactions not only encourages the embedding to preserve these interactions
between semantics, pushing the model to extract useful information and encode
them in node embeddings, but also alleviates the negative impact of the intrinsic
sparseness of heterogeneous graphs [49].

To address the challenges mentioned above, we study self-supervised learning
on heterogeneous graphs and focus on comprehensively encode the semantics and
their correlations into node embeddings. In particular, we propose a novel model
named Multi-View Self-supervised heterogeneous graph Embedding (MVSE).
MVSE firstly samples semantic subgraphs of different views defined by meta-
paths. Then, each semantic subgraph is encoded to its own semantic latent space
and further decoded to other semantic spaces to capture the semantic correla-
tions. Finally, the embeddings are optimized by a contrastive loss preserving
both intra-view, and inter-view interactions of semantic contexts. Our major
contributions are highlighted as follows:

– We propose a novel self-supervised heterogeneous graph embedding model, in
which some delicate designs, e.g., heterogeneous context encoding and multi-
view contrastive learning are proposed to comprehensively learn good hetero-
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geneous graph embeddings. Our work is among the earliest works that study
self-supervised learning on heterogeneous graphs.

– While intra-semantic relationships are widely utilized, few works have
attempted to model the correlations between the semantics in heterogeneous
graphs. We design self-supervised learning tasks that preserve both intra- and
inter-semantic information in node embeddings.

– We conduct extensive experiments on three real-world datasets to validate
the effectiveness of MVSE compared with state-of-the-art methods. Through
parameter analysis and ablation study, we further demonstrate that though
often overlooked, preserving inter-view interactions is beneficial for heteroge-
neous graph embedding.

2 Related Work

2.1 Self-supervised Learning on Graphs

To fully exploit the ample unlabeled information, self-supervised learning (SSL)
on graphs has become a promising research topic and achieved impressive
improvements on various graph learning tasks [20]. Existing graph SSL methods
design generative or contrastive tasks [27] to better harness the unlabeled graph
data. On the one hand, generative graph SSL models learn graph embedding
by recovering graph structure and attributes. For example, VGAE [23] applies
GCN-based variational auto-encoder [22] to recover the adjacency matrix of the
graph by measuring node proximity. GraphRNN [44] uses a graph-level RNN
and reconstructs adjacency matrix iteratively. GPT-GNN adopts GCNs [24] to
reconstruct both graph structure and attribute information. On the other hand,
contrastive graph SSL models learn graph embedding by discriminating posi-
tive and negative samples generated from graphs. To illustrate, Context Pre-
diction and Attribute Mask [15] are proposed to preserve the structural and
attribute information. DGI [37] contrasts local (node) and global (graph) embed-
ding via mutual information maximization. MVGRL [8] contrasts embeddings
from first-order and high-order neighbors by maximizing mutual information.
GCC [32] performs subgraph instance discrimination across different graphs.
Though graph SSL works have achieved significant performance improvements,
most of the existing Graph SSL works focus on homogeneous graphs and can
not address the complex semantics of heterogeneous graphs.

2.2 Heterogeneous Graph Embedding

Our work is also related to heterogeneous graph embedding (HGE), which
encodes nodes in a graph to low-dimensional representations while effectively pre-
serving the heterogeneous graph structure. HGE methods can be roughly divided
into three categories [43]: proximity-preserving methods, relation learning meth-
ods, and message passing methods. The proximity-preserving HGE meth-
ods [3,10,18,47,47] are mostly random walk [31] based and optimized by (het-
erogeneous) skip-gram. The relation-learning HGE methods [1,26,28,35,40,42]
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construct head, tail, and relation triplets and optimize embedding by a relation-
specific scoring function that evaluates an arbitrary triplet and outputs a
scalar to measure the acceptability of this triplet. Recently, with the prolif-
eration of graph neural networks [7,24,36], message-passing HGE methods are
brought forward and have achieved remarkable improvements on series of appli-
cations [4,13,14,25,38,38]. These message-passing HGEs learn graph embed-
ding by aggregating and transforming the embeddings of the original neigh-
bors [11,14,17,46,48] or metapath-based neighbors [6,39,45].

Nevertheless, most of the existing HGE methods follow a unified frame-
work [43] which learns embedding by minimizing the distance between the node
embeddings of target node and its context nodes, preserving the heterogeneous
semantics. However, the underlying rich correlations [49] between these rich
semantics are seldom discussed and explored.

3 The Proposed Model

3.1 Model Framework

Consider a heterogeneous graph G = (V, E ,X) composed of a node set V, an edge
set E , and a feature matrix X ∈ R

|V|×dF (dF : feature dimension) along with the
node type mapping function φ : V → A, and the edge type mapping function
ψ : E → R, where A and R denotes the node and edge types, and |A|+ |R| > 2.
The task of heterogeneous graph embedding is to learn the representation of
nodes Z ∈ R

|V|×d, where d is the dimension of representation.
The key idea of MVSE is to capture the rich heterogeneous semantics and

their correlations by self-supervised contrastive learning. As shown in Fig. 1 (c),
given a node in heterogeneous graph, MVSE firstly samples several metapath-
based semantic subgraphs and encodes them to its semantic space by semantic-
specific encoders. Then, the semantic embeddings are further decoded to other
semantic spaces to model the correlations between different semantics. Finally,
the semantic embeddings and the decoded embeddings are optimized by intra-
view, and inter-view contrastive learning losses.

3.2 Heterogeneous Context Encoding

A node in heterogeneous graph is associated with rich semantic information
defined by meta-paths, providing different views of node property. Therefore, it is
vital to encode the metapath-based neighbor information into node embeddings.
Inspired by the recent advances of contrastive learning [8,32], we propose het-
erogeneous subgraph instance discrimination as our self-supervised contrastive
learning task. In this section, we elaborate how MVSE constructs multi-view
heterogeneous subgraphs and encodes them as heterogeneous context embed-
dings.
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Fig. 1. (a) The network schema of an example bibliography heterogeneous graph with
four types of nodes: Author (A), Paper (P), Venue (V), and Term/keyword (T) along
with three types of edges: an author writes a paper, a paper is published in a venue, and
a paper contains a term. (b) The template meta-paths (views of semantics) APVPA,
APA, APTPA. (c) The model framework of the proposed model MVSE.

Semantic Subgraph Sampling. Given a node vi in heterogeneous graph G
and a meta-path set P, MVSE samples a subgraph instance set SP

i = {SP
i , P ∈

P} and further encodes them to semantic embeddings. In the homogeneous
graph, an effective way of generating subgraph instances for contrastive learning
is to apply RWR (random walk with restart), by iteratively generating subgraph
structure via random walk with a restart probability γ [32]. Therefore, a straight-
forward idea to construct heterogeneous subgraph instances would be applying
meta-path constrained RWR.

However, this straightforward extension can not well preserve the metapath-
based context for heterogeneous graphs due to the intrinsic lack of high-order
neighbors preservation of RWR. Specifically, each random walk trace is a
Bernoulli trial with probability (1 − γ)k sampling k-hop neighbors. Therefore,
the number of time ns that k-hop neighbors is sampled after nRW number of
restart time, is a binomial distribution:

P (ns|k, nRW ) ∼ B(nRW , (1 − γ)k), (1)

Hence, we can obtain that the expectation of number of times that k-hop neigh-
bors are sampled a subgraph sampled by RWR :

E(ns|k, nRW ) = nRW (1 − γ)k, (2)

which decreases exponentially when k increases, harming the high-order preser-
vation. Specifically, with the recommended setting [32,33], i.e. γ = 0.8, the
probability of at least one 4-hop neighbor (which is the maximum depth of com-
monly used meta-paths e.g. APVPA, APTPA) is sampled in subgraphs within
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20 trials is approximately 0.0315. In other words, the RWR sampled subgraph
instances are composed of mostly low-order neighbors, harming the high-order
semantics of meta-paths.

To address this issue, we instead propose to sample meta-path constrained
subgraphs by a fixed-depth random walk subgraph sampling approach. Specifi-
cally, given a center node vi and a meta-path P , MVSE samples a subgraph with
the probability proportional to the edge weight of meta-path constrained rela-
tion for each walk. The walk stops when it reaches the maximum depth kP . The
overall subgraph SP

i is constructed from all the nodes sampled in nRW walks.
Since the walks are of fixed length, it is guaranteed to preserve at least one
kP -hop neighbor in each semantic subgraph. Moreover, by adjusting the depth
of subgraph via specifying kP , users are able to control the receptive field of
semantic relationships. To illustrate, the semantic subgraphs of meta-path APA
with kAPA = 4 will preserve the “co-authors’ co-author” semantic for an author.

Subgraph Context Encoding. Here we introduce how to encode the semantic
subgraphs to obtain a semantic embedding for each node. Specifically, given a
node vi and the sampled semantic subgraph set SP

i = {SP
i , P ∈ P}, the task is

to encode subgraphs into multi-view embeddings Hi = {hP
i ∈ R

1×ds , P ∈ P},
where ds stands for the hidden dimension of subgraph embeddings.

To fully capture the heterogeneity of different semantics [2,28], we propose
to use a semantic-specific encoder for each meta-path. Therefore, the semantic
embedding of node vi in the view of meta-path P denoted as hP

i is obtained by:

hP
i = fP (SP

i ), (3)

where fP (·) stands for the semantic-specific encoder for meta-path P . The choice
of encoder can be any graph neural networks [24]. We adopt the Graph Isomor-
phism Network (GIN) [41] as the graph encoder. Hence, the semantic embedding
is calculated by:

hP
i = CONCAT

(
SUM(

{
hP,(l)
v | v ∈ SP

i

}
) | l = 0, 1, . . . , L

)
,

hP,(l)
v = MLPP,(l)

⎛
⎝(1 + ε) · hP,(l−1)

v +
∑

u∈NP
i (v)

hP,(l−1)
u

⎞
⎠ ,

(4)

where MLPP,(l) stands for the semantic-specific encoder for meta-path P at l-th
layer, NP

i (v) stands for the neighbors of node v in SP
i , hP,(l)

v is the l-th layer
node representation of node v in semantic subgraph SP

i , and the input is set as
the node feature, i.e. hP,(0)

v = xv, ε is a fixed scalar.

3.3 Multi-view Contrastive Learning

At this point, we have obtained multi-view embeddings Hi of each node vi.
Here, we elaborate how to perform self-supervised contrastive learning on these
embeddings to comprehensively learn the heterogeneous semantics and their cor-
relations.
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Preservation of Semantic Contexts. We utilize MoCo [9] as the contrastive
learning framework where a query node and a set of key nodes are contrasted in
each epoch. MoCo maintains a dynamic dictionary of keys (nodes) and encodes
the new keys on-the-fly by a momentum-updated encoder. In each epoch of
MVSE, a query node is contrasted with K nodes, where K is the size of the
dynamic dictionary. Here, as each node is encoded as multi-view embeddings
Hi = {hP

i ∈ R
1×ds , P ∈ P}, we perform multi-view contrastive learning on

each view separately by the InfoNCE [30] loss, preserving the intra-semantic
information:

Lintra =
1

|P|
∑
P∈P

− log
exp

(
hP
q · hP

k+/τ
)

∑K
j=0 exp

(
hP
q · hP

kj
/τ

) , (5)

where hP
q is the query node’s semantic embedding of metapath P calculated by

Eq. 3, hP
k stands for the key node’s semantic embedding encoded by momentum

encoders [9], k+ stands for the positive key in the dictionary, τ is the tempera-
ture hyper-parameter. Thus, by minimizing Lintra, MVSE is able to distinguish
subgraph instances of different nodes using each meta-path in P.

Preservation of Semantic Correlations. As discussed in the Introduction,
most existing HGE methods focus on discriminating the heterogeneous context
instances, e.g. whether two authors have a co-author relationship, preserving
the intra-context relationships. However, few works have explored the complex
interactions (inter-context) [49] between these contexts, e.g. whether two authors
with co-venue relationships have co-author relationships.

In light of this, we propose to explicitly capture these correlations by inter-
view contrastive learning. Specifically, for each semantic embedding hP

i of node
vi of meta-path P , we model the correlations between semantics by decoding
them to other semantic embeddings:

ĥs,t
i = gs,t(hPs

i ) (6)

where gs,t(·) stands for the decoder that decodes the semantic embedding from
source view Ps to target view Pt. ĥs,t

i stands for the semantic embedding of
target view Ps decoded from source view Pt. In this way, the correlation between
source view and target view is preserved. For example, if we set source view as
APVPA and target view as APA, the decoder attempts to predict the co-author
relationships using the co-venue relationships, modeling the interactions between
these two semantics. Hence, the complex correlations between semantics can be
well preserved by the inter-view contrastive loss defined as follows:

Linter =
1

|P| ∗ (|P| − 1)

∑
Ps,Pt∈P,s �=t

− log
exp

(
ĥs,t
i · hPt

k+/τ
)

∑K
j=0 exp

(
ĥs,t
i · hPt

kj
/τ

) , (7)

Finally, MVSE optimizes the overall loss L to comprehensively learn represen-
tations considering both the intra-view and inter-view semantics:



326 J. Zhao et al.

L = αLintra + (1 − α)Linter (8)

where α is the hyper-parameter for balancing different loss functions.

4 Experiment

To demonstrate the effectiveness of our proposed model, we conduct comprehen-
sive experiments on three public benchmark heterogeneous graph datasets. We
firstly evaluate our model on two downstream tasks (node classification and link
prediction). Then, we perform ablation study to further demonstrate the effec-
tiveness of the designs in MVSE. Visualization experiments are also conducted
to show the effectiveness of our model intuitively.

4.1 Experimental Setup

Datasets. We employ the following real-world heterogeneous graph datasets to
evaluate our proposed model. DBLP [28]: We extract a subset of DBLP which
includes 4,057 authors (A), 20 conferences (C), 14,328 papers (P) and four types
of edges (AP, PA, CP, and PC). The target nodes are authors and they are
divided into four areas: database, data mining, machine learning, and informa-
tion retrieval. The node features are the terms related to authors, conferences
and papers respectively.

ACM [45]: We extract papers published in KDD, SIGMOD, SIGCOMM, Mobi-
COMM, and VLDB and construct a heterogeneous graph which includes 5,912
authors (A), 3,025 papers (P), 57 conference subjects (S) and four types of edges
(AP, PA, SP, and PS). The target nodes are papers and they are divided into
three classes according to their conferences: database, data mining, and wireless
communication. The node features are the terms related to authors, papers and
subjects respectively.

IMDB [39]: We extract a subset of IMDB which includes 4,461 movies (M),
2,270 actors (A), 5,841 directors (D), and four types of edges (AM, MA, DM,
and MD). The target nodes are movies labeled by genre (action, comedy, and
drama). The movie features are bag-of-words representation of plot keywords.

Baselines. To comprehensively evaluate our model, we compare MVSE with ten
graph embedding methods. Based on their working mechanisms, these baselines
can be divided into three categories: The unsupervised representation learning
methods, i.e.DeepWalk [31], MP2Vec [3], DGI [37], and HeGAN [12]; the semi-
supervised representation learning methods, i.e. GCN [24], GIN [41], HAN [39],
and GTN [45], and the self-supervised learning methods, i.e. GCC [32] and
GPT-GNN [16]. For unsupervised baselines, the embeddings are learned with-
out label supervision and then fed into a logistic classifier to perform the down-
stream tasks. The semi-supervised methods are optimized through an end-to-end
supervised manner, e.g. cross entropy loss in node classification tasks. The self-
supervised methods are firstly pre-trained to fully encode the unlabeled infor-
mation and then fine-tuned by labeled information via cross entropy loss in node
classification.
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Implementation Details. Here, we briefly introduce the experimental settings.
For MVSE, in each epoch, we construct semantic subgraphs by performing 3
times of the meta-path constrained fixed-depth random walk (in Sect. 3.2) with
the maximum depth set as twice the depth of meta-path, i.e. nRW = 3, kP =
2|P |, where |P | stands for the depth of meta-path P . The decoders for modeling
the semantic correlations are 2-layer MLPs. We use Adam [21] optimizer with
learning rate set as 0.005. The semantic embedding dimension ds is set as 64,
therefore the dimension d of final node embedding Z is 64|P|. For MoCo-related
settings, the dynamic dictionary size K is set as 4096 with τ = 0.07. For all
GNN related models, we use 2-layer GCNs [24] with weight decay set as 1e-5.
The code and data to reproduce our results is publicly available at Github1.

4.2 Node Classification

As a common graph application, node classification is widely used to evaluate
the performance of the graph embedding algorithms. Given a graph with some
labeled nodes, the task of node classification is to predict the labels of unlabeled
nodes. Here, we evaluate the performance of node classification on the three
datasets mentioned above in this section. For each dataset, the percentage of
training labeled nodes are set as 1%, 3%, and 5%, and the rest of the labeled
nodes are used as test nodes. We adopt Macro-F1 and Micro-F1 as metrics and
report the node classification performance on the test set. The results (in percent-
age) of the three datasets are shown in Table 1, Table 2 and Table 3, respectively,
from which we have the following observations: (1) By comprehensively preserv-
ing the rich semantics and their correlations inside heterogeneous graphs, our
proposed MVSE outperforms other baselines, demonstrating the effectiveness of
our proposed model. (2) Most self-supervised learning models (MVSE and GPT-
GNN) generally achieve better performance than other baselines, since the pre-
training of self-supervised tasks extract robust embedding with rich semantics
and structural information and provide a better initialization for the fine-tuning
process. The performance improvement is more significant when the ratio of
labeled information is low. (3) Since the node features are of vital importance in
node classification tasks, GNN-based models generally outperform the random
walk-based models due to their ability to utilize node features.

4.3 Link Prediction

The objective of link prediction is to predict unobserved edges using the observed
graph. To evaluate the effectiveness of semantic preservation, we use metapath-
based link prediction task [19] on three datasets and evaluate the metapath-
based link prediction performance on 2-hop symmetric meta-paths. Specifically,
in each task, the meta-path instances are firstly randomly splitted as training
and test set with 1:1 ratio. Then, the self-supervised/unsupervised models are
applied to learn the node representations. Finally, the embeddings are fed to

1 https://github.com/Andy-Border/MVSE.

https://github.com/Andy-Border/MVSE
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Table 1. Performance of node classification experiment on DBLP dataset in percentage
(Micro-F1 and Macro-F1), MVSE outperforms the baselines in all the settings.

Models DBLP (1%) DBLP (3%) DBLP (5%)

Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

GCN [24] 72.63 70.86 79.36 78.22 82.08 81.17

GIN [41] 71.22 67.26 88.23 88.28 88.31 88.32

HAN [39] 85.65 85.24 89.42 88.83 89.72 89.36

GTN [45] 85.99 85.45 88.66 88.13 89.73 89.37

DeepWalk [31] 86.58 87.31 87.48 87.95 87.72 88.34

DGI [37] 87.73 86.44 90.01 89.33 91.22 89.57

MP2Vec [3] 86.33 85.87 88.16 87.82 88.91 88.63

HeGAN [12] 79.12 77.73 81.66 80.25 83.78 82.44

GPT GNN [16] 86.61 86.33 90.62 89.26 90.91 89.43

GCC [32] 78.92 77.94 81.78 81.11 82.67 81.89

MVSE 90.46 89.27 91.57 90.97 91.96 89.83

Table 2. Performance of node classification experiment on ACM dataset in percentage
(Micro-F1 and Macro-F1), MVSE outperforms the baselines in all the settings.

Models ACM (1%) ACM (3%) ACM (5%)

Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

GCN [24] 85.78 85.87 88.97 89.01 89.55 89.62

GIN [41] 78.40 77.99 84.62 84.69 87.09 87.17

HAN [39] 85.77 85.92 87.41 87.62 88.37 88.58

GTN [45] 80.08 79.54 84.56 84.16 88.71 88.24

DeepWalk [31] 79.02 79.28 80.75 81.03 80.15 80.57

DGI [37] 84.99 85.21 88.93 89.06 89.36 89.50

MP2Vec [3] 80.74 80.36 82.42 81.87 82.63 82.12

HeGAN [12] 78.23 78.67 80.84 81.35 81.95 82.52

GPT GNN [16] 84.62 84.86 88.90 89.22 89.27 89.54

GCC [32] 80.14 78.84 83.91 82.35 84.72 83.17

MVSE 86.14 86.17 89.43 89.44 89.74 89.64

logistic regression classifiers and predict whether the test edges exist by train-
ing edges. We use F1 and AUC-ROC as our evaluation metrics, the results in
percentage are shown in Table 4, from which we have the following observations:
(1) MVSE consistently outperforms other baselines on all the metapath-based
link prediction tasks. The reason is that MVSE is able to capture the correla-
tions between meta-paths, thus alleviates the impact of intrinsic sparseness in
graphs [49], e.g. APA link prediction can be enhanced by APCPA relationship,
and further improve the link prediction performance. (2) Models that consider
heterogeneity show better performance than their counterparts since they are
able to extract the rich semantic contexts from the different meta-paths.
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Table 3. Performance of node classification experiment on IMDB dataset in percentage
(Micro-F1 and Macro-F1), MVSE outperforms the baselines in most of the settings.

Models IMDB (1%) IMDB (3%) IMDB (5%)

Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

GCN [24] 51.71 42.76 55.06 45.88 58.05 50.69

GIN [41] 48.87 43.24 53.70 48.38 58.03 53.42

HAN [39] 50.76 43.47 52.87 48.46 56.43 51.25

GTN [45] 51.66 45.87 57.83 49.31 59.49 53.58

DeepWalk [31] 53.92 49.34 54.44 49.85 54.48 49.88

DGI [37] 53.02 44.61 56.62 48.29 57.93 50.15

MP2Vec [3] 54.50 49.82 55.10 50.34 56.97 52.79

HeGAN [12] 47.70 41.47 49.98 44.29 51.04 46.46

GPT GNN [16] 55.17 48.30 58.78 52.69 61.24 56.74

GCC [32] 52.33 47.29 53.68 48.82 53.85 49.08

MVSE 55.61 44.25 60.15 53.95 63.32 58.42

Table 4. Performance of link prediction experiment on different datasets and meta-
paths in percentage (Micro-F1 and ROC-AUC), MVSE outperforms the baselines on
all the datasets and meta-paths.

Models DBLP (APA) ACM (PAP) ACM (PSP) IMDB (MAM) IMDB (MDM)

F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC

DeepWalk [31] 79.08 77.72 72.99 72.73 78.65 69.85 72.62 75.37 59.16 60.37

DGI [37] 80.59 81.28 73.31 72.41 84.87 74.4 70.13 69.54 61.37 59.24

MP2Vec [3] 81.64 80.66 75.64 74.82 82.88 75.16 82.55 81.06 64.39 63.78

HeGAN [12] 80.75 80.26 78.67 78.51 81.25 71.02 80.27 80.11 67.75 68.13

GPT-GNN [16] 86.84 86.02 80.94 80.55 86.31 78.25 91.88 91.31 68.54 68.12

GCC [32] 79.15 78.63 73.62 72.98 74.22 68.17 81.63 82.37 64.71 63.85

MVSE 88.09 87.92 81.18 80.73 87.72 79.22 98.25 98.23 69.51 69.54

4.4 Ablation Study

In order to verify the effectiveness of the delicate designs in MVSE, we design
five variants of MVSE and compare their node classification performance against
MVSE on three datasets. The results in terms of Micro-F1 are shown in Fig. 2
(a), Fig. 2 (b) and Fig. 2 (c), respectively.

Effectiveness of Heterogeneous Context Encoders. As discussed in
Sect. 3.2, to capture the intrinsic heterogeneity [2,28] in different metapath-
based semantics, MVSE use semantic-specific encoders to embed the contexts
of different meta-paths. To verify the effectiveness of semantic specific encoders,
we propose a variant of MVSE which uses metapath-shared encoders, namely
MVSE-MP-Shared. The results in Fig. 2 show MVSE outperforms the variant on
the three datasets since MVSE-MP-Shared ignores the heterogeneity of seman-
tics by modeling them using an unified (homogeneous) model. This phenomenon
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further demonstrates the importance of considering heterogeneity in heteroge-
neous graph contrastive learning.

Fig. 2. Performance of MVSE variants on different datasets (Micro-F1), MVSE out-
performs the variants over all the datasets and settings. MVSE-Inter-Only has better
performance than other variants, which demonstrates the importance of preserving
semantic correlations.

Effectiveness of Multi-view Contrastive Learning. As discussed in
Sect. 3.3, MVSE comprehensively learns the heterogeneous semantics and their
correlations by intra-view and inter-view contrastive learning tasks. To inves-
tigate the effects of these contrastive learning tasks, we propose two variants
of MVSE which only consider intra-view (MVSE-Intra-Only) and inter-view
(MVSE-Inter-Only) respectively and evaluate their node classification perfor-
mance. From the results shown in Fig. 2, we can find that MVSE beats all vari-
ants on every task, which indicates the effectiveness of performing multi-view
contrastive learning by optimizing both intra- and inter-semantic SSL tasks.
Besides, the phenomenon that MVSE-Inter-Only outperforms the other two vari-
ants further demonstrates the importance of preserving semantic correlations.

Effectiveness of Unlabeled Data Utilization. To investigate the ability of
utilizing unlabeled information, we propose MVSE-Finetune-Only which skips
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the pre-training process and trains the model from scratch. As shown in Fig. 2,
MVSE consistently outperforms this variant in all tasks since MVSE-Finetune-
Only cannot fully utilize the unlabeled information by optimizing objective that
considers labeled information only [20]. The self-supervised pre-training strat-
egy provides a better start point than the random initialization and further
improves the classification performance. In addition, the performance improve-
ment of MVSE over MVSE-Finetune-Only is generally more significant when
the percentage of labeled nodes is low, demonstrating the superiority of SSL in
tasks with little label supervision.

Fig. 3. Node embedding visualization of different methods on DBLP dataset. Each
point indicates one author and its color indicates the research area. MVSE has least
overlapping area and largest cluster-wise distance. (Color figure online)

4.5 Visualization

To examine the graph representation intuitively, we visualize embeddings of
author nodes in DBLP using the t-SNE [29] algorithm. Here, we choose Deep-
Walk, MP2Vec, and GCC as the representatives of homogeneous embedding, het-
erogeneous embedding, and self-supervised based embedding methods, respec-
tively. The visualization results are shown in Fig. 3, from which we can find that
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although all of the baselines can roughly embed the authors with same research
fields into same clusters, the heterogeneous models generate more distinct bound-
aries and less overlapping area between clusters. What’s more, among all of the
unsupervised graph learning algorithms, MVSE generates embeddings with the
largest cluster-wise distance, indicating better embeddings are learned.

5 Conclusion

In this paper, we study self-supervised learning on heterogeneous graphs and
propose a novel model named MVSE. MVSE samples and encodes semantic
subgraphs of different views defined by meta-paths and captures the intra- and
inter-view semantic information comprehensively by contrastive self-supervised
learning. Our extensive experiments demonstrate the effectiveness of our pro-
posed model and the necessity of preserving cross-view interactions for learning
heterogeneous graph embeddings.
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Abstract. Node classification has been substantially improved with the
advent of Heterogeneous Graph Neural Networks (HGNNs). However, col-
lecting numerous labeled data is expensive and time-consuming in many
applications. Domain Adaptation (DA) tackles this problem by transfer-
ring knowledge from a label-rich domain to a label-scarce one. However
the heterogeneity and rich semantic information bring great challenges
for adapting HGNN for DA. In this paper, we propose a novel semantic-
specific hierarchical alignment network for heterogeneous graph adapta-
tion, called HGA. HGA designs a sharing-parameters HGNN aggregat-
ing path-based neighbors and hierarchical domain alignment strategies
with the MMD and L1 normalization term. Extensive experiments on four
datasets demonstrate that the proposed model can achieve remarkable
results on node classification.

Keywords: Heterogeneous graph · Domain adaptation · Graph neural
network

1 Introduction

GraphNeuralNetworks (GNNs) have attractedmuch attention as it can be applied
to many applications where the data can be represented as graphs [10,22]. Het-
erogeneous Graphs (HGs), where nodes and edges can be categorized into multi-
ple types, has also been proven to be effective to model many real-world applica-
tions, such as social networks and recommender systems [1,17]. In order to learn
representations of HG, there is a surge of Heterogeneous Graph Neural Networks
(HGNNs) in the last few years, which employ graph neural network for heteroge-
neous graph to capture features from various types of nodes and relations. Differ-
ent from traditional GNNs aggregating adjacent neighbors on homogeneous graph,
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HGNNs usually aggregates heterogeneous neighbors along meta-paths with a two-
level attention mechanism [2,25]. For example, HAN [25] designs node-level and
semantic-level attention on meta-path based neighbors. MAGNN [2] employs the
intra-metapath aggregation to incorporate intermediate semantic nodes and the
inter-metapath aggregation to combine messages from multiple metapaths.

Recent advances in HGNNs have achieved remarkable results on node clas-
sification task which usually requires large amounts of labeled data to train a
good network. However, In the real HGs, it is often expensive and laborsome to
collect enough labeled data. A potential solution is to transfer knowledge from
a related HG with rich labeled data (called source graph) to another HG with
the shortage of labeled data (called target graph). Existing HGNNs are mostly
developed for a single graph which has similar distribution in training and test
data. However, different graphs generally have varied data distributions in real
applications, which is usually called domain shift phenomenon [13]. Domain shift
will undermine the generalization ability of learning models. Thus, those single
graph based HGNNs which without addressing domain shift would fail to learn
transferable representations.

Domain Adaptation (DA) [30] has shown promising advances for learning a
discriminative model in the presence of the shift between the training and test
data distributions. Given a target domain short of labels, DA aims to leverage
the abundant labeled data from a source domain to help target domain learn-
ing, which has already attracted a lot of interests from the fields of Computer
Vision [13,23] and Natural Language Processing [9,14]. The newest deep domain
adaptation algorithms learn domain-invariant feature representations to mitigate
domain shift with the Maximum Mean Discrepancy (MMD) metric [5,12] or Gen-
erative Adversarial Net (GAN) [4,21]. In recent years, there have been several
attempts to apply domain adaptation to graph structure data. Some methods
employ stacked autoencoders and MMD to learn network-invariant node repre-
sentations [15,16], while some methods apply graph convolutional network and
adversarial learning to learn transferable embeddings [26,29]. However, these
techniques primarily focus on domain adaptation across homogeneous graphs,
which cannot be directly applicable to heterogeneous graph. More recently, a
heterogeneous graph domain adaptation method has been proposed to handle
heterogeneity with multi-channel GCNs and two-level selection mechanisms [27].
But this method is not designed based on HGNN framework, which reduces its
versatility. In addition, its performance improvement could be limited, because of
lacking semantic-specific domain alignment mechanism to align the rich seman-
tics of heterogeneous graphs separately.

Motivated by these observations, we make the first attempt to design a
HGNN for DA, which is not a trivial task, due to the following two challenges: (1)
How to adopt existing HGNNs to fully learn the knowledge of source graph and
migrate to the target graph for the category-discriminative representations. We
know that existing HGNNs are designed for single graph, we need to design an
effective HGNN for knowledge transfer when adopting it for multiple graphs, (2)
How to diminish the distribution discrepancy between source and target graphs
to learn domain-invariant representations. Because of the domain shift among
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different semantics in source and target graphs, we need to design diverse domain
alignment strategies to align distribution in source and target graphs intra- and
inter-semantics.

In this paper, we propose a semantic-specific hierarchical alignment network
for Heterogeneous Graph Adaptation (called HGA). The basic framework of
HGA is a sharing-parameters HGNN which use hierarchical attentions to aggre-
gate neighbor information via different meta-paths, to transfer knowledge from
source graph to target graph. To be specific, HGA aggregates path-based neigh-
bors with semantic-specific feature extractor and then classify and fuse these
embeddings of different semantics with semantic-specific classifiers. In order to
eliminate the distribution shift, a MMD normalization term is designed to align
the feature distribution of nodes in source and target graph of every semantic
path, and a L1 normalization term is designed to align the class scores of nodes
in target graph.

The contributions of this paper are summarized as follows:

– We study an important but seldom exploited problem of adopting DA to
HGNN. The solution to this problem is crucial for label-absent HG represen-
tation.

– We design a novel heterogeneous graph adaptation method, called HGA,
which employs a sharing-parameters HGNN with the MMD and L1 normal-
ization terms for domain-invariant and category-discriminative node repre-
sentations.

– Experiments on eight transfer learning tasks show that the proposed HGA
achieves significant performance improvements, compared to other state-of-
the-art baselines.

2 Related Work

In this section, we briefly overview methods that are related to heterogeneous
graph neural network and graph domain adaptation.

2.1 Heterogeneous Graph Neural Network

HGNN is designed to use GNN on heterogeneous graph, it can be divided into
unsupervised and semi-supervised settings [24]. HetGNN [28] is the representa-
tive work of unsupervised HGNNs. It uses type specific RNNs to encode features
for each type of neighbor vertices, followed by another RNN to aggregate the
encoded neighbor representations of different types. Semi-supervised HGNNs
prefer to use attention mechanism to capture the most relevant structural and
attribute information. There are a series of attention-based HGNNs was pro-
posed [2,7,25]. HAN [25] uses a hierarchical attention mechanism to capture
both node and semantic importance. MAGNN [2] extends HAN by considering
both the meta-path based neighborhood and the nodes along the meta-path.
HGT [7] uses each edge’s meta relation to parameterize the Transformer-like
self-attention architecture.
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These HGNNs are designed for a single graph, and thus they can not be
directly applied for knowledge transfer among multiple graphs.

2.2 Graph Domain Adaptation

There have been several attempts in the literature to apply domain adaptation
to graph structure data. CDNE [16] incorporate MMD-based domain adapta-
tion technique into deep network embedding to learn label-discriminative and
network-invariant representations. ACDNE [15] integrate deep network embed-
ding with the emerging adversarial domain adaptation technique to address
cross-network node classification. DANE [29] applies graph convolutional net-
work with constraints of adversarial learning regularization to learn transferable
embeddings. UDA-GCN [26] used a dual graph convolutional networks to exploit
both local and global relations of the graphs. However, these methods only con-
sider knowledge transfer among homogeneous graphs. Recently, a heterogeneous
graph domain adaptation method is proposed [27], which utilizes multi-channel
GCNs to project nodes into multiple spaces, and proposes two-level selection
mechanisms to choose the combination of channels and fuse the selected chan-
nels. Unfortunately, this method has limited performance improvement, due to
lack semantic-specific domain alignment strategies.

3 Preliminaries

Definition 1. Heterogeneous Graph [17]. A heterogeneous graph, denoted as
G = (V, E), consists of an object set V and a link set E. Each node v ∈ V and
each link e ∈ E are associated with their node type mapping function φ : V → A
and their link type mapping function ψ : E → R. A and R denote the sets of
predefined object types and link types, where |A| + |R| > 2.

In heterogeneous graph, two objects can be connected via different semantic
paths, which are called meta-paths.

Definition 2. Meta-path [19]. A meta-path Φ is defined as a path in the form
of A1

R1−→ A2
R2−→ · · · Rl−→ Al+1 (simplified to A1A2 · · · Al+1), which describes a

composite relation R = R1 ◦ R2 ◦ · · · ◦ Rl between objects A1 and Al+1, where ◦
denotes the composition operator on relations.

Definition 3. Domain Adaptation (DA) [30]. Given a labeled source
domain DS and a unlabeled target domain DT , assume that their feature spaces
and their class spaces are the same, i.e. XS = XT , YS = YT . The goal of domain
adaptation is to use labeled data DS to learn a classifier f : xT �→ yT to predict
the label yT ∈ YT of the target domain DT .

Definition 4. Heterogeneous Graph Domain Adaptation. Given a source
heterogeneous graph GS = (VS , ES ,XS ,YS), and a target heterogeneous graph
GT = (VT , ET ,XT ), where AS ∩ AT �= � and RS ∩ RT �= �. X represents the
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features of V, Y indicates the labels of V. The goal of heterogeneous graph domain
adaptation is to build a classifier f to predict the labels on VT through reducing
the domain shifts in different graphs and utilizing the structural information on
both graphs, as well as YS.

Figure 1(a) demonstrates HGs on bibliographic data, where two authors can
be connected via multiple meta-paths, e.g., Author-Paper-Author (APA) and
Author-Paper-Conference-Paper-Author (APCPA). The meta-path APA depicts
the co-author relation, whereas the APCPA depicts the co-conference relation. A
task on heterogeneous graph domain adaptation is to predict the label of nodes
in the target graph, with the help of the labeled source graph.

4 The Proposed Model

Fig. 1. An overview of the proposed hierarchical alignment network for Heterogeneous
Graph domain Adaptation (HGA). HGA receives source graph instances with anno-
tated ground truth and adapts to classifying the target samples. There are semantic-
specific feature extractor and classifier for each meta-path.

In this paper, we propose a novel semantic-specific hierarchical alignment net-
work for Heterogeneous Graph domain Adaptation (called HGA), whose basic
idea is to adopt DA to HGNNs. As we know, existing HGNNs are designed
for learning category-discriminative embeddings for node classification in single
graph. That is, the learned embeddings can distinguish the category of nodes in
a graph. Most HGNNs (e.g., HAN and MAGNN) employ node-level (also called
intra-metapath) and semantic-level (also called inter-metapath) attention mech-
anism to aggregate node embeddings along different meta-paths. Unfortunately,
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these HGNNs cannot be directly applied to transfer knowledge among multiple
graphs, because of domain shift.

In order to solve this obstacle, the proposed HGA adopts DA to HGNN
with the goal of learning domain-invariant representations, as well as category-
discriminative representations. HGA designs a shared parameters HGNN for
source graph and target graph to aggregate path-based neighbors with semantic-
specific feature extractor and then classify and fuse these embeddings of different
meta-paths with semantic-specific classifiers. Furthermore, two normalized terms
in HGA (i.e., mmd and l1 terms) are proposed to hierarchically align the domain
distribution of nodes intra- and inter-metapaths for domain-invariant represen-
tations. Concretely, the mmd term aligns the feature distribution of nodes in
source and target graph of every semantic path, while the l1 term aligns the
class scores of nodes in target graph. The overall architecture of HGA is shown
in Fig. 1.

4.1 Semantic-Specific GNN for DA

HGA adopts DA to a shared parameters HGNN for source graph and target
graph, so the source graph can share the knowledge stored in the HGNN with
target graph. Similar to typical HGNN architectures (e.g., HAN and MAGNN),
HGA learns embeddings of nodes in source and target graphs through aggre-
gating neighbors along a meta-path with a node-level attention in the semantic-
specific feature extractor. However, different from existing HGNNs, the semantic-
specific classifier in HGA first classifies these learned embeddings with linear
classifiers to get class scores, and then fuse these scores with a semantic-level
attention for node classification in source and target graphs. The classify-fuse
mechanism in HGA has two benefits: (1) It makes full use of label information in
source graph through constructing different node classification tasks for differ-
ent meta-paths, which is helpful to learn category-discriminative representations.
(2) It is convenient to align the class scores of nodes in target graph (i.e., the l1
term).

Semantic-Specific Feature Extractor. Given a meta-path Φ, similar to typ-
ical HGNN architectures, the embedding of node i can aggregated from its meta-
path based neighbors N Φ

i = {i}∪{j|j connects with i via the meta-path Φ} like
HAN [25]:

zΦ
i = attΦnode

(
hj , j ∈ N Φ

i

)
, (1)

where zΦ
i denotes the learned embedding of node i based on meta-path Φ, while

attΦnode is the feature extractor of meta-path Φ which is a general component
to aggregate neighbors. For example, attΦnode can be the node-level attention
in HAN which simply aggregates meta-path based neighbors, as well as the
intra-metapath aggregation in MAGNN which also considers the nodes along
the meta-path instances.
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Semantic-Specific Classifier. Given an embedding zΦ
i of node i based on

meta-path Φ, the class scores pΦ
i of node i in meta-path Φ can be obtained by a

classifier clfΦ, such as linear classifier or softmax classifier:

pΦ
i = clfΦ

(
zΦ

i

)
. (2)

As we know, semantic-specific embedding of nodes under a meta-path only reflect
node characteristics from one aspect, while nodes contain multiple aspects of
semantic information under different meta-paths. To learn a more comprehensive
node embeddings, we need to fuse multiple semantics which can be revealed by
meta-paths. To address the challenge of meta-path selection and semantic fusion
in a heterogeneous graph, we adopt a semantic attention to automatically learn
the importance of different meta-paths and fuse them for the specific task.

Given a set of meta-paths {Φ0, Φ1, · · · , ΦN}, after feeding the feature of node
i into semantic-specific feature extractors and semantic-specific classifiers, it has
N semantic-specific node embeddings

{
pΦ0

i ,pΦ1
i , · · · ,pΦN

i

}
. To effectively aggre-

gate different semantic embeddings, we use a semantic fusion mechanism:

pi = attsem

(
pΦj

i

)
=

N∑

j=1

βj · pΦj

i , (3)

where

βj =
exp

(
1

|V|
∑

i∈V qT · tanh
(
M · pΦ

i + b
))

∑N
i=1 exp

(
1

|V|
∑

i∈V qT · tanh
(
M · pΦ

i + b
)) (4)

can be interpreted as the contribution of meta-path Φj for the specific task.
Respectively, q is the semantic attention vector; M and b denote the weight
matrix and bias vector; pi denotes the final embedding of node i, and attsem

denotes the semantic aggregator which aggregates embeddings of different meta-
paths. Then we can apply the final embeddings to specific tasks and design
different loss functions.

In order to obtain category-discriminative representations and facilitate
knowledge transfer between graphs, we optimize three different loss functions
as follows to reduce the domain discrepancy and enable efficient domain adap-
tation, and thus our model can differentiate class labels in the source graph and
target graph, respectively.

– Semantic-specific source classifier minimizes the cross-entropy loss for the
source graph in a mate-path Φ:

LΦ,S
cls

(PΦ
S ,YS

)
= − 1

NS

NS∑

i=1

yS
i log

(
ŷS

i

)
, (5)

– Source classifier minimizes the cross-entropy loss for the source graph after
semantic fusion:

LS
cls (PS ,YS) = − 1

NS

NS∑

i=1

yS
i log

(
ŷS

i

)
, (6)
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– Target classifier minimizes the entropy loss for target graph information
absorption. Here we employ the predicted labels of target nodes obtained
by the shared classifiers:

LT
cls (PT ) = − 1

NT

NT∑

i=1

ŷT
i log

(
ŷT

i

)
, (7)

where yS
i denotes the label of the i-th node in the source graph, ŷS

i is the
classification prediction for the i-th node in source graph, ŷT

i is the classification
prediction for the i-th node in target graph, NS is the node number of source
graph and NT is the node number of target graph.

The total classification loss of HGA can be represented by Eq. 8, which can
learn category-discriminative embeddings for source and target graph.

LC (GS ,GT ) = LΦ,S
cls

(PΦ
S ,YS

)
+ LS

cls (PS ,YS) + LT
cls (PT ) . (8)

4.2 Hierarchical Domain Alignment

Although the target graph can share knowledge from source graph with the
shared parameters HGNN, the above model cannot solve the domain shift prob-
lem in domain adaptation. In order to learn domain-invariant representations,
we furtherly propose semantic-specific hierarchical alignment mechanism, which
includes intra-semantic feature alignment and inter-semantic label alignment.
The intra-semantic feature alignment aims to map each pair of semantic between
source and target graph into multiple different feature spaces and align semantic-
specific distributions to learn multiple semantic-invariant representations. Since
the target samples near semantic-specific decision boundary predicted by dif-
ferent classifiers might get different labels, the inter-semantic label alignment is
designed to align the classifiers’ output for the target nodes.

Intra-semantic Feature Alignment. To learn domain-invariant representa-
tions, we need to match the distributions of source graph and target graph. In
domain adaptation, the MMD [6] is a widely adopted nonparametric metric. We
use the following term as the estimate of the discrepancy between source graph
and target graph:

Lmmd (GS ,GT ) =
∥
∥
∥
∥

1
NS

∑
φ

(
zΦ

S

) − 1
NT

∑
φ

(
zΦ

T

)
∥
∥
∥
∥

2

H
, (9)

where φ (·) denotes some feature projection function to map the original samples
to reproducing kernel hilbert space. Through minimizing the Eq. 9, the specific-
semantic feature extractor could align the domain distributions between source
domain and target domain under meta-path Φ.
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Inter-semantic Label Alignment. The classifiers are trained based on dif-
ferent meta-paths, hence they might have a disagreement on the prediction for
target samples. Intuitively, the same target node predicted by different classifiers
should get the same prediction. Hence, we need to minimize the classification
discrepancy of nodes in target graph among all classifiers. Here we define the
discrepancy loss as the differences of classification probability of nodes under
different meta-paths with l1 normalization.

Ll1 (GT ) =
2

N × (N − 1)

N−1∑

j=1

N∑

i=j+1

E
[
|pΦi

T − pΦj

T |
]
, (10)

where N is the number of meta-path. By minimizing the Eq. 10, the probabilistic
outputs of all classifiers tend to be similar, which enforces the domain alignment
under different semantic paths.

4.3 Optimization Objective

For HGA, a label prediction function f is trained by minimizing the overall
objective as shown in Eq. 11:

L (GS ,GT ) = LC (GS ,GT ) + λ (Lmmd (GS ,GT ) + Ll1 (GT )) , (11)

where λ is the balance parameters. Lmmd and Ll1 represent the intra-semantic
feature alignment loss and the inter-semantic label alignment loss, respectively.

4.4 Discussion of the Proposed Model

Here we give the discussion of the proposed HGA as follows:

– From the optimization objective function Eq. 11, we can find that HGA pro-
vides a general framework to adopt DA to HGNN. If we do not consider
target graph GT , HGA degrades into tradition HGNNs for single graph. If
we do not consider multiple meta-paths, HGA can be used for homogeneous
graph domain adaptation. If ignoring the mmd and l1 normalization terms,
HGA becomes a simple DA-version of HGNN without considering domain
shift. What’s more, the Lmmd could be replaced by other adaptation meth-
ods, such as adversarial loss [3], coral loss [18]. And the Ll1 could be replaced
by other loss, such as l2 regularization.

– Compared to traditional HGNNs, the additional complexity of HGA mainly
lies on the mmd and l1 normalization term. The complexity of mmd term is
linear to the size of nodes in graphs, while the complexity of l1 term is the
square of the number of meta-paths, which is very small. And thus HGA has
the same complexity with traditional HGNNs. Experiments also validate this
point.



344 Y. Zhuang et al.

– The proposed HGA is highly efficient and can be easily parallelized. In the
shared parameters HGNNs, the complexity is linear to the number of nodes
and meta-path based node pairs. HGA can be easily parallelized, because
attΦnode and attsem can be parallelized across node pairs and meta-paths,
respectively. The overall complexity is linear to the number of nodes and
meta-path based node pairs.

5 Experiments

5.1 Datasets

We evaluate all the models on three academic attributed networks constructed
from AMiner [20], DBLP [8] and ACM [11], and the detailed description is
shown in Table 1. First, we adopt the constructed datasets from the work [27],
i.e., ACM A vs. ACM B, DBLP A vs. DBLP B, AMiner A vs. AMiner B. For
each pair of graphs, e.g., ACM A vs. ACM B, the density of meta-path edges is
quite different between each other, which means they have domain discrepancy.
(More statistics can be found in [27]).

Furthermore, we construct another pair of much larger graphs, i.e., ACM
vs. DBLP. For ACM, we collected the papers published in SIGMOD, KDD,
COLT and WWW, and divided them into four classes (Database, data mining,
machine learning, information retrieval). The attributes of each paper in ACM
are extracted from the paper title and abstract. For DBLP, we collected the
papers published in ICDE, ICDM, PAKDD, PKDD, AAAI and SIGIR, and also
divided them into the same classes. The attributes of each paper in DBLP are
extracted from the paper title. Note that, DBLP has no overlapping nodes with
ACM, and it is sparser than ACM. Finally, we have four pairs of datasets.

Table 1. Statistics of the experimental datasets.

Dataset # Nodes # Meta-path Dataset # Nodes # Meta-path

edges edges

ACM A 1,500 4, 960 ACM B 1,500 759

6, 691 3, 996

26, 748 75, 180

DBLP A 1,496 2, 602 DBLP B 1,496 3, 460

673, 730 744, 994

977, 348 1, 068, 250

AMiner A 1,500 4, 360 AMiner B 1,500 462

554 3, 740

89, 274 67, 116

ACM 4,177 34, 638 DBLP 4,154 38, 966

15, 115, 590 1, 496, 938
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5.2 Baselines and Implementation Details

Baselines. In order to make a fair comparison and demonstrate the effectiveness
of our proposed model, we compare our approach with both state-of-the-art
single-domain methods as well as some domain adaptation methods on graphs.

State-of-the-Art Single-Domain Methods:

– GCN [10]: a typical deep convolutional network designed for homogeneous
graphs.

– HAN [25]: a heterogeneous graph embedding method uses meta-paths as
edges to augment the graph, and maintains different weight matrices for each
meta-path-defined edge. And uses semantic-level attention to differentiate
and aggregate information from different meta-paths.

– MAGNN [2]: a heterogeneous graph embedding method uses intra-metapath
aggregation to sample some meta-path instances surrounding the target node
and use an attention layer to learn the importance of different instances. And
uses inter-metapath aggregation to learn the importance of different meta-
paths.

Domain Adaptation Methods on Graphs:

– UDAGCN [26]: a homogeneous graph domain adaptation method uses a
dual graph convolutional networks to exploit both local and global relations
of the graphs. And uses a domain adversarial loss for domain discrimination.

– MuSDAC [27]: a heterogeneous graph domain adaptation method uses
multi-channel shared weight GCNs and a Two-level Selection strategy to
aggregate embedding spaces to ensure both domain similarity and distin-
guishability.

– HAN+MMD: The feature generator is a shared parameters HAN architec-
ture [25] for source and target graph. And a MMD [5,12] regularization term
is added on the final embedding.

– MAGNN+MMD: The feature generator is a shared parameters MAGNN
architecture [2] for source and target graph. And a MMD [5,12] regularization
term is added on the final embedding.

– HGA-HAN: The attΦnode and attsem in HGA framework is using the node-
level attention and semantic-level attention in HAN [25].

– HGA-MAGNN: The attΦnode and attsem in HGA framework is using the
Intra-metapath aggregation and Inter-metapath aggregation in MAGNN [2].

To further validate the effectiveness of mmd loss and l1 loss, we also evaluate
several variants of HGA: (1) HGA¬l1 , only considers mmd loss; (2) HGA¬mmd,
only considers l1 loss; (3) HGA¬mmd∧¬l1 , only has the shared weight architecture
of HGNN.

Implementation Details. All deep learning algorithms are implemented in
Pytorch and trained with Adam optimizer. In the experiment we employ linear
classifier. The learning rate is using the following formula: ηp = η0

(1+αp)β , where
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p is the training progress linearly changing from 0 to 1, η0 = 0.01, α = 10 and
β = 0.75, which is optimized to promote convergence and low error on the source
domain. To suppress noisy activations at the early stages of training, instead of
fixing the adaptation factor λ, we gradually change it from 0 to 1 by a progressive
schedule: λp = 2

exp(−θp) − 1, and θ = 10 is fixed throughout the experiments [3].
This progressive strategy significantly stabilizes parameter sensitivity and eases
model selection for HGA. As for single-domain network methods, we take the
data from source graph as training set and the one from target graph as test set.
As for domain adaptation method which acts on homogeneous graph, we ignore
multiple semantics in HGs.

5.3 Results

We compare HGA with the baselines on four pairs of datasets and the results
are shown in Table 2. From these results, we have the following insightful obser-
vations:

Table 2. Performance comparison on classification accuracy.

Source ACM DBLP ACM B ACM A AMiner B AMiner A DBLP B DBLP A AVG

Target DBLP ACM ACM A ACM B AMiner A AMiner B DBLP A DBLP B

GCN 0.472 0.517 0.580 0.698 0.755 0.481 0.357 0.459 0.540

HAN 0.632 0.694 0.687 0.686 0.676 0.698 0.768 0.812 0.707

MAGNN 0.678 0.702 0.713 0.693 0.703 0.717 0.772 0.817 0.724

UDAGCN 0.673 0.696 0.654 0.687 0.792 0.712 0.693 0.723 0.704

MuSDAC 0.704 0.764 0.788 0.730 0.810 0.761 0.795 0.819 0.771

HAN+MMD 0.724 0.712 0.727 0.706 0.832 0.745 0.774 0.817 0.755

MAGNN+MMD 0.735 0.728 0.739 0.721 0.843 0.749 0.781 0.820 0.765

HGA-HAN 0.785 0.759 0.791 0.757 0.929 0.83 0.828 0.835 0.814

HGA-MAGNN 0.793 0.771 0.798 0.765 0.937 0.838 0.833 0.840 0.822

– Because MAGNN not only considers the meta-path based neighborhood, but
also consider the nodes along the meta-path. So the effect of HGA-MAGNN
is better than that of HGA-HAN.

– HGA-MAGNN (or HGA-HAN) outperforms all compared baseline methods
over all tasks. These encouraging results indicate that the proposed intra-
semantic feature alignment mechanism can learn semantic-invariant represen-
tations for each pair of source and target graphs effectively, and inter-semantic
label alignment mechanism can control all the classifiers to learn a consensus
label for each target node.

– HAN+MMD and MAGNN+MMD are the simplest way to apply DA to
HGNN. By comparing HAN+MMD (or MAGNN+MMD) and HAN (or
MAGNN), we can see that traditional HGNNs cannot deal with the prob-
lem of domain shift. By comparing HAN+MMD (or MAGNN+MMD) and
HGA-MAGNN (or HGA-HAN), we can observe that HGA is more effectively
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in transferring the knowledge of the source domain to the target domain by
intra-semantic feature alignment mechanism and inter-semantic label align-
ment mechanism.

– Compared to HAN and MAGNN which do not consider the domain discrep-
ancy between different graphs, HGA achieves better performance, especially
on the pair of AMiner A vs. AMiner B where the density of meta-path edges
is significantly different between them.

– For single-domain methods, HAN and MAGNN perform better GCN on most
of tasks, which implies the superiority of considering heterogeneous graphs
rather than homogeneous ones. The similar conclusion also can be concluded
for domain adaptation methods.

Table 3. Performance comparison on classification accuracy between HGA variants.

Source ACM DBLP ACM B ACM A AMiner B AMiner A DBLP B DBLP A AVG

Target DBLP ACM ACM A ACM B AMiner A AMiner B DBLP A DBLP B

HGA-HAN¬mmd∧¬l1 0.667 0.676 0.752 0.746 0.835 0.814 0.813 0.824 0.766

HGA-HAN¬mmd 0.774 0.742 0.790 0.749 0.931 0.819 0.820 0.830 0.807

HGA-HAN¬l1 0.765 0.739 0.784 0.751 0.920 0.822 0.826 0.833 0.805

HGA-HAN 0.785 0.759 0.791 0.757 0.929 0.830 0.828 0.835 0.814

HGA-MAGNN¬mmd∧¬l1 0.681 0.698 0.744 0.748 0.837 0.820 0.819 0.821 0.771

HGA-MAGNN¬mmd 0.782 0.764 0.788 0.752 0.935 0.827 0.825 0.832 0.813

HGA-MAGNN¬l1 0.784 0.770 0.791 0.761 0.932 0.834 0.829 0.838 0.817

HGA-MAGNN 0.793 0.771 0.798 0.765 0.937 0.838 0.833 0.840 0.822

The ablation study results are shown in Table 3, From Table 3, we can eas-
ily observe that both HGA-MAGNN¬l1 and HGA-MAGNN¬mmd (or HGA-
HAN¬l1 and HGA-HAN¬mmd) outperform HGA-MAGNN¬mmd∧¬l1 (or HGA-
HAN¬mmd∧¬l1), which verifies that on one hand the effectiveness of aligning the
intra-semantic distributions of each pair of semantic in the source and target
domains, and on the other hand the consideration of the inter-semantic label
alignment to reduce the gap between all classifiers can help each classifier learn
the knowledge from other classifiers.

(a) MP 1 (b) MP 2 (c) MP 3 (d) Fusion

Fig. 2. The visualization of classifier’s output and after fusion in target domain (‘MP’
means meta-path)
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5.4 Analysis

Classification Output Visualization. We visualize the outputs of each clas-
sifier and the output after meta-path fusion on the target domain of the task
Aminer B → Aminer A with the model of HGA-HAN. From Fig. 2, we can
observe that the results in Fig. 2(d) are better than the ones in Fig. 2(a)(b)(c),
which show that by fusing more information from meta-paths can lead to per-
formance improvement. What’s more, we can see that the target nodes near the
class boundaries are more likely to be misclassified by the classifiers learned from
single meta-path of source graph, while we can minimize the discrepancy among
all classifiers by using inter-semantic label alignment.

Algorithm Convergence. To investigate the convergence of our algorithm, we
record the performance of target domain over all meta-path classifiers and the
fusion one during the iterating on the task Aminer B → Aminer A. The results
are shown in Fig. 3(a). We can find that all algorithms can converge very fast,
e.g., less than 20 iterations. Particularly, the fusion one is more stable with better
accuracy, which illustrates the benefits of fusing multiple meta-paths again.

(a) Convergence (b) Accuracy w.r.t λ

Fig. 3. Algorithm convergence and parameter sensitivity.

Parameter Sensitivity. To study the sensitivity of λ, which controls the
importance of mmd loss and l1 loss. We sample the values in {0.001, 0.01,
0.1, 1, 10, 20}, and perform the experiments on tasks DBLP B → DBLP A,
AMiner B → AMiner A, and ACM B → ACM A. All the results are shown in
Fig. 3(b), and we find that the accuracy first increases and then decreases, and
displays as a bell-shaped curve. The results further illustrate the necessity of
proper constraint of domain alignments. Finally, we set λ = 0.1 to achieve good
performance.
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6 Conclusion

Most previous heterogeneous graph neural networks focus on a single graph and
fail to consider the knowledge transfer across graphs. In this paper, we study
the problem of HGNN for domain adaptation, and propose a semantic-specific
hierarchical alignment network for heterogeneous graph adaptation, called HGA.
The HGA employs a shared parameters HGNN with the mmd and l1 normal-
ization terms for domain-invariant and category-discriminative node representa-
tions. Experiments on eight transfer learning tasks validate the effectiveness of
the proposed HGA.

Acknowledgments. This work is supported in part by the National Natural Science
Foundation of China (No. U20B2045, 61772082, 61702296, 62002029). It is also sup-
ported by “The Fundamental Research Funds for the Central Universities 2021RC28”.

References

1. Fan, S., et al.: MetaPath-guided heterogeneous graph neural network for intent
recommendation. In: KDD, pp. 2478–2486 (2019)

2. Fu, X., Zhang, J., Meng, Z., King, I.: MAGNN: metapath aggregated graph neural
network for heterogeneous graph embedding. In: WWW, pp. 2331–2341 (2020)

3. Ganin, Y., Lempitsky, V.: Unsupervised domain adaptation by backpropagation.
In: ICML, pp. 1180–1189 (2015)

4. Goodfellow, I., et al.: Generative adversarial nets. Adv. Neural. Inf. Process. Syst.
27, 2672–2680 (2014)

5. Gretton, A., Borgwardt, K., Rasch, M., Schölkopf, B., Smola, A.: A kernel method
for the two-sample-problem. Adv. Neural. Inf. Process. Syst. 19, 513–520 (2006)

6. Gretton, A., Borgwardt, K.M., Rasch, M.J., Schölkopf, B., Smola, A.: A kernel
two-sample test. J. Mach. Learn. Res. 13(1), 723–773 (2012)

7. Hu, Z., Dong, Y., Wang, K., Sun, Y.: Heterogeneous graph transformer. In: WWW,
pp. 2704–2710 (2020)

8. Ji, M., Sun, Y., Danilevsky, M., Han, J., Gao, J.: Graph regularized transductive
classification on heterogeneous information networks. In: Balcázar, J.L., Bonchi,
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Abstract. Learning and reasoning over graphs is increasingly done by
means of probabilistic models, e.g. exponential random graph models,
graph embedding models, and graph neural networks. When graphs are
modeling relations between people, however, they will inevitably reflect
biases, prejudices, and other forms of inequity and inequality. An impor-
tant challenge is thus to design accurate graph modeling approaches
while guaranteeing fairness according to the specific notion of fairness
that the problem requires. Yet, past work on the topic remains scarce,
is limited to debiasing specific graph modeling methods, and often aims
to ensure fairness in an indirect manner.

We propose a generic approach applicable to most probabilistic graph
modeling approaches. Specifically, we first define the class of fair graph
models corresponding to a chosen set of fairness criteria. Given this, we
propose a fairness regularizer defined as the KL-divergence between the
graph model and its I-projection onto the set of fair models. We demon-
strate that using this fairness regularizer in combination with existing
graph modeling approaches efficiently trades-off fairness with accuracy,
whereas the state-of-the-art models can only make this trade-off for the
fairness criterion that they were specifically designed for.

Keywords: Fairness · I-projection · Link prediction · Graph ·
Regularizer

1 Introduction

Graphs are flexible data structures, naturally suited for representing relations
between people (e.g. in social networks) or between people and objects (e.g. in
recommender systems). Here, links between nodes may represent any kind of
relation, such as interest or similarity. It is common in real-world relational data
that the corresponding graphs are often imperfect or only partially observed.
For example, it may contain spurious or missing edges, or some node pairs may
be explicitly marked as having unknown status. In such cases, it is often useful
to correct or predict the link status between any given pair of nodes. This task
is known as link prediction: predicting the link status between any pair of nodes,
given the known part of the graph and possibly any node or edge features [23].
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Methods for link prediction are typically based on machine learning. A first
class of methods constructs a set of features for each node-pair, such as their
number of common neighbors, the Jaccard similarity between their neighbor-
hoods, and more [24]. Other methods are based on probabilistic models, with
exponential random graph models as a notable class originating mostly from
the statistics and physics communities [30]. More recently, the machine learn-
ing community has proposed graph embedding methods [14], which represent
each node as a point in a vector space, from which a probabilistic model for the
graph’s edges can be derived (among other possible uses). Related to this, graph
neural network models [33] have been proposed which equally can be used to
probabilistically model the presence or absence of edges in a graph [35].

The use of such models can have genuine impact on the lives of the individu-
als concerned. For example, a graph of data on job seekers and job vacancies can
be used to determine which career opportunities an individual will be recom-
mended. If it is a social network, it may determine which friendships are being
recommended. The existence of particular undesirable biases in such networks
(e.g. people with certain demographics being recommended only certain types of
jobs, or people with a certain social position only being recommended friendships
with people of similar status) may result in biased link predictions that perpet-
uate inequity in society. Yet, graph models used for link prediction typically
exploit properties of graphs that are a direct or indirect result of those existing
biases. For example, many will exploit the presence of homophily : the tendency
of people to associate with similar individuals [27]. However, homophily leads to
segregation, which often adversely affects minority groups [16,19].

The mitigation of bias in machine learning algorithms has been studied quite
extensively for classification and regression models in the fairness literature, both
in formalizing a range of fairness measures [13,15] and in developing methods
that ensure fair classification and regression [28]. However, despite the existence
of biases, such as homophily, that are specific to relational datasets, fairness has
so far received limited attention in the graph modeling and link prediction liter-
ature. Current approaches focus on resolving bias issues for specific algorithms
[4,6], or use adversarial learning to improve a specific notion of fairness [4,25].

Contributions. In this paper, we introduce a regularization approach to ensure
fairness in link prediction that is generically applicable across different link pre-
diction fairness notions and different network models.

To that end, in Sect. 3 we first express the set of all fair probabilistic network
models. For any possibly biased network model, we can then compute the I-
projection [11] onto this class: the distribution within the class of fair models
that has the smallest KL-divergence with the biased model. In an information-
theoretic sense, this I-projection can be seen as the fair distribution that is
closest to the considered biased model. We also show that for common fairness
metrics, the set of fair graph models is a linear set, for which the computation
of the I-projection is well-studied and easy to compute in practice.

In Sect. 4, we then propose the KL-divergence between a (possibly biased)
fitted probabilistic network model and its fair I-projection as a generic fairness
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regularizer, to be minimized in combination with the usual cost function for the
network model. We also propose and analyze a generic algorithmic approach to
efficiently solve the resulting fairness-regularized optimization problem.

Finally, our empirical results in Sect. 5 demonstrate that our proposed fair-
ness regularizer can be applied to a wide diversity of probabilistic network models
such that the desired fairness score is improved. In terms of that fairness crite-
rion, our fairness modification outperforms DeBayes and Compositional Fairness
Constraints, even on the models these baselines were specifically designed for.

2 Related Work

Fairness-aware machine learning is traditionally divided into three types [28]:
pre-processing methods that involve transforming the dataset to remove bias [7],
in-processing methods that try to modify the algorithm itself and post-processing
methods that transform the predictions of the model [15]. Our method belongs
to the in-processing category, because we directly modify the objective function
with the aim of improving fairness. Here, one approach is to enforce constraints
that keep the algorithm fair throughout the learning process [32].

The fairness-constrained optimization problem can also be solved using the
method of Lagrange multipliers [2,8,17,31]. This is related to the problem of find-
ing the fair I-projection [11]: the distribution from the set of fair distributions
with the smallest KL-divergence to a reference distribution, e.g. an already trained
(biased) model [3]. While we also compute the I-projection of the model onto
the class of fair link predictors, we do not use it to transform the model directly.
Instead, we consider the distance to that I-projection as a regularization term.

The work on applying fairness methods to the task of link prediction is lim-
ited. Methods DeBayes [6], Fairwalk [29] and FairAdj [22] all adapt specific
graph embedding models to make them more fair. Other approaches, e.g. FLIP
[25] and Compositional Fairness Constraints [4], rely on adversarial learning to
remove sensitive information from node representations.

3 Fair Information Projection

After discussing some notation in Sect. 3.1, we characterize the set of fair graph
models in Sect. 3.2. In Sect. 3.3, we will leverage this characterization to discuss
the I-projection onto the set of fair graph models, i.e. the distribution belonging
to the set with the smallest KL-divergence to a reference distribution.

3.1 Notation

We denote a random unweighted and undirected graph without self-loops as
G = (V,E), with V = {1, 2, . . . , n} the set of n vertices and E ⊆ (

V
2

)
the set of

edges. It is often convenient to represent the set of edges also by a symmetric
adjacency matrix with zero diagonal A ∈ {0, 1}n×n with element aij at row i and
column j equal to 1 if {i, j} ∈ E and 0 otherwise. An empirical graph over the
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same set of vertices will be denoted as Ĝ = (V, Ê) with adjacency matrix Â and
adjacency indicator variables âij . In some applications, âij may be unobserved
and thus unknown for some {i, j}.

A probabilistic graph model p for a given vertex set V is a probability dis-
tribution over the set of possible edge sets E, or equivalently over the set of
adjacency matrices A, with p(A) denoting the probability of the graph with
adjacency matrix A. Probabilistic graph models are used for various purposes,
but one important purpose is link prediction: the prediction of the existence
of an edge (or not) connecting any given pair of nodes i and j. This is par-
ticularly important when some elements from Â are unknown. But it is also
useful when the empirical adjacency matrix is assumed to be noisy, in which
case link prediction is used to reduce the noise. Link prediction can be triv-
ially done by making use of the marginal probability distribution pij , defined as
pij(x) =

∑
A:aij=x p(A).

Note that many practically useful probabilistic graph models are dyadic inde-
pendence models: they can be written as the product of the marginal distribu-
tions: p(A) =

∏
i<j pij(aij). This is true for the models evaluated in our empirical

results section, but the approach proposed in this paper is conceptually applica-
ble also where this is not the case (e.g. for more complex random graph models),
albeit at the cost of greater mathematical and computational complexity.

Finally, we assume vertices belong to one of a set of sensitive groups, defined
by categorical attributes with respect to which discrimination is undesirable or
forbidden. These sensitive groups are denoted as Vs with s ∈ S for some finite set
S. The sets Vs with s ∈ S form a partition of V . For notational convenience, we
also introduce the notation Ust � {{i, j}|i ∈ Vs, j ∈ Vt, i �= j}, the set of possible
unordered pairs of distinct vertex pairs between Vs and Vt. Thus, |Uss| =

(|Vs|
2

)

and |Ust| = |Vs| × |Vt| for s �= t. Similarly, we write U �
(
V
2

)
for the set of all

(unordered) vertex pairs.

3.2 Fairness Constraints

Here we take inspiration from prior work [6,21,22] on translating two classifi-
cation fairness criteria to the graph setting: demographic parity and equalized
opportunity. We then formalize a general definition for such fairness criteria.

Demographic Parity (DP). A classifier could be thought of as non-
discriminatory when its expected score of an individual is the same regardless
of which sensitive group they belong to. This traditional criterion of fairness is
referred to as demographic or statistical parity (DP) [13].

We generalize this to the graph setting by requiring that the expected pro-
portion of vertex pairs belonging to any two sensitive groups Vs and Vt that
are connected, is constant over all pairs of sensitive groups. More formally, the
probabilistic graph model p satisfies the DP fairness criterion iff:

∃d ∈ R : ∀s, t ∈ S : E
A∼p

⎡

⎣ 1
|Ust|

∑

{i,j}∈Ust

aij

⎤

⎦ = d,
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where choices for d are discussed in Sect. 4.2. (Note that this criterion also ensures
that the average expected vertex degree is the same for all sensitive groups.)

Thanks to linearity of the expectation operator, and with pij the marginal
distribution for the edge indicator variable aij , this can be simplified as follows:

∃d ∈ R : ∀s, t ∈ S :
∑

{i,j}∈Ust

E
aij∼pij

[aij ] = d|Ust|.

We thus define the set PDP of distributions satisfying these constraints as fair
with respect to DP. The DP fairness criterion is notable for diminishing the effect
of homophily, since it encourages inter-group (s �= t) interaction to have the same
expected score as intra-group (s = t) interactions, thereby reducing segregation
based on the nodes’ sensitive traits. We note that some previous definitions
[21,22] enforce a weaker form of demographic parity that only requires balance
between the set of all intra-group connections and the set of all inter-group
connections. Quite trivially, our approach could handle this weaker form as well.
However, in our experiments we maintain the stronger definition of DP fairness
(defined for all pairs ∀s, t ∈ S) in order to penalize situations where one type of
inter-group connections Uss is discriminated against in favor of a second type of
inter-group connections Utt �= Uss.

Equalized Opportunity (EO). A drawback of the DP fairness notion is that
it disregards the possibility that there are justifiable reasons for some sensitive
groups to be scored higher [15]. For example, in the social graph context one sen-
sitive group s may generally have more social interactions with others, regardless
of their sensitive group t �= s [6]. Depending on the application, it may then be
deemed fair to predict inter-group edges (Ust) from this more social group as
more probable than intra-group edges between nodes in other groups (Utt).

A fairness criterion that takes this into account is equalized opportunity (EO)
[15]. EO requires that the true positive rate, and consequently also the false nega-
tive rate, is equal across groups. In other words, and applied to the graph context:
when averaging the probability under the model of edge-connected vertex-pairs
Ê between two sensitive groups Vs and Vt, the result should always be the same
irrespective of s and t. More formally:

∃d ∈ R : ∀s, t ∈ S : E
A∼p

⎡

⎣ 1
|Ê ∩ Ust|

∑

{i,j}∈Ê∩Ust

aij

⎤

⎦ = d,

where Ê is the fixed empirical set of edges.
Thanks to linearity of the expectation operator, and with pij the marginal

distribution for the edge indicator variable aij , this can be simplified as follows:

∃d ∈ R : ∀s, t ∈ S :
∑

{i,j}∈Ê∩Ust

E
aij∼pij

[aij ] = d|Ê ∩ Ust|.

We thus define the set PEO of distributions satisfying these constraints as
fair with respect to EO.
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General Sets of Fair Graph Distributions. Both the DP and EO criteria
are thus formalized as a constraint that is linear in the probability distribution
p. Using 1 to denote the indicator function, the DP and EO constraints on p
can both be formalized in the following form:

Fc(p) �
∑

{i,j}∈U

E
aij∼pij

[fc({i, j}, aij)] = dc, (1)

where for DP the functions fc : U × {0, 1} → R and corresponding constants dc

are given by:

fst({i, j}, x) = x1({i, j} ∈ Ust),
dst = d|Ust|,

for all s, t ∈ S and for some d ∈ R. Similarly, for EO:

fst({i, j}, x) = x1({i, j} ∈ Ê ∩ Ust),

dst = d|Ê ∩ Ust|.

As a matter of fact, many other statistical fairness criteria, such as equalized
odds, accuracy equality or churn equality can formalized in this manner, with
different choices for fc and dc [2,3,8].

Thus, although our implementation and experiments are focused on DP and
EO only, we develop the theory in this paper for the general formulation of a set
of fair probabilistic graph models as:1

PF := {p ∈ P | ∀c ∈ CF : Fc(p) = dc} , (2)

with P the set of all possible distributions over A, and CF a countable (and
typically finite) set indexing the constraints that enforce fairness criterion F .
Importantly, Fc as defined in Eq. (1) is a linear function of p, such that I-
projecting any distribution onto PF is a mathematically elegant operation. This
is the subject of the following.

3.3 Information Projection

We now show how to find, for any possibly unfair distribution h, the fair distri-
bution p ∈ PF that is as close to h as possible. When that closeness is computed
in terms of the KL-divergence, then the desired distribution, denoted by hF , is
known as the I-projection [10,11]:

hF = arg min
p∈PF

DKL(p || h),

1 In our proposed framework, we require these constraints to be satisfied exactly in
order for p to be fair. However, prior work has also allowed for a percentage-wise
deviation [34].
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where it is assumed that PF �= ∅ and DKL(p || h) < ∞. Since PF is linear and
thus convex, the I-projection hF is unique [11].

Finding the I-projection of model h under linear constraints CF is a convex
optimization problem2. Although it is straightforward to generalize this, let us
assume that h is a dyadic independence model. This is justified as many con-
temporary probabilistic graph models (including graph embedding methods and
graph neural networks) are dyadic independence models, and because it sim-
plifies notation. Then, the I-projection of h is the product distribution of the
marginal distributions for the vertex pairs {i, j}, given by [9]:

hF,ij(x) =
hij(x)

ZF,ij(λ)
exp

(
∑

c∈CF

λcfc({i, j}, x)

)

,

with

ZF,ij(λ) =
∑

x∈{0,1}
hij(x) exp

(
∑

c∈CF

λcfc({i, j}, x)

)

.

the log-partition function and with λ denoting the vector of λc values. Let
ZF (λ) =

∏
{i,j}∈U ZF,ij(λ). The values of the λc are found by maximizing:

Lh(λ) = − log ZF (λ) +
∑

c∈CF

λcdc. (3)

This function Lh(λ) is the Lagrange dual of the KL-divergence minimization
problem with reference model h, and λ is the set of Lagrange multipliers corre-
sponding to the fairness constraints.

4 The KL-Divergence to the I-projection as a Fairness
Regularizer

We argue that the KL-divergence DKL(hF || h) between a probabilistic model
h and its fair I-projection hF is an adequate measure of the unfairness of h.

Indeed, suppose that hF represents an idealized version of reality that is
free from undue bias (i.e. fair). Specifically, it is the idealized version of reality
that is closest to the model h, which, in turn, can be seen as the unfairly biased
version of the reality hF . For example, it may be the result of discrimination and
cultural social biases in historical data. Then the KL-divergence DKL(hF || h)
quantifies the amount of information lost when using the biased model h instead
of the idealized model hF [5]. In other words, it is the information lost due to
any unfairness in the model h, and thus, informally speaking, the amount of
‘unfair information’ in h.

2 The distribution that results from the reverse KL-divergence formulation
arg minp∈PF DKL(h || p) is much less practical to compute and was therefore not
further considered for this work.
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Algorithm 1: Optimizing L with respect to link predictor h, in the case
where DP is the fairness criterion.
Data: possible distinct vertex pairs U , empirical adjacency matrix Â, and

fairness strength parameter γ
initialize model h and I-projection parameters λ;
for t = 1 to T do

LA ← − log h
(
Â

)
;

d ← 1
|U| EA∼h [A];

LF ← maxλ

[
− log ZhF (λ) +

∑
s,t∈S λstd|Ust|

]
;

L ← LA + γLF ;
UPDATE(h, ∇hL);

end

Moreover, the KL-divergence, in being a measure of information, is commen-
surate with commonly used loss terms in machine learning, in particular with the
cross-entropy between the empirical distribution and the learned model, which
is equivalent to the KL-divergence between those two up to a constant. This is
the topic of the next subsection.

4.1 I-Projection Regularization

Let p̂ represent the empirical distribution, i.e. p̂(A = Â) = 1 and p̂(A �= Â) = 0.
The common machine learning objective is then to minimize the KL-divergence
DKL(p̂ || h), denoted by LA, which is equivalent to maximizing the log-likelihood
of h under p̂, or equivalently the cross-entropy. We propose to add the KL-
divergence DKL(hF || h) as an extra loss term LF . The overall objective function
L to find h is thus:

L = min
h

[LA + γLF ]

= min
h

[DKL(p̂ || h) + γDKL(hF || h)]

with γ a hyperparameter that controls the strength of the loss term. Recall
that, for a parameter λ that satisfies the fairness constraints, DKL(hF || h) is
equivalent to the loss function in Eq. (3):

L = min
h

[
DKL(p̂ || h) + γ min

p∈PF
DKL(p || h)

]

= min
h

[
DKL(p̂ || h) + γ max

λ
Lh(λ)

]
.

4.2 Practical Considerations

So far, we did not yet specify the choice of d in the DP and EO constraints. To
enforce p ∈ PDP , a straightforward option is to set d equal to the mean of p.
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However, d is then no longer constant with respect to p and instead depends on
changes in the λ parameters. The gradient of the second term of the loss function
Lh(λ) in Eq. (3) is then more complicated. Alternatively, setting d equal to the
mean of the empirical distribution p̂ forces p to adopt the same mean as the
empirical one, even though there is no specific reason that hF or consequently
h should match the empirical mean. We finally chose to set d equal to the mean
of h, such that when optimizing λ, we can treat d as a fixed, constant value.

Furthermore, out of several ways to optimize L, we opted to fully optimize
λ for every parameter update of h. On the one hand, the λ parameters are
typically very few in number (for DP and EO, there are only CF = |S|2), making
it cheap to store them. On the other hand, optimizing λ exactly requires the
repeated evaluation of the probability under h of all unordered vertex pairs U .
With |U | = n(n−1)

2 , this is infeasible for large n. However, for |S| � n, using a
relatively small subsample of all unordered vertex pairs will suffice in practice
to obtain a good estimate for the optimal λ, dramatically enhancing scalability.
Moreover, using the optimal λ of the previous iteration’s h as a starting guess
for the next iteration also speeds up computations in practice.

For concreteness, the use of the proposed generic fairness regularizer to the
DP fairness criterion is summarized in Algorithm 1.

5 Experiments

Our experiments were performed on three datasets, described in Sect. 5.1. We
applied our proposed fairness regularizer on four simple, yet diverse methods
explained in Sect. 5.2. Though the method variants without fairness regularizer
are already baselines, we additionally compared our results with state-of-the-art
approaches for link prediction based on fair graph embedding in Sect. 5.3. All
methods went through the same evaluation pipeline described in Sect. 5.4. The
results of which were discussed in Sect. 5.5.

5.1 Datasets

The methods were evaluated on three attributed graph datasets, summarized in
Table 1. They were chosen for their diverse properties and manageable size.

Polblogs: The Polblogs [1] dataset was constructed from blogs discussing
United States politics in 2005. In the undirected version, there is an edge between
blogs if either of them had a hyperlink to the other. The sensitive attribute
is the US political party (the Republican or Democratic Party) that the blog
supported, either by their own admission or through manual labeling from the
dataset creators. Intra-group links are heavily favored over inter-group links.

ML100k: Movielens datasets are often used as a benchmark for recommender
systems. The data contains users’ movie ratings on a five-star scale. An
unweighted, bipartite graph is formed by considering the users and movies as
nodes and an edge between them if the user rated the movie. While the data
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Table 1. Properties of the datasets. The dataset names are URLs to hosts of the
datasets.

dataset #nodes #edges S |S|
Polblogs 1,222 16,714 party 2

ML100k 2,625 100,000 age 7

Facebook 3,955 85,482 gender 2

contains several types of sensitive attributes, we opted to group the age attribute
into seven bins, delineated by the ages [18, 25, 35, 45, 50, 56]. There are only user-
movie edges, so the domain of sensitive value of an edge is only affected by the
user’s sensitive value. Note that all methods were adapted such that they took
the bipartitiness of the graph into account when sampling negative training
edges.

Facebook [26]: The Facebook graph consists of user nodes that are linked if
they are ‘friends’. Each user either has gender feature ‘0’, ‘1’ or neither. For
the last group of users, of which there are 84, it is unclear whether their gen-
der is unknown or non-binary. Their nodes and edges were removed from the
dataset. Only 3 undirected attribute pairs thus remain in the data. In contrast
to Polblogs, the bias effect is much weaker.

5.2 Algorithms

The proposed fairness regularizer was applied to four relatively simple graph
models. A PyTorch implementation was sought or implemented for each of them,
such that the fairness loss can easily be added.

MaxEnt: We will refer to the MaxEnt model as the maximum entropy graph
model under which the expected degree of each node matches its empirical degree
[12]. The solution is a simple exponential random graph model [30].

Dot-Product: Given a set of embeddings, one for every node, taking the Dot-
Product an embedding pair is a straightforward way to perform link prediction
[14]. In this simple model, the ‘decoder’ for edge (i, j) is the dot product operator,
while the ‘encoder’ for node i just looks up its representation in a learned table
of embeddings.

CNE: A method that combines both the MaxEnt model and the Dot-
Product decoder is the Conditional Network Embedding (CNE) model [18].
Instead of the Dot-Product, it ‘decodes’ the distance between nodes (i, j). More-
over, it uses the MaxEnt model as a prior distribution over the graph data.

GAE: The Graph Auto-Encoder (GAE) [20] is also a Dot-Product model,
though it uses a Graph Convolutional Network (GCN) as its encoder. As such,
it is an example of a graph neural network [33]. In our implementation we used
two layers for the GCN and used the identity matrix as the node feature matrix.

http://www-personal.umich.edu/~mejn/netdata/
https://grouplens.org/datasets/movielens/100k/
https://snap.stanford.edu/data/egonets-Facebook.html
https://pytorch.org/
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5.3 Fair Graph Embedding Baselines

In part, the algorithms from Sect. 5.2 were chosen such that they allow for easy
comparison with two recent methods in the field of fair graph embedding.

CFC: The Compositional Fairness Constraints (CFC) method [4] aims to gener-
ate fair embeddings by learning filters that mask the sensitive attribute informa-
tion. This is done through adversarial learning. When applied to link prediction,
it also uses the Dot-Product decoder. Note that our implementation of the
basic Dot-Product differs from the source code of CFC, causing differences in
performance between our Dot-Product experiments and CFC with a fairness
regularization strength of zero.

DeBayes: Finally, DeBayes [6] is an adaptation of CNE where the bias in the
data is used as additional prior information when learning the embeddings, such
that the embeddings are debiased. By using a prior without this biased informa-
tion at testing time, the link prediction using these embeddings is expected to
at least not be less fair than the standard CNE.

5.4 Evaluation

Every method was run for 10 different random seeds on each dataset. Those 10
seeds each had a different train/test split, where the latter consisted of around
20% of the edges in the data. The test set was extended with the same amount
of non-edges. However, it was made sure that the test set did not contain nodes
unknown in the train set, since the graph models in our evaluation are trans-
ductive methods. Only test set results are reported.

Hyperparameter tuning in order to improve the performance of the con-
sidered methods was minimal, as our aim is to show the effect of the fairness
regularization and not the predictive quality of the methods themselves. As such,
we did no hyperparameter sweep with the aim of improving AUC, and instead
only deviated from default parameters when it could allow for an easier com-
parison between models, e.g. the dimensionality of Dot-Product and CFC
embeddings. We only report results of our proposed method with a fairness reg-
ularization strength of γ = 100, because this parameter almost always caused
a significant effect on the fairness measures while not diminishing predictive
power too strongly. For DeBayes the default values were used, while for CFC
we report the results for the regularization strength λ ∈ {10, 100, 1000}. Smaller
values did not cause a noticeable effect on fairness, while larger values caused a
strong degradation in terms of AUC.

Along with the link prediction AUC score, all methods were tested for their
deviation from Demographic Parity (DP) and Equalized Opportunity (EO). The
calculation of those measures follows [6], where DP is the maximal difference
between the mean predicted value of any subgroup. Similarly, the EO measure
refers to the maximal difference between true positive rates of subgroups. Lower
DP and EO scores therefore imply a fairer model. Note that the test set contains
proportionally less negative edges than the overall dataset, possibly skewing
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the DP score. This effect was compensated for by proportionately increasing
the contribution of negative samples when calculating DP. Furthermore, in the
Appendix additional measures are reported on the diversity in the ranking of
prediction scores, as well as diversity in the embeddings.

5.5 Results

The test set results3 are reported in Fig. 1. We reiterate that our intention is
not to find the specific link prediction method with the best trade-off in terms
of AUC and fairness. Rather, we want to verify that our proposed regularizer
can be applied to a variety of methods and fairness criteria, with an efficient
AUC-fairness trade-off for the considered criterion.

Fairness Quality: In many cases and across all four methods, it can indeed be
observed that the use of our proposed fairness regularizer significantly reduces
the link prediction bias, according to the employed fairness criteria. This is
in contrast to the baselines DeBayes and CFC. The former did not improve
fairness scores over CNE, while the latter could only become more fair at a
significant cost to AUC.

There are a few exceptions where our method does not reduce unfairness
according to the fairness criterion. First, there are some cases where an already
low DP score for the base method can not be improved further by adding the
DP regularizer. This happens for MaxEnt in Fig. 1a, GAE and Dot-Product
in Fig. 1b and for CNE in Fig. 1c. A second kind of exception is where the
method with the DP regularizer is less EO-unfair than with the EO regularizer.
It occurs for the Dot-Product (EO) variant in Fig. 1a and 1c, possibly because
the former had a larger reduction in predictive power overall. In both these
cases, Dot-Product (EO) still significantly reduces EO compared to the Dot-
Product model without fairness regularizer.

Predictive Quality: Moreover, the decrease in AUC is fairly minimal with our
fairness regularizer, especially compared to an adversarial approach like CFC.
While the addition of the EO regularizer has no noticeable effect on the AUC,
the DP variant does cause strong reduction on some models in Fig. 1a. This is
to be expected, because enforcing DP can cause a significant loss in predictive
power if the subgroups in the underlying data have different base rates [15].
For a network like Polblogs, which strongly favors intra-group connections,
encouraging the inter-group connections therefore results in AUC loss.

Runtimes: Runtimes4 of each method are listed in Table 2. In our experiments,
the addition of our regularizer causes a large increase in runtime. However, sev-
eral easy speed improvements are available to make the method scale to large
graphs. For example, the optimal λ parameters of hF can be approximated by
only fitting them on a subsample of the vertex pairs that h is trained on. As
3 A table with the results in text format is provided in the Appendix.
4 All experiments were conducted using half the hyperthreads on a machine equipped

with a 12 Core Intel(R) Xeon(R) Gold processor and 256 GB of RAM.
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Fig. 1. Markers display the mean over ten identical experiment runs with different ran-
dom seeds. Error bars horizontally and vertically show the standard deviation. Com-
pletely empty markers refer to methods without any fairness modification. Methods
with a fairness regularizer that enforces the DP or EO fairness criterion are left-filled
or right-filled respectively. On the x-axis, unfairness is measured, so more left is
better. On the y-axis, AUC is measured, so higher is better.
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Table 2. Median runtimes (s) measured
by Python’s time.perf counter.

Dataset Polblogs ML100k Facebook

MaxEnt 14 68 158

with MA 707 3050 1924

with EO 170 773 1191

Dot-Product 60 62 200

with DP 349 456 1169

with EO 135 239 531

CNE 105 307 349

with DP 574 1417 2065

with EO 286 843 865

CNE 28 26 101

with DP 278 437 1072

with EO 92 255 388

CFC 280 843 1601

CFC (λ > 0) 242 2623 3494

DeBayes 98 305 343

Fig. 2. The KL-divergence in the experi-
ment of Fig. 1c between GAE and its fair I-
projection, trained using samples from the
set of all considered vertex pairs during
training: all training edges plus 100 nega-
tive edges per vertex.

shown in Fig. 2, the resulting KL-divergence (computed over all vertex sam-
ples that are available to h), is already a good estimate when relatively small
subsample sizes were used.

6 Conclusion

Employing a generic way to characterize the set of fair link prediction distribu-
tions, we can compute the I-projection of any graph model onto this set. That
distance, i.e. the KL-divergence between the model and its I-projection, can
then be used as a principled regularizer during the training process and can be
applied to a wide range of statistical fairness criteria. We evaluated the benefit
of our proposed method for two such criteria: demographic parity and equalized
opportunity.

Overall, our regularizer caused significant improvements in the desired fair-
ness notions, at a relatively minimal cost in predictive power. In this it out-
performed the baseline fairness modifications for graph embedding methods,
which could not leverage its debiased embeddings to perform fair link prediction
according to generic fairness criteria. In the future, more task-specific link pre-
diction fairness criteria can be defined within our framework, taking inspiration
from social graph or recommender systems literature. Moreover, our proposed
regularizer can be extended beyond graph data structures.

Acknowledgments. This research was funded by the ERC under the EU’s 7th Frame-
work and H2020 Programmes (ERC Grant Agreement no. 615517 and 963924), the
Flemish Government (AI Research Program), the BOF of Ghent University (PhD
scholarship BOF20/DOC/144), and the FWO (project no. G091017N, G0F9816N,
3G042220).



KL-Divergence between a Graph Model and its Fair I-Projection 365

References

1. Adamic, L.A., Glance, N.: The political blogosphere and the 2004 US election:
divided they blog. In: Proceedings of the 3rd International Workshop on Link
Discovery, pp. 36–43 (2005)

2. Agarwal, A., Beygelzimer, A., Dud́ık, M., Langford, J., Wallach, H.: A reductions
approach to fair classification. In: International Conference on Machine Learning,
pp. 60–69. PMLR (2018)

3. Alghamdi, W., Asoodeh, S., Wang, H., Calmon, F.P., Wei, D., Ramamurthy, K.N.:
Model projection: theory and applications to fair machine learning. In: 2020 IEEE
International Symposium on Information Theory (ISIT), pp. 2711–2716. IEEE
(2020)

4. Bose, A., Hamilton, W.: Compositional fairness constraints for graph embeddings.
In: International Conference on Machine Learning, pp. 715–724 (2019)

5. Burnham, K.P., Anderson, D.R.: Practical use of the information-theoretic app-
roach. In: Model selection and inference, pp. 75–117. Springer, New York (1998).
https://doi.org/10.1007/978-1-4757-2917-7 3

6. Buyl, M., De Bie, T.: DeBayes: a Bayesian method for debiasing network embed-
dings. In: International Conference on Machine Learning, pp. 1220–1229. PMLR
(2020)

7. Calmon, F.P., Wei, D., Vinzamuri, B., Ramamurthy, K.N., Varshney, K.R.: Opti-
mized pre-processing for discrimination prevention. In: Proceedings of the 31st
International Conference on Neural Information Processing Systems, pp. 3995–
4004 (2017)

8. Cotter, A., et al.: Optimization with non-differentiable constraints with applica-
tions to fairness, recall, churn, and other goals. J. Mach. Learn. Res. 20(172), 1–59
(2019)

9. Cover, T.M.: Elements of Information Theory. Wiley, Hoboken (1999)
10. Csiszár, I.: I-divergence geometry of probability distributions and minimization

problems. Annals Prob. 146–158 (1975)
11. Csiszár, I., Matus, F.: Information projections revisited. IEEE Trans. Inf. Theory

49(6), 1474–1490 (2003)
12. De Bie, T.: Maximum entropy models and subjective interestingness: an application

to tiles in binary databases. Data Min. Knowl. Discov. 23(3), 407–446 (2011)
13. Dwork, C., Hardt, M., Pitassi, T., Reingold, O., Zemel, R.: Fairness through aware-

ness. In: Proceedings of the 3rd Innovations in Theoretical Computer Science Con-
ference, pp. 214–226 (2012)

14. Hamilton, W.L., Ying, R., Leskovec, J.: Representation learning on graphs: meth-
ods and applications. arXiv preprint arXiv:1709.05584 (2017)

15. Hardt, M., Price, E., Srebro, N.: Equality of opportunity in supervised learning. In:
Proceedings of the 30th International Conference on Neural Information Processing
Systems, pp. 3323–3331 (2016)

16. Hofstra, B., Corten, R., Van Tubergen, F., Ellison, N.B.: Sources of segregation in
social networks: a novel approach using Facebook. Am. Sociol. Rev. 82(3), 625–656
(2017)

17. Jiang, H., Nachum, O.: Identifying and correcting label bias in machine learning.
In: International Conference on Artificial Intelligence and Statistics, pp. 702–712.
PMLR (2020)

18. Kang, B., Lijffijt, J., De Bie, T.: Conditional network embeddings. In: International
Conference on Learning Representations (2018)

https://doi.org/10.1007/978-1-4757-2917-7_3
http://arxiv.org/abs/1709.05584


366 M. Buyl and T. De Bie
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Abstract. Adversarial training is an approach for increasing model’s
resilience against adversarial perturbations. Such approaches have been
demonstrated to result in models with feature representations that gener-
alize better. However, limited works have been done on adversarial train-
ing of models on graph data. In this paper, we raise such a question –
does adversarial training improve the generalization of graph represen-
tations. We formulate L2 and L∞ versions of adversarial training in two
powerful node embedding methods: graph autoencoder (GAE) and vari-
ational graph autoencoder (VGAE). We conduct extensive experiments
on three main applications, i.e. link prediction, node clustering, graph
anomaly detection of GAE and VGAE, and demonstrate that both L2

and L∞ adversarial training boost the generalization of GAE and VGAE.

Keywords: Graph autoencoders · Variational graph autoencoders ·
Adversarial training · Node embedding · Generalization

1 Introduction

Networks are ubiquitous in a plenty of real-world applications and they contain
relationships between entities and attributes of entities. Modeling such data is
challenging due to its non-Euclidean characteristic. Recently, graph embedding
that converts graph data into low dimensional feature space has emerged as a pop-
ular method to model graph data, For example, DeepWalk [14], node2vec [7] and
LINE [23] learn graph embedding by extracting patterns from the graph. Graph
Convolutions Networks (GCNs) [9] learn graph embedding by repeated multipli-
cation of normalized adjacency matrix and feature matrix. In particular, graph
autoencoder (GAE) [10,24,27] and graph variational autoencoder (VGAE) [10]
have been shown to be powerful node embedding methods as unsupervised learn-
ing. They have been applied to many machine learning tasks, e.g. node cluster-
ing [16,20,24], link prediction [10,19], graph anomaly detection [4,13] and etc.

Adversarial training is an approach for increasing model’s resilience against
adversarial perturbations by including adversarial examples in the training
set [11]. Several recent studies demonstrate that adversarial training improves fea-
ture representations leading to better performance for downstream tasks [18,26].
c© Springer Nature Switzerland AG 2021
N. Oliver et al. (Eds.): ECML PKDD 2021, LNAI 12976, pp. 367–382, 2021.
https://doi.org/10.1007/978-3-030-86520-7_23
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However, little work in this direction has been done for GAE and VGAE. Besides,
real-world graphs are usually highly noisy and incomplete, which may lead to a
sub-optimal results for standard trained models [32]. Therefore, we are interested
to seek answers to the following two questions:

– Does adversarial training improve generalization, i.e. the performance in
applications of node embeddings learned by GAE and VGAE?

– Which factors influence this improvement?

In order to answer the first question above, we firstly formulate L2 and L∞
adversarial training for GAE and VGAE. Then, we select three main tasks of
VGAE and GAE: link prediction, node clustering and graph anomaly detection
for evaluating the generalization performance brought by adversarial training.
Besides, we empirically explore which factors affect the generalization perfor-
mance brought by adversarial training.

Contributions: To the best of our knowledge, we are the first to explore gen-
eralization for GAE and VGAE using adversarial training. We formulate L2

and L∞ adversarial training, and empirically demonstrate that both L2 and L∞
adversarial training boost the generalization with a large margin for the node
embeddings learned by GAE and VGAE. An additional interesting finding is
that the generalization performance of the proposed adversarial training is more
sensitive to attributes perturbation than adjacency matrix perturbation and not
sensitive to the degree of nodes.

2 Related Work

Adversarial training has been extensively studied in images. It has been impor-
tant issues to explore whether adversarial training can help generalization.
Tsipras et al. [25] illustrates that adversarial robustness could conflict with
model’s generalization by a designed simple task. However, Stutz et al. [21]
demonstrates that adversarial training with on-manifold adversarial examples
helps the generalization. Besides, Salman et al. [18] and Utrera et al. [26] show
that the latent features learned by adversarial training are improved and boost
the performance of their downstream tasks.

Recently, few works bring adversarial training in graph data. Deng, Dong
and Zhu [3] and Sun et al. [22] propose virtual graph adversarial training to pro-
mote the smoothness of model. Feng et al. [5] propose graph adversarial training
by inducing dynamical regularization. Dai et al. [2] formulate an interpretable
adversarial training for DeepWalk. Jin and Zhang [8] introduce latent adversarial
training for GCN, which train GCN based on the adversarial perturbed output
of the first layer. Besides, several studies explored adversarial training based on
adversarial perturbed edges for graph data [1,28,31]. Among these works,part of
studies pay attention to achieving model’s robustness while ignoring the effect
of generalization [1,2,8,28,31] and the others simply utilize perturbations on
nodal attributes while not explore the effect of perturbation on edges [3,5,22].
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The difference between these works and ours is two-fold: (1) We extend both
L∞ and L2 adversarial training for graph models while the previous studies only
explore L2 adversarial training. (2) We focus on the generalization effect brought
by adversarial training for unsupervised deep learning graph models, i.e. GAE
and VGAE while most of the previous studies focus on adversarial robustness
for supervised/semi-supervised models.

3 Preliminaries

We first summarize some notations and definitions used in this paper. Following
the commonly used notations, we use bold uppercase characters for matrices, e.g.
X, bold lowercase characters for vectors, e.g. b, and normal lowercase characters
for scalars, e.g. c. The ith row of a matrix A is denoted by Ai,: and (i, j)th element
of matrix A is denoted as Ai,j . The ith row of a matrix X is denoted by xi. We
use KL for Kullback-Leibler divergence.

We consider an attributed network G = {V,E,X} with |V | = n nodes, |E| =
m edges and X node attributed matrix. A is the binary adjacency matrix of G.

3.1 Graph Autoencoders

Graph autoencoders is a kind of unsupervised learning models on graph-structure
data [10], which aim at learning low dimensional representations for each node by
reconstructing inputs. It has been demonstrated to achieve competitive results in
multiple tasks, e.g. link prediction [10,16,17], node clustering [16,20,24], graph
anomaly detection [4,13]. Generally, graph autoencoder consists of a graph con-
volutional network for encoder and an inner product for decoder [10]. Formally,
it can be expressed as follows:

Z = GCN(A,X) (1)

Â = σ(ZZT ), (2)

where σ is the sigmoid function, GCN is a graph convolutional network, Z is the
learned low dimensional representations and Â is the reconstructed adjacency
matrix.

During the training phase, the parameters will be updated by minimizing the
reconstruction loss. Usually, the reconstruction loss is expressed as cross-entropy
loss between A and Â [10]:

Lae = − 1
n2

∑

(i,j)∈V ×V

[
Ai,j logÂi,j + (1 − Ai,j)log(1 − Âi,j)

]
. (3)

3.2 Graph Variational Autoencoders

Kipf and Welling [10] introduced variational graph autoencoder (VGAE) which
is a probabilistic model. VGAE is consisted of inference model and generative
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model. In their approach, the inference model, i.e. corresponding to the encoder
of VGAE, is expressed as follows:

q(Z|X,A) =
N∏

i=1

q(zi|X,A), with q(zi|X,A) = N (zi|μi, diag(σ2
i )), (4)

where μi and σi are learned by a graph neural network respectively. That is,
μ = GCNμ(X,A) and logσ = GCNδ(X,A), with μ is the matrix of stacking
vectors μi ; likewise, σ is the matrix of stacking vectors δi.

The generative model, i.e. corresponding to the decoder of autoencoder, is
designed as an inner product between latent variables Z, which is formally
expressed as follows:

p(A|Z) =
n∏

i=1

n∏

j=1

p(Ai,j |zi,zj), with p(Ai,j = 1|zi,zj) = σ(zT
i zj). (5)

During the training phase, the parameters will be updated by minimizing
the variational lower bound Lvae:

Lvae = Eq(Z |X ,A)[logp(A|Z)] − KL[q(Z|X,A)||p(Z)], (6)

where a Gaussian prior is adopted for p(Z) =
∏

i p(zi) =
∏

i N (zi|0, I).

3.3 Adversarial Training

By now, multiple variants of adversarial training has been proposed and most of
them are built on supervised learning and Euclidean data, e.g. FGSM-adversarial
training [6], PGD-adversarial training [11], Trades [33], MART [29] and etc.
Here we introduce Trades that will be extended to GAE and VGAE settings
in Sect. 4. Trades [33] separates loss function into two terms:1) Cross-Entropy
Loss for achieving natural accuracy; 2) Kullback-Leibler divergence for achieving
adversarial robustness. Formally, given inputs (X,Y ), it can be expressed as
follows [33]:

min
θ

E(X,Y )[L(fθ(X), Y ) + λ · KL(P (Y |X ′)||P (Y |X))], (7)

where fθ is a supervised model, X ′ is the adversarial examples that maximize KL
divergence and P (Y |X) is the output probability after softmax. λ is a tunable
hyperparameter and it controls the strength of the KL regularization term.

4 Graph Adversarial Training

In this section, we formulate L2 and L∞ adversarial training for GAE and VGAE
respectively.
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4.1 Adversarial Training in Graph Autoencoder

Considering that: (1) the inputs of GAE contains adjacency matrix and
attributes, (2) the latent representation Z is expected to be invariant to the
input perturbation, we reformulate the loss function in Eq. 3 as follows:

min
θ

Lae + λ · KL(P (Z|A′,X′)||P (Z|A,X)) (8)

X ′ = arg max
‖X ′−X ‖≤ε

Lae(A,X), A′ = arg max
‖A ′−A‖≤ε

Lae(A,X) (9)

where A′ is the adversarial perturbed adjacency matrix and X ′ is the adver-
sarial perturbed attributes. Here the important question is how to generate the
perturbed adjacency matrix A′ and attributes X ′ in Eq. 9.

Attributes Perturbation X ′. We generate the perturbed X ′ by projection
gradient descent (PGD) [11]. We denote total steps as T .

For X ′ bounded by L2 norm ball, the perturbed data in t-th step Xt is
expressed as follows:

Xt =
∏

B(X ,ε‖X‖2)

(Xt−1 + α · g · ‖X‖2 / ‖g‖2) (10)

g = ∇X t−1Lae(A,Xt−1) (11)

where
∏

is the projection operator and B(X, ε ‖X‖2) is the L2 norm ball of
nodal attributes xi : {x′

i : ‖x′
i − xi‖2 ≤ ε ‖xi‖2}.

For X ′ bounded by L∞ norm ball, the perturbed data in t-th step Xt is
expressed as follows:

Xt =
∏

B(X ,ε)

(Xt−1 + α · g) (12)

g = sgn(∇X t−1Lae(A,Xt−1)), (13)

where B(X, ε) is the L∞ norm ball of nodal attributes xi : {x′
i : ‖x′

i − xi‖∞ ≤ ε}
and sgn(·) is the sign function.

Adjacency Matrix Perturbation A′. Adjacency matrix perturbation
includes two-fold: (1) perturb node connections, i.e. Adding or dropping edges,
(2) perturb the strength of information flow between nodes, i.e. the strength of
correlation between nodes. Here we choose to perturb the strength of information
flow between nodes and leave the perturb of node connections for future work.
Specifically, we add weight for each edge and change these weights in order to
perturb the strength of information flow. Formally, given the adjacency matrix
A, the weighted adjacency matrix Ã is expressed as A � M where the elements
of M are continuous and its values are initialized as same value as A. � denotes
the element-wise product. Formally, A′ is expressed as follows:

M ′ = arg max
‖M ′−M ‖≤ε

Lae(Ã,X) (14)

A′ = A � M ′. (15)
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For A′ bounded by L2 norm ball, the perturbed data in t-th step At is expressed
as follows:

g = ∇M t−1Lae(Ãt−1,X) (16)

M t =
∏

B(M ,ε‖M‖2)

(M t−1 + α · g · ‖M‖2 / ‖g‖2) (17)

At = Ãt = A � M t. (18)

For A′ bounded by L∞ norm ball, the perturbed data in t-th step At is
expressed as follows:

g = sgn(∇M t−1Lae(Ãt−1,X)) (19)

M t =
∏

B(M ,ε)

(M t−1 + α · g) (20)

At = Ãt = A � M t. (21)

4.2 Adversarial Training in Variational Graph Autoencoder

Similarly to GAE, we reformulate the loss function for training VGAE (Eq. 6)
as follows:

min
θ

Lvae + λ · KL(P (Z|A′,X′)||P (Z|A,X)) (22)

X ′ = arg max
‖X ′−X ‖≤ε

Lvae(A,X), A′ = arg max
‖A ′−A‖≤ε

Lvae(A,X) (23)

We generate A′ and X ′ exactly the same way as with GAE (replacing Lae with
Lvae in Eq. 10–21.)

For convenience, we abbreviate L2 and L∞ adversarial training as AT-2 and
AT-Linf respectively in the following tables and figures where L2/L∞ denote both
attributes and adjacency matrix perturbation are bounded by L2/L∞ norm ball.

In practice, we train models by alternatively adding adjacency matrix per-
turbation and attributes perturbation1.

5 Experiments

In this section, we present the results of the performance evaluation of L2 and L∞
adversarial training under three main applications of GAE and VGAE: link pre-
diction, node clustering, and graph anomaly detection. Then we conduct param-
eter analysis experiments to explore which factors influence the performance.

Datasets. We used six real-world datasets: Cora, Citeseer and PubMed for link
prediction and node clustering tasks, and BlogCatalog, ACM and Flickr for the
1 We find that optimizing models by alternatively adding these two perturbation is

better than adding these two perturbation together (See Appendix).
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graph anomaly detection task. The detailed descriptions of the six datasets are
showed in Table 1.

Model Architecture. All our experiments are based on the GAE/VGAE model
where the encoder/inference model is consisted with a two-layer GCN by default.

Table 1. Datasets descriptions.

DataSets Cora Citeseer PubMed BlogCatalog ACM Flickr

#Nodes 2708 3327 19717 5196 16484 7575

#Links 5429 4732 44338 171743 71980 239738

#Features 1433 3703 500 8189 8337 12074

5.1 Link Prediction

Metrics. Following [10], we use the area under a receiver operating characteristic
curve (AUC) and average precision (AP) as the evaluation metric. We conduct
30 repeat experiments with random splitting datasets into 85%, 5% and 10% for
training sets, validation sets and test sets respectively. We report the mean and
standard deviation values on test sets.

Parameter Settings. We train models on Cora and Citeseer datasets with 600
epochs, and PubMed with 800 epochs. All models are optimized with Adam
optimizer and 0.01 learning rate. The λ is set to 4. For attributes perturbation,
the ε is set to 3e−1 and 1e−3 on Citeseer and Cora, 1 and 5e−3 on PubMed for
L2 and L∞ adversarial training respectively. For adjacency matrix perturbation,
the ε is set to 1e−3 and 1e−1 on Citeseer and Cora, and 1e−3 and 3e−1 on
PubMed for L2 and L∞ adversarial training respectively. The steps T is set to
1. The α is set to ε

T .
For standard training GAE and VGAE, we run the official Pytorch geometric

code2 with 600 epochs for Citeseer and Cora datasets, 1000 epochs3 for PubMed
dataset. Other parameters are set the same as in [10].

Experimental Results. The results are showed in Table 2. It can be seen that
both L2 and L∞ Adversarial trained GAE and VGAE models consistently boost
their performance for both AUC and AP metrics on Cora, Citeseer and PubMed
datasets. Specifically, the improvements on Cora and Citeseer dataset reaches at
least 2% for both GAE and VGAE (Table 2). The improvements on PubMed is
relative small with around 0.3%.

2 https://github.com/rusty1s/pytorch geometric/blob/master/examples/autoencode
r.py.

3 Considering PubMed is big graph data, we use more epochs in order to avoiding
underfitting.

https://github.com/rusty1s/pytorch_geometric/blob/master/examples/autoencoder.py
https://github.com/rusty1s/pytorch_geometric/blob/master/examples/autoencoder.py
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Table 2. Results for link prediction.

Methods Cora Citeseer PubMed

AUC (in%) AP (in%) AUC (in%) AP (in%) AUC (in%) AP (in%)

GAE 90.6± 0.9 91.2± 1.0 88.0± 1.2 89.2± 1.0 96.8± 0.2 97.1± 0.2

AT-L2-GAE 93.0± 0.9 93.5± 0.6 92.5± 0.7 93.2± 0.6 97.2± 0.2 97.4± 0.2

AT-Linf-GAE 92.8± 1.1 93.4± 1.0 92.3± 0.9 92.6± 1.1 96.9± 0.2 97.3± 0.2

VGAE 89.8± 0.9 90.3± 1.0 86.6± 1.4 87.6± 1.3 96.2± 0.4 96.3± 0.4

AT-L2-VGAE 92.8± 0.6 93.1± 0.6 90.7± 1.1 91.1± 0.9 96.6± 0.2 96.7± 0.2

AT-Linf-VGAE 92.2± 1.2 92.3± 1.3 91.9± 0.8 92.0± 0.6 96.5± 0.2 96.6± 0.3

5.2 Node Clustering

Metrics. Following [12,30], we use accuracy (ACC), normalized mutual infor-
mation (NMI), precision, F-score (F1) and average rand index (ARI) as our
evaluation metrics. We conduct 10 repeat experiments. For each experiment,
datasets are random split into training sets (85% edges), validation sets (5%
edges) and test sets (10% edges). We report the mean and standard deviation
values on test sets.

Parameter Settings. We train GAE models on Cora and Citeseer datasets
with 400 epochs, and PubMed dataset with 800 epochs. We train VGAE models
on Cora and Citeseer datasets with 600 epochs and PubMed dataset with 800
epochs. All models are optimized by Adam optimizer with 0.01 learning rate.
The λ is set to 4. For attributes perturbation, the ε is set to 5e−1 and 1e−3 on
both Cora and Citeseer dataset, and 1 and 5e−3 on PubMed dataset for L2 and
L∞ adversarial training respectively. For adjacency matrix perturbation, the ε
is set to 1e−3 and 1e−1 on Cora and CiteSeer, 1e−3 and 3e−1 on PubMed for
L2 and L∞ adversarial training respectively. The steps T is set to 1. The α is
set to ε

T .
Likewise, for standard GAE and VGAE, we run the official Pytorch geometric

code with 400 epochs for Citeseer and Cora datasets, 800 epochs for PubMed
dataset.

Experimental Results. The results are showed in Table 3, Table 4 and Table 5.
It can be seen that both L2 and L∞ adversarial trained models consistently out-
perform the standard trained models for all metrics. In particular, on Cora and
Citeseer datasets, both L2 and L∞ adversarial training improve the performance
with large margin for all metrics, i.e. at least +5.4% for GAE, +6.7% for VGAE
on Cora dataset (Table 3), and at least +5.8% for GAE, +5.6% for VGAE on
Citeseer dataset (Table 4).

5.3 Graph Anomaly Detection

We exactly follow [4] to conduct experiments for graph anomaly detection. In [4],
the authors take reconstruction errors of attributes and links as the anomaly
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Table 3. Results for node clustering on cora.

Methods Acc (in%) NMI (in%) F1 (in%) Precision (in%) ARI (in%)

GAE 61.6 ± 3.4 44.9 ± 2.3 60.8 ± 3.4 62.5 ± 3.5 37.2 ± 3.2

AT-L2-GAE 67.0 ± 3.0 50.8 ± 1.7 66.6 ± 1.7 69.4 ± 1.7 44.1± 4.1

AT-Linf-GAE 67.1± 3.8 51.4± 1.9 67.5± 2.8 70.7± 2.2 43.4 ± 4.3

VGAE 58.7 ± 2.7 42.3 ± 2.2 57.3 ± 3.2 58.8 ± 3.5 34.6 ± 2.8

AT-L2-VGAE 67.3± 3.8 50.5± 2.1 66.1± 4.1 67.5± 3.8 44.3± 3.3

AT-Linf-VGAE 65.4 ± 2.3 49.5 ± 1.6 64.0 ± 2.3 65.8 ± 3.0 42.9 ± 2.8

Table 4. Results for node clustering on citeseer.

Methods Acc (in%) NMI (in%) F1 (in%) Precision (in%) ARI (in%)

GAE 51.8 ± 2.6 28.0 ± 1.9 50.6 ± 3.1 55.1 ± 3.1 22.8 ± 2.3

AT-L2-GAE 61.6± 2.3 36.3 ± 1.4 58.8± 2.1 60.9 ± 1.4 34.6± 2.3

AT-Linf-GAE 60.2 ± 2.8 38.0± 2.3 57.0 ± 2.7 61.1± 1.6 34.1 ± 3.4

VGAE 53.6 ± 3.5 28.4 ± 3.3 51.1 ± 3.8 53.2 ± 4.1 26.1 ± 3.5

AT-L2-VGAE 59.2 ± 2.3 35.1 ± 2.3 57.3 ± 2.3 60.4 ± 3.1 33.0 ± 2.4

AT-Linf-VGAE 60.4± 1.5 36.5± 1.4 58.2± 1.4 61.1± 1.4 34.7± 2.0

Table 5. Results for node clustering on PubMed.

Methods Acc (in%) NMI (in%) F1 (in%) Precision (in%) ARI (in%)

GAE 66.2 ± 2.0 27.9 ± 3.7 65.0 ± 2.3 68.8 ± 2.2 27.1 ± 3.3

AT-L2-GAE 67.5 ± 2.9 30.4 ± 5 66.7 ± 3.3 70.2 ± 3.1 28.9 ± 4.8

AT-Linf-GAE 68.4± 1.6 31.9± 3.2 67.7± 1.9 70.9± 1.8 30.2± 2.8

VGAE 67.5 ± 2.0 29.4 ± 3.2 66.5 ± 2.2 69.9 ± 2.2 28.4 ± 3.2

AT-L2-VGAE 69.8± 2.0 33.2± 3.4 69.4± 2.3 71.7± 2.5 32.5± 3.2

AT-Linf-VGAE 68.5 ± 1.2 30.7 ± 2.5 67.4 ± 1.5 70.1 ± 1.5 30.4 ± 2.0

scores. Specifically, the node with larger scores are more likely to be considered
as anomalies.

Model Architecture. Different from link prediction and node clustering, the
model architecture in graph anomaly detection not only contains structure recon-
struction decoder, i.e. link reconstruction, but also contains attribute reconstruc-
tion decoder. We adopt the same model architecture as in the official code of [4]
where the encoder is consisted of two GCN layers, and the decoder of structure
reconstruction decoder is consisted of a GCN layer and a InnerProduction layer,
and the decoder of attributes reconstruction decoder is consisted of two GCN
layers.
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Metrics. Following [4,13], we use the area under the receiver operating charac-
teristic curve (ROC-AUC) as the evaluation metric.

Parameter Settings. We set the α in anomaly scores to 0.5 where it balances
the structure reconstruction errors and attributes reconstruction errors. We train
the GAE model on Flickr, BlogCatalog and ACM datasets with 300 epochs. We
set λ to 5. For adjacency matrix perturbation, we set ε to 3e−1, 5e−5 on both
BlogCatalog and ACM datasets, 1e−3 and 1e−6 on Flickr dataset for L∞ and
L2 adversarial training respectively. For attributes perturbations, we set ε to
1e−3 on BlogCatalog for both L∞ and L2 adversarial training, 1e−3 and 1e−2
on ACM for L∞ and L2 adversarial training respectively, 5e−1 and 3e−1 on
Flickr for L∞ and L2 adversarial training respectively. We set steps T to 1 and
the α to ε

T

Anomaly Generation. Following [4], we inject two kinds of anomaly by per-
turbing structure and nodal attributes respectively:

– Structure anomalies. We randomly select s nodes from the network and then
make those nodes fully connected, and then all the s nodes forming the clique
are labeled as anomalies. t cliques are generated repeatedly and totally there
are s × t structural anomalies.

– Attribute anomalies. We first randomly select s×t nodes as the attribute per-
turbation candidates. For each selected node vi, we randomly select another
k nodes from the network and calculate the Euclidean distance between vi

and all the k nodes. Then the node with largest distance is selected as vj and
the attributes of node vj is changed to the attributes of vi.

In this experiments, we set s = 15 and t = 10, 15, 20 for BlogCatalog, Flickr and
ACM respectively which are the same to [4,13].

Experimental Results. From Table 6, it can be seen that both L2 and L∞
adversarial training boost the performance in detecting anomalous nodes. Since
adversarial training tend to learn feature representations that are less sensitive
to perturbations in the inputs, we conjecture that the adversarial trained node
embeddings are less influenced by the anomalous nodes, which helps the graph
anomaly detection. A similar claim are also made in image domain [15] where
they demonstrate adversarial training of autoencoders are beneficial to novelty
detection.

Table 6. Results w.r.t. AUC (in%) for graph anomaly detection.

Methods Flickr BlogCatalog ACM

GAE 80.2 ± 1.3 82.9 ± 0.3 72.5 ± 0.6

AT-L2-GAE 84.9± 0.2 84.7± 1.4 74.2 ± 1.7

AT-Linf-GAE 81.1 ± 1.1 82.8 ± 1.3 75.3± 0.9
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6 Understanding Adversarial Training

In this section, we explore the impact of three hyper-parameters on the per-
formance of GAE and VGAE with adversarial training, i.e. the ε, λ and T in
generating A′ and X ′. These three hyper-parameters are commonly considered
to control the strength of regularization for adversarial robustness [33]. Besides,
we explore the relationship between the improvements achieved by adversarial
training and node degree.

6.1 The Impact of ε

The experiments are conducted on link prediction and node clustering tasks
based on Cora dataset. We fix ε to 5e−1 and 1e−3 on adjacency matrix pertur-
bation for L∞ and L2 adversarial training respectively when vary ε on attributes
perturbation. We fix ε to 1e−3 and 3e−1 on attributes perturbation for L∞ and
L2 adversarial training respectively when vary ε on adjacency matrix perturba-
tion.

The results are showed in Fig. 1. From Fig. 1, we can see that the perfor-
mance are less sensitive to adjacency matrix perturbation and more sensitive
to attributes perturbation. Besides, it can be seen that there is an increase and
then a decrease trend when increasing ε for attributes perturbation. We conjec-
ture that it is because too large perturbation on attributes may destroy useful
information in attributes. Therefore, it is necessary to carefully adapt the per-
turbation magnitude ε when we apply adversarial training for improving the
generalization of model.

6.2 The Impact of T

The experiments are conducted on link prediction and node clustering tasks
based on Cora dataset. For L2 adversarial training, we set ε to 1e−3 and 5e−1
for adjacency matrix perturbation and attributes perturbation respectively. For
L∞ adversarial training, we set ε to 1e−1 and 1e−3 for adjacency matrix per-
turbation and attributes perturbation respectively. We set λ to 4.

Results are showed in Fig. 2. From Fig. 2, we can see that there is a slightly
drop on both link prediction and node clustering tasks when increasing T from
2 to 4, which implies that a big T is not helpful to improve the generalization of
node embeddings learned by GAE and VGAE. We suggest that one step is good
choice for generating adjacency matrix perturbation and attributes perturbation
in both L2 and L∞ adversarial training.

6.3 The Impact of λ

The experiments are conducted on link prediction and node clustering task based
on Cora dataset. Likewise, for L2 adversarial training, ε is set to 1e−3 and
5e−1 for adjacency matrix perturbation and attributes perturbation respectively.
For L∞ adversarial training, ε is set to 1e−1 and 1e−3 for adjacency matrix
perturbation and attributes perturbation respectively. T is set to 1.
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Fig. 1. The impact of ε in adjacency matrix perturbation and attributes perturbation.
(a)–(d) show AUC/AP values for link prediction task and (e)–(h) show NMI/F1 values
for node clustering task. Dots denote mean values with 30 repeated runs.
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Fig. 2. The impact of steps T . Dots denote mean AUC/AP values for link prediction
task and mean NMI/F1 values for node clustering task.

Fig. 3. The impact of λ. λ is varied from 0 to 7. Dots denote mean Acc for node
clustering task and mean AUC for link prediction task. Experiments are conducted
with 30 repeated runs.

Results are showed in Fig. 3. From Fig. 3, it can be seen that there is a sig-
nificant increasing trend with the increase of λ, which indicates the effectiveness
of both L2 and L∞ adversarial training in improving the generalization of GAE
and VGAE. Besides, we also notice that a too large λ is not necessary and may
lead to a negative effect in generalization of GAE and VGAE.
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Fig. 4. Performance of GAE/VGAE and adversarial trained GAE/VGAE w.r.t.
degrees in Cora and Citeseer datasets.

6.4 Performance w.r.t. Degree

In this section, we explore whether the performance of adversarial trained
GAE/VGAE is sensitive to the degree of nodes. To conduct this experiments, we
firstly learn node embeddings from Cora and Citeseer datasets by GAE/VGAE
with L2/L∞ adversarial training and standard training respectively. The hyper-
parameters are set the same as in the Node clustering task. Then we build a
linear classification based on the learned node embeddings. Their accuracy can
be found in Appendix. The accuracy with respect to degree distribution are
showed in Fig. 4.

From Fig. 4, it can be seen seem that for most degree groups, both L2 and L∞
adversarial trained models outperform standard trained models, which indicates
that both L2 and L∞ adversarial training improve the generalization of GAE and
VGAE with different degrees. However, we also notice that adversarial training
does not achieve a significant improvement on [9, N] group. We conjecture that
it is because node embeddings with very large degrees already achieve a high
generalization.

7 Conclusion

In this paper, we formulated L2 and L∞ adversarial training for GAE and VGAE,
and studied their impact on the generalization performance. We conducted exper-
iments on link prediction, node clustering and graph anomaly detection tasks.
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The results show that both L2 and L∞ adversarial trained GAE and VGAE out-
perform GAE and VGAE with standard training. This indicates that L2 and L∞
adversarial training improve the generalization of GAE and VGAE. Besides, we
showed that the generalization performance achieved by the L2 and L∞ adver-
sarial training is more sensitive to attributes perturbation than adjacency matrix
perturbation, and not sensitive to node degree. In addition, the parameter anal-
ysis suggest that a too large λ, ε and T would lead to a negative effect on the
performance w.r.t. generalization.
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Abstract. Link prediction is one of the most important tasks in graph
machine learning, which aims at predicting whether two nodes in a net-
work have an edge. Real-world graphs typically contain abundant node
and edge attributes, thus how to perform link prediction by simulta-
neously learning structure and attribute information from both interac-
tions/paths between two associated nodes and local neighborhood among
node’s ego subgraph is intractable.

To address this issue, we develop a novel Path-aware Graph Neural
Network (PaGNN) method for link prediction, which incorporates inter-
action and neighborhood information into graph neural networks via
broadcasting and aggregating operations. And a cache strategy is devel-
oped to accelerate the inference process. Extensive experiments show a
superior performance of our proposal over state-of-the-art methods on
real-world link prediction tasks.

1 Introduction

Graph-structured data are ubiquitous in a variety of real-world scenarios, e.g.,
social networks, protein-protein interactions, supply chains, and so on. As one of
the most common and important tasks of graph mining, link prediction, which
aims at predicting the existence of edges connecting a pair of nodes in a graph,
has become an impressive way to solve various crucial problems such as friend
recommendation [24,26], supply chain mining [29], entity interactions prediction
[23,28], and knowledge graph completion [7,17,30].

In general, current researches towards link prediction can be categorized into
three lines: heuristic methods, network embedding based methods and graph
neural network based methods. Heuristic methods [2,13] focus on estimate the
likelihood of the edge through different heuristic similarities between nodes under
certain assumptions, which, unfortunately, may fail when their assumptions do
not hold true in the targeted scenario [11]. Network Embedding (NE) based
methods [3] learn node representation with context (e.g., random walk [5,14]
or neighborhood [22]) in the graph, followed by a well-trained classifier for link
c© Springer Nature Switzerland AG 2021
N. Oliver et al. (Eds.): ECML PKDD 2021, LNAI 12976, pp. 383–398, 2021.
https://doi.org/10.1007/978-3-030-86520-7_24
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prediction. However, most of them fail to take into account the rich attributes of
nodes and edges when learning node representation, so they cannot obtain better
performance and are not suitable for inductive link prediction. By making full use
of the structure and attribute information in an inductive manner, the emerging
Graph Neural Network (GNN) based methods [25] achieve the state-of-the-art
performance in link prediction [12].

Fig. 1. Node roles for link prediction. (Color figure online)

Nevertheless, we believe that the effectiveness and efficiency of current GNN-
based methods for link prediction are still unsatisfactory. Current GNN-based
methods can be categorised into two lines: node-centric and edge-centric. Node-
centric GNN-based methods [32] learn representations of two targeted nodes
via certain GNN architecture independently, followed by a pairwise prediction
function (e.g., MLP, dot product, etc.). Such a two-tower architecture is good
at modeling the surrounding context centered at each targeted node, but fails
to perceive interactions (or paths, red nodes in Fig. 1) between two targeted
nodes (yellow nodes in Fig. 1), which are essential for the effectiveness of some
real-world link prediction scenarios. Recently, several edge-centric GNN-based
methods propose to adopt a different technique (e.g., node labeling function [34],
between-node path reachability [27], enclosing-subgraph level pooling [20], meta-
graph [35], etc.) to model such interactions or paths to some extent, and achieve
better performance. However, on the one hand, they still do not explicitly inte-
grate the structure and attribute information of interactions between targeted
nodes. For example, the node labeling function [20,34] only models the struc-
ture information to some extent, while the between-node path reachability [27]
only estimates reachable probability from one node to another via random walk.
Both of them neglect the abundant attributes of interactions/paths. On the other
hand, all of the above approaches are time-consuming in the training or infer-
ence phase, thus the efficiency becomes a great challenge when scaling up to
industrial graphs with billions of nodes and tens of billions edges. For exam-
ple, Graph learning framework [27] computes the reachability via random walks,
which need to be repeated many times until convergence, and this process also
has to be redone for any newly emerging edge. Therefore, it is time-consuming
when performing inference in huge graphs.

Here, we summarize the challenges facing by current link prediction methods
in three aspects:
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– Integrating the structure and attribute information of interaction. Since most
real-world graphs contain abundant node and edge attributes, and most sce-
narios can benefit from such information, the link prediction model should
be able to subtly model the structure information and attribute information
simultaneously.

– Scalability and Efficiency. Existing works that model interactions by calculat-
ing high-order information are usually time-consuming. How to scale up and
become more efficient is another challenge when performing over real-world
huge graphs.

– Inductive ability. In real-world graphs, nodes and edges may emerge at any
time. To handle such newly emerging nodes and edges requires the inductive
ability of the link prediction model.

Addressing the above challenges, we propose a Path-aware Graph Neural
Network (PaGNN) towards link prediction. Considering the motivation of both
node-centric and edge-centric methods, PaGNN jointly learns the structure and
attribute information from both interactions/paths between two targeted nodes
(edge-centric) and the local neighborhood of each targeted node (node-centric),
through the novel broadcasting and aggregation operation. The broadcasting
operation responds to “send” information from one targeted node to all other
nodes in its local neighborhood and generate the broadcasted embeddings, while
the aggregation operation aims to aggregate information (including to “receive”
the broadcasted embeddings) for another targeted node from its local neigh-
borhood and generate its final embedding. Note that the destination node can
perceive all paths connecting two targeted nodes via aggregating broadcasted
embeddings. Thus, such a broadcasting and aggregation operation can explicitly
integrate structure and attribute information of interactions and local neighbor-
hood of targeted nodes. In addition, addressing the poor scalability and efficiency
of edge-centric methods in the inference phase, we propose a cache embedding
strategy that nearly doubles the speed of the inference phase. Note that by lever-
aging the native inductive power of GNNs, PaGNN can handle newly emerging
nodes and edges naturally. At last, We conduct extensive experiments on sev-
eral public datasets to demonstrate the effectiveness and efficiency of PaGNN
compared with state-of-the-art baselines.

2 Model Formulation

In this section, we introduce the proposed path-aware graph neural network
(PaGNN) model towards link prediction. First, we briefly exhibit the over-
all architecture of PaGNN. Then, we elaborate the detail implementation of
PaGNN, including the broadcasting operator, the aggregation operation, edge
representation learning, and at last the loss function.

2.1 Notations and Definitions

Before diving into PaGNN, we first give the definition of link prediction.
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Fig. 2. Broadcasting operation

Definition 1. Link Prediction. Given an attributed graph G = (V, E ,X),
where V is the set of nodes, E ⊆ V×V is the set of observed edges, and X ∈ R|V|×d

consists of d-dimensional feature vectors of all nodes, as well as a set of labeled
edges L = {(〈u, v〉, y)|u, v ∈ V, y ∈ {0, 1}}, y = 1 denotes that there exists an
edge between u and v (i.e., (u, v) ∈ E), otherwise y = 0, for an unlabeled edge
set U = {(〈u, v〉|u, v ∈ V}, the goal of link prediction is to predict the existence
probability of edges in U .

2.2 Overview of PaGNN

PaGNN aims to learn the representations on the centralized subgraph of two
associated nodes, Fig. 2 and 3 show the overall workflow of PaGNN. By lever-
aging the broadcasting and aggregation operations, PaGNN can model all inter-
action (i.e., paths) and neighborhood information between two associated nodes
of the targeted edge, and generate their embeddings for link prediction. PaGNN
first performs broadcasting and then aggregation operation on both two targeted
nodes. More specifically, one node broadcasts information (called broadcasted
embedding) to nodes in its local neighborhood, then the other node aggregates
information from its neighborhood If there is any overlap between the broad-
casted neighborhood of two nodes, the information from one node can be aggre-
gated by the other node via the paths between them, which means two nodes can
perceive each other. Therefore, the structure and attribute information of the
interactions, as well as the local neighborhood, of the two nodes, can be subtly
modeled through such broadcasting and aggregation operations, and encoded
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Fig. 3. Aggregation operation

into their final embeddings. At last, PaGNN simply employs the concatenation
of final embeddings as the edge representation, and performs a MLP on it to
do binary classification. Moreover, our framework is operated on the central-
ized subgraph of associated nodes within fixed steps, thus it naturally provides
inductive ability.

2.3 Broadcasting Operation

The broadcasting operation aims to “send” a message from a node to other nodes
in its local neighborhood. Formally, given a pair of nodes 〈u, v〉, the goal is to
predict whether an edge exists between them. Without loss of generality, we set
node u to broadcast information to other nodes within the H-hops ego-subgraph
centered on u, denoted as GH

u , details of broadcasting operation are shown in
Fig. 2.

Broadcasting operation is performed in a breadth first search (BFS) style
that attempts to “spread out” from the source nodes. At each step, nodes (called
source nodes) broadcast information to their directed neighbors (called destina-
tion nodes). Specifically, in the k-th step, we maintain a source node set N k

s ,
a destination node set N k

d and a broadcasting edge set Bk
e . N k

s contains the
nodes that will broadcast information (the initial N 1

s only contains node u), N k
d

consists of directed neighbors of nodes in N k
s , Bk

e are edges connecting nodes in
N k

s and N k
d , in other words, Bk

e = {(q, p)|(q, p) ∈ EH
u , q ∈ N k

s , p ∈ N k
d }.

Each node in N k
s first broadcasts information to their directed neighborhoods

in destination nodes set N k
d via the edges in Bk

e . Next, each node in N k
d inte-

grates the broadcasted information together with its own embedding. Then, all
destination nodes form the new N k+1

s of the k + 1-th step. This process will be
repeated H times until all nodes in GH

u receive broadcasted information from u.
As shown in Algorithm 1, VH

u and EH
u are the node set and edge set in GH

u

respectively. hk
u,p ∈ R

d denotes the broadcasted information (called broadcasted
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Algorithm 1. Broadcasting Operation
Require: Source node u, the number of hops H,

node u’s H-hop enclosing subgraph GH
u = (VH

u , EH
u ),

original node features {xp | p ∈ VH
u }.

Ensure: broadcasted embeddings {hH
u,p | p ∈ VH

u }.
1: h0

u,p ← xp, ∀p ∈ VH
u

2: N 1
s ← {u}

3: for k = 1...H do
4: Bk

e ← {(q, p) | q ∈ N k
s , (q, p) ∈ EH

u }
5: N k

d ← {p |(q, p) ∈ BH
e }

6: for p ∈ N k
d do

7: zku,p ← ATT OP (xp, {hk−1
u,q | (q, p) ∈ Bk

e})
8: hk

u,p ← LSTM OP (hk−1
u,p , zku,p)

9: end for
10: for p ∈ VH

u − N k
d do

11: hk
u,p ← hk−1

u,p

12: end for
13: N k+1

s ← N k
d

14: end for

embeddings) that starts from u and ends with p at the k-th step. The information
broadcasted from u to node p is initialized as p’s original feature xp (h0

u,p, line 1).
At the k-th step, Bk

e is updated as the directed edges of N k
s and N k

d is extracted
from GH

u , which are the directed neighbors of N k
s (line 5). In order to handle

the situation that different source nodes in N k
s broadcast information to the

same destination node, we first employ the attention mechanism (ATT OP in
line 7) to aggregate the broadcasted embedding, and then we employs a LSTM-
like operator [6] (LSTM OP in line 8) to combine embeddings of the k − 1-th
step and the k-th step. Note that the integrated embedding will become the
propagated embedding of the next step. And for nodes in VH

u but not in N k
d ,

the broadcasted embeddings stay the same as previous step (line 10 to 12). The
attention operator ATT OP of the k-th step is defined as:

αk
q,p =

exp(vk
φ

T
σ(Wk

φ1[xp,hk−1
u,q ]))

∑
q′∈Nk

s ,(q′,p)∈EH
u

exp(vk
φ

T
σ(Wk

φ1[xp,hk−1
u,q′ ]))

, (1)

zk
u,p = σ(Wk

φ2[
∑

q∈Nk
s ,(q,p)∈EH

u

αk
q,ph

k−1
u,q ,xp]) (2)

where αk
q,p is the attention value, zk

q,p is the intermedia embedding after atten-
tion calculation and the input of the next LSTM-like operator, [·, ·] denotes the
concatenation of embeddings, vk

φ,Wk
φ1,W

k
φ2 are learnable parameters. Next, the

LSTM OP integrates the information of the k − 1-th step and the k-th step:
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iku,p = σ(Wϕi[hk−1
u,p , zk

u,p]),

fk
u,p = σ(Wϕf [hk−1

u,p , zk
u,p]),

ck
u,p = fk−1

u,p � ck−1
u,p + iku,p � tanh(Wϕc[hk−1

u,p , zk
u,p]),

ok
u,p = σ(Wϕo[hk−1

u,p , zk
u,p]),

hk
u,p = ok

u,p � tanh(ck
u,p),

where iu,p, fu,p,ou,p are input gate, forget gate and output gate in LSTM
respectively. Wϕi,Wϕf ,Wϕo are learnable parameters and cu,p is the cell state
with c0u,p = 0. After H step, the final broadcasted embedding hH

u,p is taken as
the output which may contains the structure and attribute information from
node u to node p.

2.4 Aggregation Operation

Different from conventional GCN-based model, the aggregation operation in
PaGNN not only recursively aggregates neighbor attributes but also aims to
“receive” the broadcasted embeddings from the other node. Suppose informa-
tion is broadcasted from u and aggregated to v, we will introduce details of
aggregation operation, as illustrated in Fig. 3.

First, node u broadcasts information to nodes among its centralized sub-
graph GH

u , then hH
u,p, ∀p ∈ VH

u is obtained. Afterwards, nodes in v’s centralized
subgraph GH

v aggregate broadcasted embeddings and initial node attribute to
v. Before aggregation, initial embedding r0u,p is set to combination of its broad-
casted embedding and initial node attributes. In particular, if there is no path
between u and p, the broadcasted information is set to 0, which is defined as:

r0u,p =

{
[hH

u,p,xp], p ∈ VH
v ∩ VH

u

[0,xp], p ∈ VH
v − VH

u

, ∀p ∈ VH
v (3)

At last, for each node p ∈ VH
v , p aggregates information from its neighbors

in a GCN style:

rk
u,p ← AGG(rk−1

u,p , {rk−1
u,i | (i, p) ∈ EH

v }), ∀p ∈ VH
v (4)

where AGG is the aggregation function, rH
u,v represents information that broad-

casted from u and aggregated to v at H-th step is taken as output.

2.5 Edge Representation Learning

With the broadcasting and the aggregation operation mentioned above, edge
〈u, v〉 is represented from two ways. PaGNN first broadcasts information from u
among GH

u and aggregates information to v among GH
v , rH

u,v is obtained. Mean-
while, we broadcast information from v among GH

v and aggregate to u among
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GH
u , rH

v,u is obtained. Concatenation of two embeddings is taken as the edge
representation:

su,v = [rH
u,v, rH

v,u] (5)

Loss Function . On the basis of edge representation, we employ a cross entropy
loss based on the edge representation:

loss = − 1
|L|

∑

(〈u,v〉,y)∈L
y log(ŷ) + (1 − y) log(1 − ŷ), (6)

Where ŷ = MLP (su,v) and MLP (·) is a multi-layer perception with two fully-
connected layers.

2.6 Cache Strategy in Inference

As PaGNN is operated on subgraph of each candidate edge, it’s more time-
consuming than node-centric model. To address this, we design a cache mecha-
nism to accelerate the inference.

For two associated nodes 〈u, v〉, since u only broadcasts information to neigh-
bors among its ego subgraph GH

u , it’s obviously that no matter where v is, the
broadcasted embeddings of u are the same. In other words, different v doesn’t
affect any broadcasted embeddings of u. Base on this property, we can pre-
calculate broadcasted embeddings hH

u,p for u and cache it in storage. When u
appears as a targeted node in inference, the cached broadcasted embeddings can
be reused. As a result, only aggregation operation is necessary by leveraging
cache strategy.

Time Complexity . For PaGNN, suppose information is broadcasted from u
and aggregated to v, the time complexity is O(H(|EH

u |+ |VH
u |)) for broadcasting

and O(H(|EH
v |+|VH

v |)) for aggregating. Based on above analysis, the overall time
complexity for training and inference stage is O(H(|EH

u |+ |VH
u |+ |VH

v |+ |VH
v |)).

With the cache strategy, the inference time complexity decreases to
O(H(|EH

v | + |VH
v |)), since only aggregation operation is required. As a result,

our cache strategy has a nearly two times speed-up for PaGNN.

2.7 Summary

Comparing with other GNN models, PaGNN integrates the broadcasted embed-
dings into the aggregation process (Eq. 3 and 4). The broadcasting mechanism
guarantees that information is broadcasted from a subset of nodes Ns, and other
nodes in Nd can only absorb information from nodes in the subset. This mecha-
nism guarantees that we only aggregate the information from the path between
two target nodes.

On one hand, nodes on the overlap of two ego-subgraphs (p ∈ VH
v ∩ VH

u ) not
only receive broadcasted information from u, but also aggregate this information
to v, these nodes are called “bridge nodes”. And if p ∈ VH

v −VH
u , the “interaction

information” is set to 0, indicating that node p isn’t on any path between u and
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v, which is also useful to label the node role. Therefore node v integrates all
the structure and attribute information from interaction between u and
v through the “bridge nodes”. On the other hand, all nodes in GH

v aggregate its
attributes to v, thus representation of node v also embeds the structure
and attribute information from its local neighborhood .

In summary, PaGNN jointly learns structure and attribute information from
both interaction and local neighborhood. And since PaGNN is operated on sub-
graphs of associated nodes, it provides inductive ability.

3 Experiments

3.1 Experiment Setup

Data Protection Statement. (1) The data used in this research does not
involve any Personal Identifiable Information (PII). (2) The data used in this
research were all processed by data abstraction and data encryption, and the
researchers were unable to restore the original data. (3) Sufficient data protection
was carried out during the process of experiments to prevent the data leakage
and the data was destroyed after the experiments were finished. (4) The data is
only used for academic research and sampled from the original data, therefore it
does not represent any real business situation in Ant Financial Services Group.

Datasets. We adopt four real-world dataset from different domains to evaluate
the effectiveness of our model, consisting of Collab1 and PubMeb [31] from
bibliographic domain, Facebook2 from social domain and SupChain [29] from
E-commerce domain. The statistics of these datasets are illustrated in Table 1.

Table 1. The statistics of the datasets.

Datasets PubMed Facebook Collab SupChain

Nodes 19.7K 4.0K 235.8K 23.4M

Edges 44.3K 66.2K 1.2M 103.2M

Node features 500 161 53 95

Baseline. We compare our proposal with following three categories of link pre-
diction methods:

Heuristic Methods. Two heuristic methods are implemented: the Common
Neighbors (CN) [13] and the Jaccard [19].

Network Embedding Methods. We include two network embedding meth-
ods, DeepWalk [14] and Node2vec [5]. Network embedding based methods are
1 https://snap.stanford.edu/ogb/data/linkproppred.
2 https://snap.stanford.edu/data/egonets-Facebook.html.

https://snap.stanford.edu/ogb/data/linkproppred
https://snap.stanford.edu/data/egonets-Facebook.html
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implemented based on open source code3, which can not be applied to large
scale graph, as a consequence, experiment on dataset SupChain is unable to be
conducted.

Node-Centric GNN Methods. We take PinSage [32] as baseline, which
encodes node information via a GNN model, and then predicts the edges
based on a pairwise decoder (a MLP layer). In our experiment, GCN and
GAT [21] models are chosen as encoders, which are represented as PinSageGCN ,
PinSageGAT .

Edge-Centric GNN Methods. We also compare our model with link pre-
diction models that learn high order interactive structure on targeted edge’s
subgraph, such as SEAL [34], and GraIL [20]. Note that, SEAL and GraIL not
only label node roles but also integrate it with node attributes.

Ablation Studies. To study the effectiveness of broadcasted embeddings, we
remove it before information aggregation, i.e. Eq. 3 is set as r0u,p = [0,xp].
This method is represented as PaGNNbroadcast. We further quantitatively ana-
lyze whether only broadcasting information from one node is enough for pre-
dicting the edges, i.e., Eq. 5 is changed to su,v = rH

u,v, it’s represented as
PaGNNtwo way. And in order to demonstrate effectiveness of LSTM OP in
broadcasting, we change LSTM OP to concatenation, i.e. hk

u,p = [hk−1
u,p , zk

u,p] in
Algorithm 1 (line 8), and it is represented as PaGNNlstm.

Specifically, GAT is chosen as the aggregation function for all edge-centric
GNN methods.

Parameter Setting. For all GNN models, we set the scale of the enclosing
subgraph H to 2, embedding size to 32, and other hyper-parameters are set to be
the same. For all labeled candidate edges, we randomly sampled 75% of the them
as the training set, 5% as the validation set, and 20% as the test set. The negative
injection trick mentioned in previous work [1] is also employed, i.e. the negative
samples are also inserted into original graph G. We adopt Adam optimizer for
parameter optimization with an initial learning rate 0.001. The other hyper-
parameters are set to be the same. All GNN based models are trained on a
cluster of 10 Dual-CPU servers with AGL [33] framework.

Metric. In the link prediction task, we adopt the Area Under Curve (AUC)
and F1-score as metrics to evaluate all these models, as done in many other link
prediction work.

3.2 Performance Comparison

Table 2 summarizes the performance of the proposed method and other methods
on four datasets. Based on the results of the experiment, we summarize the
following points:
3 https://github.com/shenweichen/GraphEmbedding.

https://github.com/shenweichen/GraphEmbedding


Inductive Link Prediction with Interactive Structure Learning 393

Table 2. Performance comparison on four Datasets

Types Model AUC F1

Facebook PubMed Collab SupChain Facebook PubMed Collab SupChain

Heuristic CN 0.927 0.662 0.771 0.601 0.869 0.492 0.703 0.593

Heuristic Jaccard 0.938 0.630 0.801 0.622 0.874 0.527 0.719 0.601

NE DeepWalk 0.884 0.842 0.864 – 0.826 0.826 0.811 –

NE Node2vec 0.902 0.897 0.857 – 0.855 0.867 0.821 –

Node PinSageGCN 0.924 0.823 0.851 0.941 0.900 0.766 0.910 0.763

Node PinSageGAT 0.917 0.832 0.833 0.968 0.902 0.774 0.909 0.822

Edge SEAL (attributed) 0.963 0.898 0.909 0.977 0.915 0.841 0.923 0.862

Edge GraIL (attributed) 0.971 0.904 0.947 0.979 0.928 0.848 0.964 0.864

Edge PaGNNtwo way 0.909 0.762 0.902 0.976 0.820 0.720 0.921 0.861

Edge PaGNNbroadcast 0.940 0.866 0.853 0.970 0.917 0.790 0.910 0.848

Edge PaGNNlstm 0.969 0.934 0.958 0.978 0.932 0.852 0.976 0.868

Edge PaGNN 0.972 0.944 0.967 0.987 0.933 0.878 0.979 0.897

Heuristic-Based Methods achieve considerable performance on the social net-
work dataset (i.e., Facebook), but poor performance on the other three datasets.
It indicates that the assumptions of heuristic methods are not applicable in
many types of network data. Compared with the heuristic method, the net-
work embedding methods achieve better results, but the effectiveness are
worse than node-centric GNN models. One reason is that the GNN method
straightforwardly leverages the node attributes and learns representations in a
supervised manner.

All edge-centric GNN models achieve better performance since they take
the interaction structure into account. And PaGNN performs better than the
other edge-centric GNN models: SEAL and GraIL, although they have com-
bined high-order interactions with node attributes. This is because PaGNN
explicitly incorporates interaction and node attribute information into GNN.
Labeling nodes with the structure may not achieve satisfied performance when
the attribute on path is crucial.

From the experimental results of ablation studies, PaGNNtwo way is worse
than PaGNN and it’s unstable on some datasets. It is due to when there is no
path between two nodes, the final representation only contains local neighbor-
hood information of one node, performance of PaGNNtwo way drops signifi-
cantly. For example, PubMed data is relatively sparse and only 18.2% samples
are connected, the performance of PaGNNtwo way is poor. Comparing the per-
formance of PaGNN and PaGNNlstm, it can be observed that LSTM OP is
effective to integrate the interactions and node attributes, since LSTM forgets
useless information. In particular, by observing results of PaGNNbroadcast and
PaGNN, the broadcasted embeddings significantly improve the performance,
which verify the effectiveness of the broadcasting operation.

On average, PaGNN improved upon the best baseline of every dataset by
1.7% in AUC and by 1.4% in F1. In summary, PaGNN outperforms all baselines,
and every studied component has a positive impact on final results.
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Parameter Sensitivity. We also evaluate model performance on the Collab
dataset as H ranges from 1 to 5, shown in Fig. 4(a). All models achieved the
best performance when H = 2. The AUC value decreases when H > 2, which
indicates a large H may bring in noises from distant nodes. PaGNNlstm shows
better performance than PaGNN when H = 1, since the LSTM OP has no
advantage when path is short. When H becomes larger, PaGNN shows better
performance, since LSTM forgets useless path information of distant nodes.

The convergence of different models is also evaluated. Figure 4(b) records the
validation AUC of varying training steps. PinSageGAT first achieves the best
performance at 6K training steps, as it learns minimum parameters. GraIL
and PaGNN need more time to be converged, which takes about 8K to 10K
training steps. Figure 4(c) compares the performance of varying node embedding
size, three models are over-fitting when embedding size is larger than 32.

Fig. 4. Parameter sensitivity.

Case Study. To examine whether PaGNN learns interaction information, we
illustrate an example of Facebook dataset in Fig. 5, the goal is to predict whether
two yellow nodes exist an edge, nodes on the path between them are colored
with green and other nodes are colored gray, and the value is the attention of
corresponding edge in last aggregation step. We can learn that the neighbor
attention output by PinSageGAT between associated node and its neighbors
is almost the same, without regard to where the neighbor is. Attention value
of nodes on the path of edge-centric methods is larger, which indicates they
have ability to find the pattern that nodes on path are more important. And
comparing with GraIL, attention value of green nodes for PaGNN is larger,
shown in Fig. 5(b) and (c).

To further prove the impact of paths, in Facebook and SupChain dataset,
we categorize candidate relations into different groups according to the number
of paths between two target persons or enterprises, proportion of each group is
illustrated in Fig. 6. It can be learned that observed friends in social network
and enterprises with supply-chain relationship tend to have more paths, which
drives to effectively capture fine-grained interactions between target node pairs.
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Fig. 5. Attention of different models. (Color figure online)

Fig. 6. Relation distribution of different path number.

3.3 Efficiency Analysis

Training Phase. We calculate the training time of three models with varying H
on Collab dataset (Fig. 7(a)). The training time increases rapidly as H increases,
and all edge-centric models are more time-consuming than node-centric models.
PaGNN takes about 1.5 longer the training time comparing with PinSageGAT

when H = 1, but about 3.5 times the training time when H = 5. It is due to
that as H increases, the subgraphs become larger, for node-centric methods,
different edges’ subgraphs in same batch share more common nodes, which avoids
duplicate computation comparing with edge-centric methods.

Inference Phase. Efficiency evaluation of inference phase is illustrated in
Fig. 7(b). It can be inferred that edge-centric methods need more time. For exam-
ple, PaGNN takes 2.4 times longer than PinSageGAT when H = 5, and GraIL
takes 2.0 times longer. Fortunately, the cache strategy significantly improves the
efficiency of PaGNN, which takes 1.7 times longer than PinSageGAT when
H = 5 and has a 30% speed-up compared to PaGNN without cache strategy. In
particular, although the time complexity of cache strategy analysed in Sect. 2.6
has a two times speed-up theoretically, the statistics reported here are the time
cost of the whole inference phase (also including subgraph extraction, input data
preparing).

To summarize, comparing with node-centric models (e.g. PinSage), edge-
centric models (e.g. PaGNN, SEAL, GraIL) achieve better performance despite
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Fig. 7. Training and inference time per step.

being more time-consuming, since edge-centric models consider high-order inter-
active information. Nevertheless, our proposal with the cache strategy takes less
time comparing with other edge-centric models (SEAL and GraIL).

4 Related Work

Previous work for link prediction can be divided into the heuristic methods,
network embedding, and supervised methods. Heuristic methods usually assume
that nodes with links satisfy some specific properties. For instance, common
neighbor [13] defines the similarity as the number of shared neighbors of two
nodes. Katz index [9] calculates similarity by counting the number of reachable
paths. The rooted PageRank [2] calculates the stationary distribution from one
node to other nodes through random walk. These heuristic methods rely on
hand-crafted rules and have strong assumptions, which can not be applied to all
kinds of networks.

Recently, a number of researchers propose to perform link prediction through
constructing node latent features, which are learned via classical matrix factor-
ization [10,18] and shallow graph representation learning (e.g., Deepwalk [14]
and Node2Vec [5]). And there is also research [20,34] inductively predicts node
relations by leveraging graph neural networks, which combine high-order topo-
logical and initial features in the form of graph patterns. However, it learns high-
order information and node attributes separately. Some literature [4,8,15,16,35]
also considers integrating target behavior information in a heterogeneous graph,
which requires nodes and edges belong to a specific type. Research work [27] also
employs characteristics of path reachability to represent high-order information,
but fails to integrate the path structure and attributes.

5 Conclusion

In this paper, we aim at simultaneously leveraging the structure and attribute
information from both interactions/paths and local neighborhood, to predict the
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edge between two nodes. A novel PaGNN model is proposed which first broad-
casts information from one node, afterwards aggregates broadcasted embeddings
and node attributes to the other node from its ego subgraph. PaGNN induc-
tively learns representation from node attributes and structures, which incor-
porates high-order interaction and neighborhood information into GNN. And
we also employ a cache strategy to accelerate inference stage. Comprehensive
experiments show the effectiveness and efficiency of our proposal on real-world
datasets.
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Abstract. Network data can often be represented in a multi-layered
structure with rich semantics. One example is e-commerce data, con-
taining user-user social network layer and item-item context layer, with
cross-layer user-item interactions. Given the dual characters of homo-
geneity within each layer and heterogeneity across layers, we seek to
learn node representations from such a multi-layered heterogeneous net-
work while jointly preserving structural information and network seman-
tics. In contrast, previous works on network embedding mainly focus
on single-layered or homogeneous networks with one type of nodes and
links. In this paper we propose intra- and cross-layer proximity concepts.
Intra-layer proximity simulates propagation along homogeneous nodes to
explore latent structural similarities. Cross-layer proximity captures net-
work semantics by extending heterogeneous neighborhood across layers.
Through extensive experiments on four datasets, we demonstrate that
our model achieves substantial gains in different real-world domains over
state-of-the-art baselines.

Keywords: Representation learning · Heterogeneous network ·
Dimensionality reduction

1 Introduction

Much of the data on the Web can be represented in a network structure, ranging
from social and biological to academic networks, etc. Network analysis recently
attracts escalating research attention due to its importance and wide applicabil-
ity. Diverse problems could be formulated as network tasks, e.g., recommending
items to users on e-commerce [12]. As the primary information is the inherent
structure of the network itself, one promising direction known as the network
embedding problem is to learn the representation of each node, which could in
turn fuel tasks such as node classification, node clustering, and link prediction.

Figure 1 illustrates an example network with various object types (users,
movies, movie actors). These objects are connected via various links, e.g., a
user may friend other users, favor some movies, and follow some actors, while a
movie may share similar contexts as another (being added to the same preference
c© Springer Nature Switzerland AG 2021
N. Oliver et al. (Eds.): ECML PKDD 2021, LNAI 12976, pp. 399–416, 2021.
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User social network layer

Movie actor collaboration layer

Movie-movie
context layer

Movies 
favored by users

Movie actors 
followed by users

Movies
starred by actors

Fig. 1. Illustration of multi-layered heterogeneous network. Three homogeneous layers
(user social network layer, movie-movie context layer, movie actor collaboration layer)
are connected by heterogeneous interactions.

folder, or recommended in the same movie list) or feature some actors. Network
embedding learns a low-dimensional representation for each node (user, movie,
or actor), which preserves the network information. In turn, the node represen-
tations may be used in applications such as predicting whether a user is likely
to favor a movie, or whether a user is likely to friend another user.

Present Work and Challenges. Previous works on network embedding focus
on homogeneous networks [19,23]. They treat all nodes and edges as the same
type, regardless of varying relations. Such homogeneous treatment may miss out
on the nuances that arise from the diversity of associations (e.g., user favoring
a movie has different semantics from movie featuring an actor).

More recent works recognize the value of absorbing the varying semantics
into the node representation, modeling a heterogeneous network. However, to
encode semantics, models such as Metapath2vec [6] rely on the notion of meta-
path scheme (sequence of node types that make up a path). These are to be
prespecified in advance, requiring domain-specific knowledge (incurring manual
costs) or exhaustive enumeration of schemes (incurring computational costs).
Other models [11] only consider each edge relation as one type of connections, but
ignore the two end-point nodes are sometimes mutually homogeneous, thereby
losing structural information in node embeddings.

Proposed Approach and Contributions. We observe that complex networks
simultaneously exhibit homogeneous and heterogeneous tendencies. The inter-
play between the two gives rise to a multi-layered structure, whereby each layer
encodes the structural connectivity of objects of the same type, and connections
across layers bear rich semantics between objects of different types. Figure 1 can
be seen as a multi-layered heterogeneous network with three layers. We offer a
formal definition in Sect. 3.
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Given the dual characters of multi-layered network, we seek to learn node
embeddings that preserve both structure and semantics to facilitate downstream
tasks, e.g., item recommendation in e-commerce, user alignment across multiple
social networks [15]. In contrast to heterogeneous models that rely on prespecified
schemes [6], the cross-layer proximity of our model naturally ‘induces’ various
schemes by how it models layers, and its maximum order controls the semantics
learning. In contrast to heterogeneous models [11] that do not consider that the
two end-point nodes are sometimes mutually homogeneous, we use nodes of the
same type to jointly preserve semantics, so as to embody structural proximity.

In this paper, we propose Multi-Layered Heterogeneous Network
Embedding, or (MultiLayeredHNE), describing how it models both intra-
layer proximities to explore structural similarities in a breadth-wise propagation
manner and cross-layer proximities for depth-wise semantics capture in Sect. 4.
In a nutshell, like ripples expanding across the water, intra-layer proximities
broadcast one node’s homogeneous neighborhood hop by hop to investigate
latent structural relationships. Cross-layer proximities iteratively extend het-
erogeneous relations layer by layer and leverage intra-layer proximities to jointly
preserve network semantics.

Our contributions in this paper are as follows:

– Though “multi-layered” notion may have appeared in prior, here we articulate
a concrete definition in the context of heterogeneous network. Importantly,
we define the novel notions of intra- and cross-layer proximities underlining
our approach.

– To capture network homogeneity and heterogeneity jointly, we propose a novel
framework that encodes both structural proximity and network semantics into
unified node embeddings by higher-order intra- and cross-layer proximities.

– We conduct extensive experiments on four real datasets, and the results val-
idate the effectiveness of our model over state-of-the-art baselines.

2 Related Work

Here we review related research works for homogeneous, heterogeneous, and
multi-layered network embedding.

Homogeneous Network Embedding. Homogeneous networks are those with
one single type of nodes and links. DeepWalk [19] generates random walk on the
network as corpus and applies skip-gram model to train the nodes. Node2vec [9]
extends DeepWalk by simulating biased random walk to explore diverse neighbor-
hoods. LINE [23] learns node representations by preserving first- and second-order
proximities. GraRep [2] generalizes LINE to incorporate higher-order proximities,
but may not scale efficiently to very large networks. These methods mainly focus
on embedding network topology to preserve structural information.

Meanwhile, there are also models dealing with attributed homogeneous net-
works with task-specific supervision (e.g., GCN [26], GAT [24]). They are dif-
ferent from our model that embeds network in an unsupervised manner to sup-
port arbitrary downstream tasks. Others that operate on attributed graph for



402 D. C. Zhang and H. W. Lauw

Table 1. Summary of main notations.

Notation Explanation

G The input network

V, E The node set and edge set, resp.

O,R The node type set and edge type set, resp.

L The layer set

Im
v The mth-order intra-layer proximity of node v

Cn
v The nth-order cross-layer proximity of node v

M,N Maximum order of intra- and cross-layer proximity, resp.

K Number of negative samples

multi-modal learning (EP [8]) and are designed specifically for document network
(Adjacent-Encoder [27]) are also not directly comparable.

Heterogeneous Network Embedding. Some heterogeneous network models
leverage meta-path-based random walks to capture network semantics, such as
Metapath2vec [6] and HIN2vec [7]. The applications of meta-path-based models
(e.g. recommender systems) are also widely studied [20]. Some of them simulate
meta-paths of specified schemes on each network to preserve complex semantics.
To this end, the cross-layer proximity of our model does not restrict to specific
schemes, and its maximum order controls the semantics learning. There also
exist some methods that do not require specific meta-paths, such as HeGAN
[11], which utilizes GAN to generate fake nodes to train discriminator. More
recently, Graph Neural Networks have been successfully applied to attributed
heterogeneous networks with satisfactory results [25].

Multi-layered Network Embedding. Multi-layered networks, as a set of inter-
dependent network layers, appear in real-world scenarios including recommender
and academic systems, cross-platform social networks, etc. Previous works focus
on cross-layer links inference [4,5] and network ranking [18]. MANE [14] stud-
ies representation learning on multi-layered networks by seeking low-dimensional
node embeddings by modeling each intra-layer and cross-layer links. Our model
has a couple of distinctions. For one, we incorporate higher-order proximities. For
another, the manner in which we model proximities integrates nodes with similar
structures, instead of predicting links individually. These differences do make a
difference to the effectiveness of our node embeddings (see Sect. 5).

There exists another definition of “multi-layered” network [16], which really
is multiplex or multi-view network [3], where there are multiple relationships
between the same set of nodes. In contrast, multi-layered network in this paper
refers to a set of interdependent network layers, each with a different set of nodes.

3 Definitions and Problem Formulation

We introduce intra- and cross-layer proximities, and formalize our problem.
Table 1 lists the notations.
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Definition 1. A Heterogeneous Information Network (HIN) G =
{V, E ,O,R} consists of a node set V and an edge set E. This network is asso-
ciated with a node type mapping function φ: V → O and an edge type mapping
function ϕ: E → R. O and R represent the sets of predefined node types and
edge types respectively, where |O| + |R| > 2.

We use the terms edge and link interchangeably, ditto for network and graph.
Multi-layered network is defined over HIN, with an additional requirement of
layers.

Definition 2. A Multi-Layered Heterogeneous Network G = {V, E ,O,
R,L} is a connected HIN that contains a layer set L of |L| > 1 homogeneous
network layers. In addition to φ and ϕ, we have two more mapping functions.
The node mapping function θ: V → L projects each node v ∈ V to a certain layer
lv ∈ L. The edge mapping function ϑ: E → L×L places each edge e ∈ E between
two layers (le,1, le,2) ∈ L × L.

L × L = {(le,1, le,2)|le,1, le,2 ∈ L} represents the Cartesian product of two
sets. Thus le,1 and le,2 could be the same, and edge e is intra-layer, otherwise
cross-layer.

Figure 1 illustrates a multi-layered network with three homogeneous lay-
ers (user–user, movie–movie, actor–actor) and three heterogeneous interactions
(user–movie, movie–actor, user–actor). Intra-layer edges (black) connect nodes
of the same type. Cross-layer edges (green) of different relations connect arbi-
trary type of nodes. Multi-layered networks are a subset of HIN, as each layer
contains intra-layer edges.

Problem 1. Given a multi-layered heterogeneous network G = {V, E ,O,R,L},
the goal of Representation Learning on Multi-Layered Heterogeneous
Network is to learn a mapping function to project each node v ∈ V to a low-
dimensional space R

d where d � |V|. The node representation in the new space
should preserve both structural proximities and network semantics within G.

To harness contributions from intra-layer edges containing structural infor-
mation within layers and from cross-layer edges capturing semantics, we propose
the MultiLayeredHNE framework built on intra-layer proximity and cross-
layer proximity.

Definition 3. The mth-order Intra-Layer Proximity of node v is defined as
the set of nodes that can be reached by m intra-layer edges from v:

Im
v = {vm|vm−1 ∈ Im−1

v , (vm−1, vm) ∈ E , lvm = lvm−1}, (1)

where m = 1, 2, ...,M , and I0
v = {v}.

This concept is illustrated by Fig. 2(a) (best seen in color). Here we suppose
this network is homogeneous within a network layer. Node v’s first-order intra-
layer proximity consists of four nodes inside the inner white circle with black
links connecting them. Similarly nodes lying in the gray annulus represent v’s
second-order intra-layer proximity. We can extend this concept up to M th order
and obtain IM

v .
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Definition 4. The nth-order Cross-Layer Proximity of node v is defined as
the set of nodes that can be reached by n cross-layer edges from v:

Cn
v = {vn|vn−1 ∈ Cn−1

v , (vn−1, vn) ∈ E , lvn �= lvn−1}, (2)

where n = 1, 2, ..., N , and C0
v = {v}.

To illustrate this concept, we use Fig. 2(d) (best seen in color). v1
C represents

one node in v’s first-order cross-layer proximity with a cross-layer green link
connecting them. Extending this example up to N th order, we obtain CN

v .

Fig. 2. Illustration of intra- and cross-layer proximity modeling. (Color figure online)

4 Model Architecture

We now describe our proposed model MultiLayeredHNE. It consists of two
modeling components. First, intra-layer proximity modeling (Figs. 2(a) and (b))
simulates the breadth-wise propagation across homogeneous neighbors within
layers to explore structural similarities. Second, cross-layer proximity modeling
(Fig. 2(c) and (d)) captures semantics by extending heterogeneous neighborhood
across layers.

4.1 Intra-layer Proximity Modeling

Suppose that v ∈ R
d is the embedding of a node v. This is the quantity that

we seek to derive. Intra-layer proximity concerns the relationships between v
and its homogeneous neighbors from the same layer. We first consider the first-
order proximity (m = 1). This effectively concerns the direct neighbors of v,
collectively denoted I1

v . The embedding of each first-order neighbor v1
i ∈ I1

v is
denoted v1

i ∈ R
d. Since intra-layer proximities contain nodes of the same type,
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it is reasonable to treat these nodes homogeneously. Thus we derive a represen-
tation of v’s first-order intra-layer proximity v1

I as a weighted aggregation of its
neighbors’ embeddings.

v1
I =

|I1
v |∑

i=1

α1
iv

1
i . (3)

Not all neighbors are equally important to v. Some may be of greater importance.
Therefore, the aggregation in Eq. 3 factors in an attention coefficient w.r.t. v.

a1
i = σ(vTv1

i ), α1
i =

exp(a1
i )∑|I1

v |
i=1 exp(a1

i )
, (4)

where i = 1, 2, ..., |I1
v |, and σ is sigmoid function. The attention values α1

i can
be regarded as the similarity between v and v1

i , as illustrated by Fig. 2(a). This
aggregation is illustrated in Fig. 2(b). Here v1

I can be seen as the first-order
propagation of v, or the first “ripple” of intra-layer proximity.

Extending beyond the first-order proximity, we repeat the process above
(Eqs. 3–4) for each mth-order intra-layer proximity up to the a specified maxi-
mum order M , propagating to the subsequent ripples. This generates a set of
representations {vm

I }Mm=1 = {v1
I ,v

2
I , ...,v

M
I }. For simplicity, we let v0

I = v.
Proximities indicate a shared relationship. Nodes within maximum proximity

from v would likely have similar representation with v. Thus, given node v and
{Im

v }Mm=1, our objective is to minimize the following negative log-likelihood.

− log P (v1
I ,v

2
I , ...,v

M
I |v) = −

M∑

m=1

log P (vm
I |v). (5)

4.2 Cross-Layer Proximity Modeling

Beyond a single layer, connections across layers encode network semantics. Node
v and its intra-layer proximities {Im

v }Mm=1 are mutually homogeneous, they are
expected to reflect the same identity. They would carry information to jointly
preserve semantics w.r.t. v’s cross-layer proximities. Formally, for each node
vn
C ∈ Cn

v in nth-order cross-layer proximity, we have the following negative log-
likelihood.

− log P (vn
C |v0

I , ...,v
M
I ) = − log P (vn

C |
M∑

m=0

βn,mvm
I ). (6)

Given v and its intra-layer proximities {vm
I }Mm=1, we force them to predict

the observation of cross-layer node vn
C together. As we increase the order of intra-

layer proximity M and reach more nodes, more noisy nodes may inadvertently
be included. Thus we expect that different vm

I may affect this prediction to
different degrees. This is the intuition behind βn,m, which measures the relative
importance of vm

I .

bn,m = σ(vnT
C vm

I ), βn,m =
exp(bn,m)

∑M
m=0 exp(bn,m)

. (7)
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This is illustrated by Fig. 2(c), where we evaluate attention between v1
C and

{vm
I }Mm=0. βn,m is specific to each cross-layer node, since different nodes capture

semantics from different aspects. For example, a user and his friends may like
superhero movies, but suppose he is the only one who likes it because of the
actors. In this case, βn,m should be assigned equally between the user and his
friends in terms of superhero genre, but biased to only the user in terms of actors.

Similarly as for intra-layer, we extend cross-layer proximity to specified max-
imum N th order, and obtain the following objective, which is also illustrated by
Fig. 2(d).

−
N∑

n=1

∑

vn
C∈Cn

v

log P (vn
C |

M∑

m=0

βn,mvm
I ). (8)

Table 2. Dataset statistics.

Dataset #nodes #intra-layer links #cross-layer links #layers #labels

ACM 30,126 77,484 38,772 3 7

Aminer 17,504 72,237 35,229 3 8

TF 3,218 25,811 1,609 2 N.A.

LastFM 19,524 301,015 92,834 2 N.A.

4.3 Learning Strategy

As in [6], the conditional probabilities in Eq. 5 and 8 are defined as the hetero-
geneous softmax function.

P (vj |vi) =
exp(vT

j vi)∑
lvk=lvj

exp(vT
k vi)

, (9)

where vk comes from the same network layer as vj . Here we use P (vj |vi) to
denote both conditional probabilities for simplicity. Finally, we leverage hetero-
geneous negative sampling to approximate both objective functions, and obtain
Eq. 10, where K is the number of negative samples. vk is a negative sample,
randomly drawn from a noise distribution Pl(vk) defined on the node set of each
proximity’s corresponding layer. vn

C is one node from v’s nth-order cross-layer
proximity, sampled at each iteration.

J =Jintra + Jcross

=−
M∑

m=1

(
log σ(vmT

I v) +

K∑

k=1

Evk∼Pl(vk)
log σ(−vmT

k v)

)

−
N∑

n=1

Evn
C

∼Cn
v

(
log σ(vnT

C

M∑

m=0

βn,mvm
I ) +

K∑

k=1

Evk∼Pl(vk)
log σ(−vT

k

M∑

m=0

βn,mvm
I )

)
.

(10)
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Complexity. We use Imax to denote the maximum size of intra-layer proximity,
and |Ecross| to denote the number of cross-layer links in the network, thus we
have O(|Ecross|Md(Imax + K)) per iteration for intra-layer proximity modeling,
where d represents the dimensionality of node embeddings. The complexity of
cross-layer proximity modeling is O(|Ecross|Nd(M + K)) on a training iteration.
Putting two components together, we have O(|Ecross|d(MImax + MN + KM +
KN)) per iteration.

5 Experiments

Our experimental objective is to validate the node embeddings learned by Mul-
tiLayeredHNE as compared to baselines.

5.1 Setup

We conduct experiments on four publicly available datasets from different
domains. Table 2 summarizes their statistics. ACM [21] and Aminer [14] are
two academic datasets with three network layers: co-authorship, paper citation,
and venue citation layer. Two types of cross-layer links are author-paper and
paper-venue links. Twitter-Foursquare (TF) [29] is a cross-platform social net-
work dataset, containing two social networks: Twitter and Foursquare. Each
node only has one cross-layer link, representing his identity across two platforms.
LastFM [12] is a recommendation dataset with two layers: user-user social net-
work and artist-artist context network. TF and LastFM are reserved for link
prediction task only, since they do not have labels for nodes.

Baselines. To investigate the efficacy of modeling heterogeneity, we compare
to two homogeneous baselines that treat all nodes and links as the same type:
DeepWalk [19] and LINE [23]. For LINE, we consider the advanced version
with first- and second-order proximities with d/2 dimensions each. To study
the effects of homogeneity in addition to heterogeneity, we compare to three

Table 3. Micro-F1 and Macro-F1 scores of node classification on ACM.

Model Micro-F1 Macro-F1

20% 40% 60% 80% 20% 40% 60% 80%

DeepWalk 0.916 0.920 0.919 0.919 0.872 0.877 0.876 0.878

LINE (1st+2nd) 0.924 0.926 0.927 0.927 0.875 0.879 0.880 0.879

Metapath2vec 0.921 0.921 0.922 0.926 0.887 0.887 0.888 0.887

HIN2vec 0.936 0.938 0.938 0.937 0.902 0.908 0.907 0.906

HeGAN 0.938 0.940 0.941 0.941 0.903 0.908 0.910 0.918

MANE 0.842 0.850 0.854 0.859 0.711 0.742 0.756 0.759

GAT 0.867 0.908 0.927 0.921 0.786 0.853 0.883 0.875

HAN 0.828 0.869 0.900 0.905 0.728 0.773 0.824 0.834

MultiLayeredHNE 0.951* 0.954* 0.956* 0.953* 0.919* 0.928* 0.933* 0.929*
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Table 4. Micro-F1 and Macro-F1 scores of node classification on Aminer.

Model Micro-F1 Macro-F1

20% 40% 60% 80% 20% 40% 60% 80%

DeepWalk 0.959 0.962 0.963 0.964 0.922 0.930 0.934 0.931

LINE (1st+2nd) 0.964 0.967 0.968 0.969 0.925 0.930 0.933 0.935

Metapath2vec 0.962 0.963 0.964 0.964 0.870 0.876 0.886 0.893

HIN2vec 0.960 0.962 0.963 0.963 0.922 0.925 0.926 0.927

HeGAN 0.955 0.960 0.963 0.966 0.875 0.892 0.895 0.905

MANE 0.949 0.953 0.956 0.955 0.876 0.893 0.900 0.903

GAT 0.946 0.958 0.965 0.969 0.867 0.919 0.927 0.925

HAN 0.908 0.942 0.956 0.959 0.888 0.911 0.918 0.931

MultiLayeredHNE 0.972* 0.974* 0.975* 0.975* 0.926* 0.935* 0.943* 0.944*

heterogeneous baselines: Metapath2vec [6], HIN2vec [7], and HeGAN [11].
To see if higher-order proximities are useful, we compare to a multi-layer base-
line: MANE [14]. Although GCN-based models are designed with task-specific
supervision, and different from our unsupervised model, for completeness, we
still compare to GAT [24] and HAN [25].

Implementation Details. Hyperparameters are chosen based on validation set.
For MultiLayeredHNE, intra-layer proximity order M is 1 on all datasets. The
cross-layer proximity order N is 4 for ACM and Aminer, 1 for TF and LastFM.
The number of negative samples K is 16. For random walk models, as in [25], the
number of walks per node is 40, the walk length is 100, the window size is 5. For
Metapath2vec, the combination of meta-path schemes APVPA and APPVPPA
has the best performance on ACM and Aminer. TTTF and TFFF produce the
best results on TF, while for LastFM we combine UAUA, UUUA, and UAAA.
For other baselines, we follow the hyperparameter settings in the original paper.
For fair comparison, as in [11], the embedding dimension is set to 64 for all
methods.

Table 5. NMI on node clustering.

Model ACM Aminer

DeepWalk 0.519 0.787

LINE (1st+2nd) 0.458 0.800

Metapath2vec 0.358 0.570

HIN2vec 0.201 0.589

HeGAN 0.322 0.586

MANE 0.473 0.789

GAT 0.497 0.832

HAN 0.499 0.781

MultiLayeredHNE 0.534* 0.862*
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5.2 Node Classification

We expect a good model to embed nodes from the same category closely, while
separating different categories. We train a logistic regression based on the embed-
dings, varying the ratio of the training set from 20% to 80% (of these, 10% is
further reserved for validation). We report Micro-F1 and Macro-F1 scores on
the testing sets in Tables 3 and 4 for the two respective datasets that are appli-
cable. In this paper we use “*” to denote that the performance of our model is
significantly different from the best baseline model’s based on the paired t-test
at the significance level of 0.01.

MultiLayeredHNE consistently outperforms the baselines across all train-
ing splits. As the training ratio increases, all models tend to perform better,
as expected. It is worth noting that HIN-based models, including MultiLay-
eredHNE, generally classify nodes more accurately than those models working
solely on homogeneous networks, highlighting the effectiveness of modeling net-
work semantics. Among HIN embedding models, Metapath2vec based on only
specific cross-layer links performs the worst, emphasizing the necessity of mod-
eling both intra-layer and cross-layer links.

5.3 Node Clustering

Intuitively, good node embeddings would put “similar” nodes together. We apply
K-means algorithm [1] to perform clustering on the node embeddings. Since for
ACM and Aminer, nodes are labeled, we can assess whether nodes in a cluster
tend to share the same labels. We evaluate the clustering quality using Normal-
ized Mutual Information (NMI) w.r.t. the true labels (not used in training).

Table 6. Intra-layer link prediction results.

Model ACM Aminer TF LastFM

AUC AP F1 AUC AP F1 AUC AP F1 AUC AP F1

DeepWalk 0.900 0.908 0.688 0.880 0.860 0.685 0.678 0.651 0.683 0.587 0.600 0.693

LINE (1st+2nd) 0.962 0.972 0.668 0.811 0.731 0.739 0.701 0.725 0.661 0.665 0.729 0.666

Metapath2vec 0.786 0.830 0.672 0.851 0.840 0.667 0.620 0.621 0.666 0.789 0.778 0.502

HIN2vec 0.871 0.872 0.671 0.579 0.544 0.667 0.770 0.749 0.667 0.884 0.876 0.682

HeGAN 0.509 0.517 0.667 0.641 0.626 0.667 0.512 0.510 0.667 0.507 0.504 0.665

MANE 0.973 0.978 0.675 0.871 0.858 0.688 0.750 0.693 0.679 0.864 0.873 0.667

GAT 0.674 0.675 0.589 0.854 0.812 0.583 - - - - - -

HAN 0.592 0.607 0.585 0.647 0.638 0.608 - - - - - -

MultiLayeredHNE 0.979* 0.983* 0.799* 0.897* 0.890* 0.795* 0.798* 0.823* 0.722* 0.880 0.892* 0.768*

Table 5 presents the results. Overall, MultiLayeredHNE outperforms base-
line models significantly. In comparison to DeepWalk and LINE that model
all nodes and links homogeneously, we observe that our distinctive treatment
of intra-layer and cross-layer proximities is helpful. MultiLayeredHNE also
clusters nodes more effectively than MANE, demonstrating that higher-order



410 D. C. Zhang and H. W. Lauw

proximities could help better explore network structure. Overall, MultiLay-
eredHNE achieves performance gains over the closest baseline by 2.8% and
7.7%, respectively.

5.4 Link Prediction

Here we predict intra- and cross-layer links, respectively. For intra-layer link
prediction, we predict the author-author link on ACM and Aminer [22], user-user
link on Twitter of TF [28], and artist-artist link on LastFM. As in leave-one-out
evaluation [10], for nodes with more than one intra-layer links, we hide one as the
ground truth positives, and randomly sample the same number of disconnected
node pairs as negative instances. The remaining network is our training set. Since
this is a binary classification for the held-out links, we adopt inner product [13]
to make predictions, and report AUC, Average Precision (AP), and F1 score in
Table 6. For cross-layer link prediction, we predict author-paper links on ACM
and Aminer [11], user-user links on TF, and user-artist links on LastFM. We
hide cross-layer links similarly with intra-layer. Table 7 presents the results. Since
GAT and HAN are designed with label supervision to learn embeddings, they
do not have link prediction results on TF and LastFM.

MultiLayeredHNE generally outperforms baselines significantly on all
evaluation metrics, except for the sole case of the LastFM dataset. For intra-
layer link prediction, compared with DeepWalk and LINE, this task verifies
the effectiveness of MultiLayeredHNE on predicting links between homoge-
neous nodes. We attribute this to the network heterogeneity captured by our
model. For cross-layer link prediction, MultiLayeredHNE benefits from the
structure-preserving embeddings learned via intra-layer proximity as compared
with heterogeneous baselines.

5.5 Network Visualization

Visualization provides an intuitive sense of how nodes are embedded. We visual-
ize node embeddings using t-SNE [17], and color nodes using their correspond-
ing labels. Figure 3 presents four models on ACM dataset. By encoding network

Table 7. Cross-layer link prediction results.

Model ACM Aminer TF LastFM

AUC AP F1 AUC AP F1 AUC AP F1 AUC AP F1

DeepWalk 0.891 0.887 0.690 0.923 0.919 0.687 0.707 0.720 0.669 0.606 0.617 0.647

LINE (1st+2nd) 0.912 0.920 0.685 0.894 0.842 0.781 0.725 0.750 0.663 0.714 0.746 0.646

Metapath2vec 0.780 0.798 0.704 0.819 0.773 0.691 0.916 0.911 0.752 0.923 0.906 0.476

HIN2vec 0.929 0.939 0.223 0.921 0.924 0.173 0.524 0.561 0.173 0.265 0.397 0.276

HeGAN 0.530 0.534 0.268 0.683 0.683 0.545 0.705 0.685 0.168 0.535 0.527 0.027

MANE 0.923 0.913 0.670 0.906 0.857 0.673 0.724 0.727 0.646 0.736 0.765 0.645

GAT 0.653 0.629 0.549 0.880 0.832 0.574 - - - - - -

HAN 0.606 0.590 0.554 0.690 0.669 0.667 - - - - - -

MultiLayeredHNE 0.950* 0.948* 0.812* 0.936* 0.925* 0.827* 0.954* 0.952* 0.799* 0.919 0.911* 0.837*
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Fig. 3. t-SNE visualization on ACM dataset.

structural proximity and semantics, MultiLayeredHNE provides denser clus-
ters with clearer category boundaries than others.

5.6 Model Analysis

Here we conduct several analysis on MultiLayeredHNE to better understand
the underlying mechanism of it.

Homogeneity and Heterogeneity. To investigate if MultiLayeredHNE
effectively leverages network homogeneity and heterogeneity, we conduct abla-
tion analysis here. MultiLayeredHNE-homo removes the intra-layer proxim-
ity modeling, and only maintains cross-layer proximity. Conversely, MultiLay-
eredHNE-hetero assumes all nodes and links are of the same type, and discards
network layer concept to investigate network semantics.

Results in Fig. 4 reveal three insights. First, MultiLayeredHNE-homo per-
forms worse than MultiLayeredHNE, showcasing the advantage of modeling
structural information. Second, MultiLayeredHNE can indeed encode seman-
tics, since MultiLayeredHNE-hetero, which ignores heterogeneity, leads to
worse performance compared to MultiLayeredHNE. Third, by comparing
MultiLayeredHNE-homo and MultiLayeredHNE-hetero, we conclude that
network structural proximity is more informative than semantics, as Multi-
LayeredHNE-homo drops more than MultiLayeredHNE-hetero from Mul-
tiLayeredHNE.

Fig. 4. Impact of homogeneity and heterogeneity
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Fig. 5. MultiLayeredHNE parameter sensitivity

Parameter Sensitivity. We vary maximum order of intra- and cross-layer prox-
imity to investigate performance sensitivity. We report the results of clustering
(NMI) on ACM dataset in Fig. 5. We first test intra-layer proximity order M .
Compared with M = 0 where no intra-layer proximity is modeled, MultiLay-
eredHNE achieves notable performance gain at M = 1. However, our model
deteriorates its clustering when M is greater than 1, since more noisy neighbors
are involved.

We then vary the order of cross-layer proximity N . Too small N apparently
could not effectively explore network semantics. The clustering quality is boosted
as the order increases, emphasizing the efficacy of modeling cross-layer proximity
to capture network heterogeneity and semantics.

Intra-layer Proximity Size |Im
v |. We limit the size of each intra-layer prox-

imity to further investigate the robustness of MultiLayeredHNE on sparse
scenarios. Figure 5(c) shows the results. With the increase of the size of intra-
layer proximity, the performance of MultiLayeredHNE is improved at first,
because a larger set of neighbors can encode more structural information on the
network. But the clustering results decrease slightly and then stay flat when the
size is too large. Overall, the performance is stable w.r.t. different sizes.

Number of Dimensions d. To check the impact of different embedding dimen-
sions d on model performance, we vary the value of d and report the results
(Fig. 5 (d)). With the growth of d from 16 to 32, NMI rises at first, and fluc-
tuates slightly when d > 32. Since small dimensions cannot fully encode the
rich information embodied by the networks, increasing d could potentially cap-
ture more features, thereby boosting experiment results. When d is overly large,
e.g., d = 256, over-fitting problem may happen, and the performance decreases.
Overall, our model still performs relatively stable with different dimensions.
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Fig. 6. Case study on ACM dataset (best seen in color). t-SNE visualization of various
conferences (orange) from different years and most active authors (green) in those
years. (Color figure online)

5.7 Case Study

As an illustration of how MultiLayeredHNE encodes homogeneity and het-
erogeneity, we conduct a case study on ACM dataset. We randomly select two or
three years of each conference, and draw the most active authors in those years.
Figure 6 shows the t-SNE visualization. Interestingly, the distance between 12th

and 13th WWW conferences (top right corner) is shorter than their distances to
17th WWW conference. SIGMOD (bottom right corner) also has similar obser-
vations, where 1995 and 1997 are almost overlapping, but far from 2008. That
closer years are more related is quite intuitive. Researchers tend to cite more
recent papers, authors also collaborate with recently active researchers. Due to
intra-layer modeling, our model is able to capture these homogeneous connec-
tions.

Figure 6 also depicts close relationships between conferences and their highly-
profiled authors. Moreover, different areas tend to display some separation. Data
points from Data Mining, Databases, and Artificial Intelligence dominate the
right-hand side, while left-hand side has more from Information Security, Oper-
ating Systems, and Computer Architecture. This layout among conferences from
diverse domains, and among authors actively involved in conferences of different
years, demonstrates the embedding ability of MultiLayeredHNE to preserve
network heterogeneity.
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6 Conclusion

We formalize the multi-layered heterogeneous network embedding problem, and
propose a novel framework MultiLayeredHNE to model intra- and cross-layer
proximity. Due to the dual characters of multi-layered networks on homogeneity
and heterogeneity, our model learns node embeddings that preserve network
topology and semantics jointly. Extensive experiments verify the effectiveness
of our model on four public datasets. With ablation analysis, we show that our
model could effectively benefit from both modeling components.
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Abstract. Graph Convolutional Networks (GCNs) are state-of-the-art
approaches for semi-supervised node classification task. By increasing
the number of layers, GCNs utilize high-order relations between nodes
that are more than two hops away from each other. However, GCNs with
many layers face three drawbacks: (1) over-fitting due to the increasing
number of parameters, (2) over-smoothing in which embeddings con-
verge to similar values, and (3) the difficulty in selecting the appropriate
number of propagation hops. In this paper, we propose ANEPN that
effectively utilizes high-order relations between nodes by overcoming the
above drawbacks of GCNs. First, we introduce Embedding Propagation
Loss which increases the number of propagation hops while keeping the
number of parameters constant for mitigating over-fitting. Second, we
propose Anti-Smoothness Loss (ASL) that prevents embeddings from
converging to similar values for avoiding over-smoothing. Third, we intro-
duce a metric for predicted class labels for adaptively controlling the
number of propagation hops. We show that ANEPN outperforms ten
state-of-the-art approaches on three standard datasets.

1 Introduction

Semi-supervised node classification aims to predict the class labels of nodes
in a graph, a popular task in graph analysis. Graph Convolutional Networks
(GCNs) [12], which are a family of neural networks, have achieved the state-
of-the-art performance on the task. GCNs combine graph structure and node
features by propagating node embeddings to neighbors on a graph. Recently,
many variants of GCNs have been developed, including Graph attention net-
works [20,26], GraphSage [11], GraphUnet [8], and LNet [14].

In the previous approaches, GCNs typically consist of two layers in perform-
ing semi-supervised node classification; they do not utilize high-order relations
between nodes more than two hops away from each other. We should utilize
high-order relations by stacking many layers of GCNs in semi-supervised node
c© Springer Nature Switzerland AG 2021
N. Oliver et al. (Eds.): ECML PKDD 2021, LNAI 12976, pp. 417–433, 2021.
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classification, since high-order relations are known to be beneficial when labeled
data size is small [24]. However, GCNs with many layers have the following three
drawbacks. First, GCNs with many layers are prone to over-fitting to labeled
dataset [28] since the number of parameters in GCNs increases with the num-
ber of layers. Second, stacking many layers of GCNs causes over-smoothing of
node embeddings, i.e., a phenomenon in which the embeddings of all connected
nodes converge to similar values [13]. Third, existing GCNs need to predefine the
number of layers, i.e., the number of propagation hops. This indicates that they
require careful effort to select the number of propagation hops since the appro-
priate number of hops is not known in advance depending on input graphs.

To address the above three drawbacks, this paper presents Adaptive Node
Embedding Propagation Network (ANEPN) that utilizes high-order relations
between nodes by adaptively increasing the number of propagation hops.
ANEPN is effective for semi-supervised node classification, since it can leverages
high-order relations that is more beneficial as labeled data size gets smaller. First,
to avoid over-fitting, we introduce Embedding Propagation Loss (EPL), which
increases the number of propagation hops while keeping the number of param-
eters constant. The novel idea of EPL is that node embeddings are propagated
by an update rule of the gradient descent. Thus, ANEPN can propagate node
embeddings to neighbors within many hops by iteratively applying the update
rule without increasing the number of layers. Second, to avoid over-smoothing,
we additionally introduce Anti-Smoothness Loss (ASL). ASL imposes a penalty
on structurally distant nodes (not directly linked nodes) in a graph, so that
those nodes have dissimilar embeddings. Third, ANEPN automatically selects
the appropriate number of propagation hops by employing the idea of metric
learning [6]. That is, ANEPN controls the number of propagation hops by using a
metric that evaluates predicted class labels; it minimizes within-class variance of
node embeddings and maximizes between-classes variance of node embeddings.
Our experimental results on three datasets show that ANEPN outperforms ten
state-of-the-art approaches under various label rates.

The rest of the paper is organized as follows. Section 2 introduces prelim-
inaries. In Sect. 3, we propose ANEPN to address the drawbacks of GCNs. In
Sect. 4, we conduct experiments to validate the effectiveness of ANEPN on semi-
supervised node classification. Section 5 introduces related work. Finally, Sect. 6
concludes this paper.

2 Preliminaries

2.1 Problem Definition

An attribute graph G with N nodes is represented by an adjacency matrix A,
a feature matrix X and a class matrix T . In the adjacency matrix A ∈ R

N×N ,
the (i,j)-th element Aij = 1 if there is an edge between node i and node j,
Aij = 0 otherwise. D ∈ R

N×N = diag(d1, · · · , dN ) denotes the degree matrix of
A, where di =

∑
j Aij is the degree of node i. The normalized graph laplacian
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Table 1. Notations and definitions

N Number of nodes

F Dimension of features

C Number of classes

E Number of edges

H Dimension of hidden layer

A ∈ R
N×N Adjacency matrix

X ∈ R
N×F Feature matrix

T ∈ R
N×C Class matrix

D ∈ R
N×N Degree matrix

L̃ ∈ R
N×N Normalized graph laplacian matrix

G ∈ R
N×N Graph filter matrix

W (0) ∈ R
F×H , W (1) ∈ R

H×C Weight matrices

B(0) ∈ R
N×H , B(1) ∈ R

N×C Bias matrices

Z ∈ R
N×H Node embeddings

Y ∈ R
N×C Predicted label matrix

α, β Coefficients of losses

μ Margin

Δα Increasing step

Ti Interval of increasing

Tp Iteration to pre-train

Tmax Maximum iteration

patience Patience for training stop

matrix L̃ are defined as L̃ = I − D− 1
2AD− 1

2 , where I ∈ R
N×N is an identity

matrix. The feature matrix X ∈ R
N×F represents node features information,

where the i-th row vector Xi,: is the F -dimensional feature vector of node i.
The class matrix T ∈ R

N×C contains class information of each node, where C
is the number of classes. Nodes in a given attributed graph are divided into two
sets, the labeled node set VL and the unlabeled node set VU . Ti,: ∈ {0, 1}C is a
one-hot vector if node i is included in the labeled node set VL, and Ti,: is a zero
vector otherwise. We summarize notations and their definitions in Table 1. For
a given attributed graph G, semi-supervised node classification aims to predict
the class labels of unlabeled nodes in the unlabeled node set VU .

2.2 Graph Convolutional Networks

A two-layer GCN [12] is a standard GCN model. It has a single hidden layer
and an output layer, and applies graph convolution in each layer. The GCN
propagates the embedding of a node to its neighbors within two hops since
the number of propagation hops corresponds to the number of layers. Graph
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convolution is defined as the multiplication of a graph filter matrix G ∈ R
N×N

and the feature matrix X (or node embeddings). The graph filter is known as
a low-pass filter that filters out noises in node features [23]. Kipf and Welling
(2017) defines the graph filter as:

G = I + L̃. (1)

They further applied a normalization trick to the graph filter G as:

I + L̃ → D̃− 1
2 ÃD̃− 1

2 , (2)

where Ã = A + I and D̃ii =
∑

j Ãij . Let H be the dimension of the hidden
layer. Let W (0) ∈ R

F×H and B(0) ∈ R
N×H denote the weight matrix and the

bias matrix1 in the hidden layer, respectively. In the hidden layer, the GCN
outputs node embeddings Z ∈ R

N×H as:

Z = max(GXW (0) + B(0), 0). (3)

In the output layer, the GCN outputs a predicted label matrix Y ∈ R
N×C as:

Y = softmax(GZW (1) + B(1)), (4)

where W (1) ∈ R
H×C and B(1) ∈ R

N×C denote the weight matrix and the bias
matrix in the output layer, respectively. Besides, softmax(P )ic = Pic∑

c Pic
for

a matrix P . In Eq. (4), the GCN propagates the embedding of a node to its
neighbors by the multiplication of the graph filter G and node embeddings Z
as:

(GZ)ij =
Zij

di + 1
+

∑

k∈Γ(i)

Zkj√
di + 1

√
dk + 1

, (5)

where Γ(i) denotes the set of neighbors of node i. In Eq. (5), the first and second
terms on the right side work as propagating node embeddings from a node and
its neighbors to the node itself. So, the coefficients 1

di+1 and 1√
di+1

√
dk+1

indicate
propagation weights for self loops and neighbors, respectively. The loss function
of the GCN is defined as the cross entropy loss to minimize the difference between
the class labels of labeled nodes in predicting class labels:

Lce = −
N,C∑

i,c=1

Tic log(Yic). (6)

The parameters (W (0), B(0), W (1) and B(1)) are trained to decrease the loss.

3 Our Approach

This section presents ANEPN, a new node embedding propagation approach
that effectively utilizes high-order relations between nodes by overcoming three
1 We express bias in a matrix form by expanding a bias vector.
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issues: over-fitting, over-smoothing, and the difficulty in selecting the appropriate
number of propagation hops. The loss L for ANEPN consists of cross entropy
loss Lce and two additional losses: Embedding Propagation Loss (EPL) Lep and
Anti-Smoothness Loss (ASL) Lasm as follows;

L = Lce + αLep + βLasm, (7)

where α and β are the coefficients of EPL and ASL, respectively. EPL enables
ANEPN to increase the number of propagation hops while keeping the number
of parameters constant, so ANEPN avoids over-fitting. ANEPN also avoids over-
smoothing of node embeddings by using ASL since it prevents embeddings of
all connected nodes from converging to similar values. Furthermore, ANEPN
automatically selects the appropriate number of propagation hops by introducing
a metric that evaluates the quality of predicted class labels.

3.1 Embedding Propagation Loss

The idea of EPL is that node embeddings are propagated by an update rule of the
gradient descent. To this end, we design EPL as a function of node embeddings
Z and then formulate the update rule of Z that works as graph convolution to Z.
By iteratively applying the update rule, ANEPN propagates node embeddings
without increasing the number of layers, i.e., increasing the number of parame-
ters. Hence, ANEPN can propagate node embeddings to neighbors within many
hops without over-fitting. First, we define a general form of update rule for node
embeddings Z. Then, we derive EPL from the update rule.

Update Rule for Node Embeddings. Let ∂Lep

∂W
(0)
:,h

and ∂Lep

∂B
(0)
:,h

be the gradient of

Lep with respect to W
(0)
:,h and B

(0)
:,h , respectively, since Z = GXW (0) + B(0).2

Let η denote a learning rate. The h-th column vector Z:,h ∈ R
N is updated

according to the gradient descent algorithm as follows:

Z:,h ← GX(W (0)
:,h − η

∂Lep

∂W
(0)
:,h

) + B
(0)
:,h − η

∂Lep

∂B
(0)
:,h

. (8)

Let ∂Lep

∂Z :,h
be the gradient of Lep with respect to Z:,h. By the chain rule (i.e.,

∂Lep

∂W
(0)
:,h

= ∂Lep

∂Z :,h

∂Z :,h

∂W
(0)
:,h

and ∂Lep

∂B
(0)
:,h

= ∂Lep

∂Z :,h

∂Z :,h

∂B
(0)
:,h

), Eq. (8) is rewritten as:

Z:,h ← Z:,h − ηGX(GX)T ∂Lep

∂Z:,h
− η

∂Lep

∂Z:,h
, (9)

In order to propagate node embeddings, we design ∂Lep

∂Z :,h
to express graph con-

volution to node embeddings, i.e., the multiplication of a graph filter (γL̃− νI)

2 We ignore max(·,0) since we remove it later (see Sect. 3.4).
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and node embeddings where γ and ν are scalar parameters:

∂Lep

∂Z:,h
= (γL̃ − νI)Z:,h. (10)

By using Eq. (10), the third term in Eq. (9) updates Z as follows:

Zih ← (ν − γ)Zih + γ
∑

j∈Γ(i)

Zjh√
di

√
dj

. (11)

The update rule of Eq. (11) corresponds to a single hop propagation of node
embeddings Z. The first and second terms in the update rule work as propagating
node embeddings from a node and its neighbors to the node itself.3 Therefore,
ANEPN propagates node embeddings in multiple hops by iteratively applying
the update rule instead of stacking many layers including parameters, e.g., weight
matrices. As a result, ANEPN can utilize high-order relations by increasing the
number of iterations t while keeping the number of the parameters constant.

Derivation of EPL. We derive EPL Lep by integrating both sides in Eq. (10):

Lep(γ, ν) =
∫

(γL̃ − νI)Z:,hdZ:,h. (12)

Equation (12) shows a general form of embedding propagation loss, which is
parameterized by the propagation weights (γ and ν) in graph convolution. This
equation suggests that we can have several variations of EPL by assigning the
scalar parameters γ and ν. As an example, we consider a smoothness loss, which
measures the smoothness of embeddings between adjacent nodes; it corresponds

to the smoothness used in [7,27]. Specifically, by assigning ν to 2ZT
:,hZ :,h

H(ZT
:,hZ :,h)2

and

γ to 2ZT
:,hL̃Z :,h

H(ZT
:,hZ :,h)2

, we have:

Lep =
1

2H

H,N,N∑

h,i,j=1

Aij(
Ẑih√

di

− Ẑjh√
dj

)2, (13)

where Ẑ:,h = Z :,h
||Z :,h|| . By minimizing EPL (smoothness), the node embeddings

become smoother, i.e., structurally near nodes on a graph have more similar
embeddings. We use this variation of EPL in our experiments. It is our future
work to investigate other variations.

3.2 Anti-smoothness Loss

To avoid over-smoothing of node embeddings, we introduce Anti-Smoothness
Loss (ASL) which increases the smoothness of embeddings between structurally
3 From the aspect of node embedding propagation, the update rule in Eq. (11) has a

similar effect to the GCN propagation rule in Eq. (5).
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distant nodes so that the nodes have dissimilar node embeddings. We refer
to the smoothness of embeddings between structurally distant nodes as anti-
smoothness. It is defined as the sum of distances between embeddings of struc-
turally distant nodes as follows:

1
2H

H,N,N∑

h,i,j=1

Āij(
Ẑih√

d̄i

− Ẑjh√
d̄j

)2, (14)

where d̄i =
∑

j Āij . In Eq. (14), Ā = J − A where Jij = 0 when i = j, and
Jij = 1 otherwise. Ā is a negative edge matrix expressed with virtual edges
between structurally distant nodes. In order to reduce computational cost, we
under-sample 2E negative edges from Ā where E is the number of edges in
A by following [16], since the number of negative edges in Ā is very large.
For simplification, we adopt random uniform sampling4. Replacing Ā with the
sampled negative edge matrix Āsam, we formulate ASL function as follows:

Lasm =max(μ− 1
2H

H,N,N∑

h,i,j=1

Āsam
ij (

Ẑih√
d̄i

− Ẑjh√
d̄j

)2, 0). (15)

In Eq. (15), to ensure that ASL is positive value, we introduce a margin parame-
ter μ indicating the degree of the anti-smoothness and use max(·, 0) by utilizing
the idea used in [10]. We use the same coefficient both for EPL and ASL by
assigning β = α (see Eq. (7)), since these losses adversarially work to each
other [9].

3.3 Adaptive Propagation Control

To adaptively control the number of iterations t, i.e., the number of propagation
hops in semi-supervised node classification, we introduce a metric to evaluate
predicted class labels. This metric is beneficial in particular when labeled data
size is small, since it does not use given labels. We can adaptively control t based
on the metric, depending on input graphs.

To introduce the metric, we employ the idea of Siamese Network [6], which
proposes a metric learning. Our idea is that we select the appropriate num-
ber of propagation hops by leveraging class variance used in Siamese Net-
work. It minimizes within-class variance of node embeddings (i.e., the sum of
squared distances between embeddings of nodes with the same class labels)
and maximizes between-classes variance of node embeddings (i.e., the sum of
squared distances between embeddings of nodes with different class labels). Let
m = 1

N

∑
i Zi,: denote the average vector of embeddings of all nodes. Besides,

mq = 1
Nq

∑
i∈Cq

Zi,: denote the average vector of embeddings of nodes in class

4 We remove negative edges between nodes with one or more common neighbors
from sampling because those nodes are considered to be structurally close to each
other [19,21].
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Algorithm 1 ANEPN
Input: attributed graph G = {A,X ,T }, number of sampled negative edge Ē = 2E,

increasing step Δα, interval of increasing Tint, iteration to pre-train Tp, maximum
iteration Tmax, number of patience for training stop patience

Output: predicted class labels Y
1: ### Parameter initialization and Pre-process ###
2: α ← 0 � coefficient for EPL and ASL
3: pat count ← 0 � Patience count for training stop
4: X̄ ← G2X � pre-smoothing
5: Āsam ← negative edge sampling(A,Ē)
6: ### Pre-training ###
7: for t from 1 to Tp do
8: Z ← X̄W (0) + B(0)

9: Y ← softmax(ZW (1) + B(1))
10: loss ← Lce

11: Update parameters (W (0),B(0),W (1),B(1))
12: ### Training ###
13: for t from Tp to Tmax do
14: Z ← X̄W (0) + B(0)

15: Y ← softmax(ZW (1) + B(1))
16: if t%Tint == 0 then
17: α+ = Δα
18: if VR(t)(Z ,Y ) ≤ VR(t−1)(Z ,Y ) then
19: pat count+ = 1
20: if patience == pat count then
21: break
22: loss ← Lce + αLep + αLasm

23: Update parameters (W (0),B(0),W (1),B(1))
24: return Y

Cq, where Nq is the number of nodes in class Cq. By using node embedding Z
and predicted labels Y , we define the within-class variance as trace Tr(Wc) of
the within-class variance matrix Wc ∈ R

N×N as follows:

Tr(Wc)=Tr(
C∑

q=1

∑

i∈Cq

(Zi,; − mq)T (Zi,: − mq)). (16)

Similarly, we define the between-classes variance as trace Tr(Bc) of the between-
classes variance matrix Bc ∈ R

N×N as follows:

Tr(Bc) = Tr(
C∑

q=1

Nq(mq − m)T (mq − m)). (17)

Finally, by extending the Calinski-Harabasz index [4], which is a clustering per-
formance metric, we define the metric to evaluate all node embeddings and
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predicted labels as ratio of the above two variances:

VR(Z,Y ) =
Tr(Bc)
Tr(Wc)

× N − C

C − 1
(18)

We adaptively control the number of iterations t so that VR(Z,Y ) is higher.
To improve classification accuracy, we also control the coefficient α of two addi-
tional losses, EPL and ASL. In the proposed approach, we iteratively increment t
and the coefficient α, and compute VR(t)(Z,Y ), which is VR(Z,Y ) with respect
to t, in each iteration. If the variance ratio is smaller than that in previous iter-
ation, i.e., if VR(t)(Z,Y ) ≤ VR(t−1)(Z,Y ), we increment patience count p by
1. Then, we stop the iteration if p equals a given patience q. By using patience
as in early stopping, we can avoid stopping the iteration when the variance ratio
unexpectedly decreases.

3.4 Architecture of ANEPN

We change the architecture of the two-layer GCN [12] to improve classification
performance. First, we remove max(·, 0) in the hidden layer (see Eq. (3)) since the
function could lead to the over-smoothing [17]. Second, because node embeddings
are propagated by using EPL, we move the graph filter G in the output layer
(see Eq. (4)) into the hidden layer as follows:

Z = G2XW (0) + B(0), (19)

Y = softmax(ZW (1) + B(1)). (20)

Third, since the graph filter G = D̃− 1
2 ÃD̃− 1

2 used in [12] may not appropriately
filter out noises, we adopt the optimal low-pass filter G = I − 1

2 L̃ used in [27]
to filter out noises in the feature matrix (Table 2).

Table 2. Dataset statistics

Dataset #Nodes #Edges #Features #Classes

Cora 2708 5429 1433 7

Citeseer 3312 4732 3703 6

Pubmed 19717 44338 500 3

We show the algorithm of ANEPN in Algorithm 1. First, we initialize the
parameters, filter the feature matrix, and obtain the sampled negative edge
matrix (lines 1–5). In order to prevent ANEPN from using randomly initialized
embeddings, we pre-train the parameters {W (0),B(0),W (1),B(1)} in ANEPN
by using only cross entropy loss (lines 6–11). After pre-training, we increase the
coefficient α with an interval of Tint (lines 16–17) and evaluate the variance
ratio by using embedding Z and predicted labels Y (lines 18–19), in addition
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to training of parameters (lines 14–15 and 22–23). Finally, ANEPN outputs the
predicted class labels (line 24).

In Algorithm 1, the complexity of the filtering of the feature matrix is in
O(EF ). The complexity of negative edge sampling is in O(Ed), where d is the
average degree over all nodes. In the training of ANEPN, the complexity of the
feed-forward is in O(FHC). In addition, ANEPN requires the calculations of
EPL, ASL, and the variance ratio. Those complexities are in O(EH), O(EH),
and O(NH), respectively. Thus, the overall time complexity of ANEPN is in
O(t(FHC + EH) + EF ), where we assume that E is larger than N since real-
world graphs often follow such assumption. Therefore, ANEPN is more efficient
than GCN: its complexity O(tEFHC) [12].

4 Experiments

We design this section to answer the following five questions; Q1: Does ANEPN
outperform existing approaches in the term of accuracy?, Q2: Does ANEPN
outperform existing approaches in the term of efficiency?, Q3: Is ASL effective
to avoid over-smoothing?, Q4: Does ANEPN appropriately control the number
of propagation hops?, and Q5: How does the margin parameter μ affect accuracy
and variance ratio? Q6: How do EPL and ASL affect node embeddings?

4.1 Settings

By following the settings in [18], we use three datasets of attributed graphs:
Cora, Citeseer, and Pubmed. Cora, Citeseer, and Pubmed are citation networks,
in which the nodes and edges represent publications and citations, respectively.
The nodes in Cora and Citeseer are associated with binary word vectors, and
they in Pubmed are associated with tf-idf weighted word vectors. Publications
in Cora, Citeseer and Pubmed are categorized by the research sub-fields. See
Ref. [13] for more details.

We compare the proposed approach against ten state-of-the-art competitors.
Label propagation (LP) [29] propagates labels on a graph. Graph Convolutional
Network (GCN) [12] and Graph Attention Network (GAT) [20] are popular
two-layer GCNs. Self-training, Co-training, Union, and Intersection [13] incor-
porate self-training and co-training into the training of GCN. Multi-Stage Self-
Supervised Training Algorithm (M3S) [18] integrates self-supervised learning
with GCN. ALaGCN and ALaGAT [24] utilize high-order relations by increas-
ing the number of propagation hops. We implement ANEPN with Pytorch5 1.7.0.
Our code can be found at https://github.com/suzu97t/ANEPN.

For ANEPN, we use Adam optimizer with a learning rate of 0.01 and set
hidden layer size to 64 and weight decay to 5e-4 by following the same setting
to [20]. For other our original parameters, we set margin μ, increasing step Δα,
interval of increasing Ti, iteration to pre-train Tp, maximum iteration Tmax, and

5 https://pytorch.org/.

https://github.com/suzu97t/ANEPN
https://pytorch.org/
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patience for training stop patience to 1, 0.05, 10, 50, 500, and 10, respectively.
We tune the above our original parameters so that we stop training the model
when the variance ratio is the highest. For competitors, we follow the settings
used in each original paper.

For each run, we randomly split nodes into a small set for training, and a set
with 1000 samples for testing. By following the settings used in [18], we test our
approach and competitors under 0.5%, 1%, 2%, 3%, 4% label rates on Cora and
Citeseer, and 0.03%, 0.05%, 0.1% label rates on Pubmed.

Table 3. Test accuracy (%) on Cora, Citeseer and Pubmed, where bold numbers
indicate the best results. Gain-GCN and Gain-SOTA represent the difference between
the results of our approach and GCN, and that between the results of our approach
and the best results in competitors.

Cora Citeseer Pubmed

Label rate 0.5% 1% 2% 3% 4% 0.5% 1% 2% 3% 4% 0.03% 0.05% 0.1%

LP 54.3 60.1 64.0 65.3 66.5 37.7 42.0 44.2 45.7 46.3 58.6 61.9 66.9

GCN 44.5 59.8 68.7 74.4 77.0 43.6 47.4 61.7 66.8 68.6 45.6 55.0 64.9

GAT 41.1 50.2 54.2 60.3 77.0 40.1 46.2 62.8 67.0 68.7 50.2 53.0 60.5

Self-training 55.4 62.5 73.0 76.4 79.1 48.4 59.5 65.4 66.0 70.2 58.7 59.2 66.6

Co-training 50.1 60.3 69.5 76.2 77.8 39.5 53.2 63.5 66.6 69.8 53.3 59.2 63.4

Union 45.7 57.3 72.5 76.3 77.2 41.2 52.9 62.7 65.6 68.1 47.2 59.1 66.3

Intersection 48.7 60.9 73.0 77.3 79.8 49.1 60.1 63.7 68.3 69.4 49.2 54.1 69.7

M3S 59.9 66.7 75.8 77.4 79.2 54.2 62.7 66.2 69.8 70.4 57.0 62.9 68.4

ALaGCN 57.9 66.7 73.7 74.6 78.5 41.0 49.7 59.3 63.5 67.2 57.1 63.0 71.4

ALaGAT 48.2 62.4 73.5 75.0 77.3 38.4 52.3 58.6 66.7 68.4 56.8 62.4 69.3

ANEPN (ours) 66.1 73.2 77.6 78.3 79.9 60.5 64.8 68.8 70.5 71.0 60.8 69.5 71.4

Gain-GCN +21.6 +13.4 +8.9 +3.9 +2.9 +16.9 +17.4 +7.1 +3.7 +2.4 +15.2 +14.5 +6.5

Gain-SOTA +6.2 +6.5 +1.8 +0.9 +0.1 +6.3 +2.1 +2.6 +0.7 +0.6 +2.1 +6.5 +0.0

4.2 Results

Node Classification (Q1). Table 3 shows the classification results, where the
results are averaged over 10 runs. ANEPN consistently outperforms all com-
petitors in all the cases. Although ALaGCN and ALaGAT utilize high-order
relations, ANEPN outperforms them since it can utilize much more higher-order
relations than the approaches. Especially under lower label rates (e.g., 0.5% in
Cora and Citeseer, and 0.03% in Pubmed), ANEPN achieves larger performance
gains (see Gain-GCN and Gain-SOTA in Table 3). This result demonstrates that
high-order relations are effective in semi-supervised node classification since the
model can utilize high-order relations in order to predict the labels of nodes.
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Table 4. Training time (second)

Dataset Cora Citeseer Pubmed

LP 0.0063 0.0063 0.028

GCN 0.78 0.80 0.86

GAT 2.11 2.22 38.35

Self-training 1.51 1.54 1.66

Co-training 1.71 2.46 290.27

Union 2.37 3.25 291.11

Intersection 2.42 3.23 291.18

M3S 3.62 3.73 4.13

ALaGCN 126.34 89.80 241.82

ALaGAT 50.67 150.39 309.17

ANEPN (ours) 0.74 0.69 0.70

Table 5. Ablation study on Cora. “w/o ASL”, “w/o EPL”, and “w/o EPL or ASL”
indicate the variant removing ASL, EPL, and both losses, respectively.

Cora

Label rate 0.5% 1% 2% 3% 4%

ANEPN 66.1 73.2 77.6 78.3 79.9

w/o ASL 39.1 60.8 68.2 75.3 78.6

w/o EPL 52.6 63.5 71.5 73.0 73.3

w/o EPL or ASL 49.4 62.6 70.0 74.4 76.2

GCN 44.5 59.8 68.7 74.4 77.0

Training Time (Q2). In Table 4, we report the training time of each approach
on a single Tesla V100 GPU with 16GB RAM, where the results are averaged
over 10 runs. ANEPN finishes the model training faster than other GCN-based
approaches while achieving higher classification accuracy. This result shows that
ANEPN efficiently propagates node embeddings than GCNs. Although LP fin-
ishes the model training fastest of all approaches, the classification performance
is significantly worse than our approach, as shown in Table 3.

Ablation Study (Q3). We evaluate the effect on classification performance of
EPL and ASL. Table 5 shows the classification results of the variants of ANEPN
on Cora. In this table, “w/o ASL”, “w/o EPL”, and “w/o EPL or ASL” indicate
the variant removing ASL, EPL, and both losses, respectively. As shown in
Table 5, ANEPN outperforms other variants in all the cases, which shows that
EPL and ASL are effective for classification performance. Especially, compared
to “w/o ASL”, this result demonstrates that ANEPN improves the classification
accuracy by avoiding over-smoothing with ASL. The classification accuracy of



Adaptive Node Embedding Propagation for Semi-supervised Classification 429

(a) Cora (b) Pubmed

Fig. 1. Test accuracy and variance ratio w.r.t. training iteration

(a) Cora (b) Citeseer

Fig. 2. Test accuracy and variance ratio w.r.t. margin

“w/o EPL or ASL” is similar to that of GCN since the loss of “w/o EPL or
ASL” and GCN consists only of the cross entropy loss.

Control of Propagation (Q4). We verify that ANEPN appropriately con-
trols the propagation of node embeddings. Figure 1 shows the test accuracy
and the variance ratio with respect to training iteration on Cora and Pubmed,
where training stop indicates the number of iterations on which ANEPN stops
the model training. The result on Citeseer is removed since the training stop
iteration is close to that on Cora. Note that, in this experiment, we continue
the model training after the training stop. Figure 1 demonstrates that ANEPN
appropriately stops the model training, that is, it controls the propagation of
node embeddings since the test accuracy is close to the best on each graph (see
training stop in Fig. 1).
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(a) t=0 (b) t=50 (c) t=100

(d) w/o ASL (e) w/o EPL (f) w/o EPL or ASL

Fig. 3. Embedding Visualization of ANEPN and three variants. The plots in (a), (b)
and (c) indicate node embeddings of ANEPN when the number of iterations t is 0, 50
and 100, respectively. The plots in (d), (e) and (f) indicate node embeddings of ‘w/o
ASL’, ‘w/o EPL’ and ‘w/o EPL or ASL’, respectively, when t is 100. Node embeddings
are colored with the same color when the nodes have the same class labels.

Effect of Margin (Q5). In Fig. 2, to evaluate how the margin μ of ASL affects
the accuracy and the variance ratio, we show them with respect to the margin
on Cora and Citeseer. The result on Pubmed is removed since we obtain a
similar result on Pubmed. As shown in Fig. 2, when the margin is around 0, the
accuracy and the variance ratio are very low since ASL does not work (due to
being always 0) so it causes over-smoothing. The accuracy and the variance ratio
are improved as the margin increases to around 1 since ASL effectively works to
avoid over-smoothing. However, when the margin is relatively large (larger than
1.5 in Fig. 2), the accuracy and the variance ratio decrease since ASL is expected
to prevent the propagation of node embeddings by EPL.

Embedding Visualization (Q6). In order to verify how EPL and ASL affect
node embeddings, we visualize the node embeddings on Cora. In Fig. 3, we plot
the node embeddings in a two-dimensional space by applying a dimensional
reduction technique, t-SNE [15], to the embeddings. The plots in Fig. 3(a), (b)
and (c) depict the node embeddings of ANEPN when the number of iterations
t is before the training stop, 0, 50 and 100, respectively. The plots in Fig. 3(d),
(e) and (f) depict the node embeddings of ‘w/o ASL’, ‘w/o EPL’ and ‘w/o EPL
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or ASL’ when t is 100. The node embeddings are colored with the same color
when the nodes have the same class label.

Figure 3(a), (b) and (c) reveal that, as t approaches to the training stop, the
node embeddings are learned more appropriately: the nodes with the same class
label have more similar embeddings and those with different class labels have
more dissimilar embeddings. Also, observe that the node embeddings in Fig. 3(c)
are better than those in Fig. 3(d), (e) and (f). In detail, the node embeddings
with different class labels are more clearly separated in (c) than for ‘w/o ASL’
in (d). This clearly indicates that ASL is effective for avoiding over-smoothing.
Next, (e) and (f) reveal that the node embeddings with the same class label
are not similar due to not using EPL. To summarize, these results indicate that
ANEPN improves the classification accuracy (see Table 5) by utilizing both of
EPL and ASL.

5 Related Work

5.1 Graph-Based Semi-supervised Learning

Graph-based semi-supervised learning has been a popular research topic. Many
classical approaches [1–3,29] assume that adjacent nodes tend to have the same
label, which is called cluster assumption [5]. These approaches focus on graph
structure, so they ignore node features. However, real-world graphs (or networks)
often contain node features. Thus, some researchers seek to utilize both graph
structure and node features in order to improve classification accuracy. For exam-
ple, SemiEmb [22] and Planetoid [25] encode node features to embeddings with
neural networks and incorporate graph structure into the embeddings with a
regularizer. On the other hand, graph convolutional networks (GCNs) encode
graph structure directly using a neural network model.

5.2 Graph Convolutional Networks

A two-layer GCN [12] is a standard GCN model. Recently, many variants of
GCN have been developed, including Graph Attention Networks [20], Multi-
Stage Self-Supervised Training Algorithm [18]. Most GCN models, including
the above GCNs models, do not utilize high-order relations due to the two-
layer architecture. However, if we simply stack many layers in order to utilize
high-order relations, GCNs with many layers suffer from three drawbacks: over-
fitting, over-smoothing, and the difficulty in selecting the appropriate number of
propagation hops.

ALaGCN proposed by Xie et al. can utilize high-order relations by increasing
the number of propagation hops [24]. In addition, ALaGCN adaptively controls
the number of propagation hops. However, it propagates node embeddings to
neighbors only within ten hops since too many graph convolutions cause over-
smoothing. On the other hand, ANEPN can propagate node embeddings to
neighbors within more than ten hops, e.g., around 100 hops on Cora (see Sect. 4),
since our approach avoids over-smoothing.
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Adaptive Graph Convolution (AGC) [27] also utilizes high-order relations
and controls the number of propagation hops. However, we cannot apply this
approach to semi-supervised classification task since AGC is an approach only
for graph clustering task.

6 Conclusion

In this paper, we argued that most GCNs do not utilize high-order relations
between nodes. Although GCNs with many layers can utilize the high-order
relations, the GCNs suffer from three drawbacks: over-fitting, over-smoothing,
and the difficulty in selecting the appropriate number of propagation hops. To
address the above drawbacks, we proposed ANEPN which effectively utilizes
the high-order relations. By using EPL and ASL, ANEPN can propagate node
embeddings to neighbors within many hops without suffering from over-fitting
and over-smoothing. Furthermore, ANEPN controls the number of propagation
hops based on the variance ratio that evaluates predicted class labels. The exper-
imental results demonstrate that ANEPN is effective for semi-supervised node
classification.

Acknowledgements. This work was supported by JSPS KAKENHI Grant Numbers
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Abstract. Graph representation learning has long been an important
yet challenging task for various real-world applications. However, its
downstream tasks are mainly performed in the settings of supervised
or semi-supervised learning. Inspired by recent advances in unsuper-
vised contrastive learning, this paper is thus motivated to investigate
how the node-wise contrastive learning could be performed. Particularly,
we respectively resolve the class collision issue and the imbalanced neg-
ative data distribution issue. Extensive experiments are performed on
three real-world datasets and the proposed approach achieves the SOTA
model performance.

Keywords: Graph neural network · Contrastive learning · Negative
sampling

1 Introduction

In the literature, various graph neural network (GNN) models have been pro-
posed for graph analysis tasks, such as node classification [14], link prediction [33]
and graph classification [31]. Generally, most existing GNN-based approaches
are proposed to train, in a semi-supervised manner, graph encoder to embed
localized neighboring nodes and node attributes for a graph node into the low-
dimensional feature space. By convoluting K-hops neighboring nodes, adjacent
nodes naturally have similar feature representations. Notably, the consequent
downstream tasks inevitably rely on the quality of the learnt node embeddings.

For many real graph applications, e.g., protein analysis [34], they intuitively
requires an unavoidable cost or even the specialized domain knowledge to man-
ually annotate sufficient data to well train the graph encoders with the specified
supervised learning loss. Alternatively, a number of milestone unsupervised ran-
dom walk based GNNs, including but not limited to node2vec [8] and graph2vec
[19], are consequently proposed towards training the universal node embeddings
and then various supervised downstream tasks are directly applied on these
node embeddings. Similarly, another line of unsupervised graph representation
c© Springer Nature Switzerland AG 2021
N. Oliver et al. (Eds.): ECML PKDD 2021, LNAI 12976, pp. 434–449, 2021.
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learning approaches, i.e., graph kernel-based methods, also utilizes the graph
structural information to embed graph nodes with similar structures into simi-
lar representations. Most recently, the contrastive learning [11,12] is originally
proposed to learn feature embeddings for each image in a self-supervised manner.
To this end, these proposed approaches first generate two random augmentations
for the same image and define these two as a pair of positive samples, and sim-
ply treat samples augmented from other images as negative samples. Then, the
contrastive loss is designed to maximize the mutual information between each
pair of positive samples. The learnt embeddings are believed to well preserve its
inherent discriminative features. Research attempts are then made to adapt the
successful contrastive learning approaches to unsupervised graph representation
learning problem [10,29]. In [29], the graph-level representation is generated to
contrast with each node representation to acquire node representations fitting
for diverse downstream tasks. [10] adopts diffusion graph as another view of
the given graph, and the contrast is performed between graph representation
of one view and node representation of another view. As all the node embed-
dings and the graph embedding are forced to be close to each other, intuitively
a coarser level graph analysis task, e.g., graph classification, would benefit a lot
from such kind of contrastive learning, whereas a fine-grained level task, e.g.,
node classification, might not benefit that large.

To address aforementioned research gap, this work is thus motivated to inves-
tigate whether the unsupervised contrastive learning could be effectively carried
on in a node-wised manner. That is, for each graph node x to be embedded, our
desired contrastive learning is to maximize the mutual information between x and
its positive examples x+ instead of a graph representation, and simultaneously to
minimize the mutual information between x and its negative examples x−. Mean-
while, there exist two research challenges to be addressed. First, the sampled neg-
ative examples x− might contain some true positive examples x+, which belong
to the same category as x in some downstream tasks, which is known as class colli-
sion issue. Second, how the density of negative samples will affect the contrastive
learning has not been studied. We assume that the underlying true positive exam-
ples could be statistically similar to x, i.e., unseen positive examples should obey
the same prior probability distribution as x. Similarly, the multiple typed neg-
ative examples x− are assumed to obey different probability distributions. With
this assumption, the class collision issue could be intuitively resolved by removing
those examples from the set of x− they are more likely generated by the assumed
positive data distribution. For the second point, it can be known from the con-
trastive loss that x will be farther away from feature area with dense x− than area
with sparse x−. The density distribution of x− is used as factor to determine the
distance of x and x− is questionable. Therefore, after removing negative examples
in doubt, a subset of negative examples should be diversely sampled for the con-
trastive learning. Thus, this paper proposed an adaptive negative sampling strat-
egy for the learning of the node embedding in a node-wised contrastive learning
manner. The major contributions of this paper are summarized as follows.
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– To the best of our knowledge, this paper is among the first attempts to
propose a node-wise contrastive learning approach to learn node embedding
in an unsupervised manner. In the proposed approach, positive samples and
negative samples are assumed to obey different data distributions, and the
class collision issue could be addressed by eliminating “in doubt” negative
samples if they are more likely generated by a positive data distribution.

– We propose a determinantal point process based negative instances sampling
strategy which is believed to be able to sample diverse negative examples.

– We perform extensive experiments on several benchmark datasets and the
promising results have demonstrated that the proposed approach is superior
to both baseline and the state-of-the-art approaches.

2 Related Work

2.1 Graph Representation Learning

Supervised Methods. The earlier graph representation learning attempts
have been made in the supervised settings. ChebyNet [5] leverages graph Fourier
transformations to convert graph signals into spectral domain. Kipf and Welling
[14] propose graph convolutional network (GCN) via a localized first-order
approximation to ChebyNet [5], and extend graph convolution operations to
spatial domain. To further the success of GCN, GAT [28] and GeniePath [16]
are proposed to sample more informative neighboring nodes for aggregation.
There also exist some approaches targeting at resolving efficiency issues [3,9].

Unsupervised Methods. The unsupervised graph representation learning
methods could be classified into random walk-based methods [21,27] and graph
kernel-based methods [2,24]. The random walk-based methods are applied for
each graph node to generate the corresponding node sequences. By doing so,
those nodes that have similar “context” nodes are trained to have similar
embeddings regardless of the graph structural information as well as the node
attributes. Such kinds of methods are usually transductively performed and thus
need to be re-trained to represent the unseen nodes which inevitably limits
their wide applicability. Graph Kernel [24,25] methods decompose graphs into
well-designed substructures and use kernel function to measure graph similar-
ity between them. Nevertheless, the design of these substructure requires a full
understanding and professional knowledge of graph.

2.2 Contrastive Learning and Negative Sampling

Contrastive learning is recently proposed to learn feature embeddings in a self-
supervised manner. The quality of the learned embeddings largely replies on
the generated positive instance set and the negative instance set. Accordingly,
various approaches have been proposed with a focus on constructing positive
samples. In the domain of NLP, [18] treats the contextual words as positive
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pairs. In the domain of image recognition, [12] generates more difficult negative
samples by mixing approach to improve model representation ability. [4] elimi-
nates the sampling bias by increasing the number of positive samples to reduce
false negative samples. For graph data, node2vec [8] apply two search strate-
gies, BFS and DFS, to redefine neighbors, i.e., positive samples. In struc2vec
[23], two nodes that have similar local structure are considered as a pair of posi-
tive samples despite the node position and their attributes. Then, several SOTA
approaches have been proposed to adapt contrastive learning on graph data
[10,22,26,29]. DGI [29] maximizes the mutual information between the local
node embeddings and global graph embeddings. InfoGraph [26] treats nodes
that are virtually generated by shuffling feature matrix or corrupting adjacency
matrix as negative samples. Mvgrl [10] further defines two views on graph data
and the encoder is trained to maximize mutual information between node repre-
sentations of one view and graph representations of another view and vice versa.
GCC [22] consider two subgraphs augmented from the same r-ego network as a
positive instance pair and these subgraphs from different r-ego network as neg-
ative sample pairs, where r-ego represents the induced subgraph containing the
set of neighbor nodes of a given node within r hops.

3 Preliminaries and Problem Formulation

In this section, we first briefly review the Determinantal Point Process (DPP) [17]
adopted to diversely sample negative instances, then we describe the notations
as well as the problem setup.

3.1 Determinantal Point Process

The original DPP is proposed to model negatively correlated random variables,
and then it is widely adopted to sample a subset of data where each datum in
this set is required to be correlated with the specified task, and simultaneously
be far away from each other. Formally, let P denotes a probability distribution
defined on a power set 2Y of a discrete finite point set Y = {1, 2, ...,M}. Y ∼ P is
a subset composed of data items randomly generated from P. Let A be a subset
of Y and B ∈ R

M×M be a real positive semi-definite similarity matrix, then we
have P(A ⊆ Y ) = |BA|, where BA is a sub-matrix of B indexed by the elements
of subset A. | · | denotes the determinant operator. If A = {i}, P(A ⊆ Y ) = Bi,i;
and if A = {i, j}, P(A ∈ Y ) can be written as

P(A ⊆ Y ) =
∣
∣
∣
∣

Bi,i Bi,j

Bj,i Bj,j

∣
∣
∣
∣
= P(i ∈ Y )P(j ∈ Y ) − B2

i,j , (1)

Thus, the non-diagonal matrix entries represent the correlation between a
pair of data items. The larger the value of Bi,j , the less likely that i and j
appear at the same time. Accordingly, the diversity of entries in the subset A
could be calculated. As for our approach, DPP is adapted to sample a evenly
distributed subset from a negative instance set.



438 S. Chen et al.

3.2 Notations and Definitions

Let G = (V,E) denotes a graph, V denotes the node set containing N nodes,
E ⊆ V × V denotes the edge set where e = (vi, vj) ∈ E denotes an edge
between two graph nodes, X = {x1, ..., xd} denotes the node feature set where
xi ∈ R

din represents the features of node vi. The adjacency matrix is denoted as
A ∈ R

N×N , where Aij = 1 represents that there is an edge between vi and vj in
the graph and 0 otherwise. For a given node vi, its K-hops neighbor set is denoted
as NK(vi), which contains all neighboring nodes of vi within K hops, defined
as NK(vi) = {vj : d(vi, vj) ≤ K} where d(vi, vj) is the shortest path distance
between vi and vj in the graph G. Then, the induced subgraph is defined as
follows.

Definition 1. Induced subgraph s. Given G = (V,E), a subgraph s = (V ′, E′)
of G is said to be an induced subgraph of G if all the edges between the vertices
in V ′ belong to E′.

3.3 Problem Setup

Given a G, our goal is to train a graph encoder G : RN×din × R
N×N → R

N×d,
such that H = G(X,A) = {h1, ..., hN} represents the low-dimensional feature
representations, where hi denotes the embedding of vi. Then, the learned G is
used to generate node embeddings for downstream tasks, e.g., node classification.

The purpose of our approach is to maximize the mutual information between
a pair of positive instances. Similar to the infoNCE [20], the general form of our
unsupervised contrastive learning is to minimize the contrastive loss, given as

L = −
N∑

i=1

log
ef(hq

i ,hk
i )/τ

ef(hq
i ,hk

i )/τ +
∑N

j �=i ef(hq
i ,hk

j )/τ
, (2)

where f(·, ·) is a function to score the agreement of two embeddings, and in our
approach the score function is simply the dot product calculated as f(hq

i , h
k
j ) =

hq
i
T · hk

j , and τ is the temperature hyper-parameter. hk
i is a positive instance of

hq
i , and two of them are usually defined as two different random augmentations of

the same data. In our model, we define hq
i and hk

i are two random augmentation
embeddings of node vi. By optimizing Eq. 2, the employed model is believed to
be able to learn the features that are invariant in positive instances.

Nevertheless, there are some problems that must be addressed. Intuitively,
we hope that two nodes that have the same label in the classification task should
have similar embeddings. However, we treat hk

j �=i as negative sample of hq
i and

try to be away from them in feature space while vj may have the same label as
vi, which is called class collision. At the same time, we noticed that the current
negative sampling strategy ignores the influence of the density of embedding
distribution of negative samples. A node embedding will be updated to be far-
ther away from feature subspace where its negative nodes are more densely
distributed. Therefore, we designed a approach to adaptively sample negative
instances to avoid those problems described above.



Negative Sampling Strategies for Graph Contrastive Learning 439

4 The Proposed Approach

4.1 Graph Embeddings

The proposed node-wised contrastive learning scheme allows various choices of
graph neural network architectures. We opt for simplicity reason to adopt graph
convolution network (GCN) [14] as our graph encoder G.

Augmentation. By following [22], we first employ a k-steps random walk on
G starting from a specific node vi, and a sequence of walking nodes seqi =
{t1, ..., tk} is used to form the set of vertices V ′. The subgraph si induced by V ′

is regarded as a random augmentation of node vi. Then, we repeat aforemen-
tioned procedure and eventually we generate two induced subgraphs sq

i , s
k
i , those

embeddings are respectively denoted as hq
i and hk

i and regarded as a positive
pair.

Encoder. The employed GCN layers are defined as σ(ÃiXiW ) which is used to

embed node vi, where Ãi = D̂− 1
2

i ÂiD̂
− 1

2
i ∈ R

ni×ni is symmetrically normalized
adjacency matrix of a subgraph si. D̂i is the degree matrix of Âi = Ai + Ini

,
where Ai is the original adjacency matrix of si, Xi ∈ R

ni×din is the initial
features of nodes in si, W ∈ R

din×d is network parameters, σ is a ReLU [7] non-
linearity and ni is the number of nodes in si. Putting Ãi,Xi into graph layer
and then we could acquire node embeddings Hi ∈ R

ni×d of subgraph si.

Readout. After aggregation operation of GCN layers, we feed the embedding
set Hi into the readout function R(·) to compute an embedding of vi. The
readout function adopted in the experiments is given as follows

R(Hi) = σ(
1
ni

ni∑

j=1

hi,j + max(Hi)), (3)

where hi,j represents the j-th node embedding in Hi, max(·) simply takes the
largest element along the column-wise and σ is the non-linear sigmoid function.
Eventually, the node embedding is acquired as hi = R(Hi).

4.2 Resolving Class Collision

Given a node vi, its positive and negative sample set are respectively denoted as
S+

i = {vi} and S−
i = {v1, ..., vi−1, vi+1, vN}. To alleviate the class collision issue,

it is desired to remove those “in doubt” negative samples that are more likely
to belong to the same class of vi. The overall procedure is depicted as below.

We assume that S+
i and S−

i respectively obey different prior probability
distributions. The “in-doubt” negative examples are removed if they are more
likely to be generated by the data distribution of positive instances. To fit the
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(a) Initial stage: target node v
(in red).

(b) The augmented positive in-
stances.

(c) Fit the embedding distribu-
tion for positive and negative
samples.

(d) Resample the positive and
negative samples.

Fig. 1. Process of generating positive and negative samples. In subfigure (a) and (b),
the left depicts the graph topological structure and the right plots the feature embed-
ding space where each colored dot represent the embeddings of a positive or negative
node. In the initial stage, plotted in (a), there is only one target node treated as posi-
tive node (in red) and the rest are negative nodes (in blue). In (b), the positive nodes
are augmented by adding “in-doubt” nodes (in orange dot) and mixup positive nodes
(in orange triangle). In (c), the underlying positive instance distribution and negative
instance distribution could be well fit using these data. In (d), the dashed loop is the

contour of
p+i (vj)

p−i (vj)
. Note that the smaller the orange dashed loop, the more confident

that datum falling a positive instance. (Color figure online)

embedding distribution p+i and p−
i , we employ two independent neural networks,

i.e., F+
i and F−

i to fit distributions. If the probability that vj belongs to S+
i is

higher than the probability of being a negative instance, i.e., p+
i (vj)

p−
i (vj)

> α, we

remove vj from S−
i , where α is the soft-margin to discriminate an instance.

Detailed steps are illustrated in the following paragraphs.

Forming the Sample Sets S+
i and S−

i . Initially, the positive instance of
a given node vi is also augmented by vi plotted in orange and the rest nodes
plotted in blue are considered as negative instances, which is shown in Fig. 1(a).
Apparently, not all the blue data are the true negative instances. To consider the
unsupervised settings, it is acceptable to assume that the “closest” node to vi

should have the same underlying class label. Therefore, a few nearest neighbor
nodes vj ∈ NK are transited to S+

i from S−
i . Using the mixup algorithm [32],

more positive samples are generated to further augment the positive instance
set S+

i and the results are illustrated in Fig. 1(b).
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Fitting the Positive and Negative Instance Distribution. With the aug-
mented S+

i and S−
i , we employ two independent two neural networks F+

i , F−
i

to respectively fit the embeddings distribution for v ∈ S+
i and v ∈ S−

i as plotted
in Fig. 1(c). To train F+

i , we treat it as a classifier, and data belong to S+
i is

assigned with a virtual label class 1, and data belong to S−
i is virtually assigned

with class 0. F−
i uses the opposite settings of F+

i

For a node vj ∈ S−
i , the output of F+

i (hk
j ) and F+

i (hk
j ) are respectively the

probability that vj is a positive or negative instance of vi. The ratio of these

two probabilities with a soft-margin, calculated as p+
i (vj)

p−
i (vj)

> α, is adopted to

determine whether vj should be removed from S−
i or not, and this soft-margin

α is plotted in the small orange dashed circle as shown in Fig. 1(d).

(a) Unevenly sampled instances. (b) Diversely sampled instances.

Fig. 2. The illustration of different sampling strategies. The dashed circle denotes that
the corresponding node will be sampled. The orange colored dot is the embedding of
target node v. (a) shows that for the current strategy, random sampling, the updated
embedding of v will close to the node at the lower left corner whereas we desire that the
embedding of v should, simultaneously, stay away from all negative instances embed-
dings as much as possible, as plotted in (b) where a diverse sampling strategy is applied
on the embeddings space and reasonably ignores embedding density distribution. (Color
figure online)

4.3 Sampling Diverse Negative Examples

As illustrated in Fig. 2, we can regard the process of contrastive learning as
the interaction of forces between positive and negative samples. For the worst
case of randomly sampling negative instances in S−

i for comparison, where the
embeddings distribution is seriously imbalanced as Fig. 2(a), the updated hi will
be farther away from the feature subspace where sampled negative instances
densely distributed. Intuitively, the comparison result between positive and neg-
ative samples should not be related to the density distribution of negative sam-
ples. To cope with this distorted result, we adapt the Determinant point process
(DPP) [17] to our problem. In Fig. 2(b), the DPP algorithm is applied to S−

to sample a negative instances subset, where sampled negative instances spread
across the entire feature space. In this case, the node embedding can avoid the
influence of the density of feature space and be evenly away from each negative
sample. We set the correlation between hq

i and each negative instance in S−
i

equally to a constant. To calculate the similarity between negative instances,
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the Euclidean distance is adopted to measure the pair-wise distance, computed

as d(hq
i , h

k
j ) =

√
∑d

l=1(h
q
i,l − hk

j,l)2.

4.4 Node-Wise Contrastive Learning Loss

As pointed in [12], different nodes contribute differently to the unsupervised con-
trastive learning. We are therefore inspired to further differentiate the impor-
tance of the diversely sampled negative instances. For those negative instances
that are far away from the query instance hq

i , the contributions of these nodes
are rather limited as they could be easily distinguished w.r.t. hq

i . However for
those close negative instances, it is hard for the model to discriminate them and
thus their contributions should be assigned with higher weights.

Accordingly, the weight of the j-th negative instance’s embedding hk
j w.r.t.

the query embedding hq
i is calculated as wi,j = hq

i · hk
j /τw, where τw is a tem-

perature hyper-parameter. Thus, the overall node-wise contrastive loss could be
written as

L = −
N∑

i=1

log
ef(hq

i ,hk
i )

ef(hq
i ,hk

i ) +
∑

j∈S−
i

wi,je
f(hq

i ,hk
j )

. (4)

5 Experimental Results

In this section, we first briefly introduce experimental datasets, evaluation met-
rics as well as the experimental settings. Then, to evaluate the model perfor-
mance, we not only compare our method with unsupervised models, but also
some semi-supervised models to fully demonstrate the effectiveness of our app-
roach. Extensive experiments are evaluated on several real-world datasets to
answer following research questions:

– RQ1: Whether the proposed approach outperforms the state-of-the-art semi-
supervised and unsupervised methods or not?

– RQ2: Whether the proposed components could affect the model performance
or not (ablation study)?

– RQ3: Whether the proposed approach is sensitive to model hyper-parameters
or not?

– RQ4: The visualization results of the learned node embeddings.

5.1 Experimental Setup

Datasets. In the experiments, three real-world datasets are adopted to evaluate
the model performance including Cora, Citeseer and Pubmed. We follow the
work [28] to partition each dataset into training set, validation set and test set.
The statistics of these datasets are reported in Table 1.



Negative Sampling Strategies for Graph Contrastive Learning 443

Algorithm 1: Generating positive and negative instances set
Input: Adjacency matrix A, node embeddings Hq, Hk,

hyper-parameter K, hyper-parameter α,
K-hops neighboring nodes set {NK(v1), ..., NK(vN )},
DPP sampler Γdpp, mixup operator Mix,
node embedding set S = {hk

1 , ..., hk
N},

neural network set F+ = {F+
1 , ..., F+

N}, F− = {F−
1 , ..., F−

N}.
Output: Positive samples sets {S+

1 , ..., S+
N},

negative samples sets {S−
1 , ..., S−

N}.
1 initialization;
2 for i = 1 to N do

3 S−
i = S \ {hk

i , i ∈ NK(vi)}
4 S+

i = {hk
i , i ∈ NK(vi)}

5 S+
i = Mix(S+

i )

6 end
7 for i = 1 to N do
8 p−

i = F−
i (S−

i ), p+
i = F+

i (S+
i )

9 for j = 1 to N do

10 if j /∈ NK(vi) and
p+i (vj)

p−i (vj)
> α then

11 S−
i = S−

i \ {hk
j }, S+

i = S+
i ∪ {hk

j }
12 end

13 end

14 S−
i = Γdpp(S

−
i )

15 end

16 return {S+
1 , ..., S+

N}, {S−
1 , ..., S−

N}

Baseline Models. To evaluate the model performance of the proposed app-
roach on node classification task, both the unsupervised and semi-supervised
methods are compared in the experiments.

The unsupervised models we used in the experiment are as follows

– Deepwalk [21] first deploys random walk on each node to generate node walks
sequences, and then input these sequences to skip-gram model to acquire node
embeddings.

– GAE [15] is considered as the SOTA approach which applies variational
auto-encoder to graphs.

Table 1. The statistics of experimental datasets.

Dataset # of nodes # of edges # of features # of classes

Cora 2708 5429 1433 7

Citeseer 3327 4732 3703 6

Pubmed 19717 44338 500 3
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– GraphSAGE [9] learns a function for generating low-dimensional embed-
dings by aggregating the embeddings of neighboring nodes. We use the unsu-
pervised loss function mentioned in [9] to train the model.

– DGI [29] is considered as the SOTA unsupervised learning approach which
maximizes the mutual information between the node-level and the graph-level
feature embeddings.

– Mvgrl [10] is the SOTA self-supervised method proposed to learn node and
graph embeddings by optimizing the contrast between node and graph rep-
resentations from different graph views.

The semi-supervised models we used in the experiment are as follows

– GCN [14] is one of the milestone GNN models originally proposed for node
classification problem.

– Chebyshev [5] designs the convolution kernel using the Chebyshev inequality
to speed up the Fourier transformation for the graph convolution process.

– GAT [28] is essentially an attention based approach. GAT designs a multi-
head self-attention layer to assign different weights to neighboring nodes.

– GeniePath [16] samples neighboring nodes which contribute a lot to the
target node via a hybrid of BFS and DFS search strategies.

– JK-Net [30] adaptively uses different neighborhood ranges for each node to
perform aggregation operations.

– MixHop [1] proposes to perform multi-order convolution to aggregate the
mixing of neighborhood information.

Setting of Model Parameters. We set the same experimental settings as the
SOTA [10,29] and report the mean classification results on the testing set after
50 runs of training followed by a linear model. We initialize the parameters using
Xavier initialization [6] and train the model using Adam optimizer [13] with an
initial learning rate of 0.001. We set the number of epochs to 2000. We vary the
batch size from 50 to 2000, The early stopping with a patience of 20 is adopted.
The embedding dimension is set to 512. Unlike DGI, we use two layers of GCN.
We set the step of random walk as 25, soft-margin α as 0.9, dropout rate as 0.7.

5.2 RQ1: Performance Comparison

The results of node classification task are reported in Table 2. Obviously, the
proposed approach achieves the best results both in comparison with SOTA
models, except for Cora dataset where the Mvgrl achieves the best result, and
ours is the second best one. Particularly, the accuracy on Pubmed dataset, which
has the most nodes, is improved by 81.5%. As the Mvgrl method could make
full use of global diffusion information S, the model performance is expected to
be superior to ours. But due to the use of diffusion information, Mvgrl cannot
be used in inductive manner, which limits its applicability. However, it is well
noticed that our approach is better than the SOTA DGI trained with S, which
verifies the effectiveness of our approach. It is also noteworthy that our model
has already performed well on the Cora and Pubmed datasets without adding
any modules, that is, only applying node-level comparison between nodes.
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Table 2. The average node classification results for both supervised and unsupervised
models. The available data column highlights the data available to each model during
the model training process (X: features, A: adjacency matrix, S: diffusion matrix, Y:
labels).

Available data Method Cora Citeseer Pubmed

X, Y Raw features 55.1% 46.5% 71.4%

X, A, Y GCN 81.5% 70.3% 79.0%

X, A, Y Chebyshev 81.2% 69.8% 74.4%

X, A, Y GAT 83.0% 72.5% 79.0%

X, A, Y GeniePath 75.5% 64.3% 78.5%

X, A, Y JK-Net 82.7% 73.0% 77.9%

X, A, Y MixHop 81.9% 71.4% 80.8%

A Deepwalk 67.2% 43.2% 65.3%

X, A GAE 71.5% 65.8% 72.1%

X, A GraphSAGE 68.0% 68.0% 68.0%

X, A DGI 82.3% 71.8% 76.8%

X, S DGI 83.8% 72.0% 77.9%

X, A,S Mvgrl 86.8% 73.3% 80.1%

X, A Ours w/o all 83.5% 69.3% 80.6%

X, A Ours 84.3% 73.5% 81.5%

5.3 RQ2: Ablation Study

In this experiment, we investigate the effectiveness of the proposed components.
We respectively remove the component of soft-margin sampling, DPP sampling
and node weights, and report the results in Table 3.

Table 3. The ablation study results. In this table, ours w/o all denotes that we remove
all proposed components. And ours with α, ours with DPP, ours with w denote the
model with soft-margin sampling, DPP sampling and node weights, respectively.

Variants Cora Citeseer Pubmed

Ours w/o all 83.5% 69.3% 80.6%

Ours with α 83.8% 70.9% 80.8%

Ours with DPP 83.9% 71.8% 81.2%

Ours with w 83.8% 70.1% 80.9%

Ours 84.3% 73.5% 81.5%

Effect of Soft-Margin Sampling. It is noticed that the performance of “ours
with α”, i.e., repartitioning positive and negative samples by ratio α, improves.
This suggests the proposed module indeed contributes to choose positive samples
from “in-doubt” negative samples, and thus partially alleviates class collision.
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Effect of DPP Sampling. It could be observed that the “ours with DPP”
achieves the second best results w.r.t. all evaluation criteria. This verifies our
proposed assumption that the data distribution of negative examples is a key
factor in affecting the model performance.

Effect of Node Weights. Compared to the other two modules, especially on
Citeseer dataset, this module has the least significant effect. The reason may be
the weight function we designed is too simple. How to design a more effective
weight function is our next research direction.

5.4 RQ3: Parameter Analysis

In the section, we evaluate how the model parameters, e.g., batch size, the step
of random walk and soft-margin α, affect the model performance, and the cor-
responding results are plotted in Fig. 3 and Fig. 4.

(a) batch size (b) random walk steps

Fig. 3. Parameter analysis of batch size and random walk length.

From these figures, we have following observations. First, we highlight that
our model is insensitive to parameter “batch size” and “random walk steps”, as
shown in Fig. 3(a) and 3(b). Second, our model is obviously sensitive to the soft-
margin α which controls the ratio of selecting potential positive samples from
the negative samples set. It is also well noticed that when α is close to 1, the
model performance dramatically drops. This verifies that the number of positive
examples is also crucial to the model performance of the contrastive learning.

(a) Results on Cora (b) Results on Citeseer (c) Results on Pubmed

Fig. 4. Parameter analysis of soft-margin α.
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5.5 RQ4: Visualization Results

Due to page limitations, we choose to visualize the node embeddings learned on
Pubmed dataset to provide a vivid illustration of the proposed model perfor-
mance. We also visualized the results of the Mvgrl method for comparison as
this approach achieves the superior performance. The visualization results are
plotted in Fig. 5. Obviously, our model achieves the best visualization result.
It is noticed that in Fig. 5(a), most of the “red” and “yellow” class are mixed
up together, which makes the classification task difficult. It is also noticed that
the three classes could be well separated and spread over the whole data space
by our model, whilst the “red” class and “yellow” class are still mixed up in
Fig. 5(b).

(a) Raw features (b) Mvgrl (c) Ours

Fig. 5. Visualizing the learned embeddings of nodes on Pubmed dataset. In this figure,
each color represents one class, and each colored point represents the node embedding.
(Color figure online)

6 Conclusion

In this paper, we propose a novel node-wise unsupervised contrastive learn-
ing approach to learn node embeddings for a supervised task. Particularly, we
propose to resolve class collision issue by transiting the detected “in doubt”
negative instances from the negative instance set to the positive instance set.
Furthermore, a DPP-based sampling strategy is proposed to evenly sample neg-
ative instances for the contrastive learning. Extensive experiments are evaluated
on three real-world datasets and the promising results demonstrate that the
proposed approach is superior to both the baseline and the SOTA approaches.
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Abstract. Graph neural networks (GNNs) have been extensively stud-
ied for prediction tasks on graphs. As pointed out by recent studies, most
GNNs assume local homophily, i.e., strong similarities in local neigh-
borhoods. This assumption however limits the generalizability power of
GNNs. To address this limitation, we propose a flexible GNN model,
which is capable of handling any graphs without being restricted by their
underlying homophily. At its core, this model adopts a node attention
mechanism based on multiple learnable spectral filters; therefore, the
aggregation scheme is learned adaptively for each graph in the spectral
domain. We evaluated the proposed model on node classification tasks
over eight benchmark datasets. The proposed model is shown to general-
ize well to both homophilic and heterophilic graphs. Further, it outper-
forms all state-of-the-art baselines on heterophilic graphs and performs
comparably with them on homophilic graphs.

Keywords: Graph neural network · Representation learning · Spectral
methods

1 Introduction

Graph neural networks (GNNs) have recently demonstrated great power in graph-
related learning tasks, such as node classification [12], link prediction [43] and
graph classification [15]. Most GNNs follow a message-passing architecture where,
in each GNN layer, a node aggregates information from its direct neighbors indif-
ferently. In this architecture, information from long-distance nodes is propagated
and aggregated by stacking multiple GNN layers together [4,12,38]. However, this
architecture underlies the assumption of local homophily, i.e. proximity of similar
nodes. While this assumption seems reasonable and helpful to achieve good predic-
tion results on homophilic graphs such as citation networks [26], it limits GNNs’
generalizability to heterophilic graphs. Heterophilic graphs commonly exist in the
real-world, for instance, people tend to connect to opposite gender in dating net-
works, and different amino acid types are more likely to form connections in protein
structures [45]. Moreover, determining whether a graph is homophilic or not is a
c© Springer Nature Switzerland AG 2021
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challenge by itself. In fact, strong and weak homophily can both exhibit in different
parts of a graph, which makes a learning task more challenging.

Pei et al. [26] proposed a metric to measure local node homophily based
on how many neighbors of a node are from the same class. Using this metric,
they categorized graphs as homophilic (strong homophily) or heterophilic (weak
homophily), and showed that classical GNNs such as GCN [12] and GAT [38]
perform poorly on heterophilic graphs. Liu et al. [20] further showed that GCN
and GAT are outperformed by a simple multi-layer perceptron (MLP) in node
classification tasks on heterophilic graphs. This is because the naive local aggre-
gation of homophilic models brings in more noise than useful information for such
graphs. These findings indicate that these GNN models perform sub-optimally
when the fundamental assumption of homophily does not hold.

Based on the above observation, we argue that a well-generalized GNN should
perform well on graphs regardless of homophily. Furthermore, since a real-world
graph can exhibit both strong and weak homophily in different node neighbor-
hoods, a powerful GNN model should be able to aggregate node features using
different strategies accordingly. For instance, in heterophilic graphs where a node
shares no similarity with any of its direct neighbors, such a GNN model should
be able to ignore direct neighbors and reach farther to find similar nodes, or at
least, resort to the node’s attributes to make a prediction. Since the validity of
the assumption about homophily is often unknown, such aggregation strategies
should be learned from data rather than decided upfront.

To circumvent this issue, in this paper, we propose a novel GNN model with
attention-based adaptive aggregation, called ASGAT. Most existing attention-
based aggregation architectures perform self-attention to the local neighborhood
of a node [38]. Unlike these approaches, we aim to design an aggregation method
that can gather informative features from both close and far-distant nodes. To
achieve this, we employ graph wavelets under a relaxed condition of localization,
which enables us to learn attention weights for nodes in the spectral domain. In
doing so, the model can effectively capture information from frequency compo-
nents and thus aggregate both local information and global structure into node
representations.

To further improve the generalizability of our model, instead of using prede-
fined spectral kernels, we propose to use multi-layer perceptrons (MLP) to learn
desired spectral filters without limiting their shapes. Existing works on graph
wavelet transform choose wavelet filters heuristically, such as heat kernel, wave
kernel and personalized page rank kernel [13,14,41]. They are mostly low-pass
filters, which means that these models implicitly treat high-frequency compo-
nents as “noises” and have them discarded [2,9,25,34]. However, this may hinder
the generalizability of models since high-frequency components can carry mean-
ingful information about local discontinuities, as analyzed in [34]. Our model
overcomes these limitations using node attentions derived from fully learnable
spectral filters.

To summarize, the main contributions of this work are as follows:
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1. We empirically show that high-frequency components carry important infor-
mation on heterophilic graphs which can be used to improve prediction per-
formance.

2. We propose a generalized GNN model which performs well on both homophilic
and heterophilic graphs, regardless of graph homophily.

3. We exhibit that multi-headed attention produced by multiple spectral filters
work better than attention obtained from a single filter, as it enables flexibility
to aggregate features from different frequency components.

We conduct extensive experiments to compare ASGAT with well-known base-
lines on node classification tasks. The experimental results show that ASGAT
significantly outperforms the state-of-the-art methods on heterophilic graphs
where local node homophily is weak, and performs comparably with the state-
of-the-art methods on homophilic graphs where local node homophily is strong.
This empirically verifies that ASGAT is a general model for learning on different
types of graphs.1

2 Preliminaries

Let G = (V,E,A,x) be an undirected graph with N nodes, where V , E, and A
are the node set, edge set, and adjacency matrix of G, respectively, and x : V �→
R

m is a graph signal function that associates each node with a feature vector.
The normalized Laplacian matrix of G is defined as L = I − D−1/2AD−1/2,
where D ∈ R

N×N is the diagonal degree matrix of G. In spectral graph theory,
the eigenvalues Λ = diag(λ1, ..., λN ) and eigenvectors U of L = UΛUH are
known as the graph’s spectrum and spectral basis, respectively, where UH is the
Hermitian transpose of U . The graph Fourier transform of x is x̂ = UHx and
its inverse is x = Ux̂.

The spectrum and spectral basis carry important information on the con-
nectivity of a graph [34]. Intuitively, lower frequencies correspond to global and
smooth information on the graph, while higher frequencies correspond to local
information, discontinuities and possible noise [34]. One can apply a spectral
filter and use graph Fourier transform to manipulate signals on a graph in vari-
ous ways, such as smoothing and denoising [32], abnormally detection [22] and
clustering [39]. Spectral convolution on graphs is defined as the multiplication
of a signal x with a filter g(Λ) in the Fourier domain, i.e.

g(L)x = g(UΛUH)x = Ug(Λ)UHx = Ug(Λ)x̂. (1)

When a spectral filter is parameterized by a scale factor, which controls the
radius of neighbourhood aggregation, Eq. 1 is also known as the Spectral Graph
Wavelet Transform (SGWT) [9,34]. For example, Xu et al. [41] uses a small scale
parameter s < 2 for a heat kernel, g(sλ) = e−λs, to localize the wavelet at a
node.
1 The extended version of this work is available on arXiv [18]. Our open-sourced code

is available at https://github.com/seanli3/asgat.

https://github.com/seanli3/asgat
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3 Proposed Approach

Fig. 1. Illustration of a spectral node attention layer on a three-hop ego network of
the central node v from the CiteSeer dataset. Shape and color indicate node classes.
Passing the graph through two learned spectral filters place attention scores on nodes,
including node v itself. Nodes with positive attention scores are presented in color.
Node features are aggregated for node v according to attention scores. The low-pass
filter attends to local neighbors (filter 1), while the high-pass filter skips the first hop
and attends the nodes in the second hop (filter K). The resulting embeddings from
multiple heads are then concatenated before being sent to the next layer (multi-head
concatenation). Note that we have visualized learned filters from experiments.

Graph neural networks (GNNs) learn lower-dimensional embeddings of nodes
from graph structured data. In general, given a node, GNNs iteratively aggregate
information from its neighbor nodes, and then combine the aggregated informa-
tion with its own information. An embedding of node v at the lth layer of GNN
is typically formulated as

mv = aggregate({h(l−1)
u |u ∈ Nv})

h(l)
v = combine(h(l−1)

v ,mv),

where Nv is the set of neighbor nodes of node v, mv is the aggregated information
from the neighbors, and h

(l)
v is the embedding of node v at the lth layer (h(0)

v =
xv). The embedding h

(L)
v of node v at the final layer is then used for some

prediction tasks. In most GNNs, Nv is restricted to a set of one-hop neighbors
of node v. Therefore, one needs to stack multiple aggregation layers in order
to collect the information from more than one-hop neighborhood within this
architecture.

Adaptive Spectral Filters. Instead of stacking multiple aggregation layers, we
introduce a spectral attention layer that rewires a graph based on spectral graph



454 S. Li et al.

wavelets. A spectral graph wavelet ψv at node v is a modulation in the spectral
domain of signals centered around the node v, given by an N -dimensional vector

ψv = Ug(Λ)UHδv, (2)

where g(·) is a spectral filter and δv is a one-hot vector for node v.
The common choice of a spectral filter is a heat kernel. A wavelet coefficient

ψvu computed from a heat kernel can be interpreted as the amount of energy
that node v has received from node u in its local neighborhood. In this work,
instead of using pre-defined localized kernels, we use multi-layer perceptrons
(MLP) to learn spectral filters. With learnable spectral kernels, we obtain the
inverse graph wavelet transform

ψv = Udiag(MLP(Λ))UHδv. (3)

Unlike a low-pass heat kernel, where the wavelet coefficients can be understood
as the amount of energy after heat diffusion, the learned coefficients ψvu do
not always correspond to energy diffusion. In spectral imaging processing, lower
frequency components preserve an image’s background, while higher frequency
components are useful to detect object edges or outlines. Similarly, in spec-
tral graph theory, lower-frequency components carry smoothly changing signals.
Therefore a low-pass filter is a reasonable choice to extract features and denoise a
homophilic graph. On the contrary, higher-frequency components carry abruptly
changing signals, corresponding to the discontinuities and “opposite attraction”
characteristics of heterophilic graphs. In our experiments, the trained MLP
resembles a low-pass filter, working as a diffusion operator, with homophilic
graphs. In contrast, with heterophilic graphs, the trained MLP reaches a high-
pass filter at most times (Sect. 4).

Note that we use the terminology wavelet and spectral filter interchangeably
as we have relaxed the wavelet definition from [9] so that learnable spectral filters
in our work are not necessarily localized in the spectral and spatial domains.

Remark 1. Equation 3 requires the eigen-decomposition of a Laplacian matrix,
which is expensive and infeasible for large graphs. To address this computa-
tional issue, one may use well-studied methods such as Chebyshev [9,14,41]
and Auto-Regressive Moving-Average (ARMA) [11,19] to efficiently compute an
approximate the graph filtering of MLP in Eq. 3.

Attention Mechanism. Unlike the previous work [41] where the output of
inverse graph wavelet transform are directly used to compute node embeddings,
we normalize the output through a softmax layer

av = softmax(ψv), (4)

where av ∈ R
N is an attention weight vector. With attention weights, an update

layer is then formalized as

h(l)
v = σ

(
N∑

u=1

avuh(l−1)
u W (l)

)
, (5)
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where W (l) is a weight matrix shared across all nodes at the lth layer and σ is
ELU nonlinear activation.

Note that the update layer is not divided into aggregation and combine steps
in our work. Instead, we compute the attention avv directly from a spectral filter.
Unlike heat kernel and other spectral filters, the output of inverse graph wavelet
transform with a learnable spectral kernel are not always localized. Hence, the
model can adaptively aggregate information from both close and far-distant
nodes, depending on their attention weights.

Sparsified Node Attentions. With predefined localized spectral filters such as
a heat kernel, most wavelet coefficients are zero due to their locality. In our work,
spectral filters are fully determined by data. Consequently, attention weights
obtained from learnable spectral filters do not impose any sparsity. This means
we need to retrieve all possible nodes in a graph, which is inefficient, to perform
an aggregation operation. From our experiments, we observe that most attention
weights are negligible after softmax. Thus, we consider a sparsification technique
to keep only the largest k entries of Eq. 3 for each node, i.e.

ψ̄vu =

{
ψvu if ψvu ∈ topK({ψv0, ..., ψvN}, k)
−∞ otherwise,

(6)

where topK is a partial sorting function that returns the largest k entries from a
set of wavelet bases {ψv0, ..., ψvN}. This technique guarantees attention sparsity
such that the embedding of each node can be aggregated from at most k other
nodes with a time complexity trade-off of O(N + k log N). The resulting ψ̄ is
then fed into the softmax layer to compute attention weights.

We adopt multi-head attention to model multiple spectral filters. Each atten-
tion head aggregates node information with a different spectral filter, and the
aggregated embedding is concatenated before sent to the next layer. To reduce
redundancy, we adopt a single MLP: R

N → R
N×M , where M is the number

of attention heads, and each column of the output corresponds to one adaptive
spectral filter.

We name the multi-head spectral attention architecture as a adaptive spec-
tral graph attention network (ASGAT). The design of ASGAT is easily gener-
alizable, and many existing GNNs can be expressed as special cases of ASGAT
(see Appendix [18]). Figure 1 illustrates how ASGAT works with two attention
heads learned from the CiteSeer dataset. As shown in the illustration, the
MLP learns adaptive filters such as low-pass and high-pass filters. A low-pass
filter assigns high attention weights in local neighborhoods, while a high-pass
filter assigns high attention weights on far-distant but similar nodes, which a
traditional hop-by-hop aggregation scheme cannot capture.

4 Experiments

To evaluate the performance of our proposed model, we conduct experiments on
node classification tasks with homophilic graph datasets, and heterophilic graph
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Table 1. Micro-F1 results for node classification. The proposed model consistently
outperforms the GNN methods on heterophilic graphs and performs comparably on
homophilic graphs. Results marked with † are obtained from Pei et al. [26]. Results
marked with ‡ are obtained from Zhu et al. [45].

Homophily ⇐===============================⇒ Heterophily

Cora Pubmed CiteSeer Chameleon Squirrel Wisconsin Cornell Texas

β 0.83 0.79 0.71 0.25 0.22 0.16 0.11 0.06

#Nodes 2,708 19,717 3,327 2,277 5,201 251 183 183

#Edges 5,429 44,338 4,732 36,101 217,073 515 298 325

#Features 1,433 500 3,703 2,325 2,089 1,703 1,703 1,703

#Classes 7 3 6 5 5 5 5 5

GCN 87.4 ± 0.2 87.8 ± 0.2 78.5 ± 0.5 59.8 ± 2.6‡ 36.9 ± 1.3‡ 64.1 ± 6.3 59.2 ± 3.2 64.1 ± 4.9

ChevNet 88.2 ± 0.2 89.3 ± 0.3 79.4 ± 0.4 66.0 ± 2.3 39.6 ± 3.0 82.5 ± 2.8 76.5 ± 9.4 79.7 ± 5.0

ARMANet 85.2 ± 2.5 86.3 ± 5.7 76.7 ± 0.5 62.1 ± 3.6 47.8 ± 3.5 78.4 ± 4.6 74.9 ± 2.9 82.2 ± 5.1

GAT 87.6 ± 0.3 83.0 ± 0.1 77.7 ± 0.3 54.7 ± 2.0‡ 30.6 ± 2.1‡ 62.0 ± 5.2 58.9 ± 3.3 60.0 ± 5.7

SGC 87.2 ± 0.3 81.1 ± 0.3 78.8 ± 0.4 33.7 ± 3.5 46.9 ± 1.7 51.8 ± 5.9 58.1 ± 4.6 58.9 ± 6.1

GraphSAGE 86.3 ± 0.6 89.2 ± 0.5 77.4 ± 0.5 51.1 ± 0.5 41.6 ± 0.7‡ 77.6 ± 4.6 67.3 ± 6.9 82.7 ± 4.8

APPNP 88.4 ± 0.3 86.0 ± 0.3 77.6 ± 0.6 45.3 ± 1.6 31.0 ± 1.6 81.2 ± 2.5 70.3 ± 9.3 79.5 ± 4.6

Geom-GCN 86.3 ± 0.3 89.1 ± 0.1 81.4 ± 0.3 60.9† 38.1† 64.1† 60.8† 67.6†

H2GCN 88.3 ± 0.3 89.1 ± 0.4 78.4 ± 0.5 59.4 ± 2.0 37.9 ± 2.0 86.5 ± 4.4 82.2 ± 6.0 82.7 ± 5.7

MLP 72.1 ± 1.3 88.6 ± 0.2 74.9 ± 1.8 45.7 ± 2.7 28.1 ± 2.0 82.7 ± 4.5 81.4 ± 6.3 79.2 ± 6.1

Vanilla ASGAT − − − − − 86.9 ± 4.2 84.6 ± 5.8 82.2 ± 3.2

ASGAT-Cheb 87.5 ± 0.5 89.9 ± 0.9 79.3 ± 0.6 66.5 ± 2.8 55.8 ± 3.2 86.3 ± 3.7 82.7 ± 8.3 85.1 ± 5.7

ASGAT-ARMA 87.4 ± 1.1 88.3 ± 1.0 79.2 ± 1.4 65.8 ± 2.2 51.4 ± 3.2 84.7 ± 4.4 83.2 ± 5.5 79.5 ± 7.7

datasets. Further ablation study highlights the importance of considering the
entire spectral frequency.

4.1 Experimental Setup

Baseline Methods. An exact computation of Eq. 3 requires to compute the
eigenvectors of the Laplacian matrix, which is often infeasible due to a large
graph size. To overcome this issue, we approximate graph wavelet transform
response of MLP with Chebyshev polynomial, dubbed as ASGAT-Cheb, and
ARMA rational function, dubbed as ASGAT-ARMA. We also report the results
from the exact computation of eigenvectors whenever possible, which is dubbed
as vanilla ASGAT.

We compare all variants against 10 benchmark methods, they are vanilla
GCN [12] and its simplified version SGC [40]; two spectral methods: ChevNet [4]
and ARMANet [1]; the graph attention model GAT [38]2; APPNP, which also
adopts adaptive aggregation [13]; the neighbourhood-sampling method Graph-
Sage [8]; Geom-GCN [26] and H2GCN [45], both also target prediction on het-
erophilic graphs. We also include MLP in the baselines since it performs better
than many GNN methods on some heterophilic graphs [20].

2 It was reported in Velickovic et al. [38] that GAT does not always outperform GCN
when using different data splittings, and similar results have been reported by Zhu
et al. [45].
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Datasets. We evaluate our model and the baseline methods on node classifi-
cation tasks over three citation networks: Cora, CiteSeer and Pubmed [33],
three webgraphs from the WebKB dataset3: Wisconsin, Texas and Cornell,
and webgraphs from Wikipedia called Chameleon and Squirrel [30].

To quantify the homophily of graphs, we use the metric β introduced by Pei
et al. [26],

β =
1
N

∑
v∈V

βv and βv =
|{u ∈ Nv|�(u) = �(v)}|

|Nv| , (7)

where �(v) refers to the label of node v. β measures the degree of homophily of
a graph, and βv measures the homophily of node v in the graph. A graph has
strong local homophily if β is large and vice versa. Details of these datasets are
summarized in Table 1.

Experimental Settings. For citation networks, we follow the experimental
setup for node classification from [3,8,10] and report the results averaged on
10 runs. For webgraphs, we run each model on the 10 splits provided by [26]
and take the average, where each split uses 60%, 20%, and 20% nodes of each
class for training, validation and testing, respectively. The results we report on
GCN and GAT are better than Pei et al. [26] as a result of converting the
graphs to undirected before training4. Geom-GCN uses node embeddings pre-
trained from different embedding methods such as Isomap [37], Poincare [24]
and struc2vec [29]. We report the best micro-F1 results among all three variants
for Geom-GCN.

We use the best-performing hyperparameters specified in the original papers
of baseline methods. For hyperparameters not specified in the original papers,
we use the parameters from Fey and Lenssen [6]. We report the test accuracy
results from epochs with both the smallest validation loss and highest validation
accuracy. Early termination is adopted for both validation loss and accuracy,
thus training is stopped when neither validation loss or accuracy improve for 100
consecutive epochs. For ASGAT, we use a two-layer architecture where multi-
headed filters are learned using a MLP of 2 hidden layers. Each layer of the MLP
consists of a linear function and a ReLU activation. To avoid overfitting, dropout
is applied in each ASGAT layer on both attention weights and inputs equally.
Results for vanilla ASGAT are only reported for small datasets where eigen-
decomposition is feasible. Other hyperparameters are obtained by grid search,
where details are given in Appendix [18].

4.2 Results and Discussion

We use two evaluation metrics to evaluate the performance of node classifica-
tion tasks: micro-F1 and macro-F1. The results with micro-F1 are summarized
in Table 1. Overall, on homophilic citation networks, ASGAT performs compa-
rably with the state-of-the-art methods, ranking first on Pubmed and second
3 http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-11/www/wwkb/.
4 https://openreview.net/forum?id=S1e2agrFvS.

http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-11/www/wwkb/
https://openreview.net/forum?id=S1e2agrFvS
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on Cora and CiteSeer in terms of micro-F1 scores. On heterophilic graphs,
ASGAT outperforms all other methods by a margin of at least 2.4% on 3 out of 4
datasets. These results indicate that ASGAT generalizes well on different types
of graphs. The results with macro-F1 are summarized in Appendix [18]. Macro-
F1 scores have not been reported widely in the literature yet. Here, we report the
macro-F1 since the heterophilic graphs have imbalanced class distributions than
the homophilic graphs. As the results show, ASGAT outperforms all other meth-
ods across all heterophilic graphs in macro-F1. The difference between the two
approximation methods is not significant. Except for a few cases, the difference
comes from hyperparameters selection. The vanilla ASGAT gives more consistent
results than the approximations, although the difference seems marginal.

Although ASGAT performs well on both homophilic and heterophilic graphs,
it is unclear how ASGAT performs on heterophilic neighbourhoods of an
homophilic graph where nodes are mostly of different classes. Thus, we report
an average classification accuracy on nodes at varying levels of βv in Fig. 2 on
the homophilic graphs CiteSeer and Pubmed. The nodes are binned into five
groups based on βv. For example, all nodes with 0.3 < βv ≤ 0.4 belong to the bin
at 0.4. We have excluded Cora from the report since it has very few heterophilic
neighbourhoods.

The results in Fig. 2 show that all models except ASGAT perform poorly
when βv is low. One may argue that the performance on heterophilic graphs
might improve by stacking multiple GNN layers together to obtain information
from far-distant nodes. However, it turns out that this approach introduces an
oversmoothing problem [17] that degrades performance. On the other hand, the
better performance of ASGAT on heterophilic nodes suggests the adaptive spec-
tral filters reduce noise aggregated locally while allowing far-distant nodes to
participate.

Attention Sparsification. The restriction on top k entries in Eq. 6 guarantees
a certain level of sparsification. Nonetheless, ASGAT requires a partial sorting
which adds an overhead of O(n + k log N). To further analyze the impact of
attention sparsity on run-time, we plot the density of an attention matrix with
varying k in Fig. 3 along with its running time. The results are drawn from
two datasets: the heterophilic dataset Chameleon and the homophilic dataset
Cora. As expected, ASGAT shows a stable growth in the attention density
as the value of k increases. It also shows that ASGAT runs much faster when
attention weights are well-sparsified. In our experiments, we find the best results
are achieved on k < 20. The impact of k on classification performance is further
analyzed in Appendix [18].

Frequency Range Ablation. To understand how adaptive spectral filters con-
tribute to ASGAT’s performance on heterophilic graphs, we conduct an abla-
tion study on spectral frequency ranges. We first divide the entire frequency
range (0–2) into a set of predefined sub-ranges exclusively. Then we manually
set the filter frequency responses to zero for each sub-range to check its impact
on the classification. The frequencies within a selected sub-range contribute to
neither node attention nor feature aggregation, therefore helping to reveal the



Beyond Low-Pass Filters: Adaptive Feature Propagation on Graphs 459

Fig. 2. Micro-F1 results for classification accuracy on heterophilic nodes (βv ≤ 0.5).
ASGAT shows better accuracy on classifying heterophilic nodes than the other meth-
ods.

importance of the sub-range. We consider three different lengths of sub-ranges,
i.e., step = 1.0, step = 0.5, and step = 0.25. The results of frequency ablation
on the three homophilic graphs are summarized in Fig. 4.

The results for step = 1.0 reveal the importance of high-frequency range (1–
2) on node classification of heterophilic graphs. The performance is significantly
dropped by ablating high-frequency range on all datasets. Further investigation
at the finer-level sub-ranges (step = 0.5) shows that ablating sub-range 0.5–1.5
has the most negative impact on performance, whereas the most important sub-
range varies across different datasets at the finest level (step = 0.25). This finding
matches our intuition that low-pass filters used in GNNs underlie a homophily
assumption similar to naive local aggregation. We suspect the choice of low-pass
filters also relates to oversmoothing issues in spectral methods [17], but we leave
it for future work.

Attention Head Ablation. In ASGAT, each head uses a spectral filter to
produce attention weights. To delve into the importance of a spectral filter, we
further follow the ablation method used by Michel et al. [21]. Specifically, we
ablate one or more filters by manually setting their attention weights to zeros.
We then measure the impact on performance using micro-F1. If the ablation
results in a large decrease in performance, the ablated filters are considered
important. We observe that all attention heads (spectral filters) in ASGAT are
of similar importance, and only all attention heads combined produce the best
performance. Please check Appendix [18] for the detailed results.

Time Complexity. In vanilla ASGAT, eigen-decomposition is required for Eq. 3
which has a time complexity of O(N3). ASGAT-Cheb and ASGAT-ARMA avoid
eigen-decomposition and are able to scale to large graphs as their time complexi-
ties are O(R×|E|) and O((P ×T +Q)×|E|) respectively, where R, P and Q are
polynomial orders that are normally less than 30, T is the number of iterations
that is normally less than 50. Therefore, both ASGAT-Cheb and ASGAT-ARMA
scale linearly with the number of edges |E|. Readers can refer to Appendix [18]
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Fig. 3. Attention matrix density and training runtime with respect to k. Attention
matrix sparsified by keeping the top k elements at each row, which effectively improves
runtime efficiency.

for a more detailed introduction of these two methods. Secondly, partial sorting
used in the attention sparsification of Eq. 6 requires O(N +k log N). Lastly, Eq. 4
is performed on a length-k vector for N rows; therefore, a time complexity of
O(k × N) is needed. In practice, we have R ∼ P ∼ T ∼ Q ∼ k � N � |E|
for most graphs, therefore, for a model with M heads, the overall time complex-
ity is O(M × R × |E|) for ASGAT-Cheb and O(M × (P × T + Q) × |E|) for
ASGAT-ARMA.

5 Related Work

Graph neural networks have been extensively studied recently. We categorize
work relevant to ours into three perspectives and summarize the key ideas.

Attention on Graphs. Graph attention networks (GAT) [38] was the first to
introduce attention mechanisms on graphs. GAT assigns different importance
scores to local neighbors via an attention mechanism. Similar to other GNN
variants, long-distance information propagation in GAT is realized by stacking
multiple layers together. Therefore, GAT suffers from the oversmoothing issue
[44]. Zhang et al. [42] improve GAT by incorporating both structural and feature
similarities while computing attention scores.

Spectral Graph Filters and Wavelets. Some GNNs also use graph wavelets
to extract information from graphs. Xu et al. [41] applied graph wavelet trans-
form defined by Shuman et al. [34] to GNNs. Klicpera et al. [14] proposed a
general GNN argumentation using graph diffusion kernels to rewire the nodes.
Donnat et al. [5] used heat wavelet to learn node embeddings in unsupervised
ways and showed that the learned embeddings closely capture structural similar-
ities between nodes. Other spectral filters used in GNNs can also be viewed
as special forms of graph wavelets [1,4,12]. Coincidentally, Chang et al. [2]
also noticed useful information carried by high-frequency components from a
graph Laplacian. Similarly, they attempted to utilize such components using
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Fig. 4. Micro-F1 with respect to ablated frequency sub-ranges on heterophilic graphs.
We divide the frequency range into a set of sub-ranges with different lengths. The results
(a) and (d) reveal the importance of high-frequency range (1–2). Further experiments
show that there is a subtle difference in the most important range across datasets, but
it ranges between (0.75–1.25).

node attentions. However, they resorted to the traditional choice of heat kernels
and applied such kernels separately to low-frequency and high-frequency compo-
nents divided by a hyperparameter. In addition to this, their work did not link
high-frequency components to heterophilic graphs.
Prediction on Heterophilic Graphs. Pei et al. [26] have drawn attention to
GCN and GAT’s poor performance on heterophilic graphs very recently. They
try to address the issue by essentially pivoting feature aggregation to structural
neighborhoods from a continuous latent space learned by unsupervised methods.
Liu et al. [20] proposed another attempt to address the issue. They proposed to
sort locally aggregated node embeddings along with a one-dimensional space and
used a one-dimensional convolution layer to aggregate embeddings a second time.
By doing so, non-local but similar nodes can attend to the aggregation. Very
recently, Zhu et al. [45] showed that a heuristic combination of ego-, neighbor
and higher-order embedding improves GNN performance on heterophilic graphs.
Coincidentally, they also briefly mentioned the importance of higher-frequency
components on heterophilic graphs, but they did not provide an empirical anal-
ysis.

Although our method shares some similarities in motivation with the work
above, it is fundamentally different in several aspects. To the best of our knowl-
edge, our method is the first architecture we know that computes multi-headed
node attention weights purely from learned spectral filters. As a result, in
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contrast to the commonly used heat kernel, our method utilizes higher-frequency
components of a graph, which helps predict heterophilic graphs and neighbour-
hoods.

6 Conclusion

In this paper, we study the node classification tasks on graphs where local
homophily is weak. We argue that the assumption of homophily is the cause
of poor performance on heterophilic graphs. In order to design more generaliz-
able GNNs, we suggest that a more flexible and adaptive feature aggregation
scheme is needed. To demonstrate, we have introduced the adaptive spectral
graph attention network (ASGAT), which achieves flexible feature aggregation
using learnable spectral graph filters. By utilizing the full graph spectrum adap-
tively via the learned filters, ASGAT can aggregate features from close and far
nodes. For node classification tasks, ASGAT outperforms all benchmarks on het-
erophilic graphs and performs comparably on homophilic graphs. On homophilic
graphs, ASGAT also performs better for nodes with weak local homophily. We
find that the performance gain is closely linked to the higher end of the frequency
spectrum through our analysis.
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Abstract. Relation prediction among entities in images is an important
step in scene graph generation (SGG), which further impacts various
visual understanding and reasoning tasks. Existing SGG frameworks,
however, require heavy training yet are incapable of modeling unseen
(i.e., zero-shot) triplets. In this work, we stress that such incapability is
due to the lack of commonsense reasoning, i.e., the ability to associate
similar entities and infer similar relations based on general understand-
ing of the world. To fill this gap, we propose CommOnsense-integrAted
sCene grapH rElation pRediction (COACHER), a framework to inte-
grate commonsense knowledge for SGG, especially for zero-shot rela-
tion prediction. Specifically, we develop novel graph mining pipelines to
model the neighborhoods and paths around entities in an external com-
monsense knowledge graph, and integrate them on top of state-of-the-art
SGG frameworks. Extensive quantitative evaluations and qualitative case
studies on both original and manipulated datasets from Visual Genome
demonstrate the effectiveness of our proposed approach. The code is
available at https://github.com/Wayfear/Coacher.

Keywords: Scene graph generation · Relation prediction · Zero-shot ·
Commonsense · Knowledge graph · Reasoning · Graph mining

1 Introduction

With the unprecedented advances of computer vision, visual understanding and
reasoning tasks such as Image Captioning and Visual Question Answer (VQA)
have attracted increasing interest recently. Scene graph generation (SGG), which
predicts all relations between detected entities from images, distills visual infor-
mation in structural understanding. With clear semantics of entities and rela-
tions, scene graphs are widely used for various downstream tasks like VQA
[7,22,36], image captioning [4,31,32], and image generation [9–11].

A critical and challenging step in SGG is relation prediction. A relation
instance in scene graph is defined as a triplet 〈subject, relation, object〉. Given
two detected entities, which relation exists between them is predicted based on
the probability score from the learned relation prediction model. However, most
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Fig. 1. Toy example of zero-shot relation prediction in scene graph generation and
insights about commonsense knowledge integration.

of the existing scene graph generation models rely on heavy training to memorize
seen triplets, which limits their utility in reality, because many real triples are
never seen during training.

Challenge: Performance Deterioration on Zero-Shot Triplets. When
evaluating the performance of relation prediction model in practice, there are
two types of triplets, the ones seen in the training data and the ones unseen.
Those unseen ones are called zero-shot triplets. As shown in Fig. 1, triplet 〈man,
eating, pizza〉 is observed in the training data. If this triplet appears again in
the testing phase, then it is called a non-zero-shot triplet. In contrast, a triplet
〈child, eating, pizza〉 with a new entity-relation combination not observed in
training data is called a zero-shot triplet.

Although several existing scene graph generation methods have achieved
decent performance on the whole testing data, little analysis has been done on
the performance on zero-shot triplets. Unfortunately, based on our preliminary
analysis (Sect. 2.1), the performance of existing methods degrades remarkably
when solely tested on zero-shot triplets, while many of such triplets are rather
common in real life. Such reliance on seeing all triplets in training data is prob-
lematic, as possible triplets in the wild are simply inexhaustible, which requires
smarter models with better generalizability.

Motivation: Commonsense as a “COACHER” for Zero-Shot Relation
Prediction. Commonsense knowledge refers to general facts about the world
that empower human beings to reason over unfamiliar scenarios. Motivated by
this process from humans’ perspective, in this work, we propose to integrate com-
monsense knowledge to alleviate the inexhaustible-triplet problem and improve
the performance of zero-shot relation prediction in SGG.

The illustration of our problem and insights are illustrated in Fig. 1. Specif-
ically, the commonsense knowledge utilized in this paper comes from Concept-
Net [13], a crowd-sourced semantic knowledge graph containing rich structured
knowledge regarding real-world concepts.
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Insight 1: Neighbor Commonsense Reflects Semantic Similarity. In
ConceptNet, the neighbor similarity between two individual nodes indicates their
semantic similarity in the real world. For example, in Fig. 1, child and man share
many common neighbors such as fun, sleep, boy and so on, which indicates that
child and man may be similar and thus have similar interactions with other
entities. If the model sees a triplet 〈man, eating, pizza〉 in the training data,
then with the knowledge that child is semantically similar to man, it should
more easily recognize triplets like 〈child, eating, pizza〉 from unseen but similar
images. Therefore, we propose to leverage the semantic similarity between two
detected entities by modeling their neighborhood overlap in ConceptNet.

Insight 2: Path Commonsense Reflects Relation Similarity. Nodes are
connected by paths composed of multiple consecutive edges in ConceptNet. As
is shown on the right in Fig. 1, the entity pairs of (child, pizza) and (man, pizza)
share common intermediate paths like 〈RelatedTo, human, Desires, food, Relat-
edTo〉. This similarity of intermediate paths indicates that the relations between
man and pizza may be similar to those between child and pizza. If there is a
triplet 〈man, eating, pizza〉 in the training data, then the model should tend to
predict the relation eating given (child, pizza) in an unseen but similar image.
Following the idea above, we propose to infer the relation between two entities
by modeling their path coincidence with other entity pairs in ConceptNet.

Approach: Scene Graph Relation Prediction through Commonsense
Knowledge Integration. In this work, we propose a novel framework that
integrates external commonsense knowledge into SGG for relation prediction
on zero-shot triplets, which we term as CommOnsense-integrAted sCene grapH
rElation pRediction, COACHER for brevity (Fig. 3). To be specific, we investi-
gate the utility of external commonsense knowledge through real data analysis.
With the validated effectiveness of both neighbor- and path-based common-
sense knowledge from ConceptNet, we design three modules for different levels
of knowledge integration, which generate auxiliary knowledge embedding for
generalizable relation prediction.

In summary, our main contributions are three-fold.

• We analyze the ignorance of zero-shot triplets by existing SGG models and
validate the potential utility of commonsense knowledge from ConceptNet
through real data analysis (Sect. 2).

• Based on the state-of-the-art SGG framework, we integrate external com-
monsense knowledge regarding ConceptNet neighbors and paths to improve
relation prediction on zero-shot triplets (Sect. 3).

• Extensive quantitative experiments and qualitative analyses on the widely-
used SGG benchmark dataset of Visual Genome demonstrate the effectiveness
of our proposed COACHER framework. Particularly, COACHER achieves
consistently better performance over state-of-the-art baselines on the original
dataset, and outperforms them significantly on amplified datasets towards
more severe zero-shot learning settings (Sect. 4).
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2 Motivating Analysis

2.1 Ignorance yet Importance of Zero-Shot Triplets

In SGG, triplets are used to model entities with their relations. Among the great
number of possible rational triplets in the wild, some of them exist in the training
data while more others do not. The ability of correctly inferring zero-shot triplets
can be extremely important to reflect the generalization capability of the model
and its real utility in practice.

Although the performance of zero-shot scene graph generation was once stud-
ied in the early days on a small dataset [15], later researchers do not pay much
attention to this setting. Until 2020, Tang et al. [21] first reported zero-shot per-
formance on Visual Genome. However, they have not proposed any particular
solutions to improve it.

Table 1. Performance (%) of three state-of-the-art models on non-zero-shot and zero-
shot triplets on Visual Genome (Please refer to Sect. 4 for more details about the
presented models).

Methods NM NM+ TDE

MeanRecall@K K=20 K=50 K=100 K=20 K=50 K=100 K=20 K=50 K=100

None-zero-shot 25.12 33.32 37.06 25.08 33.69 37.54 26.26 35.93 40.27

Zero-shot 12.85 18.93 21.84 12.28 18.28 21.30 5.84 11.68 15.10

The ignorance of zero-shot settings causes existing methods a dramatic
descent on the relation prediction on zero-shot triplets. Table 1 shows the per-
formance of three state-of-the-art models on Visual Genome, the most widely
used benchmark dataset for SGG. Note that mean recall is used here for perfor-
mance evaluation, which is the average result of triplet-wise recall. Consistently,
the mean recall of non-zero-shot triplets under different values of K can achieve
almost twice of that on zero-shot ones, which demonstrates a concerning perfor-
mance deterioration on zero-shot relation prediction.

Fig. 2. Recall@20 performance on two different types of triplets. The five triplets on
the left are zero-shot ones while the other five on the right are non-zero-shot.

Furthermore, although zero-shot triplets are not labeled in the training data,
some of them are actually no less common in reality compared to the labeled



470 X. Kan et al.

ones. To give a more concrete illustration, we visualize the recall@20 on five
actual zero-shot triplets and another five non-zero-shot triplets in Fig. 2. Con-
sistent with the results in Table 1, performance of existing models on the five
zero-shot triplets turns out to be much lower than that on the five non-zero-shot
triplets. However, these zero-shot triplets represent very common relations such
as 〈child, on, bus〉 which are in fact more common than some non-zero-shot ones
such as 〈bear, wearing, tie〉. The performance on certain triplets like 〈bear, wear-
ing, tie〉 is much better simply because they appear in the training data and got
memorized by the model, but the utility of such memorization is rather limited
in reality without the ability of generalization.

Lastly, due to the inexhaustibility of triplets in the real world, labeled
datasets can only cover a limited portion of the extensive knowledge. Many com-
mon triplets simply do not appear in the dataset. For example, 〈men, holding,
umbrella〉, 〈vehicle, parked on, beach〉,〈women, in, boat〉 and 〈fence, across, side-
walk〉, to name a few, are common triplets that never appear in Visual Genome,
even though all involved objects and relations appear in other labeled triplets.
Therefore, to propose a practical SGG model that can be widely used and assist
various downstream tasks, we need to pay more attention to zero-shot triplets.

Motivated by the ignorance and importance of zero-shot triplets, in this
work, we focus on integrating commonsense knowledge from external resources
to improve the relation prediction performance on zero-shot triplets. Specifically,
we leverage ConceptNet as the external knowledge resource from several other
alternatives due to its wide coverage of concepts and accompanying semantic
embeddings of concepts as useful features [13]. In ConceptNet, each concept
(word or phrase) is modeled as a node and each edge represents the relation
between two concepts. Thanks to its wide coverage, we are able to link each
entity class in Visual Genome to one node in ConceptNet.

2.2 Commonsense Knowledge from ConceptNet Neighbors

Many entities in real life share similar semantic meanings, which can potentially
support zero-shot relation prediction. Given an image from Visual Genome, we
can detect multiple entities, where each entity belongs to a class. Among these
entity classes, for example, (girl, boy, woman, man, child) are all human beings,
so the model should learn to generalize human-oriented relations among them.

The semantic similarity among classes in Visual Genome can be viewed as
the neighborhood similarity of their corresponding nodes in ConceptNet, which
can be calculated with the Jaccard similarity of their neighbors:

J(VA,VB) =
|NA ∩ NB |
|NA ∪ NB | , (1)

where VA, VB are nodes corresponding to two given classes, and NA, NB are the
neighbors of them in ConceptNet, respectively.

In order to validate the effectiveness of utilizing neighborhood similarity in
ConceptNet as a measurement of semantic similarity in Visual Genome, we cal-
culate the similarity between each pair of the top 150 mostly observed classes
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Table 2. Top 20 pairs of similar entity classes.

1 chair-seat 2 shoe-sock 3 hill-mountain 4 coat-jacket 5 house-building

6 airplane-plane 7 woman-girl 8 desk-table 9 window-door 10 men-man

11 shirt-jacket 12 house-room 13 room-building 14 girl-boy 15 plate-table

16 arm-leg 17 chair-table 18 tree-branch 19 cow-sheep 20 arm-hand

in Visual Genome, and rank their similarity in descending order. Results of the
top 20 most similar pairs are shown in Table 2. As can be seen, the top similar
pairs such as chair − seat indeed capture the semantic similarity between two
classes, which validates the virtue of using ConceptNet neighbors to bring in
commonsense knowledge for modeling the semantic similarity among entities.

2.3 Commonsense Knowledge from ConceptNet Paths

In ConceptNet, besides the one-hop information from neighbors, paths composed
by multiple edges can further encode rich multi-hop information. Specifically, if
two pairs of entities are connected by many same paths in ConceptNet, they are
more likely to share similar relations. In order to investigate such path-relation
correlation between node pairs on ConceptNet, we define MidPath as follows:

Definition 1 (MidPath). Given two nodes VA and VB in the graph, a MidPath
between VA and VB is defined as the sequence of all intermediate edges and nodes
on a path from VA to VB, excluding both the head and tail nodes.

For example, given a path 〈people, RelatedTo, automobile, AtLocation, street〉
between nodes people and street, the corresponding MidPath is 〈RelatedTo,
automobile, AtLocation〉.

Table 3. Top 3 related MidPaths for 10 relations.

Relation Top1 MidPath Top2 MidPath Top3 MidPath

Parked on RelatedTo-cars-RelatedTo RelatedTo-driven-ReceivesAction AtLocation-automobile-RelatedTo

Says RelatedTo RelatedTo-communication device-RelatedTo RelatedTo-command-RelatedTo

Laying on RelatedTo-legs-RelatedTo AtLocation RelatedTo-human-RelatedTo

Wearing RelatedTo-body-RelatedTo RelatedTo-dress-RelatedTo RelatedTo-clothing-Desires

Against AtLocation-garage-AtLocation RelatedTo-wall-RelatedTo RelatedTo

Sitting on AtLocation AtLocation-human-RelatedTo RelatedTo-legs-RelatedTo

Walking in RelatedTo-home-RelatedTo UsedFor-children-RelatedTo RelatedTo-crowd-RelatedTo

Growing on RelatedTo-growth-RelatedTo RelatedTo-leaves-RelatedTo RelatedTo-stem-RelatedTo

Watching RelatedTo-human-RelatedTo RelatedTo-date-RelatedTo RelatedTo-female-RelatedTo

Playing RelatedTo-human-RelatedTo RelatedTo RelatedTo-clown-RelatedTo

For each relation in Visual Genome, probability analysis is done to investi-
gate the related MidPaths. The smallest unit in the dataset is a triplet 〈subject,
relation, object〉. With nodes subject and object, we can extract a set of Mid-
Paths P connecting them from ConceptNet. For each path pi ∈ P and relation
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rj ∈ R, the number of co-occurrence I(MP = pi,R = rj) can be counted. Fol-
lowing the formula below, we calculate the conditional probability of observing
MidPath pi given a specific relation rj :

P (MP = pi|R = rj) =
I(MP = pi,R = rj)∑

pk∈P I(MP = pk,R = rj)
. (2)

To eliminate random effects, the probability of observing a random MidPath pi
is also calculated, as follows

P (MP = pi) =
I(MP = pi)∑

pk∈P I(MP = pk)
, (3)

where I(MP = pi) is the occurrence number of MidPath pi. Now we can measure
how significant MidPath pi is given a specific relation rj by

Score(pi, rj) = P (MP = pi|R = rj) − P (MP = pi). (4)

The higher the score is, the more significantly MidPath pi can imply relation rj .
Table 3 shows top three MidPaths with highest scores for 10 relations. Clearly,
these top MidPaths are semantically meaningful and potentially beneficial for
generalizing relation predictions among entity pairs.

3 COACHER

Fig. 3. The overall framework of our proposed COACHER.

In this section, we present the proposed SGG with commonsense knowledge
integration model COACHER in detail. Figure 3 shows the major components
in COACHER: (a) object detection and refinement, (b) commonsense knowledge
embedding generation, and (c) commonsense enhanced relation prediction.
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3.1 Backbone Scene Graph Generation Pipeline

Scene graph generation is a task aiming to understand visual scenes by extracting
entities from images and predicting the semantic relations between them. Various
technique has been explored for scene graph generation (Sect. 5). Here we adopt
one of the state-of-the-art pipelines from Neural Motif [34] as the backbone
framework. We mainly focus on commonsense-integrated relation prediction for
zero-shot triplets, which is crucial for practice as discussed in Sect. 2.

The backbone scene graph generation pipeline includes three components:

Step1: Object Detection. With the development of deep learning, some pop-
ular frameworks such as R-CNN [3,19], YOLO [18] and SSD [14] achieve impres-
sive performance on this task. Following previous literature [5,21], we adopt a
pre-trained Faster R-CNN model as the detector in our framework. In this step,
with the input of a single image I, the output includes: a set of region pro-
posals B = {b1, · · · , bn}, a set of distribution vectors D = {d1, · · · ,dn}, where
di ∈ R

|C| is a label probabilities distribution and |C| is the number of classes, as
well as a visual embedding E = {e1, · · · ,en} for each detected object.

Step2: Label Refinement. Based on the label distribution D generated from
Step1, we conduct label refinement to generate a one-hot vector of entity classes
for each region proposal, which will be used for relation prediction.

First, background embeddings Ebg containing information from both region
proposal level and global level of the image are generated using a bi-LSTM:

Ebg = biLSTM([ei;MLP(di)]i=1,··· ,n), (5)

where Ebg = [e1bg,e
2
bg, · · · ,enbg] is the hidden state of the last layer in LSTM

and n is the number of region proposals. Then, an LSTM is used to decode each
region proposal embedding eibg:

hi = LSTM([eibg;oi−1]), (6)

oi = argmax(MLP(hi)). (7)

oi is the one-hot vector representing the refined class label of a region proposal.

Step3: Relation Prediction. After obtaining refined object labels for all region
proposals, we use them to further generate context embeddings Ect:

Ect = biLSTM([eibg;MLP(oi)]i=1,··· ,n), (8)

where Ect = [e1ct,e
2
ct, · · · ,enct], which are then used to extract edge embeddings

eeg and predict the relation between each pair of bounding boxes:

e(i,j)eg = MLP(eict) ◦ MLP(ejct) ◦ (ei ∪ ej), (9)

r(i,j) = argmax(MLP([e(i,j)eg ;e(i,j)kb ])), (10)

where ◦ represents element-wise product, e(i,j)kb is the commonsense knowledge
embedding obtained from ConceptNet, which we will introduce next.
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3.2 Commonsense Integrator

Commonsense knowledge integration is achieved by computing ekb from exter-
nal resources. Specifically, we use ConceptNet [13] here as the source of exter-
nal commonsense knowledge. ConceptNet is a knowledge graph that connects
words and phrases of natural language with labeled edges. It is constructed from
rich resources such as Wiktionary and WordNet. With the combination of these
resources, ConceptNet contains over 21 million edges and over 8 million nodes,
covering all of the entity classes in Visual Genome. Besides, it also provides
a semantic embedding for each node, which can serve as a semantic feature.
Here we develop three types of integrators to generate commonsense knowledge
embeddings from ConceptNet.

Neighbor Integrator. ConceptNet is a massive graph G = (V, E), where V and
E are the node set and edge set, respectively. Each detected entity can be seen as
a node in ConceptNet. Given a class c ∈ C of a detected entity, its neighborhood
information can be collected as follows:

c
link−−→ Vc

retrieve neighbors−−−−−−−−−−−→ Nc = {Vn|(Vc,Vn) ∈ E}. (11)

Denote F ⊂ R
|V|×k as the feature matrix of all nodes in ConceptNet from [20],

where k is the dimension of the feature vector. Neighbor embedding ecnb of node
Vc is calculated as the average over all of its neighbors’ embeddings:

ecnb =
1

|Nc|
∑

Vn∈Nc

Fn, (12)

where Fn is the nth row of F . For relation prediction, given a pair of detected
entities with classes (a, b), the neighbor-based commonsense knowledge embed-
ding e

(a,b)
kb of this pair is calculated as:

e
(a,b)
kb = ReLU(MLP([eanb;e

b
nb])), (13)

where MLP denotes the multi-layer perceptron.

Path Integrator. Given a pair of entities with classes (a, b) recognized from the
object detection model, a set of paths connecting them can be obtained following
the procedure below:

(a, b) link−−→ (Va,Vb)
retrieve paths−−−−−−−−−→ P(a,b) = {p|p = {Va,V1, · · · ,Vb}}. (14)

Fig. 4. Graphic representation construction from retrieved paths.
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We classify these extracted paths based on their number of hops. The graphical
representation of paths is shown in Fig. 4. Each set of l-Hop Paths naturally
constitutes a small graph G

(a,b)
l , where l is the number of hops on the paths.

The goal is to learn a representation of all graphs {G(a,b)
l }Ll=1, where L is often

a small number like 2 or 3, since longer paths are too noisy and hard to retrieve.
Classical sequence models such as LSTM cannot handle very short paths

effectively. Inspired by message passing network for graph representation learning
[2,16], we design a neural message passing mechanism to learn a representation
for each set of l-Hop Paths, and then combine them as the final path-based
commonsense knowledge embedding for pair (a, b).

Specifically, we design the message passing mechanism as follows:

MSGt
v(Va) = MSGt−1

v (Va) +
∑

v∈Na

MSGt
e(v), (15)

MSGt
e(v) = MLP(MSGt−1

v (v)), (16)

where MSG0
v(v) is initialized as Fv, i.e., the original node features from [20].

In order to update the embedding of each node with all hops on the corre-
sponding paths, given G

(a,b)
l , we iterate the above process t = l times to obtain

the final node embeddings T
(a,b)
l on each set of l-Hop Paths in G

(a,b)
l .

To join the information of multiple paths on each graph, we select and aggre-
gate the most important paths. As a simplification, we adopt the GlobalSortPool
operator [35] on the embeddings of all nodes in G

(a,b)
l as follows:

e(a,b),lg = GlobalSortPool(T (a,b)
l ), (17)

which learns to sort all nodes by a specific embedding channel and pool the top
K (e.g., K = 5) nodes on all embedding channels.

Finally, we aggregate the path embeddings {e(a,b),lg }Ll=1 of different length l
through vector concatenation.

Fused Integrator. To fuse neighbor- and path-based commonsense knowledge,
we inject the neighbor-based knowledge into the path-based knowledge by ini-
tializing MSG0

v(v) in Eq. 15 as the element-wise mean between enb from Eq. 12
and the original node features F as follows:

MSG0
v(v) = MEAN(Fv,e

v
nb), (18)

where v can be replaced as a and b for the entity class pair (a, b).
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4 Experiments

4.1 Experimental Settings

Original Whole Dataset. For scene graph generation, we use the Visual
Genome dataset [8], a commonly used benchmark for SGG, to train and test our
framework. This dataset contains 108,077 images, where the number of classes
and relations are 75,729 and 40,480, respectively. However, 92% of relationships
have no more than 10 instances. Therefore, we follow the widely used split strat-
egy on Visual Genome [5,21,24] that selects the most frequent 150 object classes
and 50 relations as a representative. Besides, we use 70% images as well as their
corresponding entities and relations as the training set, and the other 30% of
images are left out for testing. A 5k validation set is split from the training set
for parameter tuning.

Zero-Shot Amplified Dataset. To further investigate the model’s generaliza-
tion ability in more severe zero-shot settings, we reduce the information that
the model can leverage during training by constructing another zero-shot ampli-
fied dataset. This is achieved by simply removing images containing less common
relations from the training data. As a result, the triplet numbers of the last thirty
common relations are halved, while the triplet numbers of the first twenty com-
mon relations mostly remain the same. In this way, we exacerbate the difficulty
for the model, especially on predicting relations for zero-shot triplets.

Compared Algorithms. We compare COACHER with four baseline methods.

• NeuralMotifs (NM) [34] is a strong baseline which is widely-compared on
Visual Genome for SGG.

• NeuralMotifs with Knowledge Refinement Network (NM+) [5] is
the only existing method that leverages external knowledge for SGG, which
is the closest to ours. This method mainly contains two new parts, knowledge
refinement and image reconstruction. We add its knowledge refinement part
on top of Neural Motifs, which we call NM+.

• TDE [21] is the current state-of-the-art method for scene graph generation.
This work is also the first one reporting zero-shot performance on Visual
Genome but it does not take effort to improve it.

• CSK-N is a baseline based on our framework which makes predictions with-
out visual information. Given a pair of entities, we predict their relation using
only the neighbor-based commonsense knowledge embedding.

Evaluation Metrics. Since the purpose of this work is to improve performance
on zero-shot triplets, we follow the relation classification setting for evaluation
[21]. Specifically, we use the following two metrics and focus on their evaluations
on the zero-shot subset of the whole testing data:

• zR@K(zero-shot Recall@K): Recall@K is the earliest and the most widely
accepted metric in SGG, first used by Lu et al. [15]. Since the relation between
a pair of entities is not complete, treating it as a retrieval problem is more
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proper than a classification problem. Here we take the Recall@K on zero-shot
subset and shorten it as zR@K.

• ng-zR@K(zero-shot no-graph-constraint Recall@K): No-graph-constraint
Recall@K is first used by Newell et al. for SGG [17]. It allows a pair of entities
to have multiple relations, which significantly improves the recall value. Here
we take the ng-R@K on zero-shot subset and shorten it as ng-zR@K.

4.2 Hyper-parameter Setting

A pre-trained and frozen Faster-RCNN [19] equipped with the ResNeXt-101-
FPN [6] backbone is used as the object detector for all models. Batch size and
the max iteration number are set as 12 and 50,000 respectively. The learning
rate begins with 1.2 × 10−1 with a decay rate of 10 and a stepped scheduler
based on the performance stability on the validation set. A Quadro RTX 8000
GPU with 48 GB of memory is used for our model training. For path length,
here we only use 1 and 2 hop paths (L = 2) due to the GPU memory limitation.
Based on observation from humans’ perspective, these short paths are also the
more informative ones compared with longer paths.

4.3 Performance Evaluations

Table 4 and Table 5 show performance of three variants of COACHER with dif-
ferent knowledge integrators (COACHER-N, COACHER-P, COACHER-N+P)
as well as four baselines on the original and amplified datasets, respectively.

Table 4. Zero-shot performance (%) on the original whole dataset.

Method zR@20 zR@50 zR@100 ng-zR@20 ng-zR@50 ng-zR@100

NM 13.05 ± 0.06 19.03 ± 0.22 21.98 ± 0.22 15.16 ± 0.49 28.78 ± 0.57 41.52 ± 0.79

NM+ 12.35 ± 0.28 18.10 ± 0.13 21.13 ± 0.24 14.47 ± 0.11 27.93 ± 0.15 40.84 ± 0.28

TDE 8.36 ± 0.25 14.35 ± 0.27 18.04 ± 0.46 9.84 ± 0.33 19.28 ± 0.56 28.99 ± 0.44

CSK-N 5.95 ± 0.62 10.12 ± 0.79 13.05 ± 0.64 8.15 ± 0.57 16.79 ± 0.62 26.19 ± 1.19

COACHER-N 12.73 ± 0.22 18.88 ± 0.12 21.88 ± 0.11 15.10 ± 0.47 28.73 ± 0.21 41.06 ± 0.26

COACHER-P 12.24 ± 0.17 18.12 ± 0.16 21.55 ± 0.39 14.39 ± 0.46 28.90 ± 0.43 40.98 ± 0.45

COACHER-N+P 13.42 ± 0.28 19.31 ± 0.27 22.22 ± 0.29 15.54 ± 0.27 29.31 ± 0.27 41.39 ± 0.22

Table 5. Zero-shot performance (%) on the zero-shot amplified dataset.

Method zR@20 zR@50 zR@100 ng-zR@20 ng-zR@50 ng-zR@100

NM 11.98 ± 0.09 17.86 ± 0.13 20.48 ± 0.02 13.98 ± 0.33 27.43 ± 0.72 39.33 ± 0.77

NM+ 11.82 ± 0.06 17.27 ± 0.34 20.10 ± 0.31 13.83 ± 0.18 26.92 ± 0.25 38.71 ± 0.32

TDE 5.67 ± 0.03 11.08 ± 0.40 14.20 ± 0.22 6.51 ± 0.05 18.61 ± 0.05 32.20 ± 0.47

CSK-N 5.65 ± 0.34 9.55 ± 0.40 11.74 ± 0.98 7.35 ± 0.45 15.04 ± 0.85 23.91 ± 1.05

COACHER-N 11.79 ± 0.70 17.42 ± 0.88 20.08 ± 1.11 14.14 ± 0.78 26.74 ± 1.38 38.44 ± 1.52

COACHER-P 12.17 ± 0.84 18.02 ± 1.23 20.58 ± 1.52 14.53 ± 0.92 27.66 ± 1.21 38.86 ± 1.48

COACHER-N+P 12.29 ± 0.17 17.85 ± 0.33 20.26 ± 0.46 14.71 ± 0.58 27.67 ± 0.82 39.57 ± 0.54
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The results from baseline methods are reported under their best settings. Using
a Bayesian correlated t-Test [1], there is 98% probability that COACHER-N+P
is better than baseline methods. It is shown that on both datasets, our methods
COACHER-N+P and COACHER-P surpass all baselines and achieve by far the
highest results on both zR@K and ng-zR@K. The performance gains in Table 5
are more significant than Table 4. Such observations directly support the effec-
tiveness of COACHER in zero-shot relation prediction, indicating its superior
generalizability as we advocate in this work. Note that, consistent with their own
report and our analysis in Table 1, TDE reaches state-of-the-art on non-zero-shot
triplets, but performs rather poor on zero-shot ones.

Further Amplifications on Testing Data. In order to observe how powerful
our model is on harder zero-shot triplets, we further manipulate the testing data
by removing zero-shot triplets whose relations are more commonly observed in
other triplets in the training data. As is shown in Fig. 5, our proposed method
COACHER-N+P shows the least drop compared to other methods as triplets
of the top 5 common relations are removed one-by-one from the testing data,
which again indicates the advantageous generalization ability of our model.

4.4 Case Studies

In this subsection, we illustrate the contributions of both neighbor- and path-
based commonsense knowledge integrators for SGG with real zero-shot relation
prediction examples, shown in Fig. 6.

Fig. 5. Performance on manipulated testing data (we removed TDE and CSK-N here
due to their rather poor performance on zR@20).
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[neighbor-based commonsense helps]

[path-based commonsense helps]

Fig. 6. Case studies on integration of neighbor- and path-based commonsense.

Neighbor. The contribution of neighbor-based commonsense mainly comes
from the semantic similarity implied by the neighborhood overlap between enti-
ties. As is shown in Fig. 6a, although triplet 〈lady, riding, horse〉 has never
appeared in the training data, several similar triplets such as 〈man, riding, horse〉
and 〈person, riding, horse〉 are observed in the training data, where their occur-
rences reach 194 times and 83 times respectively. Estimated from the nodes
neighborhood similarity in ConceptNet, the semantic meaning between lady,
man and person are similar to each other. COACHER can leverage this external
knowledge to improve prediction performance on zero-shot triplets. Similarly, in
another case of 〈girl, wearing, cap〉, where cap is semantically similar with hat,
since 〈girl, wearing, hat〉 is commonly observed in the training data, COACHER
can use the neighbor-based commonsense knowledge to make better relation pre-
dictions on zero-shot triplets. In contrast, other baseline methods fail in both
cases because the generalizable semantic knowledge is hard to directly learn from
limited visual information.

Path. The contribution of path-based commonsense mainly comes from the rela-
tions implied by MidPaths between entities. As shown in Fig. 6b, for the triplet
〈flower, on, hat〉, we can find an inductive path 〈flower, RelatedTo, decoration,
UsedFor, hat〉, which promotes the prediction of relation on. Similarly, given the
pair (cat, house), multiple paths like 〈cat, AtLocation, home, RelatedTo, house〉,
〈cat, RelatedTo, house〉 and 〈cat, AtLocation, apartment, Antonym, house〉 can
be found. All of them are inductive towards the correct relation of in.
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5 Related Work

5.1 Scene Graph Generation

Scene graph generation (SGG) has been widely investigated over the last decade
due to its potential benefit for various visual reasoning tasks. Lu et al. [15]
train visual models for entities (e.g. “man” and “bicycle”) and predicates (“rid-
ing” and “pushing”) individually, and then combine them for the prediction of
multiple relations. Xu et al. [24] propose a joint inference model to iteratively
improve predictions on entities and relations via message passing. Liao [30] fur-
ther integrate physical constraints between entities to extract support relations.
Importantly, Zellers et al. [34] raise the bias problem into attention that entity
labels are highly predictive of relation labels and give a strong baseline. Recently,
Tang et al. [21] present a general framework for unbiased SGG based on causal
inference, which performs as the current state-of-the-art SGG method.

All methods above do not leverage external knowledge. The only exception is
Gu et al. [5], which adds a knowledge refinement module into the SGG pipeline
to leverage external knowledge. It is indeed the closest work to ours and com-
pared as a major baseline. However, they do not consider the zero-shot relation
prediction problem and their integration of external knowledge is rather coarse
and limited compared with ours.

5.2 External Knowledge Enhanced Deep Neural Networks

Knowledge Bases (KBs) can be used as an external knowledge to improve various
down-stream tasks. The natural language processing and computer vision com-
munities have proposed several ways to benefit deep neural networks from KBs.
The most straightforward and efficient way is to represent external knowledge
as an embedding, and then combine it with other features to improve model’s
performance. For example, in order to incorporate external knowledge to answer
open-domain visual questions with dynamic memory networks, Li et al. [12,23]
extract the most informative knowledge and feed them into the neural network
after embedding the candidate knowledge into a continuous feature space to
enhance QA task. The graph community also utilizes external knowledge to
enhance graph learning [25–29]. Besides, external knowledge can be added to
loss function or perform as a regularization in the training process. For exam-
ple, Yu et al. [33] obtain linguistic knowledge by mining from internal training
annotations as well as external knowledge from publicly available text.

However, external knowledge has hardly been utilized in SGG, mainly
because the direct entity-level embeddings can hardly help in object detection,
whereas what kind of embeddings are helpful in what kind of relation prediction
has remained unknown before our exploration.

6 Conclusion

Scene graph generation has been intensively studied recently due to its potential
benefit in various downstream visual tasks. In this work, we focus on the key
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challenge of SGG, i.e., relation prediction on zero-shot triplets. Inspired by the
natural ability of human beings to predict zero-shot relations from learned com-
monsense knowledge, we design integrators to leverage neighbor- and path-based
commonsense from ConceptNet. We demonstrate the effectiveness of our pro-
posed COACHER through extensive quantitative and qualitative experiments
on the most widely used benchmark dataset of Visual Genome.

For future works, more in-depth experiments can be done to study the exter-
nal knowledge graphs for SGG. Although the current ConceptNet is compre-
hensive enough to cover all entities detected from Visual Genome images, the
relations it models are more from the factual perspectives, such as has prop-
erty, synonym, part of, whereas the relations in scene graphs are more from
the actional perspectives, such as the spatial or dynamical interactions among
entities. One promising direction based on this study is to construct a scene-
oriented commonsense knowledge graph specifically for visual tasks, while the
downstream training process can further refine the graph construction. In this
way, the gap between these two isolated communities, i.e., visual reasoning and
knowledge extraction, can be bridged and potentially enhance each other.
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Abstract. Graph fraud detection approaches traditionally present
frauds as subgraphs and focus on characteristics of the fraudulent sub-
graphs: unexpectedly high densities or sparse connections with the rest
of the graph. However, frauds can easily circumvent such approaches by
manipulating their subgraph density or making connections to honest
user groups. We focus on a trait that is hard for fraudsters to manip-
ulate: the unidirectionality of communication between honest users and
fraudsters. We define an accessibility score to quantify the unidirection-
ality, then prove the unidirectionality induces skewed accessibility score
distributions for fraudsters. We propose SkewA, a novel fraud detection
method that measures the skewness in accessibility score distributions
and uses it as an honesty metric. SkewA is (a) robust to frauds with
low density and various types of camouflages, (b) theoretically sound: we
analyze how the unidirectionality brings skewed accessibility score dis-
tributions, and (c) effective: showing up to 95.6% accuracy in real-world
data where all competitors fail to detect any fraud.

1 Introduction

Various online platforms allow people to share their thoughts and recommend
products and services to each other. Users rely on reviews with the belief they are
written by disinterested people, thus more objective and unbiased. Fraudsters
exploit people’s trust on these platforms and derive benefits from fake followers
and reviews. These frauds hinder and mislead people’s decision making, thus
detecting these actions is crucial for companies and customers alike.

Various graph-based approaches have been proposed to detect frauds. Most
of them [2,5,7] focus on dense interconnections among fraudsters (dense sub-
block/subtensor/subgraph). Another popular approach focuses on the isolation
of fraud communities [1,11]. However, those methods have vulnerabilities. To
evade the density-based methods, frauds generate a number of bot accounts,
make their subgraph sparse, and their density low. To circumvent the isolation-
based algorithms, frauds camouflage themselves as honest users by writing
reviews on normal products or hijacking honest accounts.

In this paper, we focus on a characteristic that is hard for frauds to manip-
ulate: the unidirectionality of communication between honest users and fraud-
sters. Honest users rarely communicate with fraudsters while fraudsters write
c© Springer Nature Switzerland AG 2021
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reviews or follow honest users for camouflage. This unidirectionality is gener-
ated by honest users, thus hard for fraudsters to manipulate like densities or
connections. To quantify the unidirectionality, we first define accessibility scores
that estimate how easily other nodes can access a given node (Sect. 4.1). Fraud-
sters show skewed accessibility score distributions—high accessibility scores from
each other but low accessibility scores from honest users (Sect. 4.2). We prove
this skewness in the accessibility score distributions theoretically and empiri-
cally (Sect. 4.3). Finally, we propose SkewA, a novel approach to detect frauds.
SkewA defines a novel metric for honesty that measures the skewness then spots
frauds with lowest honesty scores (Sect. 4.4). Through extensive experiments, we
demonstrate the superior performance of SkewA over existing methods.

The main contributions of this paper are as follows:

– Insight: The unidirectionality of communication results in skewness in acces-
sibility score distributions for fraudsters: high scores on fraud groups and low
scores on honest groups.

– Robustness: SkewA is based on the unidirectionality generated by honest
users, thus hard for fraudsters to manipulate.

– Theoretical guarantees: SkewA proves how the skewed accessibility score
distributions are generated and preserved under camouflages.

– Effectiveness: SkewA presents up to 95.6% accuracy in public benchmarks,
where all competitors fail to detect any fraud.

Reproducibility: our code is publicly available1.

2 Related Work

Graph fraud detection algorithms could be classified into supervised and unsu-
pervised methods based on whether a method requires labels of fraudulent or
benign users/products. See [1] for an extensive survey.

Supervised methods model a fraud detection task as a binary classification
problem for nodes on graphs. [3,16] leverage either labeled normal nodes or
labeled fraudulent nodes. They exploit random walks to propagate the initial
normalness/badness scores to the remaining nodes. [6,14,15] leverage both fraud-
ulent and normal users. [6] is based on random walks, while [15] exploits pairwise
Markov Random Field (pMRF). GANG [14] leverages pMRF and Loopy Belief
Propagation to detect fraudsters.

Unsupervised methods measure suspicious scores based on graph topology.
[13] factorizes the adjacency matrix and flags edges, which introduce high recon-
struction error as outliers. SpokEN [11] and [12] focuses on singular vectors of a
graph, which are clearly separated when plotted against each other. Fraudar [5]
adapts the theoretical perspective to fraud detection and camouflage resistance
and achieves meaningful bounds for applications. DeFraudar [4] presents six

1 https://github.com/minjiyoon/PKDD21-SkewA.

https://github.com/minjiyoon/PKDD21-SkewA
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Table 1. Table of symbols.

Symbol Definition

G Bipartite graph G = (V, E)

n1, n2 Numbers of products and users in G

m Number of edges in G

ÃC (n1 × n2) column-normalized adjacency matrix

ÃR (n2 × n1) column-normalized adjacency matrix

c Restart probability of RWR

b (n1 × 1) starting vector of RWR

Table 2. Comparison between methods.

Property Method

GANG [14] HoloScope [9] SpokEN [11] DeFraudar [4] Fraudar [5] SkewA

Unsupervised � � � � �
Robust to density �
Camouflage-resistant � ? ? � �
Theoretical guarantees � �

fraud indicators that measure the spamicity of a group. HoloScope [9] penal-
izes nodes with many connections from other nodes based on the unidirectional
communication between fraudulent and honest users (Table 1).

Several methods have used PageRank or Random Walk to detect frauds.
However, most of them [6,15] are supervised learning requiring labels to assign
initial scores to propagates. One of our design goals is to avoid the requirement
for sources other than the graph topology to measure anomalousness. [9] and [14]
exploit the unidirectional communication between honest users and frauds, but
both lack theoretical guarantees on how their metric preserves the unidirection-
ality under fraud’s camouflage. In this paper, we propose an unsupervised fraud
detection method SkewA with theoretical analysis on robustness to fraud’s
camouflage. Table 2 compares SkewA to existing methods.

3 Preliminaries

We review Random Walk with Restart (RWR) [10] which is used in accessibility
score computation then describe how to compute RWR in a bipartite graph.

3.1 Random Walk with Restart

RWR measures each node’s relevance w.r.t. a seed node s in a graph. It assumes a
random walker starting from s, who traverses edges in the graph with probability
1 − c and occasionally restarts at the seed node s with probability c. Then
the frequency of visitation of the walker on each node becomes its relevance
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(a) Theoretical accessibility matrix (b) Experimental accessibility matrix

Fig. 1. In an RWR matrix stacking n RWR row vectors, each column corresponds to
an accessibility column vector.

score w.r.t. the seed node. From [17], the RWR score vector rRWR is presented

as rRWR = c
∑∞

i=0

(
(1 − c)Ã

)i

b where Ã is the column-normalized adjacency
matrix, c is the restart probability and b is the seed vector with the seed node’s
index s set to 1 and others to 0. If 0 < c < 1 and Ã is irreducible and aperiodic,
rRWR is guaranteed to converge to a unique solution [8].

3.2 RWR for Bipartite Graphs

In a bipartite graph, we have two adjacency matrices, AC and AR, which are
transpose to each other. AC puts products in its rows and users in its columns,
while AR puts users in its rows and products in its columns. AC(i, j) and
AR(j, i) are set to 1 when j-th user writes a review on i-th product and 0 oth-
erwise. Then ÃC and ÃR become column-normalized (n1 × n2) and (n2 × n1)
matrices where n1 and n2 denote the total numbers of products and users, respec-
tively. One iteration in RWR computation in a unipartite graph is divided into
two sub-steps in a bipartite graph. From the original equation, we replace Ã
with ÃCÃR. By multiplying with ÃR, scores are propagated from products to
users. Then, by multiplying with ÃC, the scores are propagated from the user
nodes back to the product nodes. Other components are identical to the regular
RWR computation.

4 Proposed Method

On a review website, fraudsters write a number of reviews on normal products
to disguise themselves as honest users. In contrast, normal users purchase and
review fake products only accidentally. When abstracting this phenomenon to
a user-product bipartite graph, fraudulent user nodes are connected to normal
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product nodes, while honest user nodes rarely make connections to fake product
nodes. This unidirectionality of communication is decided by honest users;
thus, frauds cannot manipulate or dissimulate it. Based on this unidirectionality,
we propose a robust fraud detection method SkewA.

To quantify the unidirectionality, we first define accessibility scores for each
node as how easily other nodes could reach to the node (Sect. 4.1). Then we show
how the unidirectionality of communication leads to the skewed accessibility
score distributions for fraudsters (Sects. 4.2 and 4.3). Finally, we propose our
novel algorithm SkewA to detect frauds (Sect. 4.4).

4.1 Accessibility

RWR scores with seed node i measure how easily the seed node i could reach
other nodes. The scores are measured in the perspective of the seed node; thus
easily manipulated by the seed node by adding edges to target nodes to increase
their RWR scores. Here we define accessibility scores that measure how easily
other nodes could reach the seed node i. The accessibility scores appear to be
identical to the RWR scores at first glance. However, the probability of crossing
an edge (i, j) from node i is different from the probability of crossing the same
edge from the node j. When source node i has a larger number of out-edges
than target node j, the probability of crossing the edge (i, j) is smaller since a
random walker has more options to choose. This results in the different RWR
and accessibility scores for each target node given the same seed node. Contrary
to RWR scores, accessibility scores are estimated by target nodes and hard for
the seed node to control. This explains why we choose accessibility scores as a
measurement for detecting frauds.

Definition 1 (Accessibility score vector). In an n-dimensional accessibility
score vector of node i, the j-th component contains the probability that a random
walker starts from node j and reaches node i.

Accessibility score computation is based on RWR computation. We vertically
stack n RWR row vectors with n different seed nodes (Fig. 1(a)). Then the i-th
column in this (n × n) matrix becomes an accessibility score vector for node i,
presenting how easily other nodes could reach to node i. We exploit that the
accessibility score matrix is the transpose of the RWR score matrix.

4.2 Skewness in Accessibility Score Distributions

In Fig. 2(a), a graph is partitioned into two disjoint groups, the honest group A
and the fraud group B. The honest group A has the most nodes and edges of the
graph. Then, fraudsters in B add a few edges towards the normal group A to
camouflage themselves as honest users (green dashed line). With the camouflage
edges, crossing these two communities becomes possible for a random walker.
However, the possibilities for the walker to pass from A to B is still small: a larger
number of edges in A implies more options for the random walker to choose; thus,
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Fig. 2. User-product bipartite graph: an edge is generated when a user writes a review
on a product. (Color figure online)

the random walker starting from A is more likely to select the honest edges (blue
line) than the camouflage edges (green dashed line). In short, honest users in
the group A are less likely to reach out to a fraudster in the group B, resulting
in low accessibility scores. In contrast, fraud colleagues in group B access to
the target fraudster easily with help of dense interconnection (green line). Then
the fraud colleagues have high accessibility scores. This pattern results in the
skewness in the accessibility score distributions for the fraudster: low scores from
the honest group while high scores from the fraudulent group. On the other hand,
honest users have weak skewness in accessibility score distributions. A random
walker starting from fraud group B is more likely to choose the camouflage edges
(green dashed line) than a walker starting from group A because group B has
fewer inter-connected edges than group A. This pattern brings the moderate
accessibility scores from B to A, thus less skewed distributions for honest users.

4.3 Theoretical Analysis

In this Section, we prove how skewness is generated in accessibility score distri-
butions of frauds and preserved under the camouflage of the frauds. In Fig. 2(b),
S1 (orange part in X-axis) indicates the normal products while S2 (yellow part
in X-axis) denotes the fake products for which fraudsters write fake reviews. T1

(blue part in Y-axis) denotes the honest users while T2 (green part in Y-axis)
denotes the fraudsters. In an (n2 × n1) adjacency matrix A, A11 (blue part in
the matrix) corresponds to edges (reviews) between honest users and normal
products. A22 (plain green part in the matrix) contains edges from fraudsters to
their target products; we call these edges fake edges. A22 is dense due to a large
number of fake reviews. A21 (hatched green part) corresponds to camouflage
edges from fraudsters to normal products. Finally, A12 contains reviews written
by honest users on fake products. A12 has almost no edge since honest users
purchase fake products only accidentally. mij denotes the total number of edges
in the sub-block Aij where i, j ∈ 0, 1.
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(a) AR (b) AC

Fig. 3. AR and AC are column-normalized adjacency matrices of a bipartite graph.

We analyze accessibility score distributions based on the RWR
computation—accessibility score vectors are computed from columns of the cor-
responding RWR matrix. When a vector is multiplied with a column-normalized
adjacency matrix, the amount of scores in the input vector is preserved in the
output vector. Based on this characteristic, we model the ratio of propagated
scores in the output vector as follows:

Assumption 1 (Ratio of Propagated Scores). I denotes a group of nodes
in an input vector, while O1 and O2 denote two disjoint groups in an output
vector. The numbers of edges from I to O1 and O2 are m1 and m2, respectively.
When I with total scores s is multiplied with a column-normalized matrix, O1

receives m1
m1+m2

s while O2 receives the remaining m2
m1+m2

s.

Based on Assumption 1, when S1 starts with total scores s, T1 receives
m11

m11+m21
s while T2 receives the remaining m21

m11+m21
s (Fig. 3(a)). Similarly, when

S2 starts with total scores s, T1 receives m12
m12+m22

s while T2 receives the remaining
m22

m12+m22
s. However, since m12 ≈ 0 (honest users rarely purchase fake products),

T2 receives the whole score s from S2. Under the same assumption, when T1

starts with total scores s, S1 receives m11
m11+m12

s while S2 receives the remaining
m12

m11+m12
s (Fig. 3(b)). However, since m12 ≈ 0, S1 receives the whole score s from

T1. Similarly, when T2 starts with total scores s, S1 receives m21
m21+m22

s while S2

receives the remaining m22
m21+m22

s.
We show the effectiveness of Assumption 1 empirically on real-world data

in Sect. 5. In the following Section, we analyze the ratio of propagated scores
after two sub-steps of RWR computation varying the location of a seed node.
We define two ratio parameters: the ratio of camouflage edges to honest edges
ρa = m21

m11+m21
, and the ratio of camouflage edges to fake edges ρc = m21

m21+m22
.

Seed Node from Normal Products (S1): In Fig. 4(a), by multiplying with
AR, score s from S1 is propagated into T1 and T2 with scores (1 − ρa)s and
ρas, respectively. Then these scores are propagated back to group S1 and S2 by
multiplying with AC . All scores (1 − ρa)s in group T1 are propagated into only
group S1, while score ρas in group T2 is divided into ρaρcs and ρa(1 − ρc)s and
propagated into group S1 and S2, respectively. In short, score s starting from
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(a) Score Propagation from Nomal Products

(b) Score Progatation from Fake Products

Fig. 4. Two sub-steps in score propagation.

normal product group S1 will be propagated into S1 with (1 − ρa)s + ρaρcs and
S2 with ρa(1 − ρc)s after two sub-steps in one iteration of RWR computation.

Seed Node from Fake Products (S2): In Fig. 4(b), by multiplying with AR,
score s from S2 is propagated into only T2. Then, by multiplying with AC , the
score s in T2 is propagated back to S1 and S2 with ρcs and (1−ρc)s, respectively.
In summary, score s starting from the fake products S2 is propagated into S1

with the score ρcs and S2 with the score (1 − ρc)s after one iteration of RWR
computation.

Ratio of Propagated Scores after One RWR Iteration: Score s1(k) and
s2(k) denote scores propagated into group S1 and S2 at the k-th iteration of RWR
computation. When the seed node is located at S1, s1(0) = 1 and s2(0) = 0.
Otherwise, s1(0) = 0 and s2(0) = 1. We present s1(k) and s2(k) in the iterative
equation forms as follows:

Theorem 2 (Ratio of Propagated Scores). Given ratio of camouflage edges
to honest edges ρa and ratio of camouflage edges to fake edges ρc, scores propa-
gated into group S1 and S2 at the k-th iteration of RWR computation are:

s1(k) = (1 − ρa)s1(k − 1) + ρaρcs1(k − 1) + ρcs2(k − 1)
s2(k) = ρa(1 − ρc)s1(k − 1) + (1 − ρc)s2(k − 1)
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(b) Honest user

Fig. 5. Probability density function of accessibility scores.

Proof. s1(k) and s2(k) are the sum of scores propagated from s1(k − 1) and
s2(k − 1) to each group, respectively. We simply apply the same rule as above.

Camouflage edges generated by frauds are much fewer than the total number
of edges in real-world graphs, thus ρa = m21

m11+m21
has small values (ρa << 1).

Then Theorem 2 is approximated as follows:

s1(k) ≈ s1(k − 1) + ρcs2(k − 1)
s2(k) ≈ (1 − ρc)s2(k − 1)

When a seed node is located in S1 (s1(0) = 1, s2(0) = 0), S2 rarely receives scores
(s2(k) ≈ 0). In other words, the accessibility scores from S1 to S2 are small. On
the other hand, when a seed score is located in S2 (s1(0) = 0, s2(0) = 1), S2

receives large scores, resulting in high accessibility scores from S2 to S2. Then
the fraud group (S2) has skewed accessibility score distributions: small scores
from the honest group (S1) while large scores from the fraud group (S2).

Real-World Graphs: We reproduce our theoretical analysis on the Tripad-
visor dataset. We inject a fraudulent block with size of 5% of total users and
products. We inject fake edges randomly to the block with 5% density, then
add camouflage edges amounting to 10% of the fake edges. Figure 1(b) shows
the resulting accessibility score matrix. The last 90 columns correspond to the
accessibility score vectors of the injected fraud group and show clear skewness:
low scores (dark-colored) for normal products and high scores (blight-colored)
for fake products as we analyzed. Figure 5 shows two sampled distributions from
the same dataset. In a fraudster’s distribution (Fig. 5(a)), the neighbor group has
high scores around e−5, while the stranger group has low scores around e−13. On
the other hand, the distribution of an honest user (Fig. 5(b)) is less skewed with
majority gathered around e−10. This shows the effectiveness of our theoretical
analysis on the real-world graph—for fraudulent nodes, skewness in the accessi-
bility distribution between two groups is apparent; for honest nodes, there is no
clear disparity in accessibility scores between the neighbor and stranger groups.
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4.4 SKEWA

Based on skewness in accessibility score distributions, we propose a fraud detec-
tion method SkewA. SkewA first divides a graph into two groups, neighbor
and stranger groups for each node. Then SkewA defines a novel honesty metric
which measures how accessibility scores are distributed across the neighbor and
stranger groups. SkewA spots fraudsters with the lowest honesty scores.

Algorithm 1: SkewA

Input: A bipartite graph G, Top k
Output: k fraudsters
Compute accessibility score matrix Aacc;
Compute α = log( m

n1
);

foreach column vector a in Aacc do
ComputeHonesty(a, α)

return k nodes with lowest honesty scores

Algorithm 2: ComputeHonesty
Input: Accessibility score vector a, parameter α
Output: Honesty score shonest
Find local minimum in pdf;
Divide into S1 and S2 by the local minimum;
Compute sum and variance of S1 and S2;
shonest = (var1var2)

α
2 (sum2)− 2

α ;
return shonest

Clustering. We divide nodes into the neighbor and stranger groups based
on the probability density function (pdf) of the accessibility score distribution
(Fig. 5). We first find local minimums in pdf whose accumulated probabilities
from zero are larger than 0.5 then choose the one who has the smallest accessi-
bility score. Based on the local minimum, we partition nodes into two groups,
those accessibility scores are less or greater than the score of the minimum, then
classify them as stranger and neighbor groups, respectively. We exploit that the
neighbor group has high accessibility scores, while the stranger group has low
scores. We consider the local minimums whose accumulated probabilities are
larger than 0.5 because the neighbor group is smaller than half of the graph.

Metric for Honesty. Given the stranger and neighbor groups, we measure
sum1, var1 and sum2, var2 denoting sum and variance of stranger and neighbor
groups, respectively. We define a metric for honesty as follows:

honesty = (var1var2)
α
2 (sum2)− 2

α (1)

where α is defined as log( m
n1

), the ratio of the number of edges to the number
of product nodes. The lower the honesty score, the more likely a node is to be a
fraud. We describe each component in the honesty metric.
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var1var2 has small values for frauds. Accessibility scores from honest users
toward a fraudster are all small, resulting in small values of var1. Accessibility
scores among fraud colleagues are similar with each other due to dense intercon-
nections, resulting in small var2. In contrast, honest users has variable accessi-
bility scores across the graph, resulting in large values of var1 and var2.

Isolated honest users who have few connections with the rest part of the
graph have small accessibility scores for all nodes, resulting in small values of
var1var2. To deal with isolated users, we introduce the second term.

sum2 has large values with frauds. Dense interconnections in the fraud group
result in high accessibility scores among them. In contrast, the isolated honest
users have small-sized neighbor groups, resulting in small sum2. sum1 is not a
good metric for honesty—both fraudsters and isolated honest users have small
sum1 with low accessibility scores for the stranger group.

Parameter α = log( m
n1

) regulates the effects of sum2 and var1var2 on the
honesty estimation. The density of a graph ( m

n1n2
) is a good indicator of the

number of isolated users in the graph—when a graph has low density, it implies
that there are many isolated users. With more isolated honest users, we need to
put more priority on sum2 than var1var2.

Algorithm. Algorithm 1 describes how we spot frauds based on the skewness in
accessibility score distributions. We first compute an accessibility score matrix
Aacc and the parameter α. Then we measure the honesty score based on Eq. 1
in Algorithm 2. Finally, SkewA chooses top-k nodes with the lowest honesty
scores as fraudsters.

5 Experiments

In this Section, we evaluate the performance of SkewA compared to state-of-
the-art fraud detection methods. We aim to answer the following questions:

– Q1. Robustness to sparse frauds: Does SkewA outperform state-of-the-
art competitors under various densities of frauds? (Sect. 5.2)

– Q2. Camouflage-resistance: How accurately does SkewA detect frauds
under various types of camouflages? (Sect. 5.3)

– Q3. Effects of camouflage ratio: How does the camouflage ratio affect on
the performance of SkewA? (Sect. 5.4)

– Q4. Effectiveness of theoretical analysis: Does our analysis on the acces-
sibility score distributions coincide with the real-world datasets? (Sect. 5.5)

5.1 Setup

We implement SkewA in C++; all experiments are carried out on a 2.2 GHz
Intel Core i7 Macbook Pro, 16 GB RAM.
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Fig. 6. Robustness to sparse and camouflaged frauds.

Dataset: we use two real-world datasets, Wiki-vote and TripAdvisor2. Wiki-
vote is a who-trust-whom voting bipartite graph with 16K nodes (8K for source
and 8K for target) and 103K edges. TripAdvisor is a bipartite review graph with
147K nodes (145K for users and 2K for products) and 176K edges. Parameter
α = log( num.edges

num.products ) is set approximately with 1 and 2 on the Wiki-vote and
TripAdvisor datasets, respectively.

Fraud Injection: we inject a fraudulent block into each dataset. The numbers
of fraudsters and fake products are 5% of total users and total items, respectively.
The density of the block is set to 5%, and the corresponding number of edges are
randomly generated among them. We inject four types of camouflage scenarios:
1) fraud with no camouflage, 2) random camouflage, 3) biased camouflage, and
4) hijacked accounts. In scenario 2), frauds write reviews on randomly chosen
normal products. In scenario 3), frauds write reviews on normal products chosen
with probability proportional to each product’s degree. Finally, in scenario 4),
frauds hijack honest accounts randomly and add reviews on fake products. The
number of camouflage edges is decided by the camouflage ratio ρc (ratio of
camouflage edges to fake edges). In our experiment, ρc is set to 0.1.

Baseline: we compare SkewA to state-of-the-art fraud detection methods,
FRAUDAR [5] and SpokEN [11] described in Sect. 3.

2 http://snap.stanford.edu/data/.

http://snap.stanford.edu/data/
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Fig. 7. Robustness to various camouflages of frauds.

5.2 Robustness to Sparse Frauds

We examine the robustness of SkewA varying density of frauds from 1% to 20%.
We inject 1st and 2nd camouflage scenarios (‘No Camo’ and ‘Random Camo’) on
the datasets. We compute honesty scores by each method, then choose bottom-k
honest nodes where k is the number of injected frauds.

In Fig. 6, SkewA shows consistently high accuracy under various densities
of frauds on both datasets, while FRAUDAR and SpokEN barely detect frauds.
FRAUDAR shows high accuracy only with high-density frauds on the TripAdvi-
sor dataset. Since FRAUDAR focuses on dense subgraphs to detect fraud groups,
sparse graphs (e.g., TripAdvisor) which make dense fraudulent subgraphs more
noticeable are helpful for FRAUDAR. SpokEN relies on SVD to detect frauds,
thus it is vulnerable to low-density and camouflages of frauds.

SkewA’s accuracy decreases at a high density of frauds on the TripAdvisor
dataset. TripAdvisor dataset has more isolated honest users with its low density.
Then, high-density frauds result in higher var2 (variance among colleagues) than
var2 of the isolated honest users. With lower var2 than frauds, the isolated honest
users has lower honest scores then become false positives. Overall, SkewA shows
consistently high accuracy across all settings.

5.3 Camouflage-Resistance

In this Section, we demonstrate the camouflage-resistance of SkewA. We change
the camouflage scenarios: 1) ‘No Camo’, 2) ‘Random Camo’, 3) ‘Baised Camo’,
and 4) ‘Hijacked’. Other settings are same as described in Sect. 5.1.

In Fig. 7, SkewA is resistant to various types of camouflage attacks, while
FRAUDAR and SpokEN miss most of the frauds. One exception is on the Wiki-
vote dataset with the ‘Hijacked’ scenario where FRAUDAR shows high accuracy.
On the Wiki-vote dataset, which has high density, frauds are likely to hijack
honest users that are part of dense subgraphs. Then FRAUDAR, which focuses
on dense subgraphs, is more likely to detect the frauds.
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Fig. 8. Robustness to camouflage ratios.

SkewA shows low accuracy in the ‘Biased’ and ‘Hijacked’ scenarios. In the
‘Biased’ scenario, a fraud makes connections to popular nodes which are con-
nected with most honest nodes. Then any honest node connected to the popular
nodes can reach the fraud groups easily through the popular nodes. Then acces-
sibility scores from honest users to fraudsters increase, resulting in less skewed
distributions. In the ‘Hijacked’ scenario, hijacked accounts are originally honest
ones, thus already connected to other honest users. This brings high accessibility
scores from honest users to fraudsters, resulting in less skewed accessibility score
distributions. However, SkewA still spots some skewness in accessibility score
distributions, showing higher accuracy than its competitors.

5.4 Effects of Camouflage Ratio

We discuss the effects of the camouflage ratio on the performance of SkewA.
The camouflage ratio denotes the ratio between the number of camouflage edges
and the number of fake edges. We vary the camouflage ratio from 0.1 to 1.0 under
the same experimental setting described in Sect. 5.1. The camouflage type is set
with the ‘Random Camo’ scenario. In Fig. 8, as the camouflage ratio increases,
SkewA shows consistently high accuracy, while FRAUDAR and SpokEN fail to
detect frauds. SkewA exploits the unidirectionality of communication between
frauds and honest users, thus not affected by the camouflage ratio.

5.5 Effectiveness of Theoretical Analysis

Theorem 2 describes the ratio of propagated scores into an honest group and
a fraud group. Based on this theorem, we find out the skewness in accessibility
score distributions of fraudsters. Here, we verify the effectiveness of Theorem 2
empirically on the TripAdvisor dataset. We compute the sum of scores propa-
gated into each group based on Theorem 2 and compare with the experimental
values. Under the same experimental setting described in Sect. 5.1, we notate
the ratio of camouflage edges to fake edges as ρc and vary ρc from 0.1 to 1.0.
Then the ratio of camouflage edges to honest edges ρa is decided by ρc and other
parameters. The camouflage type is set with the ‘Random Camo’ scenario.
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Table 3.
∑

i s1(i)∑
i s2(i)

on the TripAdvisor dataset: we compute ratio of sums of propagated

scores into honest group S1 and fraud group S2 varying the seed node location.

Seed location Theoretical ratio Experimental ratio

S1 S2 S1 S2

ρc = 0 ρa = 0 ∞ 0 ∞ 0

ρc = 0.1 ρa = 2.2e−4 2288.4 0.25 177.1 0.36

ρc = 0.3 ρa = 6.6e−4 1028 0.79 153.1 0.91

ρc = 0.5 ρa = 1.1e−3 789 1.36 148.9 1.38

ρc = 0.7 ρa = 1.6e−3 688.8 1.94 142.5 1.73

ρc = 1 ρa = 2.2e−3 614.9 2.83 135.7 1.96

Score s1(k) and s2(k) denote scores propagated into the honest group S1 and
the fraud group S2 at the k-th propagation step, respectively. We measure the
sum of scores

∑
i s1(i) and

∑
i s2(i) propagated into each group and compute

the ratio (
∑

i s1(i)∑
i s2(i)

). In Table 3, the theoretical ratio and the experimental ratio
show similar tendencies. When a seed node is chosen from normal product group
S1, fake product group S2 receives only small amounts of scores, resulting in
high ratios. This coincides with the skewed accessibility score distributions of
fraudsters—low accessibility scores from normal users to fraudsters. On the other
hand, when the seed node is chosen from S2, S1 receives moderate amounts of
scores, leading to low ratios. This shows the weak skewness in the accessibility
score distributions of normal users.

The differences between theoretical and experimental ratios come from dead-
ends in real-world graphs. Scores could not be propagated further on dead-end
nodes, and this leads to the score leak. Differences between theoretical ratios and
experimental ratios are much smaller when a seed is located in S2. The fraud
group has fewer dead-ends than the honest group since they intentionally create
accounts to make as many connections as possible for frauds. When scores are
started from S1, scores are more likely to meet dead-ends (then diminished) and
it leads to a larger gap between theoretical and experimental values.

Similar tendencies in theoretical and empirical ratios prove our analysis on
the accessibility score distributions is effective on the real-world datasets.

6 Conclusion

In this paper, we propose a novel algorithm SkewA for graph fraud detection.
Due to the unidirectionality of communication between frauds and honest users,
fraudsters show skewness in the accessibility score distributions. SkewA mea-
sures honesty based on this skewness. SkewA presents up to 95.6% accuracy
in the public benchmarks where all competitors fail to detect any fraud. Future
works include ensembling SkewA with density-focused fraud detection meth-
ods. The ensemble will make SkewA more robust to adversarial attacks with a
high density of frauds.
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Abstract. Given a set of objects and nonnegative real weights expressing
“positive” and “negative” feeling of clustering any two objects together,
min-disagreement correlation clustering partitions the input object set so
as to minimize the sum of the intra-cluster negative-type weights plus the
sum of the inter-cluster positive-type weights. Min-disagreement corre-
lation clustering is APX-hard, but efficient constant-factor approxima-
tion algorithms exist if the weights are bounded in some way. The weight
bounds so far studied in the related literature are mostly local, as they are
required to hold for every object-pair. In this paper, we introduce the prob-
lem of min-disagreement correlation clustering with global weight bounds,
i.e., constraints to be satisfied by the input weights altogether. Our main
result is a sufficient condition that establishes when any algorithm achiev-
ing a certain approximation under the probability constraint keeps the
same guarantee on an input that violates the constraint. This extends the
range of applicability of the most prominent existing correlation-clustering
algorithms, including the popular Pivot, thus providing benefits, both the-
oretical and practical. Experiments demonstrate the usefulness of our app-
roach, in terms of both worthiness of employing existing efficient algo-
rithms, and guidance on the definition of weights from feature vectors in a
task of fair clustering.

1 Introduction

Correlation clustering [8] is a popular clustering formulation that has received
considerable attention from both theoreticians and practitioners, and has found
application in several contexts, including document clustering, duplicate detec-
tion, computational biology, image segmentation [10,22].

The input of correlation clustering is a set V of objects, and two nonnegative,
real-valued weights w+

uv, w−
uv for every (unordered) object pair u, v ∈ V . Any

“positive” w+
uv (resp. “negative” w−

uv) weight expresses the benefit of clustering
u and v together (resp. separately). This input can equivalently be represented
as a graph G with vertex set V and edge weights w+

uv, w−
uv, for all u, v ∈ V , and

with edge (u, v) being drawn only if at least one among w+
uv and w−

uv is nonzero.
The objective of correlation clustering is to partition V so as to either mini-

mize the sum of intra-cluster negative-type weights plus the sum of inter-cluster
c© Springer Nature Switzerland AG 2021
N. Oliver et al. (Eds.): ECML PKDD 2021, LNAI 12976, pp. 499–515, 2021.
https://doi.org/10.1007/978-3-030-86520-7_31
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positive-type weights (min-disagreement), or maximize the sum of intra-cluster
positive-type weights plus the sum of inter-cluster negative-type weights (max-
agreement). The two formulations are equivalent in terms of exact optimization
and complexity class (both NP-hard [8,25]), but they have different approxima-
tion properties, with the maximization variant being easier in this respect.

Apart from being more theoretically appealing, min-disagreement correlation
clustering tends to be more relevant than the maximization counterpart in prac-
tice too. The reason is twofold. First, the best known approximation algorithms
for max-agreement correlation clustering either yield trivial solutions (single-
cluster and all-singletons solutions are 1

2 -approximate solutions for complete
graphs with binary weights [26]), or are inefficient and provide unpractical clus-
terings with a fixed number of clusters (like semidefinite-programming Swamy’s
algorithm for general graphs [26], which is very expensive and always yields
a 6-cluster solution). Second, more importantly, among the algorithms for the
minimization version is the popular Pivot [5], which provides the best tradeoff
between theoretical guarantees (it achieves constant-factor expected approxima-
tion guarantee), efficiency (it takes linear time), and ease of implementation.

Correlation-Clustering with Local Weight Bounds. The seminal work
by Bansal et al. [8] limits the input graph to be complete, with binary
weights, and with exactly one nonzero weight for each weight pair (i.e.,
(w+

uv, w−
uv) ∈ {(0, 1), (1, 0)}, for all u, v ∈ V ). Even for this particular input,

min-disagreement correlation clustering is APX-hard [11], although it admits
constant-factor approximation algorithms [5,8,11,12,27]. Since then, less restric-
tive inputs have been considered. With no constraints on the input weights, the
best known approximation factor is O(log |V |) [11,16], and is unlikely to be
meliorable [11,16].

Motivated by this and the above arguments in favor of the minimization
version, the research community has focused on weight bounds that go beyond
Bansal et al.’s ones, but are still restrictive enough to allow constant-factor guar-
antee. In this regard, the probability constraint (i.e., w+

uv + w−
uv = 1, ∀u, v ∈ V )

has received significant attention. Under this constraint, Pivot is recognized as a
(randomized expected) 5-approximation algorithm [5]. Coupling the probability
constraint with triangle inequality (i.e., w−

uz ≤ w−
uv + w−

vz, ∀u, v, z ∈ V ) makes
Pivot’s approximation factor become 2. Further algorithms achieve a factor-4
guarantee under the probability constraint [11], and (5 − 1

h )-approximation for
a generalization of the probability constraint (i.e., ∀u, v ∈ V , w+

uv ≤ 1, w−
uv ≤ h

for some h ∈ [1,+∞), and w+
uv + w−

uv ≥ 1) [23]. Those two algorithms however
are based on rounding the solution to a (large) linear program, thus they do not
possess Pivot’s nice peculiarities of efficiency and ease of implementation.

ThisWork: Correlation Clustering withGlobal Weight Bounds. Regard-
less of the type, the weight bounds that have been so far studied are local bounds,
i.e., constraints that are required to hold for every object pair in isolation.

In this work, we are the first to consider global weight bounds in min-disagree-
ment correlation clustering. We derive bounds on edge weights’ aggregate func-
tions that are sufficient to lead to proved quality guarantees. Specifically, let avg+

and avg− be the average of the positive-type weights and negative-type weights
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over all the input vertex pairs, respectively. Let also Δmax be the maximum abso-
lute difference between the positive-type weight and the negative-type weight of a
vertex pair. Our result is: if the condition avg+ + avg− ≥ Δmax holds for a graph
G, then it is possible to construct a graph G′ (in linear time and space) such that
(i) the probability constraint holds on G′, and (ii) an α-approximate clustering on
G′ (i.e., a clustering whose objective-function value is no more than α times G′’s
optimum) is an α-approximate clustering on G too.

A noteworthy consequence of this result is that, if a graph G satisfies our
condition, then the Pivot algorithm can be used to get (in linear time and space)
a clustering achieving a 5-approximation guarantee on G.1 This corresponds to
extending the range of validity of Pivot’s guarantee beyond the probability con-
straint: our global-weight-bounds condition now suffices for the 5-approximation
to hold. A key advantage of this finding is that our condition is milder than the
probability constraint, thus more likely to be satisfied. For instance, it may hap-
pen that a bunch of edges are missing from the input graph (meaning violation
of the probability constraint for at least those unlinked vertex pairs), but, if our
condition holds, still one can get a 5-approximate clustering with Pivot.

We point out that our result is general and holds for any min-disagreement
correlation-clustering algorithm achieving approximation guarantees under the
probability constraint. However, the contextualization to the Pivot algorithm is
relevant and worth to be emphasized, because, as said above, Pivot achieves the
best tradeoff between quality guarantees, efficiency, and ease of implementation.

Benefits of Our Result. We believe that the findings of this work can be
tremendously useful, from several perspectives.

Practical Benefits. Our result can be exploited to quickly yet easily recog-
nize whether employing probability-constraint-aware approximation algorithms
is a worth choice even if the probability constraint is not met. As an exam-
ple, consider a graph that violates the probability constraint. So far, that
graph would have likely been handled with linear-programming (LP) algo-
rithms [11,16], as they achieve (factor-O(log |V |)) approximation guarantees on
general graphs/weights (whereas algorithms like Pivot are just heuristics if the
probability constraint does not hold). Instead, our condition can be used as
an indicator of whether Pivot can still achieve guarantees even if the probabil-
ity constraint is violated, thus being preferred over the LP algorithms. This has
important practical implications, as Pivot is much faster and easier-to-implement
than the LP counterparts. In our evaluation we experimentally confirm this the-
oretical finding, by showing that a better fulfilment of our condition corresponds
to better performance of Pivot with respect to the LP algorithms, and vice versa.

A second practical exploitability of our result concerns the task of feature
selection for clustering. In the context of correlation clustering this corresponds
to selecting features that lead edge weights to express the best tradeoff between

1 In fact, a probability-constraint-compliant graph G′ can be derived from G in linear
time and space (statement (i) of our result). Pivot on G′ yields a 5-approximate
clustering [5]. A 5-approximate clustering on G′ is a 5-approximate clustering on G
(statement (ii) of our result).
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an accurate representation of the objects’ vectors (i.e., discarding not too many
features), and the way how the weights facilitate the downstream correlation-
clustering algorithm performing well (e.g., by making it achieve approximation
guarantees). Our global-weight-bounds condition can be an effective yet easy-to-
use guiding principle to the achievement of this tradeoff. Being less restrictive
than local weight bounds, our condition can be fulfilled more easily (e.g., in case
of probability constraint, it is hard to find a subset of features leading to positive-
type and negative-type weights summing exactly to one for all the object pairs).
In our experiments we showcase this capability in a task of fair clustering.

Theoretical Benefits. This work extends the validity range of the approximation
guarantees of algorithms for min-disagreement correlation clustering. This exten-
sion can pave the way for more advanced theoretical results. As an example, it is
not uncommon that correlation clustering is a building block of a more complex
problem [17,20,21]. Thus, more general guarantees in correlation clustering may
enable better theoretical results on those complex problems too.

Benefits for the Research Community. To the best of our knowledge, global
weight bounds for correlation clustering have never been studied so far. We
believe this work can pioneer a brand new line of research, and stimulate the
community to go beyond our initial results.

Summary of Contributions and Outline. The contributions we achieve
in this work can be summarized as follows. We focus for the first time on
global weight bounds in (the minimization formulation of) correlation cluster-
ing (Sect. 3). We derive a sufficient condition on input weights’ aggregate func-
tions to extend the validity range of the approximation guarantees of existing
correlation-clustering algorithms beyond the probability constraint (Sect. 4). We
experimentally assess that our condition is an effective indicator of the empir-
ical performance of existing probability-constraint-aware correlation-clustering
algorithms (Sect. 5.1). We showcase our results in a real-world scenario of fair
clustering (Sect. 5.2).

2 Related Work

Correlation Clustering. The literature on min-disagreement correlation clus-
tering that is functional to our work has been presented in the Introduction.
As a complement, we (briefly) overview the main results on the maximization
formulation (not a focus of this work), and extensions to the basic formulations.

For original Bansal et al.’s input of unweighted and complete graphs [8], max-
agreement correlation clustering admits a PTAS [8]. On general graphs/weights,
it becomes APX-hard [11], but admits constant-factor approximation algo-
rithms, achieving factor-0.7664 [11] and factor-0.7666 [26] guarantees. Extensions
to the basic correlation-clustering formulations include constrained/relaxed for-
mulations, and adaptations to nonconventional types of graph or computational
settings. We point the interested reader to [10,22] for more details.

In this work we shift the attention from local to global weight bounds in
min-disagreement correlation clustering. To the best of our knowledge, this is a
completely novel perspective that has never been considered so far.



Correlation Clustering with Global Weight Bounds 503

Fair Clustering. Roughly speaking, the problem of fair clustering consists in
partitioning a set of objects based on both clustering quality and fairness, i.e.,
limiting as much as possible the bias against/towards particular objects’ subsets.

Chierichetti et al.’s seminal work [14] formulates fair versions of the tra-
ditional k-center and k-median problems. Since then, research has focused on
generalizing those formulations [9,24], incorporating fairness constraints into k-
center [18], scalability of fair k-median [7], different fairness measures [3,13],
and fair versions of other traditional problems, i.e., k-means [1], spectral clus-
tering [19], hierarchical clustering [2]. As for correlation clustering, Ahma-
dian et al. [4] study the problem where vertices of a complete and unweighted
graph are assigned a single label representing a protected class attribute (e.g.,
gender, ethnicity), and every cluster is constrained to fairly represent each label.

In this work we showcase our theoretical results in a task of fair clustering.
We pick a scenario where positive-type and negative-type edge weights express
similarities on non-sensitive and sensitive features assigned to the input vertices,
respectively. The goal is to define such weights so as to account for both an
effective representation of the semantics underlying objects’ features, and the
peculiarities that make the downstream correlation-clustering algorithm effec-
tive. Thus, our setting differs from Ahmadian et al.’s one, where the graph is
complete and unweighted, and vertices are not assigned feature vectors, but just
a class label. In any case, the focus on fair clustering in this work is just on the
application side: advancing the fair-clustering literature is beyond our scope.

3 Problem Definition

In this work we tackle the problem of min-disagreement correlation clustering :

Problem 1 (Min-CC [5]). Given an undirected graph G = (V,E), with vertex
set V and edge set E ⊆ V × V , and nonnegative weights w+

e , w−
e ∈ R+

0 for
all edges e ∈ E, find a clustering (i.e., an injective function expressing cluster-
membership) C : V → N

+ that minimizes
∑

(u,v)∈E,C(u)=C(v)
w−

uv +
∑

(u,v)∈E,C(u) �=C(v)
w+

uv. (1)

For the sake of presentation, we assume w+
e = w−

e = 0, for all e /∈ E, and
non-trivial Min-CC instances, i.e., w+

e 	= w−
e , for some e ∈ E.

Min-CC is NP-hard [8,25] yet difficult to approximate, being it APX-hard
even for complete graphs and edge weights (w+

e , w−
e ) ∈ {(0, 1), (1, 0)}, ∀e ∈

E [11]. For general (i.e., not necessarily complete) graphs and general (i.e., uncon-
strained) weights, the best known approximation factor is O(log |V |) [11,16].
This factor improves if restrictions on edge weights are imposed. A constraint
that has received considerable attention is the probability constraint (pc):

Definition 1 (Probability constraint). A Min-CC instance is said to satisfy
the probability constraint (pc) if w+

uv + w−
uv = 1, for all vertex pairs u, v ∈ V .
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Algorithm 1. Pivot [5]
Input: Graph G = (V, E); nonnegative weights w+

e , w−
e , ∀e ∈ E

Output: Clustering C of V
1: C ← ∅, V ′ ← V
2: while V ′ �= ∅ do
3: pick a pivot vertex u ∈ V ′ uniformly at random
4: add Cu = {u} ∪ {v ∈ V ′ | (u, v) ∈ E, w+

uv > w−
uv} to C and remove Cu from V ′

A Min-CC instance obeying the pc necessarily corresponds to a complete
graph (otherwise, any missing edge would violate the pc). Under the pc, Min-
CC admits constant-factor guarantees. The best known approximation factor
is 4, achievable – as shown in [23] – by Charikar et al.’s algorithm [11]. That
algorithm is based on rounding the solution to a large linear program (with a
number Ω(|V |3) of constraints), thus being feasible only on small graphs.

Here, we are particularly interested in the Pivot algorithm [5], due to its the-
oretical properties – it achieves a factor-5 expected guarantee for Min-CC under
the pc – and practical benefits – it takes O(|E|) time, and is easy-to-implement.
Pivot simply picks a random vertex u, builds a cluster as composed of u and all
the vertices v such that an edge with w+

uv > w−
uv exists, and removes that cluster.

The process is repeated until the graph has become empty (Algorithm 1).

4 Theoretical Results and Algorithms

Let Min-pc-CC denote the version of Min-CC operating on instances that
satisfy the pc. The main theoretical result of this work is a sufficient condi-
tion – to be met globally by the input edge weights – on the existence of a
strict approximation-preserving (sap) reduction from Min-CC to Min-pc-CC.
In the remainder of this section we detail our findings, presenting partial results
(Sects. 4.1–4.2), our overall result (Sect. 4.3), and algorithms (Section 4.4).

4.1 PC-Reduction

As a first partial result, in this subsection we define the proposed reduction from
Min-CC instances to Min-pc-CC ones, and the condition that makes it yield
valid (i.e., nonnegative) edge weights. We start by recalling some basic notions,
including the one of strict approximation-preserving (sap) reduction.

Definition 2 (Minimization problem, optimum, performance ratio [6]).
A minimization problem Π is a triple (I, sol, obj), where I is the set of problem
instances; for every I ∈ I, sol(I) is the set of feasible solutions of I; obj is the
objective function, i.e., given I ∈ I, S ∈ sol(I), obj(I, S) measures the quality
of solution S to instance I.

OPTΠ(I) denotes the objective-function value of an optimal solution to I.
Given I ∈ I, S ∈ sol(I), RΠ(I, S) = obj(I, S)/OPTΠ(I) denotes the per-

formance ratio of S with respect to I.
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Definition 3 (Reduction and SAP-reduction [15]). Let Π1 = (I1, sol1,
obj1) and Π2 = (I2, sol2, obj2) be two minimization problems.

A reduction from Π1 to Π2 is a pair (f, g) of polynomial-time-computable
functions, where f : I1 → I2 maps Π1’s instances to Π2’s instances, and, given
I1 ∈ I1, g : sol2(f(I1)) → sol1(I1) maps back Π2’s solutions to Π1’s solutions.

A reduction is said strict approximation-preserving ( sap) if, for any I1 ∈ I1,
S2 ∈ sol2(f(I1)), it holds that RΠ1(I1, g(I1, S2)) ≤ RΠ2(f(I1), S2).

The proposed reduction is as follows. To map Min-CC instances to Min-pc-
CC ones, we adopt a function f that simply redefines edge weights, while leaving
the underlying graph unchanged. Function g is set to the identity function. That
is, a Min-pc-CC solution is interpreted as a solution to the original Min-CC
instance as is. Function f makes use of two constants M,γ > 0 (which will be
better discussed later), and σe quantities, ∀e ∈ E, which are defined as:

σe = γ (w+
e + w−

e ) − M. (2)

We term our reduction pc-reduction and define it formally as follows.

Definition 4 (PC-reduction). The pc-reduction is a reduction (f, g) from
Min-CC to Min-pc-CC, where g is the identity function, while f maps a
Min-CC instance 〈G = (V,E), {w+

e , w−
e }e∈E〉 to a Min-pc-CC instance 〈G′ =

(V ′, E′), {τ+
e , τ−

e }e∈E′〉, such that V ′ = V , E′ = V × V , and

τ+
e = 1

M

(
γ w+

e − σe

2

)
, τ−

e = 1
M

(
γ w−

e − σe

2

)
, ∀e ∈ E′. (3)

Note that the proposed pc-reduction is always guaranteed to yield τ+
e , τ−

e

weights satisfying the pc (i.e., τ+
e + τ−

e = 1), for any M and γ. As a particular
case, recalling the assumption w+

e = w−
e = 0 for e /∈ E, the pc-reduction yields

weights τ+
e = τ−

e = 0.5 for any e /∈ E. However, not every choice of M and γ
leads to nonnegative τ+

e , τ−
e weights, as stated next.

Lemma 1. The pc-reduction yields nonnegative τ+
e , τ−

e weights if and only if
M − γ Δmax ≥ 0, where Δmax = maxe∈E |w+

e − w−
e |.

Proof. By simple math on the formula of τ+
e , τ−

e in Definition 4, it follows that
τ+
e , τ−

e ≥ 0 holds if and only if the conditions w+
e −w−

e ≥ −M/γ and w+
e −w−

e ≤
M/γ are simultaneously satisfied. This in turn corresponds to have |w+

e −w−
e | ≤

M/γ satisfied. As the latter must hold for all e ∈ E, then the lemma. �
Constraining M and γ as in Lemma 1 is a key ingredient of our ultimate

global-weight-bounds condition. We will come back to it in Sect. 4.3.

4.2 Preserving the Approximation Factor Across PC-Reduction

Let I be a Min-CC instance and I ′ be the Min-pc-CC instance derived from
I via pc-reduction. Here, we present a further partial result, i.e., a sufficient
condition according to which an approximation factor holding on I ′ is preserved
on I. We state this result in Lemma 3. Before that, we provide the following
auxiliary lemma, which shows the relationship between the objective-function
values of a clustering C on I and on I ′.
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Lemma 2. Let I = 〈G = (V,E), {w+
e , w−

e }e∈E〉 be a Min-CC instance, and
I ′ = 〈G′ = (V,E′ = V × V ), {τ+

e , τ−
e }e∈E′〉 be the Min-pc-CC instance derived

from I via pc-reduction. Let also C be a clustering of V . The following rela-
tionship holds between the objective-function value obj(I, C) of C on I and the
objective-function value obj(I ′, C) of C on I ′:

obj(I, C) = M
γ obj(I ′, C) + 1

2γ

∑
u,v∈V σuv. (4)

Proof.

obj(I ′, C) =
∑

(u,v)∈E′,
C(u)=C(v)

1
M

(
γ w+

uv − σuv

2

)
+

∑
(u,v)∈E′,
C(u)=C(v)

1
M

(
γ w−

uv − σuv

2

)

= γ
M

(∑
(u,v)∈E,

C(u)=C(v)
w+

uv +
∑

(u,v)∈E,
C(u) �=C(v)

w−
uv

)
− 1

2M

(∑
(u,v)∈E′,
C(u)=C(v)

σuv +
∑

(u,v)∈E′,
C(u) �=C(v)

σuv

)

= γ
M obj(I, C) − 1

2M

∑
u,v∈V σuv.

�
Lemma 3. Let I and I ′ be the two instances of Lemma 2. Let also C be an α-
approximate solution to I ′, i.e., a clustering achieving objective-function value no
more than α times I ′’s optimum, for any α > 1. It holds that: if 1

2γ

∑
e∈E σe ≥ 0,

then C is an α-approximate solution to I too.

Proof. Let OPT and OPT ′ be the optima of I and I ′, respectively. It holds
that:

obj(I ′, C) ≤ α OPT ′

⇒ M
γ obj(I ′, C) + 1

2γ

∑
u,v∈V σuv ≤ α

(
M
γ OPT ′ + 1

2γ

∑
u,v∈V σuv

)

⇔ obj(I, C) ≤ α OPT,

where the second step holds because 1
2γ

∑
e∈E σe ≥ 0 and α > 1 by hypothesis,

while the last step holds because of Lemma 2. �

4.3 Ultimate Global Weight Bounds

With the above partial results in place, we can now present our ultimate result,
i.e., a sufficient condition to guarantee that the pc-reduction is a sap-reduction.
To show our result, for a Min-CC instance 〈G = (V,E), {w+

e , w−
e }e∈E〉 we define:

avg+ =
(

|V |
2

)−1 ∑
e∈E w+

e , avg− =
(

|V |
2

)−1 ∑
e∈E w−

e . (5)

Theorem 1. If avg++avg− ≥ Δmax, then the pc-reduction is a sap-reduction.

Proof. Lemma 3 provides a (sufficient) condition to have an approximation factor
on a Min-pc-CC instance carried over to the original Min-CC instance. Thus,
that condition suffices to make the pc-reduction a sap-reduction according to
Definition 3. The condition in Lemma 3 has to be coupled with the one in
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Algorithm 2. GlobalCC
Input: Graph G = (V, E); nonnegative weights w+

e , w−
e , ∀e ∈ E, satisfying Theorem 1;

algorithm A achieving α-approximation guarantee for Min-pc-CC
Output: Clustering C of V
1: choose M, γ s.t. M

γ
∈ [Δmax, avg+ + avg−] {Theorem 1}

2: compute τ+
uv, τ−

uv, ∀u, v ∈ V , as in Equation (3) (using M, γ defined in Step 1)
3: C ← run A on Min-pc-CC instance 〈G′ = (V, V × V ), {τ+

e , τ−
e }e∈V ×V 〉

Lemma 1, which guarantees nonnegativity of the edge weights of the yielded
Min-pc-CC instance. To summarize, we thus require the following:

{
M
γ ≥ Δmax, {Lemma 1}
1
2γ

∑
u,v∈V σuv ≥ 0 ⇔ M

γ ≤ avg+ + avg−, {Lemma 3}

which corresponds to M
γ ∈ [Δmax, avg++ avg−], i.e., to avg++ avg− ≥ Δmax. �

4.4 Algorithms

According to Theorem 1, if avg++avg− ≥Δmax for a Min-CC instance, then any
α-approximation algorithm for Min-pc-CC can be employed – as a black box
– to get an α-approximate solution to that Min-CC instance. The algorithm
for doing so is simple: get a Min-pc-CC instance via pc-reduction, and run
the black-box algorithm on it (Algorithm 2). Being the pc-reduction sap, the
guarantee of this algorithm straightforwardly follows as a corollary of Theorem 1.

Corollary 1. Let I bea Min-CC instance, andA beanα-approximationalgorithm
for Min-pc-CC. Algorithm 2 on input 〈I,A〉 achieves factor-α guarantee on I.

Let T (A) be the running time of the black-box algorithm A. The time com-
plexity of Algorithm 2 is O(max{|E|, T (A)}), assuming that there is no need to
materialize edge weights τ+

e , τ−
e for missing edges e /∈ E. This is an assumption

valid in most cases: we recall that e /∈ E ⇒ τ+
e = τ−

e = 0.5, thus it is likely
that their definition can safely be kept implicit. For instance, this assumption
holds if Pivot [5] is used as a black-box algorithm (although with Pivot the pic-
ture is much simpler, see below). Instead, the assumption is not true for the LP
algorithms in [11,16]. In that case, however, the time complexity of Algorithm 2
would correspond to the running time of those LP algorithms nevertheless, as
they take (at least) Ω(|V |3) time to build their linear programs.

Using Pivot in Algorithm 2. It is easy to see that w+
e >w−

e ⇔τ+
e >τ−

e , ∀e ∈ E.
As Pivot makes its choices based on the condition w+

e > w−
e solely, the output of

Algorithm 2 equipped with Pivot corresponds to the output of Pivot run directly
on the input Min-CC instance. Thus, to get the 5-approximation guaranteed by
Pivot, it suffices to run Pivot on the original input, without explicitly performing
the pc-reduction. This finding holds in general for any algorithm whose output
is determined by the condition w+

e > w−
e only. It does not hold for the LP

algorithms: in that case, the general Algorithm 2 is still needed.
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Table 1. Main characteristics of real-world graph datasets (left) and relational datasets
(right) used in our evaluation stages.

|V | |E| den. a deg a pl diam cc

Karate 34 78 0.14 4.59 2.41 5 0.26

Dolphins 62 159 0.08 5.13 3.36 8 0.31

Adjnoun 112 425 0.07 7.59 2.54 5 0.16

Football 115 613 0.09 10.66 2.51 4 0.41

#objs. #attrs. fairness-aware (sensitive) attributes

Adult 32 561 7/8
race, sex, country, education, occupation,

marital-status, workclass, relationship

Bank 41 188 18/3 job, marital-status, education

Credit 10 127 17/3 gender, marital-status, education-level

Student 649 28/5
sex, male edu, female edu,

male job, female job

Role of M and γ. According to Theorem 1, τ+
e , τ−

e weights can be defined
by picking any values of M and γ such that M

γ ∈ [Δmax, avg+ + avg−]. The
condition avg++ avg− ≥ Δmax ensures that the [Δmax, avg+ + avg−] range
is nonempty, while the assumption made in Sect. 3 that our input Min-CC’s
instances are nontrivial (thus, Δmax > 0) guarantees M,γ > 0.

From a theoretical point of view, all valid values of M and γ are the same. The
choice of M and γ may instead have practical implications. Specifically, M and
γ determine the difference between the resulting positive-type and negative-type
edge weights. This may influence the empirical performance of those algorithms
(e.g., the LP algorithms) for which the weight values matter. However, we remark
that, in the case of Pivot –which just depends on whether the positive-type weight
is more than the negative-type one—M and γ do not play any role, not even
empirically. Being Pivot the main object of our practical focus, we defer a deeper
investigation on M and γ to future work (see Sect. 6).

5 Experiments

5.1 Analysis of the Global-Weight-Bounds Condition

Settings. We selected four real-world graphs,2 whose summary is reported in
Table 1-(left). Note that the small size of such graphs is not an issue because
this evaluation stage involves, among others, linear-programming correlation-
clustering algorithms, whose time complexity (Ω|V |3) makes them unafford-
able for graphs larger than that. We augmented these graphs with artificially-
generated edge weights, to test different levels of fulfilment of our global-weight-
bounds condition stated in Theorem 1. We controlled the degree of compliance of
the condition by a target ratio parameter, defined as t = Δmax/(avg+ + avg−).
The condition is satisfied if and only if t ∈ [0, 1], and smaller target-ratio values
correspond to better fulfilment of the condition, and vice versa.

Given a desired target ratio, edge weights are generated as follows. First, all
weights are drawn uniformly at random from a desired [lb, ub] range. Then, the
weights are adjusted in a two-step iterative fashion, until the desired target ratio
is achieved: (i) keeping the maximum gap Δmax fixed, the weights are changed

2 Publicly available at http://konect.cc/networks/.

http://konect.cc/networks/
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(a) Karate (b) Dolphins (c) Adjnoun (d) Football

Fig. 1. Min-CC objective by varying the target ratio.

for pairs that do not contribute to Δmax so as to reflect a change in avg+, avg−;
(ii) keeping avg+, avg− fixed, Δmax is updated by randomly modifying pairs
that contribute to Δmax. Once properly adjusted to meet the desired target
ratio, weight pairs are randomly assigned to the edges of the input graph.

We compared the performance of Pivot (Algorithm 1 [5]) to one of the state-
of-the-art algorithms achieving factor-O(log |V |) guarantee on general graphs/
weights [11]. We dub the latter LP+R, alluding to the fact that it rounds the solu-
tion of a linear program. We evaluated correlation-clustering objective, number
of output clusters, and runtimes of these algorithms.

Results. Figure 1 shows the quality (i.e., Min-CC objective) of the clusterings
produced by the selected algorithms, with the bottom-left insets reporting the
ratio between the performance of Pivot and LP+R. Results refer to target ratios
t varied from [0, 3], with stepsize 0.1, and weights generated with lb = 0, ub = 1.
For each target ratio, all reported measurements correspond to averages over 10
weight-generation runs, and each of such runs in turn corresponds to averages
over 50 runs of the tested algorithms (being them both randomized).

The main goal here is to have experimental evidence that a better fulfilment of
our global condition leads to Pivot’s performance closer to LP+R’s one, and vice
versa. This would attest that our condition is a reliable proxy to the worthiness
of employing Pivot. Figure 1 confirms this claim: in all datasets, Pivot performs
more closely to LP+R as the target ratio gets smaller. In general, Pivot performs
similarly to LP+R for t ∈ [0, 1], while being outperformed for t > 1. This con-
forms with the theory: on these small graphs, factor-5 Pivot’s approximation is
close to factor-O(log |V |) LP+R’s approximation. Pivot achieves the best perfor-
mance on Football, where it outperforms LP+R even if the condition is not met.
This is motivated by Football ’s higher clustering coefficient and average degree,
which help Pivot sample vertices (and, thus, build clusters) in dense regions of
the graph. This is confirmed by the number of clusters (Table 2-(right)): Pivot
yields more clusters than LP+R on all datasets but Football.

As far as runtimes (Table 2-(left)),3 Pivot is extremely faster than LP+R, as
expected. The inefficiency of LP+R further emphasizes the importance of our
result in extending the applicability of faster algorithms like Pivot.

We complement this stage of evaluation by testing different graph densi-
ties. We synthetically added edges with uniform probability, ranging from 0

3 Experiments were carried out on the Cresco6 cluster https://www.eneagrid.enea.it.

https://www.eneagrid.enea.it
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Table 2. Running times (left) and avg. clustering-sizes for various target ratios (right).

Pivot LP+R

(secs.) (secs.)

Karate < 1 1.9

Dolphins < 1 36.58

Adjnoun < 1 775.4

Football < 1 819.8

0.1 0.5 1 2 3

Pivot LP+R Pivot LP+R Pivot LP+R Pivot LP+R Pivot LP+R

Karate 21.75 17.18 29.61 27.93 27.22 24.66 25.55 23.82 28.17 26.81

Dolphins 49.25 50.59 45.3 38.67 49.57 44.45 47.91 48.05 48.89 43.66

Adjnoun 70.35 65.93 80.97 75.86 90.76 84.93 85.83 70.41 91.27 79.78

Football 64.43 84.91 77.14 96.43 68.35 78.72 78.65 85.31 90.87 100.31

(a) Min-CC objective (b) Number of clusters (c) Running time

Fig. 2. Varying graph density: target ratio 1 (top) and 20 (bottom), on Dolphins.

(no insertions) to 1 (complete graph). Figure 2 shows the results on Dolphins
(similar results are found in all the other datasets, here omitted for the sake of
brevity), and for target ratios t = 1 (borderline satisfaction of our condition) and
t = 20 (far fulfilment of the condition). Again, the results meet the expectations:
in terms of clustering quality, Pivot performs closely to or better than LP+R for
t = 1, while the opposite happens for t = 20. Denser graphs correspond to better
Pivot performance. This is again motivated by the above argument that higher
densities favor better Pivot’s random choices. Runtimes are not affected by the
differences in graph density. This is expected as well, as LP+R runtimes are
dominated by the time spent in building and solving the linear program, which
depends on the number of vertices only, whereas variations in the runtimes of
Pivot cannot be observed due to the small size of the datasets at hand.

5.2 Application to Fair Clustering

Let X be a set of objects defined over a set of attributes A. The latter is assumed
to be divided into two sets, AF and A¬F , where AF contains fairness-aware, or
sensitive attributes (e.g., gender, race, religion), and A¬F denotes the remaining,
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non-sensitive attributes. In both cases, we assume that part of the attributes
might be numerical, and the others as categorical; we will use superscripts N and
C to distinguish the two types, therefore AF = AF

N ∪AF
C and A¬F = A¬F

N ∪A¬F
C .

We consider a twofold fair-clustering objective: cluster the objects such that
(i) the intra-cluster similarity and the inter-cluster similarity are maximized and
minimized, respectively, according to the non-sensitive attributes; (ii) the intra-
cluster similarity and the inter-cluster similarity are minimized and maximized,
respectively, according to the sensitive attributes. Pursuing this second objective
would help distribute similar objects (in terms of sensitive attributes) across
different clusters, thus helping the formation of diverse clusters. This is beneficial
to ensure that the distribution of groups defined on sensitive attributes within
each cluster approximates the distribution across the dataset.

The task of fair clustering can be mapped to a Min-CC instance where the
positive-type and negative-type weights, respectively, can be defined as follows:

w+
uv := ψ+

(
α¬F

N · simA¬F
N

(u, v) + (1 − α¬F
N ) · simA¬F

C
(u, v)

)
(6)

w−
uv := ψ−

(
αF

N · simAF
N

(u, v) + (1 − αF
N ) · simAF

C
(u, v)

)
(7)

where αF
N = |AF

N |/(|AF
N | + |AF

C |) and α¬F
N = |A¬F

N |/(|A¬F
N | + |A¬F

C |) are coef-
ficients to weight similarities proportionally to the size of the involved set of
attributes, ψ+ = exp(|AF |/(|AF | + |A¬F |) − 1) and ψ− = exp(|A¬F |/(|AF | +
|A¬F |)−1) are smoothing factors to penalize correlation-clustering weights that
are computed on a small number of attributes (which is usually the case for
sensitive attributes, and hence negative-type weights), and simS(·) denotes any
object similarity function defined over the subspace S of the attribute set.

Problem 2 (Attribute Selection for Fair Clustering). Given a set of objects X
defined over the attribute sets AF , A¬F , find maximal subsets SF ⊆ AF and
S¬F ⊆ A¬F , with |SF | ≥ 1, |S¬F | ≥ 1, s.t. the correlation-clustering weights in
Eqs. (6)–(7) satisfy the global-weight-bounds condition in Theorem 1.

Heuristics. Our first proposal to solve Problem 2 is a greedy heuristic, dubbed
Greedy, which iteratively removes the attribute that leads to the correlation-
clustering weights with the lowest target ratio until our global condition is sat-
isfied. This algorithm runs in O(|X |2|A|2) time since, at each iteration, for each
candidate attribute to be removed O(|X |2) similarities are computed to quan-
tify the decrease of the target ratio. We also devised other heuristics which, like
Greedy, remove one attribute at time, but exploit some easy-to-compute proxy
measures to select the attribute that avoid the pairwise similarity computation
for each candidate attribute. The Hlv (resp. Hmv) heuristic removes the least
(resp. most) variable attribute where the variability is measured through nor-
malized entropy for categorical attributes and with variation coefficient (capped
to 1 if above 1) for numerical features. Hlv B and Hmv B, like the previous two
heuristics, remove the least and most variable attribute, respectively, but the
selection is constrained to the biggest set of features among AF and A¬F , in
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order to try to balance their size. Finally, Hlv BW removes the least variable
attribute from the set (AF or A¬F ) which induces the highest average similarity
value using the current weights, whereas Hmv SW removes the most variable
attribute from the set which induces the lowest average similarity value using
the current weights. Note that all these heuristics (but Greedy) run in O(|X |2|A|)
time.

Table 3. Fair clustering results.

#it Target
ratio

%(w+ >
w−)

Orig.-weights
Min-CC obj.

Avg. Eucl.
fairness

Avg.
#clusts.

Intra-clust
A¬F

Intra-clust
AF

Inter-clust
A¬F

Inter-clust
AF

Time
(seconds)

Adult

initial – 1.086 90.34 1.1915E+08 0.082 77 0.699 0.672 0.378 0.181 –

Hlv 12 0.986 93.19 1.122659E+08 0.031 9 0.465 0.326 0.347 0.194 545.249

Hlv B 12 0.765 78.09 1.119757E+08 0.039 69 0.608 0.547 0.375 0.184 529.674

Hmv 5 0.974 90.83 1.21187E+08 0.094 79 0.689 0.687 0.373 0.203 220.056

Hmv B 4 0.936 87.39 1.25516E+08 0.109 905 0.963 0.96 0.377 0.199 178.813

Hlv BW 5 0.963 83.17 1.343503E+08 0.152 1479 0.969 0.964 0.384 0.199 217.333

Hmv SW 9 0.926 91.41 1.159874E+08 0.037 5 0.451 0.308 0.329 0.195 380.875

Greedy 2 0.967 92.36 1.094787E+08 0.036 32 0.668 0.654 0.361 0.195 595.610

Bank

initial – 1.612 98.84 7.738171E+07 0.019 9 0.593 0.466 0.413 0.083 –

Hlv 19 0.95 99.88 7.063441E+07 0.001 3 0.52 0.209 0.368 0.082 1289.785

Hlv B 16 0.906 97.19 8.489668E+07 0.038 752 0.859 0.818 0.456 0.077 1223.205

Hmv 17 0.972 100.0 7.032421E+07 0.0 2 0.497 0.136 0.151 0.03 1254.341

Hmv B 16 0.981 97.19 8.250374E+07 0.032 35 0.775 0.665 0.451 0.079 1143.517

Hlv BW 17 0.984 92.87 1.163447E+08 0.095 1048 0.997 0.996 0.444 0.076 1212.091

Hmv SW 17 0.972 100.0 7.032421E+07 0.0 2 0.497 0.136 0.151 0.03 1336.888

Greedy 13 0.981 99.57 7.240143E+07 0.006 3 0.508 0.371 0.381 0.076 11978.472

CreditCardCustomers

initial – 1.415 96.97 7.556837E+06 0.050 13 0.586 0.53 0.397 0.133 –

Hlv 18 0.935 75.51 1.234939E+07 0.121 4 0.452 0.176 0.402 0.114 75.252

Hlv B 17 0.981 85.64 1.013557E+07 0.153 1210 0.996 0.994 0.414 0.113 78.471

Hmv 15 0.985 99.41 6.674586E+06 0.002 3 0.461 0.225 0.343 0.132 72.112

Hmv B 13 0.977 97.37 7.498595E+06 0.045 12 0.601 0.559 0.402 0.134 58.486

Hlv BW 16 0.926 85.81 9.636214E+06 0.125 571 0.986 0.982 0.409 0.123 75.484

Hmv SW 15 0.985 99.41 6.674586E+06 0.002 3 0.461 0.225 0.343 0.132 72.109

Greedy 14 0.941 95.5 7.584107E+06 0.049 20 0.612 0.57 0.406 0.115 714.02

Student

initial – 1.042 96.79 4.307303E+04 0.034 4 0.568 0.479 0.315 0.17 –

Hlv 30 0.968 84.18 5.236701E+04 0.064 2 0.407 0.213 0.392 0.189 14.838

Hlv B 22 0.967 70.09 5.828042E+04 0.143 11 0.581 0.459 0.392 0.190 10.551

Hmv 8 0.994 96.28 4.303145E+04 0.031 5 0.577 0.484 0.379 0.189 3.91

Hmv B 8 0.974 96.94 4.260863E+04 0.030 5 0.588 0.507 0.364 0.184 3.809

Hlv BW 22 0.967 70.09 5.828042E+04 0.143 11 0.581 0.459 0.392 0.190 10.923

Hmv SW 3 0.938 94.97 4.382731E+04 0.035 4 0.561 0.446 0.350 0.188 1.543

Greedy 2 0.975 94.8 4.595454E+04 0.059 5 0.535 0.434 0.376 0.193 9.980

Data and Results. We considered 4 real-world relational datasets: Adult,4

Bank, (see footnote 4) CreditCardCustomers,5 and Student (see footnote 4).
For each of them, we report in Table 1-(right) the number of objects, a pair of
values corresponding to the count of non-sensitive and sensitive attributes, and
a description of the latter.
4 https://archive.ics.uci.edu/ml/index.php.
5 https://www.kaggle.com/sakshigoyal7/credit-card-customers.

https://archive.ics.uci.edu/ml/index.php
https://www.kaggle.com/sakshigoyal7/credit-card-customers
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Table 3 summarizes results achieved by each of the above heuristics, on the
various datasets, according to the following criteria (columns from left to right):
number of iterations at convergence, target ratio, percentage of pairs u, v hav-
ing w+

uv > w−
uv; also, computed w.r.t. the full attribute space are: value of the

objective function, average Euclidean fairness6 (the lower, the better), average
number of clusters, intra-cluster and inter-cluster similarities according to either
the subset of sensitive attributes or the subset of non-sensitive attributes, and
running time. (see footnote 3) Euclidean and Jaccard similarity functions are
used for numerical and categorical attributes, resp., and the overall similarity is
obtained by linear combination analogously to Eqs. (6)–(7). Note that higher val-
ues correspond to better performance for AF -based intra-cluster and A¬F -based
inter-cluster similarities, while the opposite holds for the other two measures.
The first row in each table refers to the initial, full-attribute-space status of the
relational network, as a baseline, whereby the global-weight-bounds condition is
not satisfied.

Hlv BW and Hlv B tend to produce solutions that correspond to the highest
(i.e., worst) value of the objective function and by far the highest clustering size;
this should be ascribed to the fact that both heuristics favor the removal of the
least variable attributes. By contrast, Hmv SW and Hmv are the best performing
in terms of objective function and, on average, also in terms of Euclidean fairness;
moreover, they tend to produce very few clusters. Remarkably, while a higher
number of clusters is found to be coupled with a worsening of the objective
function, the opposite does not hold in general. Also, contrarily to the intuition
that a higher percentage of pairs having w+ > w− should favor the grouping into
fewer clusters, we observed that an ordering of the clustering size is not aligned
with the percentage ordering. As far as efficiency, Greedy tends to converge in
less iterations, i.e., it removes fewer attributes than the other methods. In some
cases (e.g., Student, Adult), this allows Greedy for compensating its expected
higher cost per iteration. Hmv B mostly provides the best time performance.

Notably, each method lowers the initial target ratio below 1 so as to satisfy
the global condition, and the per-dataset best-performing method improves all
intra-/inter-cluster similarities and Euclidean fairness w.r.t. the baseline.

6 Conclusions

We have studied for the first time global weight bounds in correlation cluster-
ing. We have derived a sufficient condition to extend the range of validity of
approximation guarantees beyond local weight bounds, such as the probability
constraint. Extensive experiments have attested the usefulness of our condition.

We believe this work offers a new perspective on correlation clustering which
opens stimulating yet challenging opportunities for further research, such as

6 The average weighted by cluster-size of the per-attribute averages of the Euclidean
distances between the frequency attribute vector computed over the set of objects
of a cluster and the frequency attribute vector over the whole set of objects [1].
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investigating the role of M and γ constants, extending our results to other con-
straints (e.g., triangle inequality), and studying the by-product problem of fea-
ture selection guided by our condition.

For reproducibility purposes, we make source code and data available
at : https://github.com/Ralyhu/globalCC and http://people.dimes.unical.it/
andreatagarelli/globalCC/.
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Abstract. Attributes of items carry useful information for accurate rec-
ommendations. Existing methods which tried to use items’ attributes
relied on either 1) feature-level compression which may introduce much
noise information of irrelevant attributes, or 2) item- and attribute-
level transition modeling which ignored the mutual effects of multi-
factor for users’ behaviors. In addition, these methods failed to cap-
ture multi-faceted preferences of users, therefore, the prediction for the
next behavior may be affected or misled by the irrelevant facets of pref-
erences. To address these problems, we propose a Sequential Network
based Recommendation model, named SNR, to extract and utilize users’
multi-factor and multi-faceted preferences for next item recommenda-
tion. To model users’ multi-factor preferences, we organize the item- and
attribute- level sequences of users’ behaviors as unified sequential net-
works, and propose an attentional gated Graph Convolutional Network
model to explore the mutual effects of the preference factors contained in
sequential networks. To capture users’ multi-faceted preferences, we pro-
pose a multi-faceted preference learning model to simulate the decision-
making process of users with the Gumbel sotfmax trick. Finally, we fuse
the multi-factor and multi-faceted preferences in a unified latent space
for next item recommendation. Extensive experiments on four real-world
data sets show that the proposed model SNR consistently outperforms
several state-of-the-art methods.

Keywords: Sequential recommendation · Sequential networks ·
Preference learning · Multi-factor preference · Multi-faceted preference

1 Introduction

Recommender systems help users to discover the items that they may prefer
from numerous choices, which can enhance both users’ satisfaction and plat-
forms’ profits. In real-world scenarios, users’ behavior data, e.g. click or purchase,
c© Springer Nature Switzerland AG 2021
N. Oliver et al. (Eds.): ECML PKDD 2021, LNAI 12976, pp. 516–531, 2021.
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Fig. 1. The left part is an illustrating example that a user purchases items sequentially.
The right part concludes the multi-factor and multi-faceted preferences of users.

always appears as a sequence and every behavior is linked with a timestamp. Pre-
dicting and recommending the next item user may act on, known as sequential
recommendation, has been becoming a hot research topic in recent years.

Most of existing research about sequential recommendation focused on mod-
eling item-level sequences of users’ behaviors, which ignores the attribute infor-
mation of items which is beneficial for accurate recommendations [1]. Therefore,
how to utilize attribute information effectively for sequential recommendations
remains a challenge. Some methods tried to combine attribute information and
item information with compression strategies, e.g. feature-level aggregation or
concatenation, and adopted traditional sequential models like LSTM for rec-
ommendation [2,3]. However, not all attributes are relevant for recommend-
ing the target, which may introduce noise information and degrade the perfor-
mance of recommender systems. Some methods tried to model the item- and
attribute- level transition patterns in the sequential behaviors of users [1,4,5],
which ignored the mutual effects of multi-factor for users’ next behavior. Figure 1
shows the user’s purchase records in an online shopping website. The user may
prefer the HP printer because he/she requires a printer (Factor1: Computer →
Computer Appendix → Printer and Factor2: A4 Paper→ Printer) and prefers
Brand HP that produces printer (Factor3: HP laptop → HP → HP printer).
These factors consist of useful correlations and high-order dependencies between
attributes and items in users’ sequential behaviors, whose mutual effects can
help with users’ fine-grained preference modeling.

To deal with this issue, we first combine the item- and attribute- level
sequences into a unified sequential network for each user. Then, we design an
attentional gated graph convolutional network (agGCN) model to explore the
sequential networks, which can extract useful correlations and high-order depen-
dencies for multi-factor preference modeling. Compared to constant compression
strategies such as traditional GCN, the agGCN can alleviate the noise problem
with attentional and gated mechanisms.

In real-world scenarios, each user may play multiple different roles in his/her
life, which makes his/her preference shows multi-faceted correlations. For exam-
ple, Bob is a teacher and meanwhile a baby’s father, therefore, his purchasing
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behaviors may be switching between office-related items and babysitting-related
items as shown in Fig. 1. Although some existing work attempted to utilize atten-
tion mechanism for multi-faceted preference modeling [20,21], they took all facets
of preferences into account when predicting the next behavior. Therefore, the
predictions may be affected or misled by irrelevant preference facets.

To solve this problem, we propose a multi-faceted preference learning model
to construct users’ preference facets and select the possible preference facet for
expression. It utilizes the self-attention mechanism to construct the facets of
users’ preference, and utilizes the Gumbel softmax trick to simulate the decision-
making process of users, i.e. selecting the possible facet for preference expression
w.r.t different items.

2 Related Work

In this section, we review the related work from four aspects: item-aware sequen-
tial recommendation, attribute-aware sequential recommendation, GCN based
recommendation, and attention based recommendation.

Item-Aware Sequential Recommendation. Most of the existing work for
sequential recommendation focused on modeling item-level transition patterns
of users’ behaviors. For example, FPMC [7] directly combined matrix factoriza-
tion (MF) with Markov chains (MC) to predict the next item based on users’
recent engaged items (e.g. purchased items). Hierarchical Representation Model
(HRM) [8] extended FPMC by applying aggregation operations to explore more
complex interactions (e.g. non-linear interactions) for sequential recommenda-
tion. These MC based methods focus on the sequential patterns between two
adjacent behaviors or baskets while ignoring the long-term dependencies of the
whole sequences [9]. Recurrent neural networks (RNN), which are good at mod-
eling long-term dependencies in sequence data, have been adopted for sequential
recommendation. Various RNN variants have been extended for different sce-
narios [10,11]. For example, [12] proposed a gated recurrent unit (GRU) based
model GRURec with a ranking loss for session-based recommendation. In addi-
tion, graph neural networks were adopted to learn the representations of the
session interaction graph for session-based recommendation [13]. These methods
rely on the user-item binary relation sequences, which ignores item attributes
that are useful for users’ preference modeling.

Attribute-Aware Sequential Recommendation. Recently, attribute infor-
mation is used by several sequential models to improve the performance of
sequential recommendation [4,14]. Several methods tried to combine attributes
and items information with compression strategies, and adopted the sequential
models for recommendation. For example, HA-RNN [3] combined the embed-
dings of items and their attributes into a unified sequential representations,
then feed them into an LSTM model for next item recommendation. ANAM
[2] utilized a hierarchical architecture to incorporate the attribute information
of items, and adopted an attention mechanism to explicitly model users’ evolv-
ing preferences on items. However, the feature-level compression may aggregate
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irrelevant attributes and introduce noise, which degrades the performance of
sequential recommendation.

Several methods tried to explore the sequence data with attribute information
by mining their transition patterns of adjacent behaviors or baskets. For exam-
ple, FDSA [1] tried to model item transition patterns and attribute transition
patterns from adjacent behaviors for next item recommendation. KA-MemNN
[4] utilized the memory networks to store the categories of items in the last
basket, and inferred the categories that user may need for next basket predic-
tion. However, these methods fail to explore the sequential networks of users,
which contain useful correlations and high-order dependencies between items
and attributes for users’ multi-factor preference modeling.

GCN Based Recommendation. In recent years, GCN based techniques gain
their popularity in graph-based RSs [15], which organize the input data as graphs
and try to extract the structure information for recommendation [16]. Ying et
al. [17] proposed to apply GCN to the graph with neighborhood sampling tech-
nique, which can be adopted for web-scale recommendation tasks. Wang et al.
[29] adopted GCN to discover high-order structure and semantic information in
the knowledge graph, and utilized these information to enrich users’ preference
modeling for recommendation. These methods achieved good performance. How-
ever, these methods are designed for static graphs and not available for sequential
recommendation, and most of them assume equal or constant importance during
convolution which may bring more noise for recommendation.

Attention Based Recommendation. Attention mechanism has been widely
used in natural language processing such as text matching [18], and reading com-
prehension [19], due to its excellent theory and good performance. For sequen-
tial recommendation, several methods utilized attention mechanism to aggregate
users’ preferences or behaviors for unified representations. For example, DMFP
[20] assumed users’ long-term preferences are multi-faceted, adopted the multi-
hops attention mechanism to model users’ multi-faceted preferences. MANN [21]
stored users’ historical records explicitly by the memory networks, and adopted
the attention mechanism to learn the different importance of behavioral records
for recommendation. These attention based methods can be seen as the aggre-
gation of the multi-faceted preferences or behaviors. However, these methods
are essentially weighted aggregating all facets of preferences or behaviors, which
make the prediction for the next behavior may be affected by irrelevant facets.

3 Problem Formulation

Let U = {u1, · · · , uN}, I = {i1, · · · , iM} and F = {f1, · · · , fL} denote the sets
of N users, M items and L attributes, respectively. Each user u ∈ U engaged a
series of items Su(T ) = [st|t = 1, · · · , T ] in the chronological order, where st ∈ I
denotes the t-th item he/she engaged. For each item i ∈ I, we collect its K
types of attributes, i.e. Fi = {f1

i , · · · , fK
i }, where f j

i ∈ F denotes the j-typed
attribute of item i. For example, we can collect the items’ attributes with types
Genre, Brand, Color and etc.
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The goal of sequential recommendation is to learn a prediction function f(·)
based on all users’ sequential behaviors and other related information. Formally,
the function can predict the next item that the target user may act on. In this
paper, we take the attribute information of items into consideration and define
the prediction function as s(u, T ) = maxi∈I f(u, i, Su(T ), FI).

4 The Proposed Method

Figure 2 shows the architecture of the Sequential Networks based
Recommendation model, named SNR, which is built on the sequential networks
(the left part of Fig. 2) that organize users’ engaged items and attributes in a uni-
fied form. SNR consists of two main parts, i.e. the multi-factor preference modeling
(the top part of Fig. 2) and multi-faceted preference modeling (the bottom part of
Fig. 2). First, we design an agGCN model to learn the mutual effects of factors
with the help of sequential networks. Then, we propose a multi-faceted preference
learning model to simulate the decision-making process of users. Finally, we fuse
them in a unified latent space to learn users’ hybrid preferences for next item rec-
ommendations.
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Fig. 2. The architecture of the proposed model SNR.

4.1 Construction and Embedding of Sequential Networks

To make use of the sequential information of users’ behaviors, we combine
the item-level sequence Su(T ) = [st|t = 1, · · · , T ] with the corresponding
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attribute-level sequence Au(T ) = [(g1st
, · · · , gK

st
)|t = 1, · · · , T ] into a unified

sequence Bu(T ) = [Bt
u|t = 1, · · · , T ], where gj

st
denotes the j-typed attribute of

items st and Bt
u = (st, g

1
st

, · · · , gK
st

) denotes the engaged items and attributes in
his/her t-th behavior. We organize the unified sequence as the Sequential Net-
work for user u, which is a directed graph Gu = (Vu, Eu) as shown in Fig. 2. The
node (or entity1) set Vu consists of the items and attributes engaged by user u,
i.e., Vu =

⋃
t=1,··· ,T Bt

u. The edges set Eu consists of the chronological relations
between adjacent behaviors, i.e., Eu = {(a, b)|a ∈ Bt−1

u , b ∈ Bt
u, t = 2, · · · , T}.

We define the neighbors of b ∈ Bt
u as its adjacent nodes before time t, i.e.

J(b) = {a|a ∈ Bt−1
u }.

To make use of information shared in different users’ sequential networks, we
embed users, items and attributes into the same latent space, which is denoted
as W = R

N×d, Q = R
M×d and P = R

L×d respectively, where d is the dimen-
sionality of latent space. With the embedding of items and attributes, we denote
the embedding of sequence network Gu as Eu for the user u:

Eu =

⎡

⎢
⎣

qs1 p1s1
· · · pK

s1
...

...
...

...
qsT

p1sT
· · · pK

sT

⎤

⎥
⎦ =

⎡

⎢
⎣

e11 · · · e1J

... · · · ...
eT1 · · · eTJ

⎤

⎥
⎦ (1)

where qst
= emb(st) ∈ R

d and pj
st

= emb(f j
st

) ∈ R
d. As items can be treated

as a special type (e.g. ID) of attribute, we simplify Eu with the unified form
Eu = [etj ]T×J , where J = K + 1 and etj ∈ Eu denotes the embedding of
node atj ∈ Bt

u. With the matrix representations of sequential networks, we can
utilized GCN based method to explore and make use of information contained
in the sequential networks.

4.2 Multi-factor Preference Modeling

To model users’ multi-factor preferences, we propose an agGCN model to explore
the sequential networks. An attentional mechanism is utilized to model the cor-
relations between adjacent entities in the sequential network, and a gated mech-
anism is utilized to explore the high-order dependencies between entities which
may be nonadjacent in the sequential networks. Combining them can explore
the mutual effects of multi-factor for fine-grained preference modeling.

Attention Mechanism. To extract useful correlations between adjacent items
and attributes in the sequential network, we design an attentional mechanism
to learn the importance of neighbors when aggregating them in the GCN frame-
work. Therefore, we can reduce the noise caused by constantly or equally aggre-
gating all neighbor nodes in traditional GCNs.

Specifically at the k-th layer of GCN, we aggregate the neighbors of node atj

in Gu for user u in the (k − 1)-th layer, which is denoted as the n
(k)
tj :

n
(k)
tj =

∑
b∈J(atj)

α(atj , b)h
(k−1)
b (2)

1 In this paper, nodes, entities and attributes&items are used interchangeably.
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where J(atj) denotes the neighbor set of atj ∈ Vu in Gu and h
(k−1)
b ∈ R

d denotes
the (k − 1)-th layer GCN representation of node b. The α(atj , b) denotes the
attentional weight that models the similarity between atj and its neighbor b for
user u, i.e.

α(atj , b) = exp<T1·etj ,T1·h(k−1)
b >

∑
b∈J(atj)

exp<T1·etj ,T1·h(k−1)
b >

(3)

where < ·, · > denotes the inner product of two vectors, and T1 ∈ R
d×d denotes

the projection matrix that transforms the two kinds of embedding into the same
latent space for attention modeling. Intuitively, the high attentional weights
indicate useful correlations information between entities contained in sequential
networks for recommendation.

Gated Mechanism. Although traditional GCNs can capture the dependen-
cies of nodes among multi-layers, they usually assume the constant combination
between neighborhood information n

(k)
tj and feature node etj (i.e. the 0-th layer

representation h
(0)
tj = etj) [22]. Therefore, the high-order dependent nodes will

be affected or misled by irrelevant attributes or items between these nodes in
the sequential networks. Inspired by the LSTM model [23], we propose a gated
mechanism that learns to incorporate useful entities information for GCN:

h
(k)
tj = ψ(β(k)

tj � etj + (1 − β
(k)
tj ) � n

(k)
tj ) (4)

where ψ(·) denotes an activation function, for which we adopt the identity map
as in [24]. β

(k)
tj ∈ (0, 1) denotes the “gate” of information fusion which can be

formulated as follows:

β
(k)
tj = σ(< T2 · etj ,T2 · n

(k)
tj > +b(k)) (5)

where σ(·) denotes the sigmoid function, i.e., σ(x) = 1/(1+exp(−x)) and b(k) ∈
R

p denotes the bias for the k-th layer, and T2 ∈ R
d×d denotes the projection

matrix that transforms the two kinds of embedding into the same space for gate
modeling.

Once we obtain the k-th layer GCN embeddings H
(k)
t = [h(k)

t,1 ; · · · ;h(k)
t,J ] ∈

R
J×d of entities Bt

u in the sequential network, we aggregate them as the multi-
factor preferences of user u for next item prediction at time t + 1, i.e.

pfactoru,t+1 = wu +
∑J

j=1 h
(k)
t,j (6)

where wu ∈ R
d denotes the personalized preference representation of user u.

4.3 Multi-faceted Preference Modeling

Generally, users’ sequential behaviors are the mixture of behaviors that switch
between different preference facets. We assume the behaviors from similar pref-
erence facets have high correlations. To construct users’ preference facets w.r.t
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each typed attributes, we utilize a self-attention mechanism to learn the corre-
lations of the user engaged entities:

M̄ t
uj = Self-Attention(M t

uj) (7)

where M t
uj = [e1j , · · · , etj ] denotes the j-typed attributes user u engaged before

time t. Self-Attention(E) is the special case of the scaled dot-product attention
SDP-Attention(Q,K, V ) when Q = K = V = M :

SDP-Attention(Q,K, V ) = softmax(QKT

√
dk

)V (8)

where d denotes the dimension of the queries Q. The self-attention mechanism
can learn the embeddings of similar entities with the high correlation weights,
i.e. softmax(QKT

√
dk

), and thus make them be close in the latent space, which
makes similar entities belong to the same or similar preference facets.

To simulate the process of users’ decision-making, we adopt the Gumbel
softmax trick to select the possible facet of preferences that user may express
for next behavior. Gumbel softmax trick [6] provides a differentiable method
for categorical distribution sampling by using inverse transform sampling and
reparameterization trick. For user’s multi-faceted preferences, we first model the
expression probability πt

uj(i) ∈ R
t of each facet for item i as follows:

πt
uj(i) = softmax(M̄ t

uj · embij) (9)

where embi = [qi, p
1
i , · · · , pK

i ] ∈ R
J×d denotes the embeddings of item i ∈ I and

its attributes. Then, we select the preference facet mt
uj(i) ∈ R

d that user may
express for next behavior among multiple facets M̄ t

uj :

mt
uj(i) = Gt

uj(i) · M̄ t
uj (10)

where Gt
uj(i) ∈ R

t approximates to one-hot encoding with selected facet as 1
otherwise 0, which derives from the categorical distribution based on Gumbel
softmax trick:

Gt
uj(i) = Gumbel(πt

uj(i)) = softmax(− log(− log(ε)) + πt
uj(i)) (11)

where ε = [ε1, · · · , εt] derives from uniform distribution U(0, 1).
Once we select user u’s preference facets for all attribute types mt

u(i) =
[mt

u1(i), · · · ,mt
uJ (i)], we fuse them as the multi-faceted preferences w.r.t item i

for next item prediction at time t + 1 as follows:

pfacetu,t+1(i) =
∑J

j=1 mt
uj(i) (12)

4.4 Recommendation Model

To make use of both users’ multi-factor and multi-faceted preferences for next
item recommendation, we fuse them in the same latent space. Specifically, we
aggregate them as the hybrid preferences of users w.r.t item i at time t + 1:

phybridu,t+1 (i) = (1 − μ) · pfactoru,t+1 + μ · pfacetu,t+1(i) (13)
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where 0 ≤ μ ≤ 1 is a fusion coefficient which is used to control the relative
importance of the two kinds of representations.

With hybrid preference representation of users, we calculate user u’s relative
preference score for item i at time t as follows:

s(u, i, t + 1) =< phybridu,t+1 (i), vi > (14)

where vi ∈ R
d denotes the embedding of item i for score prediction.

For model learning, we adopt the pairwise loss to define the objective function
as follows:

SNR-opt = max
θ

∑
(u,i,j,t)∈D ln σ(ŷ(u, i, j, t)) − λθ||θ||2 (15)

where D = {(u, t, i, j)|u ∈ U , t = 1, · · · , |Bu|} means that user u gave positive
feedback to item i instead of item j at time t. We denote the relative score of
user u’s on item i and item j at time t, i.e. ŷ(u, i, j, t) = s(u, i, t) − s(u, j, t).
The θ denotes all parameters need to be learned in the proposed model and λθ

is the regularization coefficient of L2 norm || · ||2. The objective function shows
that the item i with positive feedback should have a higher score than the item
j without feedback for user u at time t.

As the objective function is differentiable, we optimize it by stochastic gra-
dient descent (SGD) and adaptively adjust the learning rate by AdamGrad [25],
which can be automatically implemented by TensorFlow2. The implementation
of our method will be publicly available after the paper is accepted.

5 Experiment

In this section, we aim to evaluate the performance and effectiveness of the
proposed method. Specifically, we conduct several experiments to study the fol-
lowing research questions:

– RQ1: Whether the proposed method outperforms state-of-the-art methods
in sequential recommendation?

– RQ2: Whether the proposed sequential networks help with modeling the
mutual effects of multi-factor, and outperform methods that explore individ-
ual transition patterns of attributes and items?

– RQ3: Whether the agGCN model can reduce the noise and outperform tra-
ditional GCNs?

– RQ4: Whether the proposed method benefits from the multi-facet preference
learning model which simulates the decision-making process of users?

2 https://www.tensorflow.org/.

https://www.tensorflow.org/
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5.1 Experimental Setup

Datasets
We adopt four public data sets with the attributes of items as the experimental
data, including ML3 (Hetrec-MovieLens), Dianping4, Amazon Kindle (Kindle
Store), and Amazon App (Apps for Android)5. The ML data set contains users’
ratings on movies with timestamps and the attributes of movies (e.g. Actors,
Director, Genres, and Countries). The Dianping dataset consists of the users’
ratings on restaurants in China with timestamps and attributes of restaurants
(e.g. City, Business district, Average cost, and Style). The Amazon App and
Amazon Kindle data sets contain users’ ratings on APPs and books with times-
tamps and metadata of items. For these data sets, we filter users and items which
have less than 10 records except 20 records for the Dianping and Amazon Kindle
as in [26]. We consider ratings higher than 3.5 points as positive interactions as
in [27]. The characteristics of the four data sets are summarized in Table 1.

Table 1. Statistics of the experimental data sets

Dataset #User #Item #Interaction Sparsity

ML 2,059 4,220 287,033 3.30%
Dianping 9,329 18,036 190,503 0.11%
Amazon App 10,724 5,995 120,856 0.19%
Amazon Kindle 11,677 24,097 206,575 0.07%

Evaluation Methodology and Metrics
We create the real-world scenario by stimulating the dynamic data stream. We
sort all interactions chronologically, then reserve the first 80% interactions as
the train set and hold the last 20% for testing. We test the interaction from the
hold-out data one by one correspondingly. Experimental results are recorded
as the average of the five runs with different random initializations of model
parameters.

To evaluate the performance of our method and the baseline methods, we
adopt two widely used evaluation metrics for top-N sequential recommendation
[32], i.e. hit ratio (hr) and normalized discounted cumulative gain (ndcg), which
can be formulated as follows:

hr@K =
1

|test|
∑

s∈test

K∑

i=1

ri(s) (16)

ndcg@K =
1

|test|
∑

s∈test

K∑

i=1

2ri(s) − 1
log2(i + 1)

(17)

3 https://grouplens.org/datasets/movielens/.
4 https://www.dianping.com/.
5 http://jmcauley.ucsd.edu/data/amazon/links.html.

https://grouplens.org/datasets/movielens/
https://www.dianping.com/
http://jmcauley.ucsd.edu/data/amazon/links.html


526 Y. Du et al.

For each test sample s ∈ test, ri(s) = 1 means the ranking list hits the ground
truth item at i-th position while 0 otherwise. HR measures the ratio of ground-
truth (GT) item set is hit, while NDCG focuses on the position of hit.

Baselines
We take the following state-of-the-art methods as the baselines.

– BPR [30]: It is a recommendation method for implicit feedback, which pro-
poses a pair-wise loss function to model the relative preferences of users.

– FPMC [7]: It combines MF and MC to capture users’ dynamic preferences.
– Caser [31]: It adopts the convolutional filters to learn users’ union and skip

patterns for sequential recommendation, which incorporates the convolutional
neural network with a latent factor model.

– SASRec [26] It is a self-attention based sequential model, and it can consider
engaged item-level sequences for next item recommendation.

– SASRec+: It is an extension to the SASRec method, which concatenates
item vector representations and category vector representations together as
the input of the item-level self-attention network.

– FM BPR [28,29]: It models the interactions between each pair of features
to estimate the target. We treat users’ recent behaviors and items’ attributes
as the features of FM and adopt the pair-wise loss for objective function as
in [29].

– ANAM [2]. It utilizes a hierarchical architecture to incorporate the attribute
information by an attention mechanism for sequential recommendation.

– HA-RNN [3]. It combines the representation of items and their attributes,
then fits them into the LSTM model for sequential recommendation.

– FDSA [1]. It models item and attribute transition patterns for next item
recommendation based on the Transformer model [33].

– SNR: It is the proposed method in this paper.

Experimental Design
We set the learning rating α = 0.001 and the regularization coefficient λ = 0.0001
on all methods for a fair comparison. We set the window size k = 5 to construct
the sequential networks, i.e. keep only the latest k behaviors for next recom-
mendation, based on which we involve all nodes by the k-layer GCN. We set
μ = 0.5 for equal importance of multi-factor and multi-faceted preferences mod-
eling. For baseline models, we set their parameters as authors’ implementation
if they exist, otherwise we tune them to their best. To be fair, we keep users’
recent k behaviors as the last basket or sequential behaviors for baseline models.

5.2 Model Comparison

Table 2 shows the performance of different methods for sequential recommenda-
tion. To make the table more notable, we bold the best results and underline the
best baseline results for each data set with a specific evaluation metric. From the
experimental results, we can get the following conclusions. First, the proposed
method SNR performs better than all baselines in all cases, which proves the effec-
tiveness of our proposed model (RQ1). Second, some methods with consideration
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Table 2. Performance of different methods. * indicates statistically significant improve-
ment on an independent-samples t-test (p < 0.01).

Method ML Dianping Aamazon APP Aamazon Kindle

hr@10 ndcg@10 hr@10 ndcg@10 hr@10 ndcg@10 hr@10 ndcg@10

BPR 0.035 0.017 0.024 0.011 0.067 0.034 0.040 0.020

PFMC 0.051 0.028 0.026 0.013 0.093 0.048 0.067 0.035

Caser 0.044 0.021 0.020 0.010 0.093 0.050 0.055 0.030

SASRec 0.059 0.024 0.024 0.010 0.087 0.043 0.066 0.0297

SASRec+ 0.039 0.016 0.023 0.010 0.078 0.036 0.058 0.027

FM BPR 0.058 0.029 0.028 0.013 0.094 0.050 0.100 0.054

ANAM 0.034 0.016 0.023 0.011 0.066 0.033 0.041 0.021

HA-RNN 0.053 0.025 0.028 0.013 0.097 0.053 0.049 0.025

CFSA 0.047 0.022 0.018 0.009 0.072 0.038 0.066 0.036

SNR (Ours) 0.077* 0.038* 0.032* 0.015* 0.120* 0.064* 0.110* 0.061*

Improve. 29.5% 33.8% 14.8% 15.9% 24.8% 20.7% 10.2% 14.0%

of attribute information, e.g. HA-RNN and FM BPR, achieve the best perfor-
mance in most cases, e.g. Amazon App and Dianping, among baseline models,
which confirms the necessity of extracting the rich information from attributes.
Third, we also notice some attribute based methods, e.g. ANAM, SASRec+ and
FDSA, show low accuracy in some cases, which indicates that the attribute data
may contain lots of irrelevant information for recommendation. For example, SAS-
Rec+ with consideration of attribute information shows worse performance than
SASRec without the attribute information, which indicates simple compression
strategy may introduce more noise rather than useful information.

5.3 Ablation Studies

Table 3. Performance of variant SNR for ablation studies

Dataset Method hr@10 ndcg@10 Dataset Method hr@10 ndcg@10

ML SNR 0.0768 0.0384 Dianping SNR 0.0319 0.0153

SNR-noSN 0.0738 0.0364 SNR-noSN 0.0314 0.0153

SNR-noAG 0.0681 0.0332 SNR-noAG 0.0267 0.0129

SNR-noGS 0.0750 0.0376 SNR-noGS 0.0318 0.0155

Amazon App SNR 0.1204 0.0636 Amazon Kindle SNR 0.1101 0.0611

SNR-noSN 0.1189 0.0630 SNR-noSN 0.1041 0.0584

SNR-noAG 0.1110 0.0593 SNR-noAG 0.0963 0.0519

SNR-noGS 0.1174 0.0624 SNR-noGS 0.1060 0.0597

To evaluate the effectiveness of module design of the proposed method, we take
some special cases of the proposed method as the comparisons.
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– SNR-noSN: It removes the unified Sequential Networks, and replaces it
with several independent item-level sequences and attribute-level sequences
to explore the individual transition patterns.

– SNR-noAG: It removes the Attentional Gated mechanism in SNR and uti-
lizes the average and accumulative convolution as in the traditional GCNs.

– SNR-noGS: It removes the Gumbel Sotfmax trick, and adopts the atten-
tional mechanism for users’ preference expression.

Table 3 shows the performance of ablation models, i.e. SNR, SNR-noAG,
SNR-noSN and SNR-noGS, for sequential recommendation. First, SNR consis-
tently outperforms SNR-noSN on all data sets, which indicates that exploring
the mutual effects of multi-factor in sequential networks shows the priority to
exploring individual transition patterns of attributes and items (RQ2). Second,
SNR outperforms SNR-noAG that adopts the traditional GCN, which confirms
the effectiveness of the agGCN method can reduce the noise and explore the use-
ful correlations and high-order dependencies of items and attributes in sequential
networks (RQ3). Third, SNR outperforms SNR-noGS in most cases except for
the NDCG@10 on the Dianping data set. It indicates that modeling users’ multi-
facet preferences by sampling strategy can alleviate the affection or misleading
by the irrelevant facets of preferences. (RQ4).

5.4 Hyper-Parameter Study
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Fig. 3. The Performance of SNR with varying window size k, latent space dimension
d and fusion coefficient µ on all data sets.
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There are several key parameters for SRN, including the window size k, the
dimension of latent space d, and the trade-off coefficient μ which is used to
control the importance of the multi-factor and multi-faceted preference modeling
parts.

First, we explore how the window size k influences our model. Figure 3 (a)
shows the rapid growth of HR and NDCG when k ≤ 5 and the moderate or
inapparent growth of HR and NDCG when k > 5. It indicates that incorporat-
ing too little historical information of users’ behaviors, i.e. k < 5, suffers from
insufficient information utilization for SNR. Meanwhile, incorporating too much
historical information of users’ behaviors, i.e. k > 7, may lead no improvement
but high complexity for SNR. We suggest to set k = 5 with consideration of both
accuracy and efficiency. Then, we explore how dimension latent space d influ-
ences our model. Figure 3 (b) shows that SNR perform well when d = 128, which
indicates too large or too small dimension d may be less predictive or calculative
complexity for SNR. Finally, to explore how fusion coefficient μ influences our
model, we set μ = [0, 0.5, 1] to evaluate individual and hybrid performance of
multi-factor and multi-faceted preference modeling parts respectively. Figure 3
(c) shows that combining both them can achieve better performance than any
individual one, which indicates the necessity of modeling both multi-factor and
multi-faceted preferences of users.

6 Conclusion

In this paper, we propose to extract and utilize multi-factor and multi-faceted
preference based on the sequential networks. To model users’ multi-factor pref-
erence, we design an agGCN that can explore the useful correlations and high-
order dependencies between entities in the sequential networks. To capture users’
multi-faceted preferences, we propose a multi-faceted preference learning model
to simulate the decision-making process of users. Extensive experiments show
our model consistently outperforms state-of-the-art methods. In addition, the
ablation experiments prove the effectiveness of module design of the proposed
method and our motivations. In this paper, we only make use of the behavior
sequences of users and the attribute information of items, while ignoring other
useful external information, such as knowledge graph about the items and con-
text information of user behaviors. In the future, we will study how to extend
the proposed model SNR to make use of these external information to further
improve the performance of sequential recommendation.
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Abstract. Shortest paths in complex networks play key roles in many
applications. Examples include routing packets in a computer network,
routing traffic on a transportation network, and inferring semantic dis-
tances between concepts on the World Wide Web. An adversary with the
capability to perturb the graph might make the shortest path between
two nodes route traffic through advantageous portions of the graph (e.g.,
a toll road he owns). In this paper, we introduce the Force Path Cut prob-
lem, in which there is a specific route the adversary wants to promote by
removing a low-cost set of edges in the graph. We show that Force Path
Cut is NP-complete. It can be recast as an instance of the Weighted Set
Cover problem, enabling the use of approximation algorithms. The size
of the universe for the set cover problem is potentially factorial in the
number of nodes. To overcome this hurdle, we propose the PATHATTACK

algorithm, which via constraint generation considers only a small subset
of paths—at most 5% of the number of edges in 99% of our experiments.
Across a diverse set of synthetic and real networks, the linear program-
ming formulation of Weighted Set Cover yields the optimal solution in
over 98% of cases. We also demonstrate running time vs. cost tradeoff
using two approximation algorithms and greedy baseline methods. This
work expands the area of adversarial graph mining beyond recent work
on node classification and embedding.
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1 Introduction

In a variety of applications, finding shortest paths among interconnected entities
is an important task. Whether routing traffic on a road network, packets in a
computer network, ships in a maritime network, or identifying the “degrees of
separation” between two actors, locating the shortest path is often key to making
efficient use of the interconnected entities. By manipulating the shortest path
between two popular entities—e.g., people or locations—those along the altered
path could have much to gain from the increased exposure. Countering such
behavior is important, and understanding vulnerability to such manipulation is
a step toward more robust graph mining.

In this paper, we present the Force Path Cut problem in which an adversary
wants the shortest path between a source node and a target node in an edge-
weighted network to go through a preferred path. The adversary has a fixed
budget and achieves this goal by cutting edges, each of which has a cost for
removal. We show that this problem is NP-complete via a reduction from the
3-Terminal Cut problem [5]. To solve Force Path Cut, we recast it as a Weighed
Set Cover problem, which allows us to use well-established approximation algo-
rithms to minimize the total edge removal cost. We propose the PATHATTACK
algorithm, which combines these algorithms with a constraint generation method
to efficiently identify paths to target for removal. While these algorithms only
guarantee an approximately optimal solution in general, PATHATTACK yields the
lowest-cost solution in a large majority of our experiments.

The main contributions of the paper are as follows: (1) We formally define
Force Path Cut and show that it is NP complete. (2) We demonstrate that
approximation algorithms for Weighted Set Cover can be leveraged to solve
the Force Path Cut problem. (3) We identify an oracle to judiciously select
paths to consider for removal, avoiding the combinatorial explosion inherent in
näıvely enumerating all paths. (4) We propose the PATHATTACK algorithm, which
integrates these elements into an attack strategy. (5) We summarize the results
of over 20,000 experiments on synthetic and real networks, in which PATHATTACK
identifies the optimal attack in over 98% of the time.

2 Problem Statement

We are given a graph G = (V,E), where the vertex set V is a set of N entities and
E is a set of M undirected edges representing the ability to move between the
entities. In addition, we have nonnegative edge weights w : E → R≥0 denoting
the expense of traversing edges (e.g., distance or time).

We are also given two nodes s, t ∈ V . An adversary has the goal of routing
traffic from s to t along a given path p∗. This adversary removes edges with full
knowledge of G and w, and each edge has a cost c : E → R≥0 of being removed.
Given a budget b, the adversary’s objective is to remove a set of edges E′ ⊂ E
such that

∑
e∈E′ c(e) ≤ b and p∗ is the exclusive shortest path from s to t in the

resulting graph G′ = (V,E \ E′). We refer to this problem as Force Path Cut.
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We show that this problem is computationally intractable in general by reduc-
ing from the 3-Terminal Cut problem, which is known to be NP-complete [5].
In 3-Terminal Cut, we are given a graph G = (V,E) with weights w, a budget
b ≥ 0, and three terminal nodes s1, s2, s3 ∈ V , and are asked whether a set of
edges can be removed such that (1) the sum of the weights of the removed edges
is at most b and (2) s1, s2, and s3 are disconnected in the resulting graph (i.e.,
there is no path connecting any two terminals). Given that 3-Terminal Cut is
NP-complete, we prove the following theorem.

Theorem 1. Force Path Cut is NP-complete for undirected graphs.

Here we provide an intuitive sketch of the proof; the formal proof is included
in the supplementary material.

Proof Sketch. Suppose we want to solve 3-Terminal Cut for a graph G = (V,E)
with weights w, where the goal is to find E′ ⊂ E such that the terminals are dis-
connected in G′ = (V,E\E′) and

∑
e∈E′ w(e) ≤ b. We first consider the terminal

nodes: If any pair of terminals shares an edge, that edge must be included in
E′ regardless of its weight; the terminals would not be disconnected if this edge
remains. Note also that for 3-Terminal Cut, edge weights are edge removal costs;
there is no consideration of weights as distances. If we add new edges between the
terminals that are costly to both traverse and remove, then forcing one of these
new edges to be the shortest path requires removing any other paths between
the terminal nodes. This causes the nodes to be disconnected in the original
graph. We will use a large weight for this purpose: wall =

∑
e∈E w(e), the sum

of all weights in the original graph.
We reduce 3-Terminal Cut to Force Path Cut as follows. Create a new

graph Ĝ = (V, Ê), where Ê = E ∪ {{s1, s2}, {s1, s3}, {s2, s3}}—i.e., Ĝ is the
input graph with edges between the terminals added if they did not already
exist. In addition, create new weights ŵ where, for some ε > 0, ŵ({s1, s2}) =
ŵ({s2, s3}) = wall + 2ε and ŵ({s1, s3}) = 2wall + 3ε, and ŵ(e) = w(e) for all
other edges. Let the edge removal costs in the new graph be equal to the weights,
i.e., ĉ(e) = ŵ(e) for all e ∈ Ê. Finally, let the target path consist only of the
edge from s1 to s3, i.e., s = s1, t = s3, and p∗ = (s, t).

If we could solve Force Path Cut on Ĝ with weights ŵ and costs ĉ, it would
yield a solution to 3-Terminal Cut. We can assume the budget b is at most
wall, since this would allow the trivial solution of removing all edges and any
additional budget would be unnecessary. If any edges exist between terminals
in the original graph G, they must be included in the set of edges to remove,
and their weights must be removed from the budget, yielding a new budget b̂.
Using this new budget for Force Path Cut, we will find a solution Ê′ ⊂ Ê if and
only if there is a solution E′ ⊂ E for 3-Terminal Cut. A brief explanation of the
reasoning is as follows:

– When we solve Force Path Cut, we are forcing an edge with a very large weight
to be on the shortest path. If any path from s1 to s3 from the original graph
remained, it would be shorter than (s1, s3). In addition, if any path from G
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Fig. 1. Conversion from input to 3-Terminal Cut to Force Path Cut. The initial graph
(left) includes 3 terminal nodes s1, s2, and s3, which are connected to the rest of the
graph by edges E1, E2, and E3, respectively. The dashed lines indicate the possibility of
edges between terminals. The input to Force Path Cut, Ĝ (center), includes the original
graph plus high-weight, high-cost edges between terminals. A single edge comprising
p∗ is indicated in red. The result of Force Path Cut (right) is that any existing paths
between the terminals have been removed, thus disconnecting them in the original
graph and solving 3-Terminal Cut. (Color figure online)

between s1 and s2 remained, its length would be at most wall, and thus a path
from s1 to s3 that included s2 would have length at most 2wall + 2ε. This
would mean (s1, s3) is not the shortest path between s1 and s3. A similar
argument holds for paths between s2 and s3. Thus, no paths can remain
between the terminals if we find a solution for Force Path Cut.

– If a solution exists for 3-Terminal Cut in G, it will yield the solution for
Force Path Cut in Ĝ. Any edge added to the graph to create Ĝ would be
more costly to remove than removing all edges from the original G, so none
will be removed. With all original paths between terminals removed, the only
ones remaining from s1 to s3 are (s1, s3) and (s1, s2, s3), the former of which
is shortest, thus yielding a solution to Force Path Cut.

Figure 1 illustrates the aforementioned procedure. Note that the procedure
would yield a solution to 3-Terminal Cut even if Force Path Cut allows for ties
with p∗, so Force Path Cut is NP-complete in this case as well. �	

3 Proposed Method: PATHATTACK

While solving Force Path Cut is computationally intractable, we formulate the
problem in a way that enables the use of established approximation algorithms.

3.1 Path Cutting as Set Cover

The success condition of Force Path Cut is that all paths from s to t aside from p∗

must be strictly longer than p∗. This is an example of the (Weighted) Set Cover
problem. In Weighted Set Cover, we are given a discrete universe U and a set of
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Fig. 2. The Force Path Cut problem is an example of the Weighted Set Cover problem.
In the bipartite graph on the right, the square nodes represent paths and the circle
nodes represent edges. Note that edges along p∗ are not included. When the red-colored
circle (i.e., edge (v7, t)) is removed, then the red-colored squares (i.e., paths p1, p2, p3,
and p4) are removed. (Color figure online)

subsets of the universe S, S ⊂ U for all S ∈ S, where each set has a cost c(S).
The goal is to choose those subsets whose aggregate cost is within a budget yet
whose union equals the universe. In Force Path Cut, the elements of the universe
to cover are the paths and the sets represent edges: each edge corresponds to a
set containing all paths from s to t on which it lies. Including this set in the cover
implies removing the edge, thus covering the elements (i.e., cutting the paths).
Figure 2 shows how Force Path Cut is an example of Weighted Set Cover.

While Set Cover is NP-complete, there are known approximation algorithms
to get a solution within a factor of O(log |U|) of the optimal cost. The challenge
in our case is that the universe may be extremely large. We address this challenge
over the remainder of this section.

3.2 Linear Programming Formulation

In this section, we focus on minimizing cost without explicitly considering a
budget. In practice, the adversary would run one of the optimization algo-
rithms, compare budget and cost, and decide whether the attack is possible
given resource constraints. Let c ∈ R

M
≥0 be a vector of edge costs, where each

entry in the vector corresponds to an edge in the graph. We want to minimize the
sum of the costs of edges that are cut, which is the dot product of c with a binary
vector indicating which edges are cut, denoted by Δ ∈ {0, 1}M . This means that
we optimize over values of Δ under constraints that (1) p∗ is not cut and (2)
all other paths from s to t not longer than p∗ are cut. We represent paths in
this formulation by binary indicator vectors—i.e., the vector xp ∈ {0, 1}M that
represents path p is 1 at entries corresponding to edges in p and 0 elsewhere.
Since any edge can only occur once, we only consider simple paths—those with-
out cycles—which is sufficient for our purposes. If there is one index that is one
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in both Δ and xp, the path p is cut. Let Pp be the set of all paths in G from p’s
source to its destination that are no longer than p. The integer linear program
formulation of Force Path Cut is as follows:

Δ̂ = arg min
Δ

c�Δ (1)

s.t. Δ ∈ {0, 1}M (2)

x�
p Δ ≥ 1 ∀p ∈ Pp∗ \ {p∗} (3)

x�
p∗Δ = 0. (4)

Constraint (3) ensures that any path not longer than (thus competing with) p∗

will be cut, and constraint (4) forbids cutting p∗. As mentioned previously, Pp∗

may be extremely large, which we address in Sect. 3.3.
The formulation (1)–(4) is analogous to the formulation of Set Cover as an

integer program [19]. The goal is to minimize the cost of covering the universe—
i.e., for each element x ∈ U , at least one set S ∈ S where x ∈ S is included.
Letting δS be a binary indicator of the inclusion of subset S, the integer program
formulation of Set Cover is

ˆ̂
δ = arg min

δ

∑

S∈S
c(S)δS (5)

s.t. δS ∈ {0, 1} ∀S ∈ S (6)
∑

S∈{S′∈S|x∈S}
δS ≥ 1 ∀x ∈ U . (7)

Equations (1), (2), and (3) are analogous to (5), (6), and (7), respectively. The
constraint (4) can be incorporated by not allowing some edges to be cut, which
manifests itself as removing some subsets from S.

With Force Path Cut formulated as Set Cover, we consider two approxima-
tion algorithms. The first method, GreedyPathCover, iteratively adds the most
cost-effective subset: that with the largest number of uncovered elements per
cost. In Force Path Cut, this is equivalent to iteratively cutting the edge that
removes the most paths per cost. The pseudocode is shown in Algorithm 1. We
have a fixed set of paths P ⊂ Pp∗ \ {p∗}. Note that this algorithm only uses
costs, not weights: the paths of interest have already been determined and we
only need to determine the cost of breaking them. GreedyPathCover performs
a constant amount of work at each edge in each path in the initialization loop
and the edge and path removal. We use lazy initialization to avoid initializing
entries in the tables associated with edges that do not appear in any paths.
Thus, populating the tables and removing paths takes time that is linear in the
sum of the number of edges over all paths, which in the worst case is O(|P |N).
Finding the most cost-effective edge takes O(M) time with a näıve implemen-
tation, and this portion is run at most once per path, leading to an overall
running time of O(|P |(N +M)). Using a more sophisticated data structure, like
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a Fibonacci heap, to hold the number of paths for each edge would enable find-
ing the most cost effective edge in constant time, but updating the counts when
edges are removed would take O(log M) time, for an overall running time of
O(|P |N log M). The worst-case approximation factor is the harmonic function
of the size of the universe [19], i.e., H|U| =

∑|U|
n=1 1/n, which implies that the

GreedyPathCover algorithm has a worst-case approximation factor of H|P |. As
we discuss in Sect. 3.4, this approximation factor extends to the overall Force
Path Cut problem.

Input: Graph G = (V, E), costs c, target path p∗, path set P
Output: Set E′ of edges to cut
TP ← empty hash table; // set of paths for each edge

TE ← empty hash table; // set of edges for each path

NP ← empty hash table; // path count for each edge

foreach e ∈ E do
TP [e] ← ∅;
NP [e] ← 0;

end
foreach p ∈ P do

TE [p] ← ∅;
foreach edges e in p and not p∗ do

TP [e] ← TP [e] ∪ {p};
TE [p] ← TE [p] ∪ {e};
NP [e] ← NP [e] + 1;

end

end
E′ ← ∅;
while maxe∈E NP [e] > 0 do

e′ ← arg maxe∈E NP [e]/c(e); // find most cost-effective edge

E′ ← E′ ∪ {e′};
foreach p ∈ TP [e′] do

foreach e1 ∈ TE [p] do
NP [e1] ← NP [e1] − 1; // decrement path count

TP [e1] ← TP [e1] \ {p}; // remove path

end
TE [p] ← ∅; // clear edges

end

end
return E′

Algorithm 1: GreedyPathCover

The second approximation algorithm we consider involves relaxing the integer
constraint into the reals and rounding the resulting solution. We refer to this
algorithm as LP-PathCover. In this case, we replace (2) with the condition Δ ∈
[0, 1]M and get a Δ̂ that may contain non-integer entries. Following the procedure
in [19], we apply randomized rounding as follows for each edge e:
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1. Treat the corresponding entry Δ̂e as a probability.
2. Draw �ln (4|P |)� independent Bernoulli random variables w/ probability Δ̂e.
3. Cut e if and only if at least one random variable from step 2 is 1.

If the result either does not cut all paths or is too large—i.e., greater than
4 ln (4|P |) times the fractional (relaxed) cost—the procedure is repeated. These
conditions are both satisfied with probability greater than 1/2, so the expected
number of attempts to get a valid solution is less than 2. By construction, the
approximation factor is 4 ln (4|P |) in the worst case. The running time is dom-
inated by running the linear program; the remainder of the algorithm is (with
high probability) linear in the number of edges and logarithmic in the number
of constraints |P |. Algorithm 2 provides the pseudocode for LP-PathCover.

Input: Graph G = (V, E), costs c, path p∗, path set P
Output: Binary vector Δ denoting edges to cut
Δ̂ ← relaxed cut solution to (1)–(3) with paths P ;
Δ ← 0;
E′ ← ∅;
not cut← True;

while c�Δ > c�Δ̂(4 ln (4|P |)) or not cut do
E′ ← ∅;
for i ← 1 to �ln (4|P |)� do

// randomly select edges based on Δ̂

E1 ← {e ∈ E with probability Δ̂e};
E′ ← E′ ∪ E1;

end
Δ ← indicator vector for E′;
not cut← (∃p ∈ P where p has no edge in E′);

end
return Δ

Algorithm 2: LP-PathCover

3.3 Constraint Generation

In general, it is intractable to include every path from s to t. Take the example
of an N -vertex clique (a.k.a. complete graph) in which all edges have weight
1 except the edge from s to t, which has weight N , and let p∗ = (s, t). Since
all simple paths other than p∗ are shorter than N , all of those paths will be
included as constraints in (3), including (N − 2)! paths of length N − 1. If we
only explicitly include constraints corresponding to the two- and three-hop paths
(a total of (N − 2)2 +(N − 2) paths), then the optimal solution will be the same
as if we had included all constraints: cut the N −2 edges around either s or t that
do not directly link s and t. Optimizing using only necessary constraints is the
other technique we use to make an approximation of Force Path Cut tractable.
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Constraint generation is a technique for automatically building a relatively
small set of constraints when the total number is extremely large or infi-
nite [2,12]. The method requires an oracle that, given a proposed solution,
returns a constraint that is being violated. This constraint is then explicitly
incorporated into the optimization, which is run again and a new solution is
proposed. This procedure is repeated until the optimization returns a feasible
point or determines there is no feasible region.

Given a proposed solution to Force Path Cut—obtained by either approxi-
mation algorithm from Sect. 3.2—we have an oracle to identify unsatisfied con-
straints in polynomial time. We find the shortest path p in G′ = (V,E \E′) aside
from p∗. If p is not longer than p∗, then cutting p is added as a constraint. We
combine this constraint generation oracle with the approximation algorithms to
create our proposed method PATHATTACK.

3.4 PATHATTACK

Combining the above techniques, we propose the PATHATTACK algorithm, which
enables flexible computation of attacks to manipulate shortest paths. Starting
with an empty set of path constraints, PATHATTACK alternates between finding
edges to cut and determining whether removal of these edges results in p∗ being
the shortest path from s to t. Algorithm 3 provides PATHATTACK’s pseudocode.
Depending on time or budget considerations, an adversary can vary the under-
lying approximation algorithm.

Input: Graph G = (V, E), cost function c, weights w, target path p∗, flag l
Output: Set E′ of edges to cut
E′ ← ∅;
P ← ∅;
c ← vector from costs c(e) for e ∈ E;
G′ ← (V, E \ E′);
s, t ← source and destination nodes of p∗;
p ← shortest path from s to t in G′ (not including p∗);
while p is not longer than p∗ do

P ← P ∪ {p};
if l then

Δ ← LP-PathCover(G, c, p∗, P );
E′ ← edges from Δ;

end
else

E′ ← GreedyPathCover(G, c, p∗, P );
end
G′ ← (V, E \ E′);
p ← shortest path from s to t in G′ (not including p∗) using weights w;

end
return E′

Algorithm 3: PATHATTACK
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While the approximation factor for Set Cover is a function of the size of the
universe (all paths that need to be cut), this is not the fundamental factor in the
approximation in our case. The approximation factor for PATHATTACK-Greedy
is based only on the paths we consider explicitly. Using only a subset of con-
straints, the optimal solution could potentially be lower-cost than when using all
constraints. By the final iteration of PATHATTACK, however, we have a solution
to Force Path Cut that is within H|P | of the optimum of the less constrained
problem, using |P | from the final iteration. This yields the following proposition:

Proposition 2. The approximation factor of PATHATTACK-Greedy is at most
H|P | times the optimal solution to Force Path Cut.

A similar argument holds for PATHATTACK-LP, applying the results of [19]:

Proposition 3. PATHATTACK-LP yields a worst-case O(log |P |) approximation
to Force Path Cut with high probability.

4 Experiments

This section presents baselines, datasets, experimental setup, and results.

4.1 Baseline Methods

We consider two simple greedy methods as baselines for assessing performance.
Each of these algorithms iteratively computes the shortest path p between s and
t; if p is not longer than p∗, it uses some criterion to cut an edge from p. When
we cut the edge with minimum cost, we refer to the algorithm as GreedyCost.
We also consider a version where we cut the edge in p with the largest ratio of
eigenscore1 to cost, since edges with high eigenscores are known to be important
in network flow [18]. This version of the algorithm is called GreedyEigenscore.
In both cases, edges from p∗ are not allowed to be cut.

4.2 Synthetic and Real Networks

Our experiments are on synthetic and real networks. All networks are undirected.
For the synthetic networks, we run five different random graph models to

generate 100 synthetic networks of each model. We pick parameters to yield
networks with similar numbers of edges (≈ 160K). We use 16,000-node Erdős–
Rényi (ER) and Barabási–Albert (BA) graphs, 214-node stochastic Kronecker
graphs, 285 × 285 lattices, and 565-node complete graphs.

We use seven weighted and unweighted networks. The unweighted net-
works are Wikispeedia graph (WIKI) [21], Oregon autonomous system network

1 The eigenscore of an edge is the product of the entries in the principal eigenvector
of the adjacency matrix corresponding to the edge’s vertices.
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(AS) [10], and Pennsylvania road network (PA-ROAD) [11]. The weighted net-
works are Central Chilean Power Grid (GRID) [9], Lawrence Berkeley National
Laboratory network data (LBL), the Northeast US Road Network (NEUS), and
the DBLP coauthorship graph (DBLP) [3]. The networks range from 444 edges
on 347 nodes to over 8.3M edges on over 1.8M nodes, with average degree rang-
ing from over 2.5 to over 46.5 nodes and number of triangles ranging from 40
to close to 27M. Further details on the real and synthetic networks—including
URLs to the real data—are provided in the supplementary material.

For synthetic networks and unweighted real networks, we try three different
edge-weight initialization schemes: Poisson, uniform random, or equal weights.
For Poisson weights, each edge e has an independently random weight we =
1 + w′

e, where w′
e is drawn from a Poisson distribution with rate parameter 20.

For uniform weights, each weight is drawn from a discrete uniform distribution
of integers from 1 to 41. This yields the same average weight as Poisson weights.

4.3 Experimental Setup

For each graph—considering graphs with different edge-weighting schemes as
distinct—we run 100 experiments unless otherwise noted. For each graph, we
select s and t uniformly at random among all nodes, with the exception of LAT,
PA-ROAD, and NEUS, where we select s uniformly at random and select t at
random among nodes 50 hops away from s2. Given s and t, we identify the
shortest simple paths and use the 100th, 200th, 400th, and 800th shortest as
p∗ in four experiments. For the large grid-like networks (LAT, PA-ROAD, and
NEUS), this procedure is run using only the 60-hop neighborhood of s. We focus
on the case where the edge removal cost is equal to the weight (distance).

The experiments were run on Linux machines with 32 cores and 192 GB of
memory. The LP in PATHATTACK-LP was implemented using Gurobi 9.1.1, and
shortest paths were computed using shortest simple paths in NetworkX.3

4.4 Results

Across over 20,000 experiments, PATHATTACK-LP finds the optimal solution
(where the relaxed LP yields only integers) in over 98% of cases. In addition, the
number of constraints used by PATHATTACK is typically a small fraction of the
number of edges (M): at most 5% of M in 99% of our experiments. For brevity,
we highlight a few results in this section. See the supplementary material for
more results on each network and weighting scheme.

We treat the result of GreedyCost as our baseline cost and report the cost
of other algorithms’ solutions as a reduction from the baseline. With one excep-
tion4, GreedyCost outperforms GreedyEigenscore in both running time and
2 This alternative method of selecting the destination was used due to the computa-

tional expense of identifying successive shortest paths in large grid-like networks.
3 Gurobi is at https://www.gurobi.com. NetworkX is at https://networkx.org. Code

from the experiments is at https://github.com/bamille1/PATHATTACK.
4 GreedyEigenscore only outperforms GreedyCost in COMP with uniform weights.

https://www.gurobi.com
https://networkx.org
https://github.com/bamille1/PATHATTACK
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Fig. 3. Results on synthetic networks. Shapes represent different algorithms and colors
represent different networks. The horizontal axis represents wall clock time in seconds
and the vertical axis represents edge removal cost as a proportion of the cost required
by the GreedyCost baseline. Lower cost reduction ratio and lower wall clock time is
better. PATHATTACK yields a substantial cost reduction for weighted ER, BA, and KR
graphs, while the baseline achieves nearly optimal performance for LAT.

edge removal cost, so we omit the GreedyEigenscore results for clarity of pre-
sentation. Figure 3 shows the results on synthetic networks, Fig. 4 shows the
results on real networks with synthetic edge weights, and Fig. 5 shows the results
on real weighted networks. In these figures, the 800th shortest path is used as
p∗; other results were similar and omitted for brevity.

Comparing the cost achieved by PATHATTACK to those obtained by the greedy
baseline, we observe some interesting phenomena. Across the synthetic networks
in Fig. 3, the real graphs with synthetic weights in Fig. 4, and the graphs with real
weights in Fig. 5, lattices and road networks have a similar tradeoff: PATHATTACK
provides a mild improvement in cost at the expense of an order of magnitude
additional processing time. Considering that PATHATTACK-LP typically results in
the optimal solution, this means that the baselines are achieving near-optimal
cost with a näıve algorithm. On the other hand, ER, BA, and KR graphs follow
a trend more similar to the AS and WIKI networks, particularly in the randomly
weighted cases: The cost is cut by a substantial fraction—enabling the attack
with a smaller budget—for a similar or smaller time increase. This suggests that
the time/cost tradeoff is much less favorable for less clustered, grid-like networks.

Cliques (COMP, yellow in Fig. 3) are particularly interesting in this case,
showing a phase transition as the entropy of the weights increases. When edge
weights are equal, cliques behave like an extreme version of the road networks: an
order of magnitude increase in run time with no decrease in cost. With Poisson
weights, PATHATTACK yields a slight improvement in cost, whereas when uniform
random weights are used, the clique behaves much more like an ER or BA graph.
In the unweighted case, p∗ is a three-hop path, so all other two- and three-hop
paths from s to t must be cut, which the baseline does efficiently. Adding Poisson
weights creates some randomness, but most edges have a weight that is about
average, so it is still similar to the unweighted scenario. With uniform random
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Fig. 4. Results on unweighted real networks. Shapes represent different algorithms and
colors represent different networks. The horizontal axis represents wall clock time in
seconds and the vertical axis represents edge removal cost as a proportion of the cost
required by the GreedyCost baseline. Lower cost reduction ratio and lower wall clock
time is better. As with synthetic networks, PATHATTACK significantly reduces cost in
networks other than those that are grid-like, where the baseline is nearly optimal.

weights, we get the potential for much different behavior (e.g., short paths with
many edges) for which the greedy baseline’s performance suffers.

There is an opposite, but milder, phenomenon with PA-ROAD and LAT:
using higher-entropy weights narrows the cost difference between the baseline
and PATHATTACK. This may be due to the source and destination being many
hops away. With the terminal nodes many hops apart, many shortest paths
between them could go through a few low-weight (thus low-cost) edges. A very
low weight edge between two nodes would be very likely to occur on many
of the shortest paths, and would be found in an early iteration of the greedy
algorithm and removed, while considering more shortest paths at once would
yield a similar result. We also note that, in the weighted graph data, LBL and
GRID behave similarly to road networks. Among our real datasets, these have
a low clustering coefficient (see supplementary material). This lack of overlap in
nodes’ neighborhoods may lead to better relative performance with the baseline,
since there may not be a great deal of overlap between candidate paths.

5 Related Work

Early work on attacking networks focused on disconnecting them [1]. This work
demonstrated that targeted removal of high-degree nodes was highly effective
against networks with powerlaw degree distributions (e.g., BA networks), but
far less so against random networks. This is due to the prevalence of hubs in
networks with such degree distributions. Other work has focused on disrupting
shortest paths via edge removal, but in a narrower context than ours. Work on
the most vital edge problem (e.g., [13]) attempts to efficiently find the single
edge whose removal most increases the distance between two nodes. In contrast,
we consider a devious adversary that wishes a certain path to be shortest.
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Fig. 5. Results on weighted real networks. Shapes represent different algorithms and
colors represent different networks. The horizontal axis represents wall clock time in
seconds and the vertical axis represents edge removal cost as a proportion of the cost
required by the GreedyCost baseline. Lower cost reduction ratio and lower wall clock
time is better. PATHATTACK reduces the cost of attacking the DBLP social network,
while the other networks (those with low clustering) achieve high performance with
the baselines. Note: the range of the time axis is lower than that of the previous plots.

There are several other adversarial contexts in which path-finding is highly
relevant. Some work is focused on traversing hostile territory, such as surrepti-
tiously planning the path of an unmanned aerial vehicle [7]. The complement of
this is work on network interdiction, where the goal is to intercept an adversary
who is attempting to traverse the graph while remaining hidden. This prob-
lem has been studied in a game theoretic context for many years [20], and has
expanded into work on disrupting attacks, with the graph representing an attack
plan [12]. In this work, as in ours, oracles can be used to avoid enumerating an
exponentially large number of possible strategies [6].

Work on Stackelberg planning [17] is also relevant, though somewhat distinct
from our problem. This work adopts a leader-follower paradigm, where rather
than forcing the follower to make a specific set of actions, the leader’s goal is
to make whatever action the follower takes as costly as possible. This could be
placed in our context by having the leader (adversary) attempt to make the
follower take the longest path possible between the source and the destination,
though finding this path would be NP-hard in general.

Another related area is the common use of heuristics, such as using Euclidean
distances to approximate graph distances [16]. Exploiting deviations in the
heuristic enables an adversary to manipulate automated plans. Fuzzy matching
has been used to quickly solve large-scale problems [15]. Attacks and defenses in
this context is an interesting area for inquiry. A problem similar to Stackelberg
planning is the adversarial stochastic shortest path problem, where the goal is
to maximize reward while traversing over a highly uncertain state space [14].

There has recently been a great deal of work on attacking machine learning
methods where graphs are part of the input. Attacks against vertex classifica-
tion [22,23] and node embeddings [4] consider attackers that can manipulate
edges, node attributes, or both in order to affect the outcome of the learning
method. In addition, attacks against community detection have been proposed
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where a node can create new edges to alter its group assignment from a commu-
nity detection algorithm [8]. Our work complements these efforts, expanding the
space of adversarial graph analysis into another important graph mining task.

6 Conclusions

We introduce the Force Path Cut problem, in which an adversary’s aim is to
force a specified path to be the shortest between its endpoints by cutting edges
within a required budget. Many real-world applications use shortest-path algo-
rithms (e.g., routing problems in computer, power, road, or shipping networks).
We show that an adversary can manipulate the network for his strategic advan-
tage. While Force Path Cut is NP-complete, we show how it can be translated
into Weighted Set Cover, thus enabling the use of established approximation
algorithms to optimize cost within a logarithmic factor of the true optimum.
With this insight, we propose the PATHATTACK algorithm, which uses a nat-
ural oracle to generate only those constraints needed to execute the approx-
imation algorithms. Across various synthetic and real networks, we find that
the PATHATTACK-LP variant identifies the optimal solution in over 98% of more
than 20,000 randomized experiments. Another variant, PATHATTACK-Greedy, has
very similar performance and typically runs faster than PATHATTACK-LP, while
a greedy baseline method is faster still but with much higher cost.

Ethical Implications: This work demonstrates how an adversary can attack
shortest paths in complex networks. Appropriate defenses include building
resilient network structures (e.g., adding redundancy to form cliques around key
communication channels) and developing methods that not only detect attacks,
but also identify the most likely source of the attack (e.g., whether an edge failed
due to a random outage or a malicious destruction).
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planning: towards effective leader-follower state space search. In: AAAI, pp. 6286–
6293 (2018)

18. Tong, H., Prakash, B.A., Eliassi-Rad, T., Faloutsos, M., Faloutsos, C.: Gelling, and
melting, large graphs by edge manipulation. In: CIKM, pp. 245–254 (2012)

19. Vazirani, V.V.: Approximation Algorithms. Springer, Heidelberg (2003). https://
doi.org/10.1007/978-3-662-04565-7

20. Washburn, A., Wood, K.: Two-person zero-sum games for network interdiction.
Oper. Res. 43(2), 243–251 (1995)

21. West, R., Pineau, J., Precup, D.: Wikispeedia: an online game for inferring semantic
distances between concepts. In: IJCAI (2009)
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Abstract. Knowledge graphs embeddings (KGE) are lately at the cen-
ter of many artificial intelligence studies due to their applicability for
solving downstream tasks, including link prediction and node classifica-
tion. However, most Knowledge Graph embedding models encode, into
the vector space, only the local graph structure of an entity, i.e., informa-
tion of the 1-hop neighborhood. Capturing not only local graph structure
but global features of entities are crucial for prediction tasks on Knowl-
edge Graphs. This work proposes a novel KGE method named Graph
Feature Attentive Neural Network (GFA-NN) that computes graphical
features of entities. As a consequence, the resulting embeddings are atten-
tive to two types of global network features. First, nodes’ relative cen-
trality is based on the observation that some of the entities are more
“prominent” than the others. Second, the relative position of entities in
the graph. GFA-NN computes several centrality values per entity, gen-
erates a random set of reference nodes’ entities, and computes a given
entity’s shortest path to each entity in the reference set. It then learns
this information through optimization of objectives specified on each of
these features. We investigate GFA-NN on several link prediction bench-
marks in the inductive and transductive setting and show that GFA-NN
achieves on-par or better results than state-of-the-art KGE solutions.

1 Introduction

Knowledge graphs (KGs) are capable of integrating heterogeneous data sources
under the same graph data model. Thus KGs are at the center of many artificial
intelligence studies. KG nodes represent concepts (entities), and labeled edges rep-
resent the relation between these entities1. KGs such as Wikidata, WordNet, Free-
base, and Nell include millions of entities and relations representing the current
knowledge about the world. KGs in combination with Machine Learning models
are used for refining the Knowledge Graph itself and for downstream tasks, like

1 E.g. (Berlin, CapitalOf, Germany) is a fact stating Berlin is the capital of Germany.
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Fig. 1. Example Knowledge Graph in which nodes e1 and e2 are difficult to distinguish
by a KGE model only using their neighborhood information.

link prediction and node classification. However, to use KGs in Machine Learning
methods, we need to transform graph representation into a vector space presenta-
tion, named Knowledge Graph embeddings (KGE).

KGE have many applications including analysis of social networks and bio-
logical pathways. Thus, many approaches have been proposed ranging from
translation methods, e.g., Trans* family [3,13,29]; Rotation-based methods, e.g.,
RotatE [20]; Graph Convolutional methods, e.g., R-GCN [19], COMPGCN [25],
and TransGCN [4]; and Walk-based methods, e.g., RDF2Vec [16]. Traditional
graph embedding methods, however, rely exclusively on facts (triples) that are
explicitly present in a Knowledge Graph. Therefore, their prediction ability is
limited to a set of incomplete facts. A means of improvement is to incorpo-
rate complementary information in the embeddings. A class of methods applies
external knowledge such as entity text descriptions [30] and text associations
related to entities [26] into the KG modeling. In contrast, intrinsic methods
extract complementary knowledge from the same KG. For example, the algo-
rithms that derive logical rules from a KG and combine them with embeddings
of the KG [6,28]. Analogously recent studies [35] consider graph structural fea-
tures as an intrinsic aspect of KGs in the embedding.

We motivate our model by addressing a challenge of most KGE models; These
methods independently learn the existence of relation from an entity to its hop-1
neighborhood. This learning strategy neglects the fact that entities located at a
distance can still affect an entity’s role in the graph. Besides that, the location of
the entities in the network can be useful to distinguish nodes. Figure 1 illustrates
such an example where the goal is to learn embeddings for e1 and e2 entities in
the KG. Distinguishing between the two candidates, i.e., George W. Bush and
George H. W. Bush, is challenging for previous methods since e1 and e2 have
almost the same neighbors, except George W. Bush graduated from Harvard
University while George H. W. Bush did not.

However, If we compare e1 to e2 using their eigenvector centrality, we can
easily distinguish them. e1 has a greater centrality than e2 since e1 is connected
to Harvard that has a high eigenvector centrality. Analogously, if we consider
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the shortest path of e1 and e2 to e3 that belongs to set of reference node S,
their distance to e3 is different. Intuitively, if a model could beforehand know
the centrality and distance to e3 as additional knowledge, it can more easily
model e1 and e2 and rank them correctly.

With a new view to Knowledge Graph embeddings, we propose GFA-NN2,
an approach that learns both the local relations between the entities and their
global properties in one model. In order to efficiently encode entity indicators in
Knowledge Graph modeling, we focus on learning node centrality and positional
indicators, (e.g., the degree, Katz, or eigenvalue centrality of entities in the
graph) as well as the Knowledge Graph structure.

For this purpose, we fuse the modeling of each entity indicator in the style
of Multiple Distance Embedding (MDE) [17] where distinct views to Knowledge
Graphs are modeled through independent embedding weights.

GFA-NN extracts positional information and four centrality indicators of
nodes from the KG and defines a learning function for each one. Then GFA-NN
scores their aggregation with MDE.

Previously, different leanings were applied to embedding models using con-
straints in the loss function. Now that MDE has broken the limitation of using
more than one objective function on independent embeddings, we directly add
new extracted information about the entities as aggregated objective functions.

Centrality values and position of nodes in graphs are global measurements
for nodes across the whole graph. If we use a local assignment, for example the
number of paths between specific nodes, this measurement may have different
wights based on what portion of the network is considered in the calculation.

Despite the exciting recent advancements, most of the previous works fail
to learn the relation between entities regarding the whole graph. Therefore, we
define relative position attentive and relative centrality attentive functions for
embedding the relative importance of nodes and their position relative to the
whole network. In the following section, we discuss the relation between our work
and the current state-of-the-art. Later in Sect. 3, we introduce the preliminaries
and notations required to explain our chosen method. We outline in Sect. 4 the
idea of centrality and positional qualities learning and explain our approach.
In Sect. 5, we mention the model’s theoretical analysis; and we continue with
experiments that evaluate our model in Sect. 6.

2 Related Work

A large and growing body of literature has investigated KGE models. A typical
KGE model consists of three main elements: (1) entities and relations represen-
tation in a continuous vector space, (2) a scoring function to measure KG’s facts
plausibility, and (3) a loss function that allows learning KGE in a supervised
manner. Based on this formulation, we classify KGE models in: latent distance
approaches, tensor factorization and multiplicative models, and neural networks.

2 Source code is available at: https://github.com/afshinsadeghi/GFA-NN.

https://github.com/afshinsadeghi/GFA-NN
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Latent Distance Models, e.g., Trans* [3,13,29] family, measure a fact’s plau-
sibility by scoring the distance between the two entities, usually after a transla-
tion carried out by the relation. RotatE [20] combines translation and rotation.
RotatE models relations as rotations from head to tail entities in the complex
space and uses the Hadamard product in the score function to do these rotations.

Tensor factorization and multiplicative approaches define the score of triples
via pairwise multiplication of embeddings. DistMult [33], for example, multiplies
the embedding vectors of a triple element by element (h, r, t) as the objective
function. However, DistMult fails to distinguish displacement of head relation
and tail entities, and therefore, it cannot model anti-symmetric relations. Com-
plEx [23] solves DistMult’s issue.

Unlike previous methods, the neural network-based methods learn KGE by
connecting artificial neurons in different layers. Graph Neural Network (GNN)
aggregate node formation using a message-passing architecture. Recently, hybrid
neural networks such as CompGCN [24] and MDEnn [17] have raised. These
methods benefit from neural network architectures to model relations with
(anti)symmetry, inversion, and composition patterns.

Several studies have investigated the benefits of using graph features to bridge
the graph structure gap and the numeric vector space. Muzzamil et al. [14]
defined a Fuzzy Multilevel Graph Embedding (FMGE), an embedding of
attributed graphs with many numeric values. P-GNN [35] incorporates posi-
tional information by sampling anchor nodes and calculating their distance to a
given node (see Sect. 5.1 for an in-depth comparison with GFA-NN). Finally, it
learns a non-linear distance weighted aggregation scheme over the anchor nodes.

This effort’s main difference with previous approaches is in the message pass-
ing mechanism. Traditionally in GNNs, approaches learn just nodes’ local fea-
tures (similar to the modeling schema of KGEs) while focusing on neighbor
nodes; here, our approach also learns nodes’ features regarding the whole graph,
known as global graph properties.

3 Background and Notation

A Knowledge graph KG, is comprised of a set of entities e ∈ E and a set of
relations r ∈ R. A fact in a Knowledge Graph is a triple of the form (h, r, t) in
which h (head) and t (tail) are entities and r is a relation. A KG is a subset of
all true facts KG ⊂ ξ. A KG can be conceived as a multi-relational graph. An
entity in such formulation is equivalent to a node in graph theory, and an edge
represents a relation. In this study, we use Node and Entity interchangeably.
We use the term “Node” to emphasize its graphical properties. We use the term
“Entity” to highlight the entity’s concept.

Link prediction on Knowledge Graphs is made by a Siamese classifier that
embeds KG’s entities and relations into a low-dimensional space. Thus, a Knowl-
edge Graph embedding model is a function f : E , R → Z, that maps entities E
and relations R to d-dimensional vectors Z = {z1, . . . , zn}, zi ∈ R.
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Centrality value of a node designates the importance of the node with regard
to the whole graph. For instance, degree is a centrality attribute of a node that
indicates the number of links incident upon it. When we consider degree as cen-
trality value, the higher the degree of a node is, the greater is its importance
in a graph. We provide a generalization of the position-aware embedding defini-
tion [35] that distinguishes our method from the previous works.

Structure-Based Embedding: A KG embedding zi = f : E , R → Z is atten-
tive to network structure if it is a function of entities and relations such that
it models the existence of a neighborhood of an entity ei using relations ri and
other entities ej ∈ E . Most Knowledge Graph embedding methods like QuatE
and RotatE compute embeddings using the information describing connections
between entities and, therefore, structure-based.

Property-Attentive Embedding: A KG embedding zi = f : E , R → Z is
attentive to network properties of an entity if there exists a function gp(., ., ...)
such that dp(vi, vj , ...) = gp(zi, zj), where dp(, ) is a graphical property in G. This
definition includes both the property of a sole node such as its centrality and
the properties that describe the inter-relation of two nodes such as their shortest
path. Examples of Property-Attentive Embedding are P-GNNs and RDF2Vec,
which their objective function incorporates the shortest path between nodes into
embedding computation.

We show that current KGE methods cannot recover global graph proper-
ties, such as path distances between entities and centrality of nodes, limiting the
performance in tasks where such information is beneficial. Principally, structure-
aware embeddings cannot be mapped to property-aware embeddings. Therefore,
only using structure-aware embeddings as input is not sufficient when the learn-
ing task requires node property information. This work focuses on learning KGEs
capturing both entities’ local network structures conjointly with the global net-
work properties. We validate our hypothesis that a trait between local and global
network features is crucial for link prediction and node classification tasks. A
KGE is attentive to node network properties if the embedding of two entities
and their relation can be used to approximately estimate their network feature,
e.g., their degree relative to other entities in the network.

You et al. [35] show for position attentive networks, there exists a mapping
g that maps structure-based embeddings fst(vi), ∀ vi ∈ V to position attentive
embeddings fp(vi), ∀ vi ∈ V , if and only if no pair of nodes have isomorphic local q-
hop neighborhood graphs. This proposition justifies the good performance of KGE
models in tasks requiring graphical properties and their under-performance in real-
world graphs such as biological and omniscience KGs (e.g., Freebase, DBpedia), in
which the structure of local neighborhoods are quite common. This proposition,
however, does not hold for centrality attentive embeddings. The reason is that if no
pair of nodes have isomorphic local q-hop neighborhood graphs, it is still possible
for them to have the same centrally attentive embeddings. For example, two nodes
with the same number of neighbors consisting of different nodes have the same
degree; however, their neighborhoods are non-isometric. We show in Sect. 4 how
we address this challenge for centrality learning.
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Fig. 2. Architecture of GFA-NN. GFA-NN first pre-computes the centrality property
of nodes and their distance to a set of to randomly selected reference nodes (Left).
Then, node centrality and position embeddings attentive to position zvm are computed
via scores F1, ..., Fk from the distance between a given node vi and the reference-sets
Si which are shared across all the entities (Top-middle). To compute the embedding
zv1 for node v1, a score of GFA-NN first computes via function Fi and then aggregates
the Fi scores via 1×1 convolution and an activation function over obtains a vector of
final scores. Inside 1×1 a vector w learned, which is used to reduce scores into one
centrality and position-aware score and produces embeddings zv1 which is the output
of the GFA-NN (Right).

4 Method

This Section details our proposed method for generating entity network proper-
ties attentive embeddings from Knowledge Graphs. We generalize the concept
of Knowledge Graph embeddings with a primary insight that incorporating cen-
trality and distance values enables KGE models to compute embeddings with
respect to the graphical proprieties of entities relative to the whole network
instead of only considering the direct local neighbors (Fig. 2, left side).

When modeling the positional information, instead of letting each entity
model the information independently and selecting a new reference set per iter-
ation, we keep a set of reference entities through training iterations and across
all the networks in order to create comparable embeddings. This design choice
enables the model to learn the position of nodes with respect to the spectrum of
different reference node positions and makes each embedding attentive to posi-
tion (Fig. 2, top left). GFA-NN models each graphical feature with a dedicated
objective function, meaning that the information encrypted in centrality atten-
tive embeddings does not interfere with the embedding vectors that keep the
positional information (Fig. 2, top right).
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Centrality for Nodes are Individual Values. While positional values are
calculated relative to a set of nodes in a graph, only one centrality per entity is
extracted. Still, learning this information is valuable because the centrality value
of a node is meaningful despite the absence of a large portion of the network.
This trait is particularly beneficial in inductive relation prediction tasks.

4.1 Model Formulation

The components of GFA-NN are as follows:

– Random set of reference nodes for distance calculations.
– Matrix M of distances to random entities, where each row i is a set of shortest

distance of an entities to the selected set of random nodes.
– Structure-attentive objective functions fst1(vi), . . . , fstk(vi) that model the

relatedness information of two entities with their local network, which is indi-
cated by triples that consist of head and tail nodes (entities) connected by
an edge (relation).

– Position-attentive objective function Fs that models the position of a node
(entity) in the graph with respect to its distance to other nodes. This objective
considers these distances as a factor of relatedness of entities.

– Centrality attentive objective functions Fc that model the relatedness infor-
mation of two entities according to centrality properties of nodes (entities).
In this setting, the global importances of nodes are learned relatively to the
centrality of other nodes.

– Trainable aggregation function f1×1 is a 1×1 convolution [12] that fuses the
modeling of the structure-based connectivity information of the entities and
relations with their position aware and centrality attentive scoring.

– Trainable vectors rd, hd, td that project distance matrix M to a lower dimen-
sional embedding space z ∈ Rk.

Our approach consists of several centrality and position-attentive phases that
each of which learns an indicator in a different metric of the status for entities
relative to the network.

In the first phase, GFA-NN performs two types of computation to determine
the position status and the centrality status of entities. The unit for centrality
status computes the relative significance of entities as a vector of length one cj

i ,
where j represents each of the centrality metrics. The unit for position status
embedding samples n random reference-entities Sn, and computes an embedding
for entities. Each dimension i of the embedding is obtained by a function F that
computes the shortest path to the i-th reference entity relative to the maximum
shortest path in the network.

Then objective functions Fs, F
1
c , ..., F 4

c apply an entity interaction model to
enforce the property features es

i into entity embeddings ei, which in the next
phase makes a 1×1 convolution [12] over the scores via weights w ∈ R

r and
non-linear transformation Tanhshrink.

Specifically, each entity earns an embedding per attribute that includes values
that reveal the relative status information from input entity network properties
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information. Calculation of the centrality for all nodes in the network leads to a
vector representation of the graph for each measure, while the distances to the
reference nodes S generate a dense matrix representation.

The network property attentive modeling functions are the same class of
functions as used by existing translational KGEs plus a modeling function of
embeddings that we extended to be performed in 3D using rotation matrix. In
the following, we further elaborate on the design choices.

4.2 Centrality-Attentive Embedding

As shown in Sect. 3, the centrality values are not canonical. Therefore, the model
learns their difference in a normal form, in which the equality of their norm does
not mean they are equal. Degree centrality is defined as: Cd(n) = deg(n).

Katz centrality [8] extends degree centrality from counting neighbor nodes to
nodes that can be connected through a path, where the contribution of distant
nodes are reduced:

Ck(n) =
∞∑

k=1

N∑

j=1

αkAk
j,i

where A is the adjacency matrix and α is attenuation factor in the range (0, 1).
Another included centrality measure is PageRank with the following formulation:

Cp(n) = α
∑

j

aj,i
Cp(j)
L(j)

+
1 − α

N

where N is |V |, the number of nodes in the graph, and L(j) is the degree of
node j. Relative eingenvector centrality score of a node n is defined as:

Cei(n) =
1
λ

∑

m∈KG

am,nxm

where A = (av,t) is the adjacency matrix such that av,t = 1 if node n is linked
to node m, and av,t = 0 otherwise. λ is a constant which fulfils the eingenvector
formulation Ax = λx. Note that the method in first phase normalizes each of
the centrality values. The normalization occurs with respect to minimum and
the maximum value for nodes in the network and makes attributes relative to
the whole network. For example, degree centrality is normalized as follows:

Cd
i =

degree(i) − degreemin

degreemax − degreemin

The centrality-attentive modeling embeddings functions are the same class
of dissimilarity functions used by existing KGEs plus a penalty we define on the
difference of the entity embeddings as:

Fcd = ‖hi − ti‖2 − ‖ cos(log(Cd
h)) − cos(log(Cd

t ))‖2 (1)

where the function is normalized with the l2 norm, hi and ti represent the vector
representation of head and tail in a triple and lastly, Cd

h and Cd
t respectively

denote the centrality values of the head and tail entities in that triple.
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4.3 Position-Attentive Embedding:

GFA-NN models the neighborhood structure using rotations in 3D space and a
penalty that forces the method to encode the difference of distances of entities
to the reference nodes. The formulation for the structure-attentive part is:

Frot =‖ vh − vr ⊗ vt ‖2 (2)

where ⊗ represents a rotation using a rotation matrix of Euler angles with the
formulation of direction cosine matrix (DCM):

[
cos θ cos ψ − cos φ sin ψ + sin φ sin θ cos ψ sin φ sin ψ + cos φ sin θ cos ψ
cos θ sin ψ cos φ cos ψ + sin φ sin θ sin ψ − sin φ cos ψ + cos φ sin θ sin φ
− sin θ sin φ cos θ cos φ cos θ

]
(3)

where φ, θ and ψ are Euler angles. The modeling of positional information is
performed by a score function made from rotation matrices and a penalty:

Fp = Frot − ‖ cos(Sh
i ) − cos(St

i )) ‖2 (4)

where Si
C is the calculated distance from the head and tail nodes to the reference

nodes. Hence, the score enforces to learn structure-attentive embeddings with a
penalty that is the normalized scalar difference of distance to reference nodes.
Here we use the l2 norm to regularize the Fi score functions and apply negative
adversarial sampling [20]. We utilise Adam [9] for optimization.

Reference-set selection relies on a Gaussian random number generator
to select normally distributed random reference nodes from the network. GFA-
NN keeps a fixed set of reference nodes during the training of different entities
through different iterations to generate embeddings attentive to the position
that are in the same space and, hence, comparable to each other.

Multiple Property aware scores can be naturally fused to achieve higher
expressive power. This happens in f1×1.

Since canonical position-attentive embeddings do not exist, GFA-NN also
computes structure-attentive embeddings hv via the common distance-based
modelings of MDE. These scores are aggregated with attribute attentive scores,
and then the model using a linear combination of these scores forms a 1×1 con-
volution to produce only one value that contains both properties. The output of
this layer is then fed into the nonlinear activation function.

It is notable that independent weights in MDE formulation allow restricting
solution space without limiting the learnability power of the model. Note also
that the method is still Semi-supervised learning, where the train and test data
are disjoint, and the centrality and path information computation do not consider
the portion of the unknown network to the model and only exist in the test data.

5 Theoretical Analysis

5.1 Connection to Preceding KGE Methods

GFA-NN generalizes the existing Knowledge Graph embedding models. Taking
the definition for the structure-aware and node properties attentive models into
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perspective, existing knowledge embedding models use the same information
of connecting entities through different relations techniques, but use different
neighborhood selection scoring function and sampling strategies, and they only
output the structure-aware embeddings.

GFA-NN shares the score function aggregate training with MDE [17]. There,
a linear combination of scores f1×1 =

∑
wiFi is trained, where wi weights are

learnt together with the embeddings in the score functions Fi. GFA-NN also
shares the concept of training independent embeddings with MDE. The direction
cosine matrix used in modeling positional information is convertible into a four-
element unit quaternion vector (q0, q1, q2, q3). The quaternions are the center
of the structure-based model QuatE [36], where the relations are models as
rotations in the quaternion space. Here, besides modeling rotation, we formulated
the score to include a translation as well. RotatE [20] similarly, formulates the
relations with a rotation and reduction in ‖ vh ◦ vr − vt ‖, however RotatE
models rotation in the complex space. In the branch of Graph neural networks,
the aggregate information of a node’s neighborhood in one-hop [10,25,27] or
nodes in the higher hops [32] is used in message passing mechanism.

P-GNN [35] explicitly learns the shortest path of random nodes for simple
graphs. However, it takes a new set of reference nodes in each iteration, which
makes the learning of shortest paths local and incremental. In addition, it makes
it difficult to retain the structural information from positional embedding. GFA-
NN generalizes positional learning by learning the distances to a fixed set of
random nodes through the whole network, which makes the positional embedding
vectors globally comparable. From the point of view of graph type, GFA-NN
generalizes the positional learning to multi-relational graphs to support KGs.

GFA-NN not only learns a weight for each of the network features, but it also
associates it with the existing relation types between the two entities that their
features are being learned. By including the relation type into position-attentive
embeddings, the position also is encoded into relation vectors that connect the
entities. Note that relation type learning is sub-optimal for learning centrality
values because the dimension of relation types is much more higher than dimen-
sion of the node property values (one integer value), which makes the centrality
value differentiation diminish when learnt together with the association informa-
tion belonging to relations. Another aspect that GFA-NN generalize the existing
graph learning algorithms is that this method learns several centrality aspect
and positional information at the same time.

5.2 Expressive Power

In this Section we explain how GFA-NN generalizes the expressive power of
Knowledge Graph embedding methods in the perspective of a broader Inductive
bias. Generally, inductive bias in a learning algorithm allows it to better prioritize
one solution over another, independent of the observed data [2].

Assuming that a labeling function y labels a triple (h, r, t) as dr
y(h, t), we

predict yr, similar to [35] from the prospective of representation learning, which
is by learning an embedding function f , where vh = f(v,G) and f computes the
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entity embeddings for vh, vr and vt. Thus, the objective becomes the task of
maximizing the probability of the conditional distribution p(y|vh, vr, vt). This
probability can be designated by a distance function dv(vh, vr, vt) in the embed-
ding space, which usually is an lp norm of the objective function of the model.

A KGE model, with a goal to predict the existence of an unseen triple (h,
r, t) learns embeddings weights vh and vt for the entities h and t and vr for
a relation r that lies between them. In this formulation, the embedding for an
entity e is computed based on its connection through its one-hop neighborhood,
which we express that by structural information Se, and optimization over the
objective function fθ(e, Se). Hereby, the neighborhood information of two entities
Se1 and Se2 is computed independently. However, the network feature attentive
objective function fφ in GFA-NN poses a more general inductive bias that takes
in the distance from a random shared set of reference-nodes, which are common
across all entities, and the centrality values, which are relative to all nodes. In
this setting, any pair of entity embeddings are correlated through the reference-
set and the spectrum of relative centrality and therefore are not independent
anymore. We call this feature attentive information I.

Accordingly, we define a joint distribution p(we1 , we2) over node embeddings,
where wei

= fφ(ei, I). We formalize the problem of KG representation learning
by minimizing the expected value of the likelihood of the objective function in
margin-based ranking setting, in the following for a structure base KGE:

min
θ

Ee1,e2,e3,Se1 ,Se2 ,Se3

L(d+v (fθ(e1, Se1), fθ(e2, Se2)) − d−
v (fθ(e1, Se1), fθ(e3, Se3)) − m)

(5)

and in GFA-NN:

min
θ

Ee1,e2,e3,I L(d+v (fφ(e1, I), fφ(e2, I)) − d−
v (fφ(e1, I), fφ(e3, I)) − m) (6)

where d+v is the similarity metric determined by the objective function for a
positive triple, indicating existing a predicate between entities and by optimizing
converges to the target label function dy(e1, e2) = 0 for positive samples(existing
triples) and dy(e1, e3) = m on negative samples. Here, m is the margin value in
the margin ranking loss optimization setting. Note that the representations of
entities are calculated using joint and marginal distributions, respectively.

Similar to the proof of expressive power in [35], considering the selec-
tion of entities e1, ..., ei ∈ G as random variables to form any triples, the
mutual information between the joint distribution of entity embeddings and
any Y = dy(e1, e2) is greater than that between the marginal distributions.
Y : I(Y ;Xjoint) ≥ I(Y ;Xmarginal). Where,
Xjoint = (fφ(e1, Se1), fφ(e2, Se2)) ∼ p(fφ(e1, Se1), fφ(e2, Se2))
Xmarginal = (fθ(e1, I), fθ(e2, I))

Because the gap of mutual information is large when the targeted task
is related to positional and centrality information of the network, we deduce
that KGE embedding based on the joint distribution of distances to reference
nodes and relative centrality values have more expressive power than the current
structure-based KGE models.
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Table 1. Statistics of the data sets used in the experiments.

Dataset #entities #relations #train #validation #test

WN18RR 40943 11 86835 3034 3134

FB15k-237 14541 237 272115 17535 20466

ogbl-biokg 45085 51 4762678 162886 162870

WN18RR-v3-ind 5084 11 6327 538 605

WN18RR-v4-ind 7084 9 12334 1394 1429

NELL-995-v1-ind 225 14 833 101 100

NELL-995-v4-ind 2795 61 7073 716 731

5.3 Complexity Analysis

Next, we explain the complexity of the method and show its complexity com-
pared to the structure-based models. When the shortest paths are calculated
on the fly, the learning complexity is added up by O(b log(b)) for finding the
shortest paths on b entities in each batch, and similarly, the centrality computa-
tion aggregates to the complexity. We, therefore, pre-calculate this information
to separate them from the learning complexity. The complexity of each of the
objective functions on a batch with size b is O(b), and suppose n property atten-
tive features and m structure-aware scores be involved, the overall complexity
becomes O((n+m) b). Note that the larger number here is b and the complexity
increases by b times when a graphical feature is involved in the learning.

6 Experiments

We evaluate the performance of our model with two link prediction experiments;
First, the traditional transductive ranking evaluation, which is originally intro-
duced in [3], and second, inductive relation prediction experiment. In the induc-
tive setting, the experiment evaluates a models’ ability to generalize the link
prediction task to unseen entities. Table 1 shows the statistics of the datasets
used in the experiments.

Metrics and Implementation: We evaluate the link prediction performance
by ranking the score of each test triple against all possible derivable negative
samples by once replacing its head with all entities and once by replacing its tail.
We then calculate the hit at N (Hit@N), mean rank (MR), and mean reciprocal
rank (MRR) of these rankings. We report the evaluations in the filtered setting.
We determine the hyper-parameters by using grid search. We select the testing
models which give the best results on the validation set. In general, we fix the
learning rate on 0.0005 and search the embedding size amongst {200, 300, 400,
500}. We search the batch size from {250, 300, 500, 800, 1000}, and the number
of negative samples amongst {10, 100, 200, 400, 600, 800, 1000}.
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Table 2. Results on WN18RR and FB15k-237. Best results are in bold.

WN18RR FB15k-237

Model MR MRR Hit@10 MR MRR Hit@10

ComplEx-N3 – 0.48 0.57 – 0.37 0.56

QuatE2 – 0.482 0.572 – 0.366 0.556

TuckER – 0.470 0.526 – 0.358 0.544

CompGCN 3533 0.479 0.546 197 0.355 0.535

RotatE 3340 0.476 0.571 177 0.338 0.533

MDE 3219 0.458 0.536 203 0.344 0.531

GFA-NN 3390 0.486 0.575 186 0.338 0.522

Table 3. MRR Results for ogbl-biokg. (Results of previous models are from [7].)

Method Validation Test

TransE 0.7456 0.7452

DistMult 0.8055 0.8043

ComplEx 0.8105 0.8095

RotatE 0.7997 0.7989

GFA-NN 0.9011 0.9011

6.1 Transductive Link Prediction Experiment

Datasets: We perform experiments on three benchmark datasets: WN18RR [5],
FB15k-237 [22], and ogbl-biokg [7], which is comparably a sizeable Knowledge
Graph assembled from a large number of biomedical repositories.

Baselines: We compare our model with several state-of-the-art structure-
based embedding approaches. Our baselines include RotatE [20], TuckER [1],
ComplEx-N3 [11], QuatE [36], MDE [17] and the recent graph neural network
CompGCN [25]. We report results of each method on WN18RR and FB15k-237
from their respective papers, while the results of the other models in ogbl-biokg
are from [7]. For RotatE, we report its best results with self-adversarial nega-
tive sampling, and for QuatE, we report the results with N3 regularization. For
our model, we use the same self-adversarial negative sampling introduced in
RotatE. This negative sampling schema is also applied to all the other models
in the ogbl-biokg benchmark.

Results and Discussion: Table 2 and Table 3 summarize the performance of
GFA-NN and other KGE models in the transductive link prediction task. We
observe that GFA-NN outperforms other state-of-the-art KGEs on WN18RR
and is producing competitive results on FB15k-237.

Our analysis shows that the standard deviation of different positional and
centrality measures through the network in WN18RR is ≈0.009, while in FB15k-
237, it is ≈0.002, which is 4.5 times smaller. This comparison indicates that in
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Table 4. Hit@10 results for inductive datasets. (Other models’ results are from [21].)

Model WN18RR-v3-ind WN18RR-v4-ind NELL-995-v1-ind NELL-995-v4-ind

NeuralLP 0.4618 0.6713 0.4078 0.8058

DRUM 0.4618 0.6713 0.5950 0.8058

RuleN 0.5339 0.7159 0.5950 0.6135

GraiL 0.5843 0.7341 0.5950 0.7319

GFA-NN 0.5893 0.7355 0.9500 0.7722

WN18RR, these features are more diversified, but in FB15k237, they are close
to each other. This analysis suggests the crucial impact of learning centrality
and positional-attentive embeddings on the superiority of the GFA-NN on the
WN18RR benchmark. While the result on the FB15k-237 is still very compet-
itive to the state-of-the-art, as a lesson learned, we can declare it as a fixed
procedure to perform the standard deviation analysis on a dataset before deter-
mining how much the network property attentive embedding learning method
would be beneficial.

Table 3 shows the MRR evaluation results on the comparably large biologi-
cal dataset named as ogbl-biokg. In this benchmark, the number of entity and
training samples is much larger than the WN18rr and FB15k-237 datasets. The
capability of learning feature attentive embeddings is crucial in this transductive
link prediction task. While the best KGEs can only achieve the MRR of 0.8105
on the validation and 0.8095 on the test dataset, GFA-NN reaches 0.901 on both
datasets, improving state-of-the-art by 9%. This wide gap between the results
supports the assumption that property-attentive embeddings surpass prior meth-
ods in larger-scale real-world networks. This improvement in such a small-world
structured network is because of its significant entity-to-relation ratio, which
causes a large standard deviation of positional and centrality qualities. As indi-
cated earlier, this feature is beneficial to the efficiency of the model.

6.2 Inductive Link Prediction Experiment

Datasets: For evaluations in the inductive setting, we select four variant
datasets which Komal et al. [21] extracted from WN18RR and NELL-995 [31].

Baselines: Inductive baselines include GraIL [21], which uses sub-graph rea-
soning for inductive link prediction. RuleN [15] that applies a statistical rule
mining method, and two differentiable methods of rule learning NeuralLP [34]
and DRUM [18]. We report the results of these state-of-the-art models from
Komal et al. [21].

Results: Table 4 summarizes the GFA-NN’s Hit@10 ranking performance
against methods specified on the inductive link prediction task. Although we
did not explicitly design GFA-NN for this task, we observe GFA-NN performs
very competitively in this setting and outperforms the best inductive learning
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models in most cases. This result supports our hypothesis that the Knowledge
Graph embeddings attentive to positional and centrality qualities are beneficial
for prediction tasks in challenging settings, i.e., inductive link prediction task.

7 Conclusion

In this article, with a new view to the relational learning algorithms, we propose
to learn the structural information of the network conjointly with the learning of
the centrality and positional properties of the Knowledge Graph entities in one
model. We provide theoretical analyses and empirical evaluations to identify the
improvements and constraints in the expressive power for this class of KGEs. In
particular, we demonstrate that with proper formulation, the learning of these
global features is beneficial to the link prediction task, given that GFA-NN
performs highly efficiently in a variety of benchmarks and often outperforms
current state-of-the-art solutions in both inductive and transductive settings.
Since GFA-NN is efficient on networks with a higher entity-to-relation ratio,
applications of the approach can be considered on biological, chemical, and social
networks in future works.
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Abstract. As RL algorithms have grown more powerful and sophisti-
cated, they show promise for several practical applications in the real
world. However, safety is a necessary prerequisite to deploying RL sys-
tems in real world domains such as autonomous vehicles or cooperative
robotics. Safe RL problems are often formulated as constrained Markov
decision processes (CMDPs). In particular, solving CMDPs becomes
challenging when safety must be ensured in rare, dangerous situations
in stochastic environments. In this paper, we propose an approach for
CMDPs where we have access to a generative model (e.g. a simulator)
that can preferentially sample rare, dangerous events. In particular, our
approach, termed the RP algorithm decomposes the CMDP into a pair of
MDPs which we term a reconnaissance MDP (R-MDP) and a planning
MDP (P-MDP). In the R-MDP, we leverage the generative model to
preferentially sample rare, dangerous events and train a threat function,
the Q-function analog of danger that can determine the safety level of a
given state-action pair. In the P-MDP, we train a reward-seeking policy
while using the trained threat function to ensure that the agent consid-
ers only safe actions. We show that our approach, termed the RP algo-
rithm enjoys several useful theoretical properties. Moreover, we present
an approximate version of the RP algorithm that can significantly reduce
the difficulty of solving the R-MDP. We demonstrate the efficacy of our
method over classical approaches in multiple tasks, including a collision-
free navigation task with dynamic obstacles.

Keywords: Safe reinforcement learning · Constrained MDPs · Safety

1 Introduction

With recent advances in reinforcement learning (RL), we can train complex,
reward-maximizing policies in increasingly complex environments. However, in
general, it is difficult to assess whether the policies found by RL algorithms are
physically safe when applied to real world scenarios such as autonomous driving
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Fig. 1. illustration of the idea: Once the baseline policy η and its threat function
T η(s, a) ≡ E

η[D(h)|s, a] are found, we can find the safe actions without re-evaluating
the expectation w.r.t the policy π after every update of π.

or cooperative robotics. Safety has long been one of the greatest challenges in
the application of RL to mission-critical systems.

The safety problem in RL in often formulated as a constrained Markov deci-
sion process (CMDP). This setup assumes a Markovian system together with a
predefined measure of danger. That is, using classical RL notation in which π
represents an agent’s decision-making policy, we optimize:

max
π

E
π[R(h)] s.t. E

π[D(h)] ≤ c, (1)

where h is a trajectory of state-action pairs, R(h) is the total return obtained
by h, and D(h) is the cumulative danger of trajectory h. To solve this prob-
lem, one must monitor the value of Eπ[D(h)] throughout training. Methods like
[1,3,13,14,20] use sampling to approximate E

π[D(h)] or its Lyapunov function
at every update. However, the sample-based evaluation of Eπ[D(h)] is particu-
larly difficult when the system involves “rare” catastrophic events, because an
immense number of samples will be required to collect information about the
cause of such an accident.

This problem can be partially resolved if we can use a generative model to
predict the outcome of any given initial state and sequence of actions. Model
Predictive Control (MPC) [6,15,33,34] is a method that at each timestep uses a
generative model to predict the outcome of some horizon of future actions (finite
horizon control) in order to determine the agent’s next action. However, MPC
suffers from some practical drawbacks. In order to find a good, feasible solution,
a long horizon optimization problem must be solved repeatedly at each timestep.
Particularly, when the task complexity increases to nonlinear, stochastic dynam-
ics, this quickly becomes intractable.

We propose a generative model-based approach to overcome the difficulty of
sample-based evaluation methods without the drawbacks of MPC. In particular
we search for a solution to the CMDP problem by decomposing the CMDP into a
pair of MDPs: a reconnaissance MDP (R-MDP) and a planning MDP (P-MDP).
The purpose of the R-MDP is to (1) recon the state space using the generative
model and (2) train a baseline policy for the threat function, which is a Q-function
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analogue of D. We show that once we obtain the threat function for an appropriate
baseline policy, we can construct the upper bound of the threat function for any
policy and can construct the set of actions that are guaranteed to satisfy the safety
constraints. To efficiently learn the threat function, our method requires access to a
generativemodel that canpreferentially sample dangerous states.This assumption
is satisfied in many problem settings, including safety-critical problems of practi-
cal interest. For example, the CARLA simulator [16] is an autonomous car simu-
lator that can artificially generate dangerous events such as pedestrians close to
cars or adverse weather conditions. In the R-MDP, we use the generative model
to preferentially sample trajectories containing rare dangerous events, and learn
the threat function for the baseline policy through supervised learning. Once we
obtain a good approximation of the threat function for the baseline policy, we can
determine whether a given action is safe at each state or not by simply evaluating
the threat function. This process does not involve prediction, which can be com-
putationally demanding. The P-MDP is essentially the original MDP except that
the agent can only select actions from the set of safe policies induced by the threat
function. The P-MDP can be solved with standard RL methods. With our frame-
work, the user need not monitor Eπ[D] throughout the training process. We show
that our approach enjoys several useful theoretical properties:

1. The learning process is guaranteed to be safe when training in the P-MDP
stage if the baseline policy from the R-MDP stage is safe.

2. We can increase the size of the set of safe actions by improving the safety
level of the baseline policy.

3. After solving one CMDP, we can solve other CMDPs with different reward
functions and constraint thresholds by reusing the learned threat function,
so long as the CMDPs share the same D.

4. In problem settings with multiple sources of danger, the threat function can
be upper-bounded by the sum of sub-threat functions, corresponding to the
threat for each source of danger.

Our experiments demonstrate the efficacy of our approach on multiple tasks,
including a challenging dynamic-obstacle 2D navigation task. We show that the
RP algorithm can successfully learn high-reward and safe policies in these tasks.
Additionally, we show in these experiments how our RP algorithm exhibits prop-
erties 2 and 3 above.

The remainder of this paper is structured as follows. Section 2 presents the
requisite background on RL and constrained MDPs. Section 3 presents basic def-
initions and theoretical results. Section 4 includes additional theory and intro-
duces the RP algorithms. Section 5 shows our experimental results. Section 6
covers related work. Section 7 concludes our work.

2 Background

We assume that the system in consideration is a discrete-time CMDP with finite
horizon, defined by a tuple (S,A, r, d, P, P0), where S is the set of states, A is the
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set of actions, P (s′|s, a) is the density of the state transition probability from s to
s′ when the action is a, r(s, a) is the reward obtained by action a at state s, d(s, a)
is the non-negative stepwise danger of taking action a at state s, and P0 is the
distribution of the initial state. We use π(a|s) to denote the policy π’s probability
of taking an action a at a state s. Finally, let 1B represent the indicator function
of an event B. Formally, the optimization problem in Eq. 1 is:

arg max
π

E
π

[∑T−1
t=0 γtr(st, at)

]
s.t.Eπ

[∑T−1
t=0 βtd(st, at)

]
≤ c, (2)

where c ≥ 0 specifies the safety level, γ, β ∈ [0, 1) are the discount factors, and
E

π[·] denotes the expectation with respect to π, P and P0. E alone denotes the
expectation with respect to P0.

3 Theory

Just as traditional RL has action-value functions and state-value functions to
represent cumulative discounted rewards under a policy η, we can define anal-
ogous functions for danger. In our formulation, we term these the action-threat
function and the state-threat function, respectively:

T η
t (st, at) = E

η

[
T−1∑
k=t

βk−td(sk, ak) | st, at

]
, (3)

Dη
t (st) = E

η [T η
t (st, at)] . (4)

We say that a policy η is safe if E[Dη
0 (s0)] ≤ c. Indeed, the set of safe policies

is the set of feasible policies for the CMDP (1). Before we proceed further, we
describe several definitions and theorems that stem from the threat function.
For now, let us consider a time-dependent safety threshold xt defined at each
time t, and let η be any policy. Let us also use x to denote (x0, . . . , xT−1). Then
the set of (η,x)-secure actions is the set of actions that are deemed safe by η
for the safety threshold x in the sense of the following definition;

Definition 1 ((η,x)-secure actions and (η,x)-secure states). Let Aη,x

(s, t) =
{

a;T η
t (s, a) ≤ xt

}
.

Aη,x(s) =
⋂

t∈{0,··· ,T−1}
Aη,x(s, t),

Sη,x =
{

s ∈ S;Aη,x(s) �= ∅
}

. (5)

This (η,x)-secure set of actions Aη,x(s) represents the agent’s freedom in
seeking the reward under the safety protocol created by the policy η. The set of
secure actions for an arbitrary η could be empty for some states. (η,x)-secure
states, Sη,x is defined as a set of states for which there is non-empty (η,x)-secure
actions. If we use supp(p) to denote the support of a distribution p, we can use
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this definition to define a set of policies that is at least as safe as η. First, let us
define the set of distributions,

Fη(s) =
{

p(·);
∫

a

p(a)T η
t (s, a)da ≤ E

η[T η
t (s, a)] ∀t

}
.

Then the following set of policies are at least as safe as η.

Definition 2 (General (η,x)-secure policies).

Πη,x
G = {π; for s ∈ Sη,x , supp(π(·|s)) ⊆ Aη,x(s), otherwise π(·|s) ∈ Fη(s)}.

Now, we are ready to develop our theory for determining when a given policy
is safe. The following theorem enables us to bound Dπ

t (st) without evaluating
the expectation with respect to π.

Theorem 1. For a given policy η and a sequence of safety thresholds x =
(x0, . . . , xT−1), let π be a policy in Πη,x

G . Let us use dTV (p, q) to denote
the total variation distance1 between two distributions p and q. Then for all
t ∈ {0, . . . , T − 1}

Dπ
t (st) ≤Dη

t (st) + 2
T−1∑
k=t

βk−txkE
π [zk | st] . (6)

where zt = 1st∈Sη,x dTV (π(·|st), η(·|st)) is a distance measure of the two policies.

The proof of this result uses practically same logic as the one used for The-
orem 1 in [1]. Please see the Appendix [30] in for more details. In practical
applications, it is more convenient to set xt = x for all t. If we also bound zt

from above by 1, we obtain the following useful result.

Corollary 1. If E[Dη
0 (s0)] ≤ c , let x = (xη

c , . . . , xη
c ) with xη

c = 1
2 (c −

E[Dη
0 (s0)]) 1−β

1−βT . Then a policy π is safe if π ∈ Π
η,xη

c

G , (i.e., E[Dπ
0 (s0)] ≤ c).

Corollary 1 provides a safety guarantee for π when η itself is safe. But in
fact, if we restrict our view to a smaller subset of Πη,x

G , we can guarantee safety
even when η itself may not be safe.

Definition 3 ((η,x)-secure policies). Let greedy-η(a|s) = 1a=arg mina′T η
t (s,a′).

Πη,x =
{
π; for s ∈ Sη,x , supp(π(·|s)) ⊆ Aη,x (s) otherwise π(·|s) = greedy-η(·|s)}.

The set of (η,x)-secure policies Πη,x is indeed a subset of Πη,x
G because

greedy-η is just the one-step policy improvement from η. It turns out that we
can construct a pool of absolutely safe policies explicitly from T η

t (s, a) and c
alone even when η itself is not necessarily safe.
1 Total variation distance is defined as dTV (p(a), q(a)) = 1

2

∑
a |p(a) − q(a)|.
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Corollary 2. If E[Dgreedy-η
0 (s0)] ≤ c, by setting x = (xη

c,g, . . . , x
η
c,g) with xη

c,g =
1
2 (c − E[Dgreedy-η

0 (s0)]) 1−β
1−βT , any policy π ∈ Πη,xη

c,g is safe, i.e., E[Dπ
0 (s0)] ≤ c.

This result follows from Theorem 2, which is a similar result to Theorem 1 (see
Appendix B in [30] for the statement and proof of Theorem 2 and Corollary 2.
In the next section, we use Πη,xη

c,g to construct a pool of safe policies from which
we search for a good and safe reward-seeking policy. Now, several remarks are in
order. First, if we set β = 1, then xη

c → 0 as T → ∞. This is in agreement with
the law of large numbers; that is, any accident with positive probability is bound
to happen at some point. Also, note that we have Aη,x(s) ⊆ Aη′,x(s) whenever
T η′

t (s, a) ≤ T η
t (s, a) for any t. Thus, by finding the risk-minimizing η, we can

maximize the pool of safe policies. Therefore, when possible we seek not just a
safe η, but also for the threat-minimizing policy. Finally and most importantly,
note that the threshold expression in Corollary 2 is not dependent on π. We
can use this result to tackle the CMDP problem by solving two separate MDP
problems. In particular, in seeking a solution to the CMDP problem we can (i)
first look for an η satisfying E[Dgreedy-η

0 (s0)] ≤ c, and then (ii) look for a safe
reward maximizing policy π in Πη. We will further articulate this procedure in
the next section. Hereafter unless otherwise noted, we will use Πη to denote
Πη,xη

c,g , and use Sη, Aη(s) to denote Sη,xη
c,g , Aη,xη

c,g (s).

4 Reconnaissance-MDP and Planning-MDP

4.1 The RP Algorithm

In the previous section, we showed that a pool of safe policies can be created
using a safe baseline policy. Also, by training a policy to minimize the threat,
we can find a safe policy that corresponds to a larger pool of secure policies,
and we search within this pool for a possibly better reward-seeking policy. This
insight motivates the decomposition of the constrained MDP problem into two
consecutive MDP sub-problems: one which minimizes threat, and one which
maximizes cumulative reward.

The purpose of the Reconnaissance MDP (R-MDP) is thus to reconnoiter
the system prior to the reward maximization process and to find the threat-
minimizing safe policy η∗ that solves

η∗ = arg min
η

E
η
[∑T−1

t=0 βtd(st, at)
]
. (7)

Indeed, solution η∗ is not unique, up to freedom of the actions on the states
unreachable by any optimal policy η∗. For our ensuing discussions, we will choose
η∗ to be a version whose policy on each unreachable state s∗ is computed by
Eq. 7 with initial state being s∗. If the problem is of infinite horizon, then under
standard assumptions of irreducibility and aperiodicity, η∗ computed from any
initial state will be the same due to the fact that such finite MDPs have unique
steady state distributions.
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An R-MDP is the same as the original MDP except that we have a danger
function in lieu of a reward function, and the agent’s goal to minimize the cumu-
lative danger instead of maximize the cumulative reward. The following is true
about any CMDP.

Corollary 3. If the set of feasible policies of the original CMDP is nonempty,
the optimal R-MDP policy η∗ is safe. Thus, every policy in Πη∗

is safe.

After the R-MDP is solved, the Planning MDP (P-MDP) searches within Πη∗

for a good reward-seeking policy π∗. The P-MDP is similar to the original MDP
except that the agent is only allowed to take actions from Aη∗

when s ∈ Sη∗

and that it follows greedy-η∗ at non-secure states s �∈ Sη∗
.

π∗ = arg max
π∈Πη∗

E
π

[
T−1∑
t=0

γtr(st, at)

]
. (8)

In implementation, we do not explicitly construct Πη∗
. Instead, we evaluate

T η∗
t (s, a) for every considered state-action pair in the P-MDP and ensure that

all suggested reward-seeking actions are in Aη∗
. Note that, if policy η∗ is safe,

every policy in Πη∗
is guaranteed to be safe. In particular, in such a case, any

policy in the entire learning process of the P-MDP is safe. We refer to the whole
procedure of solving the R-MDP and P-MDP as Reconnaissance and Planning
(RP) algorithm. Algorithm 1 summarizes the RP algorithm. Naturally, whether

Algorithm 1. RP algorithm
1: Obtain the baseline policy η∗ by either solving R-MDP or selecting a heuristic

policy
2: Estimate T η∗

t (·, ·)
3: Solve the P-MDP (8) while referring the evaluation of T η∗

t at every considered
state-action pair so that all actions will be chosen from Aη∗,x

this algorithm works in an application depends on how well we can evaluate the
threat in the R-MDP. If we wish to avoid any dangerous events, even those with
extremely low probability, guaranteeing safety becomes difficult. A good policy
that works well in most cases may be dangerous in some rare scenarios, but such
scenarios are difficult to find because they require an intractable number of runs
to detect such rare, dangerous events. This makes the empirical approximation
E

π[·] difficult. We resolve this problem by evaluating T η
t (s, a) with the generative

model. With the generative model, we can freely explore the system from any
arbitrary initial state, and evaluate T η

t (s, a) for any (s, a) and η. To facilitate
the learning of T η∗

t (s, a), we use the generative model to preferentially sample
the states with relatively high estimated T η∗

t (s, a) more frequently. We will next
introduce a technique to approximate the threat function.
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4.2 Threat Decomposition and the Approximate RP Algorithm

In this subsection, we present a useful bound on the threat function that can be
used when the danger is described in terms of multiple risky events. Suppose that
there are N risky events {E1, ..., EN} to consider, and that the goal is optimize
the reward while avoiding any risky event. Formally, we represent the indicator
function of En by dn(s(o)t , s

(n)
t , at) where s

(n)
t is the state of the system relevant

to En and s(o) is the state of the system not relevant to any risky events.

Assumption 1. The transition probabilities can be decomposed in the follow-
ing way:

p(st+1|st, at) = p(s(o)t+1|s
(o)
t , at)

N∏
n=1

p(s(n)t+1|s
(n)
t , s

(o)
t , at).

If d is the indicator function of ∪m
n=1En, we can formalize this result as

follows:

Theorem 3. Let η be a policy that takes actions based solely on s
(o)
t , and let

T η be the threat function defined for the indicator function of ∪N
n=1En. Then

T η
t (st, at) ≤

∑N
n=1 T

η,n
t (s(o)t , s

(n)
t , at).

This result is especially useful in navigation-like tasks. For example, when En

is the collision event with the nth obstacle, sn will be the state of nth obsta-
cle, and so will be the aggregate state of the system that is not related to any
obstacles (state of the agent, etc.). In such cases, each T η,n can be estimated
using the simulator containing just the nth obstacle and the agent. Algorithm 2
is the algorithm that uses Theorem 3. In the context of collision-free planning,

Algorithm 2. Approximate RP algorithm
1: Pick a heuristic policy η(o) which depends on s(o) only.

2: Estimate the threat functions T η(o),n
t (·, ·) for all sub R-MDPs.

3: Solve the P-MDP (8) while referring to the evaluation of
∑

n T η(o),n

t at every

considered state-action pair so that all chosen actions will satisfy
∑

n T η(o),n

t ≤ xt.

Theorem 3 suggests that the threat function is similar to a risk potential
[21,29,35]. Risk-potential based methods for collision-free planning also eval-
uate the overall risk of colliding with any obstacle by summing the evaluated
risk potential for each object. However, most risk-potential methods are designed
for specific task settings (e.g. collision-free planning) and thus assume the risk
potential has a specific heuristically defined structure. By contrast, our method
can be interpreted as learning the risk potential.
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5 Experiments

We conducted a series of experiments to analyze (i) the nature of the threat
function, (ii) the effect of the choice of the baseline policy η on P-MDP per-
formance, and (iii) the efficacy of the approximate RP algorithm. We also show
that the threat function computed for one CMDP can be reused to solve another
CMDP problem with similar safety constraints2.

5.1 Experimental Setup

Environments and Baselines. We summarize our environments here, but
more in-depth descriptions of the environments are available in Appendix F
[30].

Frozen Lake Frozen lake environment from OpenAI Gym [7]. In this environ-
ment, the agent navigates an 8 × 8 gridworld (depicted in Fig. 2) consisting of
frozen surfaces and holes. The agent starts from ‘S’ and must navigate through
the frozen surfaces in the gridworld to reach the goal ‘G’ while avoiding holes.
Due to the slippery surface, the agent’s actual movement may differ from its
intended one.

Point Gather The Point Gather environment is a common benchmark task
used for safe RL [1]. In this task, the agent, a point mass, must navigate a
bounded region and collect as many green apples as possible while avoiding
red bombs.

Circuit In this 364-dimensional task, the agent’s goal is to cover as much dis-
tance as possible in a circuit within 200 timesteps without crashing into the
wall.

Jam In the 396-dimensional Jam task, the agent must navigate its way out of a
square room of size 3.0 × 3.0 through an exit located at the top right corner
in the presence of dynamic obstacles. There are safety zones in the corners of
the environment (one of which is the exit). This task is more challenging due
to the dynamism of the obstacles. The Jam task is illustrated in Fig. 4.

We use three baselines. We use deep Q-networks (DQN) [26], a standard
off-policy RL algorithm. We use constrained policy optimization (CPO) [1], a
popular safe RL algorithm. Lastly, we use model predictive control (MPC) with
α-β pruning. Appendix G in [30] contains more information on the baselines.

5.2 Frozen Lake Results

For this task, both the R-MDP and P-MDP are tabular and can be solved
through value iteration. We selected threshold x in accordance with the safety
guarantee given by Corollary 2. The threat function of the optimal R-MDP
policy is shown in Fig. 2. Note that the threat values are indeed higher at states
closer to holes. Moreover, we can see that there is a safe path from ‘S’ to ‘G’
2 The code and videos are available at https://github.com/pfnet-research/rp-safe-rl.

https://github.com/pfnet-research/rp-safe-rl
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Fig. 2. Map and action-threat function. In the map, Black squares represent holes and
white squares represent the frozen surface. Warmer colors represent higher values of
the threshold function at the corresponding position and action. (Color figure online)

following the rightmost column. The challenging positions are (6, 8) and (7, 8),
where the only safe action is ‘RIGHT’, which is not the best reward-seeking
action (‘DOWN’).

Figures 3(a) and 3(b) compare the performance of a policy learned in the
P-MDP from the optimal R-MDP policy η∗ as a baseline policy against those
learned from sub-optimal R-MDP baseline policies. The policy η0 represents a
uniformly random policy and ηi represents the policy after i steps of policy
iteration on η0. In Fig. 3(a) we also show the CMDP solution found using the
Lagrange multiplier method, which represents a near optimal solution to the
CMDP task. As Fig. 3(b) shows, the RP algorithm satisfies the danger con-
straints for every baseline policy η, by a large margin. Because η0 is a naive,
dangerous policy, our RP algorithm was unable to reach the goal and receives
no reward with baseline policy η0. Although the RP algorithm produces conser-
vative results, as evidenced by its large safety margin, it can achieve the highest
reward if we set the constraint c to be larger. We can see that, even though η0 is
completely random, the P-MDP constructed from η0 generates safe policies when
the threat threshold x is small. When we optimize the baseline policy η through
policy iteration, the set of safe actions (secure actions defined in Definition 1)
increases in size, enabling the agent to attain more rewards, as seen in Fig. 3(a).
However, these differences become negligible after two policy iteration steps. We
see that two steps of policy iteration are enough to obtain a near-optimal policy
for this problem. This observation suggests that using a heuristic baseline with-
out optimizing in the R-MDP may suffice, and in fact we use heuristic policies
in the higher-dimensional environments.

5.3 High-Dimensional Tasks: Point Gather, Circuit, and Jam

Before delving into the experimental results, note that the total reward attained
changes depending on how severely the agent is penalized. For reference, we
show results for heavier danger penalties in Appendix H [30]. Since the con-
straint in the Point Gather, Circuit, and Jam environments is to avoid collision
with any obstacles, we can use the approximate RP algorithm introduced in
Sect. 4.2 which uses a set of sub-R-MDPs each containing one obstacle and one
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(a) Reward vs Constraint c (b) Danger vs Constraint c

Fig. 3. FrozenLake results. (a) Average reward obtained by RP method with various
baseline policies vs safety constraint c. (b) Average danger suffered by RP method with
various baseline policies vs safety constraint c.

(a) (b) (c) (d)

x

y

Fig. 4. (a) Illustration of Jam task. The light blue circles are obstacles and the yellow
circle is the agent. Three shaded corners are safe-zones. The arrow attached to each
object shows its direction of movement. (b) Heat map of the trained threat function
whose value at point (x, y) represent the threat when the obstacle (light blue) is placed
at (x, y) with the same velocity. (c) and (d) are the heat maps of the sum of the threat
functions of all moving obstacles. (Color figure online)

agent. Thus, to guarantee safety in P-MDP, we only learn a threat function for a
heuristic baseline policy η(o) in a sub-R-MDP with a single obstacle. For Circuit
and Jam, we treat the wall as a set of immobile obstacles so that we can con-
struct the threat function of any shape. After 10 min of data collection with the
generative model, this threat function can be learned in less than half an hour
on a CPU. Please see the Appendix in [30] for more detailed experimental con-
ditions and for videos of the agent trained by each method. Figure 4(c), (d) are
the heat maps for the upper bound of the threat function computed by way of
Theorem 3. The color of each heat map at pixel z represents

∑
n T η,n

0 (s(z), a),
where s(z) represents the state at which the agent’s current location is z and
its velocity and direction is given by the picture located at the left corner of
the heat map. We see that our threat function is playing a role similar to an
artificial potential field [8,19,23]. Because our threat function is computed using
all aspects of the agent’s state (acceleration, velocity, location), we can provide
a more comprehensive measure of risk compared to other risk metrics such as
TTC (Time To Collision) [24] used in smart automobiles that consider only 1D
movement.
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Fig. 5. Comparison of multiple CMDP methods in terms of rewards (upper panels)
and crash rate (bottom panels) in different environments (a) Point Gather, (b) Circuit
and (c) Jam.

Figure 5 plots the average reward and crash rate against training timesteps
for our baseline methods. The DQN results are representative of model-free deep
RL approaches applied to the CMDP task. To evaluate the threat in MPC, we
take the same approximation strategy of threat decomposition as our method
(see Appendix G.4 in [30] ) in order to make the prediction efficient.

The mean values and the 90% confidence intervals in the plot are computed
over 10 seeds. The curve plotted for our approximate RP algorithm corresponds
to the result obtained by a DQN-based P-MDP solution. The plot does not
include the R-MDP phase. As we can see, our method achieves the highest reward
in almost all phases of training for both Circuit and Jam while maintaining
the lowest crash rate. Our method is safer than the 3-step MPC, a method
with significantly higher runtime computational costs. For Point Gather, the RP
algorithm with x = 0.1 performs worse in terms of reward than the penalized
DQN and CPO. Fortunately, however, we can fine-tune the threshold to increase
the pool of allowed actions in the P-MDP without re-learning the threat function.
Our RP algorithm with x = 0.5 performs competitively while satisfying the
prescribed constraint. That we can fine-tune the threshold without retraining is
a significant advantage of our method over Lagrange multiplier-type methods.
Also, by virtue of Corollary 2, that our policy is experimentally safe suggests
that greedy-η(0) is also safe for the choice of the baseline policy η(0).

5.4 Recycling the Threat Function for a Different Environment

As mentioned in Sect. 1, learned threat functions can be reused on different
CMDP tasks if their safety constraints are defined similarly. To verify this feature
of our algorithm, we train a safe policy on an instance of the Jam task, and test its
performance on other Jam instances with different numbers of randomly moving
obstacles. The results are shown in Table 1. For the modified Jam instances, we
have no results for MPC with more than 3-step prediction since the exhaustive
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search cannot be completed within a reasonable time frame. We also conducted
experiments for Circuit environment. In particular, we evaluate on two modified
instances: (1) a narrowed circuit with the original shape, and (2) a circular-
shaped circuit with same width. The results are shown in Appendix H [30].

In both the Circuit and Jam experiments, we find that, even in different
task instances, the policy obtained by the RP algorithm can achieve safety with
high probability while attaining high reward. On the other hand, reusing a DQN
policy in different task instances fails both in terms of reward and safety in both
the Jam and Circuit tasks.

Table 1. Performance of trained policies on known and unknown Jam environments.
The values in the table are the obtained rewards, and inside the parentheses is the
percentage of episodes in which a collision occurs. Computation Time is the time used
for 100 actions.

Environment Approx. RP MPC (3 steps) DQN (λ = 5) DQN (λ = 500)

N = 3 78.2 (0) 77.5 (0.05) 77.2 (0.04) 4.4 (0.17)

N = 8 (training env.) 69.1 (0) 65.3 (0.2) 47.1 (0.38) −1.0 (0.24)

N = 15 33.0 (0.02) 36.6 (0.45) 16.5 (0.66) −16.8 (0.51)

Computation time (s) 1.2 285 0.4 0.4

6 Related Work

6.1 Optimization-Based Approaches

Many optimization-based approaches such as MPC [6,15,25,33,34] are available
to tackle CMDPs by solving certain optimization problems. However, nonlinear
and stochastic state transitions, as in the Jam experiments, make these optimiza-
tion problems extremely difficult to solve. To apply these approaches to nonlinear
and/or stochastic environments, special assumptions are typically made to make
the optimization tractable.

Exact Bound-Based MPC. MPC approaches solve CMDPs by solving finite hori-
zon control problems constructed by a predictive model. Wabersich and Zeilinger
[32] assume that the danger constraint is given by a linear inequality with respect
to the state. Summers et al. [31] consider a discrete state space and use dynamic
programming to obtain a reach-avoid control policy under a stochastic time-
varying environment. Ames et al. [4] surveys control barrier function methods
in deterministic nonlinear affine control systems.

Reachability Analysis. Collision avoidance is also considered in reachability anal-
ysis where a backward reachable set is computed to represent the states from
which the agent can reach the desired state despite worst-case disturbances [10].
By considering the worst case disturbance for stochastic or unknown dynam-
ics, a CMDP can be formulated as a minimax problem [2,5,28]. Unfortunately,
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considering worst-case disturbances can lead to overly conservative solutions. To
balance the safety guarantee and conservatism in the environment where the
model includes uncertainty, Fisac et al. [18] introduces online learning based on
Gaussian processes. Although reachability analysis requires exponentially more
computation as the system dimensionality increases, some studies overcome this
issue by considering the conditionally independent subsystem similar to ones
considered in Sect. 4.2 [10,11].

6.2 Sampling and Learning-Based Approaches

Sampling-Based MPC. Monte Carlo sampling can be used as a predictive model
which allows MPC to scale to high-dimensional state spaces and can handle
nonlinear dynamics and non-Gaussian transition probabilities [9,17]. However,
Monte Carlo sampling also requires per-timestep sampling, and the methods
become computationally intractable when the time horizon is large.

Learning-Based Methods. Learning-based methods [12,20,22,27] optimize the
parameters of the policy, which is used for all states. In contrast, MPC methods
perform optimization for only the current state. Learning-based methods also
make use of sampling to mitigate the computational difficulty of computing
cumulative danger or total reward. We can apply learning-based methods on
environments with high-dimensional state-action spaces. Typically a large set
of samples is required in order to accurately estimate the expected reward and
danger, especially when rare events must be taken into account. This estimation
is necessary for every policy update. Approximating expected reward and danger
is difficult for both learning-based and sampling-based MPC approaches.

7 Conclusion

In this study we proposed a method that isolates the safety-seeking procedure
from the reward-seeking procedure in solving a CMDP. Although our method
is not guaranteed to find the optimal reward-seeking safe policy, it can perform
significantly better than classical methods both in terms of safety and reward
in high-dimensional dynamic environments like Jam. Our method is designed so
that more training in the R-MDP will always expand the search space in the
P-MDP. Our treatment of the threat function not only allows us to solve similar
problems without the need to retrain, it also helps us obtain a more compre-
hensive measure of danger at each state than conventional methods. Overall,
we find that utilizing threat functions is a promising approach to safe RL. We
expect that further research on our framework may lead to new CMDP methods
applicable to complex, real-world environments.
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Abstract. Deep neural networks (DNNs) are prominent due to their
superior performance in many fields. The deep-learning-as-a-service
(DLaaS) paradigm enables individuals and organizations (clients) to out-
source their DNN learning tasks to the cloud-based platforms. However,
the DLaaS server may return incorrect DNN models due to various rea-
sons (e.g., Byzantine failures). This raises the serious concern of how
to verify if the DNN models trained by potentially untrusted DLaaS
servers are indeed correct. To address this concern, in this paper, we
design VeriDL, a framework that supports efficient correctness verifica-
tion of DNN models in the DLaaS paradigm. The key idea of VeriDL
is the design of a small-size cryptographic proof of the training process
of the DNN model, which is associated with the model and returned to
the client. Through the proof, VeriDL can verify the correctness of the
DNN model returned by the DLaaS server with a deterministic guar-
antee and cheap overhead. Our experiments on four real-world datasets
demonstrate the efficiency and effectiveness of VeriDL.

Keywords: Deep learning · Integrity verification ·
Deep-learning-as-a-service

1 Introduction

The recent abrupt advances in deep learning (DL) [1,10] have led to break-
throughs in many fields such as speech recognition, image classification, text
translation, etc. However, this success crucially relies on the availability of both
hardware and software resources, as well as human expertise for many learn-
ing tasks. As the complexity of these tasks is often beyond non-DL-experts, the
rapid growth of DL applications has created a demand for cost-efficient, off-shelf
solutions. This motivated the emerge of the deep-learning-as-a-service (DLaaS)
paradigm which enables individuals and organizations (clients) to outsource their
data and deep learning tasks to the cloud-based service providers for their needs
of flexibility, ease-of-use, and cost efficiency.
c© Springer Nature Switzerland AG 2021
N. Oliver et al. (Eds.): ECML PKDD 2021, LNAI 12976, pp. 583–598, 2021.
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Despite providing cost-efficient DL solutions, outsourcing training to DLaaS
service providers raises serious security and privacy concerns. One of the major
issues is the integrity of the deep neural network (DNN) models trained by the
server. For example, due to Byzantine failures such as software bugs and network
connection interruptions, the server may return a DNN model that does not reach
its convergence. However, it is difficult for the client to verify the correctness of
the returned DNN model easily due to the lack of hardware resources and/or
DL expertise.

In this paper, we consider the Infrastructure-as-a-Service (IaaS) setting where
the DLaaS service provider delivers the computing infrastructure including
servers, network, operating systems, and storage as the services through virtual-
ization technology. Typical examples of IaaS settings are Amazon Web Services1

and Microsoft Azure2. In this setting, a client outsources his/her training data
T to the DLaaS service provider (server). The client does not need to store T
locally after it is outsourced (i.e., the client may not have access to T after out-
sourcing). The client also has the complete control of the infrastructure. He can
customize the configuration of the DNN model M , including the network topol-
ogy and hyperparameters of M . Then the server trains M on the outsourced
T and returns the trained model M to the client. As the client lacks hardware
resources and/or DL expertise, a third-party verifier will authenticate on behalf
of the client if M returned by the server is correct, i.e., M is the same as being
trained locally with T under the same configuration. Since the verifier may not be
able to access the private training data owned by the client, our goal is to design
a lightweight verification mechanism that enables the verifier to authenticate the
correctness of M without full access to T .

A possible solution is that the verifier executes the training process indepen-
dently. Since the verifier does not have the access to the client’s private data, he
has to execute training on the private data encrypted by homomorphic encryp-
tion (HE) [6,9]. Though correct, this solution can incur expensive overhead due
to the high complexity of HE. Furthermore, since HE only supports polynomial
functions, some activation functions (e.g., ReLU, Sigmoid, and Tanh) have to be
approximated by low-degree polynomials when HE is used, and thus the verifier
cannot compute the exact model updates. On the other hand, the existing works
on verifying the integrity of DNNs (e.g., SafetyNets [5] and VeriDeep [8] hold
a few restrictions on the activation function (e.g., it must be polynomials with
integer coefficients) and data type of weights/inputs (e.g., they must be inte-
gers). We do not have any assumption on activation functions and input data
types. Furthermore, these existing works have to access the original data, which
is prohibited in our setting due to privacy protection.

Our Contributions. We design VeriDL, a framework that supports efficient
verification of outsourced DNN model training by a potentially untrusted DLaaS
server which may return wrong DNN model as the result. VeriDL provides the
deterministic correctness guarantee of remotely trained DNN models without
1 Amazon Web Services: https://aws.amazon.com/.
2 Microsoft Azure: https://azure.microsoft.com/en-us/.

https://aws.amazon.com/
https://azure.microsoft.com/en-us/
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any constraint on the activation function and the types of input data. The key
idea of VeriDL is that the server constructs a cryptographic proof of the model
updates, and sends the proof along with the model updates to the verifier. Since
the proof aggregates the intermediate model updates (in compressed format) dur-
ing training, the verifier can authenticate the correctness of the trained model by
using the proof only. In particular, we make the following contributions. First,
we design an efficient procedure to construct the cryptographic proof whose size
is significantly smaller than the training data. The proof is constructed by using
bilinear pairing, which is a cryptographic protocol commonly used for aggregate
signatures. Second, we design a lightweight verification method named VeriDL
that can authenticate the correctness of model updates through the crypto-
graphic proof. By using the proof, VeriDL does not need access to the training
data for correctness verification. Third, as the existing bilinear mapping methods
cannot deal with the weights in DNNs that are decimal or negative values, we
significantly extend the bilinear mapping protocol to handle decimal and nega-
tive values. We formally prove that VeriDL is secure against the attacker who
may have full knowledge of the verification methods and thus try to escape from
verification. Last but not least, we implement the prototype of VeriDL, deploy
it on a DL system, and evaluate its performance on four real-world datasets
that are of different data types (including non-structured images and structured
tabular data). Our experimental results demonstrate the efficiency and effective-
ness of VeriDL. The verification by VeriDL is faster than the existing DNN
verification methods [6,9] by more than three orders of magnitude.

2 Preliminaries

Bilinear Mapping. Let G and GT be two multiplicative cyclic groups of finite
order p. Let g be a generator of G. A bilinear group mapping e is defined as
e : G × G → GT , which has the following property: ∀a, b ∈ Zp, e(ga, gb) =
e(g, g)ab. In the following discussions, we use the terms bilinear group mapping
and bilinear mapping interchangeably. The main advantage of bilinear mapping
is that determining whether c ≡ ab mod p without the access to a, b and c can
be achieved by checking whether e(ga, gb) = e(g, gc), by given g, ga, gb, gc.

Outsourcing Framework. We consider the outsourcing paradigm that involves
three parties: (1) a data owner (client) O who holds a private training dataset T ;
(2) a third-party service provider (server) S who provides infrastructure services
to O; and (3) a third-party verifier V who authenticates the integrity of S’
services. In this paradigm, O outsources T to S for training of a DNN model M .
Meanwhile O specifies the configuration of M on S’ infrastructure for training
of M . After S finishes training of M , it sends M to V for verification. Due to
privacy concerns, V cannot access the private training data T for verification.

Basic DNN Operations. In this paper, we only focus on deep feedforward
networks (DNNs), and leave more complicated structures like convolutional and
recurrent networks for the future work. In this section, we present the basic
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operations of training a DNN model. We will explain in Sect. 4 how to verify the
output of these operations. In this paper, we only concentrate on fully-connected
neural networks, and refrain from convolutional networks or recurrent networks.
However, our design can be adapted to more advanced network structures.

A DNN consists of several layers, including the input layer (data samples),
the output layer (the predicted labels), and a number of hidden layers. During
the feedforward computation, for the neuron n�

k, its weighted sum z�
k is defined

as:

z�
k =

{∑m
i=1 xiw

�
ik if � = 1∑d�−1

j=1 a�−1
j w�

jk otherwise,
(1)

where xi is the i-th feature of the input �x, and di is the number of neurons on
the i-th hidden layer. The activation a�

k is calculated as follows:

a�
k = σ(z�

k), (2)

where σ is the activation function. We allow a broad class of activation functions
such as sigmoid, ReLU (rectified linear unit), and hyperbolic tangent.

On the output layer, the output o is generated by following:

o = σ(zo) = σ(
dL∑
j=1

aL
j wo

j ), (3)

where wo
j is the weight that connects n�

j to the output neuron.
In this paper, we mainly consider the mean square error (MSE) as the cost

function. For any sample (�x, y) ∈ T , the cost C(�x, y;W ) is measured as the
difference between the label y and the output o:

C(�x, y;W ) = C(o, y) =
1
2
(y − o)2. (4)

Then the error E is calculated as the average error for all samples:

E =
1
N

∑
(�x,y)∈T

C(�x, y;W ). (5)

In the backpropagation process, gradients are calculated to update the
weights in the neural network. According to the chain rule of backpropagation
[10], for any sample (�x, y), the error signal δo on the output neuron is

δo = ∇oC(o, y) � σ′(zo) = (o − y)σ′(zo). (6)

While the error signal δ�
k at the �-th hidden layer is

δ�
k =

{
σ′(z�

k)wo
kδo if � = L,

σ′(z�
k)

∑d�+1
j=1 w�+1

kj δ�+1
j otherwise.

(7)
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The derivative for each weight w�
jk is computed as:

∂C

∂w�
jk

=

{
xjδ

�
k if � = 1

a�−1
j δ�

k otherwise.
(8)

Then the weight increment Δw�
jk is

Δw�
jk = − η

N

∑
(�x,y)∈T

∂C

∂w�
jk

, (9)

where η is the learning rate. Finally, the weight is updated as

w�
jk = w�

jk + Δw�
jk. (10)

The DNN is iteratively optimized by following the above feedforward and
backpropagation process until it reaches convergence, |E1 − E2| ≤ θ, where E1

and E2 are the error/loss of two consecutive epochs in the optimization process,
and θ is a small constant.

Verification Protocol. We adapt the definition of the integrity verification
protocol [11] to our setting:

Definition 21 (Deep Learning Verification Protocol). Let W be the set
of weight parameters in a DNN, and T be a collection of data samples. Let
ΔW be the parameter update after training the DNN on T . The authentication
protocol is a collection of the following four polynomial-time algorithms: genkey
for key generation, setup for initial setup, certify for verification preparation,
and verify for verification.

– {sk, pk} ← genkey(): It outputs a pair of secret and public key;
– {γ} ← setup(T, sk,pk): Given the dataset T , the secret key sk and the public

key pk, it returns a single signature γ of T ;
– {π} ← certify(T,W0,ΔW,pk): Given the data collection T , the initial

DNN model parameters W0, the model update ΔW , and a public key pk, it
returns the proof π;

– {accept, reject} ← verify(W0,ΔW, π, γ,pk): Given the initial DNN model
parameters W0, the model update ΔW , the proof π, the signature γ, and the
public key pk, it outputs either accept or reject.

In this paper, we consider the adversary who has full knowledge of the authen-
tication protocol. Next, we define the security of the authentication protocol
against such adversary.

Definition 22 Let Auth be an authentication scheme {genkey, setup,
certify, verify}. Let Adv be a probabilistic polynomial-time adversary that is
only given pk and has unlimited access to all algorithms of Auth. Then, given a
DNN with initial parameters W0 and a dataset T , Adv returns a wrong model
update ΔW ′ and a proof π′: {ΔW ′, π′} ← Adv(D,W0, pk). We say Auth is
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secure if for any pk generated by the genkey routine, for any γ generated by
the setup routine, and for any probabilistic polynomial-time adversary Adv, it
holds that

Pr(accept ← verify(W0,ΔW ′, π′, γ, pk)) ≤ negli(λ),

where negli(λ) is a negligible function in the security parameter λ. Intuitively,
Auth is secure if with negligible probability the incorrect model update can
escape from verification.

3 Problem Statement

Threat Model. In this paper, we consider the server S that may return incor-
rect trained model due to various reasons. For example, the learning process
might be terminated before it reaches convergence due to the system’s Byzan-
tine failures (e.g., software bugs and network issues). S may also be incentivized
to halt the training program early in order to save the computational cost and
seek for a higher profit. Given the untrusted nature of the remote server, it is
thus crucial for the client to verify the correctness of the returned DNN model
before using the model for any decision-making task.

Problem Statement. We consider the problem setting in which the data owner
O outsources the training set T on the server. O also can specify the configu-
ration of the DNN model M whose initial parameters are specified by W0. The
server S trains M until it reaches convergence (a local optima), and outputs the
model update ΔW = f(T ;W0). However, with the presence of security threats,
the model update ΔW returned by the server may not be a local optima. There-
fore, our goal is to design an integrity verification protocol (Definition 21) that
enables a third-party verifier V to verify if ΔW helps the model reach conver-
gence without the access to the private training data.

4 Authentication Method

In this section, we explain the details of our authentication protocol. The genkey
protocol is straightforward: the data owner O picks a pairing function e on two
sufficiently large cyclic groups G and GT of order p, a generator g ∈ G, and
a secret key s ∈ Zp. Then it outputs a pair of secrete and public key (sk, pk),
where sk = s, and pk = {g,G,GT , e, v,H(·)}, where v = gs ∈ G, and H(·) is a
hash function whose output domain is Zp. O keeps sk private and distributes pk

to the other involved parties. In the following discussions, we only focus on the
setup, certify and verify protocols.

Overview of Our Approach. We design a verification method that only uses
a short proof of the results for verification. Consider a data owner O that has
a private dataset T . Before transferring T to the server, O executes the setup
protocol to generate a short signature γ of T , and disseminate γ to the verifier
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V. O also sets up a DNN model M with initial weights W0. Then O outsources
M (with W0) and the training dataset T to S. After receiving T and M with
its initial setup, the server S optimizes M and obtains the model updates ΔW .
Besides returning ΔW to the verifier V, S sends two errors E1 and E2, where
E1 is the error when the model reaches convergence as claimed (computed by
Eq. 5) and E2 is the error by running an additional round of backpropagation
and feedforward process after convergence. Furthermore, S follows the certify
protocol and constructs a short cryptographic proof π of E1 and E2. The proof π
includes: (1) the cryptographic digest πT of the samples, and (2) the intermediate
results of feedforward and backpropagation processes in computing E1 and E2.
The verifier V then runs the verify protocol and checks the correctness of ΔW
by the following three steps:

• Authenticity verification of πT : V checks the integrity of πT against the
dataset signature γ that is signed by O;

• Authenticity verification of E1 and E2: Without access to the private data T ,
V verifies if both errors E1 and E2 are computed honestly from T , by using
πT and the other components in the proof π;

• Convergence verification: V verifies if E1 and E2 satisfy the convergence con-
dition (i.e., whether ΔW helps the model to reach convergence).

Next, we discuss the Setup, Certify and Verify protocols respectively. Then
we discuss how to deal with decimal and negative weights.

4.1 Setup Protocol

Based on the public key, we define the following function for the data owner O
to calculate a synopsis for each sample (�x, y) in T . In particular,

d(�x, y)) = H(gx1 ||gx2 || . . . ||gxm ||gy), (11)

where x1, x2, . . . , xm are the features, y is the label, and g is the group generator.
With the help the secret key s, O generates the signature γ for (�x, y) with

τ = d(�x, y))s. Then instead of sharing the large amount of signatures with the
verifier, O creates an aggregated signature γ = πn

i=1τi, where τi is the signature
for the i-th sample in the training data T . Then γ serves as a short signature of
the whole dataset T .

4.2 Certify Protocol

To enable the verifier to verify E1 and E2 without access to the private
samples T = {(�x, y)}, our Certify protocol construct a proof π as following:
π = {πE , πW , πT }, where

• πE = {E1, E2}, i.e., πE stores the errors of the model.
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• πT = {{gxi}, gy|∀(�x, y) ∈ T}, i.e., πT stores the digest of original data {�x}
and {y}. Storing the digest but not the original data is to due to the privacy
concern in the outsourcing setting (Sect. 2).

• πW = {{Δw1
jk}, {z1k}, {ẑ1k}, gδo

, {δL
k }}, where Δw1

jk is the weight updated
between the input and first hidden layer by one round of backpropagation
after the model reaches convergence, z1k and ẑ1k are the weighted sum of the
neuron n1

k (Eq. 1) at convergence and one round after convergence respec-
tively, δo and {δL

k } are the error signals at output and the last hidden layer at
convergence respectively. Intuitively, πW stores a subset of model outputs at
the final two rounds (i.e., the round reaching convergence and one additional
round afterwards).

4.3 Verify Protocol

The verification process consists of four steps: (1) authenticity verification of πT ;
(2) one feedforward to verify the authenticity of E1; (3) one backpropagation to
update weights and another feedforward to verify the authenticity of E2; and
(4) verification of convergence, i.e. if |E1 − E2| ≤ θ, where θ is a pre-defined
threshold for termination condition. Next, we discuss these steps in details.

Step 1. Verification of πT : The verifier firstly verifies the authenticity of πT ,
i.e., the digest of training samples. In particular, the verifier checks whether
the following is true: Πd(�x,y)∈πT

e((�x, y), v) ?= e(γ, g), where d(·) is the synopsis
function (Eq. (11)), v = gs is a part of the public key, γ is the aggregated
signature provided by the data owner. If πT passes the verification, V is assured
that the digests in πT are calculated from the intact dataset T .

Step 2. Verification of E1: First, the verifier V verifies if the weighted sum
{z1k} at the final round is correctly computed. Note that V is aware of w1

ik. V
also obtains {gxi} and {z1k} from πW in the proof. Then to verify the correctness
of {z1k}, for each z1k, V checks if the following is true:

Πe(gxi , gw1
ik) ?= e(g, g)z1

k . (12)

Once V verifies the correctness of {z1k}, it calculates the activation of the
hidden layers and thus the output o (Eqs. (2) and (3)). Next, V checks if the
following is true:

Π(�x,y)∈De(gy−o, gy−o) ?= e(g, g)2NE1 , (13)

where gy−o = gy ∗ g−o. Note that gy is included in the proof. V can compute
g−o by using o computed previously.

Step 3. Verification of E2: This step consists of five-substeps. The first four
substeps verify the correctness of weight increment in the backpropagation pro-
cess, including the verification of error signal at the output layer, the verifica-
tion of error signal at the last hidden layer, the verification of weight increments
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between all hidden layers, and verification of weight increments between the
input and the first hidden layer. The last substep is to verify the authenticity
of E2 based on the updated weights. Next, we discuss the details of these five
substeps.

First, V verifies the correctness of gδo

. Following Eq. (6), V can easily predict
label y with δo. Therefore, πW only includes gδo

. V verifies the following:

e(g−ogy, g−σ′(zo)) ?= e(g, gδo

), (14)

where g−o and g−σ′(zo) are computed by V, and gy and gδo

are from the proof.
Second, V verifies the correctness of δL

k (Eq. (7)), i.e., the error signal on the

k-th neuron on the last hidden layer, by checking if e(gwo
kσ′(zL

k ), gδo

) ?= e(g, g)δL
k ,

where gwo
kjσ′(zL

k ) is computed by V, and δL
k and gδo

are obtained from the proof.
Third, V calculates the error signal of other hidden layers by following Eq.

(7). Then with the knowledge of the activation on every hidden layer (by Step
2), V computes the derivatives of the weights (Eq. 8) on the hidden layers to
update the weights between consecutive hidden layers (Eqs. 9–10).

Fourth, V verifies the weight increment between input and the first hidden
layer. We must note that V cannot compute ∂C

∂w1
jk

(Eq. (8)) and Δw1
jk (Eq. (9))

as it has no access to the input feature xj . Thus V obtains Δw1
jk from the proof

π and verifies its correctness by checking if the following is true:

Π(�x,y)∈De(gxj , gηδ1
k) ?= e(gΔw1

jk , g−N ). (15)

Note that gxj and Δw1
jk are included in the proof, and gηδ1

k and g−N are calcu-
lated by V. After Δw1

jk is verified, V updates the weight by Eq. (10). Finally, V
verifies E2 by following the same procedure of Step 2 on the updated weights.

Step 4. Verification of Convergence: If E1 and E2 pass the authenticity
verification, the verifier verifies the convergence of training by checking if |E1 −
E2| ≤ θ, i.e., it reaches the termination condition.

We have the following theorem to show the security of VeriDL.

Theorem 1. The authentication protocols of VeriDL is secure (Definition 22).

We refer the readers to the extended version [3] of the paper for the detailed
proof.

4.4 Dealing with Decimal and Negative Values

One weaknesses of bilinear pairing is that it cannot use decimal and negative
values as the exponent in ge. Therefore, the verification in Eqs. 12–15 cannot
be performed easily. To address this problem, we extend the bilinear pairing
protocol to handle decimal and negative values.
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Decimal Values. We design a new method that conducts decimal arithmetic
in an integer field without accuracy loss. Consider the problem of checking if
b ∗ c

?= e, where b, c and e are three variables that may hold decimal values.
Let LT be the maximum number of bits after the decimal point allowed for any
value. We define a new operator f(·) where f(x) = x∗2LT . Obviously, f(x) must
be an integer. We pick two cyclic groups G and GT of sufficiently large order
p such that f(x)f(y) < Zp. Thus, we have gf(x) ∈ G, and e(gf(x), gf(y)) ∈ GT .
To make the verification in Eq. (14) applicable with decimal values, we check if
e(gf(b), gf(c)) ?= e(g, g)f(e). Obviously, if e(gf(b), gf(c)) = e(g, g)f(e), it is natural
that b ∗ c = e. The verification in Eq. (12), (13) and (15) is accomplished in the
same way, except that the involved values should be raised by 2LT times.

Negative Values. Equations (12–15) check for a given pair of vectors �u,�v of
the same size, whether

∑
uivi = z. Note that the verification in Eq. (14) can

be viewed as a special form in which both �u and �v only include a single scalar
value. Also note that ui, vi or z may hold negative values. Before we present our
methods to deal with negative values, we first define an operator [·] such that
[x] = x mod p. Without loss of generality, we assume that for any

∑
uivi = z,

−p < ui, vi, z < p. We have the following lemma.

Lemma 2. For any pair of vectors �u,�v of the same size, and z =
∑

uivi, we
have [ ∑

[ui][vi]
]

=

{
z if z ≥ 0
z + p otherwise.

We omit the proof of Lemma 2 here due to the limited space; the proof can
be found in the extended version [3] of the paper. Following Lemma 2, we have
Theorem 3 to verify vector dot product operation in case of negative values based
on bilinear pairing.

Theorem 3. To verify
∑

uivi
?= z, it is equivalent to checking if

Πe(g[ui], g[vi]) ?=

{
e(g, g)z if z ≥ 0
e(g, g)(z+p) otherwise.

(16)

We omit the proof due to the limited space, and include it in the extended version
[3]. Next, we focus on Eq. (12) and discuss our method to handle negative values.
First, based on Lemma 2, we can see that for any xi and w1

ik, if xiw
1
ik ≥ 0,

then [xi][w1
ik] = xiw

1
ik; otherwise, [xi][w1

ik] = xiw
1
ik + p. Therefore, to prove

z1k =
∑

xiw
1
ik, the server includes a flag signi for each xi in the proof, where

signi =

{
+ if xi ≥ 0
− otherwise.
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Meanwhile, for each z1k, the server prepares two values p1k =
∑

i:xiw1
ik≥0 xiw

1
ik

and n1
k =

∑
i:xiw1

ik<0 xiw
1
ik, and includes them in the proof.

In the verification phase, since the client is aware of w1
ik, with the knowledge

of signi in the proof, it can tell if xiw
1
ik ≥ 0 or not. So the client first verifies if

Πi:xiw1
ik≥0e(g

[xi], g[w
1
ik]) ?= e(g, g)p1

k ,Πi:xiw1
ik<0e(g

[xi], g[w
1
ik]) ?= e(g, g)n1

k+p,

where g[xi] is included in the proof, and g[w
1
ik] is computed by the client. Next,

the client checks if p1k + n1
k

?= z1k.

5 Experiments

5.1 Setup

Hardware and Platform. We implement VeriDL in C++. We use the imple-
mentation of bilinear mapping from PBC library3. The DNN model is imple-
mented in Python on TensorFlow. We simulate the server on a computer of
2.10 GHz CPU, 48 cores and 128 GB RAM, and the data owner and the verifier
on 2 computers of 2.7 GHz Intel CPU and 8 GB RAM respectively.

Datasets. We use the following four datasets that are of different data types:
(1) MNIST dataset that contains 60,000 image samples and 784 features; (2)
TIMIT dataset that contains 4,620 samples of broadband recordings and 100
features; (3) ADULT dataset that includes 45,222 records and 14 features; and
(4) HOSPITAL dataset that contains 230,000 records and 33 features.

Neural Network Architecture. We train a DNN with four fully connected
hidden layers for the MNIST, ADULT and HOSPITAL datasets. We vary the
number of neurons on each hidden layer from 10 to 50, and the number of param-
eters from 20,000 to 100,000. We apply sigmoid function on each layer, except
for the output layer, where we apply softmax function instead. We optimize the
network by using gradient descent with the learning rate η = 0.1. By default, the
minibatch size is 100. We use the same DNN structure for the TIMIT dataset
with ReLU as the activation function.

Basic and Optimized Versions of VeriDL. We implement two versions
of VeriDL: (1) Basic approach (B-VERIDL): the proof of model updates is
generated for every single input example (�x, y); and (2) Optimized approach (O-
VERIDL): the proof is generated for every unique value in the input {(�x, y)}.

Existing Verification Approaches for Comparison. We compare the per-
formance of VeriDL with two alternative approaches: (1) C1. Homomorphic
encryption (LHE) vs. bilinear mapping: When generating the proof, we
use LHE to encrypt the plaintext values in the proof instead of bilinear map-
ping; (2) C2. Result verification vs. re-computation of model updates

3 https://crypto.stanford.edu/pbc/.

https://crypto.stanford.edu/pbc/
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by privacy-preserving DL: The server encrypts the private input samples
with homomorphic encryption. The verifier executes the learning process on the
encrypted training data, and compares the computed results with the server’s
returned updates. For both comparisons, we use three different implementations
of HE. The first implementation is the Brakerski-Gentry-Vaikuntanathan (BGV)
scheme provided by HElib library4. The second implementation is built upon the
PALISADE library5 that uses primitives of lattice-based cryptography for imple-
mentation of HE. The last one is built upon the Microsoft SEAL project [12],
which provides a programming interface to lightweight homomorphic encryption.

5.2 Efficiency of VeriDL
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Fig. 1. Performance of VeriDL (minibatch size 100)

Fig. 2. Proof size

Proof Size. The results of proof size of VeriDL on four datasets, with various
number of neurons at each hidden layer, are shown in Fig. 1 (a). In all settings,
the proof size is small (never exceeds 25 MB even with one million parameters).

4 https://github.com/shaih/HElib.
5 https://git.njit.edu/palisade/PALISADE/wikis/home.

https://github.com/shaih/HElib
https://git.njit.edu/palisade/PALISADE/wikis/home
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Fig. 3. Verification time (minibatch size 100)

This demonstrates the benefit of using bilinear pairing for proof construction.
Second, we observe a linear increase in the proof size with the growth of the
number of parameters. This is because the dominant components of proof size is
the size of {Δw1

jk}, {z1k} and {ẑ1k}, which grows with the number of parameters.

Verification Time. The results of verification time on all four datasets are
shown in Fig. 1 (b). First, the verification time is affordable even on the datasets
of large sizes. Second, the verification time grows linearly with the number of
hyperparameters. The reason is that the number of neurons on the first hidden
layer increases linearly with the growth of parameters in the neuron network,
while the verification time linearly depends on the input dimension and the
number of neurons in the first hidden layer.

B-VeriDLVS. O-VeriDL. We compare the performance of the basic and opti-
mized versions of VeriDL. Figure 2 demonstrates the proof size of B-VeriDL
and O-VeriDL with various number of neurons at each hidden layer in the DNN
model. In general, the proof size is small (less than 1.3 MB and 8 MB for MNIST
and TIMIT datasets respectively). Furthermore, the proof size of O-VERIDL
can be smaller than B-VERIDL; it is 20%–26% of the size by B-VERIDL on
TIMIT dataset. This demonstrates the advantage of O-VERIDL. The results
also show that the proof size of both O-VERIDL and B-VERIDL gradually rises
when the number of neurons increases. However, the growth is moderate. This
shows that VeriDL can be scaled to large DNNs.

Comparison with Existing Approaches. We evaluate the verification time of
different proof generation methods (defined by the comparison C1 in Sect. 5.1)
for various numbers of neurons on all four datasets, and report the results of
MNIST and TIMIT datasets in Figs. 3. The results on ADULT and HOSPITAL
datasets are similar; we omit them due to the limited space. we observe that for
all four datasets, VeriDL (using bilinear mapping) is more efficient than using
HE (i.e., BGV, PALISADE and SEAL) in the proof. Thus bilinear mapping
is a good choice as it enables the same function over ciphertext with cheaper
cost. Besides, the time performance of both VeriDL and HE increases when the
number of neurons in the network grows. This is expected as it takes more time
to verify a more complex neural network. We also notice that all approaches take
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Fig. 4. Verification vs. re-computation of model updates

longer time on the MNIST dataset than the other datasets. This is because the
MNIST dataset includes more features than the other datasets; it takes more
time to complete the verification in Eqs. 12–15.

5.3 Verification vs. Re-computation of Model Updates

We perform the comparison C2 (defined in Sect. 5.1) by implementing the
three HE-based privacy-preserving deep learning (PPDL) approaches [6,9,12]
and comparing the performance of VeriDL with them. To be consistent with
[6,9], we use the approximated ReLU as the activation function due to the fact
that HE only supports low degree polynomials. Figure 4 shows the comparison
results. In Fig. 4 (a), we observe that VeriDL is faster than the three PPDL
methods by more than three orders of magnitude. An interesting observation is
that VeriDL and PPDL take opposite pattern of time performance when the
minibatch size grows. The main reason is that when the minibatch size grows,
VeriDL has to verify E1 and E2 from more input samples (thus takes longer
time), while PPDL needs fewer epochs to reach convergence (thus takes less
time). Figure 4 (b) shows the impact of the number of neurons on the time per-
formance of both VeriDL and PPDL. Again, VeriDL wins the three PPDL
methods by at least three orders of magnitude.

5.4 Robustness of Verification

To measure the robustness of VeriDL, we implement two types of server’s mis-
behavior, namely Byzantine failures and model compression attack, and evaluate
if VeriDL can catch the incorrect model updates by these misbehavior.

Byzantine Failure. We simulate the Byzantine failure by randomly choosing
1% neurons and replacing the output of these neurons with random values. We
generate three types of wrong model updates: (1) the server sends the wrong
error E1 with the proof constructed from correct E1; (2) the server sends wrong
E1 with the proof constructed from wrong E1; (3) the server sends correct E1 and
wrong E2. Our empirical results demonstrate that VeriDL caught all wrong
model updates by these Byzantine failures with 100% guarantee.
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Model Compression Attack. The attack compresses a trained DNN net-
work with small accuracy degradation [2,7]. To simulate the attack, we setup
a fully-connected network with two hidden layers and sigmoid activation func-
tion. The model parameters are set by randomly generating 32-bits weights. We
use ADULT dataset as the input. We simulate two types of model compression
attacks: (1) the low-precision floating points attack that truncates the initial
weights to 8-bits and 16-bits respectively and train the truncated weights; and
(2) the network pruning attack that randomly selects 10%–25% weights to drop
out during training. For both attacks, we run 50 times and calculate the abso-
lute difference between the error E′

1 computed from the compressed model and
the error E1 of the correct model. From the results, we observe that the error
difference produced by the low-precision attack is relatively high (with a 35%
chance of larger than or equal to 0.02), and can be as large as 0.2. While the
error differences of the network pruning attack are all between 0.002 and 0.01.
In all cases, we have |E′

1 − E1| ≥ 10−9. We omit the results due to the limited
space. We must note that given the DNN model is a 32-bit system, VeriDL can
determine that E′

1 �= E1 as long as |E′
1 − E1| ≥ 10−9. Therefore, VeriDL can

detect the incorrect model updates by both network compression attacks, even
though the attacker may forge the proof of E1 to make E′

1 pass the verification.

6 Related Work

Verified artificial intelligence (AI) [13] aims to design AI-based systems that are
provably correct with respect to mathematically-specified requirements. Safe-
tyNet [5] provides a protocol that verifies the execution of DL on an untrusted
cloud. The verification protocol is built on top of the interactive proof (IP) pro-
tocol and arithmetic circuits. It places a few restrictions on DNNs, e.g., the
activation functions must be polynomials with integer coefficients, which dis-
ables the activation functions that are commonly used in DNNs such as ReLU,
sigmoid and softmax. Recent advances in zero-knowledge (ZK) proofs signifi-
cantly reduce the verification and communication costs, and make the approach
more practical to verify delegated computations in public [14]. ZEN [4] is the first
ZK-based protocol that enables privacy-preserving and verifiable inferences for
DNNs. However, ZEN only allows ReLU activation functions. We remove such
strict assumption. VeriDeep [8] generates a few minimally transformed inputs
named sensitive samples as fingerprints of DNN models. If the adversary makes
changes to a small portion of the model parameters, the outputs of the sensi-
tive samples from the model also change. However, VeriDeep only can provide a
probabilistic correctness guarantee.

7 Conclusion and Future Work

In this paper, we design VeriDL, an authentication framework that supports
efficient integrity verification of DNN models in the DLaaS paradigm. VeriDL
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extends the existing bilinear grouping technique significantly to handle the verifi-
cation over DNN models. The experiments demonstrate that VeriDL can verify
the correctness of the model updates with cheap overhead.

While VeriDL provides a deterministic guarantee by verifying the output
of all neurons in DNN, generating the proof for such verification is time costly.
Thus an interesting direction to explore in the future is to design an alternative
probabilistic verification method that provides high guarantee (e.g., with 95%
certainty) but with much cheaper verification overhead.
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Abstract. Active metric learning is the problem of incrementally select-
ing high-utility batches of training data (typically, ordered triplets) to
annotate, in order to progressively improve a learned model of a met-
ric over some input domain as rapidly as possible. Standard approaches,
which independently assess the informativeness of each triplet in a batch,
are susceptible to highly correlated batches with many redundant triplets
and hence low overall utility. While a recent work [20] proposes batch-
decorrelation strategies for metric learning, they rely on ad hoc heuristics
to estimate the correlation between two triplets at a time. We present a
novel batch active metric learning method that leverages the Maximum
Entropy Principle to learn the least biased estimate of triplet distribution
for a given set of prior constraints. To avoid redundancy between triplets,
our method collectively selects batches with maximum joint entropy,
which simultaneously captures both informativeness and diversity. We
take advantage of the submodularity of the joint entropy function to con-
struct a tractable solution using an efficient greedy algorithm based on
Gram-Schmidt orthogonalization that is provably

(
1 − 1

e

)
-optimal. Our

approach is the first batch active metric learning method to define a uni-
fied score that balances informativeness and diversity for an entire batch
of triplets. Experiments with several real-world datasets demonstrate
that our algorithm is robust, generalizes well to different applications
and input modalities, and consistently outperforms the state-of-the-art.

Keywords: Batch active learning · Perceptual metric · Submodular
optimization · Maximum Entropy Principle

1 Introduction

Understanding similarity between two objects is fundamental to many vision
and machine learning tasks, e.g. object retrieval [33], clustering [35] and clas-
sification [30]. Most existing methods model a discrete measure of similarity
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Fig. 1. Difference between class-based and perceptual distances on two different types
of triplets. In each case, the class-based metric dC fails to capture intra-class variations
and inter-class similarities and is not compatible with the perceptual metric dH .

based on class labels: all inter-class samples are considered equally dissimilar,
even though their features differ by different degrees. But human estimation of
perceptual (dis)similarity is often more fine-grained. We may choose, for exam-
ple, continuous measures such as the degree of perceived similarity in taste or
visual appearance for comparing two food dishes, rather than discrete categorical
labels (Fig. 1). Thus, it is important to build a continuous perceptual space to
model human-perceived similarity between objects. Recent studies demonstrate
the importance of perceptual metrics in several tasks in computer vision and
cognitive science [15,19,36].

Early work on perceptual metric learning focuses on non-parametric methods
(e.g. Multidimensional scaling (MDS) [18]) which use numerical measurements
of pairwise similarity for training. These are hard to gather and suffer from
inconsistency. Instead, similarity comparisons of the form “Is object xi more
similar to object xj than object xk?” are easier to gather and more stable [14].
They form a useful foundation for several tasks, including perceptual metric
learning. However, the number of possible triplets of n objects is O(n3), making
it infeasible to label even a significant fraction of them. Fortunately, many triplets
are redundant and we can effectively model the metric using only a few high-
utility triplets (Fig. 2). Thus it is imperative to identify and annotate a subset of
high-quality triplets that are jointly informative for the model, without knowing
the annotations of any triplets in advance. We stress this last point since it
renders common triplet sampling strategies such as (semi-)hard negative mining,
which rely on access to a fully annotated dataset, inadmissible.

Active learning is a standard technique that addresses this issue by iteratively
identifying small batches of informative samples and soliciting labels for them.
While extensively studied for class label-based learning tasks, there exists very
little literature [9,20,31] on active learning which focuses on perceptual/general
metric learning. Further, these works merely assess the informativeness of indi-
vidual triplets with uncertainty measures, which assume a triplet with high pre-
diction uncertainty is more crucial to label. Although effective in many scenarios,
such an uncertainty measure makes a myopic decision based solely on the current
model’s prediction and fails to capture the triplets’ collective distribution as a
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Resuls of our aproach after annotating 13% triplets

Resuls of random sampling after annotating 13% triplets

Query

Results of our approach after annotating 18% triplets

Results of random sampling after annotating 18% triplets

Query

Fig. 2. Top-3 retrieved images ranked from most to least similar by a perceptual metric
(visual appearance for birds, and taste for food) trained on randomly selected (but
correctly annotated) triplets vs. high-quality triplets identified for annotation by our
method. For a fair comparison, both methods run for equal training rounds and solicit
annotations for equal amounts of training data – 13% of the CUB-200 bird dataset on
the left, and 18% of the Yummly-Food dataset on the right.

whole. Independently assessed triplets may themselves have much redundancy
even if they are individually informative. Hence the triplets should be not merely
informative but also diverse or decorrelated.

Kumari et al. [20] proposed a method for selecting informative and decor-
related batches of triplets for active metric learning. However, their approach
suffers from three major limitations: (1) The active learning strategy is based on
a two stage optimization for informativeness (choice of an overcomplete batch-
pool of individually informative triplets) and diversity (subsequent trimming of
the batchpool), applied sequentially. It does not always ensure an optimal trade-
off between the two criteria. (2) The proposed diversity measures are all ad-hoc
with no principled connection to informativeness. Being heuristic, no single mea-
sure works consistently well in all cases, making it harder for a user to select
which measure to use in practice. (3) The informativeness of a triplet is deter-
mined using a point estimate of the perceptual metric. Bias in the latter, e.g.,
because of suboptimal batch selection in prior iterations, directly translates to
bias in informativeness, which can misguide the strategy.

To mitigate these issues, we propose a new batch active learning algorithm
developed specifically for triplet-based metric learning. Our key insight is to
express a set of (unannotated) triplets as a vector of random variables, and
select batches of triplets that maximize the joint entropy measure. Thus, instead
of separately expressing and optimizing informativeness for individual triplets
and diversity for pairs of triplets, we develop a single probabilistic informative-
ness measure for a batch of triplets. We also provide computationally efficient
approximate solutions with provable guarantees. Specifically, our main technical
contributions are:

1. We propose to use the joint entropy of the distribution of triplet margins to
rank a batch of unannotated triplets. We estimate the second-order statistics
(mean and covariance) of triplet margins by randomly perturbing the current
model trained on prior batches as in [7], to characterize the distribution.
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2. Using the Maximum Entropy Principle, we arrive at a Gaussian distribution
compatible with the given empirical mean and covariance, whose entropy is
characterized by the determinant of the covariance matrix. As exact maxi-
mization of the joint entropy is prohibitively expensive (there are

(
m
b

)
possible

batches of size b from m triplets), we use the fact that entropy is mono-
tone increasing and submodular to justify a greedy policy which is provably
(1 − 1

e )-optimal [22].
3. We achieve further computational efficiency by using the fact that the covari-

ance matrix is a Gram matrix, and its determinant can be computed recur-
sively using a greedy policy. Our method recursively maximizes successive
projection errors of a set of vectors, picked one at a time, when projected
onto the span of previous choices. This amounts to successive maximization
of the conditional entropy, and is easily implemented using Gram-Schmidt
orthogonalization.

We demonstrate the effectiveness of our approach through extensive exper-
iments on different applications and data in different modalities (image, taste
and haptic). In addition to having a sound theoretical justification, our method
provides a significant performance gain over the current state-of-the-art.

2 Related Work

The prior work can be roughly divided into three categories. We review repre-
sentative techniques in each and discuss how our work differs from the existing
methods.

2.1 Perceptual Metric Learning

While there is extensive recent research on distance metric learning, most of
the algorithms are specific to class-based learning tasks such as classification
[30] and clustering [35], which consider two objects similar if they belong to
the same class. See Bellet et al. [3] for a comprehensive review. In contrast,
our goal is to define a perceptual distance that captures the degree of simi-
larity between any two objects irrespective of their classes. Recently, a whole
new literature has emerged that emphasizes the importance of learning such
continuous measures of similarity for various applications, e.g. for measuring
image similarity [36], face recognition [5], concept learning [32,33] and percep-
tual embedding of objects [1,11,19]. The closest application to ours is percep-
tual embedding of objects, where the embedding function is learned so as to
model the human-perceived inter-object similarity. While multidimensional scal-
ing (MDS) techniques have been extensively applied for this [1,11,18], they are
non-parametric and require numerical similarity measurement as inputs, which
are hard to gather [14]. Recent works [21,36] address these limitations by devel-
oping parametric models using non-numeric relative comparisons. A relevant
method is the triplet-based deep metric learning method of Kumari et al. [19].
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Although our method borrows base metric learning architectures from [19], [19]
doesn’t aim to make the metric learning algorithm data-efficient by developing
an active data sampling technique.

2.2 Active Learning for Classification

Active learning (AL) methods have been well explored for vision and learn-
ing tasks, see Settles [27] for a detailed review of active learning methods for
class-based learning. Typically, the AL methods select a single instance with
the maximum individual utility for annotation in each iteration. The utility of
an instance is decided by different heuristics, e.g. uncertainty sampling [20],
query-by-committee (QBC) [8], expected gradient length (EGL) [2], and model-
output-change (MOC) [6]. The simplest and most widely applicable uncertainty
sampling approach has been extended to modern deep learning frameworks and
variational inference [29]. However, in all these methods, each sample’s utility is
evaluated independently without considering dependence between them.

In batch-mode active learning, data items are assessed not one at a time
but in batches, to reduce the number of times the model is retrained. To avoid
selecting correlated batches, some recent attempts evaluate the whole batch’s
utility by taking mutual information between samples into account. In contrast
to our work, most of them are developed for classification tasks [2,17,24,26].
For example, Kirch et al. [17] define the utility score as the mutual information
between data points in a batch and model parameters and then pick a subset with
the maximum score. Pinsler et al. [24] formulate the active learning problem as a
sparse subset selection problem approximating the complete data posterior of the
model parameters. Both methods have a similar motivation to our work, but they
are developed for the classification task, and their informativeness measures are
not easy to extend to the metric learning task. Ash et al. [2] use the norm of the
gradient at a sample to implicitly capture both informativeness and diversity, and
select a subset of the farthest samples in the gradient space. This ensures both
informativeness and diversity by a single gradient-based measure, which does
not work well in the metric learning task, as shown by Kumari et al. [20]. Sener
and Savarese [26] follow a similar strategy in a different feature space. Shui et
al. [28] introduce a unified approach for training and batch selection process and
explicitly define uncertainty-diversity trade-off by adopting Wasserstein distance.

2.3 Active Learning of Perceptual Metrics

There are only a few works on active learning of a perceptual metric. Most of
these, e.g. [9,31], are based on a single instance evaluation criterion. They define
the utility of a single triplet and select a batch of the individually highest-utility
triplets to annotate. In contrast, we define a utility score for a batch taking
joint information between triplets into account. The closest work to ours is a
very recent paper by Kumari et al. [20]. The algorithm involves a two-stage
process. First, it selects an overcomplete set of individually highly informative
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samples, and then subsamples a less correlated subset, using different triplet-
based decorrelation heuristics, as the current batch. This method, in essence, is
still based on a single triplet selection strategy. In contrast, we present a new,
rigorous approach to define utility for a batch as a whole based on joint entropy,
providing a unified utility function to balance both informativeness and diversity.

3 Proposed Method

In this section, we first briefly describe the perceptual metric learning setup and
the underlying neural network-based learner called PerceptNet [19]. Next, we
introduce our novel batch selection policy explicitly designed for triplet-based
active metric learning.

3.1 Triplet-Based Active Metric Learning

Let X = {xi}n
1 represent a set of n objects, each described by a d-D feature vector

xi. Also, let TL be a set of ordered triplets, where each triplet (xi, xj , xk) indicates
that the object xi is more similar to object xj than to xk. For brevity we denote
(xi, xj , xk) by ijk. We frame the perceptual metric learning problem as learning
an embedding φ : Rd → Rd̂, s.t. the L2 distance between any two objects in
the embedding space dφ(x, y) = ‖φ(x) − φ(y)‖ reflects the perceptual distance
between them. In recent work, φ is typically modeled with a neural network:
in our experiments, we choose the existing PerceptNet model [19], where three
copies of the same network, with shared weights, process three objects xi, xj

and xk during training. The output is optimized with an exponential triplet loss
L =

∑
TL

e−(d2
φ(xi,xk)−d2

φ(xi,xj)) to maximize the distance margins (a.k.a “triplet
margins”), as defined by the exponent, for training triplets.

The number of possible triplets is cubic in the number of objects, so anno-
tating a significant fraction of them is often intractable, e.g. in domains such
as haptics and food tasting where annotation is especially slow. However, an
effective embedding can be modeled with far fewer comparisons if triplets are
sampled selectively based on how much information they would provide if anno-
tated. This calls for active learning. The model is trained iteratively: batches of
triplets informative to the current model are selected for annotation in each iter-
ation, after which the model is retrained. However, the efficiency gain of selecting
larger batches may be undone by correlation among triplets in a batch implying
low overall information, a common issue in independent optimization of indi-
vidual informativeness of each triplet. To mitigate this, prior works have stud-
ied batch decorrelation strategies for classification [2,17,24]. Recently, Kumari
et al. [20] developed a decorrelation strategy for metric learning with separate
steps for optimizing individual triplet informativeness and then batch diversity.
However, as already noted, this work suffers from limitations related to their
design choices. In contrast, we develop a method that jointly defines and opti-
mizes the informativeness of an entire batch while implicitly ensuring diversity.
The method is grounded in the Maximum Entropy Principle and leads to an
attractive computational scheme.
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3.2 Joint Entropy Measure for Batch Selection

The key to a good batch mode active learning is an effective informativeness
measure for a batch of triplets. For tractability, earlier work typically defines
a measure adding up the individual informativeness scores of triplets. A popu-
lar score is the Shannon entropy of the prediction probability py of the current
model trained on prior batches, for a triplet t taking one of two possible order-
ings y ∈ {ijk, ikj}, H(t) = −∑

y∈{ijk,ikj} py log py [31]. While often termed
“uncertainty”, this is not a good predictor of actual model uncertainty due to
possible bias in the current model [7]. Further, individually high-entropy triplets
may also have high mutual information, hence simply adding up the scores may
overestimate the actual utility of the batch.

We propose a novel batch selection algorithm based on the joint entropy of an
entire batch of triplets B, capturing their mutual dependence. We define the joint
probability distribution of a set of unannotated triplets on some feature space
such as their distance margins. This probability is defined using the distribution
of likely models given prior batches, reducing any bias due to model training.
Note that this is quite different from the prediction probability of a single fixed
model, described above. The joint distribution over a set of triplets naturally
captures the notion of interdependence among them.

3.3 Maximum-Entropy Model of the Joint Distribution

Our goal is to postulate the joint probability distribution of unannotated triplets
in a batch, preferably in a form that allows efficient computation of its entropy.
We represent each triplet t by its distance margin ξt = d2φ(xi, xk) − d2φ(xi, xj).
Then a batch, denoted B = {t1, t2, . . . , tb} is represented by the vector of dis-
tance margins given by ξB = [ξt1 , ξt2 , . . . , ξtb

].1 We assume there is uncertainty
about these margin predictions arising from the fact that there is a distribution
of plausible models given the previously annotated data. Hence, each distance
margin ξti

is a 1D random variable taking different values for different choices of
model parameters φ. As discussed above, simply looking at the predicted order-
ing probabilities of individual triplets is both error-prone and fails to consider
correlation between triplets. Fortunately, if the model is a neural network, it has
been shown that random dropout yields a good Bayesian approximation of model
uncertainty [7]. We stochastically apply the dropout K times to the model, eval-
uating ξB each time, to sample the joint margin vector distribution of the batch
and to compute the corresponding b-dimensional mean and covariance matrix.
We invoke the Maximum Entropy Principle [12] which maximizes the Shannon
entropy subject to constraints on prescribed averages. The maximum entropy
distribution, consistent with all prior constraints, ensures the largest amount of
uncertainty with respect to unknown, and hence introduces no additional biases
in the estimation. Empirical estimates of the entropy of the batch from sam-
ples are susceptible to noise, and lead to a hard combinatorial optimization over
1 Other triplet based representations are possible: we found the above to be a consis-

tent and more useful feature in practice.
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Algorithm 1. Greedy algorithm to maximize H(B)
Input: Unlabeled triplets TU , batch size b, entropy function H : 2TU → R as in Eq. 1.
Output: Batch B that is an (1 − 1

e
)-approximation to arg maxB⊂TU ,|B|=b H(B).

1: B0 ← ∅, H(B0) = 0
2: for k=1,. . . , b do
3: tk ← arg maxt∈TU \Bk−1 log

(
det

(
ΣBk−1∪{t}

)
/det

(
ΣBk−1

))

4: Bk ← Bk−1 ∪ {tk}
5: end for
6: return Final subset Bk

batches. So we constrain the mean and covariance matrix of the triplet mar-
gins to match their empirical values μB and ΣB and maximize the differential
entropy H(B) = − ∫

p(ξB) log p(ξB)dξB subject to these constraints. This leads
to a multivariate gaussian distribution N(μB , ΣB) with entropy

H(B) =
1
2

log
(
(2πe)b det(ΣB)

)
(1)

Note that this score takes into account inter-triplet correlation, unlike mea-
sures depending only on individual marginals. The next task is to efficiently
select an optimum batch of size b with maximum informativeness: B∗ =
arg maxB⊂TU ,|B|=b H(B), where TU is the set of currently unannotated triplets.

3.4 Greedy Algorithm for Batch Selection

Since the maximization of the joint entropy function H(B) over subsets is com-
putationally prohibitive, we use the fact that entropy is monotone increasing
and submodular to justify a greedy policy which is provably (1 − 1

e )-optimal by
the results of Nemhauser et al. [22]. The greedy algorithm builds up the set B∗

incrementally. In step k, we pick the triplet tk which has maximum conditional
entropy given triplets Bk−1 selected in previous steps. Specifically,

tk = arg max
t∈TU \Bk−1

H({t} | Bk−1)

= arg max
t∈TU \Bk−1

H(Bk−1 ∪ {t}) − H(Bk−1)

= arg max
t∈TU \Bk−1

log

(
det

(
ΣBk−1∪{t}

)

det
(
ΣBk−1

)

)

. (2)

This step is repeated |TU | times. The greedy policy has low complexity (quanti-
fied later) and scales well to large datasets. The overall batch selection algorithm
is listed in Algorithm 1. The remaining challenge is to efficiently compute the
increment in the determinant of the covariance matrix in each step. We present
a recursive algorithm for this, which also clarifies why the method selects a
decorrelated batch.
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3.5 Recursive Computation of Determinant of Covariance Matrix

The covariance matrix is a Gram matrix, i.e. its (i, j)th element can be written
as the dot product of the ith and jth vectors from a given family of vectors.
This allows us to recursively compute its determinant and choose the recursion
order according to the greedy policy for approximate optimization. Let ut denote
the zero-mean vector of all sampled distance margins, [ξt(φ1), · · · , ξt(φK)] −
[μt, · · · , μt], for a single triplet t. The covariance matrix ΣBk−1 has the form
UUT , where each column of U is us, s ∈ Bk−1. In the kth step, a new row
and column vector for a new triplet t are appended to U . Using the Gram
matrix property, we have det(ΣBk−1∪{t})−det(ΣBk−1) = ‖ũk‖2, where ũk is the
normal from ut onto span{us | s ∈ Bk−1}. Thus the greedy scheme successively
maximizes the squared projection error ‖ũk‖2, over the remaining vectors {ut |
t ∈ TU\Bk−1}. Thus we select at each step the triplet that is least correlated
with the already chosen triplets. The orthogonal projections are computed using
the modified Gram-Schmidt orthogonalization scheme from [10], with complexity
dn2, where d is the dimension of the ambient vector space and n the number of
vectors. Since we compute the projection error for all |TU | −n ≈ |TU | remaining
triplets at each step (because |TU | � n), the overall complexity of the scheme is
dn2|TU |.

In summary, the submodularity of the joint entropy function naturally com-
bines informativeness, diversity, and representativeness, which are precisely the
desired properties for batch mode active learning.

4 Experiments

We perform several experiments to answer the following questions: (1) Is
our method competitive with standard baselines, including the state-of-the-art
method(s), for different choices of hyperparameters, feature dimension, appli-
cations, and datasets? (2) How good is our assumption that the second-order
statistics (mean and covariance) are sufficient statistics for estimating the rea-
sonable distribution? (3) How robust is our method to labeling error? We address
these questions by conducting several experiments on real-world datasets with
different modalities: image, food and haptic. For each of these datasets, we select
an appropriate neural network architecture – for the haptic and food datasets
we ensure that these architectures exactly match those of Kumari et al. [20] so
that the comparison is fair ([20] did not present any result on images, requiring
us to implement their method on image databases). We test with different initial
pools and varying batch sizes. We also simulated random errors in the triplet
orderings to test robustness to labeling error.

Datasets. We evaluate the performance of our method on five real-world
datasets for which triplets defining perceptual metrics are available: Yummly
food dataset [34]; TUM haptic texture dataset [30]; Abstract500 image
dataset [25]; CUB-200 image dataset [32], and Scoot facial sketch dataset [5].
The Yummly-Food dataset has 72148 triplets defined over 73 food items based
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on taste similarity. Each food item is represented by a 6D feature vector (this
is an experiment with a low feature dimension) with each component indicating
different taste properties. We use 20K training and 20K test triplets sampled
from the entire set of triplets. The TUM-Haptic dataset contains signals from
108 different types of surface materials. Each type of material has 32-D spectral
feature vectors for 10 representative acceleration traces. The triplets are gener-
ated from a given ground-truth perceptual matrix, which has user-recorded per-
ceived similarity responses. Like the Yummly-Food dataset, we have training and
test sets of 20K triplets each. We also evaluate our method on a comparatively
larger dataset (but relatively small for image data), the Abstract500 image
dataset [25], which contains 500 images of 128 × 128 pixels, with pairwise per-
ceptual similarities between them. Each image is represented by a 512-D GIST
feature (an example of a relatively high-dimensional feature vector) extracted
using 32 Gabor filters at four scales and eight orientations [23]. We use perceptual
matrix to generate 20K training and 20K test triplets. Next, we use the popular
and much larger CUB-200 bird database that contains 200 bird species with
roughly 30 images in each class. We choose five representative images for each
class and generate its features using a pretrained ResNeXt-101-32x8d model.
The network takes segmented images as input and outputs 2048-D feature vec-
tors. The training and test sets each have 10K triplets sampled from the entire
set of 93530 triplets. Finally, the results on the Scoot dataset, which is rela-
tively small, consisting of just 1282 triplets, are presented in the supplementary
material because of space constraints.

Baselines. We compare our method with five baselines, including the state-
of-the-art method: (1) US-〈Dist〉: A batch of individually high-entropy triplets
is pruned subjected to different (denoted by 〈Dist〉) decorrelation measures to
select a diverse batch of informative triplets [20]. It is the current state-of-the-
art for batch mode active metric learning, and outperforms other alternatives
like BADGE [2] (adapted to metric learning). We pick 〈Dist〉 to be the highest-
performing variant in each individual experiment. (2) Variance: Triplets with
the highest individual distance-margin variance across a collection of models
generated using dropout [13]. This method simulates the effect of replacing the
joint entropy of a batch with the sum of individual entropies of triplets in the
batch. (3) Random: A passive learning strategy that uniformly samples each
batch of triplets at random. Though näıve, this choice often results in reason-
ably good accuracy. (4) US: Uncertainty method, which picks the top b triplets
with highest uncertainty in predicted triplet ordering (i.e. the model’s (lack of)
ordering confidence), without taking correlation among them into account [31].
(5) BADGE: A diverse set of triplets with maximum loss gradients for the most
probable label, selected using k-means ([2] adapted to the triplet scenario).

Active Learning Setup. For the CUB-200 dataset, we begin each experiment
with an initial pool of 1000 annotated triplets, and for the other three datasets
with 600 annotated triplets, and pretrain the model φ0, which is used as a com-
mon starting point for all compared methods. In each active learning iteration,
we select the best fixed-size batch of unannotated triplets, using the chosen batch
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Fig. 3. Performance of different active learning methods on two image datasets CUB-
200 and Abstract500 for increasing batch sizes (400/600/800 or 200/500/800, from
left to right). Here accuracy means what fraction of test triplets have been detected
with the correct ordering. To avoid clutter, standard deviations are shown only for the
CUB-200 dataset and the rest are shown in the supplementary material.

selection method, and acquire their orderings. To make convergence faster, we
update the current model φi to obtain φi+1 using the available additional anno-
tated triplets instead of training ab initio. The performance of the learned model
is evaluated by its triplet generalization accuracy, which denotes the fraction of
triplets whose ordering is correctly predicted [19]. Each experiment is repeated
with five random train/test splits, and the average performance along with the
standard deviation is reported. (For most plots, the standard deviation is shown
in supplementary material, for clarity.)

Implementation Details. The architecture and training hyperparameters used
for different datasets are as follows: Yummly-Food: 3 fully-connected (FC) layers
with 6, 12 and 12 neurons; TUM-Haptic: 4 FC layers with 32, 32, 64 and 32 neu-
rons; Abstract500-Image: 6 FC layers with 512, 256, 128, 64, 32 and 16 neurons;
CUB-200: 3 FC layers with 2048, 512 and 32 neurons. Each layer is followed by
a dropout layer with a dropout probability of 0.02. The Adam optimizer [16]
is used for training all models with a learning rate of 10−4 for Yummly-Food,
TUM-Haptic, and Abstract500-Image dataset, and 10−5 for CUB-200 dataset.
The model is trained with an SGD batch size of 500 for 1000 epochs for all four
datasets.

Active Learning Performance. The performance of our method against the
baselines described earlier is plotted in Fig. 3 for the image datasets CUB-200
and Abstract500-Image, shown as a function of the number of active learning
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Fig. 4. Performance of different active learning methods on Yummly-Food and TUM-
Haptic texture datasets for varying batch sizes (500/800/1000 or 400/600/800).

iterations. In Fig. 4, we compare the performances of all methods for the data
from other modalities, i.e., haptic and food. We observe that our method is
consistently better than the state-of-the-art US-〈Dist〉 method (for clarity, we
only show the specific variant offering the best performance in each experiment).
Our method reaches higher accuracies quicker and also tends to converge to a
higher final accuracy on both Yummly-Food and TUM-Haptic datasets. For the
large CUB-200 image dataset, our method is neck-and-neck with the state-of-
the-art for the first few iterations and then rapidly overtakes it, widening the
gap with additional iterations. For the smaller Abstract500 image dataset, the
improvements are more prominent with larger batch sizes, reflecting the focus
of our work on batch-mode learning. Additionally, for the CUB-200 dataset, we
plot the standard deviation in the same plot as the shaded region (of the same
color) around the performance curves for different methods (standard devia-
tions on other datasets are shown in supplementary). Even though the figure
looks a little cluttered, one can see that the standard deviation for the proposed
method is better than that of the next-best method, signifying a more consistent
performance. This substantiates our claim that joint entropy is a better batch
score than an ad-hoc combination of independent informativeness and diversity
heuristics. Further, our method does not require the user to select a suitable
decorrelation heuristic to manually fine-tune the performance.

We also outperform the other two baselines: Random and Variance. It
is particularly informative to see the generally poor performance of Vari-
ance (lower than the Random). Because of high correlations among informative
triplets, individually selecting the most informative triplets does not learn the
entire metric space as well as just picking triplets at random. In contrast, our
method as well as that of Kumari et al. [20] both incorporate batch decorrelation
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Query Proposed method Random sampling

Query Proposed method Random sampling

Fig. 5. Top-4 retrieved images in the order of increasing perceptual distance, left to
right, using our method and random sampling (randomly-selected batches are anno-
tated for training) on different modalities datasets. On both datasets, each model is
trained for twelve training rounds, constituting 18% of training triplets. Images dif-
ferent from the query class are bounded by a red box, substantiating that two images
from different classes can be perceptually more similar than two from the same class.
The triplet order accuracy, defined here as the number of test triplets whose order is
preserved by the ranked list of retrieved images, for our method vs random sampling
after the 12th round of training is M12

Ours = 96.7%, M12
Random = 92% for image dataset

and M12
Ours = 72.9%, M12

Random = 69.3% for food dataset. More results with different
queries and learned metrics are shown in the supplementary material. (Color figure
online)

and outperform random sampling. This shows the critical importance of batch
diversity in an active learning strategy.

Next, we evaluate the effectiveness of our method for an object retrieval
task. Specifically, we compare our method with the random sampling baseline at
different training rounds. We show the retrieval results on two different modal-
ities, food and image. We split the Yummly-Food dataset into 40000 training
and 32148 test triplets, and the CUB-200 dataset into 40000 training and 33000
test triplets. On both datasets, we perform active learning with a batch size of
600 and an initial pool of 500 triplets. For a given query image, the top four
instances from the retrieval set are shown (ranked from most similar to least
similar) in Fig. 5. As we can see, retrieval results of our method resemble the
query in taste or visual appearance better than the random sampling. Please see
the supplementary material for further results from this experiment.

Ablation Study. In order to get an estimate of the covariance matrix, we per-
form random dropouts in the neural network K times. Naturally, as K increases,
one gets a better estimate of the covariance matrix. However, this may increase
the computation time. We perform an ablation study to see how this hyper-
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Fig. 6. Ablation study to analyze the robustness of our method to different values of
K (# of prior models sampled by dropout) and p (dropout probability) on different
datasets.

parameters (i.e., variation in K and dropout probability p) affect the triplet
order accuracy, and the results are shown in Fig. 6 for three different modalities:
image, haptic and food. It can be seen from the plots that a moderate value
of about K = 70 or 100 is good enough as the performance is not significantly
dependent on the choice of K. We also observe that the performance is robust
to variation in dropout probability; however, there is a significant variation for
the Yummly-Food dataset, with optimal p = 0.02.

Runtime Analysis. We also compare the computational requirement of the
proposed method with that of Kumari et al. [20]. The key computational step in
[20] involves searching for the subset of maximally apart (in the feature space)
triplet at each training round, apart from the computation of the gradients. They
also use a greedy search technique for subset selection. For the proposed method,
the subset selection process is efficient, but the computation of determinant of
covariance matrix at each iteration does consume a good amount of time. Overall,
both the methods were found to consume a nearly equal amount of computation
time when the Gram-Schmidt orthogonalization is used. For instance runtimes
(in secs) of different batch selection policies to select a 500-triplet batch from
Yummly-food are: US: 0.109, Variance: 0.083, BADGE: 60.104, US-〈Dist〉: 8.110,
Ours: 7.803. While the computation complexity varies with the feature dimension
and model size, the relative performance remains similar.
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Fig. 7. Performance of our method vs random
sampling in the presence of labeling error.

Robustness to Labeling Error.
To evaluate the robustness of
our method against labeling error,
we corrupt 10% and 30% of
the ground-truth training triplets
in the food and image datasets
by flipping their orders. Figure 7
shows how the noisy training set
affects the performance of our
method vs the random sampling
baseline. For the food data (top), with a relatively low 10% labeling error, our
method takes slightly more iterations to gain accuracy, but eventually converges
to a comparably high accuracy as the noise-free case, while random batch selec-
tion fails to achieve the same performance even with clean data. As the per-
centage of noisy triplets increases, the performance of both methods degrade,
showing vulnerability to large scale labeling error. In the absence of abnormally
high levels of outliers, our method shows robust performance. For the more com-
plex image dataset (bottom), labeling error has a stronger negative effect (the
first selected batch actually decreases overall accuracy), but at each noise level
our method still outperforms the baseline.

Comparison of Data Distribution to Theoretical Distribution. We study
the validity of the Gaussian embedding, though it already has justification as
“worst-case analysis” due to the Maximum Entropy Principle. A standard test
is the quantile-quantile (QQ) plot [4], which indicates how close the empirical
distribution is to the theoretical distribution. For ease of visualization, we show
the QQ plot and histogram for a single randomly-selected unlabeled triplet, for
a particular model trained on the initial triplet pool in each dataset. (We can-
not visualize a full multivariate QQ plot over all possible batches.) In the QQ
plot, the x-axis denotes the theoretical quantiles, which in our case is a Gaussian
distribution with the empirical mean and variance, and the observed ordered dis-
tance margins are on the y-axis. The goodness of fit is indicated by the alignment
of points with the straight line having a unit slope. As shown in Fig. 8, in all four
datasets, the plotted curve closely approximates the corresponding straight lines
shown in red. Our approximation is further validated in the histogram, where
our data distribution shows a reasonable fit with the theoretical distribution
(shown in green) for the most part, except that the actual distribution is a little
more peaked.
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Fig. 8. QQ plot and histogram for all four datasets to demonstrate how closely the
actual distribution follows the theoretical distribution.

5 Conclusion, Limitations, and Future Work

We have introduced a novel approach for batch-mode active metric learning
based on maximizing the joint entropy of a batch. We found that a batch of
individually informative triplets does not form an optimal subset, even if decor-
relation heuristics are applied to reduce their correlation. Instead of defining sep-
arate measures for informativeness and diversity, our method defines the joint
entropy of a batch of triplets as a unified measure that jointly optimizes both.
The overall method involves no heuristic parameter selection and has no control
parameter to tweak, other than the number of dropout samples and dropout
probability, once the network architecture is chosen.

While our method shows promising results, it does have a few limitations.
First, approximating the joint distribution of data using the Maximum Entropy
Principle gives the most general distribution for a given prior, which in the case
of second-order statistics as constraints is a Gaussian. However, in some cases,
where the actual distribution may be quite non-Gaussian, the joint entropy mea-
sure defined with the second-order statistics may misguide the batch selection
policy. One important direction for future work is extending our framework
beyond second-order statistics to learn the joint distribution of data closer to
empirical distribution. Another important extension would be to modify our
framework to dynamically learn the optimal batch size and batch selection pol-
icy, which we believe would further improve the performance and generalize well
to diverse inputs and applications.
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Abstract. In this paper, we proposed an Off-Policy Differentiable Logic
Reinforcement Learning (OPDLRL) framework to inherit the benefits
of interpretability and generalization ability in Differentiable Inductive
Logic Programming (DILP) and also resolves its weakness of execution
efficiency, stability, and scalability. The key contributions include the
use of approximate inference to significantly reduce the number of logic
rules in the deduction process, an off-policy training method to enable
approximate inference, and a distributed and hierarchical training frame-
work. Extensive experiments, specifically playing real-time video games
in Rabbids against human players, show that OPDLRL has better or
similar performance as other DILP-based methods but far more prac-
tical in terms of sample efficiency and execution efficiency, making it
applicable to complex and (near) real-time domains.

Keywords: Deep reinforcement learning · Interpretable reinforcement
learning · Neural-Symbolic AI

1 Introduction

Despite the advantages and benefits of Deep Reinforcement Learning (DRL), its
successful application and deployment need to address the challenges including:
(1) Interpretability. The use of deep neural networks makes the learned policies
difficult to interpret and verify, restricting the application of DRL in many real-
world domains which require clear scientific interpretation, e.g., healthcare and
medical systems. (2) Generalization. The learned policies tend to “over-fit” the
training environment, leading the performance of learned polices to drastically
decrease even when the test environment slightly changes from the training envi-
ronment. (3) Sample efficiency. DRL methods generally require massive numbers
of samples to explore the environment.

Differentiable Inductive Logic Programming (DILP) [6–8,22,29] has been
integrated into DRL frameworks to achieve better interpretability and general-
ization. Trained with standard back-propagation, DILP provides a special formu-
lation of a function approximator, which generates interpretable and verifiable
c© Springer Nature Switzerland AG 2021
N. Oliver et al. (Eds.): ECML PKDD 2021, LNAI 12976, pp. 617–632, 2021.
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Fig. 1. Weight distributions on two benchmark tasks.

logic rules via training samples. The logic rules also behave as a form of regular-
ization, helping to mitigate over-fitting and improve the generalization ability.
Integrating DILP into DRL helps to interpret policies, making the agent’s behav-
ior more verifiable and robust.

[7,8] proposed ∂ILP to learn logic rules from noisy data, demonstrating the
strength of DILP in interpretability and generalization. [17] introduced Neural
Logic Reinforcement Learning (NLRL) which applies DILP in sequential decision
making tasks and trains it via vanilla policy gradient [38]. [6] proposed Neural
Logic Machines which trades off some interpretability for better scalability in
comparison with NLRL.

However, the integration of DILP and DRL suffers from its execution effi-
ciency, stability, and scalability, making it infeasible to many applications requir-
ing real-time or near real-time responses, such as autonomous driving and game
playing.

– Execution efficiency. DILP takes a top-down and generate-and-test app-
roach, which first generates all potential logic rules and then finds the opti-
mal subset. In general, the number of potential rules is relatively large and
the computational cost of DILP is much higher than Multi-layer Perceptron
(MLP) networks for policy learning. For an MLP with n linear layers and
h hidden neurons at each layer, e.g. in a medium-size problem where n = 3
and h = 256, its forward computational complexity is O(nh2) ≈ 2 × 105. In
comparison, the complexity of the DILP, which deduces n steps with l logic
rules and each rule matches k cases, m ground atoms, is O(nmlk) ≈ 2 × 107

for a medium-size problem where n = 5, l = 2000, k = 10, and m = 200.
The number of logic rules in DILP is generally relatively large, resulting in
long periods of policy response. This prohibits its application in real-time or
near real-time domains. To address this issue, we proposed to reduce the num-
ber of rules by at least an order of magnitude. In fact, our study of all potential
rules after training revealed that only a small number of rules are non-trivial
to induction. Figure 1 depicts the weight distribution, in which the experi-
ment task “On” showed that 99.60%(1981/1989) rules have weight less than
0.01, thus being negligible. Therefore, we proposed the solution of approxi-
mate inference which extends the technique of network pruning [9,20,21,40]
to DILP. It measures the importance of logic rules and maintains a dynamic
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set of rules at run time. Due to the boost of execution efficiency, our model
can provide (near) real-time policy responses, which is difficult for previous
Neuro-Symbolic methods.
In addition, we developed a distributed reinforcement learning framework
which decouples the learning (experience utilization) and acting (experience
collection) processes, enabling their parallel execution on different machines
to reduce the training time.

– Stability. In comparison with MLP, DILP, specifically, after the use of
approximate inference, is much harder to be optimized and its learning curve
oscillates intensely (see Sect. 4). Therefore, we proposed to adopt Maximum
Entropy Reinforcement Learning (MERL) approach [10–12,39,42] which aug-
ments an entropy term to the objective of standard reinforcement learning
(cumulative reward), encouraging policies to consider both optimal and sub-
optimal actions. MERL can decrease overall estimation errors to stabilize the
training, as demonstrated by [41].

– Scalability. It is difficult to apply DILP in large-scale/continuous domains
due to its high computational cost. Thus, we further extended DILP with
hierarchical reinforcement learning [1,5,28,35], to decompose the entire task
to simpler sub-tasks, making it possible to employ DILP in complex domains,
such as video games.

Although approximate inference helps to significantly reduce the time
required for the policy response, it also causes existing on-policy RL algorithms
to fail as agents cannot sample actions from online-policy due to non-trivial
feature of approximate inference. Our empirical results showed that the errors
can be ignored if the model is trained sufficiently. However, errors are inevitable
in the early learning stages. Thus, a well-designed off-policy training method
becomes the key to the success of approximate inference. Besides, off-policy
training also helps to greatly improve sample efficiency by reusing the samples
in the experience replay buffer [15,16,25,37].

The natural solutions of policy gradient algorithms [24,31–33] are not directly
feasible to train the policy expressed by DILP, or differentiable logic policy
(DLP), due to the requirement of off-policy training. Therefore, Q-learning [15,
25,37], a classic off-policy algorithm, is adopted. To enable Q-learning to work
seamlessly with DLP in the MERL framework, we used the Soft Q-Learning and
Soft Policy Iteration theorem [10–12] as the bridge connecting the Q-value and
policy.

In summary, we proposed Off-Policy Differentiable Logic Reinforcement
Learning (OPDLRL), which inherits the benefits of interpretability and general-
ization ability from DILP but also resolves its weakness of execution efficiency,
stability, and scalability, making OPDLRL applicable to complex and (near)
real-time domains. The key contributions of the paper include:

– We proposed the use of approximate inference to significantly improve the
execution efficiency, making our model feasible in (near) real-time applica-
tions. To achieve approximate inference and improve sample efficiency, we
proposed an off-policy training method in MERL framework, which uses the
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soft Q-learning and soft policy iteration theorem to connect the policy and
Q-value.

– We developed a distributed and hierarchical training framework for DILP,
which significantly improves the training efficiency and makes our model fea-
sible in complex application domains.

– We tested OPDLRL extensively with both benchmark tasks and complex
domain tasks. The results showed that OPDLRL significantly outperformed
other DILP-based DRL algorithms regarding both performance and sample
efficiency in Block Manipulation and Car Avoiding tasks, and OPDLRL could
learn to play Rabbids1 video game and competed with human players suc-
cessfully while MLP-based and other DILP-based solutions failed.

2 Preliminary

2.1 First-Order Logic Programming

An atom α = p(t1, . . . , tn) consists of the predicate (relation) p and terms
(entities) t1, . . . , tn, where ti is a variable or a constant. A ground atom has
all terms as constants. An extensional predicate is defined by a set of ground
atoms while an intensional predicate is defined by some clauses. A clause
α ← α1, . . . , αn consists of the head α and body α1, . . . , αn, meaning that the
head is true if all atoms of body are true. A deduction starts from a set of
ground atoms, and applies a set of clauses to generate more ground atoms.

2.2 Differentiable Inductive Logic Programming

An Inductive Logic Programming (ILP) problem [26,27] is a tuple {B,P,N}, in
which B,P,N are sets of background , positive and negative atoms, respec-
tively. DILP denotes the truth of an atom as p ∈ [0, 1], representing the proba-
bility that the atom is true. Let G be the set of all ground atoms, and a valu-
ation is a vector v ∈ [0, 1]||G|| representing the probability of all ground atoms.
A language frame defines target predicates (objective of ILP), extensional
predicates, their arity and constants. A program template defines available
auxiliary predicates, their arity and rule templates. A rule template describes
whether intensional predicates can be used, and claims the number of existen-
tially quantified variables. With language frames and program templates speci-
fied, the set of all possible clauses can be generated, and DILP assigns a probabil-
ity/confidence for each clause or combination of clauses. The deduction (forward
computation) of DILP evaluates the results of all clauses and weights them by
corresponding confidence, which is trained to maximize the probability for pos-
itive and negative atoms to be satisfied via standard back-propagation. Please
refer to [7] for more details.

1 https://en.wikipedia.org/wiki/Raving Rabbids.

https://en.wikipedia.org/wiki/Raving_Rabbids
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2.3 Maximum Entropy Reinforcement Learning

A Markov Decision Process (MDP) is defined as a tuple {S,A, T,R}, where
S is the state space, A is the action space, T is the transition function, and
R is the reward function. In standard RL, the objective is to find a policy
that can maximize the expectation of cumulative discount reward E[

∑T
t=0 γtrπ

t ],
where γ is the discount factor and rπ

t is the reward at time step t. In maximum
entropy RL, the objective is augmented with an entropy term: E[

∑T
t=0 γt[rπ

t +
αH(π(·|st))]], where α is the temperature/weighting parameter and H(π(·|st))
is the entropy of action distribution of a policy π given state st.

The entropy augmented objective can be optimized via soft policy itera-
tion [10–12]. In the soft policy evaluation step, soft Q-value is computed based
on policy π to evaluate its performance:

Qπ(s, a) = r(s, a) + γEs′∼T [V π(s′)]
V π(s) = Ea∼π[Qπ(s, a) − α log π(a|s)] (1)

In the soft policy improvement step, a new policy is generated by minimizing
the Kullback–Leibler (KL) divergence between the action distribution and the
exponential of soft Q-value under the old policy π for each state:

πnew = arg min
π′∈Π

DKL(π′(·|s)||exp( 1
αQπ(s, ·))
Zπ(s)

) (2)

where Π is the set of all potential policies and Zπ(s) is the partition function
normalizing the distribution.

3 Off-Policy Differentiable Logic Reinforcement Learning

Figure 2 shows an overview of the OPDLRL framework. The following sections
explain its components.

3.1 Differentiable Logic Policy

To implement logic programming in DRL, symbolic compilers are first required
to align logic expressions with reinforcement learning environments. In this
paper, a symbolic state is represented by a set of ground atoms s̄ ⊆ Gs, where
Gs is the set of all ground state atoms. A state compiler S → {0, 1}||Gs|| trans-
lates environment states into symbolic states. A symbolic action is represented
by a ground atom ā ∈ Ga where Ga is the set of all ground action atoms. Once
a symbolic action is decided by policies, it needs to be translated to an envi-
ronment action by an action compiler Ga → A. These compilers are usually
hand-crafted or initiated by a pre-trained neural network. A set of background
atoms is provided to describe the relations of constants regarding the task.
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Fig. 2. Framework of Off-Policy differentiable logic reinforcement learning.

With the symbolic compilers, a MDP becomes a First-order MDP (FOMDP)
problem [2,18,30] in a stricter form. We define the target and extensional predi-
cates of the language frame as the action and state predicates of FOMDP respec-
tively, and define the auxiliary predicates that help to represent policies in the
program template. Thereafter, all possible clauses can be generated with the
language frame and program template.

We denote the policy of the FOMDP as πθ, the i-th rule template of predicate
e as τe

i , and the corresponding set of clauses as Γ e
i . For each Γ e

i , we initialize
a vector θe

i of length ||Γ e
i || by Gaussian distribution with mean 0.00 and stan-

dard deviation 0.05. The probability (confidence) of the j-th clause in Γ e
i is

parameterized as:2

pe
i (j) =

θe
i (j)

2

||θe
i ||2

. (3)

In a single deduction step, the output valuation vector is computed by:

v = min(1,v0 +
∑

e

⊕

i

∑

j

pe
i (j)ve,i,j) (4)

where ve,i,j denotes the valuation inferred by the j-th clause in the clause set
Γ e

i according to input valuation of current deduction step. The weighted sum
amalgamates the valuations for different clauses but with the same rule tem-
plate, the probabilistic sum ⊕ (x ⊕ y = x + y − xy) amalgamates the valuations
for different rule templates, and finally, the valuations for different predicates
are summed up. v0 is the initial valuation which is a multi-hot vector defined

2 The comparison of different parameterization methods can be found in the Supple-
mentary Material.
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jointly by the current symbolic state and background atoms, and it is added
in each deduction step to steer off the local optima as suggested in [17]. The
final valuation is clipped to [0, 1] to prevent the overflow and treated as input
valuation to the next deduction step.

3.2 Approximate Inference

The inference process in DLP involves all clauses, thus significantly more expen-
sive than an MLP policy regarding the computational cost. We propose approx-
imate inference to reduce the response time of the inference process, given as:

v = min(1,v0 +
∑

e

⊕

i

∑

k∈{j|pe
i (j)>η}

pe
i (k)ve,i,k) (5)

where η is the threshold to filter out the negligible clauses to the deduction.

3.3 Off-Policy Training

Section 1 has shown approximate inference can significantly reduce the computa-
tion time of the deduction, but cannot leverage existing on-policy RL algorithms
due to its non-trivial feature. Thus, we propose an off-policy approach to train
the approximate inference-facilitated DLP.

Our off-policy training process stems from soft policy iteration theorem,
which connects Q-learning and policy gradient method in MERL framework.
Therefore, the solution benefits from both Q-learning, which implements off-
policy to enable approximate inference and improve sample efficiency, and policy
gradient, which applies a separate policy network to achieve better interpretabil-
ity.

For the soft policy evaluation, we use MLP networks to approximate soft Q-
value and train it by minimizing TD-error (with an augmented entropy term),
given as:

JQ(ϑ) = E(s,a,r,s′)∼D[
1
2
(r + γV (s′) − Qϑ(s, a))2]

V (s) =
∑

a

πθ(a|s)[Qϑ̄(s, a) − α log πθ(a|s)] (6)

where D is the replay buffer, ϑ and ϑ̄ are the parameters of online and target
Q-network respectively, and πθ(a|s) is the action distribution computed by the
exact inference of DLP. Target Q-network [25] periodically syncs with online
Q-network to stabilize the learning of soft Q-value. Note that our method has
two expectation terms in Eq. (1): Es′∼T is computed by Monte-Carlo estimation
(sampling from replay buffer), and Ea∼π is computed as the weighted sum of
networks’ output values for all actions (discrete space).

For the soft policy improvement, we ignore the constant partition function
Zπ(s) and take the logarithm of Eq. (2) to jointly optimize πθ and Qϑ, given as:

Jπ(θ) = Es∼D[
∑

a

πθ(a|s)(α log πθ(a|s) − Qϑ(a|s))] (7)

The expectation term in KL-divergence in Eq. (2) is computed as weighted sum.



624 L. Zhang et al.

3.4 Hierarchical Policy Implementation

To enable OPDLRL to work effectively for complex tasks with large/continuous
state/action space and (near) real-time response requirement, we further develop
a hierarchical policy implementation in which the agent’s policy is formulated
as being hierarchical. OPDLRL works at the top level to determine which sub-
policy should be taken according to the symbolic state (high-level state) and
tries to minimize external reward. A sub-policy (skill) is pre-trained to achieve a
sub-goal and it takes the primary states and outputs primary actions. Symbolic
compilers perform the translation between different hierarchies.

4 Experiments

OPDLRL, its variants, and other relevant methods have been extensively tested
in two relational RL benchmark tasks, namely Block Manipulation and Car
Avoiding, and one real-time task Rabbids, which is a popular video game consist-
ing of many mini-games. In this paper, we used OPDLRL to play the bumper-car
game in Rabbids against behavior tree [4] agent and human players.

Table 1. Performance comparison on different tasks. Items in table are the mean and
standard deviation for 300 different runs.

On Stack Unstack Car Avoiding

OPDLRL− 0.936(±0.01) 0.941(±0.03) 0.950(±0.01) 0.960(±0.00)

OPDLRL 0.934(±0.01) 0.942(±0.03) 0.950(±0.01) 0.960(±0.00)

NLRL 0.881(±0.05) 0.908(±0.05) 0.909(±0.05) 0.947(±0.16)

NLRL(AI) 0.816(±0.08) 0.817(±0.12) 0.902(±0.05) 0.488(±0.82)

SAC 0.933(±0.01) 0.947(±0.02) 0.953(±0.01) 0.960(±0.00)

PPO 0.940(±0.00) 0.957(±0.05) 0.960(±0.00) 0.960(±0.00)

PPO(DLP) 0.940(±0.00) 0.870(±0.09) 0.897(±0.06) 0.952(±0.11)

PPO(DLPAI) 0.888(±0.05) 0.862(±0.09) 0.898(±0.05) 0.953(±0.11)

On+ Stack+ Unstack+ Car Avoiding+

OPDLRL− 0.936(±0.01) 0.953(±0.03) 0.950(±0.02) 0.960(±0.00)

OPDLRL 0.935(±0.01) 0.948(±0.04) 0.949(±0.02) 0.960(±0.00)

NLRL 0.880(±0.05) 0.908(±0.05) 0.896(±0.06) 0.947(±0.16)

NLRL(AI) 0.805(±0.09) 0.800(±0.13) 0.894(±0.06) 0.465(±0.84)

SAC −0.985(±0.23) −0.390(±0.79) 0.295(±0.66) −0.896(±0.44)

PPO −0.821(±0.49) −0.437(±0.77) −0.989(±0.22) −0.974(±0.22)

PPO(DLP) 0.940(±0.00) 0.906(±0.08) 0.894(±0.06) 0.946(±0.16)

PPO(DLPAI) 0.877(±0.06) −0.866(±0.46) 0.905(±0.06) 0.946(±0.16)
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Fig. 3. Learning curve in different tasks.

4.1 Methods for Evaluation

8 methods have been experimented, including: i) OPDLRL: the method we
proposed. ii) OPDLRL−: OPDLRL without approximate inference. iii) NLRL:
refer to Sect. 1. iv) NLRL(AI): NLRL with approximate inference. v) SAC:
Soft Actor Critic [3,11,12], a state-of-the-arts off-policy RL algorithm based on
MLP networks. vi) PPO: Proximal Policy Optimization [32], a state-of-the-arts
on-policy RL algorithm based on MLP networks. vii) PPO(DLP): PPO with
differentiable logic policy. viii) PPO(DLPAI): PPO(DLP) with approximate
inference. Note that all the compared methods share the same observation space,
task hierarchies and pre-trained subpolicies for fairness.

4.2 Experiment Setting

Block Manipulation. In Block Manipulation, the agent keeps on moving the
top block of a pile until the goal block state is achieved. The constants include
{a, b, c, d, floor} where a, b, c, d are blocks. The predicates include a state pred-
icate on(X,Y ) representing block X is on top of Y and Y can be a block or
floor, an action/target predicate move(X,Y ) representing moving block X to
the top of Y , and floor(X) representing whether X is floor and the background
is {floor(floor)}. The agent will get −0.02 reward for each step if it cannot
achieve the goal within 50 steps, and +1 reward when it achieves.

There are three kinds of goals in the experiments: (1) On task: The goal state
is having block X right on top of block Y which is represented as an additional
background predicate goal(X,Y ). The initial state has all blocks in a pile. (2)
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Fig. 4. Impact of approximate inference. Colors are computed via Eq. (10) with log
scale. (Color figure online)

Stack task: The goal state is having all blocks in a pile and the initial state has
all blocks on floor. (3) Unstack task: The goal state is having all blocks on floor
and the initial state has all blocks in a pile.

Car Avoiding. A Car Avoiding task has two cars in a circular platform. The
goal of the agent is to control one car to occupy the center without collid-
ing with the opponent car. The platform is divided into 12 regions which are
denoted as (X,Y ) where X ∈ {a, b, c} describes the distance levels from cen-
ter and Y ∈ {0, 1, 2, 3} describes quadrants. The predicates include: me(X,Y )
and enemy(X,Y ) for the position of agent and opponent respectively, forward(),
backward(), left(), and right() for actions of going forward, backward, turning
left and right respectively, and outer(X,Y ) for the relation between a, b, c with
the background as {outer(a, b), outer(b, c)}. In the initial state, the agent is at
(c, 0) and opponent is at (a, 0). The opponent car will move along (a, 0) →
(b, 0) → (c, 0) and remain at (c, 0). The agent gets −1 reward if it is hit by its
opponent and +1 reward if it occupies the center ((a, ∗)). The game terminates
if the agent is hit or fails to reach the center within 50 steps.

4.3 Results and Analysis

Performance. Table 1 shows the performance results of OPDLRL3 and other
methods. The top section shows the experiments with the same training and
test environments. The performance of OPDLRL and OPDLRL− is very close
to the best in all tasks. MLP-based methods (SAC and PPO) perform slightly
better than OPDLRL in this setting as MLP has a more flexible structure and
is easy to be optimized. Note that the number of trained parameters in MLP
is much larger than that in DILP. In the experiments, MLP-based approaches
have about 5 × 104 parameters while DILP requires only 2 × 103, indicating
a better fitting ability in MLP. In comparison with the DILP-based methods
(NLRL, NLRL(AI), PPO(DLP) and PPO(DLPAI)), OPDLRL and OPDLRL−

3 We used the same setting of hyper-parameters for all tasks.
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show evident advantages as they adopt the entropy-augmented reward and opti-
mize with soft policy iteration to reduce the overall estimation error and stabilize
the training, as discussed by [41].

Interpretability. The logic rules learned by our method in tasks On and Car
Avoiding are as follows (for concise, we only show the rules with probability
greater than 0.1):

On:
1.00 : aux2(X) ← on(X,Y ), on(Y,Z)
1.00 : aux1(X) ← aux2(X), top(X)
0.97 : move(X,Y ) ← floor(Y ), aux1(X)
0.90 : move(X,Y ) ← goal(X,Y ), top(X)

(8)

where aux1 and aux2 are the auxiliary predicates induced by our method.
aux2(X) is true if there is a Y such that X is on the top of Y and Y is on
the top of Z. Y on Z means Y is not floor (Y is a block), thus aux2(X) means
X is on the top of a block (X is not on floor). aux1(X) is true if X is not on
floor (aux2(X)) and X is the top of a pile (top(X)). The behavior of an agent
can be interpreted as: 1) For a pile with 2 or more blocks, move the top block to
floor. 2) If the goal is to have X on Y and X is movable (X is the top block),
then move X to Y .

Car Avoiding:

1.00 : forward() ← enemy(X,Y ), outer(Z,X)
0.58 : left() ← me(X,Y ), enemy(Z, Y )
0.59 : right() ← me(X,Y ), enemy(Z, Y )

(9)

The goal of an agent is to control one car to occupy the center without colliding
with the opponent car. The behavior of an agent can be interpreted as: 1) If the
agent and opponent are in the same quadrant, then move left or right. 2) If the
opponent is not in (a, ∗) then move forward.

Generalization. The bottom section of Table 1 shows the experiments with
different training and test initial state, thus evaluating the generalization ability
of models. Specifically, (1) On+: changing the order of blocks in the test. (2)
Stack+: using 2 piles in the test while 4 piles for the training. (3) Unstack+:
using 2 piles in the test while 1 pile for the training. (4) Car Avoiding+: chang-
ing the initial position of two cars in the test. OPDLRL and OPDLRL− achieve
the best performance in this new task settings as our methods utilize logic expres-
sions to capture the essence of task operations, resulting in better generalization.
The performance of MLP-based methods (SAC and PPO) decreases drastically
due to their over-fitting to the training environment. PPO(DLP) has a slightly
better performance than ours in task On and On+ but lags in all other tasks.
Note that the loss function of PPO also includes an entropy term but it is used
as a regularization term to help exploration.
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Off-Policy Training. Figure 3 depicts the learning curves of all DILP-based
methods on four tasks. OPDLRL and OPDLRL− substantially outperform oth-
ers in all tasks regarding sample efficiency (convergence), indicating the effec-
tiveness of the off-policy training and the approximate inference strategy in our
framework. For each task, NLRL(AI)/PPO(DLPAI) perform remarkably worse
than their corresponding variant without approximate inference because NLRL
and PPO(DLP) apply on-policy training but the use of approximate inference
requires off-policy, resulting in the outstanding performance loss. The learn-
ing curves of OPDLRL and OPDLRL− are similar as they both apply off-policy
training. In fact, OPDLRL converges faster than OPDLRL− in Stack, Unstack,
and Car Avoiding tasks because of efficient Exploration-Exploitation: the noisy
produced by approximate inference helps policy to diverge from the local-optima
in early training stages. Moreover, the use of approximate inference in OPDLRL
can significantly reduce the response/deduction time of policies due to dropping
a large number of negligible rules (90% potential rules were discarded in the
experiments without compromising the performance). SAC and PPO have sim-
ilar convergence patterns as our methods but with worse generalization. There-
fore, they are not included in the comparison.

Impact of Approximate Inference. Figure 4 illustrates the impact of approx-
imate inference by measuring the difference between the policy π with full infer-
ence and π̂ with approximate inference on task On for given training steps
and drop rates4. 1000 states {s1, · · · , s1000} were sampled from the environment
based on π. For each si, the KL-divergence between π(·|si) and π̂(·|si) was used.
The difference between π and π̂ is computed as:

Esi∼π[DKL(π(·|si)||π̂(·|si)) + DKL(π̂(·|si)||π(·|si))] (10)

The heatmap depicts the log scale value of Eq. (10). The difference caused by
approximate inference is only notable in the early training stages. The difference
becomes trivial after 440 learning steps even with a large drop rate (e−20 ≈
2 × 10−9 when x = 440, y = 0.9). The observation supports the discussion in
Sect. 1 and the key motivation of the paper: approximate inference with off-policy
training can significantly boost the execution efficiency without sacrificing the
benefits of DILP.

4.4 Rabbids Game

Experiments Setting. To test OPDLRL’s capability of (near) real-time infer-
ences in complex domains, we developed a real-time game-play agent with
OPDLRL to compete with other models and human players in the bumper-car
mini-game of the Rabbids, which requires a policy response within the interval
between frames. The state (vector) implies the position coordinates, velocity,

4 Drop rate represents the percentage of rules ignored in the approximate inference,
see Eq. (5).
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and orientation of four cars, and the actions are forward, backward, left, right,
as well as their combination. The state compiler translates the continuous state
vector to high-level symbolic states, and the action compiler translates the high-
level symbolic actions to a sub-goal, which a sub-policy tries to achieve. The
high-level symbolic environment of Rabbids is a super-set of Car Avoiding with
the following extra predicates: danger(X,Y ) for whether a region (X,Y ) can be
reached by an opponent, reach(X,Y ) for whether a region (X,Y ) can be reached
by agent, to(X) for a sub-goal of moving to the opponent X, avoid() for a sub-
goal of avoiding the opponent, and tocenter() for a sub-goal of moving to the
center. The action predicates in Car Avoiding are also considered as sub-goals
to make high-level policy more flexible. danger(X,Y ) and reach(X,Y ) contains
the velocity and orientation information, computed by a pre-trained network.
Our agent was trained against behavior tree agents. Agent gets +1 reward when
an opponent falls from the platform and get −1 reward when agent itself falls.
Within one episode, each car has three chances to re-spawn. Agent wins the
episode if and only if it stays alive until the end.

Results. After the training, both OPDLRL agent and SAC agent achieved
higher win rates against the behavior tree agent (OPDLRL:100.0%(124/124),
SAC:97.1%(99/102)). To evaluate the generalization ability, we organized a series
of competitions against human players, and OPDLRL agent kept 100.0%(21/21)
win rate while SAC agent decreased to only 20.0%(4/20). We observed that most
loss of SAC agent was caused by states which were unseen during training. For
example, SAC agent may act a self-killing behavior when an opponent stays still,
as staying still has never occurred during the training against a behavior tree
agent. The higher win rates of OPDLRL agent show that our method success-
fully captures/induces the key point via DILP. Unfortunately, other DILP-based
approaches failed this test as they cannot compute a practical response within
the time limit.

5 Discussion

Mirror Descent. Reinforcement learning with interpretable policy representa-
tion is challenging because of its highly structured nature of the policy space.
Thus, the training of interpretable policies cannot be seen as an unconstrained
policy optimization. Mirror descent is an efficient method to solve a constrained
optimization problem and [34] has demonstrated how to learn a programmatic
policy via mirror descent. SAC is known as a special form of mirror descent
[23,36]. The use of SAC to optimize DILP in our paper can thus be interpreted
from a perspective of mirror descent: i) learning an unconstrained policy via
MLP-based Q-function (Eq. (6)); ii) projecting the unconstrained policy into
constrained DILP-based policy space (Eq. (7)). From a theoretical perspective,
this view may help understand the advantages of our method and provide insight
to further improving Neuro-Symbolic methods with structured nature.
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Multi-Agent. Rabbids can also be seen as a multi-agent game. Generally,
single-agent RL algorithms cannot converge to a robust policy which can ratio-
nally respond to various opponent’s policy due to the non-stationary feature
caused by the change of opponent’s policy. Currently, the most popular and
successful solution to multi-agent game is self-play [13,14,19]. Instead of using
self-play, in this paper, we explored to learn a robust/well-performed single-
agent policy for a multi-agent video game via a specified regularization, which
restricts the policy within the interpretability structure. The results proved the
effectiveness of our solution when dealing with the multi-agent environment.

6 Conclusion

In this paper, we proposed Off-Policy Differentiable Logic Reinforcement Learn-
ing (OPDLRL) framework to inherit the benefits of interpretability and gener-
alization ability in DILP and also resolve its weakness of execution efficiency,
stability, and scalability. OPDLRL has similar or better performance than other
DILP-based methods but far more practical in terms of sample efficiency and exe-
cution efficiency, making it applicable to complex and (near) real-time domains.
The key contributions include the use of approximate inference to significantly
reduce the number of logic rules required for inferences and the well-designed
off-policy training process to enable approximate inference. Various experiments,
specifically playing real-time video games in Rabbids against human players,
demonstrated its strength and practicability.
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Abstract. In this paper we introduce an explanation technique for Con-
volutional Neural Networks (CNNs) based on the theory of causality by
Halpern and Pearl [12]. The causal explanation technique (CexCNN)
is based on measuring the filter importance to a CNN decision, which
is measured through counterfactual reasoning. In addition, we employ
extended definitions of causality, which are responsibility and blame to
weight the importance of such filters and project their contribution on
input images. Since CNNs form a hierarchical structure, and since causal
models can be hierarchically abstracted, we employ this similarity to per-
form the most important contribution of this paper, which is localizing
the important features in the input image that contributed the most
to a CNN’s decision. In addition to its ability in localization, we will
show that CexCNN can be useful as well for model compression through
pruning the less important filters. We tested CexCNN on several CNNs
architectures and datasets. (The code is available on https://github.com/
HichemDebbi/CexCNN)

Keywords: Explainable Artificial Intelligence (XAI) · Convolutional
Neural Networks (CNNs) · Saliency maps · Causality · Object
localization · Pruning

1 Introduction

Convolution Neural networks (CNNs) [16,17] represent a class of Deep Neu-
ral Networks (DNNs) that focus mainly on image data. Employing CNN made
breakthroughs in computer vision tasks, such as image classification [8], object
detection [10] and semantic segmentation [21]. To get a deep insight on CNN’s
behavior and explain their decisions, recently many works have been proposed.

To get a deep insight on CNNs’ behavior and understand their decisions,
recently many works have investigated the visualization of their internal structure,
through visualizing CNNs filters in the aim of exploring hidden visual patterns.
The Gradient-based methods [29,33] made a breakthrough in CNN visualization.
These methods aim to compute the gradient of the class score with respect to the
input image, where the method of [33] gives top-down projections from a layer to
another enabling hierarchical visualization of the features in the network. While
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gradient-based methods have shown a great success, they lack actually expressing
the causes for such features classification. To this end, recently a class of causal
explanation methods [15,27] has emerged in order to give causal interpretation
for CNNs decisions, or abstract the CNN models into causal models.

Pearl suggests that truly machine learning models should provide counterfac-
tual interpretations of the form: “I have done X = x, and the outcome was Y = y,
but if I had acted differently, say X = x′, then the outcome would have been bet-
ter, perhaps Y = y′.” The Causal hierarchy as described by Pearl consists of three
main classes. At the first level comes association, which is used mainly to express
statistical relationships, and then comes interventions, which is based on changing
what we observe, not just seeing it as it is, so it answers the question, what if I do
X. Then at the top level of this hierarchy we find counterfactuals, which combine
both association and intervention. So it would help to answer the questions, was
it X that caused Y? What if I had acted differently?

Due to the importance of counterfactuals, Halpern and Pearl have extended
the definition of counterfactuals by Lewis [19] to build a rigorous mathematical
model of causation, which they refer to as structural equations [12,13]. Based
on this definition, Halpern and Chockler [6] introduced the definition of respon-
sibility. Responsibility extends the concept of all-or-nothing of the actual cause
X = x for the truth value of Boolean formula ϕ. It measures the number of
changes that have to be made in a context u in order to make ϕ counterfactually
depends on X. When we have an uncertainty around the context, we face in
addition to the question of responsibility the question of blame [6].

Recently Beckers and Halpern [5] addressed the problem of abstracting causal
models, through arising the question regarding the human behavior: does a
high-level “macro” causal model that describes for instance beliefs, is a faith-
ful abstraction of a low-level “micro” model that describes the neuronal level.
They concluded that abstracting causal models is very relevant to the increasing
demand for explainable AI, building on the fact that the only available causal
model for such ML model is too complicated for humans to understand.

In this paper, we propose a causal explanation technique for CNNs (CexCNN)
that adopts all the definitions of causality, responsibility and blame in a comple-
mentary way. Through this paper, we will show how these definitions are very
appropriate for explaining CNNs predictions. The key concept of this adoption
is about identifying actual causes. In CNNs, it is evident that the main building
blocks that derive the output are the filters. So, we consider filters as actual causes
for deriving such a decision. Once the causal learning process is complete, for each
outcome we obtain some filters that have more importance than others. For each
filter we assign a degree of responsibility as a measure for its importance to the
related class. Then, the responsibilities of these filters are projected back to com-
pute the blame for each region in the input image. The regions with the most blame
are returned then as the most important explanations.

Since filters are identified at the level of each convolutional layer, and since
convolutional layers in CNNs have a hierarchical form, we can say that the filters
at low levels have a causal effect on the output of the last layer. So CNNs actually
express causality abstraction. This fact drives us to consider this abstraction as
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well for our explanation technique. To our knowledge, this is the first application
in which all the definitions of causality, responsibility and blame, in addition to
abstracting causality are brought together.

To prove the effectiveness of CexCNN, we conducted several experiments on
different CNNs architectures and datasets. The results obtained showed the good
quality of the explanations generated, and how they highlight only the most impor-
tant regions. We describe in the following the main contributions of this paper:

– We propose CexCNN, a causal explanation framework for CNNs, which
combines different notions on causality: responsibility, blame, and causal
abstraction.

– CexCNN identifies salient regions in input images based on the most respon-
sible filters of the last convolution layer

– CexCNN does need to neither modify the input image, nor the network.
Moreover, no retraining is needed.

– CexCNN allows the identification of all salient regions, from the most impor-
tant to the least ones, thus it can be used for object localization.

– Comparing to existing Weakly Supervised Object Localization(WSOL) meth-
ods, CexCNN shows better results.

– Through the causal information learned of each filter, CexCNN can be used
as well for compressing CNNs architectures through pruning the least respon-
sible filters.

2 Related Work

Visualizing and Explaining CNNs
Gradient-based methods: DeepLIFT [4], CAM [34], GradCAM [28], Integrated
gradients [32] and SmoothGrad [31] have been proposed recently in the aim
of localizing neurons having more effect, and then assign scores to the inputs
for a given output. The latter provides saliency maps that can be obtained by
testing the network repeatedly, and trying to find the smallest regions on input
images whose removal causes the classification score to drop significantly. Some
of these methods have been implemented and regrouped together in different
visualization toolboxes [1]. While these models are mainly applicable to CNNs,
and most of them are very fast, which enable them to be employed in real-time
applications, there exist models such as LIME [25] and SHAP [22] that can be
used for interpreting decisions of any ML model, but unfortunately they are slow
to compute since they require multiple evaluations.

Our technique has many similarities to CAM [34] and Grad-CAM [28], since
we employ a score-based technique, however, it is represented here in term of
filters responsibilities. As main differences, the scores of filters based on coun-
terfactual information are computed for only one instance of the class cate-
gory, which can be then used for localizing the most discriminative regions of
any instance of this class. However, for Grad-CAM, the scores might change
depending on the instance in use. This important feature would lead to consis-
tent explanations for different instances. In addition, CexCNN does not require
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any architectural changes or retraining. Although Grad-CAM does not require
architectural changes as well, it could be affected by some modifications, such as:
Grad-CAM has been found to be more effective with global average pooling than
global max pooling. CexCNN is not affected by such a modification. Actually,
based on an experiment on MNIST dataset, we will also show that the results
of CexCNN are consistent despite the visualization method in use, in contrast
to Grad-CAM, where we will have different attention results.

Finally, both Grad-CAM and CexCNN can be used for Weakly Supervised
Object Localization (WSOL), since they provide attention maps representing
the most important regions. However, our method could give better results in
this regard, since it can be easily extended to localize less important features,
thus, resulting in identifying the entire object, not only its important features.

Causal Explanation of CNNs: The causal-based explanation methods sug-
gest to rely on the cause-effect principle. By employing either statistical, inter-
vention or counterfactual approaches, many causal explanation methods have
been proposed in order to give causal interpretation for CNNs decisions, or
abstract the CNN models into causal models.

Harradon et al. [15] have considered building a causal model for CNNs, which
is a casual Bayesian model built based on extracting salient concepts. These con-
cepts represent then the variables in the Bayesian model. Based on the definition
of causal interventions, Narendra et al. [24] proposed structural causal models
(SEM) as an abstraction of CNNs. This method is based on considering filters as
causes, and then ranking them by their counterfactual influence with respect to
each convolution layer. Given the SEM, the user would be able to get an answer
for the following query or question: what is the impact of the n-th filter on the
m-th layer on the model’s predictions?”. The main drawback of this approach
is the size of the causal model generated, which could consist of thousands of
nodes and edges.

Our approach to causality differs to previous methods in different ways. While
these methods attempt to build an equivalent causal model that acts as an
explanatory model for CNNs, our approach learns only the most important fea-
tures, thus enabling class discrimination through estimating the responsibility of
each causal filter in the last convolution layer, where the rest of non-causal fil-
ters are omitted. From another side, our work employs counterfactual reasoning,
which comes at the top of the causal hierarchy, in contrast to [15] and [27], which
employ interventions, and association respectively. Only [24] adopted counterfac-
tuals similarly to our work, however, with major differences. First, with respect
to counterfactual adoption, they measure the importance of filters in term of
variance, not as we do here, in term of responsibility, which represents the quan-
titative extension of counterfactual causality. Besides, we adopt here in addition
to responsibility, blame and causal abstraction, which make CexCNN a robust
causal framework. With respect to the use of causality for explaining CNNS, [24]
does not aim to identify salient regions, but rather, it helps to understand the
inner working of CNNs.
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3 Causal Explanation of CNNs

Gradient-based methods of explanation such as CAM [34] and Grad–CAM [28]
are very useful explanation methods for CNNs. However, they only explain the
output activations of a specific class in terms of the input activations, thus they
are dependent on gradients with the absence of any causal interpretation. In
this section we will show that CNNs have actually a causal structure, where
the final decision at the final layer has causal dependencies on all the previous
layers. So, what we are about to do, is to show how causality can be interpreted in
CNNs, and how to define it in terms of the definition of causality by Halpern and
Pearl. Moreover, we will show how we can benefit from its quantitative measures
responsibility and blame to give robust explanations for CNNs decisions.

It is well known that the most important layers of CNNs models are the
convolution layers, which include the filters. A filter actually represents the basic
element of the network that gives activations for different regions in the image.
In this section, we will show that addressing causality in CNNs should be built
upon filters. Although some works that investigated causality on CNNs through
couterfactuals addressed the perturbation of the input image [15], we will show
that in our technique, we let both the input image as well as the network intact,
without any modification and retraining.

3.1 Filters as Actual Causes

In this section we will show how we can define a probabilistic causal model [13]
for CNNs. Each input image consists of a specific number of pixels. In CNNs,
we move filters of specific sizes on sets of pixels, and the values obtained refer
to match probabilities of these filters on every region in the input image. Then,
these values serve as inputs for the flowing convolution layers. Filters with higher
matches on the image’s regions (or convoluted images in next layers) give higher
activations, which will help to decide on the final class in the last layer. So, if
we think of the nature of filters in terms of causality with respect to a CNN
architecture, we find that filters represent actual causes, since their match on
input image regions give rise to the activations that lead to the final decision.

With respect to the definition of causality by Halpern and Pearl, the actual
cause X is defined on a context. So, we need to reason on contexts in CNNs.
Actually, given an input/convolved image, we have different contexts, which
represent the different regions of the image on which we apply these filters.
After defining a context u, we can also reason on the probability function of
the context Pr(u), which refers to the probability of the filter’s match given a
context u. So we can say that a filter at a specific layer fl is a cause in a region u
with a probability Prfl

(u) for such a decision, where the filters probabilities can
be returned based on the activations of the feature maps of the last convolutional
layer. Now the remaining task is to define ϕ in CNNs, what would ϕ represent?
It is evident that ϕ would represent the final class identified by a CNN, for
instance a hummingbird (see Fig. 1). However, with CNNs, the class predicted
is returned with a probability, thus ϕ should not be just a Boolean formula that
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refers to the class predicted being a hummingbird, but rather is returned with
a probability P .

We should recall that an actual cause is defined based on counterfactual
theory. Formally, let us denote by F the set of all filters. Now we can introduce
the definition of an actual cause in CNNs.

Definition 1. Actual cause let us consider a filter at a specific layer l denoted
fl ∈ F . We say that fl is an actual cause for a decision ϕ, if its own removal,
where all the filters are kept the same, decreases the prediction probability P of
ϕ by p.

The set of filters F can be partitioned into two sets Fϕ
W and Fϕ

Z , where the
set Fϕ

W refers to filters causing the prediction ϕ, i.e. their removal will decrease
the prediction probability P , whereas Fϕ

Z are not causal, in way that removal of
a filter in Fϕ

Z does not affect P , or increases it. When the removal of a filter leads
to increasing P , this means that this filter has a negative effect on the decision,
which means that it is responsible for increasing the prediction probability of
another class, not the current class (see Fig. 1). With this definition in hand, we
can now introduce the definition of a filter’s responsibility.

Definition 2. Responsibility The degree of responsibility of a filter fl for a
prediction ϕ denoted dr(fl, ϕ) is 0 if fl ∈ Fϕ

Z , i.e. fl is not a cause, and otherwise
is 1/(|fW | + 1), where fW ⊆ Fϕ

W refers to the minimal subset such that their
removal Fϕ

W − fW makes decreasing the probability P below Pt counterfactually
depends on fl, where Pt refers to a probability threshold.

So the filter’s importance for such a prediction is measured with regard to its
responsibility, where the most responsible filter would be the one whose removal
results in decreasing P significantly. A most responsible filter would have 1 as a
degree of responsibility, i.e. |fW | = 0, if its own removal decreases P below the
probability threshold Pt.

The definitions of actual cause and responsibility are very useful for getting an
insight on how CNN decisions were derived, thus they could be mainly useful for
model diagnosis. However, for the main purpose of this paper, which is providing
interpretable explanations of CNNs decisions, these definitions are not sufficient.
In order for the explanation to be interpretable, it should highlight the features or
regions of interest in the input image. Here comes the definition of blame, which
can be used to localize the sets of pixels in the input image that should be blamed
the most for the decision ϕ. Once we answer this question, the explanations can
be given to the user by highlighting discriminative regions. So, the remaining
task is to relate the definition of filters responsibilities to regions blame.

Definition 3. Blame Let us denote by K the set of regions in an input image.
The degree of blame for a region σ ∈ K for a prediction ϕ denoted db(σ, ϕ) is

db(σ, ϕ) =
∑

fl∈F ϕ
W ,σinK

dr(fl, ϕ)Prfl
(σ) (1)



Causal Explanation of Convolutional Neural Networks 639

Fig. 1. CexCNN architecture: Localizing the most discriminative regions to blame,
which is performed by projecting back the product of filters responsibilities and their
activations. Based on causality abstraction, only the last convolution layer is considered
for this computation.

So the degree of blame db for a region σ is computed as the sum of the prod-
ucts of every causal filter match’s probability in this region with its responsibility.
In other words, the regions that should be blamed the most for a decision ϕ,
would be the ones having the highest match probabilities with the most respon-
sible filters. Those regions are identified critical for the decision ϕ, and when
returned together they show interpretable features on the input image.

Abstraction of Causality
Beckers and Halpern [5] investigated the problem of abstracting causal models,
when micro variables have causal effect on macro variables at higher levels. This
intuition behind abstraction of causal models leads us to consider for explaining
such a decision, only the filters of the last convolution layer, since they represent
the top macro-variables. We will show that they will be sufficient to estimate
the degree of blame for every region in the input image.

What we aim to do through explanation is to identify at the final layer which
important features led to such a decision. For instance, forehead and tail in the
input image have led to the decision of a hummingbird (see Fig. 1). In other
words, which features should be blamed for such a decision.

The importance of an image’s regions are identified by projecting back the
products of the activations of the last convolutional feature maps that refer to
filters match probabilities and the responsibilities associated with these filters.
In other words, among all outputs of the last convolution layer, we project back
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only the output of filters with high responsibilities. Similar to CAM, CexCNN
provides heatmaps as grids of scores.

4 Experiments

In this section we test our method CexCNN on many datasets and architec-
tures. We first conduct an experiment on two different architectures: VGG16
and Inception trained on the same dataset: ImageNet [9]. Then we test it on
a third architecture, which is LeNet[17] trained on MNIST [18]. These experi-
ments would show the effectiveness of CexCNN despite the architecture and the
dataset in use. One common thing is that none of these architectures needs to
be modified or retrained.

All the experiments are mainly based on measuring the responsibility of each
filter of the last convolution layer. To do so, we have to perform removing or
zeroing each filter in order to measure its effect. In the literature there exist
some libraries for pruning CNNs through removing specific filters [2,20].

4.1 Evaluating Visualizations

Since we introduce CexCNN as an explanation technique, we choose to evaluate it
against some desirable properties that every explanation method for ML models
should meet. Some properties are summarized in [23].

In this experiment we first test our method on VGG16 trained on the Ima-
geNet dataset [9]. We choose the last convolution layer of the model to be the
top of the causal hierarchy. This layer includes 512 filters, among them we con-
sider only the most responsible ones. Filters whose removing has no effect on
the predicted class probability, or has a positive effect, are not causes, and thus
they are not considered for computing responsibility and blame. For the rest of
causal filters, we compute their responsibilities, and then project their values on
the original image through all the previous layers, in order to obtain the blame
of each region. The most blamed regions in the image would have the highest
heatmaps.

Examples of some classes and the heatmaps generated by CexCNN are
depicted in Fig. 2. The explanations provided by our method are compared
to those provided by Grad-CAM in the same figure.

Comparing to Grad-CAM, we find that our method sometimes localizes
nearly the same important features that Grad-CAM localizes, like umbrella, and
sometimes it localizes different features. For instance, with boxer, our method
detects the face as the most important feature(k), however with Grad-CAM, the
chest is considered more important (l).
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(a) Image (b) CexCNN (c) Grad-CAM

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

(p) (q) (r)

(s) (t) (u)

Fig. 2. Discriminative image regions returned by CexCNN compared to Grad-CAM.
The images are from ImageNet ILSVRC [26], on which VGG16 is trained. The
heatmaps generated by CexCNN refer to the most important features to blame.

A) Discriminative Ability. We see that CexCNN localizes important features
that should be blamed the most. Besides, it is highly sensitive, where critical
regions are clearly visualized, without highlighting regions on the other objects.
For instance, the boxer with a hat (e), the hat is not highlighted. In the second
image of boxer (h), the belt is excluded as well. Other examples include umbrella
and mountain bike, whose only discriminative features are highlighted despite
the presence of other objects.
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B) Stability. Another important property that CexCNN satisfies is stability.
This property aims to measure how similar are the explanations for similar
instances in the same model. We see that our framework satisfies very well this
property.

If some features are considered most important for a specific class, they are
considered in every instance of this class. They can be just affected by which
features are in foreground or background pixels. This can be noticed in boxer
class, where the face is most important, in addition to chest with low importance
(h). In this class, please note that compared to Grad-CAM, our method is more
stable, it always focuses on the head as the most important feature, however,
Grad-CAM sometimes considers chest as the only important feature, ignoring
completely the head (i). With the same class, we notice that in figure (f), Grad-
CAM failed to localize the face feature, where it has been fooled apparently by
the hat on the boxer’s head, but CexCNN is always stable by returning the face
as the most important feature in an accurate way.

In other classes such as gazelle, it is clear that our method outperforms Grad-
CAM for localizing important features. See for instance (m), our method was
able to localize the features of all visible gazelles similarly in the input image (n).
However, with Grad-CAM, the heatmap is wrongly localized (o). Always with
the same class, we see that for the two gazelles in figure (j), our method for the
two gazelles localizes the same important features (k), whereas for Grad-CAM
the features returned are not stable (l), with much noise on the grass background.

(a) (b) (c) (d)

Fig. 3. Explanation results by CexCNN for Inception trained on ImageNet

C) Consistency: This property attempts to measure how does an explanation
differ between models that have been trained on the same dataset. To this end,
in addition to VGG16, we tested CexCNN on Inception trained on Imagenet as
well.

Comparing to VGG16, providing explanations for Inception is more chal-
lenging, since Inception consists of many modules, which consist of multiple
convolution layers. The convolution layers considered by CexCNN are the last
concatenated ones. While the last convolution layer of VGG16 consists of 512
filters, the last convolution layers of Inception when concatenated consist of 2048
filters. Similar to VGG16, we have to measure the responsibility of each filter
and use this information to find the most important features to blame.

Before presenting the results of this experiment, we should note here that
providing similar explanations for different models on the same instances is only



Causal Explanation of Convolutional Neural Networks 643

possible if the two models see the world similarly, i.e. if the models focus on
the same features to make a decision. Actually, providing explanations could be
itself useful for identifying if different models see the world in a similar way.
However, in order to evaluate consistency, it is necessary for the explanations to
be stable with respect to each model. The results of stable explanations provided
by CexCNN on Inception for some classes compared to those returned by VGG16
are presented in Fig. 3. We see that for some instances such as umbrella and
boxer, the explanations are very similar, which means that both VGG16 and
Inception focus on the same features for predicting these classes. However, with
other classes such as mountain bike, Inception focuses on a different important
feature, which absolutely discriminates mountain bike as well from other classes.

D) Robustness against Adversarial Attacks. Goodfellow et al. [11] have
discovered a critical weakness for DNNs models, which is adversarial examples
or adversarial attacks. Goodfellow et al. showed that perturbating input images
through introducing noise to the original images, in way that they look identical
to the human eye, such perturbation could fool the network to completely mis-
classify the input image. In this section, we will show how CexCNN performs
against perturbed images that have been misclassified by VGG16. For gener-
ating perturbations we use the FGSM method [11]. Some qualitative examples
are presented in Fig. 4. As we see, although CexCNN is affected slightly by the
perturbations, it always try to focus on the same discriminative regions.

Fig. 4. Robustness against adversarial attacks:heatmaps returned by CexCNN

4.2 MNIST

We tested our method on LeNet architecture trained on MNIST dataset [18].
We consider the last layer of the LeNet architecture with 64 filters. In this
experiment we tried another strategy for computing counterfactual information
and measuring responsibility and blame. Since this dataset is small (10 classes),
with simple classes (digits), not complex ones comparing ImageNet, we measured
the causal effect on the accuracy of the entire model, not just the prediction



644 H. Debbi

probability of an individual class. The heatmaps as generated by our method
on every digit compared to heatmaps generated by Grad-CAM are presented in
Fig. 5. These results are obtained using the Keras-vis tool [3].

We see that our method clearly outperforms the important regions localized
by Grad-CAM. The quality of the explanations generated is clearly better than
Grad-CAM, because for every digit it is sufficient to decide on the input image
just by considering the highlighted features related to this digit. For some digits,
9 for instance, Grad-CAM fails to generate explanations at all. Another impor-
tant thing about the effectiveness of our method compared to Grad-CAM, is
that our method returns stable explanations despite the modifier in use.

4.3 Weakly Supervised Object Localization (WSOL)

WSOL has been recently addressed by many researchers for different visual tasks
[7,30,34]. WSOL aims to localize objects with only image-level labels, under a

Fig. 5. CexCNN results on MNIST compared to Grad-CAM
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general assumption that only one object of the specific category is present in the
input image. One main drawback of existing WSOL methods such as CAM, which
gave a rise to other WSOL methods, is that it localizes only the most discrimi-
native features of an object rather than all the features, which leads logically to
a less performance in object localization task. Kumar and Lee [30] for instance
tried to tackle this issue by modifying the input image by randomly removing grid
patches, thus forcing the network to be meticulous for WSOL, by identifying all
the object’s features not only the most discriminative ones. In this section, we
will show that CexCNN provides good results in this regard. To make CexCNN
good in WSOL, we should consider all the causal filters Fϕ

W , not just the most
responsible ones. This results in identifying all the object’s parts from the most
discriminative (having the highest blame dB) to parts with low discrimination
(having the lowest blame dB). To show the effectiveness of CexCNN for WSOL,
we provide qualitative (See Fig. 6) as well as quantitative results (See Table 1)
on the ILSVRC validation dataset, which consists of 50.000 images of 1000 cate-
gories. The results are compared to CAM. We see in Fig. 6 that CexCNN localizes
in a better way the concerned object, since it could look on all its features, from
the most important to the less important ones, whereas CAM is designed to focus
only on the most discriminative regions. Both CexCNN and CAM are evaluated
in the same setting, on VGG16 without any architectural modifications.

Heatmap
(CexCNN)

Bounding box
(CexCNN)

Bounding box
(CexCNN)

Heatmap
(CAM)

Bounding box
(CAM)

Fig. 6. Qualitative object localization results
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Table 1. Quantitative object localization results for CexCNN compared to CAM on
VGG16

Method GT-known Loc

CAM 31.71

CexCNN 67.65

For quantitative evaluation, a set of evaluation metrics are commonly used
to access the performance of WSOL methods. These metrics are Top-1/Top-5
localization accuracy and localization accuracy with known ground truth class
(GTKnown Loc). While Top-1/Top-5 represent both the classification and local-
ization, GT-Known Loc is true for an input image if given the ground truth
class, the intersection over union (IoU) between the ground truth bounding box
and the predicted box is at least 50%. Since we are interested here in evaluat-
ing CexCNN only for object localization, not for classification, we decided to
consider only GTKnown Loc. Besides, Choe et al. [7] have shown in their eval-
uative study of existing WSOL methods that Top-1/Top-5 localization might
be misleading, and thus they suggest to consider the GT-known metric. The
experiments are conducted by performing a small modification on the dataset
by ignoring the images having multiple bounding boxes. The reason is that close
multiple instances of the target class result in overlapped heatmaps, which could
be misleading [7]. The resulted dataset consists of 38.285 images. The localization
results of CexCNN compared to CAM are provided in Table 1. Both CexCNN
and CAM were executed on the same dataset. We see that CexCNN clearly out-
performs CAM in WSOL. Moreover, based on the reproduced results in [7] for
evaluating existing WSOL methods, with 67.65 accuracy, CexCNN outperforms
all the existing methods that have been evaluated on VGG with global average
pooling (VGG-GAP), where the best WSOL accuracy reported was 62.2.

4.4 Fine-Tuning Parameters and Compact Representation

Network pruning aims to compress CNN models in order to reduce the network
complexity and over-fitting. This requires pruning and compressing the weights
of various layers without affecting the accuracy of these models. Some previous
works on fine-tuning CNNs aimed at computing some metrics for every filter
in order to generate a compact network [20]. Li et al. [20] showed that pruning
filters of multiple layers at once can be useful and gives a good view on the
robustness of the network. In this regard, we may consider the filter’s respon-
sibility as a useful metric for this purpose. We conduct experiments on LeNet
trained on MNIST. The experiments are based on removing the filters with low
responsibilities at each layer, and then calculate the impact of their removal on
the model’s accuracy. The results presented focus on the number of the filters
pruned and the number of network’s parameters reduced, by allowing the accu-
racy to be very close to the original one. While pruning without retraining might
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Table 2. Results after pruning less responsible filters for LeNet trained on MNIST

Parameters Filters
pruned conv1

Filters
pruned conv2

total pruned Pruned
parameters %

Error%

639.760 2/20 12/50 14/70(20%) 152.876(23.90%) 0.05

639.760 13/20 28/50 41/70(58%) 355.068(55.92%) 5.1

639.760 0/20 36/50 36/70(51.42%) 456.516(71.35%) 3.03

639.760 0/20 39/50 39/70(55.71%) 494.559(77.30%) 4.5

be harmful for the model accuracy [14,20], we will show that our results are good
enough without retraining.

LeNet consists of two convolution layers: the first consists of 20 filters, and
the last one consists of 50 filters. For LeNet on MNIST, the best results in terms
of accuracy are obtained by removing (2/20) filters (10%) of the first convolution
layer, and (12/50) filters (24%) of the last one. This operation results in reducing
the network’s parameters from 639.760 (original model) to 486, 884 (23.90%),
and resulting in a good accuracy, which has been reduced just from 0.9933 to
0.9928 (See Table 2).

We notice that conv1 is more sensible for filters pruning, thus we want to
challenge our technique on accuracy against the number of reduced parameters
by considering only conv2. The results are presented in the same table. While
most of pruning techniques consider retraining the model, Han et al. [14] have
analyzed in addition the trade-off between accuracy and number of parameters
without retraining. The results as described here are very close to the ones
reported in [14]. We see that we are able to reduce the number of parameters by
77.30% , which results in dropping the accuracy from 0.9933 to 0.9483.

5 Conclusion and Future Work

In this paper we provided CexCNN, a causal explanation technique for CNNs.
CexCNN employs the theory of causality by Halpern and Pearl, in addition
to their quantitative measures: responsibility and blame, as well as causality
abstraction. We showed that weighting filters by their responsibilities and then
projecting this information back in the input image, allows the localization of
the most important features to blame for such a decision.

We evaluated CexCNN on many datasets and architectures and it has shown
good results given a set of evaluation properties for explanation methods.
Although the main concern is to localize the most discriminative regions, we
showed that CexCNN outperforms Grad-CAM and known existing methods for
WSOL. In addition, we showed that CexCNN could stand as a good pruning
technique.

As future work, we aim to address the usefulness of CexCNN for defending
against adversarial attacks, as well as its application in transfer learning.



648 H. Debbi

References

1. Investigate. https://github.com/albermax/innvestigate
2. keras-surgeon. https://github.com/BenWhetton/keras-surgeon
3. Keras visualization toolkit. https://github.com/raghakot/keras-vis
4. Avanti, S., Peyton, G., Anshul, K.: Learning important features through propa-

gating activation differences, pp. 3145–3153. ICML’17 (2017)
5. Beckers, S., Halpern, J.Y.: Abstracting causal models. In: AAAI (2017)
6. Chockler, H., Halpern, J.Y.: Responsibility and blame: a structural-model app-

roach. J. Artif. Int. Res. 22(1), 93–115 (2004)
7. Choe, J., Oh, S.J., Lee, S., Chun, S., Akata, Z., Shim, H.: Evaluating weakly

supervised object localization methods right. In: CVPR, pp. 3130–3139 (2020)
8. Gordon, D., Kembhavi, A., Rastegari, M., Redmon, J., Fox, D., Farhadi, A.: Iqa:

visual question answering in interactive environments. In: In arXiv:1712.03316
(2017)

9. Deng, J., Dong, W., Socher, R., Li, L., Li, K., Fei-Fei, L.: Imagenet: a large-scale
hierarchical image database. In: CVPR, pp. 248–255 (2009)

10. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accu-
rate object detection and semantic segmentation. In: CVPR, pp. 580–587 (2014)

11. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial
examples. In: ICLR (2015)

12. Halpern, J., Pearl, J.: Causes and explanations: a structural-model approach part
i: Causes. In: Proceedings of the 17th UAI, pp. 194–202 (2001)

13. Halpern, J.Y., Pearl, J.: Causes and explanations: a structural-model approach.
part ii: Explanations. Br. J. Philos. Sci. 56(4), 889–911 (2008)

14. Han, S., Pool, J., Tran, J., Dally, W.J.: Learning both weights and connections for
efficient neural networks. In: NIPS (2015)

15. Harradon, M., Druce, J., Ruttenberg, B.E.: Causal learning and explanation of deep
neural networks via autoencoded activations. In: CoRR abs/1802.00541 (2018)

16. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. Commun. ACM 60(6), 84–90 (2017)

17. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

18. LeCun, Y., Cortes, C., Burges, C.: Mnist handwritten digit database. ATT Labs
[Online]. http://yann.lecun.com/exdb/mnist 2 (2010)

19. Lewis, D.: Causation. J. Philos. 70, 556–567 (1972)
20. Li, H., Kadav, A., Durdanovic, I., Samety, H.: Pruning filters for efficient convnets.

In: ICLR 2017, pp. 1–13 (2017)
21. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic

segmentation. In: CVPR, pp. 3431–3440 (2015)
22. Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions.

In: NIPS, pp. 4768–4777 (2017)
23. Molnar, C.: Interpretable Machine Learning A Guide for Making Black Box Models

Explainable (2018). https://christophm.github.io/interpretable-ml-book/
24. Narendra, T., Sankaran, A., Vijaykeerthy, D., Mani, S.: Explaining deep learning

models using causal inference. In: arXiv:1811.04376 (2018)
25. Ribeiro, M.T., Singh, S., Guestrin, C.: “why should i trust you?”: Explaining the

predictions of any classifier, pp. 1135–1144. KDD ’16 (2016)
26. Russakovsky, O., et al.: Imagenet large scale visual recognition challenge. Int. J.

Comput. Vis. 115(3), 211–252 (2015)

https://github.com/albermax/innvestigate
https://github.com/BenWhetton/keras-surgeon
https://github.com/raghakot/keras-vis
http://arxiv.org/abs/1712.03316
http://yann.lecun.com/exdb/mnist
https://christophm.github.io/interpretable-ml-book/
http://arxiv.org/abs/1811.04376


Causal Explanation of Convolutional Neural Networks 649

27. Schwab, P., Karlen, W.: Cxplain: causal explanations for model interpretation
under uncertainty. NeurIPS, pp. 10220–10230 (2019)

28. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-
cam: visual explanations from deep networks via gradient-based localization. In:
ICCV, pp. 618–626 (2017)

29. Simonyan, K., Vedaldi, A., Zisserman, A.: Deep inside convolutional networks:
visualising image classification models and saliency maps. In: In arXiv:1312.6034
(2013)

30. Singh, K.K., Lee, Y.J.: Forcing a network to be meticulous for weakly-supervised
object and action localization. In: CVPR (2017)

31. Smilkov, D., Thorat, N., Kim, B., Viegas, F.B., Wattenberg, M.: Smoothgrad:
removing noise by adding noise. In: CoRR, vol. abs/1706.03825 (2017)

32. Sundararajan, M., Taly, A., Yan, Q.: Axiomatic attribution for deep networks. In:
ICML, pp. 3319–3328 (2017)

33. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks.
In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS,
vol. 8689, pp. 818–833. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
10590-1 53

34. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Learning deep features
for discriminative localization. In: CVPR, pp. 2921–2929 (2016)

http://arxiv.org/abs/1312.6034
https://doi.org/10.1007/978-3-319-10590-1_53
https://doi.org/10.1007/978-3-319-10590-1_53


Interpretable Counterfactual
Explanations Guided by Prototypes

Arnaud Van Looveren(B) and Janis Klaise

Seldon Technologies, 41 Luke Street, London EC2A 4AR, UK
{avl,jk}@seldon.io

Abstract. We propose a fast, model agnostic method for finding inter-
pretable counterfactual explanations of classifier predictions by using
class prototypes. We show that class prototypes, obtained using either
an encoder or through class specific k-d trees, significantly speed up
the search for counterfactual instances and result in more interpretable
explanations. We quantitatively evaluate interpretability of the gener-
ated counterfactuals to illustrate the effectiveness of our method on an
image and tabular dataset, respectively MNIST and Breast Cancer Wis-
consin (Diagnostic). Additionally, we propose a principled approach to
handle categorical variables and illustrate our method on the Adult (Cen-
sus) dataset. Our method also eliminates the computational bottleneck
that arises because of numerical gradient evaluation for black box models.

Keywords: Interpretation · Transparency/Explainability ·
Counterfactual explanations

1 Introduction

Humans often think about how they can alter the outcome of a situation. What
do I need to change for the bank to approve my loan? or Which symptoms
would lead to a different medical diagnosis? are common examples. This form
of counterfactual reasoning comes natural to us and explains how to arrive at a
desired outcome in an interpretable manner. Moreover, examples of counterfac-
tual instances resulting in a different outcome can give powerful insights of what
is important to the underlying decision process, making it a compelling method
to explain predictions of machine learning models (Fig. 1).

In the context of predictive models, given a test instance and the model’s
prediction, a counterfactual instance describes the necessary change in input
features that alter the prediction to a predefined output [21]. For classification
models the predefined output can be any target class or prediction probability
distribution. Counterfactual instances can then be found by iteratively perturb-
ing the input features of the test instance until the desired prediction is reached.
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In practice, the counterfactual search is posed as an optimization problem—we
want to minimize an objective function which encodes desirable properties of
the counterfactual instance with respect to the perturbations. The key insight
of this formulation is the need to design an objective function that allows us
to generate high quality counterfactual instances. A counterfactual instance xcf

should have the following desirable properties:

6

(a) Original

5

CF

7 9

8 3

9 4

Original CF
Workclass Private State-gov
Education High school Bachelors
Marital Status Married Married
Occupation Blue-Collar Blue-Collar
Relationship Husband Husband
Race White White
Sex Male Male
Country United-States United-States
Age 46 46
Capital Gain 0 0
Capital Loss 0 0
Hours p/w 40 40
Prediction ≤ $50k/y > $50k/y

(b)

Fig. 1. (a) Examples of original and counterfactual instances on the MNIST dataset
along with predictions of a CNN model. (b) A counterfactual instance on the Adult
(Census) dataset highlighting the feature changes required to alter the prediction of
an NN model.

1. The model prediction on xcf needs to be close to the predefined output.
2. The perturbation δ changing the original instance x0 into xcf = x0 + δ should

be sparse.
3. The counterfactual xcf needs to be interpretable. We consider an instance xcf

interpretable if it lies close to the model’s training data distribution. This
definition does not only apply to the overall data set, but importantly also
to the training instances that belong to the counterfactual class. Let us illus-
trate this with an intuitive example. Assume we are predicting house prices
with features including the square footage and the number of bedrooms. Our
house is valued below £500,000 and we would like to know what needs to
change about the house in order to increase the valuation above £500,000.
By simply increasing the number of bedrooms and leaving the other features
unchanged, the model predicts that our counterfactual house is now worth
more than £500,000. This sparse counterfactual instance lies fairly close to
the overall training distribution since only one feature value was changed.
The counterfactual is however out-of-distribution with regards to the subset
of houses in the training data valued above £500,000 because other relevant
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features like the square footage still resemble a typical house valued below
£500,000. As a result, we do not consider this counterfactual to be very inter-
pretable. We show in the experiments that there is often a trade-off between
sparsity and interpretability.

4. The counterfactual instance xcf needs to be found fast enough to ensure it
can be used in a real life setting.

An overly simplistic objective function may return instances which satisfy prop-
erties 1. and 2., but where the perturbations are not interpretable with respect
to the counterfactual class.

In this paper we propose using class prototypes in the objective function
to guide the perturbations quickly towards an interpretable counterfactual. The
prototypes also allow us to remove computational bottlenecks from the opti-
mization process which occur due to numerical gradient calculation for black
box models. In addition, we propose two novel metrics to quantify interpretabil-
ity which provide a principled benchmark for evaluating interpretability at the
instance level. We show empirically that prototypes improve the quality of coun-
terfactual instances on both image (MNIST) and tabular (Wisconsin Breast
Cancer) datasets. Finally, we propose using pairwise distance measures between
categories of categorical variables to define meaningful perturbations for such
variables and illustrate the effectiveness of the method on the Adult (Census)
dataset.

2 Related Work

Counterfactual instances—synthetic instances of data engineered from real
instances to change the prediction of a machine learning model—have been sug-
gested as a way of explaining individual predictions of a model as an alternative
to feature attribution methods such as LIME [23] or SHAP [19].

Wacther et al. [27] generate counterfactuals by minimizing an objective func-
tion which sums the squared difference between the predictions on the perturbed
instance and the desired outcome, and a scaled L1 norm of the perturbations.
Laugel et al. [15] find counterfactuals through a heuristic search procedure by
growing spheres around the instance to be explained. The above methods do
not take local, class specific interpretability into account. Furthermore, for black
box models the number of prediction calls during the search process grows pro-
portionally to either the dimensionality of the feature space [27] or the num-
ber of sampled observations [9,15], which can result in a computational bottle-
neck. Dhurandhar et al. [7,9] propose the framework of Contrastive Explanations
which find the minimal number of features that need to be changed/unchanged
to keep/change a prediction.

A key contribution of this paper is the use of prototypes to guide the counter-
factual search process. Kim et al. [14], Gurumoorthy et al. [11] use prototypes as
example-based explanations to improve the interpretability of complex datasets.
Besides improving interpretability, prototypes have a broad range of applica-
tions like clustering [13], classification [4,26], and few-shot learning [25]. If we
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have access to an encoder [24], we follow the approach of [25] who define a class
prototype as the mean encoding of the instances which belong to that class. In
the absence of an encoder, we find prototypes through class specific k-d trees [3].

To judge the quality of the counterfactuals we introduce two novel metrics
which focus on local interpretability with respect to the training data distribu-
tion. This is different from [8] who define an interpretability metric relative to a
target model. Kim et al. [14] on the other hand quantify interpretability through
a human pilot study measuring the accuracy and efficiency of the humans on a
predictive task. Luss et al. [20] also highlight the importance of good local data
representations in order to generate high quality explanations.

Another contribution of this paper is a principled approach to handling cat-
egorical variables during the counterfactual generation process. Some previously
proposed solutions are either computationally expensive [27] or do not take rela-
tionships between categories into account [9,22]. We propose using pairwise dis-
tance measures to define embeddings of categorical variables into numerical space
which allows us to define meaningful perturbations when generating counterfac-
tuals.

3 Methodology

3.1 Background

The following section outlines how the prototype loss term is constructed and
why it improves the convergence speed and interpretability. Finding a counter-
factual instance xcf = x0+δ, with both xcf and x0 ∈ X ⊆ R

D where X represents
the D-dimensional feature space, implies optimizing an objective function of the
following form:

min
δ

c · fκ(x0, δ) + fdist(δ). (1)

fκ(x0, δ) encourages the predicted class i of the perturbed instance xcf to be
different than the predicted class t0 of the original instance x0. Similar to [7],
we define this loss term as:

Lpred := fκ(x0, δ)
= max([fpred(x0 + δ)]t0 − max

i�=t0
[fpred(x0 + δ)]i,−κ), (2)

where [fpred(x0 + δ)]i is the i-th class prediction probability, and κ ≥ 0 caps
the divergence between [fpred(x0 + δ)]t0 and [fpred(x0 + δ)]i. The term fdist(δ)
minimizes the distance between x0 and xcf with the aim to generate sparse
counterfactuals. We use an elastic net regularizer [28]:

fdist(δ) = β · ‖δ‖1 + ‖δ‖22 = β · L1 + L2. (3)

While the objective function (1) is able to generate counterfactual instances, it
does not address a number of issues:
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1. xcf does not necessarily respect the training data manifold, resulting in out-
of-distribution counterfactual instances. Often a trade off needs to be made
between sparsity and interpretability of xcf.

2. The scaling parameter c of fκ(x0, δ) needs to be set within the appropriate
range before a potential counterfactual instance is found. Finding a good
range can be time consuming.

[7] aim to address the first issue by adding in an additional loss term LAE which
represents the L2 reconstruction error of xcf evaluated by an autoencoder AE
which is fit on the training set:

LAE = γ · ‖x0 + δ − AE(x0 + δ)‖22. (4)

The loss L to be minimized now becomes:

L = c · Lpred + β · L1 + L2 + LAE. (5)

The autoencoder loss term LAE penalizes out-of-distribution counterfactual
instances, but does not take the data distribution for each prediction class i
into account. This can lead to sparse but uninterpretable counterfactuals, as
illustrated by Fig. 2. The first row of Fig. 2(b) shows a sparse counterfactual 3
generated from the original 5 using loss function (5). Both visual inspection and
reconstruction of the counterfactual instance using AE in Fig. 2(e) make clear
however that the counterfactual lies closer to the distribution of a 5 and is not
interpretable as a 3. The second row adds a prototype loss term to the objective
function, leading to a less sparse but more interpretable counterfactual 6.
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Fig. 2. First row: (a) original instance and (b) uninterpretable counterfactual 3. (c),
(d) and (e) are reconstructions of (b) with respectively AE3, AE5 and AE. Second
row: (a) original instance and (b) interpretable counterfactual 6. (c), (d) and (e) are
reconstructions of (b) with respectively AE6, AE5 and AE.

The LAE loss term also does not consistently speed up the counterfactual
search process since it imposes a penalty on the distance between the proposed
xcf and its reconstruction by the autoencoder without explicitly guiding xcf

towards an interpretable solution. We address these issues by introducing an
additional loss term, Lproto.
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3.2 Prototype Loss Term

By adding in a prototype loss term Lproto, we obtain the following objective
function:

L = c · Lpred + β · L1 + L2 + LAE + Lproto, (6)

where LAE becomes optional. The aim of Lproto is twofold:

1. Guide the perturbations δ towards an interpretable counterfactual xcf which
falls in the distribution of counterfactual class i.

2. Speed up the counterfactual search process without too much hyperparameter
tuning.

To define the prototype for each class, we can reuse the encoder part of the
autoencoder from LAE. The encoder ENC(x) projects x ∈ X onto an E-
dimensional latent space R

E . We also need a representative, unlabeled sample
of the training dataset. First the predictive model is called to label the dataset
with the classes predicted by the model. Then for each class i we encode the
instances belonging to that class and order them by increasing L2 distance to
ENC(x0). Similar to [25], the class prototype is defined as the average encoding
over the K nearest instances in the latent space with the same class label:

protoi :=
1
K

K∑

k=1

ENC(xi
k) (7)

for the ordered {xi
k}K

k=1 in class i. It is important to note that the prototype is
defined in the latent space, not the original feature space.

The Euclidean distance is part of a class of distance functions called Bregman
divergences. If we consider that the encoded instances belonging to class i define
a cluster for i, then protoi equals the cluster mean. For Bregman divergences the
cluster mean yields the minimal distance to the points in the cluster [1]. Since we
use the Euclidean distance to find the closest class to x0, protoi is a suitable class
representation in the latent space. When generating a counterfactual instance
for x0, we first find the nearest prototype protoj of class j �= t0 to the encoding
of x0:

j = arg min
i�=t0

‖ENC(x0) − protoi‖2. (8)

The prototype loss Lproto can now be defined as:

Lproto = θ · ‖ENC(x0 + δ) − protoj‖22, (9)

where ENC(x0 +δ) is the encoding of the perturbed instance. As a result, Lproto

explicitly guides the perturbations towards the nearest prototype protoj �=t0 ,
speeding up the counterfactual search process towards the average encoding
of class j. This leads to more interpretable counterfactuals as illustrated by the
experiments. Algorithm 1 summarizes this approach.
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Algorithm 1. Counterfactual search with encoded prototypes
1: Parameters: β, θ (required) and c, κ and γ (optional)
2: Inputs: AE (optional) and ENC models. A sample X = {x1, . . . , xn} from training

set. Instance to explain x0.
3: Label X and x0 using the prediction function fpred:

Xi ← {x ∈ X | argmax fpred(x) = i} for each class i t0 ← argmax fpred(x0)
4: Define prototypes for each class i:

protoi ← 1
K

∑K
k=1 ENC(xi

k) for xi
k ∈ Xi where xi

k is ordered by increasing
‖ENC(x0) − ENC(xi

k)‖2 and K ≤ |Xi|
5: Find nearest prototype j to instance x0 but different from original class t0:

j ← argmini�=t0
‖ENC(x0) − protoi‖2.

6: Optimize the objective function:
δ∗ ← argminδ∈X c ·Lpred +β ·L1 +L2 +LAE +Lproto where Lproto = θ · ‖ENC(x0 +
δ) − protoj‖2

2.
7: Return xcf = x0 + δ∗

Algorithm 2. Counterfactual search with k-d trees
1: Parameters: β, θ, k (required) and c, κ (optional)
2: Input: A sample X = {x1, . . . , xn} from training set. Instance to explain x0.
3: Label X and x0 using the prediction function fpred:

Xi ← {x ∈ X | argmax fpred(x) = i} for each class i t0 ← argmax fpred(x0)
4: Build separate k-d trees for each class i using Xi

5: Find nearest prototype j to instance x0 but different from original class t0:
j ← argmini�=t0

‖x0 − xi,k‖2 where xi,k is the k-th nearest item to x0 in the k-d
tree of class i.
protoj ← xj,k

6: Optimize the objective function:
δ∗ ← argminδ∈X c ·Lpred +β ·L1 +L2 +Lproto where Lproto = θ · ‖x0 +δ −protoj‖2

2.
7: Return xcf = x0 + δ∗

3.3 Using K-D Trees as Class Representations

If we do not have a trained encoder available, we can build class representations
using k-d trees [3]. After labeling the representative training set by calling the
predictive model, we can represent each class i by a separate k-d tree built
using the instances with class label i. This approach is similar to [12] who use
class specific k-d trees to measure the agreement between a classifier and a
modified nearest neighbour classifier on test instances. For each k-d tree j �= t0,
we compute the Euclidean distance between x0 and the k-nearest item in the
tree xj,k. The closest xj,k across all classes j �= t0 becomes the class prototype
protoj . Note that we are now working in the original feature space. The loss
term Lproto is equal to:

Lproto = θ · ‖x0 + δ − protoj‖22. (10)

Algorithm 2 outlines the k-d trees approach.



Interpretable Counterfactual Explanations Guided by Prototypes 657

3.4 Categorical Variables

Creating meaningful perturbations for categorical data is not straightforward as
the very concept of perturbing an input feature implies some notion of rank and
distance between the values a variable can take. We approach this by inferring
pairwise distances between categories of a categorical variable based on either
model predictions (Modified Value Distance Metric) [6] or the context provided
by the other variables in the dataset (Association-Based Distance Metric) [16].
We then apply multidimensional scaling [5] to project the inferred distances into
one-dimensional Euclidean space, which allows us to perform perturbations in
this space. After applying a perturbation in this space, we map the resulting
number back to the closest category before evaluating the classifier’s prediction.

3.5 Removing Lpred

In the absence of Lproto, only Lpred encourages the perturbed instance to predict
class i �= t0. In the case of black box models where we only have access to the
model’s prediction function, Lpred can become a computational bottleneck. This
means that for neural networks, we can no longer take advantage of automatic
differentiation and need to evaluate the gradients numerically. Let us express the
gradient of Lpred with respect to the input features x as follows:

∂Lpred

∂x
=

∂fκ(x)
∂x

=
∂fκ(x)
∂fpred

∂fpred
∂x

, (11)

where fpred represents the model’s prediction function. The numerical gradient
approximation for fpred with respect to input feature k can be written as:

∂fpred
∂xk

≈ fpred(x + εk) − fpred(x − εk)
2ε

, (12)

where εk is a perturbation with the same dimension as x and taking value ε
for feature k and 0 otherwise. As a result, the prediction function needs to be
evaluated twice for each feature per gradient step just to compute ∂fpred

∂xk
. For a

28×28 MNIST image, this translates into a batch of 28 ·28 ·2 = 1568 prediction
function calls. Eliminating Lpred would therefore speed up the counterfactual
search process significantly. By using the prototypes to guide the counterfactuals,
we can remove Lpred and only call the prediction function once per gradient
update on the perturbed instance to check whether the predicted class i of x0+δ
is different from t0. This eliminates the computational bottleneck while ensuring
that the perturbed instance moves towards an interpretable counterfactual xcf

of class i �= t0.

3.6 FISTA Optimization

Like [7], we optimize our objective function by applying a fast iterative shrinkage-
thresholding algorithm (FISTA) [2] where the solution space for the output xcf =
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x0 + δ is restricted to X . The optimization algorithm iteratively updates δ with
momentum for N optimization steps. It also strips out the β · L1 regularization
term from the objective function and instead shrinks perturbations |δk| < β for
feature k to 0. The optimal counterfactual is defined as xcf = x0 + δn∗

where
n∗ = arg minn∈1,...,Nβ · ‖δn‖1 + ‖δn‖22 and the predicted class on xcf is i �= t0.

4 Experiments

The experiments are conducted on an image and tabular dataset. The first exper-
iment on the MNIST handwritten digit dataset [17] makes use of an autoencoder
to define and construct prototypes. The second experiment uses the Breast Can-
cer Wisconsin (Diagnostic) dataset [10]. The latter dataset has lower dimension-
ality so we find the prototypes using k-d trees. Finally, we illustrate our approach
for handling categorical data on the Adult (Census) dataset [10].

4.1 Evaluation

The counterfactuals are evaluated on their interpretability, sparsity and speed
of the search process. The sparsity is evaluated using the elastic net loss term
EN(δ) = β · ‖δ‖1+‖δ‖22 while the speed is measured by the time and the number
of gradient updates required until a satisfactory counterfactual xcf is found. We
define a satisfactory counterfactual as the optimal counterfactual found using
FISTA for a fixed value of c for which counterfactual instances exist.

In order to evaluate interpretability, we introduce two interpretability met-
rics IM1 and IM2. Let AEi and AEt0 be autoencoders trained specifically on
instances of classes i and t0, respectively. Then IM1 measures the ratio between
the reconstruction errors of xcf using AEi and AEt0 :

IM1(AEi,AEt0 , xcf) :=
‖x0 + δ − AEi(x0 + δ)‖22

‖x0 + δ − AEt0(x0 + δ)‖22 + ε
. (13)

A lower value for IM1 means that xcf can be better reconstructed by the autoen-
coder which has only seen instances of the counterfactual class i than by the
autoencoder trained on the original class t0. This implies that xcf lies closer to
the data manifold of counterfactual class i compared to t0, which is considered
to be more interpretable.

The second metric IM2 compares how similar the reconstructed counterfac-
tual instances are when using AEi and an autoencoder trained on all classes,
AE. We scale IM2 by the L1 norm of xcf to make the metric comparable across
classes:

IM2(AEi,AE, xcf) :=
‖AEi(x0 + δ) − AE(x0 + δ)‖22

‖x0 + δ‖1 + ε
. (14)

A low value of IM2 means that the reconstructed instances of xcf are very similar
when using either AEi or AE. As a result, the data distribution of the counter-
factual class i describes xcf as good as the distribution over all classes. This
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implies that the counterfactual is interpretable. Figure 2 illustrates the intuition
behind IM1 and IM2.

The uninterpretable counterfactual 3 (xcf,1) in the first row of Fig. 2(b) has
an IM1 value of 1.81 compared to 1.04 for xcf,2 in the second row because the
reconstruction of xcf,1 by AE5 in Fig. 2(d) is better than by AE3 in Fig. 2(c). The
IM2 value of xcf,1 is higher as well—0.15 compared to 0.12 for xcf,2)—since the
reconstruction by AE in Fig. 2(e) yields a clear instance of the original class 5.

Finally, for MNIST we apply a multiple model comparison test based on
the maximum mean discrepancy [18] to evaluate the relative interpretability of
counterfactuals generated by each method.

4.2 Handwritten Digits

The first experiment is conducted on the MNIST dataset. The experiment ana-
lyzes the impact of Lproto on the counterfactual search process with an encoder
defining the prototypes for K equal to 5. We further investigate the importance
of the LAE and Lpred loss terms in the presence of Lproto. We evaluate and
compare counterfactuals obtained by using the following loss functions:

A = c · Lpred + β · L1 + L2

B = c · Lpred + β · L1 + L2 + LAE

C = c · Lpred + β · L1 + L2 + Lproto

D = c · Lpred + β · L1 + L2 + LAE + Lproto

E = β · L1 + L2 + Lproto

F = β · L1 + L2 + LAE + Lproto

(15)

For each of the ten classes, we randomly sample 50 numbers from the test
set and find counterfactual instances for 3 different random seeds per sample.
This brings the total number of counterfactuals to 1,500 per loss function.

The model used to classify the digits is a convolutional neural network with
2 convolution layers, each followed by a max-pooling layer. The output of the
second pooling layer is flattened and fed into a fully connected layer followed by a
softmax output layer over the 10 possible classes. For objective functions B to F ,
the experiment also uses a trained autoencoder for the LAE and Lproto loss terms.
The autoencoder has 3 convolution layers in the encoder and 3 deconvolution
layers in the decoder. Full details of the classifier and autoencoder, as well as
the hyperparameter values used can be found in the supplementary material.

Results. Table 1 summarizes the findings for the speed and interpretability
measures.

Speed. Figure 3(a) shows the mean time and number of gradient steps required
to find a satisfactory counterfactual for each objective function. We also show
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Fig. 3. (a) Mean time in seconds and number of gradient updates needed to find a
satisfactory counterfactual for objective functions A to F across all MNIST classes. The
error bars represent the standard deviation to illustrate variability between approaches.
(b) Mean IM1 and IM2 for objective functions A to F across all MNIST classes (lower
is better). The error bars represent the 95% confidence bounds. (c) Sparsity measure
EN(δ) for loss functions A to F . The error bars represent the 95% confidence bounds.

the standard deviations to illustrate the variability between the different loss
functions. For loss function A, the majority of the time is spent finding a good
range for c to find a balance between steering the perturbed instance away from
the original class t0 and the elastic net regularization. If c is too small, the L1

regularization term cancels out the perturbations, but if c is too large, xcf is not
sparse anymore.

The aim of LAE in loss function B is not to speed up convergence towards a
counterfactual instance, but to have xcf respect the training data distribution.
This is backed up by the experiments. The average speed improvement and
reduction in the number of gradient updates compared to A of respectively 36%
and 54% is significant but very inconsistent given the high standard deviation.
The addition of Lproto in C however drastically reduces the time and iterations
needed by respectively 77% and 84% compared to A. The combination of LAE

and Lproto in D improves the time to find a counterfactual instance further: xcf

is found 82% faster compared to A, with the number of iterations down by 90%.

Table 1. Summary statistics with 95% confidence bounds for each loss function for
the MNIST experiment.

Method Time (s) Gradient steps IM1 IM2 (×10)

A 13.06 ± 0.23 5158 ± 82 1.56 ± 0.03 1.65 ± 0.04

B 8.40 ± 0.38 2380 ± 113 1.36 ± 0.02 1.60 ± 0.03

C 3.06 ± 0.11 835 ± 36 1.16 ± 0.02 1.09 ± 0.02

D 2.31 ± 0.04 497 ± 10 1.21 ± 0.02 1.26 ± 0.03

E 1.93 ± 0.10 777 ± 44 1.10 ± 0.02 1.10 ± 0.03

F 4.01 ± 0.05 1116 ± 14 1.19 ± 0.02 1.27 ± 0.03
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So far we have assumed access to the model architecture to take advantage
of automatic differentiation during the counterfactual search process. Lpred can
however form a computational bottleneck for black box models because numer-
ical gradient calculation results in a number of prediction function calls propor-
tionate to the dimensionality of the input features. Consider A′ the equivalent
of loss function A where we can only query the model’s prediction function.
E and F remove Lpred which results in approximately a 100x speed up of the
counterfactual search process compared to A′. The results can be found in the
supplementary material.

Quantitative Interpretability. IM1 peaks for loss function A and improves by
respectively 13% and 26% as LAE and Lproto are added (Fig. 3(b)). This implies
that including Lproto leads to more interpretable counterfactual instances than
LAE which explicitly minimizes the reconstruction error using AE. Removing
Lpred in E yields an improvement over A of 29%. While Lpred encourages the
perturbed instance to predict a different class than t0, it does not impose any
restrictions on the data distribution of xcf. Lproto on the other hand implic-
itly encourages the perturbed instance to predict i �= t0 while minimizing the
distance in latent space to a representative distribution of class i.
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Fig. 4. (a) Shows the original instance, (b) to (g) on the first row illustrate counter-
factuals generated by using loss functions A to F . (b) to (g) on the second row show
the reconstructed counterfactuals using AE.

The picture for IM2 is similar. Adding in Lproto brings IM2 down by 34%
while the combination of LAE and Lproto only reduces the metric by 24%. For
large values of K the prototypes are further from ENC(x0) resulting in larger
initial perturbations towards the counterfactual class. In this case, LAE ensures
the overall distribution is respected which makes the reconstructed images of AEi

and AE more similar and improves IM2. The impact of K on IM1 and IM2 is
illustrated in the supplementary material. The removal of Lpred in E and F has
little impact on IM2. This emphasizes that Lproto—optionally in combination
with LAE—is the dominant term with regards to interpretability.

Finally, performing kernel multiple model comparison tests [18] indicates
that counterfactuals generated by methods not including the prototype term (A
and B) result in high rejection rates for faithfully modelling the predicted class
distribution (see supplementary material).
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Visual Interpretability. Figure 4 shows counterfactual examples on the first
row and their reconstructions using AE on the second row for different loss func-
tions. The counterfactuals generated with A or B are sparse but uninterpretable
and are still close to the manifold of a 2. Including Lproto in Fig. 4(d) to (g)
leads to a clear, interpretable 0 which is supported by the reconstructed coun-
terfactuals on the second row. More examples can be found in the supplementary
material.

Sparsity. The elastic net evaluation metric EN(δ) is also the only loss term
present in A besides Lpred. It is therefore not surprising that A results in the
most sparse counterfactuals (Fig. 3(c)). The relative importance of sparsity in
the objective function goes down as LAE and Lproto are added. Lproto leads to
more sparse counterfactuals than LAE (C and E), but this effect diminishes for
large K.

4.3 Breast Cancer Wisconsin (Diagnostic) Dataset

The second experiment uses the Breast Cancer Wisconsin (Diagnostic) dataset
which describes characteristics of cell nuclei in an image and labels them as
malignant or benign. The real-valued features for the nuclei in the image are the
mean, error and worst values for characteristics like the radius, texture or area
of the nuclei. The dataset contains 569 instances with 30 features each. The first
550 instances are used for training, the last 19 to generate the counterfactuals.
For each instance in the test set we generate 5 counterfactuals with different
random seeds. Instead of an encoder we use k-d trees to find the prototypes.
We evaluate and compare counterfactuals obtained by using the following loss
functions:

A = c · Lpred + β · L1 + L2

B = c · Lpred + β · L1 + L2 + Lproto

C = β · L1 + L2 + Lproto

(16)

The model used to classify the instances is a 2 layer feedforward neural network
with 40 neurons in each layer. More details can be found in the supplementary
material.

Results. Table 2 summarizes the findings for the speed and interpretability
measures.

Speed. Lproto drastically reduces the time and iterations needed to find a sat-
isfactory counterfactual. Loss function B finds xcf in 13% of the time needed
compared to A while bringing the number of gradient updates down by 91%.
Removing Lpred and solely relying on the prototype to guide xcf reduces the
search time by 92% and the number of iterations by 93%.



Interpretable Counterfactual Explanations Guided by Prototypes 663

Quantitative Interpretability. Including Lproto in the loss function reduces
IM1 and IM2 by respectively 55% and 81%. Removing Lpred in C results in
similar improvements over A.

Sparsity. Loss function A yields the most sparse counterfactuals. Sparsity and
interpretability should however not be considered in isolation. The dataset has
10 attributes (e.g. radius or texture) with 3 values per attribute (mean, error
and worst). B and C which include Lproto perturb relatively more values of the
same attribute than A which makes intuitive sense. If for instance the worst
radius increases, the mean should typically follow as well. The supplementary
material supports this statement.

Table 2. Summary statistics with 95% confidence bounds for each loss function for
the Breast Cancer Wisconsin (Diagnostic) experiment.

Method Time (s) Gradient steps IM1 IM2 (×10)

A 2.68 ± 0.20 2752 ± 203 2.07 ± 0.16 7.65 ± 0.79

B 0.35 ± 0.03 253 ± 33 0.94 ± 0.10 1.47 ± 0.15

C 0.22 ± 0.02 182 ± 30 0.88 ± 0.10 1.41 ± 0.15
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Fig. 5. Left: Embedding of the categorical variable “Education” in numerical space
using association based distance metric (ABDM). Right: Frequency based embedding.

4.4 Adult (Census) Dataset

The Adult (Census) dataset consists of individuals described by a mixture of
numerical and categorical features. The predictive task is to determine whether
a person earns more than $50k/year. As the dataset contains categorical features,
it is important to use a principled approach to define perturbations over these
features. Figure 5 illustrates our approach using the association based distance
metric [16] (ABDM) to embed the feature “Education” into one dimensional
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numerical space over which perturbations can be defined. The resulting embed-
ding defines a natural ordering of categories in agreement with common sense
for this interpretable variable. By contrast, the frequency embedding method
as proposed by [9] does not capture the underlying relation between categorical
values.

Since ABDM infers distances from other variables by computing dissimilarity
based on the K-L divergence, it can break down if there is independence between
categories. In such cases one can use MVDM [6] which uses the difference between
the conditional model prediction probabilities of each category. A counterfactual
example changing categorical features is shown in Fig. 1.

5 Discussion

In this paper we introduce a model agnostic counterfactual search process guided
by class prototypes. We show that including a prototype loss term in the objec-
tive results in more interpretable counterfactual instances as measured by two
novel interpretability metrics. We demonstrate that prototypes speed up the
search process and remove the numerical gradient evaluation bottleneck for black
box models thus making our method more appealing for practical applications.
By fixing selected features to the original values during the search process we
can also obtain actionable counterfactuals which describe concrete steps to take
to change a model’s prediction. To facilitate the practical use of counterfactual
explanations we provide an open source library with our implementation of the
method.

References

1. Banerjee, A., Merugu, S., Dhillon, I.S., Ghosh, J.: Clustering with Bregman diver-
gences. J. Mach. Learn. Res. 6, 1705–1749 (2005)

2. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear
inverse problems. SIAM J. Imag. Sci. 2(1), 183–202 (2009). https://doi.org/10.
1137/080716542

3. Bentley, J.L.: Multidimensional binary search trees used for associative searching.
Commun. ACM 18(9), 509–517 (1975). https://doi.org/10.1145/361002.361007

4. Bien, J., Tibshirani, R.: Prototype selection for interpretable classification. Ann.
Appl. Stat. 5(4), 2403–2424 (2011). https://doi.org/10.1214/11-AOAS495

5. Borg, I., Groenen, P.: Modern Multidimensional Scaling: Theory and Applications.
Springer, New York (2005). https://doi.org/10.1007/0-387-28981-X

6. Cost, S., Salzberg, S.: A weighted nearest neighbor algorithm for learning with
symbolic features. Mach. Learn. 10(1), 57–78 (1993). https://doi.org/10.1023/A:
1022664626993

7. Dhurandhar, A., et al.: Explanations based on the missing: towards contrastive
explanations with pertinent negatives. Adv. Neural. Inf. Process. Syst. 31, 592–
603 (2018)

8. Dhurandhar, A., Iyengar, V., Luss, R., Shanmugam, K.: Tip: typifying the inter-
pretability of procedures. arXiv preprint arXiv:1706.02952 (2017)

https://doi.org/10.1137/080716542
https://doi.org/10.1137/080716542
https://doi.org/10.1145/361002.361007
https://doi.org/10.1214/11-AOAS495
https://doi.org/10.1007/0-387-28981-X
https://doi.org/10.1023/A:1022664626993
https://doi.org/10.1023/A:1022664626993
http://arxiv.org/abs/1706.02952


Interpretable Counterfactual Explanations Guided by Prototypes 665

9. Dhurandhar, A., Pedapati, T., Balakrishnan, A., Chen, P.Y., Shanmugam, K.,
Puri, R.: Model agnostic contrastive explanations for structured data. arXiv
preprint arXiv:1906.00117 (2019)

10. Dua, D., Graff, C.: UCI machine learning repository (2017)
11. Gurumoorthy, K.S., Dhurandhar, A., Cecchi, G.: Protodash: fast interpretable pro-

totype selection. arXiv preprint arXiv:1707.01212 (2017)
12. Jiang, H., Kim, B., Guan, M., Gupta, M.: To trust or not to trust a classifier. Adv.

Neural. Inf. Process. Syst. 31, 5541–5552 (2018)
13. Kaufmann, L., Rousseeuw, P.: Clustering by means of medoids. Data Analysis

based on the L1-Norm and Related Methods, pp. 405–416 (1987)
14. Kim, B., Khanna, R., Koyejo, O.O.: Examples are not enough, learn to criticize!

criticism for interpretability. Adv. Neural. Inf. Process. Syst. 29, 2280–2288 (2016)
15. Laugel, T., Lesot, M.-J., Marsala, C., Renard, X., Detyniecki, M.: Comparison-

based inverse classification for interpretability in machine learning. In: Medina,
J., et al. (eds.) IPMU 2018. CCIS, vol. 853, pp. 100–111. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-91473-2 9

16. Le, S.Q., Ho, T.B.: An association-based dissimilarity measure for categorical data.
Pattern Recogn. Lett. 26(16), 2549–2557 (2005). https://doi.org/10.1016/j.patrec.
2005.06.002

17. LeCun, Y., Cortes, C.: MNIST handwritten digit database (2010)
18. Lim, J.N., Yamada, M., Schölkopf, B., Jitkrittum, W.: Kernel stein tests for mul-

tiple model comparison. In: Advances in Neural Information Processing Systems
32, pp. 2240–2250. Curran Associates, Inc. (2019)

19. Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions.
Adv. Neural. Inf. Process. Syst. 30, 4765–4774 (2017)

20. Luss, R., Chen, P.Y., Dhurandhar, A., Sattigeri, P., Shanmugam, K., Tu, C.C.:
Generating contrastive explanations with monotonic attribute functions. arXiv
preprint arXiv:1905.12698 (2019)

21. Molnar, C.: Interpretable Machine Learning (2019). https://christophm.github.io/
interpretable-ml-book/. Accessed 22 Jan 2020

22. Mothilal, R.K., Sharma, A., Tan, C.: Explaining machine learning classifiers
through diverse counterfactual explanations. In: Proceedings of the 2020 Confer-
ence on Fairness, Accountability, and Transparency (2020). https://doi.org/10.
1145/3351095.3372850

23. Ribeiro, M.T., Singh, S., Guestrin, C.: “Why should I trust you”: explaining the
predictions of any classifier. In: Proceedings of the 22Nd ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, pp. 1135–1144
(2016). https://doi.org/10.1145/2939672.2939778

24. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal representations
by error propagation. In: Parallel Distributed Processing: Explorations in the
Microstructure of Cognition, vol. 1, pp. 318–362. MIT Press, Cambridge (1986)

25. Snell, J., Swersky, K., Zemel, R.: Prototypical networks for few-shot learning. Adv.
Neural. Inf. Process. Syst. 30, 4077–4087 (2017)

26. Takigawa, I., Kudo, M., Nakamura, A.: Convex sets as prototypes for classifying
patterns. Eng. Appl. Artif. Intell. 22(1), 101–108 (2009). https://doi.org/10.1016/
j.engappai.2008.05.012

27. Wachter, S., Mittelstadt, B., Russell, C.: Counterfactual explanations without
opening the black box: automated decisions and the GDPR. Harvard J. Law Tech-
nol. 31, 841–887 (2018)

28. Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. J.
Roy. Stat. Soc. Ser. B (Stat. Methodol.) 67(2), 301–320 (2005)

http://arxiv.org/abs/1906.00117
http://arxiv.org/abs/1707.01212
https://doi.org/10.1007/978-3-319-91473-2_9
https://doi.org/10.1016/j.patrec.2005.06.002
https://doi.org/10.1016/j.patrec.2005.06.002
http://arxiv.org/abs/1905.12698
https://christophm.github.io/interpretable-ml-book/
https://christophm.github.io/interpretable-ml-book/
https://doi.org/10.1145/3351095.3372850
https://doi.org/10.1145/3351095.3372850
https://doi.org/10.1145/2939672.2939778
https://doi.org/10.1016/j.engappai.2008.05.012
https://doi.org/10.1016/j.engappai.2008.05.012


Finding High-Value Training Data Subset
Through Differentiable Convex

Programming

Soumi Das1(B), Arshdeep Singh1, Saptarshi Chatterjee1,
Suparna Bhattacharya2, and Sourangshu Bhattacharya1

1 Indian Institute of Technology, Kharagpur, Kharagpur, West Bengal, India
soumi das@iitkgp.ac.in

2 Hewlett Packard Labs, Hewlett Packard Enterprise, Bangalore, India

Abstract. Finding valuable training data points for deep neural net-
works has been a core research challenge with many applications. In
recent years, various techniques for calculating the “value” of individ-
ual training datapoints have been proposed for explaining trained mod-
els. However, the value of a training datapoint also depends on other
selected training datapoints - a notion which is not explicitly captured
by existing methods. In this paper, we study the problem of selecting
high-value subsets of training data. The key idea is to design a learnable
framework for online subset selection, which can be learned using mini-
batches of training data, thus making our method scalable. This results
in a parameterised convex subset selection problem that is amenable to
a differentiable convex programming paradigm, thus allowing us to learn
the parameters of the selection model in an end-to-end training. Using
this framework, we design an online alternating minimization based algo-
rithm for jointly learning the parameters of the selection model and ML
model. Extensive evaluation on a synthetic dataset, and three standard
datasets, show that our algorithm finds consistently higher value subsets
of training data, compared to the recent state of the art methods, some-
times ∼ 20% higher value than existing methods. The subsets are also
useful in finding mislabelled training data. Our algorithm takes running
time comparable to the existing valuation functions.

Keywords: Data valuation · Subset selection · Convex optimisation ·
Explainability

1 Introduction

Estimation of “value” of a training datapoint from a Machine Learning model
point of view, broadly called data valuation [10,16,19], has become an impor-
tant problem with many applications. One of the early applications included
explaining and debugging training of deep neural models, where the influence
of the training data points on the test loss is estimated [13,16]. Another appli-
cation involves estimating the expected marginal value of a training datapoint
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w.r.t. general value functions e.g. accuracy on a test set [10], which can be used
in buying and selling of data in markets. [19] lists a number of other applica-
tions, including detecting domain shift between training and test data, suggesting
adaptive data collection strategy, etc.

Most existing formulations for data valuation assume a supervised machine
learning model, y = f(x, θ) with parameters θ. For all the above mentioned
applications, the key technical question is to determine the improvement in the
value function (usually test set loss) given that a new set of datapoints are added
to the training set. The influence function based methods [13,16] aim to estimate
the influence of each individual datapoint, on the test loss of a trained model.
While these techniques are computationally efficient, they ignore an important
fact: the value of a training datapoint depends on the other datapoints in the
training dataset. For a given training data point x, another datapoint y may add
to the value of x, possibly because it is very different from x. Alternately, y may
reduce the value of x if it is very similar to x.

Shapley value based methods [10] also estimate the value of individual dat-
apoints using the expected marginal gain in the value function while adding
the particular datapoint. Hence, this method considers the effect of other dat-
apoints, but only in an aggregate sense. Also, this method is computationally
expensive. DVRL [19] is the closest to our approach. It learns a parameterised
selection function which maximizes the reward of selecting training datapoints
using Reinforcement Learning. The reward function is the marginal improvement
in value function after selection of a training datapoint over the previous running
average of value function. Unfortunately, this reward leads to selection of many
training datapoints which are similar to each other, if their inclusion contributes
to making the loss better than past average. To the best of our knowledge, none
of the existing data valuation techniques explicitly consider similarities between
training points, when selecting high value subsets.

In this paper, we consider a set value function for assigning value to a subset
of training datapoints. A proxy for the value function is learned though an
embedding of datapoints, such that distance between the embedded datapoints
represent the inverse value of replacing one of the datapoints with another.
In this framework, we propose the problem of high-value data subset selection,
which computes the optimal subset of a given size maximizing the value of
the subset, or minimizing the total distance between selected points and other
training datapoints in the embedding space.

In order to efficiently compute the high value data subsets, we address two
challenges. Firstly, the embedding function of datapoints needs to be learned
by optimizing the value of the selected subset, which itself is the output of an
optimization problem. Hence, our formulation should be able to propagate the
gradient of value-function back through the optimization problem. Secondly,
for practicality, our formulation should be able to select the datapoints in an
online manner from minibatches of data. We address both these challenges by
designing a novel learned online subset selection formulation for selecting sub-
sets of training datapoints from minibatches. Our formulation is inspired by
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the online subset selection technique based on facility location objective [6], but
uses a learned distance function using a parameterised embedding of the train-
ing datapoints. In order to learn the embedding parameters, our formulation is
also compatible with the differentiable convex programming paradigm [1], which
allows us to propagate the gradients of the value function (loss on test set) back
to the embedding layer. We propose an online alternating minimization based
algorithm to jointly learn the embedding function for selection of optimal train-
ing data subset, and learn the optimal model parameters for optimizing the loss
on the selected subset. Our algorithm scales linearly in training data size for a
fixed number of epochs.

We benchmark our algorithm against state of the art techniques. e.g. DVRL
[19], Data Shapley [10], etc. using extensive experiments on multiple standard
real world datasets, as well as a synthetic dataset. We show that selection of high
value subset of training data points using the proposed method consistently leads
to better test set accuracy, for similar sized selected training dataset, with upto
20% difference in test accuracy. Also, removal of high value subset of training
datapoints leads to a much more significant drop in test accuracy, compared to
baselines. We also show that the proposed method can detect higher fraction of
incorrectly labelled data, for all sizes of selected subsets. Moreover, correcting the
detected mislabelled points leads to higher increase in test set accuracy compared
to baseline. We observe that DVRL [19], which is the closest competitor, selects
datapoints in a biased manner, possibly because there, it selects many similar
high-performing datapoints at each stage.

To summarise, our key contributions are:

1. We highlight the problem of high-value data subset selection, which selects a
high-value subset, rather than assigning valuation to individual datapoints.

2. We formulate a novel learned online data subset selection technique which
can be trained jointly with the ML model.

3. We propose an online alternating minimization based algorithm which trains
the joint model using mini-batches of training data, and scales linearly with
training data.

4. Results with extensive experimentation show that our method consistently
outperforms recent baselines, sometimes with an accuracy improvement of
∼ 20% for the same size subsets.

2 Related Work

The exponential rise in quantity of data and depth of deep learning models have
given rise to the question of scalability. Several subset selection methods have
been designed using submodular [2] and convex approaches [7], to combat the
problem. However, all these techniques only rely on some measure of similarity
(pairwise, pointwise) [5,6] and do not really account for the explanation behind
its choice in view of the end-task. Hence the other question which arises is
explainability. A set of methods for explainability is prototype based approaches
which finds the important examples aimed towards the optimisation of a given
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value function, or in other words, improvement of a given performance metric
(e.g. test set accuracy). Pioneering studies on influence functions [4] have been
used to estimate the change in parameter θ, given an instance xi is absent and is
used to obtain an estimate of θ−i −θ. This aids in approximating the importance
of the instance xi. Following the works of [13] on influence functions, there have
been several other works which try to measure the influence of training points
on overall loss by tracking the training procedure [12] while some try to measure
the influence of training points on a single test point [16]. A recent work by [18]
performs rapid retraining by reusing information cached during training phase.

Shapley value, an idea originated from game theory has been a driving factor
in the field of economics. It was used as a feature ranking score for explaining
black-box models [14,15]. However, [10] were the first to use shapley value to
quantify data points where they introduce several properties of data valuation
and use Monte Carlo based methods for approximation. There has also been
a recent study in using shapley for quantifying the importance of neurons of a
black box model [11]. A follow-up work by [9] aims to speed up the computation
of data shapley values. However, all the above methods do not have a distinctive
selection mechanism for providing an explainable representative set of points.

Our work is in close proximity to the prototype based approaches. While
[9] aims to work with training set distribution, our work is essentially inclined
towards selection from training datasets, hence leading to choose [10] as one of
our baselines. Among the methods around influence functions, we use the work of
[13,16] as two of our baselines. A recent work by [19] attempts to adaptively learn
data values using reinforcement signals, along with the predictor model. This
work is the closest in terms of the problem objective we are intending to solve
and hence we use it as one of our baselines. However, they intend to optimize
the selection using reinforcement trick which requires a greater number of runs,
while we use a learnable convex framework for the purpose of selection. To the
best of our knowledge, this is the first of its kind in using a differentiable convex
programming based learning framework to optimize the selection mechanism in
order to improve on a given performance metric.

3 High-Value Data Subset Selection

In this section, we formally define the problem of high-value data subset selection
and propose a learned approximate algorithm for the same.

3.1 Motivation and Problem Formulation

Data valuation for deep learning is an important tool for generating explana-
tions of deep learning models in terms of training data. Let D = {(xi, yi)|i =
1, . . . , n} be the training dataset with features xi ∈ X , and labels yi ∈ Y,
and Dt = {(xt

i, y
t
i)|i = 1, . . . ,m} be a test dataset, which is used for valuation

of the training data in D. Also, let s ∈ S denote a subset of of the training
data D (S is the power set of D). Let f(θ) denote a parameterized family of
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learnable functions (typically implemented with neural networks), parameter-
ized by a set of parameters θ. Given an average loss function L(f(θ), s), defined
as L(f(θ), s) = 1

|s|
∑

(xi,yi)∈s L(yi, f(xi; θ)), we define the optimal parameters
θ∗(s) for a training data subset s as:

θ∗(s) = arg min
θ

L(f(θ), s) (1)

Given an optimal parameter θ∗(s) and the test dataset Dt, we define the value
function v(s), which provides a valuation of the subset s as:

v(s) = v(θ∗(s),Dt) = −L(f(θ∗(s)),Dt) (2)

The high-value subset selection problem can be defined as:

max
s∈S

v(s) sub. to |s| ≤ γn (3)

where γ is the fraction of retained datapoints in the selected subset.
This problem is NP-Hard for a general value function v(s). Next, we describe

our broad framework to approximate the above problem with a two step app-
roach:

1. Learn an embedding function h(x, φ) of the data point x, such that the dis-
tance between datapoints xi and xj , dij = d(xi, xj) = D(h(xi, φ), h(xj , φ))
represents their inverse-ability to replace each other for a given learning task.
Here, D is a fixed distance function.

2. Select the set of most important datapoints s∗ by minimizing the sum of
distance between each datapoint and its nearest selected neighbor, and update
the parameters φ of the embedding function such that v(s∗) is maximized.

The objective function for selection problem in second step can be written as:

s∗ = min
s∈S

∑

(x,y)∈D
min

(x′,y′)∈s
d(x, x′) (4)

This objective function corresponds to the facility location problem [6], which
can be relaxed to the following convex linear programming problem:

min
zij∈[0.1]

n∑

i,j=1

zijd(xi, xj) (5)

sub. to
n∑

j=1

zij = 1, ∀i = {1, . . . , n}

Here zij = 1 indicate that the datapoint j is the nearest selected point or “repre-
sentative” for data point i. Hence, the objective function sums the total distance
of each point from its representative point, and the constraint enforces that every
datapoint i should have exactly one representative point. A point j is selected if
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it is representative to at least one point, i.e.
∑n

i=1 zij ≥ 1. Let uj be the indicator
variable for selection of datapoint j. For robustness, we calculate uj as:

uj =
1
ξ

max{
n∑

i=1

zij , ξ} (6)

where 0 ≤ ξ ≤ 1 is a constant.
There are two main challenges in utilizing this formulation for the problem

of optimizing the value function. Firstly, the optimal parameters θ∗(s) depend
on the variables zij through variables uj , which are output of an optimization
problem. Hence, optimizing v(s∗) w.r.t parameters (φ) of the embedding function
requires differentiating through the optimization problem. Secondly, for most
practical applications calculating the subset of training data, s, by optimizing
the above optimization problem is too expensive for an iterative optimization
algorithm which optimizes φ. Moreover, optimizing the parameters (θ) of the
neural network model f(θ), typically involves an online stochastic optimization
algorithm (e.g. SGD) which operates with mini-batches of training data points.
In the next section, we describe the proposed technique for joint online training
of both the learning model parameters θ and embedding model parameters φ.

3.2 Joint Online Training of Subset Selection and Learning Model

Our problem of selection of high-value subsets from training data can be
described as joint optimization of value function for selection of best subset, and
optimization of loss function on the selected subset computing the best model.
Given training and test datasets D and Dt, overall value function parameterised
by the embedding model parameters φ for selection was defined as (Eq. 2):

v(s(φ)) = v(θ∗(s(φ)),Dt) =
1

|Dt|
∑

(x,y)∈Dt

L(y, f(θ∗(s(φ)), x)) (7)

where θ∗(s(φ)) = arg minθ L(f(θ), s(φ)) (from Eq. 1). Representing s(φ) in terms
of the selection variables uj (Eq. 6), we can write the model loss on selected
training set using embedding model parameter φ as:

L(θ;φ,D) =
1

γ|D|
∑

(xj ,yj)∈D
uj(φ)L(yj , f(xj ; θ)) (8)

We note that the above objective functions L(θ) and v(s(φ)) are coupled in the
variables φ and θ. On one hand, the loss on the selected training set L(θ;φ,D)
depends on the current embedding model parameters φ. On the other hand,
intuitively, the value v(s(φ)) of a selected set of datapoints s(φ) should also
depend on the current model parameter value θ′, which maybe be updated using
loss from the selected set of datapoints s(φ). Hence, we define the cumulative
value function V(φ; θ′,D,Dt) as:

V(φ; θ′,D,Dt) = v(θ̂,Dt), where θ̂ = θ′ − α∇θL(θ;φ,D) (9)
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Here, θ̂ is the one step updated model parameter using the selected examples
from dataset D using parameter φ, and α is the stepsize for the update. We
combine the two objectives into a joint objective function, J(θ, φ;D,Dt). The
combined optimization problem becomes:

θ∗, φ∗ = arg min
θ,φ

J(θ, φ;D,Dt) = arg min
θ,φ

(V(φ; θ′,D,Dt) + L(θ;φ,D)) (10)

As discussed above, since the training dataset D is normally much bigger in size,
we design our algorithm to optimize the above objective function in an online
manner. Hence the training dataset D is split into k equal-sized minibatches
D = {D1, . . . , Dk}. The above joint objective function can be decomposed as:

J(θ, φ;D,Dt) =
1
k

k∑

i=1

{L(θ;φ,Di) + V(φ; θ′,Di,Dt)} (11)

We solve the above problem using an online alternating minimization method
similar to the one described in [3]. Our algorithm updates θ and φ as:

Initialize θ1 and φ1 randomly
for t = 1, . . . , T :

1 : θt+1 = θt − α 1
k∇θL(θ;φt,Di(t))

2 : φt+1 = φt − β 1
k∇φV(φ; θt,Di(t),Dt)

Here i(t) is the index of the minibatch chosen at update number t. Step 1 is
the standard SGD update minimizing the loss over a subset of the minibatch
Di(t) chosen using embedding parameters φt. Hence, it can be implemented using
standard deep learning platforms. Implementation of step 2 poses two challenges:
(1) computation of ∇φV(φ; θt,Di(t),Dt) requires differentiation through an opti-
mization problem, since uj(φ) is the result of an optimization. (2) the datapoints
in Di(t) must also be compared with datapoints in a previous minibatch for
selecting the best representative points. Hence we need an online version of the
optimization problem defined in Eq. 5. We describe solutions to these challenges
in the next section.

3.3 Trainable Convex Online Subset Selection Layer

In order to implement the algorithm outlined in the previous section, we have
to compute ∇φV(φ; θt,Di,Dt), which can be done by combining Eq. 7, 8 and 9
as:

∇φV(φ; θt,Di,Dt) = − 1
|Dt|

∑

(xj ,yj)∈Dt

∇θ̂l(yj , f(θ̂, xj))· (12)

1
γ|Di|

∑

(xj ,yj)∈Di

(∇φuj(φ)∇θL(yj , f(xj , θ))
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The key challenge here is computation of ∇φuj(φ), since uj(φ) is the output of
an optimization problem. Also, the optimization problem in Eq. 5 selects from all
datapoints in D, whereas efficient loss minimization demands that we only select
from the current minibatch Di(t). We use the online subset selection formulation,
proposed in [6]. Let O(t) denote the set of old datapoints at time t which have
already been selected, and let Di(t) denote the new set from which points will
be selected. We use two sets of indicator variables: zo

ij = 1 indicating that old
datapoint j is a representative of new datapoint i, and zn

ij = 1 indicating that
new datapoint j is a representative of new datapoint i. Under this definition the
optimization problem can written as:

min
zo
ij ,zn

ij∈[0,1]

∑

xi∈Di(t),xj∈O(t)

zo
ijd(xi, xj) +

∑

xi∈Di(t),xj∈Di(t)

zn
ijd(xi, xj) (13)

sub. to
∑

xj∈O(t)

zo
ij +

∑

xj∈Di(t)

zn
ij = 1, ∀i = {1, . . . , n}

∑

xj∈Di(t)

uj ≤ γ|Di(t)|

where uj = 1
ξ max{∑

xi∈Di(t)
zn
ij , ξ}. The first constraint enforces that all new

points must have a representative, and the second constraint enforces that the
total number of representatives from the new set is less than γ|Di(t)|. The objec-
tive function minimizes the total distance of between all points and their repre-
sentatives. As previously, d(xi, xj) = D(h(xi, φ), h(xj , φ)), where h(x, φ) is the
embedding of the point x using parameters φ.

In order to compute ∇φuj(φ) we use the differentiable convex programming
paradigm [1]. The DCP framework allows us to embed solutions to optimization
problems as layers in neural networks, and also calculate gradients of output of
the layers w.r.t. parameters in the optimization problem, so long as the prob-
lem formulation satisfies all the disciplined parameterized programming (DPP)
properties. The above convex optimization problem generally satisfies all the
properties of disciplined parameterized programming (DPP) [1], with parameter
φ, except for the objective function. Specifically, the constraints are all convex
and are not functions of parameters. The objective function is also linear in vari-
ables zo

ij , but should be an affine function of the parameters φ in order to satisfy
the DPP constraints. Hence, we use the affine distance function D(a, b) = |a−b|.
Hence, the DCP framework allows us to calculate ∇φuj(φ) = ∇zn

ij
uj∇φzn

ij(φ).
Algorithm 1 summarizes the proposed framework for jointly learning a deep
learning model (parameterized by θ) and a selection function for selecting a
fraction γ of the training examples, parameterized by φ.

Computational Complexity: Running time of the proposed algorithm scales
linearly with the training dataset size. The algorithm also works at a time with a
minibatch of training data, and hence is memory efficient. These two properties
make the current algorithm work on very large training datasets, and complex
deep learning models, provided there is enough computational power for infer-
ence of the model. A significant overhead of the current algorithm comes from
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solving an optimization problem for each parameter update. However, this cost
can be controlled by keeping the minibatch sizes |Di| small, typically |Di| ≤ 100,
which results in a linear optimization in 10000 variables. Another practical trick
is to use a fixed number of datapoints for the old set O(t), where the data-
points can be chosen to be most similar to points in the minibatch Di using a
locality sensitive hashing based nearest neighbor search algorithm. Experimen-
tal results show that our algorithm takes a comparable amount of time as our
closest competitor DVRL [19], while being much more accurate.

Algorithm 1. HOST-CP : High-value Online Subset selection of Training sam-
ples through differentiable Convex Programming
1: Input:
2: Training dataset D with minibatches D1, . . . , Dk, Test dataset Dt, fraction of

selected instances γ
3: Output:
4: Model Parameter θ, Embedding model for selection parameter φ
5: Algorithm:
6: Initialize old set O(0) → Φ (Null set)
7: Initialize parameters θ0 and φ0 randomly.
8: for each timestep t = 1, . . . , T do
9: Let Di(t) be the current minibatch.

10: for each datapoint xi ∈ Di(t) and xj ∈ O(t), calculate embeddings h(xi, φ) and
h(xj , φ)

11: for each pair (i, j) , xi ∈ O and xj ∈ Di(t) calculate do(xi, xj)
12: for each pair (i, j) , xi ∈ Di(t) and xj ∈ Di(t) calculate dn(xi, xj)
13: Calculate zn

ij and zo
ij by solving optimization problem in Equation 13

14: Calculate uj = 1
ξ

max{∑
xi∈Di(t)

zn
ij , ξ} for all xj ∈ Di(t)

15: Include the selected points in the old set O(t + 1) for which uj = 1
16: Calculate L(θt; φt, Di(t)) on the selected set by forward propagation.
17: Calculate θt+1 = θt − α 1

k
∇θL(θ; φt, Di(t)) by backpropagation.

18: Calculate θ̂ = θt −α∇θL(θ; φt, Di(t)) followed by V(φ; θ′, D, Dt) using Equation
9, where ∇φuj(φ) is calculated using DCP as described in Section 3.3

19: Update the embedding model parameter as: φt+1 = φt−β 1
k
∇φV(φ; θt, Di(t), Dt)

20: end for

4 Experiment

In this section, we provide our experimental setup by describing the datasets and
the different data valuation baselines. In Sect. 4.2, we show the effectiveness of
our proposed method - High-value Online Subset selection of Training samples
through differentiable Convex Programming (HOST-CP) over the baselines
in terms of performance metric with addition and removal of high value data
points. Next in Sect. 4.3, we show the use case of diagnosing mislabelled examples
which, when fixed can improve the performance. Following that in Sect. 4.4, we
provide an analysis of the quality of subsets obtained by one of the baselines,
DVRL [19] and the proposed method. We also show a ranking evaluation of
selected points and their correspondence with ground truth relevance in Sect. 4.5.
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Lastly, Sect. 4.6 describes the performance of the proposed method in terms of
its computational complexities.

4.1 Experimental Setup

Dataset: We have considered datasets of different modalities for experiments.
We use four types of datasets: CIFAR10 - a multi-class dataset for image clas-
sification, protein dataset1 for multi-class protein classification, 20newsgroups2

for text classification and a synthetic dataset for binary classification. Following
[10], we generate 10 synthetic datasets, using third-order polynomial function.

For CIFAR10, we obtain the image features from a pre-trained ResNet-18
model and train a 2 layer neural network on the learned features. In case of
synthetic data and protein data, we pass the datapoints through a 3 layer neural
network, whereas in case of 20newsgroups, we pass the TF-IDF features of the
documents through a 3 layer network for classification.

Baselines: We consider four state-of-the-art techniques as our baselines. Two of
the baselines - Influence Function - IF [13] and TracIn-CP [16] use the influence
function method for data valuation, one uses data shapley (DS) value [10] for
selecting high value data points while the fourth one, DVRL [19] uses reinforce-
ment technique while sampling, to rank the data points.

4.2 Valuable Training Data

Fig. 1. Addition (top) and removal (bottom) of valuable training datapoints:
We compare HOST-CP with the aforementioned baselines (IF [13], DS [10], TracIN-
CP [16], DVRL [19]) in terms of accuracy on test set. For each method, we select (for
addition) or discard (for removal) top k% important training points and assess their
importance. HOST-CP performs better (highest for addition and lowest for removal)
across all fractions and all datasets.

1 https://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/.
2 https://scikit-learn.org/0.19/datasets/twenty newsgroups.html.

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://scikit-learn.org/0.19/datasets/twenty_newsgroups.html
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We compare our method3with state-of-the-art methods in terms of finding the
most valuable training data points. We show the effectiveness of the proposed
method by addition and removal of an incremental fraction of training instances
to and from the dataset. We examine the test set performance for each frac-
tion of selected or removed training points. The baseline methods are used to
assign values to each data point, following which the top k% fraction of data
are selected/removed from the whole dataset to train the classification network
models. Our proposed method has the flexibility to optimally select the signifi-
cant k% of data from the entire given dataset. We use the subsets of varying k or
(100 − k) fractions for training the networks and report the test set accuracies.

In Fig. 1, we report the test set accuracies after addition and removal of
high-value training data points, that get selected using the respective methods.
We can observe in Fig. 1 (top) that our method surpasses the baselines for all
fractions and it approximately performs equivalent to the whole set (WS) within
a fraction of 50–65%. We also note a similar trend in removal of valuable data
points. We can observe in Fig. 1 (bottom) that our method shows a significant
drop in accuracy with removal of high-value data points. All the baselines show
varying performances on different datasets. However, the proposed method con-
sistently outperforms across all of them. This clearly suggests that HOST-CP is
efficient enough to provide the optimal subset of training data points necessary
for explaining the predictions on a given test set.

4.3 Fixing Mislabelled Data

Increase in data has led to rise in need of crowd sourcing for obtaining labels.
Besides the chances of obtained labels being prone to errors [8], several data
poisoning attacks are also being developed for mislabelling the data [17]. In this
experiment, we impute 10% training data with incorrect labels, using which we
compare our method with that of the baselines. The baseline methods consider
that the mislabelled data shall lie towards the low ranked data points. We adopt
the same idea and use the data points not selected by our method (reverse-
selection) for analysis.

In this experiment, we inspect the bottom k% fraction (for baselines) and
unselected k% fraction of the data (for the proposed method) for presence of
wrong labels. We run this experiment on CIFAR10 and synthetic dataset and
report the fraction of incorrect labels fixed with varying k. While imputing 10%
of training data, we flip the labels of synthetic dataset since it consists of binary
labels, while in case of CIFAR10, we change the original label to one out of 9
classes. We can observe in Table 1 that the proposed method is able to find com-
parable mislabelled fraction of incorrect labels in comparison to the baselines.
We also run another experiment where, we fix the incorrect labels in the consid-
ered k% fraction of data and train the entire data. Figure 2 shows a rise in test
set accuracy with a significant margin using the proposed method. This denotes
the effectiveness of HOST-CP, in diagnosing mislabelled examples which turns
out to be an important use-case in data valuation techniques.

3 https://github.com/SoumiDas/HOST-CP.

https://github.com/SoumiDas/HOST-CP
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Table 1. Diagnosing mislabelled data: We inspect the training points starting from
the least significant data and report the fraction of labels fixed from the inspected data.
Overall, HOST-CP detects a higher rate of mislabelled data.

Fraction of data

checked (%)

Fraction of incorrect labels fixed

CIFAR10 Synthetic data

IF DS DVRL TracIn-CP HOST-CP IF DS DVRL TracIn-CP HOST-CP

20 0.21 0.19 0.195 0.20 0.23 0.22 0.22 0.19 0.23 0.23

35 0.35 0.34 0.336 0.35 0.36 0.34 0.37 0.33 0.35 0.39

50 0.50 0.50 0.49 0.50 0.51 0.43 0.54 0.46 0.51 0.55

65 0.61 0.61 0.65 0.63 0.67 0.56 0.67 0.58 0.68 0.68

80 0.74 0.78 0.80 0.79 0.81 0.66 0.81 0.79 0.81 0.83

Fig. 2. Accuracy after fixing mislabelled data: For every k% fraction of inspected
data, we fix the mislabelled instances and re-train. HOST-CP shows improved perfor-
mance with each fixing of labels.

4.4 Qualitative Analogy of Data Valuation

As we had mentioned earlier, methodologically, DVRL [19] is the closest method
to our approach. Hence, in order to qualitatively explain the difference in per-
formance between that of DVRL and the proposed method, we try to analyse
the quality of subsets obtained by both of them on CIFAR10 dataset. Figure 3
shows the fraction of selected images across classes by both the methods. We
compare the top 5% selected subset by DVRL and the proposed method in
terms of class distribution. Unlike HOST-CP which compares the past selected
data points with the incoming points to compute the new subset, DVRL keeps
track of past average test losses and values the instances based on the marginal
difference with the current loss. This leads to a certain bias in case of DVRL,
towards some particular class of images or similar high-performing datapoints
which are more contributory towards reduction in test set losses. Following this,
we observe that HOST-CP selects a diverse set of samples, thus justifying its
better performance.
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Fig. 3. Quality of subset: We observe that unlike DVRL, HOST-CP selects diverse
images across the classes leading to better performance.

4.5 Ranking Function for Value Points

Fig. 4. Ranking of data points: We select k% fraction of data for each method
and provide scores for each datum. While IF and DS subsets inherently come along
with scores, the proposed method, HOST-CP returns a subset which is scored using IF
and DS. Following the acquisition of scores for each data point, we use NDCG@k to
calculate the ranking values. The proposed method is found to have a higher NDCG
score.

Unlike the baseline methods which provide a score to each data point, HOST-CP
has no such analogous scoring function. It is designed to return the explainable
subset necessary for optimum performance on a given test set. We design this
experiment to assess the significance of the selected data points in terms of
ranking function values. We use NDCG score for reporting the ranking value.

We use the synthetic dataset and create a series of ground-truth values by
flipping n% {=5, 10, 15} of the data. We assign ground-truth to the flipped and
unflipped points with 0 and 1 respectively. We examine the bottom(or low-value)
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k% of the data for computing the ranking values since the flipped points are more
inclined to lie towards the bottom. As we have observed in Sect. 4.3, we use the
reverse-selection procedure to obtain the bottom k% of data for the proposed
method, while for the baselines, the low-valued k% points occupy the bottom
rung. In order to compute NDCG scores, we adopt the two baselines [10,13] to
provide scores to the subset of points obtained using the proposed method. In
case of baselines, we use the k-lowest scoring points for computing rank values.

We flip 5%, 10% and 15% of the data and compute NDCG@k for k ∈ {5, 10,
15, 25, 40}. Here k refers to the bottom k% subset from the methods. In Fig. 4,
we compare the respective ranking values(NDCG) of subsets obtained using
influence function (IF) or data shapley (DS) with the subset obtained using the
proposed method followed by usage of the corresponding scoring method (IF or
DS) on this acquired subset. We can observe that NDCG values obtained by the
proposed method’s subset followed by scoring using IF or DS always stays ahead
than using the subsets obtained by IF or DS, starting from an early fraction. This
shows that the subset obtained using HOST-CP is efficient enough in keeping
the proportions of relevant(unflipped) and non-relevant(flipped) points in their
respective positions leading to a higher-NDCG score.

4.6 Computational Complexity

We analysed the computational complexity of the proposed method on a 64-
bit machine with one Quadro-P5000 GPU. For this experiment, we generated
synthetic datasets with varying number of training datapoints (500, 2000, 4000,
6000, 10000). Keeping the network architecture fixed at a 3 layer network, we
varied the size of the training data, on which the subset is meant to be computed.
We also varied the size of the test datapoints for which explanations are sought
to be found from the training datapoints. We report the time taken to perform
the joint subset-training over an epoch, using the proposed method, which aims
at finding the best set of explanations from the training set for a given set of
test data. Figure 5 shows a linear pattern in time (in minutes) consumed by the
proposed method across the varying size of datapoints.

Fig. 5. Scaling with data: We show that the change in time consumed by HOST-CP
with variation in training data points and test data points using a fixed network is
linear with increasing data.
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Table 2. Time comparison: We compare the times consumed by DVRL and HOST-
CP. We observe that HOST-CP has a lower running time than DVRL.

Accuracy (5%) Accuracy (20%) Epochs (HOST-CP)/Iterations (DVRL) Time (mins)

HOST-CP DVRL HOST-CP DVRL HOST-CP DVRL HOST-CP DVRL

62.46 57.8 71.32 66.4 1 25 1.1 3.40

63.34 57.2 73.82 66.8 2 50 2.01 5.31

65.14 57.4 74.89 66.5 3 100 3.05 6.50

65.71 57.6 75.0 66.6 4 150 4.08 10.57

65.72 57.4 75.0 66.4 5 200 5.12 14.26

We have earlier observed that the proposed method is consistently performing
better than all the baselines. Since DVRL is the closest to our approach, we also
record the time taken by DVRL and the proposed method on the synthetic
dataset (Table 2). We increase the number of iterations for DVRL to trace if
the accuracy obtained by the proposed method is achievable by DVRL under a
certain subset cardinality (5%, 20%). We can observe that DVRL saturates at a
certain accuracy value even after increasing the number of iterations to a much
higher value. Thus, our method, HOST-CP besides attaining a higher accuracy,
also takes considerably lower running time than that of DVRL.

5 Conclusion

In this paper, we propose a technique for finding high-value subsets of training
datapoints essential for explaining the test set instances. We design a learning
convex framework for subset selection, which is then used to optimise the subset
with respect to a differentiable value function. The value function is essentially
the performance metric which helps to evaluate the trained models. We compare
our method against the state-of-the-art baselines, influence functions [13], data
shapley [10], TracIn-CP [16] and DVRL [19] across different datasets in a range
of applications like addition or removal of data, detecting mislabelled examples.
We also analyse the quality of obtained subsets from DVRL and the proposed
method. Lastly, we show that the proposed method scales linearly with the
dataset size and takes a lower running time than DVRL which is the closest
method to our approach methodologically. Thus, we are able to show that HOST-
CP outperforms the baselines consistently in all the applications used for the
experiments, thus proving its efficiency in terms of providing high-value subsets.

Acknowledgements. This project is funded by Hewlett Packard Labs, Hewlett
Packard Enterprise.
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Abstract. Counterfactuals have become a popular technique nowadays
for interacting with black-box machine learning models and understand-
ing how to change a particular instance to obtain a desired outcome from
the model. However, most existing approaches assume instant material-
ization of these changes, ignoring that they may require effort and a
specific order of application. Recently, methods have been proposed that
also consider the order in which actions are applied, leading to the so-
called sequential counterfactual generation problem.

In this work, we propose a model-agnostic method for sequential coun-
terfactual generation. We formulate the task as a multi-objective opti-
mization problem and present a genetic algorithm approach to find opti-
mal sequences of actions leading to the counterfactuals. Our cost model
considers not only the direct effect of an action, but also its consequences.
Experimental results show that compared to state-of-the-art, our app-
roach generates less costly solutions, is more efficient and provides the
user with a diverse set of solutions to choose from.

Keywords: Sequential counterfactuals · Multi-objective optimization ·
Genetic algorithms · Model-agnostic

1 Introduction

Due to the increasing use of machine learning algorithms in sensitive areas such
as law, finance or labor, there is an equally increased need for transparency and
so-called recourse options [12,24]. It is no longer sufficient to simply deliver a
decision, but moreover to be able to explain it and, ideally, offer assistance if
one feels unfairly treated by the algorithm. Hiding the decision-making algorithm
behind a (virtual) wall like an API makes these issues especially intransparent
and problematic in case of black-box models, as they are not able to communicate
with the end user beyond the provided decision (e.g. reject or accept).

For this reason, algorithms emerged that aim to explain a (black-box) decision
or even provide essential recourse information in order to change an undesired
outcome in one’s favor. The latter of these methods is of particular interest,
since it has the capability to improve a bad decision for someone into a good
one by giving explicit directions on what to change with respect to the provided

c© Springer Nature Switzerland AG 2021
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information. These methods are commonly referred to as counterfactual expla-
nations [24]. The goal here is to change (tweak) characteristics (features) of a
provided input so that the black-box decision turns out in favor afterwards (e.g.
increase your level of education to get a higher salary). The result of applying
these changes on the input is commonly referred to as a counterfactual [24].

Usually, those changes are atomic operations, meaning each feature is
tweaked independently [4,15,17,24]. Thus, feature interrelationships, e.g. of
causal nature, are not considered. Recent approaches propose to define changes in
(multiple) features through so-called actions, which can be thought of as instruc-
tions on how to apply the modifications and their consequences (e.g. increasing
the level of education has an impact on age because it takes time to obtain a
degree). Actions further help to describe what features are actionable, mutable
or immutable [12]. However, these approaches, like the traditional counterfac-
tual methods, still assume that all these changes happen instantly and do not
consider implications and consequences of the order of their application.

Fig. 1. The difference between traditional counterfactual generation (a) and the sequen-
tial approach (b). Although the generated counterfactual xT is the same, the process
and implied knowledge/information is different.

For this reason, recent works regard the application of feature altering
changes as a sequential process [19,20]. The problem is then shifted from simply
computing the counterfactual, to finding an ordered sequence of actions that
accomplishes it. In Fig. 1 we visualized this difference for a person x0 wishing to
attain a higher salary (Class: × ⇒ �) for which getting a higher education level,
switching the job and changing the location is necessary. In this case, e.g., it was
assumed that decreasing one’s working hours is beneficial in order to obtain a
higher degree, which is a relationship that traditional approaches do not model.
Each state xt in Fig. 1b describes the result of applying an action on the previous
state xt−1 and xT denotes the counterfactual. As we can see, the actions have
different effects in the feature space and may alter more than one feature at a
time. Moreover, the order makes a difference as increasing the level of education
before changing the job is usually more beneficial, as well as decreasing the work-
ing hours in order to attain the degree (representing a focus on the education).
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Later on, this change is reset to its original value through another action since
an increased value is now more plausible again with respect to the job change.
The whole process of Fig. 1b can be seen as a sequential counterfactual as each
state is an important part of it, whereas in the traditional setting in Fig. 1a only
the final result is important. Thus, a sequential counterfactual allows us to look
beyond just flipping the class label and provides further information about the
underlying process. It is not the absolute main goal anymore to only switch the
class label, but to take consequential effects into account in order to improve
the overall benefit of the actions. For the end user, this also means getting con-
crete information on the actions and their order. Our work is in the direction of
sequential counterfactual generation and inspired by [19], which we will further
elaborate in Sect. 2.

The rest of this paper is organized as follows: we will first give an overview
on related work in Sect. 2. Then, we introduce the consequence-aware counter-
factual generation problem in Sect. 3, for which our proposed method follows in
Sect. 4. Lastly, we evaluate it in Sect. 5 to a state-of-the-art method and give
final conclusions in Sect. 6. We want to note that the metaphorical examples
used throughout do not always correspond to reality and are merely illustrative.

2 Related Work

Counterfactual explanations were first introduced in [24] as a mean towards
algorithmic transparency. Motivated by the “closest possible world” [24] in which
a favorable outcome is true (e.g. accept), most methods optimize on the distance
between the original input x0 and the counterfactual xT to keep the changes
minimal. Since this notion alone was found to be insufficient, other popular
objectives include the plausibility (often measured as the counterfactual being
within the class distribution [10] or being close to instances from the dataset [4,
18,23]) and sparsity [4,17,23] (measuring how many features had to change)
of solutions. Desirable criteria regarding the algorithms are, e.g., being model-
agnostic [4,11,14,15] (e.g. by using genetic algorithms) or providing a diverse
set of solutions [4,5,16,17] (e.g. by using multi-objective optimization).

More recently, works [13,19,22] began to replace the distance function with
a cost in order to express aspects such as the effort of a change. In alignment
to this, the term recourse [5,10,12,13,18,22] has attracted attention to describe
the counterfactual generation. It can be defined as “the ability of a person to
change the decision of a model by altering actionable input variables” [22] and
thus emphasizes on the actionability of the features to provide comprehensible
recommendations that can be acted upon [12]. In addition, more attention has
been paid on the causal nature of feature interrelationships, e.g. by including
causal models in the generation process to assess mutual effects [5,13,16].

Lastly, motivated by the fact that in reality most changes do not happen
instantly, but are rather part of a process, there have been works that extend
the formulation of actions and their consequences by incorporating them in a
sequential setting [19,20]. In contrast to simply finding the counterfactual that
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switches the class label, the focus is on finding a subset of actions that, applied in
a specific order, accomplishes the counterfactual while accounting for potential
consequences of prior actions on subsequent ones (cf. Fig. 1).

In this work, we also focus on sequential counterfactual generation. The
advantages of our method in comparison to [19] can be summarized as follows:
our method is model-agnostic and not bound to differentiable (cost) functions.
It finds diverse sequences instead of a single solution, thus giving more freedom
of choice to the end user. Moreover, it is efficient in pruning and exploring the
search space due to using already found knowledge (exploitation) and the ability
to optimize all sub-problems (cf. Sect. 3.3) at once, while [19] breaks these down
into separate problems. This efficiency allows us to find sequences of any length,
whereas [19] requires multiple runs and more time for it (cf. Sect. 5). Another
difference is our action-cost model (cf. Sect. 3.2). We regard consequences not
only in the feature space (e.g. age increases as a consequence of obtaining a
higher degree), but also explicitly model their effects in the objective or cost
space (e.g. changing the job becomes easier with a higher degree). This way
we extend the cost formulation of [19], which only proposes to model (feature)
relationships through (boolean) pre- and post-requirement constraints (e.g. you
must at least be 18 to get a driver’s license). These constraints are also possible
in our model. Finally, we note that the work of [20] also discusses consequential
effects. However, since no cost function is optimized, but instead the target class
likelihood of the counterfactual, we do not compare with [20] in this work.

3 Problem Statement

We assume a static black-box classifier f : X → Y where X = X1×· · ·×Xd is the
feature space and Y is the class space. The notation

...X h is used to refer to the
feature itself (e.g.

...X Edu denotes Education, whereas XEdu = {. . . , HS, BSc, . . . }
is the domain). For simplicity and without loss of generality, we assume f is a
binary classifier with Y = {reject, accept}. Let x0 ∈ X be an instance of the
problem, e.g. a person seeking to receive an annual salary of more than $50k,
and the current decision of f based on x0 is f(x0) = reject. The goal is to find
a counterfactual example xT for x0 such that f(xT ) = accept. In other words,
we want to change the original instance so that it will receive a positive decision
from the black-box. The sort of changes we refer to are in the feature description
of the instance, like increasing Age by 5 years or decreasing Work Hours to 20
per week. Our problem formulation builds upon [19]. We introduce actions in
Sect. 3.1 along with their associated cost to implement the suggested changes in
Sect. 3.2. Finally, we formulate the generation of sequential counterfactuals as a
multi-objective optimization problem in Sect. 3.3.

3.1 Actions, Sequences of Actions and States

Let A = {a1, . . . , an} be a problem-specific, manually-defined set of actions.
Each action is a function ai : X × V → X that modifies a subset of features
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Iai
= { ...X h,

...X k, . . . } ⊆ ...X in a given input instance xt−1 ∈ X in order to realize
a new instance (which we refer to as a state) ai(xt−1, vi) = xt ∈ X . An action
directly affects one feature

...X h ∈ Iai
(e.g. Education) based on a tweaking value

vi ∈ Vh ⊆ Xh and may have indirect effects on other features
...X k �=h ∈ Iai

as
a consequence (e.g. Age). Here, V ⊆ X describes the feasible value space that
restricts the tweaking values based on the given x (e.g. Age may only increase).

For example, x2 in Fig. 1b is the result of applying aEdu(x1, BSc) = x2 which
changes the Education (HS ⇒ BSc) and affects the Age (19 ⇒ 23) as a con-
sequence. In this case, VEdu and VAge restrict the tweaking values so that they
can only increase. It is possible to use a causal model as in [13] for evaluating
how the indirectly affected features have to be changed. An action-value pair
(ai, vi) thus represents a specification how Iai

of x is affected with respect to the
tweaking value vi of feature

...X h.
Additionally, each action ai may be subject to boolean constraints Ci : X ×

V → B such as pre- and post-requirements as proposed in [19] (cf. Sect. 2),
which can also be used to validate the feasibility of indirectly affected features.
Each action-value pair is considered valid, if it satisfies the associated constraints
and V. An ordered sequence S of valid action-value pairs (at

i, vi) leading to the
counterfactual xT is called a sequential counterfactual. Here, t ∈ {1, . . . , T} is
the order of applying the actions and T ∈ {1, . . . , |A|} is the number of used
actions in S, i.e. the sequence length.

3.2 Consequence-Aware Cost Model

Our goal is to assess the direct effort (which can, e.g., be abstract, as based on
personal preferences, or concrete, like money or time etc.) of an action while con-
sidering possible consequences. We define the cost of an action ai as a function of
two components: ci(·) = bi(·) · gi(·). Here, bi represents the direct effort, whereas
gi acts as a discount of it in order to express (beneficial) consequences of prior
actions. Please note that each action has its own cost function. Summing up all
action costs of a sequence S yields the sequence cost : CS =

∑
ai∈S ci(·). In the

following we will explain the components in more detail.

Action Effort bi: First, we introduce bi : X ×X → R+, which is assumed to be
an action-specific measure of the direct effort caused by an action ai. Therefore,
this is specified as a function between two consecutive states xt−1,xt ∈ X , rep-
resenting the direct effect of applying that action on xt−1. This function can be
thought of as a typical cost function as in e.g. [19]. As an example, bi could be
specified linear and time based, whereby an effort caused by an action addEdu
would be represented by the years required (e.g. four to progress from HS to BSc).
Alternatively, monetary costs could be used (i.e. tuition costs), or a combination
of both. Besides, there are no particular conditions on this function, so it can be
defined arbitrarily (e.g. return a constant value).

Consequential Discount gi: To assess a possible (beneficial) consequential
effect of previous actions on applying the current one at

i, we introduce a so-
called consequential discount gi : X → [0, 1] that affects the action effort bi

based on the current state xt−1 (i.e. before applying at
i). Such effects can be, e.g.,



Consequence-Aware Sequential Counterfactual Generation 687

“the higher the Education, the easier it is to increase Capital” or “increasing
Education in Germany is cheaper than in the US (due to lower tuition fees)”.
This discount therefore describes a value in [0, 1], where 0 would mean that
the current state is so beneficial that the effort of the action to be applied
is completely cancelled out, and 1 that there is no advantageous effect. We
derive the aforementioned consequential effect on an action from consequential
relationships between feature pairs. This is provided as a graph G = (X,E)
where the nodes X ⊆ ...X are a subset of the features and edges ekh ∈ E between
each two nodes

...X k,
...X h ∈ X describe a function τkh : X → [0, 1] that models

a consequential effect between one feature
...X k to another

...X h. For the given
features

...X 1 := Job,
...X 2 := Education and

...X 3 := Location we have exemplified
G in Fig. 2a by the following relations:

1. The Education cost depends on the Location (
...X 3

τ32−−→ ...X 2). E.g., it is cheaper
to get a degree in Germany than the US because of lower tuition fees.

2. The easiness of getting a Job depends on the Location (
...X 3

τ31−−→ ...X 1). E.g.,
it is easier to get a Developer job in the US than in other locations.

3. The higher the Education, the easier it is to change the Job (
...X 2

τ21−−→ ...X 1).

Fig. 2. For simplicity, the τ(·) functions in (a) are based on binary conditions: τ32 =
1.0 if X3 := US, else 0.5. τ31 = 0.5 if X3 := US, else 1.0. τ21 = 0.5 if X2 ≥ BSc, else 1.0.
As a reference, the action efforts bi are provided above each feature in (a).

Based on this modeling in G, we can then derive the consequential discount
gi of an action ai (Eq. 2) by averaging the consequential effect ĝh of each affected
feature

...X h ∈ Iai
(Eq. 1). It is assumed that gi evaluates to 1.0 if no feature in

Iai
is influenced by another one in G (e.g.

...X 3 in Fig. 2a).

ĝh(xt−1) = avg({τkh(xt−1) ∀ ...X k ∈ X | ∃ ekh ∈ E}) (1)

gi(xt−1) = avg({ĝh(xt−1) ∀ ...X h ∈ Iai
| ∃ ...X h ∈ X}) (2)

In order to understand the benefit of the consequential discount on the
sequence order, we exemplify in Fig. 2b the situation from Fig. 1b (for simplic-
ity the working hours altering actions are omitted). The available actions are
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thus: “change Job to Developer” (a1), “get a BSc degree” (a2) and “change
Location to US” (a3) (notice all Vi are fixed to a single value). Each ai alters
their respective feature counterpart

...X i (e.g. Ia1 = { ...X 1}). We can see the cost
computations in Fig. 2b for two differently ordered sequences S1 = 〈a1

3, a
2
1, a

3
2〉

and S2 = 〈a1
2, a

2
3, a

3
1〉 that achieve the same final outcome xT (i.e. only the appli-

cation order is different). To compute the consequential discount for action a2
1

in S1, e.g., we consider the relations
...X 3

τ31−−→ ...X 1 and
...X 2

τ21−−→ ...X 1 with respect to
x1 to derive the feature discount (Eq. 1): ĝ1(x1) = 0.5+1.0

2 = 0.75. Since no other
feature is affected by a1 according to Ia1 , the action discount (Eq. 2) evaluates to
g1(x1) = ĝ1(x1). After computing all action costs ci, we can derive the sequence
costs CS1 = 27.5 and CS2 = 22.5, which shows that S2 would be preferred here
as it benefits more from the consequential discount effects of G. Note, that if we
leave out the consequential discounts completely, i.e. ci = bi, then there would
be no notion of order here as each sequence would receive the same costs (assum-
ing the same tweaking values). Furthermore, our consequence-aware formulation
means, that additional actions are only used if their induced effort is lower than
the consequential benefit they provide (as this would otherwise make CS worse
than if the action was not used).

3.3 Consequence-Aware Sequential Counterfactual Generation

Based on the previous definitions, we now introduce the consequence-aware
sequential counterfactual generation problem. Find the counterfactual xT ∈ X
of an initial instance x0 ∈ X by taking valid action-value pairs (at

i, vi) of a
sequence S according to the constraints Ci and sequence cost CS such that
f(xT ) = accept. In order to solve this, we identify three sub-problems:

Problem 1 (Prob. 1): Find an optimal subset of actions A∗ ⊆ A.
Problem 2 (Prob. 2): Find optimal values V∗ ∈ V for A∗.
Problem 3 (Prob. 3): Find the optimal order of S to apply the actions.

For an arbitrary set of actions A and feasible value space V many sequences
can be generated, therefore it is important to assess their quality. For this pur-
pose, we will use the sequence cost o1 := CS as a subjective measure, as well
as the Gower’s distance [9] o2 := dist(x0,xT ) to act as an objective assessment
how much xT differs from x0. The Gower’s distance is able to combine numerical
and categorical features and is thus an appropriate measure here [4]. The reason
for using both is, that o1 measures the effort of the whole process, whereas o2
only considers the difference to the final counterfactual and is agnostic of the
process.

In order to propose diverse solutions, we will formulate the problem as a multi-
objective one and add, next to o1 and o2, the individual tweaking frequencies
of each of the 1 ≤ h ≤ d features after unrolling the complete sequence, i.e.
o2+h = #(

...X h ∈ Iai
∀ ai ∈ S). In other words, o2+h measures how often a

feature
...X h was affected by all actions of S combined. E.g., the frequencies for

o3, . . . , o7 would be {1, 1, 1, 2, 1} in case of Fig. 1b. In a way this can be thought
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of as the sparsity objective mentioned in Sect. 2, but aggregated individually per
feature instead of a sum. The idea behind the diversity objectives is to keep
the number of feature changes minimal and additionally force the optimization
to seek alternative changes instead. This means, solutions mainly compete with
those that change the same features with respect to o1 and o2, resulting in
a diverse set of optimal options. Combining all the above yields the following
multi-objective minimization problem:

min
S

( o1︸︷︷︸
Sequence cost

, o2︸︷︷︸
Gower’s distance

, o2+1, . . . , o2+h, . . . , o2+d
︸ ︷︷ ︸
Feature tweaking frequencies

)

s.t. f(xT ) = accept and
∧

(ai,vi)∈S
Ci

(3)

4 Consequence-Aware Sequential Counterfactuals
(CSCF)

In order to address the combinatorial (Prob. 1, Prob. 3) and continuous (Prob. 2)
sub-problems with respect to Eq. 3, we used a Biased Random-Key Genetic Algo-
rithm (BRKGA) [8] and adapted it for multi-objective optimization by using non-
dominated sorting (NDS) [21]. NDS is preferred over a scalarization approach
to avoid manual prioritization of the objectives and to address them equally.
Moreover, by using BRKGA we avoid the manual definition of problem-specific
operators, which is not trivial here. This choice allows to solve all sub-problems
at once, is model-agnostic, derivative-free and provides multiple solutions.

BRKGA: The main idea behind BRKGA is that it optimizes on the genotype
of the solutions and evaluates on their phenotype, making the optimization itself
problem-independent [8]. A genotype is the internal representation of a solution,
whereas the phenotype is the actual solution we wish to generate. The phenotype
must always be deterministically derivable from the genotype through a decoder
function [8]. Because of this, each solution genotype in BRKGA is encoded as
a vector of real (random) values in the range of [0, 1] (the so-called random-
keys) [8].

In each generation (iteration), the decoded solution phenotypes are evaluated
based on their fitness (given by the vector of evaluating each objective of Eq. 3 indi-
vidually) and the population is divided into two subsets by applying NDS: the so-
called elites, which are the feasible (valid), non-dominated (i.e. best) solutions in
the Pareto-front [7], and the remaining ones, called non-elites. Then, genetic mat-
ing is performed by selecting two parents, one from the elite sub-population and
one from the non-elites. A new solution is created by applying biased crossover [8]
on the two parents, which favors selecting the value of the elite solution with a cer-
tain biased probability. This step is repeated until sufficient new solutions have
been created. Additionally, a number of completely random solutions are gener-
ated in order to preserve the exploration of the search space and the diversity in
the population. Finally, the different sub-populations (elites, crossovered and ran-
dom solutions) are merged and evaluated and form the new population for the next



690 P. Naumann and E. Ntoutsi

generation. This loop continues until some termination criterion is reached. The
Pareto-front of the last generation then represents our final solution set. Note that
the Pareto-front usually holds more than one solution (i.e. a diverse set of optimal
sequences according to the objectives of Eq. 3).

Genotype: We wish to solve the three sub-problems from Sect. 3.3 at once.
Inspired by similar, successful, encodings of problems (cf. [8]), we thus compose
the genotype as G = [A1, . . . ,AN ,VN+1, . . . ,V2N ] = [A,V], with Ai,Vi ∈ [0, 1].

The first N values, A, in G encode the action subset A (cf. Prob. 1) and their
ordering t ∈ {1, . . . , T} in the sequence S (cf. Prob. 3). Each index position i ∈
{1, . . . , |A|} corresponds to one of the actions in the action set ai ∈ A (i.e. Ai ∈ A

encodes ai ∈ A). The other half, V, encodes the tweaking values V (cf. Prob. 2)
of each action, which is also referred to by the index position i ∈ {1, . . . , |V|} (i.e.
VN+i ∈ V encodes vi ∈ Vh). Figure 3 visualizes this composition of the genotype.

Fig. 3. Anatomy and representation of the solution decoding.

Decoder: Since BRKGA itself is problem-independent, we design a problem-
specific decoder D(G) = P to infer the phenotype P from G. Below we discuss
its design, which is inspired by established concepts (cf. [8]).

The subset of actions (cf. Prob. 1) is decoded by identifying inactive actions
in the actions part A. As a simple heuristic, we define an action in G as inactive
(denoted by “−1”), if its genotype value is greater than 0.5. This follows from
the idea that an action has an equal chance to be active or inactive when chosen
randomly. To get the active actions and their order (cf. Prob. 3), we apply the
commonly used argsort : A → A decoding [1,8] on A and identify the inactive
actions afterwards, which will always produce a non-repeating order. We find the
actual actions by looking at the sorted index (cf. P in Fig. 3). Note that an action
will be at an earlier position t in S the lower its genotype value is. Lastly, we
decode the values part by applying a (linear) interpolation Interp : V → V on
each of the genotype values in V. Therefore, only the original value ranges need
to be provided (via V), or in case of categorical values a mapping between the
interpolated value and the respective categorical value counterpart. The decoded
value at position i ∈ {1, . . . , |V|} then belongs to ai ∈ S.
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An example of the full decoding process (from a genotype solution G to
the actual solution sequence S) is visualized in Fig. 3. As we can see, applying
argsort on A ∈ G realizes an order (3,2,1) for A via P . Since A1 > 0.5, action
a1 is rendered inactive and the remaining, ordered, action set is 〈a1

3, a
2
2〉. The

associated tweaking values are then decoded by interpolating V ∈ G and assigned
to their action counterparts, thus creating the sequence S. Note that decoding is
necessary for all solutions in each iteration to evaluate the fitness and is repeated
until the termination criterion (e.g. maximum number of iterations) is reached.

5 Experiments

The first goal of our experiments is to evaluate the costs of the generated
sequences1 in comparison to the state-of-the-art approach [19] (Sect. 5.1). Next,
we analyze the diversity of the generated solutions in terms of the action space
and the sequence orders (Sect. 5.2). Finally, we examine the effect of the action
positions in a sequence for switching the class label (Sect. 5.3).

Datasets: We report on the datasets Adult Census [6] (for predicting whether
income exceeds $50k/year based on census data) and German Credit [6] (for
predicting whether a loan application will be accepted).

Baselines: The following three methods were used for the evaluation. The first
one acts as a direct competitor and the others are variations of our method.

synth [19]: The competitor2 only optimizes for finding a single minimal cost
sequence and solves two separate sub-problems independently. First, they
generate candidate action subsets according to Prob. 1 with respect to one
of their proposed heuristics. Then, they perform an adversarial attack based
on [3] in order to find the tweaking values for each candidate sequence to
solve Prob. 2. There is no explicit sequence order notion as per Prob. 3 apart
from pre- and post-requirements, thus it only optimizes on their provided
cost function which is equivalent to the action effort that we introduced in
Sect. 3.2, i.e. ci = bi. To make the comparison to [19] fair, we use their exact
same action-cost model and provided pre-trained black-box classifiers (which
are neural networks here) for all methods. That means, all action behavior is
identical in this comparison (i.e. tweaking effects, constraints, conditions and
costs). Hence, we use the costs of their model for the action effort bi.

cscf: Our method optimizes all sub-problems at once and provides multiple
solutions. Regarding the cost, it considers the consequential discount and
thus optimizes ci = bi · gi. For gi, we provided a simple feature relationship
graph G that models beneficial effects in Adult Census such as:

• The higher the Education level, the easier it gets to increase Capital
Gain, change Work-Class and Occupation.

1 Apart from the cost objective o1, we will not report on the remaining objective space
from Eq. 3 here, since the results were similar and thus not particularly informative.

2 https://github.com/goutham7r/synth-action-seq.

https://github.com/goutham7r/synth-action-seq
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• The lower the Work Hours, the easier it is to increase the Education.
• The higher the Work Hours, the easier it gets to increase Capital Gain.

We only use cscf for Adult Census as it was not practical to create a mean-
ingful graph based on the predefined actions from [19] for German Credit .
Since the gi part primarily affects the order of actions, we would generally
expect cscf to behave similarly to scf in terms of bi, though.

scf: This is a variation of our proposed cscf, leaving out the consequential
discount and thus only optimizes on the action efforts from [19], i.e. ci = bi.
When referring to findings that apply to both cscf and scf, we use “(c)scf”.

Implementations: We implemented our method in Python3 using the
pymoo [2] implementation of BRKGA. The parameters for BRKGA are mostly
based on recommendations from [8]: the population size was set to 500, the
mutant and offspring fractions to 0.2 and 0.8, respectively, and the crossover
bias to 0.7. As the termination criterion for (c)scf, we fixed the number of
iterations to 150. From each dataset we chose 100 random instances that are
currently classified by the black-box as the undesired class (i.e. Salary < $50k
and Credit denied) with the intention of generating a sequential counterfac-
tual to flip their class label. Each instance represents an experiment. We ran all
methods on the same 100 experiments and fixed the maximum sequence length of
synth to T = 2 because of long runtimes for larger values which made the exper-
iments of those unfeasible on our hardware4. The long runtimes of synth were
already mentioned in their paper: “Time/iteration is ∼15s across instances” [19],
which confirms our observations, since the algorithm may take up to a few 100
iterations according to [19] (running synth for T ≤ 2 took the same time as
(c)scf needed for all sequence lengths simultaneously). Because of this, we used
the “Vanilla” heuristic for synth as it was found to perform the best for shorter
sequences based on [19]. Lastly, we had to filter out some experiments in the
post-processing since synth produced constraint violating solutions or did not
find a feasible one. Consequently, the number of experiments for German Credit
was post-hoc decreased to 85, but for Adult Census it did not change.

5.1 Sequence Costs of Sequential Counterfactuals

We show the undiscounted (i.e. only using the action effort share bi) sequence
costs of the solutions (o1 objective) in Fig. 4 for Adult Census and German
Credit . In the x-axis we see the individual, pair-wise relative differences between
the computed minimal cost sequences for two methods and each of the valid
initial inputs/experiments (which are represented by the y-axis). The green color
indicates that the method mentioned first in the title (A) performed better,
whereas red indicates the other one (B) did. The blue line shows the point from
which one method consistently outperforms the other.
3 https://github.com/ppnaumann/CSCF.
4 All experiments (competitor and our method) were executed on the free tier of Google
Colab (https://colab.research.google.com/).

https://github.com/ppnaumann/CSCF
https://colab.research.google.com/
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Fig. 4. Relative minimal sequence cost (o1) differences between the three methods for
both datasets and solutions with T ≤ 2. It is computed as: (B−A)/max {A, B}. (Color
figure online)

Since our method finds multiple optimal sequences (on median 4 for German
Credit and 7 for Adult Census) of different lengths per experiment, and synth
only finds a single one, we chose the least cost sequence in (c)scf per set that
satisfies T ≤ 2 in order to make the comparison fair. Note, that there could be
a longer sequence with less overall cost that was found by (c)scf due to using
more, but cheaper actions. Although cscf has optimized on the discounted cost,
we only use the effort share, bi, of it in this analysis to guarantee comparability.

As we can see in Fig. 4, (c)scf usually performed better in Adult Census. In
German Credit it seems to be fairly even, but with a slight tendency towards scf.
The overall larger relative differences in favor of (c)scf (green), with respect to
synth, appear to be the result of synth selecting a different, but more expen-
sive set of actions. By looking through the history trace, we identified that the
same set of actions that (c)scf found to be optimal was evaluated by synth,
although with different tweaking values. These values, however, seemed to pro-
duce a constraint-breaking solution that was either rendered invalid by synth,
or had high costs, since constraints are enforced as a penalty in synth. The
cases where synth outperforms (c)scf (red) show small cost differences only.
Notably, the differences between cscf and scf are also minor, even though cscf
optimizes on the discounted costs. Thus, this suggests that the augmentation by
gi does not significantly interfere with the goal of keeping CS minimal. In gen-
eral, we conclude that (c)scf is capable to find equivalent or better solutions in
comparison to synth in terms of costs.

5.2 Diversity of Sequential Counterfactuals

In Fig. 5 we illustrated the prevalence of actions at different positions t in a
sequence (indicated by the height of each action in the pillars) along with the
frequency of how often one action followed on from another (indicated by the
widths of the flows). The whitespace of an action in the pillar shows that a
sequence stopped there (i.e. had no subsequent actions). For this purpose, we
aggregated over all optimal solution sequences (i.e. the whole final Pareto-fronts)
from each experiment per method and dataset, respectively. Furthermore, we
additionally show (c)scf after filtering out all solutions with T > 2 (c, d, g in
Fig. 5) for better comparability with synth. The plots (a, b, c, d, e) in Fig. 5
belong to the Adult Census (A) and (f, g, h) to the German Credit (B) dataset.
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Fig. 5. Sankey plots showing the sequence orders and flow between subsequent actions
for differently aggregated solution (sub-)sets. The first two rows correspond to Adult
Census (A) and the third to German Credit (B).

As we can see in Fig. 5 (a, b, c, d, f, g), (c)scf makes use of the whole available
action space A, and more evenly utilizes the actions in each step than synth (e,
h). For German Credit , we notice that synth only used five different actions,
whereas scf used all available (f, g). This observation is in alignment with our
diversity goal and can be attributed to the tweaking frequency objectives (o2+h

from Eq. 3) which force the algorithm to seek alternative sequences that propose
different changes while still providing minimal costs. Since synth only finds
the single least cost solution, the same actions were chosen as they appear to
be less expensive than their alternatives. Regarding the lengths of the found
sequences, we see that the minimal cost ones were usually found up to length
three according to (a, b, f). After that, only few sequences still provide some
sort of minimal cost. Because of this, we can say that (c)scf does implicitly
favor shorter sequences if they are in alignment with the costs. This behavior
also follows from the tweaking frequency objectives, which minimize the number
of times a feature was changed and thus the number of actions used (as these
are directly related to another).
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Looking at the particular differences between cscf (b, d) and scf (a, c),
we can identify the distinct characteristics of discounting each action effort by
gi through G. The relationship “the higher the Education, the easier it gets to
attain Capital Gain” is reflected in (b, d) as addEdu is the most frequent action
at t = 1. Moreover, there is no single sequence where addEdu would appear after
chCapGain, indicating that the beneficial consequence was always used by cscf.
In comparison, scf in (a, c) has a more equal spread as it has no knowledge of
the relationships. Lastly, the same peculiarity can be observed for chWorkHrs,
which was more often favored to be placed before chCapGain in cscf than scf
because of the beneficial relation in G. Even though it appears that the addEdu
effect is also visible in synth according to (e), this is an artifact since there is
no explicit mechanism that would enforce it. The most likely reason for this is
the order in which the actions were processed in the Vanilla heuristic.

Finally, looking at the T ≤ 2 plots (c, d, e, g, h) specifically, we can see that
some actions show a preferred co-occurrence. E.g., chCapGain and waitYears
seem to appear more often subsequently than others (c, d). This is not visi-
ble in synth (e), which on the other hand shows a distinct co-occurrence of
chCreditAm and chLoanPeriod. The reason for this can be traced back to the
cost model, which values these combinations as least expensive for sequence
lengths of T ≤ 2 (i.e. if we only use two actions). In case of (c)scf this effect is
weaker though, as it seeks for alternatives by design (cf. diversity principle from
Sect. 3.3).

5.3 Effect of the Action Positions on Achieving the Counterfactual

Lastly, looking at Fig. 6 we can see how each action affects the target class prob-
ability of accept in the Adult Census with respect to their positional occurrence
in a sequence. We again aggregated over all computed solutions here. The x-axis
denotes the position t in the sequence and the y-axis shows the median prob-
ability of the target class based on the black-box and the bootstrapped 95%
confidence interval (i.e. 2.5 & 97.5 percentiles).

As we can see, there are some actions that are almost able to switch the
class on their own when used (chCapGain, addEdu), whereas the remaining
ones only do it later at position two (waitYears, enlist) or three (chWorkHrs,
chCapLoss). Based on this, it suggests that some actions are only of support-
ive nature, whereas others can be seen as the main driver behind class label
changes. Additionally, the actions that affect a feature, which was attributed a
consequential effect through G (chCapGain, addEdu, enlist), are the only ones
that show a significant difference here. Furthermore, the effect of G in cscf is
visible. When G was used, chCapGain changed the class often on position one
already, whereas in scf it was usually not quite possible. Based on this, we can
infer that chCapGain at position one in cscf was typically used when it was
able to change the class on its own. Moreover, it suggests that the Education
level was already sufficiently high in the input instance, so that chCapGain was
able to increase more while benefiting from the discount enough that the costs
were kept low. The same might be the reason for enlist (i.e. joining the army),
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Fig. 6. Median effect with 95% confidence interval of each action at position t in
a sequence on the target class (accept) probability for Adult Census. f(xt) > 0.5
indicates the class label switched at position t.

which was more able to change the class in cscf. Since this action affects the
Occupation feature, the beneficial edge of Education might have discounted the
cost here again so much that it became a minimal cost sequence, whereas in scf
it might have been more expensive. The slightly lower probability of addEdu in
cscf may further suggest that Education was more commonly used as a sup-
porting action in order to discount future actions (hence its disappearance after
t = 3).

In summary, we saw that (c)scf is able to find more diverse sequences while
asserting the least cost objective with comparable or better performance to
synth and being more efficient. Furthermore, we demonstrated that the usage
of G in cscf provides the desired advantage of more meaningful sequence orders,
according to the feature relationships, while maintaining minimal costs.

6 Conclusion and Future Work

We proposed a new method cscf for sequential counterfactual generation that
is model-agnostic and capable of finding multiple optimal solution sequences of
varying sequence lengths. Our variants, cscf and scf, yield better or equiva-
lent results in comparison to synth [19] while being more efficient. Moreover,
our extended consequence-aware cost model in cscf, that considers feature
relationships, provides more meaningful sequence orders compared to scf and
synth [19]. In future work, we aim to incorporate causal models to estimate
consequential effects in the feature and cost space. Additionally, we want to
investigate alternative measures and objectives for evaluating sequence orders
and develop a final selection guide for the end user for choosing a sequence from
the solution set.
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Abstract. Many explanation methods have been proposed to reveal insights
about the internal procedures of black-box models like deep neural networks.
Although these methods are able to generate explanations for individual predic-
tions, little research has been conducted to investigate the relationship of model
accuracy and explanation quality, or how to use explanations to improve model
performance. In this paper, we evaluate explanations using a metric based on
area under the ROC curve (AUC), treating expert-provided image annotations as
ground-truth explanations, and quantify the correlation between model accuracy
and explanation quality when performing image classifications with deep neural
networks. The experiments are conducted using two image datasets: the CUB-
200-2011 dataset and a Kahikatea dataset that we publish with this paper. For
each dataset, we compare and evaluate seven different neural networks with four
different explainers in terms of both accuracy and explanation quality. We also
investigate how explanation quality evolves as loss metrics change through the
training iterations of each model. The experiments suggest a strong correlation
between model accuracy and explanation quality. Based on this observation, we
demonstrate how explanations can be exploited to benefit the model selection
process—even if simply maximising accuracy on test data is the primary goal.

Keywords: Interpretability · Explainability · Explanation quality

1 Introduction

Interpretability is considered an important characteristic of machine learning models,
and it can be as crucial as accuracy in domains like medicine, finance, and criminal
analysis. Recently, many methods [19,21,22,25,26] have been proposed to generate
visual explanations for deep neural networks. Since both model accuracy and explana-
tions are relevant for many practical applications of deep neural networks, it is impor-
tant to study the relationship between them. This is challenging because (1) the lack of
ground truth for explanations makes it difficult to quantify their quality—the evaluation
of explanations is generally considered subject to users’ visual judgement—and (2) no
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Fig. 1. Demonstration of different explanations by different models making the same prediction.
From top-left to bottom-right: the original image with Kahikatea highlighted in the red region,
the explanations from ResNet18, ResNet50, AlexNet, DenseNet, InceptionV3, SqueezeNet, and
VGG11 generated by the Guided GradCAM explainer.

universal measurement has been agreed upon to evaluate explanations. Our work aims
to address this problem and provide empirical results studying the correlation between
model accuracy and explanation quality. Based on the observation that model accuracy
and explanation quality are correlated, we examine a new model selection criterion
combining both model accuracy and explanation quality on validation data.

1.1 Why It Is Important to Evaluate the Quality of Explanations?

Intuitively, a model that achieves competitive predictive performance and makes deci-
sions based on reasonable evidence is better than one that achieves the same level of
accuracy but makes decisions based on circumstantial evidence. Given a mechanism for
extracting an explanation from a model, we can investigate what evidence the model
uses for generating a particular prediction. If we consider the explanation to be of
high quality if it is based on reasonable evidence and of low quality otherwise, we
can attempt to use explanation quality to inform selection of an appropriate model.

An example of comparing models from the perspective of explanations is shown
in Fig. 1. Given an image containing Kahikatea trees—a species of coniferous tree
that is endemic to New Zealand—seven deep neural networks (ResNet-18, ResNet-50,
AlexNet, DenseNet, Inception-V3, SqueezeNet and VGG11) correctly flag the presence
of this type of tree in the image, but the explanations are different. For this particular
image, and the visual explanations generated by Guided GradCAM [21] that are shown
in the figure, one can argue that the explanations obtained from AlexNet, Inception-V3,
ResNet-18, and VGG-11 are more reasonable than those from other models because
they more closely align with the part of the image containing the species of tree (the red
area marked in the photo).
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If we are able to quantify the quality of an explanation, we can define a score for a
model f with respect to both accuracy and explanation quality as

score(f) = α · scoreacc(f) + (1 − α) · scoreexplanation(f) (1)

and use it for model selection instead of plain accuracy. Here, scoreacc represents the
model performance in terms of accuracy, scoreexplanation represents the model perfor-
mance in terms of explanation quality, and α ∈ [0, 1] is a user-specified parameter.

In this paper, we propose a mechanism to measure the quality of explanations
scoreexplanation based on area under the ROC curve and perform a large number of
experiments to test the hypothesis that model accuracy is positively correlated with
explanation quality because a model tends to be accurate when it makes decisions based
on reasonable evidence. Although some recent work [1,4] makes use of this intuition,
there is no theoretical or empirical proof to support the claim. Our work makes a com-
plementary contribution aimed to close this gap by providing empirical evidence for
the relationship between model accuracy and explanation quality. We hope this will
boost future research on how to use explanations to improve accuracy. As a first step
in this direction, we use Eq. (1) as the selection criterion to choose deep image classi-
fication models from the intermediate candidates that are available at different epochs
during the training process. The results show that the models chosen by considering
the quality of explanations are consistently better than those chosen based on predictive
accuracy alone—in terms of both accuracy and explanation quality on test data.

The main contributions of our work are:

– We show how to use a parameter-free AUC-based metric to evaluate explanation
quality based on expert-provided annotations.

– We investigate the relationship between model accuracy and explanation quality by
empirically evaluating seven deep neural networks and four explanation methods.

– We demonstrate that explanations can be useful for model selection especially when
the validation data is limited.

– We publish a new Kahikatea image dataset together with expert explanations for
individual images.

2 Background and Related Work

We first review work on explainability in neural networks and existing publications that
consider the evaluation of explanation quality.

2.1 Explainability in Neural Networks

Early research on explainability of neural networks constructed a single tree to mimic
the behaviour of a trained network [5] and uses the interpretable tree to explain the
network. In contrast, recent research focuses on extracting explanations for individual
predictions and can be categorized into two types of approaches: perturbation-based
methods and gradient-based ones.

Perturbation-based methods generate synthetic samples of a given input and then
extract explanations from the synthetic vicinity of the input. LIME and its variations
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[19,20] train a local interpretable model (a linear model or anchors) from the pertur-
bations. The approaches in [3,16] compute Shapley values based on perturbations to
represent explanations, and KernelSHAP [16] estimates Shapley values with the LIME
framework.

Gradient-based methods aim to estimate the gradient of a given input with respect to
the target output or a specific layer, and visualize the gradient as an explanation. Saliency
[23] generate gradients by taking a first-order Taylor expansion at the input layer. Back-
propagation [23] and Guided Backpropagation [25] are proposed to compute the gradi-
ents of the input layer with respect to the prediction results. Class Activation Mapping
(CAM) [31] and its variants Gradient-weighted Class Activation Mapping (GradCAM)
and Guided Gradient-weighted Class Activation Mapping (GuidedGradCAM) [21] pro-
duce localization maps in the last intermediate layer before the output layer using gradi-
ents with respect to a specific class label. While perturbation-based methods are usually
model-agnostic and can be applied for any model, gradient-based methods are often used
in neural networks. A detailed discussion and comparison can be found in [7,17].

2.2 Evaluating Explanation Quality

Evaluating explanation quality is a challenging problem and, to the best of our knowl-
edge, there is no universally recognized metric for this, mainly due to the variety of
representations used for explanations. Manual evaluation [12,19,21] is commonly used
for image explanations. However, evaluation by simple visual inspection is subject to
potential bias [2]. In contrast, [31] computes top-1 error and top-5 error of the image
segments generated by explanations provided by class activation mapping (CAM) tech-
nique. The publications on LIME [19] and LEAP [11] calculate precision, recall and F1

score to measure explanation quality. The work in [6,15] converts the problem of gen-
erating image explanations to the problem of weakly-supervised object detection and
adopts the Intersection over Union (IOU) metric that is used in object detection. All
of these methods suffer from the problem that a user-specified threshold or trade-off
parameter is implicitly assumed in the metrics they employ: top-N error, F-measure,
and IOU. In this paper, we adopt a metric based on Area Under the ROC Curve (AUC)
to evaluate explanation quality, which takes into account false positive and true positive
rate for all possible thresholds, and perform an extensive empirical evaluation based on
a large set of explanation methods and models.

3 Definitions

We first give definitions of key concepts that are used in this paper, focusing on the
context of image classification.

Definition 1. Given an image input x of size (M,N) and a model f , the explanation
e for the prediction f(x) is represented as a two dimensional array of the same size
(M,N), where each entry in e is a real number and provides the attribution of the
corresponding pixel in x.

Definition 2. Given an image input x of size (M,N) and a model f , an explainer is a
procedure that takes x and f as inputs and returns an explanation e for the prediction
f(x).
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Fig. 2. Example of an explanation generated by GuidedGradCAM

(a) Original image (b) Expert explanation

Fig. 3. Example of expert explanation in Kahikatea dataset

An example of an explanation is given in Fig. 2. Given the image input shown on the
left of Fig. 2, and a trained Resnet18 model [8], which makes the prediction that the
input contains Kahikatea trees, the explanation for this prediction is given on the right
of Fig. 2. In this example, the explanation is extracted using the explainer GuidedGrad-
CAM and is visualized as a heat map.

Definition 3. Given an image input x of size (M,N), the expert explanation etrue for
x is an image of the same size and contains a subset of pixels of x. The pixels in x
are present in etrue if and only if these pixels are selected by an expert based on their
domain knowledge.

The expert explanations for the Kahikatea dataset introduced in this paper are obtained
by domain experts selecting the pixels that are part of Kahikatea trees; an example is
given in Fig. 3. We also use a second dataset for our experiments in this paper: CUB-
200-2011 [29]. The expert explanations for this dataset are extracted from the bounding
box information that covers the locations of objects; an example is given in Fig. 4. Note
that the expert explanations in this latter dataset may not consist exclusively of relevant
information; however, crucially, all relevant object-specific information is included in
the bounding box.

4 Investigating the Relationship Between Model Accuracy and
Explanation Quality

We now discuss the experimental procedure used in our experiments to test the hypoth-
esis that model accuracy and explanation quality are strongly related.
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(a) Original image (b) Expert explanation

Fig. 4. Example of expert explanation in CUB-200-2011 dataset

Fig. 5. Process for evaluating the explanation quality

4.1 Evaluating Explanation Quality

The key step in investigating the relationship between model accuracy and explanation
quality is to quantitatively evaluate the quality of explanations. In this paper, we com-
pute the Area under the ROC Curve (AUC) to quantify explanation quality because
AUC is scale invariant and threshold invariant.

Given an image annotated with an expert explanation, and an explanation heat map
generated by an explainer for the prediction of an image by a model, we compute AUC
as follows (the procedure is illustrated in Fig. 5):

– Step 1: Convert the expert explanation etrue to a binary two-dimensional matrix
ebinarytrue , where each entry corresponds to a pixel in the image. The binary value is
set to 1 if the corresponding pixel is selected in the expert explanation provided for
the image, and to 0 otherwise.

– Step 2: Convert the prediction explanation to a two-dimensional matrix e, where
each entry is the attribution of the corresponding pixel. The attributions are gener-
ated by an explainer and are normalized into the range [0, 1].

– Step 3: Flatten both ebinarytrue and e into one-dimensional vectors.
– Step 4: Compute AUC using the ebinarytrue and e vectors.

To show the benefit of using AUC, Fig. 6 shows the comparison of three metrics:
precision, recall and AUC. These metrics are computed for the same generated expla-
nation shown in Fig. 6c. To compute precision and recall, a threshold is required to
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(a) Original image (b) Expert explanation (c) Generated explanation

(d) Binary explanation with
threshold=0

(e) Binary explanation with
threshold=0.1

(f) Binary explanation with
threshold=0.2

Fig. 6. Comparison of different evaluation metrics. The AUC for (c) is 0.64. (d)–(f) are the binary
explanations that are converted from (c) with different thresholds. Precision and recall for the
binary explanations are as follows: (d) precision = 0.29, recall = 0.48, (e) precision = 0.66, recall
= 0.11, and (f) precision = 0.64, recall = 0.04

convert the generated explanation to a binary representation, thus these metrics change
as different thresholds are applied, while AUC is threshold invariant.

In our experiments, we evaluate the quality of explanations generated by four differ-
ent explainers from the literature, namely, Saliency [23], BackPropagation [25], Guid-
edGradCAM [21], and GradientShap [16].

4.2 Comparing Different Models

To study the interaction between explainer algorithm and deep neural network that it is
applied to, we evaluate each of the four explainers for seven deep neural networks,
namely, AlexNet [14], DenseNet [9], Inception-V3 [28], ResNet-18 [8], ResNet-50
[30], SqueezeNet [10], and VGG-11 [24].

We consider accuracy scoreacc, loss, and explanation quality scoreexplanation. The
primary metric of predictive performance is scoreacc, which is calculated as the por-
tion of correctly classified test instances, but we also report the results of test losses
in the experiments (entropy losses are used for the neural networks in this paper).
scoreexplanation is calculated as the average AUC obtained across all test images.
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As illustrated in the example in Fig. 1, it is clear that different models may reach the
same decision based on different evidence—as indicated by the explanations provided.
Thus, it is important to compare models from the perspective of explanation quality,
especially when the models achieve comparable accuracy. However, we can also inves-
tigate the correlation between accuracy and explanation quality across different models.
This is important to test the generality of our hypothesis that a model tends to make cor-
rect decisions when its prediction explanations are of high quality.

4.3 Studying Explanations as a Model Evolves During Training

It is also of interest to consider how explanations evolve during the training process of
deep neural networks. To this end, instead of just comparing different models, we also
evaluate the explanation quality obtained with a model at different epochs during the
training process.

Assume a model f is trained with T iterations, and let ft be the intermediate model
at iteration t, scoreexplanation(ft) be the explanation metric for ft, and scoreacc(ft)
be the accuracy metric for ft. Then, we compute the correlation between the sequences
of scores [scoreexplanation(f1), scoreexplanation(f2), . . . , scoreexplanation(fT )] and
[scoreacc(f1), scoreacc(f2), . . . , scoreacc(fT )] by Pearson correlation that ranges
from -1 (negatively linearly correlated) to 1 (positively linearly correlated) to measure
the strength of the statistical relationship.

If these two sequences are correlated, it means that the two tasks—learning accu-
rate classifications and learning accurate explanations—are related. This would provide
some empirical justification for multi-task learning frameworks [1,4] that jointly learn
classifications and explanations.

4.4 Selecting Models Based on Explanation Quality

Assuming model accuracy is positively correlated with explanation quality, it is natural
to consider whether we can choose models based on explanation quality. In the tradi-
tional model selection process, we choose the model that achieves best performance on
validation data and hope it also performs well on test data or unseen data. This frame-
work usually works if we have a sufficient amount of validation data. However, if the
validation data is limited, a model that performs well on this data will not necessarily
generalise well. In this case, it is worth considering whether the explanation quality on
the validation data (or part of validation data) can be taken into consideration to inform
model selection and thus choose a potentially better model.

A toy example, considering decision trees rather than neural networks, is given in
Fig. 7. Assume there are two trained models (Fig. 7b and Fig. 7c) that perform equally
well on the validation data (Fig. 7a). It is unclear which model will achieve better pre-
dictive accuracy on new data. However, if based on input from domain experts, we
know that features F1 and F2 reflect the actual causes for the class label, then we can
say that model 1 is better than model 2 because its explanation quality is better.

We explore this idea of using explanation quality for model selection in a case study
with deep neural networks applied to image classification in Sect. 5.5.
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(a) Sample validation data (b) Model 1 (c) Model 2

Fig. 7. Demonstration of how explanations help to choose a better model. Both models achieve
the same accuracy on the validation data. Assuming expert knowledge that F1 and F2 are the
actual causes for the class label, we can say that model 1 is better than model 2 as the explanation
quality of model 1 is better.

5 Experimental Evaluation

We now discuss the empirical results obtained in our experiments, providing more detail
on the two datasets used and the hardware and software set-up employed.

5.1 Data

The experiments are conducted on two datasets: the CUB-200-2011 dataset and the
Kahikatea dataset. CUB-200-2011 [29] contains 11,788 images (5,994 for training and
5994 for testing) in 200 categories. The images are annotated with bounding boxes
revealing the locations of objects, from where the expert explanations are extracted (see
Fig. 4). The Kahikatea data contains 534 images (426 for training and 108 for testing)
in two categories, and the classification problem is to predict whether an image contains
Kahikatea or not. The expert explanations are generated by domain experts manually
selecting the pixels that belong to Kahikatea trees (see Fig. 3). We publish the Kahikatea
dataset with this paper, and the data can be found at https://doi.org/10.5281/zenodo.
5059768.

5.2 Implementation

Our experiments use PyTorch [18] for training the neural networks and Captum [13]
for implementations of the explainers. An NVIDIA GeForce RTX 2070 GPU and an
Intel(R) Core(TM) i7-10750H CPU with 16 GB of memory are used as hardware plat-
form. All neural networks are trained using the cross-entropy loss function with the
SGD [27] optimizer using batch size = 16, learning rate = 0.001 and momentum = 0.9,
while all explainers are applied with default parameters. The models are trained with
50 epochs as their performance becomes stable afterwards on the datasets we consider.

5.3 Results - Comparing Different Models

We first compare the models in terms of both classification performance and expla-
nation quality. The accuracy and loss on the test data for the CUB-200-2011 dataset

https://doi.org/10.5281/zenodo.5059768
https://doi.org/10.5281/zenodo.5059768
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Table 1. Comparing models on the CUB-200-2011 data. Explanation quality is shown for Guid-
edGradCAM (EQ-GGCAM), Saliency (EQ-SA), GradientShap (EQ-GS), and BackPropagation
(EQ-BP). Corr(Acc): Pearson Correlation between accuracy and explanation quality; Corr(Loss):
Pearson Correlation between loss and explanation quality. Best metrics are shown in bold.

Model Accuracy Loss EQ-GGCAM EQ-SA EQ-GS EQ-BP

AlexNet 0.495 3.326 0.508 0.507 0.622 0.521

DenseNet 0.764 0.943 0.649 0.641 0.641 0.710

Inception-V3 0.765 0.949 0.662 0.661 0.632 0.661

ResNet-18 0.705 1.141 0.622 0.681 0.644 0.657

ResNet-50 0.758 0.934 0.681 0.687 0.637 0.687

SqueezeNet 0.614 2.090 0.678 0.643 0.644 0.676

VGG-11 0.717 1.371 0.526 0.522 0.650 0.591

Corr(Acc) - - 0.563 0.620 0.516 0.747

Corr(Loss) - - −0.606 −0.691 −0.566 −0.784

are reported in the second and third column in Table 1. The remaining columns in the
table detail the quality of the explanations generated by the four explainers, measured
using AUC. The correlation between accuracy and explanation quality and the corre-
lation between loss and explanation quality across these models for each of the four
explainers are reported in the last two rows. Similar results are shown in Table 2 for the
Kahikatea dataset.

For both datasets, it can be seen that model accuracy is positively correlated with
explanation quality, while the loss is negatively correlated with explanation quality.
However, it is also worth noting that the model achieving the highest accuracy is not
necessarily the model achieving the best explanation quality. For example, for the CUB-
200-2011 dataset, the Inception-V3 model achieves the highest accuracy, but its expla-
nation quality is not the best one using any of the explainers—in fact, the ResNet-50
explanations always achieve a better score. This observation highlights the fact that it
may not be advisable to solely rely on accuracy when selecting models in some cases.

5.4 Results - Studying a Model at Different Iterations During Training

We now investigate the relationship between accuracy and explanation quality for the
intermediate models obtained during the training process. Each model is trained with
50 iterations, which generates 50 intermediate models (including the last iteration).
We compute the accuracy, loss, and explanation quality from four explainers for every
intermediate model. For all intermediate models, we get an accuracy vector of size 50, a
loss vector of size 50, and four explanation quality vectors of size 50. Then, we calculate
the correlations between the accuracy vector and each explanation quality vector, and
the correlations between each loss vector and each explanation quality vector.

The results for the CUB-200-2011 and Kahikatea datasets are reported in Table 3
and Table 4 respectively. It can be seen that during the training process of all seven
models, the accuracy is positively correlated with the explanation quality, and the loss
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Table 2. Comparing models on the Kahikatea data. Explanation quality is shown for Guided-
GradCAM (EQ-GGCAM), Saliency (EQ-SA), GradientShap (EQ-GS), and BackPropagation
(EQ-BP). Corr(Acc): Pearson Correlation between accuracy and explanation quality; Corr(Loss):
Pearson Correlation between loss and explanation quality. Best metrics are shown in bold.

Model Accuracy Loss EQ-GGCAM EQ-SA EQ-GS EQ-BP

AlexNet 0.926 0.199 0.517 0.542 0.554 0.470

DenseNet 0.981 0.072 0.615 0.587 0.619 0.611

Inception-V3 0.954 0.166 0.526 0.519 0.532 0.472

ResNet-18 0.954 0.137 0.518 0.554 0.563 0.563

ResNet-50 0.972 0.137 0.545 0.566 0.570 0.617

SqueezeNet 0.935 0.227 0.536 0.538 0.558 0.525

VGG-11 0.963 0.118 0.587 0.580 0.600 0.631

Corr(Acc) - - 0.738 0.698 0.669 0.787

Corr(Loss) - - −0.764 −0.791 −0.770 −0.731

Table 3. Results - studying models during training with the CUB-200-2011 dataset. Corr(A):
Pearson Correlation between accuracy and explanation quality; Corr(L): Pearson Correlation
between loss and explanation quality. Best metrics are shown in bold.

GuidedGradCAM Saliency GradientShap BackPropagation

Model Corr(A) Corr(L) Corr(A) Corr(L) Corr(A) Corr(L) Corr(A) Corr(L)

AlexNet 0.707 −0.857 0.842 −0.790 0.827 −0.856 0.786 −0.652

DenseNet 0.840 −0.816 0.903 −0.908 0.759 −0.832 0.738 −0.705

Inception-V3 0.507 −0.603 0.758 −0.802 0.585 −0.661 0.954 −0.934

ResNet-18 0.673 −0.860 0.211 −0.952 0.782 −0.949 0.920 −0.923

ResNet-50 0.921 −0.891 0.891 −0.867 0.974 −0.962 0.905 −0.880

SqueezeNet 0.917 −0.708 0.970 −0.875 0.933 −0.743 0.872 −0.900

VGG-11 0.875 −0.476 0.701 −0.451 0.934 −0.773 0.637 −0.671

is negatively correlated with the explanation quality. This validates our intuition that the
explanation quality improves as the accuracy increases.

5.5 Using Explanations for Model Selection

We now proceed to a case study1 where we investigate whether explanations can be
used to improve the model selection performance in the Kahikatea problem under the
assumption that the validation data is limited.

Given training and validation data, in the traditional model selection setting, can-
didate models (i.e., different models structures, identical model structures trained with

1 The code and supplementary material are available at https://bit.ly/3xdcrwS.

https://bit.ly/3xdcrwS
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Table 4. Results - studying models during training with the Kahikatea dataset. Corr(A): Pearson
Correlation between accuracy and explanation quality; Corr(L): Pearson Correlation between loss
and explanation quality. Best metrics are shown in bold.

GuidedGradCAM Saliency GradientShap BackPropagation

Model Corr(A) Corr(L) Corr(A) Corr(L) Corr(A) Corr(L) Corr(A) Corr(L)

AlexNet 0.507 −0.602 0.585 −0.689 0.530 −0.520 0.646 −0.585

DenseNet 0.510 −0.548 0.493 −0.427 0.550 −0.612 0.461 −0.423

Inception-V3 0.358 −0.421 0.475 −0.526 0.780 −0.710 0.576 −0.551

ResNet-18 0.423 −0.350 0.659 −0.460 0.706 −0.548 0.801 −0.562

ResNet-50 0.510 −0.454 0.499 −0.571 0.391 −0.311 0.394 −0.493

SqueezeNet 0.478 −0.281 0.498 −0.387 0.415 −0.535 0.498 −0.421

VGG-11 0.417 −0.511 0.663 −0.469 0.655 −0.384 0.722 −0.521

different hyper-parameters, or intermediate models from different training stages) are
obtained on the training data, and the model that achieves the best performance in terms
of accuracy or loss on the validation data is selected to later be applied on test data or
unseen data.

Instead of using the accuracy metric as the selection criterion, we use score(f) =
α · scoreacc(f) + (1− α) · scoreexplanation(f) (see Eq. (1)), such that the model with
the best score(f) on the validation data is selected. This selection criterion is based
on our previous observation that explanation quality and model accuracy are strongly
correlated. scoreexplanation can be viewed as a regularization term regarding explain-
ability, and it helps to reduce variance and avoid overfitting by choosing models that
make decisions based on reasonable evidence.

It is worth noting that in the case when α = 1, the selection criterion only relies on
accuracy, which is the way traditional model selection makes its choice, whilst in the
case when α = 0, the selection criterion only relies on explainability.

Given the Kahikatea dataset and a deep neural network model structure, we perform
the following steps:

– Step 1: Randomly divide the Kahikatea dataset into three subsets such that 20% of
the samples are for training, 10% are for validation, and the remaining 70% are for
testing.

– Step 2: Train the model on the training data for N = 50 iterations to generate 50
model candidates f1, f2, . . . , fN .

– Step 3: Compute score(f) in Eq. (1) on the validation data for fi, i ∈ [1, 2, . . . , N ],
where scoreacc(fi) is calculated as the percentage of correct predictions of fi on the
validation data, scoreexplanation(fi) is calculated using the AUC-based metric (see
Sect. 4.1) with expert explanations for the validation data and model explanations
generated with GuidedGradCAM.

– Step 4: Compute test accuracy (percentage of correct predictions on the test data)
Acctest(f) for fi, i ∈ [1, 2, . . . , N ].
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– Step 5: Calculate the Pearson correlation between (score(f1), . . . , score(fN )) and
(Acctest(f1), . . . , Acctest(fN )). The correlation is 1 if the ranking of the candidate
models based on score(f) is the same as their ranking based on test accuracy.

– Step 6: Repeat step 1–5 for 10 times and compute the average correlation.

The procedure is applied on seven deep neural networks (AlexNet, DenseNet,
Inception-V3, ResNet-18, ResNet-50, SqueezeNet and VGG-11) and α is varied from
the list (0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0) to cover both extreme cases.

The correlation between the scores of the selection criterion and test accuracy is
reported in Table 5. It can be seen that, for all models, the highest correlations are
achieved when α is neither 0 nor 1, which suggests that a combination of validation
set accuracy and explanation quality is best for model selection.

Table 5. Results - Correlations of selection scores and test accuracy for different α. Best metrics
for each model are shown in bold.

α AlexNet DenseNet Inception-V3 ResNet-18 ResNet-50 SqueezeNet VGG-11

0 0.5335 0.5076 0.4602 0.5914 0.4281 0.4448 0.6011

0.1 0.6006 0.5996 0.6393 0.6734 0.5345 0.5426 0.678

0.2 0.6629 0.6807 0.7627 0.7372 0.6289 0.6348 0.7438

0.3 0.717 0.7466 0.8332 0.7838 0.7057 0.7073 0.7947

0.4 0.7587 0.7964 0.8666 0.8156 0.7633 0.7578 0.8305

0.5 0.7844 0.8311 0.88 0.8354 0.8038 0.7899 0.8531

0.6 0.7929 0.8533 0.8834 0.8458 0.8305 0.8077 0.8653

0.7 0.7873 0.8655 0.882 0.8494 0.8465 0.8152 0.8694

0.8 0.7734 0.8703 0.8783 0.8479 0.8545 0.8153 0.8678

0.9 0.7561 0.8698 0.8735 0.8433 0.8568 0.8106 0.8619

1.0 0.7378 0.8657 0.8684 0.8366 0.8553 0.8028 0.8532

The comparison of the test accuracy of models selected with explanations and that
of the models selected without explanations is shown in Table 6. When α = 1, it is the
case that we choose the models without considering explanation quality. Besides the
test accuracy, the explanation quality on the test data of models selected with explana-
tions is consistently better than that of models selected without explanations (see the
supplementary material). It can be seen that the models selected by consulting explana-
tion quality consistently outperform the models (except for SqueezeNet) selected using
accuracy alone. It also shows that we cannot simply optimize the explanation quality
(when α = 0), and one possible reason is that the expert explanations can be biased and
noisy.

Do We Need Expert Explanations for All Validation Data? It is interesting to con-
sider how many instance-level expert explanations are sufficient to improve the per-
formance of model selection if these are not available for the whole validation set.
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Table 6. Results - Test accuracy of models selected using selection criterion with different α.
Best metrics for each model are shown in bold.

α AlexNet DenseNet Inception-V3 ResNet-18 ResNet-50 SqueezeNet VGG-11

0 79.95% 81.37% 76.87% 83.08% 82.64% 77.28% 83.71%

0.1 79.97% 81.07% 77.28% 82.99% 82.61% 80.0% 83.71%

0.2 79.97% 82.39% 82.01% 82.8% 82.99% 80.96% 84.59%

0.3 82.01% 82.42% 82.34% 82.69% 83.1% 81.59% 84.78%

0.4 82.06% 82.17% 82.34% 82.99% 83.38% 81.18% 84.64%

0.5 82.06% 82.09% 82.23% 82.99% 83.68% 81.92% 84.64%

0.6 82.06% 82.99% 82.34% 82.94% 83.63% 81.81% 84.09%

0.7 82.06% 83.24% 82.5% 82.99% 83.49% 81.43% 84.42%

0.8 82.06% 83.24% 82.5% 82.99% 83.49% 81.54% 84.45%

0.9 81.54% 83.24% 82.5% 82.99% 83.49% 81.54% 84.45%

1.0 81.18% 82.42% 82.2% 82.72% 83.43% 82.01% 84.42%

We follow the setting described above and vary the availability of expert explanations
from 10% to 100% of the validation set. The model selection result (test accuracy) for
AlexNet with the GuidedGradCAM explainer is shown in Table 7. It can be seen that
even with 10% expert explanations it is possible to improve the model selection perfor-
mance. The results of other neural network structures (see the supplementary material)
follow a similar trend: availability of expert explanations for 10% of the validation data
(or more) can benefit the model selection process for the selected dataset.

Table 7. Results - Test accuracy of models selected with different percentages of expert explana-
tions. Best results for each model are shown in bold.

Level of expert explanation availability

α 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

0 82.3% 81.8% 81.8% 82.0% 81.9% 81.3% 82.0% 80.7% 82.6% 79.9%

0.1 82.3% 81.8% 81.8% 82.0% 81.7% 81.4% 82.0% 80.7% 82.6% 80.0%

0.2 82.3% 82.0% 81.8% 82.0% 81.7% 81.4% 82.0% 80.7% 82.3% 80.0%

0.3 82.3% 82.0% 82.1% 82.0% 81.7% 81.4% 82.0% 81.3% 82.3% 82.0%

0.4 82.1% 82.1% 82.2% 82.0% 82.0% 82.0% 82.0% 82.0% 82.3% 82.1%

0.5 82.1% 82.1% 82.4% 82.0% 82.0% 82.1% 82.0% 82.2% 82.3% 82.1%

0.6 82.1% 82.1% 82.4% 82.2% 81.9% 82.4% 82.1% 82.2% 82.4% 82.1%

0.7 82.2% 82.3% 82.5% 82.2% 82.1% 82.6% 82.1% 82.2% 82.4% 82.1%

0.8 82.4% 81.8% 82.6% 81.8% 81.8% 82.6% 82.2% 82.3% 82.4% 82.1%

0.9 82.0% 81.9% 82.4% 81.8% 81.3% 82.6% 82.2% 81.9% 81.9% 81.5%

1.0 81.2% 81.2% 81.2% 81.2% 81.2% 81.2% 81.2% 81.2% 81.2% 81.2%
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6 Conclusion

We empirically evaluate the relationship between model accuracy and explanation qual-
ity using seven deep neural networks and four explainers. To evaluate explanation qual-
ity, we adopt the Area under the ROC Curve (AUC), which is threshold invariant.
The experimental results indicate that models tend to make correct predictions when
these predictions are accompanied by explanations of high quality. Moreover, during a
model’s training process, predictive accuracy increases together with explanation qual-
ity. Our results provide strong empirical support for the claim that model accuracy and
explanation quality are correlated. Exploiting this observation, we demonstrate how
measuring the quality of explanations can help to improve the performance of model
selection and also consider how this is affected by the number of available expert-
provided explanations. To boost research in this area, we publish the Kahikatea dataset,
which provides instance-level expert explanations for positive instances.
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Abstract. Multiple Instance Learning (MIL) aims at extracting pat-
terns from a collection of samples, where individual samples (called bags)
are represented by a group of multiple feature vectors (called instances)
instead of a single feature vector. Grouping instances into bags not only
helps to formulate some learning problems more naturally, it also sig-
nificantly reduces label acquisition costs as only the labels for bags are
needed, not for the inner instances. However, in application domains
where inference transparency is demanded, such as in network security,
the sample attribution requirements are often asymmetric with respect to
the training/application phase. While in the training phase it is very con-
venient to supply labels only for bags, in the application phase it is gen-
erally not enough to just provide decisions on the bag-level because the
inferred verdicts need to be explained on the level of individual instances.
Unfortunately, the majority of recent MIL classifiers does not focus on
this real-world need. In this paper, we address this problem and propose
a new tree-based MIL classifier able to identify instances responsible
for positive bag predictions. Results from an empirical evaluation on a
large-scale network security dataset also show that the classifier achieves
superior performance when compared with prior art methods.

Keywords: Explainable AI · Network security · Randomized trees

1 Introduction

Multiple Instance Learning (MIL) generalizes the traditional data representation
as it allows individual data samples B1,B2, . . . (called bags) to be represented
by a group of multiple d-dimensional feature vectors B = {x1,x2, . . .}, x ∈ Rd

(called instances), which are order independent and their counts may vary across
bags. In the supervised classification, it is further assumed that each bag is
associated with label y (e.g. y ∈ {−1,+1} in the binary case), and the goal is
to infer function F from dataset D = {(B, y)1, (B, y)2, . . .}, using algorithm A,
such that the function F can predict labels for new bags F(B) = y.

This formalism (originally introduced in [9]) has recently gained significant
traction in domains dealing with complex data structures and/or labeling limita-
tions [6]. A prime example of such a domain is network security and its problem
c© Springer Nature Switzerland AG 2021
N. Oliver et al. (Eds.): ECML PKDD 2021, LNAI 12976, pp. 715–730, 2021.
https://doi.org/10.1007/978-3-030-86520-7_44
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of detecting infected users in computer networks. While network traffic logs can
be converted into feature vectors relatively easily, their labeling is often very
labor-intensive and time-consuming. This is caused not only by the volume of
logs that needs to be processed by experienced threat analysts (and can not be
outsourced due to privacy issues), but also by the fact that the individual log
records may not carry enough discriminatory information for making verdicts
about them and a broader context of the communication must be considered by
the analysts1. Previous works [10,13,18,22] have shown that MIL can greatly
facilitate this problem as it enables to: (i) formulate the problem more naturally:
users can be represented by bags of instances, where the instances correspond to
users’ communications with web servers; here the flexibility in bag sizes reflects
the reality that each user can establish a different number of communications
within a given time window, (ii) reduce the label acquisition costs: threat analysts
do not have to pinpoint individual log records responsible for the infection; it is
enough to provide labels for the whole users, (iii) open new ways of acquiring
labels: since it is sufficient to know whether the user was infected in a particular
time period or not, a completely separate source of data can be used for anno-
tating (e.g. anti-virus reports) and thus benefit from cheaper and less ambiguous
labels, (iv) increase classification performance: MIL classifiers can detect more
types of infections as they make decisions by analysing the entire context of
user’s communications rather than individual log records in isolation.

The goal of this paper is to contribute to the above list of MIL advantages by
further enabling to: (v) explain the raised alerts: although in the training phase
the labels are supplied only for bags, in the application phase the model should
be able to explain the raised alerts (positive bag predictions) by promoting
instances responsible for the decisions. We argue that this capability is of great
need, especially in applications where subsequent acting upon the raised alerts
is associated with high costs (e.g. reimaging a user’s computer) and therefore
the verdicts need to be well justified. Time spent on the justification is usually
strongly affected by the order in which the instances are investigated. Most prior
approaches can not effectively prioritize instances of positive bags because they
perform some sort of bag aggregation inside models to make learning on bags
(i.e. sets of vectors) possible. The algorithm proposed in this paper works on an
instance selection rather than the aggregation principle.

2 Instance Selection Randomized Trees

The algorithm for learning Instance Selection Randomized Trees (ISRT) follows
the standard top-down greedy procedure for building an ensemble of unpruned
decision trees. Every tree learner recursively divides the training sample set into
two subsets until class homogeneity is reached or the samples can not be divided
any further.
1 For example, a seemingly legitimate request to google.com might be in reality related

to malicious activity when it is issued by malware checking Internet connection.
Similarly, requesting ad servers in low volumes is considered as a legitimate behavior,
but higher numbers might indicate Click-fraud infection.
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The main difference to the standard (single instance) tree-based learners
applies in the way the conditions are evaluated inside the splitting nodes. In the
MIL setting, the decision whether to send a sample (i.e. bag) to the left or right
branch can no longer be based on a condition of type—if feature f is greater
than value v—as the bag might contain multiple feature vectors (i.e. instances)
that may or may not fulfill that condition. To cope with this problem, every
node of ISRT (denoted as NISRT) is further parametrized with vector w, called
instance selector, in addition to the feature index f and the threshold value v
(Eq. 1). The purpose of the instance selector is to select a single instance x∗ from
a bag B upon which the feature value comparison x∗

f > v is made. The selection
mechanism is implemented via calculating the inner product (denoted as 〈·, ·〉)
between the vector w and individual bag instances x ∈ B, followed by selecting
the instance x∗ associated with the maximum response. Note that if bags are
of size one, then ISRT nodes behave like the traditional ones regardless of the
extra parameter w.

NISRT(B; f, v,w
︸ ︷︷ ︸

Φ

) =

⎧

⎨

⎩

left, if x∗
f > v, x∗ = argmax

x∈B
〈w,x〉,

right, otherwise.
(1)

Assuming the positive class is the class of interest, we would like to train an
instance selector (on a local training subset available to the considered node)
to give maximum values to the instances of positive bags (and thus cause their
selection) that are most responsible for these bags being positive. More specif-
ically, the selector should assign low (i.e. negative) values to all instances of
negative bags and high (i.e. positive) values to at least one instance from each
positive bag. We do not force the selector to assign high values to all instances of
positive bags, since not all of them are necessarily relevant. For example, not all
websites visited by an infected user within the last 24 h are automatically mali-
cious. In fact, the vast majority of them will typically still be legitimate. These
requirements lead to the following zero-one loss function for a single training
data point (B, y):

�01 (w; (B, y)) = 1

[

y max
x∈B

〈w,x〉 < 0
]

, (2)

where 1 [·] stands for an indicator function, which equals one if the argument
is true and zero otherwise. If we approximate the indicator function 1 [z] with
hinge loss surrogate max{0, 1 − z}, take average over the local training subset
S ⊆ D and add regularization term λ, we obtain Multiple Instance Support
Vector Machines [2] optimization problem:

argmin
w

λ

2
‖w‖2 +

1
|S|

∑

(B,y)∈S
max{0, 1 − y max

x∈B
〈w,x〉}. (3)

To approximately solve this non-convex optimization problem in linear time,
we adapted Pegasos solver [21] (originally designed for conventional SVMs) to the
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MIL setting. The resulting pseudo-code is given in Algorithm 1. It is a stochastic
sub-gradient descent-based solver, which at each iteration t updates the current
solution wt+1 ← wt−ηt∇t (row 9 in Algorithm 1) using step size ηt = 1/(tλ) and
sub-gradient ∇t of the objective function (Eq. 3) estimated on a single randomly
chosen training sample. To avoid building strong classifiers inside nodes, which
would go against the randomization principle for constructing diverse indepen-
dent trees [4], we restrict the selectors to operate on random low-dimensional
subspaces. Input zero-one vector s ∈ {0, 1}d then serves as a mask defining the
feature subspace. By taking element-wise product with that vector (i.e. s 	 w
or s 	 x), only feature positions occupied by ones remain effective. In Sect. 4.2,
we empirically demonstrate that using sparse selectors, where the number of
effective dimensions equals to the square root of the total dimensions d rounded
to the closest integer (i.e.

∑

f sf = [
√

d]), plays a crucial role in the overall
ensemble performance. This subspace size ensures that in high dimensions the
selectors will be approximately orthogonal and thus independent [12].

Algorithm 1: ISRT’s routine for training selectors.

Function TrainSelector(S; λ, E, s)

Input : Training set of bags along with labels S = {(B, y)1, . . .},
the regularization λ > 0,
the number of epochs E > 0,
the zero-one vector defining feature subspace s.

Output: Instance-level selector wt approximately solving Problem 3.

1 extend all instances by a bias term [x, 1] including the subspace vector [s, 1]
2 t ← 1
3 w0 ← random vector w0

f ∼ N(0, 1) // length(w) = length(x) = length(s)
4 w1 ← s � w0 // � element-wise product

5 for 1 in E do
6 for 1 in |S| do
7 (B, y) ← (class-balanced) random draw (with replacement) from S
8 x∗ ← argmaxx∈B〈wt,x〉
9 wt+1 ← wt − 1

tλ

(
λwt − 1

[
y〈wt,x∗〉 < 1

]
y(s � x∗)

)

10 t ← t + 1

11 return wt[start : end − 1] // removing the bias term

Being equipped with the routine for training selectors, we can represent bags
in a local training subset {(B, y)1, . . .} with selected instances {(x∗, y)1, . . .}.
Now, on top of this representation, a standard search for the best splitting
parameters, based on measuring purity of produced subsets (e.g. Information
gain [20] or Gini impurity [5]), can be executed. This allows us to build an
ensemble of ISRT in the same way as (Extremely) Randomized Trees [11] are. In
particular, unlike e.g. Breiman’s Random Forests [4], where each tree is grown
on a bootstrap replica of the training data, the Randomized Trees (as well as
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our ISRT) are grown on the complete training set, which yields to a lower bias.
Variance is then reduced by output aggregation of more diversified trees. The
higher diversification is achieved through stronger randomization in splitting
nodes, as for each feature f out of [

√
d] randomly selected ones, only a limited

number2 T of uniformly drawn threshold values v from [xmin
f , xmax

f ) is considered
for splitting rather than every sample value as realized in Breiman’s Random
Forests. In the case of ISRT, the randomization is even stronger due to the fact
that selected instances may vary from node to node. The whole training proce-
dure of ISRT is summarized in Algorithm 2. Time complexity of the algorithm,
assuming balanced trees, is Θ(M

√
d T E NI log NB), where M is the number of

constructed trees, E the number of epochs for training selectors, NI the average
number of instances in bags and NB the number of training bags.

In the testing phase, a bag to be classified is propagated through individual
trees and the final score ŷ ∈ [−1, 1] is calculated as an average of leaves scores
the bag falls into (Algorithm 3). However, besides the prediction score, the ISRT
can also output a histogram of selection counts over the bag instances i. This
information might help to identify relevant instances upon which the decision was
made and thus serve as an explanation for positive bag predictions. For example,
an explanation—an user was found to be infected because it has communicated
with these three hostnames (out of hundreds) within the last 24 h—can greatly
speed up the work of threat analysts and reinforce their trust in the model if the
hostnames will be shown to be indeed malicious. On the other side, it should
be noted that this approach can not explain a positive prediction that would
be based on an absence of some type of instance(s) in the bag. For example,
there might be malware, hypothetically, its only visible behaviour would be
preventing an operating system (or other applications like an anti-virus engine)
from regular updates. For the same reason, negative predictions in general can
not be explained with this approach.

3 Related Work

Surveys on MIL [1,6] categorize classification methods into two major groups
according to the level at which they operate. Methods from the first instance-
level group (proposed mostly by earlier works) construct instance-level classifiers
f(x) → {−1,+1} as they assume that the discriminative information lies on
the level of instances. Meaning that a bag is positive if it contains at least
one instance carrying a characteristics positive signal, and negative if does not
contain any such instance. Bag-level predictions are then obtained by aggregating
instance-level verdicts F(B) = maxx∈B f(x). MI-SVM [2], which is defined in its
primary form in Eq. 3, is a representative example of this group.

The second bag-level group involves methods (proposed mainly by later
works) assuming that the discriminative information lies at the level of bags.
These methods build directly bag-level classifiers F(B) extracting information
from whole bags to make decisions about their class rather than aggregating
2 Term extremely in Extremely Randomized Trees [11] corresponds to setting T = 1.



720 T. Komárek et al.

Algorithm 2: ISRT’s routine for building an ensemble of trees.

Function BuildTreeEnsemble(D; M, T, E, Λ)

Input : Training set of bags along with labels D = {(B, y)1, . . .},
the number of trees to grow M > 0,
the number of considered threshold values T > 0,
the number of epochs E > 0 (for training selectors).

Output: Ensemble of Instance Selection Randomized Trees E .

1 E ← ∅
2 for 1 in M do
3 E ← E ∪ {BuildTree(D; T, E, Λ)}
4 return E

Function BuildTree(S; T, E)

Input : Local training subset S ⊆ D.
Output: Node with followers or Leaf with a prediction score.

5 if all class labels y in S are equal then
6 return Leaf (y)

7 Φ∗ ← FindBestSplittingParameters(S; T, E)
8 if Φ∗ = ∅ then
9 return Leaf ( 1

|S|
∑

y∈S y)

10 Sleft ← {(B, y) ∈ S | NISRT(B; Φ∗) = left}
11 Sright ← S \ Sleft

12 if Sleft = ∅ or Sright = ∅ then
13 return Leaf ( 1

|S|
∑

y∈S y)

14 return Node (Φ∗, BuildTree(Sleft), BuildTree(Sright))

Function FindBestSplittingParameters(S; T, E)

Output: Triplet of splitting parameters Φ as defined in Eq. 1

15 Φ∗ ← ∅
16 s ← zero-one vector of length d with

[√
d
]
ones at random positions

17 w ← TrainSelector(S; λ = 1, E, s)
18 (X∗,y) ← represent each pair (B, y) ∈ S with (argmaxx∈B〈w,x〉, y)

19 foreach feature f in
[√

d
]
randomly selected ones (without replacement)

having non-constant values in X (i.e. xmin
f �= xmax

f ) do
20 foreach value v in T uniformly drawn values from [xmin

f , xmax
f ) do

21 Φ ← (f, v,w)
22 update Φ∗ ← Φ if Score(Φ,X∗,y) is the best so far found score

23 return Φ∗



Explainable MIL with ISRT 721

Algorithm 3: ISRT’s prediction routine.

Function Predict(B; E)

Input : Bag to be classified B with ensemble of trees E .
Output: Bag score ŷ ∈ [−1, 1] and histogram of selected instances i.

1 ŷ ← 0
2 i ← zero vector of length |B|
3 foreach Tree in E do
4 P ← Tree // pointer to Node and Leaf structures

5 i′ ← zero vector of length |B|
6 while P is of type Node do
7 (b, ix∗) ← NISRT(B;P.Φ∗) // ix∗ index of selected instance

8 i′[ix∗ ] ← i′[ix∗ ] + 1
9 P ← P.b // continue in left or right branch

10 ŷ ← ŷ + P.y
11 i ← i ⊕ (

i′/(
∑

i i
′[i])

)
// ⊕ element-wise addition

12 ŷ ← ŷ/|E|
13 i ← i/|E|
14 return (ŷ, i)

individual instance-level verdicts. Considering the global bag-level information
is necessary, e.g., in a case when the positive label is caused by a co-occurrence
of two specific types of instances. Since bags are non-vectorial objects, these
methods typically first transform bags into single fixed-size vectors and then
train an off-the-shelf classifier on top of them. Works of [13,22] use Bag-of-
Words approach, where a vocabulary of prototype instances (i.e. words) is first
found by a clustering algorithm and then each bag is represented by a histogram
counting how many instances fall into each cluster. Work of [19] rather proposes
to use the Neural Network (NN) formalism with pooling layers (e.g. based on
max/mean aggregation) to achieve simultaneous optimization of the bag repre-
sentation (first layer(s) followed by a pooling layer) and the classifier (one or
more of subsequent layers) by means of back-propagation. The closest work to
this paper is on Bag-level Randomized Trees (BLRT) [14]. The main difference
to the ISRT is in the conditions evaluated inside the splitting nodes:

NBLRT(B; f, v, r
︸ ︷︷ ︸

Φ

) =

⎧

⎪
⎪
⎨

⎪
⎪
⎩

left, if

[

1
|B|

∑

x∈B
1 [xf > v]

]

> r,

right, otherwise,

(4)

where the additional parameter r determines a percentage of instances that must
satisfy the inner condition xf > v to be the whole bag passed to the left branch.
Surprisingly, this method has been shown to be significantly better than any of
the prior 28 MIL classifiers on 29 datasets [14], although it can not extract a
multivariate pattern from a single instance unless the bag contains only that one
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instance. This can be illustrated, e.g., on an inability to separate these two bags:
{(0, 0), (1, 1)} and {(0, 1), (1, 0)}. From none of the above bag-level methods can
be trivially inferred which instances are responsible for positive bag predictions.

4 Experiments

In this section, we evaluate the proposed ISRT algorithm first on a private
dataset from the network security field (Sect. 4.1) and then on 12 publicly avail-
able datasets from six other domains (Sect. 4.2). On both types of datasets,
the algorithm is compared with state-of-the-art approaches: BLRT3, NN4 and
MI-SVM5 briefly reviewed in the previous section.

4.1 Private Dataset

The network security dataset represents a real-world problem of classifying users
of computer networks as either infected or clean. The dataset contains meta-
data about network communications from more than 100 international corporate
networks of various types and sizes.

Users in the dataset are represented as bags of instances, where the indi-
vidual instances correspond to the established communications between users
and hostnames within 24 h. High-level statistics about each such communica-
tion are computed from URL strings of made HTTP requests within that time
window. The procedure is as follows. First, URL strings of all HTTP requests
originating from a given user and targeting to a particular hostname are col-
lected. Then, each URL string is converted into a feature vector by extracting a
well-known set of URL features. The used feature set has been already described
e.g. in works [10,15,16] that were primarily focused on detection of URLs gen-
erated by malicious applications. As such, the feature set incorporates a lot of
domain knowledge. Examples of the features are: the number of occurrences of
reserved URL characters (i.e. ‘ ’, ‘-’, ‘?’, ‘!’, ‘@’, ‘#’, ‘&’, ‘%’), the digit ratio, the
lower/upper case ratio, the vowel change ratio, the number of non-base64 char-
acters, the maximum length of lower/upper case stream, the maximum length
of consonant/vowel/digit stream, etc. In sum, there are 359 features. Finally, to
represent the communication with a single instance, the extracted URL feature
vectors are aggregated using a maximum as the aggregation function.

The dataset consists of three sets: training, validation and testing. Training
set is the largest one and was collected during the period of five working days
in January 2021. Validation and testing sets then cover the first and the last
Wednesday in February 2021, respectively. In total, there are 118,108 unique
users. On average, each has 24 instances. Detailed statistics about the dataset
along with the number of infected/clean users are given in Table 1.

3 We used implementation from https://github.com/komartom/BLRT.jl.
4 We used implementation from https://github.com/CTUAvastLab/Mill.jl.
5 MI-SVM is trained with Algorithm 1 for complete feature space (s is vector of ones).

https://github.com/komartom/BLRT.jl
https://github.com/CTUAvastLab/Mill.jl
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Table 1. Specification of the network security dataset. The aim is to train a user-level
model. Counts of URL strings and communications correspond to the sum over all
users and illustrate the potentially higher labeling requirements on these lower levels.

Dataset Training set Validation set Testing set

Date range 18–22 Jan 2021 3 Feb 2021 24 Feb 2021

URL strings 1,186,465,181 239,079,385 264,342,073

Communications 2,829,316 581,826 554,425

Infected users 1,830 430 380

Clean users 115,700 24,987 23,695

We trained the proposed ISRT algorithm with the following hyper-parameter
values: the number of trees to grow M = 100, the number of considered threshold
values T = 8 and the number of epochs for training selectors E = 10. The compu-
tational time for training took 25 min on a single c4.8xlarge AWS instance6. We
also used the same hyper-parameter settings (i.e. M = 100 and T = 8) to train
the prior art tree-based algorithm BLRT7. In the case of MIL Neural Network
(NN), we performed a grid search over the following configurations: the instance
layer size {10, 30, 60}, the aggregation layer type {mean, max, mean-max} and
the bag layer size {5, 10, 20}. We used rectified linear units (ReLU), ADAM opti-
mizer, mini-batch of size 32, and the maximum number of epochs 1000. MI-SVM
classifier was trained for regularization values λ ∈ {10−5, 10−4, . . . , 1} and the
number of epochs E = 100. The final configuration, in both cases, was selected
based on the highest achieved performance on the validation set in terms of the
area under the Precision-Recall curve.

Efficacy results of the above trained models on the validation and testing set
are shown in Fig. 1 using the Precision-Recall and ROC curves. Different points
on the Precision-Recall curve correspond to different decision threshold values
of a particular model and indicate the percentage of alarms that are actually
correct (precision) subject to the percentage of detected infected users in the
whole dataset (recall/true positive rate). Perfect recall (score 1) means that all
infected users are detected, while perfect precision means that there are no false
alarms. ROC curve then provides information about the volume of false alarms
as the percentage of monitored healthy users (false positive rate)8. Points on the
ROC curve might also serve for calculating precision under different imbalance
ratios of infected to clean users [3].

6 36 virtual Intel Xeon CPUs @ 2.9 GHz and 60 Gb of memory.
7 It was shown in the work of BLRT [14], and we confirm that for ISRT in Sect. 4.2,

that tuning of these parameters usually does not bring any additional performance.
8 While precision answers to the question: “With how big percentage of false alarms

the network administrators will have to deal with?”, false positive rate gives answer
to: “How big percentage of clean users will be bothered?”.
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Fig. 1. Precision-recall and ROC curves of individual models on the validation
(Feb 3, 2021) and testing (Feb 24, 2021) set of the private network security dataset.

As can be seen from Fig. 1, the proposed ISRT algorithm has a clear superior
performance as it produces equal or less false alarms than any other involved
method at any arbitrary recall on both sets. The second best method is the
tree-based BLRT algorithm. It has a decent performance on the validation test
(Feb 3, 2021), but on the testing set (Feb 24, 2021) the performance drops
notably. This decrease in model performance over time is known as an aging
effect—a model becomes obsolete as the distribution of incoming data shifts.
Resistance to that is an important model characteristic, from an application
point of view, albeit not always evaluated by researchers [17]. We attribute this
decay to the fact that the BLRT model can extract only global bag-level uni-
variate statistics computed across all instances within a bag. Because of this, it
might be difficult to effectively separate a multivariate malicious signal hidden
in a single instance from an abundant user background, which can evolve over
time. On the other hand, the discriminative signal apparently does not lie on
the local instance-level completely as the instance-based classifier MI-SVM per-
forms poorly. Probably the ability to combine these two approaches, by selecting
and judging individual instances according to the need while collecting global
evidence, might be the reason why the ISTR model excels in this task. Inter-
estingly, the NN model is able to reliably detect only a very limited number of
infections, although in the recent work [18] it has been shown to perform well



Explainable MIL with ISRT 725

on a similar task. One reason might be that the NN model is sensitive to some
hyper-parameters, which we did not tune. Another one might be that there is
a substantial difference in the time window (5 min vs. 24 h) per which the users
are classified. Shrinking the time window to five minutes on our data leads to
one instance (i.e. communication with a unique hostname) per bag on average,
which would eliminate the need of MIL and its benefits (i.e. lower labeling costs
and richer contextual information).
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Fig. 2. Assessment of ISRT explanations as an information retrieval task.
AnyHit@TopK (on the left) shows the percentage of bags for which at least one relevant
(i.e. positively labeled) instance appeared among the top K instances. Since bags can
contain multiple relevant instances, Recall@TopK (on the right) shows how many of
them are among the top K instances. The perfect Recall@1 can not be achieved unless
all bags have only one relevant instance.

As announced in the introduction to this paper, the main benefit of the
newly proposed ISRT over the prior-art BLRT, besides higher performance on
some datasets, is the ability to explain the positive bag predictions. The provided
explanations are in the form of assigned scores to individual instances (according
to the number of times they have been selected during the bag class prediction),
upon which they can be sorted and presented to the end-user for judgment.
Analogically to the information retrieval task, the goal is to place the most
relevant instances at top positions. To assess this ability on the network security
dataset, we used our internal deny list of known malicious hostnames to label
instances9 (i.e. communications with hostnames) of bags that have been classified
as positive by the ISRT model on the testing set. On the first 20, 50 and 100
most positive bags (for which we had at least one positive instance-level label),
we calculated AnyHit@TopK and Recall@TopK metrics. Figure 2 presents the
results for the first top ten (TopK) instance positions.

It can be observed from the left subplot of Fig. 2 (AnyHit@TopK) that threat
analysts investigating the first 20 most positive bags would encounter the first
piece of evidence for the infection (i.e. any malicious hostname) just by ana-
lyzing the top two recommended instances from each bag. This ability slightly

9 This way of identifying malicious communications is not so effective in production,
since new threats are not on the deny list yet and need to be first discovered.



726 T. Komárek et al.

decreases for the higher number of bags (i.e. 50 and 100), but it is still very
useful considering the fact that the largest bags have over 100 instances, and
on average only two are labeled as malicious—a needle in a haystack problem.
This can be also seen from the right subplot (Recall@TopK) showing that about
50% of all positive instances in bags can be discovered just by verifying the first
recommended instance (K = 1).

4.2 Public Datasets

To show that the use of ISRT is not limited to network security only, we evaluate
the algorithm on 12 other MIL datasets from six different domains10. Namely,
classification of molecules (Musk1-2), classification of images (Fox, Tiger, Ele-
phant), text categorization (Newsgroups1-3), protein binding site prediction
(Protein), breast cancer detection (BreastCancer) and drug activity prediction
(Mutagenesis1-2). Their basic meta-descriptions (i.e. counts of positive/negative
bags, average bag size and feature dimension) are given in Table 2. For more
details, we refer the reader to the survey of MIL datasets [7].

Table 2. Metadata about 12 public datasets. Including the number of positive/negative
bags, the average number of instances inside bags and the number of features. Plus
evaluation results, measured in AUC × 100, for individual models. Best results are
shown in bold face. Multiple models are highlighted if the difference is not statistically
significant (at α = 0.05) according to a paired t-test with Holm-Bonferroni correction
(for multiple comparisons) [8] computed on the five runs of 10-fold cross-validation.

Dataset Bags +/− Inst. Feat. MI-SVM NN BLRT ISRT ours

Musk1 47/45 5 166 85.9 (1.9) 91.9 (1.5) 96.8 (1.6) 97.2 (1.3)

Musk2 39/63 65 166 86.9 (1.5) 90.3 (2.3) 91.2 (1.8) 92.3 (2.6)

Fox 100/100 7 230 55.2 (1.6) 65.9 (1.2) 73.3 (1.4) 74.0 (1.8)

Tiger 100/100 6 230 81.7 (2.7) 90.7 (1.7) 92.6 (1.0) 92.5 (0.8)

Elephant 100/100 7 230 84.5 (0.3) 93.9 (0.8) 95.8 (0.9) 95.0 (0.7)

Newsgroups1 50/50 54 200 82.4 (4.9) 77.0 (3.6) 78.8 (2.6) 55.4 (2.6)

Newsgroups2 50/50 31 200 70.2 (3.7) 63.3 (5.2) 63.0 (4.0) 63.8 (2.9)

Newsgroups3 50/50 52 200 54.5 (5.5) 63.9 (4.1) 76.3 (4.1) 65.0 (2.6)

Protein 25/168 138 9 81.2 (1.7) 75.2 (4.2) 74.9 (2.3) 85.8 (2.0)

BreastCancer 26/32 35 708 73.1 (2.6) 76.7 (8.1) 84.5 (2.5) 79.3 (1.9)

Mutagenesis1 125/63 56 7 53.4 (1.0) 90.2 (1.0) 92.1 (1.3) 88.6 (0.8)

Mutagenesis2 13/29 51 7 70.0 (8.2) 66.2 (2.6) 86.0 (3.5) 70.0 (6.6)

Each dataset also contains a predefined list of splitting indices for 5-times
repeated 10-fold cross-validation. Therefore, we followed this evaluation protocol
precisely, similarly, as did the prior works of BLRT [14] and NN [19]. Since the

10 Datasets are accessible at https://doi.org/10.6084/m9.figshare.6633983.v1.

https://doi.org/10.6084/m9.figshare.6633983.v1
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protocol does not specify any approach for hyper-parameter optimization, we
used the default values that are known to work well. In particular, to train ISRT,
we set the ensemble size to M = 500, the number of considered threshold values
to T = 8 and the number of epochs for training selectors to E = 1. The same
setting of parameters (i.e. M = 500 and T = 8) is used for the BLRT model,
which corresponds to the setting applied in the original work of BLRT during
the evaluation. The NN architecture consists of a single instance layer of size 10
with rectified linear units (ReLU), followed by a mean-max aggregation layer,
a single bag layer of size 10 and two output units. The weights are regularized
with L1 regularization λ = 10−3 to decrease overfitting as suggested in [19]. The
training minimizes a cross-entropy loss function using ADAM optimizer, mini-
batch of size 8, and the maximum number of epochs 1000. Finally, the MI-SVM
model is trained with the regularization λ = 10−3 and 100 epochs.

Table 2 shows the performance of each model on each dataset in terms of the
average Area Under the ROC Curve (AUC)11 ± one standard deviation. It can
be seen that the proposed ISRT model significantly outperforms the other three
models only on Protein dataset, whereas the prior-art BLRT model significantly
wins on two datasets (Newsgroup3 and Mutagenesis2). The average ranks12 of
the models are: BLRT = 1.8, ISRT = 2.0, NN = 3.0 and MISVM = 3.2. Accord-
ing to the non-parametric Friedman-Nemenyi test [8] (comparing all classifiers
to each other based on the average ranks), there is no statistically significant
difference13 (at α = 0.05) among the models, except for the pair BLRT and
MI-SVM, where MI-SVM looses.

As the last experiment, we investigate the influence of individual model com-
ponents/parameters on the final performance. Figure 3 shows results from this
ablation study as a series of eight pair-wise comparisons. Each subplot compares
two different variants (horizontal and vertical axis) of the proposed ISRT algo-
rithm on the 12 datasets (dots on the scatter plot). X and Y coordinates of each
dot are determined by the achieved AUCs of the corresponding variants on that
particular dataset. Therefore, if a dot lies above the main diagonal, the variant
associated with the vertical axis outperforms the other one associated with the
horizontal axis and vice versa.

The first two Subplots (A–B) illustrate the effect of the ensemble size.
While it is almost always better to build 100 trees than 5, building 500 trees
usually does not bring any additional performance compared to 100. In Sub-
plot (C), we examine the model stability with respect to different random seeds
(1234 vs. 42) and as can be seen, there is almost no difference. Subplot (D)
shows a slight improvement that can be achieved by considering more thresholds
for splitting (T = 8) than one as it is characteristic for Extremely Randomized
Trees [11]. It is also worth experimenting with the sparse vs. dense selectors

11 AUC is agnostic to class imbalance and classifier’s decision threshold value.
12 The best model is assigned the lowest rank (i.e. one).
13 The performance of any two classifiers is significantly different if the corresponding

average ranks differ by at least the critical difference, which is (for 12 datasets, four
methods and α = 0.05) approximately 1.35.



728 T. Komárek et al.

because, as can be observed from Subplot (E), this option has different effects
on different datasets. Subplot (F) then supports the idea that strongly ran-
domized trees, unlike Breiman’s Random Forests, do not have to be trained on
the bootstrapped datasets. In Subplot (G) we analyze whether the search of
splitting parameters Φ = (f, v,w) over multiple selectors with different regular-
ization values λ ∈ {10−4, 10−3 . . . , 1} instead of one λ = 1 can help. Finally, the
last Subplot (H) indicates that there is no need to train selectors with a large
number of epochs.
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Fig. 3. Ablation study assessing influence of individual model components/parameters.
It illustrates the effect of the ensemble size (A–B), the stability wrt. random seed (C),
the slight improvement caused by considering more thresholds for splitting (D), the
impact of sparse vs. dense selectors (E), the no need for using bagging (F), multiple
regularization values (G) nor a large number of epochs for training selectors (H).
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5 Conclusion

In this paper, we have proposed a new tree-based algorithm called Instance Selec-
tion Randomized Trees (ISRT)14 for solving binary classification MIL problems.
The algorithm naturally extends the traditional randomized trees, since bags of
size one are processed in the standard way by evaluating single feature value con-
ditions at each node. When bags contain multiple instances, every node selects
one instance from the bag, upon which the decision whether to send the bag
to the left or right branch is made. Making decisions upon deliberately selected
instances at each step is essential for the algorithm as it enables to extract (even
multivariate) discriminative information from both ends of the spectrum, the
local instance-level and the global bag-level.

We demonstrated on the task of detecting infected users in computer net-
works that this capability may not only lead to superior performance when com-
pared with three state-of-the-art methods, but it also may greatly help threat
analysts with the post-alert analysis. This is because the positive bag predic-
tions can be explained on the level of instances by their ranking according to
how many times have been selected. The model also achieved competitive results
on 12 publicly available datasets from six other domains. Finally, we conducted
ablation experiments to understand contributions of individual algorithm parts.
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problem with axis-parallel rectangles. Artif. Intell. 89(1), 31–71 (1997). http://
www.sciencedirect.com/science/article/pii/S0004370296000343

10. Franc, V., Sofka, M., Bartos, K.: Learning detector of malicious network traffic
from weak labels. In: Bifet, A., et al. (eds.) ECML PKDD 2015. LNCS (LNAI),
vol. 9286, pp. 85–99. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
23461-8 6

11. Geurts, P., Ernst, D., Wehenkel, L.: Extremely randomized trees. Mach. Learn.
63(1), 3–42 (2006). https://doi.org/10.1007/s10994-006-6226-1

12. Ho, T.: The random subspace method for constructing decision forests. IEEE
Trans. Pattern Anal. Mach. Intell. 20, 832–844 (1998)
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Abstract. Adversarial representation learning aims to learn data repre-
sentations for a target task while removing unwanted sensitive informa-
tion at the same time. Existing methods learn model parameters itera-
tively through stochastic gradient descent-ascent, which is often unstable
and unreliable in practice. To overcome this challenge, we adopt closed-
form solvers for the adversary and target task. We model them as ker-
nel ridge regressors and analytically determine an upper-bound on the
optimal dimensionality of representation. Our solution, dubbed OptNet-
ARL, reduces to a stable one one-shot optimization problem that can
be solved reliably and efficiently. OptNet-ARL can be easily generalized
to the case of multiple target tasks and sensitive attributes. Numerical
experiments, on both small and large scale datasets, show that, from
an optimization perspective, OptNet-ARL is stable and exhibits three
to five times faster convergence. Performance wise, when the target and
sensitive attributes are dependent, OptNet-ARL learns representations
that offer a better trade-off front between (a) utility and bias for fair
classification and (b) utility and privacy by mitigating leakage of private
information than existing solutions.

Code is available at https://github.com/human-analysis.

Keywords: Fair machine learning · Adversarial representation
learning · Closed-form solver · Kernel ridge regression

1 Introduction

Adversarial Representation Learning (ARL) is a promising framework that
affords explicit control over unwanted information in learned data representa-
tions. This concept has practically been employed in various applications, such
as, learning unbiased and fair representations [7,28,29,37], learning controllable
representations that are invariant to sensitive attributes [31,40], mitigating leak-
age of sensitive information [10,33–35], unsupervised domain adaption[13], learn-
ing flexibly fair representations [7,37], and many more.

The goal of ARL is to learn a data encoder E : x �→ z that retains sufficient
information about a desired target attribute, while removing information about a
known sensitive attribute. The basic idea of ARL is to learn such a mapping under

c© Springer Nature Switzerland AG 2021
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an adversarial setting. The learning problem is setup as a three-player minimax
game between three entities (see Fig. 1a, an encoder E, a predictor T , and a proxy
adversary A. Target predictor T seeks to extract target information and make cor-
rect predictions on the target task. The proxy adversary A mimics an unknown real
adversary and seeks to extract sensitive information from learned representation.
As such, the proxy adversary serves only to aid the learning process and is not an
end goal by itself. Encoder E seeks to simultaneously aid the target predictor and
limit the ability of the proxy adversary to extract sensitive information from the
representation z. By doing so, the encoder learns to remove sensitive information
from the representation. In most ARL settings, while the encoder is a deep neural
network, the target predictor and adversary are typically shallow neural networks.

The vanilla algorithm for learning the parameters of the encoder, target and
adversary networks is gradient descent-ascent (GDA) [33,40], where the play-
ers take a gradient step simultaneously. However, applying GDA, including its
stochastic version, is not an optimal strategy for ARL and is known to suffer
from many drawbacks. Firstly, GDA has undesirable convergence properties; it
fails to converge to a local minimax and can converge to fixed points that are not
local minimax, while being very unstable and slow in practice [8,19]. Secondly,
GDA exhibits strong rotation around fixed points, which requires using very small
learning rates [3,30] to converge. Numerous solutions [14,30,32] have been pro-
posed recently to address the aforementioned computational challenges. These
approaches, however, seek to obtain solutions to the minimax optimization prob-
lem in the general case, where each player is modeled as a complex neural network.

In this paper, we take a different perspective and propose an alternative
solution for adversarial representation learning. Our key insight is to replace the
shallow neural networks with other analytically tractable models with similar
capacity. We propose to adopt simple learning algorithms that admit closed-form
solutions, such as linear or kernel ridge regressors for the target and adversary,
while modeling the encoder as a deep neural network. Crucially, such models
are particularly suitable for ARL and afford numerous advantages, including
(1) closed-form solution allows learning problems to be optimized globally and
efficiently, (2) analytically obtain upper bound on optimal dimensionality of the
embedding z, (3) the simplicity and differentiability allows us to backpropa-
gate through the closed-form solution, (4) practically it resolves the notorious
rotational behaviour of iterative minimax gradient dynamics, resulting in a sim-
ple optimization that is empirically stable, reliable, converges faster to a local
optima, and ultimately results in a more effective encoder E.

We demonstrate the practical effectiveness of our approach, dubbed OptNet-
ARL, through numerical experiments on an illustrative toy example, fair classi-
fication on UCI Adult and German datasets and mitigating information leakage
on the CelebA dataset. We consider two scenarios where the target and sensitive
attributes are (a) dependent, and (b) independent. Our results indicate that, in
comparison to existing ARL solutions, OptNet-ARL is more stable and converges
faster while also outperforming them in terms of accuracy, especially in the latter
scenario.
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Notation: Scalars are denoted by regular lower case or Greek letters, e.g.,
n, λ. Vectors are boldface lowercase letters, e.g., x, y; Matrices are uppercase
boldface letters, e.g., X. A n × n identity matrix is denoted by I, sometimes
with a subscript indicating its size, e.g., In. Centered (mean subtracted w.r.t
columns) data matrix is indicated by “˜”, e.g., X̃. Assume that X contains n
columns, then X̃ = XD where D = In − 1

n11T and 1 denotes a vector of ones
with length of n. Given matrix M ∈ R

m×m, we use Tr[M ] to denote its trace
(i.e., the sum of its diagonal elements); its Frobenius norm is denoted by ‖M‖F ,
which is related to the trace as ‖M‖2F = Tr[MMT ]. The pseudo-inverse of M
is denoted by M †. The subspace spanned by the columns of M is denoted by
R(M) or simply M (in calligraphy); the orthogonal complement of M is denoted
by M⊥. The orthogonal projector onto M is denoted by PM.

x E(·;ΘE) z

T ŷ

A ŝ

(a)

x E(·;ΘE) z

φy(·) Wy(·) + by

Real Target Prd ŷreal

ŷ

φs(·) Ws(·) + bs

Real Adversary ŝreal

ŝ

(b)

Fig. 1. Adversarial Representation Learning: (a) Consists of three players, an
encoder E that obtains a compact representation z of input data x, predictors T and
S that seek to extract a desired target y and sensitive s attribute, respectively from
the embedding. (b) OptNet-ARL adopts kernel regressors as proxy target predictor
and adversary for learning the encoder. The learned encoder is evaluated against a real
target predictor and adversary, which potentially can be neural networks.

2 Prior Work

Adversarial Representation Learning: The basic idea of learning data rep-
resentations with controllable semantic information has been effective across
multiple topics. Domain adaptation [12,13,38], where the goal is to learn rep-
resentations that are invariant to the domain, is one of the earliest applica-
tions of ARL. More recently, adversarial learning has been extensively used [5–
7,10,11,33,37,40,42] and advocated [29] for the task of learning fair, invariant or
privacy preserving representations of data. All of the aforementioned approaches
represent each entity in ARL by neural networks and optimize their parameters
through stochastic gradient descent-ascent (SGDA). As we show in this paper,
SGDA is unstable and sub-optimal for learning. Therefore, we trade-off model
expressively for ease of learning through a hybrid approach of modeling the
encoder by a deep neural network and target and adversary with closed-form
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regressors. Such a solution reduces alternating optimization into a simple opti-
mization problem which is much more stable, reliable and effective. Table 1 shows
a comparative summary of ARL approaches.

Optimization in Minmax Games: A growing class of learning algorithms,
including ARL, GANs etc., involve more than one objective and are trained via
games played by cooperating or dueling neural networks. An overview of the
challenges presented by such algorithms and a plausible solution in general n-
player games can be found in [26]. In the context of two-player minimax games
such as GANs, a number of solutions [3,8,14,19,30,32] have been proposed to
improve the optimization dynamics, many of them relying on the idea of tak-
ing an extrapolation step [23]. For example, [30] deploys some regularizations
to encourage agreement between different players and improve the convergence
properties. In another example, [32] uses double gradient to stabilize the opti-
mization procedure. In contrast to all of these approaches, that work with the
given fixed models for each player, we seek to change the model of the players in
the ARL setup for ease of optimization. In the context of ARL, [35] considers the
setting where all the players, including the encoder, are linear regressors. While
they obtained a globally optimum solution, the limited model capacity hinders
the flexibility (cannot directly use raw data), scalability and performance (lim-
ited by pre-trained features) of their solution. In this paper we advocate the use
of ridge regressors (linear or kernel) for the target and adversary, while model-
ing the encoder as a deep neural network. This leads to a problem that obviates
the need for gradient descent-ascent and can instead be easily optimized with
standard SGD. Not only does this approach lead to stable optimization, it also
scales to larger datasets and exhibits better empirical performance.

Table 1. Comparison between different ARL methods (n: sample size, b: batch size).

Method Encoder/Target & Adversary Optimization Scalability Enc soln Input data

SGDA-ARL [29,40] deep NN/shallow NN Alternating SGD ≥ O(b3) Unknown Raw data

Kernel-SARL [35] Kernel regressor/linear Closed-form O(n3) Global optima Features

OptNet-ARL (ours) Deep NN/kernel regressor SGD O(b3) Local optima Raw data

Differentiable Solvers: A number of recent approaches have integrated differ-
entiable solvers, both iterative as well as closed-form, within end-to-end learning
systems. Structured layers for segmentation and higher order pooling were intro-
duced by [17]. Similarly [39] proposed an asymmetric architecture which incor-
porates a Correlation Filter as a differentiable layer. Differential optimization as
a layer in neural networks was introduced by [1,2]. More recently, differentiable
solvers have also been adopted for meta-learning [4,25] as well. The primary
motivation for all the aforementioned approaches is to endow deep neural net-
works with differential optimization and ultimately achieve faster convergence of
the end-to-end system. In contrast, our inspiration for using differential closed-
form solvers is to control the non-convexity of the optimization in ARL, in terms
of stability, reliability and effectiveness.
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3 Problem Setting

Let the data matrix X = [x1, . . . ,xn] ∈ R
d×n be n realizations of d-dimensional

data, x ∈ R
d. Similarly, we denote n realizations of sensitive attribute vector

s ∈ R
q and target attribute vector y ∈ R

p by matrices S = [s1, · · · , sn] and
Y = [y1, · · · ,yn], respectively. Treating the attributes as vectors enables us to
consider both multi-class classification and regression under the same formula-
tion. Each data sample xk is associated with the sensitive attribute sk and the
target attribute yk, respectively.

The ARL problem is formulated with the goal of learning parameters of an
embedding function E(·;ΘE) that maps a data sample x to z ∈ R

r with two
objectives: (i) aiding a target predictor T (·;Θy) to accurately infer the target
attribute y from z, and (ii) preventing an adversary A(·;Θs) from inferring the
sensitive attribute s from z. The ARL problem can be formulated as a bi-level
optimization,

min
ΘE

min
Θy

Ly (T (E(x;ΘE);Θy),y) s.t. min
Θs

Ls (A(E(x;ΘE);Θs), s) ≥ α

(1)
where Ly and Ls are the loss functions (averaged over the training dataset) for
the target predictor and the adversary, respectively; α ∈ (0,∞) is a user defined
value that determines the minimum tolerable loss α for the adversary on the
sensitive attribute; and the minimization in the constraint is equivalent to the
encoder operating against an optimal adversary. Denote the global minimums of
the adversary and target estimators as

Jy(ΘE) := min
Θy

Ly (T (E(x;ΘE);Θy),y)

Js(ΘE) := min
Θs

Ls (A(E(x;ΘE);Θs), s) .
(2)

The constrained optimization problem in (1) can be alternately solved through
its Lagrangian version:

min
ΘE

{
(1 − λ)Jy(ΘE) − λJs(ΘE)

}
, 0 ≤ λ ≤ 1. (3)

3.1 Motivating Exact Solvers

Most state-of-the-art ARL algorithms cannot solve the optimization problems
in (2) optimally (e.g., SGDA). For any given ΘE , denote the non-optimal
adversary and target predictors loss functions as Japprox

y (ΘE) and Japprox
s (ΘE),

respectively. It is obvious that for any given ΘE , it holds

Japprox
y (ΘE) ≥ Jy(ΘE) and Japprox

s (ΘE) ≥ Js(ΘE).

Note that the optimization problem raised from non-optimal adversary and tar-
get predictors is

min
ΘE

{
(1 − λ)Japprox

y (ΘE) − λJapprox
s (ΘE)

}
, 0 ≤ λ ≤ 1. (4)
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Intuitively, solution(s) of (4) do not outperform that of (3). We now formulate
this intuition more concretely.

Definition 1. Let (a1, a2) and (b1, b2) be two arbitrary points in R
2. We say

(b1, b2) dominates (a1, a2) if and only if b1 > a1 and b2 < a2 hold simultaneously.

Theorem 2. For any λ1, λ2 ∈ [0, 1], consider the following optimization prob-
lems

Θexact
E = arg min

ΘE

{
(1 − λ1)Jy(ΘE) − λ1Js(ΘE)

}
(5)

and
Θapprox

E = arg min
ΘE

{
(1 − λ2)Japprox

y (ΘE) − λ2J
approx
s (ΘE)

}

Then, any adversary-target objective trade-off generated by
(
Js(Θexact

E ),
Jy(Θexact

E )
)

cannot be dominated by the trade-off generated by
(
Js(Θ

approx
E ),

Jy(Θ
approx
E )

)
.

See supplementary material for the proof of all Lemmas and Theorems.

4 Approach

Existing instances of ARL adopt deep neural networks to represent E, T and A
and learn their respective parameters {ΘE ,Θy,Θs} through stochastic gradient
descent-ascent (SGDA). Consequently, the target and adversary in Eq. 2 are not
solved to optimality, thereby resulting in a sub-optimal encoder.

4.1 Closed-Form Adversary and Target Predictor

The machine learning literature offers a wealth of methods with exact solutions
that are appropriate for modeling both the adversary and target predictors. In
this paper, we argue for and adopt simple, fast and differentiable methods such
as kernel ridge regressors as shown in Fig. 1b. On one hand, such modeling allows
us to obtain the optimal estimators globally for any given encoder E(·;ΘE).

On the other hand, kernelized ridge regressors can be stronger than the shal-
low neural networks that are used in many ARL-based solutions (e.g., [11,29,33,
40]). Although it is not the focus of this paper, it is worth noting that even deep
neural networks in the infinite-width limit reduce to linear models with a kernel
called the neural tangent kernel [18], and as such can be adopted to increase the
capacity of our regressors.

Consider two reproducing kernel Hilbert spaces (RKHS) of functions Hs

and Hy for adversary and target regressors, respectively. Let a possible corre-
sponding pair of feature maps be φs(·) ∈ R

rs and φy(·) ∈ R
ry where rs and

ry are the dimensionality of the resulting features and can potentially app-
roach infinity. The respective kernels for Hs and Hy can be represented as
ks(z1,z2) = 〈φs(z1), φs(z2)〉Hs

and ky(z1,z2) = 〈φy(z1), φy(z2)〉Hy
. Under this
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setting, we can relate the target and sensitive attributes to any given embedding
z as,

ŷ = Wyφy(z) + by, ŝ = Wsφs(z) + bs (6)

where Θy = {Wy, by} and Θs = {Ws, bs} are the regression parameters, Wy ∈
R

p×ry and Ws ∈ R
q×rs , by ∈ R

p and bs ∈ R
q respectively.

Let the entire embedding of input data be denoted as Z := [z1, · · · ,zn]
and the corresponding features maps as Φy := [φy(z1), · · · , φy(zn)] and Φs :=
[φs(z1), · · · , φs(zn)], respectively. Furthermore, we denote the associated Gram
matrices by Ky = Φy

TΦy and Ks = Φs
TΦs. A centered Gram matrix K̃

corresponding to the Gram matrix K can be obtained [16] as,

K̃ = Φ̃T Φ̃ = (ΦD)T (ΦD) = DTKD. (7)

Invoking the representer theorem [36], the regression parameters can be repre-
sented as Wy = ΛyΦ̃

T
y and Ws = ΛsΦ̃

T
s for target and adversary respectively,

where Λy ∈ R
p×n and Λs ∈ R

n×q are new parameter matrices. As a result, the
kernelized regressors in (6) can be equivalently expressed as

ŷ = ΛyΦ̃
T
y φy(z) + by, ŝ = ΛsΦ̃

T
s φs(z) + bs. (8)

In a typical ARL setting, once an encoder is learned (i.e., for a given fixed
embedding z), we evaluate against the best possible adversary and target pre-
dictors. In the following Lemma, we obtain the minimum MSE for kernelized
adversary and target predictors for any given embedding Z.

Lemma 3. Let Jy(Z) and Js(Z) be regularized minimum MSEs for adversary
and target:

Jy(Z) = min
Λy,by

{
E

{∥∥ŷ − y
∥∥2} + γy

∥∥Λy

∥∥2

F

}
,

Js(Z) = min
Λs,bs

{
E

{∥∥ŝ − s
∥∥2} + γs

∥∥Λs

∥∥2

F

}

where γy and γs are regularization parameters for target and adversary regres-
sors, respectively. Then, for any given embedding matrix Z, the minimum MSE
for kernelized adversary and target can be obtained as

Jy(Z) =
1
n

∥∥Ỹ
∥∥2

F
− 1

n

∥∥∥∥PMy

[
Ỹ T

0n

] ∥∥∥∥
2

F

,

Js(Z) =
1
n

∥∥S̃
∥∥2

F
− 1

n

∥∥∥∥PMs

[
S̃T

0n

] ∥∥∥∥
2

F

(9)

where

My =
[

K̃y√
nγyIn

]
, Ms =

[
K̃s√
nγsIn

]

are both full column rank matrices and a projection matrix for any full column
rank matrix M is

PM = M(MTM)−1MT
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It is straightforward to generalize this method to the case of multiple target
and adversary predictors through Eq. (3). In this case we will have multiple λ’s
to trade-off between fairness and utility.

4.2 Optimal Embedding Dimensionality

The ability to effectively optimize the parameters of the encoder is critically
dependent on the dimensionality of the embedding as well. Higher dimensional
embeddings can inherently absorb unnecessary extraneous information in the
data. Existing ARL applications, where the target and adversary are non-linear
neural networks, select the dimensionality of the embedding on an ad-hoc basis.

Adopting closed-form solvers for the target and adversary enables us to ana-
lytically determine an upper bound on the optimal dimensionality of the embed-
ding for OptNet-ARL. To obtain the upper bound we rely on the observation
that a non-linear target predictor and adversary, by virtue of greater capacity,
can learn non-linear decision boundaries. As such, in the context of ARL, the
optimal dimensionality required by non-linear models is lower than the optimal
dimensionality of linear target predictor and adversary. Therefore, we analyti-
cally determine the optimal dimensionality of the embedding in the following
theorem.

Theorem 4. Let z in Fig. 1b be disconnected from the encoder and be a free
vector in R

r. Further, assume that both adversary and target predictors are linear
regressors. Then, for any 0 ≤ λ ≤ 1 the optimal dimensionality of embedding
vector, r is the number of negative eigenvalues of

B = λS̃T S̃ − (1 − λ)Ỹ T Ỹ . (10)

Given a dataset with the target and sensitive labels, Y and S respectively, the
matrix B and its eigenvalues can be computed offline to determine the upper
bound on the optimal dimensionality. By virtue of the greater capacity, the
optimal dimensionality required by non-linear models is lower than the optimal
dimensionality of linear predictors and therefore, Theorem 2 is a tight upper
bound for the optimal embedding dimensionality. One large datasets where B ∈
R

n×n, the Nyström method with data sampling [24] can be adopted.

4.3 Gradient of Closed-Form Solution

In order to find the gradient of the encoder loss function in (3) with Jy and
Js given in (9), we can ignore the constant terms, ‖Ỹ ‖F and ‖S̃‖F . Then, the
optimization problem in (3) would be equivalent to

min
ΘE

{
(1 − λ)

∥∥∥∥PMs

[
S̃T

0n

] ∥∥∥∥
2

F

− λ

∥∥∥∥PMy

[
Ỹ T

0n

] ∥∥∥∥
2

F

}

= min
ΘE

{
(1 − λ)

p∑
k=1

‖PMs
uk
s‖2 − λ

q∑
m=1

‖PMy
um
y ‖2

}
(11)
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where the vectors uk
s and um

y are the k-th and m-th columns of
[
S̃T

0n

]
and

[
Ỹ T

0n

]
,

respectively. Let M be an arbitrary matrix function of ΘE , and θ be arbitrary
scalar element of ΘE . Then, from [15] we have

1
2

∂‖PMu‖2
∂θ

= uTPM⊥
∂M

∂θ
M †u (12)

where

[∂M

∂θ

]
ij

=

{
∇T

zi

(
[M ]ij

)∇θ(zi) + ∇T
zj

(
[M ]ij

)∇θ(zj), i ≤ n

0, else.

Equation (12) can be directly used to obtain the gradient of objective function
in (11).

Directly computing the gradient in Eq. (12) requires a pseudoinverse of the
matrix M ∈ R

2n×n, which has a complexity of O(n3). For large datasets this
computation can get prohibitively expensive. Therefore, we approximate the
gradient using a single batch of data as we optimize the encoder end-to-end.
Similar approximations [24] are in fact commonly employed to scale up kernel
methods. Thus, the computational complexity of computing the loss for OptNet-
ARL reduces to O(b3), where b is the batch size. Since maximum batch sizes
in training neural networks are of the order of 10 s to 1000 s, computing the
gradient is practically feasible. We note that, the procedure presented in this
section is a simple SGD in which its stability can be guaranteed under Lipschitz
and smoothness assumptions on encoder network [45].

5 Experiments

In this section we will evaluate the efficacy of our proposed approach, OptNet-
ARL, on three different tasks; Fair Classification on UCI [9] datatset, mitigating
leakage of private information on the CelebA dataset, and ablation study on
a Gaussian mixture example. We also compare OptNet-ARL with other ARL
baselines in terms of stability of optimization, the achievable trade-off front
between the target and adversary objectives, convergence speed and the effect
of embedding dimensionality. We consider three baselines, (1) SGDA-ARL:
vanilla stochastic gradient descent-ascent that is employed by multiple ARL
approaches including [11,20,29,33,40] etc., (2) ExtraSGDA-ARL: a state-of-
the-art variant of stochastic gradient descent-ascent that uses an extra gradient
step [23] for optimizing minimax games. Specifically, we use the ExtraAdam
algorithm from [14], and (3) SARL: a global optimum solution for a kernelized
regressor encoder and linear target and adversary [35]. Specifically, hypervol-
ume (HV) [43], a metric for stability and goodness of trade-off (comparing
algorithms under multiple objectives) is also utilized. A larger HV indicates a
better Pareto front achieved and the standard deviation of the HV represents
the stability.
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In the training stage, the encoder, a deep neural network, is optimized end-
to-end against kernel ridge regressors (RBF Gaussian kernel1) in the case of
OptNet-ARL and multi-layer perceptrons (MLPs) for the baselines. Table 2 sum-
marizes the network architecture of all experiments. We note that the optimal
embedding dimensionality, r for binary target is equal to one which is consistent
with Fisher’s linear discriminant analysis [44]. The embedding is instance nor-
malized (unit norm). So we adopted a fixed value of σ = 1 for Gaussian Kernel
in all the experiments. We let the regression regularization parameter be 10−4

for all experiments. The learning rate is 3 × 10−4 with weight decay of 2 × 10−4

and we use Adam as optimizer for all experiments.
At the inference stage, the encoder is frozen, features are extracted and a new

target predictor and adversary are trained. At this stage, for both OptNet-ARL
and the baselines, the target and adversary have the same model capacity. Fur-
thermore, each experiment on each dataset is repeated five times with different
random seeds (except for SARL which has a closed-form solution for encoder)
and for different trade-off parameters λ ∈ [0, 1]. We report the median and stan-
dard deviation across the five repetitions.

Table 2. Network architectures in experiments.

Method Encoder Embd Target Adversary Target Adversary

(ARL) Dim (Train) (Train) (Test) (Test)

Adult

SGDA [29,40] MLP-4-2 1 MLP-4 MLP-4 MLP-4-2 MLP-4-2

ExtraSGDA [23] MLP-4-2 1 MLP-4 MLP-4 MLP-4-2 MLP-4-2

SARL [35] RBF krnl 1 Linear Linear MLP-4-2 MLP-4-2

OptNet-ARL (ours) MLP-4-2 1 RBF krnl RBF krnl MLP-4-2 MLP-4-2

German

SGDA [29,40] MLP-4 1 MLP-2 MLP-2 Logistic Logistic

ExtraSGDA [23] MLP-4 1 MLP-2 MLP-2 Logistic Logistic

SARL [35] RBF krnl 1 Linear Linear Logistic Logistic

OptNet-ARL (ours) MLP-4 1 RBF krnl RBF krnl Logistic Logistic

CelebA

SGDA [29,40] ResNet-18 128 MLP-64 MLP-64 MLP-32-16 MLP-32-16

ExtraSGDA [23] ResNet-18 128 MLP-64-32 MLP-64-32 MLP-32-16 MLP-32-16

OptNet-ARL (ours) ResNet-18 [1, 128] RBF krnl RBF krnl MLP-32-16 MLP-32-16

Gaussian mixture

SGDA [29,40] MLP-8-4 2 MLP-8-4 MLP-8-4 MLP-4-4 MLP-4-4

ExtraSGDA [23] MLP-8-4 2 MLP-8-4 MLP-8-4 MLP-4-4 MLP-4-4

SARL [35] RBF krnl 2 Linear Linear MLP-4-4 MLP-4-4

RBF-OptNet-ARL (ours) MLP-8-4 2 RBF krnl RBF krnl MLP-4-4 MLP-4-4

IMQ-OptNet-ARL (ours) MLP-8-4 [1, · · · , 512] IMQ krnl IMQ krnl MLP-4-4 MLP-4-4

1 k(z, z′) = exp (− ‖z−z ′‖2)
2σ2 .
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5.1 Fair Classification

We consider fair classification on two different tasks. UCI Adult Dataset: It
includes 14 features from 45, 222 instances. The task is to classify the annual
income of each person as high (50K or above) or low (below 50K). The sensitive
feature we wish to be fair with respect to is the gender of each person. UCI
German Dataset: It contains 1000 instances of individuals with 20 different
attributes. The target task is to predict their creditworthiness while being unbi-
ased with respect to age. The correlation between target and sensitive attributes
are 0.03 and 0.02 for the Adult and German dataset, respectively. This indi-
cates that the target attributes are almost orthogonal to the sensitive attributes.
Therefore, the sensitive information can be totally removed with only a negligible
loss in accuracy for the target task.

Stability: Since there is no trade-off between the two attributes, we com-
pare stability by reporting the median and standard deviation of the target
and adversary performance in Table 3. Our results indicate that OptNet-ARL
achieves a higher accuracy for target task and lower leakage of sensitive attribute
and with less variance. For instance, in Adult dataset, OptNet-ARL method
achieves 83.86% and 83.81% target accuracy with almost zero sensitive leak-
age. For OptNet-ARL the standard deviation of sensitive attribute is exactly
zero, which demonstrates its effectiveness and stability in comparison to the
baselines. Similarly for the German dataset, OptNet-ARL achieves 80.13% for
sensitive accuracy, which is close to random chance (around 81%).

Fair Classification Performance: We compare our proposed approach with
many baseline results on these datasets. The optimal dimensionality for OptNet-
ARL is r = 1 as determined by Theorem 4 and r = 50 for the baselines (common
choice in previous work). Diff value in Table 3 shows the difference between adver-
sary accuracy and random guessing. On both datasets, both Linear-SARL and

Table 3. Fair classification on UCI dataset (in %)

Adult dataset German dataset

Method Target Sensitive Diff Target Sensitive Diff

(income) (gender) 67.83 (credit) (age) 81

Raw Data 85.0 85.0 17.6 80.0 87.0 6.0

LFR [41] 82.3 67.0 0.4 72.3 80.5 0.5

AEVB [21] 81.9 66.0 1.4 72.5 79.5 1.5

VFAE [28] 81.3 67.0 0.4 72.7 79.7 1.3

SARL [35] 84.1 67.4 0.0 76.3 80.9 0.1

SGDA-ARL [40] 83.61 ± 0.38 67.08 ± 0.48 0.40 76.53 ± 1.07 87.13 ± 5.70 6.13

ExtraSGDA-ARL [14] 83.66 ± 0.26 66.98 ± 0.49 0.4 75.60 ± 1.68 86.80 ± 4.05 5.80

OptNet-ARL 83.81 ± 0.23 67.38 ± 0.00 0.00 76.67 ± 2.21 80.13 ± 1.48 0.87
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OptNet-ARL can achieve high performance on target task with a tiny sensitive
attribute leakage for the German dataset.

5.2 Mitigating Sensitive Information Leakage

The CelebA dataset [27] contains 202, 599 face images of 10, 177 celebrities. Each
image contains 40 different binary attributes (e.g., gender, emotion, age, etc.).
Images are pre-processed and aligned to a fixed size of 112 × 96 and we use the
official train-test splits. The target task is defined as predicting the presence
or absence of high cheekbones (binary) with the sensitive attribute being smil-
ing/not smiling (binary). The choice of this attribute pair is motivated by the
presence of a trade-off between them. We observe that the correlation between
this attribute pair is equal to 0.45, indicating that there is no encoder that can
maintain target performance without leaking the sensitive attribute.

For this experiment, we note that SARL [35] cannot be employed, since, (1)
it does not scale to large datasets (O(n3)) like CelebA, and (2) it cannot be
applied directly on raw images but needs features extracted from a pre-trained
network. Most other attribute pairs in this dataset either suffer from severe
class imbalance or small correlation, indicating the lack of a trade-off. Network
architecture details are shown in Table 2.

Stability and Trade-off: Figure 2(a) shows the attainment surface [22] and
hypervolume [43] (median and standard deviation) for all methods. SGDA spans
only a small part of the trade-off and at the same time exhibits large vari-
ance around the median curves. Overall both baselines are unstable and unreli-
able when the two attributes are dependent on each other. On the other hand,
OptNet-ARL solutions are very stable and while also achieving a better trade-off
between target and adversary accuracy.

Optimal Embedding Dimensionality: Figure 2(b) compares the utility-bias
trade-off the sub-optimal embedding dimensionality (r = 128) with that of the
optimal dimensionality (r = 1). We can observe that optimal embedding dimen-
sionality (r = 1) is producing a more stable trade-off between adversary and
target accuracies.

Training Time: It takes five runs for SGDA-ARL and ExtraSGDA and two
runs for OptNet-ARL to train a reliable encoder for overall 11 different values of
λ ∈ [0, 1]. The summary of training time is given in Fig. 2(c). ExtraSGDA-ARL
takes an extra step to update the weights and therefore, it is slightly slower than
SGDA-ARL. OptNet-ARL on the other hand is significantly faster to obtain
reliable results. Even for a single run, OptNet-ARL is faster than the baselines.
This is because, OptNet-ARL uses closed-form solvers for adversary and target
and therefore does not need to train any additional networks downstream to the
encoder.
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(a) (b)

Method One Run Training Time
SGDA-ARL [39] 79.8 398.9

ExtraSGDA-ARL [14] 84.0 419.7
OptNet-ARL (ours) 76.8 153.6

(c)

Method Target Sensitive
(ARL) (smiling) (gender)

MSE Δ %
No Privacy 93.0 -
SGDA [39] 93.0 0.0
ExtraSGDA [14] 93.0 0.0
OptNet-ARL (ours) 93.0 0.0

(d)

Fig. 2. CelebA: (a) Trade-off between adversary and target accuracy for dependent
pair (smiling/not-smiling, high cheekbones). (b) Comparison between the trade-offs of
optimal embedding dimensionality r = 1 and that of r = 128. (c) Overall and single run
training time for different ARL methods. (d) Trade-off between adversary and target
for independent pair (smiling/not-smiling, gender).

Independent Features: We consider the target task to be binary classification
of smiling/not smiling with the sensitive attribute being gender. In this case, the
correlation between gender and target feature is 0.02, indicating that the two
attributes are almost independent and hence it should be feasible for an encoder
to remove the sensitive information without affecting target task. The results
are presented in Fig. 2(d). In contrast to the scenario where the two attributes
are dependent, we observe that all ARL methods can perfectly hide the sensitive
information (gender) from representation without loss of target task. Therefore,
OptNet-ARL is especially effective in a more practical setting where the target
and sensitive attributes are correlated and hence can only attain a trade-off.

5.3 Ablation Study on Mixture of Four Gaussians

In this experiment we consider a simple example where the data is generated
by a mixture of four different Gaussian distributions. Let {fi}4i=1 be all Gaus-
sian distributions with means at (0, 0), (0, 1), (1, 0), and (1, 1), respectively and
covariance matrices all equal to Σ = 0.22I2. Denote by f(x) the distribution of
input data. Then,

f(x| •) = f1(x) +
1
2
f2(x) + +

1
2
f3(x), P{•} =

1
2
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f(x| •) = f4(x) +
1
2
f2(x) + +

1
2
f3(x), P{•} =

1
2

The sensitive attribute is assumed to be the color (0 for red and 1 for blue)
and the target task is reconstructing the input data. We sample 4000 points
for training and 1000 points for testing set independently. For visualization, the
testing set is shown in Fig. 3(a). In this illustrative dataset , the correlation
between input data and color is 0.61 and therefore there is no encoder which
results in full target performance at no leakage of sensitive attribute. Network
architecture details are shown in Table 2.

Stability and Trade-off: Figure 3(b) illustrates the five-run attainment sur-
faces and median hypervolumes for all methods. Since the dimensionality of both
input and output is 2, the optimal embedding dimensionality is equal to 2 which
we set it in this experiment. We note that SARL achieves hypervolume better
than SGDA and ExtraSGDA ARLs which is not surprising due to the strong per-
formance of SARL on small-sized datasets. However, SARL is not applicable to
large datasets. Among other baselines, ExtraSGDA-ARL appears to be slightly
better. In contrast, the solutions obtained by RBF-OptNet-ARL (Gaussian ker-
nel) outperform all baselines and are highly stable across different runs, which
can be observed from both attainment surfaces and hypervolumes. Addition to
Gaussian kernel, we also used inverse multi quadratic (IMQ) kernel [46]2 for
OptNet to examine the effect kernel of function. As we observe from Fig. 3(b),
IMQ-OptNet-ARL performs almost similar to OptNet-ARR with Gaussian ker-
nel in terms of both trade-off and stability.

Batch Size: In order to examine the effect of batch size on OptNet-ARL (with
Gaussian kernel), we train the encoder with different values of batch size between
2 and 4000 (entire training data). The results are illustrated in Fig. 3(c). We
observer that the trade-off HV is quite insensitive to batch sizes greater than 25
which implies that the gradient of min-batch is an accurately enough estimator
of the gradient of entire data.

Embedding Dimensionality: We also study the effect of embedding dimen-
sionality (r) by examining different values for r in [1, 512] using RBF-OptNet-
ARL. The results are illustrated in Fig. 3(d). It is evident that the optimal
embedding dimensionality (r = 2) outperforms other values of r. Additionally,
HV of r = 1 suffers severely due to the information loss in embedding, while
for 2 < r ≤ 512 the trade-off performance is comparable to that of optimal
embedding dimensionality, r = 2.

2 k(z, z′) = 1√
‖z−z ′‖2+c2

.
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(a) (b)

(c) (d)

Fig. 3. Mixture of Gaussians: (a) Input data. The target task is to learn a repre-
sentation which is informative enough to reconstruct the input data and at the same
time hide the color information (• vs •). (b) Trade-off between the MSEs of adversary
and target task for different ARL methods. (c) The HVs of OptNet-ARL (Gaussian
kernel) vs different batch size values in [2, 4000]. (d) The HV values of OptNet-ARL
(Gaussian kernel) vs different values of r in [1, 512]. (Color figure online)

6 Concluding Remarks

Adversarial representation learning is a minimax theoretic game formulation
that affords explicit control over unwanted information in learned data repre-
sentations. Optimization algorithms for ARL such as stochastic gradient descent-
ascent (SGDA) and their variants are sub-optimal, unstable and unreliable in
practice. In this paper, we introduced OptNet-ARL to address this challenge by
employing differentiable closed-form solvers, such as kernelized ridge regressors,
to model the ARL players that are downstream from the representation. OptNet-
ARL reduces iterative SGDA to a simple optimization, leading to a fast, stable
and reliable algorithm that out-performs existing ARL approaches on both small
and large scale datasets.

Acknowledgements. This work was performed under the following financial assis-
tance award 60NANB18D210 from U.S. Department of Commerce, National Institute
of Standards and Technology.
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Abstract. In recent years, significant work has been done to include
fairness constraints in the training objective of machine learning algo-
rithms. Differently from classical prediction retreatment algorithms, we
focus on learning fair representations of the inputs. The challenge is to
learn representations that capture most relevant information to predict
the targeted output Y , while not containing any information about a
sensitive attribute S. We leverage recent work which has been done to
estimate the Hirschfeld-Gebelein-Renyi (HGR) maximal correlation coef-
ficient by learning deep neural network transformations and use it as a
min-max game to penalize the intrinsic bias in a multi dimensional latent
representation. Compared to other dependence measures, the HGR coef-
ficient captures more information about the non-linear dependencies,
making the algorithm more efficient in mitigating bias. After providing a
theoretical analysis of the consistency of the estimator and its desirable
properties for bias mitigation, we empirically study its impact at vari-
ous levels of neural architectures. We show that acting at intermediate
levels of neural architectures provides best expressiveness/generalization
abilities for bias mitigation, and that using an HGR based loss is more
efficient than more classical adversarial approaches from the literature.

1 Introduction

This recent decade, deep learning models have shown very competitive results
by learning representations that capture relevant information for the learning
task1. However, the representation learnt by the deep model may contain some
bias from the training data. This bias can be intrinsic to the training data, and
may therefore induce a generalisation problem due to a distribution shift between

1 https://github.com/axa-rev-research/unbiased representations renyi.
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training and testing data. For instance, the color bias in the colored MNIST data
set [25] can make models focus on the color of a digit rather than its shape for
the classification task. The bias can also go beyond training data, so that inad-
equate representations can perpetuate or even reinforce some society biases [10]
(e.g. gender or age). Since the machine learning models have far-reaching con-
sequences in our daily lives (credit rating, insurance pricing, recidivism score,
etc.), we need to make sure that the representation data contains as little bias
as possible. A naive method to mitigate bias could be to simply remove sensitive
attributes from the training data set [36]. However, this concept, known as “fair-
ness through unawareness”, is highly insufficient because any other non-sensitive
attribute might indirectly contain significant sensitive information reflected in
the deep learning representation. For example, the height of an adult could pro-
vide a strong indication about the gender. A new research field has emerged to
find solutions to this problem: fair machine learning. Its overall objective is to
ensure that the prediction model is not dependent on a sensitive attribute [46].
Many recent papers tackle this challenge using an adversarial neural architec-
ture, which can successfully mitigate the bias. We distinguish two adversarial
mitigation families. While prediction retreatment methods apply mitigation on
the output prediction [48], fair representation methods consider sensitive bias in
intermediary latent representations [1]. Our claim is that mitigating at interme-
diate levels of neural architectures allows a greater stability at test time, which
we observe in our experiments (Sect. 6.3).

In this paper, we propose a new fair representation architecture by leveraging
the recent Renyi neural estimator, previously used in a prediction retreatment
algorithm [19] and we propose to study why such an architecture outperforms
the state of the art. The contributions of this paper are:

– We provide a theoretical analysis of the consistency of the HGR estimator,
along its nice properties compared to state-of-the-art for fair representation;

– We propose a neural network architecture which creates a fair representation
by minimizing the HGR coefficient. The HGR network is trained to discover
non-linear transformations between the multidimensional latent representa-
tion and the sensitive feature. Note that this is also the first use of a neural
HGR estimator for multidimensional variables;

– We empirically demonstrate that our neural HGR-based approach is able
to identify the optimal transformations with multidimensional features and
present very competitive results for fairness learning;

– To the best of our knowledge, this is the first work to compare mitigation at
different levels of neural architectures. We show that acting at intermediary
levels of neural representations allows the best trade-off between expressive-
ness and generalisation for bias mitigation.

2 Related Work

Significant work has been done in the field of fair machine learning recently, in
particular when it comes to quantifying and mitigating undesired bias. For the
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mitigation approaches, three distinct strategy groups exist. While pre-processing
[7,11,23] and post-processing [13,21] approaches respectively act on the input
or the output of a classically trained predictor, in-processing approaches miti-
gate the undesired bias directly during the training phase [12,30,46,48]. In this
paper we focus on in-processing fairness, which proves to be the most powerful
framework for settings where acting on the training process is an option.

Among the in-processing approaches, some of them, referred to as prediction
retreatment, aim at directly modifying the prediction output by adversarial train-
ing. To ensure independence between the output and the sensitive attribute, Zhang
et al. [48] feed the prediction output as input to an adversary network (upper right
in Fig. 1 in appendix), whose goal is to predict the sensitive attribute, and update
the predictor weights to fool the adversary. Grari et al. [19] minimize the HGR cor-
relation between the prediction output and the sensitive attribute in an adversarial
learning setting (middle right in Fig. 1 in appendix).

On the other hand, several research sub-fields in the in-processing family
tackle the problem of learning unbiased representations. Domain adaptation
[9,14] and domain generalization [28,35] consist in learning representations that
are unbiased with respect to a source distribution, and can therefore generalize
to other domains. Some of the works in these fields involve the use of adversarial
methods [16,17], close to our work. Several strategies mitigate bias towards a
sensitive attribute through representation. One approach [47] relies on a discrimi-
native clustering model to learn a multinomial representation that removes infor-
mation regarding a binary sensitive attribute. A different approach [2] consists
in learning an unbiased representation by minimizing a confusion loss. Invari-
ant representations can also be learnt using Variational Auto-Encoders [26], by
adding a mutual information penalty term [34]. One of the first proposition by
adversarial neural network for fair representation has been proposed by [32] by
mitigating the bias on the latent space with an adversarial and decoding of X
from Z and A. Adel et al. [1] learn also a fair representation by inputting it to
an adversary network, which is prevented from predicting the sensitive attribute
(upper left in Fig. 1 in appendix). Other papers minimize the mutual information
between the representation and the sensitive attribute: Kim et al. [25] rely on
adversarial training with a discriminator detecting the bias, while Ragonesi et
al. [38] rely on an estimation by neural network of mutual information [6] (lower
left in Fig. 1 in appendix). A kernelized version of such adversarial debiasing
approach for fair representation is provided in [40].

3 Problem Statement

Throughout this document, we consider a supervised algorithm for regression or
classification problems. The training data consists of n examples (xi, si, yi)

n
i=1,

where xi ∈ R
p is the feature vector with p predictors of the i-th example, si

is its continuous sensitive attribute and yi its continuous or discrete outcome.
We address a common objective in fair machine learning, Demographic Parity,
which ensures that the sensitive attribute S is independent of the prediction ̂Y .
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3.1 Metrics for Continuous Statistical Dependence

In order to assess this fairness definition in the continuous case, it is essential
to look at the concepts and measures of statistical dependence. Simple ways
of measuring dependence are Pearson’s rho, Kendall’s tau or Spearman’s rank.
Those types of measure have already been used in fairness, with the example
of mitigating the conditional covariance for categorical variables [46]. However,
the major problem with these measures is that they only capture a limited class
of association patterns, like linear or monotonically increasing functions. For
example, a random variable with standard normal distribution and its cosine
(non-linear) transformation are not correlated in the sense of Pearson.

Over the last few years, many non-linear dependence measures have been
introduced like the Kernel Canonical Correlation Analysis (KCCA) [20], the Dis-
tance or Brownian Correlation (dCor) [41], the Hilbert-Schmidt Independence
Criterion (HSIC and CHSIC) [37] or the Hirschfeld-Gebelein-Rényi (HGR) [39].
Comparing those non-linear dependence measures [29], the HGR coefficient
seems to be an interesting choice: it is a normalized measure which is capable
of correctly measuring linear and non-linear relationships, it can handle multi-
dimensional random variables and it is invariant with respect to changes in
marginal distributions.

Definition 1. For two jointly distributed random variables U ∈ U and V ∈ V,
the Hirschfeld-Gebelein-Rényi maximal correlation is defined as:

HGR(U, V ) = sup
f :U→R,g:V→R

ρ(f(U), g(V )) = sup
f :U→R,g:V→R

E(f(U))=E(g(V ))=0

E(f2(U))=E(g2(V ))=1

E(f(U)g(V ))

(1)

where ρ is the Pearson linear correlation coefficient with some measurable func-
tions f and g with positive and finite variance.

The HGR coefficient is equal to 0 if the two random variables are independent.
If they are strictly dependent the value is 1. The spaces for the functions f and
g are infinite-dimensional. This property is the reason why the HGR coefficient
proved difficult to compute.

Several approaches rely on Witsenhausen’s linear algebra characterization
[44] to compute the HGR coefficient. For discrete features, this characteriza-
tion can be combined with Monte-Carlo estimation of probabilities [5], or with
kernel density estimation (KDE) [33] to compute the HGR coefficient. We will
refer to this second metric, in our experiments, as HGR KDE. Note that this
metric can be extended to the continuous case by discretizing the density com-
putation. Another way to approximate this coefficient, Randomized Dependence
Coefficient (RDC) [29], is to require that f and g belong to reproducing kernel
Hilbert spaces (RKHS) and take the largest canonical correlation between two
sets of copula random projections. We will make use of this approximated metric
as HGR RDC. Recently a new approach [19] proposes to estimate the HGR by
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deep neural network. The main idea is to use two inter-connected neural net-
works to approximate the optimal transformation functions f and g from 1. The
HGRΘ(U, V ) estimator is computed by considering the expectation of the prod-
ucts of standardized outputs of both networks (f̂wf

and ĝwg
). The respective

parameters wf and wg are updated by gradient ascent on the objective function
to maximize: J(wf , wg) = E[f̂wf

(U)ĝwg
(V )]. This estimation has the advantage

of being estimated by backpropagation, the same authors therefore present a
bias mitigation via a min-max game with an adversarial neural network archi-
tecture. However, this attenuation is performed on the predictor output only.
Several recent papers [1,38] have shown that performing the attenuation on a
representation tends to give better results in terms of prediction accuracy while
remaining fair in complex real-world scenarios. In this work, we are interested
in learning fair representations via this Renyi estimator.

4 Theoretical Properties

In this section we study the consistency of the HGR NN estimator (referred to
as ̂HGR(U, V )n), and provide a theoretical comparison with simple adversarial
algorithms that rely on an adversary which predicts the sensitive attribute [1,48].
All the proofs can be found in the Supplementary Material.

4.1 Consistency of the HGR NN

Definition 2 (Strong consistency). The estimator ̂HGR(U, V )n is strongly con-
sistent if for all ε > 0, there exists a positive integer N and a choice of statistics
network such that:

∀n ≥ N, |HGR(U, V ) − ̂HGR(U, V )n| ≤ ε, a.s. (2)

As explained in MINE [6], the question of consistency is divided into two
problems: a deterministic approximation problem related to the choice of the
statistics network, and an estimation problem related to the use of empirical
measures.

The first lemma addresses the approximation problem using universal
approximation theorems for neural networks [22]:

Lemma 1 (Approximation). Let η > 0. There exists a family of continuous
neural networks FΘ parametrized by a compact domain Θ ⊂ R

k, such that

|HGR(U, V ) − HGRΘ(U, V )| ≤ η. (3)

The second lemma addresses the estimation problem, making use of classical
consistency theorems for extremum estimators [18]. It states the almost sure
convergence of HGR NN to the associated theoretical neural HGR measure as
the number of samples goes to infinity:
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Lemma 2 (Estimation). Let η > 0, and FΘ a family of continuous neural net-
works parametrized by a compact domain Θ ⊂ R

k. There exists an N ∈ N such
that:

∀n ≥ N, | ̂HGR(U, V )n − HGRΘ(U, V )| ≤ η, a.s. (4)

It is implied here that, from rank N , all sample variances are positive in the
definition of ̂HGR(U, V )n, which makes the latter well-defined.

We deduce from these two lemmas the following result:

Theorem 1. ̂HGR(U, V )n is strongly consistent.

4.2 Theoretical Comparison Against Simple Adversarial Algorithms

Given X and Y two one-dimensional random variables, we consider the regression
problem:

inf
f :R→R

E((Y − f(X))2) (5)

The variable that minimizes the quadratic risk is E(Y |X). Thus, prediction
retreatment algorithms with predictive adversaries [48], which consider such
optimization problems for mitigating biases, achieve the global fairness optimum
when E(S|̂Y ) = E(S). This does not generally imply demographic parity
when S is continuous. On the other hand, adversarial approaches based on the
HGR NN [19] achieve the optimum when HGR(̂Y , S) = 0, which is equivalent
to demographic parity: P (̂Y |S) = P (̂Y ).

To illustrate this, we consider the maximization problem supf :R→R
ρ(f(X), Y ),

which corresponds to the situation where the neural network g is linear in the HGR
neural estimator. We have the following result:

Theorem 2. If E(Y |X) is constant, then supf ρ(f(X), Y ) = 0. Else, f∗ ∈
arg maxfρ(f(X), Y ) iff there exists a, b ∈ R, with a > 0, such that:

f∗(X) = aE(Y |X) + b (6)

In other words, the simpler version of the HGR NN, with g linear, finds the
optimal function in terms of regression risk, up to a linear transformation that
can be found by simple linear regression. The simplified HGR estimation mod-
ule therefore captures the exact same non-linear dependencies as the predictive
adversary in related work [1,48]. Thanks to the function g, in cases where Y
cannot be expressed as a function of X only, the HGR neural network can cap-
ture more dependencies than a predictive NN (or equivalently a simplified HGR
neural network).

Specific Example to Understand the Difference: Let us consider the fol-
lowing example below where:
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Y ∼ N (μ, σ2) X = arctan(Y 2) + Uπ (7)

where U ⊥ Y and U follows a Bernoulli distribution with p = 1
2 . In this set-

ting, we have Y 2 = tan(X), HGR(X,Y ) = 1 and due to the hidden variable U ,
neither X nor Y can be expressed as a function of the other. In that case, the
simplified maximal correlation, ρ(E(Y |X), Y ), has the following bounds, with

α = μ
σ :

√

1 − e− α2
2 ≤ ρ(E(Y |X), Y ) ≤

√

1 − e− α2
2 (1 + α2)− 3

2 . In the degen-
erate case α = 0, we have E(Y |X) = 0: the predictive neural network cannot
find any dependence. For non-zero values of α, the distribution of Y is no longer
centered around the axis of symmetry of the square function, so that the predic-
tion becomes possible. However, as shown in the inequality above, the simplified
maximal correlation is less than 1, and close to 0 when μ 	 σ.

Fig. 1. Simplified HGR w.r.t α

In Fig. 1, we illustrate the bounds (proof
in appendix), ρ(E(Y |X), Y ) being estimated
by Monte-Carlo. First, we note that the upper
bound is close to ρ(E(Y |X), Y ), whereas the

lower bound
√

1 − e− α2
2 is not as precise.

For non-zero values of α, ρ(E(Y |X), Y ) is
positive, so that a predictive neural network
can capture some non-linear dependencies
between Y and X.

This is due to the fact that, for α 
= 0, the
square function is bijective when restricted to some open interval containing
the mean of Y , whereas when α = 0, such an interval cannot be found. When
this interval is large and the standard deviation of Y is not too large (which
corresponds to high values of |α|), ρ(E(Y |X), Y ) approaches 1 and the Y pre-
diction error approaches 0. In the opposite case, ρ(E(Y |X), Y ) is close to 0 and
a predictive neural network cannot capture dependencies.

Therefore, as shown by the example, the bilateral approach of the HGR, as
opposed to the unilateral approach of predictive models, can capture more depen-
dencies in complex regression scenarios. In adversarial bias mitigation settings,
predictive adversaries might not be able to properly detect bias. Adversarial
approaches based on the HGR NN are better fitted for bias mitigation in such
continuous complex settings.

5 Method

The objective is to find a latent representation Z which both minimizes the
deviation between the target Y and the output prediction ̂Y , provided by a
function φ(Z), and does not imply too much dependence with the sensitive S.
As explained above in Sect. 3, the HGR estimation by deep neural network [19]
is a good candidate for standing as the adversary HGR(Z, S) to plug in the
global objective (8). Notice, we can consider the latent representation Z or even
the sensitive attribute S as multi-dimensional. This can therefore provide a rich
representation of the latent space or even take into account several sensitive
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features at the same time (for e.g. gender and age or the 3 channels of an image
see Sect. 6.1). The HGR estimation paper [19] considers only the one-dimensional
cases for both U and V but we can generalize to the multidimensional cases.

Fig. 2. Learning unbiased representations via Rényi Minimization

The mitigation procedure follows the optimization problem:

arg min
wφ,wψ

max
wf ,wg

L(φωφ
(hωψ

(X)), Y ) + λE( ̂fwf
(hωψ

(X)) ∗ ĝwg
(S)) (8)

where L is the predictor loss function between the output prediction
φωφ

(hωψ
(X)) ∈ R and the corresponding target Y , with φωφ

the predictor neu-
ral network with parameters ωφ and Z = hωψ

(X) the latent fair representation
with hωψ

the encoder neural network, with parameters ωψ. The second term,
which corresponds to the expectation of the products of standardized outputs
of both networks (f̂wf

and ĝwg
), represents the HGR estimation between the

latent variable Z and the sensitive attribute S. The hyperparameter λ controls
the impact of the correlation loss in the optimization.

Figure 2 gives the full architecture of our adversarial learning algorithm using
the neural HGR estimator between the latent variable and the sensitive attribute.
It depicts the encoder function hwψ

, which outputs a latent variable Z from X,
the two neural networks fwf

and gwg
, which seek at defining the most strongly

correlated transformations of Z and S and the neural network φωφ
which outputs

the prediction ̂Y from the latent variable Z. Left arrows represent gradients back-
propagation. The learning is done via stochastic gradient, alternating steps of
adversarial maximization and global loss minimization. The algorithm (more
details in the supplementary) takes as input a training set from which it samples
batches of size b at each iteration. At each iteration it first standardizes the
output scores of networks fwf

and gwg
to ensure 0 mean and a variance of 1 on

the batch. Then it computes the HGR neural estimate and the prediction loss for
the batch. At the end of each iteration, the algorithm updates the parameters of
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the prediction parameters ωφ as well as the encoder parameters ωψ by one step
of gradient descent. Concerning the HGR adversary, the backpropagation of the
parameters wf and wg is carried by multiple steps of gradient ascent. This allows
us to optimize a more accurate estimation of the HGR at each step, leading to
a greatly more stable learning process.

6 Experiments

6.1 Synthetic Scenario

We consider the following toy scenario in a binary target Y and continuous
standard gaussian sensitive attribute S setting:

X|S = s ∼ N
[(

0
0

)

,

(

1 − 1
2− 1

2 1

)]

when Y = 0, (9a)

X|S = s ∼ N
[(

1
1 + 3 sin s

)

,

(

1 0
0 1

)]

when Y = 1 (9b)

(a) Biased model: λ = 0 ; HGR(Z, S) = 52% ; HGR(Y , S) = 30% ; Acc = 79%

(b) Unbiased model: λ = 13 ; HGR(Z, S) = 5% ; HGR(Y , S) = 4% ; Acc = 68%

Fig. 3. Toy example. (Left) Decision surface in the (X1, X2) plane. The figure (a)

shows the decision surface for a biased model focused on a prediction loss. ̂Y values are
highly correlated with S, samples with S around π

2
and Y = 1 being easier to classify

than those with S between −π
2

and 0. The figure (b) shows decision surfaces for our
fair model. These are vertical, meaning that only X1 influences the classification, and
therefore ̂Y is no longer biased w.r.t S. (Middle left) Z1-slices in the (X1, X2) plane.
The comparison between the figure below and above highlights the fact that adversarial
training allows to create an unbiased representation Z. (Middle right) Conditional
probability densities of Z1 at S = −π

2
, 0, π

2
. With λ = 0, the densities are dependent

on S, whereas they are not anymore with adversarial training. (Right) In blue, the
function modeled by the neural network g in the HGR Neural Network. In red, the
closest linear transformation of sin(S) to g(S). (Color figure online)
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Our goal is to learn a representation Z of the input data that is no longer
biased w.r.t S, while still accurately predicting the target value Y . Figure 3
compares the results of both a biased model (a) with a hyperparameter λ =
0 and an unbiased model (b) with λ = 13 applied on the toy scenario data.
In the context of the Rényi Minimization method, it is interesting to observe
the maximal correlation functions learnt by the adversary. When λ = 0, the
adversary with sensitive attribute input models the sin function up to a linear
transformation, which also maximizes the correlation with the input data as
shown in (9b). In that case, the representation Z still carries the bias of X w.r.t
S, in the same sin shape. When λ = 13, the neural network g is unable to find the
sin function, which seems to indicate that the representation Z does not carry
the bias w.r.t S anymore. This is confirmed by the low HGR coefficient between
Z and S, the Z1-slices as well as the conditional densities of Z1 at different
values of S. Not only does the adversarial induces an unbiased representation, it
also leads to an almost completely unbiased target ̂Y , as shown by the vertical
decision surfaces and the 4% HGR between ̂Y and S. This at the cost of a slight
loss of accuracy, with an 11% decrease.

6.2 MNIST with Continuous Color Intensity

Before considering real-world experiments, we follow the MNIST experimental
setup defined by Kim et al. [25], which considers a digit classification task with
a color bias planted into the MNIST data set [24,27]. In the training set, ten dis-
tinct colors are assigned to each class. More precisely, for a given training image,
a color is sampled from the isotropic normal distribution with the corresponding
class mean color, and a variance parameter σ2. For a given test image, a mean
color is randomly chosen from one of the ten mean colors, without considering
the test label, and a color is sampled from the corresponding normal distribution
(with variance σ2). Seven transformations of the data set are designed with this
protocol, with seven values of σ2 equally spaced between 0.02 and 0.05. A lower
value of σ2 implies a higher color bias in the training set, making the classifica-
tion task on the testing set more difficult, since the model can base its predictions
on colors rather than shape. The sensitive feature, color, is encoded as a vector
with 3 continuous coordinates. For each algorithm and for each data set, we
obtain the best hyperparameters by grid search in five-fold cross validation.

Table 1. MNIST with continuous color intensity

Color variance

Training σ = 0.020 σ= 0.025 σ = 0.030 σ = 0.035 σ = 0.040 σ = 0.045 σ = 0.050

ERM (λ = 0.0) 0.476 ± 0.005 0.542 ± 0.004 0.664 ± 0.001 0.720 ± 0.010 0.785 ± 0.003 0.838 ± 0.002 0.870 ± 0.001

Ragonesi et al. [38] 0.592 ± 0.018 0.678 ± 0.015 0.737 ± 0.028 0.795 ± 0.012 0.814 ± 0.019 0.837 ± 0.004 0.877 ± 0.010

Zhang et al. [48] 0.584 ± 0.034 0.625 ± 0.033 0.709 ± 0.027 0.733 ± 0.020 0.807 ± 0.013 0.803 ± 0.027 0.831 ± 0.027

Kim et al. [25] 0.645 ± 0.015 0.720 ± 0.014 0.787 ± 0.018 0.827 ± 0.012 0.869 ± 0.023 0.882 ± 0.019 0.900 ± 0.012

Grari et al. [19] 0.571 ± 0.014 0.655 ± 0.022 0.721 ± 0.030 0.779 ± 0.011 0.823 ± 0.013 0.833 ± 0.026 0.879 ± 0.010

Ours 0.730 ± 0.008 0.762 ± 0.021 0.808 ± 0.011 0.838 ± 0.010 0.878 ± 0.011 0.883 ± 0.012 0.910 ± 0.007
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Results, in terms of accuracy, can be found in Table 1. Notice, the state-
of-the-art obtains different results than reported ones because we consider a
continuous sensitive feature and not a 24-bit binary encoding. Our adversarial
algorithm achieves the best accuracy on the test set for the seven scenarios. The
most important gap is for the smallest sigma where the generalisation is the most
difficult. The larger number of degrees of freedom carried by the two functions
f and g made it possible to capture more unbiased information than the other
algorithms on the multidimensional variables Z and S.

6.3 Real-World Experiments

Our experiments on real-world data are performed on five data sets. In three
data sets, the sensitive and the outcome true value are both continuous: the US
Census data set [43], the Motor data set [42] and the Crime data set [15]. On two
other data sets, the target is binary and the sensitive features are continuous:
The COMPAS data set [3] and the Default data set [45]. For all data sets, we
repeat five experiments by randomly sampling two subsets, 80% for the training
set and 20% for the test set. Finally, we report the average of the mean squared
error (MSE), the accuracy (ACC) and the mean of the fairness metrics HGR NN
[19], HGR KDE [33], HGR RDC [29] and MINE [6] on the test set. Since none
of these fairness measures are fully reliable (they are only estimations which are
used by the compared models), we also use the FairQuant metric [19], based
on the quantization of the test samples in 50 quantiles w.r.t. to the sensitive
attribute. The metric corresponds to the mean absolute difference between the
global average prediction and the mean prediction of each quantile.

As a baseline, we use a classic, “unfair” deep neural network, Standard NN.
We compare our approach with state-of-the-art algorithms. We also compare
the Fair MINE NN [19] algorithm where fairness is achieved with the MINE
estimation of the mutual information as a penalization in prediction retreatment
(lower right in Fig. 1 in appendix).

For all the different fair representation algorithms, we assign the latent space
with only one hidden layer with 64 units. Mean normalization was applied to
all the outcome true values. Results of our experiments can be found in Table 2.
For all of them, we attempted to obtain comparable results by giving similar
accuracy to all models, via the hyperparameter λ (different for each model).
For each algorithm and for each data set, we obtain the best hyperparameters
by grid search in five-fold cross validation (specific to each of them). Notice
that, as explained in Sect. 5, several optimization iterations are performed for
the adversarial HGR neural estimation at each global backpropagation iteration
(e.g., 50 iterations of HGR estimation at each step for the Compas dataset).
For comparable results, we also optimize multiple iterations on the different
adversarial state-of-the-art algorithms, we find the best number of adversarial
backpropagation iterations by grid search between 1 to 300 by step of 25.

As expected, the baseline, Standard NN, is the best predictor but also the
most biased one. It achieves the lowest prediction errors and ranks amongst
the highest and thus worst values for all fairness measures for all data sets and
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Table 2. Experimental results - Best performance among fair algorithms in bold.

MSE HGR NN HGR KDE HGR RDC MINE FairQuant

US Census Standard NN 0.274 ± 0.003 0.212 ± 0.094 0.181± 0.00 0.217 ± 0.004 0.023 ± 0.018 0.059 ± 0.00

Grari et al. [19] 0.526 ± 0.042 0.057 ± 0.011 0.046 ± 0.030 0.042 ± 0.038 0.001 ± 0.001 0.008 ± 0.015

Mary et al. [33] 0.541 ± 0.015 0.075 ± 0.013 0.061 ± 0.006 0.078 ± 0.013 0.002 ± 0.001 0.019 ± 0.004

Fair MINE NN 0.537 ± 0.046 0.058 ± 0.042 0.048 ± 0.029 0.045 ± 0.037 0.001 ± 0.001 0.012 ± 0.016

Adel et al. [1] 0.552 ± 0.032 0.100 ± 0.028 0.138 ± 0.042 0.146 ± 0.031 0.003 ± 0.003 0.035 ± 0.011

Zhang et al. [48] 0.727 ± 0.264 0.097 ± 0.038 0.135 ± 0.036 0.165 ± 0.028 0.009 ± 0.005 0.022 ± 0.019

Madras et al. [31] 0.525 ± 0.033 0.129 ± 0.010 0.158 ± 0.009 0.173 ± 0.012 0.007 ± 0.007 0.041 ± 0.003

Sadeghi et al. [40] 0.526 ± 0.006 0.077 ± 0.031 0.136 ± 0.001 0.146 ± 0.001 0.008 ± 0.003 0.035 ± 0.000

Ours 0.523 ± 0.035 0.054 ± 0.015 0.044 ± 0.032 0.041 ± 0.031 0.001 ± 0.001 0.007 ± 0.002

Motor Standard NN 0.945 ± 0.011 0.201 ± 0.094 0.175 ± 0.0 0.200 ± 0.034 0.188 ± 0.005 0.008 ± 0.011

Grari et al. [19] 0.971 ± 0.004 0.072 ± 0.029 0.058 ± 0.052 0.066 ± 0.009 0.000 ± 0.000 0.006 ± 0.02

Mary et al. [33] 0.979 ± 0.119 0.077 ± 0.023 0.059 ± 0.014 0.067 ± 0.028 0.001 ± 0.001 0.006 ± 0.002

Fair MINE NN 0.982 ± 0.003 0.078 ± 0.013 0.068 ± 0.004 0.069 ± 0.009 0.000 ± 0.000 0.004 ± 0.001

Adel et al. [1] 0.979 ± 0.003 0.101 ± 0.04 0.09 ± 0.03 0.101 ± 0.04 0.002 ± 0.002 0.009 ± 0.004

Zhang et al. [48] 0.998 ± 0.004 0.076 ± 0.034 0.091 ± 0.024 0.129 ± 0.08 0.001 ± 0.001 0.004 ± 0.001

Madras et al. [31] 0.978 ± 0.004 0.096 ± 0.035 0.083 ± 0.020 0.099 ± 0.030 0.004 ± 0.002 0.008 ± 0.001

Sadeghi et al. [40] 0.975 ± 0.017 0.102 ± 0.020 0.115 ± 0.027 0.129 ± 0.039 0.001 ± 0.001 0.001 ± 0.001

Ours 0.962 ± 0.002 0.070 ± 0.011 0.055 ± 0.005 0.067 ± 0.006 0.000 ± 0.000 0.004 ± 0.001

Crime Standard NN 0.384 ± 0.012 0.732 ± 0.013 0.525 ± 0.013 0.731 ± 0.009 0.315 ± 0.021 0.353 ± 0.006

Grari et al. [19] 0.781 ± 0.016 0.356 ± 0.063 0.097 ± 0.022 0.171 ± 0.03 0.009 ± 0.008 0.039± 0.008

Mary et al. [33] 0.778 ± 0.103 0.371 ± 0.116 0.115 ± 0.046 0.177 ± 0.054 0.024 ± 0.015 0.064 ± 0.023

Fair MINE NN 0.782 ± 0.034 0.395 ± 0.097 0.110 ± 0.022 0.201 ± 0.021 0.032 ± 0.029 0.136 ± 0.012

Adel et al. [1] 0.836 ± 0.005 0.384 ± 0.037 0.170 ± 0.027 0.371 ± 0.035 0.058 ± 0.027 0.057 ± 0.007

Zhang et al. [48] 0.787 ± 0.134 0.377 ± 0.085 0.153 ± 0.056 0.313 ± 0.087 0.037 ± 0.022 0.063 ± 0.046

Madras et al. [31] 0.725 ± 0.023 0.312 ± 0.022 0.290 ± 0.027 0.175 ± 0.016 0.036 ± 0.013 0.103 ± 0.015

Sadeghi et al. [40] 0.782 ± 0.002 0.474 ± 0.006 0.123 ± 0.000 0.315 ± 0,009 0.098 ± 0.035 0.062 ± 0.001

Ours 0.783 ± 0.031 0.369 ± 0.074 0.087 ± 0.031 0.173 ± 0.044 0.011 ± 0.006 0.043 ± 0.012

ACC HGR NN HGR KDE HGR RDC MINE FairQuant

COMPAS Standard NN 68.7% ± 0.243 0.363 ± 0.005 0.326 ± 0.003 0.325 ± 0.008 0.046 ± 0.028 0.140 ± 0.001

Grari et al. [19] 59.7% ± 2.943 0.147 ± 0.000 0.121 ± 0.002 0.101 ± 0.007 0.004 ± 0.001 0.018 ± 0.018

Fair MINE NN 54.4% ± 7.921 0.134 ± 0.145 0.123 ± 0.111 0.141 ± 0.098 0.014 ± 0.023 0.038 ± 0.050

Adel et al. [1] 55.4% ± 0.603 0.118 ± 0.022 0.091 ± 0.012 0.097 ± 0.034 0.006 ± 0.007 0.013 ± 0.016

Zhang et al. [48] 51.0% ± 3.550 0.116 ± 0.000 0.081 ± 0.003 0.086 ± 0.010 0.002 ± 0.003 0.010 ± 0.005

Madras et al. [31] 54.9% ± 2.221 0.175 ± 0.000 0.116 ± 0.015 0.107 ± 0.026 0.005± 0.003 0.011 ± 0.020

Sadeghi et al. [40] 54.3% ± 0.024 0.194 ± 0.052 0.237 ± 0.040 0.264 ± 0.054 0.003 ± 0.003 0.003 ± 0.003

Ours 60.2% ± 3.076 0.063 ± 0.024 0.068 ± 0.018 0.067 ± 0.014 0.001 ± 0.002 0.011 ± 0.018

Default Standard NN 82.1% ± 0.172 0.112 ± 0.013 0.067 ± 0.010 0.089 ± 0.014 0.002 ± 0.001 0.015 ± 0.002

Grari et al. [19] 79.9% ± 2.100 0.082 ± 0.015 0.075 ± 0.019 0.072 ± 0.010 0.001 ± 0.001 0.007 ± 0.007

Adel et al. [1] 79.2% ± 1.207 0.054 ± 0.025 0.048 ± 0.015 0.064 ± 0.009 0.001 ± 0.001 0.005 ± 0.002

Fair MINE NN 80.1% ± 2.184 0.093 ± 0.020 0.057 ± 0.002 0.066 ± 0.012 0.001 ± 0.001 0.008 ± 0.001

Zhang et al. [48] 77.9% ± 9.822 0.052 ± 0.017 0.044 ± 0.013 0.056 ± 0.004 0.000 ± 0.000 0.004 ± 0.000

Madras et al. [31] 78.3% ± 0.605 0.064 ± 0.025 0.052 ± 0.018 0.061 ± 0.012 0.001 ± 0.001 0.003 ± 0.005

Sadeghi et al. [40] 79.7% ± 0.236 0.074 ± 0.019 0.062 ± 0.013 0.098 ± 0.041 0.002 ± 0.002 0.003 ± 0.002

Ours 80.8% ± 0.286 0.041 ± 0.008 0.044 ± 0.006 0.047 ± 0.002 0.001 ± 0.002 0.005 ± 0.001

tasks. While being better in terms of accuracy, our fair representation algorithm
achieves on four data sets (except on the Crime data set) the best level of fairness
assessed by HGR estimation, MINE and FairQuant. On the Crime data set, the
approach by Madras2018 [32] gets slightly better results on MSE and HGR
estimation but not on the others metrics. Note, Adel [1] with the fair adversarial
representation obtains (except on the Crime data set) better results than Zhang
[48] which corresponds to the simple adversarial architecture.
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What is the Impact of Mitigation Weight? In Fig. 4, we plot the perfor-
mance of different scenarios by displaying the HGR against the Accuracy with
different values of the hyperparameter λ.

Fig. 4. Impact of hyperparameter
λ (COMPAS data set)

This plot was obtained on the COMPAS
data set with 4 algorithms: ours, Adel et al.
[1], Grari et al. [19] and Zhang et al. [48].
The different curves is obtained by Nadaraya-
Watson kernel regression [8] between the
Accuracy of the model and the HGR. Varying
the hyperparameter λ allows to control the
fairness/accuracy trade-off. Here, we clearly
observe for all algorithms that the Accuracy,
or predictive performance, decreases when
fairness increases.

Higher values of λ produce fairer predictions w.r.t the HGR, while near 0
values of the hyperparameter λ result in the optimization of the predictor loss
with no fairness consideration (dots in the upper left corner of the graph). We
note that, for all levels of predictive performance, our method outperforms the
state of the art algorithms in terms of HGR.

Where Should We Apply Mitigation in Neural Architectures? In order
to answer this question, and also further analyze the benefits of mitigation in neu-
ral representations compared to prediction retreatments as done in [19], we pro-
pose to consider various architectures of encoders h and predictors φ, with adver-
sarial HGR mitigation being applied on the output of the encoder as depicted
in Fig. 1. in appendix. To get comparable results between settings, we consider
a constant full architecture (encoder + predictor), composed of 5 layers with 4
hidden layers with 32 units each.

Fig. 5. Impact of hyperparameter
λ (COMPAS data set) for various
encoders h and predictors φ.

In Fig. 5, we compare on the COMPAS
dataset 5 different settings where mitigation is
applied on a different layer of this full architec-
ture: LayerX corresponds to a setting where
mitigation is applied on the output of layer
X (encoder of X layers, predictor of 5-X lay-
ers). Layer5 thus corresponds to the predici-
tion retreatment approach proposed in [19]
(no predictor function, the encoder function
h directly outputs the prediction). Layer3 is
the standard setting used for our approach in
the remaining of this paper.

As in Fig. 4, plotted results correspond to fairness-accuracy trade-offs
obtained with different values of λ. We notice that applying mitigation too early
in the architecture (Layer1) leads to very poor results. This can be explained by
the fact that for this simple encoding setting, the encoder expressiveness is to
weak to effectively remove non-linear dependencies w.r.t. the sensitive attribute,
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without removing too much useful information for prediction. At the contrary,
when mitigation is applied late in the architecture (Layer4 and Layer5 ) we
observe generalization limits of the approach. While results on the training set
are similar to those of Layer3, these settings lead to predictions at test time that
are more dependent on the sensitive attribute. Due to L-Lipschitzness of neural
network architectures, we know that HGR(Z, S) ≥ HGR(φ(Z), S). Acting on Z
leads to remove bias from Z even for components ignored by the predictor φ in
train. However, we argue that this allows to gain in stability at test time, when
such components can be activated for new inputs, compared to late approaches,
such as Layer4 or Layer5, which induce a greater variance of sensitive depen-
dence of the output Ŷ . Mitigation at intermediate levels, such as Layer3, appears
to correspond to the best trade-off expressiveness/generalization.

7 Conclusion

We present a new adversarial learning approach to produce fair representations
with a continuous sensitive attribute. We leverage the HGR measure, which is
efficient in capturing non-linear dependencies, and propose to minimize a neu-
ral estimation of the HGR between the latent representation and the sensitive
attributes. This method proved to be very efficient for different fairness met-
rics on various artificial and real-world data sets. For further investigation, we
will apply this architecture for information bottleneck purposes (e.g. for data
privacy), that might be improved with an HGR NN penalization as suggested
in [4].
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Abstract. We introduce a novel problem for diversity-aware clustering.
We assume that the potential cluster centers belong to a set of groups
defined by protected attributes, such as ethnicity, gender, etc. We then
ask to find a minimum-cost clustering of the data into k clusters so that
a specified minimum number of cluster centers are chosen from each
group. We thus require that all groups are represented in the clustering
solution as cluster centers, according to specified requirements. More
precisely, we are given a set of clients C, a set of facilities F , a collection
F = {F1, . . . , Ft} of facility groups Fi ⊆ F , a budget k, and a set of
lower-bound thresholds R = {r1, . . . , rt}, one for each group in F . The
diversity-aware k-median problem asks to find a set S of k facilities in F
such that |S ∩Fi| ≥ ri, that is, at least ri centers in S are from group Fi,
and the k-median cost

∑
c∈C mins∈S d(c, s) is minimized. We show that

in the general case where the facility groups may overlap, the diversity-
aware k-median problem is NP-hard, fixed-parameter intractable with
respect to parameter k, and inapproximable to any multiplicative factor.
On the other hand, when the facility groups are disjoint, approximation
algorithms can be obtained by reduction to the matroid median and red-
blue median problems. Experimentally, we evaluate our approximation
methods for the tractable cases, and present a relaxation-based heuristic
for the theoretically intractable case, which can provide high-quality and
efficient solutions for real-world datasets.

Keywords: Algorithmic bias · Algorithmic fairness · Diversity-aware
clustering · Fair clustering

1 Introduction

As many important decisions are being automated, algorithmic fairness is becom-
ing increasingly important. Examples of critical decision-making systems include
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determining credit score for a consumer, computing risk factors for an insurance,
pre-screening applicants for a job opening, dispatching patrols for predictive
policing, and more. When using algorithms to make decisions for such critical
tasks, it is essential to design and employ methods that minimize bias and avoid
discrimination against people based on gender, race, or ethnicity.

Algorithmic fairness has gained wide-spread attention in the recent years [20].
The topic has been predominantly studied for supervised machine learning, while
fairness-aware formulations have also been proposed for unsupervised machine
learning, for example, fair clustering [3,5,9,23], fair principal component analy-
sis [22], or fair densest-subgraph mining [1]. For the clustering problem the most
common approach is to incorporate fairness by the means of representation-based
constraints, i.e., requiring that all clusters contain certain proportions of the dif-
ferent groups in the data, where data groups are defined via a set of protected
attributes, such as demographics. In this paper we introduce a novel notion for
fair clustering based on diversity constraints on the set of selected cluster centers.

Research has revealed that bias can be introduced in machine-learning algo-
rithms when bias is present in the input data used for training, and methods are
designed without considerations for diversity or constraints to enforce fairness
[11]. A natural solution is to introduce diversity constraints. We can look at
diversification from two different perspectives: (i) avoiding over-representation;
and (ii) avoiding under-representation. In this paper we focus on the latter
requirement. Even though these two approaches look similar, a key contribu-
tion in our work is to observe that they are mathematically distinct and lead
to computational problems having different complexity; for details see Sects. 3
and 4.

To motivate our work we present two application scenarios.

Committee Selection: We often select committees to represent an underly-
ing population and work towards a task, e.g., a program committee to select
papers for a conference, or a parliamentary committee to handle an issue. As we
may require that each member of the population is represented by at least one
committee member, it is natural to formalize the committee-selection task as
a clustering problem, where the committee members will be determined by the
centers of the clustering solution. In addition, one may require that the commit-
tee is composed by a diverse mix of the population with no under-represented
groups, e.g., a minimum fraction of the conference PC members work in industry,
or a minimum fraction of the parliamentary committee are women.

News-Articles Summarization: Consider the problem of summarizing a col-
lection of news articles obtained, for example, as a result to a user query. Clus-
tering these articles using a bag-of-words representation will allow us to select a
subset of news articles that cover the different topics present in the collection.
In addition, one may like to ensure that the representative articles comes from a
diverse set of media sources, e.g., a minimum fraction of the articles comes from
left-leaning media or from opinion columns.

To address the scenarios discussed in the previous two examples, we introduce
a novel formulation of diversity-aware clustering with representation constraints
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Table 1. An overview of our results. All problem cases we consider are NP-hard.
FPT(k) indicates whether the problem is fixed-parameter tractable with respect to
parameter k. Approx. factor shows the factor of approximation obtained, and Approx.
method shows the method used.

Problem NP-hard FPT(k) Approx. factor Approx. method

Intractable case: intersecting facility groups

General variant ✓ ✗ inapproximable

Tractable cases: disjoint facility groups

t > 2,
∑

i∈[t] ri = k ✓ Open 8 LP

t > 2,
∑

i∈[t] ri < k ✓ Open 8 O(kt−1) calls to LP

t = 2, r1 + r2 = k ✓ Open 5 + ε Local search

t = 2, r1 + r2 < k ✓ Open 5 + ε O(k) calls to local search

on cluster centers. In particular, we assume that a set of groups is associated
with the facilities to be used as cluster centers. Facility groups may correspond
to demographic groups, in the first example, or to types of media sources, in
the second. We then ask to cluster the data by selecting a subset of facilities as
cluster centers, such that the clustering cost is minimized, and requiring that
each facility group is not under-represented in the solution.

We show that in the general case, where the facility groups overlap, the
diversity-aware k-median problem is not only NP-hard, but also fixed-parameter
intractable with respect to the number of cluster centers, and inapproximable to
any multiplicative factor. In fact, we prove it is NP-hard to even find a feasible
solution, that is, a set of centers which satisfies the representation constraints,
regardless of clustering cost. These hardness results set our clustering problem
in stark contrast with other clustering formulations where approximation algo-
rithms exist, and in particular, with the matroid-median problem [8,16,19], where
one asks that facility groups are not over-represented. Unfortunately, however,
the matroid-median problem does not ensure fairness for all facility groups.

On the positive side, we identify important cases for which the diversity-
aware k-median problem is approximable, and we devise efficient algorithms with
constant-factor approximation guarantees. These more tractable cases involve
settings when the facility groups are disjoint. Even though the general variant of
the problem in inapproximable, we demonstrate using experiments that we can
obtain a desired clustering solution with representation constraints with almost
the same cost as the unconstrained version using simple heuristics based on
local-search. The hardness and approximability results for the diversity-aware
k-median problem are summarized in Table 1.

In addition to our theoretical analysis and results we empirically evaluate
our methods on several real-world datasets. Our experiments show that in many
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problem instances, both theoretically tractable and intractable, the price of
diversity is low in practice (See Sect. 6.1 for a precise definition). In partic-
ular, our methods can be used to find solutions over a wide range of diversity
requirements where the clustering cost is comparable to the cost of unconstrained
clustering.

The rest of this paper is structured as follows. Section 2 discusses related
work, Sect. 3 presents the problem statement and computational complexity
results. Section 4 discusses special cases of the problem that admit polynomial-
time approximations. In Sect. 5 we offer efficient heuristics and related tractable
objectives, and in Sect. 6 we describe experimental results. Finally, Sect. 7 is a
short conclusion.

2 Related Work

Algorithmic fairness has attracted a considerable amount of attention in recent
years, as many decisions that affect us in everyday life are being made by algo-
rithms. Many machine-learning and data-mining problems have been adapted
to incorporate notions of fairness. Examples include problems in classifica-
tion [4,13,17], ranking [24,28], recommendation systems [27], and more.

In this paper we focus on the problem of clustering and we consider a novel
notion of fairness based on diverse representation of cluster centers. Our app-
roach is significantly different (and orthogonal) from the standard notion of fair
clustering, introduced by the pioneering work of Chierichetti et al. [9]. In that
setting, data points are partitioned into groups (Chierichetti et al. considered
only two groups) and the fairness constraint is that each cluster should contain a
fraction of points from each group. Several recent papers have extended the work
of Chierichetti et al. by proposing more scalable algorithms [3,18], extending the
methods to accommodate more than two groups [6,23], or introducing privacy-
preserving properties [21]. In this line of work, the fairness notion applies to the
representation of data groups within each cluster. In contrast, in our paper the
fairness notion applies to the representation of groups in the cluster centers.

The closest-related work to our setting are the problems of matroid median [8,
19] and red-blue median [15,16], which can be used to ensure that no data groups
are over-represented in the cluster centers of the solution—in contrast we require
that no data groups are under-represented. Although the two notions are related,
in a way that we make precise in Sect. 4, in the general case they differ signif-
icantly, and they yield problems of greatly different complexity. Furthermore,
in the general case, the matroid-median problem cannot be used to ensure fair
representation, as upper-bound constraints cannot ensure that all groups will
be represented in the solution. Although it is for those cases that our diversity-
aware clustering problem is intractable, one can develop practical heuristics that
achieve fair results, with respect to diverse representation, as shown in our exper-
imental evaluation.
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3 Problem Statement and Complexity

We consider a set of clients C and a set of facilities F . In some cases, the set of
facilities may coincide with the set of clients (F = C), or it is a subset (F ⊆ C).
We assume a distance function d : C ×F → R+, which maps client–facility pairs
into nonnegative real values. We also consider a collection F = {F1, . . . , Ft} of
facility groups Fi ⊆ F . During our discussion we distinguish different cases for
the structure of F . In the most general case the facility groups Fi may overlap.
Two special cases of interest, discussed in Sect. 4, are when the facility groups
Fi are disjoint and when there are only two groups. Finally, we are given a
total budget k of facilities to be selected, and a set of lower-bound thresholds
R = {r1, . . . , rt}, i.e., one threshold for each group Fi in F .

The diversity-aware k-median problem (Div-k-Median) asks for a set S of k
facilities in F subject to the constraint |S∩Fi| ≥ ri, such that the k-median cost∑

c∈C mins∈S d(c, s) is minimized. Thus, we search for a minimum-cost clustering
solution S where each group Fi is represented by at least ri centers.

In the following sections, we study the computational complexity of the
Div-k-Median problem. In particular, we show that the general variant of the
problem is (i) NP-hard; (ii) not fixed-parameter tractable with respect to param-
eter k, i.e., the size of the solution sought; and (iii) inapproximable to any multi-
plicative factor. In fact, we show that hardness results (i) and (ii) apply for the
problem of simply finding a feasible solution. That is, in the general case, and
assumingP �= NP there is no polynomial-time algorithm to find a solution S ⊆ F
that satisfies the constraints |S ∩ Fi| ≥ ri, for all i ∈ [t]. The inapproximability
statement (iii) is a consequence of theNP-hardness for finding a feasible solution.
These hardness results motivate the heuristics we propose later on.

3.1 NP-Hardness

We prove NP-hardness by reducing the dominating set problem to the problem
of finding a feasible solution to Div-k-Median.

Dominating Set Problem (DomSet). Given a graph G = (V,E) with |V | = n
vertices, and an integer k ≤ n, decide if there exists a subset S ⊆ V of size |S| = k
such that for each v ∈ V it is either {v}∩S �= ∅ or {v}∩N(S) �= ∅, where N(S)
denotes the set of vertices adjacent to at least one vertex in S. In other words,
each vertex in V is either in S or adjacent to at least one vertex in S.

Lemma 1. Finding a feasible solution for Div-k-Median is NP-hard.

Proof. Given an instance of DomSet (G = (V,E), k), we construct an instance
of the Div-k-Median problem (C, F ,F , d, k,R), such that C = V , F = V ,
d(u, v) = 1 for all (u, v) ∈ C × F , F = {F1, . . . , Fn} with Fu = {u} ∪ N(u), and
R = {1, . . . , 1}, i.e., the lower-bound thresholds are set to ru = 1, for all u ∈ V .

Let S ⊆ C be a feasible solution for Div-k-Median. From the construction
it is clear that S is a dominating set, as |Fu ∩ S| ≥ 1, and thus S intersects
{u} ∪ N(u) for all u ∈ V . The proof that a dominating set is a feasible solution
to Div-k-Median is analogous. ��
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The hardness of diversity-aware k-median follows immediately.

Corollary 1. The Div-k-Median problem is NP-hard.

3.2 Fixed-Parameter Intractability

A problem P specified by input x and a parameter k is fixed-parameter tractable
(FPT) if there exists an algorithm A to solve every instance (x, k) ∈ P with
running time of the form f(k)|x|O (1), where f(k) is function depending solely
on the parameter k and |x|O (1) = poly(|x|) is a polynomial independent of
the parameter k. A problem P is fixed-parameter intractable with respect to
parameter k otherwise.

To show that the Div-k-Median is fixed-parameter intractable we present
a parameterized reduction from the DomSet problem to Div-k-Median.1 The
DomSet problem is known to be fixed-parameter intractable [10, Theorem 13.9].
This means that there exists no algorithm with running time f(k)|V |O (1) to solve
DomSet, where f(k) is a function depending solely on the parameter k.

Theorem 1. The Div-k-Median problem is fixed-parameter intractable with
respect to the parameter k, that is, the size of the solution sought.

Proof. We apply the reduction from Lemma 1. It follows that (i) an instance
(G, k) of the DomSet problem has a feasible solution if and only if there exists
a feasible solution for the Div-k-Median problem instance (C, F ,F , d, k′, R),
with k′ = k, and (ii) the reduction takes polynomial time in the size of the
input. So there exists a parameterized reduction from the DomSet problem to
the Div-k-Median problem. This implies that if there exists an algorithm with
running time f(k′)|C|O (1) for the Div-k-Median problem then there exits an
algorithm with running time f(k)|V |O (1) for solving the DomSet problem. ��

It would still be interesting to check whether there exists a parameter of the
problem that can be used to design a solution where the exponential complexity
can be restricted. We leave this as an open problem.

3.3 Hardness of Approximation

We now present hardness-of-approximation results for Div-k-Median.

Theorem 2. Assuming P �=NP, the Div-k-Median problem cannot be approx-
imated to any multiplicative factor.

Proof. We apply the reduction of the DomSet problem from the proof of
Lemma 1. For the sake of contradiction let A be a polynomial-time approxima-
tion algorithm which gives a factor-c approximate solution for Div-k-Median.
Then we can employ algorithm A to obtain an exact solution to the DomSet
instance in polynomial time, by way of the aforementioned reduction. The rea-
son is that an approximate solution for Div-k-Median is also a feasible solution,
which in turn implies a feasible solution for DomSet. Thus, unless P �= NP,
Div-k-Median cannot be approximated to any multiplicative factor. ��
1 For a precise definition of parameterized reduction see Cygan et al. [10, Chapter 13].
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4 Approximable Instances

In Sect. 3 we presented strong intractability results for the Div-k-Median prob-
lem. Recall that inapproximability stems from the fact that satisfying the non
under-representation constraints |S ∩ Fi| ≥ ri for i ∈ [t] is NP-hard. So the
inapproximability holds even if we change the clustering cost, for instance, to
k-center or a soft assignment variant of k-median.2 Fortunately, however, there
are instances where finding a feasible solution is polynomial-time solvable, even
if finding an minimum-cost clustering solution remains NP-hard. In this section
we discuss such instances and give approximation algorithms.

4.1 Non-intersecting Facility Groups

We consider instances of Div-k-Median where Fi ∩ Fj = ∅ for all Fi, Fj ∈ F ,
that is, the facility groups are disjoint. We refer to variants satisfying disjointness
conditions as the Div-k-Median∅ problem.

A feasible solution exists for Div-k-Median∅ if and only if |Fi| ≥ ri for all
i ∈ [t] and

∑
i∈[t] ri ≤ k. Furthermore, assuming that the two latter conditions

hold true, finding a feasible solution is trivial: it can be done simply by picking
ri facilities from each facility group Fi.

It can be shown that the Div-k-Median∅ problem can be reduced to the
matroid-median problem [19], and use existing techniques for the latter prob-
lem to obtain an 8-approximation algorithm for Div-k-Median∅ [25]. Before
discussing the reduction we first introduce the matroid-median problem.

The Matroid-Median Problem (MatroidMedian) [19]. We are given a
finite set of clients C and facilities F , a metric distance function d : C×F → R+,
and a matroid M = (F , I) with ground set F and a collection of independent
sets I ⊆ 2F . The problem asks us to find a subset S ∈ I(M) such that the cost
function cost(S) =

∑
c∈C mins∈S d(c, s) is minimized.

The MatroidMedian problem is a generalization of k-median, and has
an 8-approximation algorithm based on LP relaxation [25]. Here we present
a reduction of Div-k-Median∅ to MatroidMedian. In this section we handle
the case where

∑
i∈[t] ri = k. In Sect. 4.3 we show that the case

∑
i∈[t] ri < k

can be reduced to the former one with at most O(kt−1) calls. Approximating
Div-k-Median∅ in polynomial-time when

∑
i∈[t] ri < k is left open.

The Reduction. Given an instance (C, F ,F , d, k,R), of the Div-k-Median∅
problem we generate an instance (C ′, F ′, I ′, d′) of the MatroidMedian prob-
lem as follows: C ′ = C, F ′ = F , d′ = d, and M = (F ′, I ′) where I ′ ⊆ 2F ′

and
A ∈ I ′ if |A ∩ Fi| ≤ ri for all ri ∈ R. More precisely, the set of independent sets
is comprised of all subsets of F ′ that satisfy non over-representation constraints.
It is easy to verify that M is a matroid—it is a partition matroid. In the event
that the algorithm for MatroidMedian outputs a solution where |A∩Fi| < ri,

2 In soft clustering, each client is assigned to all cluster centers with a probability.
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for some i, since
∑

i∈[t] ri = k, it satisfies all the constraints with equality by
completing the solution with facilities of the missing group(s) at no additional
connection cost. Since we can ensure that |A ∩ Fi| = ri, for all i, it also holds
|A ∩ Fi| ≥ ri, for all i, that is, the Div-k-Median∅ constraints.

Since the MatroidMedian problem has a polynomial-time approximation
algorithm, it follows from our inapproximability results (Sect. 3) that a reduction
of the general formulation of Div-k-Median is impossible. We can thus con-
clude that allowing intersections between facility groups fundamentally changes
the combinatorial structure of feasible solutions, interfering with the design of
approximation algorithms.

4.2 Two Facility Groups

The approximation guarantee of the Div-k-Median∅ problem can be further
improved if we restrict the number of groups to two.

In particular, we consider instances of the Div-k-Median problem where
Fi ∩ Fj = ∅, for all Fi, Fj ∈ F , and F = {F1, F2}. For simplicity, the facilities
F1 and F2 are referred to as red and blue facilities, respectively.

As before, we can assume that
∑

i∈[t] ri = r1+r2 ≤ k, otherwise the problem
has no feasible solution. We first present a local-search algorithm for the case
r1 + r2 = k. In Sect. 4.3 we show that the case with r1 + r2 < k can be reduced
to the former one with a linear number of calls for different values of r1 and r2.
Before continuing with the algorithm we first define the rb-Median problem.

The Red-Blue Median Problem (rb-Median). We are given a set of
clients C, two disjoint facility sets F1 and F2 (referred to as red and blue
facilities, respectively), two integers r1, r2 and a metric distance function d :
C × {F1 ∪ F2} → R+. The problem asks to find a subset S ⊆ F1 ∪ F2 such that
|F1 ∩ S| ≤ r1, |F2 ∩ S| ≤ r2 and the cost function cost(S) =

∑
c∈C mins∈S d(c, s)

is minimized.
The rb-Median problem accepts a 5 + ε approximation algorithm based on

local-search [15]. The algorithm works by swapping a red-blue pair (r, b) with a
red-blue pair (r′, b′) as long as the cost improves. Note that (r′ = r, b′ �= b),
(r′ �= r, b′ = b) and (r′ �= r, b′ �= b) are valid swap pairs. The reduc-
tion of Div-k-Median to rb-Median is similar to the one given above for
MatroidMedian. Thus, when the input consists of two non-intersecting facil-
ity groups we can obtain a 5 + ε approximation of the optimum in polynomial
time which follows from the local-search approximation of the rb-Median prob-
lem [15].

4.3 The Case
∑

i ri < k

The reduction of Div-k-Median∅ to MatroidMedian relies on picking exactly∑
i ri facilities. This is because it is not possible to define a matroid that simulta-

neously enforces the desired lower-bound facility group constraints and the car-
dinality constraint for the solution. Nevertheless, we can overcome this obstacle
at a bounded cost in running time.
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1. Initialize S to be an arbitrary feasible solution.
2. While there exists a pair (s, s′), with s ∈ S and s′ ∈ F such that

(a) cost(S \ {s} ∪ {s′}) < cost(S) and
(b) S \ {s} ∪ {s′} is feasible i.e, |S \ {s} ∪ {s′} ∩ Fi| ≥ ri for all i ∈ [t],
Set S = S \ {s} ∪ {s′}.

3. Return S.

Fig. 1. Local search heuristic (LS-1) for Div-k-Median∅.

So, in the case that
∑

i ri < k, in order to satisfy the constraint |S| = k, we
can simply increase the lower-bound group constraints ri → r′

i > ri, i = 1, . . . , t
so that

∑
i r′

i = k. However, if we do this in an arbitrary fashion we might make
a suboptimal choice. To circumvent this, we can exhaustively inspect all possible
choices. For this, it suffices to construct

(
k−∑

i ri+t−1
t−1

)
= O(kt−1) instances of

MatroidMedian. In the case of rb-Median discussed in Sect. 4.2, i.e., when
r1 + r2 < k, the required number of instances is linear in k.

5 Proposed Methods

In this section we present practical methods to solve the diversity-aware
clustering problem. In particular, we present local-search algorithms for
Div-k-Median∅ and a method based on relaxing the representation constraints
for Div-k-Median.

5.1 Local Search

Algorithms based on the local-search heuristic have been used to design approx-
imation algorithms for many optimization problems, including facility loca-
tion [2,7,14] and k-median [2,7,15] problems. In light of the inapproximabil-
ity results presented in the previous section it comes as no surprise that any
polynomial-time algorithm, including local-search methods, cannot be expected
to find a feasible solution for the Div-k-Median problem. Nevertheless, local-
search methods are viable for the tractable instances discussed in Sect. 4, and
can be shown to provide provable quality guarantees.

For solving the Div-k-Median∅ problem we propose two algorithms based
on local search.

Local Search Variant#1 (LS-1). We propose a single-swap local-search algo-
rithm described in Fig. 1. The key difference with respect to vanilla local search is
that we must ensure that a swap does not violate the representation constraints.

We stress that the proposed algorithm LS-1 is not viable for general instances
of Div-k-Median with intersecting facility groups. To illustrate, we present an
example in Fig. 2. Let Fr, Fg, Fb, Fy be facility groups, corresponding to the
colors red, green, blue and yellow, respectively. The intersection cardinality con-
straints rr = rg = rb = ry = 1 and the number of medians k = 2.
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f1 f3

f2 f4

c

c

1

1

c

c

1
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Fig. 2. An example illustrating the infeasibility of local search. (Color figure online)

1. Initialize — arbitrarily pick:
(a) Si ⊆ Fi such that |Si| = ri for all i ∈ [t],
(b) St+1 ⊆ F \ ⋃

i∈[t] Si such that |St+1| = k − ∑
i∈[t] ri, and

(c) initial solution is S =
⋃

i∈[t] Si ∪ St+1.
2. Iterate — while there exists tuples (s1, . . . , st+1) and (s′

1, . . . , s
′
t+1) such that:

(a) si ∈ Si, s′
i ∈ Fi for all i ∈ [t], st+1 ∈ St+1, s′

t+1 ∈ F \ ⋃
i∈[t] Si

(b) S \ {s1, . . . , st+1} ∪ {s′
1, . . . , s

′
t+1} is feasible, and

(c) cost(S \ {s1, . . . , st+1} ∪ {s′
1, . . . , s

′
t+1}) < cost(S)

set S = S \ {s1, . . . , st+1} ∪ {s′
1, . . . , s

′
t+1}.

3. Return S.

Fig. 3. Local-search heuristic (LS-2) for Div-k-Median∅

Let S = {f1, f2} be a feasible solution. It is trivial to see that we cannot swap
f1 with either f3 or f4, since both swaps violate the constraints |S ∩ Fb| ≥ 1
and |S ∩ Fr| ≥ 1, respectively. Likewise we cannot swap f2 with either f3 or f4.
So our local-search algorithm is stuck at a local optima and the approximation
ratio is c, which can be made arbitrarily large. We can construct a family of
infinitely many such problem instances where the local-search algorithm returns
arbitrarily bad results. Similarly we can construct a family of infinitely many
instances where the Div-k-Median problem with t facility groups and k < t
would require at least t−1 parallel swaps to ensure that local search is not stuck
in a local optima. This example illustrates the limited applicability of the local-
search heuristic for the most general variant of the Div-k-Median problem,
where the facility groups overlap in an arbitrary way.

Local Search Variant#2 (LS-2). Our second approach is the multi-swap
local-search heuristic described in Fig. 3. The algorithm works by picking ri facil-
ities from Fi and k − ∑

i∈[t] ri from F as an initial feasible solution. We swap a
tuple of facilities (s1, . . . , st+1) with (s′

1, . . . , s
′
t+1) as long as the cost improves.

The algorithm has running time of O(nt), and thus it is not practical for large
values of t. The algorithm LS-2 is a 5+ ε approximation for the Div-k-Median∅
problem with two facility groups i.e., t = 2 (see Sect. 4.2). Bounding the approx-
imation ratio of algorithm LS-2 for t > 2 is an open problem.

Note that the cost of the solution obtained by LS-1 and LS-2 is the k-median
cost, that is, cost(S) =

∑
v∈C mins∈S d(v, s).
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5.2 Relaxing the Representation Constraints

In view of the difficulty of solving the problem as formulated in Sect. 3, we
explore alternative, more easily optimized formulations to encode the desired
representation constraints. We first observe that a straightforward approach,
akin to a Lagrangian relaxation, might result in undesirable outcomes. Consider
the following objective function:

cost(S) =
∑

v∈C

min
s∈S

d(v, s) + λ
∑

i∈[t]

max{ri − |Fi ∩ S|, 0}, (1)

that is, instead of enforcing the constraints, we penalize their violations. A prob-
lem with this formulation is that every constraint satisfaction—up to ri—counts
the same, and thus the composition of the solution might be imbalanced.

We illustrate this shortcoming with an example. Consider F = {F1, F2, F3},
k = 6, r1 = 2, r2 = 2, r3 = 0. Now consider two solutions: (i) 2 facilities from
F1, 0 from F2, and 4 from F3; and (ii) 1 facility from F1, 1 from F2, and 4 from
F3. Both solutions score the same in terms of number of violations. Nevertheless,
the second one is more balanced in terms of group representation. To overcome
this issue, we propose the following alternative formulation.

costf (S) =
∑

v∈C

min
s∈S

d(v, s) + λ
∑

i∈[t]

ri

|S ∩ Fi| + 1
. (2)

The second term that encodes the violations enjoys group-level diminishing
returns. Thus, when a facility of a protected group is added, facilities from other
groups will be favored. The cardinality requirements ri act here as weights on
the different groups.

We optimize the objective in Eq. 2 using vanilla local-search by picking an
arbitrary initial solution with no restrictions.

6 Experimental Evaluation

In order to gain insight on the proposed problem and to evaluate our algo-
rithms, we carried out experiments on a variety of publicly available datasets.
Our objective is to evaluate the following key aspects:

Price of Diversity: What is the price of enforcing representation constraints?
We measure how the clustering cost increases as more stringent requirements on
group representation are imposed.

Relaxed Objective: We evaluate the relaxation-based method, described in
Sect. 5, for the intractable case with facility group intersections. We evaluate
its performance in terms of constraint satisfaction and clustering cost.

Running Time: Our problem formulation requires modified versions of standard
local-search heuristics, as described in Sect. 5. We evaluate the impact of these
variants on running time.
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Table 2. Dataset statistics. n is the number of data points, D is dataset dimension, t
is number of facility types. Columns 4, 5 and 6, 7 is the maximum and minimum size
of facility groups when divided into two disjoint groups and four intersecting groups,
respectively.

Dataset n D t = 2 t = 4

Min Max Min Max

heart-switzerland 123 14 10 113 – –

heart-va 200 14 6 194 – –

heart-hungarian 294 14 81 213 – –

heart-cleveland 303 14 97 206 – –

student-mat 395 33 208 187 – –

house-votes-84 435 17 267 168 – –

student-por 649 33 383 266 – –

student-per2 666 12 311 355 – –

autism 704 21 337 367 20 337

hcv-egy-data 1 385 29 678 707 40 698

cmc 1 473 10 220 1 253 96 511

abalone 4 177 9 1 307 1 342 – –

mushroom 8 123 23 3 375 4 748 1 072 3 655

nursery 12 959 9 6 479 6 480 3 239 4 320

Datasets. We use datasets from the UCI machine learning repository [12]. We
normalize columns to unit norm and use the L1 metric as distance function. The
dataset statistics are reported in Table 2.

Baseline. As a baseline we use a local-search algorithm with no cardinality
constraints. We call this baseline LS-0. For each dataset we perform 10 exe-
cutions of LS-0 with random initial assignments to obtain the solution with
minimum cost �0 among the independent executions. LS-0 is known to provide
a 5-approximation for the k-median problem [2]. We also experimented with
exhaustive enumeration and linear program solvers, however these approaches
failed to solve instances with modest size, which is expected given the inherent
complexity of Div-k-Median.

Experimental Setup. The experiments are executed on a desktop with 4-core
Haswell CPU and 16 GB main memory. Our source code is written in Python
and we make use of numpy to enable parallelization of computations. Our source
code is available as open source [26].

6.1 Results

Price of Diversity. For each dataset we identify a protected attribute and
classify data points into two disjoint groups. In most datasets we choose gender,
except in house-votes dataset where we use party affiliation. We identify the
smallest group in the dataset (minority group) and measure the fraction of the
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Fig. 4. Price of diversity (k = 10).

chosen facilities that belong to that group (minority fraction). When running
LS-1 and LS-2 we enforce a specific minority fraction and repeat the experiments
for ten iterations by choosing random initial assignments. We refer to the cost
of the solutions obtained from LS-0, LS-1 and LS-2 as �0, �1 and �2, respectively.

The price of diversity (pod) is the ratio of increase in the cost of the solution
to the cost of LS0 i.e., pod(LS-1) = �1−�0

�0
and pod(LS-2) = �2−�0

�0
. Recall that

in theory the pod is unbounded. However, this need not be the case in practi-
cal scenarios. Additionally, we compute the differences in group representation
between algorithms as follows. Let Ri = {ri

1, . . . , r
i
t} be the set representing the

number of facilities chosen from each group in F by algorithm LS−j. For j = 1, 2
we define L1(LS−j) =

∑
i∈[t] |rj

i − r0i |/(kt).
In Fig. 4, we report the price of diversity (pod) as a function of the imposed

minority fraction for LS-1 and LS-2. The blue and yellow vertical lines denote
the minority fraction achieved by the baseline LS-0 and the fraction of minority
facilities in the dataset, respectively. Notice that the minority fraction of the
baseline is very close to the minority fraction of the dataset. With respect to
our methods LS-1 and LS-2, we observe little variance among the independent
executions. Most importantly, we observe that the price of diversity is relatively
low, that is, for most datasets we can vary the representation requirements over
a wide range and the clustering cost increases very little compared to the non-
constrained version. An increase is observed only for a few datasets and only for
extreme values of representation constraints. We also observe that LS-1 outper-
forms consistently LS-2. This is good news as LS-1 is also more efficient.

In Fig. 5, we report the L1 measure as a function of the increase in the
minority fraction. Note that we enforce a restriction that the ratio of minority
nodes should be at least the minority fraction, however, the ratio of facilities
chosen from the minority group can be more than the minority fraction enforced.
In this experiment we measure the change in the type of facilities chosen. We
observe more variance in L1 score among the independent runs when the minority
fraction of the solution is less than the minority fraction of the dataset. This
shows that the algorithm has more flexibility to choose the different type of
facilities. In Fig. 7 we report pod and L1 measure for moderate size datasets.
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Fig. 5. L1 distance of the chosen facility types (k = 10).

Fig. 6. Running Time (k = 10).

Running Time. In Fig. 6 we report the running time of LS-1 and LS-2 as a
function of the minority fraction. For small datasets we observe no significant
change in the running time of LS-1 and LS-2. However, the dataset size has a
significant impact on running time of LS-2. For instance in the hcv-egy-data
dataset, for k = 10 and minority fraction 0.1, LS-2 is 300 times slower than LS-1.
This is expected, as the algorithm considers a quadratic number of replacements
per iteration. Despite this increase in time, there is no significant improvement
in the cost of the solution obtained, as observed in Fig. 4. This makes LS-1 our
method of choice in problem instances where the facility groups are disjoint.

Relaxed Objective. In our final set of experiments we study the behavior of
the LS-0 local-search heuristic with the relaxed objective function of Eq. (2). In
Fig. 8 we report price of diversity (pod) and the fraction of violations of repre-
sentation constraints L∗ for each value of λ = {21, . . . , 27}. For each dataset we
choose four protected attributes to obtain intersecting facility types, and perform
experiments with k = 10 and the representation constraints set R = {3, 3, 3, 3}.
The value of L∗ measures the fraction of violations of the representation con-
straints i.e., L∗ =

∑
i∈[t] min (0,|S∩Fi|−ri))

∑
i∈[t] ri

. With the increase in the value of λ the
value of L∗ decreases and the value of pod increases, as expected. However,
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Fig. 7. Price of diversity for moderate size datasets (k = 10).

Fig. 8. Price of diversity for intersecting facility types (k = 10).

the increase in pod is very small and in all cases it is possible to find solutions
where both pod and L∗ are very close to zero, that is, solutions that have very
few constraint violations and their clustering cost is almost as low as in the
unconstrained version.

7 Conclusion

We introduce a novel formulation of diversity-aware clustering, which ensures
fairness by avoiding under-representation of the cluster centers, where the cluster
centers belong in different facility groups. We show that the general variant of the
problem where facility groups overlap is NP-hard, fixed-parameter intractable
with respect to the number of clusters, and inapproximable to any multiplicative
factor. Despite such negative results we show that the variant of the problem with
disjoint facility types can be approximated efficiently. We also present heuristic
algorithms that practically solve real-world problem instances and empirically
evaluated the proposed solutions using an extensive set of experiments. The main
open problem left is to improve the run-time complexity of the approximation
algorithm, in the setting of disjoint groups and t > 2, so that it does not use
repeated calls to a linear program. Additionally, it would be interesting to devise
FPT algorithms for obtaining exact solutions, again in the case of disjoint groups.
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Abstract. Field observations form the basis of many scientific studies,
especially in ecological and social sciences. Despite efforts to conduct such
surveys in a standardized way, observations can be prone to systematic
measurement errors. The removal of systematic variability introduced
by the observation process, if possible, can greatly increase the value of
this data. Existing non-parametric techniques for correcting such errors
assume linear additive noise models. This leads to biased estimates when
applied to generalized linear models (GLM). We present an approach
based on residual functions to address this limitation. We then demon-
strate its effectiveness on synthetic data and show it reduces systematic
detection variability in moth surveys.

Keywords: Sibling regression · GLM · Noise confounding

1 Introduction

Observational data is increasingly important across a range of domains and may
be affected by measurement error. Failure to account for systemic measurement
error can lead to incorrect inferences. Consider a field study of moth counts for
estimating the abundance of different moth species over time. Figure 1(a) shows
the counts of Semiothisa burneyata together with 5 other species. We see that
all species had abnormally low counts on the same day. This suggests that the
low count is due to a confounder and not an actual drop in the population. The
same phenomenon is also prevalent in butterfly counts (Fig. 1(b)), where poor
weather can limit detectability.

An abstract version of the aforementioned situation can be represented by
Fig. 3. X here represents ecological factors such as temperature, season etc.; and
Z1, Z2 represent the true abundance of species (such as moths). N is a corrupt-
ing noise (such as lunar phase) which affects the observable abundance θ of the
organisms. Y represents an observation of the population and is modeled as a
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(a)

(b)

Fig. 1. Systematic detection error in moth and butterfly counts: (a) Correlated counts
of other moths strongly suggest this is a detection problem. (b) Correlated detection
errors in butterfly counts on day 234.

sample drawn distribution of observed abundance (for e.g. a Poisson distribu-
tion). Directly trying to fit a model ignoring the noise N can lead to erroneous
conclusions about key factors such as effect of temperature on the population.

Distinguishing observational noise and measurement variability from true
variability, often requires repeated measurements which in many cases can be
expensive, if not impossible. However, sometimes even in the absence of
repeated measurements, the effect of confounding noise can be estimated. Sib-
ling regressions (Schölkopf et al. 2015) refer to one such technique that use aux-
iliary variables influenced by a shared noise factor to estimate the true value of
the variable of interest. These techniques work without any parametric assump-
tion about the noise distribution (Schölkopf et al. 2015; Shankar et al. 2019).
However, these works assume an additive linear noise model, which limits their
applications. For example in the aforementioned insect population case the effect
of noise is more naturally modeled as multiplicative rather than additive.

We introduce a method that extends these ideas to generalized linear models
(GLMs) and general exponential family models. First, we model non-linear effect
of noise by considering it as an additive variable in the natural parameters of the
underlying exponential family. Secondly, instead of joint inference of the latent
variables, a stagewise approach is used. This stagewise approach is justified from
a generalized interpretation of sibling regression. We provide justification behind
our approach and then test it on synthetic data to quantitatively demonstrate the
effectiveness of our proposed technique. Finally, we apply it to the moth survey
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data set used in Shankar et al. (2019) and show that it reduces measurement
error more effectively than prior techniques.

2 Related Work

Estimation of observer variation can be framed as a causal effect estimation prob-
lem (Bang and Robins 2005; Athey and Imbens 2016). Such conditional estimates
often require that all potential causes of confounding errors have been measured
(Sharma 2018). However, real-life observational studies are often incomplete, and
hence these assumptions are unlikely to hold.

Natarajan et al. (2013); Menon et al. (2015) develop techniques to handle
measurement error as a latent variable. Similar approaches have been used to
model observer noise as class-conditional noise (Hutchinson et al. 2017; Yu et
al. 2014). One concern with such approaches is that they are generally uniden-
tifiable.

A related set of literature is on estimation with missing covariates (Jones
1996; Little 1992). These are generally estimated via Monte-Carlo methods
(Ibrahim and Weisberg 1992), Expectation-maximization like methods (Ibrahim
et al. 1999) or by latent class analysis (Formann and Kohlmann 1996). Another
set of approaches require strong parametric assumptions about the joint distribu-
tion (Little 1992). Like other latent variable models, these can be unidentifiable
and often have multiple solutions (Horton and Laird 1999).

MacKenzie et al. (2002) and Royle (2004) learn an explicit model of the detec-
tion process to isolate observational error in ecological surveys using repeated
measurements. Various identifiability criteria have also been proposed for such
models (Sólymos and Lele 2016; Knape and Korner-Nievergelt 2016). Lele et al.
(2012) extend these techniques to the case with only single observation. How-
ever, these models are only as reliable as the assumptions made about the noise
variable. Our approach on the other hand makes weaker assumptions about the
form of noise.

Schölkopf et al. (2015) introduced ’Half-sibling regression’; an approach for
denoising of independent variables. This approach is both identifiable and does
not make assumptions about the prior distribution of noise. Shankar et al. (2019)
further extended the technique to the case when the variables of interest are only
conditionally independent given an observed common cause.

3 Preliminaries

Exponential Family Distributions. A random variable Y is said to be from an
exponential family (Kupperman 1958) if its density can be written as

p(y|θ) = h(y) exp(θT T (y) − A(θ))

where θ are the (natural) parameters of the distribution, T (y) is a function of the
value y called the sufficient statistic, and A(θ) is the log normalizing constant,
and h(y) is a base measure.
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Given an exponential family density p(y|θ), let L(y, θ) = − log p(y|θ) be
the negative log-likelihood loss function at data point y, and let L(θ) =
1
m

∑m
i=1 L(y(j), θ) be the overall loss of a sample y(1), . . . , y(m) from the model.

Also let I(θ) = ∇2A(θ) be the Fisher information.
We summarize few standard properties (e.g., see Koller and Friedman 2009)

of exponential families that we will be of use later:

1. ∇A(θ) = E[T (Y )].
2. ∇θL(y, θ) = A(θ) − T (y)
3. ∀y : ∇2

θL(y, θ) = ∇2A(θ) = I(θ). This also implies that ∇2L(θ) = ∇2A(θ) =
I(θ).

Generalized Linear Models. Generalized Linear Models (GLMs) (Nelder and
Wedderburn 1972) are a generalization of linear regression models where the
output variable is not necessarily Gaussian. In a GLM, the conditional distri-
bution of Y given covariates X is an exponential family with mean E[Y |X] is
related to a linear combination of the covariates by the link function g, and with
the identity function as the sufficient statistic, i.e., T (Y ) = Y . We focus on the
special case of GLMs with canonical link functions, for which θ = XT β, i.e.,
the natural parameter itself is a linear function of covariates. For the canonical
GLM, the following properties hold (Koller and Friedman 2009)1:

1. The link function is determined by A : E[Y |X] = g−1(XT β) = ∇A(XT β)
2. The conditional Fisher information matrix IY |X = I·|X(θ) = ∇2A(XT β)

GLMs are commonly used in many applications. For example, logistic regres-
sion for binary classification is identical to a Bernoulli GLM. Similarly, regres-
sions where the response variable is of a count nature, such as the number of
individuals of a species, are based on Poisson GLM.

Sibling Regression. Sibling regression (Schölkopf et al. 2015; Shankar et al. 2019)
is a technique which detects and corrects for confounding by latent noise variable
using observations of another variable influenced by the same noise variable.

The causal models depicted in Fig. 2 capture the essential use case of sibling
regression techniques. Here, Z1, Z2 represent the unobserved variables of interest,
which we would like to estimate using the observed variables Y1, Y2; however the
observations are confounded by the common unobserved noise N . Schölkopf et
al. (2015) use the model illustrated in Fig. 2(a) as the basis of their half-sibling
regression approach to denoise measurements of stellar brightness. The a priori
independence of Z1, Z2 implies that any correlation between Y1, Y2 is an artifact
of the noise process.

The half-sibling estimator of Z1 from (Schölkopf et al. 2015) is

Ẑ1 = Y1 − E[Y1|Y2] + E[Y1] (1)

1 These properties can be obtained by applying the aforementioned exponential family
properties.
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Y1 Y2

NZ1 Z2

(a)

Y1 Y2

X

NZ1 Z2

(b)

1 2

NZ1 Z2

Y1 Y2

D1 D2

(c)

Fig. 2. (a) Half-sibling regression. (b) Three-quarter sibling regression. (c) Generalized
linear sibling model without covariates.

This equation can be interpreted as removing the part of Y1 that can be explained
by Y2, and then adding back the mean E[Y1]. Schölkopf et al. (2015) did not
include the final E[Y1] term, so our estimator differs from the original by a con-
stant; we include this term so that E[Ẑ1] = E[Y1]. In practice, the expectations
required are estimated using a regression model to predict Y1 from Y2, which
gives rise to the name “sibling regression”.

Three-quarter sibling regression (Shankar et al. 2019) generalizes the idea
of half-sibling regression to the case when Z1 and Z2 are not independent but
are conditionally independent given an observed covariate X. In the application
considered by Shankar et al. (2019), these variables are population counts of
different species in a given survey; the assumed dependence structure is shown
in Fig. 2(b). This estimator has a similar form to the half sibling version, except
the expectations now condition on X:

Ẑ1|X = Y1 − E[Y1|X,Y2] + E[Y1|X] (2)

4 Sibling Regression for Generalized Linear Models

Model. We now formally specify the model of interest. We will focus first on the
half-sibling style model with no common cause X, and revisit the more general
case later. Figure 2(c) shows the assumed independence structure. As in the
previous models, the true variables of interest are Z1 and Z2, and the observed
variables are Y1 and Y2. The variable N is confounding noise that influences
observations of both variables. Unlike half-sibling regression, exponential-family
sampling distributions D1 and D2 mediate the relationship between the hidden
and observed variables; the variables θ1 and θ2 are the parameters of these
distributions. The dotted arrow indicate that the relation between Yi and θi is
via sampling from an exponential family distribution, and not a direct functional
dependency. On the other hand θ1, θ2 are deterministic functions of (Z1, N)
and (Z2, N), respectively. We assume the noise acts additively on the natural
parameter of the exponential family. Mathematically the model is

Yi ∼ Di(θi), θi = Zi + N i ∈ {1, 2}. (3)
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More generally, the noise term N can be replaced by a non-linear function ψi(N)
mediating the relationship between the noise mechanism and the resultant addi-
tive noise; however, in general ψi will not be estimable so we prefer to directly
model the noise as additive.

The key idea behind sibling regression techniques is to find a “signature” of
the latent noise variable using observations of another variable. In this section
we will motivate our approach by reformulating prior sibling regression methods
in terms of residuals.

Lemma 1. Let Ri = Yi − E[Yi] be the residual (deviation from the mean) of
Yi in the half-sibling model, and let Ri|X = Yi − E[Yi|X] be the residual relative
to the conditional mean in the three-quarter sibling model. The estimators of
Eqs. (1) and (2) can be rewritten as

Ẑ1 = Y1 − E[R1|R2], Ẑ1|X = Y1 − E
[
R1|X | R2|X

]
.

Proof. For the half-sibling case, write

Ẑ1 = Y1 − E[Y1 | Y2] + E[Y1]

= Y1 − E
[
Y1 − E[Y1] | Y2

]

= Y1 − E
[
Y1 − E[Y1] | Y2 − E[Y2]

]

= Y1 − E[R1 | R2]

The three-quarter case is similar.

This formulation provides a concise interpretation of sibling regressions as
regressing the residuals of Y1 on those of Y2.

4.1 Extension to GLM

1 2

N

Z1 Z2

Y1 Y2

D1 D2

X

Fig. 3. Generalized sibling model with
covariates

Problem Statement. The problem is
to obtain estimates of Z1 and Z2

given m independent observations (y(1)
1 ,

y
(1)
2 ), . . . (y(m)

1 , y
(m)
2 ) of Y1 and Y2. The

general idea is, as in prior sibling regres-
sions, to model and remove the sig-
nature of the noise variable. Schölkopf
et al. (2015); Shankar et al. (2019) solve
this problem in the special case where
Di is Dirac. We wish to extend this
to the case of other sampling distribu-
tions.
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By symmetry, it suffices to focus on estimating only one variable, so we will
henceforth consider Z1 to be the estimation target. We allow the possibility that
Z2 is multivariate to model the case when there are many siblings that each
contain a trace of the noise variable.

Inspiring from the residual form of sibling-regression 1, we derive a residual
which can be used to approximate the confounding noise in the GLM case.

Computing a residual requires defining a reference, in analogy to the condi-
tional global mean E[Y1|X] used in Eq. 2. We will use the maximum-likelihood
estimate under the “global” model Y1 ∼ D1(XT β) as the reference. Let β̂ be
the estimated regression coefficients for the relationship between the covariates
X and variable Y1. The corresponding model predictions Ŷ1 are then given by
g−1(XT β̂) where g is the link function. We define R as:

R(Y ) = I−1
Y |X(Y − Ŷ ) (4)

where IY |X is the conditional Fisher information.

Proposition 1

E[R(Y1)|X,N ] = Z1 + N − XT β̂ + O(|Z1 + N − XT β̂|2)
≈ Z1 + N − XT β̂

Proof. We temporarily drop the subscript so that (Y |Z,N) ∼ D(θ) where
θ = Z + N is the natural parameter of the exponential family distribution D
corresponding to the specified GLM.

E[R(Y )|X,N ] = E
[
I−1
Y |X(Y − Ŷ )|X,N ]

= E
[
[IY |X(β̂)]−1(Y − ∇A(XT β̂)|X,N ]

= [IY |X(β̂)]−1(E
[
Y |X,N ] − ∇A(XT β̂))

= [IY |X(β̂)]−1(∇A(Z + N) − ∇A(XT β̂))

= [IY |X(β̂)]−1[∇2 A(XT β̂)(Z + N − XT β̂)

+ O(|Z + N − XT β̂|2)]
= [(Z + N − XT β̂) + O(|Z + N − XT β̂|2)]

The second line used the definition of canonical link function. The third uses
linearity of expectation. The fourth line uses the first property of exponential
families from Sect. 3. The fifth line applies the Taylor theorem to ∇A about
XT β̂. The last two lines use our previous definitions that IY |X = ∇2A(θ) and
θ = XT β + N . Restoring the subscripts on all variables except N , which is
shared, gives the result.

In simpler terms, R(Yi) can provide a useful approximation for Zi+N−XT β̂i.
Moreover, if we assume that X largely explains Zi, then the above expression is
dominated by N . We would then like to use R to estimate and correct for the
noise.
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Proposition 2. Let the approximation in Proposition 1 be exact, i.e.,
E[R(Yi)|X,N ] = Zi + N − XT β̂i, then E[R(Y1)|R(Y2),X] − E[R(Y1)|X] =
E[N |X,R(Y2)] upto a constant.

The derivation is analogous to the one presented by Shankar et al. (2019) and
is given in Appendix ??. While the higher order residual terms in Proposition
1 generally cannot be ignored, Proposition 2 informally justifies how we can
estimate N by regressing R(Y1) on R(Y2).

Note that R(Yi) is a random variable and that the above expression is for
the expectation of R which may not be exactly known (due to limited number
of samples drawn from each conditional distribution). However we observe that
a) Z1, Z2 are independent conditional on the observed X and b) the noise N is
independent of X and Z and is common between R(Y1),R(Y2). This suggests
that in presence of multiple auxiliary variables (let Y−i denote all Y variables
except Yi), we can improve our estimate of N by combining information from all
of them. Since Zi’s are conditionally independent (given X) of each other, we can
expect their variation to cancel each other on averaging. The noise variable on the
other hand being common will not cancel. Appendix ?? provides a justification
for this statement.

Once we have an estimate N̂ of the noise N , we can now estimate Z1. However
unlike standard sibling regression (Fig. 2(a), 2(b)), where the observed Y1 was
direct measurement of Z1, in our case the relationship gets mediated via θ1. If
we had the true values of θ1 one can directly use Eq. 2 to obtain Z1. One can try
to obtain θ1 from Y1; but since Y1 includes sampling error affecting our estimates
of Z1. Instead we rely once again on the fact that the model is a GLM, which
are efficient and unbiased when all covariates are available. We re-estimate our
original GLM fit but now with additional covariate N̂ which is a proxy for N .

Implementation. Based on the above insights, we propose Algorithm 1, labelled
Sibling GLM (or SGLM) for obtaining denoised estimates from GLM models.
In practice, the conditional expectations required are obtained by fitting regres-
sors for the target quantity from the conditioning variables . As such we denote
them by Ê[·|·]): to distinguish them from true expectation values. Since, per
Proposition 1, the true expected value is approximately linear in the condition-
ing variables, in our experiments we used ordinary least squares regression to
estimate the conditional expectations in Step 3.

5 Experiments

In this section, we experimentally demonstrate the ability of our approach to
reduce estimation errors in our proposed setting, first using simulations and
semi-synthetic examples and then with a moth survey data set. Furthermore in
our experiments we found the correlation between R(Yi) and X to be small, and
therefore simplified Step 3 and 4 in Algorithm 1 simplify to N = Ê[R(Y1)|R(Y2)]
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Algorithm 1 SGLM Algorithm

Input: (X(k), Y
(k)
1 , Y

(k)
2 )k=1,...,n

Output: Estimates of latent variable Ẑ1

Training: denote fitted regression models by Ê[·|·]):
1. Compute Ê[Y1|X], Ê[Y2|X] by training suitable GLM
2. Compute R(Y1),R(Y2) as given by Eq. 4
3. Fit regression models for R(Y1) using R(Y2), X as predictors to obtain estimators

of Ê[R(Y1)|R(Y2), X], Ê[R(Y1)|X]
4. Create N̂ such that its kth value N̂ (k) = Ê[R(Y1)|R(Y2)

(k), X(k)] − Ê[R(Y1)|X(k)]
∀k ∈ [1, n]

5. Estimate Ẑ1 by fitting GLM models with n as an additional covariate i.e Ê[Y1|X,n]

5.1 Synthetic Experiment

We first conduct simulation experiments where, by design, the true value of Z1

is known. We can then quantitatively measure the performance of our method
across different ranges of available auxiliary information contained within Y−1.

Description. We borrow the approach of Schölkopf et al. (2015), generalized to
standard GLM distributions. We run these experiments for Poisson and Gamma
distributions. This simulation was conducted by generating 120 observations of
20 different Poisson variables. Each individual observation was obtained via a
noise-corrupted Poisson or Gamma distribution where, for each observation, the
noise affected all variables simultaneously as described below. Specifically, each
variable Yi at a single observation time is obtained via a generative process
dependent on X ∈ R and noise variable N ∈ R as:

Yi ∼ D(w(i)
X X

︸ ︷︷ ︸
Zi

+w
(i)
N N + ε)

The variables X and N are drawn uniformly from [−1, 1]. Similarly, the coeffi-
cient w

(i)
N is drawn from a uniform distribution on [−1, 1], while ε ∼ N (0, σ2

ε ) is
independent noise. Finally, w

(i)
X is drawn from the standard conjugate prior for

the distribution D.

Results. We conducted these simulations and measured the error in the esti-
mated Z versus the true Z. Due to inherent variability caused by sampling,
the error will not go down to zero. We present below the results on Poisson
regression, while other results can be found in the appendix.

Figure 4 shows the estimation error for Poisson regression as a function of the
dimension n of Y−1, i.e., the number of auxiliary variables available for denoising.
In Fig. 4(a) we plot the mean square error against the true value of Z1 aggregated
across the runs. Clearly increasing n reduces error. This is expected, as the noise
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(a) (b)

(c) (d)

Fig. 4. Results on synthetic data. Mean Squared error (a), bias (b), and residual com-
parison (c,d) vs dimension of |Y2| on Poisson regressions

N can be better estimated using more auxiliary variables. This in turn leads to
lower error in estimates. Due to the effect of N , the standard GLM estimates
are biased. The simulation results bear this out, where we get more than 10%
bias in Poisson regression estimates. On the other hand, by being able to correct
for the noise variable on a observation basis, our approach gives bias less than
3%. We plot in Fig. 4(b) the bias of these estimates for Poisson. Once again as
expected, increasing n reduces the bias.

We also experiment with other possible versions of residuals R2 including
residual deviance and student residuals. In Fig. 4(c) we have plotted the results
of these methods against the method of Shankar et al. (2019) (by fitting lin-
ear models on transformed observations). As is evident from the figure, data
transformation, while a common practice, leads to substantially larger errors.
Figure 4(d) presents the effect of changing the residual definition. Under our
interpretation of sibling regression (Lemma 1), any version of residual would be
acceptable. This intuition is borne out it in these results as all the residuals
perform reasonably. However from the figure, our proposed residual definition is
the most effective.

2 Details in the Appendix.
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5.2 Discover Life Moth Observations

Our next set of experiments use moth count surveys conducted under the Dis-
cover Life Project3. The survey protocol uses screens illuminated by artificial
lights to attract moths and then records information of each specimen. This
data has been collected over multiple years at different locations on a regular
basis.

(a)

Fig. 5. Seasonal patterns of a) Hypoprepia fucosa and b) Microcrambus elegans as
estimated by 3QS regression and our method alongside the observed counts. Note the
higher peaks and better overall fit of our method.

A common systematic confounder in such studies is moonlight. Moth counts
are often low on full moon nights as the light of the moon reduces the number
of moths attracted to the observation screens. In their paper, Shankar et al.
(2019) present the ‘three-quarter sibling’ (3QS) estimator and use it to denoise
moth population counts. However, to apply the model they used least-squares
regression on transformed count variables. Such transformations can potentially
induce significant errors in estimation. The more appropriate technique would
be to build models via a Poisson generalized additive model (GAM). In this
experiment, we use our technique to directly learn the underlying Poisson model.

Description. We follow the methodology and data used by Shankar et al.
(2019). We choose moth counts from the Blue Heron Drive site for 2013 through
2018. We then follow the same cross-validation like procedure, holding each year
out as a test fold, while using all other years for training. However, instead of
3 https://www.discoverlife.org/moth.

https://www.discoverlife.org/moth
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transforming the variables, we directly estimated a Poisson GAM model with
the pyGAM (Servén and Brummitt 2018) package. Next, we compute Zi with
our SGLM-algorithm. This procedure is repeated for all folds and all species. We
compare the MSE obtained by our estimates against the 3QS estimates. Note
here that due to the absence of ground truth, the prediction error is being used
as a proxy to assess the quality of the model. The hypothesis is that correcting
for systematic errors such as the ones induced by the moon will help to generalize
better across years.

Results. First we compare the residuals as used in Shankar et al. (2019) (by fit-
ting linear models on transformed observations) against the residuals as obtained
by our method, in terms of correlation with lunar brightness. A higher (magni-
tude) correlation indicates that the residuals are a better proxy for this unob-
served confounder. The results are in Table 1. For comparison, we also provide
correlations obtained by simply using the difference between the model predic-
tion and observed values. Clearly, our method is most effective at capturing the
effect of lunar brightness on the counts.

Fig. 6. Average percent improve-
ment in predictive MSE relative to
a GAM fitted to the raw counts

Table 1. Correlation with lunar brightness
of different residuals. R̂SGLM is our residual,
R̂3QS are residuals from 3QS estimator and
RRaw is the raw difference between predic-
tion and observation.

Species Moonlight Correlation

RSGLM R3QS Rraw

Melanolophia C −0.55 −0.21 −0.42

Hypagyrtis E −0.66 −0.42 −0.62

Hypoprepia F −0.65 −0.36 −0.59

Next, we compare the decrease in prediction error obtained by our method
against the methods tested by Shankar et al. (2019). These results are presented
in Fig. 6. The mean squared error (MSE) is computed only on data from the
test-year with moon brightness zero. “Global” is an oracle model shown for
comparison. It is fit on multiple years to smooth out both sources of year-to-
year variability (intrinsic and moon phase). “MB” is a model that includes moon
brightness as a feature to model detection variability. From the figure, we can see
that our method not only improves substantially over the 3QS estimator (9%
vs 4%) but is comparable with the global model fit on multiple years (9% vs
10%).4 This is partly because the transformed linear model is unsuited for these
4 The global model is included as a rough guide for the best possible generalization

performance, even though it does not solve the task of denoising data within each
year.
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variables. Our technique on the other hand can directly handle a broader class
of conditional models and more diverse data types.

Finally, to present the difference in behavior of the two approaches, we plot
the estimated moth population curves in Fig. 5. These curves are plotted for
two different species with the dotted line representing the 3QS regression model,
while the bold line represents our method. The actual observed counts are also
plotted as points. One can clearly see the impact of the transformation, which
produces flatter curves. For example, the height of the peaks for Hypoprepia
fucosa end up significantly lower than the observed counts. On the other hand,
our method predicts higher and narrower peaks, which better match the observed
values.

6 Ethical Impact

Applications. Our method is more focused towards ecological survey data appli-
cations. Such surveys provide information useful for setting conservation policies.
However there are other potential domains of application. Measurement noise is
ubiquituous in experimental studies, and applied scientists often used different
schemes to protect against confounding (Genbäck and de Luna 2019) and mea-
surement effects (Zhang et al. 2018). As such our method may be useful applied
to domains such as drug reporting (Adams et al. 2019) and epidemiology (Robins
and Morgenstern 1987).

Implications. Our method provides an approach to handle the presence of
unobserved confounding noise. The unobserved confounder however need not
be a nuisance variable. Empirical datasets often exhibit different biases due to
non-nuisance confounders (Davidson et al. 2019), which can lead to unfairness
with respect race, gender and other protected attributes (Olteanu et al. 2016;
Chouldechova et al. 2018). In some cases a protected attribute itself might be
a confounder, in which case our approach can have implications for developing
fairer models. Since our method partially recovers the unobserved confounder
(noise), it can lead to identification or disclosure of protected attributes even
when such data has been hidden or unavailable. This could lead to issues regard-
ing privacy and security. The proposed method does not handle such issues, and
adequate measures may be warranted for deploying this method.

7 Conclusion

Our paper has two primary contributions: a) reinterpreting sibling regression in
residual form which enabled the generalization to GLMs and b) presenting a
residual definition which corresponds to the case of noise in natural parameters.
Based on these we designed a practical approach and demonstrated its potential
on an environmental application.

A future line of work would be to develop goodness-of-fit tests for these
models. A second question could be to generalize this chain of reasoning to
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complex non-linear dependencies. Finally since this method partially recovers
the unobserved confounder (noise), it can potentially lead to identification of
protected attributes even when such data has been hidden. As such another
venue of future research is in the direction of how sibling regression can affect
fairness and security of models.
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Abstract. In this paper, we consider the framework of privacy amplifi-
cation via iteration, which is originally proposed by Feldman et al. and
subsequently simplified by Asoodeh et al. in their analysis via the con-
traction coefficient. This line of work focuses on the study of the privacy
guarantees obtained by the projected noisy stochastic gradient descent
(PNSGD) algorithm with hidden intermediate updates. A limitation in
the existing literature is that only the early stopped PNSGD has been
studied, while no result has been proved on the more widely-used PNSGD
applied on a shuffled dataset. Moreover, no scheme has been yet proposed
regarding how to decrease the injected noise when new data are received
in an online fashion. In this work, we first prove a privacy guarantee for
shuffled PNSGD, which is investigated asymptotically when the noise is
fixed for each sample size n but reduced at a predetermined rate when
n increases, in order to achieve the convergence of privacy loss. We then
analyze the online setting and provide a faster decaying scheme for the
magnitude of the injected noise that also guarantees the convergence of
privacy loss.

Keywords: Differential privacy · Online learning · Optimization

1 Introduction

Differential privacy (DP) [11,12] is a strong standard to guarantee the privacy
for algorithms that have been widely applied to modern machine learning [1].
It characterizes the privacy loss via statistical hypothesis testing, thus allow-
ing the mathematically rigorous analysis of the privacy bounds. When multiple
operations on the data are involved and each intermediate step is revealed, com-
position theorems can be used to keep track of the privacy loss, which combines
subadditively [16]. However, because such results are required to be general, their
associated privacy bounds are inevitably loose. In contrast, privacy amplifica-
tion provides a privacy budget for a composition of mechanisms that is less that
c© Springer Nature Switzerland AG 2021
N. Oliver et al. (Eds.): ECML PKDD 2021, LNAI 12976, pp. 796–813, 2021.
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the budget of each individual operation, which strengthens the bound the more
operations are concatenated. Classic examples of this feature are privacy ampli-
fication by subsampling [4,8], by shuffling [14] and by iteration [3,15]. In this
paper, we focus on the setting of privacy amplification by iteration, and extend
the analysis via contraction coefficient proposed by [3] to prove results that apply
to an algorithm commonly used in practice, in which the entire dataset is shuf-
fled before training a model with PNSGD. We emphasize that the shuffling is a
fundamental difference compared to previous work, since it is a necessary step
in training many machine learning models.

We start by laying out the definitions that are necessary for our analysis. We
consider a convex function f : R+ → R that satisfies f(1) = 0. [2] and [9] define
the f -divergence between two probability distribution μ and ν is as

Df (μ‖ν) = Eν

[
f

(
dμ

dν

)]
=

∫
f

(
dμ

dν

)
dν

For a Markov kernel K : W → P(W), where P(W) is the space of probability
measures over W, we let ηf (K) be the contraction coefficient of kernel K under
the f -divergence, which is defined as

ηf (K) = sup
μ,ν:Df (μ‖ν) �=0

Df (μK‖νK)
Df (μ‖ν)

If we now consider a sequence of Markov kernels {Kn} and let the two sequences
of measures {μn} and {νn} be generated starting from μ0 and ν0 by applying
μn = μn−1Kn and νn = νn−1Kn, then the strong data processing inequality [19]
for the f -divergence tells us that

Df (μn‖νn) ≤ Df (μ0‖ν0)
n∏

t=1

ηf (Kt)

Among the f -divergences, we focus on the Eγ-divergence, or hockey-stick diver-
gence, which is the f -divergence associated with f(t) = (t−γ)+ = max(0, t−γ).
We do so because of its nice connection with the concept of (ε, δ) differential
privacy, which is now the state-of-the-art technique to analyze the privacy loss
that we incur when releasing information from a dataset. A mechanism M is
said to be (ε, δ)-DP if, for every pair of neighboring datasets (datasets that differ
only in one entry, for which we write D ∼ D′) and every event A, one has

P(M(D) ∈ A) ≤ eε
P(M(D′) ∈ A) + δ (1)

It is easy to prove that a mechanism M is (ε, δ)-DP if and only if the distributions
that it generates on D and D′ are close with respect to the Eγ-divergence. In
particular, for D ∼ D′ and PD being the output distribution of mechanism M
on D, then M is (ε, δ)-DP if and only if

Eeε(PD‖PD′) ≤ δ. (2)
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It has been proved in [3] that the contraction coefficient of a kernel K : W →
P(W) under Eγ-divergence, which we refer to as ηγ(K), satisfies

ηγ(K) = sup
w1,w2∈W

Eγ(K(w1)‖K(w2))

This equality improves on a result proved by [5] and makes it easier to find
an explicit form for the contraction coefficient of those distributions for which
we can compute the hockey-stick divergence. Two such distributions are the
Laplace and Gaussian, and [3] investigate the privacy guarantees generated by
this privacy amplification mechanism in the setting of PNSGD with Laplace or
Gaussian noise. As the standard stochastic gradient descent (SGD), the PNSGD
is defined with respect to a loss function � : W × X → R that takes as inputs a
parameter in the space K ⊆ W and an observation x ∈ X . Common assumptions
made on the loss functions are the following: for each x ∈ X
– �(·, x) is L-Lipschitz
– �(·, x) is ρ-strongly convex
– ∇w�(·, x) is β-Lipschitz.

The PNSGD algorithm works by combining three steps: (1) a stochastic gradient
descent (SGD) step with learning rate η; (2) an injection of i.i.d. noise sampled
from a known distribution to guarantee privacy and (3) a projection ΠK : W → K

onto the subspace K. Combined, these steps give the following update rule

PNSGD
wt+1 = ΠK (wt − η(∇w�(wt, xt+1) + Zt+1))

which can be defined as a Markov kernel by assuming that w0 ∼ μ0 and wt ∼
μt = μ0Kx1 ...Kxt

, where Kx is the kernel associated to a single PNSGD step
when observing the data point x. The application of the PNSGD on a dataset
D assumes that the entries of the dataset are passed through the algorithm in a
fixed order that depends on their index, hence w1 is defined observing the first
entry x1 and so on. With this definition, one can find an upper bound for δ by
bounding the left hand side of (2). The specific bound depends on the index at
which the neighboring datasets D and D′ differ and the distribution of the noise
injected in the PNSGD. [3] investigate the bound for both Laplace and Gaussian
noise, which we report in the following theorem.

Theorem 1 (Theorem 3 and 4 in [3]). Define

Q(t) =
1√
2π

∫ ∞

t

e− u2
2 du = 1 − Φ(t)

where Φ is the cumulative density function of the standard normal,

θγ(r) = Q

(
log(γ)

r
− r

2

)
− γQ

(
log(γ)

r
+

r

2

)
(3)
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and the constant

M =

√
1 − 2ηβρ

β + ρ

which depends on the parameters of the loss function and the learning rate of
the SGD step. If K ⊂ R

d is compact and convex with diameter DK, the PNSGD
algorithm with Gaussian noise N(0, σ2) is (ε, δ)-DP for its i-th entry where ε ≥ 0
and

δ = θeε

(
2L

σ

)
θeε

(
MDK

ησ

)n−i

If instead we consider K = [a, b] for a < b, then the PNSGD algorithm with
Laplace noise L(0, v) is (ε, δ)-DP for its i-th entry where ε ≥ 0 and

δ =
(
1 − e

ε
2− L

v

)
+

(
1 − e

ε
2− M(b−a)

2ηv

)n−i

+

To slightly simplify the notation, we can present the guarantees in Theorem 1
as δ = A · Bn−i where for the Gaussian case

A = θeε

(
2L

σ

)
, B = θeε

(
MDK

ησ

)
(4)

and for the Laplacian case

A =
(
1 − e

ε
2− L

v

)
+

, B =
(
1 − e

ε
2− M(b−a)

2ηv

)
+

(5)

To get a bound that does not depend on the index of the entry on which the
two datasets differ, the authors later consider the randomly-stopped PNSGD,
which simply consist of picking a random stopping time for the PNSGD uni-
formly from {1, ..., n}. The bound that they obtain for δ in the Gaussian case is
δ = A/[n(1−B)]. Based on their proof, it is clear that the actual bound contains
a term (1−Bn−i+1) at the numerator and that the same result can be obtained
if we consider the Laplace noise.

In Sect. 3 we prove that a better bound than the one obtained via randomly-
stopped PNSGD can be obtained by first shuffling the dataset and then applying
the simple PNSGD. In Sect. 4 we study the asymptotic behavior of such bound
and find the appropriate decay rate for the variability of the noise level that
guarantees convergence for δ to a non-zero constant.

2 Related Work

In the DP regime, (ε, δ)-DP (see (1)) is arguably the most popular definition,
which is oftentimes achieved by an algorithm which contains Gaussian or Lapla-
cian noises. For example, in NoisySGD and NoisyAdam in [1,6], and PNSGD
in this paper, a certain level of random noise is injected into the gradient to
achieve DP. Notably, as we use more datapoints (or more iterations during the
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optimization) during the training procedure, the privacy loss accumulates at a
rate that depends on the magnitude of the noise.

It is remarkably important to characterize, as tightly as possible, the privacy
loss at each iteration. An increasing line of works have proposed to address
this difficulty [1,3,4,7,10,13,17,18,20], which bring up many useful notions of
DP, such as Rényi DP, Gaussian DP, f -DP and so on. Our paper extends [3]
by shuffling the dataset first rather than randomly stopping the PNSGD (see
Theorem 5 in [3]), in order to address the non-uniformity of privacy guarantee.
As a consequence, we obtain a strictly better privacy bound and better loss than
[1,3], and an additional online result of the privacy guarantee.

Furthermore, our results can be easily combined with composition tools in
DP [1,10,16,17]. In Theorem 2, Theorem 3 and Theorem 4, the (ε, δ) is computed
based on a single pass of the entire dataset, or equivalently on one epoch. When
using the shuffled PNSGD for multiple epochs, as is usual for modern machine
learning, the privacy loss accumulates and is accountable by Moments accountant
(using Renyi DP [18]), f -DP (using functional characterization of the type I/II
errors trade-off) and other divergence approaches.

3 Shuffled PNSGD

In this section, we prove the bound on δ that we can obtain by first shuffling
the dataset and then apply the PNSGD algorithm. The simple underlying idea
here is that, when shuffling the dataset, the index at which the two neighboring
datasets differ has equal probability to end up in each position. This is a key
difference compared to the randomly-stopped PNSGD, and allows us to get a
better bound that do not depend on the initial position of that index.

Theorem 2. Let D ∼ D′ be of size n. Then the shuffled PNSGD is (ε, δ)-DP
with

δ =
A · (1 − Bn)

n(1 − B)
(6)

and the constants A and B are defined in (4) for Gaussian noise and (5) for
Laplace noise.

Proof. Let’s start by considering the simple case n = 2, so that D = {x1, x2}
and D′ = {x′

1, x
′
2} and let i ∈ {1, 2} be the index at which they differ. Let μ be

the output distribution of the shuffled PNSGD on D, and ν be the corresponding
distribution from D′. If we define S(D) and S(D′) to be the two datasets after
performing the same shuffling, then we can only have either S(D) = {x1, x2} or
S(D) = {x2, x1}, both with equal probability 1/2. The outcomes of the shuffled
PNSGD on D and D′ are then

μ =
1
2
μ0Kx1Kx2 +

1
2
μ0Kx2Kx1

ν =
1
2
μ0Kx′

1
Kx′

2
+

1
2
μ0Kx′

2
Kx′

1
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By convexity and Jensen’s inequality we have that

Eγ(μ‖v) ≤ 1
2
Eγ

(
μ0Kx1Kx2‖μ0Kx′

1
Kx′

2

)
+

1
2
Eγ

(
μ0Kx2Kx1‖μ0Kx′

2
Kx′

1

)
and now we have two options, based on where the two original datasets differ. If
i = 1, in the first term the privacy is stronger than in the second one (because
x1 is seen earlier), and we have

Eγ(μ‖ν) ≤ 1
2
A · B +

1
2
A =

1
2
A(B + 1)

If i = 2, now the privacy is stronger in the second term, and

Eγ(μ‖ν) ≤ 1
2
A +

1
2
A · B =

1
2
A(B + 1)

Since in both cases the bound is the same, this means that for any i ∈ {1, 2}
the privacy guarantee of the shuffled PNSGD algorithm is equal to A(B + 1)/2.
From here we see that, when n > 2, the situation is similar. Instead of just two,
we have n! possible permutations for the elements of D, each one happening with
the same probability 1/n!. For each fixed index i on which the two neighboring
datasets differ, we have (n − 1)! permutations in which element xi appears in
each of the n positions. When, after the permutation, element xi ends up in last
position, the bound on Eγ(μ‖ν) is the weakest and just equals A. When in ends
up in first position, the bound is the strongest and is equal to A ·Bn−1. We then
have that, irrespectively of the index i,

Eγ(μ‖v) ≤ 1
n!

(n − 1)!A
n−1∑
j=0

Bj =
A · (1 − Bn)

n(1 − B)

This bound is indeed better than the one found in [3] for the randomly stopped
PNSGD since it contains an extra term (1 − Bn) at the numerator which does
not depend on i and is smaller than 1. If n is large and B is fixed, this difference
is negligible because it decays exponentially. However, we will see later that
when the injected noise is reduced at the appropriate rate we can guarantee
that B ≈ 1 − O(1/n), so that the extra term ends up having an impact in
the final bound. It is also important to notice that shuffled PNSGD achieves in
general better performance than randomly stopped PNSGD and it is much more
commonly used in practice. We see in Fig. 1 that this is the case for both linear
and logistic regression, and that the variation in the result in shuffled PNSGD
is less than for the early stopped case, due to the fact that we always use all
the data available for each epoch. In the next section we look at the asymptotic
behavior of (6) when n grows and the variance of the injected noise is properly
reduced to guarantee convergence.

4 Asymptotic Analysis for δ When Using Shuffling
and Fixed Noises

In this Section we investigate the behavior of the differential privacy bound in
(6) when the size n of the dataset grows. In Sect. 4.1 we prove a results for the
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Fig. 1. Comparison between shuffled PNSGD and randomly-stopped PNSGD with
Gaussian noise in linear and logistic regression. On the y-axis we report the log loss
achieved. The parameters used are n = 1000, d = 2, σ = 0.5, θ∗ = ΠK(1, 2) and K is a
ball of radius 1. The learning rate is 10−4 in linear regression and 5 · 10−3 in logistic
regression.

shuffled PNSGD with fixed Laplace noise, while in Sect. 4.2 we prove the same
result on the shuffled PNSGD with fixed Gaussian noise.

4.1 Laplace Noise

We present first a result that holds when we consider a fixed Laplace noise
L(0, v) injected into the PNSGD algorithm for each update. In order to get a
convergence result for δ as the size n of the dataset grows, the level of noise that
we use should be targeted to the quantity n. The decay of v is regulated by two
parameters, C1 and C2. While C1 is set to be large, so that δ converges to a
small value, the use of C2 is simply to allow the noise level not to be too large
for small n, but does not appear in the asymptotic bound.

Theorem 3. Consider the shuffled PNSGD with Laplace noise L(0, v(n)) which
is fixed for each update, where

v(n) =
M(b − a)

2η log (n/C1 + C2)
. (7)

Then, for n sufficiently large the procedure is (ε, δ)-DP with δ = δ∗ + O(1/n)
and

δ∗ =
1 − e−C1 exp(ε/2)

C1e
ε
2

(8)

Proof. We use the result in Theorem 2 combined with (5), and get that

δ =

(
1 − e

ε
2− L

v(n)

)
+

·
[
1 −

(
1 − e

ε
2− M(b−a)

2ηv(n)

)n

+

]

n · e
ε
2− M(b−a)

2ηv(n)
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Fig. 2. (left) Convergence of δ to δ∗ in (8). We plot in black the behavior of δ as a
function of n, and in blue the corresponding behavior of v(n) in (7). (right) We show
that the convergence rate is 1/n. The parameters used are L = 10, β = 0.5, ρ = 0, η =
0.1, ε = 1, (a, b) = (0, 1), C1 = 105 and C2 = 2. (Color figure online)

Once we plug in the v(n) defined in (7) we have that, when n is sufficiently large,

δ =

(
1 − e

ε
2−

2Lη log( n
C1

+C2)

M(b−a)

)
+

[
1 −

(
1 − C1e

ε
2

n+C1C2

)n

+

]

n · e
ε
2−log( n

C1
+C2)

=

[
1 −

(
1 − C1e

ε
2

n+C1C2

)n]

n · C1e
ε
2

n+C1C2

·
(

1 + O

(
1
n

))

=
1 − e−C1 exp(ε/2)

C1e
ε
2

+ O

(
1
n

)

The convergence result in Theorem 3 is confirmed by Fig. 2. In the left plot
we see that δ converges to the δ∗ defined in (8), while in the right plot we observe
that the convergence rate is indeed 1/n.

4.2 Gaussian Noise

Similarly to what we just proved in Sect. 4.1 we now discuss a result for the
shuffled PNSGD with Gaussian noise N(0, σ2(n)).

Theorem 4. Consider the shuffled PNSGD algorithm with Gaussian noise
N(0, σ2(n)) which is fixed for each update, where

σ(n) =
MDK

2η

√
W

(
n2

2C2
1π

+ C2

) (9)
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Fig. 3. Convergence of δ to δ∗ defined in (10). We report in black the behavior of δ and
in blue that of σ(n) in (9). We consider η ∈ {0.1, 0.02, 0.01} and the other parameters
are L = 10, β = 0.5, ρ = 0, ε = 1, DK = 1, C1 = 105 and C2 = 100. In the right-bottom
panel we show that the convergence rate is 1/ log(n). (Color figure online)

and W is the Lambert W function. Then, for n sufficiently large, the procedure
is (ε, δ)-DP with δ = δ∗ + O

(
1

log(n)

)
and

δ∗ =
1 − e−2C1e

ε
2

2C1e
ε
2

(10)

Just like v(n), the decay of the standard deviation σ(n) is regulated by the
parameters C1 and C2. The difference here is that, instead of a simple logarithmic
decay, we now have a decay rate that depends on the Lambert W function,
which is slightly harder to study analytically than the logarithm. Even though
the Lambert W function is fundamentally equivalent to a logarithm when its
argument grows, the difference with the Laplace case is also evident in the fact
that the convergence of δ to δ∗ happens more slowly, at a rate of 1/ log(n). The
proof of the theorem is in the Supplementary Material, and makes use of the
following Lemma, also proved in the Supplementary Material.
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Lemma 5. For θγ(r) defined in (3), a sufficiently small σ and two constants c
and ε, we have

θeε

( c

σ

)
= 1 − 1√

2π
e

ε
2 e− c2

8σ2

(
4σ

c
+ O(σ3)

)
.

The behavior described in Theorem 4 is confirmed by what we see in Fig. 3,
where we can also observe that there are different patterns of convergence for
δ, both from above and from below the δ∗ defined in (10). In the right-bottom
panel we also see a confirmation that the convergence rate is the one we expected,
since (δ − δ∗)−1 increase linearly with respect to log(n) when n is sufficiently
large (notice that the y-axis is rescaled by a factor 106).

5 Multiple Epochs Composition

We now consider a simple yet important extension of the result in Theorem 2,
where the shuffled PNSGD is applied for multiple epochs. In real experiments,
e.g. when training deep neural networks, usually multiple passes over the data
are necessary to learn the model. In such scenario, the updates are not kept
secret for the whole duration of the training, but are instead released at the end
of each epoch. The result proved in Theorem 2 states that for each epoch the
procedure is (ε, δ)-DP with δ ≤ A · (1 − Bn)/[n(1 − B)]. We can then easily
combine these privacy bounds using state-of-the-art composition tools, such as
the Moments Accountant [1], f -DP and Gaussian DP [10]. We present some
popular ways to compute the privacy loss after E epochs.

At the high level, we migrate from (ε, δ) in DP to other regimes, Gaussian
DP or Rényi DP, at the first epoch. Then we compose in those specific regimes
until the end of training procedure. At last, we map back from the other regimes
back to (ε, δ)-DP.

f-DP and Gaussian DP: At the first epoch, we compute the initial (ε, δ)
and derive the four-segment curve fε,δ for the type I/II errors trade-off (see
Equation (5) and Proposition 2.5 in [10]). Then by Theorem 3.2 in [10], we can
numerically compose this trade-off function with Fourier transform for E times,
which can be accelerated by repeated squaring. When the noise is Gaussian, we
can alternatively use μ in GDP to characterize the trade-off function (i.e. the
mechanism is μ-GDP after the first epoch). Next, we apply Corollary 3.3 in [10]
to conclude that the mechanism is

√
Eμ-GDP in the end. We can compute the

final (ε, δ) reversely from GDP by Corollary 2.13 in [10].

Moments Accountant: Moments Accountant is closely related to Rényi DP
(RDP), which composes easily: at the first epoch, we compute the (ε, δ) of our
PNSGD. By Proposition 3 in [18], we can transfer from (ε, δ)-DP to (α, ε+ log δ

α−1 )
RDP. After the first epoch, the initial RDP can be composed iteratively by
Moments Accountant1. The final (α′, ε′) RDP is then mapped back to (ε, δ)-DP
with ε = ε′ − log δ

α′−1 .

1 See https://github.com/tensorflow/privacy/blob/master/tensorflow privacy/privacy/
analysis/rdp accountant.py.

https://github.com/tensorflow/privacy/blob/master/tensorflow_privacy/privacy/analysis/rdp_accountant.py
https://github.com/tensorflow/privacy/blob/master/tensorflow_privacy/privacy/analysis/rdp_accountant.py
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6 Online Results for Decaying Noises

We now go back to the original framework of [3] and consider the PNSGD
algorithm applied to the non-shuffled dataset. This time, however, we want to
apply a different level of noise for each update, and see if we can get a convergence
result for δ when n → ∞. We then need to consider values of A and B in (4) and
(5) that depend on the specific index, and the privacy bound for the PNSGD
with non-fixed noises and neighboring datasets that differ on index i becomes

δ = Ai ·
n∏

t=i+1

Bt (11)

Here the definition of Ai and Bi is the same as in (4) and (5) but the noise
level v and σ is now dependent on the position of each element in the dataset.
In this scenario we can actually imagine adding new data to the dataset in an
online fashion, without having to restart the procedure to recalibrate the noise
level used for the first entries. It is clear that, in order to get convergence, the
decay of the injected noise should be faster than in Theorem 3 and Theorem 4,
since now the early entries receive an amount of noise that does not vanish as n
becomes large. However it is interesting to notice that for both the Laplace and
Gaussian noise the only difference needed with the decay rate for v(n) and σ(n)
defined before is an exponent α > 1.
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Fig. 4. (left) Convergence of δ to δ∗ defined in (13). We report in black the behavior
of δ and in blue that of vn defined in (12). The parameters considered are L = 10, β =
0.5, ρ = 0, ε = 1, η = 0.01, α = 1.5, (a, b) = (0, 1), i = 100, C1 = 100 and C2 = 100.
(right) The convergence rate is approximately 1/ log(n). (Color figure online)

6.1 Laplace Noise

We prove here the online result for the PNSGD with Laplace noise that decays
for each entry. As anticipated, the decay is no longer the same for all entries and
proportional to 1/ log(n) but now for the entry with index j we have a decay
which is proportional to 1/ log(jα).
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Theorem 6. Consider the PNSGD where for update j we use Laplace noise
L(0, vj), and

vj =
M(b − a)

2η log (jα/C1 + C2)
(12)

for α > 1. Then as n → ∞ the procedure is (ε, δ∗)-DP where

δ∗ =
(
1 − e

ε
2− 2Lη log(iα/C1+C2)

M(b−a)

)
+
e

∫ ∞
i+1 log

(

1− C1e
ε
2

xα+C1C2

)

dx
(13)

and i is the index where the neighboring datasets differ.

Proof. We show again that δ converges to a non-zero value as n goes to ∞. In
fact, again following the proof of ([3] Theorem 3), we get that,

δ =
(
1 − e

ε
2− L

vi

)
+

·
n∏

t=i+1

(
1 − e

ε
2− M(b−a)

2ηvt

)
+

=
(
1 − e

ε
2−

2Lη log( iα

C1
+C2)

M(b−a)

)
+

n∏
t=i+1

(
1 − C1e

ε
2

tα + C1C2

)
+

We know that, for a sequence at of positive values,
∏∞

t=1(1 − at) converges
to a non-zero number if and only if

∑∞
t=1 at converges. Here we have that

∞∑
t=i+1

C1e
ε
2

tα + C1C2
≤

∞∑
t=i+1

C1e
ε
2

tα

and, since α > 1 the right hand side converges, hence δ converges to a non-zero
number. Let now f(n) =

∏n
t=i+1

(
1 − C1e

ε
2

tα+C1C2

)
+
. To find the limit f(∞) we

can first log-transform this function, and then upper bound the infinite sum with
an integral before transforming back. Since log

(
1 − C1e

ε
2

tα+C1C2

)
is monotonically

increasing in t, we have

log(f(n)) =
n∑

t=i+1

log
(

1 − C1e
ε
2

tα + C1C2

)

<

∫ n

i+1

log
(

1 − C1e
ε
2

tα + C1C2

)
dt →

∫ ∞

i+1

log
(

1 − C1e
ε
2

tα + C1C2

)
dt.

This integral can be written in closed form using the hypergeometric function,
or approximated numerically.

The convergence result that we get is slightly conservative, since δ∗ in Eq. 13
is an upper bound. However, following the previous proof, we can find an easy
lower bound by just noticing that log(f(∞)) >

∫ ∞
i

log
(
1 − C1e

ε
2

tα+C1C2

)
dt. When

i is not too small, the difference between the upper and lower bound is negligible,
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as it is confirmed by what we see in the left plot of Fig. 4, where the convergence
to the upper bound appears to be impeccable. Since the convergence is not
exactly to δ∗, we cannot find an explicit convergence rate the same way we did
in Sect. 4. However, we see in the right plot of Fig. 4 that the convergence rate
empirically appears to be 1/ log(n).

6.2 Gaussian Noise

When working with the Gaussian noises, the cumbersome form of the functions
in (4) does not prevent us from finding a closed form solution for the limit δ∗.
Just as in the Laplace case we can find a conservative upper bound for δ∗ which is
very close to the true limit, as confirmed by the left plot of Fig. 5. Just as before,
we notice again empirically from the right plot of Fig. 5 that the convergence
rate is 1/ log(n).
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Fig. 5. (left) Convergence of δ to δ∗ defined in (15). We report in black the behavior
of δ and in blue that of σn defined in (14). The parameters considered are L = 10, β =
0.5, ρ = 0, ε = 1, η = 0.01, α = 1.5, DK = 1, i = 100, C1 = 100 and C2 = 100. (right)
The convergence rate is approximately 1/ log(n). (Color figure online)

Theorem 7. Consider the PNSGD where for update j we use Gaussian noise
N(0, σ2

j ), and

σj =
MDK

2η

√
W

(
j2α

2πC2
1

+ C2

) (14)

for α > 1. Then as n → ∞ the procedure is (ε, δ∗)-DP where

δ∗ = θeε

(2L

σi

)
e

∫ ∞
i+1 log

(

θeε

(

2

√

W

(
x2α

2πC2
1
+C2

)))

dx

(15)

and i is the index where the neighboring datasets differ.
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The proof of this result is in the Supplementary Material, and makes use
again of Lemma 5 to show that asymptotically the terms Bt in (11) behave
approximately as 1 − O(1/tα), so that convergence is guaranteed for the same
reason as in Theorem 6.

7 Conclusion

In this work, we have studied the setting of privacy amplification by iteration in
the formulation proposed by [3], and proved that their analysis of PNSGD also
applies to the case where the data are shuffled first. This is a much more common
practice than the randomly-stopped PNSGD, originally proposed, because of a
clear advantage in terms of accuracy of the algorithm. We proved two asymptotic
results on the decay rate of noises that we can use, either the Laplace or the
Gaussian injected noise, in order to have asymptotic convergence to a non-trivial
privacy bound when the size of the dataset grows. We then showed that these
practical bounds can be combined using standard tools from the composition
literature. Finally we also showed two result, again for Laplace or Gaussian
noise, that can be obtained in an online setting when the noise does not have to
be recalibrated for the whole dataset but just decayed for the new data.

Acknowledgement. The authors would like to thank Weijie Su for his advice and
encouragements.

Supplement to: Privacy Amplification via Iteration for
Shuffled and Online PNSGD

Proof of Lemma 5

Recall from the definition (3):

θeε

( c

σ

)
= Q

(εσ

c
− c

2σ

)
− eεQ

(εσ

c
+

c

2σ

)
(16)

We apply the following approximation of the normal cumulative density function,
valid for large positive x,

Q(x) :=
1√
2π

∫ ∞

x

e− u2
2 du =

1√
2π

e− x2
2

(
1
x

+ O

(
1
x3

))

and similarly, for large negative values of x

Q(x) :=
1√
2π

∫ ∞

x

e− u2
2 du = 1 +

1√
2π

e− x2
2

(
1
x

+ O

(
1
x3

))
.
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Therefore (16) can be reformulated as

θeε

( c

σ

)
= 1 +

1√
2π

e
− 1

2

(
ε2σ2

c2
+ c2

4σ2

)
+ ε

2

(
1

εσ
c − c

2σ

+ O

(
1

εσ
c − c

2σ

)3
)

− 1√
2π

eεe
− 1

2

(
ε2σ2

c2
+ c2

4σ2

)
− ε

2

(
1

εσ
c + c

2σ

+ O

(
1

εσ
c + c

2σ

)3
)

= 1 − 1√
2π

e
ε
2 e

− 1
2

(
ε2σ2

c2
+ c2

4σ2

) (
4σ

c
+ O(σ3)

)

= 1 − 1√
2π

e
ε
2 e− c2

8σ2

(
4σ

c
+ O(σ3)

)

Proof of Theorem 4

From Theorem 2 we know that

δ =
θeε

(
2L

σ(n)

)
·
[
1 − θeε

(
MDK

ησ(n)

)n]

n ·
[
1 − θeε

(
MDK

ησ(n)

)] (17)

We show that with σ(n) that decays according to (9) we have that

θeε

(
2L

σ(n)

)
→ 1 and θeε

(
MDK

ησ(n)

)
→ 1 − 2C1e

ε
2

n
.

Let’s first focus briefly on the behavior of the Lambert W function. Formally, the
Lambert W function is an implicit function defined as the inverse of f(w) = wew,
meaning that for any x one has W (x)eW (x) = x. As an interesting fact, we
note that the Lambert W function’s behavior is approximately logarithmic, e.g.
log(x) > W (x) > log4(x), where by log we denote the natural logarithm. We
also denote the argument of the W Lambert function in σ(n) as x = n2

2C2
1π

+ C2.
Using this fact, an immediate consequence of Lemma 5 is that, when plugging
in the σ(n) from (9), we get

θeε

(
2L

σ(n)

)
= 1 − o(σ3) = 1 − o

(
1√

W 3(x)

)
= 1 − o

(
1

(log n)3/2

)
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since e− c2

8σ2 · 1
σ2 → 0 as the exponential decays faster than the polynomial. Next,

we study θeε

(
MDK

ησ(n)

)
. Again by Lemma 5, we have

θeε

(
MDK

ησ(n)

)
= 1 − 1√

2π
e

ε
2 e

− M2D2
K

8η2σ(n)2

(
4ησ(n)
MDK

+ O(σ(n)3)
)

= 1 − 1√
2π

e
ε
2 e− W (x)

2

(
2√

W (x)
+ O

(
1

W (x)3/2

))

= 1 − 2e
ε
2√

2π

1√
eW (x)W (x)

+ O

(
1√

eW (x)W (x)3

)

= 1 − 2e
ε
2√

2πx
+ O

(
1√

x log(x)

)

= 1 − 2C1e
ε
2

n
+ O

(
1

n log(n)

)
(18)

Going back to the expression in (17) we finally have that

δ =

(
1 − o

(
1

(log(n))3/2

)) [
1 −

(
1 − 2C1e

ε
2

n
+ O

(
1

n log(n)

))n]

n ·
[
1 −

(
1 − 2C1e

ε
2

n
+ O

(
1

n log(n)

))]

=

(
1 − o

(
1

(log(n))3/2

)) [
1 −

(
1 − 2C1e

ε
2 +O(1/ log(n))

n

)n]

2C1e
ε
2 + O

(
1

log(n)

)

=

(
1 − o

(
1

(log(n))3/2

)) [
1 − e−2C1e

ε
2 +O(1/ log(n))

]

2C1e
ε
2 + O

(
1

log(n)

)

=

(
1 − o

(
1

(log(n))3/2

)) [
1 − e−2C1e

ε
2

+ O

(
1

log(n)

)] (
1

2C1e
ε
2

− O

(
1

log(n)

))

=
1 − e−2C1e

ε
2

2C1e
ε
2

+ O

(
1

log(n)

)
.

Proof of Theorem 7

This proof combines elements of the proofs of Theorem 4 and Theorem 6. We
start by studying the behavior of θeε

(
MDK

ησt

)
as t grows. We define x = t2α

2πC2
1
+C2

so that σt = MDK

2η
√

W (x)
and get, as in (18),

θeε

(
MDK

ησt

)
= 1 − 1√

2π
e

ε
2 e

− M2D2
K

8η2σ2
t

(
4ησt

MDK

+ O(σ3
t )

)

=1 − 2e
ε
2√

2πx
+ O

(
1√

x log(x)

)
= 1 − 2C1e

ε
2

tα
+ O

(
1

tα log(t)

)
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This already confirms us that δ∗ converges to a finite non zero value, since the
asymptotic behavior of each term in the infinite product is the same as in the
Laplace case. To express such limit in a more tractable way we follow the proof
of Theorem 6 and write f(n) =

∏n
t=i+1 θeε

(
MDK

ησt

)
and approximate the infinite

sum log(f(∞)) with an integral.

log(f(n)) =
n∑

t=i+1

log
(

θeε

(
MDK

ησt

))

=
n∑

t=i+1

log

(
θeε

(
2

√
W

(
t2α

2πC2
1

+ C2

)))

<

∫ n

i+1

log

(
θeε

(
2

√
W

(
x2α

2πC2
1

+ C2

)))
dx

→
∫ ∞

i+1

log

(
θeε

(
2

√
W

(
x2α

2πC2
1

+ C2

)))
dx

This confirms us that

δ∗ = θeε

(2L

σi

)
· exp

{∫ ∞

i+1

log

(
θeε

(
2

√
W

(
x2α

2πC2
1

+ C2

)))
dx

}
.
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