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Preface

This edition of the European Conference on Machine Learning and Principles and
Practice of Knowledge Discovery in Databases (ECML PKDD 2021) has still been
affected by the COVID-19 pandemic. Unfortunately it had to be held online and we
could only meet each other virtually. However, the experience gained in the previous
edition joined to the knowledge collected from other virtual conferences allowed us to
provide an attractive and engaging agenda.

ECML PKDD is an annual conference that provides an international forum for the
latest research in all areas related to machine learning and knowledge discovery in
databases, including innovative applications. It is the leading European machine
learning and data mining conference and builds upon a very successful series of
ECML PKDD conferences. Scheduled to take place in Bilbao, Spain, ECML PKDD
2021 was held fully virtually, during September 13–17, 2021. The conference attracted
over 1000 participants from all over the world. More generally, the conference received
substantial attention from industry through sponsorship, participation, and also the
industry track.

The main conference program consisted of presentations of 210 accepted conference
papers, 40 papers accepted in the journal track and 4 keynote talks: Jie Tang (Tsinghua
University), Susan Athey (Stanford University), Joaquin Quiñonero Candela (Face-
book), and Marta Kwiatkowska (University of Oxford). In addition, there were 22
workshops, 8 tutorials, 2 combined workshop-tutorials, the PhD forum, and the dis-
covery challenge. Papers presented during the three main conference days were
organized in three different tracks:

– Research Track: research or methodology papers from all areas in machine learning,
knowledge discovery, and data mining.

– Applied Data Science Track: papers on novel applications of machine learning, data
mining, and knowledge discovery to solve real-world use cases, thereby bridging
the gap between practice and current theory.

– Journal Track: papers that were published in special issues of the Springer journals
Machine Learning and Data Mining and Knowledge Discovery.

We received a similar number of submissions to last year with 685 and 220 sub-
missions for the Research and Applied Data Science Tracks respectively. We accepted
146 (21%) and 64 (29%) of these. In addition, there were 40 papers from the Journal
Track. All in all, the high-quality submissions allowed us to put together an excep-
tionally rich and exciting program.

The Awards Committee selected research papers that were considered to be of
exceptional quality and worthy of special recognition:

– Best (Student) Machine Learning Paper Award: Reparameterized Sampling for
Generative Adversarial Networks, by Yifei Wang, Yisen Wang, Jiansheng Yang
and Zhouchen Lin.



– First Runner-up (Student) Machine Learning Paper Award: “Continual Learning
with Dual Regularizations”, by Xuejun Han and Yuhong Guo.

– Best Applied Data Science Paper Award: “Open Data Science to fight COVID-19:
Winning the 500k XPRIZE Pandemic Response Challenge”, by Miguel Angel
Lozano, Oscar Garibo, Eloy Piñol, Miguel Rebollo, Kristina Polotskaya, Miguel
Angel Garcia-March, J. Alberto Conejero, Francisco Escolano and Nuria Oliver.

– Best Student Data Mining Paper Award: “Conditional Neural Relational Inference
for Interacting Systems”, by Joao Candido Ramos, Lionel Blondé, Stéphane
Armand and Alexandros Kalousis.

– Test of Time Award for highest-impact paper from ECML PKDD 2011: “Influence
and Passivity in Social Media”, by Daniel M. Romero, Wojciech Galuba, Sitaram
Asur and Bernardo A. Huberman.

We would like to wholeheartedly thank all participants, authors, Program Com-
mittee members, area chairs, session chairs, volunteers, co-organizers, and organizers
of workshops and tutorials for their contributions that helped make ECML PKDD 2021
a great success. We would also like to thank the ECML PKDD Steering Committee and
all sponsors.
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PuzzleShuffle: Undesirable Feature
Learning for Semantic Shift Detection

Yusuke Kanebako(B) and Kazuki Tsukamoto

Ricoh Company, Ltd., Tokyo, Japan
{yuusuke.kanebako,kazuki.tsukamoto}@jp.ricoh.com

Abstract. When running a machine learning system, it is difficult to
guarantee performance when the data distribution is different between
training and production operations. Deep neural networks have attained
remarkable performance in various tasks when the data distribution is
consistent between training and operation phases, but performance sig-
nificantly drops when they are not. The challenge of detecting Out-of-
Distribution (OoD) data from a model that only trained In-Distribution
(ID) data is important to ensure the robustness of the system and the
model. In this paper, we have experimentally shown that conventional
perturbation-based OoD detection methods can accurately detect non-
semantic shift with different domain, but have difficulty detecting seman-
tic shift in which objects different from ID are captured. Based on this
experiment, we propose a simple and effective augmentation method for
detecting semantic shift. The proposed method consists of the following
two components: (1) PuzzleShuffle, which deliberately corrupts semantic
information by dividing an image into multiple patches and randomly
rearranging them to learn the image as OoD data. (2) Adaptive Label
Smoothing, which changes labels adaptively according to the patch size in
PuzzleShuffle. We show that our proposed method outperforms the con-
ventional augmentation methods in both ID classification performance
and OoD detection performance under semantic shift conditions.

Keywords: Semantic shift detection · Data augmentation ·
Out-of-distribution detection

1 Introduction

When running a machine learning system, it is difficult to guarantee performance
when the data distribution is different between training and production opera-
tions. It is important to detect such data not included in the training data or
build a model that can make predictions with low confidence for untrained data
to ensure the reliability and safety of machine learning systems. Deep neural
networks (DNNs) have attained remarkable performance in various tasks when

Y. Kanebako and K. Tsukamoto—Equal contribution.

c© Springer Nature Switzerland AG 2021
Y. Dong et al. (Eds.): ECML PKDD 2021, LNAI 12979, pp. 3–19, 2021.
https://doi.org/10.1007/978-3-030-86517-7_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86517-7_1&domain=pdf
https://doi.org/10.1007/978-3-030-86517-7_1


4 Y. Kanebako and K. Tsukamoto

Fig. 1. Domainnet [17]

the data distribution is consistent between training and running phases. How-
ever, it is difficult to guarantee robustness when the domain changes between
training and operation or when unexpected objects are captured. This challenge
has been formulated as learning only In-Distribution (ID) data and detecting
Out-of-Distribution (OoD) data [8], and many methods have been proposed in
recent years [10,14–16,22].

The cause of the factor difference in distribution between ID and OoD does
not distinguish in previous studies on OoD detection. As shown in Fig. 1, Genel-
izedODIN [10] uses the DomainNet Dataset [17] to separate the problem of OoD
detection into two categories: Semantic Shift, in which the class of the object
is different between ID and OoD in the same domain, and Non-Semantic Shift,
in which the class of the object is the same, but the domain is different. The
results showed that the previous OoD detection methods perform excellently to
non-semantic shift detection but could not outperform the baseline MaxSoftmax-
based method [8] in semantic shift detection.

Semantic shift detection is one of the most critical issues in the operation
of machine learning systems. It is necessary to reject the prediction results or
consider adding them as untrained data by lowering the confidence level of the
prediction for unexpected objects. However, the prediction of DNNs is known
to be high-confidence, and calibration by temperature scaling and adversarial
training is reported to be effective for this problem [5,7]. In the framework of
Bayesian DNNs, a learning method that theoretically guarantees the uncertainty
of the prediction has been proposed [2,23]. Besides, some data augmentation
methods show to improve the uncertainty and robustness of the DNNs model
[9,24,27,28].

In this paper, we focus on the semantic shift in OoD detection. In the prob-
lem setting where the domain of image data is the same, but the classes of ID
and OoD are different, the goal is to detect OoD data from a model that only
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Fig. 2. A visual comparison of Cutout [1], AugMix [9], Mixup [28], CutMix [27],
ResizeMix [19], Puzzle Mix [12], and our PuzzleShuffle

trained ID data. To address this problem, we propose a new data augmenta-
tion method named PuzzleShuffle. Our method was inspired by [14]. The key
concept is to make the model explicitly train with data that has an undesirable
feature. Figure 2 shows a comparison with conventional augmentation methods.
PuzzleShuffle divides the image into some patches. And the patches are randomly
rearranging to intentionally destroy the semantic information of the image, and
then the models are trained with images that have undesirable features. The
labels of the data to which PuzzleShuffle is applied are adaptively smoothed
according to the patch size. For images with large patch size, we give labels
close to one-hot distribution because we believe that there is still much semantic
information, and for images with small patch size, we give labels close to uni-
form distribution because we believe that the semantic information is strongly
corrupted. In this way, DNNs can learn to predict the semantic information
with lower confidence as they move away from the ID. To verify our proposed
method’s effectiveness, we evaluated OoD detection’s performance under the
semantic shift using various datasets. As a result, we show that our proposed
method outperforms the conventional augmentation methods in both the perfor-
mance of ID classification accuracy and OoD detection performance under the
semantic shift conditions.

In summary, our paper makes the following contributions:

– We show that the existing perturbation-based OoD detection methods cannot
outperform the baseline method’s OoD detection performance in semantic
shift conditions.

– We show that adversarially trains the data with features not included in ID
data and effectively improves OoD detection performance under the semantic
shift conditions.

– We proposed a new simple and effective augmentation method to improve
OoD detection accuracy under the semantic shift conditions.

– We show that the proposed method improves OoD detection performance in
combination with any conventional augmentation methods.
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2 Related Work

2.1 Out-of-Distribution Detection

The problem of OoD detection was formulated by [8], and the proposed method
of separating ID and OoD using the maximum softmax value of DNNs is widely
used as a baseline. ODIN [16] performs OoD detection by applying a perturba-
tion to the input image such that the maximum softmax value increases. Simi-
larly, Mahalanobis [15] also detect OoD using perturbation but assumes that the
feature map’s intermediate output follows a multivariate gaussian distribution
and calculates the distance between the distributions during training and testing
using the mahalanobis distance, and uses that value as the threshold for OoD
detection. [10,22] does not use perturbation and calculates the logit using cosine
similarity instead of the linear transformation before the softmax function. [14]
uses generative adversarial nets (GANs) [4] to generate boundary data ID and
OoD and training generated data for confidence calibration and improvement
of OoD detection. In any research, the problem of OoD detection under the
semantic shift has not been solved. Besides, GeneralizedODIN [10] shows that
the existing OoD methods cannot outperform the baseline method’s [8] OoD
detection performance in semantic shift conditions.

2.2 Data Augmentation

Data augmentation can improve the generalization performance of the model
and uncertainty and robustness [9,24,27,28]. CutMix [27] randomly cuts a por-
tion of an image and pastes it at a position corresponding to the cut position in
another image to improve performance, confidence calibration, and OoD detec-
tion. ResizeMix [19] pointed out that CutMix may not capture the intended
object in the cropped image and clarified the importance of capturing the object
and, ReizeMix outperforms CutMix by pasting a resized image instead of crop-
ping the image. Mixup [28] proposes a method to compute convex combination
of two images pixel by pixel, and Puzzle Mix [12] achieves effective mixup by
using saliency information and graph cut. AugMix [9] improves the robustness
and uncertainty evaluation by applying multiple augmentations to a single image
and training the weighted combined image and the original image to be close
in distribution. All the methods have improved test accuracy, OoD detection
accuracy, robustness against distortion images, and uncertainty evaluation, but
OoD detection under semantic shift has not been verified. Our method is novel
in that it learns undesirable features as ID, and we propose that it can improve
the OoD detection performance by giving appropriate soft labels to the data.

2.3 Uncertainty Calibration

In order to achieve high accuracy in the perturbation-based OoD detection
described above, the confidence of the DNNs prediction must be properly cali-
brated. The confidence level of DNNs prediction is known to be high-confidence
[5,7], which means that the confidence level of DNNs is high even though the
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prediction results are wrong. Some Bayesian DNNs methods provide theoretical
guarantees on uncertainty estimation [2,23]. In these methods, the estimation of
uncertainty is theoretically guaranteed by using Dropout and Batch Normaliza-
tion. However, although both of these methods achieve confidence calibration,
they have not been reported as effective OoD detection methods.

In contrast to these works, we develop a new augmentation method for seman-
tic shift detection. Inspired by [14], our method proposes a simple and effective
augmentation method that can improve OoD detection performance under the
Semantic Shift by explicitly training data with features not found in ID. First,
we experimentally demonstrate the possibility of improving OoD detection per-
formance by adversarial training data with uniformly distributed labels that
have features not found in ID. Based on the results, we propose an augmenta-
tion method that intentionally corrupts the semantic information of ID data and
learns the data as undesirable ID data.

3 Preliminaries

In this chapter, we conduct two preliminary verifications to propose a method
to improve semantic shift detection performance. Subsection 3.1 discusses why
the perturbation-based OoD detection method fails to detect OoD data under
semantic shift conditions. In Subsect. 3.2, inspired by [14], we investigate adver-
sarial training using explicitly semantic shift data that can improve the detection
performance of semantic shift. The experimental settings are the same as those
described in Sect. 5.

3.1 The Effects by Perturbation

We investigate the effectiveness of perturbation-based methods, which have been
reported to be effective as OoD detection methods for semantic shift and non-
semantic shift. We use MaxSoftmax [8], a baseline method, as the OoD detection
method without perturbation, and ODIN [16] as the method with perturbation.
To compare them, we choose four domains (real, sketch, infograph, and quick-
draw) from the Domainnet [17] dataset and divide them into two classes: class
labels 0-172 as A, and class labels 173-344 as B, for a total of eight datasets.
The A group in the real domain use as ID, and the other groups evaluate as
OoD. The results show in Table 1. The perturbation-based method detects OoD
with higher accuracy than the method without perturbation in the non-semantic
shift detection. However, the perturbation-based method is inferior to without
perturbation in the semantic shift detection. The reason for this may be that
the more similar the OoD features are to the ID features, the more they are
embedded in the similar features by perturbation. ODIN tries to separate ID
and OoD by adding perturbations to the image to increase the softmax value,
so when similar features are obtained, OoD is also perturbed similarly to ID,
making separation difficult. Figure 3 shows the result of plotting the interme-
diate features of semantic shift (real-B) and non-semantic shift (quickdraw-A)
in two dimensions by tSNE. It can be seen that the non-semantic shift, which
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dynamically changes the trend of the image, produces features that are not simi-
lar to ID, while the semantic shift, which is in the same domain, produces features
that are similar. Therefore, we hypothesize that it is important to explicitly learn
undesirable features in order to improve the detection performance of semantic
shift.

3.2 Adversarial Undesirable Feature Learning

In this section, we verify the hypothesis that semantic shift detection perfor-
mance can be improved by explicitly learning undesirable features. We use the

Table 1. The OoD detection performance to semantic shift and non-semantic shift by
perturbation

OoD Shift AUROC

S NS Baseline/ODIN*

real-B � 68.2/65.0

sketch-A � 70.6/75.0

sketch-B � � 75.5/78.8

infograph-A � 75.6/80.2

infograph-B � � 76.65/81.7

quickdraw-A � 70.3/96.0

quickdraw-B � � 71.7/96.7

Fig. 3. Results of tSNE visualization of features from conv layer output in seman-
tic shift and non-semantic shift data. The blue points indicate ID, and the red points
indicate OoD. The semantic shift tends to extract features similar to ID, and the distri-
bution of ID becomes closer to the semantic shift when the perturbation is applied. On
the contrary, the non-semantic shift tends to extract features different from ID, and the
ID distribution does not overlap with the non-semantic shift even after perturbation.
(Color figure online)
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CIFAR-10 dataset as ID and the CIFAR-100 dataset as OoD for adversarial
training to verify this hypothesis. In adversarial training, the ID data is train-
ing with one-hot labels, and the OoD data is training with uniform distribution
labels. We explicitly train the OoD data as undesirable features by training the
OoD data with uniformly distributed labels. We split the 100 classes of CIFAR-
100 into five types, from split1 to split5, based on 20 superclasses, and observe
the effect of increasing the variation of OoD classes step by step. The ratio of
the number of ID and OoD data included in a minibatch during training is
1:1. Table 2 shows the results. The results indicate that training the data that
has undesirable features with uniform labels improves ID accuracy and OoD
detection.

Figure 4 is the extracted features from the convolution layer of the model
trained with OoD and without one. The results show that adversarial training
of undesirable feature embeds the unobserved data to the non ID space, signifi-
cantly improving the semantic shift detection performance. The hypothesis that

Table 2. ID accuracy and AUROC of each OoD split when adversarial learning with
adding OoD step by step. The OoD split used for training has the AUROC value in
bold for each testing OoD split.

train OoD ID Acc. AUROC

split1 split2 split3 split4 split5

None 86.65 82.41 80.40 79.87 81.61 78.85

split1 88.47 96.94 92.54 85.76 83.36 83.65

split1˜2 88.94 96.93 98.64 89.41 83.48 86.32

split1˜3 89.40 97.39 98.30 97.20 83.33 85.72

split1˜4 89.65 96.49 98.07 96.54 91.51 84.10

split1˜5 90.06 96.27 97.83 96.54 92.77 92.86

Fig. 4. Results of tSNE visualization of features from conv layer output (Left: train
OoD is none, Right: train OoD is split1-4). By explicitly training OoD data as unde-
sirable features, we show that unobserved OoD data are embedded in places that are
not ID regions.



10 Y. Kanebako and K. Tsukamoto

adversarial training of undesirable features improves semantic shift detection by
using OoD data is revealed. However, in a machine learning system operation,
OoD data cannot be accessed in advance. Therefore, it is necessary to learn
undesirable features using only ID data. To solve this problem, we propose a
new augmentation method that destroys the semantic structure and intention-
ally induces semantic shift by shuffling the patches in the image like a puzzle.

4 Proposed Method

Figure 5 illustrates the proposed method. This method consists of two steps:
(a) applying augmentation to the image and (b) adaptively changing the label
according to the augmentation result. Details are described below.

Fig. 5. Proposed method

4.1 PuzzleShuffle Augmentation

Algorithm 1 describes the proposed method named Puzzleshuffle. PuzzleShuffle
is a simple augmentation method that divides an image into patches of arbitrary
size and applies probabilistic rotate or flip augmentation to each patch. After
then, the patch positions rearrange randomly, and shuffled images use as training
data. In this method, the size of the input image and the patch size are limited
to be square. The number of divisions is randomly selected from a divisor of the
size of the image when creating a mini-batch during training. A similar method
is PatchShuffle regularization [11] method, which randomly shuffles the pixels in
a local patch in the image or feature map. Our method differs in that the patch
size is variable and the shuffle is performed while preserving the global features,
and the labels are changed adaptively according to the patch size as described
below.
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Algorithm 1: PuzzleShuffle Augmentation
Input: Dataset D, probability p of applying PuzzleShuffle, Operations
O ={rotate, flip}
Output: A puzzle shuffled image x̃ and its adaptively changed label ỹ
divisors = CaluclateDivisor(image size)
Sample (x, y) ∼ D
β ∼Bernouli(p)
if β = 1 then

Sample patch size ∼ RandomSelect(divisors)
divided images = DivideImage(x, patch size)
for i = 1, ..., patch size × patch size do

divided imagei ← O(divided imagei)

ShufflePatchPosition(divided image)
x̃ ← divided image
Set label according to Algorithm 2
ỹ ← label

else
# Original data is returned.
x̃ ← x
ỹ ← y

4.2 Adaptive Label Smoothing

If the number of divisions in PuzzleShuffle is small, the structural information
of the image remains, and if the number of divisions is large, the structural
information is collapsed. Since images with many patches in PuzzleShuffle are
like random noise, it is inappropriate to train them with one-hot labels. We pro-
pose a method to adaptively change the distribution of labels according to the
number of divisions. When the number of divisions is large, we give label infor-
mation with a distribution close to one-hot labels. When small, we give label
information with a distribution close to the uniform distribution. Algorithm2
has described Adaptive Label Smoothing. The basic idea is the same as that
of Label Smoothing. The target class value discounts from the one-hot label
and distributes the discounted value to other class labels. Label Smoothing has
attained remarkable improvement of generalization performance as a regulariza-
tion method for DNNs [18,21]. We prepare a lookup table, a list of values from
the inverse number of classes to 1.0, equally divided by image size and sorted
in descending order. We select values from the lookup table using the selected
divisor number at PuzzleShuffle Augmentation as an index and use the selected
values as the target class values for Label Smoothing. In this way, the labels of
PuzzleShuffle image assign according to the patch size.



12 Y. Kanebako and K. Tsukamoto

Algorithm 2: Adaptive Label Smoothing
Input:
C · · · the number of classes
LUT · · · A lookup table of numbers from the inverse of C to 1.0, equally divided
by image size and sorted in descending order.
index · · · Selected divisor by Altorithm 1
Output: Smoothed label ŷ
score = LUT (index)
residual = (1 − score)/(C − 1)

ŷ[i] =

{
score (if i = y)
residual (otherwise)

(1)

4.3 Motivation

The motivation for PuzzleShuffle is the effect of learning undesirable features,
as shown in Sect. 3. In the semantic shift problem, the structural information
of data is different between ID and OoD. Thus, we believe that it is important
to learn structural information not available in ID data explicitly for semantic
shift detection. In situations where OoD data is not available, it is necessary to
create it from ID data. In [14], the boundary between ID and OoD is generated
by GANs. However, GANs are generally expensive and difficult to learn stably,
so we divided the image into patches and randomly rearranged the patches’
positions. Convolutional neural networks tend to make decisions based on texture
information rather than structural information of images [3]. Therefore, to detect
semantic shift, we thought it is essential to give appropriate labels to images with
broken structural information when learning structural information not present
in ID data.

5 Experiments

5.1 Experimental Settings

Networks and Training Details: We use ResNet-34 [6] for all experiments.
It is trained with batch size 128 for 200 epochs with and weight decay 0.0005.
The optimizer is SGD with momentum 0.9, and the initial learning rate set to
0.1. The learning rate decreases by factor 0.1 at 50% and 75% of the training
epochs.

Datasets: In the experiments, we use CIFAR-10/100 [13], Tiny ImageNet [20]
(cropped and resized), LSUN [26] (cropped and resized), iSUN [25], Uniform
noise, Gaussian noise and DomainNet [17]. If one of the CIFAR-10/100 use as
ID, the other is evaluated as OoD. Tiny ImageNet, LSUN, iSUN, Uniform noise,
and Gaussian noise are all used as OoD. The experiments using DomainNet
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follow the experimental method of GeneralizedODIN [10]. We divide the images
in each domain into two groups: A for class labels 0-172 and B for class labels
173-344. The A group in the real domain use as ID, and the other groups evaluate
as OoD.

Evaluation Metrics: Following previous OoD detection studies [8,10,14–16,
22], we use the area under the receiver operating characteristic curve (AUROC)
and true negative rate at 95% true positive rate (TNR@TPR95) as the evaluation
metrics. We also evaluate the classification performance of ID data. For all of
these metrics, a higher value indicates better performance.

5.2 Compared Methods

We use Cutout [1], AugMix [9], Mixup [28], CutMix [27], ResizeMix [19], and
Puzzle Mix [12] to compare augmentation methods. We evaluate these augmen-
tation methods performance alone and in combination with standard augmen-
tation (i.e., crop, horizontal flip) and the proposed methods. In comparison with
the OoD detection method, we evaluate the performance of combining the pro-
posed methods on the DomainNet dataset. We employed the MaxSoftmax-based
method [8] as Baseline and compared it with ODIN [16] and Scaled Cosine [10].

5.3 Results

Comparison of Augmentation Method. Table 3 shows the results when
each augmentation applies by itself and standard augmentations are not in use.
In many experiments, our method has shown high OoD detection performance.
In particular, we achieve high detection performance on datasets where the image
is resized instead of cropped and Uniform and Gaussian noise datasets. This is

Table 3. Performance comparison of each augmentation methods.

ID OoD Method (AUROC/TNR@TPR95)

Baseline Cutout Mixup CutMix AugMix ResizeMix Pazzle Mix Our

CIFAR-10 C100 80.5/19.8 82.6/23.0 81.1/24.3 81.4/22.8 82.7/21.1 68.8/27.3 80.7/26.3 86.5/30.1

TINc 80.6/18.3 84.6/26.1 82.7/25.5 89.8/39.5 84.2/25.1 77.9/36.1 87.9/35.8 89.9/36.3

TINr 76.0/16.6 80.9/21.7 80.6/23.7 89.0/39.2 84.2/24.4 75.4/42.3 92.5/49.8 94.9/63.3

LSUNc 80.7/14.6 80.5/20.0 81.9/23.2 87.3/32.1 89.0/38.9 68.5/27.5 80.1/26.7 90.1/36.8

LSUNr 80.8/19.3 86.3/29.5 84.6/30.2 92.3/49.1 86.8/28.1 88.5/60.1 94.0/55.8 95.8/69.4

iSUN 79.8/20.1 85.4/27.6 83.5/28.7 91.8/47.6 86.3/28.0 85.6/54.9 94.1/56.8 96.0/71.2

Uniform 86.0/19.3 88.8/31.0 81.0/11.3 83.8/19.3 97.7/83.7 92.7/51.9 96.2/72.4 100.0/100.0

Gaussian 97.9/85.3 90.6/35.6 85.6/12.6 83.2/19.0 98.6/92.0 51.2/15.0 93.6/53.3 100.0/99.9

CIFAR-100 C10 66.6/9.7 69.4/12.2 70.3/11.7 70.0/11.3 69.6/12.1 74.1/15.3 71.3/71.3 73.6/14.7

TINc 75.0/19.0 74.5/19.5 78.6/23.0 73.7/11.2 64.5/6.0 82.1/26.7 76.3/16.1 79.5/22.1

TINr 69.2/12.5 62.9/9.1 67.5/9.2 45.4/1.7 73.1/14.3 78.7/21.5 54.3/4.7 88.3/49.2

LSUNc 66.5/9.7 67.0/10.5 63.2/10.7 68.8/9.0 53.9/4.1 77.4/21.2 69.9/9.4 75.2/12.6

LSUNr 71.5/13.8 63.8/8.2 69.2/8.7 45.3/1.3 73.2/14.6 80.4/22.6 54.6/3.6 88.6/50.1

iSUN 69.4/12.1 62.1/7.1 67.6/7.7 44.4/1.1 70.0/12.2 78.2/20.0 54.2/3.6 88.1/50.9

Uniform 57.5/0.9 35.4/0.1 29.4/0.0 60.0/0.7 33.5/0.0 20.0/0.0 91.0/49.3 100.0/100.0

Gaussian 36.7/0.0 73.4/5.2 38.4/0.0 64.7/1.7 54.4/0.0 94.1/58.7 61.7/0.5 100.0/100.0
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Table 4. The results of the combinations of augmentation methods. SA indicate using
standard augmentation (i.e. crop and horizontal flip). The numbers in parentheses
indicate the performance when the proposed method is combined, and the bold type
indicates the improvement of performance by the proposed method.

ID OoD
Method (AUROC/TNR@TPR95)

SA
(+Our)

SA+Cutout
(+Our)

SA+Mixup
(+Our)

SA+CutMix
(+Our)

SA+ResizeMix
(+Our)

SA+Puzzle Mix
(+Our)

C
IF
A
R
-1
0

C100
86.7/36.2

(89.0/40.7)
89.9/43.5

(90.3/44.5)
74.9/37.1

(82.7/37.9)
85.7/38.6

(88.8/46.4)
83.6/43.7

(88.1/46.6)
83.8/44.7

(87.6/46.1)

TINc
91.7/49.5

(92.2/48.3)
94.1/58.6

(94.3/60.0)
83.2/58.1
(86.3/50.1)

96.1/73.1
(96.7/77.2)

91.2/54.4
(93.1/56.6)

97.1/84.0
(96.3/74.7)

TINr
88.6/39.6

(96.9/77.7)
93.6/56.7

(97.5/83.0)
84.5/39.7

(97.4/82.8)
97.1/84.3

(98.9/95.6)
76.6/53.8

(95.1/71.5)
97.2/82.9

(98.8/93.8)

LSUNc
93.6/57.5
(93.3/53.3)

93.9/57.7
(95.4/66.6)

84.8/68.4
(89.0/60.5)

94.4/61.1
(97.1/81.0)

91.2/53.5
(93.8/58.4)

95.3/77.1
(96.1/76.5)

LSUNr
90.7/46.5

(97.6/83.4)
94.9/63.8

(97.6/83.9)
88.2/49.2

(98.0/87.6)
98.2/92.5

(99.2/98.3)
86.2/68.3

(97.1/80.3)
98.2/92.2

(99.2/96.6)

iSUN
89.9/44.3

(97.4/82.0)
94.8/62.8

(97.6/83.8)
88.0/46.9

(97.8/86.3)
97.9/89.8

(99.2/97.7)
83.6/63.7

(97.1/80.5)
98.0/90.4

(99.1/95.5)

Uniform
90.0/21.9

(100.0/100.0)
87.7/6.2

(100.0/100.0)
90.5/19.8

(100.0/100.0)
4.5/0.0

(100.0/100.0)
92.7/51.9

(100.0/100.0)
80.0/5.3

(100.0/100.0)

Gaussian
98.1/89.1

(100.0/100.0)
97.2/84.9

(100.0/100.0)
98.0/92.9

(97.9/95.1)
78.0/3.2

(97.0/99.8)
84.5/7.0

(100.0/100.0
59.0/0.0

(100.0/100.0)

C
IF
A
R
-1
00

C10
75.6/16.5

(76.5/19.3)
76.0/16.7
(75.2/16.4)

73.9/18.7
(74.8/20.5)

77.7/21.0
(75.9/21.2)

75.7/18.6
(76.3/21.1)

78.4/21.0
(77.2/20.5)

TINc
82.3/26.5

(83.8/32.0)
80.5/22.7

(82.6/29.0)
84.7/39.6
(82.0/31.5)

86.6/36.5
(84.6/34.6)

82.5/30.4
(85.0/33.9)

88.9/40.8
(87.2/39.6)

TINr
76.5/18.5

(89.9/52.2)
74.0/17.0

(92.6/64.3)
76.1/21.6

(91.5/60.1)
84.1/31.8

(90.4/52.7)
79.2/25.8

(88.4/44.4)
77.2/19.8

(94.9/72.7)

LSUNc
79.5/21.3

(82.7/29.3)
75.7/16.4

(83.5/29.9)
83.5/38.1
(79.8/26.2)

84.1/31.2
(84.6/34.4)

79.7/26.5
(82.1/27.7)

85.4/32.1
(85.3/33.1)

LSUNr
78.5/20.3

(89.6/51.8)
73.6/14.8

(92.8/64.1)
77.2/21.3

(91.8/59.2)
86.5/35.1

(90.5/51.7)
80.3/26.7

(88.3/42.5)
76.8/18.4

(95.4/74.6)

iSUN
77.2/18.6

(89.0/50.4)
73.7/14.9

(92.2/63.8)
76.0/20.0

(90.6/56.9)
84.7/31.0

(90.2/51.3)
79.1/24.9

(88.3/44.0)
75.1/17.0

(93.8/68.9)

Uniform
74.4/1.0

(100.0/100.0)
97.5/86.3

(100.0/100.0)
78.2/1.3

(100.0/100.0)
90.8/41.8

(100.0/100.0)
45.9/0.0

(100.0/100.0)
68.8/0.4

(100.0/100.0)

Gaussian
52.8/0.0

(98.8/97.7)
80.7/0.0

(100.0/100.0)
60.1/0.0

(100.0/100.0)
89.6/24.3

(100.0/100.0)
35.9/0.0

(99.7/98.9)
61.0/0.0

(99.8/100.0)

because the proposed method can learn to focus on the image structure infor-
mation and the minimum patch size is one pixel.

Combination of Augmentation Method. Table 4 shows the results of com-
bining standard augmentation methods such as crop and horizontal flip with
existing augmentation methods and our proposed method. The results show that
for many augmentation methods, the combination of our proposed method can
improve the performance of OoD detection. Table 5 shows the classification per-
formance of ID data when using each augmentation method combined with our
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Table 5. Comparison of ID classification accuracy. In all cases, we use the standard
augmentation of crop and horizontal flip.

ID Method Classification accuracy

CIFAR-10 Baseline (+Our) 94.8(94.8)

Cutout (+Our) 95.4(95.6)

Mixup (+Our) 94.2(94.2)

CutMix (+Our) 96.3(96.2)

ResizeMix (+Our) 96.7(96.3)

Puzzle Mix (+Our) 96.4(95.4)

CIFAR-100 Baseline (+ Our) 74.0(76.0)

Cutout (+Our) 74.0(75.3)

Mixup (+Our) 75.4(76.8)

CutMix (+Our) 79.9(80.0)

ResizeMix (+Our) 79.0(80.3)

Puzzle Mix (+Our) 80.4(80.0)

Table 6. Results of combining the proposed method with the OoD detection method
using DomainNet.

OoD Shift AUROC TNR@TPR95

S NS Baseline(+Our)/ODIN(+Our)/Cosine(+Our)

real-B � 68.2(71.5)/65.0(69.4)/66.2(69.9) 9.7(11.5)/10.1(11.8)/8.6(10.9)

clipart-A � 67.6(71.0)/80.1(81.5)/70.2(77.5) 13.3(15.5)/30.5(33.8)/13.8(21.3)

clipart-B � � 74.8(78.1)/86.5(87.5)/77.0(83.2) 17.0(19.4)/38.2(42.4)/16.5(24.6)

infograph-A � 75.6(77.6)/80.2(81.9)/79.8(85.4) 16.9(19.2)/17.8(23.0)/20.7(31.7)

infograph-B � � 76.6(79.2)/81.7(83.6)/80.6(86.6) 16.9(20.2)/19.9(25.9)/20.5(33.0)

painting-A � 67.1(71.1)/55.7(63.1)/68.8(75.4) 11.0(12.8)/ 3.2( 4.2)/11.9(17.8)

painting-B � � 73.3(77.1)/61.2(69.4)/74.3(80.5) 14.0(16.7)/ 4.6( 6.6)/13.9(20.7)

quickdraw-A � 70.3(77.2)/96.0(97.1)/72.6(78.9) 12.1(14.0)/80.3(84.4)/11.0(10.8)

quickdraw-B � � 71.7(78.7)/96.7(97.6)/74.0(80.2) 12.2(15.4)/82.8(87.4)/11.8(11.3)

sketch-A � 70.6(76.1)/75.0(80.8)/72.9(81.5) 13.7(18.2)/22.1(29.7)/13.3(22.7)

sketch-B � � 75.5(79.4)/78.8(83.8)/77.4(84.4) 16.4(21.1)/24.0(32.0)/15.1(25.3)

proposed method. In all cases, the performance does not degrade significantly.
Therefore, from Tables 4 and 5, we can see that our method can improve the OoD
detection performance while maintaining the ID data classification performance.

Comparison of OoD Method. Table 6 shows the OoD detection results using
the DomainNet dataset. The proposed method can improve the OoD detection
performance in both cases of semantic shift and non-semantic shift. These results
indicate that the proposed method learns features that only exist in ID data
(i.e., real-A), thus improving the detection of semantic shifts and the detection
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of non-semantic shifts. Besides, the proposed method improves the performance
of Baseline and existing OoD methods.

5.4 Analysis

Effect of Network Architecture. Table 7 shows the performance of the pro-
posed method for different network architectures. It show that our proposed
method improves the performance of all network architectures.

Impact of Multiple Patch Sizes. Table 8 shows the results when PuzzleShuf-
fle is performed with single patch size and with multiple sizes. On average, both
ID classification performance and OoD detection performance are higher when
multiple scales are combined. It shows that it is important to perform Puz-
zleShuffle with multiple sizes to learn more diverse undesirable features.

Impact of Labeling Method. Our proposed method changed the label accord-
ing to the patch size, but a method to calculate the image similarity by images
before and after applying PuzzleShuffle is also possible. We use two image sim-
ilarity metrics, SSIM [29] and the cosine similarity of feature vectors obtained
from the models trained by ImageNet [20]. The calculated image similarity is
applied to the score of Algorithm2 to give a label. We also compare the results
with one-hot and uniform labels for all patch sizes. The results show in Table 9.
The image similarity obtained from the pre-trained model shows superior per-
formance in ID classification and OoD detection. These results indicate that it
is important to appropriately reflect the similarity to the original image in the
label, which is a future challenge.

Table 7. Performance evaluation of various network architectures. We used standard
augmentation and combined our proposed method.

ID OoD Network ID Acc AUROC TNR@TPR95

C-10 C-100 ResNet-34 94.8(94.8) 86.7(89.0) 36.2(40.7)

WideResNet-28-10 95.3(95.9) 89.3(89.7) 43.1(43.6)

DenseNet-100 94.4(94.6) 88.2(89.0) 35.2(38.4)

C-100 C-10 ResNet-34 74.0(76.0) 75.6(76.5) 16.5(19.3)

WideResNet-28-10 79.8(79.3) 79.2(80.1) 20.8(22.2)

DenseNet-100 75.1(76.64) 75.5(75.7) 17.8(18.2)
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Table 8. Performance evaluation for
various patch sizes.

ID OoD Num. of Div. ID Acc. AUROC TNR@TPR95

C-10 C-100 1× 1 94.8 89.0 36.2

2× 2 95.3 87.2 41.0

4× 4 94.5 86.7 37.1

8× 8 94.9 88.4 39.3

16× 16 93.5 84.8 35.2

Multi-scale 94.8 89.9 40.7

C-100 C-10 1× 1 74.0 75.6 16.5

2× 2 75.1 75.7 17.1

4× 4 73.5 74.8 16.3

8× 8 73.4 75.0 16.1

16× 16 74.4 75.5 16.7

Multi-scale 76.0 76.5 19.3

Table 9. Performance evaluation using var-
ious labeling methods. * indicates using
pre-trained model.

ID OoD Method ID Acc AUROC TNR@TPR95

C-10 C-100 One-hot 94.8 89.2 39.0

Uniform 94.5 85.6 44.2

SSIM 94.5 85.4 42.7

Cosine* 95.5 85.9 49.8

Algorithm2 94.8 89.0 40.7

C-100 C-10 One-hot 73.3 74.7 16.9

Uniform 76.8 75.7 16.1

SSIM 77.7 75.1 16.6

Cosine* 77.4 77.2 20.1

Algorithm2 76.0 76.5 19.3

6 Conclusion

This paper focuses on OoD detection under semantic shift and shows that con-
ventional OoD detection methods cannot detect semantic shift. Our proposed
method improves the performance of OoD detection without degrading the per-
formance of ID classification. In the future, we will study OoD detection that can
detect not only the semantic shift but also the non-semantic shift and investigate
more robust model construction and running machine learning systems.
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Abstract. Edge analytics refers to the application of data analytics and
Machine Learning (ML) algorithms on IoT devices. The concept of edge
analytics is gaining popularity due to its ability to perform AI-based ana-
lytics at the device level, enabling autonomous decision-making, without
depending on the cloud. However, the majority of Internet of Things
(IoT) devices are embedded systems with a low-cost microcontroller unit
(MCU) or a small CPU as its brain, which often are incapable of han-
dling complex ML algorithms.

In this paper, we propose an approach for the efficient execution of
already deeply compressed, large neural networks (NNs) on tiny IoT
devices. After optimizing NNs using state-of-the-art deep model com-
pression methods, when the resultant models are executed by MCUs or
small CPUs using the model execution sequence produced by our app-
roach, higher levels of conserved SRAM can be achieved. During the
evaluation for nine popular models, when comparing the default NN
execution sequence with the sequence produced by our approach, we
found that 1.61–38.06% less SRAM was used to produce inference results,
the inference time was reduced by 0.28–4.9 ms, and energy consumption
was reduced by 4–84 mJ. Despite achieving such high conserved levels of
SRAM, our method 100% preserved the accuracy, F1 score, etc. (model
performance).

Keywords: Edge AI · Resource-constrained devices · Intelligent
microcontrollers · SRAM conservation · Offline inference

1 Introduction

Standalone execution of problem-solving AI on IoT devices produces a higher
level of autonomy and also provides a great opportunity to avoid transmitting
c© Springer Nature Switzerland AG 2021
Y. Dong et al. (Eds.): ECML PKDD 2021, LNAI 12979, pp. 20–35, 2021.
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data collected by the devices to the cloud for inference. However, at the core
of a problem-solving AI is usually a Neural Network (NN) with complex and
large architecture that demands a higher order of computational power and
memory than what is available on most IoT edge devices. Majority of IoT devices
like smartwatches, smart plugs, HVAC controllers, etc. are powered by MCUs
and small CPUs that are highly resource-constrained. Hence, they lack multiple
cores, parallel execution units, no hardware support for floating-point operations
(FLOPS), low clock speed, etc.

The IoT devices are tiny in form factor (because FLASH, SRAM, and pro-
cessor are contained in a single chip), magnitude power-efficient, and cheapest
than the standard laptop CPUs and mobile phone processors. During the design
phase of IoT devices, in order to conserve energy and to maintain high instruc-
tion execution speeds, no secondary/backing memory is added. For example,
adding a high-capacity SD card or EEPROM can enable storing large models
even without compression. But such an approach will highly affect the model
execution speed since the memory outside the chipset is slow and also requires
≈100x more energy to read the thousands of outside-located model parameters.

The memory footprint (SRAM, Flash, and EEPROM) and computation
power (clock speed and processor specification) of IoT devices are orders of mag-
nitude less than the resources required for the standalone execution of a large,
high-quality Neural Network (NN). Currently, to alleviate various critical issues
caused by the poor hardware specifications of IoT devices, before deployment
the NNs are optimized using various methods [12] such as pruning, quantization,
sparsification, and model architecture tuning etc. Even after applying state-of-
the-art optimization methods, there are numerous cases where the models after
deep compression/optimization still exceed a device’s memory capacity by a
margin of just a few bytes, and users cannot optimize further since the model is
already compressed to its maximum. In such scenarios, the users either have to
change the model architecture and re-train to produce a smaller model (wasting
GPU-days and electricity), or upgrade the device hardware (for a higher cost).

In this paper, we propose an efficient model execution approach to execute
the deep compressed NNs. Our approach can comfortably accommodate a more
complex/larger model on the tiny IoT devices which were unable to accommo-
date the same NNs without using our approach. The contributions of this paper
can be summarised as follows:

– Our proposed approach shows high model execution efficiency since it can
reduce the peak SRAM usage of a NN by making the onboard inference
procedure follow a specific model execution sequence.

– Our approach is applicable to various NN architectures, and models trained
using any datasets. Thus, users can apply it to make their IoT devices/prod-
ucts efficiently execute NNs that were designed and trained to solve problems
in their use-case. We also implemented and made our approach freely available
online.

– When the NNs optimized using state-of-the-art deep compression sequences
exceed the device’s memory capacity just by a few bytes margin, the users
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cannot additionally apply any optimization approach since the model might
be already maximum compressed or the users cannot find a study that con-
tains methods compatible to the previous optimizations. In such scenarios,
when our approach is used, the same NNs that couldn’t fit on the user’s device
(due to SRAM overflow), can be comfortably accommodated due to the fact
that our approach provides a model execution sequence that consumes less
SRAM during execution.

– Orthogonal to the existing model memory optimization methods, our app-
roach 100% preserves the deployed model’s accuracy since it does not alter
any properties and/or parameters of models, neither alter the standard infer-
ence software. Instead it instructs the device to just use the SRAM optimized
execution sequence it provides.

– Many IoT devices running large NNs fail due to overheating, fast battery
wear, and run-time stalling. The prime reason for such failure causing issues
is the exhaustion of device memory (especially SRAM). To accurately esti-
mate the memory consumed by models during execution on IoT devices, we
provide a Tensor Memory Mapping (TMM) program that can load any pre-
trained models like ResNet, NASNet, Tiny-YOLO, etc., and can accurately
compute and visualize the tensor memory requirement of each operator in
the computation graph of any given model. A part of the approach proposed
in this paper relies on the high-accuracy calculation results of TMM.

Outline. The rest of the paper is organized as follows; Sect. 2 briefs essential
concepts and related studies. In Sect. 3, we present the complete proposed app-
roach, and in Sect. 4, we perform an empirical evaluation that aims to justify
the claims of our approach before concluding our paper in Sect. 5.

2 Background and Related Work

In Subsect. 2.1, we present the top deep model compression techniques that pro-
duce the smallest possible model, which can be executed on MCUs and small
CPUs using our proposed approach. In Subsect. 2.2, we view the trained NN
as a graph and explain its standard execution method, followed by the related
studies comparable with our model execution approach.

2.1 Deep Model Compression

The approaches in this category employ various techniques to enable fitting large
NNs on IoT devices. For instance, Model design techniques emphasize designing
models with reduced parameters. Model compression techniques use quantiza-
tion and pruning [12] based approaches. Quantization takes out the expensive
floating-point operations by reducing it to a Q-bit fixed-point number, and prun-
ing removes the unnecessary connections between the model layers. Other tech-
niques such as layer decomposition [11], distillation [3], binarisation [5] is also
applicable. Also, neural architecture search methods [15] can be used to design
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a network with only a certain floating-point operation count to fit within the
memory budget of the MCUs. If users want to achieve a higher level of size
reduction, let’s assume when they aim to execute models like Tiny-YOLO and
Inception v3 (23.9 MB after post-training quantization) on IoT devices, we rec-
ommend performing Deep Model Compression. Here the users, in a sequence,
have to realize more than one of the briefed model optimization techniques.

After following the deep optimization sequence of their choice, the NNs
become friendly enough to be executed on tiny devices. Additionally, when such
deep optimized models are executed using our proposed approach, its peak on-
device execution memory usage can be reduced.

2.2 Executing Neural Networks on Microcontrollers

A neural network is a graph with defined data flow patterns having an arrange-
ment of nodes and edges, where nodes represent operators of a model, and graph
edges represent the flow of data between nodes. The operator nodes in the model
graph can be 2D convolutions (Conv2D), or Depthwise separable 2D convolution
(DepthwiseConv2D), etc. These operator nodes can take more than one input
to produce an output. Recently, a few ML frameworks have released tools to
optimize model graphs in order to improve the execution efficiency of NNs. For
example, the optimizer tool fuses adjacent operators and converts batch normal-
ization layers into linear operations. In such model computation graphs, buffers
are used to hold the input and output tensors before feeding them to the opera-
tors during the model execution. After execution, the items in the output buffer
will be provided as input to the next operator, and the input buffers can be
reclaimed by removing the stored data.

Structure of Computation Graphs. When executing a model, the graph
nodes in both the regular graph and its optimized version are executed one by one
in a topological fashion/order. For example, the VGG and AlexNet iteratively
apply a linear sequence of layers to transform the input data. But, similar to
the computation graph shown in Fig. 1, the newer networks like the Inception,
NasNet, and MobileNet, etc. are non-linear as they contain branches. For these
networks, the input data transformation is performed in divergent paths because
the same input is accessible by numerous operators present in several layers
i.e., the same input tensors are accessible for processing by several layers and
operators. Hence when executing such branched models on MCUs, the execution
method can have access to multiple operators.

Mapping Models on the MCU Memory. The typical small CPUs and MCUs
based IoT devices have their on-chip memory partitioned into SRAM (read-
write) and NOR-Flash (read-only). The complete memory requirement of a NN
is mapped to these two partitions. Since SRAM is the only available read-write
space, the intermediate tensors generated during model execution are stored
here, increasing the peak SRAM usage on MCUs. The model parameters such
as trainable weights, layers, constants, etc., do not change during the run-time
(immutable in nature). Hence, they are converted into hex code and stored in
the static Flash memory along with the application of the IoT use case.
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Fig. 1. A part of the COCO SSD MobileNet computation graph with its branched
operators: When executing such graphs on IoT devices, our approach reduces the peak
SRAM consumption by producing an optimized operators execution sequence. (Color
figure online)

The most relevant work to ours are [10] and [9], where a NN execution runtime
for MCUs is attached with their NAS. Next is the [1], which proposes a method
for optimizing the execution of a given neural network by searching for efficient
model layers. i.e., a search is performed to find efficient versions of kernels,
convolution, matrix multiplication, etc., before the C code generation step for
the target MCU. Both the methods aim to ease the deployment of NNs on
MCUs, whereas our approach is to take any deep compressed model and during
execution reduce its peak SRAM usage.

3 Efficient Neural Network Execution Approach Design

As discussed earlier, the trained model size and its peak SRAM need to be highly
reduced due to the limited Flash and SRAM memory capacity of IoT devices.
Here, we present our approach that can reduce the peak SRAM consumed by
neural networks. We first describe our Tensor Memory Mapping (TMM) method
in Subsect. 3.1. Then in Subsect. 3.2 and 3.3, we present the two parts of our
proposed approach, followed by Subsect. 3.4 that combines both the parts and
presents the complete approach in the form of an implementable algorithm.

3.1 Tensor Memory Mapping (TMM) Method Design

Before deployment, the memory requirement of models is often unknown or cal-
culated with less accuracy. i.e., there will exist a few MB of deviations in the
calculations. When the model is targeted to run on better-resourced devices like
smartphones or edge GPUs, these few MB deviations do not cause any issues.
But when users target the resource-constrained IoT devices (has only a few
MB memory), then the low-accuracy calculation causes run-time memory over-
flows and/or restrict flashing model on IoT devices due to SRAM peaks. Based
on our recent empirical study, we found that many IoT devices that are run-
ning large NNs fail due to overheating, fast battery wear, run-time stalling. The
prime reason for such failure causing issues is the exhaustion of device mem-
ory (especially SRAM). Hence, this inaccurate calculation leads to a horrendous
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computing resource waste (especially the GPU days) and reduced development
productivity. In this section, we thereby present our tensor memory mapping
method, which can be realized to accurately compute and visualize the tensor
memory requirement of each operator in any computation graph. We use this
high-accuracy calculation method in the core algorithm design of our efficient
neural network execution approach.

Fig. 2. Accurate computation and visualization of tensor memory requirement for each
operator in NN computation graphs (performed using our TMM): The Algorithm 1
reduces the shown memory peaks by reordering operators to produce a new graph
execution sequence.

Abstraction and Formalization. We treat the internal of neural networks as
mathematical functions and formalize it as tensor-oriented computation graphs
since the inputs and outputs of graph nodes/operators are a multi-dimensional
array of numerical values (i.e., tensor variables). The shape of such a tensor is
the element number in each dimension plus element data type. In the below
equation, we formally represent a NN as a Directed Acyclic Graph (DAG), and
we treat its execution as iterative forward and backward propagation via the
graph branches.

NNDAG = 〈{opi}ni=1 , {(opi, opj)} , {pk}mk=1〉 (1)

Here opi are the graph operators, (opi, opj) is the connection to transmit
output tensor from opi as an input to opj , and there are m hyperparameters
pk. Let the topological ordering of operators be Seq = 〈opi1 , opi2 , · · · , opin〉
that extends from the first graph edge such that opii <Seq opik →

(
opik , opij

)
/∈

NNDAG, where Seq is the operator execution sequence (we aim to find a memory
friendly sequence in the later sections). In this graph, when visiting a node op,
we need to calculate the memory it consumes to store (i) newly assigned tensors,
(ii) previously assigned but still in-use tensors, (iii) reserved buffers. To calculate
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the memory consumption MNNDAG
of a graph NNDAG we give the following

formulae. We call the first two types of tensors as unreleased tensors.

MNNDAG
= max {MFninit

,MFn (opi) | opi ∈ NNDAG} (2)

Here, MFninit
=

∑
MTsr(t) is the function to compute the initial memory

consumption, MFn(op) = MUres(op)+MR(op) is the current memory consump-
tion, MUres(op) =

∑
t∈UresTsr(op)

MTsr(t) is the function that computes mem-
ory requirement of unreleased tensors, MR(op) function returns memory size of
reserved buffers. The set of unreleased tensors are computed using UresTsr, and
for a given tensor t, function MTsr is used to find its allocated memory size.
The Eq. 2 applies to models trained using any ML frameworks like TensorFLow,
PyTorch, etc. to estimate the graph memory consumption, and applicable to
calculate the memory requirements for any operators execution sequence.

Testing the Design. The implementation of our method is suitable for any
pre-trained models like NASNet, Tiny-YOLO, SqueezeNet, etc. For each of the
operators in any given model graph, our method computes the total required
SRAM. i.e., the space required to store the input tensors + output tensors +
other tensors, and then exports the detailed report in CSV format. Our method
can also produce images that show the tensor memory requirement of each oper-
ator. For example, when we feed the Inception V1 that contains 84 graph nodes/-
operators to our method, it produces Fig. 2a. (for brevity, we show only 0–29
operators) along with the detailed CSV report. Similarly, we test our method
on SqueezeNet and MobileNet V1 and show the results in Fig. 2b–c. Thus by
enabling visualization, our method helps users analyze multiple memory aspects
of networks and obtain valuable insights that can guide them to customize their
model graph for highly reduced memory. For example, we made the following
observations; (i) Most of the Inception V1 nodes consume high memory to accom-
modate other tensors, whereas the MobileNet does not contain other tensors at
all; (ii) Three nodes in SqueezeNet consume significantly higher memory than
other nodes. Such nodes can be replaced with cheaper operators that perform
the same tasks.

3.2 Loading Fewer Tensors and Tensors Re-usage

In the traditional model execution methods, multiple tensors of various sizes are
loaded into the buffer (such bulk loading is the reason for causing peak memory
usage) since the traditional methods execute operators requiring different size
tensors. In contrast, our approach executes many operators by just loading a
minimum number of tensors. This part of our approach also aims to achieve
SRAM conservation by tensors re-usage. Here, our approach identifies and
stores a particular set of tensors in the buffer (buffers are created within SRAM)
and first executes the branch of the graph containing operators compatible with
the stored tensors. Then in the next iteration, it loads tensors that are suitable
as input for the set of operators belonging to the next branch, then performs the
execution. After each iteration, the buffers are reclaimed.
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For illustration purpose, in Fig. 1, the intermediate tensors of varying size
are shown in blue circles 1 to 5 which need to be stored in SRAM during
the graph execution. Here, at the first branching point circled B , when the
default model execution software is utilized, the two tensors with blue circles 1
and 2 are loaded on the SRAM. Then it executes all the branched operators
with rose circles 3 to 5 . This method of loading many tensors and executing
many operators leads to the most critical SRAM overflow issue, especially in the
scenarios where multiple branches are emerging from one branching point.

3.3 Finding the Cheapest NN Graph Execution Sequence

The computational graphs of models perform the inference tasks in a collection
of computational steps, where each step depends on the output from a few of
the preceding steps. For example, in the graph of MobileNet shown in Fig. 1,
these graph steps are the operators and rose circled 1 → 2 means the second
operator depends on the output of the first. Since the computation graphs of
most NNs are DAGs, we can enumerate orders/sequences to execute all the
operators/computational steps.

As shown in Fig. 1, the modern NNs like MobileNet have divergent data flow
paths. i.e., their computation graphs contain branches. As briefed in Subsect. 2.2,
due to such a branched design, a given tensor can be accessed by operators in
various branches. For example, in Fig. 1, the tensor with a blue circle 1 of size
1 × 10 × 10 × 768 can be accessed by three Conv2D operators due to the presence
of a branching point circled B . Similarly, the tensor with blue circle 3 of size
1 × 5 × 5 × 384 is accessible by two Conv2D layers and by another sequence of
operators circled A . Such branched computation graphs provide freedom for the
model execution software to alter the execution order/sequence of the operators.
In the rest of this section, we show that any topological execution order of the
graph nodes will result in a valid execution scheme; we then explain how our
approach leverages this freedom to achieve its SRAM conservation goal.

Does Any Topological Execution Order of the NN Graph Nodes
Result in a Valid Execution Scheme? DAGs of models have topological
ordering and do not have cycles because the edge into the earliest vertex of a
cycle would have to be oriented the wrong way. Therefore, every graph with a
topological ordering is acyclic. But for a directed graph that is not acyclic, there
can be more than one minimal subgraph with the same reachability relation.
Where, for a complete DAG with N nodes, the search space contains 2N(N−1)/2

possible topological orders/structures. We consider the initial graph node as the
source node, where the input data (i.e., sensor values that require predictions)
is fed into the network, and the ending node as the sink node, where the infer-
ence results are transmitted to control the real world applications. In the graph
of MobileNet from Fig. 1, let us assume the source node to be circle So and

the sink node to be circle Si . Since NNs are DAGs, the topological execution
numbers assigned to the nodes (operators) increases along the branched path
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(without forming any cycles) till the sink node. During this coverage, no graph
vertices or nodes are skipped.

Formally, we define thus described topological process as G0 = (V, E), with
operators V = {v1, v2, v3, . . . , vn−1, vn} and E are the edges between opera-
tors. Here the operator execution order is a sequence containing all the operators
∈ V,

{
vk1 , vk2 , · · · , vkn−1 , vkn

}
such that for all i, j (0 � i, j � n), if there

exists a path from vki
to vkj

, then i < j. Briefly, if there is a path from operator
v to operator w, then in the execution sequence, v should be set to be executed
before w. Hence, the directed computation graph of NNs is a DAG if and only if
it has a topological ordering. This explanation gives us two independent state-
ments to prove; First we need to show if a directed graph follows a topological
ordering of operator nodes, it is a DAG. Second, we need to show that all DAGs
follows a topological ordering of operator nodes.

Proof One. Since a biconditional logical connective exists between the above
two statements, either both statements are true or both are false. Hence, proving
either the first or the second statement will suffice both. By contrapositive; if we
prove that if a NN graph is not a DAG, it can not have a topological ordering,
we can satisfy the first statement. In the following, we prove this.

When we assume the computation graph of a NN to not be a DAG, there
will exist cyclic data flow between operators in the graph. For example, in
{v1, v2, · · · , vk, v1}, since there is a path from v1 to v2, the operator v1 must
appear before v2 in the topological ordering scheme. But there is also a path
from v2 to v1 via vk making v2 appear before v1. If we implicate this scenario in
Fig. 1, the execution sequence reaches the sink node (vk) and then returns back
to the source node (v1), clearly voiding the main ordering principle of a DAG,
hence proving the first statement. In the following, we also prove the second
statement, but by induction.

Proof Two. We start to prove the second statement in step one. Here, we
define the base case, which is a graph with just one operator. This graph is a
DAG with topological ordering since the execution order starts from the source
node, travels via the single operator, and ends at the sink node. In step two, we
consider a topologically ordered DAG with multiple operators connected by n
vertices as the induction hypothesis. In order to prove the second statement, for
this induction step two, we need to show that the induction hypothesis implies
that a DAG with n+1 vertices must have a topological ordering. To prove this, in
step three, we take a NN graph with n+1 vertices/operators having one 0-degree
vertex v0. In step four, we remove the 0-degree vertex to obtain a computation
graph with n vertices (similar to graph from step two). This resulting graph
must be a DAG since the base graph from step two had no cycles, and also, in
this step, we removed edges (not added).

According to the induction hypothesis from step two, since the resultant
graph from step four is a DAG with n vertices, it also will have a topological
ordering. Thus, a topological operators execution sequence can be constructed
for the graph from step three that has n+ 1 operators, by prepending v0 to the
topological order of the n vertices DAG from step two.
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Algorithm 1. Reducing the peak SRAM consumption by discovering an opti-
mized operators execution sequence.
1: Input: Computation graph of the trained model.
2: Output: Cheapest graph execution order with reduced peak SRAM requirement.
3: consttens � Constant tensors
4: activetens � Active tensors that change during graph execution
5: settens � Set of tensors
6: remtens � Variable to store the remaining tensors
7: reqtens � Tensors required to produce tens
8: operator (tens) � The operator that computes to produce tensors tens and

settens

9: k ← ∞, s ← 0, k′ ← 0 � Variables
10: memory reduction � Function to find the path that consumes minimum

memory to compute all tens ∈ settens

11: consttens, activetens ← Separate (settens, tens : operator (tens) is none)
� Separate constant and active tensors

12: if no activetens then
13: return

∑
s ∈ consttens

|c| � No remaining operators to reorder. Send sizes
of remaining consttens

14: end if
15: for tens in activetens do
16: remtens ← activetens � Remaining tensors need to be stored in memory
17: reqtens ← operator (tens) . data
18: if any (tens is used to produce rem where rem ∈ remtens) then
19: tens was used to produce rem. So in the future, the operator (tens)

will be executed � Result stored for re-use
20: end if
21: � At this stage, peak memory will be consumed either by; (i)

the operator (tens) that produced rem. In this case the peak is the memory of
input tensors + output tensor + other tensors. (ii) other operators. i.e., recursive
case memory reduction (remtens ∪ reqtens)

22: k′ ← max (memory reduction (remtens ∪ reqtens),∑
t ∈ remtens ∪ reqtens ∪ {tens} |t|)

23: k ← min (k, k′)
24: � The cheapest graph execution order/path is decided here
25: end for
26: return

∑
rem ∈ remtens

|rem| + k

SRAM Conservation by Altering Operators Execution Sequence. Hav-
ing proved that changing execution sequence of operators still produces a valid
scheme; our approach achieves its memory conservation goal by intelligently
selecting the execution branch that when executed consumes less SRAM (reduces
the peak memory consumption) than the default sequence. For illustration pur-
pose, in Fig. 1., if the model execution software follows the default operators
execution order; the execution will start at the operator with a rose circle 1
and follow the sequence till the operator with a rose circle 8 , in the order of 1,
2, 3, 4, 5, 6, 7, 8. This unoptimized default order will consume a peak SRAM
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of 5900 Bytes. Whereas when our efficient execution approach is utilized, the
operator execution order is altered to form a new sequence that will require a
reduced SRAM of 5200 Bytes. This new order will be 1, 2, 5, 6, 7, 8, 3, 4. Here,
the calculated SRAM consumption/requirement is the sum of the size of tensors
stored in the operator’s input and output buffers added with the tensor size of
the output of previous or next operators. As explained in Subsect. 2.2, this third
set of stored tensors are the input for the other operators that exist in the graph.

3.4 Core Algorithm

Discovering multiple topological orders of nodes in a computation graph belongs
to the literature of graph optimization. The algorithm that we present in this
section belongs here since we designed it considering the computation graph of a
model as a DAG, and as proved in Subsect. 3.3, the execution of available nodes
in any topological order will result in a valid execution sequence. When the
computation graph of any given model is loaded into our algorithm, it analyzes
the complete network by running through each branch of the network and finally
discovering the cheapest graph execution path/sequence. The time consumed
by the algorithm to produce the results depends on complexity T�

(
|O|2|O|),

where |O| is the total operators count. Since the latest network architectures
contain hundreds of operators, our proposed algorithm is best-suited to run on
better-to-high resource devices such as laptop CPUs. Our algorithm-generated
optimized graph execution sequence should be used by the inference software
when executing the target model on MCU-based IoT devices.

We present our complete approach in Algorithm1. Here, Lines 10 to 25 is
the core memory reduction function of our algorithm that performs the required
tasks to reduce the peak SRAM usage by reordering operators to produce a new
execution sequence. Before the core function, in Line 3 to 9, we declare all the
function required variables. In Line 11, we remove the tensors that shall not be
used as inputs by the operators in the graph. Also, the tensors that do not contain
the operators that produced are taken out. Thus performed removal actions
do not affect the model performance since the removed tensors are constant
consttens.

Next, in Line 18 to 20, we ensure that no operator nodes are executed twice.
This is done by checking whether an operator node has produced any of the
tensors (remtens) that are remaining after taking out consttens. If such tensors
are existing, in the future, the inference software might require to execute again
the operators that produced those tensors. To conserve memory, in Line 19, the
results of such operators that need to be re-executed are stored in the buffer for
reuse. In fact, such re-execution can cause memory peaks. In Line 22, the memory
reduction function is called multiple times in order to cover all the branches of
the computation graph. Finally, in Line 26, the cheapest graph execution path
is returned. When executing the thus produced reordered operators sequence on
IoT devices, if the scope of loaded tensors is over, we recommend the inference
software to reclaim the memory used by such tensors by removing them from
the SRAM.
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Table 1. Executing original models and its Algorithm 1 optimized versions: Comparing
the peak SRAM usage, inference time, and the energy consumed for inference.

Model

task/

category

Pre-trained

model

name

Quantized model

without optimization

Quantized model with

optimization using

Algorithm1

Peak

SRAM

usage

(KB)

Inference

time

(ms)

Energy

used

(mJ)

Peak

SRAM

usage

(KB)

Inference

time

(ms)

Energy

used

(mJ)

Image

classification

MobileNetV1

[7]

98.304 1.6 27.59904 65.536(32 ↓) 0.96 (0.64 ↓) 16.55942 (11 ↓)

SqueezeNet

[6]

6195.200 12.4 213.8926 4816.896 (1378 ↓) 10.62 (1.78 ↓) 183.1886 (30.7 ↓)

InceptionV1

[13]

1003.520 43.6 752.0738 802.816 (200 ↓) 38.9 (4.7 ↓) 671.0017 (81.0 ↓)

MnasNet

[14]

1605.632 7.4 127.6456 1204.224 (401 ↓) 5.7 (1.7 ↓) 98.32158 (29.3 ↓)

NASNet

mobile [17]

4511.660 63 1086.712 3834.284 (677 ↓) 61.2 (1.2 ↓) 1055.663 (31 ↓)

DenseNet [4] 8429.568 246.3 4248.527 5221.264 (3208 ↓) 241.4 (4.9 ↓) 4164.005 (84 ↓)
Semantic

segmentation

DeepLabv3

[2]

5639.592 38.2 658.927 5548.116 (91 ↓) 37.07 (1.13 ↓) 639.435 (19 ↓)

Pose

estimation

PoseNet [8] 6575.904 22.3 384.661 4383.936 (2191 ↓) 19.4 (2.9 ↓) 334.638 (50 ↓)

Text

detection

EAST [16] 5324.800 43.38 748.278 3686.400 (1638 ↓) 43.10 (0.28 ↓) 743.449 (4 ↓)

4 Experimental Evaluation

In this section, we perform an empirical evaluation to answer the following ques-
tions.

– To what levels can the proposed approach increase the model execution effi-
ciency by reducing the peak SRAM usage of NNs?

– Is the approach suitable to diverse NN architectures and NNs trained using
various datasets?

– Can the approach produce an optimized operators execution sequence for
already optimized or deep compressed models?

– Does optimization using the proposed approach impact the accuracy or per-
formance of the model?

We start the evaluation by downloading popular pre-trained TensorFlow Lite
models (.tflite format) from TensorFlow Hub. For comprehensiveness, the
models selected to evaluate our approach belong to various problem domains
ranging from image classification to text detection and are listed in Table 1. As
described in Subsect. 3.4, since the chosen models contain hundreds of operators,
the complexity of our algorithm will be high. Hence, we conduct the evaluation
on a standard NVIDIA GeForce GPU-based Ubuntu laptop with Intel (R) Core
(TM) i7-5500 CPU @ 2.40 GHz. After the download, we first load and execute
each model on the same laptop using the default execution sequence of operators
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and tabulate the corresponding peak SRAM usage, unit inference time, and the
energy consumed to execute the model and perform inference.

In the same setup, we next apply the implementation of Algorithm1 on
each model and tabulate the obtained results in Table 1, next to the results
obtained when executing models using their default execution sequence. During
the evaluation, for statistical validation, the reported inference time and the
consumed energy corresponds to the average of 5 runs. In order to perform
analysis, in Table 1, we subtract the values reported under Quantized Model
with Optimization using Algorithm1 with values under Quantized Model without
Optimization and plot bar-graphs for each model in Fig. 3. Based on this, in the
remainder subsections, we analyze and discuss the benefits achieved as a result
of optimizing models using our proposed approach.

Fig. 3. Benefits achieved after optimization using our proposed approach.
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4.1 SRAM Usage

In practice, there are many cases where ML models optimized using state-of-
the-art deep compression sequences exceed the target device’s SRAM capacity
just by a few KB margin. In such cases, users cannot additionally apply any
optimization approach since it might not match the previous optimizer com-
ponents, or the model might already be maximum compressed. So they either
have to alter the model architecture and re-train to produce a smaller model
(waste of GPU days and electricity) or upgrade the IoT device hardware (loss of
money). In the remainder of this section, we show how our approach can enable
the accommodation and execution of memory overflow issues causing models on
IoT devices.

We take the quantized DenseNet with its default execution sequence and feed
it to our TMM program from Sect. 3.1. From the resultant computed memory
requirement for each operator in the default graph, the 24th operator showed the
peak SRAM consumption of 8429.568 KB. Next, after applying our Algorithm1
on DenseNet, the resultant memory-friendly graph execution sequence, when
evaluated by the TMM program, showed the peak memory of only 5221.264 KB
(peak reduced by 38.06%).

Similarly for MobileNet V1, the peak SRAM usage reduced from 98.304 KB
to 65.536 KB (see Table 1). Here our approach has reduced the memory peak by
32.76 KB (by 33%). In Fig. 3c, we plot thus calculated peak SRAM reduction
percentage for MobileNet V1 (label A in x-axis) and the remaining 8 models
selected for evaluation. The maximum peak SRAM reduction of 38.06% was
achieved for the DenseNet and the least of 1.61% reduction for DeepLabv3.
It is apparent from the results that the execution sequence produced by our
approach is applicable for a wide range of ML models that have diverse network
architectures. Also, since it reduces the SRAM peaks, the models that are still
large after optimization can be accommodated on tiny IoT devices. Thus, our
approach eliminates the re-training step that aims to produce small models, and
also, the device hardware need not be upgraded to accommodate the models.

4.2 Model Performance

As a part of experimental results, we report that despite the SRAM conser-
vation, the model executed using the SRAM optimized sequence provided by
Algorithm 1 showed the same performance (accuracy, F1 score, etc.) as the mod-
els when executed with their default sequence. This is because, unlike existing
methods, ours does not alter any properties/parameters of models, neither alter
the standard inference software (just instructs to use a different model execution
sequence). Also, as proved in Sect. 3.3, the SRAM optimized sequence produced
by our approach is a valid model execution sequence. This 100% model perfor-
mance preservation characteristics enable even tiny IoT devices to produce high
accuracy offline analytics results.
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4.3 Inference Time and Energy Consumption

Here in order to investigate the impact of our approach on inference/model exe-
cution performance, we execute each model first with their default execution
sequence, then with the memory peak reduced sequence produced by our app-
roach. We report the difference in inference time and consumed energy for both
default and optimized sequence in Table 1 and show it in Fig. 3a–b. For the same
tasks performed on the same device using the same datasets, the new graph exe-
cution sequence for DenseNet shows the maximum inference time reduction of
4.9 ms and the least of 0.28 ms reduction for EAST. We also achieved 4–84 mJ
less energy to perform unit inference since executing the model using the SRAM
optimized sequence produced by our approach is 0.28–4.9 ms faster than the
default sequence.

In realistic scenarios, to infer using a stream of data input, the deployed
model is executed in a loop. Here, even the minor inference speedups and energy
conservation produced by our approach get multiplied, driving the IoT devices
close to producing real-time edge analytics results at a lower power cost. Thus,
even the autonomous tiny IoT devices can efficiently control real-world IoT appli-
cations by making timely predictions/decisions and also perform offline model
inference without affecting the operating time of battery-powered devices.

5 Conclusion

In this paper, we presented an approach to efficiently execute (with reduced
SRAM usage) deeply optimized (maximally compressed) ML models on resource-
constrained devices. For nine popular models, when comparing the default model
execution sequence with the sequence produced by our approach, we showed that
1.61–38.06% less SRAM was used to produce inference results, the inference time
was reduced by 0.28–4.9 ms, and energy consumption was reduced by 4–84 mJ.
As well as achieving highly conserved SRAM levels, our method 100% preserved
the model performance. Thus, when users apply the approach presented in this
paper, they can: (i) Execute large-high-quality models on their IoT devices/prod-
ucts without needing to upgrade the hardware or alter the model architecture
and re-train to produce a smaller model; (ii) Devices can control real-world
applications by making timely predictions/decisions; (iii) Devices can perform
high accuracy offline analytics without affecting the operating time of battery-
powered devices.
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Abstract. Analyzing better time series with limited human effort is of
interest to academia and industry. Driven by business scenarios, we orga-
nized the first Automated Time Series Regression challenge (AutoSeries)
for the WSDM Cup 2020. We present its design, analysis, and post-
hoc experiments. The code submission requirement precluded partici-
pants from any manual intervention, testing automated machine learning
capabilities of solutions, across many datasets, under hardware and time
limitations. We prepared 10 datasets from diverse application domains
(sales, power consumption, air quality, traffic, and parking), featuring
missing data, mixed continuous and categorical variables, and various
sampling rates. Each dataset was split into a training and a test sequence
(which was streamed, allowing models to continuously adapt). The set-
ting of “time series regression”, differs from classical forecasting in that
covariates at the present time are known. Great strides were made by
participants to tackle this AutoSeries problem, as demonstrated by the
jump in performance from the sample submission, and post-hoc compar-
isons with AutoGluon. Simple yet effective methods were used, based
on feature engineering, LightGBM, and random search hyper-parameter
tuning, addressing all aspects of the challenge. Our post-hoc analyses
revealed that providing additional time did not yield significant improve-
ments. The winners’ code was open-sourced (https://www.4paradigm.
com/competition/autoseries2020).

1 Introduction

Machine Learning (ML) has made remarkable progress in the past few years in
time series-related tasks, including time series classification, time series cluster-
ing, time series regression, and time series forecasting [9,14].To foster research
in time series analysis, several competitions have been organized, since the onset
of machine learning. These include the Santa Fe competition1, the Sven Crone
1 https://archive.physionet.org/physiobank/database/santa-fe/.
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competitions2, several Kaggle comptitions including M5 Forecasting3, Web Traf-
fic Time Series Forecasting4, to name a few. While time series forecasting remains
a very challenging problem for ML, successes have been reported on problems
of time series regression and classification in practical applications [11,14].

Despite these advances, switching domain, or even analysing a new dataset
from the same domain, still requires considerable human engineering effort.
To address this problem, recent research has been directed to Automated
Machine Learning (AutoML) frameworks [3,15], whose charter is to reduce
human intervention in the process of rolling out machine learning solutions to
specific tasks. AutoML approaches include designing (or meta-learning) generic
reusable pipelines and/or learning machine architectures, fulfilling specific task
requirements, and designing optimization methods devoid of (hyper-)parameter
choices. To stimulate research in this area, we launched with our collaborators
a series of challenges exploring various application settings5, whose latest edi-
tions include the Automated Graph Representation Learning (AutoGraph) chal-
lenge at the KDD Cup AutoML track6, Automated Weakly Supervised Learning
(AutoWeakly) challenge at ACML 20197, Automated Computer Vision (AutoCV
[10]) challenges at IJCNN 2019 and ECML PKDD 2019, etc.

This paper presents the design and results of the Automated Time Series
Regression (AutoSeries) challenge, one of the competitions of the WSDM Cup
2020 (Web Search and Data Mining conference) that we co-organized, in collab-
oration with 4Paradigm and ChaLearn.

This challenge addresses “time series regression” tasks [4]. In contrast with
“strict” forecasting problems in which forecast variable(s) yt should be predicted
from past values only (often y values alone), time series regression seeks to
predict yt using past {t − tmin, · · · , t − 1} AND present t values of one (or
several) “covariate” feature time series {xt}8. Typical scenarios in which xt is
known at the time of predicting yt include cases in which xt values are scheduled
in advance or hypothesized for decision making purposes. Examples include:
scheduled events like upcoming sales promotions, recurring events like holidays,
or forecasts obtained by external accurate simulators, like weather forecasts. This
challenge addresses in particular multivariate time series regression problems,
in which xt is a feature vector or a matrix of covariate information, and yt is a
vector. The domains considered include air quality, sales, parking, and city traffic
forecasting. Data are feature-based and represented in a “tabular” manner. The
challenge was run with code submission and the participants were evaluated
on the Codalab challenge platform, without any human intervention, on five

2 http://www.neural-forecasting-competition.com/.
3 https://www.kaggle.com/c/m5-forecasting-accuracy.
4 https://www.kaggle.com/c/web-traffic-time-series-forecasting.
5 http://automl.chalearn.org, http://autodl.chalearn.org.
6 https://www.automl.ai/competitions/3.
7 https://autodl.lri.fr/competitions/64.
8 In some application domains (not considered in this paper), even future {t +

1, · · · , t + tmax}) values of the covariates may be considered. An example would
be “simultaneous translation” with a small lag.

http://www.neural-forecasting-competition.com/
https://www.kaggle.com/c/m5-forecasting-accuracy
https://www.kaggle.com/c/web-traffic-time-series-forecasting
http://automl.chalearn.org
http://autodl.chalearn.org
https://www.automl.ai/competitions/3
https://autodl.lri.fr/competitions/64
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datasets in the feedback phase and five different datasets in the final “private”
phased (with full blind testing of a single submission).

While future AutoSeries competitions might address other difficulties, this
particular competition focused on the following 10 questions:

Q1: Beyond autoregression: Time series regression. Do participants
exploit covariates/features {xt} to predict yt, as opposed to only past y?

Q2: Explainability. Do participants make an effort to provide an explainable
model, e.g., by identifying the most predictive features in {xt}?

Q3: Multivariate/multiple time series. Do participants exploit the joint
distribution/relationship of various time series in a dataset?

Q4: Diversity of sampling rates. Can methods developed handle different
sampling rates (hourly, daily, etc.)?

Q5: Heterogeneous series length. Can methods developed handle truncated
series either at the beginning or the end?

Q6: Missing data. Can methods developed handle (heavily) missing data?
Q7: Data streaming. Do models update themselves according to newly

acquired streaming test data (to be explained in Subsect. 2.2)?
Q8: Joint model and HP selection. Can models select automatically learn-

ing machines and hyper-parameters?
Q9: Transfer/Meta learning. Are solutions provided generic and applicable

to new domains or at least new datasets of the same domain?
Q10: Hardware constraints. Are computational/memory limitations

observed?

2 Challenge Setting

2.1 Phases

The AutoSeries challenge had three phases: a Feedback Phase, a Check
Phase and a Private Phase. In the Feedback Phase, five “feedback datasets”
were provided to evaluate participants’ AutoML models. The participants could
read error messages in log files made available to them (e.g., if their model
failed due to missing values) and obtain performance and ranking feedback on
a leaderboard. When the Feedback Phase finished, five new “private datasets”
were used in the Check Phase and the Private Phase. The Check Phase was a
brief transition phase in which the participants submitted their models to the
platform to verify whether the model ran properly. No performance information
or log files were returned to them. Using a Check Phase is a particular feature of
this challenge, to avoid disqualifying participants on the sole ground that their
models timed out, used an excessive amount of memory, or raised another excep-
tion possible to correct without specific feedback on performance. Finally in the
Private Phase, the participants submitted blindly their debugged models, to be
evaluated by the same five datasets as in Check Phase.

As previously indicated, in addition to the five feedback datasets and five
private datasets, two public datasets were provided for offline practice.
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Fig. 1. Challenge protocol. train, update, and predict methods must be provided
by participants. Such methods are under control of timers, omitted in the figure.

2.2 Protocol

The AutoSeries challenge was designed based on real business scenarios, empha-
sizing automated machine learning (AutoML) and data streaming. First,
as in other AutoML challenges, algorithms were evaluated on various datasets
entirely hidden to the particpants, without any human intervention. In other
time series challenges, such as Kaggle’s Web Traffic Time Series Forecasting9),
participants downloaded and explored past training data, and manually tuned
features or models. The AutoSeries challenge forced the participants to design
generic methods, instead of developing ad hoc solutions. Secondly, test data
were streamed such that at each time point t, historical information of past
time steps xtrain[: t − 1], ytrain[: t − 1] and features of time t, X test[t] were
available for predicting yt. In addition to the usual train and predict meth-
ods, the participants had to prepare a method update, together with a strategy
to update their model at an appropriate frequency, once fully trained on the
training data. Updating too frequently might lead to run out of time; updat-
ing not frequently enough could result in missing recent useful information and
performance degradation. The protocol is illustrated in Fig. 1.

2.3 Datasets

The datasets from the Feedback Phase and final Private Phase are listed in
Table 1. We purposely chose datasets from various domains, having a diversity of
types of variables (continuous/categorical), number of series, noise level, amount
of missing values, and sampling frequency (hourly, daily, monthly), and level of
nonstationarity. Still, we eased the difficultly by including in each of the two
phases datasets having some resemblance.

Two types of tabular formats are commonly used: the “wide format” and
“long format”10. The wide format facilitates visualization and direct use with
9 https://www.kaggle.com/c/web-traffic-time-series-forecasting.

10 https://doc.dataiku.com/dss/latest/time-series/data-formatting.html.

https://www.kaggle.com/c/web-traffic-time-series-forecasting
https://doc.dataiku.com/dss/latest/time-series/data-formatting.html
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machine learning packages. It consists in one time record per line, with feature
values (or series) in columns. However, for large number of features and/or miss-
ing values, the long format is preferred. In that format, a minimum of 3 columns
are provided: (1) date and time (referred to as “Main Timestamp”), (2) feature
identifier (referred to as “ID Key”), (3) feature value. Pivoting is an operation,
which allows converting the wide format into the long format and vice-versa.
From the long format, given one value of ID Key (or a set of ID Keys), a partic-
ular time series is obtained by ordering the feature values by Main Timestamp.
In this challenge, since we address a time series regression problem, we add a
fourth column (4) “Label/Regression Value” providing the target value, which
must always be provided. A data sample in found in Table 2 and data visualiza-
tions in Fig. 2.

2.4 Metrics

The metric used to judge the participants is the RMSE. For each datasets, the
participant’s submissions are run in the same environment, and ranked according
to the RMSE for each dataset. Then, an overall ranking is obtained from the
average dataset rank, in a given phase. In post challenge analyses, we also used
two other metrics: SMAPE and Correlation (CORR). The formulas are provided
below. y means ground truth target. ŷ is the prediction. ȳ is the mean. N is
total number of unique Id combinations (IdNum in Table 1) and T is number of
timestamps. For evaluation, these metrics are run on the test sequences only.

RMSE =

√
√
√
√ 1

NT

N∑

n=1

T∑

t=1

(ynt − ŷnt)2 (1)

SMAPE =
1

NT

N∑

n=1

T∑

t=1

|ynt − ŷnt|
(|ynt| + |ŷnt| + ε)/2

(2)

CORR =
∑N

n=1

∑T
t=1(ynt − ȳ)(ŷnt − ¯̂y)

√
∑N

n=1

∑T
t=1(ynt − ȳ)2

√
∑N

n=1

∑T
t=1(ŷnt − ¯̂y)2

(3)

2.5 Platform, Hardware and Limitations

The AutoSeries challenge is hosted on CodaLab11, an open sourced challenge
platform. We provide 4-core 30 GB memory CPU and no GPU is available.
Participants may submit at most 5 times per day. A docker is provided12 for
executing submissions and for offline development. Participants can also install
external packages if necessary.

11 https://autodl.lri.fr/.
12 https://hub.docker.com/r/vergilgxw/autotable.

https://autodl.lri.fr/
https://hub.docker.com/r/vergilgxw/autotable
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(a) Dataset fph2 (b) Dataset pph3

(c) Dataset fph5 (d) Metadata

Fig. 2. Dataset visualization. (a) Sample visualization of dataset fph2. Four
time series (after smoothing and resampling). Training data is available until end of
2016 (red vertical solid line). Yearly preriodicity is indicated by dashed vertical lines to
highlight seasonalities. One notices large differences in series amplitudes and patterns
of seasonality. (b) Sample visualization of dataset pph3. Two time series (after
smoothing). Training data is available until end of 2018-08 (red vertical solid line). The
purple time series suffers from missing values (certain items have zero sales most of the
time). A clear trend exists in blue time series, unlike the example shown in (a). (c)
Heatmap visualization of dataset fph5. White means missing value. Black means
zero target value (sales). Several common issues can be observed: (1) many items don’t
sell most of the time; (2) presence of many missing values; (3) time series vary in
lengths and are not aligned; (4) different time series have totally different scales. (d)
All dataset metadata visualization. X axis is the number of columns. Y axis is the
number of rows. The symbol letter shape represents the time period: Monthly, Daily,
or Hourly. The symbol color represents the phase: green for “feedback” and orange for
“private”. The symbol size represents the number of lines in the dataset. (Color figure
online)
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Table 1. Statistics of all 10 datasets. Sampling “Period” is indicated in (M)inutes,
(H)ours, (D)ays. “Row” and “Col” are the total number of lines and columns, in the
long format. Columns includes: Timestamp, (multiple) Id Keys, (multiple) Features,
and Target. “KeyNum” is the number of Id Keys (called Id Key combination, e.g., in a
sales problem Product Id and Store Id.) “FeatNum” indicates the number of features
for each Id Key combination (e.g., for a given Id Key corresponding to a product in
a given store, features include price, and promotion.) “ContNum” is the number of
continuous features and “CatNum” is the number of categorical features; CatNum +
ContNum = FeatNum. “IdNum” means the number of unique Id Key combinations.
One can verify that Col = 1 (timestamp) + KeyNum + FeatNum + 1 (target). “Bud-
get” is the time in seconds that we allow participants’ models to run.

Dataset Domain Period Row Col KeyNum FeatNum ContNum CatNum IdNum Budget

fph1 Power M 39470 29 1 26 26 0 2 1300

fph2 AirQuality H 716857 10 2 6 5 1 21 2000

fph3 Stock D 1773 65 0 63 63 0 1 500

fph4 Sales D 3147827 23 2 19 10 9 8904 3500

fph5 Sales D 2290008 23 2 19 10 9 5209 2000

pph1 Traffic H 40575 9 0 7 4 3 1 1600

pph2 AirQuality H 721707 10 2 6 5 1 21 2000

pph3 Sales D 2598365 23 2 19 10 9 6403 3500

pph4 Sales D 2518172 23 2 19 10 9 6395 2000

pph5 Parking M 35501 4 1 1 1 0 30 350

Table 2. Sample data for dataset fph2. A1 = timestamp. A2, A3, A4, A5, A7 =
continuous features. A6 = categorical feature (hashed). A8, A9 = Id columns (hashed).
Hashing is used for privacy. A10 = target.

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

2013-03-01 00:00:00 −2.3 1020.8 −19.7 0.0 −457...578 0.5 657...216 −731...089 13.0
2013-03-01 01:00:00 −2.5 1021.3 −19.0 0.0 511...667 0.7 657...216 −731...089 6.0
2013-03-01 02:00:00 −3.0 1021.3 −19.9 0.0 511...667 0.2 657...216 −731...089 22.0
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
2017-02-28 19:00:00 10.3 1014.2 −12.4 0.0 495...822 1.8 784...375 156...398 27.0
2017-02-28 20:00:00 9.8 1014.5 −9.9 0.0 −286...752 1.5 784...375 156...398 47.0
2017-02-28 21:00:00 9.1 1014.6 −12.7 0.0 −213...128 1.7 784...375 156...398 18.0

2.6 Baseline

To help participants get started, we provided a baseline method, which is simple
but contains necessary modules in the processing pipeline. Many paticipants’
submissions were derived from this baseline. In what follows, we decompose
solutions (baseline and winning methods) into three modules: feature engi-
neering (including time processing, numerical features, categorical features),
model training (including models used, hyperparameter tuning, ensembling)
and update strategy (including when and how to update models with the
steaming test data). For the baseline, such modules include:

– Feature engineering. Multiple calendar features are extracted from the
time stamp: year, month, day, weekday, and hour. Categorical variables (or
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strings) are hashed to unique integers. No preprocessing is applied to numer-
ical features.

– Model training. A single LightGBM [7] model is used. A LightGBM regres-
sor is instantiated by predetermined hyperparameters and there is no hyper-
parameter tuning.

– Update strategy. Since the test data comes in a streaming way, we need an
update strategy to incorporate new test data and adjust our model. However,
due to time limit on update procedure, we can’t update too frequently. The
update strategy used in baseline is simple. We split all test timestamps by 5
segments and for every segment, we retrain the lightGBM with old training
data and new segment of test data.

Table 3. Answers to the 10 challenge question. All of them are tackled to certain
extent. Orange checkmark means the solution is trivial, though answers the question.

Question Answered? Comment

Q1 Beyond autoregression ✔ Features {xt} are leveraged

Q2 Explainability ✔ LightGBM outputs feature importance

Q3 Multivariate/multiple time series ✔ All training data is used to fit

Q4 Diversity of sampling rates ✔ Multiple calendar features are extracted

Q5 Heterogeneous series length ✔ Long format data facilitates the issue

Q6 Missing data ✔ Missing data is imputed by mean value

Q7 Data streaming ✔ Models are retrained every few steps

Q8 Joint model and HP selection ✔ Randomized grid search is applied

Q9 Transfer/Meta Learning ✔ Metadata (size, IdNum) is considered

Q10 Hardware constraints ✔ Model training time is recorded

2.7 Results

The AutoSeries challenge lasted one month and a half. We received over 700 sub-
missions and more than 40 teams from both Academia (University of Washing-
ton, Nanjing University, etc.) and Industry (Oura, DeepBlue Technology, etc.),
coming from various countries including China, United States, Singapore, Japan,
Russia, Finland, etc. In the Feedback Phase13, the top five participants are:
rekcahd, DeepBlueAI, DenisVorotyntsev, DeepWisdom, Kon while in
the Private Phase, the top five participants are: DenisVorotyntsev, Deep-
BlueAI, DeepWisdom, rekcahd, bingo. It can be seen that team rekcahd
seems to overfit on the Feedback Phase (additional experiments are provided in
Subsect. 3.2). All winners use LightGBM [7] which is boosting ensemble of deci-
sion trees dominating most tabular challenges. Only 1st winner and 2nd winner
implements hyperparameter tuning module which is really a key to successful
generalisation in AutoSeries. We briefly summarize the solutions and provide a
detailed account in Appendix.
13 https://autodl.lri.fr/competitions/149#results.

https://autodl.lri.fr/competitions/149#results
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– Feature engineering. Calendar features e.g., year, month, day were
extracted from timestamp. Lag/shift and diff features added to original
numerical features. Categorical features were encoded in various ways to inte-
gers.

– Model training. Only linear regression models and LightGBM were used.
Most participants used default or fixed hyperparameters. Only the first win-
ner made use of HPO. The second winner optimized only the learning rate.
LightGBM provides built-in feature importance/selection. Model ensembling
was obtained by weighting models based on their performance in the previous
round.

– Update strategy. All participants updated their models. The update period
was either hard coded, computed as a fixed fraction of the time budget, or
re-estimating on-the-fly, given remaining time.

We verified (in Table 3) that the challenge successfully answered the ten
questions we wanted addressed (see Sect. 1).

3 Post Challenge Experiments

This section presents systematic experiments, which consolidate some of our
findings and extend them. We are particularly interested in verifying the gener-
alisation ability of winning solutions on a larger number of tasks, and comparing
them with open-sourced AutoSeries solutions. We also revisit some of our chal-
lenge design choices to provide guidelines for future challenges, including time
budget limitations, and choice and number of datasets.

3.1 Reproducibility

First, we reproduce the solutions of the top four participants and the base-
line methods, on the 10 datasets of the challenge (from both phases). In the
AutoSeries challenge, we only used the RMSE (Eq. 1) for evaluation. For a more
thorough comparison, we also include the SMAPE (Eq. 2) here for calculating
the relative error (which is particualrly useful when the ground truth target is
small, e.g., in the case of sales). The results are shown in the Table 4a and 4b,
Fig. 3a and 3b. We ran each method on each dataset for 10 times with different
random seed. For simplicity, we use 1st DV, 2nd DB, 3rd DW, 4th Rek to denote
solutions from top 4 winners.

We can observe that clear improvements have been made by the top winners,
compared to the baseline, and both RMSE and SMAPE are significantly reduced.
From Fig. 3a we can further visualize that, while sometimes the winners’ solu-
tions are close in RMSE, their SMAPE are totally different, which implies the
necessity of using multiple metrics for evaluation.
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3.2 Overfitting and Generalisation

Based on our reproduced results, we analyse potential overfitting which is visual-
ized in Fig. 3c. Among each run (based on a different random seed), we rank solu-
tions on feedback phase datasets and private phase datasets separately. Rankings
are based on RMSE as in AutoSeries challenge. After 10 runs, we plot the mean
and std of the ranking as a region. This shows that 4th Rek overfits to feed-
back datasets since it performs very well in feedback phase but poorly in private
phase. But it is also interesting to visualize that 1st DV has a good generalisa-
tion: although it is not the best in feedback phase, it achieves great results in
private phase. Including hyperparameter search may have provided the winner
with a key advantage.

3.3 Comparison to Open Source AutoML Solutions

In this section, we turn our attention to comparing AutoSeries with similar open-
source solutions. However, to the best of our knowledge, there is no publicly
available AutoML framework dedicated to time series data. Current features
(categorized by three modules of solutions as in Sec) of open source packages,
which can be used to tackle the problems of the challenge with some engineering
effort, are summarized in Table 5.

Packages like Featuretools, tsfresh focus on (tabular, temporal) feature engi-
neering; they do not provide trainable models and should be used in conjuction
with another package. Prophet and GluonTS are known for rapid prototyping
with time series, but they are not AutoML packages (in the sense that they
do not come with automated model selection and hyper-parameter selection).
AutoKeras is an package focusing more on image and text, with KerasTuner14 for
neural architecture search. Google AutoTable meets most of our requirements,
but is not open sourced, and is not dedicated to time series. Moreover, Google
AutoTable costs around 19 dollars per hour in order to train on 92 computing
instances at the same time, which is far more than our challenge settings.

At last, we selected AutoGluon for comparison, as being closest to our use
case. AutoGluon provides end-to-end automated pipelines to handle tabular data
without any human intervention (e.g., hyperparameter tuning, data preprocess-
ing). AutoGluon includes many more candidate models and fancier ensemble
methods than the wining solutions, but its feature engineering is not dedicated to
multivariate time series. For example, it doesn’t distinguish time series Id combi-
nations to summarize statistics of one particular time series. We ran AutoGluon
on all 10 datasets with default parameters except for using RMSE as evaluation
metric and best quality as presets parameter. The results are summarized in
Table 6 column AutoGluon. Not surprisingly, vanilla AutoGluon can only beat
the baseline, and it is significantly worse than the winning solutions. We fur-
ther compile AutoGluon with 1st winner’s time series feature engineering and
update the models the same way as in baseline. The results are in Table 6 column

14 https://keras-team.github.io/keras-tuner/.

https://keras-team.github.io/keras-tuner/
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Table 4. Post-challenge runs. We repeated 10 times all runs on all datasets for the
top ranking submissions of the private phase. Each run is based on a different random
seed. Error bar are indicated (one standard deviation) unless no variance was observed
(algorithm with no stochastic component, such as 4th Rek).

Dataset Phase Baseline 1st DV 2nd DB 3rd DW 4th Rek

fph1 Feedback 100±10 40.7±0.2 40.0±0.1 40.1±0.2 40.7

fph2 Feedback 18000±2000 237±2 244±1 243.9±0.3 230.7

fph3 Feedback 3000 600±20 53.04±0.01 52.4 108.4

fph4 Feedback 6.9±0.3 3.66±0.02 2.760±0.007 NA 2.632

fph5 Feedback 8.6±0.7 5.76±0.01 5.760±0.005 5.780±0.003 5.589

pph1 Private 400±6 200±2 223.5±0.7 200±10 420.8

pph2 Private 17000±4000 240±2 253.7±0.5 260±2 246.7

pph3 Private 9±3 6.20±0.02 6.330±0.007 6.40±0.03 6.56

pph4 Private 12±2 4.0±0.2 3.80±0.04 3.700± 0.004 3.32

pph5 Private 300±30 50±1 100 60±20 167.8

(a) RMSE comparison.

Dataset Phase Baseline 1st DV 2nd DB 3rd DW 4th Rek

fph1 Feedback 140±20 100.0±0.5 104.00±0.07 104.00±0.04 40.77

fph2 Feedback 140±10 30±1 40.0±0.3 38.8±0.1 33.9

fph3 Feedback 38.49 5.0±0.1 0.770±0.001 0.700±0.001 1.674

fph4 Feedback 190±1 191.0±0.1 191.0±0.1 NA 186.2

fph5 Feedback 170±1 173.5±0.1 174.1± 0.1 172.9±0.1 170.6

pph1 Private 12.7±0.6 6.1±0.2 6.49±0.03 6.4±0.8 12.14

pph2 Private 140±10 24.0±0.5 35.0±0.3 31.0±0.1 32.75

pph3 Private 180±3 180.0±0.7 181.0±0.1 180±0.1 174.7

pph4 Private 170±3 170±1 167.8±0.1 170.0±0.2 164

pph5 Private 40±2 6.0±0.5 9 8±3 30.61

(b) SMAPE comparison.

Table 5. Supported features comparison between various open-source packages and
the AutoSeries winning solution (also open-sourced).

Solutions FeatureEngineering ModelTraining StreamingUpdate TimeManagement

Featuretools [6] Tabular ✘ ✘ ✘

tsfresh Temporal ✘ ✘ ✘

Prophet [12] ✘ ✔ ✘ ✘

GluonTS [1] Temporal ✔ ✘ ✘

AutoKeras [5] ✘ ✔ ✘ ✔

AutoGluon [2] Tabulfar ✔ ✘ ✔

Google AutoTable Tabular ✔ ✔ ✔

AutoSeries Temporal ✔ ✔ ✔
a https://github.com/blue-yonder/tsfresh.
b https://cloud.google.com/automl-tables.

https://github.com/blue-yonder/tsfresh
https://cloud.google.com/automl-tables
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(a) Performance comparison on fph1 (b) Overall performance improvement

(c) Overfitting visualization (d) Dataset difficulty

Fig. 3. Post challenge experiments. (a) Performance comparison on dataset
fph1. We compare RMSE and SMAPE of all solutions on dataset fph1. Performances
in RMSE are significantly better than the baseline for all winning teams, but all win-
ners perform similarly. In contrast the SMAPE metric differentiates the winners, which
focuses more on relative error. (b) Performance improvement on all datasets.
Both RMSE and SMAPE errors from best methods are compared to the baseline per-
formance. The improvement ratio is calculated by (baseline score - best score)/baseline
score. (c) Did the participants overfit the feed-back phase tasks? Rankings are
based on 10 runs: for each run, we rank separately in order to validate the stability
of methods. Regions show the mean and std of rankings over multiple runs. Methods
in the upper triangle are believed to overfit, e.g., 4th winner’s solution. Methods in
the lower triangle are believed to generalize well, e.g., 1st winner’s solution. (d) How
well did we choose the 10 datasets? As explained in Subsect. 3.5, we use absolute
correlation as a bounded metric for calculating a notion of intrinsic difficulty (gray bar)
and modeling difficulty (orange bar) of the 10 datasets. Datasets with high modeling
difficulty and low intrinsic difficulty are better choices in a benchmark. (Color figure
online)
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FE+AutoGluon. AutoGluon can now indeed achieve comparable results with
best winner and sometimes even better, which strongly implies the importance
of time series feature engineering. Note that we didn’t limit strictly AutoGluon’s
running time as in our challenge. In general, AutoGluon takes 10 times more time
than the winning solution and it still can’t output a valid performance on the four
datasets in a reasonable time. For the six AutoGluon’s feasible datasets, we fur-
ther visualize in Fig. 4 by algorithm groups. AutoGluon contains mainly three
algorithm groups: Neural Network (MXNet, FastAI), Ensemble Trees (Light-
GBM, Catboost, XGBoost) and K-Nearest Neighbors. We first plot on the left
the average RMSE for Neural Networks models and ensemble tree models each
(we omit KNN methods since they are usually the worst). Note that among
the 6 datasets, 3 datasets don’t use Neural Network for final ensemble (so their
RMSE are set to be a large number for visualization). On 2 datasets (bottom
left corner), however, Neural Networks can be competitive. This encourages us
to explore in the future the effectiveness of deep models on time series which
evolve quickly these days. On the right, we average the training/inference time
per algorithm group and find that KNN can be used for very fast prediction if
needed. Neural Networks take significantly more time. Points above the dotted
line mean that no NN models or KNN models are chosen for this dataset (either
due to performance or time cost). Only the tree-based methods provide solutions
across the range of dataset sizes.

Table 6. Comparison with AutoGluon. NA means a missing value: AutoGluon
did not terminate within a reasonable time.

Dataset Phase Baseline 1st DV AutoGluon FE + AutoGluon

RMSE SMAPE RMSE SMAPE RMSE SMAPE RMSE SMAPE

fph1 Feedback 99.04 142.59 40.69 102.19 90.19 26.45 40.57 105.31

fph2 Feedback 17563 142.64 236.6 26.63 14978 59.94 263.74 25.51

fph3 Feedback 3337 38.49 623.32 4.99 6365 116.14 3159 31.08

fph4 Feedback 6.91 187.58 3.66 190.94 NA NA NA NA

fph5 Feedback 8.63 174.45 5.76 173.54 NA NA NA NA

pph1 Private 422.37 12.65 218.83 6.11 2770.70 9.46 212.68 5.85

pph2 Private 16851 139.31 242.41 23.46 15028 57.04 269.85 22.98

pph3 Private 8.78 178.45 6.21 177.08 NA NA NA NA

pph4 Private 11.54 174.94 3.74 168.4 NA NA NA NA

pph5 Private 309.33 39.2 50.37 5.91 949.4 20.52 65.22 6.65
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(a) AutoGluon algorithm groups (b) Time-Size by groups

Fig. 4. AutoGluon experiments. (a) Average performance for two algorithm
groups. Here we compare the average RMSE of Neural Network models and Ensemble
Tree models. Among the six feasible datasets for AutoGluon with time series feature
engineering, 3 of them don’t choose Neural Networks as ensemble candidates. Ensemble
trees have always significantly better performances. On 2 datasets, Neural Networks are
quite competitive. (b) Average time costs of candidate models. When dataset is
large, only ensemble tree models are chosen. When dataset is medium, KNN is fastest,
followed by tree models. Neural Networks take significantly more time.

3.4 Impact of Time Budget

In the AutoSeries challenge, time management is an important aspect. Different
time budgets are allowed for different datasets (as shown in Table 1). Ideally,
AutoSeries solutions should take into account the allowed time budget and adapt
all modules in the pipeline (i.e., different feature engineering, model training and
updating strategy based on different allowed time budgets). We double the time
budget and compare the performance in Appendix. In general, no obviously
stable improvement can be observed. We also try to half the time budget and
most solutions can’t even produce valid predictions meaning that no single model
training is finished. This could be because that we set the defaults budgets too
tight but it also shows from another perspective that participants’ solutions
overfit to the challenge design (default time budget).

3.5 Dataset Difficulty

After a challenge finishes, another important issue for the organizers is to vali-
date the choice of datasets. This is particularly interesting for AutoML challenges
since the point is to generalize to a wide variety of tasks. Inspired by difficulty
measurements in [10], we want to define intrinsic difficulty and modeling diffi-
culty. By intrinsic difficulty we mean the irreducible error. As a surrogate to the
intrinsic difficulty, we use the error of the best model. By modeling difficulty, we
mean the range or spread of performances of candidate models. To separate well
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competition participants, we want to choose datasets of low intrinsic difficulty
and high modeling difficulty. In [10], a notion of intrinsic difficulty and modeling
difficulty is introduced for classification problems. Here we adapt such ideas and
choose another bounded metric, the correlation (CORR) (Eq. 3). In fact, corre-
lation has been used in many time series papers as a metric [8,13]. We calculate
the absolute correlation between the prediction sequence and ground truth test
sequence. We define Intrinsic difficulty as 1 minus the best solution’s absolute
correlation score; and Modeling difficulty as the difference between the best
solution’s absolute correlation score and the provided baseline score.

These difficulty measures are visualized in Fig. 3d. It is obvious that both
intrinsic difficulty and modeling difficulty differ from datasets to datasets. A
posteriori, we can observe that some datasets like pph1 and pph5 are too easy,
while pph3 is too difficult. In general, feedback datasets are of higher quality
than private datasets, which is unfortunate. However, it is also possible that
participants overfit the feedback datasets and thus, by using the best performing
methods to estimate the intrinsic difficulty, we obtain a biased estimation.

4 Conclusion and Future Work

In this challenge, we introduce an AutoML setting with streaming test data,
aiming at pushing forward research on Automated Time Series, and also having
an impact on industry. Since there were no open sourced AutoML solutions dedi-
cated to time series prior to our challenge, we believe the open sourced AutoSeries
solutions fill this gap and provide a useful tool to researchers and practitioners.
AutoSeries solutions don’t need a GPU which facilitates their adoption.

The solutions of the winners are based on lightGBM. They addressed all chal-
lenge questions, demonstrating the feasibility of automating time series regres-
sion on datasets of the type considered. Significant improvements were made
compared to the provided baseline. Our generalisation and overfitting experi-
ments show that hyperparameter search is key to generalize. Still, some of the
questions were addressed in a rather trivial way and deserve further attention.
Explainabilty boils down to the feature importance delivered by lightGBM. In
future challenge designs, we might want to quantitatively evaluate this aspect.
Missing data were trivially imputed with the mean value. Hyper-parameters
were not thoroughly optimized by most participants, and simple random search
was used (if at all). Our experiments with the AutoGluon package demonstrate
that much can be done in this direction to further improve results. Addition-
ally, no sophisticated method of transfer learning or meta-learning was used.
Knowledge transfer was limited to the choice of features and hyper-parameters
performed on the feedback phase datasets. New challenge designs could include
testing meta-learning capabilities on the platform, by letting the participant’s
code meta-train on the platform, e.g., not resetting the model instances when
presented with each new dataset.

Other self criticisms of our design include that some datasets in the private
phase may have been too easy or too difficult. Additionally, the RMSE alone
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could not separate well solutions, while a combination of metrics might be more
revealing. Lastly, GPUs were not provided. On one hand this forced the par-
ticipants to deliver practical rapid solutions; on the other hand, this precluded
them from exploring neural time series models, which are rapidly progressing in
this field.

Finally, winning solutions overfitted to the provided time budgets (no
improvement with more time and fail with less time). An incentive to encourage
participants to deliver “any-time-learning” solutions as opposed to “fixed-time-
learning” solutions is to use the area under the learning curve as metric, as we
did in other challenges. We will consider this for future designs.
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Abstract. Developing real-world Machine Learning-based Systems goes
beyond algorithm development. ML algorithms are usually embedded in
complex pre-processing steps and consider different stages like develop-
ment, testing or deployment. Managing workflows poses several chal-
lenges, such as workflow versioning, sharing pipeline elements or opti-
mizing individual workflow elements - tasks which are usually conducted
manually by data scientists. A dataset containing 16 035 real-world
Machine Learning and Data Science Workflows extracted from the ONE

DATA platform (https://onelogic.de/en/one-data/) is explored and made
available. Based on our analysis, we develop a representation learn-
ing algorithm using a graph-level Graph Convolutional Network with
explicit residuals which exploits workflow versioning history. Moreover,
this method can easily be adapted to supervised tasks and outperforms
state-of-the-art approaches in NAS-bench-101 performance prediction.
Another interesting application is the suggestion of component types, for
which a classification baseline is presented. A slightly adapted GCN using
both graph- and node-level information further improves upon this base-
line. The used codebase as well as all experimental setups with results
are available at https://github.com/wendli01/workflow analysis.

Keywords: Graph neural networks · Structured prediction · Neural
Architecture Search

1 Introduction

Using machine learning (ML) in the real world can require extensive data mung-
ing and pre-processing. Successful ML application thus needs to emphasize not
only on the ML algorithm at hand, but also the context, i.e., the complete ML
workflow. Practical ML worklows show a certain complexity, in the number of
components (i.e., data aggregation, pre-processing, fitting and inference) and in
terms of data flow, but also during their development in terms of versioning,
testing and sharing. Consequently, ML workflows become an important asset
that needs to be managed properly - comparable to software artifacts in soft-
ware engineering [31]. A recently published case study from Amershi et al. [1]
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showed the uptake of for example agile software engineering techniques for man-
aging ML workflows and identified also several hurdles. One hurdle originates
from knowledge sharing in a team developing ML workflows as well as the exper-
tise of the people themselves while a second hurdle clearly identified the need of
proper dataset management and a strict testing setup including hyper-parameter
optimization within a workflow. Overall, workflow management has to support
an highly iterative development process.

In this work, we start from the hypothesis that the development of ML Work-
flows requires techniques like code completion, coverage analysis and testing
support, but focused on the particular properties of ML workflows. We therefore
develop semi-automated workflow recommendation and composition techniques
- based on Graph-Convolutional Neural Networks - for supporting development
teams in knowledge sharing and efficient workflow testing. More precisely, we
make the following contributions:

1. We analyze a large dataset of real-world data-science workflows consisting of
815 unique workflows in a total of 16035 versions from very diverse industrial
data science scenarios. We analyze the workflows and show that a large por-
tion of the components relate to data wrangling and pre-processing, rather
than to algorithmic aspects.

2. We define three tasks for semi-automatically supporting the management
of ML workflows, namely finding similar workflows, suggesting and refining
components as well as structure-based performance prediction. While the
former two support ML engineers in workflow creation and composition, the
latter improves hyper-parameter tuning efficiency and reduces testing time.

3. We develop baseline graph-level feature set for representing ML workflows
and develop a Graph-Convolutional Network dubbed P-GCN exploiting ver-
sion history of workflows in order to represent workflows and enable compo-
nent suggestion and refinement. Contrary to much of the existing work based
on graph embeddings (c.f. the survey [32]), we consider heterogeneous node
properties and edge directions in workflows.

We show that the P-GCN can produce high-quality dense representations
that preserve the inherent structure of the dataset. Furthermore, we demon-
strate that the P-GCN can learn complex mappings on DAG data by applying
it to structural performance prediction on NAS-Bench-101. In this task, it out-
performs state-of-the-art methods. Thirdly, it can be used to refine and suggest
components using an internal hybrid node- and graph-level representation and
thereby outperforms a strong baseline in both tasks.

In the following, we give a detailed motivation and definition for the sup-
ported tasks in Sect. 2 and go over related work in Sect. 3. Our P-GCN model is
defined in Sect. 4 and Sect. 5 lists the used datasets as well as relevant qualities.
We design experiments and present results for workflow similarity in Sect. 6, for
structural performance prediction in Sect. 7 and, finally, for component refine-
ment and suggestion in Sect. 8.
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Source code including all experimental setups with results as well as datasets
are made available for reproducibility.

2 Problem Definition

The creation, maintenance and management of ML workflows requires a powerful
descriptive framework such as the ONE DATA platform. Versioning and tracking of
results is especially important for efficient and reproducible work. Such a system,
in turn, lends itself to the creation of a workflow library that can be a useful
resource itself. To effectively leverage this resource, methods for the automatic
processing of workflows are needed. In the following, we present concepts that
can lead to improvements in three key areas.

Workflow Similarity. Considering similar workflows can help developers in
reusing existing work and knowledge. Finding such workflows remains difficult. In
contrast to explicit meta-information for describing a workflow, grouping based
on structure alone does not require extra time on the user side and is more
general. However, the space of graph definitions is very high-dimensional and
sparse, making most distance measures defined over it meaningless and hard to
interpret. Another challenge is that graphs are a variable length structure, while
for most similarity calculations fixed length representations are required.

A common approach to solving this problem is the transformation to a dense
lower-dimensional representation space. Between such representations, meaning-
ful distances can be computed and used for grouping. Such representations can
also be used as features for performance prediction or other meta-learning tasks.

Component Refinement and Suggestion. Another useful tool in the design
of workflows is the automatic suggestion of components for a workflow. More
specifically, a model is to predict the best fitting component type for a node in a
workflow. This decision is based on patterns learned from a corpus of workflows
created by experts. Therefore, it can be formulated as a many-class classification,
a supervised learning task.

Two scenarios can be differentiated, depending on how much information
about the rest of the workflow is available at prediction time. In Component
Suggestion, only the nodes ancestral to the considered node are known and, con-
sequently, at training time its decedents are artificially removed. For Component
Refinement, the whole workflow is available, except for information about the
considered node.

Structural Performance Prediction. Performance prediction on DAGs can
be useful in both manual and automated search. It allows for focus on promising
instances and thereby makes the search more efficient. A reliable performance
predictor can reduce the number of costly executions for evaluation while keep-
ing regret low. The most useful predictors use only structural information and
therefore do not necessitate execution of the architecture.
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This is especially useful for Neural Architecture Search (NAS) as each eval-
uation corresponds to full training with back propagation on a test dataset and
is therefore computationally expensive.

3 Related Work

Workflow Management. There are many systematic approaches to the design
and management of user-defined processing workflows [3,12,17]. However, despite
the availability of workflow repositories and collection, they remain underused for
most methods that automate parts of the workflow creation process. Friesen et
al. propose the use of graph kernel, frequently occurring subgraphs and paths for
recommendation and tagging of bio-informatics processes in [7].

Graph Representations. The main challenge in analyzing graph data is the
high dimensionality and sparsity of the representation. This poses problems for
manual analysis as well as for many automated methods designed for dense data.

Many algorithms for creating unsupervised node embeddings, a dense repre-
sentation that preserves distance-based similarity, have been devised to solve this
problem. Basic algorithms such as Adamic Adar [18] or Resource Allocation [34]
use local node information only.

DeepWalk [23] is the first deep learning approach to network analysis
and takes inspiration from methods for word embedding generation, such as
Word2vec [20]. Representations are learned on random walks that preserve the
context of a node and can be used for supervised learning tasks such as node
classification.

Graph2vec [21] is a modification of document embedding models that pro-
duces whole graph embeddings by considering subgraph co-occurrence. However,
it does not use edge direction which incurs significant data loss if applied to
workflow DAGs.

Graph Classification. Graph Convolutional Networks were introduced by Kipf
et al. in [15]. They capture the neighborhood of a node through convolutional
filters, related to those known from Convolutional Neural Networks for images.

Shi et al. [26] construct a GCN based neural network assessor that uses a
global node to obtain whole-graph representations.

Tang et al. construct a relational graph for similarities between graphs based
on representations learned in an unsupervised manner through an auto-encoder
in [29]. A GCN regressor is fed this information and produces performance pre-
dictions for each input graph.

Lukasik et al. propose smooth variational graph embeddings for neural archi-
tecture search in [19]. They are based on an autoencoder neural network in which
both the decoder and encoder consider the backward pass and the forward pass
of an architecture.

Ning et al. propose GATES in [22], a generic encoding scheme that uses
knowledge of the underlying search space with an attention mechanism for struc-
tural performance prediction in Neural Architecture Search. It is suitable for
both node-heterogeneous and edge-heterogeneous graph data.
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4 Residual Graph-Level Graph Convolutional Networks

In this section, we introduce our graph convolutional model dubbed P-GCN that
offers a robust aggregation method for whole-graph representation learning and
related supervised tasks. We also go over the basics of graph convolutions and
adjacent techniques used for P-GCN.

Graph Convolutional Networks [15] can be used to compute node-level func-
tions. They take the graph structures and node features as input. These features
may be one-hot encoded node types or any other type of feature such as more
detailed node hyper-parameters. Similar to convolutions in image recognition,
multiple learned filters are used to aggregate features from neighboring nodes via
linear combination. Quite like CNNs, GCNs derive their expressive power from
the stacking of multiple convolution layers that perform increasingly complex
feature extraction based on the previous layers’ output. Usually, a bottleneck
is created by stacking multiple layers and adding a smaller last convolutional
layer. This forces the model to compress information and create a denser and
more meaningful representation of size FL.

Formally, we consider ML workflows as heterogeneous directed acyclic graph
(DAG) representing the data flow between different data processing compo-
nents. Specifically, G = (V, E , λl) represents a graph with nodes (or vertices) V
and edges E ⊆ {(u, v) : u, v ∈ V ∧ u �= v}. A mapping λ : V → {0, 1}nl assigns a
one-hot-encoded label, or node type, to each node. E expresses data flow between
nodes while the node class λ(v) is the kind of data processing component that
v represents, of a total nl possible component types.

A graph convolution in layer � of L layers with filter size F� on node v of G
is defined as

f
(�+1)
i (G, v) =

∑

u∈Γi(G,v)

Θ(�+1)f (�)(G, u)z(v) (1)

with a layer weight matrix Θ(�+1) ∈ R
F (�)×F (�+1)

and i = 1. Γi(G, v) is
the ith neighborhood of v w.r.t. G and z(u) is a normalization, usually the
inverse square root of the node degrees. Self-loops are added artificially to G
as E = E ∪ {(u, v) : v ∈ V} so the representation f

(�+1)
i (G, v) also contains

f
(�)
i (G, v). For the first layer, the input features are used as node representations,

i.e., f (0)(G, v) = λl(v) and F (0) = nl.
Topology adaptive GCNs [6] are an extension of the graph convolution that

considers neighborhoods of hop sizes up to k. This changes the convolution in
layer � to

f (�+1)(G, v) =
∑

i∈{1..k}
Θ

(�+1)
i f

(�)
i (G, v)z(v) (2)

with learned weights Θ(�+1) ∈ R
kF �×F �+1

for each layer. We adopt this
method with k set to 2 for its flexibility and improved expressive power.
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In this way, a GCN can generate meaningful node-level representations, i.e.,
a FL sized representation for each v ∈ V. If we want graph-level outputs, i.e., one
embedding that encodes the structure of a whole graph, pooling can be used.
More specifically, we use a function gi : R|V |×FL → R

FL to obtain a fixed-size
representation regardless of graph size. We can use a set G of pooling functions
such as mean, min, max or stdev for each embedding dimension for improved
robustness. This produces an output of size |G| × FL for each graph. These
pooling results are then scaled via batch normalization [10] and aggregated via
a weighted sum, resulting in an output of size FL:

f (L+1)(G, gi) =
∑

v∈V
gi

(
f
(L+1)
i (G, v)

)

f (L+1)(G) =
∑

i∈{1...|G|}
Θ

(L+1)
i Z

(
f (L+1)(G, gi)

) (3)

with learned weights Θ(L+1) ∈ R
F L+1×|G| F L

and normalization function Z.
For unsupervised tasks, f (L+1)(G) is the final model output. The model can

also be adapted to supervised tasks by adding dense layers that function like
an MLP estimator. For classification, a softmax -activated dense layer with the
appropriate number of outputs for the predicted classes can be added. For regres-
sion, a dense layer with one output serves as the last layer.

To help convergence, batch normalization [10] is applied to each graph con-
volution’s output to reduce the co-variate shift during training. Furthermore,
Batch normalization after the pooling helps reduce the impact of different scales
induced by the different pooling operations. According to the Ioffe et al., they
also provide some regularization. This also means that convolutional layers that
are followed by a batch normalization do not require a learned bias, as their
output is scaled to zero mean anyway.

Skip connections as introduced by He et al. in [8] are automatically added
between layers of matching size so residuals can be learned explicitly, which can
help deeper architectures converge and generally improve performance, c.f. [5].
This changes the feature computation to

f (�+1)
res (G) =

{
σ

(
f (�+1)(G) + f

(�−1)
res (G)

)
if F (�−1) = F (�+1)

σ
(
f (�+1)(G)

)
otherwise

(4)

with a non-linear activation function σ : R → R, rectification in our case. In
the same vein, a dropout layer [9] is added after the last graph convolution to
obtain a model that generates more robust representations.

P-GCN is trained in mini-batches with adaptive momentum [14] and expo-
nential learning rate decay. As over-fitting can be a problem in complex settings,
weight decay is applied automatically with a factor of 0.01.

5 Datasets

This section introduces the datasets used to develop and validate our methods.
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The ONE DATA data science workflow dataset ODDS-full1 comprises 815
unique workflows in temporally ordered versions obtained from a broad range
of real-world machine learning solutions realized using the ONE DATA platform.
Consequently, the data set distinguishes itself from available academic datasets,
especially when analyzing potential ML workflow support for real-world appli-
cations. A version of a workflow describes its evolution over time, so whenever
a workflow is altered meaningfully, a new version of this respective workflow is
persisted. Overall, 16 035 versions are available.

ODDS workflows represent machine learning workflows expressed as node-
heterogeneous DAGs with 156 different node types. They can represent a wide
array of data science and machine learning tasks with multiple data sources,
model training, model inference and data munging. These node types represent
various kinds of processing steps of a general machine learning workflow and are
grouped into 5 broad categories, which are listed below.

Load Processors for loading or generating data (e.g. random number generator).
Save Processors for persisting data (possible in various data formats, via exter-

nal connections or as a contained result within the ONE DATA platform) or for
providing data to other places as a service.

Transformation Processors for altering and adapting data. This includes e.g.
database-like operations such as renaming columns or joining tables as well
as fully fledged dataset queries.

Quantitative Methods Various aggregation or correlation analysis, bucketing,
and simple forecasting.

Advanced Methods Advanced machine learning algorithms such as BNN or
Linear Regression. Also includes special meta processors that for example
allow the execution of external workflows within the original workflow.

An example workflow is shown in Fig. 1. Any metadata beyond the structure
and node types of a workflow has been removed for anonymization purposes.

Fig. 1. Example workflow used in the ONE DATA platform.

ODDS, a filtered variant, which enforces weak connectedness and only con-
tains workflows with at least 5 different versions and 5 nodes, is available as the
default version for unsupervised and supervised learning (Table 1).
1 Available at https://zenodo.org/record/4633704.

https://zenodo.org/record/4633704
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Table 1. Statistics for the full and filtered ONE DATA data science workflow datasets
as well as NAS-Bench-101.

Statistic ODDS-full ODDS NAS-Bench-101 [33]

Unique workflows 815 284 423k

Instances 16035 8639 1.27M

Node types 156 121 5

Mean graph size 42.78±63.27 57.21±69.34 8.73±0.55

As a second data set we use NAS-bench-101 [33], which was published as
a benchmark dataset for Neural-Architecture-Search (NAS) and NAS meta-
learning. It consists of architectures sampled from a common search space focus-
ing on standard machine learning tasks. These represent cells constructed of
high-level CNN operations from which CNNs are generated by stacking them
with a fixed strategy. 423k such architectures were trained with the same back-
propagation schema on the image recognition task CIFAR-10 [16]. We use their
accuracies in this task as our prediction target. Consequently, this can be seen
as a sampling of generalization power for neural architectures and is therefore
well suited for structural performance prediction.

6 Workflow Similarity

In the following, we will describe different approaches for creating dense repre-
sentations from heterogeneous DAGs, starting with simple graph features and
ending with deep-learning methods with the aim to detect similar workflows.

Evaluation Methodology. As learning such representations is an unsupervised
task, quantitative evaluation is difficult. However, the structure imposed by the
version groups of ODDS enables the definition of two informative criteria. One of
those, dubbed the Group Cluster Score, indicates how well the embeddings are
suited to clustering tasks. This is done by generating a clustering and evaluating
how well it represents the workflow groups. Agglomerative clustering via Ward
linkage [11] was chosen for this task due to its robustness and determinism. The
V-Measure [24], defined as the harmonic mean of homogeneity and completeness,
of this clustering is reported as the GCS.

Furthermore, the Triplet Ratio Score indicates how closely instances of a
workflow group are embedded together. It is defined as the mean of the dis-
tance to positive instances divided by the distance to negative instances for each
sample. Consequently, lower triplet ratio scores are better.

Results. Simple graph features can be used to group workflows. Some of them
are computed on the graph-level, such as the number of nodes or number of
edges. Others, such as centrality measures, are extracted on the node-level and
can be aggregated via their mean or other statistical moments. In the case of
heterogeneous graphs, they can require significant manual feature engineering to
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respect the different node types. Furthermore, they do not produce a generally
dense representation, as certain features can be sparse for some classes of DAGs.

As a compromise, we choose to use the feature set presented in [27] and
extend them with the number of distinct node types in the graph and the count
of nodes for the most frequent node type.

Graph Convolutional Networks have been shown to create meaningful embed-
dings on some data without training, c.f. [15]. However, we can use methods
for learning on grouped data to generate useful embeddings. For this method,
distinct workflows can be regarded as groups with their versions representing
members of those groups. A P-GCN model can be trained to minimize the dis-
tance within groups while maximizing the distance to members of other groups.
This can be achieved via triplet loss. Triplet loss is calculated on triplets of
samples, where the current sample is the so-called anchor. Based on the group
of this anchor, a positive instance from the same group as well as a negative
instance from another group are sampled. Triplet loss can be computed either
based on the ranking of these samples or on the ratio between their distances.
Triplet margin loss, as described in [30], is a ranking loss that forces the model
to embed anchor and positive closer together than anchor and negative.

Table 2. Representation quality for different methods on ODDS. For non-deterministic
models, mean and standard deviation across 5 trials with different random states are
given.

Approach GCS TRS

Graph2Vec [21] 0.596±0.0045 0.453±0.0039

FeatherGraph [25] 0.76 0.351

Basic graph-level features 0.701 0.339

Untrained P-GCN 0.884±0.0013 0.4±0.0069

Triplet margin loss P-GCN 0.901±0.0038 0.113±0.0032

As can be seen in Table 2, P-GCN trained with triplet margin loss produces
high-quality representations for the high-dimensional data of ODDS. They have
both significantly better GCS as well as TRS scores compared to traditional
approaches that cannot natively use directed or heterogeneous graphs. Interest-
ingly, embeddings generated with an untrained, fully random P-GCN achieve
competitive GCS scores with relatively high repeatability.

Hyper-parameters are given in Table 3. P-GCN benefits from large mini-
batches and high exponential learning rate decay in this task to achieve smoother
convergence behavior.

7 Structural Performance Prediction

For predicting workflow performance based on a workflow structure, we adapted
the P-GCN model towards a regression task by adding fully connected layers
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Table 3. P-GCN parameter setting for unsupervised learning on ODDS.

Parameter name Default value

GCN layer sizes (128, 128, 128, 128, 128, 64)

Pooling operations (max, min, mean, stdev)

Epochs 50

Dropout probability 0.05

Batch size 1000

Learning rate 0.01

Learning rate decay 0.9

with non-linearities after the graph convolutions. These function like an MLP
regressor after the GCN-based feature extraction, but are trained jointly. Layer
Normalization as per Ba et al. [2] is applied to the output of each dense layer
for improved convergence behavior.

We use a combined loss, a linear combination of MSE loss and hinge pairwise
ranking loss as defined in [22]. For true accuracy y and prediction ŷ of length N
and margin m = 0.05:

Lc(y, ŷ) = w1 · MSE(y, ŷ) + w2 · Lr(y, ŷ)

Lr(y, ŷ) =
N∑

j=1

∑

i: yi>yj

max (0,m − (ŷi − ŷj))
(5)

A focus on low squared error or high ranking correlation can be facilitated
through the respective weights w1 and w2. This is important since we found that
many low-error predictions have low correlation and vice-versa.

Table 4. Parameter setting for the P-GCN for supervised learning on NAS-Bench-101.
All other hyper-parameters are set as before, c.f. Table 3.

Nl Parameter Parameter name Default value

1000 Dense layer sizes (64, )

Training epochs 150

Learning rate decay 0.95

w1 MSE loss weight 0.5

w2 Hinge ranking loss weight 0.5

Batch size 100

381 Batch size 50

1906 Batch size 200

Analogous to the method of Lukasik et al. in [19], the back-propagation used
in the training of ANNs can be considered by reversing the edge direction of an
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individual architecture. The predictor is presented both versions and produces
a single prediction. P-GCN does this by jointly aggregating over the node-level
representations of both passes.

Evaluation Methodology. The specific architectures in the training set can
have a large impact on predictor performance. Therefore multiple trials with
different dataset splits, 5 in our case, need to be performed for proper evaluation.
The remaining instances are randomly partitioned into Nl training instances and
a test set of size 50 000 for each fold. For each of these trials, the pseudo-random
number generator used for initialization of network parameters is used with a
different seed as well. This setup enables us to assess repeatability.

As this is a regression task, multiple metrics can be use to quantitatively
evaluate predictions. Mean squared error alone is unsuitable as it is difficult
to interpret and can be low for meaningless predictions. In most searches, per-
formance predictions are only compared with other predictions. It is therefore
not important that they exhibit low error with the target, but rather that they
show high correlation with the target. Furthermore, as many search methods
rank candidates by performance, ranking correlation can be considered the most
important measure.

Concordant with [29], we choose mean squared error, Pearson correlation ρp

and the Kendall Tau ranking coefficient τk [13] as evaluation criteria.

Results. Performance prediction was performed on NAS-bench-101 [33]. Results
for 5 random folds are listed in Table 5. Our method offers improvements over
state of the art methods with respect to the most important ranking correlation
τk. This is despite the fact that P-GCN is a purely supervised method and does
not need any information beyond the Nl training instances.

Table 5. Performance prediction results on NAS-Bench-101 with Nl training instances.
Mean and standard deviation over 5 random trials for multiple evaluation criteria.

Nl Criterion SVGe [19] GCN [26] Tang et al. [29] GATES [22] P-GCN (Ours)

381 τk - - - 0.7789 0.7985±0.008

1000 τk - - 0.6541±0.0078 - 0.8291±0.0.0067

MSE 0.0028±0.00002 - 0.0031±0.0003 - 0.0038±0.0.00016

ρp - 0.819 0.5240±0.0068 - 0.589±0.024

1906 τk - - - 0.8434 0.8485±0.0013

Figure 2 offers a more detailed look at the predictions for one fold. There is a
strong linear relationship, but also a bias resulting from the used combined loss.

By altering the loss weights w1 and w2, the focus can be shifted towards one
of the two prediction goals - low error or high correlation. The corresponding
predictive performance can be observed in Fig. 3. The default configuration with
equally weighted losses does not impair performance w.r.t. to τk. Optimizing
P-GCN purely for MSE produces predictions with a MSE of 0.00206±0.00009,
which is an improvement over the state of the art, SVGe’s 0.0028±0.00002.



Methods for Automatic Machine-Learning Workflow Analysis 63

Fig. 2. P-GCN performance predictions for 50 000 test instances from a single fold
with Nl = 1 000. Comparison of performance values (left) and rankings (right) with
corresponding correlations, i.e., Pearson and Spearman coefficient, given.

8 Component Refinement and Suggestion

For component refinement, a set of basic numeric features can be extracted
from the complex workflow structures to form a baseline. To this end, we use
the same graph-level and node-level features employed for workflow similarity
computation (c.f. Sect. 6), based on the set constructed in [27]. However, for
this task, the node-level centrality measures are not aggregated. Furthermore,
they are supplemented with harmonic centrality, pagerank, load centrality and
katz centrality. For obvious reasons, node betweenness centrality is used instead
of edge betweenness centrality. Additionally, the number of descendents and
ancestors of each node as well as the longest shortest path to and from each node
are added to provide explicit information about its position in the workflow.

The P-GCN model can be adapted to this task. To produce a joint represen-
tation of both the considered node and the workflow it is part of, their represen-
tations are concatenated. More precisely, the node representation is appended
to the outputs of the pooling functions. This is fed into an MLP like the one
used for structual performance prediction, c.f. Sect. 7. A softmax-activated out-
put layer with a neuron for each class is added and the network’s categorical
cross-entropy loss is optimized via back-propagation. Due to the larger training
set sizes, small alterations to the training schema were necessary, c.f. Table 6.

Table 6. Parameter setting for the hybrid P-GCN for node-level classification on
ODDS. All other hyper-parameters are set as before, c.f. Table 4.

Parameter Default value

Epochs 50

Loss Categorical cross-entropy

Dropout 0.25

Batch size 5000
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Fig. 3. P-GCN performance on NAS-bench-101 in response to varying MSE loss weight
w1 for the combined loss function. Shown with ± stdev confidence intervals across 5
folds. The hinge ranking loss weight w2 is set to 1 − w1.

The hybrid P-GCN constructed such can utilize both information about the
considered node as well as its workflow, extracted through the same graph con-
volutional functions. This removes the need for manually engineered and hard
to generalize graph-level features that capture this node context.

Evaluation Methodology. In an application case, we can expect a component
refinement model to be applied to unseen workflows only, i.e., such that differ
from those in the training set. To obtain a realistic evaluation with respect to
this use case, multiple grouped splits are used. The data set is split into a certain
percentage of groups for training while the rest is withheld for testing. For this
task, the groups are created by the distinct workflows. 5 splits with 80% of groups
used for training and the rest withheld for testing are created in this way.

For component suggestion we only consider nodes with at least 5 ancestors
to guarantee a minimum level of information available for the prediction.

As this prediction tasks requires inference for every single node of every
graph, the computational load is very high. This can be remedied by removing
very similar instances, i.e., by sub-sampling over the version history with a factor
of 10, starting with the newest revision. As a result, only every 10th version of
a workflow is present in the data-set used for training and testing.

Results. Various classifiers were tested on the basic feature set. Many of these
are superior to the dummy classifier baseline, c.f. Table 7. The best performing
method is a random forest classifier [4]. The hybrid P-GCN with slightly adapted
hyper-parameters, c.f. Table 6, outperforms the basic methods in both tasks.

While graph-level P-GCN achieves competitive results in component refine-
ment and node-level P-GCN performs well in component suggestion, neither
approach excels in both tasks. The hybrid P-GCN however can deliver high
quality prediction in both scenarios, showing that it is a best-of-both-worlds
approach.
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Table 7. Performance comparison for component refinement and component sugges-
tion in 5 random grouped folds. Results for P-GCNs and a set of different classifiers
using basic graph features.

Classifier Component refinement Component suggestion

Accuracy Top 5 accuracy Accuracy Top 5 accuracy

Dummy classifier 0.245±0.063 0.452±0.025 0.179±0.02 0.527±0.051

Random Forest 0.553±0.07 0.744±0.047 0.461±0.078 0.715±0.067

Node-level P-GCN 0.442±0.08 0.758±0.061 0.48±0.059 0.755±0.06

Graph-level P-GCN 0.578±0.041 0.759±0.028 0.27±0.043 0.584±0.062

Hybrid P-GCN 0.643±0.074 0.798±0.046 0.461±0.08 0.748±0.06

In component refinement, it achieves a mean accuracy 0.643 ± 0.074 and a
mean Top-5-accuracy 0.798 ± 0.046. This means that, on average, for 4 out of
5 nodes, the correct component type can be found in the top 5 predictions and
for 5 out of 8 nodes the prediction is correct.

Despite the limitation to nodes with at least 5 ancestors, component sug-
gestion is a distinctly more challenging task. However, P-GCN methods still
outperform the strong random forest baseline by a significant margin.

9 Conclusion

The management and analysis of real-world ML workflows poses a number of
interesting challenges, most prominently the generation of meaningful represen-
tations and component refinement. For both tasks, a baseline with adequate
performance is presented and evaluated on the ODDS dataset.

P-GCN is a modification of node-level topology adaptive GCNs that shows
promise for supervised tasks as well as unsupervised tasks with surrogate tar-
gets. It can generate meaningful representations for the highly complex data
structures of ODDS and outperforms the state of the art in NAS-Bench-101
performance prediction. Additionally, it can be configured to create joint node-
and graph-level representations and thereby outperforms a strong baseline in a
node classification task on ODDS.

Since P-GCN is used in a purely supervised manner for regression tasks, it
does not require a large-scale sampling or rule-based definition of the search
space for generating unsupervised representations, as other methods do. The
pooling method also makes it suitable for search spaces with varying graph
sizes. Furthermore, input node features can easily be extended to cover node
hyper-parameters or arbitrary numerical attributes. These properties make the
adaptation of P-GCN to other performance prediction tasks trivial. Especially
the predictive performance on supervised tasks with more complex and varied
DAGs, such as those generated by CGP-CNN [28], would provide further insight
into the capabilities of the model. P-GCN’s generality also makes it an interesting



66 L. Wendlinger et al.

candidate for transductive transfer as well. Multiple domains with information
processing expressed in DAG architectures are worth considering.
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7. Friesen, N., Rüping, S.: Workflow analysis using graph kernels. In: LWA, pp. 59–66.

Citeseer (2010)
8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778 (2016)

9. Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.:
Improving neural networks by preventing co-adaptation of feature detectors. arXiv
preprint arXiv:1207.0580 (2012)

10. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by
reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)

11. Ward, J.H., Jr.: Hierarchical grouping to optimize an objective function. J. Am.
Stat. Assoc. 58(301), 236–244 (1963). https://doi.org/10.1080/01621459.1963.
10500845

12. Kaushik, G., Ivkovic, S., Simonovic, J., Tijanic, N., Davis-Dusenbery, B., Deniz,
K.: Graph theory approaches for optimizing biomedical data analysis using repro-
ducible workflows. bioRxiv, p. 074708 (2016)

13. Kendall, M.G.: A new measure of rank correlation. Biometrika 30(1/2), 81–93
(1938)

14. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

15. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907 (2016)

16. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny
images (2009)

17. Li, J., Fan, Y., Zhou, M.: Timing constraint workflow nets for workflow analysis.
IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 33(2), 179–193 (2003)

http://arxiv.org/abs/1607.06450
http://arxiv.org/abs/1711.07553
http://arxiv.org/abs/1710.10370
http://arxiv.org/abs/1207.0580
http://arxiv.org/abs/1502.03167
https://doi.org/10.1080/01621459.1963.10500845
https://doi.org/10.1080/01621459.1963.10500845
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1609.02907


Methods for Automatic Machine-Learning Workflow Analysis 67

18. Liben-Nowell, D., Kleinberg, J.: The link-prediction problem for social networks.
J. Am. Soc. Inform. Sci. Technol. 58(7), 1019–1031 (2007)

19. Lukasik, J., Friede, D., Zela, A., Stuckenschmidt, H., Hutter, F., Keuper, M.:
Smooth variational graph embeddings for efficient neural architecture search. arXiv
preprint arXiv:2010.04683 (2020)

20. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed represen-
tations of words and phrases and their compositionality. Adv. Neural. Inf. Process.
Syst. 26, 3111–3119 (2013)

21. Narayanan, A., Chandramohan, M., Venkatesan, R., Chen, L., Liu, Y., Jaiswal,
S.: graph2vec: learning distributed representations of graphs. arXiv preprint
arXiv:1707.05005 (2017)

22. Ning, X., Zheng, Y., Zhao, T., Wang, Y., Yang, H.: A generic graph-based neural
architecture encoding scheme for predictor-based NAS (2020)

23. Perozzi, B., Al-Rfou, R., Skiena, S.: DeepWalk: online learning of social represen-
tations. In: Proceedings of the 20th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 701–710 (2014)

24. Rosenberg, A., Hirschberg, J.: V-measure: a conditional entropy-based external
cluster evaluation measure. In: Proceedings of the 2007 Joint Conference on Empiri-
cal Methods in Natural Language Processing and Computational Natural Language
Learning (EMNLP-CoNLL), pp. 410–420 (2007)

25. Rozemberczki, B., Sarkar, R.: Characteristic functions on graphs: birds of a feather,
from statistical descriptors to parametric models (2020)

26. Shi, H., Pi, R., Xu, H., Li, Z., Kwok, J.T., Zhang, T.: Multi-objective neural
architecture search via predictive network performance optimization (2019)

27. Stier, J., Granitzer, M.: Structural analysis of sparse neural networks. Procedia
Comput. Sci. 159, 107–116 (2019)

28. Suganuma, M., Shirakawa, S., Nagao, T.: A genetic programming approach
to designing convolutional neural network architectures. In: Proceedings of the
Genetic and Evolutionary Computation Conference, pp. 497–504 (2017)

29. Tang, Y., et al.: A semi-supervised assessor of neural architectures. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
1810–1819 (2020)

30. Balntas, V., Riba, E., Ponsa, D., Mikolajczyk, K.: Learning local feature descriptors
with triplets and shallow convolutional neural networks. In: Wilson, R.C., Hancock,
E.R., Smith, W.A.P. (eds.) Proceedings of the British Machine Vision Conference
(BMVC), pp. 119.1–119.11. BMVA Press (September 2016). https://doi.org/10.
5244/C.30.119

31. Weißgerber, T., Granitzer, M.: Mapping platforms into a new open science model
for machine learning. Inf. Technol. 61(4), 197–208 (2019)

32. Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., Philip, S.Y.: A comprehensive
survey on graph neural networks. IEEE Trans. Neural Netw. Learn. Syst. 32, 4–24
(2020)

33. Ying, C., Klein, A., Christiansen, E., Real, E., Murphy, K., Hutter, F.: NAS-Bench-
101: towards reproducible neural architecture search. In: International Conference
on Machine Learning, pp. 7105–7114. PMLR (2019)
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Abstract. With recent advancements in deep learning methods, auto-
matically learning deep features from the original data is becoming an
effective and widespread approach. However, the hand-crafted expert
knowledge-based features are still insightful. These expert-curated fea-
tures can increase the model’s generalization and remind the model of
some data characteristics, such as the time interval between two patterns.
It is particularly advantageous in tasks with the clinically-relevant data,
where the data are usually limited and complex. To keep both implicit
deep features and expert-curated explicit features together, an effective
fusion strategy is becoming indispensable. In this work, we focus on a
specific clinical application, i.e., sleep apnea detection. In this context, we
propose a contrastive learning-based cross attention framework for sleep
apnea detection (named ConCAD). The cross attention mechanism can
fuse the deep and expert features by automatically assigning attention
weights based on their importance. Contrastive learning can learn better
representations by keeping the instances of each class closer and push-
ing away instances from different classes in the embedding space concur-
rently. Furthermore, a new hybrid loss is designed to simultaneously con-
duct contrastive learning and classification by integrating a supervised
contrastive loss with a cross-entropy loss. Our proposed framework can
be easily integrated into standard deep learning models to utilize expert
knowledge and contrastive learning to boost performance. As demon-
strated on two public ECG dataset with sleep apnea annotation, ConCAD
significantly improves the detection performance and outperforms state-
of-art benchmark methods.

Keywords: Contrastive learning · Cross attention · Sleep apnea
detection

1 Introduction

According to the National Institutes of Health of USA, 50 to 70 million people
have chronic sleep disorders [4], and the sleep disorders of sleep can increase the
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risk of many related diseases, such as hypertension and cardiovascular patholo-
gies [41]. Sleep apnea is one of the most common sleep disorders, which is an
abnormal respiratory activity repeatedly occurring during sleep. The current
primary method for diagnosing sleep apnea requires the patient to record the
polysomnogram (PSG) in a clinic setup, which is very inconvenient and belated.
Thus, how to automatically and effectively detect sleep apnea is a challenge,
especially in the earlier stages.

Towards this end, automatic sleep apnea detection methods [3,10,18,30,35]
have been developed to simplify the diagnostic procedure, which including tra-
ditional machine learning methods and deep learning methods. Existing stud-
ies [29,35,38] have shown that deep learning models perform better than the
traditional machine learning ones, which require expert knowledge to manually
extract features. However, these hand-crafted expert features are still valuable
and insightful. While researching the most appropriate hand-crafted features is
time-consuming, there are a number of hand-crafted features that can be lever-
aged right away, as summarized by previous studies over centuries. In this con-
text, we proposed a cross-attention mechanism to combine the deep features
and the hand-crafted features to take advantage of both of them appropriately.

On the other hand, the regular deep learning methods usually train with the
cross-entropy (CE) loss for a classification task. Since the CE loss only focuses
on learning the necessary features to solve the classification task over known
training data, it can be easily impaired by the mislabeled data [42], which further
hinders the quality of the learned representations [25]. To alleviate the problem, a
common solution is to collect more data so that the model can learn more general
features without excessive discrimination. However, this solution is particularly
impractical in clinically relevant data, such as electrocardiography (ECG), where
the data are always limited, and the labeling is prone to human errors. As a
remedy, we design a novel hybrid loss that integrates the cross-entropy loss with
a contrastive loss. The contrastive loss helps to learn more general and robust
features by clustering similar data and pushing apart dissimilar ones.

To sum up, in this work, we proposed a novel CONtrastive learning-based
Cross Attention for sleep apnea Detection (ConCAD) using single ECG data.
To the best of our knowledge, our work is the first to successfully integrate
contrastive learning for sleep apnea detection. Our major contributions of this
paper are as follows:

– We propose a cross attention mechanism to combine the deep features and
expert knowledge-based features, which automatically fuses the features by
emphasizing the important parts based on each other synergistically.

– We design a novel hybrid loss that encompasses both the cross-entropy (CE)
loss and the supervised contrastive (SC) loss. The SC loss help to learn more
general and robust by minimizing the ratio of intra-class to inter-class simi-
larity while cross-entropy CE loss focus on discovering the useful features to
solve the classification task.

– We demonstrate state-of-the-art classification performance on two public
ECG datasets outperforming all benchmark methods.
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– We show that our proposed framework of contrastive learning-based cross
attention has better generalization ability, especially when the number of
labeled training data is limited, comparing to a naive deep learning method
without it.

– Both the cross attention mechanism and contrastive learning can be painlessly
integrated into standard deep learning models.

2 Related Work

In this section, we review the studies related to the proposed ConCAD model,
including the work on sleep apnea detection, cross attention mechanism for fea-
ture fusion, and contrastive learning.

2.1 Sleep Apnea Detection

The standard approach to diagnose sleep apnea requires the patient to sleep
overnight at a clinic setup and record the polysomnography (PSG) by various
physiological sensors, and then the outputs of PSG are visually inspected by a
clinical expert to give a diagnosis [6,19,23]. This process is always inconvenient
and uncomfortable. Thus, some studies have begun to simplify the procedure
of diagnosing sleep apnea by only using a single physiological data, such as
ECG [3,10], EEG [2], and the respiration signal [31]. Among these physiological
data, ECG is a less intrusive option and also strongly related to sleep apnea.

To this end, several studies [18,32] manually extract hand-crafted features
and feed them to classifiers (e.g., random forest, support vector machine) for
sleep apnea detection. Recently, with the development of deep learning methods,
some studies [3,35] extract RR interval (RRI) and the R-peak envelope (RPE)
and build deep learning model to automatically learn representation and detect
sleep apnea. Furthermore, several studies [10,30] develop deep learning models
to directly learn features from the raw ECG data and detect sleep apnea in an
end-to-end style.

2.2 Attention-Based Feature Fusion

Another line of related work is feature fusion, which aims at combining different
features to obtain a more effective representation. The frequently-used feature
fusion techniques are concatenation [29], summation [11], and multiplication [39].
However, these operations evenly combine all the features together without con-
sidering the importance of each feature. Some of the features gathered will help
the model make the right decision, while others can lead to significant misjudg-
ment [21].

Recently, the usage of attention learning mechanism has shown remarkable
performance improvement for different tasks, such as natural language process-
ing [37], image classification [33], and object tracking [8]. The attention mecha-
nism highlights the effective discriminant parts of features while suppressing the
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redundant parts to a certain degree. To further take advantage of the features
extracted from multi-modality inputs, a cross attention mechanism has been
proposed to derive an attention mask from different inputs mutually. In [22], the
authors use one modality (LiDAR) to generate an attention mask that controls
the spatial features of a different modality (HSI). In [16], the authors derive
cross attention maps for each pair of class features and query sample features to
highlight specific regions and make the extracted features more discriminative.

2.3 Contrastive Learning

All of the deep learning methods mentioned above are trained by the cross-
entropy loss. The cross-entropy loss is the most commonly-used one in the clas-
sification tasks, which calculates the difference between the actual probability
distribution of the data and the predicted probability distribution of the model
[28]. As we previously introduced, the cross-entropy loss has some limitations.
Thus, a supervised contrastive loss is added as an auxiliary regularization to
alleviate problems in our proposed framework.

The contrastive loss has recently been widely used in self-surprised learning
[5,14,24], which aims at clustering the similar data and pushing apart the dis-
similar data. A supervised version of the contrastive loss is proposed by [20] to
leverage the label information. Their proposed supervised contrastive learning
contains two steps: First, the supervised contrastive loss is used to learn a rep-
resentation to cluster the data from the same class and separate the data from
different classes; Second, they froze the model and add a multi-layer perceptron
(MLP) as a classifier on its top for the classification task. Recently, supervised
contrasting learning has been used for different applications, such as image clas-
sification [20], few-shot classification [25], and semantic segmentation [36].

3 Methodology

The goal of this work is to design an effective framework for leveraging the
power of both the deep learning-based features and the expert knowledge-based
features simultaneously to enhance the performance of sleep apnea detection.
Towards this goal, we propose ConCAD as shown in Fig. 1, which is based on the
contrastive learning framework to obtain better representations and utilizes a
cross-attention mechanism to fuse different types of features.

Concretely, ConCAD is achieved by three steps as shown in Fig. 1. Firstly, the
original raw data are passed through a feature extractor to learn the deep fea-
tures. Simultaneously, the expert knowledge is passed through a feature extrac-
tor with a relatively shallow network to learn the expert features. Besides, data
augmentation can be used before passing the data. Secondly, the deep features
and the expert features are fed to a cross-attention module, which automati-
cally fuses the features by emphasizing the important parts based on each other
synergistically. Thirdly, the resultant attention-weighted features are mapped
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into a projection space for learning a representation with high intra-class sim-
ilarity and low inter-class similarity to improve the classification accuracy by
contrastive learning. Then, the learned representation is fed to the classification
modules to output the probability of sleep apnea events.

Fig. 1. Overall of our proposed ConCAD framework. The cross attention fuses the fea-
tures by generating an attention weight mask. It can highlight the effective discriminant
parts and suppress the irrelevant parts of features from ECG, RRI, and RPE collabo-
ratively. Besides the cross-entropy, the supervised contrastive loss is also computed to
optimize the intra-class to inter-class similarity ratio.

As we are going to demonstrate the proposed ConCAD on the datasets of
ECG-based sleep apnea detection, the ECG data are certainly considered as the
raw data input. Furthermore, the RRI and RPE manifest their effectiveness to
detect sleep apnea by many research works [1,9]. Consequently, the RRI and
RPE are chosen as the expert knowledge input for our proposed framework.

3.1 Expert Feature Extraction and Data Augmentation

The expert knowledge is summarized by previous researches over the last cen-
turies. In the field of detecting sleep apnea using ECG data, several previous
studies [1,9] have shown that the RR intervals (RRI) and R-peak envelope (RPE)
are effective. To prepare the RRI and RPE data, we first detect the locations
of the R-peaks by the Hamilton algorithm [13]. Then, we calculate the distance
between R-peaks as the RRI and use the amplitudes of the R-peaks as the RPE.
Since the RRI can be easily disturbed by unexpected ECG spikes, a median filter
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is used to eliminate the disturbance as suggested by [7]. Besides, since the num-
ber of the RRI or RPE is not always the same by giving a fixed time duration
(e.g., 1 min), cubic interpolation was used to resample them to the same length
[35].

We are augmenting the ECG, RRI and RPE by two simple approaches:
random time shift and reversion. Given the data x = [x0, x1, x2, . . . , xn], the
random time shift will obtain xshift = [xt, x1+t, x2+t, . . . , xn+t], where t is a
randomly-generated number and represents the number of data points to shift.
The revision will generate xreverse = [xn, xn−1, . . . , x2, x1, x0]. The augmenta-
tion is conducted in each batch to provide more positives (i.e., instances with
the same label) during batch training, which benefits a more robust clustering
of the projection space. The augmentation process is presented as Aug(x).

3.2 Feature Extractor

The feature extractor should be designed case by case. In this study, we have
three feature extractors, which are used for learning features from the ECG, RRI
and RPE separately, and named FECG, FRRI and FRPE .

F consists of 4 convolution blocks. The first three blocks are made of one
convolutional layer, one batch normalization layer, one ReLU activation layer,
one maxpooling layer, and one dropout layer. The feature map size of the convo-
lutional layer in the first block is chosen to cover data points of two contiguous
beats in case that the patterns between beats get missed. The last convolution
block does not contain the maxpooling and dropout layer. The module can be
represented as x′ = F(x; θF ), where x represents the input data and θF denotes
the parameters of the module.

Since there are three kinds of data, we have three corresponding extrac-
tors, which are x′

ECG = FECG(xECG; θFECG
) for ECG data, x′

RRI =
FRRI(xRRI ; θFRRI

) and x′
RPE = FECG(xRPE ; θFRPE

) for the expert knowledge-
based features. More details of the extractors are described in Appendix A.

3.3 Cross Attention

Not all the deep features and expert features contribute equally to the classifi-
cation task. Thus, we design a cross-attention module, Across, to collaboratively
learn their importance and concentrate more on the important ones. The cross-
attention is designed to ask the model to concentrate on the particular features,
which contribute more to distinguish the instances from different classes. Before
computing the cross attention, since the outputs of feature extractors are likely
to have different dimensions, we need to project them to the same space by a
linear transformation. Given x′ ∈ R

m×n, the transformation is

x′′ = u�x′V (1)

where u ∈ R
m and V ∈ R

n×k are trainable parameters.
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After it, x′′
ECG, x′′

RRI and x′′
RPE have the same dimension k. Then, we are

going to compute the attention weights. Specifically,

α = Softmax([αECG, αRRI , αRPE ])

αi = w�
i x

′′
i + bi

(2)

where i ∈ S = {ECG,RRI,RPE} and α ∈ R
3 is the attention weights. w ∈ R

k

and b ∈ R are trainable parameters. The transformed x′′ is passed through an
one-layer MLP to learn the importance of different types of features synergisti-
cally, and the importance is normalized by a softmax function.

Lastly, we compute the context vector c by

c =
∑

i∈S
αix′′

i (3)

The context vector is the fused feature vector that is the weighted sum of fea-
tures from different inputs based on the learned importance. The cross-attention
module can be represented as Across([x′

ECG,x′
RRI ,x

′
RPE ]; θAcross

).

3.4 Contrastive Learning.

For most of the conventional classification tasks, cross-entropy (CE) loss is com-
monly used to adjust model weights during training. However, CE loss may be
impaired by noisy labels [42] and induce representations with excessive discrim-
ination towards training data [25]. In order words, CE loss is likely to result in
sub-optimal generalization.

As a remedy, contrastive learning is adopted to assist the model to learn more
general and robust features by maximizing intra-class similarity while minimizing
inter-class similarity. Concretely, we propose a novel hybrid loss, which utilizes
the supervised contrastive (SC) loss [20] as an auxiliary regularization to the
standard CE loss.

Contrastive Loss. The SC loss aims at simultaneously increasing the agree-
ment among instances in positive pairs and encouraging the difference among
instances in negative pairs. The instances with the same label form the posi-
tive pairs, and the instances with the different labels are considered as negative
pairs. Specifically, the SC loss is computed in two steps. We first project the
input, i.e., the fused feature vector, to a lower dimension space by a one-layer
MLP, and the low dimension vector is normalized to the unit hypersphere by L2
norm, z = ProjSC(Across([x′

ECG,x′
RRI ,x

′
RPE ]; θAcross

). Then, the SC loss can
be computed by

LSC = −
N∑

i=1

1
Nyi

log

∑N
j=1 1[yi=yj ] exp(sim(zi, zj)/τ)

∑N
k=1 1[k �=i] exp(sim(zi, zk)/τ)

, (4)

where N is the batch size, and Nyi
is the number of samples with the same label

in each batch. 1[·] denotes an indicator function. sim(·) represents the measure
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of similarity, and here the cosine similarity is used, i.e., sim(u, v) = u · v/‖u‖‖v‖.
τ is a hyperparameter that controls the strength of penalties on negative pairs
[34].

In the SC loss formula, the numerator represents the similarity of the posi-
tives, and the denominator represents the similarity of everything else in regard
to zi. The optimization of this formula pulls together the positives and pushes
apart everything else. That is, instances from the same class will form a closer
cluster while the distances between clusters are increased in the projected hyper-
sphere. As a result, the model learns more general features instead of naively
learning the features for the classification task over the known training data.

Hybrid Loss. As described in [20], the standard SC loss requires two separate
steps for a classification task: first, they train the feature extractor with the SC
loss to learn a representation vector; second, they freeze the feature extractor and
train a classifier on the vector using the CE loss. However, the SC loss usually
requires a very large batch size to achieve decent and stable performance. For
example, [20] uses a batch size of 6,144. On the other hand, the CE loss only
works in the second step and cannot update the model parameters in the feature
extractor, which means that the CE loss does not make any contribution to
learning the feature representation.

To alleviate these problems, we use the SC loss as an auxiliary regularization
term and integrate it with the CE loss. Specifically, we propose a new hybrid
loss, which is the summation of CE and SC losses with a scaling parameter λ to
control the contribution of each loss:

Lhybrid = λLCE + (1 − λ)LSC . (5)

With the proposed hybrid loss, the model can take advantage of both the
CE and SC losses simultaneously. The CE loss can learn effective features for
classification tasks with small batch sizes, and the SC loss helps to promote
these features to be more general and robust by minimizing the intra-class to
inter-class similarity ratio. To train the model with the proposed hybrid loss, we
project the fused feature vector to lower dimension hypersphere by ProjSC(·)
to calculate the SC loss. At the same time, the fused feature vector is sent to
fully-connected layers Clf(·) to calculate the CE loss as shown in the last step of
Fig. 1. All the layers except the last one in Clf(·) use the ReLU activation, while
the last layer is operated on the softmax activation, and its unit number needs
to be identical to the number of classes. In addition, we will discard ProjSC(·)
during prediction so that the proposed model has the same number of parameters
as a model with only the CE loss.

4 Experiments and Results

4.1 Datasets

In our experiments, two datasets, i.e., Apnea-ECG [26] and MIT-BIH
Polysomnographic [17] obtained from Physionet [12], are used for performance
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evaluation and comparison. Both datasets are publicly available and have been
used to study sleep apnea detection methods in previous researches.

– Apnea-ECG: The apnea-ECG database is provided by Philipps University,
which is the most commonly-used dataset for ECG-based sleep apnea studies.
It contains 70 single-lead ECG recordings of varying lengths between 7 h
to 10 h, sampled at the rate 100 Hz. Each segment of 1 min ECG data is
annotated by the expert as either apnea or normal event. The datasets are
officially split into two sets by the provider: a released set of 35 recordings and
a withheld set of 35 recordings. After removing the data with an unreasonable
heartbeat rate, the released set contains 16,888 segments and the withheld
set contains 17,120 segments.

– MIT-BIH Polysomnographic: The MIT-BIH Polysomnographic database
is collected by Boston’s Beth Israel Hospital Sleep Laboratory. It contains
over 80 h of polysomnographic (PSG) recordings during sleep. Each record-
ing includes a single channel of ECG annotated beat-by-beat and EEG and
respiration signals. Each segment of 30 s of data is annotated with respect
to sleep stages and apnea. After removing the data with an unreasonable
heartbeat rate, the final dataset contains 9,717 segments.

4.2 Compared Methods

To valid the performance of our framework, we use several state-of-the-art meth-
ods as our benchmark methods:

– Support Vector Machine (SVM), Random Forest (RF), K-Nearest Neigh-
bor (KNN), and Multi-Layer Perception (MLP) is adopted with 10 popular
hand-crafted features from ECG data (e.g., RMSSD, NN50, etc.) as bench-
mark methods according to the work by [18].

– LeNet-5: In [35], a LeNet-5 convolutional neural network is used to learn
features from RRI and RPE for sleep apnea detection.

– CNN+LSTM: In [3], three different deep learning architectures are pro-
posed. We adopt their best performing architecture, i.e., CNN+LSTM, as
one of our benchmark methods.

– ResNet: In [38], a strong baseline model with the ResNet structure is pro-
posed for time series classification, including ECG classification. So, we also
use it for comparison.

– CNN-4: In [10], a four-layer CNN-based model with a novel pooling layer is
proposed to detect sleep apnea from ECG data directly, and we compare it
with our proposed method as well.

– CNN-6: In [30], several models with a different number of convolutional
layers are designed to predict sleep apnea with ECG data. We adopt their
best performing one, which contains 6 convolutional layers for our comparison.

We also compare the following approaches to show the improvements of the
proposed framework step by step:
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– FECG + Clf : It employs a CNN-based feature extractor to learn the deep
features from the raw ECG data and then classifies the targets by several
fully-connected layers. It can be considered as a standard architecture of a
naive deep learning model.

– FECG + FRRI + FRPE + Clf : Besides the raw ECG data, RRI and RPE are
used as expert knowledge inputs. A simple concatenation is used to combine
the features from ECG, RRI, and RPE. Then the concatenated features are
sent for classification.

– FECG+FRRI+FRPE+Across+Clf : Instead of using the simple concatenation,
a cross-attention mechanism is proposed to collaboratively fuse the features
from ECG, RRI, and RPE.

– FECG + FRRI + FRPE + Across + ProjSC + Clf : The proposed hybrid loss
is used to update the model’s parameter by adding an auxiliary projection
during training to learn more general and useful features.

– ConCAD (Aug + FECG + FRRI + FRPE + Across + ProjSC + Clf): Data aug-
mentation is used with the architecture mentioned above to help learn more
general and robust features to boost performance.

4.3 Experiment Setup

For the Apnea-ECG dataset, we train all the models, including the proposed
ConCAD method and benchmark methods, on the released dataset and test them
on the withheld dataset. For the MIT-BIH PSG dataset, 10-fold cross-validation
is used to examine the performance as there is no predefined training and test set.
Moreover, since some existing studies [29,35,40] have shown that adjacent seg-
ment information helps analyze the sleep-related problems, the labeled segment
with its surrounding ±2 segments of the ECG data is also included in our study.
Thus, we will examine segments of 1 and 5 min on the Apnea-ECG dataset and
test segments of 0.5 and 2.5 min on the MIT-BIH PSG dataset. In addition, some
of the deep learning-based benchmark methods (i.e., [10,30,38]) are modified by
increasing the pooling size and replacing flatten layer with GlobalAveragePool-
ing for the input of 5 min and 2.5 min as they do no have a version to handle
data with adjacent segments, and processing very long vector with their original
structures exceeds our hardware memory limitation.

The proposed ConCAD model is trained by the AMSGrad optimizer [27], and
all its parameters are initialized using HeNormal initializer [15]. An initial learn-
ing rate of 0.005 is chosen and it decreases to 0.001 after certain epochs (e.g. 200
epochs). Moreover, the L2 regularization is added to the feature extractor F to
prevent the model from overfitting into the noise or artifacts.

4.4 Results and Discussions

We compare the performance of ConCAD with other state-of-the-art benchmark
methods, and the results are listed in Table 1. Our proposed framework achieves
an accuracy of 88.75% with the 1 min segment input and 91.22% with the 5 min
segment input on the Apnea-ECG dataset, and 82.50% with the 1 min segment
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input and 83.47% with the 5 min segment input on the MIT-BIH PSG dataset,
which outperforms other benchmark methods. Besides, we can see deep learning
methods can adaptively learn features from a different length of input while the
machine learning methods with hand-crafted features are more sensitive to the
change of the input length. With the adjacent segments, the deep learning model
can learn more effective features for classification tasks.

We also examine the proposed framework step by step to show the effective-
ness of each step in Table 2. We can see that the performance can be worse if
we simply concatenate the deep features with the expert features as some of the
features will help the model make the better judgment possible, while others are
likely to act as noise and thereby lead to more errors. With the cross attention
module Across, we can see that the model learns a better-fused feature represen-
tation by learning an attention mask synergistically from each other. The new
fused feature representation maintains the effective discriminant parts of fea-
tures while suppressing the irrelevant parts. Specifically, the accuracy improves

Table 1. Accuracy of the proposed framework with other state-of-the-art methods on
Apnea-ECG and MIT-BIH PSG datasets.

Methods Ref Apnea-ECG MIT-BIH PSG

1min 5 min 0.5 min 2.5 min

Feature Based Machine
Learning (ML)

SVM [18] 74.57 67.52 70.02 70.30

RF 74.86 72.30 70.54 68.15

KNN 71.81 67.80 69.51 68.12

MLP 74.81 70.59 71.28 71.20

Deep Learning (DL) LeNet-5 [35] 83.17 87.25 72.49 78.82

CNN+LSTM [3] 82.77 86.12 75.80 80.79

ResNet [38] 83.57 85.33 77.29 79.23

CNN-4 [10] 81.65 84.42 73.56 76.92

CNN-6 [30] 82.12 84.37 79.69 82.25

Proposed method ConCAD 88.75 91.22 82.50 83.47

Table 2. Accuracy of different architectures of the proposed framework on Apnea-ECG
and MIT-BIH PSG datasets

Architectures Apnea-ECG MIT-BIH PSG

1 min 5 min 0.5 min 2.5 min

FECG + Clf 83.41 85.48 78.83 80.11

FECG + FRRI + FRPE + Clf 83.23 87.64 79.42 80.60

FECG + FRRI + FRPE + Across + Clf 85.35 89.43 80.22 81.77

FECG + FRRI + FRPE + Across + ProjSC + Clf 87.16 90.85 81.83 82.83

ConCAD 88.75 91.22 82.50 83.47
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from 83.41% to 85.35% with the 1 min segment input and from 85.48% to 89.43%
with the 5 min segment input on the Apnea-ECG dataset. On the MIT-BIH PSG
dataset, the accuracy improves from 78.83% to 80.22% with the 0.5 min segment
input and from 80.11% to 81.77% with the 2.5 min segment input.

In Table 2, we can also see a further improvement by using the proposed
hybrid loss, which takes advantage of both CE loss and SC loss. The accuracy
increases to 87.16% with the 1 min segment input and 89.43% with the 5 min
segment input on the Apnea-ECG dataset. On the MIT-BIH PSG dataset, the
accuracy increases to 81.83% with the 1 min segment input and 81.77% with
the 5 min segment input. The hybrid loss boosts the performance by promoting
the model to learn more general and discriminant feature representations in case
that the model overfits into the training data by learning features with excessive
discrimination.

In Fig. 2, the t-SNE plots show the learned feature representation with the
CE loss and the proposed hybrid loss. We can see that the hybrid loss promotes
to more compact clustering of the instances from the same class while the rep-
resentation with CE loss is more scattered. We also think the attention module
benefits contrastive learning by focusing on parts of features when increasing
the agreement among instances in positive pairs and encouraging the difference

(a) CE loss (b) Proposed hybrid loss

(c) CE loss (d) Proposed hybrid loss

Fig. 2. The t-SNE plots of the fused feature vector on the withheld set of Apnea-
ECG (a and b) and the validation set of MIT-BIH PSG (c and d), comparing the
cross-entropy (CE) loss with the proposed hybrid loss.
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among instances in negative pairs. It is similar to human behavior that human
usually tends to recognize an unseen data by comparing the most relevant parts
with known ones. By using data augmentation, the proposed model can learn
more general feature representation with a more clear boundary and achieve
better performance.

In addition, the hybrid loss enables the classification tasks with limited train-
ing labeled data. The limitation of labeled data is a prevalent and critical problem
in the healthcare field. We train the model by using a fraction of the training
set and test it on the entire test set. The results are shown in Fig. 3 in terms of
the macro F1 score. F1 score can clearly show the quality of the model when the
dataset is imbalanced. With only 1% of the training data, the proposed ConCAD
model can still achieve an F1 score of 0.67 on the Apnea-ECG dataset and 0.59
on the MIT-BIH PSG dataset. However, the CE loss performs poorly and skews
into the majority class. Furthermore, the proposed model only requires 10% of
the training data to make a reasonable classification while the naive deep learn-
ing model needs more than 50% to get decent performance. Hence, the proposed
model with hybrid loss largely outperforms a naive deep learning approach with
CE loss on smaller datasets.

(a) Apnea-ECG dataset (b) MIT-BIH PSG dataset

Fig. 3. Impact of number of training data on the performance of the sleep apnea
detection with the cross entropy (CE) loss and the proposed hybrid loss.

5 Conclusions and Future Work

In this paper, we propose a contrastive learning-based cross attention frame-
work, named ConCAD. The cross attention leverages the expert knowledge and
fuses it with deep features by highlighting each other collaboratively. The novel
hybrid loss that encompasses the cross-entropy loss and supervised contrastive
loss helps learn more robust features by clustering the same class data and
pushing apart data of different classes in projection space. Moreover, we show
the proposed framework achieves state-of-the-art results on two public ECG
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datasets. Furthermore, we show that the proposed framework has better gener-
alization ability with limited labeled training data. We conclude that the ECG
data with adjacent segments helps to detect the sleep apnea occurrence through
the experiment.

In future work, we plan to study more ECG data augmentation techniques
that would help contrastive learning to generate better representations. We also
plan to develop more interfaces to allow different formats of expert knowledge
(e.g., electronic health records) to be integrated into our framework.

Appendix A

The feature extractor are different for different data and tasks. In this study, we
design a CNN-based extractors for ECG, RRI and RPE separately. The structure
of the extractor for two dataset are also different as their ECG data have different
sampling frequency and noise. The details are shown in the table below. The
ConvBlock(number of filters, kernel size, stride) is made of one convolutional
layer, one batch normalization layers, one ReLU activation layer (Table 3).

Table 3. The details of the feature extractors used for ECG, RRI and RPE on Apnea-
ECG and MIT-BIH PSG.

FECG (Apnea-ECG) FECG (MIT-BIH PSG) FRRI , FRPE

ConvBlock(64,100,20)-

MaxPool(2)-Dropout(0.5)-

ConvBlock(64,8,4)-

MaxPool(2)-Dropout(0.5)-

ConvBlock(128,4,2)-

MaxPool(2)-Dropout(0.5)-

ConvBlock(128,4,2)

ConvBlock(64,60,5)-MaxPool(2)-

Dropout(0.5)-ConvBlock(128,8,3)-

ConvBlock(128,8,3)-MaxPool(2)-

Dropout(0.5)-ConvBlock(256,4,2)-

ConvBlock(256,4,2)–MaxPool(2)-

Dropout(0.5)-ConvBlock(128,4,1)-

ConvBlock(128,4,1)

ConvBlock(64,8,4)-

MaxPool(2)-Dropout(0.5)-

ConvBlock(64,4,2)-

MaxPool(2)-Dropout(0.5)-

ConvBlock(128,2,1)-

MaxPool(2)-Dropout(0.5)-

ConvBlock(128,2,1)
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Abstract. To make weather/climate modeling computationally afford-
able, subgrid-scale physical processes in the numerical models are usually
represented by semi-empirical parameterization schemes. For example,
planetary boundary layer (PBL) parameterizations are used in atmo-
spheric models to represent the diurnal variation in the formation and
collapse of the atmospheric boundary layer—the lowest part of the atmo-
sphere. We consider the problem of developing an accurate alternative
to physics-based PBL parameterizations for speeding up the operation
of atmosphere modeling. Our contributions are twofold. The first con-
tribution is to propose a deep neural network emulator, called DeepPE,
that focuses on simulating nonlocal closures in the PBL to capture cross-
layer large eddies. We also explore a transfer method to maintain accu-
racy when applying a trained model to systems with different external
forcing. We provide a comparison with three data-driven approaches as
well as multi-task fine-tuning in predicting the PBL vertical profiles out-
putted by the Yonsei University (YSU) parameterization in the Weather
Research Forecast (WRF) climate model over 16 locations. The experi-
ment results show that our method can better simulate the vertical pro-
files within the boundary layer of velocities, temperature, wind speed,
and water vapor over the entire cycle. And they also indicate that it
achieves a comparable generalization performance with less computa-
tional cost.

Keywords: Neural networks · Supervised learning · Environmental
sciences

1 Introduction

Scientists use numerical models to understand complex earth systems and make
predictions [29], which work by dividing the components of the system into large
boxes, known as grid boxes. Most of the current climate and weather models
have typical horizontal grid resolution of O(100) km and O(10) km , respectively.
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Fig. 1. Parameterization in atmospheric model. The numerical model based on grid
boxes simulates atmospheric motion at the current spatial resolution (grid-scare), but
it receives variables that reflect the influence of the subgrid-scale physical processes.

However, many important physical processes and mechanisms that take place on
smaller spatial scales, such as atmospheric and oceanic turbulent circulations,
are too small to be explicitly modelled, or some phenomena are not fully under-
stood [30], and therefore model developers must resort to parameterizations
(Fig. 1). That is, parameterization is a physical-based or semi-empirical approx-
imation of small-scale, subgrid processes in large-scale resolved processes [21].
While these parameterizations are designed to be computationally efficient, cal-
culation of a model physics (different from dynamic core with clear analytical
solutions, which contains all the subgrid processes using parameterization) pack-
age still takes a good portion of the total computational time. For example, in
the Community Atmospheric Model (CAM) developed by the National Center
for Atmospheric Research (NCAR), with a spatial resolution of approximately
300 km and 26 vertical levels, the physical parameterizations account for about
70% of the total computational burden [16].

Moreover, an increasing need in the climate community is performing high
spatial-resolution simulations, which calls for exponential growth of computing
power [2], to assess risk and vulnerability due to climate variability at a local
scale, while generating large-ensemble simulations in order to address uncer-
tainty in the model projections. All these have caused great challenges to the
time efficiency of numerical model operation. Thus, developing novel and com-
putationally efficient emulators to parameterization [18], enabling researchers to
generate finer resolution simulations and more ensemble members, are urgently
needed and are at the forefront of research.

Since deep neural networks (DNNs) have excellent ability in nonlinear fitting,
we have a strong intuition in favor of the potential of DNNs in parameteriza-
tion emulation. In this work, we introduce an approach to emulate an existing
planetary boundary layer (PBL) parameterization using 22-year-long output of
16 different locations created by the Weather Research Forecast (WRF) climate
model through deep learning. The aim is to build an DNN-based algorithm to
empirically understand the process in the numerical weather/climate models
that could be used to replace the physics parameterizations that were derived
from observational studies. This method would be computationally efficient and
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making the generation of large-ensemble simulations feasible at very high spa-
tial/temporal resolutions with limited computational resources.

Developing a fast PBL parameterization emulator is challenging. First, PBL
is the region adjacent to the earth’s surface where small-scale turbulence, which
is difficult to be observed, fully understood, let alone modeled, is induced by
wind shear and/or thermal convection and occurs almost continuously in space
and time [7]. Secondly, the emulator is expected to have certain extrapolation
(i.e., generalization) ability, according to the First Law of Geography: “every-
thing is related to everything else, but near things are more related than distant
things” [27]. Nevertheless, the natural and anthropogenic variabilities cause non-
stationarities, which can limit the applicability of a data-driven model that is
trained with a dataset that contains a large amount of data but from a small
part of the non-stationary distribution in climate modeling [23].

To tackle these challenges, our method has two components. The first is
Deep parameterization emulator (DeepPE), taking account of ideas of tradi-
tional physical methods, that can be used to replace the PBL parameterization
in the WRF model. The second component is a transfer mechanism to further
reduce the cost of calculations. Specifically, we hope that a trained model can
be applied to systems with different forcing (e.g., turbulence). This problem is
closely associated with two (or three) widely-studied topics: multi-task learn-
ing (or transfer learning) and life-long learning, but has not been extensively
addressed in any of them. In life-long learning, different tasks are trained over
time, and the model accommodates new knowledge while retaining existing expe-
rience. [22]. However, data of all tasks is gained at the same time in our case. Our
problem is more similar to multi-task learning, where model can generalize better
on original task by sharing representations between related tasks [24], whereas
in our case reducing total training time, rather than improving performance, is
more concerned.

2 Related Work

Data-driven Parameterization Emulation. As far as we know from the lit-
erature available, experts have tried to use shallow neural networks to accelerate
parameterization very early [4,15]. [17] utilized a single layer network to imitate
an atmospheric longwave radiation parameterization for the National Center
for Atmospheric Research (NCAR) Community Atmospheric Model (CAM) and
obtained a 50–80 times acceleration. Compared with our approach, they are
cruder and hardly competitive in accuracy when used for parameterization of
more complex physical processes.

In recent years, because of the superior performance in modeling the under-
lying nonlinear functional relationship between inputs and outputs of systems,
DNNs are particularly appealing for emulations of physical parameterization in
the numerical weather and climate modeling. DNNs have been used to fit a sim-
ple chaotic dynamical system to prove their feasibility for atmosphere modeling.
[8] used the two-time scale model proposed in [20], henceforth the L96 system,
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Fig. 2. Three existing DNNs’ emulators: Fully connected feed-forward neural network
(FFN), hierarchically connected network with previous layer only connection (HPC)
and hierarchically connected network with all previous layers connected (HAC). FC
Block is the full-connected feature extraction block.

which is a common baseline model for evaluating both parameterization and data
assimilation techniques due to its transparency and computational cheapness, as
a test bed to evaluate the performance of GAN in stochastic parameterization.
Coincidentally, almost at the same time [3] also used a simple fully connected
network to model the multi-scale L96 system [26] thus proving the performance
of DNNs in sub-grid parameterization. Our work simulates a practical parame-
terization scheme, the Yonsei University (YSU) scheme [12], in commonly used
WRF atmospheric model instead of a toy model, which is more applicable.

Fast emulation to PBL parameterization has been investigated for DNNs in
the seminal work of [28]. It introduced three types of networks employed as our
baseline methods (Fig. 2), and attempted to generalize the model trained by
data from a single location to its neighbors. However, although they also tried
to make the network capture the mixing between PBL vertical layers by using
domain knowledge to guide the design, only the effects of higher altitude layers
from previous layers are considered, which is inconsistent with the fact that in
the scenario of nonlocal mixing, the vertical exchange between PBL is mutual.
In addition, their experiments also show a serious decline in model performance
in partial locations.

Multi-task Learning. Transfer learning [25], as well as multi-task learning [31]
is widely studied, and it is out the scope of this paper to review all of them. We
briefly review the most representative and related works. Our case is similar to
multi-task learning in the sense that we also construct general representations
which are task-agnostic [6], though we focus on reducing the total training time
without decreasing the accuracy. Since all our datasets are labelled, Fine-tuning,
which starts with a pre-trained model on the source task and trains it further
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Fig. 3. Deep parameterization emulator (DeepPE) architecture.

on the target task, is arguably the most widely used approach [14]. In com-
puter vision tasks, the fine-tuning methods have been studied fruitfully: models
have been able to automatically determine which layers to fine-tune per tar-
get instance [10,11]. Yet because our model tries to simulate the correlation of
the vertical profiles of PBL, it is difficult to freeze parameters of partial layers.
And, in our problem, the sizes of the target dataset and source dataset have
subtle differences, allowing fine-tuning the whole network with low possibility of
overfitting.

3 Methods

3.1 Problem Definition

The PBL parametric emulator aims to create a mapping of near-surface char-
acteristics (x) to vertical profiles of the model prognostic and diagnostic fields
(y):

Y = F(x,Θ) (1)

where x ∈ R
N and Y = [y1, y2, . . . , yL], yl ∈ R

M (l = 1, 2, . . . , L). N , M
and L are the number of input characteristics, output atmospheric variables
and vertical layers. F is the parameterization method, here is DeepPE, and Θ
denotes the parameters of F . The observations of output variables are used as
ground truth.

3.2 Deep Parameterization Emulator

As shown in Fig. 3, our DeepPE mainly consists two parts: bidirectional
hierarchically all previous connected network (BiHAC) and merge block. BiHAC
is an extension of HAC which akin to Dense block [13] but output layers are
evenly lie in the network instead of only at the end. More specifically, each
basic feature extraction module (FC block, Full Connected block) receives the
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output from all previous modules and the network input as input feature. This
procedure can be expressed as:

yl = HFC,l([x, y1, . . . , yl−1]) (2)

where HFC,l denotes the operations of the l-th FC block. [x, y1, . . . , yl−1] refers
to the concat of the outputs produced by the input x and FC blocks HFC,1,
. . ., HFC,(l−1), resulting in N + (l − 1) × M features. HFC,l can be a composite
function of operations, such as full-connected layer and rectified linear units
(ReLU) [9]. The motivation for designing this skip-connected structure is not
only back-propagation efficiency, but, from the physical process perspective, it
takes the nonlocal mixture between vertical layers in PBL into account. As
reported by [5], compared with solely local mixing processes, nonlocal mixing
processes are shown to perform more accurately in simulating deeper mixing
within an unstable PBL.

Although HAC consider the features transported from surface and all the
points that below the given points, unsurprisingly it is not sufficient. Effects of
currents or vertical eddies within the PBL are not unidirectional [5], hence when
we use the network layers to simulate the vertical exchange of PBL, we should
explore the upward and downward information transmission. We add the reverse
structure:

y′
l = H ′

FC,l([x, y′
L, . . . , y′

l+1]) (3)

where H ′
FC,l denotes the l-th FC block of the reverse structure and y′

l ∈ R
M

is another output of l-th PBL, which contain information of top-down vertical
convective transfer.

At this stage, we have two output predictions, then the Merge block is utilized
to combine them up. The Merge operation can be simple addition, here we use
attention mechanism [1] to choose the final outputs:

YDtoT = [y1, . . . , yL] (4)
YTtoD = [y′

1, . . . , y
′
L] (5)

Y = f(Y T
TtoDWT

QWKYDtoT)Y T
DtoTWT

V (6)

where WQ,WK ,WV ∈ R
m×m are three weight matrices to be learned, and f is

softmax function. The attention mechanism queries each reverse output layer for
each down-top output layer, and integrates the information of the bidirectional
chain into the final output with a weighted sum based on their relevance, which
is more flexible than direct addition.

3.3 Transfer Scheme

Unlike the traditional developing process of parameterization, most of the
extrapolation strategy for parameterization DNNs is training the model by data
from one location (source dataset) before applying it to other locations (tar-
get datasets), or continue to fine-tuning using the data from target locations.
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Fig. 4. Transfer Framework of DeepPE. ⊕ denotes element-wise sum.

According to the development paradigm of non-data-driven approach [21], sim-
ulations of all small-scale processes are built upon the modeling of basic atmo-
spheric motion. In other words, our network should first summarize the general
mapping across locations, and then extract the specific features of individual
location. Therefore, we mix the data from all locations to train a general model,
and then use the data for different tasks to fine-tune it. We have K classes, and
classifier was added to distinguish task classes (Fig. 4), while a unique DeepPE
and a general DeepPE are respectively used to fit process in different locations
and extract common information among grids.

Yclass = DeepPE(x, θclass) (7)
Ygeneral = DeepPE(x, θgeneral) (8)

Y = Yclass + Ygeneral (9)

Here, the function DeepPE(·, ·) is a shorthand for Eq.(2)–(6) and θ repre-
sents all the parameters of DeepPE. The final outputs are concatenation of the
outputs from unique space and shared space. The linear classifier can estimate
what kinds of locations the data comes from:

Classifier(Yclass, θclassifier) = softmax(bclassifier + WclassifierYclass) (10)

3.4 Training

Given a training set
{

x(i), Ŷ (i)
}d

i=1
, where d is the number of training samples

(batch size) and Ŷ (i)is the ground truth observation of x(i), the optimization
objective is defined as:

arg min
Θ

(L(Θ)) (11)

We use MSE loss function to optimize DeepPE, while the parameters of the
network are trained to minimise the cross-entropy of the predicted and true dis-
tributions on the task numbers. And inspired by [19], orthogonality constraints
can penalize redundant latent representations and encourages the unique and
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general DeepPEs to extract different aspects of the inputs. Accordingly, the
final loss function of our model can be written as:

L(Θ) =
1
d

d∑
i=1

∥∥∥Ŷ (i) − Y (i)
∥∥∥

2

2

− λ
1
d

d∑
i=1

K∑
j=1

ŷj
class log(yj

class)

+ γ
1
d

d∑
i=1

∥∥Y T
classYgeneral

∥∥2

F

(12)

where λ and γ are hyper-parameter. ŷj
class and yj

class are the ground-truth label as
well as prediction probabilities of task number. ‖·‖2

2 and ‖·‖2
F are the Euclidean

norm and the squared Frobenius norm.

4 Experiments

This section describes the experiments performed to demonstrate the effective-
ness of DeepPE when applied to one location data and data from multiple
locations.

4.1 Datasets

The data1 we used in this study is the PBL parameterization (YSU scheme,
in which the vertical diffusion equation term includes the nonlocal mixing by
convective eddies) dataset published by [28], which is a 22-year output from
the regional climate model WRF version 3.3.1, driven by NCEP-R2 for the
period 1984–2005. The input is 16 near surface characteristics, including 2m
water vapor(Q2) and air temperature(T2), 10 m zonal and meridional wind (U10,
V 10), ground heat flux (GRDFLX), incoming shortwave radiation (SWDOWN),
incoming longwave radiation (GLW), PBL height (PBLH), sensible heat flux
(HFX), latent heat flux (LH), surface friction velocity (UST), ground temper-
ature (TSK), soil temperature at 2m below the ground (TSLB), soil moisture
at 0–0.3 cm below the ground (SMOIS), and a geostrophic wind component at
700 hPa (Ug, V g). The results of WRF model simulations referred to as obser-
vations, which contain 17 vertical profiles of the following five model prognostic
and diagnostic fields: temperature (tK), water vapor mixing ratio(QVAPOR),
zonal and meridional wind (U , V ), as well as vertical motions (W ).

The 22-year data was partitioned into three parts: a training set consisting of
20 years of 3-hourly data to train the model; a validation set consisting of 1 year
data used for tuning algorithm’s hyper-parameters and to control over-fitting;
and a test set consisting of 1-year records for prediction and evaluations. We use

1 Retrieved from https://github.com/pbalapra/dl-pbl.

https://github.com/pbalapra/dl-pbl
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data from a site in the midwestern United States (Logan, Kansas; 38.8701◦N,
100.9627◦W) to test the performance of DeepPE, and use it and data from 15
sites nearby (within a ∼ 1100 km × 1100 km area) for transfer experiments.

4.2 Experimental Setup

For the performance test of DeepPE, we apply a chronological 11-fold crossover
experiment, that is, the first experiment uses 1984 data to verify, 1985 data to
test, and 1986–2005 data to train; at the second run, 1985 data are used as
verification set, 1986 data as test set and left data as training set; etc. For the
transfer experiments, only the last fold setting is chosen. Our baselines are FFN,
HPC, HAC (Sect. 2), all of them as well as DeepPE have 16 hidden units, and
2 full-connected layers in the FC Block.

The networks are trained using Adam optimizer on a 4-GPU machine and
each GPU has 16/64 (single/transfer) clips in a mini-batch (so in total with a
mini-batch size of 64/256 clips). We train models for 100 epochs in total, starting
with a learning rate of 0.001 and reducing it to 10e–5 follow the cosine annealing
strategy. For preprocessing, we applied StandardScaler (removes the mean and
scales each variable to unit variance) and MinMaxScaler (scales each variable
between 0 and 1) transformations before training, and we applied the inverse
transformation after prediction so that the evaluation metrics are computed on
the original scale. For the implementation, we use Pytorch (version 1.2.0) and
our code is available at https://github.com/shiwch/DeepPE Model.

We use mean absolute error (MAE), root mean squared error (RMSE), r2
score (r2) and Pearson correlation coefficient (PCC) to evaluate the performance
of various algorithms, where MAE and RMSE range from 0 to positive infinity,
the smaller the better; r2 and PCC range from negative infinity to 1 and negative
1 to positive 1, respectively, 0 indicates no skill and 1 is the perfect score.

5 Results

5.1 DeepPE Performance Analysis

Table 1 and 2 shows the average results of 11-fold crossover experiment and the
first four lines indicates that DeepPE achieves the best performance in terms
of all evaluation metrics on five predicted variables. Compared to the best per-
formance gained by three baseline approaches, our model respectively shows
2.9% ∼ 9.2%, 0.8% ∼ 11.1%, 4.0% ∼ 19.2%, 4.1% ∼ 21.7% and 0.8% ∼ 18.1%
improvement in terms of MAE, RMSE, PCC and r2 on U , V , W , tK and QVA-
POR. Among them the smallest improvement occurs in the PCC of V and QVA-
POR (both 0.8%), this is because the baseline methods show greate results on
all predicted variables except vertical motions(W ) in the PCC, of which our
model improves 19.2%. It is also worth noting that the increase in vertical wind
direction and wind speed of our model relative to HAC is more obvious than
that of HAC relative to HPC. All these appeals show that DeepPE has a better
ability to fit the vertical mixing.

https://github.com/shiwch/DeepPE_Model
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Table 1. Comparison of predictive ability between four emulators in terms of U , V ,
W .

U V W

MAE RMSE PCC r2 MAE RMSE PCC r2 MAE RMSE PCC r2

FFN 3.638 4.563 0.000 –0.003 5.885 7.224 0.000 –0.004 3.003 5.245 0.000 –0.002

HPC 1.324 1.805 0.901 0.817 1.573 2.143 0.951 0.905 0.027 0.049 0.449 0.276

HAC 1.331 1.810 0.902 0.818 1.577 2.148 0.951 0.905 0.025 0.048 0.453 0.294

DeepPE 1.208 1.676 0.916 0.842 1.402 1.960 0.959 0.920 0.024 0.046 0.540 0.351

DeepPE-d 1.255 1.729 0.910 0.832 1.475 2.039 0.956 0.914 0.025 0.048 0.473 0.304

HAC-32 1.286 1.762 0.907 0.827 1.521 2.086 0.954 0.911 0.025 0.048 0.468 0.301

DeepPE-8 1.231 1.706 0.911 0.836 1.433 1.994 0.957 0.917 0.024 0.047 0.515 0.333

Table 2. Comparison of predictive ability between four emulators in terms of tK,
QVAPOR.

tK QVAPOR

MAE RMSE PCC r2 MAE (×10−3) RMSE (×10−3) PCC r2

FFN 8.521 1.017 0.000 –0.007 3.109 3.641 0.000 –0.004

HPC 1.152 1.625 0.984 0.967 0.439 0.647 0.972 0.946

HAC 1.173 1.615 0.984 0.968 0.452 0.660 0.972 0.945

DeepPE 0.922 1.327 0.988 0.977 0.372 0.559 0.980 0.961

DeepPE-d 1.032 1.445 0.987 0.973 0.413 0.614 0.975 0.951

HAC-32 1.091 1.514 0.986 0.972 0.437 0.645 0.974 0.948

DeepPE-8 0.956 1.370 0.988 0.975 0.382 0.573 0.979 0.958

In addition, we evaluate the effectiveness of merge component of DeepPE
with an ablation study. DeepPE-d represent only the merge block in DeepPE
is replaced by a simple element-wise addition operation. It can be seen that
its performance is between the DeepPE and HAC, which implies that the new
reverse path is beneficial to the PBL variables fitting. However, compared to
the layer-by-layer accumulation with adaptive weights based on attention mech-
anism, addition turns up to be rigid to merge bidirectional paths.

Table 3. Training details of emulators.

Training time per fold (s/100epoch) Test time (s) Total parameters

FFN 3 103.18 0.008 3 4 307

HPC 3 147.28 0.013 7 6 533

HAC 3 228.60 0.009 0 17 493

DeepPE 4 580.97 0.011 8 41 827

HAC-32 3 223.96 0.009 2 35 925

DeepPE-8 4 590.12 0.011 5 24 563
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(a) MAE of V (b) r2 of V

(c) MAE of W (d) r2 of W

Fig. 5. Performance of HAC, HPC and BiHAC-8 in each vertical layer on vertical wind.

In order to verify that the advancement of DeepPE in modeling physical pro-
cesses is attributed to the design of network structure rather than the increased
number of neurons, we provide comparison models DeepPE-8 and HAC-32, hav-
ing 8 as well as 32 units in each hidden layer respectively, and both have 2
full-connected layers in the FC Block which is the same as other experimental
methods. Our network maintains performance even with fewer parameters (last
two lines of Table 1, 2 and 3). Nonetheless, it has no advantage in training time,
even with fewer parameters. Fortunately, the model is mainly doing interference
rather than training in application, and the interference time of DeepPE does
not increase much.

Figure 5 further shows how DeepPE benefits from the added reverse chain.
We find that it has a prominent contribution to the high layers which are diffi-
cult to predict. In addition, the bidirectional propagating features also make its
performance slides more smooth between two adjacent layer, rather like HPC
and HAC (more obvious in a specific location experiment, please refer to Fig. 6
for details)
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Table 4. Comparison of predictive ability between four emulators.

U V W tK QVAPOR

MAE r2 MAE r2 MAE r2 MAE r2 MAE (×10−4) r2

DeepPE-tran 1.409 0.835 1.544 0.877 0.028 0.263 1.033 0.971 4.286 0.946

DeepPE-test 1.428 0.830 1.547 0.873 0.028 0.291 1.036 0.971 4.397 0.938

DeepPE-tune 1.291 0.842 1.386 0.884 0.027 0.310 0.827 0.978 3.555 0.957

5.2 Transfer Analysis

Similarly, we also verified the transfer method (Table 4). In order not to increase
the training time, we use a subset of mixed data for training, which has the
same number of samples as a single site dataset. Meanwhile, because our transfer
scheme contains two DeepPEs, we halve the number of neurons in each layer, thus
the training has a similar training duration (4395.87 s). We see that our transfer
strategy (DeepPE-tran) has achieved better results than directly testing original
DeepPE trained by mixed sub-dataset (DeepPE-test). When we put another 10
epoch fine-tuning (DeepPE-tune) based on each site data, the performance will
be further improved.

(a) MAE of V (b) r2 of V

(c) MAE of W (d) r2 of W

Fig. 6. Performance of HAC, HPC and BiHAC-8 in the fourth experiment of 11-fold
crossover.
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6 Conclusion

In this work, we introduce an approach to emulate existing physical parameter-
izations in atmospheric models through deep learning. A bidirectional network
takes into account the domain-specific features: there are different local and
nonlocal closure approximations in use in non-data-driven method for the small,
locally generated turbulent eddies as well as cross-layer large eddies. This com-
putationally efficient PBL parameterization emulator can quickly predict the
variables with decent accuracy. Experiments show that our emulator is superior
to others. In addition, we propose a transfer scheme to enable the emulator to
have better generalization capabilities without increasing the calculation.
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Abstract. Accurate modeling of boundary conditions is crucial in com-
putational physics. The ever increasing use of neural networks as sur-
rogates for physics-related problems calls for an improved understand-
ing of boundary condition treatment, and its influence on the network
accuracy. In this paper, several strategies to impose boundary condi-
tions (namely padding, improved spatial context, and explicit encoding
of physical boundaries) are investigated in the context of fully convolu-
tional networks applied to recurrent tasks. These strategies are evaluated
on two spatio-temporal evolving problems modeled by partial differential
equations: the 2D propagation of acoustic waves (hyperbolic PDE) and
the heat equation (parabolic PDE). Results reveal a high sensitivity of
both accuracy and stability on the boundary implementation in such
recurrent tasks. It is then demonstrated that the choice of the optimal
padding strategy is directly linked to the data semantics. Furthermore,
the inclusion of additional input spatial context or explicit physics-based
rules allows a better handling of boundaries in particular for large num-
ber of recurrences, resulting in more robust and stable neural networks,
while facilitating the design and versatility of such types of networks.
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1 Introduction

Recent advances in deep learning have shown an increased use of neural net-
works to create surrogate models for physics-related problems. In particular,
Convolutional Neural Networks (CNN) have been employed in a wide variety
of applications, leveraging their efficient parameter sharing property and their
ability to capture long-range spatial correlations. However, most of the existing
works limit themselves to one particular problem setup, keeping the same bound-
ary conditions (BCs) throughout the entire training data [11], thus being unable
to be generalized to other types of boundary conditions. Ideally, a flexible neu-
ral network framework should be able to work with several types of boundary
conditions, without the need of retraining the network for each new problem
setup. It is thus crucial to understand how boundary conditions are treated by
data-driven CNNs in order to improve their generalization capabilities. The gen-
eral theme of border effect for CNNs has been broadly studied in the image
processing community [6,13]. Still today, such border effects can have a strong
influence in state-of-the-art architectures employed in image segmentation [2].
The usual zero-padding strategy leads to border pixel artifacts and blind spots
where the network accuracy drops. Solutions have been proposed to treat borders
through separate filters [7] for the edges, corners and inner pixels or to consider
the padded pixels as missing information, through the use of Partial Convolu-
tion strategies [12]. Other works demonstrate how CNNs implicitly learn spatial
position [8,9], using the padded pixels to serve as anchors, i.e., as a reference for
filter activation in border regions. The use of circular convolution [19] eliminates
such border effects, but can only be employed on “panoramic” datasets.

Yet, the previous works have been devised for image segmenta-
tion/classification tasks and it is still unclear whether such studies can be directly
transposed for regression and recurrent tasks, as usually encountered when mod-
eling physics. In such contexts, a small error in the boundary prediction may
lead to large errors elsewhere in the computational domain. A typical example
of such a phenomenon is the development of non-reflecting boundary conditions
in computational acoustics [17], which avoids the unphysical reflection of waves
back into the computational domain. If left untreated, undesired reflections can
pollute the calculated solution. To the author’s knowledge, there is a lack of clear
results regarding what is the optimal strategy for the treatment of such bound-
ary conditions when employing CNNs for spatio-temporal evolving problems,
for which BC errors can propagate and contaminate the whole computational
domain. Indeed, only few works specifically focus on the boundary treatment
problem. Some employ explicit rules in relatively simple cases, such as in periodic
domains, as in the case of turbulence modeling [16]. For more complex boundary
treatments, previous works are found in the context of Physical-Informed Neu-
ral Networks (PINN) [18] employed in combination with CNN [4], where hard
constraints are imposed through the padding mechanism. However, only sim-
ple Dirichlet or Neumann conditions on static problems are considered, leaving
dynamical conditions out of the study. In the case of spatio-temporal modeling,
CNNs and Recurrent Neural Networks (RNN) architectures have been employed
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indistinctly. Mathieu et al. [15] designed a Multi-Scale CNN for video prediction,
which was later employed in physics-related applications [1,11]. Fotiadis et al. [3]
compared recurrent and convolutional approaches in physics-based applications
and found that CNNs can be successfully employed as spatio-temporal predic-
tors, with greater accuracy than RNNs and lesser training costs. In all previous
cases, the treatment of boundary conditions was not explicitly studied, leaving
the effect of BC treatments on such spatio-temporal evolving systems as an open
question.

In this paper, the effects of several boundary condition treatments are char-
acterized when modeling a space-time evolving problem using Convolutional
Neural Networks. Three strategies are employed for handling the boundary con-
ditions: (i) an implicit treatment through padding only, (ii) adding some extra
spatial context to the network input and finally, (iii) explicitly encoding the
boundary condition rules into the network output. These strategies are tested
on a series of datasets with varying boundary conditions, modeling the two
dimensional wave and heat equations.

The main contributions are the following:

(i) For problems with simple Neumann boundary conditions, padding allows
CNNs to efficiently model the physics; yet, mimicking the actual semantics
of the dataset makes it only possible for problems with fixed BCs;

(ii) The addition of an extra spatial context makes the neural network less
sensitive to the choice of padding;

(iii) Explicit coding of neural networks gives the best accuracy in the more
challenging test cases where dynamical effects are needed to model BCs,
allowing more robust predictions by first enforcing physics.

2 Method

This section describes the methodology to predict the spatio-temporal dynamics
of physics-related quantities using a convolutional neural network. The trained
network follows a typical auto-regressive strategy [5] to produce time series of
high-dimensional state vectors. The focus is put on the treatment of boundary
conditions in the context of convolutional networks, in order to reproduce the
desired physics. Several algorithms for the treatment of such BCs are presented
and later evaluated in Sect. 4.

2.1 Learning an Auto-Regressive Model

Dynamical systems can be modeled through a discrete time-invariant model
f acting on a delayed state vector Xt = {st, st−1, ..., st−k−1} composed of k
discrete temporal states si which may lie on a high dimensional space. Formally,
the discretized time-dynamics read:

Y t+1 = f(Xt), (1)

where Y t+1 = {st+1} corresponds to the next state in the time series.
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In order to generate an approximate model for f , a neural network f̂θ,
parametrized by its weights and biases θ, is trained on a dataset composed
of input-target tuples {Xt, Y t+1}i through a supervised optimisation problem,
based on an error metric L, such that

f̂θ = arg min
fθ

∑

i

{L [
fθ(Xt), Y t+1

]
i

}
. (2)

Once an approximate solution is obtained, any time state sT can be reached
by employing an auto-regressive iterative strategy on the learned model, namely:

Y T = f̂θ ◦ f̂θ ◦ ... ◦ f̂θ︸ ︷︷ ︸
T times

(X0) (3)

where ◦ is the function composition operator.

Fig. 1. Multi-scale fully convolutional neural network with 4 consecutive input states
of size N × N and 3 resolution banks (N/4, N/2 and N). Grey arrows represent 2D
convolutions and width of boxes the number of features. (Color figure online)

2.2 Neural Network Convolutional Architecture

The auto-regressive strategy can be employed to create surrogate models for
physics-based quantities. In traditional fluid solvers, it is common to discretize
both the time and space dimensions of physical quantities, such as pressure or
velocity fields. This results in high dimensional state where the modeled equa-
tions are solved for each degree of freedom. To reduce the computational costs
associated with training a neural network surrogate on such high-dimensional
states, a convolutional neural network is employed due to its weight-sharing
capabilities. In order to efficiently treat the intrinsic multi-scale features of
fluid flows, a Multi-Scale fully convolutional neural network [11,15] is employed,
as shown in Fig. 1. The input state is composed of four consecutive vectors
Xt = {st−3, st−2, st−1, st}, in order to provide the network with additional tem-
poral context.
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Fig. 2. Three boundary condition strategies: (a) implicit treatment using only
padding, (b) adding an additional spatial context to the network input or (c) explic-
itly encoding boundary condition after the neural network prediction.

The usage of a pure convolutional approach for the temporal regression prob-
lem instead of a Recurent Architecture (RNN, LSTMs etc.) is justified because
of the direct prediction of full states, which only require a short temporal span
for their accurate time-stepping (in traditional PDE solvers, the discretization
of the time-derivatives). A comparison of the fully convolutional approach with
LSTM approaches performed in [3] confirms this observation, as the convolu-
tional architecture achieves better accuracies on such types of problems.

2.3 Boundary Condition Treatment

In traditional solvers, the proper modeling of boundary conditions is key to accu-
rate numerical resolution of the partial differential equations. Therefore, under-
standing the boundary condition treatment is fundamental if convolution neural
networks are to be employed as surrogates for physics-based models. Boundary
conditions are intrinsically linked to the concept of padding in fully convolu-
tional networks: additional information must be created at the borders before
each convolution in order to keep the same image input resolution at the output.
However, the value of the additional pixel information is not known a priori,
and several padding strategies are available to encode this information. Zero
padding, where the additional information is filled with zero values; replication
padding, where the values at border pixels are replicated multiple times into
the padding area; reflection padding, where an axial symmetry is performed
along boundary edges; and circular padding (or periodic) which wraps values
from the opposite boundary in the same spatial direction.
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While padding is the most straightforward strategy to impose BCs in CNNs,
it is unclear how the padding type affects the predictions, neither how an optimal
choice is connected to the physical BC type (Dirichlet, Neumann, etc.). Moreover,
padding is fixed for the entire database considered, which lacks of versatility
when targeting physical systems with multiple possible BCs. Consequently, the
objective of this work is to study if an optimal boundary treatment strategy
can be found when employing CNNs for physics-based regression. Three types
of strategies are considered:

Implicit: It consists in applying exclusively padding to the input and successive
feature maps. This is the most common approach in convolutional networks
and forces the network to implicitly learn the boundary physics. It is up to the
network designer to chose an adequate padding strategy which usually results in
a long trial-and-error process until finding an optimal solution. It constitutes the
baseline method of this work (Fig. 2a) and the four padding strategies presented
above are investigated (zeros, replication, reflection and circular).

Spatial Context: The second strategy consists in concatenating an additional
channel to the network input, which is consisting in a Boolean mask indicating
the position of border pixels. This is formalized as follows:

I(x) =

{
1, if x ∈ ∂D
0, otherwise

(4)

where D represents the domain of interest, ∂D its boundaries and x are the
spatial coordinate. The motivation for such a strategy is to provide the network
with an increased spatial context. Figure 2b depicts such a strategy. Note that
padding is still employed in order to maintain the size of feature maps. This
strategy is inspired by other works such as Liu et al. [14], where giving explicit
spatial information to CNNs is shown to crucially improve their generalization
capability. Yet, the correlation between the spatial extended context, the padding
type, and the actual physical BC is still unclear, thus being studied here.

Explicit Encoding: Finally, the third strategy (Fig. 2c) consists in explicitly
encoding the boundary condition. In practice, the boundary pixel values are
imposed after the network output [4], before stepping into the optimization step
during the training phase. The way the value is imposed depends on the mathe-
matical modeling of the boundary (Dirichlet, Neumann condition, etc.).

All three strategies are compared in this work, by combining them with the
four types of padding previously mentioned.

2.4 Loss Function

The loss function for training the aforementioned Multi-Scale network is defined
as:

L =
1
N

N∑

k=1

{λL2L2 + λGDLLGDL} (5)
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where L2 = ||Y t+1 − Ŷ t+1||22 and LGDL = ||∂xY t+1 −∂xŶ t+1||2 + ||∂yY t+1 −
∂yŶ t+1||2, where a classical mean square metric is employed, both for the state
vector and its spatial derivatives, denoted as Gradient Difference Loss (GDL) as
in [15]. This loss drives the optimization towards achieving sharper predictions,
and compensates for the smoothing of the predicted signal in the long term
prediction of spatio-temporal series.

Note that the training focuses only on the next time-step prediction. There-
fore, the auto-regressive prediction of a long time series of state vectors is a
generalization problem.

3 Applications: Time-Evolving PDEs

The studied modeled is applied to create data-driven surrogates of spatio-
temporal evolving partial differential equations. In practice, two applications
are investigated: a hyperbolic PDE (acoustic wave propagation) and parabolic
PDE (heat equation). The emphasis is put on the influence of the boundary con-
ditions on the ability of surrogate data-driven models to reproduce accurately
the underlying dynamics. Thus, several types of boundary conditions are studied
for each case, which are detailed next.

3.1 Acoustic Propagation of Gaussian Pulses

The first application corresponds to the surrogate modelling of a 2D acoustic
wave equation in a quiescent medium with speed of sound c0, written in terms
of the acoustic density ρ = ρ(x, y, t), with p Gaussian density pulses as initial
conditions:

∂2ρ

∂2t
+ c0∇2ρ = 0 (6a)

ρ(x, y, t = 0) =
p∑

i

εi exp
{

− log 2
(bi)2

[
(x − xi

0)
2 + (y − yi

0)
2
]}

(6b)

where ∇2 is the Laplacian operator, (xi
0, y

i
0), εi and bi represent respectively the

spatial positions of the center, the amplitude and the half-width of the ith initial
pulse.

Boundary Conditions: Three cases of boundary conditions are considered,
representative of typical configurations found in acoustics. Each one of the BC
constitutes a dataset to be employed for training a surrogate model:

– Reflecting walls (Dataset 1 - D1): Hard-reflecting walls, representing interior
acoustics, which is modeled with a Neumann boundary condition: ∇ρ ·n = 0.

– Periodic walls (Dataset 2 - D2): Periodic conditions to model infinitely repeat-
ing domains.

– Absorbing walls (Dataset 3 - D3): Radiation boundary conditions, modeling
propagation of waves into the far-field (exterior acoustics). The challenge is
to avoid spurious reflections that can pollute the computational domain.
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3.2 Diffusion of Temperature Spots

Second, the diffusion of temperature spots is studied, modeled by the following
heat equation on the temperature T = T (x, y, t) with p Gaussian density pulses
as initial conditions:

∂T

∂t
+ α∇2 T = 0 (7)

where α denotes the thermal diffusivity of the medium. The intial conditions are
identical as those employed in Eq. (6b) (Gaussian temperature spots).

Boundary Conditions: Here, an additional dataset is generated, called Adi-
abatic walls (Dataset 4 - D4): Zero-flux adiabatic walls, modeled as Neumann
boundary conditions ∇T · n = 0.

3.3 Datasets Generation and Parameters

The datasets of input-target fields is generated offline with the multi-physics
open-source Palabos Lattice-Boltzmann Method (LBM) [10] numerical solver.
We solve equations (6) and (7) for a duration T with a time-step of Δt. A two-
dimensional square domain is considered.

Acoustic Datasets (D1 to D3): Each set is composed of 600 LBM simulations,
each with T = 231 discrete time snapshots. Only the acoustic density fields ρ are
recorded in square domains of physical length L × L, discretized with N = 200
cells per spatial direction and a spatial step of Δx = L/N = 0.5. The LB time
step is set to ΔtLBM = 0.0029D/c0, with c0 = 1/

√
3Δx/ΔtLBM is the speed

of sound. The four input density fields fed into the Neural network are equally
spaced in time with ΔtNN = ΔtLBM . A random number of Gaussian pulses
in the range p ∈ [1, 5] are used as initial conditions, with fixed amplitude and
half-width, ε = 0.001 and b/Δx = 12. The initial location of the pulses (x0, y0)
is also randomly sampled inside the domain following an uniform distribution.
A 500/100 training/validation random split is employed for the simulations.

Temperature Datasets (D4) : Each set is composed of 550 LBM simulations, each
with T = 160 discrete time snapshots. The temperature fields T are recorded
in square domains of physical length L × L, discretized with N = 200 cells per
spatial direction and a spatial step of Δx = L/N = 0.005. The heat diffusivity
is set to α = 8Δ2

x/ΔtLBM , where the LB time step is set to ΔtLBM = 1. The
four input temperature fields fed into the Neural network are sampled so that
ΔtNN = 4ΔtLBM . The same initial conditions as in D1-D3 are employed. A
400/150 training/validation random split is employed for the simulations.

4 Results

To perform the evaluation of the presented boundary condition treatment, a
Multi-Scale network with 0.4 million parameters is trained on the four proposed
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Fig. 3. Snapshots of propagating density waves for CNN trained on Dataset 1, for
two different initial conditions (it = 0): centered Gaussian pulse (4 left columns) and
randomly sampled Gaussian pulses (4 right columns). Different boundary condition
treatments are compared to the LBM reference (top row). For the implicit strategy,
the best (resp. worse) results regarding the employed padding are shown in the second
row (replication) and third row (circular). For the spatial context strategy, results with
circular padding are shown in the last row.

Fig. 4. Relative error evolution for case D1 (reflecting walls). 3 boundary treatments
are employed: implicit (full lines), spatial context (lines and star marker), and explicit
BC treatment (dashed-dotted lines). Results are averaged over 25 different initial con-
ditions and shaded area represent the standard deviation. (Color figure online)

datasets. As discussed in Sect. 2.4 the network is trained to minimize Eq. 5 for
a single-step prediction. The Adam optimizer is employed, with a learning rate
initially set to 10−4, and decaying by 20% each time the loss reaches a plateau.
The loss weights are set to λL2 = 0.02 and λGDL = 0.98. Data augmentation is
employed through the random rotation of input-target tuples, and input fields
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are normalized by their mean and standard deviation. Batch size is kept at 32.
Trainings are performed on a NVIDIA V100 GPU and convergence is achieved
at about 1000 epochs for each run.

Wave Equation with Reflecting Boundary: The first case of study corre-
sponds to Dataset 1. Density waves are fully reflected back into the domain after
the interaction with boundaries. Therefore, the waves stay in the computational
domain for infinitely long times, as no viscous dissipation is present. To test the
presented approaches, 24 initial conditions with 1 to 5 Gaussian pulses randomly
located in the initial domain are used as inputs for the auto-regressive model. A
25th initial condition is also tested, with the particular case of a Gaussian pulse
initially centered in the domain, whose solution leads to strong symmetric solu-
tions and is thus challenging for the neural network. For each initial condition
(generated with the LBM solver), the auto-regressive strategy can recursively
predict the density fields over a time horizon of T iterations, by using the previ-
ous prediction as a new input. In order to improve the neural network robustness
versus the error accumulation over time, an a posteriori correction is employed
to improve the predictions after each time step [1], based on the conservation of
acoustic energy over time in this particular application.

Table 1. Averaged relative error for Dataset 1 (hard reflecting walls) at iteration
it = 600 for 25 random initial conditions. Bolded results represent best padding for
each strategy.

Padding

Method Zeros Circular Replicate Reflect

min max avg min max avg min max avg min max avg

Implicit 0.118 0.271 0.189 0.306 ∞ ∞ 0.098 0.145 0.119 0.133 0.319 0.234

Context 0.114 0.213 0.176 0.134 0.453 0.670 0.161 0.235 0.204 0.138 0.297 0.226

Explicit 0.768 0.580 1.392 0.291 0.780 0.545 0.079 0.341 0.148 0.064 0.157 0.094

The error is evaluated in terms of relative root mean square error at each
neural network iteration, namely E(ρ) =

√||ρt − ρ̂t||2/
√||ρt||2, where ρ̂t is the

high-dimensional density prediction at iteration t. Here, the time horizon is set at
T = 600 iterations. For the explicit method, Neumann boundary conditions on
the density fields are used to model such conditions. A first-order finite difference
discretization is employed.

Results are qualitatively evaluated in Fig. 3. For two different initial condi-
tions (centered pulse and 3 randomly sampled pulses), the LBM reference (top
row) is compared to several of the proposed approaches. For the implicit case
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(i.e., only padding) strategies, the best model regarding the employed padding
is shown in the second row, corresponding to the replication padding. For both
initial conditions, the auto-regressive strategy follows closely the ground truth
data. In the third row, the implicit strategy employs circular padding and shows
a good agreement in the case of the initially centered Gaussian pulse. However,
for the other initial condition, the prediction diverges after some iterations. At
iteration it = 80, the pulse arriving on the left wall is re-injected at the right wall,
mimicking the behavior of periodic boundaries instead of the reflecting ones, on
which the network has been trained.

Figure 4 shows the time-evolution of the error averaged over 25 initial condi-
tions for the different evaluated methods and Table 1 presents the error values
for the last prediction at it = 600. For the implicit strategy, results show that
choosing the optimal padding crucially depends on the data physics. With circu-
lar padding the network is incapable of reproducing the desired physics except
for some particular initial conditions, illustrated by the increased variance area
signaling the presence of outliers. This is due to the artifacts discussed previ-
ously. For the rest of available padding (zeros, replication and reflection), the
replication padding solution performs better than the other two even if error
levels remain acceptable (below 2% relative error).

Such observations agree with other studies performed in image segmentation
[2]: circular padding limits the CNNs ability to encode position information and
can only be used with spatially periodic data. To further investigate this claim,
an additional spatial context channel is employed, while maintaining circular
padding. As observed in Fig. 4 (middle plot, red curve), the error is significantly
lower than the one obtained with the implicit strategy. This suggests that the
additional input serves as an spatial anchor for the CNN to encode the hard-
reflecting wall, which was not possible using only circular padding. The last row
in Fig. 3 demonstrates this improvement, even though the prediction error is
higher than the one obtained with other padding methods. Furthermore, the
addition of the spatial context channel reduces the overall variability of the cho-
sen padding effects. While the error slightly increases for the replication case
versus the implicit strategy, all three padding methods converge to similar error
evolutions. This suggests that the additional context channel may force the net-
work to explicitly learn similar convolutional kernels for boundary treatment,
while this is not guaranteed by the implicit case.

For the explicit case, results in Fig. 4 (right) show that the replicate and reflec-
tion padding cases achieve the lowest errors, while zero and circular paddings
have larger errors. Note that the network is only trained for a one-step pre-
diction and the explicit enforcing of the boundary is performed after each pre-
diction. Thus, the explicit enforcing is only processed by the network in the
auto-regressive context. Results show whether the employed padding strategy is
compatible with the enforced boundary values: reflecting and replication padding
can be though as first-order finite difference approximations of spatial deriva-
tives, for 1-pixel padding. Zero and circular paddings are on the other hand not
compatible with the enforced boundary values, performing worse in both cases.
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(a) (b)

Fig. 5. Relative errors for (a) D2 (periodic) and (b) D3 (absorbing) cases. Full lines
represent the implicit strategy and lines and star markers the spatial context strategy.

This behavior highlights the possible benefits of employing explicitly bound-
ary rules as long as the subsequent padding follows the same logic. It also calls
to directly enforce such explicit rules in the input padding mechanism, which is
left for future work.

Wave Equation with Periodic BCs: The second case of study corresponds to
Dataset 2, where all four wall boundaries are set as periodic walls in the training
data. The objective is that the neural network reproduces the wave propagation
in an infinitely-repeating domain.

The relative error evolution over time is depicted in Fig. 5a, for the implicit
and spatial context methods. The explicit method is not employed here as it is
equivalent to the implicit one: physical solvers employ additional “ghost cells”
to wrap values from one boundary to another [16]. Also, reflect padding is not
shown as it behaves very similarly to the replicate strategy. Results show that
for both implicit and spatial context strategies, only circular padding is able
to achieve acceptable error levels, with an average relative error of 15% for the
implicit case and 11% at it = 600 for the spatial context. The use of a padding
strategy other than circular produces unphysical behavior at the boundaries, as
the network is incapable of copying by itself the values arriving at one border to
the opposite one.

Wave Equation with Absorbing BCs: The third test case corresponds to
the neural network trained on dataset 3, with non-reflecting (absorbing) bound-
ary conditions. This case is significantly more challenging than the two previous
cases: the initial Gaussian pulse is expected to propagate into the far field and
completely leave the computational domain. Thus, the underlying data distribu-
tion is changing over time: the initial acoustic energy ||ρ||2 tends towards 0 as
t → ∞. The challenge for the network is to correctly propagate the initial pulses
outside the domain without spurious reflections at boundaries. As the signal
energy tends towards zero, the error is now calculated relatively to the initial
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Fig. 6. Density fields for Dataset 3 and replicate padding, comparing the three inves-
tigated methods. The initial conditions is a centered pulse.

density, i.e., E(ρ) =
√||ρt − ρ̂t||2/|ρt=0|. Similarly to previous experiments, 25

different initial conditions are employed for the auto-regressive tests.
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Fig. 7. Temperature fields for Dataset 4 and replicate padding, comparing the three
investigated methods. The initial condition is a centered pulse.

For the explicit method, a local one-dimensional (LODI) non-reflecting equa-
tion is used to impose the values a the boundaries, which reads ∂tρ+c0∇ρ·n = 0
[17]. First order finite differences are employed to discretize both the spatial and
temporal derivatives.

The evolution of the error for 600 auto-regressive iterations is shown in Fig. 5b.
For both the implicit and spatial context cases, the results show a high variability
between the different cases. While the implicit strategy with zero and reflect
padding manage to produce low-error results, the other two padding strategies
lead to diverging simulations. In contrast, when the spatial context is employed,
the circular padding performs better, while the other three methods diverge.
This unstable network behavior shows the complexity of the non-reflecting case
in comparison to the previous ones. Instabilities can be directly related to the
appearance of artifacts when the pulse impinges the walls, as can be seen in
Fig. 6: before the pulse arrival at the wall (it = 120), all methods show stable
and accurate predictions, while larger errors are shown after the first interaction
with the BCs (it > 160). Such artifacts lead in some cases to the unbounded
growth of the density amplitude, leading to instabilities.
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Fig. 8. Results for case D4. (Top) Relative MSE on temperature fields, (bottom) tem-
poral evolution of the spatially averaged temperature Trms.

Interestingly, the explicit encoding of boundaries has an important stabi-
lizing effect: all four padding methods show a very similar error evolution.
Figures 6 show the main differences between implicit, spatial context and explicit
approaches for the same padding (replicate): the first two cases initially damp
the outgoing waves more efficiently. However, some unphysical reflections (shown
by the asymmetry of density the fields) lead to artifacts remaining in the com-
putational domain, eventually leading to instabilities in the implicit case. In the
explicit case, even though reflections also exist, they follow a symmetric pattern,
which corresponds very closely to the one found for reflecting walls, as seen in
Fig. 3. This suggests that the explicit encoding adds physical consistency to the
network BC treatment. The error in that approach arises mainly from the lack
of proper BC modeling, as the aforementioned LODI hypothesis cannot handle
efficiently two-dimensional effects, typical of Gaussian pulses, for example at
corners. Future research should reach out towards the treatment of such trans-
verse effects [17]. This demonstrates that blending prior physics knowledge when
handling boundary conditions can improve CNNs accuracy and robustness.

Heat Equation with Adiabatic Boundary: The last studied application
corresponds to the diffusion of temperature pulses, modeled by the heat Eq. (7),
when employing Neumann boundary conditions in the temperature (adiabatic
walls). The same testing strategy is employed, by simulating 25 initial conditions
for T = 120 neural network recurrences. Two metrics are employed to analyze

the network, the relative mean square error E(T ) =
√

||Tt − T̂t||2/
√||Tt||2 and

the evolution of the average spatial temperature Trms that tends to a constant
value in time, as no heat flux exists at the adiabatic walls.

Results in Figs. 7 and 8 confirm some of the previously made observations
for Neumann BCs (reflecting acoustic case): the implicit padding strategy seems
appropriate to correctly reproduce the dynamics, when those remain simple, such
as in the diffusion of temperature fields. However, the error evolution shows that
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the use of padding that mimics the physical boundary condition (e.g. replicate)
results in a lower long-term error, as well as a closer approximation to the Trms

constant level. Furthermore, the use of additional spatial context reduces the
variability of the different padding choices, thus confirming the interest of employ-
ing such an additional input to make the predictions more robust to boundary
condition effects. Here the explicit strategy does not results in an improved accu-
racy with respect to the baseline methods. The use of such an additional a-priori
encoding of boundary conditions may only be justified in the presence of complex
conditions, such as the one presented previously for the non-reflecting acoustics
case.

5 Conclusion

This paper presents an exhaustive comparison between several available methods
to treat boundary conditions in fully convolutional neural networks for spatio-
temporal regression, in the context of hyperbolic and parabolic PDEs. Such
temporal regression tasks are highly sensitive to the well-posedness of boundary
conditions, as small localized errors can propagate in time and space, producing
instabilities in some cases. The characterization of such boundaries is crucial to
improve the neural network accuracy.

The main outcomes are summarized next: employing padding alone yields
accurate results only when the chosen padding is compatible with the underlying
data. The addition of a spatial context channel seems to increase the robustness
of the network in simple cases (Neumann boundaries), but fails for the more com-
plex non-reflecting boundary case. Finally, the explicit encoding of boundaries,
which enforces some physics constraints on border pixels, clearly demonstrates its
superiority in such cases, allowing to design more robust neural networks. Such
an approach should be further investigated in order to understand its coupling
with the neural network behavior, and its extension to problems with several
types of boundary conditions.
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Abstract. Despite much interest, physics knowledge discovery from
experiment data remains largely a manual trial-and-error process. This
paper proposes neural differential equation embedding (NeuraDiff), an
end-to-end approach to learn a physics model characterized by a set of
partial differential equations directly from experiment data. The key idea
is the integration of two neural networks – one recognition net extracting
the values of physics model variables from experimental data, and the
other neural differential equation net simulating the temporal evolution
of the physics model. Learning is completed by matching the outcomes
of the two neural networks. We apply NeuraDiff to the real-world appli-
cation of tracking and learning the physics model of nano-scale defects in
crystalline materials under irradiation and high temperature. Experimen-
tal results demonstrate that NeuraDiff produces highly accurate track-
ing results while capturing the correct dynamics of nano-scale defects.

Keywords: Physics knowledge discovery · Neural differential equation
embedding · Nano-scale materials science

1 Introduction

The advancement and application of machine learning in the last decade has
been crucial in many domains. In spite of its wide outreach, the potential to
leverage machine learning for scientific discovery in a closed loop has not been
fully realized. Real-world experimentation and physics-based simulation provide
a forward approach to validate a given physics model. The accuracy of a hypo-
thetical model can be verified by testing if the simulated results match actual
experiments. Nonetheless, the more important backward learning task, namely,
knowledge discovery and refinement of physics models from experimental data,
remains largely a manual trial-and-error process relying on the intuitions and
inspirations from the physicists (upper panel Fig. 1). Recently, a series of research
c© Springer Nature Switzerland AG 2021
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Fig. 1. (Upper) Physics experiments and simulation provides a forward approach to
validate a physics model. Our Neural Differential Equation Embedding (NeuraDiff) is a
backward approach to learn a physics model directly from experimental data. (Lower)
The high-level idea of NeuraDiff. A recognition network extracts model parameters
at time t0, which are fed to a neural differential equation net to simulate evolution for
T steps, and are compared with the recognized results at t0 + T . Back-propagation is
utilized to match the output of the recognition and the neural differential equation net.

[9,16,29,36,39,40] aim at learning partial differential equations from data. How-
ever, they did not achieve fully automatic physics model identification from
experiment data because the input of these models are the trajectories of differ-
ential equations, which may be unavailable from experiment data and need to
be extracted as a separate step. Unfortunately this is the case in the application
domain considered in this paper.

We develop neural differential equation embedding (NeuraDiff), an end-to-
end approach to learn a physics model characterized by a set of partial differential
equations directly from experiment data. The key idea is the integration of two
neural networks, one neural differential equation net simulating the temporal
dynamics, and the second recognition net extracting the values of physics model
variables from experimental data. The high level idea is shown in the lower
panel of Fig. 1. Here, the recognition net extracts physics model variables at
time t0 and feed it to the differential equation net to simulate the temporal
evolution for T steps. Then, the predicted model parameters are compared with
the recognized values at time t0 + T and with additional annotations. Back-
propagation is utilized to minimize the difference among the predictions of the
recognition net, the differential equation net, and the annotations. The three
predictions converge when the training is complete.

The development of NeuraDiff was motivated by the real-world application
of tracking and learning the physics model of nano-scale crystalline defects in
materials. These materials and alloys are critical for current nuclear fission reac-
tors and future fusion devices. Nano-scale crystalline defects can appear in differ-
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Fig. 2. (Upper Left) The Intermediate Voltage Electron Microscopy (IVEM) – Tan-
dem Facility at the Argonne National Laboratory which provides in-situ TEM data.
Source: anl.gov. (Middle and Right) Sample images captured during in-situ radia-
tion experiments. The middle image shows void defects embedded in a Cu specimen at
350 ◦C and irradiation dose 0.25 – 1.00 dpa (dose increases with time). Void migration
is illustrated by the change in sizes and in the angles of yellow lines in the right images.
(Color figure online).

ent forms in these materials. Extreme environments of heat and irradiation can
cause these defects to evolve in size and position. As shown in Fig. 2, void shaped
defects are captured by transmission electron microscope (TEM) cameras during
in-situ radiation experiments. These defects appear in round shapes, and drift
in position as demonstrated by the change of angles α, β to α′, β′ respectively,
as time progresses. They also change size. These changes can affect the physical
and mechanical properties of the material in undesirable ways as discussed in
[31]. For this reason, characterizing these defects is essential in designing new
materials that can resist adverse environments.

In-situ radiation experiments are carried out to analyze the evolution of crys-
talline defects in materials. During these experiments, changes in a material
specimen, subjected to high temperature and irradiation, is recorded through
a TEM camera and stored in high-resolution high frame rate videos. The huge
amount of data calls for a data-driven approach to expedite the video analysis,
which can bring in new scientific knowledge and insights for alloy designs. How-
ever, manual video analysis requires huge effort. According to our calculation, it
takes a graduate student 3.75 months to fully annotate the defects in a 10-minute
in-situ video if he spends 5 min per frame and devotes 40 h a week. Phase-field
modeling is a simulation tool commonly used to study the evolution of point
defects. In this model, the evolution of the void shaped defects is characterized
by a number of field variables. These field variables are continuous, vary rapidly
at the interface of the void defects, and are governed by a number of differential
equations. Data assimilation is often used to estimate the model parameters of
a phase-field model from data. However, tuning phase-field models relies heavily
on expert knowledge, and the results are often qualitative.

Our proposed NeuraDiff learns the phase field model automatically as
described in [30] that governs the void nucleation and growth in irradiated
materials, while provides accurate tracking of void clusters. NeuraDiff connects
phase-field simulation and physics experiments, enabling an automatic pipeline
to discover correct physics models from data. Our experimental results show that
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NeuraDiff produces highly accurate tracking results while learning the correct
physics. Our model’s accuracy is close to 100% on both the synthetic dataset
and a real-world in-situ dataset of Cu under 350 oC and an irradiation dose
of 0.25–1.00 dpa (dose increases as time goes by). Moreover, our model learns
the correct physics. The simulation based on the phase-field parameters learned
by our model demonstrate similar dynamics as the ground truth, while a neural
model without embedding physics cannot discover the correct dynamics. We also
tested our model for transfer learning. Our NeuraDiff model correctly predicts
the evolution of nano-structures from an unseen start condition while competing
approaches cannot.

In summary, our contribution is as follows: 1) we propose NeuraDiff, an end-
to-end approach integrating the recognition and the neural differential equation
net to learn a physics model characterized by a set of partial differential equa-
tions directly from experiment data. 2) We apply NeuraDiff in tracking and
learning the physics model of nano-scale crystalline defects in materials from in-
situ experiments. Our approach enables detailed analysis of nano-structures at
scale, which otherwise is beyond reach of manual efforts by materials scientists.
3) Our experimental results show that NeuraDiff produces close to 100% accu-
racy in tracking void defects. 4) Our NeuraDiff learns the correct physics while
neural networks without embedding physics cannot. 5) Our NeuraDiff performs
well in a transfer learning setting.

2 Phase-Field Model

Micro-structures in nano-scale physics are spatial arrangements of the phases
that have different compositional and/or structural characters; e.g., the regions
composed of different crystal structures and/or having different chemical compo-
sitions, grains of different orientations, domains of different structural variants,
and domains of different electric or magnetic polarizations. The size, shape, vol-
ume fraction, and spatial arrangement of these micro-structural features deter-
mine the overall properties of multi-phase and/or multi-component materials.

In a phase-field model, micro-structures are defined by a set of field variables.
Field variables are assumed to be continuous and changing rapidly across the
interfacial regions. For example, in the phase field model of irradiated metals,
3 different phase-filed variables cv, ci and η together represent the system state.
cv(r, t) represents the voids concentration, ci(r, t) represent interstitial concen-
tration and η(r, t) differentiates between the two phases - solid phase and void
phase (details discussed later). Here, r = (x, y) represents the spatial coordinates
and t represents time. We work with 2-dimensional case in this paper, but high
dimensional cases can be handled similarly.

cv and ci represents two types of defects in irradiated metals – voids and
interstitials. Voids result from the missing of atoms in certain crystal lattice
locations, as shown in Fig. 2. cv is zero in the region consisting of 0% of voids
and is one in regions of 100% voids. cv changes continuously albeit rapidly at
the interfaces of void and non-void regions. The interstitials, represented by ci,
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are another variety of crystallographic defects, where atoms assume a normally
unoccupied site in the crystal structure. ci is defined similarly to cv. The void
cluster variable η is an order parameter that spatially differentiates the 2 phases.
η takes a constant value η = 0 in the solid phase and η = 1 in the void phase.

Phase-field modeling leverages a set of differential equations of these field
variables to model the microstructure evolution. The temporal evolution of a
conserved field variable u(r, t) is governed by the Cahn–Hilliard [7] equation:

∂u

∂t
= ∇ ·

(
M∇ 1

N

δF

δu

)
. (1)

Here, F is the free energy. M is the diffusivities of the material species and N

is the number of lattice sites per unit volume of the material. ∇ =
(

∂
∂x , ∂

∂y

)
is

the diffusion operator. ∇ · ∇ is the laplacian i.e., ∇2f = ∂2f
∂x2 + ∂2f

∂y2 . δF
δu is the

functional derivative. A non-conserved field variable v evolves according to the
Allen–Cahn [1] equation:

∂v

∂t
= −L

δF

δv
. (2)

Here L is the mobility constant. In the phase-field model for irradiated metals,
cv, ci are conserved field variables and η is a non-conserved field variable. Allen-
Cahn and Cahn-Hilliard equations are the cornerstones of phase-field modeling.
They offer good descriptions of the basic physics of many multi-phase systems.
Finite Difference Approach. Finite difference is a useful tool to obtain
numerical solutions to differential equations. Let (x1, . . . , xNx

) and (y1, . . . , yNy
)

be a finite discretization of the x-axis and the y-axis covering the region of
interest. We use uniform step sizes, i.e., xi − xi−1 = yj − yj−1 = ds for all
i ∈ {2, . . . , Nx} and j ∈ {2, . . . , Ny}. As a result, the region is covered by a
finite mesh of the size Nx × Ny. We also assume the time is discretized into
(t1, . . . , tNt

) and tk − tk−1 = dt for k ∈ {2, . . . , Nt}. Let u(r, t) be a function
that depends on location r = (x, y) and time t. We discretize u onto this mesh
by denoting ui,j,k as a shorthand for u(xi, yj , tk). The finite difference algorithm
uses the finite difference to approximate derivatives. For example, the value of
∂u
∂x (xi, yj , tk) can be approximated by:

(u(xi+1, yj , tk) − u(xi, yj , tk))/(xi+1 − xi) = (ui+1,j,k − ui,j,k)/ds.

Similarly, ∇2f , the second order laplacian ∇2 of a 2D function f , can be approx-
imated by five point stencil centered second-order difference:

∇2fi,j,k =
1

ds2
(fi+1,j,k + fi−1,j,k + fi,j+1,k + fi,j−1,k − 4fi,j,k)

Using this idea, both the Cahn-Hilliard and the Allen-Cahn equations can be
discretized. A finite approximate solution can be obtained by simulating the
evolvement of field variables from a given starting state.
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3 Problem Statement

Our phase field model of irradiated metals follow largely from the work of [30].
This model incorporates a coupled set of Cahn–Hilliard and Allen–Cahn equa-
tions to capture the processes of point defect generation and recombination,
annihilation of defects at sinks. The phase-field model includes 3 field variables,
cv, ci, and η, which vary both spatially and temporally. All of the variables are
continuous, yet vary rapidly across interfaces. The total free energy F of the het-
erogeneous material is expressed in terms of the free energy of each constituent
phases and interfaces:

F =N

∫
V

[
h(η)fs(cv, ci) + j(η)fv(cv, ci) +

κv

2
|∇cv| +

κi

2
|∇ci| +

κη

2
|∇η|

]
dV.

Here, fs(cv, ci) is the contribution term from the solid phase. h(η) = (η − 1)2

makes sure that fs contributes 0 when η = 1. Similarly, fv(cv, ci) is the contri-
bution term from the void phase, and j(η) = η2. We use the formulation from
[30] for fs and fv:

fs(cv, ci) = Ef
v cv + Ef

i ci + kBT [cv ln cv + ci ln ci + (1 − cv − ci) ln(1 − cv − ci)],

fv(cv, ci) = (cv − 1)2 + c2i .

According to the phase-field model, the dynamics of the field variables cv,
ci and η should follow the Cahn-Hilliard and the Allen-Cahn equations. Nev-
ertheless, new voids and interstitials can form due to irradiation and thermal
fluctuation. Therefore, the standard equations need to be updated to the form:

∂cv

∂t
=∇ · (Mv∇ 1

N

δF

δcv
) + ξ(r, t) + Pv(r, t) − Riv(r, t),

∂ci

∂t
=∇ · (Mi∇ 1

N

δF

δci
) + ζ(r, t) + Pi(r, t) − Riv(r, t),

∂η

∂t
= − L

δF

δη
+ ι(r, t) + Pv(r, t).

Here, ξ, ζ and ι are thermal fluctuation terms, modeling the fact that voids
and interstitials can appear randomly in the environments of high temper-
ature and irradiation. Pv and Pi reflect the voids (and interstitials) intro-
duced during the irradiation process. Irradiation hits the surface of the mate-
rials and both voids and interstitials can form as a result. Riv models the
cancellation of voids and interstitials. We refer the details of these terms to
the original publication [30]. In this model, the following set of parameters
P = {Ef

v , Ef
i , kBT, κv, κi, κη,Mv,Mi, L} determine the evolution of nanovoids.

Our physics learning task is to identify the values of these parameters from a
partially annotated video of void dynamics.

We assume access to partial video annotations, in which part of regions in a
subset of frames are annotated. For simplicity, we assume one pixel in one frame
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Fig. 3. The architecture of NeuraDiff. Our architecture consists of a recognition net,
which predicts field variable values (cv, ci and η) based on video frames. A second
neural differential equation net simulates phase field evolution for T steps. Finally, a loss
function is applied which penalizes the difference among the predictions from the neural
differential equation net, the recognition net and the annotations. Backpropagation is
then used to train the two neural networks to minimize the loss function.

V can be in three states: 0 means the pixel is annotated to be in a solid state;
i.e., η = 0; 1 means the pixel is annotated to be part of a void cluster; i.e., η = 1;
∗ means the pixel is not annotated or the annotator is not sure of its state. We
denote A as a matrix of these annotations, each entry of which is one of the
three states for the corresponding pixel. The physics-aware micro-structure
tracking problem is defined as:

– Given: {(t1, V1, A1), (t2, V2, A2), . . . , (tN , VN , AN )} as a partially annotated
video of nano-structural evolution, where t1, . . . , tN are time stamps, Vi is the
video frame for the time stamp ti and Ai is the partial annotation for Vi, in
which each pixel is annotated to one of the three states.

– Find: (i) track microstructures: for each frame Vi, find matrix ηi, which
contains the predicted η value for each pixel. (ii) learn physics: find the set
of phase-field parameters P , along with the values of the unobserved variables
cv and ci, which best fit the micro-structure evolution.

4 Neural Differential Equation Embedding

Our NeuraDiff model learns a physics model directly from experiment data via
a tight integration of a neural differential equation net and a recognition net,
embedding phase-field simulation into neural network learning. The high level
idea is shown in Fig. 3. A recognition net extracts the values of the three field vari-
ables, cv, ci and η from noisy video frames. Taking these field variables as initial
condition, the neural differential equation net uses the finite difference method
to simulate a phase-field model. We implement the finite difference method as a
convolutional neural net (details discussed later), the parameters of which can
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be updated via back-propagation. This architecture is related to the recurrent
neural networks (RNN), where the same operational step is repeatedly applied
during the forward pass. Contrary to RNNs, each step in our neural differential
equation net represents a simulation step of the phase-field model.

NeuraDiff works through a triage process. First the recognition net extracts
the three field variables from the video frame at time stamp t0. The predicted
field values are partially replaced by the groundtruth annotations (if they are
present at t0) and are sent to the neural phase-field net. The neural differential
equation net then simulates the phase-field model for T steps and outputs the
simulated field variable values at time t0 + T . We also have partial annotations
at the time t0 + T and the predictions of these field variable values from the
recognition net. Ideally, if the recognition net is trained to predict the three
field variables accurately and the neural differential equation net has the ground-
truth parameters, then the three outcomes, namely, the simulated, the recognized
field variables, and the partial annotations at the time t0 + T should match.
Therefore, we enforce a loss function which penalizes the differences among the
three outcomes. Back-propagation is then used to minimize this loss function. At
the end of training, when the predictions from both neural nets and the partial
annotations all match, the recognition net is able to extract phase field values
from video frames and the neural differential equation net captures the correct
phase-field parameters.

Recognition Net. The recognition net predicts the three field variables cv,
ci and η from in-situ experiment video frames. Under a transmission electron
microscope (TEM), void clusters, or the η variable, can be reliably observed (see
Fig. 2 for void clusters in the actual TEM pictures). The void and interstitial
defect percentages (cv and ci) are depicted as black shades but cannot be reliably
observed due to noise caused by small perturbations, e.g., slight bending of the
material samples. The bending of samples is in the scale of nanometers, which
cannot be eliminated experimentally, even given the best effort. Therefore, we
treat cv and ci as unobserved variables.

The η variable can be predicted mainly from the video frames by the recog-
nition net, i.e., η(., t) = RNη(Vt). As a way to estimate hidden variables cv and
ci, we introduce location embedding vectors into our recognition net model. Let
l1, . . . , lN be N vectors, where lt is the location embedding vector for time t. The
value of these vectors vary continuously and slowly with time t. Our first idea was
to build the recognition net for cv and ci as cv(., t) = RNv(lt) ci(., t) = RNi(lt).
Here, RNv and RNi are two neural nets which translate the location embedding
vector lt into the field variables cv and ci at time t, which are both matrices of
the size Nx × Ny. As a second idea, we also include the video frame at time t,
Vt, as the input, since it offers partial information (the black shades). As the
final result, the three field variables are predicted from an uniform architecture
cv(., t) = RNv(lt, Vt), ci(., t) = RNi(lt, Vt), and η(., t) = RNη(lt, Vt).

In practice, the three recognition nets, RNv(lt, vt), RNi(lt, vt), RNη(lt, vt)
are all implemented using the UNet architecture [35]. UNet follows a contracting
then expanding neural path. Our motivation for using UNet as the recognition
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net stems from its wide use in scientific community, although in principle any
pixelwise pattern recognition network can be used in this case. In our implemen-
tation, the input of the UNet are the video frames Vt. The location embedding
vectors lt are appended to the bottleneck vector in UNet.

Neural Phase-field Net. One of our key contributions is to encode a finite
difference phase field model as a differential equation network. As a result, the
neural differential equation net can be embedded in the overall neural network
architecture, allowing end-to-end training. The high-level idea is to use finite dif-
ference to approximate the Cahn-Hilliard and Allen-Cahn equations. We present
here the details of embedding the Cahn-Hilliard equation. Similar process applies
for the Allen-Cahn equation. Recall the Cahn-Hilliard equation is as follows:

∂u

∂t
= ∇ ·

(
M∇ 1

N

δF

δu

)
=

M

N
∇2

(
δF

δu

)
.

Using finite difference approach as described previously, especially noting
∇2f can be approximated by the five point stencil centered second-order differ-
ence, ∇2fi,j,k = 1

ds2 (fi+1,j,k + fi−1,j,k + fi,j+1,k + fi,j−1,k − 4fi,j,k), the Cahn-
Hilliard equation can be written as:

uk+1 = uk +
M

N

dt

ds2
Conv(

δF

δu
,K). (3)

Here, uk is a discretized matrix of field variable u in which the i, j-th entry of uk

is u(xi, yj , tk). The functional derivative δF
δu is also a matrix, whose i, j-th entry

is δF
δu (xi, yj , tk). δF

δu can be derived by hand. Conv means to convolve δF
δu with

kernel K, where

K =

⎡
⎣0 1 0

1 −4 1
0 1 0

⎤
⎦.

Equation 3 gives out a finite difference form to obtain the value of the field vari-
able uk+1 in the next time stamp from the current value uk. Interestingly, the
temporal dynamics of uk can be calculated via a convolutional operator, which
can be implemented as a neural network layer relatively easily and subsequently
embedded into NeuraDiff. Notice that a key difference between our neural dif-
ferential equation net and a common convolutional layer is that, the convolution
kernel is learned through training in a classical convolutional net. However, in
our neural differential equation net, we keep the convolution kernel fixed, and
learn the parameters associated with the variables in free energy F .

Overall Architecture and Training. The overall architecture of NeuraDiff
combines the recognition net with the neural differential equation net. We
arrange the dataset into pairs of frames which are T time stamps apart:
D = {(ti, Vti , Ati , Vti+T , Ati+T ) | i = 1, . . . ,M}. Here, Vti is the video frame
at the time stamp ti. Ati is the annotation for Vti . Vti+T and Ati+T are the
video frame and its annotations at the time stamp ti + T . First, Vti are fed into
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the recognition net together with the location embedding lti to produce the pre-
dicted field variables c∗

v, c∗
i , and η∗ at time stamp ti. We replace the portion of

η∗ with the ground-truth annotation if the annotation is available. The updated
value of η∗ is denoted by η∗∗. After this update, c∗

v, c∗
i , and η∗∗ values are sent

to the neural differential equation net to simulate for T steps. The results of the
simulation are c∗

v(ti + T ), c∗
i (ti + T ), and η∗(ti + T ). At ti + T , the recognition

net produces the recognized field variables ĉv(ti + T ), ĉi(ti + T ) and η̂(ti + T ).
Along with the annotations, the triage loss function that the neural network
model optimizes, penalizes three types of mismatches:

L = Lsim + λ1Lrec + λ2Lsim−rec.

Here, Lsim denotes the loss function for the mismatch between simulated η∗

and the annotations A: Lsim = ‖1A(η∗ − A)‖2. 1A is the indicator matrix
of annotations, the entry of which is 1 if the corresponding entry in A is
not ∗. Lrec denotes the loss penalizing the mismatch between recognized η̂
and the annotations A, Lrec = ‖1A(η̂ − A)‖2. Lsim−rec denotes the penal-
ties between the simulated and recognized phase-field variables Lsim−rec =(‖η∗ − η̂‖2 + ‖c∗

v − ĉv‖2 + ‖c∗
i − ĉi‖2

)
In these equations, all phase-field vari-

ables are at time ti+T . λ1 and λ2 are hyper-parameters that balance the relative
importance of terms. The entire neural network structure is trained via stochas-
tic gradient descent. A minibatch of frames are sampled for the back-propagation
algorithm in each iteration.

5 Related Work

AI Driven Scientific Discovery. There has been a recent trend to leverage
AI for scientific discovery. In materials science, CRYSTAL is a multi-agent AI
system to solve the phase-map identification problem in high-throughput mate-
rials discovery [15]. Neural models have been proposed to generate optimized
molecule designs; see, e.g., the Attentive Multi-view Graph Auto-Encoders [28],
the Junction Tree Variational Autoencoder [19,20], message passing neural net-
works [33]. Attia et al. demonstrate a machine learning methodology to efficiently
optimize the parameter space for fast-charging protocols in electric-vehicles [3].
Bayesian optimization and reinforcement learning have also been used in bud-
geted experimental designs [4]. Embedding physics knowledge in machine learn-
ing has also attracted attention. The work by [27] adds to variational autoen-
coders constraints as regularization terms to improve the validity of the molecules
generated. Grammar Variational Autoencoders [23] provided generative model-
ing of molecular structures by encoding and decoding directly to and from these
parse trees, ensuring their validity. Constraint driven approaches such as satisfia-
bility modulo theory (SMT) have also been used to ensure physically meaningful
results [12]. In addition, the work of [38] proposed a new supervising approach
to learn from physical constraints.

Embedding Optimization in Neural Architectures. Amos et al. proposed
to embed quadratic program as a layer in an end-to-end deep neural network [2].
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Recently, Ferber et al. proposes to embed a mixed integer program as neural
network layers [13]. Devulapalli et al. proposed a neural network capable of back-
propagating gradients through the matrix inverse in an end-to-end approach for
learning a random walk model [11]. Dai et al. proposed learning good heuristics or
approximation algorithms for NP-hard combinatorial optimization problems to
replace specialized knowledge and trial-and-error [21]. The work by [18] proposes
a new programming language for differentiable physical simulation. [37] proposes
a graph network based simulator, where a stack of embedded graph networks
in an encoder-decoder architecture is used to learn the dynamics of particles
interacting in a 3D environment.

Learning PDEs. Previous work has discovered approaches that include physics
information in machine learning, where the physics models are represented by
differential equations; see, e.g., in turbulence prediction [32]. Bezenac et al. used
a convolutional-deconvolutional (CDNN) module to predict the the motion field
from a sequence of past images for sea surface temperature forecasting, motivated
by the solution of a general class of partial differential equations [6]. Lutter et
al. proposed Deep Lagrangian Networks that can learn the equations of motion
of a mechanical system with a deep network efficiently while ensuring physical
plausibility. Their approach incorporates the structure introduced by the ODE of
the Lagrangian mechanics into the learning problem and learns the parameters
in an end-to-end fashion [26]. Time-aware RNNs [10] utilized the similarities
between a set of discretized differential equations and the RNN network to model
the system equations from a physics system. PDE-Net [24] was proposed to
accurately predict dynamics of complex systems by representing the PDEs with
convolutional networks where all filters are properly constrained. Neural ODE
was introduced in [8,25], where the output of a neural network is treated as the
continuous-time derivative of input, thus providing an interface to incorporate
differential equation modeling into machine learning models. Their work have
inspired a number of other ideas. For example [22] uses a natural spline to handle
irregularly observed time series data with Neural CDE model. While the original
Neural ODE model was designed for continuous time modeling, discrete time
modeling have been proposed as well by [29]. Hamiltonian neural network (HNN)
as proposed in [16] uses partial derivatives of the final output instead of the actual
output value, to approximate an energy function and build a Hamiltonian system
with a neural network. To make learning easier in HNN, [14] propose a change
in system representation along with explicit constraints. A separate line of work
[5,17] exploit this connection to solve PDEs. Most of these works learn PDEs
from the observed trajectories, which in many applications need to be extracted
in separate steps. For example, the TEM videos in our application only provide
partial information on the actual trajectories of the phase-field variables. Our
NeuraDiff integrates a computer vision neural network with a PDE neural net
in the discovery of physics models directly from experiment data.

Image Analysis for In-situ Data. Automated image segmentation models
are being developed to identify defects and other nanostructures in TEM images
[34]. However, they do not learn any physics models.
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6 Experiments

Our experiments on both the synthetic and real-world datasets demonstrate that
our NeuraDiff provides highly accurate tracking while at the same time learns
the phase-field model that governs nanostructure dynamics.

Training. In the experiments, we first pre-train the recognition net before the
entire architecture, to predict the 3 phase-field variables using only video frames.
The details of this pre-training step is provided in the supplementary materials.
The stochastic optimization algorithm we used for both pre-training and the
actual training is Adam, with the initial learning rate set to be 0.01. Additional
details on the experiment setup, train-test split and hyperparameter tuning are
in the supplementary materials.

Table 1. Our NeuraDiff obtains similar and near perfect tracking accuracy as a UNet
baseline in both the synthetic and the real-world datasets.

Accuracy NeuraDiff UNet baseline

Synthetic data 98.5% 99.9%

Real data 96.2% 96.4%

Fig. 4. Our NeuraDiff provides reliable tracking (2nd row, the tracking result of the
voids shown in red) while learning the correct physics on synthetic data. In the third
row, we simulate our NeuraDiff with the learned parameters from a given initial con-
dition. The learned model simulates a similar dynamics as the original video. Never-
theless, a neural network baseline without embedding the phase-field model produces
unsatisfying result (4th row). (Color figure online).

Dataset Description. We use both synthetic data and real-world in-situ exper-
iment data to evaluate our model. Both the synthetic and real-world data are
in high frame rate high resolution video format. For generating synthetic video
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Fig. 5. Our NeuraDiff provides accurate tracking (in red) on real in-situ Kr ion experi-
ment of Cu at the temperature of 350 ◦C and 0.25 – 1.00 displacements-per-atom (dpa)
of irradiation. (Color figure online).

Fig. 6. Transfer learning result for NeuraDiff. It provides reliable tracking (second row,
in red) and predict correct void progression on unseen data. NeuraDiff was trained on
the dataset used in Fig. 4 including a single nanovoid, and was not fine tuned when
evaluated on this dataset of several nanovoids. (Color figure online).

data, we use the void evolution model as described in [30]. For real-world data,
we use the in-situ experiment video showing the evolution of void defects in
Cu 110, as captured through Transmission Electron Microscopy (TEM) imaging.
The details of synthetic data generation process, the testbed conditions during
in-situ radiation experiments and annotation process for in-situ experiment data
are provided in the supplementary materials.

Highly Accurate Tracking Accuracy. Our NeuraDiff provides highly accu-
rate tracking accuracy, together with a UNet baseline, which were trained to
predict the η values from the video frames using supervised learning. From the
phase-field model, η varies continuously, is close to 1.0 within the void cluster
and is close to 0.0 outside. However, the annotation matrix A is binary (1 for void
cluster and 0 for others). We cut off η values at 0.5 and evaluate the accuracy in
the following way: 1

NxNy

∑
x,y 1(ηx,y ≥ 0.5, Ax,y = 1) + 1(ηx,y < 0.5, Ax,y = 0).

We can see from Table 1 that both our NeuraDiff and the UNet baseline
produce close to optimum tracking results. The second row of Fig. 4 and Fig. 5
depict the actual tracking of void clusters on synthetic data as well as on real
experimental data. The region of void clusters is highlighted with the red color.
We can visually inspect that the tracking is close to optimum.

Capture the Physics. Aside from providing accurate and reliable tracking, our
NeuraDiff also learns the phase-field model that correctly predicts void cluster
evolution. Our key contribution lies within the fact that our model can learn the
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dynamics of void evolution without compromising the tracking task, and needs
less data for the tracking purpose. With the learned parameters, we simulate the
evolution of the phase-field variables from the initial condition of the synthetic
dataset using finite difference. The initial condition is given as the first frame of
the video, instead of the values of the three field variables. Our model has to infer
their values from the recoginition net. The result is shown in the third row of
Fig. 4. We can see that the dynamics closely resembles that of the original video,
suggesting that our approach identifies the correct phase-field model. We point
out that the learned parameters as well as the predicted cv and ci unobserved
field variables are different from the original values used to synthesize the dataset.
This suggests that there are multiple parameter values which lead to similar
dynamics. We also evaluated our model performance in transfer learning. Here,
the model was trained on the synthetic dataset involving one void, but was tested
for both tracking and void evolution in an unseen dataset involving multiple void
of different sizes (Fig. 6). Our model produces reasonable tracking results and
simulates the correct dynamics. See more details in the supplementary materials.

We tried hard to use a neural network model to predict void evolution with-
out embedding the phase-field model. However, the result is not satisfying. For
example, in the fourth row of Fig. 4, we used the UNet to predict the next frame
given the current frame. Then we use the UNet to synthesize the entire video
via repeated predictions of the next frame. However, the performance is not
satisfying as the noise quickly dominates the signals. We even tried to feed the
neural network with the correct values of the three field variables and ask it to
predict the next frame. Note the field variable values are not available in real-
world experiments. The baseline neural network cannot predict the dynamics
even with these additional inputs.

7 Conclusion

We present NeuraDiff, an end-to-end model to learn a physics model character-
ized by a set of partial differential equations directly from data. Our key idea is
to embed the physics model as a multi-layer convolutional neural net into the
overall neural architecture for end-to-end training. We apply NeuraDiff in the
task of tracking and characterizing the dynamics of point defect clusters in mate-
rials under high temperatures and heavy irradiations. Our approach produces
near perfect tracking and is able to capture a physics model that predicts future
nanostructure dynamics correctly, which are not possible for pure data-driven
machine learning models. Our model is validated on both synthetic and real
experimental data. Future work include to scale up the computation for high
dimensional, high frame rate videos, and to validate the physics models learned
from our framework with more real-world irradiation experiments.
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1 Introduction

One of the goals of large galaxy surveys such as the Legacy Survey of Space and
Time (LSST, [16]) conducted at the Vera C. Rubin Observatory is to study dark
energy. This component of unknown nature was introduced in the current cosmo-
logical standard model to explain the acceleration of the Universe expansion. One
way to probe dark energy is to study the mass distribution across the Universe.
This distribution mostly follows the dark matter distribution, which does not
interact with baryonic matter (i.e. visible matter) except through gravitation, as
dark matter represents around 85% of the matter in the Universe. Consequently,
cosmologists need to use indirect measurement techniques such as cosmic shear,
which measures the coherent distortion of background galaxies images by fore-
ground matter due to weak gravitational lensing [17]. In astrophysics, gravita-
tional lensing is the distortion of the image of an observed source, induced by the
bending of space-time, thus of the light path, generated by the presence of mass
along the line of sight. The mass acts like a lens, in partial analogy with optical
lenses, as illustrated in Fig. 1a. The weak gravitational lensing effect is faint (1%
of galaxy shape measurement) and only statistical tools provide a way to detect
a local correlation in the observed galaxies orientations. This correlation yields
a local value at every point of the observable Universe, defining the cosmic shear
field. As pictured in Fig. 1b, in an isotropic and uniform Universe orientations
of galaxies are expected to follow a uniform distribution (left panel). The statis-
tical average of their oriented elongations, hereafter called complex ellipticities,
is expected to be null. In presence of a lens, a smooth spatial deformation field
modifies coherently the complex ellipticities of neighboring galaxies so that their
mean is no longer zero (right panel).

(a) Gravitational lensing.

Galaxies randomly distributed With shear: slight bias

(b) Cosmic shear.

Fig. 1. (a) Effect of gravitational lensing: the mass bends the light and deforms the
images of the galaxies. (b) Weak lensing: the correlation between orientations and
shapes of neighbour galaxies defines the cosmic shear. In blue: average ellipticity. Left:
the expected ellipticity distribution. Right: the observed ellipticity distribution. Image:
(a) NASA/ESA (Color figure online)

The unbiased measurement of cosmic shear is a major ambition of nowadays
cosmology [21]. One avenue to estimate the cosmic shear locally is to combine
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individual galaxy ellipticity measurements. By looking deeper into the sky, that
is to older objects, the next generation of telescopes will allow for the detection
of a very large number of galaxies, potentially leading to very precise shear
measurement and resulting in tight constraints on dark energy parameters.

Methods already exist to estimate galaxy ellipticities through direct mea-
surement on images recorded by telescope cameras ([13] for example). This is
a complex problem as, among other things, the shear signal is carried by faint
galaxies which makes it very sensitive to background noise. Another central issue
for current and coming surveys in galaxy shape determination, is the treatment
of statistically dominant overlapping objects, an effect called blending. A current
survey projects that 58% of the detected objects will appear blended [18] and
this value is expected to reach around 62% for LSST [19]. To overcome this issue,
solutions exist such as deblending [22–24]: the separation of overlapping objects.
Yet, they are not perfect and rely on an accurate detection of blended scenes
which is also a complex problem. As such, in addition to a precise estimation of
the complex ellipticities, a reliable measurement of the uncertainties is crucial
in order to discard, or at least decrease the impact of, unreliable and inaccurate
measurements avoiding as much as possible the introduction of a bias into the
shear estimation.

Classical ellipticity measurement methods usually adopt assumptions about
the shape of the galaxies (for example via the shape of the window function
in [13]) potentially resulting in model bias. In contrast, convolutional neural
networks or CNNs [2] make it possible to learn and recognize complex and diverse
galaxy shapes directly from data without making any other hypothesis than the
representativeness of the training sample. They consequently are appropriate
tools to learn the regression of galaxy ellipticities, even in the presence of noise
and complex distortions. Yet standard CNNs can only measure the aleatoric
uncertainty : the one due to the presence of noise in the data. They are unable
to estimate the epistemic uncertainty, the one due to the limited number of
samples a CNN has been trained with and to the model [1,9]. This second
type of uncertainty is essential to detect outliers from the training samples,
or formulated accordingly to our problem, to distinguish between reliable or
unreliable galaxy ellipticity estimation. It is only accessible by considering neural
network weights as random variables instead of constants, that is, by adopting a
Bayesian approach. Consequently, we have focused our work on Bayesian Deep
Learning [11] using Monte Carlo dropout (MC dropout) [1] as the mean to apply
Bayesian inference to Deep Learning models.

Foreseeing a Bayesian estimation of the cosmic shear, combining galaxy ellip-
ticity posteriors estimated directly from images (with blends or not) in different
filters (or bands), this paper focuses on estimating reliable galaxy ellipticity
posteriors from single band images. This is a necessary step to check that the
proposed method efficiently estimates a calibrated aleatoric uncertainty and is
able to minimize the impact of wrongly estimated ellipticity values due to outliers
in the computation of the shear. We compare two networks trained on isolated
galaxy images with or without noise in order to test for the calibration of aleatoric
uncertainty. Regarding outliers, blended scenes are perfect examples. Note that
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these are illustrations of aleatoric or epistemic uncertainty sources. Most of cos-
mic shear bias sources such as detection, Point-Spread-Function (PSF) treat-
ment, or selection for example [17,21], can fall in one or the other category. The
estimation of galaxy ellipticity posterior from blended scenes in different bands
is a harder problem that we will investigate in further work.

The contributions of this article are 1) to propose a Bayesian Deep Learn-
ing model that solves a complex multivariate regression problem of estimating
the galaxy shape parameters while accurately estimating aleatoric and epistemic
uncertainties; 2) to establish an operational protocol to train such a model based
on multiple incremental learning steps; and 3) to provide experimental evidences
that the proposed method is able to assess whether an ellipticity measurement is
reliable. This is illustrated, in this paper, by the accurate differentiation between
isolated galaxy or blended scenes, considered here as outliers, and the relation-
ship between epistemic uncertainty and predictive ellipticity error. We also show
that this last result could not be obtained with a classical, non Bayesian network.

The rest of the paper is organized as follows. In Sect. 2 we briefly describe
the problem to be solved and comment on some of its peculiarities. We detail
our proposed solution in Sect. 3. We analyse the results obtained on the various
experiments we performed in Sect. 4, and we conclude and give the directions of
further research in Sect. 5.

2 Estimating Galaxy Ellipticity from Images

As mentioned previously, it is possible to estimate cosmic shear combining indi-
vidual measurements of galaxy shape. This shape information can be quantified
by the complex ellipticity, which can be defined in cosmology as in Definition 1.

Definition 1. Let E be an ellipse with major axis a, minor axis b, and with θ
as its position angle. The complex ellipticity of E is defined as:

ε = ε1 + ε2 i =
1 − q2

1 + q2
e2iθ, (1)

where q = b
a is the axis ratio of the ellipse.

An illustration of the ellipticity parameters is shown in Fig. 2a. The complex
ellipticity defines a bijection between the orientation and the elongation of the
ellipse on one side, and the unit disk on the other side, see Fig. 2b.

However, the process to achieve an unbiased measurement of cosmic shear,
starting with the estimation of ellipticities, is going to be challenging for several
reasons. We test the reliability of our networks prediction on noise and blending,
two of the many possible bias sources in the cosmic shear estimation. Both
of these issues result from the fact that the shear signal is mostly carried by
faint galaxies. By definition, these objects have a low signal-to-noise ratio. The
noise corrupts the galaxy images, making the shape estimation much harder (see
Fig. 3b), and can introduce a bias in shear measurement [17].
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(b) Bijective mapping between ellipse
shapes and complex ellipticities.

Fig. 2. Geometric representation of the complex ellipticity. (a) The ellipse parameters.
(b) The complex ellipticity defines a bijection between ellipse shapes and the unit disk.
An ellipticity with low magnitude is close to a circle, while one with a high magnitude
is closer to a straight line. The argument defines the orientation of the ellipse

(a) Isolated noiseless galaxy (b) Isolated noisy galaxy (c) Blended noisy galaxies

Fig. 3. Three different types of image complexity for the same galaxy: isolated without
noise, isolated with noise, blended with noise. Notice how the noise slightly deforms the
galaxy (b) and how the blended galaxies makes the ellipticity estimation very difficult
(c) when compared to a simple isolated galaxy without noise (a)

Also, a large part of these faint objects will appear blended with foreground
galaxies. Even in scenes where objects are only slightly overlapped, the apparent
shape of the detected object does not correspond to a single galaxy model and
an ellipticity measurement on this image could give a completely wrong result.
Again, this work is the first step of a longer-term goal. Here, we target a reliable
estimation of galaxy ellipticity posterior from single band images. This includes
obtaining a well calibrated aleatoric uncertainty, tested here with and without
the addition of Poisson noise on images, and an epistemic uncertainty allowing
for minimization of the impact of untrustworthy measurement due to outliers
(here, blended scenes).

We simulate LSST-like images, allowing us to control the parameters of the
scene, e.g., the number of galaxies, their location on the image, and the level and
type of noise applied. We consider four categories of simulated data: isolated cen-
tered galaxies without noise, isolated centered galaxies with noise, and blended
scene with and without noise. Images are 64 × 64 pixels stamps simulated in the
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brightest of the six bands corresponding to the LSST filters, each of them select-
ing a different part of the electromagnetic spectrum. These images are simulated
placing, in their center, a galaxy whose ellipticity is to be measured.

The image generating process relies on the GalSim library [14] and is based on
a catalog of parametric models fitted to real galaxies for the third Gravitational
Lensing Accuracy Testing (GREAT3) Challenge [20]. It consists in 1) producing
an image of a centered noiseless isolated galaxy from a model sampled randomly
from the catalog, with its corresponding physical properties (size, shape, ori-
entation, PSF, brightness, redshift, etc.) 2) measuring the complex ellipticity
of the galaxy with the KSB algorithm [13] on the image and record it as the
image label, 3) possibly adding on random image location other galaxy images
(from 0 to 5) to generate blended scenes 4) possibly adding Poisson noise (as in
[24]). In this study and for sake of interpretability, we only provide as input to
our CNN the reference band (the brightest) which we use to define the target
ellipticity, making our images two-dimensional. Once again, while using multiple
bands is useful for blended galaxies [23,24], here we focus only on predicting the
ellipticity of a single centered galaxy with a correctly estimated uncertainty.

32

45

64

22

128
1111

128
11

32
00

(a) Convolutional layers
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Fig. 4. Convolutional neural network architecture. (a) The input after augmentation
has dimensions 45 × 45 × 1. Each convolutional block starts with a batch normalization
layer and has a PReLU activation. The first convolutional layer is of dimension 45 ×
45 × 32 with a 5 × 5 kernel size (in yellow), followed by a 2 × 2 Max-Pooling operation
(in orange). The second convolutional layer is 22 × 22 × 64 with kernel size 3 ×
3, followed by a 2 × 2 Max-Pooling operation. Then, we add two 11 × 11 × 128
convolutional layers with a 3 × 3 kernel that ends with a final 2 × 2 Max-Pooling
operation, and the resulting feature maps are flattened into a 3200 fully connected layer
(in purple). (b) Each augmented image gives a 3200 fully connected layer convolutional
output (all augmented images share the same convolutional layers and filters), which
are then concatenated into a 12800 fully connected layer. The two final layers have
4096 neurons in the case of an MVN regression, 2048 else; with Maxout activation [15]
and dropout with a rate of 0.5. The output layer has 5 neurons in the case of an MVN
regression (Color figure online)
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3 A Method to Assess Uncertainty in Ellipticity
Estimation

3.1 Estimation of Noise Related Uncertainty

Our first goal is to reliably estimate the first layer of complexity in the galaxy
images, the noise. Given the nature of the data, we will be using a CNN [2].
However, training a CNN to solve a standard regression problem with an L2
loss does not allow us to estimate the uncertainty due to the noise. Therefore,
in place of a complex scalar output, we predict a 2D multivariate normal distri-
bution (MVN) as an output: given an input image X, whose complex ellipticity
is denoted Y and given weight parameters w, the network outputs an MVN
Y ∼ N (μ(X,w), Σ(X,w)). As such, the model is no longer trained on a simple
L2 loss but rather on the log-likelihood of the MVN. The mean of the distribu-
tion μ(X,w), which is also the mode, serves as the predicted output, and the
covariance matrix Σ(X,w), which is also an output of the network, represents
the so-called aleatoric uncertainty on the input data X. The model is therefore
heteroscedastic, as Σ(X,w) depends on the input X [9]. This allows our model
to estimate the aleatoric uncertainty for each image individually. The determi-
nant of Σ(X,w), denoted |Σ(X,w)|, is a scalar measure of uncertainty, as it is
directly related to the differential entropy, ln

(√
(2πe)2|Σ(X,w)|

)
, of an MVN.

The architecture of our network is inspired by the work of Dielman, who pro-
posed a simple model specifically tuned for the Galaxy Zoo challenge, therefore
adapted to our data [12]. Each image is augmented in four different parts by
cropping thumbnails from high resolution images, centered on spatial modes of
light profile. Then each augmented image is fed to the CNN. The complete archi-
tecture is explained in Fig. 4. More details on the training process are explained
in Sect. 3.3. Results obtained with this model are given in Sect. 4.1.

3.2 Estimation of Blend Related Uncertainty

As seen in Sect. 2, estimating the uncertainty due to the noise in the data is only
one part of the problem. An estimated 60% of the images represent blended
scenes, for which a direct estimation of ellipticity does not make sense in the
context of this work. The uncertainty related to the blended images cannot be
estimated simply with the variance of the MVN distribution. Indeed, in the case
of a blended scene image, the network is not uncertain because of the noise but
rather because this kind of images is not part of the training sample. This can
be characterized by the epistemic uncertainty.

This uncertainty can be estimated using a Bayesian Neural Network (BNN),
which assumes a probability distribution on the weights W of the network instead
of a single point estimate [11]. Given a prior p(w) on W and a set D = {(Xi, Yi)}i

of observations, the resulting posterior distribution p(w|D) ∝ p(D|w) p(w) is
analytically impossible to compute. A variational Bayes optimization method
is necessary to derive an approximate posterior qθ(w) parameterized by hyper-
parameters θ. In MC dropout [1,3], the considered search space includes all
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approximate posteriors resulting from applying dropout [7], i.e. multiplying every
neuron output (of selected layers) by an independent Bernoulli variable. The
dropout rate is set to the conventional value of 0.5, as this leads to an approxi-
mate posterior that can achieve well calibrated uncertainty estimates [1]. How-
ever, there are other ways to define the posteriors such as dropout rate tuning [5],
or ensemble methods by training many networks [6]. During training, standard
stochastic gradient descent techniques can be used, thanks to the reparame-
terization trick, to search for an approximate posterior maximizing locally the
ELBO [1]. During testing, the posterior predictive distribution p(Y |X,D) for
some input X can be estimated using Monte Carlo sampling:

p(Y |X,D) ≈
∫

p(Y |X,w)qθ(w)dw ≈ 1
K

K∑
k=1

p(Y |X,wk) , (2)

where (wk)K
k=1 ∼ qθ(w) refer to weights of K independent dropout samples.

In the case of a multivariate regression problem like ours, every distribution
p(Y |X,wk) is a MVN so that the resulting posterior predictive distribution in
Eq. 2 is a Gaussian mixture of order K. The uncertainty underlying this mixture
can be summarized by its covariance matrix Σpred.(X,D) = Cov(Y |X,D). This
matrix accounts for both aleatoric and epistemic uncertainties, whose respective
contributions can actually be separated in a way that generalizes the variance
decomposition described in Depeweg [10]:

Σpred.(X,D) = Σaleat.(X,D) + Σepist.(X,D) , (3)

where the first term represents the aleatoric uncertainty and can be computed
as the mean of the covariance matrices for each of the K output samples:

Σaleat.(X,D) = EW |D(Cov(Y |X,W )) ,

≈ 1
K

K∑
k=1

Σ(X,wk) . (4)

while the second represents the epistemic uncertainty and is estimated as the
empirical covariance matrix of the K mean vectors produced as outputs:

Σepist.(X,D) = CovW |D(E(Y |X,W )) ,

≈ 1
K

K∑
k=1

(μ(X,wk) − μ(X))(μ(X,wk) − μ(X))T . (5)

where μ(X) = 1
K

∑K
k=1 μ(X,wk).

Matrix Σepist.(X,D) defines the epistemic uncertainty as the covariance
matrix of the mean vectors over the posterior. This uncertainty will be high
if the sampled predictions from each model vary considerably with respect to
W . This would mean that no consistent answer can be deduced from the model
and therefore it would be highly uncertain.
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Finally when the context requires to reduce these uncertainty matrices to
uncertainty levels so that they can be compared, their determinants are used to
define two corresponding scalar quantities:

Ualeat.(X,D) = |Σaleat.(X,D)| and Uepist.(X,D) = |Σepist.(X,D)| .

3.3 Training Protocol

In order to train a BNN with an MVN output, the model needs to learn both the
mean and the covariance matrix. The network’s training diverges when trying to
learn both at the same time, forcing us to separate the training into two steps.
First, we train a simple neural network without an MVN output - we use only
two output neurons representing the mean - using a L2 loss. Then, we transfer
the filters of the convolutional layers into the model with an MVN output, but
reinitialize the fully connected layers. This allows the model to converge smoothly
as the mean of the MVN distribution has already been learned, allowing the
covariance matrix to be calibrated accordingly.

This protocol works well when training on noiseless images of isolated galaxies
but fails when training on noisy images. Indeed, overfitting occurs during the
training of the network without MVN. When transferring the filters to the MVN
model, the mean of the MVN is not well calibrated enough and the training of the
BNN diverges. To fix this, we adjust the protocol for the model without MVN,
adding noise incrementally during training: we first submit noiseless images,
and modify 5% of the sample, switching from noiseless to noisy images, every 50
epochs for 1000 epochs. This prevents overfitting and allows the MVN model to
converge after the transfer.

4 Experiments

4.1 Estimation of Uncertainty Related to Noise

In this section we show that using an MVN as an output allows for a reliable and
well calibrated estimation of the aleatoric uncertainty, i.e. uncertainty related to
the noise in the data.

In order to show that estimating the ellipticity of galaxies in the presence
of background noise is complex and can induce incorrect predicted ellipticity
values, we first train two simple CNNs without an MVN output: one on noise-
less images and one on noisy images, accordingly tested on noiseless and noisy
images respectively. Figure 5 shows the images of galaxy with their target com-
plex ellipticity superimposed, as well as the predicted one.

The ellipse represents the estimated shape - with a fixed scale adapted for
visualization - and the arrow is the corresponding complex ellipticity - modified
with half its argument in order to be aligned with the main axis of the ellipse.
On this example, we can qualitatively see that the galaxy ellipticity on the noisy
image is harder to estimate as the noise deforms the shape of the galaxy. Figure 6
generalizes this observation as it shows a sample of the predicted ellipticities on
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(a) Predicted ellipticity without noise (b) Predicted ellipticity with noise

Fig. 5. Galaxy images with the predicted ellipticity superimposed on them. The arrow
and the corresponding elliptic shape are rendered in an arbitrary scale for visualization
purposes. In orange: the true ellipticity. In green: the predicted ellipticity (Color figure
online)

(a) Predicted ellipticities without noise (b) Predicted ellipticities with noise

Fig. 6. Predicted ellipticities on the complex plane. In red: unit circle. In yellow: pre-
dicted ellipticities. In blue: target ellipticites. In green: difference between true and
predicted values (Color figure online)

the complex plane within the unit circle, with the target ellipticity and the
difference between predicted and targeted values.

While the model trained on noiseless data performs really well (Fig. 6a),
it cannot achieve the same level of performance when trained on noisy data,
losing part of its reliability (Fig. 6b). As such, using a simple CNN without any
estimation of aleatoric uncertainty is not satisfying for our application.

We now train two Bayesian Convolutional Neural Networks with an MVN
distribution to estimate both epistemic and aleatoric uncertainties, as seen in
Sect. 3.2. Like the simple CNN models, we show in Fig. 7, the ellipticities esti-
mated from the BNNs on the complex plane. We also add the 90% confidence
ellipses of both epistemic, aleatoric and predictive uncertainties. We observe
that in both cases, the epistemic uncertainty is low if not negligible, meaning that
the model is confident in its predictions. Put another way, all K pairs of outputs
μ(X,wk) and Σ(X,wk) are roughly equal to their mean, respectively μ(X,w)
and Σaleat.(X,w), so that, according to Eq. 3 and Eq. 5, Σepist.(X,w) ≈ 0
and Σpred.(X,w) ≈ Σaleat.(X,w). The aleatoric uncertainty is low for noiseless
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(a) Predicted ellipticities without noise (b) Predicted ellipticities with noise

Fig. 7. Predicted ellipticities on the complex plane. In red: unit circle. In yellow: pre-
dicted ellipticities. In blue: target ellipticites. In light green: difference between true and
predicted values. In pink: 90% epistemic confidence ellipse. In dark green: 90% aleatoric
confidence ellipse. In grey: 90% predictive confidence ellipse (Color figure online)

images but higher for noisy ones, confirming that the noise corrupting galaxy
images makes it more difficult for the model to consistently give an accurate
ellipticity estimation.

Finally, in order to see if the MVN distribution is well calibrated, we stan-
dardize the output and check if the resulting distribution follows the standard
distribution. More precisely, if we define:

Z(X,w) = Σpred.(X,w)− 1
2 (Y − μ(X,w)), (6)

then the distributions of its two independent components z1 ∼ Z(X,w)1 and
z2 ∼ Z(X,w)2 should be equivalent to the standard distribution N (0, 1). Note
that this is true only because all K output MVNs are confounded. Figure 8
shows that the standardized distributions for the model trained on noisy images
are indeed well calibrated and therefore the model is neither overestimating nor
underestimating the predictive uncertainty.

4.2 Estimation of Uncertainty Related to Blending

In the previous part we showed that our BNNs are well calibrated. Here we
submit outliers to the networks in order to study the impact on epistemic uncer-
tainty and whether it can be used to detect them. Our models have only been
trained on images of isolated galaxies, but astrophysical images can contain
multiple overlapped galaxies. In that case, asking the model to measure a single
ellipticity does not make sense. If the epistemic uncertainty behaves as expected,
then its measurement would allow us to detect when a predicted ellipticity is
incorrect due to the presence of multiple galaxies in the image. We fed images of
blended scenes to the two models trained on isolated galaxies (with or without
noise), adding noise to the blended scenes only for the model trained on noisy
images.
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(a) Distribution of z1 (b) Distribution of z2

Fig. 8. Histogram of the standardized distributions on the model trained with noisy
images. In red: standard bell curve. In blue: histogram of the standardized distribution
with the smoothed curve. (Color figure online)

Results shown in Fig. 9 demonstrate that in both cases the predictions are
particularly inexact when compared to the target ellipticity of the central galaxy.
Also, and as expected, the epistemic uncertainty is much higher for these blended
scenes than for isolated galaxy images. However, the aleatoric uncertainty gives
incoherent values as the model has not been trained to evaluate it on blended
images: notice how the aleatoric ellipses are more flattened with a lower area.
Figure 10 permits to visualise the behavior of the epistemic uncertainty. It shows
how the ellipticities sampled with dropout slightly diverge compared to the mean
prediction. Here the model cannot give a consistent answer and therefore its
prediction should be deemed untrustworthy.

(a) Predicted ellipticities, without noise (b) Predicted ellipticities, with noise

Fig. 9. Predicted ellipticities on the complex plane for blended galaxies images. In red:
unit circle. In yellow: predicted ellipticities. In blue: target ellipticites (label of the
centered galaxy). In light green: difference between true and predicted values. In pink:
90% epistemic confidence ellipse. In dark green: 90% aleatoric confidence ellipse. In
grey: 90% predictive confidence ellipse (Color figure online)
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(a) Blended galaxies without noise (b) Blended galaxies with noise

Fig. 10. Blended galaxies images with the predicted ellipticity superimposed on them.
The arrow and the corresponding elliptic shape are rendered in an arbitrary scale
for visualization purposes. In orange: the true ellipticity (label for the galaxy in the
center). In green: the predicted ellipticity. In pink: the individual MC dropout predicted
ellipses. The green ellipticity is therefore the mean of the pink ones. On both images the
prediction is uncertain as the individual MC samples slightly diverge from the mean
(Color figure online)

To quantify the quality of the epistemic uncertainty when it comes to detect-
ing incoherent predictions due to outliers, we computed the ROC curves for each
uncertainty type. More precisely, we reduce each covariance matrix (aleatoric,
epistemic and predictive) to a scalar by computing its determinant. We interpret
these estimates as a scoring function to assess whether an image is an outlier,
i.e. a blended image: the higher the score, the more likely the image contains a
blend. Finally, we compute for each of these scoring functions its ROC curve.
We repeat that process for both networks trained with noisy and noiseless data.
The results are shown in Fig. 11.

These ROC curves are also summarized by their associated Area Under Curve
(AUC) on Fig. 11c. The epistemic uncertainty clearly appears as the most con-
sistent “metric” to detect outliers and therefore to give useful information about
the confidence in the model predictions. Even the predictive uncertainty per-
forms worse than the epistemic one. This is especially true in the presence of
noise since the aleatoric uncertainty then occupies a more important part of the
predictive one compared to the noiseless case. Notice that the aleatoric ROC
curve is mostly below the diagonal with an AUC below 0.5, meaning it per-
forms worse than a random classifier. This is due to the fact that the model has
not been trained to evaluate aleatoric uncertainty on blended scenes. As seen
in Fig. 9, the aleatoric ellipses are more flattened in the blended cases, meaning
its determinant is lower. Thus the aleatoric uncertainty is on average lower on
blended scenes when compared to isolated ones.

To compensate, results of the complementary classifier for the aleatoric uncer-
tainty are shown. It is still not as satisfying as the epistemic uncertainty. While
using epistemic uncertainty to identify inconsistent predictions due to a lack of
knowledge is highly effective, we note that few blended images still have low
epistemic uncertainty due, for instance, to a large galaxy that obstructs all of
the other ones, making the image actually closer to an isolated galaxy image.
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(a) ROC curve, model without noise (b) ROC curve, model with noise

Uncertainty AUC noiseless AUC noise
Epistemic 0.956 0.969
Aleatoric 0.394 0.306
Aleatoric (inverse) 0.606 0.694
Predictive 0.856 0.594

(c) AUC values

Fig. 11. ROC curves for detecting outliers for aleatoric, epistemic and predictive uncer-
tainty. (a) ROC curve, model without noise. (b) ROC curve model with noise. Since
the aleatoric ROC curve gives incoherent answers on outliers (see Fig. 9), we also plot
the complementary classifier as a dashed line. (c) AUC values for all uncertainties, for
the model with and without noise. Here, the epistemic uncertainty is clearly the best
to detect outliers, as its AUC value is close to 1 in both noisy and noiseless datasets

Finally, we evaluate how each type of uncertainty is a reliable representation
of the risk of error in ellipticity prediction. Unfortunately, in the presence of
blended images, the predictive distribution is no longer a simple MVN but a
mixture of K well separated Gaussian distributions. The normalization process
that allowed us to obtain the results presented in Fig. 8 is no longer applicable
here. It is still possible to study the relationship between the uncertainty and
the ellipticity prediction error testing a trivial rule: the higher the uncertainty,
the more important we expect the error to be. To do so, we do three sorting
of the images according to each uncertainty type, from the lowest uncertainty
to the highest, on a scale from 0 to 0.4 for isolated objects, and from 0.4 to
1 for blended scenes. We then compute the mean ellipticity error considering
the proportion of the sorted data from 0 to 1. For blended scenes the ellipticity
prediction error is computed w.r.t. the ellipticity of the centered galaxy. We
repeat this experiment twice, for networks trained on noiseless and noisy data.
Finally we add an “oracle” curve where the data is sorted directly according
to the ellipticity prediction error which represents a perfect sorting. Results are
shown in Fig. 12.

Once again, epistemic uncertainty proves to be best suited to anticipate ellip-
ticity predictive error. The samples with the lowest epistemic uncertainty have
the lowest mean ellipticity error and conversely, while samples with low aleatoric
uncertainty can already have high mean error. Consequently, on real astrophys-
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ical data, when the predictive ellipticity error is obviously unknown, relying on
the epistemic uncertainty to reject, or minimize the impact of, a sample because
of its probable predictive error is the best way to go.

(a) Mean error curve, model without noise (b) Mean error curve, model with noise

Fig. 12. Mean error curves w.r.t. data proportion for aleatoric, epistemic and predictive
uncertainty. (a) Mean error curve without noise. (b) Mean error curve with noise. In
black the threshold between the proportion of isolated galaxies: [0, 0.4] and blended
galaxies: [0.4, 1]. In pink the oracle curve, where the data is sorted by the predictive
error. The closest a curve is to the oracle the better (Color figure online)

5 Conclusion

We developed a Bayesian approach to estimate the posterior distribution of
galaxy shape parameters using convolutional neural networks and MC-Dropout.
In addition to a precise measurement of the ellipticities, this approach provides
a calibrated estimation of the aleatoric uncertainty as well as an estimation of
the epistemic uncertainty. We showed that the latter is behaving according to
expectations when applied to different kind of galaxy images, and is well-suited to
identify outliers and to anticipate high predictive ellipticity error. These results
confirm the suitability of Bayesian neural networks for galaxy shape estimation
and incite us to continue exploring their use to go from ellipticity posterior distri-
butions, estimated from multi-band galaxy images, to cosmic shear estimation.
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Abstract. Flexible fine-grained weather forecasting is a problem of
national importance due to its stark impacts on economic develop-
ment and human livelihoods. It remains challenging for such forecast-
ing, given the limitation of currently employed statistical models, that
usually involve the complex simulation governed by atmosphere physi-
cal equations. To address such a challenge, we develop a deep learning-
based prediction model, called Micro-Macro, aiming to precisely forecast
weather conditions in the fine temporal resolution (i.e., multiple con-
secutive short time horizons) based on both the atmospheric numerical
output of WRF-HRRR (the weather research and forecasting model with
high-resolution rapid refresh) and the ground observation of Mesonet sta-
tions. It includes: 1) an Encoder which leverages a set of LSTM units
to process the past measurements sequentially in the temporal domain,
arriving at a final dense vector that can capture the sequential tempo-
ral patterns; 2) a Periodical Mapper which is designed to extract the
periodical patterns from past measurements; and 3) a Decoder which
employs multiple LSTM units sequentially to forecast a set of weather
parameters in the next few short time horizons. Our solution permits
temporal scaling in weather parameter predictions flexibly, yielding pre-
cise weather forecasting in desirable temporal resolutions. It resorts to a
number of Micro-Macro model instances, called modelets, one for each
weather parameter per Mesonet station site, to collectively predict a
target region precisely. Extensive experiments are conducted to forecast
four important weather parameters at two Mesonet station sites. The
results exhibit that our Micro-Macro model can achieve high predic-
tion accuracy, outperforming almost all compared counterparts on four
parameters of interest.

1 Introduction

Weather forecasting in the temporal domain is a critical problem of national
importance, closely tied to the economic development and human livelihoods.
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However, accurate forecasting remains open and quite challenging, especially in
the context of precise and fine-grained prediction over multiple temporal resolu-
tions. Such a short-term and fine temporal resolution prediction relates tightly to
agriculture, transportation, water resource management, human health, emer-
gency responses, and urban planning, essential for taking such timely actions
as generating society-level emergency alerts on convection initiation, producing
real-time weather guidance for highways and airports, among others.

To date, the most prominent and widely used national forecasting model is
called Weather Research and Forecasting (WRF) with HRRR (High Resolution
Rapid Refresh) [3]. It provides prediction for the weather parameters that cover
the United States continent. However, it is an hourly prediction model, which
can only coarsely forecast the weather parameters in the resolution of one hour,
failing to capture finer time granularity needs (say, the 5- or 10-min time horizon)
in weather forecasting. This is largely due to the high computation requirement
and voluminous data outputs associated with this model, involving complex sim-
ulation of physical governing atmospheric flows [16]. Its prediction accuracy is far
from satisfaction, as a result of the employed statistical models, whose capabil-
ity of extracting fine-grained weather patterns is limited. Meanwhile, more than
three dozen of regional Mesonet networks exist under the U.S. National Mesonet
Program, with each network involving tens or hundreds of observational stations
for gathering near-surface weather measurements periodically. Mesonet Stations
provide site-specific real datasets in finer temporal granularity (typically in min-
utes). For example, our experimental evaluation makes use of datasets gathered
by the SA Mesonet, which covers South Alabama by 26 observational stations
to gather data once in every minute [2].

Recent advances in machine learning technologies have promoted weather
forecasting into a new era. Many studies have attempted to leverage the neural
network-centric techniques in weather forecasting, producing promising results.
These techniques include, but are not limited to, the deep neural network (DNN),
convolutional neural network (CNN), long short-term memory network (LSTM),
generative adversarial network (GAN), and autoEncoder, for predicting such
weather parameters as precipitation [14,18,27], wind direction and speed [4,10,
15,19], solar radiation [5,12], air quality [28], weather changes [13,26], and many
others. However, known parameter forecasting models developed so far cannot
yield accurate enough predictions in fine-grained temporal resolution over flexible
time horizons.

This paper aims to develop a new forecasting model, termed Micro-Macro,
for effective and precise prediction on weather parameters in the fine-gained
temporal resolution, by taking both micro inputs from Mesonet Stations [1]
and macro inputs from Weather Research and Forecasting (WRF) with HRRR
(High Resolution Rapid Refresh) [3] computation outputs, for the first time. We
leverage the prominent deep learning technologies that take the existing massive
atmospheric data sets (resulting from WRF-HRRR numerical prediction) and
surface observation data (gathered via existing Mesonet networks) as the input
to produce fine-grained weather forecasting in the temporal domain for target



Precise Weather Parameter Predictions 153

regions of interest. Specifically, the developed model includes three components:
1) an Encoder which processes the time sequence data to capture the temporal
domain variation of weather conditions, 2) a Periodical Mapper which extracts
the periodical pattern of the time sequence data, and 3) a Decoder which predicts
a sequence of values corresponding to different time points. Specifically, each
LSTM unit in the Encoder can learn the key features from inputs and then
outputs its hidden state to the next LSTM unit, which can continue to learn
the key features from both the previous input and the current input, in terms
of time sequence characteristics. This results in a dense vector, including rich
information for the weather condition’s variation in the temporal domain out of
the atmospheric output and surface observation. Meanwhile, a Periodical Mapper
can capture the periodical pattern of the data and generate a dense vector for
enhancing the learning of temporal data patterns. Both dense vectors are used
by the Decoder to forecast the weather parameters in the next few continued
time horizons. This model incorporates the near surface observation and the
atmospheric numerical output, which are complementary with each other to let
our model better use relevant past measurements for forecasting, significantly
improving prediction accuracy.

We conduct experiments to predict a set of weather parameters. Our exper-
imental results show that the developed Micro-Macro model instances, dubbed
modelets, outperform almost all the compared solutions in forecasting tempera-
ture, humidity, pressure, and wind speed.

2 Related Work

Abundant applications of machine learning techniques to weather forecasting
exist. This section reviews the recent advances in such applications, which mostly
follow two lines of work.

The first line aims to explore whether the neural network is capable of sim-
ulating the physical principles of atmosphere systems. In particular, Dueben
et al. [11] employed two neural networks, i.e., Global NN and Local NN, to sim-
ulate the dynamics of a simple global atmosphere model at 500 hPa geopotential.
The results concluded that prediction outcomes by the neural network models
can be better than those of the coarse-resolution atmosphere models for a short
duration under the 1-h time scale. Scher [21] applied the CNN structure with
autoEncoder setup to learn the simplified general circulation models (GCMs),
which can predict the weather parameters up to 14 days. Weyn et al. [25] lever-
aged the CNN with LSTM structure to achieve a 14-day lead time forecasting
as well. Vlachas et al. [22] employed the LSTM model to reduce the order space
of a chaotic system. However, known proposed solutions along this line all just
focused on developing prediction models for simulated or simplified climate envi-
ronments, without taking into account the real-world conditions, which tend to
be rather complex. Their applicability and effectiveness on real environments are
still questionable, given their complex conditions in practice. For example, the
actual measurements from Mesonet stations are highly dependent on local con-
ditions. In addition, their solutions cannot be applied to fine-grained predictions
with flexible time horizons in the desirable temporal resolution.



154 Y. Zhang et al.

The other line of work aims to leverage the neural networks to develop new
models for the real-world weather parameters prediction. For example, [19] lever-
aged the LSTM and fully connected neural networks to predict the wind speed at
an offshore site, by capturing its rapidly changing features. Grover et al. [13] com-
bined the discriminatively trained predictive models with a deep neural network
to predict the atmospheric pressure, temperature, dew point, and winds. [27]
proposed a convolutional LSTM model to predict precipitation. Pan et al. [18]
employed the CNN with delicately selected stacked frames for precipitation fore-
casting. [14] proposed a model with the autoEncoder structure to predict rain-
falls. [4] forecasted the hurricane trajectories via an RNN structure. [12] and [5]
employed the LSTM structures to predict the solar radiation and photovoltaic
energy, respectively. [28] proposed a deep fusion network to predict air quality.
[26] developed a deep-CNN model on a cubed sphere for predicting several basic
atmospheric variables on a global grid. However, all aforementioned work still
cannot predict weather parameters accurately in fine granularity over flexible
time horizons, for a desirable temporal resolution. Hence, accurate weather pre-
diction and fine-grained temporal resolution across flexible time horizons remains
an open and challenging problem.

3 Pertinent Background

In this section, we describe Mesonet near surface observation and WRF-HRRR
(Weather Research and Forecasting with High Resolution Rapid Refresh model)
prediction model to illustrate their limitations in precise weather forecasting.

Mesonet [1] is a national supported program that comprises a set of auto-
mated weather stations located at some specific areas in the USA. Its towers
aim to gather meteorological- and soil- measurements relevant to local weather
phenomena. Each station monitors tens of atmospheric measurements, includ-
ing temperature, rainfall, wind speed, and others, once per minute for every day
since its establishment.

WRF with HRRR Prediction: The WRF model takes actual atmospheric
conditions (i.e., from observations and analyses) as its input to produce outputs
that serve a wide range of meteorological applications across national scales.
WRF with HRRR weather forecast modeling system is nested in the Rapid
Refresh model for predicting weather parameters that cover the United States
continent with a resolution of 3 km for a total of 1059 × 1799 geo-grids. The
prediction outputs are produced hourly, over the next consecutive 18 h. In each
geo-grid, there are up to 148 parameters, representing the temperature, pressure,
among many others, to signify the predicted weather condition. A 1059 × 1799
matrix is employed to keep each parameter’s outputs, with each entry mapping
to one geolocation of the United States map.

However, both Mesonet and WRF-HRRR have their respective limitations.
For Mesonet, the involved stations are only for gathering the current near-surface
measurements, unable to predict future values. For WRF-HRRR, its prediction
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accuracy is far from satisfaction, besides its hourly scale prediction to limit its
suitability for meteorological applications that requires high temporal resolutions
(say, 5 min, 15 min, or 30 min).

4 Learning-Based Modelets for Weather Forecasting

This paper aims to develop learning-based meteorology (abbreviated as Meteo)
modelets, for correctly and concurrently predicting multiple weather param-
eters in a flexible and fine-temporal resolution, based on the inputs of both
minute-level near-surface observations from Mesonet and WRF hourly atmo-
spheric numerical outputs, referring respectively as the Micro and the Macro
datasets. We take the Micro dataset as the main input and screen a set of rel-
evant parameters in Macro dataset for incorporation to predict target weather
parameters correctly. Our goal is to extract the temporal variation features from
the previous measurements to precisely predict the weather condition in the next
few time horizons (e.g., next T min, 2T mins, etc.). It is challenging as the two
data sources have different scales in the temporal domains. To address such a
challenge, the prominent machine learning technology is leveraged to learn the
temporal sequence patterns from both datasets that can capture variation of
weather conditions to predict specific parameters. A new Meteo modelet, named
Micro-Macro, is developed to permit temporal downscaling and upscaling in
weather parameter predictions flexibly, arriving at precise weather forecasting
in desirable temporal resolutions. We will first outline a Micro model by just
relying on the Micro dataset as the input for prediction. Then, we describe our
Micro-Macro model which takes both Micro and Macro datasets as the input
for precisely forecasting weather parameters via separate modelets (i.e., model
instances) in the temporal domain.

4.1 Micro Model
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Fig. 1. Structure of micro model.
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Most atmospheric data has the noticeable temporal sequence patterns and peri-
odical patterns, whereas weather conditions (i.e., parameters) change continu-
ously with time. To capture such patterns for forecasting in continuous T -minute
horizons, we leverage a structure with an Encoder, a Decoder, and a Periodical
Mapper, with the first two both include the (LSTM) networks and the last one is
in the neural network structure, to capture the time sequence patterns and peri-
odical patterns, respectively. The structure is shown in Fig. 1. Notably, although
the encoder-decoder LSTM model has been widely applied to sequence tasks,
e.g., language translation [9] and question answering [7], the physical meaning
in each entry for the input vectors is not well explored. This results in the loss
of affluent element-wise features, only to encode all features into a dense vector,
which cannot work effectively here. The customized design is desired under our
application context. The details of three components are illustrated as follows.

Micro Encoder. It comprises one LSTM network, to encode the temporal
sequence data in a certain period into one single dense vector, representing
the temporal feature variation. To forecast weather condition in next contin-
uous T -min horizons, we consider the past N × T minutes surface observation
from Mesonet as a sequence of data frames, with each one including T -min
observed weather condition to serve as the input. Here, N represents the num-
ber of selected T -min intervals. The LSTM unit will learn the key features and
update its corresponding hidden state vector (denoted as ht−1). Such a vector
together with the next data frame is input to the next LSTM unit to produce a
new hidden state vector ht, which can be logically modeled as follows:

ht = LSTMh(ht−1,xt) , (1)

where LSTMh represents a series of steps to generate the next hidden states
and xt denotes the data frame in time slot t. In the end, a dense vector hN is
generated, including the aggregated temporal patterns variation from N inputs.

Periodical Mapper. This design is used to process the input data sequence
x = {x1,x2, ...,xt, ...,xN} for extracting the periodical patterns, comprising two
core components: Period Encoder and Period Decoder. Each weather parameter
i has a Period Encoder, with its dense vector p(i). In the end, the sequence data
x is encoded into a dense vector pN , by summarizing the dense vector from all
M weather parameters, yielding:

p(i) = Pe,i(x̄(i)), pN =
Mi∑

i=1

p(i) . (2)

where x̄(i) is a vector with entries from the i-th weather parameter value of
x1,x2, ...,xt, ..., and xN , Pe,j(·) represents a Period Encoder corresponding to
the i-th weather parameter, which is a neural network structure.

The Period Decoder decodes each dense vector p(i) to a periodical index
vector po(i), expressed as

po(i) = Pd,i(p(i)) , (3)
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where Pd,i is also a neural network structure. If the input temporal sequence
x̄(i) matches a periodical pattern, the corresponding entry will be 1 and all
other entries will be 0.

(a) Wind speed example in 96 hours

(b) Wind speed density (c) Binary pattern (d) Periodical pattern

Fig. 2. Example on periodical pattern discovery.

In the training phase, we derive the periodical index vector from the histor-
ical weather records. We run a toy example to explain this step. For example,
Fig. 2(a) shows the wind speed within 96 h, taken from the Mesonet observation
dataset. We first need to find a reference point, which shall help discover the peri-
odical pattern of the weather records. Since the data distribution is unknown, we
leverage Kernel Density Estimation [8] to find the density of observation values,
with the density likelihood to yield:

f̂h(Xi) =
1

nh

n∑

j=1

Φ(
Xi − Xij

h
) , (4)

where f̂h(Xi) is the density function of measurement Xi. Xij is the j-th observed
value of Xi corresponding to a weather parameter. n is the total number of data
points and h is an empirical parameter which is set to 0.85 in our experimental
evaluation. Φ denotes the normal distribution. By maximizing Eqn. (4), we get
the density distribution as shown in Fig. 2(b) and pick up the largest density
point of f̂h(Xi) as the reference point, i.e., 5.03. We then consider the area that
covers top-15% density values as the reference area Ri. A binary sequence Bi of
measurement Xi is then calculated. That is, if the observed value Xij ∈ Ri, 0 <
j ≤ n, we set Bij = 1, otherwise Bij = 0, as shown in Fig. 2(c). Afterwards,
we conduct the Discrete Fourier Transform (DFT) [24] on the sequence Bi to
transform them to n complex numbers, denoted as Di : [Di1,Di2, .., .Dij , ...,Din].
Then we calculate the periodogram Fij = ‖Dij‖2 for each complex number to
get Fi. By taking Inverse Discrete Fourier Transform (IDFT) [17] on Fi, we
derive the Periodic Correlation Ii [6], as shown in Fig. 2(d).
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In the curve of Ii, we identify all peak values. Each interval between two
neighboring peak values is denoted as one period. We equally divide each time
period into P = 24∗60/T time slots and label the time slots from 1 to 24∗60/T
sequentially as the periodical indices. We then label the input sequence x with
an index, according to x’s timestamp on Ii. When training, we use Mean Square
Loss as Period Decoder’s loss.

Factor Decoder. The Factor Decoder is to predict a set of particular weather
parameters in the next few time horizons. It includes a set of LSTM units,
to predict the weather parameter at consecutive time intervals, denoted as
TN+1, TN+2, · · · , following the previous N × T minutes. The first LSTM unit
takes the dense vector hN and pN as its input for predicting the vector of
weather parameter y1 in the next interval TN+1 as follows,

y1 = LSTMo(y0, 〈hN ,pN 〉) , (5)

where LSTMo denotes a series of steps to calculate outputs and y0 is an empty
output vector, whereas 〈hN ,pN 〉 denotes concatenation of hN and pN . For the
prediction in each of the remaining time intervals, we take both the hidden state
vector sk and the previous predicted vector yk as inputs to update the current
LSTM state. The new hidden state sk+1 can be logically expressed as: sk+1 =
LSTMs(sk,yk). Note that, we retake the pervious output as new input to update
the new hidden state. The next output is given by yk+1 = LSTMo(yk, sk+1).

In the training phase, each (N × T )-minute data will be used as inputs and
the data from subsequent M time intervals will be used for labeling. Here, M
represents the number of time horizons that we aim to predict. For example,
to predict a weather parameter, say temperature, we consider a set of relevant
parameters in N × T minutes as the features and label the temperature val-
ues in the following time intervals of TN+1, TN+2, · · · , TN+M . As the surface
observation data are generated once in every minute, we average the values of
each parameter over T minutes as the features. Similarly, for labeling, we take
the averaged temperature value within each T minutes. The N data frames
(corresponding to the (N ×T )-minute past measurements) and the labeled tem-
perature values (in M subsequent intervals) are inputted to Micro Encoder. At
the Decoder, we start from the first LSTM unit and predict a set of weather
parameters at the time interval of TN+1. Both the hidden state from this LSTM
network and the predicted value of TN+1 are then input to the second LSTM
for predicting TN+2. This step continues until all values for the next M time
horizons are predicted.

4.2 Micro-Macro Model

As the number of observed parameters at Mesonet is limited, it is insufficient
for forecasting just based on the Micro datset. Hence, we incorporate the Macro
dataset as a complementary input to the model for better forecasting. Given the
Macro dataset is hourly generated and surface observation is updated in each
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Fig. 3. The structure of micro-macro model.

minute, how to integrate such two data sources is still a challenging problem, as
it requires downscaling the atmospheric output.

The structure of Micro-Macro model is shown in Fig. 3, which is similar to
that of the Micro model, with a difference in the input that includes an additional
Macro Encoder. In Macro Encoder, we divide each hour into 60/T time frames
and use this hourly output from Macro dataset to represent the first time frame’s
value. The values of all remaining time frames are indicated as “Empty”. All
hourly datasets are processed in the same way. When inputting to the Encoder,
if a frame has an empty value, the corresponding LSTM unit in the Macro
Encoder takes only the hidden state vector from the previous unit as the input
to self-update its hidden state vector; otherwise, it executes in the same way as
in Micro Encoder. The Macro Encoder outputs a dense vector, denoted by gN ,
as depicted in Fig. 3. To extract the time sequence features from both Micro and
Macro datasets, we concatenate the dense vectors (hN , gN , and pN ) from the
Micro Encoder, Macro Encoder and Periodic Selector, i.e., h = 〈hN ,gN ,pN 〉.
The decoder in the Micro-Macro model is similar to that in the Micro model.
It takes the concatenated dense vector h as its input to perform forecasting for
subsequent time horizons sequentially. Notably, in both training and prediction
phases, the Micro-Macro model takes the data of the same geo-grid from Micro
and Macro datasets at an identical time interval.

5 Experiment

We conduct experiments to evaluate the performance of Macro-Micro model
for precise weather parameters (i.e., temperature, humidity, pressure, and wind
speed) prediction regionally.

5.1 Setting

Datasets. We take the near surface observation from SA Mesonet [2] and the
WRF-HRRR [3] atmospheric numerical output as our experimental datasets,
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Table 1. Parameter information

Parameter Measurement Mounting height Measuring range

TEMP Air Temperature 2m –40 to 60 ◦C

HUMI Relative humidity 2m 0 to 100%

PRES Atmospheric pressure 1.5 m 600 to 1060mb

WSPD Wind speed 2m 0 to 100m/s

which are called as Micro and Macro datasets, respectively. The Micro dataset
includes 26 automated weather stations for monitoring the real-time meteorolog-
ical phenomena. The monitored weather conditions include temperature, rain-
fall, wind speed and direction, soil temperature and humidity, once in every
minute. SA Mesonet stations Elberta and Atmore are selected for our experi-
ments, with the former located closer to the Gulf Shore and the latter one away
from the shore. In total, eight Micro-Macro model instances (called modelets) are
involved, one for a weather parameter at each station site. We take the ground
observation from years 2017 and 2018 as the training dataset, while taking the
observation from 2019 as the test dataset. Macro dataset is the predicted output
from WRF-HRRR model. The numerical output in the years 2017, 2018, and
2019, corresponding to the stations of Atmore and Elberta, are taken to con-
duct our experiments. To forecast temperature, humidity, pressure, and wind
speed (see details in Table 1), we select their respective most relevant param-
eters from Micro dataset and ten most important parameters from the Macro
dataset. Table 2 lists the most relevant parameters selected from Micro dataset
for training the weather measurements of temperature, humidity, pressure, and
wind speed, respectively. Table 3 lists 10 most important parameters that are
selected from Macro dataset.

Table 2. Relevant parameters from micro dataset

Predictions Measurement parameters

TEMP Vitel 100cm d, IRTS Body, SoilCond, SoilWaCond tc,

Vitel 100cm b, eR, wfv, Vitel 100cm a, SoilCond tc, RH 10m

HUMI Temp C, Vitel 100cm d, Vitel 100cm a, Vitel 100cm b, AirT 2m, AirT 10m

WndSpd Vert Min, SoilT 5cm,Pressure 1, PTemp, IRTS

PRES RH 10m, SoilCond, Temp C, Vitel 100cm d,

AirT 1pt5m, IRTS Trgt, PTemp, Vitel 100cm b, SoilSfcT, AirT 10m

WSPD WndSpd 2m WVc 1, WndSpd 10m, WndSpd 2m Max,

WndSpd Vert Tot, WndSpd 2m Std, QuantRadn,

WndSpd 2m WVc 2, WndSpd Vert, WndSpd 10m Max, WndDir 2m
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Table 3. Relevant parameters from macro dataset

Feature ID Description

9 250hpa U-component of wind (m/s)

10 250hpa V-component of wind (m/s)

55 80m U-component of wind (m/s)

56 80m V-component of wind (m/s)

61 Ground moisture (%)

71 10m U-component of wind (m/s)

72 10m V-component of wind (m/s)

102 Cloud base pressure (Pa)

105 Cloud top pressure (Pa)

116 1000m storm relative helicity (%)

Compared Solutions. We compare our results with the following ones: 1)
Observation: We take the ground observation monitored in 2019 from Mesonet
at stations Atmore and Elberta, respectively, to inspect our results; 2) WRF-
HRRR: The predicted atmospheric numerical output in 2019 from WRF-HRRR
model; 3) SVR [20]: A regression model based on support vector machine; 4)
SNN-Micro [11]: A neural network model which takes the Micro dataset for train-
ing; 5) SNN-both [11]: A neural network model that takes the aligned data from
both Micro and Macro datasets for training; 6) DUQ512 [23]: A deep uncertainty
quantification model which has one GRU layer with 512 hidden nodes; and 7)
DUQ512−512 [23]: A deep uncertainty quantification model which has two GRU
layers with 512 hidden nodes in each layer.

Experiment Setup. We take data from the first season in 2017 and 2018 for
training, and predict the weather conditions (i.e., temperature, humidity, pres-
sure, and wind speed) in the same season in 2019. The time is divided with a
sequence of T = 5-min intervals. We take each set of 60 min’ (i.e., N = 12) data
as the features, and label the weather parameter values in the following 30 min,
with each 5 min as one time interval and the averaged value as the label. For
prediction, we also take past 60 min’ measurements as the input to forecast the
next 6 continuous time intervals’ values. As SNN-Micro and SNN-both cannot
conduct the sequence of prediction, we only let it predict the next time interval
immediately after every 60 min’ measurement. Both of them employ the 3-layer
neural network, with three hidden layers including 200, 100, and 20 neurons,
respectively. The input sizes are 10 and 20 respectively.

Each LSTM in the Micro model includes 256 hidden states, whereas every
Encoder and Decoder of the Micro-Macro model has 256 and 512 hidden states,
respectively. Root Mean Squared Error (RMSE) is employed to gauge the pre-

diction error: RMSE =
√

1
n

∑n
i=1(Yi − Ŷi)2, where Ŷ and Y denote the vectors

of predicted and observed values, respectively. n is the number of data values.
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5.2 Overall Performance

Table 4. RMSE values of our modelets at atmore and elberta stations

0 to 5min 5 to 10min 10 to 15min 15 to 20min 20 to 25min 25 to 30min

Atmore TEMP 0.502 0.531 0.564 0.601 0.632 0.670

HUMI 4.431 4.507 4.552 4.707 5.122 5.802

PRES 1.087 1.133 1.139 1.156 1.184 1.235

WSPD 0.396 0.552 0.572 0.658 0.709 0.833

Elberta TEMP 0.424 0.468 0.471 0.475 0.479 0.485

HUMI 1.852 1.873 1.893 1.905 1.933 2.015

PRES 1.075 1.213 1.245 1.309 1.452 1.607

WSPD 0.492 0.528 0.556 0.584 0.614 0.656

We conduct multiple experiments to forecast the values of various weather
parameters of interest at different time points in the first season of 2019. Table 4
shows the averaged RMSE of our Micro-Macro model for forecasting the next
30-min weather conditions on temperature (TEMP), humidity (HUMI), pressure
(PRES), and wind speed (WSPD) at the two representative SA Mesonet sta-
tions of Atmore and Elberta, when comparing to ground observations. Clearly,
our modelets achieve very small RMSE values for predicting temperature, pres-
sure, and wind speed. Although the RMSE values appear relatively larger for
humility prediction at both stations, but when comparing to its wide measure-
ment range (of 1 to 100%), these errors are negligible.

5.3 Comparing to Other Methods

Table 5. RMSE values of different methods for 5-min prediction

Atmore Elberta

TEMP HUMI PRES WSPD TEMP HUMI PRES WSPD

WRF-HRRR 2.412 20.471 1.648 1.112 1.633 14.296 1.554 1.412

SVR 3.581 20.507 5.209 1.306 1.734 22.953 6.752 1.887

SNN-Micro 0.668 9.137 5.373 0.354 1.381 4.387 4.927 0.265

SNN-both 0.619 7.611 4.959 0.330 0.804 4.250 4.337 0.264

DUQ512 0.812 5.668 2.714 0.592 0.645 3.524 3.513 0.541

DUQ512−512 0.657 5.354 2.667 0.585 0.632 3.326 3.225 0.489

Micro-Macro 0.502 4.431 1.087 0.396 0.424 1.852 1.075 0.492

We next compare the results from our Micro-Macro model to those from other
methods on forecasting temperature, humidity, pressure, and wind speed. Table 5
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Fig. 4. Prediction of temperature, humidity, and pressure at elberta station.

shows the prediction results of RMSE (in comparsion to ground observation)
obtained from different methods for 5-min prediction. We can see our model
outperforms all other models, with RMSE values of only 0.502, 4.431, 1.087 at
Atmore, and with RMSE values of only 0.424, 1.852, 1.075 at Elberta, on the fore-
casting of temperature, humidity and pressure, respectively. On predicting wind
speed Micro-Macro model beats WRF-HRRR, SVR, DUQ512, and DUQ512−512.
SNN-Micro and SNN-both have similar prediction performance as our Micro-
Macro model on predicting the wind speed parameter, but notably, they cannot
conduct a sequence prediction for subsequent multiple time intervals. SVR per-
forms the worst on predicting all parameters at both stations. WRF-HRRR also
performs poorly on all parameters but pressure, which has better accuracy than
all other models except for our Micro-Macro model. This demonstrates the neces-
sity and importance of developing new meteorological modelets for nationwide
use in lieu of WRF-HRRR.

For prediction result illustration, we randomly select one day in the first
season of 2019 for forecasting its weather conditions, starting from 00:00 am
to 11:59 pm. Figures 4(a), (b), and (c) exhibit the comparative results from
our modelets versus those from the ground observation, WRF-HRRR output,
Micro, SNN-both, DUQ512 and SVR, respectively for forecasting temperature,
humidity, and pressure at Elberta station. We observe the curves of our modelets
are most close to those from ground observation. This demonstrates that our
modelets can continuously provide the best prediction results for the examined
duration (of 24 h), in comparison to other methods. Figure 5 shows the results of
forecasting wind speed by Micro-Macro model, SNN-both, DUQ512, and WRF-
HRRR output for the same day. Micro-Macro, SNN-both, and DUQ512 models
exhibit similar forecasting performance, being far better than the WRF-HRRR
output.
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Fig. 5. Prediction of wind speed at Elberta station.

5.4 Ablation Study

The ablation study is next conducted to signify the necessity and importance of
the Periodical Mapper component in our design. We denote Micro− and Micro-
Macro− as the models precluding the Periodical Mapper from the Micro model
and Micro-Macro model, respectively, for comparison. The RMSEs of different
variants for 5-min prediction are listed in Table 6.

From this table, we observe that both Micro and Micro-Macro models sig-
nificantly outperform their respective variants (i.e., Micro− and Micro-Macro−

respectively) on predicting all four weather parameters at both stations, except
that the Micro-Macro model is slightly inferior to the Micro-Macro− model on
predicting wind speed at Elberta station. These results demonstrate that the
inclusion of Periodical Mapper is important to help elevate the overall prediction
performance. In addition, we also observe that our Micro-Macro model greatly
outperforms the Micro model, demonstrating the necessity of incorporating both
ground observation and the atmospheric numerical output for precise prediction.

Table 6. Results of ablation study

Atmore Elberta

TEMP HUMI PRES WSPD TEMP HUMI PRES WSPD

Micro− 0.620 7.892 2.845 5.220 1.289 6.034 3.022 0.682

Micro 0.583 7.279 2.653 5.122 1.064 5.756 2.985 0.467

Micro-Macro− 0.526 4.494 1.114 4.970 0.467 1.860 1.088 0.447

Micro-Macro 0.502 4.431 1.087 4.426 0.424 1.852 1.075 0.492

5.5 Abnormal Weather Forecasting

We next validate the ability of our proposed Micro-Macro model for forecasting
abnormal weather conditions. Four abnormal weather conditions are considered,
i.e., chill, torridity, storm and rainstorm, which are assumed to associate with
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the lowest temperature, highest temperature, highest wind speed, and high-
est precipitation, respectively. We take the set of 5-min intervals in the first
season of 2019 that have the lowest 5% temperature, highest 5% temperature,
highest 5% wind speed and highest 5% precipitation from the Mesonet ground
measurements. Our experiment is conducted to predict each respective weather
parameter in 5-min intervals, with the one hour input.

Table 7. RMSE for abnormal weather prediction

Chill Torridity Storm Rainstorm

WRF-HRRR 3.098 1.534 5.269 1.694

SVR 3.711 1.715 6.311 4.219

DUQ512−512 1.322 0.864 2.695 2.907

Micro 0.452 0.779 2.231 2.301

Micro-Macro 0.311 0.642 2.045 1.637

Table 7 lists the averaged RMSE values for different methods for forecast-
ing chill, torridity, storm, and rainstorm, corresponding to lowest temperature,
highest temperature, highest wind speed, and highest precipitation, respectively.
Our Micro-Macro model clearly outperforms all other methods, with its RMSE
values of 0.311, 0.642, 2.045, and 1.637, respectively, in forecasting chill, torrid-
ity, storm, and rainstorm. SVR is the poorest performer. WRF-HRRR performs
worse than Micro, DUQ512−512, and Micro-Macro, in forecasting chill, torridity,
and storm. For rainstorm forecasting, it performs better than all other models
except our Micro-Macro model. DUQ512−512 performs worse than both Micro
and Micro-Macro models. These results demonstrate the effectiveness of our
Micro-Macro model for forecasting abnormal weather conditions.

6 Conclusion

This paper has dealt with a novel deep learning model which takes both the
atmospheric numerical output and the ground measurements taken as inputs
for the very first time, dubbed as the Micro-Macro model for precise regional
weather forecasting in multiple short-term time horizons. Our model employs
the LSTM structure to capture the temporal variation of weather conditions
and incorporates two data sources that include most relevant parameters for
individual weather parameter forecasting per Mesonet station site via one model
instance, called a modelet. A Periodical Mapper is also designed based on the
neural network and Fourier Transform to capture the periodical patterns of
temporal data. Experimental results demonstrated that our modelets can achieve
much better meteorological forecasting with finer time granularity than almost
all examined counterparts, to address an urgent need of national importance.
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Abstract. Maintaining the stability of the modern power grid is becom-
ing increasingly difficult due to fluctuating power consumption, unstable
power supply coming from renewable energies, and unpredictable acci-
dents such as man-made and natural disasters. As the operation on the
power grid must consider its impact on future stability, reinforcement
learning (RL) has been employed to provide sequential decision-making
in power grid management. However, existing methods have not con-
sidered the environmental constraints. As a result, the learned policy
has risk of selecting actions that violate the constraints in emergencies,
which will escalate the issue of overloaded power lines and lead to large-
scale blackouts. In this work, we propose a novel method for this problem,
which builds on top of the search-based planning algorithm. At the plan-
ning stage, the search space is limited to the action set produced by the
policy. The selected action strictly follows the constraints by testing its
outcome with the simulation function provided by the system. At the
learning stage, to address the problem that gradients cannot be prop-
agated to the policy, we introduce Evolutionary Strategies (ES) with
black-box policy optimization to improve the policy directly, maximiz-
ing the returns of the long run. In NeurIPS 2020 Learning to Run Power
Network (L2RPN) competition, our solution safely managed the power
grid and ranked first in both tracks.

Keywords: Power grid management · Reinforcement learning ·
Planning

1 Introduction

Electrical grid plays a central role in modern society, supplying electricity across
cities or even countries. However, managing the well functioning of the power
network not only suffer from the fluctuating power consumption and unexpected
accidents in the network, but also faces challenges from the unprecedented uti-
lization of renewable energy [17,30]. The control system has lower operational
flexibility as more renewable energy power plant connects to the power grid.
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For example, wind power stations that rely on seasonal wind cannot provide
such stable electricity throughout the year like traditional thermal power sta-
tion. Other issues such as rapidly growing electric car deployment that increases
fluctuations in electricity consumption across regions also pose new challenges.

There are many efforts on applying deep reinforcement learning (RL) in
power grid management, the recent technique emerged as a powerful approach
for sequential decision-making tasks [16,19,22]. Taking the grid states as input,
the policy adjusts the power generation of each power plant to feed the loads
safely [6,8,30]. To further improve operational flexibility, recent works also study
on managing the power grid through topological actions (e.g., reconfiguring bus
assignments and disconnecting power lines) [9,14,17].

While RL-based approaches for grid management have achieved impressive
results, existing methods ignore the environmental constraints. In power grid
management, there are a number of complex rules that the selected actions
must follow. For example, the system should avoid operations that lead to the
disconnection of some residents to the power grid. Based on such constraints,
an intuitive solution is to discourage actions that violate the rules by adding
penalties on the feedback. However, this approach does not guarantee that all
the actions produced by the policy strictly satisfy the constraints [24].

In this work, we propose an action set based method to manage the power
grid safely through topological operations while strictly meeting the environ-
mental constraints. The algorithm builds on top of the search-based planning
approach, which has recently shown performance that exceeds human in chal-
lenging tasks [22,25]. At the planning stage, rather than use the entire action
space as the search space, we limit the search space to the action set produced
by the policy model. We then test the outcome of each candidate action in
the action set with the simulation function provided by the system and select
the action that strictly meet the constraints. However, such module blocks the
gradient route of back-propagation from the selected action to the policy. To
address the problem, we introduce Evolutionary Strategies (ES) [21] to directly
optimize the policy towards maximizing long-term returns, by regarding the
planning stage as block-box. Our agent participated in NeurIPS 2020 L2RPN
competition, which provides two challenging power grid environments: Track 1
with unexpected power line attacks and Track 2 with increasing proportion of
renewable energy plants. We ranked 1st place in both tracks.1

2 Related Work

Traditional system protection scheme (SPS) [1,20,27,28] builds an expert system
to maintain the electrical flow and voltage magnitudes within safe range. The
system relies on the network state such as voltage and electricity load level to
make the decision. If overloaded power lines are detected, the system is triggered
1 Our code is available open-source at: https://github.com/PaddlePaddle/

PARL/tree/develop/examples/NeurIPS2020-Learning-to-Run-a-Power-Network-
Challenge.

https://github.com/PaddlePaddle/PARL/tree/develop/examples/NeurIPS2020-Learning-to-Run-a-Power-Network-Challenge
https://github.com/PaddlePaddle/PARL/tree/develop/examples/NeurIPS2020-Learning-to-Run-a-Power-Network-Challenge
https://github.com/PaddlePaddle/PARL/tree/develop/examples/NeurIPS2020-Learning-to-Run-a-Power-Network-Challenge
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to take actions following the expert rules. SPS has less computation complex-
ity and can provide real-time operations. The limitation of SPS is that not all
possible issues can be foreseen at the stage of designing the system, which may
result in instability and eventually lead to large-scale collapse [15].

A number of approaches formulate the power network management as a
control problem and apply control and optimization theory to solve it. [13] uses
model predictive control (MPC) [10] to select actions by minimizing the cost
of operations and voltage-deviations under the security constraints of the power
network, with a linear approximation model for state prediction. [15] predicts the
future states based on a simulation model with nonlinear differential-algebraic
equations and adopts tree search for optimization. However, The performance
of MPC-based often heavily relies on the accuracy of the dynamics model [12].

Prior work has also modeled the grid management as a Markov decision pro-
cess (MDP) and adopted reinforcement learning for sequential decision making.
[6,8,12] operates the power network by adjusting generator outputs or reduc-
ing the load of electricity. [5] proposes a hierarchical architecture to consider
long-term reliability and provide real-time decision making, where the policy
updates at a fast time-scale and the value function updates at a slow time-scale.
To further improve the operation flexibility, recent research [9,14,17] studies on
reconfiguring the topology for power grid management (e.g., switching the bus
assignments of the loads and generators in a substation). [31] employs the after-
state representation [26] to reduce the difficulty of modeling the large observation
and action space, with a hierarchical policy to determine and adjust the network
topology.

P2

P1 L1

L2

S1

bus1 bus2

P1

P2

L1

L2

P2

P1 L1

L2

S1

bus1 bus2

P1

P2

L1

L2

Fig. 1. Illustration of topology reconfiguration through the two buses in the substation.
(Left) The two power stations provide electricity to two loads simultaneously, with the
solid blue dots representing the connection between the object and the bus. (Right)
Each power plant only transmits power to one load after the reconfiguration. (Color
figure online)

3 Preliminary

In this section, we first formulate the objective of power grid management. Then
we consider the task as a Markov decision process (MDP) and introduce the basic
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idea of search-based planning algorithm [4,25] proposed for solving sequential
decision tasks. Our algorithm builds on top of the search-based planning app-
roach.

3.1 Power Grid Management

There are three basic and important elements in a power grid: power plants
P (indexed from P1...PN ), substations S (indexed from S1...SM ) and loads
L (indexed from L1...LK). All the elements are connected together with the
power lines that transmit power from one end to the other. There are two bus
bars in each substation, and every element connected to the substations must be
connected to one of them. We provide a toy example in Fig. 1 to demonstrate how
to reconfigure the topology by switching the connected bus bar of the elements.
There is a small grid with two power stations, where two stations provide power
for two loads through the substation, and all the elements are connected to bus
1. If we reconnect P1 and L1 to the second bus, then each plant only provides
power for only a load.

One of the most distinguished features of grid management is the topological
graph that describes how electrical elements construct the power network. The
grid can be represented as an undirected graph G(V,E), where V = (P ,S,L) is
the node-set composed of all the basic elements, and E is the edge set represent-
ing the connections of elements. Each edge ei(u, v, tu, tv) in E represents that a
power line connects u ∈ V with v ∈ V , and tu, tv ∈ {0, 1, 2} indicate the bus
to which the power line connects. 0 means that the line is not connecting with
a substation, while 1 and 2 represent that the power line connects to the first
and second bus, respectively. Denote the number of elements connected to each
substation Si by |Si|, i = 1, 2, ..,M . The number of possible topologies generated
by bus switching in a substation is 2|Si|, and for the whole power grid, there are
2

∑i=M
i=1 |Si| possible topology.
The task of operating the power grid is to maintain electrical flows of power

lines within the acceptable range. If the current exceeds the maximum limit and
maintains a high level, it will damage the power line and increase the transmis-
sion burden of other power lines, which may cause a large-scale power outage.
For each power line ei ∈ E, the ratio of current flow over maximum flow should
stay at a safe level less than 1. The controller/operator can take three types
of actions to avoid or address the overflow issue: (1) reconfiguring the bus con-
nection in the substations (2) disconnecting or connecting the power lines (3)
adjusting the power generation of the plants.

There are mainly two metrics for evaluating the controllers: the time horizon
that power grid runs safely and the cost of operations decided by the controller
(e.g., reconfiguring the grid topology and adjusting the power generation has
different cost). The total reward of a controller can be defined as: R =

∑T
t=0 rt −

ct, where rt > 0 is the positive feedback and ct is the operation cost. If any load
or generator is disconnected from the power grid, the controller will not receive
any reward since it takes dangerous actions that collapse the grid.
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To encourage the study in power grid management, Coreso (European RSC)
and RTE (French TSO) built a simulation environment named Grid2Op that
runs the power system with real-time operations [17]. Grid2Op provides a train-
ing data set of multiple hundreds of yearly scenarios at 5 min resolution. More
details about the environment can be found in Appendix A.

3.2 Search-Based Planning

We now consider power grid management as a MDP, defined by the tuple
(S,A, P, r, γ, ρ0). S and A represent the state and action spaces, respectively.
Note that S includes not only the topology graph mentioned in Sect. 3.1 but also
other grid information such as power generation of the plants. We denote the
distribution of initial states as ρ0, the environment dynamics as P (st+1|st, at).
The reward function r(st, at) relies on the state and action, and the discount
factor γ ∈ (0, 1) is used for accumulative reward computation.

At each time step t, the controller selects an action at ∈ A following the
policy π, then the environment transits into the next state according to P. The
optimal policy to obtain the maximum average reward can be defined:

π∗ = argmax
π

Eat∼π,s0∼ρ0,st+1∼P

∞∑

t=0

γtr(st, at) (1)

Note that the selected actions must meet the power network constraints.
To obtain the optimal policy, we define the state-action value function

Q(s, a) to estimate the discounted future reward at state s after taking action
a. Once the optimal Q ∗ (s, a) is learned, the optimal policy can be obtained
by taking the action with the maximum estimated Q value at each step:
a∗ = argmaxa∈A Q∗(s, a).

To learn the optimal Q function, we can adopt Monte Carlo sampling meth-
ods [2] and bootstrapping approaches [26] such as Q-learning [29]. The search-
based planning algorithm combines the Monte Carlo method with tree search to
gradually approximate the optimal Q function. At the search stage, the tree is
traversed by simulation, starting from the root node of state st. At each simu-
lation step, an action at is sampled from the search policy until a leaf node SL

is reached:

at = argmax
a

(Q(st, a) + U(st, a)) (2)

where U(st, a) ∝ 1
N(st,a)

is a bonus that decays with increasing visit count
N(st, a) to encourage exploration [25]. The bonus term can also be combined
with a prior policy that matches the search policy: U(s, a) ∝ P (s,a)

N(st,a)
[22,25]. The

future return of the leaf node is evaluated by a value function V (s).
At the learning stage, The state action function Q(s, a) and visit count

N(s, a) are updated along the traversed nodes. For the simulation trajectory
τ(s0, a0, r0, ..., sl−1, al−1, rl−1) with length l, we can estimate the discounted
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Fig. 2. Searching with the action set produced by the policy. (Left) At the search stage,
the simulation rolls out the trajectory by searching the action candidates produced by
the policy. (Middle) An exploration policy with parameter noise interacts with the
environment and collects the feedback from the environment. (Right) The policy is
updated towards maximizing the average future reward over the exploration and search
trajectories.

future reward with the value function V (s): G(s0, a0) =
∑t=l−1

t=0 r0γ
trt +

γlV (sl−1) [22]. For each edge (s, a) in the simulation path, we can perform the
following update:

Q(s, a) =
N(s, a) ∗ Q(s, a) + G(s, a)

N(s, a) + 1
(3)

N(s, a) = N(s, a) + 1. (4)

The value function V (s) is updated through supervised learning that fits the
average return starting from the state s.

4 Methodology

We now introduce a novel search-based planning algorithm that performs Search
with the Action Set (SAS). The goal of the algorithm is to maximize the aver-
age long-term reward. We will detail how to optimize the policy towards this
goal while strictly meeting the environment constraints. The overview of SAS is
summarized in Fig. 2.

4.1 Search with the Action Set

At each simulation step, the policy πθ(at|st) parameterized by θ outputs a vec-
tor of probabilities that the actions should be selected, and the top K actions
with higher probabilities form the action-set A. We then leverage the simulation
function fs(st, a) for action selection to ensure that the action strictly meets
the constraints and rules, by simulating the outcome of each action a ∈ A and
filtering actions that violate the constraints. For notational simplicity, we denote
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the filtered action set by A again. Finally, the algorithm selects an action from
A based on the value function V (st):

at = argmax
a∈A

(V (fs(st, a)). (5)

where the future state is predicted by the simulation function fs(st, a). Prior
work uses supervised learning to approximate the actual value function with the
trajectory data. In power grid management, we found an alternative estimate
function that does not rely on approximation. The idea comes from that the
unsolved overloaded power line can induce more overloaded power lines and even
lead to large-scale blackouts (i.e., large penalty). We thus define a risk function
to monitor the overloaded power lines:

Risk = max
Ii

Imaxi

, i = 1, 2, ..., |L|, (6)

where Ii and Imaxi
represent the current flow and the flow capacity of line Li,

respectively. The ratio Ii
Imaxi

> 1 means that the power line i is overloaded. We
replace the value function in Eq. 5 with the risk function and have:

at = argmin
a∈A

(Risk(fs(st, a)), (7)

4.2 Policy Optimization

As shown in Eq. 7, action selection relies on the simulation function fs(s, a). If
the fs(s, a) is known and differentiable, we can compute the backpropagating
gradients and optimize the policy directly by maximizing the average reward
in Eq. 1. However, it is often difficult to acquire the exact dynamics function
fs(s, a) and it is unnecessarily differentiable in real-world applications. Though
previous work uses an differentiable linear or nonlinear approximation function
as an alternative [13,15], it introduces additional noise into optimization, and
the performance highly relies on the accuracy of the approximation function [12].

To address the problem of obtaining the actual fs(s, a), we apply the black-
box optimization of evolution strategies (ES) [7,21,23] to update the policy,
which does not require backpropagating gradients for optimization. ES is an
optimization algorithm inspired by natural evolution: A population of parameter
vectors is derived from current parameters and evaluated in the environment,
after which the parameter vectors with the highest scores will be recombined
and form the next generation. In SAS, we repeatedly inject Gaussian noise ε
into the parameter vector of the original policy and obtain a bunch of policies
for exploration.

Overall, The optimization process repeatedly runs the two following phrases
until the policy converges: (1) obtain the exploratory policy by perturbing the
policy parameters with θ + ε and evaluating its performance in power grid man-
agement (2) collect the sampled noise parameters ε and the related rewards for
the computation of combined gradient, and update the policy parameter.
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4.3 Discussion on Action Set Size

We now discuss the selection of action set size K ∈ [1, N ], where N is the number
of actions. We first discuss the boundary values. If the size K is equal to 1, the
algorithm reduces to the traditional RL method, since the function fs(st, a)
can be omitted in Eq. 7 and we can perform backpropagation optimization to
maximize the average return. When K is equal to N, the algorithm looks like an
inefficient SPS system. It tries all the possible actions and selects the one with
the lowest risk level, which is unacceptably time-consuming in the real-world
and ignores the long-term return. The policy can also not be improved as the
action selection always tests the whole action space, and policy is of no use.

Intuitively, a larger action set allows the algorithm to search more times at
each step, which can improve the search result. We will further discuss the set
size in the experiment section.

Algorithm 1. Action Set based Optimization
Require: Initialize the policy : πθ

Input learning rate α, noise stand deviation σ, and
action set size K.

1: repeat
2: for i in {1, 2..., n} do
3: Sample Gaussian noise vector: ε ∈ N(0, I)
4: Perturb the policy with εi ∗ σ: πθ+εi∗σ(s, a)
5: while not the end of the episode do
6: Top-K actions with higher probabilities forms a set
7: Select the action a according to Equation (7)
8: end while
9: Compute the total return ri

10: Record the exploration result (εi, ri)
11: end for
12: Summarize the gradient g = 1

nσ

∑n
i=1 riσi

13: Update the policy θ ← θ + αg
14: until πθ converges

4.4 Algorithm Summary

Traditional search-based planning algorithms select the action mainly based on
the reward estimation and exploration bonus, as shown in Eq. 2. In order to
consider the environmental constraints, we split the action selection into two
steps. The policy first outputs a number of action candidates as the limited
search space, and then the algorithm starts to search with the set and filters
actions that violate the constraints. The policy will not get a positive feedback
if all the action candidates fail to meet the constraints. We further introduce
ES with black-box optimization to maximize the average return such that the
policy learns to output actions with a higher return while strictly meeting the
constraints. The SAS algorithm is summarized at Algorithm 1.
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Fig. 3. Evaluation of SAS and baseline methods on robustness and adaptability tracks.
(Left) Average return of SAS over weight update times. (Mid) Average return of RL
methods over environment steps. (Right) Performance comparison at convergence. We
plot the figure of SAS separately as its policy updates at a much slower frequency than
RL methods, which update every a few environment steps.

5 Experiments

To evaluate our algorithm, we compare it with the baseline reinforcement learn-
ing algorithms in the Grid2Op environment, including DQN [19], APE-X [11],
and Semi-Markov Afterstate Actor-Critic (SMAAC) [31] recent proposed for
power grid management. SMAAC tackles the challenge of large action and state
space by introducing the afterstate representation [26], which models the state
after the agent has made the decision but before the environment has responded.

5.1 Experiment Setup

The experiment includes two tasks in NeurIPS 2020 L2RPN: robustness and
adaptability tracks. The power grid in the robustness task has 36 substations,
59 power lines, 22 generators and 37 loads, providing the grid state of 1266
dimensions and 66918 possible topological actions. The most distinguishing fea-
ture in this task is the unexpected attack on power lines. Some of the power lines
will be disconnected suddenly every day at different times, which will collapse
the grid if the agent cannot overcome the attack in a short time.

The adaptability task has a larger power grid, approximately three times that
of the robustness track, with 118 substations, 186 lines, 62 generators and 99
loads. The task reflects the emerging deployment of renewable energy generators,
and it evaluates the agent with the environments containing different amounts of
renewable energy generators. The agent has to adapt to the increasing proportion
of renewable energy. Note that the control flexibility decreases as the number of
less controllable renewable energy generators increases.

5.2 Implementation

The policy network contains four fully connected layers with RELU as the acti-
vation function and outputs the probabilities of each action given the current
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grid state. We use the same network structure for all the baseline algorithms for
a fair comparison. The policy produces 100 action candidates for action selection
at the planning stage (i.e., K = 100).

Following the parallel training implementation in ES [21], our implementa-
tion employs a number of CPUs to finish the exploration and search processes
in parallel. At each iteration, we generate a large number of exploration policies
and distribute them into different machines. The machines evaluate the perfor-
mance of the noisy policies, compute the accumulative rewards and return them
to the learner. Then we collect the feedback from the machines and compute
the combined gradient for policy optimization. We use 500 CPUs and 1 GPU
for the distributed version. Figure 3 shows the performance of various algorithms
throughout training in robustness and adaptability tasks. The shaded area shows
one standard deviation of scores. Each experiment was run four times with dif-
ferent random seeds.

Fig. 4. (a) Training curves with different action set size (b) Re-evaluation of the learned
policy with larger action set size.

SMAAC learns faster than DQN and APE-x in both tasks, as the after-state
representation provides a sufficient representation of the grid than the tradi-
tional state-action pair representation [31]. However, its performance is worse
than other methods at the adaptability task. The possible explanation is that
the distribution shift of renewable energy production makes it more difficult to
predict the future return. Though SMAAC provides better representation for
the state and action pair, it cannot help model the distribution change that can-
not be observed through the state. The SAS algorithm significantly outperforms
the prior RL methods. Note that though SAS can achieve excellent performance
in about one hundred iterations, a large amount of data (10 000 episodes) is
required at each iteration. Since ES supports parallel training, we address the
problem by using 500 CPUs for training, and it takes only about 1 h for each
iteration.

To better understand SAS, we measure how SAS performs with respect to
various action set sizes and present the result in Fig. 4 (a). While the set size is
equal to 1, the performance of SAS is similar to the previous RL method. As SAS
searches with a larger action set, its performance rises steadily. Does that mean
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our performance gain comes from more search times? We further re-evaluate the
learned policy with a larger action set size. As shown in Fig. 4 (b), though the
evaluation uses the same action set size (K = 100), the policy performs better
while it is trained with a larger action set. The empirical result shows that the
policy learns to produce high-quality action candidates, which can improve the
search efficiency (i.e., higher return in the same search time).

Table 1. Top 5 teams in NeurIPS2020 L2RPN competition.

Team 1(Ours) 2 3 4 5

Robustness track 59.26 46.89 44.62 43.16 41.38

Adaptability track 25.53 24.66 24.63 21.35 14.01

5.3 Competition

There are two tracks in NeurIPS2020 L2RPN competition: robustness and adapt-
ability tracks. We attended both tracks. Each submitted agent is tested in 24
unseen scenarios that cover every month of the year. The reward in each environ-
ment is re-scaled, and the total reward of 24 environments is used for ranking.
As shown in Table 1, the SAS agent ranked first in both tracks.

6 Conclusion

In this paper, we propose a novel algorithm for grid management that searches
within the action set decided by a policy network. By exploiting the simulation
function to guarantee that selected actions strictly meet the constraints, the
policy learn to adapts to the constraints while maximizing the reward in long run.
To optimize the policy, we employed evolution strategies. With the proposed SAS
algorithm, our agent outperformed prior RL approaches and won both tracks in
the NeurIPS2020 L2RPN competition. Our work provides a novel approach to
combine the complex environment constraints with policy optimization, which
can potentially be applied to other real-world scenarios such as industry control
and traffic control.

A Grid2Op Environment

Grid2Op [18] is an open-source environment developed for testing the perfor-
mance of controllers in power grid management. It simulates the physical power
grid and follows the real-world power system operational constraints and distri-
butions.

The environment provides interactive interfaces based on the gym library
[3]. At each episode, it simulates a period of time (e.g., a week or month) at the
time interval of 5 min. At each time step, the controller receives the state of the
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power grid and takes actions to operate the grid if necessary. The simulation
terminates at the end of the period or terminates prematurely if the controller
fails to operate the grid properly, which can occur under two conditions: (1)
Some actions split the grid into several isolated sub-grids. (2) The electricity
power transmitted from the stations cannot meet the consumption requirement
of some loads. Too many disconnected lines will significantly increase the risk
of causing these two conditions. A power line gets disconnected automatically
if the current flow exceeds the maximum limit for 3 time steps (i.e., 15 min).
In this case, the power line cannot be reconnected until the end of the recovery
time of 12 time steps.

Grid2Op has a large state space and action space. In addition to the expo-
nentially increasing possible grid topology we mentioned, the grid state contains
other topology features such as the current, voltage magnitude of each power
line, generation power of each power station, the required power of each load.
Though only one substation can be reconfigured at each time step (to simu-
late that a human or an expert can perform a limited number of actions in
a time period), the number of available actions for topology reconfiguration is
∑i=M

i=1 2|Si|. In the NeurIPS2020 L2RPN competition, there are 118 substations
with 186 power lines, which introduces over 70,000 discrete actions related to
unique topology.

The reward setting in Grid2Op mainly relies on the reliability of the power
grid. At each time step, the environment gives a bonus for safe management, and
the controller will no longer gain positive rewards if it fails to manage the power
network properly, which can lead to early termination of the episode. There are
also costs (penalty) of operations. To encourage the controller to explore the
operation flexibility on topology reconfiguration, the cost of topology change is
much smaller than re-dispatching the power generation of the power plant.

In the physical world, the operators often use a simulation system to com-
pute the possible outcomes of actions to control risk [1,18,28], and Grid2Op
also provides a similar function named simulate, which can mimic the one-step
operational process. It allows the user to check if the action violates the power
network constraint (e.g., if the target power generation exceeds the maximum
output of the power plant). Note that this function can only be called once at
each time step (i.e., one-step simulation), and its prediction on future states may
bias from the actual state.
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Abstract. In this work, we want to learn to model the dynamics of
similar yet distinct groups of interacting objects. These groups follow
some common physical laws that exhibit specificities that are captured
through some vectorial description. We develop a model that allows us
to do conditional generation from any such group given its vectorial
description. Unlike previous work on learning dynamical systems that
can only do trajectory completion and require a part of the trajectory
dynamics to be provided as input in generation time, we do generation
using only the conditioning vector with no access to generation time’s
trajectories. We evaluate our model in the setting of modeling human
gait and, in particular pathological human gait.

1 Introduction

While modeling the evolution of an object in a physical dynamical system already
constitutes a tedious endeavor, modeling the evolution of a system of objects
interacting with each other is considerably more challenging. The complex phys-
ical laws describing the system are, in most cases, unknown to the learning
agent, who then only has access to observations depicting traces of interaction
of the whole physical system, called trajectories. Previous works have attempted
to learn the dynamics of systems involving interacting objects by injecting a
structural inductive bias in the model, allowing them to learn the inter-object
relationships [2,4,10,14,23,25,31,32]. When the relationships between the inter-
acting objects are unknown a priori, there exist two approaches to leverage the
lack of structural information: modeling the interactions implicitly or explic-
itly. The first approach describes the physical system by a fully connected graph
where the message passing operations implicitly describe the interactions, hoping
that useful connections will carry more information [8,23,26,31]. Other works
add an attention mechanism to give more importance to some interactions in
the fully connected graph [10,25]. In the second approach, we have unsuper-
vised models, such as NRI [14] and fNRI [32], which can explicitly predict the
interactions and dynamics of a physical system of interacting objects only from
their observed trajectories. When it comes to predicting the future states of the
system, previous works adopt different strategies.
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In the prediction of the future states of the physical system, we find differ-
ent strategies. Some works predict the next state from the previous ones [2,4].
Others, such as NRI, predict the continuation of the trajectories given a first
observed part of the trajectories, essentially doing trajectory completion. All of
them require access to a part of the trajectories to make the prediction of the
next states [14,32]. To the best of our knowledge, there is no work that consid-
ers how the specificities of a given physical system impact the dynamics learned
by such models, as well as how expliciting them through a conditioning fea-
ture vector can result in generated trajectories displaying the specific fingerprint
behavior of the considered examples. In this work, we want to solve the problem
of learning several slightly different dynamical systems, where the information
differentiating them is contained in a description vector. To illustrate our setting,
let us consider the modelling of human gait which has driven this work. Human
gait follows a certain number of biomechanical rules that can be described in
terms of kinetics and kinematics but also depends to a considerable extent on
the individual. The neurological system and the person’s past may influence the
manner the individual walks significantly.

To generate trajectories for a given group of interacting objects, we introduce
a conditional extension of NRI (cNRI) that can generate trajectories from an
interaction graph given a conditioning vector describing that group. By providing
the conditioning vector to the decoder, we allow the encoder to be any model
that can output interactions. The decoder learns to generate the dynamics of
the physical system from the conditioning vector. The encoder can be a fixed,
known, graph, i.e. it is not learned, similar to the true graph in the original
paper [14]. Our work differs considerably from NRI; we do not seek to learn
the interactions explicitly. Instead, we want to use these interactions, whether
they are given or learned, together with the conditioning vector to conditionally
generate trajectories given only the conditioning vector.

We demonstrate our approach in the problem of learning to conditionally gen-
erate the gait of individuals with impairments. The conditioning vector describes
the properties of an individual. Our ultimate goal is to provide decision support
for selecting the appropriate treatment (surgery) for any given patient; this work
is a stepping stone towards that direction. Selecting the most appropriate surgery
for patients with motor and neurological problems such as cerebral palsy is a
challenging task [21]. A tool that can model pathological gait and conditionally
generate trajectories can allow physicians to simulate the outcomes of different
operations on the patient’s gait simply by modifying the conditioning vector.
This will reduce in a considerable manner unnecessary operations and opera-
tions with adverse effects.

We will learn the dynamics of gait from the set of trajectories of the dif-
ferent body parties, described either in the form of euclidean coordinates or as
joint angles. The conditioning vector will contain clinical information describ-
ing the patient’s pathology, their anthropometric parameters, and measurements
acquired during a physical screening. We experimentally show that our model
achieves the best results in this setting, outperforming in a significant and con-
sistent manner relevant baselines, providing thus a promising avenue for eventual
decision support for treatment selection in the clinical setting.
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2 Related Work

There are many works that tackle the problem of motion forecasting, using
traditional methods such as hidden Markov models [15], Gaussian process latent
variable models [27,30] or linear dynamical systems [20]. More recently, recurrent
networks have been used to predict the future positions in a sequential manner [1,
6,7,11,16,17,19,28]. Imitation learning algorithms have also been used to model
human motion [29]. However, all previous attempts use a part of the trajectories
to predict their future. To the best of our knowledge, no work tackles the problem
of full trajectory generation conditioned only on a description of the system for
which we wish to generate trajectories.

3 The Conditional Neural Inference Model

We want to learn to model the dynamics of multi-body systems consisting of
M interdependent and interacting bodies. Such a system when it evolves in
time it generates a multi-dimensional trajectory X = [x1, ...,xT ] (we assume
trajectories of fixed length T ), where the xt element of that trajectory is given
by xt = [xt

1, ...,x
t
M ]T and xt

i is the set of features describing the properties of
the i body at time t. We will denote the complete trajectory of the body-part i
by x1:T

i . In the following we will use boldface to indicate samples of a random
variable and caligraphic for the random variable itself. One example of such an
xt

i can be the euclidean coordinates of the ith body if the trajectories track
position of the body parts of a multi-body system. In addition each such system
is also described by a set of properties c ∈ R

d providing high level properties of
the system that determine how its dynamics will evolve. Our goal is to learn the
conditional generative model p(X|c) which will allow us to generate trajectories
given only their conditioning property vector c. Our training data consist of
pairs (Xi, ci), i := 1 . . . N , produced by N different dynamical systems. Since we
base our model on the NRI we will first provide a brief description of it.

In NRI the goal is to learn the dynamics of a single multi-body dynamical
system and use the learned dynamics to forecast the future behavior of trajec-
tories sampled from that system. To solve the forecasting problem it learns a
latent-variable generative model of P (X) where the latent variable captures the
interactions. The training data Xi, i := 1, . . . , N, are thus samples from a fixed
dynamical system whose dynamics NRI will learn. The basic NRI model is a
Variational Auto-Encoder (VAE), [13]. The latent representation is a matrix-
structured latent variable Z : N × N , where zi,j is a K-category categorical
random variable describing the type of interaction, if one exists, between the
i, j, bodies of the system. The approximate posterior distribution is given by
qφ(Z|X) =

∏
i,j qφ(zi,j |X), where zi,j ∼ qφ(zi,j |X) = Cat(p = [p1, ..., pK ] =

πφi,j
(X)). The encoder πφ(X) is a graph network that feeds on the trajectory

data and outputs the probability vector for each i, j, interaction based on the
learned representation of the respective i, j, edge of the graph network; more
details on the encoder in Sect. 3.1.
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The generative model has an autoregressive structure given by:
pθ(X|Z) =

∏T
t=1 pθ(xt+1|xt, ...,x1,Z), where pθ(xt+1|xt, ...,x1,Z) =

N(μθ(xt, ...,x1,Z), σ2I). The μθ(xt, ...,x1,Z) is a graph network that feeds
on the learned interaction matrix and the so far generated trajectory1. The
autoregressive model in the generative distribution is trained using teacher forc-
ing up to some step l in the trajectory after which the predictions are used to
generate the remaining trajectory points from l+1 to T . This is a rather impor-
tant detail because it also reflects how the decoder is used at test time to do
trajectory forecasting. At test time in order for NRI to forecast the future of
a given trajectory it will feed on the trajectory and then map it to its latent
representation. Its decoder will feed on the real input trajectory and thanks to
its autoregressive nature will generate its future states. By its conception NRI
does not learn over different dynamical systems, nor can it generate trajectories
from scratch, it has to feed on trajectory parts and then forecast. To address
this setting we develop a conditional version of NRI.

The conditional-NRI (cNRI) has the same model architecture as NRI, i.e.
it is a VAE with an encoder that outputs a latent space, structured as above,
that describes the interactions and a decoder generates the complete trajecto-
ries. Unlike NRI which learns the distribution p(X) of a fixed dynamical system
here we want to learn over different dynamical systems and be able to generate
from trajectories at will from each one of them. Thus in cNRI we model the
conditional distribution p(X|c) where c provides the description of the con-
ditional generation system from which we wish to sample. The posterior dis-
tribution is the same as that of NRI, while the generative distribution is now
pθ(X|Z,c) =

∏T
t=1 pθ(xt+1|xt, ...,x1,Z,c), where pθ(xt+1|xt, ...,x1,Z,c) =

N(μθ(xt, ...,x1,Z,c), σ2I). Unlike NRI we train the decoder without teacher
forcing; at test time when we should conditionally generate a trajectory X from
the description c of a dynamical system we do not require access to any trajec-
tory from that system.

Our loss is the standard ELBO loss adjusted for the conditional setting and
the optimization problem is:

max
φ,θ

EX,c ∼P (X,c)EZ∼qφ(Z|X)[log pθ(X|Z, c)] − DKL[qφ(Z|X)||p(Z)] (1)

In the following sections we will review different options for the encoder
architecture and we will described the decoder’s architecture.

3.1 Encoding, Establishing the Body-Part Interactions

In NRI the role of the encoder is to learn the interaction network which is then
used in the decoder to support the learning of the dynamics. However, in cNRI
the primary goal is not to learn the interaction graph but to be able to condition-
ally generate trajectories from different dynamical systems. We will thus explore

1 The first part of that trajectory will always be real data, even at test time, directly
coming from the input trajectory as we will soon explain.
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Fig. 1. The NRI and cNRI graphical models.

and evaluate different scenarios with respect to the prior knowledge we have
about the interaction graph. In particular we will consider scenarios in which
the real interaction graph is known and scenarios in which it is unknown and
we learn it. Strictly speaking in the former case we do not have an encoder any-
more and we are not learning a variational autoencoder but rather a conditional
generative model that explicitly maximizes the data likelihood (Fig. 1).

Perfect Interaction Graph. In this scenario we assume that the interaction graph
Z is known and it is the same for all our different dynamical systems. So in that
setting there is no encoder involved, or alternatively we can think of the encoder
as a constant function that maps all instances to the same latent vector. As
an example in the gait modelling problem the Z matrix will be the adjacency
matrix that describes the body-parts connectivities as these are given by the
human skeleton. So in this setting the optimization problem reduces to:

max
θ

EX,c ∼P (X,c)[log pθ(X|Z, c)] (2)

Imperfect Interaction Graph. There are cases in which we have a good under-
standing of the interaction between the different body-parts but we do not have
the complete picture. If we turn back to the example of the human gait mod-
elling, the interactions between the body parts are not only sort range, through
the immediate connections as above, but also longer range; while walking our
arms in the opposite directions as the feet of the opposite body side. When
we model the dynamics on the decoder side it might be beneficial for the gen-
erations to have explicitly in the interaction graph such longer dependencies.
Remember that the decoder is a graph network whose adjacency matrix is given
by Z, having the longer dependencies explicitly modelled will not require the
decoder graph network to transfer information over longer paths. To account for
such a setting we now make Z a learnable parameter starting from the origi-
nal interaction graph. As before there is no encoder and learning Z consists in
making the generative model a function of the Z which is not sampled from the
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posterior distribution but treated as a deterministic variable that we learn with
standard gradient descent. So our generative distribution is now pθ(X|Z). Such
an approach has been also used in [24]. The optimization problem now is:

max
Z,θ

EX,c ∼P (X,c)[log pθ(X|Z, c)] (3)

Unknown Interaction Graph, the NRI Encoder. Often the interaction graph is
not known. NRI was proposed for exactly such settings. Its encoder, πφ(X), a
fully connected graph network, learns the parameters of the categorical poste-
rior distribution from which the latent interaction graph is sampled from the
complete trajectories of the different body parts. In particular πφ(X) consists
of the following message passing operations:

h0
j = femb(x1:T

j ), h1
(i,j) = f1

e ([h0
i ,h

0
j ]),

h1
j = f1

v ([
∑

i�=j

h1
(i,j)]), h2

(i,j) = f2
e ([h1

i ,h
1
j ]), πφi,j

(X) = Softmax(h2
(i,j))

femb(x1:T
j ) is a neural network that learns a hidden representation of the body-

part (node) j from its full trajectory; f1
e ([h0

i ,h
0
j ]) is a network that learns a

hidden representation of the edge connecting nodes i and j; f1
v ([

∑
i�=j h

1
(i,j)])

updates the representation of the j node using information from all the edges
in which it participates and finally f2

e ([h1
i ,h

1
j ]) is a network that computes the

final K-dimensional edge representation. This final representation of the i, j edge
is passed from a softmax function to give the proportions p of the categorical
distribution qφ(zi,j |X) from which we sample the type of the i, j edge.

With this formulation, the encoder has to assign an edge-type per pair of
nodes, preventing the model from generalizing well on problems where the inter-
action graph should be sparse. As a solution [14] proposes defining an edge type
as a non-edge, so no messages are passing through it.

Unknown Interaction Graph, the fNRI Encoder. In certain cases one might want
more than a single edge type connecting at the same time a given pair of nodes.
In the standard NRI approach this is not possible since the edge type is sampled
from a categorical distribution. Instead we can model the zi,j variable as a K-
dimensional random variable whose posterior qφ(zi,j |X) is given by a product
of K Bernoulli distributions and have the graph network learn the parameters
of these K distributions. More formally:

qφ(zi,j,k|X) = Ber(pki,j
= πφi,j,k

(X))

This is the approach taken in factorised NRI (fNRI) proposed in [32]. Instead of
passing the result of the first message passing operation h1

j through the second
edge update function as NRI does, fNRI uses K edge update functions to get
K different two-dimensional edge embeddings h2

(i,j) which are passed from a
Softmax function to get the parameters of the K Bernoulli distributions:
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h2,l
(i,j) = f2,l

e ([h1
i ,h

1
j ]), h2

(i,j) = [h2,1
(i,j), ...,h

2,K
(i,j)], πφi,j,k

(X) = Softmax(h2,k
(i,j))

When we learn the interaction graph using the NRI or the fNRI encoders we
are sampling from a categorical distribution. In order to be able to backpropagate
through the discrete latent variable Z we use their continuous relaxations given
by the concrete distribution [18]:

zi,j = Softmax(
h2
(i,j) + g

ρ
) zi,j,k = Softmax(

h2,k
(i,j) + g

ρ
) (4)

where g is a vector of i.i.d samples from the Gumbel(0,1) distribution and ρ is
the temperature term.

3.2 Decoding, Establishing the Dynamics

The role of the decoder is to learn the dynamics so that it can successfully gen-
erate trajectories for any given dynamical system. As already discussed the NRI
architecture is designed for forecasting and does not address this task. This is
because at test time in order to establish the interaction matrix its encoder needs
to feed on a trajectory of the given system and the decoder needs this trajectory
in order to achieve the forecasting task. In our setting at test time we do not have
access to the trajectories but only to the condition vectors c of some dynamical
system. The generative model of cNRI will only feed on the conditioning vector,
the interaction matrix, and the initial state x1 that provides a placement for
the trajectory, and it will unroll its autoregressive structure only over gener-
ated data, more formally: pθ(X|Z,c,x1) =

∏T
t=1 pθ(xt+1|x̂t, ..., x̂2,x1,c,Z),

where x̂t is the t state of the trajectory sampled from the generative model.
To condition the generative model on the conditioning vector c we bring the

information of the conditioning vector in two places within the generative model.
First when to learn the initial hidden states of the different nodes (body-parts)
we use an MLP that feeds on c and outputs an embedding h0 = fhid

c (c) of size
N × H where H is the number of hidden dimensions we use to represent each
one of the N nodes; as a result each i node has its own representation h0

i which
does not require the use of trajectory information. In NRI the node embeddings
are initialized with zero vectors and the input trajectory is used as burn-in steps
to update the state embeddings before forecasting the future trajectory.

One problem with the above conditioning is that it is used to compute only
the initial hidden state of each node, whose effect due to the autoregressive
nature of the decoder can be eventually forgotten. To avoid that we also use
the conditioning vector c directly inside the message passing mechanism of the
decoder. To do so we create a virtual edge that is a function of the conditioning
vector and links to every node; essentially the conditioning vector becomes a
global attribute of the graph that is then used by all update functions [3]. The
virtual edge embedding is computed through an MLP as hmsgs = fmsgs

c and used
in updating the stats of all nodes.
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When we use the fNRI encoder the decoder μθ(x̂t, ..., x̂2,x1, c,Z) performs
the following messages-passing and autoregressive operations to get the mean of
the normal distribution from which the next trajectory state is sampled:

ht
(i,j) =

∑

k

zij,kfk
e ([ht

i,h
t
j ]) h̄t

j = hmsgs +
∑

i�=j

ht
(i,j)

ht+1
j = GRU([h̄t

j , x̂
t
j ],h

t
j) μt+1

j = xt
j + fout(ht+1

j )

where ht
(i,j) is the hidden representation of the i, j, edge at time t computed

from the hidden representations of the i, j, nodes it connects. Note that this
takes into account all different edge types that connect i and j through the
use of one edge update function fk

e per edge type. The zij,k variable acts as a
mask. If we use the NRI encoder then only one edge update is selected, since
in that case there can be only one edge type connecting two nodes. h̄t

j is the
aggregated edge information that arrives at node j at time t computed from all
edges that link to it as well as the virtual edge. The new hidden state of the
node j, ht+1

j , is given by a GRU which acts on the sampled x̂t
j , the respective

hidden representation ht
j , and the aggregated edge information, h̄t

j . From this
ht+1

j we finally get the mean of the normal distribution from which we sample
the next state of the trajectory as shown above; essentially we use the hidden
representation to compute an offset from the previous state through the fout

MLP.

3.3 Conditional Generation

Once the model is trained we want to use the generative model pθ(X|Z,c,x1)
to conditional generate trajectories from a dynamical system for which we only
have access to c but not its trajectory, in such a case the interaction graph is
not known. We sample the Z from the aggregate posterior : qφ(z) = qavgφ (z) �
1
N

∑N
n=1 qφ(z|xn). Since we have a discrete distribution, the aggregated posterior

is the probability to have a given edge-type in training samples. The sampling of
the interaction graph only occurs in the unsupervised encoders. Finally to sim-
plify our evaluation, we are not learning the probability of p(x1|c). We are giving
this frame as the starting point of the generations. Nevertheless this probability
can be learned by a neural network or by the decoder directly.

4 Experiments

As we have discussed in the introduction the main motivation for this work
is the provision of decision support for the treatment of patients with motor
impairments where the conditioning vector describes how an operation affects
body structure and the generative model will show how such changes affect gait.

The data have been collected from a kinesiology laboratory and come from
patients with hemiplegia. They contain the kinematics and clinical data of 72
patients for a total of 132 visits at the laboratory. The kinematics data are
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recorded by placing markers on the body patient who then walks on a corridor
where infrared cameras record the motion. The clinical data, our conditioning
vector c, are obtained by a physiotherapist and include parameters such as body
measurements and evaluation of muscles’ strength; we have a total of 84 such
parameters. From the available data we obtain 714 gait cycles, where each cycle
is a multidimensional trajectory giving the position of all body parts through
time.

From these data we produce four different datasets which rely on a different
interaction graph structure. Three of these dataset are based on the marker tra-
jectories and one is based on the joint angle trajectories. We used three different
graph structures which we will respectively call complete skeleton, armless, lower
body. These graph structures are motivate by the fact that our skeleton provides
a nature interaction graph. In the complete skeleton version we track 19 body
parts by computing the center of mass of the sensors that are placed on each
body part. In the armless version we track 15 body parts; we removed the elbow
and hand markers because these are hard to predict and do not seem to influence
the gait dynamics. In the lower body version we use all the available markers for
the lower body part, i.e. we do not do body part aggregation as in the previous
two. In all three datasets we normalise the trajectories by removing the pelvis
position and dividing by the patient height. The result of this normalization is
a patient that seems to walk on a treadmill with position values being in the
range [0, 1]. Finally in the angle dataset instead of Euclidean trajectories we use
the joint angle trajectories of the lower body resulting in the trajectories of the
angles of eight joints. We normalise the angle dataset to the N(0, 1). Note that
angles exhibit larger variability than marker position. We visualise the different
structures in Fig. 2.

(a) Skeleton (b) Armless (c) Lower Body

Fig. 2. The interaction graphs we used to produce the trajectory datasets.

4.1 Experimental Setup

Depending on the dataset, we train cNRI with 128 (or 256) units per layer in
the unsupervised encoders. The decoder performs the best with a hidden size
of 256 or 384 units. This model overfits quickly on the angle dataset due to the
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small number of samples; we thus reduced the number of hidden units to 64 and
128 for the encoder and the decoder respectively. To avoid overfitting we use a
10% dropout. We use the Adam optimizer [12] with a time-based learning rate
decay of 1

2 every 50 epochs starting at 10−3. For the unsupervised encoders,
we found that our model generalizes better with two edge-types: a “non-edge”
with a hard-coded prior of 0.91 (the non-edge) and 0.09 for the second edge-type
(same as the original NRI). We evaluate the models using 3-fold cross validation
were we divide the dataset to training, validation and test; we take care to keep
all trajectories of a given patient/visit within one of these sets so that there
is no information leakage. We tune the hyperparameters on the validation set.
We report Mean squared error between the real and generated trajectories and
its standard deviation that we compute over the denormalized generations; the
markers’ unit is millimeters and the angles’ unit is degrees.

We will refer to the various combinations of encoder-decoder of our model
as follows: PG-cNRI is the combination of the perfect interaction graph (PG)
encoder with our conditional decoder; IG-cNRI uses the imperfect interaction
graph (IG) encoder; NRI-cNRI combines the unsupervised encoder of the NRI
with our decoder; and finally, fNRI-cNRI is the combination of fNRI encoder
with cNRI.

We compare against several baselines. The two first baselines are based on
the mean. Even though simple, they have excellent performance, and on the
angles dataset, they are hard to beat. The first mean-based baseline predicts
for each object its mean on the training set. The second uses more knowledge
and predicts, for each object an object-based average over the side in which the
patient is affected. To avoid errors coming from translation we slide the mean
to start at the same position as the trajectory evaluated. In addition, we use
three variants of recurrent neural networks (RNN): standard [22], GRU [5] and
LSTM [9]. These are autoregressive models that tackle conditional generations
heads-on. We condition their hidden states on the clinical features and train
them to minimize the error between the generated trajectories and the true
ones; we use no teacher forcing. We also add a reformulation of NRI that can
generate the entire trajectory in which we sample the latent graph from the
aggregated posterior. In our reformulation of the NRI there is no warm-up of
the decoder state, and the decoder generates directly new states. In addition it
uses no conditioning vector, we included in the experiments in order to verify
that the conditional information does improve generation performance. The code
associated with this work is available at https://github.com/jacr13/cNRI.

4.2 Results

The models that we propose here are the only ones that consistently beat the
improved mean baseline (Table 1). From the other baselines only the RNN one
is able to outperform the improved mean in three of the four datasets. On the
skeleton dataset, the model that uses the real graph (PG-cNRI) achieves the
lowest error. In PG-cNRI the decoder can only use the skeleton’s links to propa-
gate the information; this considerably reduces the model’s power for reasoning

https://github.com/jacr13/cNRI
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on long relations. Since the arms are almost unpredictable, PG-cNRI has here
the right inductive bias since it propagates less information through these nodes
making overfitting less likely. When we remove the arms, (armless, lower body),
as expected the performance improves. Our unsupervised models (NRI-cNRI and
fNRI-cNRI) learn better the dynamics and their generations are very close to
the real trajectories, and they outperform significantly all baselines. The angles
dataset is the hardest to predict. Here the improved mean is an excellent approx-
imation of the real trajectories. Here all our models are better than the improved
mean (IG-cNRI being the best), though the performance gap is not as large as
in the other three dataset.

Table 1. MSE and std of conditional generations.

Model Skeleton Armless Lower body Angles

Mean 477.71± 31.63 383.09± 36.00 988.00± 258.91 85.24± 7.79

Improved mean 461.04± 25.20 356.45± 16.68 815.58± 173.75 41.28± 3.11

RNN 437.82± 39.01 274.22± 15.01 776.55± 118.68 41.60± 2.87

GRU 527.43± 104.98 390.50± 70.08 868.63± 119.24 41.27± 4.71

LSTM 556.58± 22.28 384.49± 56.59 824.38± 94.46 41.85± 4.02

NRI 538.71± 5.95 354.67± 21.34 827.81± 74.12 41.42± 3.62

PG-cNRI 380.42 ± 43.71 302.68± 64.68 772.75± 113.13 38.19± 2.50

IG-cNRI 474.27± 122.62 351.33± 116.93 856.64± 150.88 37.89 ± 2.30

NRI-cNRI 399.83± 67.07 212.97 ± 20.21 696.09 ± 113.42 39.60± 2.35

fNRI-cNRI 433.87± 133.00 241.93± 19.23 696.47 ± 58.93 40.83± 3.11

We give examples of generations in Fig. 3 and Fig. 4, where we see that these
are very close to the real ones. In Fig. 3 we report the angle trajectories, mean
and standard deviation over the test set, for the real and generated data for
the angles located in the right side of the body. Our model follows nicely the
dynamics, but in some cases its trajectories have less variance than the real one.
In Fig. 4 we provide snapshots of body positions for the real and generated data.

We notice that some of the baselines and cNRI models have high error vari-
ance. This is the result of the variable number of gait cycles we have per patient
and the fact that we have patients that are affected on different body sides, left
or right. When we split the data for evaluation we take care that a patient’s are
only present in one of the training, validation, test sets. As a result splits can
be unbalanced with respect to the affected body side, which increases the risk
of overfitting, with the underrepresented side in the training set leading to poor
generations in the testing phase. This is something that we indeed verified by
looking at the errors and distributions of the affected sides over the folds.

Finally in the top row of Fig. 5 we give the interaction maps that are used
in PG-cNRI (given), IG-NRI (learned) and NRI-cNRI (aggregate posterior); we
do not include fNRI-cNRI because it has one adjacency matrix per edge type
and lack of space. As we see IG-NRI establishes a non-sparse interaction matrix
where every part interacts with every other part. In NRI-cNRI the picture that
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Fig. 3. Mean and variance of right side angle generations with IG-cNRI model.

Fig. 4. Generations (in blue) against real trajectories (in gray), the edges are from the
real graph, not z. (Color figure online)
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arises from the aggregate posterior is much sparser. In the bottom row of the
same figure we give the interaction maps established by NRI-cNRI for particu-
lar patients (random patients with left and right hemiplegia). We see that even
though they are all quite close to the aggregate posterior structure there exist
systematic structural differences between patients with left and right hemiple-
gia. This points to future improvements of the model where we can introduce
dependency structures between the condition vector and the interaction maps,
using hierarchical models which we will allow as to have more informed priors
that are conditioned on c.

(a) PG-cNRI (b) IG-cNRI (c) NRI-cNRI

(d) left (e) left (f) right (g) right

Fig. 5. Interaction maps. Top row interaction maps used in the three methods; for
NRI-cNRI we give the aggregate posterior. We do not include fNRI-cNRI for space
reasons due to the large number of edge types. Bottom row: patient specific interaction
graphs for NRI-cNRI, first row two random patients with left hemiplegia, second row
right hemiplegia.

5 Conclusion

Motivated by the need for decision support in the treatment of patients with gait
impairements we propose a conditional generative model, based on an extension
NRI [14], that can learn to conditionally generate from different physical sys-
tems. Our model has two components: the first is an encoder that learns a graph
of interactions of the different body parts. The second is a decoder that uses the
interaction graph together with a conditioning vector that describes the speci-
ficities of the particular dynamical system and learns the conditional dynamics.
The experiments show that the proposed model outperforms the baselines in all
dataset we experimented. Moreover the method achieves very good performance
even though it has been trained on relatively small training datasets, in fact very
small when it comes to the typical training size used in deep learning generative
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models. This is an important feature of the method since many applications,
such as the one we explored here, the available training data will be very lim-
ited. As a future work we want to explore different structures in the inference
and generative models and different dependence assumptions in order to increase
further the generation quality, e.g. different dependency structures between the
interaction matrix and the conditioning vector and/or learning to predict the
latter from the former.

Acknowledgments. This work was supported by the Swiss National Science Foun-
dation grant number CSSII5 177179 “Modeling pathological gait resulting from motor
impairment”.

References

1. Aliakbarian, M.S., Saleh, F., Salzmann, M., Petersson, L., Gould, S.: A stochastic
conditioning scheme for diverse human motion prediction. In: 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5222–5231
(2020)

2. Battaglia, P., Pascanu, R., Lai, M., Rezende, D., Kavukcuoglu, K.: Interaction
networks for learning about objects, relations and physics. In: Advances in Neural
Information Processing Systems, pp. 4509–4517. Neural information processing
systems foundation (2016)

3. Battaglia, P.W., et al.: Relational inductive biases, deep learning, and graph net-
works. arXiv (2018)

4. Chang, M.B., Ullman, T., Torralba, A., Tenenbaum, J.B.: A compositional object-
based approach to learning physical dynamics. In: International Conference on
Learning Representations (ICLR) (2017)

5. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for
statistical machine translation. In: EMNLP 2014–2014 Conference on Empirical
Methods in Natural Language Processing, Proceedings of the Conference, pp. 1724–
1734. Association for Computational Linguistics (ACL) (2014). https://doi.org/10.
3115/v1/d14-1179

6. Fragkiadaki, K., Levine, S., Felsen, P., Malik, J.: Recurrent network models for
human dynamics. In: IEEE International Conference on Computer Vision (ICCV)
(2015)

7. Gopalakrishnan, A., Mali, A., Kifer, D., Giles, C.L., Ororbia, A.G.: A neural tem-
poral model for human motion prediction. In: Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, June 2019, pp.
12108–12117 (2018)

8. Guttenberg, N., Virgo, N., Witkowski, O., Aoki, H., Kanai, R.: Permutation-
equivariant neural networks applied to dynamics prediction. arXiv (2016)

9. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997). https://doi.org/10.1162/neco.1997.9.8.1735

10. Hoshen, Y.: VAIN: attentional multi-agent predictive modeling. In: Advances in
Neural Information Processing Systems, December 2017, pp. 2702–2712. Neural
information processing systems foundation (2017)

https://doi.org/10.3115/v1/d14-1179
https://doi.org/10.3115/v1/d14-1179
https://doi.org/10.1162/neco.1997.9.8.1735


196 J. A. Candido Ramos et al.

11. Jain, A., Zamir, A.R., Savarese, S., Saxena, A.: Structural-RNN: deep learning on
spatio-temporal graphs. In: Proceedings of the IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, December 2016, pp. 5308–5317.
IEEE Computer Society (2016). https://doi.org/10.1109/CVPR.2016.573

12. Kingma, D.P., Ba, J.L.: Adam: a method for stochastic optimization. In: 3rd Inter-
national Conference on Learning Representations, ICLR 2015 - Conference Track
Proceedings. International Conference on Learning Representations, ICLR (2015)

13. Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. In: International
Conference on Learning Representations (ICLR) (2014)

14. Kipf, T., Fetaya, E., Wang, K.C., Welling, M., Zemel, R.: Neural relational infer-
ence for interacting systems. In: International Conference on Machine Learning
(ICML), pp. 2688–2697 (2018)

15. Lehrmann, A.M., Gehler, P.V., Nowozin, S.: Efficient nonlinear Markov models
for human motion. In: Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, pp. 1314–1321. IEEE Computer Society
(2014). https://doi.org/10.1109/CVPR.2014.171

16. Li, M., Chen, S., Chen, X., Zhang, Y., Wang, Y., Tian, Q.: Symbiotic graph neural
networks for 3D skeleton-based human action recognition and motion prediction.
arXiv (2019)

17. Liu, Z., et al.: Towards natural and accurate future motion prediction of humans
and animals. In: IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR), pp. 10004–10012 (2019)

18. Maddison, C.J., Mnih, A., Teh, Y.W.: The concrete distribution: a continuous
relaxation of discrete random variables. In: International Conference on Learning
Representations (ICLR) (2016)

19. Martinez, J., Black, M.J., Romero, J.: On human motion prediction using recurrent
neural networks. In: Proceedings - 30th IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2017, January 2017, pp. 4674–4683 (2017)

20. Pavlovic, V., Rehg, J.M., Maccormick, J.: Learning switching linear models of
human motion. In: Neural Information Processing Systems (NeurIPS), pp. 981–
987 (2001)

21. Pitto, L., et al.: SimCP: a simulation platform to predict gait performance follow-
ing orthopedic intervention in children with cerebral palsy. Front. Neurorobot. 13
(2019). https://doi.org/10.3389/fnbot.2019.00054

22. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-
propagating errors. Nature 323(6088), 533–536 (1986). https://doi.org/10.1038/
323533a0

23. Santoro, A., et al.: A simple neural network module for relational reasoning. In:
Advances in Neural Information Processing Systems, December 2017, pp. 4968–
4977 (2017)

24. Shi, L., Zhang, Y., Cheng, J., Lu, H.: Skeleton-based action recognition with
directed graph neural networks. In: The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR) (2019)

25. van Steenkiste, S., Chang, M., Greff, K., Schmidhuber, J.: Relational neural expec-
tation maximization: unsupervised discovery of objects and their interactions. In:
6th International Conference on Learning Representations, ICLR 2018 - Confer-
ence Track Proceedings (2018)

26. Sukhbaatar, S., Szlam, A., Fergus, R.: Learning multiagent communication with
backpropagation. In: Neural Information Processing Systems (NeurIPS), pp. 2244–
2252 (2016)

https://doi.org/10.1109/CVPR.2016.573
https://doi.org/10.1109/CVPR.2014.171
https://doi.org/10.3389/fnbot.2019.00054
https://doi.org/10.1038/323533a0
https://doi.org/10.1038/323533a0


Conditional Neural Relational Inference for Interacting Systems 197

27. Urtasun, R., Fleet, D.J., Geiger, A., Popović, J., Darrell, T.J., Lawrence, N.D.:
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Abstract. Item-level share rate prediction (ISRP) aims to predict the
future share rates for each item according to the meta information and
historical share rate sequences. It can help us to quickly select high-
quality items that users are willing to share from millions of item can-
didates, which is widely used in real-world large-scale recommendation
systems for efficiency. However, there are several technical challenges to
be addressed for improving ISRP’s performance: (1) There is data uncer-
tainty in items’ share rate sequences caused by insufficient item clicks,
especially in the early stages of item release. These noisy or even incom-
plete share rate sequences strongly restrict the historical information
modeling. (2) There are multiple modes in the share rate data, includ-
ing normal mode, cold-start mode and noisy mode. It is challenging for
models to jointly deal with all three modes especially with the cold-
start and noisy scenarios. In this work, we propose a multi-granularity
multi-mode network (MMNet) for item-level share rate prediction, which
mainly consists of a fine-granularity module, a coarse-granularity mod-
ule and a meta-info modeling module. Specifically, in the fine-granularity
module, a multi-mode modeling strategy with dual disturbance blocks is
designed to balance multi-mode data. In the coarse-granularity module,
we generalize the historical information via item taxonomies to alleviate
noises and uncertainty at the item level. In the meta-info modeling mod-
ule, we utilize multiple attributes such as meta info, contexts and images
to learn effective item representations as supplements. In experiments,
we conduct both offline and online evaluations on a real-world recom-
mendation system in WeChat Top Stories. The significant improvements
confirm the effectiveness and robustness of MMNet. Currently, MMNet
has been deployed on WeChat Top Stories.
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1 Introduction

With the development of social media, people are becoming more enthusiastic
about publishing their created contents and sharing their opinions on the inter-
net, generating massive amounts of items. Users want to quickly obtain valuable
information from massive items on social media platforms. Therefore, personal-
ized recommendations are adopted to provide appropriate items effectively and
efficiently for users to read and share.

Real-world large-scale recommendation systems should deal with millions of
new items per day. It is essential to pre-select high-quality items for the following
personalized matching and ranking modules in recommendation systems [6,16]
for efficiency. In this work, we propose the Item-level Share Rate Prediction
(ISRP) task, which aims to predict the future share rates for each item accord-
ing to their meta information and historical share rate sequences. It can help
us to quickly find appropriate items that users are interested in from millions
of item candidates, which could be viewed as an item quality inspector that is
essential in real-world large-scale recommendation systems.

In recent years, to better grasp the development trend of items, many scholars
have studied popularity prediction by inferring the total counts of interactions
between users and items (e.g., view, click and share). The popularity prediction
approaches can be roughly divided into two categories, including social-based
prediction methods [3] and item-based prediction methods [4]. Item-based pre-
diction methods generally utilize item-related meta information such as images
and contexts to predict popularity [15]. Inspired by this, ISRP can be regarded
as a special item-based popularity prediction task in recommendation systems,
which focuses on predicting item share rates only with the item-related infor-
mation. Moreover, we creatively bring in the historical share rate sequence for
each item containing the average item share rate at each time period. However,
there are some challenges in combining different meta information and historical
share rate information for ISRP in practice:

– Item-related data uncertainty. In ISRP, there are mainly two types of
item-related data uncertainty, including the share rate uncertainty and the
attribute uncertainty. Share rate uncertainty mainly occurs in the early stage
of item release, which is caused by the insufficient item clicks. In addition,
the share rates of an item may fluctuate greatly during the whole period,
which makes it difficult for the model to obtain high-confidence information
from the historical share rate trends. This uncertainty locates in every item’s
lifetime, since every item has a cold-start period and most items are long-tail.
In contrast, attribute uncertainty derives from the noises or missing in item-
related meta information. Therefore, it is essential to introduce an uncertainty
eliminator to enable a robust ISRP framework.

– Multi-mode share rate data. In practice, there are multiple modes of the
share rate data, including the normal mode, cold-start mode and noisy mode.
Normal mode indicates that the share rate sequences are reliable with suffi-
cient clicks, so the model can fully rely on historical share rates. In contrast,
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cold-start mode refers to the mode influenced by the share rate uncertainty
in the early stages of item release. Noisy mode represents that the share rate
sequences are disturbed by noises and even data missing. Due to the unbal-
ance in three modes, ISRP models can be easily dominated by the normal
mode and is prone to over-rely on historical share rate data, losing the ability
to model cold-start and noisy modes. Therefore, an intelligent multi-mode
learner is needed to jointly handle all scenarios.

To address the above challenges, we propose a Multi-granularity Multi-
mode Network (MMNet) for item-level share rate prediction. MMNet is
composed of a coarse-granularity module, a fine-granularity module and a meta-
info modeling module, where the first two modules aim to model the histori-
cal share rate sequences. Specifically, in the fine-granularity module, we design
two disturbance blocks with different masking strategies to highlight all modes
during training process. The coarse-granularity module is presented to allevi-
ate share rate uncertainty by considering global preference features anchored by
item taxonomies. The meta-info modeling module aims to introduce sufficient
meta features to represent item information as a supplement to the historical
share rate sequences. All three features are then combined for the ISRP task.

In experiments, we conduct extensive evaluations on three datasets with nor-
mal, cold-start and noisy modes. We also deploy MMNet on a widely-used rec-
ommendation system to evaluate its online effectiveness. In summary, the con-
tributions of this work can be summarized as follows:

– We systematically highlight the challenges in real-world item-level share rate
prediction, and propose a novel MMNet framework to address them.

– We design the multi-granularity share rate modeling to alleviate the uncer-
tainty issues in cold-start and noisy scenarios, which helps to capture user
preferences from both the global and local perspectives.

– We present a multi-mode modeling strategy in the fine-granularity module
with dual disturbance blocks, which can jointly learn informative messages
from all three modes to build a robust model in practice.

– MMNet achieves significant improvements in both offline and online evalua-
tions. Currently, MMNet has been deployed on WeChat Top Stories, affecting
millions of users.

2 Related Works

Time Series Modeling Techniques. Time series modeling techniques have
been widely used in forecasting tasks. Autoregressive integrated moving average
(ARIMA) [13] model, which is a classic statistical model in the time series field.
However, this model requires the time series data stationary, or stationary after
differencing steps. In recent years, various sequence modeling methods based on
deep learning have emerged, such as recurrent neural network (RNN). Never-
theless, RNN suffers from gradient disappearance and explosion problems. To
alleviate the problem, long short-term memory (LSTM) [9] and gated recurrent
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unit(GRU) [5] methods appeared. However, the inherently sequential nature
of recurrent models limits the ability of parallelization ability. Temporal con-
volutional network (TCN) [1], which utilizes convolution algorithm to solving
prediction problem. It can achieve parallelization computation. Since historical
information can provide a certain degree of guidance for ISRP tasks, we intro-
duce the historical share rate sequences to improve ISRP’s performance.

Popularity Prediction. The popularity prediction task is generally to esti-
mate how many attentions a given content will receive after it is published on
social media. The task is mainly divided into two types: social-based prediction
methods and item-based prediction methods.

The social-based methods aim to predict the popularity of item spread
through social relationships in social networks. DeepCas [10] and DeepHawkers
[2] are popularity prediction methods by modeling information cascade. Deep-
Cas constructs a cascade graph as a collection of cascade paths that are sampled
by multiple random walk processes, which can effectively predict the size of
cascades. DeepHawkers learns the interpretable factors of Hawkers process to
model information cascade. Cao et al. [3] proposed CoupledGNN, which uses
two coupled graph neural networks to capture the interplay between nodes and
the spread of influence. However, the social-based methods concentrate on the
propagation on social networks, which have a great dependence on social rela-
tionships. This limits the application scenarios of these models.

In contrast, the item-based methods extract a large number of features
related to contents for popularity prediction. UHAN [18] and NPP [4] design
hierarchical attention mechanisms to extract representations of multi-modalities.
Different from them, Wu et al. [14] and Liao et al. [12] paid more attention to the
influence of temporal information on popularity prediction. The former utilizes
neighboring temporal and periodic temporal information to learn sequential pop-
ularity in short-term and long-term popularity fluctuations. The latter leverages
RNN and CNN to capture item-related long-term growth and short-term fluc-
tuation. Xie [15] proposed a multimodal variational encoder-decoder (MMVED)
framework, which is the most related model of our task. It introduces the uncer-
tain factors as the randomness for the mapping from the multimodal features to
the popularity. However, in ISRP, the item-related data uncertainty and multi-
mode share rate data will strongly affect the performance of existing popularity
prediction models. Consequently, we propose disturbance blocks based multi-
mode modeling strategy with multi-granularity share rate modeling for ISRP.

3 Preliminary

In this section, we first introduce some important notions used in this work.

Share Rate. Given an item I, the share rate yt at time period t is defined as
its overall shared number rt divided by its overall click (i.e., items being clicked
by users) number pt, as shown in the following formula:
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yt =
rt

pt
× 100%, pt > 0. (1)

A smaller click number pt will result in data uncertainty of the share rate.

Multi-mode Data. For the historical share rate sequences, we define three
modes according to different scenarios as follows:

– Normal mode. It represents that historical share rate sequences are reliable
with sufficient clicks. The sequences can provide strong guidance.

– Cold-start mode. It indicates that whole historical share rate sequences are
unreliable or even missing. This mode is usually caused by insufficient clicks,
especially in the early stages of item release.

– Noisy mode. It means that there is partial uncertainty in the historical
share rate sequences, which is usually caused by partial missing or noises.

Input Features. We deploy MMNet on a video recommendation system. The
input features we use in MMNet can be mainly grouped into three categories,
namely the fine-grained sequential features, the coarse-grained sequential fea-
tures and the multi-modal meta-information features.

– Fine-grained sequential features. We calculate the share rates at all time
period for each item, and arrange them into historical share rate sequences.

– Coarse-grained sequential features. To improve the generalization ability
and reduce potential uncertainty in item-level share rates, we further bring
in the coarse-grained sequential features. Precisely, we build the share rate
sequences for each taxonomy (e.g., tag, category) in this item, modeling the
share rate trends at the taxonomy level.

– Multi-modal meta-information features. These features consist of three
heterogeneous parts: context features, visual features and meta features. The
first part contains textual features such as item title. The second part regards
the cover images as the visual features. The last part is composed of many
meta information including video taxonomies and duration.

Item-Level Share Rate Prediction. Formally, given the multi-modal feature
set C, and the historical share rate sequence {y}t

t−ω1
with a time window of

length ω1, our goal at time t is to predict the share rate ŷt+h at the next h time
as:

F (C, {y}t
t−ω1

) → ŷt+h, (2)

where ŷt+h is the predicted share rate at t + h, and h is the desirable prediction
horizon time stamp. In most situations, the horizon h of share rate prediction
task is chosen according to the practical demands of the real-world scenario. F (·)
is the mapping function we aim to learn via MMNet.
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4 Methodology

4.1 Overall Framework

Figure 1 shows the overall framework of MMNet. It mainly consists of three par-
allel modules, including a fine-granularity module, a coarse-granularity module,
and a meta-info modeling module. The fine-granularity module conducts a multi-
mode strategy with two disturbance blocks to enable a robust share rate sequence
modeling. The coarse-granularity module models the coarse-grained share rate
sequential information brought by the corresponding item’s taxonomies, which
can alleviate potential noises and missing in item-level share rate sequences. The
meta-info modeling module further combines heterogeneous item meta features
together. All three modules are then combined and fed into a gated fusion layer
and a MLP (multi-layer perceptron) layer for the following prediction.

Fig. 1. Overall framework of the proposed MMNet.

4.2 Fine-Granularity Module

The fine-granularity module is responsible for encoding historical share rate
sequences. However, there are two differences between the numerical share rate
sequence in ISRP and other sequences (e.g., item sequences in session-based
recommendation), which leads to the following challenges: (1) the share rate
sequences are numerical sequences that suffer from data uncertainty and high
variance caused by insufficient item clicks. (2) The fine-granularity module
should jointly deal with three modes including the normal, cold-start and noisy
modes. We conduct the multi-mode modeling to address these issues.
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Multi-mode Modeling. In real-world scenarios, the multi-mode data are often
unbalanced, and the normal mode data are far more than other two modes.
Thus, if we directly use the original share rate sequence instances to train our
MMNet, the model will be overfitting on the historical share rate information,
regardless of other meta-information. Although the model can well predict the
share rates of normal mode data with sufficient clicks and historical information,
it cannot deal with items in cold-start and noisy scenarios, which heavily rely on
MMNet for item pre-selection in real-world recommendation systems. Therefore,
for all historical sequences during training process, we randomly feed them into
three modes followed by different disturbance blocks with equal probability. To
simulate different mode sequences, the proposed multi-mode modeling strategy
introduces two disturbance blocks, including a cold-start disturbance block (CD
block) and a noisy disturbance block (ND block), as shown in Fig. 2. Note that
this strategy can be regarded as a form of data augmentation. To better represent
the state of the historical sequence, we introduce a missing flag sequence m =
{m}t

t−ω1
, where m ∈ {0, 1}. If the missing flag is 1, it means that the data is

missing or uncertain, and otherwise, it means that the data is normal.

Fig. 2. The illustration of CD and ND disturbance blocks based multi-mode modelling.

Cold-Start Disturbance Block. CD block is in charge of simulating cold-start
mode data. This block can make the model learn more comprehensive features
and alleviate the model’s excessive dependence on historical sequences. Formally,
we exploit an all-one vector mask mp = {mp}t

t−ω1
(mp ∈ {1}) as a missing flag

vector, which means whole share rate sequence is missing or uncertain. Thus,
the corresponding share rate sequence is erased by zero vector {y}t

t−ω1
=

⇀

0. It
aims to lead the model to focus more on other information rather than the share
rates to improve the performance of all modes.
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Noisy Disturbance Block. Similar to the CD block, we also design a ND
block, which is responsible for simulating partial data uncertainty. For each
missing flag in the sequence, we randomly sample a value T from the uniform
distribution U [0, 1], and then set a threshold τ . When T is greater than τ , the
missing flag is set as 0, otherwise, it is set to 1. Note that τ can be regarded as
a missing rate. When τ is large, there are more missing. Considering the input
sequence also contains missing data, we should keep the missing data of origin
input sequence unchanged. Thus, the final missing flag sequence is mc = mc∨m,
where ∨ represents logical or. Consequently, the corresponding input share rate
sequence y is reset through y = mc � y, where � denotes Hadamard product.
After the input sequence is processed by a mode, it is sent into the embedding
layer Emb(·) [12] to obtain the item-level share rate representation sequence
{hm}t

t−ω1
as:

{hm}t
t−ω1

= Emb(CD({y}t
t−ω1

) or ND({y}t
t−ω1

) or {y}t
t−ω1

). (3)

4.3 Coarse-Granularity Module

The fine-granularity module focuses on the historical share rates at the item
level, which is precise but noisy due to the possible insufficient clicks and even
data missing. Hence, we build the coarse-granularity module as a supplement,
which is in charge of encoding the coarse-grained sequential information at the
taxonomy level. A temporal mining layer is designed to encapsulate the trend
information from both coarse and fine sequential information in two modules.

Global Preference Features. Users have different priori preferences on differ-
ent taxonomies. For example, considering the difference attractions of the item
categories, we analyze the share rates of different categories in our system. As
shown in Fig. 3, there are significant differences in the share rates of different cat-
egories (e.g., health-related videos have the highest share rate). Moreover, items
with the same taxonomies (e.g., tags, categories) may have similar share rate
trends. For instance, during the World Cup, the share rates of football-related
videos generally grow higher than others. Therefore, it is essential to consider
the share rate trends at the taxonomy level as a supplement to the item level.
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Fig. 3. The illustration of the global average share rates of different item categories.
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Specifically, we introduce global preference features as a priori and general-
ized anchor to give coarse-granularity guidance for ISRP. Taking category for
example, given an item I belonging to Category Cat(I), the category global
preference g

Cat(I)
t at time t is obtained by calculating the global average share

rate of whole item collection belonging to the Cat(I) category:

g
Cat(I)
t = Mean

Î∈C(Cat(I))
{yt(Î)}, (4)

where C(Cat(I)) indicates the collection of all items which belongs to Category
Cat(I), Î represents an item in collection C(Cat(I)), yt(Î) stands for the share
rate of item Î, and Mean(·) represents the average operation. Note that we
calculate the global preferences for all time periods to build the global category-
level share rate sequence. Other taxonomies’ modeling is the same as the cate-
gory’s. Next, at each time step t, we acquire global preference features gt, where
gt = Concat{g

Cat(I)
t , g

Tag(I)
t , ...}. Similarly, we use the same embedding layer

on the global feature sequence {g}t
t−ω1

to obtain the taxonomy-level share rate
representation sequence as follows:

{hg}t
t−ω1

= Emb({g}t
t−ω1

). (5)

Temporal Mining Layer. Temporal mining layer is responsible for encoding
both fine and coarse sequential information from item-level share rate repre-
sentation {hm}t

t−ω1
and taxonomy-level share rate representation {hg}t

t−ω1
. To

better balance fine and coarse representations, we utilize an attention mechanism
[17] to obtain the aggregated representation as:

{hmg}t
t−ω1

= Att({hm}t
t−ω1

, {hg}t
t−ω1

). (6)

To reveal the inherent regularity and encapsulate the share rate trend informa-
tion of historical information, we adopt a temporal convolutional network (TCN)
[1] to learn the final sequential representation {hq}t

t−ω1
as:

{hq}t
t−ω1

= TCN({hmg}t
t−ω1

). (7)

Then, we utilize a temporal attention mechanism on the sequence {hq}t
t−ω1

to
automatically learn the impacts of share rate representations at different times:

q = Temporal Att({hq}t
t−ω1

), (8)

where q is the final historical share rate representation we use for prediction.

4.4 Meta-info Modeling Module

Meta-info modeling module is exploited to capture multi-modal features from
heterogeneous item profiles. Multi-modal information can introduce complemen-
tary information for ISRP, thereby alleviating attribute uncertainty.

Specifically, this module is responsible for extracting interactive meta feature
representations, context representations and visual representations:
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– Meta features: there are potential relationships between different meta fea-
tures. To capture effective feature interactions, we feed them into xDeepFM
[11] for extracting the interactive representation u.

– Context features: we directly use a pre-trained BERT [7], and acquire a
context representation c from the input contexts (e.g., video titles).

– Visual features: we use a pre-trained ResNet-50 [8], which utilizes skip
connections, or shortcuts to jump over some layers. Precisely, we feed the
cover image into a ResNet-50 model, and obtain the visual representation v.

These features are essential especially in the cold-start and noisy scenarios.

4.5 Optimization Objectives

We jointly consider the share rate sequential representation p, meta represen-
tation u, context representation c, and visual representation v in ISRP. To
automatically determine the influence of these representations, We concatenate
these features, and send them into a gated fusion layer as follows:

hfuse = Gating([p;u; c;v]), (9)

where Gating(·) is similar as the attention mechanism in [17]. hfuse represents
the aggregated feature which encloses multi-modal information. Finally, we feed
the aggregated feature hfuse into a MLP layer to generate the predicted share
rate ŷt+h at the t + h time as follows:

ŷt+h = MLP (hfuse). (10)

In this work, we optimize the proposed MMNet by minimizing a mean square
error (MSE) between the predicted and real share rates ŷt+h and yt+h as follows:

MSE =
1
N

N∑

t=1

(ŷt+h − yt+h)2, (11)

where N is the number of training samples. Note that it is also convenient to
transfer MMNet to other rate prediction tasks (e.g., CTR, complete rate).

5 Online Deployment

We have deployed our MMNet model on a well-known real-world recommenda-
tion system, which is widely used by millions of users per day. This online system
should deal with massive numbers of new items generated everyday. Therefore,
based on the classical two-stage recommendation framework containing match-
ing (i.e., candidate generation) and ranking modules introduced in [6], we further
deploy MMNet on the pre-matching module to judge item quality according to
item’s meta-information and historical behaviours for efficiency. The predicted
share rates of each item candidate are used in two manners: (1) we directly filter
low-quality items according to a low-standard rule-based threshold, and (2) the
predicted share rates are fed into ranking modules as features. For efficiency, we
use 200 workers equipped with 1 core and 8 GB memory for online inference.
The source code is in https://github.com/MingFL/MMNET.

https://github.com/MingFL/MMNET
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6 Experiments

6.1 Datasets

To thoroughly evaluate the performance of our methods, we build an online video
dataset from a widely-used recommendation system named WeChat Top Stories.
The dataset contains nearly 40 million share instances on 35 thousand items. All
data are pre-processed via data masking for user privacy. We divide the dataset
by a ratio of 8:1:1 for training, validation and testing. Due to the uncertainty
in share rates, we discard all items that have low clicks in the test set, for we
want all instances in the test set to have high confidence. This test setting is
named as the Normal Dataset, since it mainly contains items with sufficient clicks
and reliable historical share rates. To further investigate the model abilities for
multi-mode data, the normal dataset is further processed into two other datasets,
namely the Cold-start dataset and the Noisy dataset. To simulate the cold-start
mode where all historical share rate data is unreliable or empty, we mask out all
historical share rates on the normal dataset for generating the cold-start dataset.
Similarly, in order to verify that the model deals with the data of noisy mode,
we mask out the historical data with a certain probability.

6.2 Baselines and Experimental Settings

Baselines. The main contributions of MMNet locate in the share rate sequence
modeling. Therefore, we compare MMNet with five competitive baselines in the
share rate modeling. For fair comparisons, all baselines also contain the same
meta-info modeling module, where the encoding of multi-modal features is con-
sistent with MMNet (i.e., BERT processing context features, ResNet-50 pro-
cessing visual features, and xDeepFM processing meta features). All models
including MMNet and baselines share the same input features. We have:

– HA. Historical average (HA) is a straightforward method. Here, we use the
average share rate value of the most recent 6 time periods (the same as
MMNet) to predict the share rates in the next horizon time.

– GRU. Gated recurrent unit [5] is a classical model that can alleviate the
problem of vanishing gradient in RNN. It performs well in solving time series
forecasting problems.

– Encoder-Decoder. The encoder-decoder model [5] is a classical sequence
modeling method, which is widely utilized in real-world tasks.

– MMVED. Multimodal variational encoder-decoder framework [15] is
designed for sequential popularity prediction task, which considers the uncer-
tain factors as randomness for the mapping from the multimodal features to
the popularity.

– DFTC. The approach of deep fusion of temporal process and content features
[12] is utilized in online article popularity prediction. It utilizes RNN and CNN
to capture long-term and short-term fluctuations, respectively.
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Ablation Settings. Furthermore, to verify the advantages of each component
of MMNet, we conduct four ablation versions of MMNet implemented as follows:

– MMNet-M. It is an incomplete MMNet, in which the multi-mode modeling
strategy is removed, in order to verify the multi-mode modeling influence.

– MMNet-C. It is an incomplete MMNet, in which the coarse-granularity
module is removed on the basis of MMNet-M, in order to verify the role of
global preference features on three modes.

– MMNetnorm/noisy. It is a variant of MMNet, which lets the historical
sequence select the normal mode and the noisy mode with equal probability
without considering the cold-start mode.

– MMNetnorm/cold. It is a variant of MMNet, which lets the historical
sequence select the normal mode and the cold-start mode with equal proba-
bility without considering the noisy mode.

Experimental Settings. The proposed method is implemented with Tensor-
flow. The learning rate is set as 0.001, the batch size is set as 64, and the model is
trained by minimizing the mean squared error function. The historical sequence
window lengths (i.e. ω1) of the share rates and global preference features are
set to 6. In MMNet, the representations after embedding layer are all set as 64,
including sequence representation, visual representation, context representation
and meta representation. For TCN, we set three channels, and the hidden layers
of these channels are 256, 128 and 64 respectively. Meanwhile, the size of the
convolution kernel in TCN is 2. The missing rate τ is set to be 0.5, and the
parameter sensitivity experiment of τ can be seen in Sect. 6.6.

6.3 Offline Item-Level Share Rate Prediction

Evaluation Protocol. We adopt two representative evaluation metrics for
ISRP, including mean squared error (MSE) and precision@N% (P@N%). (1)
MSE is a classical metric that is calculated by the average squared error between
predicted and real share rates. It aims to measure the ability of MMNet in pre-
dicting share rates. (2) As for P@N%, we first rank all items in the test set via
their predicted share rates, and then calculate the precision of top N% items
as P@N%. It reflects the real-world performance of ISRP in recommendation
systems. To simulate the practical settings, we report P@5% and P@10% in
evaluation.

Experimental Results. Table 1 presents the offline ISRP results of all models.
We analyze the experimental results in details:

(1) MMNet achieves the best overall performance on all three datasets. The
improvements of three metrics on the cold-start/noisy datasets, and the
improvement of MSE on the normal dataset are significant with the sig-
nificance level α = 0.01. Since the proposed multi-granularity multi-mode
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strategy mainly aims to solve the cold-start and noisy issues, it is natural
that the improvements on the cold-start and noisy datasets are much more
significant. It indicates that MMNet can well deal with all three scenarios
in ISRP, especially in the cold-start and noisy scenarios.

(2) Comparing with baselines, we find that the results of baselines are not ideal
in cold-start and noisy datasets. It is because that the multi-mode data is not
balanced, where the normal mode is the dominating mode. Therefore, most
baselines are strongly influenced by the normal mode data during training.
In contrast, our MMNet is armed with the multi-granularity sequence mod-
eling that can alleviate the cold-start and low click issues. Moreover, the
multi-mode modeling also brings in robustness for these two scenarios. It
can be regarded as a certain data argumentation, which can improve both
the generalization ability of the share rate sequence modeling as well as the
feature interactions between sequential and meta information in different
scenarios.

Table 1. Calibration results for three datasets.

Method Normal dataset Cold-start dataset Noisy dataset

MSE P@5% P@10% MSE P@5% P@10% MSE P@5% P@10%

HA 1.650 0.919 0.920 42.143 0.054 0.101 7.174 0.747 0.791

GRU 0.260 0.975 0.973 16.410 0.219 0.293 3.299 0.688 0.761

Encoder-Decoder 0.256 0.975 0.973 15.663 0.233 0.291 3.990 0.656 0.725

MMVED 1.431 0.882 0.880 22.072 0.052 0.108 2.109 0.840 0.847

DFTC 0.257 0.976 0.974 14.980 0.284 0.348 3.677 0.760 0.786

MMNet 0.149 0.977 0.976 3.442 0.755 0.786 0.175 0.968 0.969

6.4 Online A/B Tests

Evaluation Protocol. To further evaluate MMNet in practice, we deploy our
model on a real-world recommendation system as introduced in Sect. 5. Specif-
ically, MMNet is deployed in the pre-matching module and predicts item-level
share rates for all items, which is used as (1) a coarse filter, and (2) features
for the next matching and ranking modules. We conduct an online A/B test
with other modules unchanged. The online base model is an ensemble of some
rule-based filterers. In this online A/B test, we focus on two metrics: (1) average
item-level share rate (AISR), (2) average dwell time per user (ADT/u).

Similarly, we further transfer the idea of MMNet on ISRP to the item-level
complete rate prediction task. The complete rate is calculated by user-finished
duration divided by video’s full duration, which reflects the qualities of items
from another aspect. Precisely, we build a similar MMNet model with different
parameters, and train it under the supervision of item-level complete rates of
videos. We deploy this MMNet as in Sect. 5, and focus on (1) average dwell time
per user (ADT/u), and (2) average dwell time per item (ADT/i). We conduct
this online A/B test for 14 days, affecting nearly 6 million users.
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Table 2. Online A/B tests on a real-world recommendation system.

Settings Supervised by share rates Supervised by complete rates

AISR ADT/u ADT/u ADT/i

MMNet +0.91% +0.93% +1.02% +1.31%

Experimental Results. Table 2 shows the relative improvements of MMNet
over the online base model, from which we can observe that:

(1) MMNet achieves significant improvements in both item-level share rate and
average dwell time. It indicates that our MMNet can well capture multi-
granularity features, distinguish multi-mode share rate sequences, and com-
bine multi-modal features for all normal, cold-start and noisy scenarios in
ISRP.

(2) The successes in MMNet supervised by complete rates verify that our pro-
posed framework is robust and easy to transfer to other scenarios.

6.5 Ablation Studies

Table 3 lists the results of the above-mentioned ablation settings with MSE,
P@5% and P@10%. Note that since the multi-granularity and multi-mode mod-
eling are mainly designed for the cold-start and noisy scenarios, we focus on
these two datasets in ablation studies. We can observe that:

(1) MMNet achieves the best performance on all metrics in the noisy dataset and
normal dataset, and the second best performance in the cold-start scenario.
It verifies that all components in MMNet are essential in ISRP.

(2) Comparing with MMNet-C and MMNet-M, we can find that the global pref-
erence features are more suitable for cold-start and noisy scenarios. Mean-
while, the results also show that multi-granularity and multi-mode modeling
are effective in capturing informative messages for all three modes in ISRP.

(3) Comparing with MMNetnorm/noisy and MMNetnorm/cold, we find that both
CD and ND disturbance blocks are effective for the cold-start and noisy
scenarios respectively. It is worth noting that MMNetnorm/cold focuses on
the cold-start mode, so it is natural that it has better cold-start performance.
In practice, we can flexibly set the weights of different disturbance blocks
for specific motivations.
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Table 3. Ablation study results for three datasets.

Method Normal dataset Cold-start dataset Noisy dataset

MSE P@5% P@10% MSE P@5% P@10% MSE P@5% P@10%

MMNet-M 0.248 0.974 0.974 14.594 0.365 0.406 0.633 0.931 0.938

MMNet-C 0.671 0.975 0.975 15.369 0.316 0.373 1.537 0.907 0.922

MMNetnorm/noisy 0.210 0.974 0.973 11.944 0.466 0.503 0.315 0.964 0.966

MMNetnorm/cold 0.165 0.973 0.976 2.440 0.802 0.831 0.836 0.888 0.925

MMNet 0.149 0.977 0.976 3.442 0.755 0.786 0.175 0.968 0.969

6.6 Parameter Analyses

We further study the parameter sensitivity of MMNet. We vary the missing rate
τ from 0.01 to 0.9, which is essential in model training. The results are reported in
Table 4, from which we can find that: (1) The results of the parameter changes
are relatively stable on the normal dataset. (2) In the cold-start dataset, the
performance gradually improves as the missing rate increases. The main reason
is that the missing rate is higher, and the data in the noisy dataset and the
cold-start dataset will be more similar. (3) In the noisy dataset, as the missing
rate increases, the performance has a gradual improvement followed by a slight
decrease. The size of the missing rate can reflect the model’s dependence on
historical data to a certain extent, so it can be concluded that the appropriate
dependence on historical data is helpful to the model performance improvement.
We select τ = 0.5 according to the overall performance on three modes.

Table 4. Parameter analysis with different missing rates τ .

Method Normal dataset Cold-start dataset Noisy dataset

MSE P@5% P@10% MSE P@5% P@10% MSE P@5% P@10%

0.01 0.594 0.974 0.975 4.073 0.742 0.783 0.883 0.945 0.956

0.05 0.156 0.977 0.976 3.453 0.757 0.789 0.287 0.959 0.961

0.1 0.161 0.975 0.975 3.585 0.749 0.785 0.252 0.963 0.963

0.2 0.160 0.977 0.975 3.535 0.751 0.784 0.238 0.966 0.966

0.3 0.154 0.977 0.976 3.441 0.759 0.789 0.226 0.968 0.969

0.4 0.159 0.975 0.975 3.607 0.747 0.783 0.176 0.966 0.968

0.5 0.149 0.977 0.976 3.442 0.755 0.786 0.175 0.968 0.969

0.6 0.154 0.975 0.975 3.184 0.769 0.796 0.223 0.966 0.969

0.7 0.148 0.975 0.975 2.919 0.779 0.813 0.217 0.967 0.968

0.8 0.152 0.974 0.974 2.744 0.790 0.815 0.223 0.964 0.967

0.9 0.150 0.975 0.975 2.346 0.813 0.837 0.224 0.964 0.965
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7 Conclusion and Future Work

In this paper, we present MMNet for ISRP. We propose a multi-granularity
sequence modeling to improve the generalization ability from item taxonomies.
Moreover, we design two multi-mode disturbance blocks to enhance the robust-
ness of MMNet against potential data noises and uncertainty. Both offline and
online evaluations confirm the effectiveness and robustness of MMNet in WeChat
Top Stories. In the future, we will design an adaptive mode selection strategy
based on the characteristics of the instance itself, so as to fully learn feature
representations from existing instances. We will also explore more sophisticated
feature interaction modeling between all types of features.
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Abstract. Fashion represents one’s personality, what you wear is how
you present yourself to the world. While in traditional brick & mor-
tar stores, there is staff available to assist customers which results in
increased sales, online stores rely on recommender systems. Proposing an
outfit with-respect-to the desired product is one such type of recommen-
dation. This paper describes an outfit generation framework that utilizes
a deep-learning sequence classification based model. While most of the
literature related to outfit generation is regarding model development,
the segment describing training data generation is still not mature. We
have proposed a novel approach to generate an accurate training dataset
that uses the latent distance between positive and random outfits to
classify negative outfits. Outfits are defined as a sequence of fashion
items where each fashion item is represented by its respective embed-
ding vector obtained from the Bayesian Personalised Ranking- Matrix
Factorisation (BPR-MF) algorithm which takes user clickstream activ-
ity as an input. An outfit is classified as positive or negative depending
on its Goodness Score predicted by a Bi-LSTM model. Further, we show
that applying Self-Attention based Bi-LSTM model improved the perfor-
mance (AUC), relevance (NDCG) by an average 13%, 16% respectively
for all gender-categories. The proposed outfit generation framework is
deployed on Myntra, a large-scale fashion e-commerce platform in India.

Keywords: Outfit recommendation · Self-attention · Bidirectional
LSTM · Deep learning · Bayesian personalized ranking · Matrix
factorization

1 Introduction

The worldwide revenue from fashion products is expected to rise from $485.6
billion in 2020 to $672.7 billion by 20231. With the shutdown of retail stores due
to coronavirus, online stores are attracting customers due to increased online

1 https://www.shopify.com/enterprise/ecommerce-fashion-industry.
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access & smartphone penetration, enhanced user experience by personalizing
recommendations. While similar product recommendations is one way where
users can be suggested products according to their preference, recommending
the whole outfit with-respect-to the desired product could be a game-changer.
For our formulation, we define an outfit as a sequence of four products (top-wear,
bottom-wear, footwear, accessory; where this order is necessarily preserved).
Although there have been numerous studies [1–3] on clothing retrieval and rec-
ommendation, they fail to consider the problem of fashion outfit composition and
creation. Extensive studies have been conducted on learning fashion compatibil-
ity with the objective to recommend products such that they are complementing
each other to form an outfit [4–8]. While these studies do a good job at finding
the compatibility of items pairwise and outfit as a whole, they do not explain
the generation of accurate training data. For example, a recent paper by Bet-
taney et al. described a system for Generating Outfit Recommendations from
Deep Networks (GORDN) using multi-modal data, but they assumed randomly
generated outfits as the negative samples [9]. Our paper bridges that gap with a
unique method of generating a positive & negative training dataset. The gener-
ated dataset is then used to train a sequence classification model which predicts
the goodness of a given outfit. To build a generalized model, both positive and
negative outfits are required (example is shown in Fig. 1). In the context of e-
commerce, product catalogue images significantly describe the product to the
customers, hence images are cataloged keeping the latest trend in mind. These
catalog images can be considered to generate positive outfits for training. A full-
shot image (See Fig. 3) is one of the images present in the catalog showcasing an
outfit created using the primary product and other compatible products. We use
this full-shot image of a product to generate positive outfits, but this process is
computationally heavy & time-consuming, hence a classifier was built as a robust
solution to outfit generation instead of recommending just the outfits generated
using full-shot image. Negative outfits for training were generated such that they
are farther from the positive outfits in a product embedding space, where any
given outfit is represented as a sequence of product embeddings. Now since both
positive and negative outfits are available, labeling can be done automatically,
making our solution scalable. Other existing studies [3] suffer from this tedious
task of labeling outfit as positive or negative. Also, set of outfits recommended
for a product should be diverse in the sense- a women top could be paired with
either jeans, skirt, shorts, etc. To address this, we have used product clusters
which enables us to recommend a diverse set of outfits.

Each outfit (positive & negative) is represented by a sequence of product
embeddings generated using Bayesian Personalized Ranking based Matrix Fac-
torization approach (BPR-MF) [10]. These embeddings help us to take into
account a user’s preference over quality assortments, promotions, etc., and use
implicit signals (views, clicks, orders) from their interaction on the platform.
Since we are defining the outfit to be a sequence of fashion products where the
position of categories are fixed- top-wear comes first, then bottom-wear, followed
by footwear and accessories (e.g., t-shirt, jeans, shoes and watch), where each
product is a time step, Bidirectional-LSTMs can be used here. At each time step,



220 M. Madan et al.

Fig. 1. This figure depicts a positive, negative & random outfit for women-tops

given the previous product, we train the Bi-LSTM model to learn the sequence of
products in an outfit. This helps the model to identify the compatibility relation-
ship of fashion products in an outfit. Self-Attention is used on top of Bi-LSTM
to emphasize on important information present in the product embeddings by
assigning attention weights. A Goodness Score (GS) for each outfit is generated
using this model which quantifies the compatibility of products in that out-
fit. Self-Attention Bi-LSTM model is compared with its various variants in an
offline experimentation space using NDCG [11] as the primary metric. We also
compare the AUC score and ROC curves for these models on the test set. Our
contributions are three-fold and are summarized as follows:

– A novel approach to generate an accurate and large scale training dataset
(positive & negative) which helps the model to generalize their compatibility

– Self-attention based Bi-LSTM outfit classifier
– New outfits generation framework for all products on the platform

The rest of the paper is organized as follows, In Sect. 2, we briefly discuss the
related work. We introduce the Methodology in Sect. 3, that comprises of cre-
ation of BPR-MF product embeddings, training dataset generation, and the
explanation of the model architectures used, along with the generation of new
outfits. In Sect. 4, we compare different variants of Bi-LSTM model, showcase
the reproducibility of our work, and conclude the paper in the last section.

2 Related Work

There is a growing interest in using AI to identify fashion items in images due
to the huge potential for commercial applications2, some of which are identify-
ing fashion fakes and counterfeit products. AI-enabled shopping apps allow cus-
tomers to take screenshots of clothes they see online, identify shoppable apparels
and accessories in that photo, and then find the same outfit and shop for sim-
ilar styles. Several works in the fashion domain are closely related to ours. We
2 https://www.forbes.com/sites/cognitiveworld/2019/07/16/the-fashion-industry-is-

getting-more-intelligent-with-ai/.

https://www.forbes.com/sites/cognitiveworld/2019/07/16/the-fashion-industry-is-getting-more-intelligent-with-ai/
https://www.forbes.com/sites/cognitiveworld/2019/07/16/the-fashion-industry-is-getting-more-intelligent-with-ai/
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first discuss fashion image retrieval, recognition, and image attribute learning.
Recently, Z Kuang et al. introduced a novel Graph Reasoning Network, trained
on a graph convolutional network which compares a query and a gallery image
to search the same customer garment image as in the online store [12]. Liao et al.
developed an EI (Exclusive & Independent) tree that organizes fashion concepts
into multiple semantic levels and helps to interpret the semantics of fashion query
[13]. Liu et al. showcased a deep model- FashionNet that learns fashion features
by jointly predicting clothing attributes and landmarks [14]. Hadi et al. deployed
deep learning techniques to learn a similarity measure between the street and
shop fashion images [15]. Comparing with the previous works on fashion image
retrieval, the goal of this work is to compose fashion outfit automatically, which
has its own challenges in modeling many aspects of the fashion outfits, such as
compatibility.

Literature on Attention-based LSTMs: Wang-Cheng et al. built a Self-
Attention based Sequential Recommendation model (SASRec), which adaptively
assigns weights to previous items at each time step [16]. In [17], Wang et al. pro-
posed an Attention-based LSTM Network for aspect-level sentiment classifica-
tion. In this work, we employ a Self-Attention based Bi-LSTM model to classify
a sequence of fashion products into positive & negative outfits.

Thirdly, we discuss literature available in fashion recommendations. Hu et
al. implemented a functional tensor factorization approach to give personalized
outfit recommendations [5]. Li et al. adapted an RNN as a pooling model to
encode the variable-length fashion items and predicted the popularity of a fash-
ion set by fusing multiple modalities (text and image) [8]. Liu et al. proposed
a latent Support Vector Machine (SVM) model that gives occasion-based fash-
ion recommendation which relies on a manually annotated dataset [3]. In [18],
item representations were generated using an attention-based fusion of product
images & description and its effectiveness on polyvore dataset was showcased.
In [4], researchers employed a Bi-LSTM to capture the compatibility relation-
ships of fashion items by considering an outfit as a sequence. While there are
some similarities, none of these works talk about how to generate an accurate
negative sample for model creation. Also, the Self-Attention Bi-LSTM model
for outfit generation has not been used in prior studies. Our paper proposes an
algorithm to create pure negative outfits, which leads to improved performance
as compared to randomly created negative outfits; as shown in Sect. 4. These
negative outfits along with positive outfits are used to build an outfit classifier
using a Self-Attention layer on top of a Bi-LSTM. This classifier is then used to
generate new outfits.

3 Methodology

In this section, we present the key components of our Outfit Generation Frame-
work (OGF). A fashion outfit is composed of multiple fashion items. These items
are expected to share a similar style (design, color, texture, etc.). For the scope of
this work, we have considered four items in an outfit, Oi = {s1, s2, s3, s4}. Figure 2
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Fig. 2. Outfit generation framework

explains the OGF. Given some seed fashion items, positive outfits for them were
generated using the full-shot image (Algorithm 1). An initial set of negative out-
fits were generated randomly. These were then compared with the positive ones
to ensure they are distant enough (Algorithm3). Fashion items in both positive
& negative outfits were represented by their respective embedding vectors con-
structed using BPR-MF. By treating an outfit as an ordered sequence of items
(top-wear always comes first, followed by bottom-wear, footwear, and accessory),
we have built a Self-Attention based Bi-LSTM sequence classification model. New
outfits were generated by passing candidate outfits (generated using Algorithm2)
into the trained model which predicts their Goodness Score (GS). Outfits having
GS above a certain threshold GS∗ were finally displayed on the platform.

All of the above exercises are done at a Gender-Category level to design
different outfits for them. Eg., men might pair a t-shirt with jeans, casual or
sports shoes, watches; whereas women might pair a t-shirt with jeans, boots,
handbag. While one could always generate outfits using only a gender level
model, we decided to go with the gender-category level approach to ensure that
the outfits are present for all fashion items live on the platform. The category
in the gender-category model refers to either a top-wear (shirts, t-shirts, tops,
jackets, etc.) or a bottom-wear (jeans, trousers, track pants, shorts, etc.); but the
order of outfit remains constant (top-wear, bottom-wear, footwear, accessory).
For instance, while outfits for all Men-Shirts were generated using a Men-Shirts
model wherein bottom-wear could either be jeans, trousers, etc.; it won’t be
able to capture all jeans products or all trousers. Hence, a different model for
Men-Jeans helped to create outfits for all jeans products.

3.1 Bayesian Personalized Ranking (MF) Embedding

Being one of the largest e-commerce platform, there are significant amount of
long-tail products in our catalogue since a user cannot possibly interact with all
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the products on our platform. To solve this problem, embeddings were created
using Matrix Factorization (MF) approach [19].

Due to the absence of significant amount of product ratings, implicit signals
(such as the number of views, clicks, add to carts, orders) were utilized. A user-
product interaction matrix (UPIM) was constructed using implicit signals from
the user clickstream data. Each element of this UPIM refers to the implicit
rating of a product with respect to a user. It was calculated by the weighted
sum of implicit signals. To generate embeddings, popular Bayesian Personalized
Ranking (BPR) [10] based MF approach was used as the UPIM was 99% sparse.
The algorithm works by transforming the UPIM into lower-dimensional latent
vectors where BPR helps in pairwise ranking. Loss function of BPR:

−
∑

(u,i,j)

ln σ(xuij) + λΘ||Θ||2 (1)

where u, i, j are the triplets of product pairs (i, j) and user u available in the
interactions dataset. xuij = pui - puj ; denotes the difference of preference scores
for the user u, representing that the user u likes product i over product j. Θ are
the model parameters and λΘ is model specific regularization parameter. Simi-
larity g(Pi, Pj) between product Pi and Pj was computed using BPR. Product
embeddings for all the products were generated using this approach.

3.2 Training Dataset Generation

In this section, we describe our algorithms of generating positive, candidate and
negative outfits.

Positive Outfits Generation. Let S denote the set of fashion items in any
outfit Oi. Then, Oi = {s1, s2, s3, s4} for all si belonging to S. Each item
si belongs to different product category (top-wear, bottom-wear, footwear, and
accessory). The steps for generating positive outfits are presented in Algorithm1.

Given a seed fashion item s1, we need to create positive outfits for training the
model. Here s1 is the primary category product. From the set of catalog images
I of s1, we identify the full-shot image I∗ such that it has a maximum number
of different categories (top-wear, bottom-wear, footwear, accessory) present, as
shown in Fig. 3. Then I∗ = [s1, s2, s3, s4]. Note that the detector might not be
able to detect all four categories in I∗, but it certainly ensures that the selected
image has at least three categories detected. Also, it’s okay if no such image I∗
is identified for any s1 since we only need a sample of primary category products
to generate positive outfits training dataset.

Apart from s1, visually similar products were fetched for s2, s3 from set
Pi∗ to get their visually similar products sv2 and sv3 respectively. N number of
sequences of fashion items, Gn∗, were created keeping s1 (top-wear) always in
the first position, random item from sv2 (bottom-wear) and from sv3 (footwear)
in second and third position respectively. There were challenges in detecting the
fourth item (accessory) and hence its visually similar products were not found.



224 M. Madan et al.

Algorithm 1: Positive Outfits Generation
Input:

– Seed fashion item s1
– Catalog images of s1 : I = (i1, i2, i3, i4)
– Visually similar products set Pi∗, i = (2, 3)
– Accessory products set A*
– Combination feature function C(si)

Output: Positive outfits set Gn∗

1. Full-shot image, I∗ ←− I
2. Compute visually similar products, svi ∀ i ∈ [P2, P3]
3. Select accessory product sc4 from A* based on combination of features
4. Gn∗ = {s1, sv2 , sv3 , sc4}

To complete the outfit, a combination of features (price, color, brand, etc.) was
used to randomly sample an accessory item sc4 from set A∗. This way a single
positive outfit G∗ was created.

Keeping the primary product (either top-wear or bottom-wear depending
on the Gender-Category for which model is to be generated) fixed, the rest of
the products in an outfit were determined using the above approach to get a
positive outfit set Gn∗. The non-primary products can be sampled in any order
since each of them come from independent sets. Since we hypothesized that I∗ =
[s1, s2, s3, s4] is a positive outfit, replacing s2 with any sv2 and keeping the rest
of products will give another positive outfit. We pick only those visually similar
products that have high visual similarity score. Figure 1 depicts a positive outfit
G∗ created using the above algorithm. There are in-house components built for
the purpose of detecting different categories present in an image and creation of
visually similar products set.

Fig. 3. Detection of categories in a full-
shot image

Fig. 4. Each row depicts products
present in that cluster
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Algorithm 2: Candidate Outfits Generation
Input:

– Candidate fashion item si,
– Set of all Fashion items F∗,
– BPR-MF product embeddings

Output: Candidate Outfits set Rn∗

1. si ←− F∗, ∀ i ∈ [1,n]
2. Clusters Kc ∀ c ∈ {non-primary categories}
3. Select sc from Kc ∀ c
4. Rn∗ = {si, sbottomwear, sfootwear, saccessory} or Rn∗ = {stopwear, si, sfootwear,

saccessory}

Candidate Outfits Generation. It is equally important to generate non-
compatible or negative outfits in order to build an accurate classifier. Candidate
outfits were used as input to generate negative outfits. They were also used to
generate new outfits. The candidate outfits creation problem is formulated and
presented in Algorithm 2.

Given a set of all fashion items F∗, m items from the primary category
were randomly selected for which candidate outfits were generated. For a can-
didate fashion item si, an outfit could comprise of total four items out of which
si could be a top-wear or a bottom-wear depending on the Gender-Category
level. Keeping si fixed, for the remaining three items- fashion items from mul-
tiple categories are eligible. For example: A women-tshirt could be paired with
either a jeans, casual shoes, a watch or a shorts, sports shoes, handbag; and a
women-jeans could be paired with either a tshirt, casual shoes, watch or a tshirt,
sports shoes, handbag. Here we follow the same ideology of an outfit as described
above- a sequence of four products (top-wear, bottom-wear, footwear, acces-
sory). Within each non-primary category ({bottom-wear, footwear, accessory}
for primary category {top-wear} and {top-wear, footwear, accessory} for pri-
mary category {bottom-wear}), fashion items were clustered using their embed-
ding vectors as input. The optimal number of clusters, K was decided using the
elbow method and the K-nearest neighbour approach was employed for cluster-
ing. Fashion items were randomly sampled from different clusters, Kc within a
category to form a candidate outfit Ri∗. For each si, n number of candidate
outfits were generated to form set Rn∗. Clustering is done to bring diversity in
outfits. Figure 4 shows products in different clusters for category bottomwear.
Since, out of all fashion items only m were selected to generate candidate outfits,
we might have missed out on some genuinely good outfits.

Negative Outfits Generation. The goal of Algorithm 3 is to construct a
set of negative outfits such that they are far away from the positive outfits
in the embeddings space. To get the initial set of negative outfits BIn∗, a set
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Algorithm 3: Negative Outfits Generation
Input:

– Candidate Outfits set Rn∗,
– Positive Outfits set Gn∗,
– BPR-MF product embeddings

Output: Negative Outfits set Bn∗

1. BIn∗ = Rn∗ - Gn∗
2. Bn∗ ⊂ BIn∗ if d(Bn∗, Gn∗) ¡= Md(100th p), Md(95thp)

difference is taken between candidate outfits, Rn∗ (Algorithm 2) and positive
outfits Gn∗ (Algorithm 1). Then, we transform each outfit into a sequence of
their respective item embedding vectors so that a cosine distance metric can be
computed between different outfits.

A distribution of deciles of cosine distance between Gn∗ and BIn∗ was con-
structed. It was used to sample high confidence negative outfits Bn∗ from BIn∗
using the following rules-

d(Bn∗, Gn∗), 100thp <= Md(100thp) (2)

d(Bn∗, Gn∗), 95thp <= Md(95thp), (3)

where d(Bn∗, Gn∗), 100thp & d(Bn∗, Gn∗), 95thp are the 100th & 95th per-
centiles of distance d(B, Gn∗). And, Md(100thp) is the Median of 100th percentile
deciles and Md(95thp) is the Median of 95th percentile deciles. Using the above
approach, around 30% outfits from BIn∗ got selected to form Negative Outfits
Set Bn∗. Figure 1 shows one such outfit which a human eye would also perceive
as bad.

3.3 Bi-LSTM

Bidirectional-LSTM is a variant of Recurrent Neural Networks (RNNs) that was
created as the solution to short-term memory. It has internal mechanisms called
gates that can regulate the flow of information. These gates can learn which
data-point in a sequence is important to retain or discard. This way, it can pass
relevant information down the long chain of sequences to make predictions. Uni-
directional LSTM can only preserve information of the past because the only
input it has seen is from the past, whereas a Bidirectional LSTMs will run your
inputs in two ways, one from past to future and another from future to past.
They use the same hidden states while running front and back which helps to
retain information from the future and past. Hence, we have used it to learn the
sequence of fashion items in outfits. Bi-LSTMs have been successfully applied to
temporal modeling tasks such as sequence tagging [20], speech recognition [21],
sentiment classification [22], and image and video captioning [23].
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Fig. 5. Bi-LSTM model architecture Fig. 6. Self-attention block

Figure 5 shows the architecture of the Bi-LSTM model used in this paper.
Each fashion item in an outfit is represented by its respective embedding vector
prepared using the BPR-MF technique. These embeddings were passed as a
sequence into one Bi-directional LSTM layer. Hidden state outputs from the front
LSTM and back LSTM were concatenated to give final hidden state outputs as
(h1, h2, h3, h4). These outputs were then passed to a dense layer with sigmoid
activation function which gives the Goodness Score of a sequence (outfit).

3.4 Self-attention Bi-LSTM

Attention is an algorithm used industry-wide to map important and relevant
information from the input and assign higher weights to them, enhancing the
accuracy of the output [24]. It uses hidden state output from encoder and state
input from a decoder to form a context vector that gives the relative impor-
tance of each state. Self-attention [25], also called intra-attention is an attention
mechanism relating to different positions of a single sequence in order to com-
pute a representation of that sequence. As compared to vanilla attention, which
uses inputs from hidden states of sequence data (encoder) and sequence data
(decoder), the self-attention uses only the hidden states of the encoder. Depend-
ing on the attention width, w (which controls the width of the local context),
hidden states are chosen. If w = 3, then to calculate the context vector for state
2; hidden state outputs (h1, h2, h3) are considered.

Given current hidden state hi and the previous hidden state sj , let f(hi,sj) be
the attention function that calculates an unnormalized alignment score between
hi and sj , and ai = softmax(f(hi,sj)) be the attention scores. Then, Additive
Self-Attention states that f(hi,sj) = vT

a .tanh(W1 hi + W2 sj), whereas Multi-
plicative Self-Attention states that f(hi,sj) = hT

i Wa sj ; where va and W are
learned attention parameters. Additive and multiplicative attention are similar
in complexity, although multiplicative attention is faster and more space-efficient



228 M. Madan et al.

in practice as it can be implemented more efficiently using matrix multiplication.
Hence, we have used a multiplicative self-attention layer in our model.

The architecture of the self-attention block (See Fig. 6) is discussed as follows-
Assuming attention width (w = 2), we need to calculate the context vector for
state 2. Since w = 2, alignment score for each state will be computed using only the
current hidden layer output hi, and the previous hidden state output sj . Hence,
alignment score e21 is calculated using s1 and h2. A softmax function is applied
on top of these alignment scores to compute attention score (weight) a21:

a21 = e21/(e21 + e22 + e23 + e24) (4)

A context vector c2 is then computed by the formula :

c2 = (a21.s1) + (a22.s2) + (a23.s3) + (a24.s4) (5)

The context vectors ci enable us to focus on certain parts of the input to learn
the outfit compatibility. These were passed into a dense layer with sigmoid
activation to give the probability of goodness of an outfit.

3.5 Generation of New Outfits

In this sub-section, we describe the generation of new outfits using the architec-
ture defined in Fig. 2. This whole module is divided into 2 parts - the creation of
a training module, and new outfits generation. The creation of the training mod-
ule is explained as follows- positive & negative outfits, created using Algorithm1
and 3 respectively, were used to train a Self-Attention based Bi-LSTM model.
Positive outfits were labeled as 1 while the negative ones as 0. These outfits were
then randomly shuffled together to get a list of outfits (sequences). 75% of the
outfits in the list were used as a training set, while 25% of them constituted
the test set. The sequence of outfits was converted into a sequence of product
embeddings so that they can be used by the model. Using grid-search, the set of
optimal hyper-parameters {epochs, batch size, learning rate} was found auto-
matically for each Gender-Category model. The best set of weights was chosen
basis the minimum validation loss metric and saved for future prediction.

Candidate outfits (created using Algorithm2) were passed into the training
module to get the Goodness Score (GS) of each outfit. The outfits having score
greater than a chosen threshold (GS∗) were selected to be displayed on the plat-
form. Threshold GS∗ varied for different gender-category since modeling is done
at that level. Choice of GS∗ was made based on models’ precision & recall values.

Both of these components (training & prediction) are offline, taking away all
the concerns related to online traffic. Training is done once a month, while predic-
tion happens daily to account for new products added to the platform. This system
has been live for more than 6 months on Myntra (http://www.myntra.com).

http://www.myntra.com
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4 Results

This section demonstrates the goodness of the proposed Self Attention Bi-LSTM
model (with varying attention-width parameter) as compared to a Bi-LSTM
model without the self-attention layer. We have evaluated different approaches
on the data taken from Myntra, one of the leading fashion e-commerce platform
in India. To evaluate these models, we have used nearly 150K positive and nega-
tive outfits across four gender-categories (Men-Shirts, Women-Tops, Men-Jeans
& Women-Jeans) as the test set. These outfits are a set of four fashion items,
necessarily in the order- {top-wear, bottom-wear, footwear, accessory}, wherein
each item is represented by its BPR embedding. Goodness Scores for these outfits
were generated using the Training Module (defined in Sect. 3.5). Outfits having
a score greater than a chosen threshold, GS∗ were given the Prediction Label,
LP equal to 1, otherwise 0. LP was compared with actual label LA to evaluate
different models.

Quantitative Evaluation: As this is a sequence classification problem, standard
evaluation metrics are used, namely Area under the curve (AUC), Receiver oper-
ating characteristic (ROC) curve. AUC on the test set for some categories is pre-
sented in Table 1. For instance in the Men-Shirts gender-category, the Bi-LSTM
model gave an AUC of 79% on the test set. On applying a Self-Attention layer
(with attention-width, w = 1) on top of the Bi-LSTM layer improved the AUC
by 3%. Further improvements in AUC were achieved by gradually increasing the
value of w from 1 to 4, with w = 4 giving the best result out of all the models.
Since with w = 4, the self-attention layer focused on all four product embeddings
in a sequence; it delivered the best result in every Gender-Category. ROC curves
for different classifiers for Men-Shirts can be seen in Fig. 7.

A comparison of the winning model, Self Attention Bi-LSTM (w = 4), con-
sidering the same set of positive outfits and different negative outfits is shown
in Fig. 8. The model trained using negative samples generated by Algorithm 3
(M1) resulted in an increase in AUC value by 9% as compared to the model
using randomly generated negative samples (M2) since M1 better differentiated
between the positive and negative outfits. M2 wrongly classified some negative

Table 1. Evaluation metrics on different models for different gender-categories, where
the Self-Attention layer based Bi-LSTM model performs the best

Models Men-shirts Women-tops Men-jeans Women-jeans

NDCG AUC NDCG AUC NDCG AUC NDCG AUC

Bi-LSTM (BL) 0.50 0.79 0.54 0.83 0.52 0.81 0.53 0.80

Self-Attn. BL (w = 1) 0.52 0.82 0.55 0.85 0.54 0.84 0.54 0.82

Self-Attn. BL (w = 2) 0.54 0.86 0.58 0.88 0.57 0.87 0.56 0.85

Self-Attn. BL (w = 3) 0.57 0.89 0.62 0.90 0.60 0.90 0.57 0.87

Self-Attn. BL (w = 4) 0.58 0.92 0.64 0.93 0.62 0.91 0.60 0.90
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Fig. 7. ROC curves for men-shirts: self-
attention Bi-LSTM (w= 4) dominate
others

Fig. 8. Model trained using negative sam-
ples generated by Algorithm 3 performs
better than the one using random samples

outfits as positive outfits leading to a drop in AUC. This result was generic
across all gender-category level models- M1 performed better than M2. Hence,
the approach proposed in this paper to generate accurate training outperforms
the random dataset generation technique used by other works in the similar
domain. Note that this result holds to our dataset (it cannot be made public
due to legal constraints).

Offline Evaluation: We have compared our models offline using NDCG (Nor-
malized Discounted Cumulative Gain) [11] as a metric. NDCG is a standard
information retrieval measure used for evaluating the goodness of ranking a set.
Here, the hypothesis was that using a Self-Attention layer on top of a Bi-LSTM
layer increases Click Through Rate (CTR). For computing NDCG, we have used
the CTR as the true score. Outfit’s goodness score from the model is used as the
predicted score. Since there were outfits present for different primary products,
we computed NDCG for each primary product and took their average for com-
parison purposes across models. The results showed the NDCG score improved
(in all Gender-Categories) as we moved from Bi-LSTM to higher Self-Attention
width Bi-LSTM models, as shown in Table 1.

Qualitative Evaluation: When the model (trained on sequences of product
embeddings) was used to predict the goodness score of the newly generated
outfits, the results were quite similar to what a human eye would observe.
Figure 9 shows some positive outfits & negative outfits as predicted by the win-
ning model for four different gender-categories: men-shirts, women-tops, men-
jeans and women-jeans. Fashion items in positive outfits complement each other,
which is not observed in case of negative outfits. Here the fashion items sport
dissimilar style/design, for example: the first negative outfit in Fig. 9a shows a
combination of red & white checked shirt with black regular shorts and brown
boat shoes, this was predicted as negative by the model. A human eye would
also classify this combination as an incompatible outfit.
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(a) Men-Shirts: Positive, Negative outfits (b) Women-Tops: Positive, Negative outfits

(c) Men-Jeans: Positive, Negative outfits (d) Women-Jeans: Positive,Negative outfits

Fig. 9. Positive and Negative outfits generated by the model (Color figure online)

Reproducibility: Though we cannot share the dataset due to legal constraints,
the work presented in this paper can be replicated by following these steps.
Generate positive outfits either at Gender or Gender-Category level using Algo-
rithm1, where each outfit follows the schema- top-wear, bottom-wear, footwear,
accessory. Candidate outfits can be generated using Algorithm2. From these,
the negative outfits can be generated by Algorithm3. Positive & negative outfits
must be labeled as 1 & 0 respectively. These outfits are then randomly shuffled
together to get a list of outfits (sequences). 75% of the outfits form the training
set, while 25% of them lie in the test set. Each outfit can be represented as a
sequence of product embeddings (we have used BPR-MF embeddings of size 64,
generation discussed in Sect. 3.1; implicit python library used) since this helps
a sequence classification model to learn their compatibility. A Self-Attention Bi-
LSTM model can be built by passing these outfits into one Bi-directional LSTM
layer with 150 hidden units, using glorot normal as the kernal initializer to set
the initial random weights of Bi-LSTM layer. A dropout and recurrent dropout
probability equal to 0.2 is applied to reduce overfitting in the model. Then, a
Self-Attention layer is applied to focus on certain parts of the input sequence.
We used multiplicative self-attention & experimented with varying values of
attention width (w) parameter. Finally, a dense layer with sigmoid activation
function is applied to return the Goodness Score of an outfit. Since there are
only two labels (1 & 0), binary cross entropy loss can be used. The set of opti-
mal hyper-parameters {epochs, batch size, learning rate} can be found using
grid-search. Python libraries- keras & keras-self -attention were used for this
implementation.
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5 Conclusion

In this paper, we solve the challenging problem of creating an accurate training
dataset for modeling fashion outfits and show its effectiveness compared to the
random method. By considering an outfit as a sequence of fashion items, we have
deployed a Self-Attention based Bi-LSTM model wherein each item has been
represented by its respective embedding vector generated using the BPR-MF
technique. This model has been used to generate new outfits by predicting their
goodness score. As future work, we plan to improve outfit recommendations by
personalizing outfits using user’s preferences and also diversify the outfits using
different aspects like occasion, theme, and other category-specific attributes.
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Abstract. In omnichannel customer service environments, where no
real process is enforced, a wide variety of customer journey variants
exists. This variety makes it complex to find process improvement oppor-
tunities. Modeling the journeys as traces is an essential step before dis-
covering an explainable model of various behaviours. Trace clustering
helps improvement efforts by separating the journeys into homogeneous
subsets in terms of behaviour and purpose. For this, a one-size-fits-all
distance metric has been used so far in the literature. This paper shows
that a domain-informed similarity metric will improve customer journey
clustering compared to a generic one. We propose SIMPRIM framework,
which uses clustering quality metrics to develop a similarity metric that
maximizes the separability of the journeys in a low dimensional space
while agreeing with existing process knowledge. Experimental evalua-
tion on real life use cases of a large telecom company and a benchmark
dataset show that, compared to a generic metric, respectively a 46% and
39% improvement can be obtained in terms of the internal clustering
quality while keeping the external clustering quality equal. We also show
that the inferred metric can be useful for prediction applications.

Keywords: Similarity metric · Customer journey clustering

1 Introduction

In today’s business environment, delivering a superior customer experience is
becoming a priority to compete. Customer experience is the result of every inter-
action a customer has with a business, from navigating the website to using the
product or talking to a customer service agent. The sequential steps and inter-
actions, i.e. touchpoints, that a customer goes through for accessing or using a
product, is referred to as a customer journey. Analyzing customer journeys is
an extremely useful exercise for companies that aim to understand and improve
the customer experience for their users as interactions do not occur in isolation.
Nowadays, many companies are adopting a data-driven way of working in which
a lot of data about customer contact is collected. However, data-driven meth-
ods for customer journey analysis are still very limited. Recently, [1] highlighted
that process mining techniques are suitable for exploring customer behaviour.
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Such techniques aim to extract useful information about process execution by
analyzing event logs. In the scope of customer journey analysis, the process can
be considered the sequence of touchpoints in a customer journey for which at
least its timestamp, activity and a journey identifier are stored. Traditional pro-
cess mining approaches expect processes to be well-structured and limited in
scope [8]. Customer journeys, on the other hand, are often derived from pro-
cesses that have opposite characteristics. Customers can usually operate in very
flexible environments where no process is enforced. To offer the best possible cus-
tomer experience, companies provide omnichannel customer service which yields
high customer journeys variability: for reaching each goal, a customer has count-
less ways. There are inherent problems of applying process mining techniques
to flexible environments like these. The corresponding event log is very diverse
as it captures a wide spectrum of behaviour, both in terms of topic and jour-
ney length, meaning journeys vary significantly from each other. This typically
yields so-called spaghetti-like process models that are large, highly unstructured
and essentially useless for further analysis [12]. To overcome this issue, [12] pro-
pose to use Trace Clustering in which the event log is split into homogeneous
subsets. Separately, these processes are significantly more structured than the
complete process and thus yield more interpretable process models. Using this
approach, journeys could be clustered based on customer intent, i.e. the purpose
of and the behaviour behind customer contact. Due to the high journey variety,
both aspects are required to find clusters that reflect similar journeys. To cluster
journeys in a meaningful way, an appropriate notion of journey similarity is of a
critical importance. However, current approaches to trace clustering solely make
use of standard distance metrics (e.g. Euclidean, Cosine or Jaccard). They are
assumed to create meaningful clusters for journeys belonging to a wide spec-
trum of processes ranging from hospital patients to customer webclicks. This
assumption seems to be violated in practise where for instance different pieces
of information are relevant in varying percentages (cf. Fig. 1). Therefore, the
suitability of a certain similarity function for a given business problem depends
on the characteristics of the data and nature of the problem. Hence, we challenge

Fig. 1. Schematic overview of touchpoints t from 3 example journeys ji in telecom
journey log L (cf. Definition 1) and the corresponding journey labels Di (cf. Definition
9). Standard distance metrics will fail in deciding which of ji are closest to each other.
The perspective Vi (cf. Definition 2) from which one looks at ji matters too.
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the current usage of ‘naive’ metrics and hypothesise that a meaningful similar-
ity metric is much more suitable. Such a metric can be further useful in any
prediction and/or recommendation task beyond clustering. As such, inferring a
meaningful similarity metric is essential for advanced journey analysis in general.

In this paper, we propose a methodology for the development of a domain-
informed similarity metric for customer journeys from flexible environments.
Predominantly focusing on, but not limited to, customer service environments
from which the trivial examples in Fig. 1 are illustrated. The main use case of
this work comes from a leading telecommunication company that we will refer
to as Anonycomm. The core of the framework is based on unsupervised learning
(clustering), while domain knowledge in the form of journey annotation is used
to support the development of the metric along the way as much as needed.
This approach is hypothesized to yield journey analysis results that could not
be found by domain experts but are in line with their existing knowledge. We can
assume that a rough journey categorization is available since information of this
kind is available in almost every data science problem or can be created using
automatic labelling techniques. However, this categorization is often imperfect
or totally wrong. Often, only a high-level journey categorization (e.g. topic-
based) is available in which high variability of journeys is expected. Therefore,
the similarity metric should not overfit on that domain knowledge.

The paper is organized as follows: Sect. 2 formalizes the addressed problem.
Section 3 introduces the proposed framework to develop a meaningful customer
journey similarity metric. In Sect. 4 we demonstrate the usefulness of the frame-
work using two real-life event logs. In Sect. 5 we extensively discuss related work
before concluding the paper in Sect. 6.

2 Problem Definition

Below, we introduce some definitions and subsequently we formally define the
problem of inferring a meaningful similarity metric out of customer behaviour.
Definition 1 & 2 are adopted from [8] but adjusted to the customer journey
application.

Definition 1. (Journey log). Let A be a set of attribute names. Let T be the
set of all touchpoint identifiers. a(t) is the value of attribute a ∈ A for touchpoint
t ∈ T . Typically, the following attributes are present in touchpoints: activity(t),
time(t), channel(t), see examples in Fig. 1. Other touchpoint attributes can be
the cost, resource or activity outcome. Journeys, like touchpoints, have attributes.
Let J be the set of all journey identifiers. a(j) is the value of attribute a ∈ A for
journey j ∈ J . Each journey has a mandatory attribute ‘trace’: trace(j) ∈ T ∗.
A trace is a finite sequence of touchpoints σ ∈ T ∗. If t or j do not have a, then
a(t) =⊥ or a(j) =⊥ (null value). A journey log is a set of journeys L ⊆ J .
A log is complex if it contains journeys from a less structured process, i.e. no
enforced process, (‘structured’ defined in [18]), where the activity (and channel)
set is large, due to which L contains many journey variants.
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Definition 2. (Perspective, journey profiles). Let V = {V1, V2, ..., VH} be
a set of perspectives, views on a journey. mapV : J → R

n denotes the function
that maps a journey to an n-dimensional vector according to perspectives V.
pV(j) denotes the projection of journey j ∈ L to perspectives V . Furthermore,
we let pV(j) = p{V1,V2,...,Vh}(j) = mapV1(j) || mapV2(j) || ... || mapVh

(j), i.e.
pV(j) is a journey profile vector in which all perspectives are concatenated.

Definition 3. (Feature set). Let F (n) = {f1, f2, ..., fn} be the full set of fea-
tures in journey profile pV(j). F (m) ⊆ F (n) denotes a feature subset that con-
tains m most relevant features according to a specific feature selection technique
where m ≤ n. Journey profiles reduced to this subset are denoted by pF(m)(j).

Definition 4. (Similarity metric). We define a similarity function
S(j, j′, w), S in short, is a linear function parameterized by a set of weights w
that defines pairwise similarities of customer journeys j in a journey log L ⊆ J .
Here, w = (w1, w2, ..., wm) is a set of weights where wi ∈ [0, 1]. S operates over
journey profile vectors pF(m)(j) and has the following properties:

– For the sake of interpretability, S is bounded between 0 and 1.
– When two journeys j and j′ have exactly similar profiles, then S(j, j′) = 1;
– If journey j is more similar to j′ than to j′′, then S(j, j′) > S(j, j′′);
– S is symmetric, i.e. S(j, j′) = S(j′, j).

Definition 5. (Universal similarity metric). A universal similarity metric
SU is a standard similarity metric, e.g. Cosine similarity, that uses a set of
uniform weights wi = 1 and operates over F (n).

Definition 6. (Trace clustering). A trace clustering TC = {TC1, TC2, ...,
TCk} is a set of k trace clusters over journey log L. We assume a hard clustering,
i.e. every journey is part of exactly one trace cluster. TC is the result of a convex-
based clustering algorithm with a pre-defined number of clusters k. In theory,
other clustering techniques such as hierarchical clustering could also be used but
these would not make use of the initial guess from domain experts about k that
we have in our problem (Definition 9) and would yield other parameter problems.

Definition 7. (Internal trace clustering quality). Internal quality of a
trace clustering is measured using an internal index validity statistic γ that
expresses the quality of a clustering TC in terms of the cohesion of traces
within the same cluster and the separation between traces in different clus-
ters. For a clustering TC ′ that has a higher internal quality than TC, we write
γ(TC ′) > γ(TC).

Definition 8. (External trace clustering quality). External quality of a
trace clustering is measured using an external validity statistic δ that expresses
the quality of a clustering TC based on the correspondence between TC and a
labeling D (cf. Definition 9). For a clustering TC ′ that has more over overlap
with labeling D than TC, we write δ(TC ′) > δ(TC).
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Definition 9. (Domain knowledge). Domain knowledge provides a journey
labelling D = {D1,D2, ...,Db} that assigns a journey j ∈ L to exactly one label.
This labeling represents domain experts’ intuition about a (high-level) clustering
structure of L. The domain knowledge also informs about the possibility of jour-
neys being separated over much more labels than b, namely g, but g << |J |. Due
to the existence of many journey variants, Di could still include very different
behaviour. Finally, it also specifies δmin, the lowest acceptable δ(TC) with respect
to the similarity metric learning problem.

Definition 10. (Meaningful similarity metric). An optimal similarity met-
ric S∗ maximizes γ(TC) for k = b clusters (here b is derived from D). This
metric is considered meaningful if a TC ′ with a number of clusters k up to g is
of comparable (or better) quality, i.e. γ(TC ′) is comparable to γ(TC).

Definition 11. (Optimal feature set). A feature set F (m) is considered
optimal if journey profiles pF(m)(J) maximizes γ(TC) while keeping δ(TC) >
δmin. This set is denoted by F (∗).

This work aims at inferring a meaningful similarity function S∗ that defines
similarities between customer journeys in a complex journey log L ⊆ J based on
customer intent. Using S∗, a trace clustering TC can be created. For a specific
clustering algorithm, S∗ maximizes γ(TC) for k = b clusters while δ(TC) > δmin.

Initially, domain knowledge D is helpful for the similarity metric development
but at some point it becomes questionable. The journey labeling D is not blindly
trusted, it is not considered the ground truth. This is a typical setting for a semi-
supervised approach where the domain knowledge is considered a good starting
point. The solution approach aims to collaborate with the existing knowledge
but also extends this knowledge (in particular for k > b).

3 SIMPRIM Framework

We propose SIMPRIM, a framework for Similarity Metric learning for Process
Improvement, that simultaneously learns a similarity metric S and a journey
clustering TC. By integrating metric optimization techniques with trace cluster-
ing and domain knowledge in a joint framework, S maximizes the separability
of the journeys in a low dimensional space while agreeing with existing domain
knowledge D. Since clustering results are heavily influenced by the metric that is
used, the quality of S is approximated with the quality of the corresponding TC.
The methodology is formalized in Algorithm 1. For each step, a set of suitable
techniques is selected to experiment with, such that no assumptions have to be
made about the effectiveness of a technique for a specific dataset. This makes
the framework applicable to manifold applications contexts.

3.1 Journey Log to Journey Profiles

As a first step, journeys j ∈ L are translated into a format on which similar-
ity can be calculated. SIMPRIM adopts the abstract representation approach
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Algorithm 1. SIMPRIM: Finding a domain-informed similarity metric for cus-
tomer journeys and a meaningful journey clustering
1: Determine journey perspectives V and find profiles pV(J); � Cf. Sect. 3.1

2: Find SU
∗ that maximizes γ(TC) for pV(J); � Cf. Sect. 3.2

3: F (∗) ← FeatureSelection(pV(J), D, SU
∗); � Cf. Sect. 3.3

4: w∗, TC∗ ← WeightOptimization(pF (∗)(J), D, SU
∗); � Cf. Sect. 3.4 &

Algorithm 2

5: S∗ = S(pF(∗)(j), pF(∗)(j
′), w∗);

6: Qualitatively evaluate S∗ and TC∗ and adjust previous steps if

required. � Cf. Sect. 3.5

from [12] in which journey profiles pV (J) are used. While traditional approaches
only describe a journey from the control-flow perspective [7], this approach also
allows for the inclusion of other trace perspectives V . Figure 1 shows the neces-
sity of including different perspectives to create a meaningful journey separation.
Perspectives can be based on both journey and touchpoint attributes. Common
perspectives are the Activity, Originator, Transition, Event-Attributes, Case-
Attributes and Performance perspective [12,15]. Custom perspectives can be
added if preferred. Carefully designing the journey profiles can improve the qual-
ity of TC and thus S.

SIMPRIM uses function mapV : J → R
n to map the journeys into jour-

ney profiles (Definition 2). Most perspectives V mark the presence of a certain
attribute (hot-encoding). For the mapping function, two representation tech-
niques are compared within the framework: Bag-Of-Activities (BOA) [2], and
Set-Of-Activities (SOA), indicating a real and a binary attribute count respec-
tively. For complex journey logs, this mapping typically yields numerical trace
vectors that are very high dimensional and sparse. This is caused by the large set
of attributes available of which journeys often only contain a very small subset.

3.2 Measuring Similarity

To express the similarity between any two journey profiles that are represented
as n-dimensional vectors, a number of universal similarity metrics SU can be
used. The weighted Jaccard similarity [4] and Cosine similarity are considered
most suitable for our problem. They operate efficiently on sparse and high-
dimensional vectors, are bounded between [0, 1] and proven effective in existing
work [8,12]. We define Cosine similarity(j, j′) = pF(m)(j)·pF(m)(j

′)
||pF(m)(j)||2||pF(m)(j′)||2

and

Jaccard similarity(j, j′) =
∑m

i=1 min(pF(i)(j), pF(i)(j
′))

∑m
i=1 max(pF(i)(j), pF(i)(j′))

which is set to 1 if the
denominator is 0. Their different notion of similarity makes them interesting to
compare. While Jaccard similarity is originally designed for binary sets, here we
use the weighted version. No actual weights are assigned to features but it means
that the metric can also be used on non-negative real vectors R. This ensures
that there is a difference in measuring the similarity using the BOA versus SOA
trace representation.
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3.3 Dimensionality Reduction

Many issues arise when applying clustering and weight optimization techniques
on high dimensional vectors. Therefore, feature selection is applied to reduce a
journey profile to the most effective feature subset. Such techniques are found
more suitable here than feature extraction techniques (e.g. PCA) since the inter-
pretability of the metric is considered highly important for the business use
case. SIMPRIM allows for experimentation with a variety of techniques to find
F (∗) ⊆ F (n) on which S will operate. In theory, any filter or wrapper feature
selection method can be incorporated. However, techniques that are embedded in
a clustering algorithm are not suitable for this framework as no dependence on
specific techniques is desired. Besides supervised techniques, we suggest exper-
imenting with unsupervised techniques since the quality of labeling D might
be poor. Besides, an optimal clustering from a label perspective, i.e. TC = D,
could have a very low γ(TC) in which case γ and δ are competitors. In that
case, supervised feature selection might not lead to the desired optimization.

Feature Set Size Restrictions. To be able to develop a meaningful similarity
metric, the size of feature set m is restricted by a lower bound. A very small
m yields a non-meaningful metric because (1) journey profiles pF(m)(J) might
contain too little information to separate journeys correctly for k > b, and (2)
it can yield a large set of exactly similar journey profiles which causes all these
journeys to be put in the same cluster TCi ∈ TC that cannot be separated by
increasing k since for these profiles S = 1. Therefore, SIMPRIM puts an indirect
lower bound on the feature set size using Definition 12. On the other hand, when
dimensionality increases the difference between the min and max pairwise sim-
ilarity, i.e. similarity contrast, becomes really small which makes the similarity
values indistinctive. If similarity is only expressed in a small part of the [0, 1]
range, its interpretation is not intuitive and S would not be a useful stand-alone
product. Therefore, Definition 13 puts a minimum on the similarity contrast
which indirectly upper bounds m. All remaining values for m are considered for
finding F (∗).

Definition 12. (Optimal Feature Set Lower Bound). A feature set F (m)
can only be optimal, i.e. F (∗), if the corresponding number of exactly similar
journey profiles pF(m)(j) for journey j ∈ L does not exceed max(α|Di|) for
Di ∈ D where α ∈ [0, 1] is a framework parameter.

Definition 13. (Optimal Feature Set Upper Bound). Let H ∈ J be the
set of journey with pairwise distances in J that lay within two standard deviations
from the mean distance between any two points in J, i.e. μJ ± 2 ∗ σJ . We define
the similarity contrast c as max(H) − min(H). Now, a feature set F (m) can
only be optimal, i.e. F (∗), if c > β where β ∈ [0, 1] is a framework parameter.

3.4 Co-learning of Metric Weights and Journey Clustering

Unweighted metrics assume all features are of equal importance to distinguish
traces, while in reality their importance for finding a good clustering structure
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Algorithm 2. Weight optimization using an SMBO method [10]
Input: uniform weights w, surrogate model f , objective function O, acquisition func-
tion Γ , stopping criteria
Output: optimal weights w∗

1: R ← {}
2: while stopping criteria are not met do
3: w ← SMBO(R) {Fit f and maximize Γ}
4: λw ← O(TCw) {Evaluate weight set}
5: R ← R ∪ {(w, λw)} {Add to results}
6: w∗ ← argmax(w,λw)∈R λw

7: return w∗

differs. Handpicking weights in a meaningful way is not a trivial task. To tune
distance metrics automatically, feature weighting techniques can be used that
learn a set of weights w∗ in domain W that optimizes a given objective function.
We use the clustering quality as objective such that the weights and the cluster-
ing are optimized simultaneously. We refer to this as a co-learning approach.

Weight Optimization. For weight optimization we use Sequential-Model-
Based-Optimization (SMBO), i.e. Bayesian optimization. SMBO is commonly
used for hyper parameter tuning and is very efficient for expensive objective
functions O [10]. Besides, it can take any objective function and the resulting
weights w∗ can be added to an arbitrary metric to adapt the scaling of dimen-
sions. The SBMO algorithm is described in Algorithm 2. An acquisition function
Γ is used to maximize over a cheap surrogate model and find a new set of candi-
date weights. Because of our expensive objective (clustering) function, informed
weight sampling could yield great efficiency by finding the optimum with as few
evaluations as possible. The algorithm stops when (1) x sequential function calls
did not improve the clustering quality or (2) after a specified maximum number
of calls.

We aim to develop a similarity metric S∗ that maximizes γ(TC) while keeping
δ(TC) at an acceptable level. Therefore, both quality criteria are included in
the optimization objective (Eq. 1). The contribution of δ is parameterized by
θ ∈ [0, 1], and can be determined based on the quality of journey labeling D.

O(TCw) = θ · δ(TCw) + (1 − θ) · γ(TCw) (1)

The surrogate model should reflect the actual objective as much as possible.
Within SIMPRIM, we experiment with two surrogate models: (1) a Gaussian
Process (GP) (most common) [10] and a Gradient Boosting Regression Trees
(GBT) model [3]. Both are available in the scikit-optimize Python library.

Clustering. While any convex-based clustering algorithm can be used, k-
Medoids is selected based on its simplicity and speed. It is preferred over k-Means
as its clusters are represented by actual journeys, which allows for more intuitive
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interpretation. Throughout the optimization, both the clustering algorithm and
k remain fixed. This allows to optimize TC by varying S merely.

3.5 Evaluation

The quality of S is approximated with the quality of its corresponding TC. Many
clustering validation indices exist. Based on [11], we use the revised validity index
(S Dbw) for γ, a metric that resembles the well-known Silhouette index. S Dbw
is a summation of inner-cluster compactness and inter-cluster separation. A lower
value indicates a better quality. For δ, the adjusted rand index ARI and adjusted
mutual information AMI are commonly used (a higher value indicates better
quality). In the assessment of a more fine-grained cluster output (k > b), for
which no labelled data exists, we test the robustness of the approach by involving
domain experts. This yields a qualitative evaluation instead of a quantitative one.

4 Experimental Evaluation

The usefulness of SIMPRIM is demonstrated by applying it to a real-life use case
with a leading telecom provider in Sect. 4.1. Additionally, we evaluate our frame-
work over another real world benchmark dataset in Sect. 4.2 which is hosted
by its owners here: https://data.4tu.nl/articles/dataset/BPI Challenge 2012/
12689204. Our Python implementation of SIMPRIM is accessible via https://
github.com/sophievdberg/SIMPRIM.

4.1 Customer Service Process at Anonycomm

Application Scenario. Our work is performed in collaboration with a large
telecom provider and is inspired by their data. Since they would like to stay
anonymous, we will refer to them as Anonycomm. Hundreds of thousands of cus-
tomers interact with Anonycomm each month using multiple channels. Offering
a superior customer experience is a high priority for Anonycomm as competitors
have increasingly similar service offers and devices. As such, they aim to improve
their business process towards a more efficient and self-service user portal. How-
ever, the unstructured nature of their customer support process allows for a
wide variety of journey types, which makes it very difficult to find behavioural
improvement opportunities. A meaningful journey clustering could provide a
more complete picture of the average journey per customer intent. This allows
for better sizing and prioritization of improvement efforts.

Journey log L used for this research is a collection of customer contact
moments (touchpoints t) in a 3-month period. A customer is getting into con-
tact for many different reasons (activity(t)), such as having a question about
a service, acquiring a new subscription or the installation of a new piece of
hardware. They do so using a contact type such as call, mechanic visit or order
placement (channel(t)). Finally, for all touchpoints t we have a more detailed
description/reason of activity(t) stored in eventtype(t), e.g. ‘disruption after

https://data.4tu.nl/articles/dataset/BPI_Challenge_2012/12689204
https://data.4tu.nl/articles/dataset/BPI_Challenge_2012/12689204
https://github.com/sophievdberg/SIMPRIM
https://github.com/sophievdberg/SIMPRIM
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installation’. The log is considered complex because of the large number of chan-
nels, activities and event-types (18, 80 and 767 respectively) and heavily varying
journey lengths (2–183 touchpoints). Journeys with only one touchpoints are
removed. In total, this leaves us with around half a million journeys in the
dataset.

Journey labeling D distinguishes 53 journey categories. For example, ‘WiFi
disruption’ or ‘Extra TV subscription‘ or ‘Move’. The labeling is done by domain
experts based on a large set of business rules that assign a touchpoint to a jour-
ney (=class based on the presence of specific channels, activities, event types and
time). Domain experts are not completely sure about their labeling. Besides,
the labeling is performed from a reason/topic-based perspective on journeys
which motivated us to find similarities of journeys amongst two axes: topic and
behaviour. This indicates that the metric S should not overfit on the labeling
D (i.e. relatively small δmin and limited contribution of δ in the weight opti-
mization process). The distribution of labeling D is skewed and since some of
the categories are still relatively big, domain experts indicated that dividing the
journeys up to 100 clusters could be meaningful (g ≈ 100).

Implementation Details. Journeys are clustered using the Partitioning
Around Medoids (PAM) algorithm. Since this clustering algorithm is sensitive to
the set of initial medoids, we run each experiment 5 times and report the aver-
age clustering quality. Furthermore, a label-based medoid initialization is used
(1 journey per class). This initialization technique outperformed the kmeans++
initializer for our data. For the external cluster validation, AMI index is used
since it better suits the unbalanced labeling D (small clusters exist). We experi-
ment with 2 supervised feature selection techniques, Fast-Based-Correlation-
Filter and L1-regularization, and with 2 unsupervised techniques, Variance
and Laplacian score. These are selected since they are common and relatively
efficient. Note that SIMPRIM allows for the usage of other feature selection
techniques too. The journey profiles are scaled in the range [0, 1]. Since the
unsupervised techniques do not take correlation into account, features with a
covariance ≥ 0.8 are removed. A regularization of 0.1 is used for L1.

We have recommendations about parameters: we set α = 0.5 (Definition 12),
β = 0.2 (Definition 13) and θ = 0.3 (Eq. 1). A lower value for θ is used due
to the limitations of labeling D. Stopping criteria are 60 iterations without an
improvement or a maximum of 150 iterations. Note that neither the scope of the
paper nor the space capacity allow us to do an extensive parameter sensitivity
evaluation.

The similarity metric is optimized on 3 training sets to assess overfitting and
tested on 3 test sets to evaluate its stability. Splits are stratified on class labels.
Due to memory issues, clustering could only be done on 20.000 journeys simulta-
neously using our machine (2.3 GHz Intel Core, 16 GB RAM). Other than that,
with this implementation we did not experience any run out of memory issues
or freezing of the experimentation. However, if one decides to use another tech-
nique and SIMPRIM is selecting multiple iterations of the same task, then the



244 S. van den Berg and M. Hassani

Table 1. Clustering quality results for universal metrics SU in the Anonycomm dataset.
Error indicates the σ over the training and test sets (i.e. stability).

Metric Trace type S Dbw (γ) AMI (δ)

Cosine BOA 1.078 ± 0.015 0.526 ± 0.010

SOA 1.049 ± 0.030 0.531 ± 0.045

Jaccard BOA 1.046 ± 0.054 0.403 ± 0.062

SOA 1.051 ± 0.089 0.482 ± 0.005

user should select an efficient model: our framework does not make the approach
more efficient. The total running time was around 20 h.

Experimental Results. For Step 1 in Algorithm 1, we translate journeys in
L into numerical journey profiles using 4 perspectives V . V1 is the Activities
profile that hot-encodes event and sub-event types. V2 is the Event Attribute
profile that does the same thing for the contact types of a journey (i.e. channel).
V3 is the Transition profile that only includes 2-grams for channel types, not for
activities and event types as they are extremely diverse and dimensions would
explode. Finally, the Performance perspective V4 includes the duration of the
journey, the number of different channel types and the number of touchpoints
in a journey. This mapping yields journey profiles with n = 2756 features.

To find the optimal universal similarity metric SU
∗ for the resulting pro-

files pV(J), in Step 2 of Algorithm 1 we compare the quality of the Jaccard and
Cosine metric on both BOA and SOA journey profiles (4 metrics). Table 1 shows
that, in terms of γ, all metrics have similar performance (differences within error
bandwidth) but the Cosine metrics have slightly better stability. Furthermore,
the Cosine metrics yield better results in terms of δ. The BOA representation
is preferred as it shows a slightly more stable quality than SOA and it is pre-
ferred by domain experts since it aligns with their current view on journeys.
We therefore find SU

∗ to be based on the Cosine metric and BOA journey pro-
files. Now that we have found SU

∗, we can start optimizing it. First, we reduce
the dimensions it is operating on by evaluating the feature selection techniques
(Step 3 in Algorithm 1). Figure 2 visualizes the clustering results on different
feature sets F . The largest evaluated set has m = 400 since the results stabilize
from that point. We find that L1-regularization and Variance are not yielding
any candidate feature sets for m ≤ 400 (dashed lines). Additional evaluation
indicates they yield too many similar journey vectors and thus do not meet Def-
inition 12. Based on Fig. 2, the Laplacian feature set with 60 features can be
considered F (∗). Using this feature set, γ is improved with 41% compared to
the baseline SU

∗ and the clustering remains stable over the different train and
test sets used. The external clustering quality δ for F (∗) remains comparable
to SU

∗: only a 2.6% reduction is observed, which is still considered to overlap
sufficiently with D.



On Inferring a Meaningful Similarity Metric for Customer Behaviour 245

20 60 100 140 180 220 260 300 400
0.5

1

1.5

No. of features m

Variance
FCBF
L1

Laplacian
Baseline

Fig. 2. Clustering quality γ for S oper-
ating over different F (m) in Anony-
comm dataset. Error bars indicate the
σ over the training and test sets.
Dashed lines indicate that the corre-
sponding F (m) does not fulfill Defini-
tion 12 & 13 and thus cannot be con-
sidered F (∗).

50 60 70 80 90 10
0

11
0

12
0

13
0

14
00.4

0.5

0.6

0.7

k

Anonycomm
BPIC 2012

Fig. 3. Clustering quality γ for differ-
ent k using S∗. For each k, 10 cluster-
ings with different initial medoids sets
are compared. Note: for the BPIC 2012
dataset, the x-axis should be divided
by 10, i.e. read as 5 ≥ k ≤ 14.

Table 2. Clustering quality γ and δ before (surrogate = None) and after weight opti-
mization using two surrogate models in Anonycomm dataset.

Surrogate Train γ Test γ %Δ Train δ Test δ %Δ

None 0.634 ± 0.011 0.520 ± 0.010

GP 0.594 ± 0.049 0.641 ± 0.032 −1.1 0.507 ± 0.028 0.493 ± 0.031 −5.2

GBT 0.597 ± 0.021 0.583 ± 0.013 +8.0 0.518 ± 0.025 0.523 ± 0.026 +0.6

Using only the features in F (∗), we can optimize the weights (w) of S (Algo-
rithm 1, Step 4). Figure 4 shows how the weight optimization techniques con-
verge to a final set of weights. The GP surrogate model is able to minimize
the objective function (Eq. 1) best, indicating it is better able to approximate
the expensive clustering objective than the GBT model. Also, it shows a very
efficient optimization process as it reaches its optimum very quickly. However,
Table 2 indicates that the GBT weight sets yield better clustering quality when
evaluated on the test sets. GP weights seem to suffer from slight overfitting on the
training set, while this is not the case for GBT. A possible explanation for this
could be that GP shrinks more weights to zero than GBT, for all training sets,
while for generalization it is more safe to not completely remove them. Although
the feature space is reduced, the feature set requirements are still met (Definition
12 & 13). The optimal metric S∗ is thus based on GBT weights and operates on
only 36 out of the original 2756 features. Overall, optimizing the weights yields
an additional improvement of γ of 8%, while keeping δ at a comparable quality.
In total, compared to SU

∗, S∗ is able to improve the γ(TC) with 46%, while
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Fig. 4. Weight convergence per training set (TS) for weight optimization based on
Gaussian Process (GP) or Gradient Boosting Trees (GBT) (Anonycomm).

maintaining a similar δ(TC). Figure 3 shows that S∗ is indeed meaningful as it
shows a better γ for k up to g clusters. Around k = 90–100, γ stabilizes, indi-
cating this could be a more natural number of clusters (Elbow method). Finally,
the results are qualitatively evaluated (last step of Algorithm 1). In collabora-
tion with a domain expert it is assessed whether journey clustering TC obtained
with S∗ makes sense. In general, the results were appreciated. Most clusters in
TC show very similar behaviour and deal with the same problem type, espe-
cially for a more fine-grained clustering (k = 100). To improve the incorrect
clusters, further experimentation can be performed by manually adding features
that include information for better separation.

Next Event Prediction. The added value of S∗ can also be demonstrated
using a model-based approach. For any model that uses some notion of simi-
larity, including meaningful similarity information might improve the prediction
quality. For Anonycomm, we experimented with a model that predicts the con-
tact type of next touchpoint t for a running journey j, to be able to get ahead of
mistakes and prevent them beforehand (‘on the fly’) [16]. A baseline prediction
model trained on all journeys is compared to a cluster-based approach in which
one model is build per cluster. A prediction is then made by the model that
corresponds to the cluster closest to the journey at that point in time according
to S∗. This approach is hypothesized to have higher predictive abilities since the
selected model selected is trained on journeys with similar behaviour.

To predict the next contact type of ti+1, we can include all available informa-
tion up until ti. We included the information of the previous 4 touchpoints (i.e. 4
‘lagged’ features). A Random Forest model is used (for the baseline and cluster-
based approach) and its predictive capability is expressed using the weighted F1

score. Table 3 shows that the cluster-based approach does not improve the pre-
diction quality when S∗ is used. This could indicate that the clusters in TC are
not highly discriminative in terms of contact types. Since S∗ operates over a very
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small feature set (m = 36), it might not contain sufficient information regarding
contact types. Hence, the performance of a S with more features m = 140, i.e.
S140, is also tested. Table 3 shows that this increases the prediction quality with
1.4%, which is small but significant. Note that the performance could be further
improved by properly tuning the model but this is out of the scope of this paper.

4.2 BPIC 2012 Real Dataset

Since the data of Anonycomm is confidential, the SIMPRIM methodology is
replicated on the publicly available BPIC 2012 event log, using Annonycom
implementation details. This real-life event log contains 13087 journeys in the
loan application process of a Dutch Financial Institute. It should be mentioned
that SIMPRIM adds the most value for journeys from very flexible environ-
ments, while this event log has a much more sequential (structured) nature
than Anonycomm’s event log. Since no labeling D for this log exists, classes
are derived based on the loan application outcome. We distinguish 6 classes:
applications that are (1) accepted directly (only 1 offer); (2) accepted after some
optimization of the offer; (3) rejected straight away, (4) rejected after an offer
was drafted, (5) cancelled before an offer was drafted and (6) cancelled after
an offer was drafted. D is heavily imbalanced: most applications are rejected
straight away. The separation between with or without offer is created as corre-
sponding journeys show very different journeys based on the absence or presence
of “O ” states. Journeys without an event related to being accepted, rejected or
cancelled are considered ‘running’ journeys and thus incomplete. Hence, they are
removed from the dataset (2%). In the first step of SIMRPIM (Algorithm 1),
the journey profile mapping is done similarly as on the Anonycomm dataset. We
only have resources instead of contact types in V2 and since the number of activ-
ities is significantly smaller we also include 2-grams for these in V3. This yields a
total of n = 670 features. Only 197 of these features are considered relevant, i.e.
not fully correlating and a variance score below 1. We make use of one training
set (70%) and two test sets (15% each). Table 4 shows the sequential optimal

Table 3. Weighted F -scores of the next contact type prediction models, comparing a
baseline with cluster-based approaches (CBA). An 80/20 train-test split is made and
5-fold CV is used for the train scores. (Anonycomm dataset).

Prediction model Baseline CBA with S∗ CBA with S140

Training set 0.571 0.563 0.579

Test set 0.580 0.579 0.594

Table 4. Optimal clustering results of Step 2–3 in Algorithm 1 (BPIC 2012 dataset).

S Dbw (γ) AMI (δ) Techniques

SU
∗ (Step 2) 0.777 ± 0.016 0.639 ± 0.005 Cosine, BOA

S on F (∗) (Step 3) 0.704 ± 0.002 0.645 ± 0.003 Variance, m = 50
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Table 5. Clustering quality after weight optimization using two surrogate models
(BPIC 2012 dataset). %Δ relates to the test results of Step 3 in Table 4.

Surrogate m Train γ Test γ %Δ Train δ Test δ %Δ

GP 42 0.461 0.471 +33 0.644 0.658 +2

GBT 50 0.593 0.555 +21 0.673 0.614 −5

results for Step 2–3 in Algorithm 1. As can be seen, SU
∗ is again based on Cosine

similarity and a BOA feature representation. Variance is found to be the most
suitable dimensionality reduction technique, with F (∗) consisting of 50 features.
We also tested m = 100 and m = 150. Table 5 shows the weight optimization
results (Step 4 in Algorithm 1). The metric that uses GP-based weights can be
considered S∗. The metric operates on 42 features, the other 8 were shrank to
zero. Again, the test score is slightly better than the training score, which could
indicate overfitting but to a smaller degree than on the Anonycomm dataset.
The weight optimization here was expected to suffer less from overfitting since
a larger percentage of journeys is used to train the weights on. Again, for GBT,
that does not shrink any feature to zero, no overfitting is seen. In total, γ is
improved with 39% while keeping δ similar. Different to the first experiment,
the largest improvement of γ here is obtained with the weight optimization.
Figure 3 shows that S∗ is meaningful for larger k and that k = 10 might be a
more natural number of clusters than 6.

5 Related Work

Trace clustering in process mining is discussed in several works e.g. [12]. Defining
an appropriate feature space and distance metric are still key challenges in trace
clustering. The work of [6] and [2] contribute to this by developing syntactical
techniques based on which appropriate feature spaces are derived using an edit-
based distance. However, our work is focusing on vector-based approaches since
syntactic techniques do not yield a standalone metric S that we are looking for.
This paper contributes to trace clustering techniques that aim to differentiate
business processes rather than reducing the complexity of the underlying pro-
cess models. Specifically, a contribution is made to distance-based approaches to
trace clustering. Model-based approaches, such as [5], are not considered suit-
able for our setting since no similarity between vectors is defined and thus no
similarity metric can be tested. The methodology proposed is unique because
it integrates metric optimisation techniques with clustering in one framework.
A similar setting was discussed recently in [13] but for developing a hierarchi-
cal distance metric to measure the similarity between different market baskets
where neither the behaviour nor the order of items matter. SIMPRIM adopts a
semi-supervised approach to metric learning while existing frameworks, with a
specific application to clustering, either are completely optimizing on some sort
of ground truth [17] or do not include domain knowledge at all [9]. Most feature
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weighting methods employ some variation of gradient descent. This works for
distance metrics from the Euclidean family. However, for other distance metrics,
such as Cosine, this task is not so trivial. Especially when the dimensionality of
trace vectors is high, the complexity of the gradient is large due to which this
feature weight learning approach will be inefficient and ineffective. The dimen-
sionality reduction techniques used in this paper are widely adopted in the field
of data mining but are not typically used in trace clustering literature.

6 Conclusion

In this paper, we proposed SIMPRIM, a framework for inferring an appropriate
domain-informed similarity metric that outperforms standard similarity met-
rics in the clustering task. The developed metric can also be used for further
customer journey analysis or to improve the accuracy of other predication or
recommendation tasks. A co-learning approach is adopted that simultaneously
learns metric weights and optimizes the journey clustering. Several components
used in our approach can easily be replaced with others equivalent. SIMPRIM
has shown to be useful for two real-life event logs. A 46% and 39% improve-
ment of the internal clustering quality is obtained, while agreeing with existing
process knowledge in the form of journey labeling. Furthermore, an acceptable
improvement of a next touchpoint prediction model was achieved. An interesting
future direction is the added value of the metric to recommender systems that
recommend a next best action for a running customer journey [14].
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Abstract. Neural networks are a popular tool in e-commerce, in partic-
ular for product recommendations. To build reliable recommender sys-
tems, it is crucial to understand how exactly recommendations come
about. Unfortunately, neural networks work as black boxes that do not
provide explanations of how the recommendations are made.

In this paper, we present TransPer, an explanation framework for neu-
ral networks. It uses novel, explanation measures based on Layer-Wise
Relevance Propagation and can handle heterogeneous data and complex
neural network architectures, such as combinations of multiple neural
networks into one larger architecture. We apply and evaluate our frame-
work on two real-world online shops. We show that the explanations
provided by TransPer help (i) understand prediction quality, (ii) find
new ideas on how to improve the neural network, (iii) help the online
shops understand their customers, and (iv) meet legal requirements such
as the ones mandated by GDPR.

1 Introduction

The breakthrough with neural networks as a pattern recognition technique has
lead its way into many industry sectors. Especially in e-commerce, it can be used
as recommender system for advanced searches [12], personalization of shopping
experiences and direct marketing [20], or advanced sales forcasting and predic-
tions [14]. Improving the predictions and the usefulness of those recommenders
can increase sales and customer satisfaction. Additionally, there is increasing
legal pressure in favor of privacy and data protection. For example, the Gen-
eral Data Protection Regulation [10] (GDPR) states that data subjects should
be enabled to check the collection, processing, or use of their data. Thus, busi-
nesses may be legally required to make their recommender systems transparent.

Multilayer Perceptrons (MLP) have been applied in recommender systems
learning feature representations as an extension to collaborative filtering [11].
In combination with convolutional layers, they are applied to generate fashion
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Fig. 1. Model of a neural network with different input data types

outfits for e-commerce or to personalize outfit recommendations based on learned
embeddings in Convolutional Neural Networks (CNN) [3,7]. Recurrent Neural
Networks (RNN) have shown success in modelling sequential data and have been
used for personalized product recommendations based on the purchase patterns
of customers [17], learning embeddings of fashion items [13] and modelling user
behaviour to predict clicks [5].

However, neural networks are black box models, i.e., the predictions can not
be explained. In order to tackle this, it is beneficial to make them more transpar-
ent and therefore, more human-understandable. Typically, the Gradient-based
Sensitivity Analysis [21] is used to explain the predictions of neural networks.
By optimizing the gradient ascent in the input space, it is possible to deter-
mine which inputs lead to an increase or decrease of the prediction score when
changed [23,25]. Although applications based on this method enable a statement
regarding positive or negative influence of an input on a prediction, they do not
reveal a quantitative decision-relevant input score such as Guided Backpropaga-
tion [24], DeconvNet [19], or DeepLIFT [22]. These algorithms use the trained
weights and activations within the forward pass to propagate the output back to
the input. This way, it is possible to determine which features in an input vector
contribute to the classification and to what extent. Exploiting this, ObAlEx [18]
is an explanation quality metric which measures to what extent the classified
object is aligned to the mentioned explanations. Nonetheless, all these meth-
ods are solely applied to CNNs with image data where single pixels are then
highlighted. Another back-propagating algorithm is the Layer-Wise Relevance
Propagation (LRP) that has already been successfully used in interaction with
MLPs and CNNs [1,2,15]. LRP computes the relevance of each input neuron to
an output by performing a value-preserving backpropagation of the output. Fur-
thermore, this method is even applicable on RNNs with sequential data [4,16]
which often occurs in processing customer profiles in e-commerce.

Contribution. Our contribution is threefold. First, we provide an explanation
framework called TransPer1 for e-commerce businesses in online shopping

1 We provide the source code online at https://github.com/Krusinaldo9/TransPer.

https://github.com/Krusinaldo9/TransPer
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(e.g., for product recommendation) to provide transparency to the neural net-
works used. Based on a custom implementation of Layer-Wise Relevance Propa-
gation, our approach can not only handle individual neural networks types, but
also more complex architectures that contain multiple neural subnetworks, such
as shown in Fig. 1. This is required in the presence of highly heterogeneous input
data (e.g., product images, chronological shopping interactions, personal infor-
mation) where different neural network types are necessary (e.g., CNN, RNN,
MLP). We not only take into account the relevance of the activations of the
neurons, but also the bias. This has not been considered in depth in the liter-
ature. Second, we define quantity measures to evaluate the helpfulness of these
explanations. The individuality measure can be used to determine those parts of
the input that are particularly relevant for the decision. The certainty measure
quantifies how certain the system is about its prediction. The diversity measure
states whether there are clear top predictions. Third, we evaluate our approach
on real-world scenarios. To this end, we used data from two real-world online
shops provided by our partner econda, an e-commerce solution provider. We
show that TransPer helps in (i) understanding the prediction quality, (ii) find-
ing ideas to improve the neural network, and (iii) understanding the customer
base. Thus, TransPer brings transparency to personally individualised auto-
mated neural networks and provides new knowledge about customer behaviour.
We believe that this helps to fulfill GDPR requirements.

The remainder of this paper is structured as follows. After introducing pre-
liminary definitions and concepts in Sect. 2, we go on to describe the problem
setting and formally define an online shop in Sect. 3, to introduce our quan-
tity measures in Sect. 4. We evaluate our approach on the basis of a real-world
scenario in Sect. 5 before ending with some concluding remarks.

2 Preliminaries

In this section, we present the fundamentals for the application of our approach.
To begin with, we consider a trained neural network with K ∈ N layers as shown
on the left-hand side of Fig. 2. We refer to Πk as the set of all neurons in the k-th
layer, σ as a nonlinear monotonously increasing activation function, zk

i as the
activation of the i-th neuron in the k-th layer, wk,k+1

ij as the weight between
the neurons zk

i and zk+1
j , and bk

j as the bias term w.r.t. zk+1
j . Assuming that

we know the activations in Πk, the activations in Πk+1 can be determined via
forward pass as follows:

zk+1
j = σ

(( ∑
i∈Πk

zk
i wk,k+1

ij

)
+ bk

j

)
(1)

For non-connected neurons zk
i and zk+1

j we assume wk,k+1
ij = 0. If a network has

no bias, then bk
j = 0.

Layer-Wise Relevance Propagation is a method that represents a backward
analysis method [2]. Knowing the activations zk+1

j in layer k+1, we can determine
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Fig. 2. Exemplary run of LRP. The left-hand side shows the calculation of neuron
activations in the forward pass. These activations are then part of the calculation of
its relevances in the backward analysis depicted on the right-hand side.

to what extent the neurons in Πk and the biases bk
j have contributed, or how

relevant they were. The idea behind the standard implementation of the LRP
algorithm can be found on the right-hand side of Fig. 2 and is defined as

Rz
(k,i) =

∑
j∈Πk+1

zk
i wk,k+1

ij( ∑
i∈Πk

zk
i wk,k+1

ij

)
+ bk

j

Rz
(k+1,j), (2)

Rb
(k,j) =

bk
j( ∑

i∈Πk

zk
i wk,k+1

ij

)
+ bk

j

Rz
(k+1,j). (3)

For a layer k+1, we assume for each neuron j that a relevance can be assigned in
the form of a real-valued number Rz

(k+1,j). Using Eq. 2, we obtain the relevance,
i.e., quantitative contribution, of the i-th neuron in the k-th layer to the overall
relevance of layer k + 1. Furthermore, Eq. 3 provides the relevance of the bias bk

j

of the j-th neuron in layer k + 1.
In certain applications, customized variations of the standard LRP algorithm

presented above can be considered to increase the performance. In particular,
with respect to the explainability of CNNs, it has been found that adapted LRP
methods lead to better results than the standard LRP method [1,2,15]. These
are characterized, e.g., by the use of tuning parameters or penalty terms for
negative neuron activations. Regarding RNNs, however, hardly any results exist
concerning the use of such variations. Therefore, in relation with the use cases in
Sect. 5, we provide results of a test study comparing well-known customizations
with the standard method.

3 Formal Model of an Online Shop

In this section, we define an online shop with regard to a suitable neural network
which can handle specific characteristics. Especially, we include heterogeneous
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input data such as interest in products or interactions with products which
additionally can have different input lengths. In order to generalize our definition,
we consider a neural network consisting of several neural subnetworks to cover
different cases as can be seen in Fig. 1. Considering all this, we define our online
shop as follows.

Definition 1 (Online Shop Model). We define an online shop T as a tuple

T = (C,P, (P ∗, Φ), Λ, Λ∗, S, (Ωc)c∈C , (ωc)c∈C , (fc)c∈C)

with the following entries:

a) We denote C as the finite set of all customers of the shop.
b) Let P be the finite set of all products that the shop offers.
c) Then, let P ∗ be a subset of P or P itself, i.e., P ∗ ⊆ P , and Φ denotes the

real-valued output space [0, 1]|P
∗|.

d) We denote Λ as the set of information types that the shop T can have about
one of its customers c ∈ C and assume that this amount is finite.

e) We define Λ∗ as a finite set of disjoint subsets Λ1, ..., Λn of Λ which corre-
sponds to neural networks S = {s1, · · · , sn}.

f) For a customer c ∈ C we define an associated real-valued input space

Ωc = R
m1(c) × ... × R

mn(c)

with the mappings mi : C → N for i ∈ {1, .., n} with respect to si.
g) Considering a particular customer c ∈ C, we define his input as ωc ∈ Ωc.
h) For a customer c ∈ C, we also define the mapping fc : Ωc → Φ where fc(x)

is the recommender’s output vector for an input x ∈ Ωc.

Assume we have an online shop T with customers C. The online shop has
a catalogue of offered products P . Though, not all products are predicted for
example only seasonally available ones or most purchased ones in the last week
denoted by P ∗. These are used as output space Φ in the neural network, i.e.,
if Φ(p) > Φ(p′) then product p is recommended. Now, consider the types of
information Λ the online shop can have about their customers such as already
purchased products, interactions, or ratings. As mentioned in Sect. 1, certain
network types are more suitable for specific data types. Therefore, this infor-
mation is then classified into disjoint information types, such as sequential data
Λ1, graphical data Λ2, etc., and summarized in Λ∗. So, if an online shop T has
heterogeneous user data, Fig. 1 would consist of neural subnetworks s1, · · · , sn.
With homogeneous data, we would have a special case of the previous one. Hence,
we have:

1. Λ = Λ′ and Λ∗ = {Λ′
1, ..., Λ

′
n}. (heterogeneous data) (4)

2. Λ = Λ′
i for some iand Λ∗ = {Λ′

i}. (homogeneous data) (5)

The different Λ′
i can have different input lengths depending on the sequence

length of the interactions or the size of the images. So, we use the mappings mi
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Fig. 3. TransPer Overview.

to deal with it and summarize them in Ω. Thus, for a customer c ∈ C, we obtain
the neural network’s output vector y = fc(ωc).

Considering the different data types, the online shop has three possibilities to
define a suitable neural network: (i) The online shop uses n different data types,
i.e., heterogeneous data, and needs n different neural subnetworks. An overall
decision is obtained by concatenating the hidden layers at a suitable positions,
see Fig. 1. (ii) Second, the online shop decides to just use one data class, i.e.,
homogeneous data, and therefore has just one neural subnetwork in Fig. 1. How-
ever, important information can be lost from the other data classes. (iii) Third,
it is possible to define suitable neural subnetworks for n > 1 data classes, train
them separately and then save their weights. These n trained neural subnet-
works can be concatenated and trained again with the entire data, using the
already trained weights and biases as initial values. This approach is therefore a
combination of the two mentioned possibilities above. Thus, n+1 neural subnet-
works are obtained in total, with one resulting from the concatenation of the n
individual neural subnetworks. The output vector then depends on whether one
uses the concatenated network sn+1 or one of the neural subnetworks s1, ..., sn.
This third possibility will be relevant for our use case.

4 Explanation Approach

The goal of our approach is to evaluate the explanation of product recommen-
dations of a shop-adapted neural network in order to better understand the
decision. Given an input from a user of an online shop and a trained neural
network as recommender, TransPer performs a backward analysis based on
an individual prediction. In this way, it can be explained to what extent compo-
nents of the trained network or certain inputs were relevant. This process can be
seen in Fig. 3. In the following, we will (i) describe how these explanations can
be gained with LRP, (ii) specify how to analyze the input with Leave-One-Out
method and (iii) define quantity measures to evaluate the explanations.

4.1 Explanation via Layer-Wise Relevance Propagation

Following the notation of Sect. 2 and Definition 1, we assume that K ∈ N denotes
the number of layers in the neural network, i.e., the first layer is the input layer
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and the K-th layer is the output layer. Furthermore, for k ∈ {1, ...,K} let |Πk| =
Ik ∈ N be the number of neurons in the k-th layer, i.e., I1 describes the number
of input neurons and IK the number of output neurons. Indeed, in the context of
classifiers, each neuron of the output layer represents one element of the target
set. For example, for an input x, the neuron (K, i∗) with the highest prediction
score f(x)i∗ as output is the actual recommendation. In this context, it is then
of interest to find out to what extent the neurons of the lower layers contributed
to the decision f(x)i∗ . For our approach, we define the initial relevance vector
Rz

(K,·) := (Rz
(K,i))i∈{1,...,IK} with

Rz
(K,i) =

{
f(x)i∗ if i = i∗

0 otherwise

which can be used to iteratively compute the relevance for layers K−1, ..., 1 using
Eq. 2 and Eq. 3. Finally, we obtain Rz

(1,·) as the input layer’s relevance vector
and can thus determine to what extent an input neuron is decision-relevant
(see Fig. 2). Note that a negative relevance in an input neuron diminishes the
prediction i∗ whereas a positive relevance underpins it. In contrast to most LRP
approaches, we also consider the relevance of the bias Rb

(k,j) of the j-th neuron
of the (k + 1)-th layer. Our LRP method is characterized as follows:

∑
i∈Πk

Rz
(k,i) +

∑
j∈Πk+1

Rb
(k,j) =

∑
i∈Πk

∑
j∈Πk+1

zk
i wk,k+1

ij( ∑
i∈Πk

zk
i wk,k+1

ij

)
+ bk

j

Rz
(k+1,j)

+
∑

j∈Πk+1

bk
j( ∑

i∈Πk

zk
i wk,k+1

ij

)
+ bk

j

Rz
(k+1,j)

=
∑

j∈Πk+1

∑
i∈Πk

zk
i wk,k+1

ij( ∑
i∈Πk

zk
i wk,k+1

ij

)
+ bk

j

Rz
(k+1,j)

+
∑

j∈Πk+1

bk
j( ∑

i∈Πk

zk
i wk,k+1

ij

)
+ bk

j

Rz
(k+1,j)

=
∑

j∈Πk+1

( ∑
i∈Πk

zk
i wk,k+1

ij

)
+ bk

j( ∑
i∈Πk

zk
i wk,k+1

ij

)
+ bk

j

Rz
(k+1,j)

=
∑

j∈Πk+1

Rz
(k+1,j).
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As f(x)i∗ =
∑

j∈ΠK

Rz
(K,j) is satisfied by assumption, we obtain

f(x)i∗ =
∑

i∈ΠK−1

Rz
(K−1,i) +

∑
j∈ΠK

Rb
(K−1,j)

=
∑

i∈ΠK−2

Rz
(K−2,i) +

∑
j∈ΠK−1

Rb
(K−2,j) +

∑
j∈ΠK

Rb
(K−1,j)

= · · ·

=
∑
i∈Π1

Rz
(1,i)

︸ ︷︷ ︸
=:Rz

+
K−1∑
k=1

∑
j∈Πk+1

Rb
(k,j)

︸ ︷︷ ︸
=:Rb

, (6)

i.e., the sum of the final relevancies Rz and Rb equals the original output score.
By comparing the two summands in Eq. 6, the LRP algorithm also provides a
method to find out how much relevance Rz, Rb can be assigned to the input
neurons and the trained bias, respectively.

4.2 Input Analysis with Leave-One-Out Method

In this section, we want to find out why well-functioning recommenders actually
work and provide new insights into the customers’ shopping behavior. Addition-
ally, we want to know why an insufficiently functioning recommender delivers
meaningless predictions. Therefore, we need to further analyze the explanations
gained from LRP regarding their helpfulness, i.e., the impact of an input on the
prediction. Using the Leave-One-Out method [26], we evaluate the input relating
to the explanations. By consistently leaving one product out by setting its input
value to zero, we can observe its effect on the predictions and explanations, see
Fig. 4. Assuming a trained neural network, we perform the following steps:

(i) We start with a particular customer and the associated input x which is
mapped to an output vector y via the trained network.

(ii) According to Eq. 6, for a given output neuron yi∗ with i∗ ∈ {1, .., IK} (e.g.,
the one with the highest prediction score), we compute the associated input
relevancies (Rz

(1,j))j∈{1,..,I1} and the overall relevance of the bias Rb.
Thus, we consider the set of relevancies R := {Rb} ∪ {Rz

(1,j) : 1 ≤ j ≤ I1}.
(iii) For a salient subset of the relevancies R∗ ⊂ R (e.g., the inputs with the

highest/lowest relevancies), we set the associated input neurons (marked
red in Fig. 4) in x to 0 and obtain the adapted input vector x∗.

(iv) As in Step (i), we map the input x∗ to the corresponding output y∗ via the
same trained network and obtain the test output y∗.

Thus, with steps (i)–(iv), we obtain the input vectors x and x∗, the output
vectors y and y∗, and the set of relevancies R. They are used in Sect. 4.3 to
enable the explainability of neural network predictions according to the online
shop in Definition 1.
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Fig. 4. Selection and analysis of the most relevant inputs via LRP

4.3 Explanation Quantity Measures

Methods such as A/B testing exist to test the performance of a recommender
system [6,9]. They aim at evaluating the predictions trained on a fixed group
of customers with new test customers. Ideally, positive feedback on the training
process is obtained. However, the results can be unsatisfactory as well. In both
cases, it is of interest to know how the predictions come about and how certain
inputs influence them specifically. Using Eq. 6 and the definitions

Rz
+ :=

∑
i∈Π1

max{0, Rz
(1,i)}, Rz

− :=
∑
i∈Π1

min{0, Rz
(1,i)},

we obtain the network’s top prediction within the setting of Definition 1

yi∗ := fc(πc)i∗ = Rz + Rb = Rz
+ + Rz

− + Rb. (7)

In the following we consider two disjoint subsets C1, C2 ⊂ C. C1 represents a
set of customers where the inconsistencies to be analysed occur. In contrast,
this is not the case for customers from C2. With Eq. 7, it is then possible to
define measures that can be used to analyse such irregularities in specific test
cases. W.l.o.g we always assume for the output value yi∗ > 0. Based on these
considerations, we define three measures to quantify the relevance of the input.

(i) Definition 2 (Individuality Measure). σT : C → R with

σT (c) :=
Rz

Rz + Rb
=

Rz

yi∗
.

The individuality measure can be used to determine to what extent the
input was relevant for the decision. Via Eq. 7, we obtain 1 = Rz/yi∗ +Rb/yi∗

and define that a prediction yi∗ is maximally individual, if σT (c) = 1 holds.
In contrast, yi∗ is considered to be minimally individual, if σT (c) = 0 holds.
In this case only the bias was relevant. For σT (c) ∈ (0, 1) we generally
have Rz, Rb > 0, so both of these components contribute positively to yi∗ .
If Rz or Rb are negative, this component argues against prediction yi∗ and
we either have σT (c) ∈ (−∞, 0) or σT (c) ∈ (1,∞). Note that due to yi∗ > 0
it can not occur that Rz and Rb are negative.
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With σT it is for example possible to attribute inconsistencies to overly
homogeneous training data. Consider a shop offering men’s and women’s
products. Let men be C1 and women be C2. If the training data is largely
assigned to men, women could often get men’s products suggested because
the recommender’s bias was trained on men. Then, for c1 ∈ C1 and c2 ∈ C2,
the following would apply: |1 − σT (c1)| < |1 − σT (c2)|.

(ii) Definition 3 (Certainty Measure). νT : C → (0, 1] with

νT (c) :=

{
Rz/Rz

+, if Rz > 0
Rz/Rz

−, if Rz < 0.

The certainty measure can be used to make a quantitative statement
about the deviation of the individual relevancies from the overall rele-
vance. Considering definitions of Rz

+, Rz
−, and Eq. 7, we have Rz

+ ∈ [Rz,∞)
and Rz

− ∈ (−∞, Rz]. Depending on the sign of Rz, one can determine
whether the input neurons as a whole had a positive or negative relevance
for the decision made. We restrict ourselves to the case of Rz > 0. How-
ever, the results apply to Rz < 0, respectively. Thus, we can deduce that a
value of νt(c) = 1 means that no negative relevancies were assigned to the
input neurons. A value close to zero, on the other hand, indicates a strong
dispersion of the relevancies.

(iii) Definition 4 (Diversity Measure). ζT , ζ+T , ζ−
T : C → [0,∞) with

ζT (c) := max
r∈R

∣∣∣∣r − μr
R

μr
R

∣∣∣∣ and μr
R :=

1
|R| − 1

∑
r′∈R\{r}

r′,

ζ+T (c) := max
r∈R+

∣∣∣∣∣r − μr
R+

μr
R+

∣∣∣∣∣ and μr
R+

:=
1

|R+| − 1

∑
r′∈R+\{r}

r′,

ζ−
T (c) := max

r∈R−

∣∣∣∣∣r − μr
R−

μr
R−

∣∣∣∣∣ and μr
R− :=

1
|R−| − 1

∑
r′∈R−\{r}

r′

for a customer c ∈ C and top prediction yi∗ . We additionally introduce the
set of input relevancies R := Rz

(1,·), which we divide as follows:

R0 := {r ∈ R : r = 0}, R+ := {r ∈ R : r > 0}, and R− := {r ∈ R : r < 0}.

The diversity measure finds outliers within certain input relevancies. For
example, considering r ∈ R, then (r − μr

R)/μr
R is the proportional devi-

ation between the values in R except for r. For r ∈ R+ or r ∈ R− one
proceeds analogously. Note that the calculation of diversity measures does
not apply to empty sets R,R+, and R−, respectively. Furthermore, the
zero is always obtained for one-element sets. For two customers c1, c2 with
ζ+T (c1) 	 ζ+T (c2), we can thus state that the prediction for c2 depends more
on a single input neuron than the prediction for c1.
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5 Evaluation

In this section, we demonstrate the benefits and application of our approach in
three use cases. First, our explanation approach can help in understanding fluc-
tuations in the recommender’s quality. Second, TransPer can help in finding
ideas on how to improve the recommender. Third, our contribution can help to
improve the understanding of the customer base. In the course of this research,
we kindly received permission from the e-commerce service provider econda [8]
and two of its partner companies to use their customer data. These partner
companies are a jewellery shop and an interior design shop.

5.1 Evaluation Setting

At this point, we show that both online shops fit the formal model from Defi-
nition 1 and are thus applicable to the TransPer framework. We assume that
T 1 is the jewellery shop and T 2 the interior design shop. As shortly mentioned
in Sect. 3, the neural network econda uses for T 1 and T 2 comply with the third
neural network type with three neural subnetworks s1, s2, s3 in Fig. 1.

Online Shop Models. We now illustrate how the shops satisfy Definition 1:

a) Both shops provide anonymized information about a variety of their cus-
tomers C̃1 ⊆ C1, C̃2 ⊆ C2, for example shopping history,

b) and their offered products P 1, P 2.
c) The targets P ∗, in our use case a subset of selected products of the offered

products, define the real output space Φ1 and Φ2, respectively.
d) The available customer information types are based on the information

sets Λ1 and Λ2, respectively.
e) The information from Λ1 (Λ2) is classified according to its characteristic

properties. In our case, the disjoint subsets are the same for both shops,
i.e., Λ∗ = Λ1∗ = Λ2∗. Especially, T 1 and T 2 have three disjunctive informa-
tion types, i.e., |Λ∗| = 3, which result in three neural subnetworks s1, s2, s3.

f) According to Λ∗, any customer c has therefore the associated input space
denoted by Ωc = R

m1 ×R
m2 ×R

m3(c). The first two neural subnetworks s1, s2
have a fixed number of input neurons independent of the customer, so in a
slight abuse of notation we write m1 and m2 instead of m1(c) and m2(c),
respectively. The third subnetwork has a number of neurons dependent on
the number of interactions of c.

g) Via preprocessing, the information about a user c ∈ C is converted into an
input ωc ∈ Ωc.

h) The function fc represents the recommender’s implicit process of decision
making. Given an input ωc, the vector fc(ωc) contains an entry for each
product in P ∗ and the product with the corresponding highest prediction
score is recommended.
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The neural networks are trained in two steps, respectively. First, the neural
subnetworks s1, s2, s3 are trained independently. Based on the trained weights
and biases, the subnetworks are concatenated according to Fig. 1 in their hidden
layers and trained again to obtain the combined decision function fc. This also
means, each of the subnetworks s1, s2, s3 individually fits Definition 1 and pro-
cesses the following information types which we will further analyze in Sect. 5.3.
(i) s1 processes information regarding general interactions, whereby the input
vector is an embedding of a user profile. For example, an input neuron can
represent the purchase of a certain product or interest in a product category.
This neural subnetwork is designed as a multi-layer perceptron. (ii) s2 processes
personal information not related to former product interactions. A multi-layer
perceptron is used as well. (iii) s3 processes the most recent customer interac-
tions as sequences, whose lengths may be different for each customer. An action
performed by a user is embedded and considered as a part of the interaction
sequence. An RNN approach with Gated Recurrent Unit layers is used here.

5.2 Evaluation Data Set

The data set used in this work consists of the online shops T 1 and T 2 as instan-
tiations of the model from Definition 1. For each online shop, the corresponding
recommender is provided in the form of a trained neural network. Furthermore,
we receive the profile stream, which contains the user information about the
customers which were previously considered as training and test data. econda
updates the respective recommender at regular time intervals based on cur-
rent purchasing behaviour. Therefore, the data set used includes several profile
streams and recommenders per online shop. In total, we use 8 (10) profile streams
for T 1 (T 2). A profile stream contains on average 524 (1004) customers and per
customer we have on average 33 (64) customer interactions. All recommenders
were realised in Python 3.7 with Tensorflow v2.1.0.

5.3 Evaluation Results

In Sect. 2, we have defined the standard LRP method. However, there are also
variants of this methods which outperform the standard on some architectures.
To the best of our knowledge, it is not known which of these methods works best
for RNNs. As a preliminary step, we therefore fill in this gap by evaluating the
performance of the standard LRP and some of its most popular variants using
our algorithm from Sect. 4.2. As a reference, we switch off each input neuron
once at a time to find the neuron that is actually most relevant to the decision.
This is the case, when the change of the original prediction value is maximal
by leaving out this specific input. Finally, per LRP variant, we determine the
relative frequency with respect to detecting the most relevant input neuron.
Regarding the mentioned LRP methods, we first consider all possible parameter
combinations with respect to the values 0.01, 0.1, 1, 5, 10, and then choose the
best combination. We obtained the scores standard [2] 0.9800, epsilon [1] 0.9560,
gamma [15] 0.9080, alpha-beta [16] 0.7720, and non-negative [16] 0.5040. Based
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Fig. 5. Two exemplary output layers for shop T 1. Output vectors of the NN ranked
in descending order for customer groups C1 and C2 in the upper part including corre-
sponding residual plots after setting the most relevant input neuron to zero in the lower
part. The residual of the original top prediction is marked red. (Color figure online)

on these and due to the fact that the standard method achieved a hit rate of
100% in the case of MLPs, we will limit ourselves to this method. In the following,
we describe three use cases that can be achieved with our explanation quantity
measures defined in Sect. 4.3.

Understanding the Recommendation Quality. To tackle this, we have to examine
discrepancies between prediction and input. We found one within the predictions
provided by econda for the jewellery shop T 1 that could not be explained intu-
itively. Therefore, we apply the measures from Sect. 4.3 to obtain explanations
regarding the recommender’s decisions. The upper part of Fig. 5 shows two exem-
plary output layers of the neural subnetwork s1, where C1, C2 ⊂ C1 are disjoint
subsets of customers C1 of T 1. The exemplary customers were each randomly
selected from 25 customers in C1 and 29 customers in C2, respectively. The out-
put neurons are ranked in descending order regarding their prediction score. It
can be seen that the preferred outputs for customers from C1 are almost indis-
tinguishable. In contrast, the scores for customers from C2 imply clear top pre-
dictions. Considering the lower part of Fig. 5, we plot the residuals after setting
the most relevant input neuron to zero to show the discrepancy. For customers
from C1, the discrepancy between the top prediction and the average prediction
score is much smaller than for customers from C2 because the entire curve hov-
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Table 1. Results of LRP-comparison for recurrent model

Measure\user C1 C2 C1

σT1 (individuality) 1.2668 1.0021 1.1409

νT1 (certainty) 0.7302 0.9733 0.8804

ζ+
T1 (diversity) 1.5564 143.1009 65.7103

ers quite closely around its average. Thus, the product recommender s1 of T 1

is apparently not as certain about its decisions because the predictions range
over a small interval. Therefore, we consider the top predictions in each case
and try to gain new insights into the decision-making of the neural network via
the explanation measures from Sect. 4.3. Table 1 shows these results including
significant differences between C1 and C2:

(i) Comparing the results of the individuality measure σT 1 , we can see that
predictions for customers of C1 depend more on the bias induced by the
training data. Predictions for customers of C2 are almost independent of
the bias.

(ii) Regarding the certainty measure νT 1 , customers of C1 have more con-
tradictory input neurons with negative relevance.

(iii) Since we are interested in the positive influence of input neurons on the
overall decision, we consider the diversity measure ζ+T 1 . We can see the
greatest divergence between customers of the two classes C1 and C2. Regard-
ing the inputs with positive relevance, customers of C2 have an input with a
relevance that is significantly greater than the other relevancies. This means
that there are inputs that speak in favour of the decision made which is not
the case for customers from C1.

All three measures reveal differences between the two customer groups. The
diversity measure stands out particularly prominently. The key figures listed here
reflect a well explainable prediction of the recommender for customers from C2.
This means that few input neurons had the strongest influence on the prediction
made which is not the case for customers from C1. This discrepancy can also
be seen very well if we switch off the input with the highest relevance and plot
the residuals of the output vectors, see the lower part of Fig. 5. The input with
highest relevance is marked red. It has a significantly stronger influence on the
prediction for customers from C2 than C1. For the latter, switching off this
input causes almost no deviation in the predictions. Using the LRP approach
and the explanatory measures, it has thus been possible to establish that the
clear predictions for customers from C2 are quite simple to explain. Namely,
these customers have activated input neurons that contribute massively to the
prediction made. For the customers from C1 on the other hand, the decision-
making is rather based on the entire interaction of the input neurons.

Ideas to Improve the Recommender. A closer look at the most relevant inputs
reveals a certain pattern. We have two different types of input neurons: (a) input
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neurons representing the interaction with a product from P ∗ and (b) input neu-
rons representing an interaction with a certain product category. In the latter
case, an interaction with a category can only take place via an interaction with
a product from the associated category. The activation of the categories occurs
for each product interaction, regardless of whether or not it is contained in P ∗.
Now, when looking at the input relevancies for customers from C1 or C2, the
following is noticeable: Firstly, for customers from C1 there are no activations of
products. The most relevant inputs are therefore categories and the relevancies
hardly differ. Secondly, customers from C2 always have product activations. In
these cases, the most relevant input is always a neuron belonging to a product
interaction and these relevancies are significantly higher than those of the like-
wise activated categories. We were thus able to determine that the activation
of products as input neurons leads to more unambiguous decision-making. In
particular, these represent a better explanatory power as the neural network
predicter can identify certain information that significantly influenced the deci-
sion made. It would therefore make sense to separate the user information even
further and define the products or categories as separate subnetworks. In this
way, the decision-making process for user profiles that only contain categories
as input neurons could be given a stronger explanatory power.

Understanding the Customer Base. We also performed an evaluation on the
interior design shop T 2. Our diversity measures σT 2 and ζ+T 2 revealed that the
trained bias and outliers within the positive input relevancies of the neural sub-
network s2 were particularly relevant for the decisions made. Thus, it was found
that buying interest is based on daily trends rather than past interactions. Unfor-
tunately, we cannot explain this in more detail here due to space constraints.

6 Conclusion

In this paper, we have presented TransPer, an explanation framework for
neural networks used in online shopping.

We used the LRP method to define three explanation measures, namely the
individuality measure, used to determine those parts of the input that are par-
ticularly relevant for the decision; the certainty measure, which measures how
certain the system is about its prediction; and the diversity measure, which mea-
sures whether there are clear top predictions. These measures can be defined on
complex neural networks which process heterogeneous input data.

We have demonstrated the usefulness of our metrics in three explanation
use cases. First, we explained fluctuations in the prediction qualities. Second,
TransPer explanations can help find ideas on how to improve the neural net-
work. Third, our explanations can help online shops better understand their
customer base. These explanations also play an important role in fulfilling legal
requirements such as the ones mandated by GDPR.
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14. Loureiro, A.L.D., Miguéis, V.L., et al.: Exploring the use of deep neural networks
for sales forecasting in fashion retail. Decis. Support Syst. 114, 81–93 (2018)

15. Montavon, G., Binder, A., Lapuschkin, S., Samek, W., Müller, K.-R.: Layer-wise
relevance propagation: an overview. In: Samek, W., Montavon, G., Vedaldi, A.,
Hansen, L.K., Müller, K.-R. (eds.) Explainable AI: Interpreting, Explaining and
Visualizing Deep Learning. LNCS (LNAI), vol. 11700, pp. 193–209. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-28954-6 10

16. Montavon, G., Samek, W., et al.: Methods for interpreting and understanding deep
neural networks. Digital Signal Process. 73, 1–15 (2018)

17. Nelaturi, N., Devi, G.: A product recommendation model based on recurrent neural
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Abstract. Automatic co-text free name matching has a variety of
important real-world applications, ranging from fiscal compliance to bor-
der control. Name matching systems use a variety of engines to com-
pare two names for similarity, with one of the most critical being pho-
netic name similarity. In this work, we re-frame existing work on neural
sequence-to-sequence transliteration such that it can be applied to name
matching. Subsequently, for performance reasons, we then build upon
this work to utilize an alternative, non-recurrent neural encoder module.
This ultimately yields a model which is 63% faster while still maintaining
a 16% improvement in averaged precision over our baseline model.

Keywords: Name matching · Transliteration · Natural language
processing · Sequence-to-sequence · Multilingual · Performance

1 Introduction

Names are an integral part of human life. From people to organizations and
beyond, understanding what things are called is a critical aspect of natural
language processing. A significant challenge in many applications is the fact that
systems of appellation vary widely across cultures and languages, meaning that it
can be challenging for a human, let alone a machine, to determine that two names
are equivalent. Automatic evaluation of pairs of names has many important real-
world applications, ranging from border control to financial know-your-customer
(“KYC”) compliance, which both involve searching for a name inside of large
databases.

Computerized name matching systems attempt to accomplish this through a
variety of statistical measurements that compare different properties of the given
names. These systems are built with the goal of assigning a score to a pair of names
that reflects the likelihood that those two names are “equivalent.” For example, a
name matching system should assign a high score to the input pair “Nick” and
“Nicholas”. Similarly, it ideally is able to competently handle a variety of other
name-specific phenomena, such as missing components (e.g. “Franklin D. Roo-
sevelt” and “Franklin Roosevelt”), initialisms (e.g. “J. J. Smith” and “John Joseph
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Fig. 1. Architecture of an enterprise name matching system.

Smith”), transliteration variations (e.g. “Abdul Rasheed” and “Abd al-Rashid”),
different scripts (e.g. “Caesar” and “ ” (Sh̄ızā)), and so on. In principle,
this is accomplished via partitioning a full name into components (i.e. turning
“John Smith” into [“John”, “Smith”]) and comparing the components of each
namevia a variety of engines.Using those comparisons, the components are aligned
appropriately and combined into a single name match score (Fig. 1).

One engine that is particularly important is phonetic similarity, which mea-
sures how close the pronunciation of the names are to one another. For example,
a phonetic name engine would assign a low similarity to the input pair (“John”,
“J.”), but it would assign a high similarity to the input pair (“Chris”, “ ”
(kurisu)). This could be powered by a number of different technologies, rang-
ing from Soundex-based [35] indexing to statistical modeling techniques. In this
paper, we focus on this phonetic-based engine and how it can be improved with
neural techniques.

1.1 Challenges

When dealing with name matching across different languages, there is often a
difference in writing scripts, which presents unique challenges. For some writing
systems this is not particularly difficult, whereas with others (such as with the
Latin alphabet and Japanese syllabaries), it is more challenging. This is because
there is not a one-to-one correspondence in the characters used for each alphabet,
meaning that it can be difficult to transliterate Latin alphabet-based languages
into Japanese. For example, the word “photo” would be transliterated as “ ”
(foto). Not only is this transliteration two characters shorter than the English
word, but the interactions between different parts of the English word inform the
transliteration in a non-trivial fashion. Specifically, the small “ ” (o) character
can only be used when forming a digraph with another character (in this case,
the “ ” (fu) character).

Thus, a statistical name matcher must take into account a nontrivial scope
of contextual information when doing name matching. In our work, we explore
the relationship between name matching and the related task of name translit-
eration, which seeks to produce the corresponding transliteration of a name in
one language, given that name in another language.

Moreover, as our objective is to deploy a system in a production environ-
ment, speed becomes a concern. While recurrent neural networks are extremely
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powerful tools for sequence modeling, they incur a significant amount of over-
head in comparison to non-neural based techniques. To combat this, we explore
an alternative, non-recurrent architecture in search of a model which balances
the improved modeling capacity of neural networks with the superior speed of
non-neural graphical models.

To summarize, our contributions in this work are the following: (1) we utilize
prior work on neural transliteration in order to perform name matching, (2) we
address performance issues surrounding the deployment of neural network-based
name matching systems in an industrial context, and (3) we do so by suggesting
an alternative neural architecture for name transliteration.

2 Related Work

Approaches to matching names across languages using non-neural machine learn-
ing techniques have a long history in literature. A variety of existing work opts
for a cost-based approach to the problem [1,2,25,31], which computes various
similarity metrics between a given pair of names. For example, when doing mono-
lingual name matching, thresholding a simple Levenshtein distance [21] may be
a sufficient approach. While much of this cost-based work has focused around
languages with large amounts of written variation, such as Arabic [1,2], only a
smaller amount of it has focused on cross-orthographic name matching [25]. The
challenge with applying cost-based algorithms to cross-script name matching is
that it often relies, at some level, on normalization techniques such as romaniza-
tion or Soundex-based [35] indexing, which can introduce noise into the name
matching process.

A closely related problem to name matching in NLP research is that of entity
linking. The primary differentiating aspect in this scenario is the presence of co-
text; that is, the problem is that of linking an entity mentioned in a larger piece
of text to an entity present in some larger knowledge base. While the scope of
our research could certainly enhance real-world applications of these systems in
order to grapple with representations of entities in unseen scripts, research in
this area [19,24,41] typically (implicitly or otherwise) assumes that the entity
in the document and the knowledge base have been written in the same script.
This is why the task is sometimes referred to as “named-entity disambiguation,”
as the focus tends to be more centered around leveraging co-text in order to
disambiguate amongst a list of candidate entities.

Name matching is a subset of the broader problems of entity matching and
record linkage. Neural networks have been applied to this area [11,23,30], but this
prior work does not specifically focus on the name matching problem. Research
in this area often emphasizes the structured nature of records (e.g. attempting
to correlate many distinct schemas together) so a direct comparison to this
work is made difficult. Further complicating the issue is the fact that record
linkage research is, to the authors’ knowledge, always an end-to-end process
which operates on full names, not specific name components. This work focuses
on the integration of neural-based techniques into an existing, larger enterprise
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name matching system, so a meaningful direct comparison to the performance
of our specific sub-engines is challenging if not impossible.

Direct statistical modeling of name matching has been published as well.
Most similar to what we discuss in our baseline system outlined Sect. 3 is
Nabende et al.’s work [27] on using Pair-HMMs [10] to model cross-lingual name
matching and transliteration. Moreover, there is a body of work that has applied
deep neural networks to the task of name matching [20,43]; however, these do
so by directly training a discriminative model that classifies names as match-
ing or not. In contrast, our work is based on solving this problem by modeling
the corresponding generative distribution, which can yield benefits ranging from
lower data requirements [29] to lower amounts of supervision (we need only
collect pairs of known transliterations, without needing to collect known non-
transliterations).

As discussed in Sect. 3, modeling name transliteration is an important step in
our system’s process, so it is apt to review prior art in this domain as well. Neural
name transliteration based on sequence-to-sequence models has been described
in a limited amount of prior work [14]. Furthermore, there has been further
research on neural techniques for transliteration in general [26,34,38]. Beyond
this, there have been a variety of non-neural approaches to transliteration, rang-
ing from systems based on conditional random fields [9] to local classification of
grapheme clusters [33,36], statistical machine translation techniques [6,32,40],
and modeling transliteration as a mixture distribution [22].

In this work, we take this existing work on transliteration and re-frame it such
that it can be applied to name matching. We then, for performance reasons, build
upon this work to utilize an alternative, non-recurrent neural encoder module.

3 Phonetic Name Matching Systems

In this work, we explore the capabilities of an enterprise statistical phonetic name
matching engine, with a focus on matching names across English and Japanese.
More specifically, we will be taking names written in the Standard Latin script
[16] and comparing equivalent names written in the Japanese Katakana script,
which is typically used for foreign names. This is an interesting problem, as we
must deal with different scripts that are not one-to-one with each other (for
example, the two Latin letters “na” correspond to the single Katakana charac-
ter “ ”). Our goal is to have a system that can assign a high score to a pair
of names that are pronounced similarly, and a low score to name pairs that
are not. One idea for English-Japanese name matching is to develop a proba-
bilistic model describing the likelihood of one name being a transliteration of
another; this probability would then directly reflect the same semantics that we
are trying to capture with the aforementioned score. More concretely, for a given
English name nen and Japanese name nja, this can be modeled probabilistically
as Pja−en(nen|nja) (or vice versa, via an appropriate Pen−ja model). Per the
chain rule, one approach to learning this conditional distribution is by modeling
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the following fully-generative distribution:

P (nen, nja) = Pja−en(nen|nja)P (nja) = Pen−ja(nja|nen)P (nen). (1)

Semantically, this has an interesting interpretation: If we can fit a generative
model that allows us to transliterate (phonetically) a name from one Japanese to
English, we are then able to use this to determine the quality of a given potential
transliteration. In other words, by probabilistically modeling the task of name
transliteration, we are able to directly model name matching by reading these
probabilities.

Fig. 2. A Hidden Markov Model-based phonetic name matching system.

For our baseline system, we make use of a Hidden Markov Model [4], as this
directly models this distribution. Our model operates on sequences of characters,
with the character sequence in one language being modeled as the hidden state
sequence and the character sequence in the other language being modeled as
emissions. A simplified version of this process is shown in Fig. 2. In order to
compensate for scripts that are not one-to-one (such as Latin and Katakana), we
extend the character alphabet to contain a closed set of digraphs (such as “na”,
shown above), which are discovered automatically via Expectation Maximization
(EM) [8]. For our neural model, we would like to model name matching in a
largely similar fashion to our HMM-based technique. To this end, we approach
the problem by first developing a neural network that models the process of
English-Japanese name transliteration and then use the probability distributions
computed by this model to facilitate name matching. Our name transliteration
model was inspired by work done on neural machine translation [42]. In this
setup, we utilize a sequence-to-sequence architecture [37], translating from a
“source” domain of English name character sequences to a “target” domain of the
corresponding character sequences for the Japanese transliteration. We explore
two variants of this architecture: In the first, seq2seq-LSTM, the encoder module
of our model is implemented using a Long Short-Term Memory (LSTM)-based
[15], while the second, seq2seq-CNN, uses an encoder based on a CNN [7,12].
For both of these architectures, we use an LSTM-based decoder module.

3.1 Neural Name Transliteration

Our first approach to neural name transliteration was directly based on the
architecture used in Sutskever et al.’s work [37]. We used a bidirectional LSTM
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encoder module, with the output being fed into an LSTM-based decoder mod-
ule, augmented with a basic attention mechanism [3], to produce the Japanese
transliteration. This architecture, illustrated in Fig. 3, is referred to as seq2seq-
LSTM. This architecture is effectively the same as used for general transliteration
by Rosca and Breuel [34].

Fig. 3. A seq2seq-based name transliteration system with LSTM-based encoder and
decoder (unidirectional encoder shown).

As discussed in Sect. 4, we observed this architecture’s throughput to be too
low for our use case. We hypothesized that this slowdown was largely due to two
aspects of the seq2seq-LSTM network: (1) the expense of computing the atten-
tion step at each point of the decoding process and (2) the lack of parallelizability
of the recurrent architecture used in the encoder and decoder modules. When
developing our second model, known as seq2seq-CNN, we addressed the former
by simply eschewing the attention mechanism. Additionally, drawing from char-
acter encoding successes utilizing convolutional neural networks (CNNs) [7,12]
in other text applications [5,17], this second architecture uses a CNN for the
encoder module, based on work done by Gehring et al. [13].

As in Gehring et al.’s work, we utilize a series of CNN kernels that span
the full character embedding dimension and process different-sized windows of
characters. In contrast to their work, we run the channels through a max-pooling
layer, providing us with an efficiently-computable, fixed-size representation of the
full sequence (with one dimension for every kernel used). This representation is
then passed to an LSTM decoder in the same way that the encoder representation
was in the seq2seq-LSTM network.

3.2 Neural Name Matching

Running the network for name matching is very similar to running it for translit-
eration, but, instead of using the probability distribution produced by the
decoder module at each time step to determine the next Japanese character
to produce, we simply use the known Japanese character sequence to select it.
As is traditionally done when working with language models, we then take the
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observed probabilities assigned to this known character sequence in order to
compute the perplexity

PP (nja|nen) = 2H(nen,nja), (2)

where

H(nen, nja) = − 1
N

N∑

i=1

logP (nja|nen)[i],

P (nja|nen)[i] = Pen−ja(nja,i|nen;nja,1...i−1),

nja,k is the kth character of nja, and N is the length of the target Japanese
character sequence. We note that, in this mode of operation, we feed in the next
character from the target sequence at each time step (i.e., we will keep going,
even if the decoder would have predicted <eos> at a given time step). Now,
conceptually, when comparing a name with a list of potential names, we would
like to assign the highest score to the one that is closest to what the model
predicts. Therefore, we define the reciprocal of the perplexity as the scoring
function:

S(nen, nja) = (PP (nja|nen))−1. (3)

4 Experimental Results

John Smith

Fig. 4. Illustration of the token alignment procedure used for data generation between
“John Smith” and “ ” (Jon Sumisu). Note that the “·” character is
treated as a special token, and ignored during the matching procedure.

4.1 Training and Hyperparameters

We train our system with a list of 33,215 component pairs; these were produced
by collecting aligned English-Japanese full name pairs from Wikipedia, tokeniz-
ing them, and recording the aligned tokens in both scripts (throwing away items
with non-Katakana names and pairs with differing numbers of tokens), as shown
in Fig. 4. This was possible due to the regularity of the dataset we collected
and the nature of English-Japanese transliterations; however, to be safe, a bilin-
gual Japanese-English speaker reviewed 6% of the data and confirmed that the
process had produced properly-aligned word pairs.

This training set was divided into a 90% train and 10% validation split. All
neural networks were trained with the Adam optimizer [18]. We trained the
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model for 100 epochs. The LSTM was trained with a single layer (for both the
encoder and decoder), using a dropout rate of 0.5 on the decoder outputs, an
embedding size of 60 dimensions, and a hidden layer size of 100. Our CNN-
based system utilizes six two-dimensional convolutional blocks with 100 output
channels and kernel sizes of 2, 3, 4, 5, 6, and 7. The input embeddings (of
dimension 60) are summed with trained position embeddings (up to a maximum
length of 23, as seen in the training data) and passed through a dropout layer
with a dropout rate of 0.25. These inputs are then passed in parallel to each of the
convolutional blocks with ReLU activations [28], whose outputs are then max-
pooled into six 100-dimensional vectors and concatenated. This is then passed
to a linear layer to reduce it to a 200-dimensional vector, which is concatenated
to each decoder input. The LSTM decoder is otherwise the same as the model
using the LSTM-based encoder, except for the fact that it uses a hidden size of
100.

The primary purpose of this component-level engine is to exist as the keystone
of our full name matching system. As such, we felt it would be most appropriate
to measure its utility in that context for our evaluation. Rather than evaluating
on another split-off piece of our word-level training data, we evaluate our models
on a separate Wikipedia-sourced test set of 60,706 full name pairs. We measure
Averaged Precision (AP) by calculating a match score between two full names
using different underlying phonetic engines. Additionally, to simulate real-world
usage in an information retrieval system, we use them to query a database of
14,941 names with a list of 500 names, and re-score the resulting name matches,
measuring the Mean Averaged Precision (MAP), as is common practice.

4.2 Results

Fig. 5. Precision-Recall trade-off of different algorithms at various thresholds.

The models described in this work are now used to serve clients in real-life
scenarios. Specifically, one client provided us with a list of 98 names that were
incorrectly matched using the baseline HMM algorithm, so we began to explore
neural techniques for name matching in order to reduce these false positives.
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When looking at this list of names, we determined that the mistakes were likely
caused by the HMM overly biasing towards frequencies in the training data, so
an improvement would reflect an algorithm which better incorporates context.
The first algorithm we tried was the seq2seq-LSTM architecture.

Table 1. Selected examples of name pair scores using different phonetic engines.

Name 1 Name 2 HMM-based LSTM-based CNN-based

Ada Lovelace
(Eida Raburesu)

0.48 0.74 0.63

Albert Schweitzer
(Aruberuto Shubaitseru)

0.69 0.86 0.81

Christopher Marlowe
(Kurisutofā Mārō)

0.76 0.95 0.83

Easy Goera
( Īj̄ıgōā)

0.39 0.66 0.82

James Whale
(Jēmuzu Hoēru)

0.62 0.80 0.88

Alexandre Trauner
(Torauneru Shāndoru)

0.84 0.49 0.49

Allez Francea
(Arefuranse)

0.80 0.46 0.46

U Nu
(U Nū)

0.96 0.93 0.68

aThese are the names of racehorses.

Table 2. Accuracy and speed results.

Matching engine MAP AP Speed (sec/1000 tokens) Slowdown

HMM 63.61 77.17 0.76 1x

seq2seq-LSTM 69.47 85.43 16.3 21.26x

seq2seq-CNN 66.69 80.40 5.9 7.7x

Qualitatively, we found that the neural models are able to reduce false posi-
tives in our matching software on inputs that require more nuanced interpreta-
tion and composition of contextual information. This is empirically supported
by the data in Fig. 5, which shows a larger area under the precision-recall curve
for our neural models than our baseline HMM model. A manual inspection of
test cases, seen in Table 1, with large differences in scores from the baseline gives
some insight into the strengths and weaknesses of the neural-based matcher. The
primary strength appears to be improved performance on particularly difficult
transliterations. There are relatively few examples of the neural models doing
markedly worse than the HMM-based model, but they broadly appear to fall
under two categories. First, the neural engines seem to handle transliterated
nicknames poorly (e.g. “Alexandre” and “ ” (Shāndoru); the latter
being a transliteration of “Sandra”). Second, for extremely infrequent charac-
ters, such as (nu) (which appears in only around 1% of the training data),
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(a) A successful test case.
(b) An unsuccessful test case.

Fig. 6. Selected attention heatmaps from our LSTM-based name matcher architecture
when measuring perplexity. In subfigure (b), the original input (as shown in Table 1)
has two English tokens, but the name matching framework attempts to concatenate
them when evaluating whether they match the given Japanese token.

the neural models are less confident than the HMM. We hypothesize that this
could also be compounded by the high amount of variance in how is translit-
erated (for example, the “ne” suffix on words such as “neptune” and “arsene” is
often transliterated as ), which could lead our model unable to learn a high-
probability transliteration for this type of character. Finally, as a sanity-check,
we inspect the attention heatmaps produced by the LSTM-based sequence-to-
sequence models, shown in Fig. 6. We can see that these indicate which sequences
are not in line with what the model would expect to see: in subfigure (a), which
shows an input pair that the model correctly assigns a high score to, we see that
the primary activations align neatly with the corresponding Katakana charac-
ters in a manner similar to what one would intuitively expect. Conversely, in
subfigure (b), which shows an input pair which was incorrectly assigned a low
score, we see that the French phonology is the source of the confusion: at the
position of the “ ” (fu) in the Katakana sequence, the attention is focused on
the “z” in the Latin sequence. This indicates that the model is not expecting
to treat the “z” as silent when performing the transliteration, meaning that it
is surprised by the fact that the Katakana sequence is already on the “france”
portion of the Latin name.

Quantitatively, as demonstrated in Table 2 and Fig. 5, our initial seq2seq-
LSTM architecture led to a dramatic improvement in accuracy. One will also
notice the downside of such an approach: a roughly 21x speed degradation.
While it is expected that a neural algorithm will incur some amount of additional
performance overhead, the scale of data processed by our customers made this
level of slowdown too great for us to accept. This is what led us to take a
look at alternative seq2seq approaches, which are more efficiently computable
thanks to improved parallelization. After developing the seq2seq-CNN network,
we found that it lied directly in this sought-after “sweet spot” of having improved
evaluation set performance over the HMM without the dramatic slowdown that
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the LSTM suffers from or sacrificing the qualitative improvements we observed
with the seq2seq-LSTM model.

5 Conclusion and Future Work

Our work demonstrates that neural machine translation techniques can be
applied to the problem of name matching, with notable success over a tradi-
tional graphical-based technique. Moreover, we show that modifying the encoder
module of this neural network to use a convolutional neural network yields a sig-
nificant speed improvement with only a moderate sacrifice in accuracy (while
still outperforming the baseline algorithm).

There are a number of future steps we wish to explore with this work. The
primary bottleneck remaining in our system’s speed is the decoder. Due to the
recurrent nature of our LSTM decoder, the perplexity of an input name compo-
nent must be computed in O(n) time, character-by-character. We wish to remove
this limitation by exploring alternative encoder architectures which predict the
output sequence simultaneously, such as the work in [13]. Another natural exten-
sion of our experiments would be to additionally try a Transformer-based [39]
encoder module, as one would expect this to yield speed improvements over
the LSTM without the same degree of sacrifice in accuracy. Finally, this work
explores how we can apply neural networks to a phonetic name matching engine,
but we would like to explore what opportunities exist in other types of name
matching engines.
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Abstract. Many real-world applications involve the use of Optical
Character Recognition (OCR) engines to transform handwritten images
into transcripts on which downstream Natural Language Processing
(NLP) models are applied. In this process, OCR engines may introduce
errors and inputs to downstream NLP models become noisy. Despite that
pre-trained models achieve state-of-the-art performance in many NLP
benchmarks, we prove that they are not robust to noisy texts generated
by real OCR engines. This greatly limits the application of NLP models
in real-world scenarios. In order to improve model performance on noisy
OCR transcripts, it is natural to train the NLP model on labelled noisy
texts. However, in most cases there are only labelled clean texts. Since
there is no handwritten pictures corresponding to the text, it is impos-
sible to directly use the recognition model to obtain noisy labelled data.
Human resources can be employed to copy texts and take pictures, but
it is extremely expensive considering the size of data for model train-
ing. Consequently, we are interested in making NLP models intrinsically
robust to OCR errors in a low resource manner. We propose a novel
robust training framework which 1) employs simple but effective meth-
ods to directly simulate natural OCR noises from clean texts and 2)
iteratively mines the hard examples from a large number of simulated
samples for optimal performance. 3) To make our model learn noise-
invariant representations, a stability loss is employed. Experiments on
three real-world datasets show that the proposed framework boosts the
robustness of pre-trained models by a large margin. We believe that this
work can greatly promote the application of NLP models in actual sce-
narios, although the algorithm we use is simple and straightforward. We
make our codes and three datasets publicly available (https://github.
com/tal-ai/Robust-learning-MSSHEM).

Keywords: Robust representation · Text mining

1 Introduction

With the help of deep learning models, significant advances have been made in
different NLP tasks. In recent years, pre-trained models such as BERT [4] and its
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variants achieved state-of-the-art performance in many NLP benchmarks. While
human being can easily process noisy texts that contain typos, misspellings, and
the complete omission of letters when reading [13], most NLP systems fail when
processing corrupted or noisy texts [2]. It is not intuitive, however, if pre-trained
NLP models are robust under noisy text setting.

There are several scenarios in which noise could be generated. The first type
is user-generated noise. Typos and misspellings are the major ones and they are
commonly introduced when users input texts through keyboards. Some other
user-generated noise includes incorrect use of tense, singular and plural, etc.
The second type of noise is machine-generated. A typical example is in the
essay grading system [18]. Students upload images of handwritten essays to the
grader system in which OCR engines transform images to structured texts. In
this process, noise is introduced in texts and it can make downstream NLP
models fail. We argue that the distribution of user-generated errors is different
from that of OCR errors. For example, people often mistype characters that
are close to each other on the keyboards, or make grammatical mistakes such
as incorrect tense, singular and plural. However, OCR is likely to misrecognize
similar handwritten words such as “dog” and “dag”, but it it unlikely to make
mistakes that are common for humans.

There are many existing works [15,16] on how to improve model performance
when there are user-generated noises in inputs. [15] studied the character dis-
tribution on the keyboard to simulate real user-generated texts for BERT. [16]
employed masked language models to denoise the input so that model perfor-
mance on downstream task improves. Another existing line of work focuses on
adversarial training, which refers to applying a small perturbation on the model
input to craft an adversarial example, ideally imperceptible by humans, and
causes the model to make an incorrect prediction [6]. It is believed that model
trained on adversarial data is more robust than model trained on clean texts.
However, adversarial attack focuses on the weakness in NLP models but does
not consider the distribution of OCR errors, so the generated sample is not close
to natural OCR transcripts, making adversarial training less effective in our
problem.

Despite that NLP models are downstream of OCR engines in many real-world
applications, there are few works on how to make NLP models intrinsically robust
to natural OCR errors. In this paper, we discuss how the performance of pre-
trained models degrades on natural OCR transcripts in text classification and
how can we improve its robustness on the downstream task. We propose a novel
robust learning framework that largely boosts the performance of pre-trained
models when evaluated on both noise-free data and natural OCR transcripts
in text classification task. We believe that this work can greatly promote the
application of NLP models in actual noise scenarios, although the algorithm we
use is simple and straightforward. Our contributions are:

– We propose three simple but effective methods, rule-based, model-based and
attack-based simulation, to generate natural OCR noises.
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– In order to combine the noise simulation methods, we propose a hard example
mining algorithm so that the model focuses more on hard samples in each
epoch of training. We define hard examples as those whose representations are
quite different between noise-free inputs and noisy inputs. This ensures that
the model learns more robust representations compared to naively treating
all simulated samples equally.

– We evaluate the framework on three real-world datasets and prove that the
proposed framework outperforms existing robust training approaches by a
large margin.

– We make our code and data publicly available. To the best of our knowledge,
we are the first to evaluate model robustness on OCR transcripts generated
by real-world OCR engines.

2 Related Work

2.1 Noise Reduction

An existing approach to deal with noisy inputs is to introduce some denoising
modules into the system. Grammatical Error Correction (GEC) systems have
been widely used to address this problem. Simple rule-based and frequency-based
spell-checker [12] are limited to complex language systems. More recently, mod-
ern neural GEC systems are developed with the help of deep learning [3,23].
Despite that neural GEC achieves SOTA performance, there are at least two
problems with using GEC as a denoising module to alleviate the impact of
OCR errors. Firstly, it requires a massive amount of parallel data, e.g., [17] to
train a neural GEC model, which is expensive to acquire in many scenarios.
Secondly, GEC systems can only correct user-generated typos, misspellings and
grammatical errors, but the distribution of these errors is quite different from
that of OCR errors, making GEC limited as a denoiser. For example, people
often mistype characters that are close to each other on the keyboards, or make
grammatical mistakes such as tense, singular and plural. However, OCR is likely
to misrecognize similar handwritten words such as “dog” and “dag”, but it is
unlikely to make mistakes that are common for humans. Another line of research
focuses on how to use language models [22] as the denoising module. [16] pro-
posed to use masked language models in an off-the-shelf manner. Although this
approach does not rely on massive amount of parallel data, it still oversimpli-
fies the problem by not considering OCR error distributions. More importantly,
we are interested in boosting intrinsic model robustness. In other words, if we
directly feed noisy data into the classification model, it should be able to handle
it without relying on extra denoising modules. However, both GEC and lan-
guage model approaches are actually pre-processing modules, and they do not
improve the intrinsic robustness of downstream NLP models. Therefore, we do
not experiment on denoising modules in this paper.
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2.2 Adversarial Training

Adversarial attack aims to break down neural models by adding imperceptible
perturbations on the input. Adversarial training [10,21] improves the robust-
ness of neural networks by training models on adversarial samples. There are
two types of adversarial attacks, the white-box attack [5] and the black-box
attack [1,24]. The former assumes access to the model parameters when gener-
ating adversarial samples while the latter can only observe model outputs given
attacked samples. Recently, there are plenty of works on attacking NLP mod-
els. [14] found that NLP models often make different predictions for texts that
are semantically similar, they summarized simple replacement rules from these
semantically similar texts and re-trained NLP models by augmenting training
data to address this problem. [15] proved that BERT is not robust to typos
and misspellings and re-trained it with nature adversarial samples. Although
it has been proved that adversarial training is effective to improve the robust-
ness of neural networks, it searches for weak spots of neural networks but does
not consider common OCR errors in data augmentation. Therefore, traditional
adversarial training is limited in our problem.

2.3 Training with Noisy Data

Recent work has proved that training with noisy data can boost NLP model per-
formance to some extent. [2] pointed out that a character-based CNN trained on
noisy data can learn robust representations to handle multiple kinds of noise. [9]
created noisy data using random character swaps, substitutions, insertions and
deletions and improved model performance in machine translation under per-
muted inputs. [11] simulated noisy texts using a confusion matrix and employed
a stability loss when training models on both clean and noisy samples.

In this paper, our robust training framework follows the same idea to train
models with both clean and noisy data. The differences are that our multi-source
noise simulation can generate more natural OCR noises and using hard example
mining algorithm together with stability loss can produce optimal performance.

3 Problem

3.1 Notation

In order to distinguish noise-free texts, natural handwritten OCR transcripts
and simulated OCR transcripts, we denote them by X , X ′ and ˜X respectively.
Let Y denote the shared labels.

3.2 Text Classification

Text classification is one of the most common NLP tasks and can be used to
evaluate the performance of NLP models. Text classification is the assignment
of documents to a fixed number of semantic categories. Each document can
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be in multiple or exactly one category or no category at all. More formally, let
x = (w0,w1,w2, · · · ,wn) denote a sequence of tokens and y = (y0,y1, · · · ,ym)
denote the fixed number of semantic categories. The goal is to learn a proba-
bilistic function that takes x as input and outputs the probability distribution
over y. Without loss of generality, we only study the binary text classification
problem under noisy setting in this work.

3.3 A Practical Scenario

In the context of supervised machine learning, we assume that in most scenarios,
we only have access to labelled noise-free texts. There are two reasons. Firstly,
most open-sourced labelled data do not consider OCR noises. Secondly, manual
labelling usually also labels clean texts, and does not consider OCR noise. One
reason is that annotating noisy texts is difficult or ambiguous. Another reason
is that labelling becomes subject to changes in OCR recognition. For different
OCR, we need to repeat the labelling multiple times.

In order to boost the performance of model when applied on OCR transcripts,
we can train or finetune the model on labelled noisy data. Then the question
becomes how to transform labelled noise-free texts into labelled noisy texts. Due
to the fact that labelled texts do not come with corresponding images, it is
impossible to call OCR engines and obtain natural OCR transcripts. Human
resources can be employed to copy texts and take pictures, but it is extremely
expensive considering the size of data for model training. Then the core question
is how to inject natural OCR noise into labelled texts efficiently.

3.4 OCR Noise Simulation

When OCR engine transforms images into texts, we can think of it as a noise
induction process. Let I denote a handwritten image, x denotes the text content
on image I, OCR would transform the noise-free text x into its noisy copy x′.

The problem is then defined as modeling a noise induction function ˜X =
F(X , θ) where θ is the function parameters and X is a collection of noise-free
texts. A good simulation function makes sure that the simulated ˜X is close to
the natural OCR transcripts X ′. It should be noted that noise induction should
not change the semantic meaning of content so that X , X ′ and ˜X share the same
semantic label in text classification task.

3.5 Robust Training

In this work, we deal with off-line handwritten text recognition. We do not study
how to improve the accuracy of recognition, but only use the recognition model
as a black box tool. Instead, we are interested in how to make downstream NLP
models intrinsically robust to noisy inputs.

Let M denote a pre-trained model that is finetuned on a noise-free dataset
(X ,Y), firstly we investigate how much performance degrades when M is applied
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on natural OCR transcripts X ′. Secondly, we study on how to finetune M on
simulated noisy datasets ( ˜X ,Y) efficiently to improve its performance on input
X ′ that contains natural OCR errors.

4 Approach

4.1 OCR Noise Simulation

In this section, we introduce the multi-source noise simulation method.

Rule-Based Simulation. One type of frequent noise introduced by OCR
engines is the token level edit. For example, a word that is not clearly writ-
ten could be mistakenly recognized as other synonymous word, or in even worse
case, not recognized at all. In order to synthesize token level natural OCR noise
from noise-free texts, we compare and align parallel data of clean and natural
OCR transcript pairs (X ,X ′) using the Levenshtein distance metric (Leven-
shtein, 1966). Let V be the vocabulary of tokens, we then construct a token level
confusion matrix Cconf by aligning parallel data and estimating the probability
P (w′|w) with the frequency of replacing token w to w′, where w and w′ are both
tokens in V. We introduce an additional token ε into the vocabulary to model
the insertion and deletion operations, the probability of insertion and deletion
can then be formulated as Pins(w|ε) and Pdel(ε|w) respectively. For every clean
sentence x = (w0,w1,w2, · · · ,wn), we independently perturb each token in x
with the following procedure, which is proposed by [11]:

– Insert the ε token before the first and after every token in sentence x and
acquire an extended version xext = (ε,w0, ε,w1, ε,w2, ε, · · · , ε,wn, ε).

– For every token w in sentence xext, sample another token from the probability
distribution P (w′|w) to replace w.

– Remove all ε tokens from the sentence to obtain the rule-based simulated
noisy sentence x̃.

Attack-Based Simulation. The attack-based method greedily searches for
the weak spots of the input sentence [20] by replacing each word, one at a
time, with a “padding” (a zero-valued vector) and examining the changes of
output probability. After finding the weak spots, attack-based method replaces
the original token with another token. One drawback of greedy attack is that
adversarial examples are usually unnatural [7]. In even worse case, the semantic
meaning of the original text might change, this makes the simulated text a
bad adversarial example. To avoid such problem, we only replace the original
token with its synonym. The synonym comes from the confusion matrix Cconf

by aligning clean texts and OCR transcripts. This effectively constrains the
semantic drifts and makes the simulated texts close to natural OCR transcripts.
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Model-Based Simulation. We observe that there are both token level and
span level noises in natural OCR transcripts. In span level noises, there are
dependencies between the recognition of multiple tokens. For example, a noise-
free sentence (translated as “The tortoise meditated” by Google
Translate1) is recognised as (translated as “Jet black box” by
Google Translate). A possible reason is that the mis-recognition of leads to
recognizing into because is a whole word in Chinese. The rule-
based and attack-based simulation mainly focuses on token-level noise where a
character or token might be edited. It makes edits independently and does not
consider dependency between multiple tokens. As a consequence, both ruled-
based and attack-based simulation are not able to synthesize the span level
noise.

We proposed to model both token level and span level noise using the encoder-
decoder architecture, which is successful in many NLP tasks such as machine
translation, grammatical error corrections (GEC) and etc. While a GEC model
takes noisy texts as input and generates noise-free sentences, our model-based
noise injection model is quite the opposite. During training, we feed parallel
data of clean and OCR transcripts (X , X ′) into the injection model so that it
can learn the frequent errors that OCR engines will make. During inference,
the encoder first encode noise-free text into a fix length representation and the
decoder generates token one step a time with possible noise in an auto-regressive
manner. This makes sure that both token level and span level noise distribution
can be captured by the model. We can use the injection model to synthesize a
large number of noisy texts that approximate the natural OCR errors. It should
be noted that the injection model is not limited to a certain type of encoder-
decoder architecture. In our experiment, we employ a 6-layer vanilla Transformer
(base model) as in [19].

4.2 Noise Invariance Representation

[25] pointed out the output instability issues of deep neural networks. They pre-
sented a general stability training method to stabilize deep networks against
small input distortions that result from various types of common image process-
ing. Inspired by [11,25] adapted the stability training method to the sequence
labeling scenario. Here we adapt it to the text classification task. Given the
standard task objective Lstand, the clean text x, its simulated noisy copy x̃ and
the shared label y, the stability loss is defined as

L = α ∗ Lstand + (1 − α) ∗ Lsim (1)

Lsim = Distance(y(x),y(x̃)) (2)

where Lsim is the distance between model outputs for clean input x and
noisy input x̃, α is a hyper-parameter to trade off Lstand and Lsim. Lsim is
1 https://translate.google.cn.

https://translate.google.cn
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expected to be small so that the model is not sensitive to the noise disturbance.
This enables the model to obtain robust representation for both clean and noisy
input. Specifically, we use Euclidean distance as our distance measure.

4.3 Hard Example Mining

The proposed noise simulation methods could generate quadratic or cubic num-
ber of parallel samples compared to the size of original dataset. It is good that we
now have sufficient number of training data with noises and labels. Nevertheless,
the training process becomes inefficient if we naively treat each simulated sam-
ple equally and feed all the samples into the classifier. This makes the training
process extremely time-consuming and does not lead to an optimal performance.
Consequently, we need a strategy to sample examples from large volumes of data
for optimal performance. Ideally, a robust model should learn similar represen-
tations for all possible noise-free text x and its corresponding noisy copy x̃. In
reality, however, the model can only capture noise-invariance representations for
some of the simulated samples, for some other samples, the representations of
the clean text and its noisy copy are still quite different. For any given model
M, we define a sample x as a hard example for M if the representations of x
and x̃ are not similar. We believe that at different training iterations, the hard
examples are different, and the model should focus more on the hard ones. We
propose a hard example mining algorithm that dynamically distinguishes hard
and easy samples for each training epoch as follows:

– Step 1. Initialize the classifier by finetuning a pre-trained model on the noise-
free training data Dclean = {xi}i=1,2,...N

– Step 2. Generate a large number of simulated noisy texts Dnoisy =
{x̃i}i=1,2,...M and construct a collection of all training samples D =
{Dclean,Dnoisy}

– Step 3. For each iteration t, we feed training samples D to the classifier and
obtain their representations Et = {ei, ẽi}i=1,2,...M from classifier.

– Step 4. Calculate the cosine distance of ei and ẽi. Rank all the distances, i.e.,
Distance = {cosine(ei, ẽi)}i=1,2,...M , and only keep samples with the top
largest distance. These are the hard examples and we use Dhard to denote
it. We use a hyper-parameter β = |Dhard|/M to control the number of hard
examples.

– Step 5. Train classifier on Dt={Dhard, Dclean} and update model by miniming
L = α ∗ Lstand + (1 − α) ∗ Lsim

4.4 The Overall Framework

The overall framework is shown in Fig. 1. Let xi, i = 0, 1, 2, ...N denote the noise-
free text, where xi is a sequence of tokens, and x̃i is the simulated noisy copy.
ei and ẽi are the model representations for xi and x̃i, we calculate the cosine
distance between ei and ẽi and select those pairs with largest distance as the
hard examples. Then hard examples together with original noise-free data are
used to train the model. For each iteration, we select hard examples dynamically.
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Fig. 1. The overview of the robust training framework.

5 Experiment

5.1 Dataset

We describe three evaluation datasets and the parallel data for training the
model-based noise simulation model below.

Test Data. To comprehensively evaluate pre-trained models and the pro-
posed framework, we perform experiments on three real-world text classifica-
tion datasets, e.g., Metaphor, Personification and Parallelism detection. In each
dataset, the task is to assign a positive or negative label to a sentence.

– Metaphor, is a figure of speech that describes an object or action in a way
that is not literally true, but helps explain an idea or make a comparison.

– Personification, is a figure of speech when you give an animal or object qual-
ities or abilities that only a human can have.

– Parallelism, is a figure of speech when phrases in a sentence have similar or
the same grammatical structure.

In order to obtain the above three datasets, we hired five professional teachers to
annotate essays of primary school students. We broke down essays into sentences
and each sentence was annotated as one of the three rhetoric or did not belong to
any rhetoric. We aggregated crowd-sourced labels into ground-truth label using
majority voting. Each task contains over 2000 sentences and the number of
positive examples is between 48 to 156. It should be noted that this imbalance
is caused by the fact that rhetoric is not so common in students’ essays. We
simply keep the natural positive and negative sample ratio in the test set for
objectiveness. Details about the test data are in Table 1.
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OCR Engine and Natural Noise. Different from existing work [11] which
evaluated model performance on simulated OCR transcripts, we constructed
six real OCR test data for evaluation. We hired over 20 people to write down
the original noise-free texts, take pictures and feed images to commercial OCR
engines so that natural OCR transcripts can be obtained. We chose Hanvon
OCR2 and TAL OCR3 as our engines because they are the leading solutions for
Chinese primary school student’s handwriting recognition. The noise rates are
3.42% and 6.11% for Hanvon and TAL OCR test data respectively. Because we
can only experiment with limited number of OCR engines, we discuss the impact
of different noise levels in Sect. 6.1.

Table 1. Test data.

Dataset #sentences #positives AvgSentLen

Metaphor 2064 156 37.5

Personification 2059 64 37.6

Parallelism 2063 48 37.5

Parallel Data for Noise Simulation. In order to train the model-based noise
simulation model, we collect about 40,000 parallel data4 of human transcripts
and OCR transcripts as our training data. We believe that 40,000 is a reasonable
amount to train a high quality model-based noise generator. More importantly,
once trained, the model can serve as a general noise generator regardless of
specific tasks. In other words, we can use it to quickly convert annotated clean
text into annotated noisy text in all sorts of tasks.

5.2 Implementation

For each classification task, we first finetune pre-trained models on noise-free
training data Dclean, save models with the best validation loss as M∗

clean. To
perform robust training, we synthesize noisy copies of the original training data
and then finetune M∗

clean on both clean and noisy data as denoted by M∗
noisy.

Both M∗
clean and M∗

noisy are tested on original noise-free test data and noisy
copies of the test data.

We implement the framework using PyTorch and train models on Tesla V100
GPUs. We use an opensource release5 of Chinese BERT and RoBERTa as the
pre-trained models. We tune learning rate ∈ {5e−8, 5e−7}, batch size ∈ {5, 10},
α ∈ {1.0, 0.75, 0.50} where α = 1.0 indicates no stability loss is employed. We
keep all other hyper-parameters as they are in the release. We report precision,
recall and F1 score as performance metrics.
2 https://www.hw99.com/index.php.
3 https://ai.100tal.com/product/ocr-hr.
4 Parallel data do not have task specific labels, so they are not used as training data.
5 https://github.com/ymcui/Chinese-BERT-wwm.

https://www.hw99.com/index.php
https://ai.100tal.com/product/ocr-hr
https://github.com/ymcui/Chinese-BERT-wwm
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5.3 Results

Robust Training on Simulated Texts. Instead of naively combining multi-
source simulation data and finetuning model M∗

clean on it, we employ the
hard example mining algorithm in Sect. 4.3 and the stability loss in Sect. 4.2
for robust training. We compare the proposed robust training framework with
several strong baselines.

– Random. We randomly select several tokens and make insertion, deletion or
substitution edits to generate permuted data. We then combine the permuted
and clean data and finetune models on it.

– Noise-aware Training, i.e., NAT [11], noise-aware training for robust neural
sequence labeling, which proposes two objectives, namely data augmentation
and stability loss, to improve the model robustness in perturbed input.

– TextFooler, [8], a strong baseline to generate adversarial text for robust adver-
sarial training.

– Naively Merge. We finetune M∗
clean on clean and noisy samples generated by

all three simulation methods, but without hard example mining and stability
loss.

The results are in Table 2. Ours is the proposed robust training framework that
finetunes M∗

clean on clean and noisy samples generated by all three simulation
methods, together with hard example mining and stability loss. We have the
following observations:

– Compared with M∗
clean, all robust training approaches, Random, NAT,

TextFooler, Naively Merge and our robust training framework (Ours) improve
the F1 score on both noise-free test data and OCR test data on all three tasks.

– Compared with Naively Merge, Ours demonstrates improvements in both
precision and recall in all test data, which proves that hard example mining
and stability loss are vital to the robust training framework.

– When compared with existing baselines, Ours ranks the first place eight times
and the second place once out of all nine F1 scores (three tasks, three test
data for each task). This proves the advantages of using the proposed robust
training framework over existing approaches.

We think of two reasons. Firstly, the proposed noise simulation method gener-
ates more natural noisy samples than baselines do. Baselines might introduce
plenty of unnatural noisy samples, making precision even lower that of M∗

clean.
Secondly, hard example mining algorithm enables the model to focus on hard
examples whose robust representation has not been learned. NAT and TextFooler
finetunes models by naively combing clean and noisy samples.
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Table 2. Evaluation results of BERT on metaphor, personification and parallelism.

Task Noise-free data Hanvon OCR TAL OCR

P R F1 P R F1 P R F1

M∗
clean Metaphor 0.897 0.833 0.864 0.888 0.814 0.849 0.886 0.795 0.838

Random Metaphor 0.873 0.885 0.879 0.864 0.853 0.858 0.868 0.840 0.854

NAT Metaphor 0.871 0.866 0.868 0.868 0.846 0.857 0.877 0.821 0.848

TextFooler Metaphor 0.883 0.872 0.877 0.874 0.846 0.860 0.872 0.833 0.852

Naively Merge Metaphor 0.877 0.872 0.875 0.880 0.846 0.863 0.873 0.833 0.852

Ours Metaphor 0.890 0.885 0.887 0.889 0.872 0.880 0.877 0.865 0.871

M∗
clean Personification 0.855 0.828 0.841 0.868 0.719 0.787 0.825 0.734 0.777

Random Personification 0.831 0.844 0.837 0.814 0.750 0.781 0.842 0.750 0.793

NAT Personification 0.925 0.766 0.838 0.904 0.734 0.810 0.917 0.688 0.786

TextFooler Personification 0.831 0.844 0.837 0.803 0.766 0.784 0.831 0.766 0.797

Naively merge Personification 0.895 0.797 0.843 0.875 0.766 0.817 0.885 0.719 0.793

Ours Personification 0.927 0.797 0.857 0.923 0.750 0.828 0.926 0.734 0.817

M∗
clean Parallelism 0.720 0.750 0.735 0.756 0.646 0.697 0.725 0.604 0.659

Random Parallelism 0.717 0.792 0.753 0.714 0.729 0.721 0.717 0.688 0.702

NAT Parallelism 0.814 0.729 0.769 0.821 0.667 0.736 0.795 0.646 0.713

TextFooler Parallelism 0.731 0.792 0.760 0.733 0.688 0.710 0.767 0.688 0.725

Naively merge Parallelism 0.777 0.729 0.753 0.781 0.667 0.719 0.781 0.667 0.719

Ours Parallelism 0.783 0.750 0.766 0.773 0.708 0.739 0.778 0.729 0.753

6 Analysis

6.1 Naive Training with a Single Noise Simulation Method

We introduce our multi-source noise simulation methods in Sect. 4.1. Using these
methods, we can generate a large number of noisy texts from noise-free data.
In this section, we evaluate the effectiveness for each method independently. We
reload M∗

clean and finetune it combining clean texts and noisy texts generated
by a single noise simulation method. At this stage, neither hard example mining
nor stability loss is employed. The results of using a single noise simulation
method are listed in Tables 3, 4, 5. M∗

clean is finetuned on noise-free data.
Rule-based, Model-based and Attack-based are finetuned with a single noise
simulation method without hard example mining and stability loss

Firstly, we observe that both recall and F1 score decrease significantly on two
noisy test sets compared to performance on noise-free test set. For example, on
TAL OCR test set, F1 score of BERT decreases 6.4% and 7.6% for Personification
and Parallelism detection and F1 score of RoBERTa decreases 8.5% and 4.0%
respectively. This proves that pre-trained models trained on noise-free data are
not robust to OCR noises.

Secondly, all three noise simulation methods can improve the F1 scores of
BERT and RoBERTa for all three tasks. However, when we naively combine
multi-source simulations and finetune models on it (“Naively Merge” in Table 2),
the performance does not exceed the effect of using a single noise simulation
method. This motivates us to introduce hard example mining and stability loss
into the proposed robust training framework.
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Table 3. Performance on metaphor detection with a single noise simulation.

Simulation Model Noise-free data Hanvon OCR TAL OCR

P R F1 P R F1 P R F1

M∗
clean BERT 0.897 0.833 0.864 0.888 0.814 0.849 0.886 0.795 0.838

Rule-based BERT 0.877 0.872 0.874 0.874 0.846 0.860 0.872 0.833 0.852

Model-based BERT 0.882 0.865 0.873 0.885 0.840 0.862 0.878 0.827 0.852

Attack-based BERT 0.887 0.859 0.873 0.879 0.840 0.859 0.894 0.808 0.849

M∗
clean RoBERTa 0.872 0.917 0.894 0.862 0.878 0.870 0.873 0.878 0.875

Rule-based RoBERTa 0.836 0.917 0.875 0.821 0.910 0.863 0.844 0.904 0.873

Model-based RoBERTa 0.872 0.917 0.894 0.856 0.917 0.885 0.859 0.897 0.878

Attack-based RoBERTa 0.889 0.872 0.880 0.879 0.840 0.859 0.872 0.827 0.849

6.2 The Impact of Different Noise Level

We prove that the proposed robust training framework can largely boost model
performance when applied on noisy inputs generated by real OCR engines. Since
the noise rate in both Hanvon and TAL OCR test data is relatively low, we have
not evaluated the effectiveness of the proposed robust training framework under
different noise rates, especially when there are significant number of noises in
the inputs. In this section, we investigate this problem and show the results in
Fig. 4. We introduce different levels of noises by randomly inserting, deleting or
replacing tokens in noise-free texts with equal probability.

As shown in Fig. 4, we can observe that F1 score decreases as the noise
rate increases. When noise rate is less than 25%, F1 score decreases slowly for
Parallelism and Metaphor detection, and drops significantly when noise rate
exceeds 30%. Another observation is that performance of Personification detec-
tion degrades faster than the other two tasks, as reflected in a sharper slope in
Fig. 4.

Table 4. Performance on personification detection with a single noise simulation.

Simulation Model Noise-free data Hanvon OCR TAL OCR

P R F1 P R F1 P R F1

M∗
clean BERT 0.855 0.828 0.841 0.868 0.719 0.787 0.825 0.734 0.777

Rule-based BERT 0.818 0.844 0.831 0.817 0.766 0.791 0.833 0.781 0.806

Model-based BERT 0.862 0.781 0.820 0.855 0.734 0.790 0.855 0.734 0.790

Attack-based BERT 0.844 0.844 0.844 0.831 0.766 0.797 0.831 0.765 0.797

M∗
clean RoBERTa 0.764 0.859 0.809 0.754 0.812 0.782 0.730 0.719 0.724

Rule-based RoBERTa 0.775 0.859 0.815 0.783 0.844 0.812 0.739 0.797 0.767

Model-based RoBERTa 0.776 0.812 0.794 0.785 0.797 0.791 0.817 0.766 0.791

Attack-based RoBERTa 0.850 0.797 0.823 0.828 0.750 0.787 0.808 0.656 0.724
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Table 5. Performance on parallelism detection with a single noise simulation.

Simulation Model Noise-free data Hanvon OCR TAL OCR

P R F1 P R F1 P R F1

M∗
clean BERT 0.720 0.750 0.735 0.756 0.646 0.697 0.725 0.604 0.659

Rule-based BERT 0.679 0.792 0.731 0.700 0.714 0.758 0.739 0.708 0.723

Model-based BERT 0.771 0.771 0.771 0.733 0.688 0.710 0.786 0.688 0.734

Attack-based BERT 0.766 0.750 0.758 0.789 0.625 0.698 0.800 0.667 0.727

M∗
clean RoBERTa 0.795 0.729 0.761 0.838 0.646 0.730 0.816 0.646 0.721

Rule-based RoBERTa 0.780 0.812 0.796 0.800 0.750 0.774 0.795 0.729 0.761

Model-based RoBERTa 0.792 0.792 0.792 0.814 0.729 0.769 0.810 0.708 0.756

Attack-based RoBERTa 0.787 0.771 0.779 0.829 0.708 0.764 0.805 0.688 0.742

6.3 The Impact of Hard Example Mining

Hard example mining algorithm allows the model to dynamically pay more atten-
tion to hard examples (xi, x̃i) whose representations (ei, ẽi) are still quite dif-
ferent. We believe that it is vital for the model to learn robust representations.
In this section, we investigate the performance difference with and without hard
example mining. As shown in Fig. 2, F1 score consistently increases for both
noise-clean and noisy OCR test data when hard example mining is employed.
For example, hard example mining improves F1 by 2% on Metaphor and 3.4%
on Parallelism using TAL OCR. This indicates the importance of hard example
mining in the proposed framework.

Fig. 2. The impact of hard example mining.

Fig. 3. The impact of stability loss.
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Fig. 4. The impact of different noise levels.

6.4 The Impact of Stability Loss

The use of stability loss guarantees that model can learn similar representations
for clean text x and its noisy copy x′. In this section, we investigate the perfor-
mance difference with and without stability loss. As shown in Fig. 3, F1 score
decreases when there are no stability loss for all three datasets. On Metaphor
detection, using stability loss improves F1 by 4.1% and 2.3% for TAL OCR and
Hanvon OCR. This indicates that stability loss is vital to the proposed frame-
work.

7 Conclusion

In this paper, we study the robustness of multiple pre-trained models, e.g., BERT
and RoBERTa, in text classification when inputs contain natural OCR noises. We
propose a multi-source noise simulation method that can generate both token-
level and span-level noises. We finetune models on both clean and simulated
noisy data and propose a hard example mining algorithm so that during each
training iteration, the model can focus on hard examples whose robust repre-
sentations have not been learned. For evaluation, we construct three real-world
text classification datasets and obtain natural OCR transcripts by calling OCR
engines on real handwritten images. Experiments on three datasets proved that
the proposed robust training framework largely boosts the model performance
for both clean texts and natural OCR transcripts. It also outperforms all existing
robust training approaches. In order to fully investigate the effectiveness of the
framework, we evaluate it under different levels of noises and study the impact
of hard example mining and stability loss independently. In the future, we will
experiment the proposed framework on other NLP tasks and more languages. In
the meanwhile, we will study the problem under automatic speech recognition
(ASR) transcripts.
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Abstract. Generating high-quality and diverse essays with a set of top-
ics is a challenging task in natural language generation. Since several
given topics only provide limited source information, utilizing various
topic-related knowledge is essential for improving essay generation per-
formance. However, previous works cannot sufficiently use that knowl-
edge to facilitate the generation procedure. This paper aims to improve
essay generation by extracting information from both internal and exter-
nal knowledge. Thus, a topic-to-essay generation model with comprehen-
sive knowledge enhancement, named TEGKE, is proposed. For inter-
nal knowledge enhancement, both topics and related essays are fed to
a teacher network as source information. Then, informative features
would be obtained from the teacher network and transferred to a stu-
dent network which only takes topics as input but provides comparable
information compared with the teacher network. For external knowledge
enhancement, a topic knowledge graph encoder is proposed. Unlike the
previous works only using the nearest neighbors of topics in the common-
sense base, our topic knowledge graph encoder could exploit more struc-
tural and semantic information of the commonsense knowledge graph
to facilitate essay generation. Moreover, the adversarial training based
on the Wasserstein distance is proposed to improve generation quality.
Experimental results demonstrate that TEGKE could achieve state-of-
the-art performance on both automatic and human evaluation.

Keywords: Topic-to-essay generation · Knowledge transfer · Graph
neural network · Adversarial training

1 Introduction

Topic-to-essay generation (TEG) is a challenging task in natural language genera-
tion, which aims at generating high-quality and diverse paragraph-level text under
the theme of several given topics. Automatic on-topic essay generation would
bring benefits to many applications, such as news compilation [10], story gener-
ation [3], and intelligent education. Although some competitive results for TEG
have been reported in the previous works using deep generative models [4,15,20],
the information gap between the source topic words and the targeted essay blocks
c© Springer Nature Switzerland AG 2021
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Source

Target

Machine Translation Text Summarization Essay Generation
Source ≈ Target Source > Target Source < Target

Fig. 1. Toy illustration of the information volume on different text generation tasks.

their models from performing well. The comparison of information flow between
TEG and other text generation tasks is illustrated in Fig. 1 [20]. For machine trans-
lation and text summarization, the source provides enough information to gener-
ate the targeted text. However, for the TEG task, the information provided by
only the topic words is much less than that contained in the targeted text during
generation, making the generated essays low-quality.

The proper utilization of various topic-related knowledge is essential to enrich
the source information, which has not been sufficiently explored. Incorporating
the external knowledge from related common sense into the generation procedure
is an efficient way to improve the TEG performance. However, in the common-
sense knowledge graph, previous works [15,20] only consider the nearest neighbor
nodes of topic words, and neglect the multi-hop neighbors which would bring
more structural and semantic information. Moreover, without considering exter-
nal knowledge, their models cannot fully exploit the relation between topics and
essays to assist the generation procedure.

This paper proposes a topic-to-essay generation model with comprehensive
knowledge enhancement, named TEGKE. By extracting both internal and exter-
nal knowledge, TEGKE greatly enriches the source information. Besides, the
adversarial training based on the Wasserstein distance is proposed to further
enhance our model. Thus, there are three key parts, including internal knowl-
edge enhancement, external knowledge enhancement, and adversarial training.

For internal knowledge enhancement, our model is based on the auto-encoder
framework including a teacher network and a student network. Inspired by the
conditional variational auto-encoder (CVAE) framework, the teacher network
takes both topic words and related essays as source information to get infor-
mative latent features catching the high-level semantics of the relation between
topics and essays. Then, a decoder could better reconstruct the targeted essay
conditional on these features. Since only topic words could be used as the input
source during inference, the informative features (i.e., internal knowledge) from
the teacher network would be transferred to the student network. Different from
CVAE that trains the recognition network and the prior network to be close
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to each other in the latent space, the teacher network in TEGKE maintains an
independent training procedure. Then, the student network is forced to be close
to the teacher network. That is, the student could take only topics as input but
output comparable informative latent features compared with the teacher.

For external knowledge enhancement, ConceptNet [17] is employed as the
commonsense knowledge base. Different from the previous works only using the
nearest neighbors of topics, a topic-related knowledge graph is extracted from
ConceptNet, which consists of multi-hop neighbors from the source topic words.
Then, a topic knowledge graph encoder is proposed to perform on the multi-
hop knowledge graph. It employs a compositional operation to obtain graph-
aware node representations (i.e., external knowledge), which could conclude the
structural information and the semantic information. The external knowledge is
involved in the essay generation and helps select a proper decoding word.

Moreover, a discriminator is introduced for adversarial training. For alleviat-
ing the discrete output space problem of text, previous works adopt the adver-
sarial training based on reinforcement learning (RL), which has the drawbacks of
less-informative reward signals and high-variance gradients [1]. In contrast, this
paper proposes to directly optimize the Wasserstein distance for the adversarial
training, which avoids the problem of vanishing gradients and provides strong
learning signals [5]. Based on the Wasserstein distance, the discriminator could
operate on the continuous valued output instead of discrete text [18]. For align-
ing essays with the related topics, topics are combined with generated essays as
generated samples and combined with targeted essays as real samples. By the
minimax game, the discriminator would provide an informative learning signal
guiding our model to generate high-quality essays.

In summary, our contributions are as follows:

– A topic-to-essay generation model is proposed based on the knowledge
transfer between a teacher network and a student network. The teacher
network could obtain informative features for the student network to
learn, making the student network provide abundant information with
only topics as the input source.

– A topic knowledge graph encoder is proposed to perform on the multi-
hop knowledge graph extracted from the commonsense base. It helps
our model exploit the structural and semantic information of the
knowledge graph to facilitate essay generation. Moreover, a discrimi-
nator is introduced to improve generation quality by the adversarial
training based on the Wasserstein distance.

– Experimental results on both automatic evaluation and human evalua-
tion demonstrate that TEGKE could achieve better performance than
the state-of-the-art methods.

2 Related Work

As a text generation task, TEG aims at generating high-quality and diverse
paragraph-level text with given topics, which has drawn more attention. This
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task is first proposed by Feng et al. [4], and they utilize the coverage vector to
integrate topic information. For enriching the input source information, external
commonsense knowledge has been introduced for TEG [15,20]. Besides, Qiao
et al. [15] inject the sentiment labels into a generator for controlling the sentiment
of a generated essay. However, during essay generation, previous works [15,20]
only consider the nearest neighbors of topic nodes in the commonsense knowledge
graph. This limitation blocks their models from generating high-quality essays.
For better essay generation, this paper makes the first attempt to utilize both
structural and semantic information from the multi-hop knowledge graph.

Poetry generation is similar to TEG, which could be regarded as a generation
task based on topics. A memory-augmented neural model is proposed to gener-
ate poetry by balancing the requirements of linguistic accordance and aesthetic
innovation [24]. The CVAE framework is adopted with adversarial training to
generate diverse poetry [12]. Yang et al. [21] use hybrid decoders to generate
Chinese poetry. RL algorithms are employed to improve the poetry diversity cri-
teria [22] directly. Different from poetry generation showing obvious structured
rules, the TEG task needs to generate a paragraph-level unstructured plain text,
and such unstructured targeted output brings severe challenges for generation.

The RL-based adversarial training [6,23] is used to improve essay quality in
previous works [15,20]. However, the noisy reward derived from the discriminator
makes their models suffer from high-variance gradients. In contrast, our model
directly optimizes the Wasserstein distance for the adversarial training without
RL, achieving better generation performance.

3 Methodology

3.1 Task Formulation

Given a dataset including pairs of the topic words x = (x1, ..., xm) and the related
essay y = (y1, ..., yn), for solving the TEG task, we want a θ-parameterized model
to learn each pair from the dataset and generate a coherent essay under given topic
words, where the number of essay words n is much larger than that of topic words
m. Then, the task could be formulated as obtaining the optimal model with θ̂
which maximizes the conditional probability as follows:

θ̂ = arg maxθPθ(y|x). (1)

3.2 Model Description

Our TEGKE is based on the auto-encoder framework, utilizing both internal and
external knowledge to enhance the generation performance. As shown in Fig. 2,
the model mainly contains three encoders (i.e., a topic encoder, an essay encoder,
and a topic knowledge graph encoder) and an essay decoder. A discriminator is
introduced at the end of the essay decoder for adversarial training.

For internal knowledge enhancement, the topic encoder and the essay encoder
encode the topic words and the targeted essay sequence as xenc and yenc, respec-
tively. The latent features z1 and z2 are obtained from a teacher network taking
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Fig. 2. Overview of the proposed model. Our model uses the teacher network for train-
ing (black solid arrows), and the student network for inference (black dotted arrows).
The student network learns the latent features from the teacher network (red dotted
arrows) for internal knowledge enhancement. The information from the topic knowl-
edge graph encoder is integrated at each decoding step (red solid arrows) for external
knowledge enhancement. During adversarial training, the generated essays are fed to
the discriminator which provides learning signals as feedback. (Color figure online)

both xenc and yenc as input. Then, a student network, which takes xenc solely
as input, produces z̃1 and z̃2 to learn from z1 and z2 as internal knowledge,
respectively. The essay decoder would generate a topic-related essay by receiv-
ing the latent features from the teacher network during training or those from
the student network during inference.

For external knowledge enhancement, the multi-hop topic knowledge graph
is constructed from the commonsense knowledge base, ConceptNet. Then, the
topic knowledge graph encoder could represent the topic-related structural and
semantic information as external knowledge to enrich the source information.
The extracted external knowledge is attentively involved in each decoding step of
the essay decoder to help select proper words and boost generation performance.

Through the adversarial training based on the Wasserstein distance, the dis-
criminator could make the generated essay more similar to the targeted essay,
which improves essay quality.

Topic Encoder and Essay Encoder. The topic encoder employs a bidirec-
tional gated recurrent unit (GRU) [2], which integrates the information of the
topic sequence from both forward and backward directions. The topic encoder
reads the embeddings of topic words x from both directions and obtains the
hidden states for each topic word as follows:

−→
hx

i =
−−−→
GRU(

−−→
hx

i−1, e(xi)),
←−
hx

i =
←−−−
GRU(

←−−
hx

i+1, e(xi)), (2)

where e(xi) is the embedding of xi. The representation of the i-th topic is
obtained as hx

i = [
−→
hx

i ;
←−
hx

i ], and “;” denotes the vector concatenation. The mean-
pooling operation is conducted on the representations of all topics to represent
x as xenc = mean(hx

1 , ..., hx
m). Similarly, another bidirectional GRU is adopted

as the essay encoder. The representation of the essay y could be obtained in the
same way as the topic encoder does, which is denoted as yenc.
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Internal Knowledge Enhancement. Although the auto-encoder framework has
shown competitive performance in many text generation tasks, the limited
source information of the TEG task cannot provide sufficient information for
the decoder to reconstruct the targeted output essay. This paper notices that
informative latent features produced by the encoder are essential for a better
decoding procedure. Inspired by the CVAE framework taking both the source
and the target to train a recognition network, a teacher network is proposed by
taking both the topics and essay as source information to get informative latent
features for the essay decoder. Since only topics could be accessed during infer-
ence, a student network taking topic words solely as input is designed to learn
from the teacher network’s latent features as internal knowledge. Different from
CVAE that trains both the recognition network and the prior network to be close
to each other in the latent space, the teacher network in our model maintains an
independent training procedure following minimizing the reconstruction error.
Because the teacher network is expected to provide strong supervision without
being influenced by the student network. The student network would generate
latent features which learn the information from the teacher network’s latent
features through knowledge transfer. That is, the student network is pushed to
be close to the teacher network in the latent space.

The teacher network consists of two feed-forward networks, and each network
takes xenc and yenc as input to produce the mean and the diagonal covariance
by two matrix multiplications, respectively. The latent features z1 and z2 are
sampled from two Gaussian distributions defined by the above two feed-forward
networks, respectively. During training, z1 is used as a part of the essay decoder’s
initial hidden state, and z2 is used as a part of the essay decoder’s input at each
step to provide more source information. The decoder receives z1 and z2 to
optimize the training objective. Similarly, there are two feed-forward networks
in the student network, where each network takes xenc solely as input to sample
a latent feature. Then, the student network’s latent features z̃1 and z̃2 could be
obtained. During inference, the decoder decodes z̃1 and z̃2 into a essay. Hence,
above latent features could be obtained as follows:

z1 ∼ N (μ1, σ
2
1I)

z2 ∼ N (μ2, σ
2
2I)

,

([
μ1

log
(
σ2
1

)]
,

[
μ2

log
(
σ2
2

)])
= Teacher(xenc, yenc), (3)

z̃1 ∼ N (μ̃1, σ̃
2
1I)

z̃2 ∼ N (μ̃2, σ̃
2
2I)

,

([
μ̃1

log
(
σ̃2
1

)]
,

[
μ̃2

log
(
σ̃2
2

)])
= Student(xenc), (4)

where I is an identity matrix, and the reparametrization trick is used to sam-
ple the latent features. For enhancing the generation performance, the teacher
network is trained to reconstruct the target, while the internal knowledge from
the teacher network is transferred to the student network by minimizing the
Kullback-Leibler (KL) divergence between the teacher’s distributions and the
student’s distributions in the latent space as follows:

Ltrans = KL(N (μ̃1, σ̃
2
1I)||N (μ1, σ

2
1I)) + KL(N (μ̃2, σ̃

2
2I)||N (μ2, σ

2
2I)). (5)



308 Z. Liu et al.

Topic Knowledge Graph Encoder. Incorporating external commonsense
knowledge is important to bridge the information gap between the source and
the target. Unlike previous works only considering the nearest neighbor nodes of
topics, this paper constructs a topic knowledge graph queried by the topic words
over a few hops from ConceptNet to assist the generation procedure. Then, a
topic knowledge graph G = (V,R,E) could be obtained, where V denotes the
set of vertices, R is the set of relations, and E represents the set of edges.
The topic knowledge graph encoder is designed to integrate the topic-related
information from G. By considering the topic knowledge graph, the objective of
the TEG task could be modified as follows:

θ̂ = arg maxθPθ(y|x,G). (6)

External Knowledge Enhancement. Appropriate usage of the structural and
semantic information in the external knowledge graph plays a vital role in
the TEG task. Each edge (u, r, v) in G means that the relation r ∈ R exists
from a node u to a node v. This paper extends (u, r, v) with its reversed link
(v, rrev, u) to allow the information in a directed edge to flow along both direc-
tions [13], where rrev denotes the reversed relation. For instance, given the edge
(worry, isa, emotion), the reversed edge (emotion, isa r, worry) is added in G.
Our topic knowledge graph encoder is based on the graph neural network (GNN)
framework, which could aggregate the graph-structured information of a node
from its neighbors. Specifically, a graph convolution network (GCN) with L lay-
ers is employed. For jointly embedding both nodes and relations in the topic
knowledge graph, this paper follows Vashishth et al. [19] to perform a non-
parametric compositional operation φ for combining the neighbor node and the
relation of a central node. As shown in Fig. 3, for a node v ∈ V, its embed-
ding would be updated at the l+1-th layer by aggregating information from its
neighbors N(v). The topic knowledge graph encoder treats incoming edges and
outgoing edges differently to sufficiently encode structural information. Specifi-
cally, the related edges of the node v could be divided into the set of incoming
edges and that of outgoing edges, denoted as Ein(v) and Eout(v), respectively.
Then, the node embedding of v could be updated as follows:

ol
v =

1
|N(v)|

∑
(u,r)∈N(v)

W l
dir(r)φ(hl

u, hl
r), (7)

hl+1
v = ReLU(ol

v + W l
looph

l
v), (8)

where h0
v is initialized by the original word embedding, and h0

r is initialized by
the relation embedding. The weight matrix W l

dir(r) is a relation-direction specific
parameter at the l-th layer as follows:

W l
dir(r) =

{
W l

in, (u, r, v) ∈ Ein(v)

W l
out, (v, r, u) ∈ Eout(v)

. (9)

The compositional operation employs φ(hl
u, hl

r) = hl
u + hl

r when incoming edges
are considered, and φ(hl

u, hl
r) = hl

u −hl
r when outgoing edges are considered [19].
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Fig. 3. Topic knowledge graph encoder. The graph neural network performs a composi-
tional operation for a central node (e.g., emotion). Only incoming edges are considered
in the diagram for clarity. The information from the topic knowledge graph is aggre-
gated to update the embedding of the central node. Then, the final updated embedding
is combined with the original word embedding to assist the essay decoding.

ol
v is the aggregated information from the l-th layer, and the weight matrix W l

loop

is used to transform v’s own information from the l-th layer. For the relation r,
its embedding is updated as follows:

hl+1
r = W l

rh
l
r, (10)

where W l
r is a weight matrix. A gate mechanism is designed to combine hL

v

containing graph knowledge and h0
v containing original semantic knowledge by:

gv = Sigmoid(Wgate[hL
v ;h0

v]), (11)

hv = gv � hL
v + (1 − gv) � h0

v, (12)

where Wgate is a weight matrix, and � is the element-wise multiplication.
Finally, the node embedding hv is obtained to encode both structural and

semantic information of the knowledge graph as external knowledge, involved in
each decoding step for better essay generation.

Essay Decoder. The essay decoder employs a single layer GRU. The initial
hidden state s0 is set with s0 = [xenc; z1] containing the topics’ representation
and the latent feature. Both internal and external knowledge should be involved
in each decoding step. Specifically, the hidden state st of the decoder at time
step t is obtained as follows:

st = GRU(st−1, [e(yt−1); z2; cx
t ; cg

t ]), (13)

where e(yt−1) is the embedding of the essay word yt−1 at the time step t − 1,
cx
t is the topic context vector at the time step t, which integrates the output

representations from the topic encoder by the attention mechanism as follows:
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ex
t,i = (tanh(Wxst−1 + bx))T hx

i , αx
t,i =

exp(ex
t,i)∑m

j=1 exp(ex
t,j)

, cx
t =

m∑
i=1

αx
t,ih

x
i , (14)

and cg
t is the graph context vector, which integrates the representations of the

graph nodes from the topic knowledge graph encoder as follows:

eg
t,v = (tanh(Wgst−1 + bg))T hv, αg

t,v =
exp(eg

t,v)∑
u∈V exp(eg

t,u)
, cg

t =
∑
v∈V

αg
t,vhv. (15)

The internal knowledge from the latent feature z2, and the external knowl-
edge from the graph context vector cg

t would help the decoder select a proper
word. Note that z1 and z2 would be replaced with z̃1 and z̃2 during inference.
Since our model takes both x and y as input when using the teacher network,
the probability of obtaining an essay word for training is obtained by:

Pθ(yt|y<t,x,y,G) = Softmax(Wost + bo). (16)

Discriminator. A ψ-parameterized CNN-based discriminator [8] Dψ is intro-
duced in our model for adversarial training which would improve essay quality.

Adversarial Training. Due to the discrete output space problem of text gener-
ation, previous works heavily rely on the RL-based adversarial training which
has less-informative reward signals and high-variance gradients. In contrast, this
paper proposes the adversarial training through the Wasserstein distance for
TEG. Based on the Wasserstein distance, the discriminator could operate on
continuous valued output and provide strong learning signals by distinguishing
between a real text sequence of one-hot vectors and a generated text sequence of
probabilities. Specifically, the hidden state st of the essay decoder is employed
to generate a probability output yθ

t = Softmax(Wost + bo). Then, a sequence of
outputs yθ = (yθ

1 , ..., y
θ
n) could be regarded as the generated essay for adversarial

training. For aligning the generated essay with the related topics, the pair of the
topics x and the ground truth essay y is fed to Dψ as the real sample, while
the pair of x and yθ is treated as the generated sample. Then, the adversarial
training objective based on the Wasserstein distance for Dψ is formulated by:

LDψ
= Dψ(x,yθ) − Dψ(x,y) + λ(||∇ŷDψ(x, ŷ)||2 − 1)2, (17)

where the gradient penalty (||∇ŷDψ(x, ŷ)||2 − 1)2 weighted by λ is imposed on
the discriminator to enforce the Lipschitz constraint, and ŷ = αy + (1 − α)yθ

with α ∼ Uniform(0, 1). The auto-encoder framework in our model could act as
a generator to minimize the following adversarial training objective as:

Ladv = −Dψ(x,yθ) − β log[Pθ(y|x,y,G)], (18)

where the log-likelihood term log[Pθ(y|x,y,G)] weighted by β would help align
the generated essay with the topics further and keep generation diversity. The
generator and the discriminator Dψ are alternately trained to play a minimax
game, where Dψ assists the generator to obtain high-quality essays.
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3.3 Training and Inference

For the training procedure, the latent features for decoding an essay are com-
puted by the teacher network. Two training stages are employed in TEGKE. At
the first training stage, the negative log-likelihood is minimized to reconstruct
the ground truth essay y = (y1, ..., yn) as follows:

Lrec =
n∑

t=1

−log[Pθ(yt|y<t,x,y,G)], (19)

where all parameters except the student network’s parameters are optimized
in an end-to-end manner. For transferring internal knowledge from the teacher
network to the student network, the KL divergence between the student’s dis-
tributions and the teacher’s distributions is minimized by Ltrans of Eq. (5) to
optimize the student network’s parameters.

At the second training stage, the auto-encoder framework in our model acts as
a generator which is trained by Ladv of Eq. (18). The discriminator is trained by
LDψ

of Eq. (17) to provide a learning signal for the generator. Note that the stu-
dent network is still optimized by Ltrans during the second stage. For the inference
procedure, the latent features for decoding are computed by the student network.
The input to our model is the topics x and the topic knowledge graph G, and then
the decoder would generate a related essay. The pseudo code of TEGKE is shown
in the supplementary material: https://arxiv.org/abs/2106.15142.

4 Experiments

4.1 Datasets

Experiments are conducted on the ZHIHU corpus [4] consisting of real-world
Chinese topic and essay pairs. The number of topic words is between 1 and 5.
The length of an essay is between 50 and 100. For extracting external knowledge
sufficiently, this paper constructs the topic knowledge graph from ConceptNet
over 5 hops, and then 40 nodes are reserved per hop [7]. The constructed topic
knowledge graph is a subgraph of ConceptNet. For this knowledge graph, the
maximum number of nodes is 205, and the maximum number of edges is 912.
The training set and the test set contain 27,000 samples and 2,500 samples,
respectively. We set 10% of training samples as the validation set for hyper-
parameters tuning. Besides, the experimental results on the ESSAY corpus [4]
are shown in the supplementary material.

4.2 Settings

The essay decoder is a GRU with a hidden size of 1024. Both the topic encoder
and the essay encoder are implemented as a bidirectional GRU with a hidden
size of 512. The size of latent features is 512 in the teacher network and the
student network. For the discriminator, the weight λ of the gradient penalty is

https://arxiv.org/abs/2106.15142
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set to 10. The weight β is set to 10. The vocabulary size is 50,000, and the batch
size is set to 32. The 200-dim pretrained word embeddings [16] are shared by
topics, essays, and initial graph nodes. The 200-dim randomly initialized vectors
are used as initial graph relation embeddings. Adam optimizer [9] is used to
train the model with the learning rate 10−3 for the first training stage, and the
learning rate 10−4 for the second training stage.

4.3 Baselines

TAV [4] encodes topic semantics as the average of the topic’s embeddings and
then uses an LSTM as a decoder to generate each word.
TAT [4] enhances the decoder of TAV with the attention mechanism to select
the relevant topics at each step.
MTA [4] extends the attention mechanism of TAT with a topic coverage vector
to guarantee that every single topic is expressed by the decoder.
CTEG [20] introduces commonsense knowledge into the generation procedure
and employs adversarial training to improve generation performance.
SCTKG [15] extends CTEG with the topic graph attention and injects the sen-
timent labels to control the sentiment of the generated essay. The SCTKG model
without sentiment information is considered as a baseline, since the original TEG
task does not take the sentiment of ground truth essays as input.

4.4 Evaluation Metrics

In this paper, both automatic evaluation and human evaluation are adopted to
evaluate the generated essays.

Automatic Evaluation. Following previous works [4,15,20], there are several
automatic metrics considered to evaluate the model performance.

BLEU [14]: The BLEU score is widely used in text generation tasks (e.g.,
dialogue generation and machine translation). It could measure the generated
essays’ quality by computing the overlapping rate between the generated essays
and the ground truth essays.

Dist-1, Dist-2 [11]: The Dist-1 and Dist-2 scores are the proportion of distinct
unigrams and bigrams in the generated essays, respectively, which measure the
diversity of the generated essays.

Novelty [20]: The novelty is calculated by the difference between the generated
essay and the ground truth essays with similar topics in the training set. A higher
score means more novel essays would be generated under similar topics.
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Table 1. Automatic and human evaluation results. ↑ means higher is better. ∗ indicates
statistically significant improvements (p < 0.001) over the best baseline.

Method Automatic evaluation Human evaluation

BLEU(↑) Novelty(↑) Dist-1(↑) Dist-2(↑) T-Con.(↑) Nov.(↑) E-div.(↑) Flu.(↑)
TAV 6.05 70.32 2.69 14.25 2.32 2.19 2.58 2.76

TAT 6.32 68.77 2.25 12.17 1.76 2.07 2.32 2.93

MTA 7.09 70.68 2.24 11.70 3.14 2.87 2.17 3.25

CTEG 9.72 75.71 5.19 20.49 3.74 3.34 3.08 3.59

SCTKG 9.97 78.32 5.73 23.16 3.89 3.35 3.90 3.71

TEGKE 10.75∗ 80.18∗ 5.58 28.11∗ 4.12∗ 3.57∗ 4.08∗ 3.82∗

Human Evaluation. Following previous works [15,20], in order to evaluate the
generated essays more comprehensively, 200 samples are collected from different
models for human evaluation. Each sample contains the input topics and the
generated essay. All 3 annotators are required to score the generated essays
from 1 to 5 in terms of four criteria: Topic-Consistency (T-Con.), Novelty
(Nov.), Essay-Diversity (E-div.), and Fluency (Flu.). For novelty, the TF-
IDF features of topic words are used to retrieve the 10 most similar training
samples to provide references for the annotators. Finally, each model’s score on
a criterion is calculated by averaging the scores of three annotators.

4.5 Experimental Results

Automatic Evaluation Results. The automatic evaluation results over gen-
erated essays are shown in the left block of Table 1. Compared with TAV, TAT,
and MTA, TEGKE consistently achieves better results on all metrics. This illus-
trates that, without introducing sufficient knowledge, their models obtain unsat-
isfactory performance due to the limited source information. CTEG and SCTKG
consider the nearest neighbor nodes of topics from ConceptNet as external infor-
mation. In contrast, the multi-hop topic knowledge graph provides more struc-
tural and semantic information which is extracted by our topic knowledge graph
encoder. Hence, our model outperforms the best baseline by 0.78 on the BLEU
score, demonstrating that the potential of our model to generate high-quality
essays. Moreover, TEGKE could obtain competitive results on the Dist-1 scores,
while greatly improving the Dist-2 and novelty scores by 4.95 and 1.86 over
SCTKG, respectively. That is, the essays generated from our model would be
more diverse and different from the essays in the training corpus. In general,
by integrating various internal and external knowledge into generation, TEGKE
could achieve better quality and diversity simultaneously.

Human Evaluation Results. The human evaluation results are shown in the
right block of Table 1, and TEGKE could obtain the best performance on all met-
rics. The external knowledge incorporated by the topic knowledge graph encoder
would help the decoder select topic-related words, and the adversarial training
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Table 2. Ablation study results.

Method BLEU(↑) Novelty(↑) Dist-1(↑) Dist-2(↑)

TEGKE 10.75 80.18 5.58 28.11

TEGKE w/o EX 10.18 78.67 5.38 21.16

TEGKE w/o AD 10.63 80.09 5.65 28.33

TEGKE w/o EX & AD 9.78 79.42 5.46 21.30

could further align generated essays with related topics. Thus, our model outper-
forms the best baseline by 0.23 on the topic-consistency score, showing that the
generated essays are more closely related to the given topics. The improvement
over the novelty, essay-diversity, and fluency scores demonstrates that TEGKE
could obtain better samples in terms of quality and diversity. This conclusion is
similar to that drawn from the automatic evaluation.

Ablation Study. To illustrate the effectiveness of our model’s key parts, this
paper performs an ablation study on three ablated variants: TEGKE without
external knowledge enhancement (TEGKE w/o EX), TEGKE without adver-
sarial training (TEGKE w/o AD), and TEGKE with only internal knowledge
enhancement (TEGKE w/o EX & AD). The results are shown in Table 2.

Internal Knowledge Enhancement. Based on only the internal knowledge from the
teacher network, TEGKE w/o EX & AD achieves the worst results among vari-
ants. However, its performance is still comparable to CTEG adopting both adver-
sarial training and commonsense knowledge, showing that the latent features pro-
duced by the TEGKE w/o EX & AD’s topic encoder benefit essay generation.
Specially, TEGKE w/o EX & AD increases Dist-1 by 0.27 and Dist-2 by 0.81 over
CTEG. This improvement comes from the teacher and student networks’ vari-
ous outputs, because our decoder generates essays depending on two latent fea-
tures sampled from different Gaussian distributions. The above results illustrate
that utilizing a student to learn from a teacher makes our model learn the relation
between topics and essays better, which enhances the model performance.

External Knowledge Enhancement. Compared with TEGKE, TEGKE w/o EX
shows much inferior performance on all metrics. Specifically, TEGKE w/o EX
drops 0.57 on the BLEU score, since the external knowledge would help the model
select a topic-related word by exploring the topic words and their neighbors in
the multi-hop topic knowledge graph. Besides, the diversity of generated essays
from TEGKE w/o EX degrades, which is shown by the decline on the novelty,
Dist-1, and Dist-2 scores. Specially, TEGKE w/o EX greatly drops 6.95 on Dist-
2, due to lacking the commonsense knowledge to provide background information
and enrich the input source. By utilizing external knowledge, TEGKE w/o AD
still outperforms SCTKG on most metrics. That is, our graph encoder could
extract more informative knowledge from the multi-hop knowledge graph.



Topic-to-Essay Generation with Knowledge Enhancement 315

Fig. 4. Training curves. The BLEU score and the Dist-2 score are employed to measure
quality and diversity, respectively. For both BLEU and Dist-2, the higher the better.

Fig. 5. Case study. The attention scores over the topic knowledge graph are shown
on the left side. Deeper green indicates higher attention scores. The input topics and
the generated essay are shown on the right side, where the selected words with higher
attention scores are highlighted in blue. The original Chinese is translated into English.
(Color figure online)

Adversarial Training. Based on the adversarial training, TEGKE w/o EX boosts
the BLEU score by 0.4 over TEGKE w/o EX & AD, and only slightly sacrifices
the novelty, Dist-1, and Dist-2 scores due to the inherent mode collapse problem
in adversarial training. It demonstrates that the proposed adversarial training
could effectively improve the essay quality. Compared with TEGKE w/o AD,
TEGKE increases the BLEU score by 0.12, illustrating that our adversarial
training could cooperate with the external knowledge enhancement. Since the
external knowledge greatly enriches the source information and boosts the model
performance, the improvement brought by the adversarial training is somewhat
weakened when the topic knowledge graph is introduced.

4.6 Validity of Knowledge Transfer

To illustrate the validity of transferring knowledge from the teacher network to
the student network, the performance of our model using the teacher network
and that using the student network is shown in Fig. 4. The quality is measured
by BLEU, and the diversity is measured by Dist-2. When our model uses the
teacher network, the teacher network’s latent features are fed to the decoder for
generating essays. The model could maintain a stable training procedure and
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obtain excellent results since the ground truth essays are taken as input. The
student network would learn from the teacher network’s latent features. For the
performance, the model using the student network closely follows that using
the teacher network. Although the model using the student network performs
slightly worse, the results on quality and diversity are still satisfactory.

4.7 Case Study

A case generated by our model is shown on the right side of Fig. 5. Under the
given topics “learn”, “life”, and “delicacy”, TEGKE obtains a high-quality essay
that mainly covers the semantics of input topics. The reason is that our model
could integrate internal knowledge and abundant external knowledge into the
generation procedure. By greatly enriching the source information, our model
would generate novel and coherent essays.

To further illustrate the validity of our topic knowledge graph encoder, this
paper visualizes the attention weights of Eq. (15) during the generation proce-
dure on the left side of Fig. 5. Compared with the previous works only consider-
ing the 1-hop neighbors of topics, our model could use the information from the
multi-hop topic knowledge graph. For instance, in the generated essay, “dream”
is a 2-hop neighbor of the topic “delicacy”, and “realize” is a 3-hop neighbor
of the topic “delicacy”. It is observed that all nodes from the path (“delicacy”,
“chef”, “dream”, and “realize”) get higher attention scores during the generation
procedure, indicating that the structural information of the graph is helpful. The
generated essay is consistent with the topics’ semantics since the topics “learn”
and “delicacy” both obtain higher attention scores. Although the topic “life”
does not appear in the generated essay, its 1-hop neighbor “daily” injects the
corresponding semantic information about “life” into the generated essay.

5 Conclusion

This paper proposes a topic-to-essay generation model with comprehensive
knowledge enhancement, named TEGKE. For internal knowledge enhancement,
the teacher network is built by taking both topics and related essays as input to
obtain informative features. The internal knowledge in these features is trans-
ferred to the student network for better essay generation. For external knowledge
enhancement, the topic knowledge graph encoder is proposed to extract both the
structural and semantic information from commonsense knowledge, which sig-
nificantly enriches the source information. Moreover, the adversarial training
based on the Wasserstein distance is introduced to improve generation quality
further. Experimental results on real-world corpora demonstrate that TEGKE
outperforms the state-of-the-art methods.
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Abstract. In the field of inorganic materials science, there is a growing
demand to extract knowledge such as physical properties and synthe-
sis processes of materials by machine-reading a large number of papers.
This is because materials researchers refer to produce promising terms
of experiments for material synthesis. However, there are only a few sys-
tems that can extract material names and their properties. This study
proposes a large-scale natural language processing (NLP) pipeline for
extracting material names and properties from materials science liter-
ature to enable the search and retrieval of results in materials science.
Therefore, we propose a label definition for extracting material names
and properties and accordingly build a corpus containing 836 annotated
paragraphs extracted from 301 papers for training a named entity recog-
nition (NER) model. Experimental results demonstrate the utility of
this NER model; it achieves successful extraction with a micro-F1 score
of 78.1%. To demonstrate the efficacy of our approach, we present a
thorough evaluation on a real-world automatically annotated corpus by
applying our trained NER model to 12,895 materials science papers. We
analyze the trend in materials science by visualizing the outputs of the
NLP pipeline. For example, the country-by-year analysis indicates that
in recent years, the number of papers on “MoS2,” a material used in per-
ovskite solar cells, has been increasing rapidly in China but decreasing in
the United States. Further, according to the conditions-by-year analysis,
the processing temperature of the catalyst material “PEDOT:PSS” is
shifting below 200 ◦C, and the number of reports with a processing time
exceeding 5 h is increasing slightly.

Keywords: Natural language processing · Text mining · Materials
informatics

1 Introduction

Materials science literature includes considerable information such as mate-
rial names and their properties described in natural language. Therefore, the
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automatic extraction of the details necessary to reproduce and validate mate-
rials synthesis processes in a materials science laboratory remains difficult and
requires extensive human intervention. The automatic compilation of such lit-
erature into a structured form could enable realizing a data-driven materials
discovery system that does not require human intervention; such a system could
become a key enabler in the design and discovery of novel materials. In this
regard, named entity recognition (NER) is helpful, as it seeks to locate spans
and classify named entities in unstructured text into predefined categories such
as material names.

NER has already found many applications in materials science. For example,
material names have been linked to their properties, such as characteristic values
or their structures, through a combination of database lookup and the parsing
of systematic nomenclature to create reader-friendly semantically enhanced lit-
erature [21,30]. Further, NER has been linked to material information retrieval
techniques to search for materials similar to a query material from corpora [6,23–
25] or to predict the characteristic values of a query material [15,22].

A technique that can extract natural language characteristic values and link
a material name to a machine-readable representation will find importance in
many practical applications. We believe that current research in this area is
hampered by the lack of available annotated corpora.

In this study, we propose a natural language processing (NLP)-based app-
roach to analyze trends in materials for developments in materials science (see
Fig. 1). Toward this end, we propose a pipeline that integrates an NER model
and a numeric normalization module. To evaluate this pipeline, we annotate
836 paragraphs extracted from 301 papers to extract material terminology and
conduct initial analyses to extract material data from 12,895 unlabeled full-
text literature. Through this evaluation, we demonstrate the reliability of our
NLP framework by presenting the detailed NER model training process and by
showing the detailed evaluation of the trained NER model. Our NER model
can extract material names and several important properties such as temper-
ature, time, conductivity, and activation energy. To demonstrate the utility of
our annotated corpus and analyze the research trends, we explore the extracted
outputs of our NLP framework from 12,895 unlabeled materials science papers.
This study makes the following contributions:

– We propose a manually annotated corpus and an NLP framework for extract-
ing material names with properties using an NER tagger and apply a numeric
normalization module to NER outputs.

– We evaluate the reliability of the NLP system using by showing the detailed
process of training the NER model with sufficient evaluation.

– We demonstrate the analysis for observing the research trends using our NLP
outputs for material knowledge discovery from scientific literature.
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Fig. 1. Overview of pipeline for extraction.

2 Related Work

Many NLP systems and language resources are available for extracting dif-
ferent types of information from scientific literature, such as identifying drug
names [13], discovering drugs [28], examining the side-effects of drugs [27],
extracting biomedical terminology [19,29,32] or events [20,34,35], and extracting
wet-lab protocols [7] are some of these examples.

In inorganic materials science, text mining is mainly used to search for a
domain-specific material name or for classifying materials by their type, such
as inorganic materials in general [10,23,25,30,33,36], oxides [24], superconduc-
tors [15,26], zeolites [22], and battery materials [2,6,31].

However, in inorganic materials science, few practical systems have been
proposed to extract material names from a large number of papers by associating
them with their property values. In this study, we propose an NLP system for
extracting material names and properties.

3 Corpus Preparation

3.1 Definition of Types

Our proposed annotation scheme is based on Kuniyoshi’s annotation scheme for
materials synthesis processes [2]. We used 12 labels that were defined to annotate
spans of text; these represent the materials, operations, and properties. In the
list, we segmented the roles of materials (Mat), operations (Ope), properties
(Prop), and characteristics (Chara).
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Mat-Final represents the final material (or product) of the material synthe-
sis process; for example, “A solid solution of the lithium superionic conductor
Li10+δGe1+δP2−δS12 (0 ≤ δ ≤ 0.35) was synthesized ...”

Mat-Solvent is a liquid that is used to dissolve substances and create solu-
tions; for example, “Ga2O3 (99.999%) were ground and homogenized in ethanol.”

Mat-Start is a raw material used to synthesize the final material; for exam-
ple, “Precursor powders (10 g) containing a stoichiometric mixture of La2O3

(99.998%).”
Ope represents an individual action performed by the experimenters. It is

often represented by verbs; for example, “Carbon black was dried at 80 ◦C.”
Prop-Equip represents equipment for analyzing a material; for example, “...

spectrum analysis of the films was carried out on a UV-Vis spectrophotometer.”
Prop-Maker represents a manufacturer of equipment or material powder;

for example, “m-Cresol was obtained from Sigma-Aldrich.”
Prop-Method represents a method to analyze a material sample; for exam-

ple, “The surface morphologies of the relevant membranes were studied by using
a high-resolution field-emission scanning electron microscopy.”

Prop-Temp represents a temperature condition associated with an opera-
tion; for example, “... finally dried at 80 ◦C in vacuum for 5 h.”

Prop-Time represents a time condition associated with an operation; for
example, “... finally dried at 80 ◦C in vacuum for 5 h.”

Chara-Name represents a characteristic name to classify characteris-
tic values; for example, “... the glass ceramic has a room-temperature
ionic conductivity as high as 3 × 10−5 S cm−1.”

Chara-Act represents a characteristic value of activation energy. For exam-
ple, the unit of activation energy is eV; then, “The activation energy as a
function of the vacancy concentration exhibits a minimum of 0.7 eV ...”

Chara-Cond represents a characteristic value of conductivity. For example,
the unit of conductivity is S/cm; then, “The ionic conductivity of the prepared
pellets is 1.03 × 10−3 S/cm.”

3.2 Collecting Literature

Our corpus was constructed from papers published in the Journal of Material
Chemistry A (JMCA; Royal Society of Chemistry (RSC))1 from 2015 to 2019.
JMCA focuses on energy and sustainability, and it publishes papers discussing
materials such as solar cells, thermoelectric conversion materials, liquid lithium
ion batteries (LIBs), and all-solid-state batteries. The RSC provides papers in
XML format, in which contents have a hierarchical structure within different
nested tags. For example, the <section> tag contains information such as the
section title and paragraph. To extract plain text from such XML files, we cre-
ated an extraction tool that exploits RSC’s semantic markup features to extract
information such as the title, abstract, and main contents. Then, we stripped

1 https://www.rsc.org/journals-books-databases/about-journals/journal-of-
materials-chemistry-a/.

https://www.rsc.org/journals-books-databases/about-journals/journal-of-materials-chemistry-a/
https://www.rsc.org/journals-books-databases/about-journals/journal-of-materials-chemistry-a/
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Fig. 2. Example of annotation of experimental section. Text labeling interface to anno-
tate material names and their properties. Example of annotation of experimental sec-
tions. This text is referred from the study by Yuan [9].

out the embedded markups to produce the plain text and to create a linear
stream of elements containing all data in the papers. These text data were then
transferred into a document object comprising subobjects such as title, head-
ing, and paragraph. Further, we automatically extracted paragraphs with their
section and subsection titles by using regular expressions for target titles such
as “Abstract,” “Introduction,” “Experimental,” and “Conclusion.”

3.3 Annotation

One Master’s degree staff in the materials science department annotated labels
on the 836 paragraphs extracted from 301 papers. Figure 2 illustrates annota-
tions made to the text in the experimental section by using the brat annotation
toolkit [8]. The annotated data are converted into the Inside, Outside, Beginning
(IOB) scheme, where a token is labeled as I-∗ if it is inside a named entity of
type ∗, O if it is outside of named entities, and B-∗ if it is at the beginning of
an ∗ entity. Therefore, the model is trained to classify each word in a sequence
into 25 different labels consisting of one O label and B-∗ and I-∗ labels for each
of the 12 entity labels. Our corpus is shared at a github repository2.

4 Approach

This section explains our framework for extracting material data, such as names
and property values, from a large number of papers. Our framework (see Fig. 3)
consists of an NER-based sequence labeling tool and a module that converts a
natural language phrase to numeric values.

4.1 Sequence Labeling Architecture

First, we briefly describe bidirectional long short-term memory (BiLSTM), a
type of recurrent neural network, and a subsequent conditional random field
(CRF). Then, we explain the hybrid labeling architecture that is based on a
previous study [17,18].
2 https://github.com/BananaTonic/Material Synthesis Corpus.git.

https://github.com/BananaTonic/Material_Synthesis_Corpus.git
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Fig. 3. Overview of analysis pipeline.

Fig. 4. Proposed NER architecture.

We extract the output hidden state
after and before the word’s token in a sen-
tence from the corresponding forward and
backward LSTMs to capture semantic-
syntactic information from the begin-
ning and ending of the sentence to the
token, respectively. Both output hidden
states are concatenated to form the final
embedding and to capture the semantic-
syntactic information of the word itself as
well as its surrounding context. Figure 4
shows our proposed NER architecture.

Let the individual tokens in a sentence be t0 , t1 , ..., tn . We define the con-
textual string embeddings of these tokens as h0 , h1 , ..., hn , where ht represents
the output hidden state of a token t. The final word embeddings are passed
to a BiLSTM-CRF sequence labeling module to address downstream sequence
labeling tasks.

Calling the inputs to the BiLSTM gives

ri � [rfi ; rbi ],

where rfi and rbi are forward and backward output states of the BiLSTM, respec-
tively. The final sequence probability is then given by a CRF over the possible
sequence labels y:

P̂ (y|r) ∝
n∏

i=1

φ(y, r),

where φ(·) is a variation Markov Random Field of all clique potentials. Finally,
the prediction of the label is given by

P (yi = j|ri) = softmax(ri)[j]

4.2 Numeric Normalization

We normalize the numeric values in a post-processing step. Although the phrases
of the characteristic values extracted by the aforementioned entity extractor rep-
resent numerical values, they are annotated in various ways. Therefore, they
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Fig. 5. Example of numeric normalization using pattern matching.

were normalized into a unified format that allows for comparisons and statis-
tical processing. For example, when “1.03×10−3 S/cm” was extracted, it was
normalized to a value of 0.00103 [S/cm]. In the text of the RSC paper, “10−3”
was described as “10<sup>-3</sup>.” However, in this study, the XML tag
was removed beforehand for simplicity, and the text was converted to the plain
text “10 -3.” In the case of this string, the string “0.1” was extracted as a value,
“×” was extracted as a multiplication sign, and “10 -3” was extracted as the
3rd negative exponent of 10. Then, the extracted numbers were multiplied and
normalized into the value “0.00103.” Figure 5 shows an example of our numeric
normalization, and Table 1 shows the string patterns that can be normalized
by this system and their normalization results. The practical workflow of our
numeric normalization is as follows: first, when we find measurement patterns in
texts, we separate specific expressions into the numeric and unit parts. For exam-
ple, when “14 ◦C – room temperature” was found, we replaced it with “14 ◦C
– 22◦C.” Next, we split extracted phrases into specific units such as “S/cm”
and “◦C.” For example, when “irradiation times of 3 s to 8 min” was extracted,
we split this as “[“irradiation times of 3”, “to 8”]” and “[“s”, “min”]”. Finally,
we extracted each value from split phrases when a unit had numeric patterns
before it. For example, when we extracted “[“0.53–0.58”]” and “[“eV”]” through
the previous operation, we extracted the values as the numeric values 0.53 and
0.58 and the unit “eV.” In addition, there are variations in the expressions of
characteristic values and units in each paper, such as the use of the ± symbol
to indicate conductivity. Therefore, we used regular expressions to write down
patterns of values, multiplication symbols, and powers and normalized phrases
matching the written patterns into values.

5 Results

5.1 Inter-Annotator Agreement

The inter-annotator agreement (IAA) was evaluated to assess the reliability of
the corpus. The IAA is calculated based on the matching of the spans of labels
between two annotators who have Master’s degrees in materials science. The
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Table 1. Example of normalization results for temperature (Temp.), time, conductivity
(Cond.), and activation energy (AE). The type indicates the type of phrase, the string
pattern indicates the text extracted by the NER extractor, and the normalization result
indicates the value normalized to numerical data using regular expressions.

Type String pattern Normalization results with unit

Temp. Room temperature or RT 22 ◦C

Temp. 500 K 227 ◦C

Time Overnight 8 h

Time Half an hour or half a day 0.5 h or 12 h

Time Two hours or 2 h 2 h

Cond. 1.66 × 10−4 S/cm 0.000166 S/cm

Cond. 4.2 mS/cm 0.0042 S/cm

Cond. 4.28 ± 0.41 × 10−2 3.87 S/cm, 4.69 S/cm

AE 0.93–1.04 0.93 eV, 1.04 eV

AE 2.00(5) eV 1.95 eV, 2.05 eV

AE 0.44 < Ea(eV) < 0.46 0.44 eV, 0.46 eV

agreement score was calculated by considering the labels identified by one anno-
tator as the gold label and those identified by the other annotator as the predic-
tion. To evaluate the extraction performance, we performed a binary evaluation
that classified all entities into either positive or negative. The precision was
defined as the fraction of entities predicted as positive that are in fact posi-
tive, and recall is defined as the fraction of positive entities that are correctly
predicted as positive. More precisely, for true-positive (TP), false-positive (FP),
and false-negative (FN) entities, based on the entities extracted by the model,
we define precision = TP/(TP + FP), recall = TP/(TP + FN), and F1-score =
2 × precision × recall/(precision + recall). These validations were used to eval-
uate the machine extraction performance when worker A’s labeling was consid-
ered the correct answer. To verify that the definitions of the types extracted are
consistent among the annotators, we used the recall as an evaluation metric.
Figure 6a and b show the calculated IAA scores and confusion matrix of each
label, respectively, by using 60 paragraphs from 10 papers in our corpus. The
result showed that the overall recall of IAA was 0.736, indicating good agreement
between the two annotators. The confusion matrix showed that there were no
type errors; however, there were many discrepancies owing to misses.

5.2 Comparing Language Models

Our NER Tagger trained on the corpus in this study was compared with four
different language models: ELMo for materials synthesis (MatELMo) [10]3,

3 https://github.com/olivettigroup/materials-synthesis-generative-models.

https://github.com/olivettigroup/materials-synthesis-generative-models
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Label Recall
Mat-Start 0.720
Mat-Solvent 0.529
Mat-Final 0.697
Ope 0.709
Prop-Equip 0.537
Prop-Maker 0.870
Prop-Method 0.569
Prop-Temp 0.722
Prop-Time 0.792
Chara-Name 0.867
Chara-Act 0.846
Chara-Cond 0.975
ALL 0.736

(a) Recall of each label. ALL is the
overall macro-recall score.

(b) Confusion matrix of IAA.

Fig. 6. IAA results.

BERT [4]4, SciBERT [5]5, and PubmedBERT [11]6 for token embedding. For
SciBERT and BERT, we used transformers [12] to obtain embeddings and to
connect to the NER Tagger extractor created in Flair [1], a framework for using
state-of-the-art NLP models. For evaluations, the dataset was divided in a ratio
of 6:2:2 for training, development, and testing, respectively. Table 2 shows the
obtained results. The Mat-ELMo language model had the highest overall micro-
F1 score of 0.778. SciBERT and BERT had higher F1-scores for the extraction
of conductivity and activation energy, respectively. Although the present study
aims to extract material names and property values, Mat-ELMo was selected for
further analysis considering raw materials, temperature, and time conditions as
it had the highest overall micro-F1 score.

5.3 Tuning Hyperparameters

We performed hyperparameter tuning for the NER model employing Mat-ELMo,
which showed the best extraction performance as described in Sect. 5.2. We used
optuna [14], a sophisticated optimization tool, for exploring the parameter space.
Figure 7b summarizes the evaluated hyperparameter space and the best parame-
ters used for the final evaluation on the test dataset. After obtaining the optimal
hyperparameter values, the model was trained again to evaluate its final perfor-
mance. From the results shown in Fig. 7a, after tuning the hyperparameters, the
micro-F1 score was improved from 77.8% to 78.1%.
4 https://huggingface.co/bert-base-cased.
5 https://huggingface.co/allenai/scibert scivocab cased.
6 https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-

abstract-fulltext.

https://huggingface.co/bert-base-cased
https://huggingface.co/allenai/scibert_scivocab_cased
https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext
https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext
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Table 2. F1 scores of sequence-labeling models with different base representations
on development dataset. Micro-F1 scores were calculated using all labels (ALL). The
highest value is indicated in bold.

Model MatELMo PubmedBERT SciBERT BERT

Mat-Final 0.613 0.572 0.595 0.543

Mat-Solvent 0.757 0.757 0.724 0.705

Mat-Start 0.754 0.726 0.688 0.651

Ope 0.825 0.835 0.832 0.826

Prop-Equip 0.819 0.801 0.798 0.795

Prop-Maker 0.869 0.827 0.794 0.816

Prop-Method 0.798 0.802 0.785 0.793

Prop-Temp 0.851 0.855 0.875 0.867

Prop-Time 0.867 0.892 0.883 0.887

Chara-Name 0.918 0.912 0.914 0.914

Chara-Act 0.593 0.571 0.654 0.509

Chara-Cond 0.605 0.630 0.649 0.685

ALL 0.778 0.767 0.761 0.749

5.4 Evaluation of Extracted NE Result

To verify the extraction performance of the tuned NER model, 100 paragraphs
from 10 papers were labeled by NER. These paragraphs cover all sections that
can be extracted from a paper. The labels were checked by the same annotator
who labeled the corpus to correct any extraction errors or omissions. These
validations were performed to evaluate the machine extraction performance when
the machine’s labeling was considered the correct answer, and the recall metric
was used to evaluate the extraction performance of correctly extracted entities
among the entities labeled by the NER model. Figure 8a shows the agreement
between our NER model and the human annotators for each label, and Fig. 8b
shows the confusion matrix.

6 Research Trends Analysis

In this section, we analyze the NLP outputs to understand the trend of materials
by year. Figure 9a summarizes several key statistics of the NLP outputs, such
as the number of papers, entities, and distribution of converted values. Further,
Fig. 9b shows a country-by-country tabulation. Only abstracts extracted from
papers were used for this tabulation, and the first author’s country was counted.



Analyzing Research Trends in Literature 329

Label F1-score
Mat-Final 0.625
Mat-Solvent 0.771
Mat-Start 0.771
Ope 0.827
Prop-Equip 0.827
Prop-Maker 0.870
Prop-Method 0.813
Prop-Temp 0.857
Prop-Time 0.869
Chara-Name 0.917
Chara-Act 0.593
Chara-Cond 0.637
ALL 0.781

(a) Final result. ALL is the micro-F1
score.

Parameter Range Best
Learning rate [0.05, 0.3] 0.15
Dropout [0.3, 0.6] 0.3
Locked dropout [0.3, 0.6] 0.4
Word dropout [0.05, 0.15] 0.1
Hidden size [32, 256] 256
RNN layers [1, 3] 2
Weight decay [0.0001, 0.0005] 0.0005

(b) Hyperparameters

Fig. 7. Micro-F1 score after hyperparameter tuning.

Label Recall
Mat-Final 0.873
Mat-Solvent 0.956
Mat-Start 0.751
Ope 0.997
Prop-Equip 0.990
Prop-Maker 1.000
Prop-Method 0.987
Prop-Temp 0.924
Prop-Time 0.964
Chara-Name 0.994
Chara-Act 1.000
Chara-Cond 0.926
ALL 0.920

(a) Recall of each label. ALL is the
macro recall score.

(b) Post-evaluation results

Fig. 8. Post-evaluation

Next, we aggregated the extracted final materials by year for a quick anal-
ysis of the trends by year, as shown in Table 3. Only the paragraph section
name “Abstract” was used in the extracted papers to prevent double-counting
of papers. This result shows that the trend of frequently used materials differs by
year. For example, “TiO2” is ranked fourth in 2016–2017; however, it is ranked
first in 2018–2019.
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Item Count
Papers 12,895
Paragraphs 57,783
Mat-Final 919,645
Mat-Solvent 63,437
Mat-Start 406,387
Ope 277,418
Prop-Equip 175,299
Prop-Maker 55,018
Prop-Method 454,945
Prop-Temp 75,004
Prop-Time 77,889
Chara-Name 67,530
Chara-Act 14,596
Chara-Cond 31,005

(a) Extracted data statistics.

Country Count
China 7593
United States 947
Korea 884
Japan 384
India 365
UK 342
Germany 305
Australia 289
Spain 207
Singapore 204
Taiwan 150
France 133
Canada 113
Sweden 99

(b) Top 14 countries.

Fig. 9. Base statistics

For the following analysis, we manually selected the following final materials
from Table 3 for a query search using the word2vec model [37] to efficiently screen
the many other materials obtained from extracted outputs: “CH3NH3PbI3,”
“PEDOT:PSS,” “TiO2,” “graphene,” “ZnO,” “MoS2,” “MOF,” and “CNT.”
This model was trained using the same 12,895 papers that were input to the
NLP pipeline. We then applied the trained word2vec model to the extracted
final material and adopted the query with the highest cosine similarity as the
type. The final material classified by type is used for trend analysis by country,
as shown in Fig. 10. This figure shows the features of developed materials by
country and the change in the number of reported materials by year. Consider
the comparison of China Fig. 10a and United States Fig. 10b: in China, the
number of papers on “MoS2” has been increasing in recent years, whereas in
the United States, the number of papers has been decreasing. Further, the most
frequently reported material in China in 2015 was “TiO2,” whereas that in 2019
was “MoS2,” indicating the shifting trend in materials science research.
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Table 3. Reported material final aggregation by year. Number in the brackets means
number of extracted phrases.

2016 – 2017 2018 – 2019

reduced graphene oxide(21) TiO2(16)

CH3NH3PbI3(20) reduced graphene oxide(15)

graphene(18) graphene(13)

TiO2(17) CH3NH3PbI3(10)

carbon(17) SnO2(10)

graphene oxide(10) carbon(9)

ZnO(9) MAPbI3(9)

PEDOT:PSS(8) MoS2(8)

activated carbon(7) covalent organic frameworks(8)

BiVO4(6) MOFs(8)

(a) Reported materials in China (b) Reported materials in United States

Fig. 10. The year of transition of material by country and by year.

We also visualized the condition-by-year for temperature and time, as shown
in Fig. 11. If multiple properties are extracted from a single paragraph, we select
the property with the highest characteristic value. These results show that the
trends of temperature and time when synthesizing “PEDOT:PSS” and “TiO2”
vary by year. In particular, the processing temperature of “PEDOT:PSS” shifted
below 200 ◦C. Further, the processing times of “PEDOT:PSS” and “TiO2” dif-
fered in 2015, and the processing temperatures were similar in 2019. This indi-
cates that there are similarities in the synthesis methods of “PEDOT:PSS”
and “TiO2.” We have received comments from one material researcher that the
results reported in this study are useful when investigating competitors and when
designing material synthesis processes outside the laboratory.
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Fig. 11. Condition-by-year.

7 Conclusion

This study proposed an NLP-based approach to analyze the trend in materials
research for developments in materials science. We developed an NLP system
with the BiLSTM-CRF model that was trained using manually labeled litera-
ture for extracting material properties from scientific literature. We conducted
experiments to verify the effectiveness of the proposed NER method in the field
of materials science.

The present study has two limitations: (1) linking multiple materials and
property values when they are written in a single document, and (2) extracting
characteristic values from nontextual components such as charts, diagrams, and
tables that provide key information in many scientific documents. We aim to
overcome these limitations through our ongoing studies.

In future work, we will aim to predict characteristic values such as conduc-
tivity and materials research trends from previous scientific literature to achieve
computational materials synthesis.
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Abstract. Natural language interfaces to databases is a growing field
that enables end users to interact with relational databases without tech-
nical database skills. These interfaces solve the problem of synthesizing
SQL queries based on natural language input from the user. There are
considerable research interests around the topic but there are few sys-
tems to date that are deployed on top of an active enterprise data mart.
We present our NL2SQL system designed for the banking sector, which
can generate a SQL query from a user’s natural language question. The
system is comprised of the NL2SQL model we developed, as well as the
data simulation and the adaptive feedback framework to continuously
improve model performance. The architecture of this NL2SQL model
is built on our research on WikiSQL data, which we extended to sup-
port multitable scenarios via our unique table expand process. The data
simulation and the feedback loop help the model continuously adjust to
linguistic variation introduced by the domain specific knowledge.

Keywords: Semantic parsing · Natural language interface ·
Database · Language model

1 Introduction

Natural language interfaces to databases (NLIDB) [1] provide a way of interact-
ing with relational databases by simply typing a question or Statement in natural
language. This problem has been studied extensively, with early work in this field
focusing on rule-based [4,15,21,22] semantic parsing. The rule-based methods
proved to be effective but lacked the ability to cover the linguistic variation
and sophistication of end users. As deep neural networks have achieved state-of-
the-art performance on numerous tasks around unstructured data [11,23], the
research interests of NLIDB have shifted to incorporate deep learning based
approaches. Recent advances [8,16,26,32] in the field have leveraged the release
of large scale human-labeled datasets [33,36] for model training and evaluation.
However, there are few [34] that can be deployed on an actual enterprise data
mart in production.

From a system and algorithmic perspective, NLIDB are difficult to develop
and maintain as they require a substantial amount of expertise in machine learn-
ing methods, database architecture, microservices frameworks, infrastructure
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management, and DevOps practice. This type of application presents additional,
non-obvious challenges for the machine learning practitioner. To begin with, an
NLIDB faces an absolute dearth of available training data. Most ML methods
require thousands – if not tens of thousands – of examples for reliable train-
ing. The most common bootstrap approach is to develop manually handcrafted
example-and-label pairs; however, in this application building a suitable corpus
upfront is extremely expensive and sometimes practically impossible. Should
an NLIDB system complete initial training to satisfaction, it will face numer-
ous ongoing operational issues. In some instances, new users will enter queries in
unexpected ways and the system must accommodate feedback in order to contin-
uously improve performance over time. Likewise, new versions of the underlying
data model may incorporate new fields or tables, and it is critical that the system
maintain expected performance on the original information while simultaneously
integrating new database structures.

In this paper, we describe an NL2SQL system for the enterprise data mart
[9] that can democratize access to relational databases for users without tech-
nical skills like SQL by allowing them to find meaningful insights and decisions
with natural language. We will unfold how we developed this model in four sec-
tions. In the first section, we provide a functional description of the NL2SQL
system including its web-based user interface, schema system and feedback log-
ging mechanism. In the second section, based on the previous work of word
contextualization [8] methods with a BERT-based encoder [3,25], we discuss
our design methodology and model architecture including its distinct subtasks
and the novel table expand methodology we developed to support queries for a
multi-table data mart. In the third, we discuss capability of being continuously
optimized by a template-based data simulation which grows with the history
of users’ interactions with the model, which can generate data that improves
performance on domain-specific language patterns and adapt to changes in the
underlying data mart it is intended for. Fourth and finally, we offer the results
of our benchmarking experiments that showed our model performing compara-
bly to the other state-of-the-art models when trained on generic datasets from
WikiSQL and Spider train, but significant improvements over that model when
trained with our own template-simulated datasets.

2 Related Work

The release of the WikiSQL dataset [36] has raised interest in applying deep
learning models to solve the text-to-SQL problem. Zhong et al. [36] introduced
Seq2SQL, a sequence-to-sequence neural network. Xu et al. [32] proposed SQL-
Net structure using a sequence-to-set approach, which solves the order issue
of the conditions in a SQL query. It also offers a column attention mechanism
to identify the most relevant column for the natural language question. With
transformer-based language models dominating most NLP tasks, Hwang et al.
[8] leveraged the BERT [3] pretrained model and the stacked bidirectional LSTM
[5] to construct a two-layer encoder and contextualize the natural language ques-
tion with the headers. However, the research on WikiSQL is limited to one-table
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scenarios, due to the set structure of the dataset itself. Spider [33] proposes
cross-domain text-to-SQL datasets across 200 databases, each database involv-
ing multiple tables with foreign keys. With the wide adoption of BERT in the
encoding layer, Wang et al. [26] and Lin et al. [16] choose to concate-nate the
question tokens along with the table and column name tokens, which are fed
into the encoder to contextualize the word representation.

To provide a comprehensive solution for NLIDB, Li et al. [15] and Setlur et al.
[21,22] described systems with a rule-based parser and Dhamdhere et al. [4] dis-
cussed several implementation lessons and key design decisions for an industrial
text-to-SQL tool. Zeng et al. [34] introduced a system consisting of a neural
semantic parser, a question corrector, a SQL executor, and a response gener-
ator to tackle the task. For medical records information retrieval, Wang et al.
[27] proposed a text-to-SQL system for relational databases at clinical centers.
Data synthesis is essential when adapting the pretrained model to a specific
domain; others have discussed several approaches [10,27,28,35] to simulate the
data consistent with the target domain where the system is being deployed.

3 NL2SQL System

Show me customer in san diego who opened last week
 001$ naht retaerg ecnalab htiw  tnuocca gnikcehc Auto Completion

Database Schema

Customer Age, City, Gender, ...

Account Product Type, Open Date, Account Status, ...

Transaction Date time, Transaction Amount, ...

NL2SQL Model

SELECT DISTINCT * FROM `Customer`
INNER JOIN (
  SELECT DISTINCT `Account_CustomerKey` FROM `Account`
......
)
WHERE  `City` = 'San Diego'

Feedback

Template-based Data Simulation

Log

Fig. 1. Overview of the system work-
flow
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Select
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Where Value
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Select
Part

Where
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Fig. 2. The syntax-guided sketch and
modules dependency

The design of our system is intended for practical industry application. Figure 1
shows the overview of the entire workflow. The system takes the user’s question
and the database schema as input and generates an executable query sent to a
SQL engine to return the query result. While the user is typing the question,
an auto-completion feature helps the user phrase their question. The NL2SQL
model will then process the question and the schema. If the user is satisfied with
the result, the query will be executed, otherwise the user can optionally submit
feedback indicating the inaccuracy of the result.

The log is a place where we monitor the health of the model and seek oppor-
tunities to improve the model performance. A significant impact of the log is
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that it can guide the template writing for the data simulation process. The data
simulation is the source for the training set of the NL2SQL model as well as
the vocabulary for the auto-completion module. The template is updated con-
tinuously based on the logs generated by the users. This feedback loop helps us
adjust the system to better adapt to users’ language in a specific domain.

3.1 Question Textbox

The question text box is a standard text box, where the user inputs their ques-
tion and submits it to the system. Hitting the submit button will launch a HTTP
POST request to the server side and start the processing. There is also a col-
lapsible schema viewer to remind the user of supported tables/columns in the
database.

3.2 Schema

A relational database schema provides metadata like table names, column names,
column types and foreign keys. Due to the abbreviated naming and blank space
issues in the database world, the words of a column name are more likely to
be concatenated together or linked by underscore and hyphen. This string for-
mat can cause problems when tokenizing. For instance, “AccountProductType”
will be tokenized as “account”, “#pro”, “##du”, “##ct”, “##type” by the
WordPiece [32] tokenizer, which leads to misinterpretations. Thus, our database
schemas hold an optional human-readable alternative name for the tables and
columns. The database developer can change these synonym names based on
their need. This gives the end user more flexibility of how they shape their
questions.

3.3 Auto Completion

Auto completion is another add-on feature embedded in the question textbox
(Sect. 3.1) Apart from the general advantage of helping users formulate their
questions and reduce user-introduced typos, our design also guides the user to
compose a question more likely to be recognized by the text-to-SQL parser. The
engine we use is Elasticsearch [6]. We index the suggestion with the phrases
(discussed in Sect. 5.2) generated by the data simulation process, which will be
further used as a source of training data.

3.4 Log

With the consent of the user, the logging system actively collects all incoming
requests, the model execution log, and any feedback submitted by the user. The
log can help quantify trends in the system usage and user satisfaction over time.

Log information is an essential source for continuous model improvement.
Following a human-in-the-loop strategy, we pull the logs and analyze the system
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performance regularly. There are several aspects we look for in the logs: 1) the
most asked-for tables and columns in the users’ questions; 2) the questions that
failed to be recognized by the system and are reported by users using the thumbs-
down feedback mechanism; 3) the error messages; 4) the average latency of the
request processing time.

The first two types of log data helps shape the template writing for data
simulation, which provides a valuable channel to correct the bias of a language
model like BERT [13,24]. Log of error messages can capture the unexpected
runtime errors. The average latency is also an important measurement indicating
whether there is a need to scale up the service cluster.

4 Method

4.1 Problem Statement

We wanted to build an end-to-end model which takes a natural language question
and database schemas (and potentially the data of the database if applying
matching process Sect. 4.5) as the input and generate SQL output. The query
to be parsed is multi-table SQL without nested queries. To simplify the data
structure of the SQL query, the SQL is converted into a logical form following
the sketch style of SQLNET [32]. The sketch can ensure that the model always
formulates the SQL query in a correct syntax. We have extended this sketch to
support multi table samples. The query’s component in this paper is always of
the logical form.

Complexity always comes with flexibility in the SQL language. Even though
the syntax-guided sketch [32] cannot completely cover the functionality of SQL,
we still decided to employ it because of its standard structure. We are using this
sketch to display the SQL query in an easier format for the user to understand.
This can help the user make better decisions about whether the results from the
system are desired.

The model is applied to the data model where foreign keys are predefined by
a star schema [20]. Therefore, when generating the SQL query from the logical
form, the database schema, instead of the NL2SQL model itself, will provide the
necessary foreign keys to compose the SQL query for execution.

4.2 Model Overview

Following SQLOVA [8], the NL2SQL model is a sequence of sub-task classi-
fication models including SELECT column (sc), SELECT aggregation (agg),
WHERE number (length of “conds”, wn), WHERE column (wc), WHERE oper-
ator (wo) and WHERE value index (wvi). The tasks of WHERE value are tackled
as a classification problem of locating the start and end tokens within the user’s
question as SQLOVA [8]. Besides the tasks above, we introduce 3 new tasks
at the database level: main table (mt), relation table (rt), and relation number
(length of “rt”, rn), to parse the tables needed in the query.
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There are 9 tasks in total with each model and these are formed in an encoder-
decoder structure. All components share the same language model, BERT [3],
as the first encoding layer, but the input can be different. Each module has its
own bidirectional LSTM encoding layer. On top of the encoder, each task has
its own classification layer. The tasks can be categorized into 3 parts based on
their SQL clause: 1) Table part, including mt,rn,rt; 2) SELECT part, including
sc,agg; 3) WHERE part, including wn,wc,wo,wvi. Categorizing modules into 3
parts gives us the advantage of only training a single part of modules when the
dataset consists of both one-table and multi-table samples.

All the individual task module are similar to SQLOVA [8]. However, to
accommodate multi-table requirements, we formulate a novel method called
Table Expand to convert multiple tables per sample to one table in multiple
samples.

4.3 Table Part

Similar to SQLOVA, Table part’s input XTable to the language model is com-
posed of the tokenized natural language question and all the tokenized table
names in the database. Question tokens and table name tokens are separated by
a special token [SEP ]. The tasks mt, rn and rt of the table part can be seen as
the sc, wn and wc of the where part at the table level.

4.4 Table Expand

Once the relation tables r̂ns of the database are selected, we can expand one
sample to multiple samples by selected relational tables, each of which comprises
a single selected table and the same question.

For instance, if two tables are selected after the Table Part module, then two
inputs are fed to the BERT and the WHERE Part module. One includes the
question and the column names from the first selected relation table, and the
other includes the same question and the column names from the second selected
relation table.

After the WHERE Part module processes all the expanded inputs and gener-
ates the WHERE number, WHERE column, WHERE Operator, and WHERE
Value Index for each table, they are assembled back to be one sample again.

One sample of multiple tables can be expanded to several samples as below:

XColumn = [CLS], Q1, . . . , QLQ
, [SEP ],H1,1,H1,2, . . . , H1,L1 , [SEP ], . . . , [SEP ],HN,1, . . . ,HN,LN

, [SEP ]; (r̂tj); j = 1, 2, . . . , r̂n (1)

where r̂tj represents the index of the j-th selected relation table. Hi,L is the
L-th name token of the i-th column of table r̂tj . There are r̂n inputs in total.

The table expand can shrink the column search space for the model by split-
ting the selected relation tables to individual bins and limiting the number of
columns to rank. Per each expanded input, the WHERE Number module will
look for the number of WHERE columns ŵnj from the current relation table
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Fig. 3. Process of table expand and encoding

associated with the natural language question, instead of the total number of
where conditions (Fig. 3).

Another advantage of table expand is that it allows the schema to have more
columns and more tokens for each column, despite limitation of BERT [3] input
size. In the regime of the enterprise data mart, the size of a schema is usu-
ally larger compared to the Spider dataset [33], which is collected from public
resources online. The schema of the database can impact the feasibility of the
model and its performance. As most of the recent approaches to the Spider
dataset share the idea of applying language models like BERT to contextualize
the token sequences, it can potentially limit the number of columns to be rec-
ognized by the model. However, our method, by splitting the whole schema into
individual tables when feeding the word sequence, can significantly increase the
size of the schema supported by the model.

4.5 Where Value Matching

WHERE value can be obtained by locating the tokens in the substring of the
original question with the start and end of WHERE value index. However, the
extracted WHERE value usually does not match the exact cell value in the
database, which can cause the query to be non-executable. For different data
types, we set up different solutions to map the substring to the cell value in the
database in Table 1.

Categorical Column. FWe employ approximate string matching using Lev-
enshtein distance [14,18] to find the closest cell value in the predicted column
compared to the extracted substring, which can help correct the syntactically
similar string.
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Table 1. Matching process for different types of data

Date type Problem Question Substring Table cell

Categorical Case or form doesn’t

match

Show me mortgages Account Type =

“mortgages”

Account Type =

“Mortgage”

No cell value present

in question

Which customer

doesn’t have mobile

bank?

HasMobileBank =

“doesn’t have”

HasMobileBank =

“No”

Customers with dda ProductCategory

=“dda”

ProductCategory

=“Demand Deposit

Account”

Datetime The datetime format

doesn’t match

Accounts opened since

2018

OpenDate> “2018” OpenDate> “2018-01-

01T00:00:00.000Z”

Can’t parse relative

time expression

Accounts opened this

year

OpenDate =“this

year”

OpenDate≥ “2021-01-

01T00:00:00.000Z”

And OpenDate<

“2022-01-

01T00:00:00.000Z”

Numeric The data type doesn’t

match

Accounts with balance

more than $100

CurrentBalance

>“$100”

CurrentBalance>

100.0

Because users usually don’t type in the cell value explicitly in their question,
it can raise the semantically close but syntactically different issue. We have an
interim step when applying the approximate string matching. Instead of directly
converting a substring to the cell value, we build a map dictionary between the
cell value and the alternative strings. For instance, the binary value “Yes” or 1
will be mapped to a set of affirmation words like “with”, “have”, “has”, “is”,
“are”, while the binary value “No” or 0 will be mapped to a set of negation
words like “without” , “don’t”, “doesn’t”, “isn’t”, “aren’t”. Cell value “dda”
can be mapped to “Demand Deposit Account”. When correcting the substring,
we just find closest alternative value and then map it to the real cell value.

The building of the map dictionary is a rule-based iterative process. Even
though we tried to apply other word representation technique like [19] to auto-
mate it, we found it is easier and more efficient to involve human-in-the-loop
when solving these synonym wording requiring domain knowledge.

As the cell value needs to be preloaded, due to latency concerns, we will
only string match for columns which have a relatively stable range of values. For
example, the value set of column “Transaction Type” is more consistent than
“Transaction Merchant Name” over time.

In practice, we also set an empirical threshold to the distance depending on
the sensitivity required for the matching process in case that the user indeed
needs to query values not existing in the database.

Datetime Column. Parsing datetime text into structured data is a challenging
problem. A question that includes a datetime value can be either absolute or
relative. We utilize the Duckling [7] library to parse the extracted value to a
formatted datetime interval following ISO8061 standard.
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Numeric Column. A simple regular expression is applied to remove any non-
number character in the substring, except the decimal point and the minus sign.

5 Template-Based Data Simulation

Previous work in the healthcare domain [27] has dealt with specific medical
terminology and the lack of questions to a SQL dataset in that domain. As
the banking sector is the target domain to introduce our NL2SQL interface,
optimization for this specific domain is required. In both domains, the cost of
acquiring new training samples which pair natural language and queries is very
expensive or difficult to acquire. The template-based data simulation provides
a way to directly intervene with the model’s capability for a specific domain.
In production, the process can serve as a powerful tool to quickly correct the
model when the user gives feedback about queries that could not be recognized.
We also collect more language templates from the feedback and add them to our
existing data simulation template.

The end goal of the data simulation is to generate pairs of the natural lan-
guage questions and their corresponding queries. There are two steps to simulate
the training samples, creating the query and creating the corresponding natural
language question.

5.1 SQL Query

The SQL query samples are generated based on the real databases where the
NL2SQL interface is going to deploy. However, production data containing sen-
sitive information must be substituted with dummy data.

The sample generation is a fill-in-slot process. After the number of conditions
is randomly assigned, a permutation of wn will be picked of which the sum is
the number of conditions. Then, all the other slots will be filled in randomly
based on the database. mt is selected from the table names and the sc will be
selected from table mt. agg can be no operation, AVG, COUNT, MAX, or MIN
when sc is numerical column but can only be no operation or COUNT when sc
is of categorical type. wc are selected from table rt based on the number wn. wo
is selected from “=”,“>”,“<”,“! =” for the numerical column and “=”, “! =”
for string type. The wv will be sampled from the table cells of the database.
A random state parameter of the generator is also required for purposes of
reproducibility.

5.2 Natural Language Question

The template-based natural language generator can compose a question sentence
corresponding to a SQL query. The template of the natural language needs to
be customized for each data mart domain. Without applying any autonomous
data augmentation on the natural language, we apply a rule-based simulation
process for better control over what language expressions are generated. Thus,
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every word, except those coming from database values, is from the template we
provide.

Each synthetic natural language question can be seen as a Sentence com-
posed of Phrases. Each Phrase only holds the information of one condition in
the conds, while a Sentence accounts for the whole query. The entire simula-
tion process is to generate the Phrases and assemble them into a Sentence. The
assumption of Phrase generation is that each column of the database can have
its own expression style.

For each Phrase template, there are 2 major components: the column tem-
plate and the value placeholder. The column template is composed of constant
strings and placeholders for one column. The value placeholder will be substi-
tuted based on the elements of the condition in the query.

The column template needs to be set up for every field of all the tables in
the database. If no template is specified for a column, a default one is used. The
general workflow of composing a natural language question “Show me customers
in San Diego who opened a checking account with balance greater than $100 last
week” can be illustrated as follows:

Show me customer in san diego who opened last week
checking account with balance greater than $100

Show me

wc
OpenDate

opened {wo} {wv}

rt
Account

rt
Customer

wc
ProductType

{wo} {wv} account

wc
City

customer {wo} {wv}

wv
checking

wv
san diego

wv
last week

wo
""

wo
""

wo
in

wc
CurrentBalance
balance {wo} {wv}

wo
greater than

wv
$100

Fig. 4. Natural language generation from template-based data simulation

First, we need to generate each column phrase. The example contains
four columns “City”, “ProductType”, “OpenDate”, and “CurrentBalance” from
“Account” and “Customer” tables. For “ProductType”, it selects the “wo wv
account” column template and then fills an empty string to the wo and the
“checking” product type to the wv. For “CurrentBalance”, the “balance wo
$wv” template is chosen where wo and wv are filled with “greater than” and
“100” accordingly. Similar approaches are applied for the remaining columns.
After all conditions’ Phrases have been realized, we assemble them into a whole
Sentence (see Fig. 4).
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5.3 Iterative Template Writing

In practice, the data simulation is an iterative process. Before exposing the model
to any end user, we set up an initial version of the data simulation templates
and trained the alpha model from it. Then, we conducted the first round of user
acceptance testing (UAT) to gather real data from end users to the log, including
the natural language question and possibly the expected SQL queries. This data
is collected as our benchmark dataset for testing purpose. Instead of pouring
this real data into the next round of training set directly, we firstly investigated
those queries marked as “thumbs-down”, and figured out what language pattern,
observed in user’s queries, can’t be generated based on template language. For
instance, there was only “customer (in) (san diego)” generated by template ini-
tially, but we’ve seen queries from the users like “customer (from) (san diego)”,
“(san diego) customer”, and “members (in) (san diego)”. Thus, we accommo-
date these language variations into the next round of data simulation by adding
to templates.

Then, the model of next round will be trained entirely from the initial state
but based on this new template. This process will be performed iteratively on
certain cadence or on demand, which allows the model to evolve along with the
utilization from users.

6 Experiment

6.1 Data

For the production model serving users, we build up our training dataset by the
template-based data simulation process together with external data sources to
improve the optimization to the focus domain for banking as well as the model’s
robustness to linguistic variation.

We have two external data sources: WikiSQL [36] and Spider [33]. WikiSQL
is limited to one-table scenarios so it can only be used to train the SELECT and
WHERE parts of the entire model. Spider has more complex SQL queries like
nested queries, which is not suitable for our model. In order to take advantage
of the Spider train dataset, we only keep those queries that are compatible
with our model. The criteria used to clean the external data sources include: 1)
the total length of the concatenated input tokens to the BERT encoding layer
tokenized by the WordPiece [31] tokenizer won’t exceed the allowed maximum
length, which is 512; 2) the where value index can be parsed through CoreNLP
tokenizer [17]; 3) the SQL query can be represented in logical form [32]. After
cleanup, there are only 2286 samples from Spider train and 205 from Spider dev
satisfying our needs. We denote them as SpiderSelect train and SpiderSelect dev.
As the Spider test set is not publicly accessible, we use the SpiderSelect dev
as the test set. SpiderSelect dev has 90 easy, 93 medium, 20 hard and 2 extra-
hard question, defined by Spider. We only select 2000 samples from WikiSQL as
WikiSQLSelect.
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We also collected our own benchmark dataset from 3 rounds of UAT consist-
ing of 289 samples, which can represent a wide range of user’s input questions.

We used the SpiderSelect dev and our collected benchmark dataset as the
test sets. WikiSQL is not usable because it only contains one-table samples.

6.2 Experiment Settings

The pretrained language model that we employ is the uncased BERT-base
from Huggingface’s library [30]. The entire dataset is composed of the synthesis
pairs of NL questions and queries from the data simulation and samples from
WikiSQLSelect and SpiderSelect train set. The total number of samples are 7886.
It is further separated into the train set and dev set. We use mini-batch size 1
and an early stop criterion on the dev dataset. The Adam optimizer [12] was
applied. Other settings are the same as Hwang et al. [8].

The entire NL2SQL model consists of a sequence of 9 successive modules. The
downstream tasks often rely on the result of the upstream tasks (see Fig. 2).
Thus, we employ teacher forcing [29] during the training phase for more effi-
ciency.

We used a GPU to train the model, but CPU during inference. The UAT
has confirmed the inference time for a request is acceptable to users, which is
around 800ms on average. It allows us to deploy the system on clusters without
GPU resources, which is more scalable.

6.3 Experiment Results

Table 2. Exact match accuracy comparison on SpiderSelect Dev

SpiderSelect Dev (205 samples) Easy Medium Hard

Bridge v2 + BERT [16] 0.89 0.53 0.25

NL2SQL by data simulation + WikiSQLSelect + SpiderSelect train 0.71 0.52 0.4

NL2SQL by WikiSQLSelect + SpiderSelect train 0.56 0.28 0.2

We use the Bridge model by Lin et al. [16], which is the top model on the
Spider leaderboard at the time of writing, as a comparison for the logical
form exact match accuracy. In Table 2, our model trained on data simulation,
WikiSQLSelect and SpiderSelect train set underperform on the Easy queries of
SpiderSelect Dev, compared to the Bridge model. However, our model catches
up with the Bridge model on Medium and exceeds on Hard. Our model was
exposed to a small portion of the original Spider train set while the Bridge was
trained on the entire one. The Spider train and dev set shares the same databases
and domains. When the expected SQL becomes more complex on Medium and
Hard, the syntax-guided sketch of our model starts to show the advantage of
composing longer and more difficult SQL queries.
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We also trained a model on WikiSQLSelect and SpiderSelect train set. It
shows that a tool which can increase the size of training data like this simulation
method can significantly improve the model performance on other domains even
though the templates are not built for cross-domain data generation.

Table 3. Accuracy comparison on our banking benchmark

Banking benchmark
(289 samples)

mt rn rt sc agg wn wc wo wv Exact
match

Bridge v2 + BERT 0.01

NL2SQL by data
simulation +
WikiSQLSelect +
SpiderSelect train

0.82 0.99 0.73 0.74 0.99 0.7 0.67 0.66 0.62 0.45

NL2SQL by
WikiSQLSelect +
SpiderSelect train

0.8 0.35 0.28 0.2 0.85 0.15 0.07 0.06 0.03 0.01

In Table 3, the performance of our model is broken down into the different
sub tasks introduced in Sect. 4.2. As the output of Bridge model is SQL, we parse
it into the syntax-guided sketch for evaluation, which can prevent grammatical
errors. The Bridge model and our model trained without data simulation under-
perform on our banking benchmark dataset collected from the UAT. Our model
with the data simulation process gains significant improvement to 45% exact
match accuracy because of its better adaptation to the linguistic patterns in the
domain. Note that the Matching Process is applied to both the Bridge and our
model in this comparison.

7 Conclusion

This paper presents an optimized system for the enterprise data mart, including
auto completion, neural semantics parser, cell value matching process and data
simulation method. With the feedback loop and data simulation, our system has
the potential to be applied on any enterprise data mart in different domains.
It can remove a significant barrier to entry for querying databases for many
participants without SQL knowledge, enabling non-technical users to perform
analyses and make decisions.

Our system has been deployed and opened to users on our analytical database
[2] for the banking sector. We are also working on presenting data visualization to
users by interpreting their intention in the questions in order to provide graph
visualizations in response to natural language questions. We will continue to
explore the syntax-guided sketch to extend the coverage of questions our system
can answer.
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Abstract. Online harassment is an important problem of modern soci-
eties, usually mitigated by the manual work of website moderators, often
supported by machine learning tools. The vast majority of previously
developed methods enable only retrospective detection of online abuse,
e.g., by automatic hate speech detection. Such methods fail to fully pro-
tect users as the potential harm related to the abuse has always to be
inflicted. The recently proposed proactive approaches that allow detect-
ing derailing online conversations can help the moderators to prevent
conversation breakdown. However, they do not predict the time left to the
breakdown, which hinders the practical possibility of prioritizing mod-
erators’ works. In this work, we propose a new method based on deep
neural networks that both predict the possibility of conversation break-
down and the time left to conversation derailment. We also introduce
three specialized loss functions and propose appropriate metrics. The
conducted experiments demonstrate that the method, besides provid-
ing additional valuable time information, also improves on the standard
breakdown classification task with respect to the current state-of-the-art
method.

Keywords: Online abuse · Conversation breakdown prediction · Time
aspects in online dialog · Hierarchical neural networks

1 Introduction

Cyberspace has a large potential for making constructive conversations, facili-
tating communication and cooperation of groups of people with similar interests,
various areas of expertise. Unfortunately, some online discussions result in anti-
social behaviors [16] since anonymity and an apparent sense of impunity limit the
natural inhibitions interlocutors would have during a face-to-face conversation. A
survey conducted in the US demonstrated that online harassment is a widespread
phenomenon as approximately four-in-ten Americans were directly affected by
some forms of it [8]. Online abuse can be a root cause of a wide range of mental
problems, negatively affecting many aspects of victims’ lives [2,18]. Even merely
witnessing the harassment on the Internet can lead to a user’s lower involvement
in online service or even a complete refrain from using it [26,27].
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Therefore, numerous websites leverage systems for hampering antisocial
behavior. The most common methods include community moderation, up- and
down-voting, the possibility to report comments, mute functionality, and ban-
ning users on the platform [5]. However, these simple approaches cannot suc-
cessfully overcome the widespread problem, as a lot of hateful content can be
overlooked by the moderators or simply not be reported by users. As a conse-
quence, multiple machine learning techniques are used to support moderators
by ranking unacceptable posts [9], automatically identifying cyberbulling [29] or
detecting hate speech [11].

The majority of existing systems perform toxicity detection retrospectively.
Even though such solutions mitigate the problem, they do not fully protect users
as the potential harm has always to be inflicted to some extent, and only then
the hostile comments can be filtered. These solutions do not make actionable
classifications whether an online conversation is going to end in a personal attack
or not, leaving no time for moderators to intervene before any harassment or
conflict emerges.

A much more successful strategy would be to avert offensiveness when the
discussion is still salvageable or at least hinder potential destructive effects. For
instance, one could introduce to the conversation customized counter speech,
which proved to be effective in combating offensiveness in various studies [15,
23]. Another solution would be to remind the interlocutors about the need for
empathy and the rules of the service [17]. Even drawing moderators’ attention
to the derailing conversation can be beneficial as it reduces the response time
and gives them an opportunity to intervene. Nevertheless, such solutions require
a method for predicting conversation derailment in advance.

Moreover, just recognizing if the discussion is going to get out of hand may
not be enough to obtain comprehensive and highly useful information about the
potential derailment. Therefore, additional clues have to be provided. One of
them is the time to the breakdown, which seems advantageous in many potential
fields of application, especially when humans are in the loop and there is a need
to prioritize actions to be performed. Such a forecast about the specific time of a
breakdown may also help estimate the hostile tension in individual dialogs. This
also can be a crucial hint for moderators who can recognize the most urgent
cases and intervene on time. In addition, mistakes made on foreseeing how many
utterances are left to the conversation derailment could be a valuable additional
learning signal for the model and boost classification performance. This opens a
new research and open problem since, to the best of our knowledge, such methods
have not yet been proposed.

In this work, we propose a machine learning system based on deep neural
networks that not only predicts whether the conservation will derail in the future
but also estimates the number of utterances left to the derailment. We propose
and explore three loss functions that allow for joint training of systems perform-
ing both the discussion breakdown prediction and time-to-the-breakdown esti-
mation. We also introduce three valuable metrics for assessing the performance
of models applied to foreseeing conversational breakdown with consideration of
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the time aspect. An experimental evaluation shows that the proposed approach,
aside from providing additional and useful information about time to the derail-
ment for moderators, also achieves better results on the standard classification
task of discussion breakdown.

2 Related Works

A great deal of personal attacks in the cyberspace takes place during discussions
when interlocutors disagree with each other, at least to some extent. Initially,
a civil exchange may degenerate into a dispute resulting even in verbal aggres-
sion. Such “from within” derailments are potentially more dangerous and more
troublesome to salvage than other types of toxicity (e.g., trolling or profanities),
which a cybernaut can ignore more easily [28]. A conversation breakdown may
have different faces and lead to distinct forms of antisocial behavior posing a
considerable threat to the people involved.

Aside from causing emotional distress, failing conversations has also other
negative impacts. For example, in online game industry, one of the main rea-
sons leading users to stop playing the game is experiencing different kinds of
toxicity during conversations with other players [26]. Therefore, it is crucial to
forecast occurrences of offensiveness as a dialog develops and to make a correct
prediction at the earliest possible moment, letting a moderator react appropri-
ately. Even among Wikipedia editors community that is generally associated
with well-educated people, abuse has proved to be a significant problem [27]
that harms editors’ willingness to further contribute.

Therefore, the problem of detecting various forms of toxicity in text data
received recently considerable research attention. Methods for identifying cyber-
bullying [1,29], hate speech [11,14], doxing [24], or negative sentiment [12] proved
to be useful to filter unacceptable content. Nevertheless, they focus on analyzing
already posted, potentially harmful texts (so they work on historical recording).

Examining each text right before it is published creates an opportunity to
identify abusive chunks on time [3,19]. For instance, the system can ask the
user to modify the toxic comment. However, asking for changing a comment
or proposing its corrected version [20,22] always requires an additional user’s
action, slows the exchange down, impede its natural flow and dynamics, and may
discourage users from taking part in the discussion - especially when the predic-
tion made by toxicity detector are too often incorrect. Another possibility is to
remind the user about the need for empathy and rules of the service [17]; how-
ever, users who knowingly post hostile content might be completely unaffected
by such a prompt. Therefore, more advanced solutions such as the introduction
of customized counter-speech [15] are needed to solve the problem. Neverthe-
less, to apply techniques that prevent conversation failure, one needs to predict
whether the conversation will derail first.

One method of foreseeing unacceptable content in online conversations was
recently presented in [13]. The proposed approach determines whether any
adverse utterance will be published below a post on Instagram basing on the
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set of initial comments. Another method was presented by Zhang et al. [28]
who proposed an approach for forecasting whether a conversation is going to
derail basing on the initial two utterances in a discussion. The approach uses
the logistic regression classifier and bag-of-words features together with specially
designed problem-specific features.

The current state-of-the-art method for predicting a discussion breakdown,
called Conversational Recurrent Architecture for ForecasTing (CRAFT) [4] relies
on a deep neural network. The approach models a conversation flow with Hier-
archical Recurrent Encoder-Decoder [25] and performs forecasting in an online
fashion. All the predictions are made as a dialog develops, i.e. the prediction
is updated after seeing each new utterance. Although the presented solution
outperforms previous approaches, there is still some room for improvement. In
particular, this approach does not take into account the moment in which a first
disruptive utterance comes, ignoring the time aspect that could be very useful
in practice.

3 Time Aspect in Prediction of Conversation Breakdown

In this work, we propose a new method for detecting derailing conversations that
provides additional information about the time left to the conversation break-
down, understood as the number of utterances left to the derailment. Note that
all the previously proposed methods for this task do not provide such additional
information.

Being able to predict when the dialog is going to fail would bring considerable
benefits in practice. For instance, the websites would be able to manage their
moderation resources more effectively by prioritizing the cases of abuse, paying
most attention to the most urgent and most severe ones, and counteracting them
more quickly.

3.1 Proposed Neural Network Architecture

An utterance context is a crucial factor to be considered when deciding if the
utterance is abusive, as it can intensify or soften its overtone. Therefore, a break-
down should not be treated as a property of a single comment but rather as a
property of a developing dialog. Following this idea, similarly to related works,
the proposed method uses the hierarchical recurrent encoder-decoder (HRED)
architecture [25] to model a developing dialog and to capture the conversation
dynamics.

HRED consists of two recurrent neural networks called, utterance encoder
and context encoder, respectively. The utterance encoder’s goal is to construct
a feature representation of a single user’s utterance, which is then passed as an
input to the context encoder. In our experiments, both networks are based on
Gated Recurrent Units [6]. The input to utterance encoder is given as a sequence
of words, previously processed by an embedding layer. The final hidden state of
the encoder is forwarded as an input to the context encoder (Fig. 1).
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Fig. 1. The overview of the proposed neural network architecture, where y denotes the
probability that the conversation will derail and y′ is the prediction of the time left to
the conversation breakdown.

In order to produce the useful feature representation for predicting both the
probability of conversation failure and time-to-breakdown, the hidden state of
the context encoder is passed through several fully-connected layers. Such con-
structed feature representation is processed by two separate output layers. The
first one being the layer with only one sigmoid unit which predicts the probability
that the conversation will derail in the future. The second output layer working
on the same feature representation is a regression layer that predicts the time-
to-breakdown (i.e., the number of utterances). The whole network architecture
is trained jointly by back-propagation.

Note that when the sigmoid layer predicts that the dialog is not going to
derail, the output of the regression layer can be discarded. However, the error
related to the time-to-breakdown prediction provides an additional training sig-
nal to guide the model learning process. In related models without time-to-
breakdown output, the error related to the derailment prediction is suffered
usually only once, at the moment of conversation breakdown. Alternatively, to
ensure that the model will predict possible derailment as soon as possible, one
could enforce the derailment prediction after each utterance in the dialog. Never-
theless, such a solution will incorrectly introduce an association between usually
the conversation beginning and the conversation breakdown class, adding unnec-
essary noise to the classifier training. By training the model with the additional
output for time-to-breakdown we want to avoid these problems, at the same time
providing a clear, additional training signal to the model.
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3.2 Loss Functions Incorporating Time Aspect

In order to jointly train the network predicting the probability of conversation
failure and time-to-breakdown, we propose to use the following loss function:

min L(θ) = αLclassification(θ) + (1 − α)Ltime(θ)

This loss function has two components. The first one measures the error on the
standard conversation failure prediction task, while the second term controls
the time prediction error. These components are weighted with the parameter
α ∈ (0, 1) that controls the trade off between the model focus on the time-
to-breakdown prediction and the classification task. In practice, this parameter
could be tuned with the validation data, but in this work we treat both tasks as
equally important, i.e. α = 0.5.

The classification error is measured by the standard cross-entropy error:

Lclassification(θ) =
1
n

n∑

i=1

[yi log hθ(xi) + (1 − yi) log(1 − hθ(xi))]

where yi ∈ {0, 1} is the label from the gold standard and hθ(xi) is the prediction
of the classification layer.

The second term of the loss function is defined as

Ltime(θ) =
1
n

n∑

i=1

f(gθ(xi), y′
i)

where y′
i is the gold standard for the time-to-breakdown task, gθ(xi) is the pre-

diction of the regression layer and f is a function measuring error made on
a particular example. Note that the time-to-breakdown y′

i is understood as the
number of utterances left to the first uncivil utterance from i-th utterance. In this
work, we will explore three possible ways of measuring the time-to-breakdown
error: by a classical squared error for regression, casting the task to classification,
and a time-dependent custom loss.

The classical squared error is defined as:

fMSE(gθ(x), y′) = (gθ(x) − y′)2

which is the squared difference between predicted time gθ(x) and the time to
derailment in the gold standard y′.

Yet another possibility is to treat time-to-breakdown prediction as a clas-
sification task by defining classes for specific ranges of time-to-breakdown. We
use 11 classes, where each class j corresponds to a number of utterances left
to the conversation failure and j ∈ {0..10}. The first class i.e. j = 0 represents
a moment of an actual derailment and class i = 10 means that the dialog will
break down in 10 comments or more. It is assumed that a discussion horizon
longer than ten utterances is so distant and so uncertain that one can aggregate
these cases into a single class. Adopting such a strategy should not have any
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strong negative impact on the quality of the prediction, nor on its usefulness
for the potential action related to a possible failure. After casting the task to
multi-class classification, we apply categorical cross-entropy error defined by

fCCE(gθ(x), y′) = −
10∑

j=0

y′
j log gθ(x)j

where y′
j ∈ {0, 1} are binary variables indicating whether the time left to the

breakdown belong to the class j. In this case, the activation of the respective
output layer should be softmax.

We also explore the possibility of using a custom time-depended loss. The
proposed loss follows the observation that the model makes more predictions for
the utterances that are relatively far away from the discussion horizon in the
case of long discourses. In such a case, the conversation outcome is difficult to
foresee, not only because initially there can be no or little indicators that the
conversation will fail but also because the prediction is based on a very small
context. Therefore, in practice over- or under-estimating the time-to-breakdown
about a constant value, e.g. 1, can be considered less severe if there is much time
left to the derailment and considered more serious if the breakdown horizon is
close.

We encompass this intuition in the following formulation:

fCTD(gθ(x), y′) =

⎧
⎨

⎩
min

{
|gθ(x)−y′|

y′+1 ; 1
}

, for a failing conversation

max
{

y′−gθ(x)+1
y′+1 ; 0

}
, for a civil conversation

where for the civil conversation the y′ is set to be the length of the conversation.
If the discussion is derailing, the presented loss is computed as the minimum of
one and the absolute prediction error divided by the actual number of remain-
ing comments. Therefore, predictions with the high horizon do not generate
higher cumulative losses and the loss value is always between 0 and 1. When
the discourse stays civil, the loss is equal to zero when the model anticipates
that the exchange will fail even later than it actually ends; thus, one is added in
the numerator. Since the loss is computed as the maximum of 0 and the forecast
error divided by the true number of remaining utterances, the higher the number
of comments foreseen as remaining till the conversation breakdown, the smaller
the loss.

3.3 Metrics Considering the Time-to-breakdown of Prediction

We propose three quality measures designed for the time-to-breakdown predic-
tion. Each of them is bounded from 0 to 1 and expressed by an average of inverse
errors, i.e.:

Q =
1
N

N∑

i=1

1
Ei + 1
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where N is the number of dialogues in a dataset, and Ei is the prediction error
of a particular dialog, defined differently for each measure. Note that when the
prediction error is equal to 0, our quality measures are equal to 1. Moreover, the
measure values will not be dominated by predictions on long conversations since
they are averaged over conversations and not over utterances.

The first measure, denominated as average inverse prediction errors (AIE),
uses the classic definition of absolute error, so in that measure Ei is defined as

EAIE =
1
K

K∑

j=1

|ŷ′
j − y′

j |

where K is the length of the conversation, ŷ′
j is the time-to-breakdown prediction

at the time j while y′
j denotes corresponding gold standard value, i.e., the true

time-to-breakdown.
The second measure, called selected inverse prediction errors (SIEt) focuses

on the quality of prediction at the specific time point before the possible con-
versation breakdown, and is defined as:

ESIEt
=| ŷ′

t − y′
t |

where ŷ′
t and y′

t are the predicted and the gold standard value at t utterances
before breakdown or before the end of conversation. We hope that this mea-
sure could be important for practitioners, assuming that in practice one should
have the information about the possible conversation failure at least e.g. t = 5
utterances before in order to have enough time to take action.

The third measure is inverse prediction errors at the highest probability
point (IEH):

EIEH =| ŷ′
t∗ − y′

t∗ |
where t∗ denotes the moment in which the classifier predicted the breakdown
with the highest probability. Such measure in a simplistic way takes into account
that the output of the time-to-breakdown predictor will probably be used only
when the classifier will assess the conversation as derailing.

Additionally, we measure the quality of time-to-breakdown prediction with
standard macro-averaged F1-measure using the same eleven classes defined in the
previous section for cross-entropy error. For the methods which return continu-
ous prediction of time-to-breakdown, we round the predictions before calculating
of F1-measure.

4 Experiments

The main aims of the experiments is to verify the usefulness of the new pro-
posed approach and, in particular, to examine how the introduced loss functions
influence the models’ ability to predict the conversational breakdown and to
approximate the time when it is going to happen. The method will be compared
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against the performance of the reference method – CRAFT, which is consid-
ered as the state of the art approach. The quality of inference will be estimated
by using both standard classification measures, as well as the three proposed
metrics.

4.1 Datasets

In our experiments, we use the same two datasets on which CRAFT’s quality
has been originally measured [4].

The first dataset consists of 4188 conversations retrieved from WikiConv [10].
It contains public discussions between Wikipedia contributors about the quality
of entries and observance of the Wikipedia editing rules. Crowdworkers labelled
them according to whether they contain a personal attack directed towards one
of the interlocutors or not. Such an act of aggression should be committed by
one of the contributors who took part in the dialog since its beginning.

The second dataset contains 6842 dialogues from the subreddit Change-
MyView. A conversation is considered as derailed if it contains a comment
removed by a moderator due to a violation of Rule 2: “Don’t be rude or hostile
to other users”. It means that there may exist discussions with abusive expres-
sions without a correct label since they could go unnoticed by the moderators.
The authors of the dataset additionally warrant that every deleted comment was
written by a person previously involved in the conversation.

Additionally, every example which ended with a failure is paired with a civil
one on the same topic in order not to let the model associate topic-specific
information with individual labels (e.g. exchanges about politics are prone to
fail). Significantly, in each derailing exchange all the utterances up to the toxic
one are civil.

4.2 Experimental Setup

The setup of the method involves proper choosing of several architectural details
in order to let the model learn effectively. In our experiments, HRED has two
encoder networks (utterance and context encoder), each consisting of two GRU
layers with the hidden layer of size of 500. The features for output layers are
constructed by two fully-connected layers, the first one having 500 neurons and
the second one with 250 units. As regularized we apply dropout with the rate of
0.1. Training batches contained 64 examples each and the process was optimized
using Adam optimization algorithm with the learning rate of 10−5. The end of
training was determined using early-stopping in order to avoid overfitting.

Additionally, the HRED component was pre-trained on 1 million discussions
from the Wikipedia Talk Page, using the generative pre-training technique pro-
posed by the CRAFT’s authors [4]. During such pre-training HRED component
learns how to model the dynamics of a conversation in an unsupervised fashion.

The quality of forecasting whether a dialog will fail was measured using stan-
dard classification metrics, i.e., accuracy (Acc), precision (Prec), recall (Rec),
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false positive rate (FPR), and F1-score (F1). A conversation was deemed as
failing, when at least one comment was identified as derailing before the dia-
log failed. Each forecast was based on the previous utterances from the same
conversation, thus, for first utterances nothing was predicted. The metrics were
computed on the test part of datasets as provided in [4] i.e. 20% of conversations
were used for testing.

When foreseeing the number of utterances left to the derailment, the metrics
described in Sect. 3.3 were used. For the SIEt metric, we have used t = 5, i.e.,
the error was calculated looking at the prediction triggered by the fifth to last
utterance in a discussion. If the conversation was shorter than 5, the prediction
on the second utterance from the beginning was taken into account.

Note that the results achieved by CRAFT reported in this work are worse
than those presented in [4]. During those experiments, predictions were triggered
only for the last comments in each conversation. This gave CRAFT a special
advantage, as each inference was drawn basing on the complete history of the
conversation, providing the model with the best possible context for its forecast.
It was serious facilitation, which would not happen in real-life setting, as the
horizon of a dialog is unknown, and forecasts have to be made even if the available
context is too short. Moreover, such an approach also makes it impossible to
measure how the model works in the complete development of the conversation.

4.3 Results of Experiments

Table 1. Comparison of the proposed method with the three loss functions (MSE,
CCE, CTD) and the state-of-the-art CRAFT model on the task of forecasting conver-
sational derailment.

Wikipedia talk pages Reddit CMV

Approach Acc Prec Rec FPR F1 Acc Prec Rec FPR F1

CRAFT 0.606 0.573 0.776 0.574 0.660 0.524 0.522 0.572 0.523 0.546

MSE 0.639 0.638 0.641 0.362 0.640 0.546 0.572 0.364 0.272 0.445

CCE 0.616 0.597 0.710 0.479 0.649 0.556 0.546 0.658 0.547 0.597

CTD 0.614 0.591 0.786 0.554 0.665 0.534 0.529 0.626 0.557 0.573

The results of the experiments are presented in Table 1 and 2. In the classifica-
tion task, one can observe that for both datasets CRAFT is outperformed by
the methods proposed in this work on each of the metrics. Model which uses
MSE time-to-breakdown error in the loss function achieved the best results on
Wikipedia dataset, when it comes not only to accuracy, but also precision and
false positive rate. These are significantly better scores compared to CRAFT.
It also offered improvements on this measures on Reddit dataset, but it was
CCE loss that provided the best accuracy, recall and F1-score on that dataset.
The solution based on the Custom Time Dependent loss proposed in this work
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improves all the classification metric with respect to CRAFT on Wikipedia data
and almost all (except FPR) on Reddit dataset. This demonstrates that the
information about time-to-breakdown provides a useful additional learning sig-
nal to guide model training for this conversation breakdown prediction.

Table 2. Comparison between the performances of the proposed method with different
loss functions on the task of predicting the number of comments left to a conversation
breakdown.

Wikipedia talk pages Reddit CMV

Approach AIE SIE5 IEH F1 AIE SIE5 IEH F1

MSE 0.480 0.400 0.572 0.430 0.363 0.398 0.469 0.322

CCE 0.407 0.400 0.342 0.557 0.428 0.388 0.686 0.205

CTD 0.361 0.257 0.473 0.602 0.416 0.368 0.437 0.370

In the task of approximating time-to-breakdown on Wikipedia dataset, the
proposed method with MSE achieved the best results on the inverse error met-
rics. The result on AIE close to 0.5 means that the model is wrong on average
by only one comment. In our opinion, it should be sufficient to provide an effec-
tive support for online moderators. Surprisingly, our Custom Time Dependent
Loss and not the standard cross-entropy provided better results on F1-score,
i.e., while evaluating time-to-breakdown prediction as a multi-class classification
task. On the Reddit dataset, CTD also gave the highest F1-score, but it was
CCE that gave the highest values of AIE and IEH measures.

Note that the values of SIE5 are generally lower than values of AIE and IEH
for both datasets. This is because the prediction error taken into account when
calculating SIE is calculated 5 comments before a personal attack, and the dialog
context is often not sufficiently broad to make a good prediction. Nonetheless,
this metric allows to check, what is the forecast quality, when the conversation
is not completely developed and there is still much time to intervene. According
to the definition of SIE the average number of conversations for which the best
model was wrong is 1.5, which is a satisfactory result considering how early this
prediction is made.

Furthermore, IEH values are usually higher than AIE and SIE5 for most of
approaches. This is due to the fact that the probability of derailment increases
as the conversation develops in the failing direction and subsequent forecasts are
made basing on wider contexts. This implies that as the model becomes more
and more convinced that the exchange will eventually fail, it can more accurately
foresee when it is going to happen. This is a good characteristics, as in case
of dialogs with high tension (thus easier to detect) the final conflict should be
potentially more serious, therefore it is especially important to identify how many
comments are left to such conversation breakdown. For our best solution, the
committed average error is only around 0.75 and 0.45 utterances for respective
datasets.
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5 Conclusions

This work introduces a new version of the online abuse conversation breakdown
problem, which includes jointly predicting whether the conversation will derail
and approximating time to the conversation breakdown. In particular, consider-
ing time aspects opens new research and application perspectives. Upon the cur-
rent state-of-the-art, we presented a new approach to this problem by proposing
three task-specific loss functions and extending the hierarchical recurrent neural
network architecture.

The experiments with two datasets containing different real life online dis-
cussions have showed that the proposed methods (with these loss functions)
achieve better results on the accuracy, F1-score, precision, and recall measures
than the current state-of-the-art method for conversation breakdown prediction.
Additionally, the proposed approach returns new type of information about time-
to-breakdown, which could be very helpful in practice, for instance, to prioritize
the cases handled by moderators.

Nevertheless, the approach described in this work could be still further devel-
oped. One possible option is to use a pre-trained architecture that models conver-
sation dynamics in another way than HRED. In particular, recent experiments
with the transformer-based models in many related natural language process-
ing tasks may suggest that using the neural networks of this type may boost
the results. Therefore, we also carried out some experiments by using contextual
word embeddings produced by one light-weight transformer-based model, namely
DistilBERT [21], but the results were not clear enough. Most importantly, the use
of DistilBERT embeddings never produced better results than those obtained by
any of the new proposed HRED-based methods, even though we have seen some
improvements for some particular configurations of dataset and loss function.
Nevertheless, we hypothesize that proposing a new transformer-based architec-
ture dedicated to modeling conversations could be a topic of further research.

The other possible issue is that our model, similarly to related works, has
been trained on a balanced dataset, even though online conversation derailments
happen relatively less frequently. Therefore, while the system should be able
to deal with a shifted class distribution. The question of how the low number
of positive examples may influence the predictive performance of conversation
breakdown predictors is still open.

Finally, the more advanced ways of dealing with the time aspect in predicting
a conversation breakdown can be further explored. For instance, one can try
to adopt early classification methods [7] that, instead of predicting time-to-
breakdown, are directly trying to optimize the trade-off between the quality and
earliness of event prediction, which can be useful in practice. Another possibility
would be to explore ideas from the field of survival analysis or from the next
event prediction problem in time series.
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Abstract. Automatic Essay Scoring (AES) Engines have gained popularity
amongst a multitude of institutions for scoring test-taker’s responses and there-
fore witnessed rising demand in recent times. However, several studies have
demonstrated that the adversarial attacks severely hamper existing state-of-the-
art AES Engines’ performance. As a result, we propose a robust architecture for
AES systems that leverages Capsule Neural Networks, contextual BERT-based
text representation, and key textually extracted features. This end-to-end pipeline
captures semantics, coherence, and organizational structure along with funda-
mental rule-based features such as grammatical and spelling errors. The proposed
method is validated by extensive experimentation and comparison with the state-
of-the-art baseline models. Our results demonstrate that this approach performs
significantly better on 6 out of 8 prompts on the Automated Student Assessment
Prize (ASAP) dataset. In addition, it shows an overall best performance with a
Quadratic Weighted Kappa (QWK) metric of 81%. Moreover, we empirically
demonstrate that it is successful in identifying adversarial responses and scoring
them lower.

Keywords: Automatic scoring · Capsule Neural Networks · Adversarial
testing · BERT · Machine learning

1 Introduction

Writing compositions have been widely adopted by all language proficiency exams. The
manual evaluation process is taxing and laborious; hence globally standardized exams
such as GRE [2] resort to automatic scoring systems. However, many state-of-the-art
AES tools suffer from adversarial attacks [10,19]. As a result, there is a dire need for
computerized essay scoring systems that provide quick results while maintaining objec-
tivity and accuracy in evaluations [17]. AES is a complex problem as these systems
aim not just to point out grammatical or spelling errors but also to consider the seman-
tics, identify the coherence in discourse, and ensure that the response is relevant to the
question.

State-of-the-art AES systems can be broadly categorized into two types, feature
engineered models and end-to-end deep learning models [14]. The feature-engineered
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models use handcrafted surface-level features, such as the length of the essay and gram-
matical errors, for scoring the responses [11]. While they are easily explainable and
modifiable with scoring criteria, they lack the understanding of response as a whole.
They cannot mimic pattern organization or coherence based on word and sentence level
relations [21]. The latter type of AES system explores extracting semantic relationships
within an essay. This method relies on word embeddings, which are used to express
response essays in low dimensional vectors followed by dense, CNN or LSTM lay-
ers to represent the semantics in the text [1,23]. Models that incorporate deep learning
techniques and handcrafted features aim to capture all the aspects required for essay
scoring. However, they are vulnerable to adversarial attacks [15]. One of the challenges
in such a task is identifying if the responses correctly answer the question. Consider an
example of a question asking the test takers to describe an incident where they had to
be patient. (Prompt 7 Question: Write a story about a time when you were patient.) If
the test taker answers general sentences about patience and does not provide a personal
story, the response should be scored lower as it does not answer the question. As shown
in Table 1, the incorrect answer has all the features required for a good answer: correct
grammar and spellings, topic relevance and coherence; yet this response does not qual-
ify as the correct answer. While a human annotator can quickly identify this, an AES
system requires learning each essay’s underlying inconsistencies. Hence, understand-
ing each essay response’s composition, structure, and hierarchies need to be further
explored to ensure correct scoring.

Table 1. For a given question: Write a story about a time when you were patient, the Table lists
a correct and incorrect answer to illustrate that even a well-formed answer is marked incorrect
simply because it does not answer the question.

Incorrect answer Correct answer

Patience is the ability to endure difficult
circumstances. Patience may involve
perseverance in the face of delay. Patience is
the level of endurance one can have before
disrespect. It is also used to refer to
the character trait of being steadfast...

I am not a patience person, as I can’t sit in a
room for more than five minutes, but there was
one time I was patient, during my wife’s
operation. I was sitting quietly in the hospital.
At that moment I felt that I needed that time to
pray for her well being...

The problem above is addressed in this work, using the newly introduced Capsule
Neural Network [24]. The CapsNet was introduced in image classification to overcome
the drawbacks of a CNN network by allowing an effective combination of low-level
features of images to high-level depiction using iterative routing. CNNs not only face
problems in learning the transformational invariance of images but also are unable to
ensure a local agreement between the features (due to the max-pooling layers). CapsNet
understands the spatial correlation between a part and a whole and analyzes the current
reference frame to generalize to new or unseen frames.

We aim to use this method to understand each response based on the intrinsic spa-
tial relationship between the parts (sentences) and the whole (essay response). More-
over, this technique provides an understanding of the general structure of the response
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[35]. Hence, the organization and transition amongst the lines in the response will be
under scrutiny. We did not shy away from using key handcrafted features to enhance
the model’s capability to score the responses. We call the CapsNet architecture, Cap-
sRater, and the feature engineering enhancement, FeatureCapture (Fig. 1). To provide a
contextualized and semantic initial representation of essay responses, we use the BERT
embeddings [9]. This architecture improves performance on six out of eight prompts
and increases the overall average QWK score. Moreover, to check the robustness of this
work, we extensively experimented with adversarially crafted essay responses [19]. Cap-
sRater + FeatureCapture successfully detected these adversarial attacks and scored them
relatively lower than the original essay responses.

Following are the significant contributions of this work1:

– We provide a novel architecture with two key components: BERT enhanced CapsNet
model and the feature extraction model for Automatic Essay Scoring. This is the first
work that leverages Capsule Neural Networks for Automatic Essay Scoring to the
best of our knowledge.

– We develop critical features with emphasis on official rubrics for scoring. We empir-
ically demonstrate the importance of these features in improving the QWK.

– The proposed method shows higher scores on the QWK metric than state-of-the-art
models with a boosted overall average QWK of 81%.

– We analyze the proposed work’s performance on multiple adversarial attacks prov-
ing that our model is considerably robust. It successfully scores most of the adver-
sarial text lower.

The paper’s organisation is as follows: we discuss related work in Sect. 2, and the
proposed pipeline in Sect. 3. We illustrate substantial experimentation in Sect. 4, to eval-
uate performance with baseline models. In the same section, we also assess our model’s
sturdiness on the adversarially perturbed datasets.

2 Related Work

The previous work on essay scoring relies on human experts who build domain-
specific features to check the lexical and grammatical errors. The systems then employ
machine learning classifiers to predict the essay scores. For example, works such as
[3,6,16,20,32], trained Naive Bayes, Linear Regression and Rank Support Vector
Machine (RankSVM) models for essay scoring task. EASE [11], a popular AES engine,
applies text analysis and feature engineering to several regression models. Using hand-
crafted features has had immense success on the AES task. While there are simple
features such as sentence length, word count, there are also other features that have
a convex mechanism of engineerings, such as readability [33], textual and discourse
coherence [5,26]. Incorporating each of these requires specialized focus and a domain-
specific approach.

More recent approaches have turned to neural networks, which encode an essay into
richer representations of low-dimensional embeddings. For example, Alikaniotis et al.

1 Our code is available at: https://github.com/ECMLPKDD/CapsRater-FeatureCapture.

https://github.com/ECMLPKDD/CapsRater-FeatureCapture
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[1] applied a deep LSTM layer, Taghipour et al. [27] employed the CNN layer. They
map texts into sequences that can account for the variable input lengths. These strate-
gies are popular because they provide an end-to-end solution. A fundamental limitation
of deep learning approaches in this domain is that they are susceptible to adversarial
attacks [10]. Researchers have conducted a study to showcase how simple tricks can
deceive state-of-the-art AES tools [19]. In this light, Farag et al. [12] applied window-
based local coherence to catch adversarial attacks. However, detecting and mitigating
advanced attacks is still an open problem.

Previous works on Capsule Neural Networks showcased promise on the image, as
well as text classification tasks [13,35]. The capsules utilize all the feature information,
therefore, address the issues with information loss in CNNs. Variants of Capsule archi-
tectures have recently experimented with in text classification applications. For exam-
ple, Zhao et al. [35] proposed two models to stabilize the routing mechanism between
capsules from disturbances in the text, such as stopwords, as these do not contribute
to the classification task at hand. Kim et al. [18] employ a static routing mechanism in
place of the dynamic one, based on the observation that the document semantics can
remain the same with a different order of sentences. Saha et al. [25] studied the joint
optimization capabilities of BERT and capsule layer in their classification task.

Due to the success of Capsule Neural Networks to capture spatial inter-
dependencies in text [36], we employed the CapsNet for the AES task. Our work lever-
ages BERT embeddings to utilize the pre-trained contextual features. The capsule archi-
tecture captures the semantic inter-word relationships and spatial patterns of words and
transfer learned parameters. It can effectively encode the information required for essay
evaluation and learn the complex patterns in the data.

3 Methodology

Our architecture consists of two independent pipelines, called CapsRater and Feature-
Capture. We report results on both of these models. However, the best performing model
is their combination (Fig. 1), as shown in Sect. 5. To combine these models, we took the
mean over their class-wise probabilities and passed the output through a final dense
layer to get the resultant score vector.

3.1 CapsRater

Capsule Neural Networks were introduced to accurately identify hierarchical relation-
ships between objects and the features that constitute those objects. A capsule is a struc-
ture that essentially contains information about the probability and orientation of these
features. Following [24], we use the capsules to attain a vector output from the feature
detectors in CNN. The capsule representation is used in place of the pooling layer’s
scalar output, which discards the text’s positional information.

We employed BERT embeddings of essay text and fine-tuned them using the Cap-
sule framework. BERT provides contextual word representations by applying bidirec-
tional training of transformer to language modelling. During the pre-training on the
Masked Language Model task, BERT’s architecture enables it to capture the entire text
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Fig. 1. The combined architecture of CapsRater + FeatureCapture model.

instead of sequential reading of directional models. As a result, BERT has a deeper
understanding of language context and flow [9]. Thus, using BERT representation will
provide the non-linear neural layers with the richer vector representations for the essay
responses.

Consider the input sentence, S of length L, forms E dimensional BERT embed-
dings; then the input is represented as S ∈ RL×E .

Convolution Layer: We passed the input through the convolution layer to extract local
textual features. In this step, the convolutional filter matrix, W a ∈ RF×V (F is the size
of filter), slides across input of si:i+F−1 dimensions, multiplies with the input element-
wise, and generates feature maps of size, ka ∈ RL−F+1. The resultant is added to a
bias term, b0, and a ReLU activation function f , is applied to it. Mathematically, this is
denoted as:

ka
i = f (si:i+F−1 ◦ W a + b0) (1)

The above operation is iterated for N filters to widen the feature extraction process
and concatenate the output [35]. Therefore there are N feature maps generated, repre-
sented by K = [k1, k2, ..., kN ] ∈ R(L−F+1)×N

Primary Capsule Layer: The feature maps are then passed through a convo-
lution operation, with filter W b, forming the first layer of capsules, denoted as
Θ ∈ R(L−F+1)×d, (d is the dimension of capsule). This layer preserves the initial
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parameters belonging to each input feature instead of the scalar output from CNN’s
pooling operations. As a result, the capsules contain more information about the input,
given as:

Θi = (W b)T × Ki + b1 (2)

where i denotes the size of the filter matrix: 1 → L − F + 1 and b1 is the bias term.
A nonlinear squash function is applied on the above vectors.

Θi =
‖Θi‖2

1 + ‖Θi‖2

Θi

‖Θi‖ (3)

We performed the above steps with N number of filters and concatenated their corresponding
outputs. For our domain, the capsule layer is aware of the semantics and ordering of sentences
due to the vector representation of the instantiated parameters [35].

Part-Whole Relationship: Hinton et al. [13] defines this step as assigning part-to-whole.
We made use of two levels of capsules; each lower layer capsule assigns a vote vector

Vlow→up to each upper layer capsule. These vectors represent how much information is trans-
ferred from the different input capsules to the respective output capsule.

Vlow→up = Wlow→up × Θlow (4)

where Wlow→up is a transformation matrix. These matrices solve exponentially taxing convolu-
tions, and their insubstantial representation [24]. Moreover, they provide automated learning of
part-whole relationship.

Dynamic Routing: This is an iterative process that builds a non-linear map to ascertain that
each lower capsule’s output is matched to the suitable upper capsule in the next layer. It con-
trols the connection between the higher and lower layers’ capsules. Following [24], there is an
assignment probability Clow→up associated with input capsules, which measures the similarity
between vote vector and output capsule. It is calculated as the multiplication of probability of
the upper capsule for each lower capsule, A

′
low→up, with the softmax of logits of the assignment

probability, Blow→up.

Clow→up = A
′
low→up × exp (Blow→up)

∑N
up=1 exp (Blow→up)

(5)

Here Blow→up is initialized as all 0s, and it measures the proportion of input capsule that
makes the output capsule. It is updated according to the agreement between the upper layer cap-
sule and the vote vector.

Blow→up = Blow→up + Θup.Vlow→up (6)

Output capsules are formed from the weighted sum of vote-vectors.

Θup = squash(
∑H

low=1 (Clow→upVlow→up)
∑H

low=1 (Clow→up)
) (7)

Aup = |Θup| (8)

here, Aup is the activation probability of the upper layer capsule.
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Convolutional Capsule Layer: The next layer gives the upper layer capsules formed from
multiplying transformation matrices with the lower capsules, followed by dynamic routing. Using
this routing mechanism, the capsules capture the importance and coherence of words while
leaving out nonessential information. Finally, the upper layer capsules are flattened and passed
through a dense layer.

3.2 FeatureCapture

Table 2. The key features extracted from the text to pass through the FeatureCapture model.

S. No. Type Feature

1 Prompt based Number of words

2 Number of ! or ?

3 Correct POS tags

4 Number of spelling errors

5 Number of grammatical errors

6 Similarity based Between prompt and responses

7 Between response sentences

Handcrafted features play an essential role in enhancing the performance of AES systems [21].
This can be observed in CapsRater + FeatureCapture model scores in Table 4, where adding
features has illustrated best scores for the majority (5 out of 8) of prompts in the ASAP dataset.
In this work, we used two types of handcrafted features: prompt-based and similarity-based (listed
in Table 2). These were empirically decided by manual inspection of the responses and official
rubrics given in the dataset. The prompt-based features are inspired by the EASE system [11].

– Prompt Based Features: We observed that shorter essays are scored lower by the anno-
tators. Therefore, Number of words is an important length-based feature. We also took the
frequency of sentences ending with ! or ? into account, as the essay response should not
be primarily constituted of exclamatory or questioning sentences. For the next feature, Cor-
rect POS tags, we counted the number of erroneous unigrams and bigrams and subtracted
those from total unigrams and bigrams. Using this, we get a statistical understanding of how
coherent the essay response is. The above features were defined using the NLTK2 library.
Essays with many grammatical and spelling errors are penalized higher by the annotators;
hence we included these in the feature space. Number of spelling errors were counted using
pyspellchecker [4]. It relies on the Levenshtein Distance algorithm and compares all permu-
tations in the frequency word list to correct an incorrect spelling. For identifying the Gram-
matical Errors, we use the popular grammar checking application called LanguageTool’s
python wrapper [29].

– Similarity Based Features: The similarity score between the prompt and essay shows if
the response essay has borrowed text from the prompt by comparing the similarity between
them. Similarity between the sentences gives an analysis of the amount of repetition within a
response. Higher repetition reported by this feature should be scored lower. For calculating
both, we use a fuzzy matching library, called rapidfuzz [22].

2 https://www.nltk.org/.

https://www.nltk.org/
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All the above-extracted features are normalized to the 0–1 range, stacked and passed into the
XGBoost [7], which is an ensemble learning method. Multiple individual base learners (models)
are trained and combined for a final prediction. XGBoost has base learners that may generate
average performance, but when sequentially added, they rectify the errors and lead to efficient
predictions. Moreover, this algorithm is immensely scalable, and it relies on distributed com-
puting which enhances fast learning [7]. The output of XGBoost is a probability vector for each
target class. The final output vectors from CapsRater and FeatureCapture are averaged and passed
through a dense layer for the final result.

4 Experimentation

4.1 Dataset

We perform our experiments on the widely used and accepted dataset for AES tasks, namely
Automated Student Assessment Prize (ASAP). The dataset comprises 8 prompt questions, which
students of grades 7 to 10 answer. The total number of answered essays are 12,976. More details
about the dataset are shown below in Table 3.

Table 3. Description of the ASAP-AES Dataset used for evaluation of AES systems. Here RC
refers to Reading Comprehension and # represents the count.

Prompt # Responses Type Avg # words Avg # sentences Score range

1 1783 Argumentative 350 23 2–12

2 1800 Argumentative 350 20 1–6

3 1726 RC 150 6 0–3

4 1772 RC 150 4 0–3

5 1805 RC 150 7 0–4

6 1800 RC 150 8 0–4

7 1569 Narrative 250 12 0–30

8 723 Narrative 650 35 0–60

4.2 Evaluation Metric

We use the Quadratic Weighted Kappa (QWK) metrics for evaluation. It is a commonly used
and accepted metric [21,27] which measures agreement between the AES scorer and the human
annotators. QWK is calculated as:

k = 1 − ΣijwijObsij
ΣijwijExpij

(9)

Here, Obs and Exp are the observed and expected scores matrix respectively, while w
denotes the weights. The scores assigned by the human and machine graders are i and j respec-
tively. Given N is the number of possible scores, the weight matrix is defined as:

wij =
(i − j)2

(N − 1)2
(10)

The range of QWK score is from 0 to 1. The higher the score, the closer the machine-human
agreement.
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4.3 Baselines

We compared the proposed work with the recent state-of-the-art baselines: EASE [11], developed
by EdX, is a feature-based model relying on n-grams and prompt word overlap. It performed
third-best in the ASAP-AES competition. Taghipour et al. [27] build an architecture that applies
CNN and LSTM with a mean over time layers. This model performs better than EASE on the
ASAP dataset. HISK+BOSWE [8] is a statistical technique that captures text-based features using
string kernels along with word embeddings. A reinforcement learning methodology, called RL1,
was proposed by Wang et al. [30]. They used the QWK score as the reward function, which is
governed by positive or negative feedback. SkipFlow [28] proposes the neural coherence features
that capture semantics and coherence using deep neural networks. It uses the hidden states for
extracting more information about the formation of the response. MemoryNetworks [34] takes
one sample essay belonging to each score in the score range and saves it in the memory. This
sample essay is used to calculate the similarity with new essays to score them. Using mem-
ory networks in grading helps them boost performance on 7 out of 8 prompts. TSLF [21] uses
feature engineering along with neural networks for scoring. They form features for coherence,
semantics and relevance using BERT embedding and employ the SVM classifier. They perform
relatively higher than the state of the art methods. However, Kumar et al. [19] have shown that
they lack robustness to tackle all kinds of adversarial attacks. R2BERT [31] has multiple objective
approaches where they explored two loss functions: the mean squared error and the batch-wise
ListNet loss. They report improved results on baselines.

4.4 Implementation

We perform prompt-wise training on our models. The prompts in the dataset vary in terms of
the genres (Argumentative, Reading Comprehension and Narrative), the scoring rubrics, and the
grade of study of test-takers. We load the response essays to pass them through CapsRater and
FeatureCapture, respectively. The first step in CapsRater involves transforming the data into the
BERT-base model’s embeddings (V = 768). It is then passed through the CapsRater model,
where we use 32 filters, of size F = 3 words, in the first and second convolution layers while 16
filters in the convolution capsule layer. The capsules are also set as 16-dimensional vectors, and
the dynamic routing process is iterated thrice for optimum loss convergence. In FeatureCapture,
we use the XGBClassifier with the gbtree booster method. The max depth parameter is set to
6, the objective function to multi:softprob, and n estimators to 1000. The learning rate is set
to 1e−4. For the CapsRater pipeline, we used the standard, cross-entropy loss function, Adam
optimization, and the model is trained for 50 epochs with a 1e−4 learning rate.

5 Result and Analysis

This section compares CapsRater, FeatureCapture, and their combined pipeline with the promi-
nent baseline works on the ASAP dataset. Table 4 shows the QWK scores on all 8 prompts avail-
able in the data. Moreover, we provide the average score to represent the overall performance.
Table 4 reports that the proposed architecture boosts performance on six out of eight prompts,
including both Argumentative, three Reading Comprehension and one Narrative prompt. More-
over, it leads to an overall increase of 2% in scores compared to the baselines.

Analysis: We had a thorough look at the essay responses and their scoring rubrics provided
with the dataset. The rubrics can be categorized into three main parts3: Ideas + Content, Orga-
nization and Style. Ideas + Content focus on topic relevance and scrutinizes the main idea of

3 https://www.kaggle.com/c/asap-aes.

https://www.kaggle.com/c/asap-aes
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Table 4. Performance comparison of proposed work with baseline models for each prompt in the
dataset. Scores are calculated using the QWK metric. The best performance for each prompt is
emboldened

PROMPT 1 2 3 4 5 6 7 8 Avg

EASE (SVR) [11] 0.781 0.621 0.630 0.749 0.782 0.771 0.727 0.534 0.699

EASE (BLRR) [11] 0.761 0.606 0.621 0.742 0.784 0.775 0.730 0.617 0.705

CNN [27] 0.804 0.656 0.637 0.762 0.752 0.765 0.750 0.680 0.726

LSTM [27] 0.808 0.697 0.689 0.805 0.818 0.827 0.811 0.598 0.756

CNN+LSTM [27] 0.821 0.688 0.694 0.805 0.807 0.819 0.808 0.644 0.761

HISK+BOSWE [8] 0.845 0.729 0.684 0.829 0.833 0.830 0.804 0.729 0.785

RL1 [30] 0.766 0.659 0.688 0.778 0.805 0.791 0.760 0.545 0.724

SkipFlow [28] 0.832 0.684 0.695 0.788 0.815 0.810 0.800 0.697 0.764

MemoryNets [34] 0.830 0.720 0.720 0.820 0.830 0.830 0.790 0.680 0.780

TSLF [21] 0.852 0.736 0.731 0.801 0.823 0.792 0.762 0.684 0.773

R2BERT [31] 0.817 0.719 0.698 0.845 0.841 0.847 0.839 0.744 0.794

CapsRater (CR) 0.852 0.750 0.743 0.847 0.800 0.780 0.812 0.702 0.785

FeatureCapture (FC) 0.791 0.677 0.693 0.818 0.782 0.771 0.762 0.699 0.749

CR + FC 0.866 0.764 0.751 0.844 0.837 0.852 0.843 0.715 0.809

the response. Organization refers to the logical and structural organization of the response. Each
response should give a meaningful, cohesive and complete meaning. Finally, the style includes
features that emphasize spelling and grammatical errors. It castigates repetitive word and sentence
usage. We also observed that poor-scored essays were generally shorter. While CapsRater has
strong capabilities of demonstrating high performance, combining with FeatureCapture exhibits
faster convergence, as it adheres to the prompt rubrics. This is evident in Fig. 2.

Fig. 2. Plot showing the increase in QWK metric performance with the increase in number of
epochs on validation data during the training of prompt 1, 5 and 8 respectively.

The QWK score vs epoch plots in Fig. 2, shows that even at the beginning of the training
process, CR + FC has significantly faster and greater convergence than CR on the validation
data. Furthermore, as the number of epochs increases, there is an increase in the QWK scores.
Introducing handcrafted features to CapsRater has penalized responses based on rubrics and has
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Table 5. For prompt 1 question: Write a letter to your local newspaper in which you state your
opinion on the effects computers have on people, the Table lists the original essay response along
with adversarially perturbed responses. Green shows the addition of colored lines to original
response, while red shows deletion of the colored lines from the response.

Example

Original response Dear Local Newspaper, I believe that computers are an extremely
useful tool in society... Also, it lets you communicate with friends
and family through the internet, for example, using facebook ... Each
class teaches us to respect more and more of this culture... Also, is
another website that helps us study for vocab. It also has many games
that and learn our vocab words... I assume you will understand how
much the computer has made a positive effect in society

Category Attack

ADD AddSongs Dear Local Newspaper, I believe that computers are an extremely
useful tool in society. It helps people learn new things about different
cultures . . . So shine bright, tonight you and I, We’re beautiful like
diamonds in the sky. . . I assume you will understand how much the
computer has made a positive effect in society

ADD RepeatSent Dear Local Newspaper, I believe that computers are an extremely
useful tool in society... Also, it lets you communicate with friends
and family through the internet, for example, using facebook. Finally,
it provides an accurate research tool for school projects, or
interviews.Also, it lets you communicate with friends and family
through the internet, for example, using facebook. Finally, it provides
...

DEL DelRand Dear Local Newspaper, I believe that computers are an extremely
useful tool... It helps people learn new things about different cultures.
Also, it lets you communicate with friends and family through the
internet for example, using facebook... I assume you will understand
how much the computer has made a positive effect in society

MOD ModGrammar Dear Local Newspaper, They believe this computer are the extremely
useful tool is society. They helps this people should had learns ...
Also, They lets u communicate with friend fam through the internets,
4 examples, using facebook. Finally, they provides the accurates
researcher tools 4 schools project, or interview...

GEN BabelGen Computer with abandonment has not, and in all likelihood never will
be boisterous, irreverent, and arrogant. Why is paper so accumulated
to pondering? The reply to this query is that electronic computer is
eternally and hastily incensed...

made a definite difference in the scoring. Interestingly, the average score of FeatureCapture (FC)
by itself is 7% lower than the CR+FC model. This signifies that FeatureCapture, independently,
does not have an excellent performance. Table 4 and Fig. 2 throw light on the importance of
CapsRater, and the significance of its routing mechanism in modelling the hierarchical textual
relationships. Moreover, using BERT embedding for initial text representation helps it grasp the
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contextual understanding of sentences in the response. Overall, this exhibits that the proposed
work gains tremendously from utilizing both CapsNet architecture and extracted features.

5.1 Testing with Adversarial Essays

Fig. 3. CapsRater + FeatureCapture’s scoring trends on Original and Adversarial essay responses
for prompt 1

Recently, there has been thought-provoking work on the robustness of AES engines by conduct-
ing adversarial attacks on them [10,19]. Kumar et al. [19] created a pipeline to generate various
attacks on the ASAP-AES dataset. We employ their adversarially generated data to test the per-
formance of our model. These are broadly divided into four categories: ADD (Text Addition),
MOD (Text Modification), DEL (Text Deletion) and GEN (Random Text Generation). We exper-
imented with two attacks from ADD and one from all other categories to check the robustness
of the proposed model (CR + FC) and described the attacks with an example from prompt 1
response in Table 5. Here, AddSongs refers to the addition of lines of songs in the middle of the
essay response. RepeatSent focused on repeating lines within the response essay to make it unrea-
sonably wordy. DelRand created incoherent essays by removing random lines from the original
response. ModGrammar introduced various grammatical errors in the original essay responses.
BabelGen used a tool called the Babel Generator4 to generate random sentences using prompt-
specific keywords. AddSongs, RepeatSent and DelRand changed 25% of the original responses,
while ModGrammar and BabelGen changed the entire original response. The training was done
on the original training data, while the testing data was replaced with the perturbed testing data
according to the five selected adversarial attacks. To keep the analysis concise, we have shown the
difference between the grading of Prompt 1 and 8’s original responses and their corresponding
adversarially perturbed responses. The results are shown in Fig. 3 and 4.

4 https://babel-generator.herokuapp.com/.

https://babel-generator.herokuapp.com/
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Fig. 4. CapsRater + FeatureCapture’s scoring trends on Original and Adversarial essay responses
for prompt 8.

Analysis: Original responses for prompt 1 are scored between the 2–12 range, and prompt 8 are
scored between 0–60. We see that 90% of the original samples are scored between 8 and 12 for
prompt 1. On similar lines, 88% of the original samples are scored between 30 and 60 for prompt
8. The overall trend is that adversarially perturbed responses have been scored consistently lower
by CR+FC for all the attacks than the original essay responses. However, the maximum penalty
was observed for the ModGrammar attack where 53% of responses of prompt 1 was scored the
lowest possible score (2) and more than 70% of responses of prompt 8 was scored less than 30
(out of 60). ModGrammar made the responses grammatically incorrect and deformed the sen-
tence structure such that it became semantically incorrect. For example, Table 5 shows a sentence
where ModGrammar has introduced a singular demonstrative before plural noun: “this people”,
a verb after a modal verb: “should had”, changed the semantics by introducing “2”, “y”, “their”
incorrectly in the example. Hence, these responses were strongly penalized by CapsRater + Fea-
tureCapture, due to excessive grammatical errors and semantic inconsistencies, leading to low
scores. Another interesting observation is that while RepeatSent creates repetition of lines within
the response, it still generates a relevant and coherent response. Even then, the attack was suc-
cessfully identified, and most of the perturbed responses were scored lower for both prompt 1
and prompt 8. 45% of prompt 8 responses were scored between 20–30. We attribute this success
to similarity-based features. AddSongs adds irrelevant lines to the responses, which tampers their
relevance, structure and organization. We can see a clear drop in scores. Close to 65% of the
perturbed responses for prompt 1 are scored between 2 and 4. Moreover, 40% of the responses
for prompt 8 is scored between 15–20. This shows that the proposed work has grasped struc-
tural inconsistencies and penalized such responses. Similarly, for DelRand, most of the perturbed
responses are scored lower. We noticed that the prompt 1 score bracket is inclined towards the
range of 4–6, and that of prompt 8 is between 20–30. Deleting random lines from an essay disturbs
the structure and transition within sentences. While these perturbed essays may lack feature-based
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flaws, they were identified and penalized by CapsRater. Most interestingly, BabelGen attack was
also captured by CR + FC. Babel Generator generates semantically correct but random passages
using three keywords taken from the prompt. This type of attack does not have any spelling or
word level inconsistencies. However, the inter-sentence coherence is extremely low, as shown in
Table 5, by comparing the text in the original response and the BabelGen output. We observe
that 80% of the responses’ in this attack were scored lower (between 2–5) than original data for
prompt 1. Similarly, 85% of prompt 8 responses were scored lower (between 5 and 30).

6 Conclusion

This work demonstrates an end-to-end pipeline that applies BERT enhanced Capsule Neural Net-
work and handcrafted features for Automatic Essay Scoring. The CapsRater + FeatureCapture
model reports a significant increase in the state-of-the-art performance on the QWK metric. More-
over, we conducted deeper experimentation and analyzed our technique’s robustness against sev-
eral types of adversarial attacks. CapsRater + FeatureCapture can detect and score the adversarial
essay responses low. We aim to study and implement a domain-independent scoring system to
eliminate training costs for each new question statement while retaining the performance in future
work.
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Abstract. Online educational platforms organize academic questions
based on a hierarchical learning taxonomy (subject-chapter-topic). Auto-
matically tagging new questions with existing taxonomy will help orga-
nize these questions into different classes of hierarchical taxonomy so that
they can be searched based on the facets like chapter, topic. This task
can be formulated as a flat multi-class classification problem. Usually, flat
classification based methods ignore the semantic relatedness between the
terms in the hierarchical taxonomy and the questions. Some traditional
methods also suffer from the class imbalance issues as they consider only
the leaf nodes ignoring the hierarchy. Hence, we formulate the problem
as a similarity-based retrieval task where we optimize the semantic relat-
edness between the taxonomy and the questions. We demonstrate that
our method helps to handle the unseen labels and hence can be used
for taxonomy tagging in the wild, like the question-answer forums. In
this method, we augment the question with its corresponding answer to
capture more semantic information and then align the question-answer
pair’s contextualized embedding with the corresponding label (taxon-
omy) vector representations. The representations are aligned by fine-
tuning a transformer based model with a loss function that is a combi-
nation of the cosine similarity and hinge rank loss. The loss function max-
imizes the similarity between the question-answer pair and the correct
label representations and minimizes the similarity to unrelated labels.
Finally, we perform extensive experiments on two real-world datasets.
We empirically show that the proposed learning method outperforms
representations learned using the multi-class classification method and
other state of the art methods by 6% as measured by Recall@k. We also
demonstrate the performance of the proposed method on unseen but
related learning content like the learning objectives without re-training
the network.
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(a) Training phase - aligns
input and label embeddings.

(b) Testing (inference) phase -
recommends labels

Fig. 1. Training and testing phases for tagging questions with hierarchical labels

1 Introduction

Online learning platforms organize academic questions according to a hierar-
chical learning taxonomy (subject-chapter-topic). For instance a question about
“electromotive force” is tagged with “science - physics - electricity”. This
method of organization helps individuals navigate over large question banks. The
taxonomy can also aid in faceted search. The facets could be topics, concepts, or
chapters. However, manually tagging each question with the appropriate learn-
ing taxonomy is cumbersome. Hence there is a need for automated methods for
tagging a question with the appropriate learning taxonomy. Automated tagging
helps to organize acquired questions from third party vendors, which may be
rarely linked to a learning taxonomy or are linked only at a “chapter” level.
Also, the learning taxonomy is subject to change as the topic names or concept
names could be replaced by synonyms or related concepts. Hence, the taxonomy
tagging method should adapt to minor changes in the label (taxonomy) space
without changes in the model architecture or re-training.

Automated categorization of content in online platforms is usually formu-
lated as a multi-class classification problem [5,18]. However, there are some
unique challenges when dealing with a hierarchical taxonomy and tagging short
questions in the e-learning domain. Firstly, some of the traditional multi-class
classification methods ignore the hierarchy and consider only leaf nodes of the
hierarchical labels as labels. However, this formulation of the problem would suf-
fer from class imbalance issues since a large number of contents may be tagged
with a small number of leaf nodes leaving a smaller number of samples for other
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leaf nodes. The second challenge is that the labels are dynamic in nature as new
topics could be added to the syllabus, and the old topics may no longer be valid
or could be retired. This results in a change in the label space and thus gives
rise to new labels. The new labels would have some similarity to some of the
existing labels as the subject name and the chapter names could be semantically
related to the existing chapter names. The traditional multi-class classification
methods cannot exploit this semantic relatedness as they do not consider label
representations. They require a change in architecture to incorporate the new
labels and must be retrained. However, the hierarchical labels are an abstraction
of their word descriptions and hence some of the terms in the hierarchical labels
are semantically related to the words in the given questions. Hence, by learning
a representation that captures the similarity between the labels and the related
questions, the model can adapt to changes in label space.

To capture more semantic information from the given inputs, we augment
the question with its answer as an auxiliary information. Hence, we refer to the
augmented content as a “question-answer” pair and the hierarchical learning
taxonomy is referred to as “label” or “taxonomy”. Our method, however would
work even in cases where the answer is not given along with the question.

We propose a new method, named TagRec, for question-answer categoriza-
tion in online learning platforms. In our method, the goal is to recommend
relevant hierarchical learning taxonomy (label) for every question-answer pair
to assist in organizing the learning content. Hence we adopt a similarity based
retrieval method where hierarchical labels which are semantically related to the
given question-answer pair. Figure 1 shows the basic architecture of the proposed
method. Here, in the Fig. 1(a), the method projects the question-answer text and
the corresponding label as inputs to a continuous vector space and aligns the
input representations Temb with the label representations Oemb. In the Fig. 1(b),
during the recommendation (test time), when a new question arrives, the method
projects the new question-answer pair to the vector space and computes the
cosine similarity between the input representations and vector representations
of all known labels. The labels are then ranked according to the similarity score,
and the top-k labels are recommended for the given new question.

The proposed method can be used for tag recommendation in open source
platforms like StackExchange. For example, a question about “Batch normal-
ization” with tags “deep-learning” and “normalization” can be tagged with a
hierarchical label AI−→deep learning−→normalization−→Batch normalization. The
preprocessed data can then be fed to TagRec, which would be able to recommend
hierarchical labels to new questions after the training.

The following are the key technical contributions of the paper:

• We propose a novel and efficient similarity based retrieval method to rec-
ommend a hierarchical taxonomy label to a given question-answer pair. The
method decouples the computation of vector representations for the ques-
tion input and the taxonomy labels, thus allowing label representations to be
pre-computed and indexed for lookup.
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• We propose a learning method to align the input and hierarchical label rep-
resentations that involves a loss function combining the cosine similarity and
the hinge rank loss [4].

• We employ a transformer based sentence representation method to represent
the hierarchical labels. We conduct extensive experiments by varying the label
representations in the architecture shown in Fig. 1(a) to empirically determine
the effect of the label representations on the performance of the method. The
proposed TagRec method outperforms the state of the art methods by upto
6% with Recall@k as the metric.

• We demonstrate the ability of our method to adapt the changes in label space
without any changes in architecture or retraining.

• We further demonstrate the ability of our method to categorize the unseen
but related learning content like learning objectives. We extract 417 learning
objectives from science textbooks and apply the proposed method to this
data without any re-training. We observe that the proposed method is able
to achieve high Recall@k at top-2 predictions and outperforms the existing
state of the art methods by 7%.

2 Related Work

In this section, we first provide an overview of multi-class classification methods
that consider the hierarchical label structure and then briefly discuss the current
state of the art sentence representation methods.

2.1 Multi-class Classification with Hierarchical Taxonomy

Many websites in the e-commerce and e-learning domains organize their con-
tent based on a hierarchical taxonomy [5,18]. The most common approaches for
automatic categorization of the content to the hierarchical labels are flat multi-
class single-step classification and hierarchical multi-step classifiers [17,19]. In
multi-class single-step methods, the hierarchy is ignored and the leaf nodes are
considered as labels. This leads to class imbalance issue, as discussed in Sect. 1.
In the hierarchical multi-step approach, a classifier is trained to predict the
top-level category and the process is repeated for predicting the sub-categories.
However, the main problems associated with this approach are that the error
from the classifiers at one level propagates to the next level and the number of
classifiers increases at every step.

Several single-step classifiers have been proposed for the task of hierarchical
classification. In [19], the word level features like n-grams were used with SVM as
classifier to predict level 1 categories, whereas in [5] the authors have leveraged n-
gram features and distributed representations from Word2Vec to obtain features
and fed them to a linear classifier for multi-class classification. Several deep
learning methods like CNN [6] and LSTM [17] have been proposed for the task
of question classification. Since the pre-trained language models, like BERT [3],
improve the performance, the authors in [18] propose a model BERT-QC, which
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fine tunes BERT on a sample of questions from science domain to classify them
to a hierarchical taxonomy. The hierarchical multi-class classification problem
has also been cast as a machine translation problem in [14] where the authors
provide the product titles as input and use a seq2seq architecture to translate
them to product categories that exhibit a hierarchy. However, all these above
approaches do not consider the label representations. The hierarchical neural
attention model [12] has been proposed, which leverages attention to obtain
useful input sentence representation and uses an encoder-decoder architecture
to predict each category in the hierarchical taxonomy. However, this approach
may not scale to deep hierarchies.

In this paper, we take a similarity-based retrieval approach with the aim
to recommend the relevant label (i.e., the hierarchical learning taxonomy) by
aligning the input embeddings and the label embeddings. We do not explore the
multi-level classifier approach owing to the shortcomings explained earlier in this
section. The proposed method can also adapt to changes in the label space.

2.2 Sentence Representation Methods

Distributed representations that capture the semantic relationships [8] have
helped to advance many NLP tasks like classification, retrieval. Methods like
GloVe [10] learn vector representation of word by performing dimensionality
reduction on a co-occurrence count matrix. Rather than averaging word represent
ations to obtain sentence embeddings, an unsupervised method named Sent2Vec
[9] for composing n-gram embeddings to learn sentence representations was pro-
posed.

The Bidirectional Encoder Representation from Transformers (BERT) [3] is
one of the current state of the art methods. However, one of the disadvantages
of the BERT network structure is that no independent sentence embeddings
are computed. The Sentence-BERT [11] model was proposed to generate useful
sentence embeddings by fine-tuning BERT. Another transformer based sentence
encoding model is the Universal Sentence Encoder (USE) [2] that has been specif-
ically trained on semantic textual similarity task and generates useful sentence
representations.

In this paper, we treat each label as a sentence and embed it using the
sentence representation methods. For example, the label Science - Physics
- electricity is treated as a sentence. In our experiments, we observe that
USE embeddings and Sentence-BERT embeddings perform better than aver-
aging word embeddings. These results are discussed in Sect. 4.

3 Methodology

In this section, we describe our method for classifying questions to hierarchical
labels. The method consists of a training phase and testing phase, as shown in
Fig. 1. The input to the method is a corpus of documents, C = {D1,D2...Dn}
where each document corresponds to a question-answer pair and the hierarchical
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Algorithm 1. Tag Recommender
Input: Training set T ← docs {D1, ..Dn}, labels O of form (Subject-Chapter-Topic)
Output: Set of tags for test set , RO

Training (batch mode)
1: Get input text embeddings , Temb ← BERT (D)
2: Obtain label embeddings, Oemb ← SENT BERT (O)
3: Index(labels) ← Oemb

4: loss ← ∑
j �=label max(0,margin − cos(Temb, Oemb(label)) + cos(Temb, Oemb(j)))

5: Fine-tune BERT to minimize loss and align Temb and Oemb

Testing Phase
6: Compute embeddings for test set S using fine-tuned BERT Semb ← BERT (S)
7: Rank set of unique labels RO ← sorted(Sim(Semb, Oemb))
8: return Top-k labels from RO

labels O = {(S1, Ch1, T1), (S2, Ch2, T2)...} where Si, Chi and Ti denote subject,
chapter, and topic respectively. The goal here is to learn an input representation
that is close to the correct label in the vector space. We consider the label
(Si, Chi, Ti) as a sequence, (Si +Chi +Ti) and obtain a sentence representation
for it using pre-trained models. We obtain contextualized representations for the
inputs using BERT [3] followed by two projection layers. The linear projection
layers are transformations that map the 768-D representation from BERT to the
1024-D or 512-D vector representation.

The steps of the proposed method are given in Algorithm 1. The details of
the two phases in Algorithm 1 are as follows:

• In the training phase, the input question-answer pair is passed through a
transformer based language model BERT followed by projection layers. The
vector representations for the labels are obtained using a sentence representa-
tion method like USE [2] or Sentence-BERT [11]. The vector representations
for all unique set of labels can be pre-computed and indexed for lookup. This
saves computation cost and time during training and testing phases. The
model is fine-tuned using a loss function that is a combination of cosine sim-
ilarity and hinge rank loss [4]. This helps to align the contextualized input
representations with the label representations.

• In the testing phase, as shown in Fig. 1b, the results are obtained in three
steps. Firstly, the vector representations (embedding) for the input are com-
puted using the fine-tuned BERT model. Secondly, the labels are ranked
by computing cosine similarity between the input embeddings and the pre-
computed label embeddings. Finally, top-k labels are chosen and metrics like
Recall@k are computed for evaluating the performance of the model.

Our method is efficient as the label representations are pre-computed and
indexed. Hence the time complexity at inference or testing time is O(TMNqa),
where TM is the time cost of the model (BERT + projection layers) and Nqa is
the number of question-answer pairs at test time.
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3.1 Contextualized Input Representations

The academic questions are mostly comprised of technical terms or concepts that
are related with the “topic” component of the label. For example, a question that
contains terms like “ethyl alcohol” is closely related with the topic “alcohols and
ethers” and hence the question can be tagged with the label “science - chemistry
- alcohols and ethers”. Academic questions also have terms that refer to different
meanings depending on the context of their occurrence in the input sentence.
For instance, the word “imaginary” in the sentence “Consider an imaginary sit-
uation” and its occurrence in the sentence “Given two imaginary numbers” has
different meanings. This is an example of polysemy where the same word has
different meanings in different contexts. Hence we need a method that can focus
on important terms in the sequence and also tackle the problem of polysemy.
To tackle the mentioned problems, we use a transformer based language model
BERT for projecting the input text to the vector space. The BERT is a language
model where the representations are learnt in two stages. In the first stage, the
model is trained in an unsupervised manner. In the second stage, the model
is fine-tuned on task specific labelled data to produce representations for down-
stream tasks. The “self-attention” mechanism in BERT helps in obtaining better
vector representations and helps tackle the problem of polysemy.

Self-attention [15] is the core of transformer based language models, and
BERT leverages it to obtain better representation for a word by attending other
relevant words in the context; Thus, a word has different representations depend-
ing on the context it has been used in. Self-attention encodes each word in the
sentence using Query (Q), Key(K) and Value(V) vectors to obtain attention
scores which determines how much attention to pay to each word when gener-
ating an embedding for the current word. Mathematically,

Attention(Q,K, V ) =
Softmax(Q ∗ KT )√

dk
∗ V (1)

Softmax(xi) =
exp(xi)

∑N
j exp(xj)

(2)

where dk is the dimension of query, key, and value vectors and is used to
scale the attention scores.

The self-attention mechanism helps to obtain contextualized representations
that tackle the mentioned problems. We obtain contextualized representations
of the input from BERT and pass them through the two projection layers, as
shown in Fig. 1a. We fine-tune BERT and the projection layers to align the
generated contextualized representations with label representations as given in
Algorithm 1. We further explore the training phase in Sect. 3.3

3.2 Hierarchical Label Representations

Here, we describe how sentence representations are obtained for the labels. We
consider the labels that have a hierarchical structure as a sequence of words and
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leverage sentence embedding methods to project them to vector space. We embed
the labels this way to preserve the semantic relatedness between the labels. For
instance, the label like science - physics - electricity must be closer to science
- physics - magnetism than science - biology - biomolecules in the vector
space. With simple vector arithmetic (cosine similarity), we observe that embed-
ding the labels with sentence based representation methods like Sentence-BERT
or Sent2Vec help to preserve the semantic relatedness when compared to aver-
aging word embeddings from GLoVe [10]. The sentence representation methods
also do not suffer from constituent words being out of vocabulary unlike tradi-
tional word embedding methods and are able to handle such words. Since the
Sentence-BERT and the USE models have been explicitly trained on semantic
textual similarity tasks they provide rich textual representations that can be
used for similarity based retrieval tasks. Hence, in this paper, we extensively
experiment with various sentence embeddings methods like Sent2Vec, Univer-
sal Sentence Encoder (USE), and Sentence-BERT. We also propose a method
where the labels are represented using the mean of the GloVe vectors. We observe
that sentence embedding methods significantly outperform the averaging of word
vectors. The results are discussed in detail in the Experiments and Results
section.

3.3 Loss Function

In the training phase in Algorithm 1, hinge rank loss is employed to maximize
the similarity between contextualized input text embeddings and the vector rep-
resentation of the correct label.

The hinge ranking loss is defined as :

loss(text, label) ←
∑

j �=label

max(0,margin−cos(Temb, v(label))+cos(Temb, v(j)))

where Temb denotes the input text embeddings from BERT, v(label) denotes the
vector representation of the correct label, v(j) denotes the vector representa-
tion of an incorrect label, and cos denotes the cosine similarity function. The
derivative of the loss function is propagated, and the linear projection layers
are trained and the BERT layers are fine-tuned to minimize the loss as given
in Algorithm 1. The margin was set to a value of 0.1, which is a fraction of the
norm of the embedding vectors (1.0), and it yields the best performance.

4 Experiments

In this section, we discuss the experimental setup and the datasets on which the
experiments were performed. All experiments are carried out on Google colab.

4.1 Datasets

To evaluate the effectiveness of the proposed method, we perform experiments
on the following datasets:
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Table 1. Some samples from the QC-Science dataset

Question Answer Taxonomy

The value of electron
gain enthalpy of chlorine
is more than that of
fluorine. Give reasons

Fluorine atom is small
so electron charge
density on F atom is
very high

Science−→chemistry−→classification
of elements and periodicity in
properties

What are artificial
sweetening agents?

The chemical
substances which are
sweet in taste but do
not add any calorie

Science−→chemistry−→chemistry
in everyday life

• QC-Science: This dataset contains 47832 question-answer pairs belonging
to the science domain tagged with labels of the form subject - chapter - topic.
The dataset was collected with the help of a leading e-learning platform. The
dataset consists of 40895 samples for training, 2153 samples for validation
and 4784 samples for testing. Some samples are shown in Table 1. The average
number of words per question is 37.14, and per answer, it is 32.01.

• ARC [18]: This dataset consists of 7775 science multiple choice exam ques-
tions with answer options and 406 hierarchical labels. The average number
of words per question in the dataset is 20.5. The number of train, validation
and test samples are 5597, 778 and 1400 respectively.

• Learning Objectives: This dataset consists of 417 learning objectives col-
lected from the “What you learnt” section in class 8,9 and 10 science text-
books (K−12 system). The corresponding learning taxonomy was extracted
from the “Table of contents” of the textbooks.

In our experiments we concatenate the question and the answer and it is
considered as the input to the model (BERT), and the hierarchical taxonomy is
considered as the label. Though BERT model has a context limit of 512 tokens,
the length of each question-answer pair is within this range.

4.2 Analysis of Representation Methods for Encoding
the Hierarchical Labels

In this section, we briefly provide an analysis of different vector representation
methods for projecting the hierarchical labels (learning taxonomy) to a contin-
uous vector space. We embed the hierarchical labels using sentence representa-
tions methods like Sent2Vec [9] and Sentence-BERT [11]. Additionally, we also
average the word embeddings of individual terms in the hierarchical label using
Glove to represent the label. We then compute the cosine similarity between
the vectors of two different labels, and the results are as shown in Table 2.
From Table 2, we observe that though “science−→physics−→electricity” and
“science−→chemistry−→acids” are different, the representations obtained by aver-
aging Glove embeddings output a high similarity score. This may be due to the loss
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Table 2. Comparison of different representation methods for hierarchical labels

Method Label1 (L1) Label2 (L2) cos (L1,

L2)

Sentence-

BERT

Science−→physics−→electricity Science−→chemistry−→acids 0.3072

Sent2vec Science−→physics−→electricity Science−→chemistry−→acids 0.6242

GloVe Science−→physics−→electricity Science−→chemistry−→acids 0.6632

of information by averaging word vectors. Additionally here, the context of words
like electricity is not taken into account when encoding the word physics. Addi-
tionally, “physics” and “chemistry” are co-hyponyms which may result in their
vectors being close in the continuous vector space. We also observe that Sent2Vec
is also unable to capture the semantics of the labels as it gives a similar high cosine
similarity score. However, we observe that the vectors obtained using Sentence-
BERT are not very similar, as indicated by the cosine similarity score. This indi-
cates that Sentence-BERT is able to produce semantically meaningful sentence
representations for the hierarchical labels. We also observe that Sentence-BERT
outputs high similarity scores for semantically related hierarchical labels. Since
this analysis is not exhaustive, we also provide a detailed comparison of methods
using different vector representation methods in Sect. 5.

4.3 Methods and Experimental Setup

We compare TagRec with flat multi-class classification methods and other state
of the art methods. In TagRec, the labels are represented using transformer
based sentence representation methods like Sentence-BERT (Sent BERT) [11]
or Universal Sentence Encoder [2]. The methods we compare against are:

• BERT+Sent2Vec: In this method the training and testing phases are sim-
ilar to TagRec. The labels representations are obtained using Sent2vec [9]
instead of USE or Sent BERT.

• BERT+GloVE: In this method, the labels are represented as the average
of the word embeddings of their constituent words. The word embeddings are
obtained from GloVe.

V (label) = mean((Gl(subject), Gl(chapter), Gl(topic)))

where, V (label) denotes vector representation of the label, Gl denotes GloVe
pre-trained model. The training and testing phases are same as TagRec.

• Twin BERT: This method is adapted from Twin BERT [7]. In this method,
instead of using pre-trained sentence representation methods , we fine-tune
a pre-trained BERT model to compute the label representations. The label
representations correspond to the last layer hidden state of the first token. The
first token is denoted as [CLS] in BERT, which is considered as the aggregate
sequence representation. The BERT model that computes representations for
the input and the BERT model for computing the label representations are
fine-tuned simultaneously.
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• BERT multi-class (label relation) [18]: In this method, we fine-tune a pre-
trained BERT model to classify the input question-answer pairs to one of the
labels. Here the labels are encoded using label encoder, and hence this is a
flat multi-class classification method. At inference time, we compute the
representations for the question-answer pairs and labels using the fine-tuned
model. Then the labels are ranked according to the cosine similarity scores
computed between the input text embeddings and the label embeddings.

• BERT multi-class (prototypical embeddings) [13]: To provide a fair com-
parison with TagRec, we propose another baseline that considers the similar-
ity between samples rather than the samples and the label. A BERT model
is fine-tuned in a flat multi-class classification setting similar to the previous
baseline. Then for each class, we compute a prototype, which is the mean of
the embeddings of randomly chosen samples for each class from the training
set. The embedding for each chosen sample is computed as the concatena-
tion of the [CLS] token of the last 4 layers of the fine-tuned BERT model.
We observe that this combination provides the best result for this baseline.
After the prototypes are formed for each class, at inference time, we obtain
the embeddings for each test sample in the same way and compute cosine
similarity with the prototype embeddings for each class. Then the classes are
ranked using the cosine similarity and top-k classes are returned.

• Pretrained Sent BERT: We implement a simple baseline where the vector
representations of the input texts and the labels are obtained using a pre-
trained Sentence-BERT model. There is no training involved in this baseline.
For each input top closest matching labels are retrieved according to cosine
similarity.

All the BERT models were fine-tuned for 30 epochs (with early stopping)
with the ADAM optimizer, with learning rate of 2e−5 [3] and epsilon which is a
hyperparameter to avoid division by zero errors is set to 1e−8. The random seed
was set to a value of 42. The margin parameter in the hinge rank loss was set to
a value of 0.1. All the implementations were done in Pytorch. The huggingface
library [16] was used to fine-tune pre-trained BERT models.

Our code and datasets are publicly available at https://bit.ly/3jQpzEv.

5 Results and Discussion

The performance comparison of the methods described in the previous section
is shown in Table 3. We use the Recall@k metric, which is a common met-
ric for ranked retrieval tasks. From the results, we observe that the proposed
method TagRec (BERT + USE and BERT + Sent BERT) outperforms flat
multi-class classification based baselines and other state of the art methods. We
observe that representing the labels with transformer based sentence embedding
methods perform the best. This is evident from the table as TagRec (BERT
+ USE) and TagRec (BERT + Sent BERT) outperform BERT+Sent2Vec and
BERT + GloVe methods. This is because Universal Sentence Encoder (USE)

https://bit.ly/3jQpzEv


392 V. Venktesh et al.

Table 3. Performance comparison of TagRec with variants and baselines, † indicates
TagRec’s significant improvement at 0.001 level using t-test

Dataset Method R@5 R@10 R@15 R@20

QC-science TagRec (BERT + USE) (proposed method) 0.86 0.92 0.95 0.96

TagRec (BERT + Sent BERT) (proposed method) 0.85† 0.93† 0.95† 0.97†
BERT + sent2vec 0.79 0.89 0.93 0.95

Twin BERT [7] 0.72 0.86 0.91 0.94

BERT + GloVe 0.76 0.87 0.92 0.94

BERT classification (label relation) [18] 0.39 0.50 0.57 0.63

BERT classification (prototypical embeddings) [13] 0.83 0.91 0.93 0.95

Pretrained Sent BERT 0.30 0.40 0.47 0.52

ARC TagRec (BERT + USE) (proposed method) 0.67† 0.81† 0.86† 0.89†
TagRec (BERT + Sent BERT) (proposed method) 0.65 0.77 0.84 0.88

BERT + sent2vec 0.55 0.72 0.81 0.87

Twin BERT [7] 0.46 0.63 0.72 0.78

BERT + GloVe 0.56 0.73 0.82 0.86

BERT classification (label relation) [18] 0.27 0.37 0.42 0.49

BERT classification (prototypical embeddings) [13] 0.64 0.75 0.80 0.83

Pretrained Sent BERT 0.31 0.46 0.54 0.59

and Sentence-BERT use self-attention to produce better representations. This
reinforces the hypothesis that averaging the word vectors to represent the labels
does not preserve the required semantic relatedness between labels. The Twin
BERT architecture does not perform well when compared with TagRec. This is
because the label representations obtained through fine-tuned BERT may not
preserve the semantic relatedness than the label representations obtained from
pre-trained sentence embedding models.

Also both the Sentence-BERT and the Universal Sentence Encoder models
are trained on semantic text similarity (STS) tasks thereby rendering them the
ideal candidates for retrieval based tasks. Finally we observe that the TagRec
method outperforms the flat classification based baselines confirming the hypoth-
esis that the representations learnt by aligning the input text and label represen-
tations provide better performance. This is pivotal to the task of question-answer
pair categorization as the technical terms in the short input text are strongly
correlated with the words in the label. The first baseline (BERT label relation)
performs poorly as it has not been explicitly trained to minimize the distance
between the input and label representations. This implies that the representa-
tions learnt through flat classification has no notion of label similarity. But the
prototypical embeddings based baseline performs better as the classification is
done based on similarity between train and test sample representations. How-
ever this baseline also has no notion of label similarity. Hence does not perform
well when compared to our proposed method, TagRec. We also observe that the
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Table 4. Examples demonstrating the performance for unseen labels at test time.

Question text Ground truth Top 2 predictions Method

A boy can see his face
when he looks into a
calm pond. Which
physical property of
the pond makes this
happen? (A) flexibility
(B) reflectiveness (C)
temperature (D)
volume

Matter−→properties
of material−→reflect

Matter−→properties of
material−→flex and
matter−→properties

of material−→reflect

TagRec
(BERT + USE)

Matter−→properties of
objects−→mass and
Matter−→properties of
objects−→density

Twin BERT [7]

Matter−→states−→solid
and
matter−→properties of
material−→density

BERT + GloVe

Matter−→properties of
material−→specific heat
and
matter−→properties of
material

BERT + sent2vec

Which object best
reflects light? (A) gray
door (B) white floor
(C) black sweater (D)
brown carpet

Matter−→ properties
of material−→reflect

Energy−→light−→reflect
and
matter−→properties
of material−→reflect

TagRec
(BERT + USE)

Energy−→thermal−→
radiation and
energy−→light−→generic
properties

Twin BERT [7]

Energy−→light and
energy−→light−→refract

BERT + GloVe

Energy−→light−→reflect
and
energy−→light−→refract

BERT + sent2vec

simple baseline of performing semantic search using pretrained Sentence-BERT
does not work well as the model is not fine-tuned to align the input and labels.

To further show the efficacy of our method, we perform statistical signifi-
cance tests and observe that the predicted results are statistically significant.
For instance, for Recall@20 we observe that the predicted outputs from TagRec
are statistically significant (t-test) with p-values 0.000218 and 0.000816 for
QC-Science and ARC respectively.
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Table 5. Performance comparison for learning objective categorization

Method R@1 R@2

TagRec (BERT + USE) (proposed method) 0.69 0.85

TagRec (BERT + Sent BERT) (proposed method) 0.77 0.91

BERT+sent2vec 0.49 0.64

Twin BERT [7] 0.54 0.79

BERT+GloVe 0.62 0.84

BERT classification (label relation) [18] 0.46 0.59

BERT classification (prototypical embeddings) [13] 0.60 0.76

Pretrained Sent BERT 0.39 0.54

The proposed method TagRec was also able to adapt to new labels. For
instance, two samples in the test set of the ARC dataset were tagged with “mat-
ter−→properties of material−→reflect” unseen during the training phase as shown
in Table 4. At test time, the label “matter−→properties of material−→reflect”
appeared in top 2 predictions output by the proposed method (TagRec (BERT +
USE)) for the two samples. We also observe that for the method (TagRec (BERT
+ Sent BERT)) the label “matter−→properties of material−→reflect” appears in
its top 5 predictions. We observe that for other methods shown in Table 4 the
correct label does not appear even in top 10 predictions. The top 2 predictions
from other methods for the samples are shown in Table 4. We also make similar
observations for the BERT classification (label relation) and BERT classification
(prototypical embeddings) baselines. We do not show them in Table 4 owing to
space constraints. The top 2 predictions from BERT classification (prototyp-
ical embeddings) baseline for example 1 in Table 4 are matter−→properties of
objects−→temperature and matter−→properties of objects−→shape.

For example 2, in Table 4, the top 2 predictions from BERT classification
(prototypical embeddings) are energy−→light−→reflect and matter−→properties of
material−→color.

The top 2 predictions from BERT classification (label relation) baseline
for example 1 in Table 4 are matter−→properties of objects−→ density and mat-
ter−→properties of material−→density. For example 2, in Table 4, the top 2 pre-
dictions from BERT classification (label relation) are energy−→light−→refract and
matter−→properties of material−→luster. This confirms our hypothesis that the
proposed method can adapt to new labels without re-training or change in the
model architecture unlike existing methods.

We also demonstrate the performance of TagRec on unseen but related learn-
ing content like the learning objectives. Learning objectives convey the learning
goals and can be linked to learning content through the learning taxonomy.

We obtain the predictions for the given learning objectives using the models
trained on the QC − Science dataset. We do not fine-tune them on the given
learning objectives dataset and directly use them as test set to obtain predictions.
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The results of the learning objective categorization task are shown in Table 5. We
show the recall at top 1 and top 2 predictions as the best results were obtained
in top 2 predictions. We observe that the proposed method TagRec outperforms
other methods. Particularly TagRec (BERT + Sent BERT) which uses Sentence-
BERT to represent the hierarchical labels gives the best performance. This demon-
strates that the proposed method is able to generalize to unseen but related learn-
ing content without any re-training.

6 Conclusion

In this paper, we proposed a new method for learning to suggest hierarchical
taxonomy (label) for short questions. We demonstrated that the representations
learnt using the proposed similarity based learning method is better than flat
classification methods and other state of the art methods [7]. Our method can
easily adapt to unseen labels without a change in the architecture unlike flat
classification based methods. We also demonstrated that the trained model can
be used to categorize any related learning content like learning objectives without
any retraining. The proposed method can also be used for taxonomy tagging in
the forums like Quora and other discussion forums. The questions in Quora have
a character limit of 50 words, but the answers could be longer than the context
limit of the BERT model. To handle such long sequence lengths, we plan to
explore new methods like Longformer [1]. Also in the future, we aim to explore
the hyperbolic space to represent the hierarchical labels.
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Abstract. Recent works have shown the vulnerability of deep neural
networks to adversarial or out-of-distribution examples. This weakness
may come from the fact that training deep models often leads to extract-
ing spurious correlations between image classes and some characteristics
of images used for training. As demonstrated, popular, ready-to-use mod-
els like the ResNet or the EfficientNet may rely on the non-obvious and
counterintuitive features. Detection of these weaknesses is often diffi-
cult as classification accuracy is excellent and does not indicate that the
model is non-robust. To address this problem, we propose a new method
and a measure called robustness score. The method allows indicating
which classes are recognized by the deep model using non-robust repre-
sentations, i.e. representations based on spurious correlations. Since the
root of this problem lies in the quality of the training data, our method
allows us to analyze the training dataset in terms of the existence of these
non-obvious spurious correlations. This knowledge can be used to attack
the model by finding adversarial images. Consequently, our method can
expose threats to the model’s reliability, which should be addressed to
increase the certainty of classification decisions. The method was verified
using the ImageNet and Pascal VOC datasets, revealing many flaws that
affect the final quality of deep models trained on these datasets.

Keywords: Deep neural networks · Robust representations · Spurious
correlations · Explainable AI

1 Introduction

Recent developments in image classification using deep neural networks have
led to remarkable improvement in classification accuracy. For instance, the top-
1 results on the ImageNet benchmark are: 63.3% for AlexNet [16], 78.6% for
ResNet-152 [12], 84.4% for EfficientNet-B7 [24], and 90.2% for one of the best
currently models [21]. Some authors argue that deep models now surpass human-
level performance [11]. However, recent works have shown that these optimistic
figures do not fairly reflect performance of deep networks for real life recogni-
tion tasks, but are rather specific to the ImageNet benchmark. Deep networks
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Fig. 1. An image of one of the lowest robustness scores for n04118538 (rugby ball)
class using the ResNet-152 as the CNN model and GradCam++ as the saliency map
generation. There is spurious correlation of a ball with a player outfit. (b) shows
saliency maps for this image, where the warm colors mark pixels with a more significant
impact on the final prediction for this class, and cold colors indicate lower impact. (c)
shows saliency map withing the bounding box (ROI). Robustness score is the ratio of
saliency map summed within the bounding box (c) and saliency map summed over the
entire image (b). (d) shows the ROI (ball area) covered with white noise; the network
response does not change - for both images (a) and (d), the winning class’s softmax
output is above 0.99.

are vulnerable to adversarial or out-of-distribution examples that humans eas-
ily decipher [7,13,19,32]. This is a big concern in safety-critical applications of
AI [1].

These weaknesses are primarily due to the way how deep networks learn
representations of image classes: deep neural networks are excellent extractors
of correlations between image categories and some characteristics of training
data. Hence recognition of some image categories may rely on irrelevant correla-
tions not perceived by human perception but strongly embedded in the training
dataset. On the other hand, deep networks may also learn to overuse some rel-
evant correlations (e.g., texture or color), which again leads to counter-intuitive
behavior of deep models [29].

The problem of learning spurious correlations has been recently investigated
by many authors, not only in the context of the ImageNet. [31] and [14] showed
that deep models trained in the context of medical diagnostic tasks involving
chest X-rays usually generalize poorly to new data or data from other sources
(e.g., hospitals). This often results from the fact that models learn some undesir-
able features rather than clinically relevant features. [2] showed similar behavior
in the context of recognition of animals in a new environment - a generalization
of deep models to new locations was generally poor. [26] analyzed this in the con-
text of the ImageNet. They showed that the unexpected behavior of deep models
trained on the ImageNet might come from incorrect or ambiguous labels, which
occur for some classes in this popular dataset. [3] analyzed the sources of label
noise in ImageNet and proposed a new human annotation procedure that yields
improved performance of models. The bias of image background was analyzed by
[29]. The study proves that state-of-the-art models trained on the ImageNet are
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very sensitive to the change of background - adversarial background ‘fools’ recog-
nition of up to 87.5% of images. [13] demonstrate a large collection of natural
adversarial images, comprised of known as well as out-of-distribution examples,
that lead to surprising yet high-confidence decisions of current models. Changes
in network architectures do not improve recognition performance, as the root
of the problem again lies in spurious, non-robust representations learned by the
deep model.

In this work, we want to deal with this problem. We propose a method that
allows us to quantify to what extend recognition of individual classes may rely on
spurious, counter-intuitive correlations found in the training and validation data.
The idea is to use saliency maps [8,20,27] to identify image areas/patterns with
high impact on the classifier decision and to measure by how much these areas
overlap with the bounding boxes surrounding the object (region-of-interest, ROI)
corresponding to the image category. The rationale of the method is illustrated
in Fig. 1 which shows a sample image for class ‘rugby ball’. The saliency maps
reveal that majority of the model’s attention is focused outside the ROI (the
rugby ball), and hence the recognition of this image relies primarily (solely?)
on the background or surroundings of the object. We argue that recognition of
image categories in which most of the model’s attention lies outside the ROI
should be considered non-robust, as the model either learns irrelevant spurious
correlations present in the training data or learns to overuse relevant context
(i.e. background or surroundings) in place of actual characteristics of the object
of interest.

Our main contributions are the following. We propose a measure called
robustness score which quantifies, broadly, the proportion of the attention (as
expressed by saliency maps) a deep model tends to focus within the ROI while
recognizing images of a particular class. Small values of the measure indicate
classes with most likely non-robust representations. These image classes can be
further analyzed by visualizing the training/validation images for the class of
interest, as illustrated in Fig. 1. This allows us to explain the nature of these
counter-intuitive, non-robust representations. In this way, we pinpoint image
classes for which the training images should be improved by either providing
more relevant labels, as postulated in [3], or by extending the collection of train-
ing examples with some form of ‘background augmentation’ in order to reduce
the risk of learning spurious correlations by the training algorithm. We per-
formed a series of computational experiments to demonstrate that the proposed
method is effective for different deep neural network models (we tested ResNet-
152, AlexNet, and some versions of the EfficientNet), different algorithms for
saliency map generation (we tested the Grad-CAM++ [8] and Smooth Grad-
Cam++ [20]), and for different image recognition datasets (we tested ImageNet
and Pascal VOC).

In the feasibility studies of our method, we identified many categories rec-
ognized (by the ResNet and other models) with high accuracy which realize the
robustness score below 0.3. We found that recognition of these categories relies
on spurious correlations, and thus we showed that the train/validation data for
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these categories is biased by the existence of such counter-intuitive, not perceived
correlations. Because these occur in both train and validation subsets, standard
measures like accuracy cannot detect this problem. We used this knowledge to
find some natural adversarial examples, which illustrates the low reliability of
the models for these categories.

Illustrations of some of the findings are shown in Fig. 1 and 2. Continuing our
example in Fig. 1, class “rugby ball” strongly correlates with player’s suits, or
the class pickelhaube (Fig. 2) correlates with a uniform in old-looking, monochro-
matic photograph. Figure 6 shows some natural adversarial images that are easy
to find once we know the spurious correlations exist. It can be shown that for
instance, the class “diaper” strongly correlates with babies, or class “miniskirt”
strongly correlates with naked female legs. We can also use this method to iden-
tify classes for which the unreliability of models may result from ambiguous class
labels, as illustrated in Fig. 5. As presented the classes like volleyball or basket-
ball can mean both the game or the ball - however, models are unreliable if the
latter meaning is assumed.

The proposed method allows us to pinpoint image categories recognized by
state-of-the-art models using non-robust representations, and consequently to
improve the trustworthiness of deep classifiers. Hence we believe that the method
contributes towards trustworthy/explainable AI, which has recently become the
filed of active research, see e.g. [9,18,22,23] for some prominent directions.

All results are fully reproducible, and the code is available on the GitHub1.
Finally, we want to refer the reader to other approaches to estimate neural

model robustness. A commonly used way to evaluate model robustness is to
measure the testing accuracy under some classes of powerful adversarial attacks,
such as the PGD (projected gradient descent) [17], C&W [6], or recently pro-
posed new class of gradient-based attacks [5]. The drawback of this approach
is that it is not invariant from the adversarial attack type or defense method.
Alternative methods propose attack-agnostic robustness metrics, e.g., [30] define
model robustness as a measure of the stability of network prediction under input
perturbations. For instance, [28] define robustness in terms of the minimum dis-
tortion from a given input example required to craft an adversarial example out
of this input, or the method proposed in [10] allows for identifying safe regions
in the input space where the network prediction is robust against adversarial
input perturbations.

2 Method

We propose a simple and effective measure, we call robustness score, that allows
us to detect which classes of images are recognized by a deep neural network
using non-robust representations. Low values of the measure indicate a mismatch
between the object of interest and areas in the image with a strong impact on
classification.

1 https://github.com/hmaciej/robustness score.git.

https://github.com/hmaciej/robustness_score.git
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Fig. 2. Chosen examples from the ImageNet with low class robustness score. For such
classes the probabilities that the CNN model learned spurious correlations are higher.
For the tested class images the (crs) refers to the mean(class) robustness score and the
(acc) refers to the mean accuracy. There are strong spurious correlations for each exam-
ple - e.g., the class n04264628 (space bar) correlates with keyboards and typewriter, the
objects for class n03929855 (pickelhaube) are usually presented as old, monochromatic
photographs with correlation with a military uniform, and for class n04228054 (ski)
exist strong correlations with snow and winter suit.

Technically, to calculate the robustness score, we require that, in the vali-
dation data, bounding boxes are available that provide the location (ROI) of
the object related to the image class, denoted �(I). Here we assume that the
bounding box is a binary indicator function bbox(I, x, y) equal 1 if the pixel x,y
of an image I is inside the box, and 0 otherwise.

Moreover, our method requires a saliency map generation which is applied to
indicate the image areas with a big impact on final classification. Several methods
have been proposed in literature, e.g. [8,20,27]. Originally these methods were
based on occluding parts of the image. The current approaches rely on gradient
backpropagation which is faster and more accurate. Here we assume that the
saliency map, denoted as φ(I, x, y), returns values between 0 and 1, with larger
values indicating pixels with higher impact.

Given the trained deep neural network, we propose the method that allows
us to systematically verify the reliability of learned representations. The idea is
to rank the learned image classes by the per-class robustness score and inspect
the training/validation examples for classes with the smallest values of the score.
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Technically, the proposed method is realized as follows.

1. For each image I we define the robustness score (rs(I)) as:

rs(I) =

∑
(x,y)∈I bbox(I, x, y) · φ(I, x, y)

∑
(x,y)∈I φ(I, x, y)

(1)

2. For each class c learned by the model calculate the class robustness score
(crs(c)) as the average robustness scores over all validation set images for
this class:

crs(c) =

∑
I:�(I)=c rs(I)

|I : �(I) = c| (2)

3. Rank the classes by increasing the value of the crs score.

Given the ranking of image categories, we can pinpoint categories that most
likely rely on spurious correlations, providing their class robustness score is low.
It does not seem feasible to provide a threshold here. However, it can be noticed
that the robustness score has clear interpretation as the percentage of the total
‘attention’ (as expressed by the saliency map) of the model which is focused on
the object recognized (or, in other words, the portion of saliency map activation
included within the ROI). For illustration: when analyzing the ResNet-152, we
discovered 10 categories with the class robustness score crs < 0.2, 31 categories
with crs < 0.3, and 59 categories with crs < 0.4. Interestingly, the ResNet con-
sistently realizes high accuracy of recognition for these categories (over 0.9 in
most cases), which makes identification of these suspicious classes with spurious
correlations difficult, unless a robustness score is used. Some of the suspicious
classes with high accuracy and small csr as shown in Fig. 2. The manual investi-
gation of images from suspicious classes should start with these images with the
smallest image robustness score, hence it is not required to inspect all images in
the dataset to detect suspicious correlations or inconsistency in annotations.

An open question remains how much of the model’s attention should be
placed on the object (ROI), and how much on the surroundings (context).
Clearly, models tend to learn some patterns in areas outside bounding boxes
(commonly some saliency map activation is observed outside the ROI). Human
recognition is similar: we focus not only on the analyzed object (marked by the
bounding box, for example basket ball), but also on the surrounding areas (for
example, playground floor). Surrounding areas provide humans with the context
of images that clearly helps us to classify the image. The problem with model
reliability starts when most of the attention is placed on the context rather than
the object itself. Such models are prone to (natural) adversarial images, as shown
in Sect. 3.5, as illustrated by the well-known ‘Husky vs Wolf’ recognition task,
as reported in [22].

The application of the proposed method for a given dataset requires a saliency
map generator and bounding boxes. The last one could be a crucial problem when
lacking. However, we think that an object detection method like EfficientDet
[25] or YOLO [4] could be useful to generate such boxes automatically. A more
flexible procedure for the automatic generation of bounding boxes for unknown
objects is proposed in [15].
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3 Computational Experiments

In this section, we show the feasibility of the proposed method using different
deep network models, different algorithms of saliency map generation, and dif-
ferent image recognition datasets.

Firstly, we analyze ImageNet and one of the available deep network models
(ResNet-152 [12]). The ImageNet dataset includes bounding boxes labeled by
hand that is required by our method to work. Next in Sect. 3.2, we analyze
the performance of the method using different deep network models trained
on ImageNet, and different saliency map generation techniques. We compare
these settings in terms of the spurious correlations detected. Then in Sect. 3.3,
we illustrate the method using another image recognition dataset i.e. Pascal
VOC. Finally, we show some practical applications of our method: in Sect. 3.3,
we analyze the detected inconsistencies in the ImageNet annotations, and in
Sect. 3.5, we show the vulnerability of the networks to adversarial attacks, where
the (natural) adversarial images are suggested by detected spurious correlations.

3.1 ImageNet Feasibility Study

In the first experiment, we analyzed the robustness of representations of ResNet-
152 [12] classification model trained on the ImageNet, using the Grad-CAM++
[8] for generating saliency maps. In Figs. 1 and 2 we show the classes with the
smallest value of robustness score. Continuing our rugby ball example (Fig. 1),
the network classifies these images with high accuracy as n04118538 (rugby ball) -
correct classification, even though the model’s attention is focused on the players
rather than the ball, as the saliency maps reveal. If we cover the ball with RGB
noise (image (d) in Fig. 1), we observe the same, high level of confidence, although
the ball is missing. This type of spurious correlations could be expected, and the
problem can be at least partly explained by the ambiguous labeling of training
images in this class (this is further discussed in Sect. 3.4).

In Fig. 2 we show selected examples of classes with a small class robust-
ness score. Notice that the accuracy of recognition of these classes is generally
high, although the robustness score signals that this recognition is not reliable.
For instance, the class n04264628 (space bar) tends to be in strong association
with the keyboard or the typewriter (another ambiguous labeling-related issue).
Many classes with the small class robustness score refer to a sport where specific
objects, suits, or venues are required. When preparing the training data for such
classes, spurious correlations will likely occur. Examples of this are the classes
n04019541 (puck, hockey puck) or n03942813 (ping-pong ball). They refer to
specific objects while the network primarily learns elements specific to the game
rather than the object itself. Other interesting examples are n03929855 (pickel-
haube) and n03770439 (miniskirt, mini). The pickelhaubes are usually presented
in old-looking, monochromatic photographs. CNN learns these features, mainly
because this style of photos is almost unique to this class. The miniskirts are
strongly correlated with women and women’s legs, which lead to wrong clas-
sification (legs as miniskirt). The database lacks the miniskirt images with a
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different background/context - hence the learned bias. There are 1300 miniskirt
images in the training set - only 55 are without woman context (miniskirt on a
hanger or a dummy, or white background), and almost all of the rest are with
clear women context (mostly with naked legs). Therefore it is not surprising that
the network strongly correlates mini skirts with a female body.

Since small values of the robustness score often involve classes with very
good accuracy of recognition, we conclude that the ImageNet dataset is poorly
prepared for these classes and, as both training and validation partitions include
the same spurious correlation, which leads to poor generalization to images that
do not include this context.

Fig. 3. Comparison of different CNN models and techniques to generate saliency maps.
Saliency maps generated for the newer models tend to be more detailed and match the
object more closely. Despite this, the proposed method gives similar results for all
tested variants.

3.2 Sensitivity Study for Different Deep Models and Saliency Map
Generators

In the previous section, we showed that the proposed methods works for the
ResNet-152 and Grad-CAM++ on ImageNet and detects non-robust classes.
Here, we investigate how the change of the model architecture and saliency map
generation method affect the operation.

Therefore, in the next experiments we used the AlexNet [16] and different
versions of the EfficientNet (B0, B3, and B7) [24]. The idea was to choose
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an old model, and one of new, well-known CNN architectures; we wanted to
analyze models with different top-1/top-5 accuracy. The ResNet-152 (baseline)
achieves 78.6%/94.3%, AlexNet 63.3%/84.6%, EfficientNet-B0 76.3%/93.2%,
EfficientNet-B3 81.1%/95.5%, and EfficientNet-B7 84.4%/97.1% on the Ima-
geNet.

For generating saliency maps, we tested another recent algorithms: the
Smooth Grad-Cam++ [20].

In Fig. 3 we demonstrate the difference in saliency maps generated by differ-
ent techniques using different networks. We can notice that in newer models the
areas highlighted by saliency maps tend to be more detailed and match the class
objects more closely. However, this does not significantly change the ranking of
classes by the robustness scores that we do in step 3 of the method. The main
idea of the proposed method is to verify if a spurious correlation exists and to
analyze the correlations in detail. Too accurate or sensitive techniques (see the
example of EfficentNet-B7 in Fig. 3) may seem less comfortable for the user who
wants to investigate the nature of the problem signaled by the robustness score
in a particular class. Therefore bigger and more readable saliency maps seem
more comfortable for human analysis.

To verify how changes in the used methods affect the detection of spurious
correlations, in Table 1 we list the top-20 classes with the smallest robustness
score selected by the ‘baseline’ method (i.e. ResNet-152, GradCam++). In the
following columns of the table, we show the ranking positions of these classes
returned by the analyzed methods (different model and/or saliency map gener-
ator).

It could be noticed that the methods identify mostly the same classes in top-
20 lists. A few exceptions, e.g., n03379051 (football helmet), may indicate that
each technique handles correlations for these classes differently. We also notice
that bigger differences in rankings occur for less accurate models, like AlexNet
and EfficientNet-B0.

Finally, we used Fisher’s exact test to compare the sets of top-20 classes
returned by different methods shown in Table 1. Technically, we verified the null
hypothesis that the indicator variables ‘in-top-20 list’ returned by each of the
methods and the baseline method are not related. All the tests returned the p-
value very close to 0, hence the lists of classes with the lowest robustness scores
returned by different methods are strongly related. It confirms that the model
architecture and saliency map detection algorithm do not significantly influence
the final results. Similar results come from the top-100 lowest robustness score
ranking lists: the number of co-ocurrences of the same class in different top-100
ranking lists is (notation as in Table 1 caption): |Bs∩Sm| = 93, |Bs∩Al| = 91,
|Bs ∩ Ef0| = 83, |Bs ∩ Ef3| = 87, |Bs ∩ Ef7| = 84, which yield p-values of the
Fisher’s exact tests equal 0.

These analyses confirm that the root of spurious correlations lies in the train-
ing data, and not in the models themselves. We identify the most problematic
classes of images in the ImageNet, which require improvements in training data
to obtain more trustworthy models.
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Table 1. Comparison of the class rankings with 20 smallest robustness score, returned
by our method (step 3) using different models and saliency map generators. Bs denotes
the ‘baseline’ method, i.e. ResNet-152 + GradCam++, other settings are: ResNet-
152 + SmoothGradCAM++ (Sm), AlexNet + GradCam++ (Al), and EfficientNet +
GradCam++ in different versions B0 (Ef0), B3 (Ef3) and B7 (Ef7). The table shows
the ranking position based on the class robustness scores determined by each of the
analyzed techniques. Results for all techniques are very similar, with the number of
classes co-occuring in two different ranking equal to: |Bs ∩ Sm| = 20, |Bs ∩ Al| = 17,
|Bs ∩ Ef0| = 17, |Bs ∩ Ef3| = 18, |Bs ∩ Ef7| = 17. Fisher’s exact tests prove that
there is no chance that this is the random co-occurrence. This shows that the proposed
method effectively detects spurious correlations and non-robuts representations using
different model architectures and saliency map algorithms.

Name Bs Sm Al Ef0 Ef3 Ef7 Name Bs Sm Al Ef0 Ef3 Ef7

basketball 1 1 1 1 1 2 sunglasses 11 9 22 18 9 11

ping-pong ball 2 2 2 2 2 1 rugby ball 12 13 11 16 15 13

volleyball 3 3 3 3 3 3 croquet ball 13 12 18 14 17 12

pickelhaube 4 4 6 4 4 4 horizon..bar 14 14 26 26 13 10

swim..trunks 5 6 4 5 5 6 switch 15 17 12 11 20 21

bathing cap 6 8 5 6 7 9 snorkel 16 15 20 17 16 16

space bar 7 5 8 13 6 5 racket 17 19 15 10 11 14

bearskin 8 7 10 8 8 7 diaper 18 18 17 23 23 27

miniskirt 9 11 7 7 12 17 nail 19 20 14 12 19 26

balance beam 10 10 9 9 10 15 flagpole 20 16 25 25 21 19

3.3 Pascal VOC Feasibility Study

To show the feasibility of the method we apply it to the Pascal VOC 2007 dataset.
This dataset contains 20 classes where each image has assigned both labels for
a classification problem and bounding boxes for the object detection problem.
We trained the ResNet-101 model using the transfer-learning technique and we
achieved 81.14% accuracy for the classification task. Applying our method allows
us to detect classes where the model learns some spurious correlations. As shown
in Table 2 the classes with the lowest robustness score are ‘bottle’, ‘chair’, and
‘boat’. We analyzed these classes and found that the bottle is strongly correlated
with humans and tables; similar correlations occur for the class ‘chairs’; and the
boats are strongly correlated with water background (sea or lake), as demon-
strated in Fig. 4. As shown the accuracy for the “dining table” class is very low,
we looked closer at it, and the most examples from this class were assigned by
the network to the “bottle” (36%) or the “chair” (33%) classes. That shows how
significant impact the spurious correlations have on the final classification.
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Fig. 4. Images from the Pascal VOC where the trained CNN network could not focus on
target objects. Our method identifies some classes (i.a. ‘bottle’, ‘chair’, ‘boat’) where
the model learned spurious correlations. Closer analysis shows that in this dataset,
images in category ‘bottle’ also present people and/or tables.

Table 2. Accuracy (Acc) and Class robustness score (Crs) for all Pascal VOC classes.
Our method shows some problems especially with the “bottle” class (lowest robustness
score). Closer analysis reveals that this class is strongly correlated with the class tables.
This also accounts for low accuracy of recognition of the class “dining table”.

Class Acc Crs Class Acc Crs

aeroplane 0.92 0.59 dining table 0.17 0.64

bicycle 0.81 0.49 dog 0.93 0.64

bird 0.90 0.49 horse 0.92 0.60

boat 0.84 0.40 motorbike 0.90 0.71

bottle 0.59 0.18 person 0.73 0.64

bus 0.72 0.51 potted plant 0.58 0.44

car 0.89 0.55 sheep 0.76 0.54

cat 0.94 0.68 sofa 0.44 0.70

chair 0.71 0.34 train 0.92 0.62

cow 0.87 0.59 tv monitor 0.68 0.47

3.4 Inconsistency in the ImageNet Annotations

Our experiments with ImageNet-based models show that recognition of classes
with the smallest scores most likely relies on spurious correlations. Training
images from these classes are worth investigating to analyze the nature of these
correlations.

The ImageNet’s authors delivered bounding boxes. However, there are some
lapses in annotated boxes, which negatively influence the performance of the pro-
posed method. There are images where not all objects are marked. It often hap-
pens in classes where presented objects are small as n01440764 (bee), n01443537
(golf ball), or n01484850 (nail). In these cases, the robustness score is smaller
than it should be, which should not happen when bounding boxes are correctly
marked.

The other important issue is the ambiguous meaning of some classes. For
example, in the case of n04540053 (volleyball) or n02802426 (basketball), the
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Fig. 5. The classes with ambiguous meaning like n02802426 (basketball), n04540053
(volleyball) or n02777292 (balance beam, beam) can achieve a small class robustness
score. It happens because the training images relate to the general meaning of the
word - e.g., to a whole sport or event while bounding boxes have been marked for
the specific meaning, e.g., for a ball or a beam. The proposed method detects such
situations, which should help the database author decide which meaning is correct and
consequently modify labels or training images.

class name (due to the polysemy) can refer to a sport discipline or only to a
ball. The network tends to treat these classes as sports disciplines (see saliency
maps on Fig. 5). However, the bonding boxes cover only balls. Looking at the
ImageNet tree hierarchy for the n04540053 (volleyball) class, i.e.: ImageNet →
Instrumentality, instrumentation → Equipment Game → Equipment → Ball, we
can state that bounding boxes are correct. That the volleyball class is defined
as a ball, not as a sport discipline. However, looking at the ImageNet training
set, there is a lack of images focusing directly on the ball. And even worse there
are images without balls.

The above remarks show that the proposed method allows detecting inconsis-
tencies between images and annotations (class assignments or bounding boxes).
It allows the database authors to fix them, by modifying database content or
by changing bounding boxes and therefore the semantic meaning of the class.
Such cleaning of the database will result in an improvement of the deep models’
reliability.

3.5 Adversarial Attacks

It is possible to perform an attack on the network using existing spurious corre-
lations in the image set. An example of attacks on ResNet-152 model is shown in
Fig. 6. As discussed in Sect. 3.1, the n03770439 (miniskirt, mini) class strongly
correlates with women context. Hence it is enough to show only female legs, and
the CNN will indicate miniskirt as the first answer (Fig. 6, image 5).

We can distinguish two types of attacks. The first one relies on forcing the
network to misclassify an image by showing the object without typical spurious
correlations - as shown in the first two examples in Fig. 6. For instance, to attack
the class n04019541 (puck, hockey puck), it is enough to show an image with a
puck on grass or placed side by side. To attack the class n04264628 (space bar)
we can show an image where a space key was pulled out from a keyboard. In
these cases, a valid label is unseen in the top-5 network answers.
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Fig. 6. Example attacks of the specific classes from ImageNet. New images - outside
the ImageNet set - are wrongly classified because of existing spurious correlations.
There are captions below each image containing information with the top-5 response
from the baseline model (ResNet-152). The first two examples are wrongly classified
because of a lack of usually existing correlations. The rest examples make CNN choose
attacked classes based only on spurious correlations, even when there is no class object
in images.

The second type of attack forces the network to point out a specific class
by showing only spurious correlations without a real object - see the last five
examples in Fig. 6. For example, to attack the class n03188531 (diaper, nappy,
napkin) it is enough to show an image with a baby but without a diaper, and the
network responds “diaper” as the first answer. To attack the class n03134739
(croquet ball), we can show an image containing other pieces of the croquet
equipment, even if the ball is missing. Interestingly, the confidence of recognition
(the network’s output after at the softmax layer) of these adversarial images was
usually excellent.

4 Conclusion

In this paper, we proposed a simple method that is useful in identifying, which of
the image categories learned by a deep neural network are likely to be recognized
by the network using spurious, counter-intuitive representations. The method
relies on a measure we call robustness score. The score signals discrepancies
between objects specific to the category and image areas with a high impact on
the classifier, as marked by saliency maps.

We applied the method using the ResNet and some other models trained
on the ImageNet and discovered several classes recognized by these models by
spurious correlations. This leads to low reliability of prediction for these classes,
as the models generalize poorly to images other than ImageNet examples. Addi-
tionally, the models are vulnerable to natural adversarial images that are easy
to find once these spurious representations are analyzed.

Many state-of-the-art deep models trained on the ImageNet published today
are affected by this problem. Low reliability of models for these classes is gen-
erally not signaled by high accuracy of prediction, calculated on the ImageNet
test benchmark. This comes from the observation that the spurious correlations
tend to occur both in ImageNet training and validation examples.
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Our method relies on the availability of bounding boxes that identify objects
of interest in training images. If the binding boxes are not available in train-
ing data, we believe that object detectors like EfficientDet, YOLO, or recently
proposed method [15] could be used. We showed that the proposed method is a
useful tool for the analysis of different deep neural networks, trained on differ-
ent image recognition datasets (ImageNet and Pascal VOC), and with different
saliency map generators. In our analyses, we discovered similar spurious corre-
lations in different CNN models, as clearly the root of the problem lies in the
quality of the train and validation subsets.

The method has some limitations. Since we analyze discrepancies between the
region of interest (ROI) and the saliency maps, the method is blind to spurious
correlations related to overusing some relevant correlations, such as texture or
color, that occur within the ROI. Further research is required to mitigate this
limitation.
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crete problems in AI safety. arXiv preprint arXiv:1606.06565 (2016)

2. Beery, S., Van Horn, G., Perona, P.: Recognition in terra incognita. In: Ferrari, V.,
Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11220, pp.
472–489. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01270-0 28
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Abstract. Clickbait thumbnails on video-sharing platforms (e.g.,
YouTube, Dailymotion) are small catchy images that are designed to
entice users to click to view the linked videos. Despite their useful-
ness, the landing videos after click are often inconsistent with what the
thumbnails have advertised, causing poor user experience and under-
mining the reputation of the platforms. In this work, therefore, we aim
to develop a computational solution, named as CHECKER, to detect
clickbait thumbnails with high accuracy. Due to the fuzziness in the
definition of clickbait thumbnails and subsequent challenges in creating
high-quality labeled samples, the industry has not coped with clickbait
thumbnails adequately. To address this challenge, CHECKER shares a
novel clickbait thumbnail dataset and codebase with the industry, and
exploits: (1) the weak supervision framework to generate many noisy-but-
useful labels, and (2) the co-teaching framework to learn robustly using
such noisy labels. Moreover, we also investigate how to detect clickbaits
on video-sharing platforms with both thumbnails and titles, and exploit
recent advances in vision-language models. In the empirical validation,
CHECKER outperforms five baselines by at least 6.4% in F1-score and
4.2% in AUC-ROC. The codebase and dataset from our paper are avail-
able at: https://github.com/XPandora/CHECKER.

Keywords: Clickbait thumbnail · Weak supervision · Co-teaching ·
Learning with noisy labels

1 Introduction

In recent a few years, the popularity of video-sharing platforms (e.g., YouTube,
Dailymotion, and Vimeo) has dramatically increased. According to the recent
survey by Pew Research1, for instance, around three-quarters of U.S. adults

1 http://tiny.cc/3jkvtz.

Part of the work was done while the author visited Penn State during the summer of
2019 as an intern.
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(73%) use YouTube, surpassing 69% of U.S. adults using Facebook. As such, it
is a critically important problem for such platforms to maintain a clean ecosys-
tem and provide pleasant experience to users. However, one phenomenon severely
polluting this ecosystem is the prevalence of the so-called clickbait thumbnails,
small catchy images that are designed to entice users to click to view the linked
videos (e.g., several examples shown in Fig. 1). Such clickbait thumbnails are
often deceptive, sensationalized, exaggerating, or misleading, sometimes accom-
panied by eye-catching titles. The emergence of thumbnails is partially due to
the desire of content creators to increase the view counts for diverse reasons
(e.g., monetary gain). Despite their attractiveness at first glance, however, the
landing videos may have the contents different from what the thumbnails have
advertised. Such inconsistency then leads to users’ unpleasant online experience
and deteriorates the reputation of video-sharing platforms.

One trivial solution to combat clickbait thumbnails is to employ human anno-
tators to review and tag clickbait thumbnails. However, not only it is costly, but
also it cannot scale well to match the sheer volume of videos uploaded on pop-
ular video-sharing platforms, calling for computational and scalable solutions.
Therefore, to mitigate this phenomenon of clickbait thumbnails on video-sharing
platforms, the aim of this work to develop a machine learning based solution that
can detect clickbait thumbnails with a high accuracy. Despite the closely related
problem of detecting (text-based) clickbait news headlines has been well stud-
ied (e.g., [6,9,24]), the detection of clickbait thumbnails has been relatively less
explored and existing solutions (e.g., [23,28]) are based on impractical settings
or show unsatisfactory accuracies. Moreover, solving the problem of detecting
clickbait thumbnails using machine learning framework needs to cope with a few
inherent challenges:

– Due to the subjective and ambiguous nature in the definition of clickbait
thumbnails, it is non-trivial to build a clean supervised learning environment
with ample labeled samples. As the tolerance levels of people often differ,
a clearly annoying clickbait thumbnail to A can be perfectly entertaining
thumbnail to B. Even if one uses human annotators to tag clickbait thumb-
nails, it is unclear what specific instruction one has to give to the annotators.

– As such, achieving consensus on a single clickbait thumbnail among multiple
human annotators is challenging (and costly). Further, even after consensus,
human annotated labels for clickbait thumbnails can be noisy.

– Finally, achieving high detection accuracy using rich features found in various
meta-data of landing videos may not be a practical solution (e.g., [23,28]).
This is because in real settings, users are often given only a pair of information
(i.e., thumbnail and title) to determine to click or not. Therefore, an ideal
solution is to mimic the situation and detect clickbait thumbnails using multi-
modal features from the pair of thumbnail and title.

In an attempt to address the aforementioned challenges in detecting click-
bait thumbnails, this paper presents CHECKER (Clickbait tHumbnail dEtection
with Co-teaching and weaK supERvision), which leverages weak supervision to
generate noisy-but-useful labels and adopts co-teaching [13] to learn robustly
from such noisy labels. In addition, different from prior works [23,28], we are
interested in detecting clickbait thumbnails using only the pair of a thumbnail
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Fig. 1. Examples of clickbait thumbnails. Though they are eve-catching at first glance,
the content of the linked videos is inconsistent with what these thumbnails have adver-
tised.

and title, which simulates the real users’ experience while browsing video-sharing
platforms and avoids the cold start problem when statistics of a new video is
not available. To this end, we first collect 8,987 videos along with their meta-
data from YouTube, including the thumbnail and title. Note that the collected
metadata of video are used to generate noisy labels, but will not be used in
either training or inference. Then, we collect the initial labels for a small subset
of these thumbnails via crowdsourcing on the Amazon Mechanical Turk plat-
form. Note that most of the thumbnails remain unlabeled. To make a full use of
these unlabeled thumbnails, then, we adopt the weak supervision framework and
generate noisy-but-useful labels for them. Then, to prevent the powerful neural
networks (NNs) from memorizing these noisy labels (thus degrading accuracy),
we furthermore adopt the co-teaching strategy [13] to filter out thumbnails with
wrong labels while training. By and large, our main contributions are as follows:

– We release a clickbait thumbnail detection dataset, which consists of 8,987
videos with their metadata from YouTube, and 787 of them get labeled
through crowdsourcing.

– We propose CHECKER for clickbait thumbnail detection, which leverages
weak supervision to generate labels for thumbnails with over 80% accuracy.
Specifically, based on the characteristics of clickbait thumbnails, we design
several useful labeling functions as weak supervision sources and then com-
bine them to generate labels. Furthermore, co-teaching strategy is also applied
in the training to cope with the noise among generated labels.

– We exploit recent advances in vision-language models and make a compre-
hensive comparison. Moreover, extensive experiments are conducted to show
that our method effectively alleviates the issue of high-quality labeled training
data shortage in training clickbait thumbnail detectors.

2 Related Work

2.1 Clickbait Headline Detection

There is a growing interest in studying misinformation on social media. One
line of research focuses on the detection of clickbait headlines. Online content
creators use these clickbait titles to attract attention and lure visitors to click on
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a hyperlink of a target landing web page [9], which may contain misinformation.
Thus, clickbait headlines have become a popular medium for mass propaga-
tion of false news. To explore what makes a headline “clickbaity”, [17] conduct
three clickbait studies. To effectively detect clickbait headlines, most of existing
approaches train machine learning (ML) detectors with features that are either
carefully engineered [5,6,10] or automatically learnt via deep NNs [1,22]. More-
over, [15,24,26] further improves those detectors by augmenting their training
dataset with synthetic clickbait headlines. In this work, we turn to study another
type of clickbait but deserve more attention in the current literature: clickbait
thumbnail.

2.2 Clickbait Thumbnail Detection

Clickbait thumbnails are small catchy images that are designed to entice users to
click to view a particular video, with a defining characteristic of being deceptive,
sensationalized, exaggerating, or misleading. Compared to clickbait headlines,
only a few pioneering works start to study these misleading thumbnails. To the
best of our knowledge, [28] first studies the clickbait problem on Youtube and
builds a VAE-based model for automatic detection. [23] proposes a content-
agnostic approach to detect clickbait videos, which mainly makes use of the
comments of videos. In spite of their progress, both of them suffer from the
shortage of a reliable training corpus. [19] also indicates that automatic clickbait
detection on YouTube is still far out of reach due to the paucity of training data.
To deal with the lack of available datasets, [28] retrieves videos from clickbait and
non-clickbait channels, and obtain labels for videos based on the label (clickbait
or non-clickbait) of the channels they belong to. However, this approach is not
convincing since even non-clickbait channels may publish clickbait videos. [23]
also constructs a dataset of 625 videos, but such size is usually too small to train
a robust deep neural network. Hence, in this paper, we make further efforts to
tackle the shortage of training samples in clickbait thumbnail detection.

2.3 Vision-Language Model

Various vision-language tasks have attracted the attention of the research com-
munity in recent years, such as Image Captioning and Visual Question Answer,
which require the capability to understand and fuse multimodal features. Early
works in vision and language understanding usually design separate models for
each modality followed by a multi-modal fusion layer. In this case, bi-linear fusion
is thought to be more expressive but tends to result in an excess of parameters.
Subsequent work address this issue through low-rank decomposition [3,4,12]. In
addition, more recent works show that a joint pre-training over both modalities
enables the model to easily adapt to downstream tasks. Some work therefore
train a holistic network on a large training corpus, which is able to give a joint
embedding of vision and language, such as VisualBERT [16], LXMERT [25] and
UNITER [8]. In this work, we apply and compare these state-of-the-art methods
and models to the clickbait thumbnail detection task.
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Table 1. The overview of our clickbait thumbnail dataset. As we can see, even clickbait
channels may use non-clickbait thumbnails, and the same is with non-clickbait channels.

Clickbait channel Non-clickbait channel total

Train # Clickbait thumbnail 146 38 184

# Non-clickbait thumbnail 150 256 406

# Unlabeled thumbnail 3851 4349 8200

Test # Clickbait thumbnail 49 15 64

# Non-clickbait thumbnail 45 88 133

# Unlabeled thumbnail – – –

3 Building Dataset

In this work, we aim to study the clickbait thumbnail detection problem on
YouTube. Since there is not any reliable dataset of clickbait thumbnails in the
literature, we first need to collect a high-quality labeled dataset for our study.
Our data collection process includes two steps: (i) data acquisition and (ii) label
collection.

3.1 Data Acquisition

There are many more videos with benign than with clickbait thumbnails. Due
to this imbalanced nature between clickbaits and non-clickbaits, collecting data
points randomly from video-sharing platforms will result in a dataset with a
highly skewed class distribution. Thanks to prior work [28], we first retrieve a
list of clickbait and non-clickbait channels on YouTube. By leveraging YouTube
Data API2, we crawl 8,987 videos as well as the metadata from these channels,
which are published between May and July of 2019. Note that here we use
the video’s source as an approximation for its clickbaitness and we also try to
collect the same amount of videos from each channel to prevent uneven data
distribution.

Generally, the metadata can be categorized into four groups: (1) title and
description; (2) thumbnail; (3) statistics (e.g., like and dislike count, etc.); (4)
comments. Particularly, assuming that popular comments represent the opinion
of the majority, we select only the top 10 comments with the highest like count
for each video.

3.2 Label Collection

Though we have collected a large number of data from YouTube, all of them
are still unlabeled. For the sake of model evaluation, ground truth labels are

2 https://developers.google.com/youtube/v3.

https://developers.google.com/youtube/v3
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Fig. 2. The overview of data flow in CHECKER. The decision boundary will change
along with the distribution of training data.

indispensable. However, due to the vague and ambiguous definition of clickbait
thumbnails, it is impossible to annotate all of them in a short time. To collect
high-quality labels, we first define clickbait thumbnail as follows:

Definition: Clickbait Thumbnail. Clickbait thumbnail is a thumbnail that
is inconsistent with the gist of the corresponding video that it represents.

Based on this definition, we publish labeling tasks on the Amazon Mechanical
Turk platform and utilize crowdsourcing to label parts of samples in the dataset.
To simulate the experience when users are browsing video-sharing portals, we
ask workers to first inspect the thumbnail and title of a video. Then workers
are required to watch the video for at least one minute to grab the gist. By
comparing the content of the video to the meaning conveyed by the thumbnail
and title, workers should be able to tell whether the thumbnail is a clickbait.

To ensure the quality of labels, for each sample, we invite 5 workers to label
and use the majority vote to determine the final label. Finally, 787 samples get
labeled through crowdsourcing. For experiments, we take 197 of them as the test
set while others as a part of the training set. Table 1 provides an overview of our
collected dataset.

4 The Proposed Method: CHECKER

Our objective is to train a discriminative model with partially labeled training
data. In this paper, we present our framework CHECKER, which takes the
advantage of both weak supervision and co-teaching. Basically, our framework
can be split into two stages: generating noisy labels and learning from noisy
labels. Specifically, we leverage weak supervision to generate noisy labels while
adopt the co-teaching algorithm to remove samples with wrong labels in learning
from noisy labels. Figure 2 presents the basic data flow in our framework.

4.1 Generating Noisy Labels

Though we have collected some labels through crowdsourcing, a large number
of samples are still unlabeled. To make these unlabeled thumbnails available for
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Fig. 3. The overview of generating labels. Specifically, we first design labeling functions
as weak supervision sources and then use a generative model to combine them to
produce the final label.

training models, we leverage the weak supervision to generate labels for them.
Specifically, weak supervision means noisy, limited, or imprecise sources are used
to provide supervision signals for labeling large amounts of training data. These
cheap labels can be obtained through a set of simple rules instead of manual
annotation. This approach, to a great extent, releases researchers from spend-
ing too much time in acquiring high-quality labels. In the clickbait thumbnail
detection task, weak supervision sources can be various labeling functions based
on the characteristics of the thumbnail. For instance, the presence of the word
‘clickbait’ in the comments of a video on Youtube indicates that this video’s
thumbnail may be a clickbait.

Here we explain why weak supervision is suitable for generating labels for
clickbait thumbnail detection. First, though there is no explicit definition for
clickbait thumbnail that enables us to label data quickly, we can easily speak
out several rules to roughly judge whether the thumbnail is a clickbait. One
simple rule can be that if the thumbnail is one frame of the video, then it should
be a non-clickbait thumbnail since it does truthfully reflect the content of this
video. Such rules can be regarded as weak supervision sources and are easy to
implement. Second, correctly identifying clickbait thumbnails requires people
to fully understand the video content and then compare it with the thumbnail,
which is extremely time-consuming, while utilizing weak supervision can prevent
such heavy work. Third, since we can get various weak supervision sources by
designing different labeling rules, combining them as an ensemble enables us to
obtain high-quality labels.

Once proper labeling functions are designed, the critical problem becomes
how to regulate and utilize these results. Recent advances [11,20] in weak super-
vision have already made some breakthroughs with regard to this problem, which
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usually builds a generative model to estimate accuracy and correlations of weak
supervision sources.

Design Labeling Functions. Intuitively, the quality of the final generated
labels is positively correlated to the quality of labeling functions. Hence, it is
crucial to design labeling functions as high quality as possible, though in most
cases there does not exist a single perfect labeling function. Besides, the diversity
as well as the coverage of labeling functions should also be considered. In other
words, different labeling functions should focus on different features to prevent
bias, and in the meantime, they should assign labels to as many samples as
possible.

To formalize, each weak supervision λj works as follows:

ỹij = λj(xi), (1)

where xi denotes the feature of i-th data sample, including title xti
i , thumbnail

xth
i , description xd

i , video xv
i , statistics xs

i and comment xc
i , and ỹij ∈ {−1, 0, 1}

denotes the labeling result given by j-th labeling function. Note that ‘−1’ refers
to abstain, ‘0’ refers to non-clickbait while ‘1’ refers to clickbait.

Based on the characteristic of clickbait thumbnails, we design labeling func-
tions according to the following aspects:

– Channel. [28] once used the label of the channel for the videos inside. Though
this is actually not corrected, the label of channels indeed indicates the general
property of thumbnails. As shown in Table 1, most of clickbait thumbnails are
from clickbait channels while non-clickbait channels seldom upload clickbait
thumbnails. Hence, we adopt the label of the channel as one labeling function.

– Thumbnail. As shown in Fig. 1, One main critical feature of clickbait thumb-
nail is the presence of those striking texts, which are artificially added by
video uploaders. To draw the attention of users, such text usually occupies a
large space of a thumbnail. We therefore employ the optical character recogni-
tion (OCR) service3 to measure the ratio of the text area to the whole image.
With a proper threshold, a thumbnail whose text area exceeds the thresh-
old value can be categorized as clickbait. In addition, since telling whether a
thumbnail is a clickbait needs comparison with video content, we also adopt
dHash algorithm h4 to calculate the similarity between the thumbnail and
frames of the video. Specifically, we calculate the L1 distance between the
dHash code of the thumbnail and that of each frame, and the similarity score
is the minimum value among all the distances. To formulize, the similarity
score is calculated as follows:

din =
∥
∥h(xth

i ) − h(xv
in)

∥
∥
1
, (2)

si = min {di1, di2, ..., diN} , (3)

3 https://cloud.google.com/vision/docs/ocr.
4 http://www.hackerfactor.com/blog/index.php?/archives/529-Kind-of-Like-That.

html.

https://cloud.google.com/vision/docs/ocr
http://www.hackerfactor.com/blog/index.php?/archives/529-Kind-of-Like-That.html
http://www.hackerfactor.com/blog/index.php?/archives/529-Kind-of-Like-That.html
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Table 2. Statistics of each labeling function on labeled data. Note that polarity rep-
resents the set of labels that labeling functions will output and ‘1’ refers to clickbait
while ‘0’ refers to non-clickbait.

Labeling function Polarity Coverage Overlaps Conflicts Correct Incorrect Acc.

Channel&thumbnail-based 1 0.202 0.108 0.089 110 49 0.692

Channel&statistics-based 1 0.088 0.067 0.048 45 24 0.652

Channel-based 0 0.495 0.348 0 364 26 0.933

Title-based 0 0.492 0.411 0.105 295 93 0.760

Thumbnail-based 0 0.131 0.119 0.016 95 8 0.922

Description-based 0 0.084 0.079 0.002 59 7 0.894

where xv
in denotes the n-th frame of the video and N is the frame number.

din denotes the L1 distance between the thumbnail and n-th frame while si
denotes the similarity score between the thumbnail and the video. A high
similarly score means that the thumbnail indeed reflect the video content,
which indicates a benign thumbnail.

– Title. Clickbait thumbnails are usually presented with eye-catching titles.
Generally, to catch users’ attention, exaggerated titles tend to exhibit strong
subjectivity. On the other hand, a title with high subjectivity indicates a
great possibility of clickbait. Therefore we also use TextBlob5 to mine the
deep semantics behind the title and consider those with high subjective scores
as clickbait.

– Description. Clickbait on video-sharing platforms usually displays links to
other websites in the description for the purpose of advertising. Thus, accord-
ing to whether the link exists in the description, we can judge the class of
thumbnails.

– Statistics. Statistics includes like count, dislike count, view count and com-
ment count. Generally, users tend to close the video webpage without leaving
comments once they discover it’s a clickbait. Hence, we consider the video
with a low comment to view ratio as a potential clickbait.

Based on the above observation, we write 6 labeling functions (λ1, ..., λN ,
where N = 6). Performance of labeling functions on labeled data is provided in
Table 2 and their detailed implementation can be found in the provided codebase.

Combining Labeling Results. By applying all labeling functions to all unla-
beled data, we obtain a label matrix Λ, where Λi,j = λj(xi). To combine the
different labeling results, we are essentially aiming to build a generative model
G that functions as follows:

ỹi = G(Λi), (4)

where Λi refers to the labeling result of all weak supervision sources for the
unlabeled data sample xi.

5 https://github.com/sloria/textblob.

https://github.com/sloria/textblob
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Table 3. Comparison of different generative model.

Method Accuracy F1 score Precision Recall

Majority voter 0.836 0.635 0.717 0.570

Epoxy [7] 0.784 0.637 0.638 0.635

Snorkel [20] 0.808 0.667 0.670 0.663

We evaluate and compare three different generative models on the labeled
data. The comparison results is presented in Table 3. Note that for Snorkel [20]
and Epoxy [7], we train them with unlabeled data before evaluation. Based on
the comparison result, we adopt the majority voter for further experiments for
two reasons: (1) the accuracy of majority voter is higher so that there is less
noise among the generated labels, and (2) considering that clickbait training
samples are more important due to its paucity in our dataset, a higher precision
means more high-quality ‘clickbait’ labels, which enables the model to learn a
better decision boundary. Using this generative model, we generate labels for
7,039 unlabeled data in total while 1,061 samples remain unlabeled since none
of labeling functions assigns labels for them. After label generation, the size of
our labeled training samples has increased to 7,630.

4.2 Learning from Noisy Labels

The objective of this stage is to train a robust vision-language classifier with
the generated labels. Specifically, given a thumbnail xth

i and title xti
i , the task

of this classifier is to predict a label ŷi indicating whether it is a clickbait. Plus,
though we have obtained a large number of labels with weak supervision, these
generated labels are noisy. Note that noisy labels mean that not all labels are
correct. It is known that the strong fitting capability of machine learning models
such as neural networks may lead itself to overfit the noise, which would finally
result in a poor generalization. Hence, for robust learning, it is also critical to
combat noisy labels during training.

Model Architecture. Since the clickbait thumbnail detection is a vision-
language task, we exploit recent advances in vision-language areas to build a
clickbait detector, as shown on the left side of Fig. 4. Specifically, we use the
ResNet-50 model [14] pre-trained on ImageNet to extract the image embedding
while adopt GloVe [18] to capture the sentence embedding. The image embed-
ding, a 2048-dimension vector, is the output of the final pooling layer. As for the
sentence embedding, we adopt the GloVe of 100-dimension version pre-trained
on Wikipedia and Gigaword. By feeding both image and sentence embeddings
to a following fusion layer and a fully connected layer, the model will output the
predicted result. In regard to the design of fusion, we investigate and compare
several recent works, such as MCB [12], Mutan [3] and so on. Comparison results
among different fusion layers are presented in the experiment part.
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Fig. 4. The architecture of our proposed model and its training process. To tackle noisy
labels, we adopt co-teaching to filter out data with wrong labels during training. Note
that X1, X2, X

′
1, X

′
2 refer to the batch of training samples, and Model 1 and Model 2

share the same model architecture but with different initialized parameters.

Learning Strategy. As for robust learning with noisy labels, following the
idea of [13], we exploit the co-teaching method, which filters out wrong labels
while training. Concretely, we set up two identical networks to teach each other.
In each training batch, each network selects instances with small loss as useful
knowledge and teaches these instances to the peer network for further training.
The basic assumption behind this strategy is that, on a noisy dataset, deep
networks tend to first learn easy and clean patterns in initial epochs. Note that
when applying the co-teaching, we oversample the clickbait samples in each batch
to make labels of training samples balanced. The reason why we do this is that
co-teaching tends to drop positive samples when the number of negative samples
is much more. With such configuration, wrongly labeled instances that are out
of normal pattern and usually lead to high loss can be removed.

5 Experimental Validation

5.1 Set-Up

After labeling generation, our dataset consists of 787 labeled data and 7,039
weakly labeled data. For evaluation, we select 197 labeled data as the test set
while the other 590 data as a part of the training set. Besides, for a fair compar-
ison, we use ‘5-fold validation’ to evaluate each method. Specifically, we conduct
5 experiments for each method and, in each experiment, we select one-fifth from
590 labeled training data as the validation set to pick the best model. The aver-
aged result of 5 experiments is models’ final performance.

For our method, we fine-tuned the ResNet while training, and use the average
of word embeddings to represent the sentence embedding. For neural network
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Table 4. Performance comparison of different fusion layer.

Fusion layer AUC-ROC F1 score

ConcatMLP 0.8427 0.6404

Block [4] 0.8452 0.6538

Mutan [3] 0.8659 0.6415

BlockTucker [4] 0.8392 0.6329

MFH [27] 0.8603 0.6585

MCB [12] 0.8626 0.6170

models, we fix batch size as 32 and set the learning rate as 1e−4. We train each
method for 20 epochs and select the one that performs best in the validation
set for evaluation. As for the optimizer, we use Adam with the default hyper-
parameters in Pytorch.

Since the label of our test set is not balanced, which is the same case with
real data distribution in video-sharing platforms nowadays, we employ F1 score
and AUC-ROC as the evaluation metric. The F1 score is the harmonic mean of
the precision and recall, which is usually better than accuracy when evaluating
with imbalanced labels. AUC-ROC curve is a performance measurement for the
classification problems at various threshold settings. ROC is a probability curve
and AUC represents the degree of separability. In other words, it represents the
capability of the model to distinguish between classes. Note that we also use the
AUC-ROC to pick the best model during training.

5.2 Performance Comparison

Fusion Layer Comparison. We first compare several recent works on multi-
modal fusion using our built model architecture. For this comparison, we only
use the labeled data for training models with different fusion Layers. The com-
parison result is reported in Table 4. Note that ConcatMLP simply concatenates
the image embedding and sentence embedding for fusion. For subsequent exper-
iments, we select the Block, Mutan and MFH for further comparison, which
perform best among all the fusion layers.

Comparison with Baselines. We then compare our models with several rep-
resentative and state-of-the-art vision-languages models, including SVM, Logis-
tic Regression, VisualBERT, LXMERT and UNITER. For SVM and logistic
Regression, we concatenate the features including the outputs of the pre-trained
ResNet-50 and GloVe as their input, which is identical with our model. Note RBF
kernel function is used for SVM. As for VisualBERT, LXMERT and UNITER,
we use their pre-trained models in the VQA task and fine-tune them to our task.

As shown in Table 5, our methods consistently outperform the baselines. For
SVM and Logistic Regression, though they share the same embedding format
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Table 5. Comparison results using different models and with/without generated labels.

Method w/o generated labels w/ generated labels

AUC-ROC F1 score AUC-ROC F1 score

SVM 0.7149 0.3830 0.7355 0.4000

Logistic regression 0.7144 0.4912 0.7629 0.5986

VisualBERT [16] – – 0.8460 0.6722

LXMERT [25] – – 0.8458 0.6640

UNITER [8] – – 0.8196 0.6554

Ours + Block [4] 0.8452 0.6538 0.8644 0.6831

Ours + Mutan [3] 0.8659 0.6415 0.8666 0.6933

Ours + MFH [27] 0.8603 0.6585 0.8603 0.6884

“–”: Does not converge due to a lack of data

with our proposed model, their performance is not satisfactory. On one hand,
since they are not end-to-end models, they are unable to fine-tune the ResNet
during training, which may result in inappropriate image feature representation.
In contrast, our end-to-end model does not have such constraint and can fine-
tune the ResNet to get a better image feature representation for our task. On the
other hand, the fitting and generalization capability of classical machine learn-
ing models is not as great as neural networks. As for the current SOTA vision-
language models which are based on the transformer, they usually take the object
detection results as the input. In this context, they greatly rely on the object
detection networks like Faster R-CNN [21], and these networks would not be
fine-tuned while training the vision-language models. However, the images used
for training objection detection networks are usually different from thumbnails
exhibited on video-sharing platforms. In short, there exists a data distribution
discrepancy. As a result, the objection results may beyond our expectation and
are not ideal for the clickbait thumbnail detection task. That’s the possible rea-
son for the limited performance of these BERT-like vision-language models. To
improve their performance, an object recognition dataset specific to thumbnails
on video websites may be required, which is unavailable currently. Moreover,
compared to these transformer-based networks, our model is more light-weight
and can adapt to a new domain with much less training data.

Effectiveness of Generated Labels. With weak supervision and majority
voter, we generate 7039 labels for unlabeled data with 83.6% accuracy on labeled
data. To access the impacts of these generated labels toward models’ perfor-
mance, we make a comparison of models trained with and without generated
labels. Note we only have 591 samples for training without generated labels
while 7620 samples with generated labels. As reported in Table 5, all the methods
benefit from these additional training samples. Experimentally, we found that,
without generated labels, transformer-based models are very hard to converge
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Table 6. Performance comparison with different forget rate τ .

Forget rate F1 socre AUC-ROC

Block Mutan MFH Block Mutan MFH

τ = 0.00 0.6831 0.6933 0.6884 0.8644 0.8666 0.8603

τ = 0.05 0.6941 0.6877 0.6759 0.8714 0.8663 0.8469

τ = 0.15 0.7102 0.7122 0.7127 0.8680 0.8712 0.8805

τ = 0.30 0.7153 0.7039 0.7100 0.8672 0.8692 0.8695

and their training loss barely falls down. This also demonstrates the effective-
ness of our generated labels. As for the different improvements in AUC-ROC
and F1-score, we think that adding generated labels enables models to hold a
better decision boundary when the threshold is 0.5, but with a similar ability to
distinguish two classes.

5.3 Understanding Co-teaching

Despite the improvement we obtain with generated labels, the performance of
models is still limited by the noise in them. In this section, we conduct experi-
ments to verify the effectiveness of co-teaching in combating noisy data, where
the choosing of forget rate is critical. Generally, at the initial learning epochs, we
can safely update the parameters of the network using all entire noisy data since
the network will not memorize the noise in the early stage of training [2]. But
as the learning proceeds, the network has to ‘forget’ some noisy data to prevent
fitting them. In other words, we will drop some instances that are considered
as noise. And the forget rate means how many instances should be considered
as noise and would be dropped in every training batch. To understand how for-
get rate τ affects the co-teaching, we vary τ = {0, 0.05, 0.15, 0.3} and make a
comparison.

Table 6 presents the comparison results of using different forget rate τ . We
can observe that all three models benefit from co-teaching, which verifies its
effectiveness to tackle noise. Note that τ = 0 means co-teaching is not employed
for training. Besides, co-teaching with τ = 0.15 performs better than other forget
rate setting. Considering that the accuracy of generated labels is 83.6% in the
evaluation, the τ = 0.15 setting helps remove most of the samples with wrong
labels at the meanwhile of reserving as many valid training samples as possible,
which accounts for the good performance of models in this setting.

5.4 Limitation and Future Work

Our proposed framework CHECKER detects clickbait thumbnails using their
visual features in conjunction with their titles without the need to comprehen-
sively process the target videos’ contents. This is because CHECKER aims to
stimulate the users’ experience where ones can detect a clickbait thumbnail even
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before watching its video. In the future, we hope to explore if utilizing different
video comprehension techniques can further improve our model.

6 Conclusion

In this paper, we propose to leverage weak supervision to address the training
data shortage in clickbait thumbnail detection. To this end, we first construct
a dataset consisted of Youtube videos and invite workers to manually anno-
tate some of them. To make use of unlabeled data, based on characteristics of
clickbait thumbnails, we design several high-quality labeling functions as weak
supervision sources to generate labels for them. Then, with recent advances in
multimodal fusion, we build a multimodal model that takes the thumbnail and
title as input to identify clickbait. Furthermore, to deal with noise in generated
labels, we adopt co-teaching to filter out samples with wrong labels to train
a robust classifier. The experiment results demonstrate the effectiveness of our
proposed method.
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Abstract. Understanding the reasons behind the predictions made by deep neu-
ral networks is critical for gaining human trust in many important applications,
which is reflected in the increasing demand for explainability in AI (XAI) in
recent years. Saliency-based feature attribution methods, which highlight impor-
tant parts of images that contribute to decisions by classifiers, are often used as
XAI methods, especially in the field of computer vision. In order to compare
various saliency-based XAI methods quantitatively, several approaches for auto-
mated evaluation schemes have been proposed; however, there is no guarantee
that such automated evaluation metrics correctly evaluate explainability, and a
high rating by an automated evaluation scheme does not necessarily mean a high
explainability for humans. In this study, instead of the automated evaluation, we
propose a new human-based evaluation scheme using crowdsourcing to evaluate
XAI methods. Our method is inspired by a human computation game, “Peek-
a-boom”, and can efficiently compare different XAI methods by exploiting the
power of crowds. We evaluate the saliency maps of various XAI methods on two
datasets with automated and crowd-based evaluation schemes. Our experiments
show that the result of our crowd-based evaluation scheme is different from those
of automated evaluation schemes. In addition, we regard the crowd-based evalu-
ation results as ground truths and provide a quantitative performance measure to
compare different automated evaluation schemes. We also discuss the impact of
crowd workers on the results and show that the varying ability of crowd workers
does not significantly impact the results.

Keywords: Explainable AI · Interpretability · Evaluation · Crowdsourcing

1 Introduction

Recent significant advances in AI technologies have introduced innovations in various
fields. In particular, deep neural networks (DNNs) exhibit remarkable performance in
a wide range of real-world applications, such as natural language processing [8,27],
image classification [6,7,16,29], and human action recognition [15,19]. DNNs can
c© Springer Nature Switzerland AG 2021
Y. Dong et al. (Eds.): ECML PKDD 2021, LNAI 12979, pp. 431–446, 2021.
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extract intricate underlying patterns from large and high-dimensional datasets and have
reduced the demand for feature engineering. However, the internal mechanism of DNNs
is a black box, i.e., it is difficult to understand the relationships between their inputs and
outputs. In low-risk environments, errors made by DNNs do not have severe impacts;
for example, in movie recommendation systems, the impact of making a recommenda-
tion error is relatively low. However, in other fields such as healthcare, a single mis-
diagnosis can be fatal; therefore, it is essential to explain the predictions. In regulated
industries such as the judicial system and financial markets, a mandate for explanations
in addition to model predictions is emerging in legal norms. However, most current
DNN models are opaque and provide no information about their decision-making pro-
cess, which has been a significant obstacle to the implementation of AI in essential
applications. Understanding the reasons behind their predictions is critical for gaining
human trust in many important applications [22], which is reflected in the increasing
demand for explainability in AI (XAI) in recent years.

To satisfy the requirements of XAI, various explanation and interpretation methods
have emerged, especially for black-box predictions made by already-trained neural net-
works. One of the major approaches to this problem involves the estimation of the influ-
ence of a subset of input features on the predictions of a model. By understanding the
important features, the model can be improved, model predictions can be trusted, and
undesirable behaviors can be isolated [12]. For example, in image classification tasks,
the generation of saliency maps, which assign an importance measure for each part
(or pixel) of an input image, is a major research direction; the representative methods
include Vanilla Gradients [3,10,25], SmoothGrad [26], Guided-Backpropagation [28],
and Grad-CAM [24,30] (Fig. 1).

While various XAI methods have been proposed, their evaluation strategy has not
been established well, and there is an urgent demand for quantitative measures to answer
the question “Given several XAI methods of a black-box prediction model, which one
yields the best interpretations?” Several automated evaluation schemes have been pro-
posed [12,21,23]; they usually delete or replace pixels that are said important by an
XAI method, and check the deterioration in the prediction performance. However, as
pointed out by a recent research [20], high interpretability for machines does not imply
the same for humans. A machine may recognize an object based on its relation to the
background rather than the object itself. For example, the background of an image of an
airplane is often the sky. This is a reasonable strategy for machines to make decisions
based on statistical information, but it is probably different from how humans recog-
nize objects. After all, interpretability for humans can ultimately only be evaluated by
humans.

In this study, we perform human-based evaluation of XAI methods by using crowd-
sourcing. Our XAI evaluation approach is based on a human computation game. In
human computation [18], some approaches embed human intelligence tasks into games,
usually referred to as game with a purpose (GWAP). Peek-a-boom is a type of GWAP
with two players named Peek and Boom; Boom reveals a part of a given image and
Peek guesses the image object from the revealed part. We use a Peek-a-boom-based
XAI evaluation in which a human plays the Peek, and an XAI method plays the Boom
instead of another human.
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(a) Original image (b) Vanilla Gradients (c) SmoothGrad

(d) Guided-Backpropagation (e) Grad-CAM

Fig. 1. Different saliency maps produced by different XAI methods. The bright areas indicate
important areas.

We implement a crowd-based evaluation interface (Fig. 2)1, recruit crowd workers
for executing evaluation tasks of four popular XAI methods on two real datasets, and
compare the results with those by four automated evaluation schemes.

The results show that the proposed scheme gives different evaluations from the
automated evaluation schemes. Subsequently, We consider the proposed crowd-based
scheme as ground truths and evaluate the automated evaluation schemes in terms of
interpretability for humans. Finally, we analyze the ability of crowd workers and find
that, even if their ability may vary considerably, the final results are not significantly
affected.

The contributions of this study are summarized as follows:

1) We propose a new crowd-based evaluation scheme for XAI methods.
2) We experimentally investigate the difference between automated and crowd-based

evaluation schemes.
3) We provide a performance measure for automated evaluation schemes based on their

similarity to the proposed crowd-based evaluation scheme.
4) We examine the impact of the number and ability of crowd workers on the results.

1 Our crowdsourcing evaluation interface can be tried at https://17bit.github.io/crowddemo/
index.html .

https://17bit.github.io/crowddemo/index.html
https://17bit.github.io/crowddemo/index.html
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Exposure rate of 5% Exposure rate of 10%

Exposure rate of 15% Exposure rate of 30%

Fig. 2. Example of how the proposed evaluation interface gradually reveals an image to crowd
workers at different exposure rates (5%. 10%, 15%, and 30%).

2 Related Work

We briefly review the XAI methods used in this study, automated evaluation schemes
that can automatically evaluate the XAI methods, and existing crowd-based evaluation
schemes.

2.1 XAI Methods

Most of the existing XAI methods attribute the output of a pre-trained neural network to
a part of its input. For a multi-class classification problem with C classes, let f : RD →
R

C be a pre-trained neural network which takes an input feature vector x ∈ R
D and

output a vector representing the degree of classification into each class. A typical XAI
method provides a saliency map s : RD → R

D that maps an input feature vector to a
vector whose d-th element indicates the importance of the d-th feature of input x [1].

Vanilla gradient [3,10,25] is the most basic method to create a saliency map as
sVanilla(x) = ∂f

∂x , which quantifies the influence of a small change in each input dimen-
sion on the output of the network. One of the drawbacks of this method is that the results
are sensitive to the noise in the original image (Fig. 1b).

SmoothGrad [26] is an improved version of the vanilla gradient which estimates
the gradient more robustly. It takes the average of the vanilla gradient over perturbed
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Table 1. Dataset split modification of automated evaluation schemes. “top” indicates that the top-
ranked pixels are modified first, “bottom” implies that the bottom-ranked pixels are removed first,
and ‘–’ means that the dataset split is used without modification.

XAI method Test set Training set

ROAR [12] – Top

KAR [12] – Bottom

ROAE [21,23] Top –

KAE [21,23] Bottom –

inputs, sSmooth(x) = 1
N

∑N
i=1 sVanilla(x + Δi), where the perturbation of the input Δi

is sampled by a Gaussian distribution, which results in clearer saliency maps than the
vanilla gradient (Fig. 1c).

Guided-Backpropagation [28] gives the contribution of an input dimension of a neu-
ron to the output by distributing the output back to the input. For better interpretability,
it back-propagates the output of “active” ReLU units, which highlights important edges
in images (Fig. 1d).

Grad-CAM [24] focuses on the last convolution layer of a CNN (Convolutional Neu-
ral Network) and visualizes the globally-average-pooled gradients In contrast with the
previously mentioned XAI methods, only Grad-CAM relies on both gradients and fea-
ture maps of the convolutional layer. The results focus more on important “areas” rather
than edges as shown in Fig. 1e. A recent research shows that these saliency maps based
on only the gradients will not change greatly even if the parameters of DNN model are
randomized [1]. However, saliency map of GradCAM is different from saliency maps
based on gradients. Our experiments also show that GradCAM performs the best in our
crowd-based evaluation scheme.

2.2 Automated Evaluation Schemes for XAI Methods

Most automated evaluation schemes work by modifying (either train or test) data, and
compare the differences in the prediction performance of models. Hooker et al. [12]
proposed several automated evaluation schemes for XAI methods. In their studies, they
argued that by removing data features from the training set, better evaluation robustness
can be archived in comparison to schemes that modify the test set.

In the Remove and Retrain (ROAR) scheme, the top-ranked pixels given by XAI
methods are removed from the images in the training dataset, a new model is trained
on the modified training set, and the resulting model is evaluated on the non-modified
test dataset. The ROAR scheme was mainly compared to the Keep and Retrain (KAR)
scheme, in which the bottom-ranked pixels were removed from the training set. It
should be noted that Hooker et al. did not perform comparisons to crowd-based evalu-
ation schemes.

In our experiments (Sect. 4), we also test two schemes that change the test set while
leaving the training set unchanged, namely, Remove and Evaluate (ROAE) and Keep
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and Evaluate (KAE) [21,23]. Table 1 summarizes the comparison between the auto-
mated evaluation schemes.

2.3 Crowd-Based Evaluation Schemes for XAI Methods

Several crowd-based evaluation schemes have been proposed to measure the ability
of XAI methods. Hutton et al. [13] used crowdsourcing to assess the explanations for
supervised text classification. Crowd workers were asked to compare human-generated
and XAI method-generated explanations and indicate which they preferred and why.
Selvaraju et al. [24] and Jeyakumar et al. [14] asked crowd workers to choose better
explanations directly. Similarly, Can et al. [5] asked crowd workers to rate the saliency
maps of Grad-CAM on the visual characteristics of venues.

Doshi-Velez and Kim [9] concluded that there are three different types of crowd-
based evaluation schemes: 1) binary forced choices in which humans are presented
with pairs of explanations and choose better ones, 2) forward simulation/prediction in
which humans are presented with an explanation and an input, and simulate the output
of the model, and 3) counterfactual simulation in which humans are presented with
an explanation, an input, and an output, and tell what must be changed to change the
prediction to a desired output.

Our proposed scheme is similar to none of the aforementioned schemes. We do not
directly show the saliency maps to workers nor force them to make a binary choice;
instead, we transform into a simpler task, which makes it easier for workers to make
objective choices that are less dependent on subjective judgments of workers.

3 Proposed Crowd-Based Evaluation Scheme for XAI Methods

We propose a crowd-based evaluation scheme for XAI methods based on Peek-a-
boom [2] which is an online human computation game as shown in Fig. 3. As suggested
by the name, this cooperative game has two players, namely, “Peek” and “Boom.”

Peek starts with a blank screen, while Boom starts with an image and a word related
to it. At each round of the game, Boom can specify a small area in the image and
reveals the area to Peek, and Peek enters a guess of the word on the basis of the revealed
parts. The both players get more points when Peek correctly answers the word earlier;
therefore, Boom has an incentive to reveal only the areas of the image necessary for
Peek to guess the correct word.

We use a Peek-a-boom style Web interface, in which a crowd worker plays the Peek,
and an XAI method plays the Boom instead of another human. In the web interface,
crowd workers are asked to perform an image classification task, i.e., assigning a label
to an image from a set of labels. First, we reveal a small percentage of image pixels
with an option to reveal more if it is impossible to assign a label with confidence. We
show a correct label, several randomly selected wrong labels, and an “I don’t know”
button. If the worker cannot provide a confident answer, they can select “I don’t know”;
then, more parts of the image will be revealed. In the case of an incorrect answer, more
parts will be revealed as well. Once the worker selects the right answer, or “I don’t
know” is selected with a fully-shown image, we give the worker a new image. For a
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Fig. 3. Interface of Peek-a-boom human computation game [2]. Peek sees the left screen, and
Boom sees the right one. Boom determines which parts are exposed to Peek so that Peek correctly
guess the image content (that is a cow in this example.)

given image, XAI methods rank the pixels in descending order of their importance. For
each crowd worker, our crowdsourcing interface starts from an almost blank image (i.e.,
exposure rate = 0.05); gradually, the pixels are revealed in order of importance (i.e.,
increase the exposure rate) (Fig. 2). At each exposure rate r ∈ [0, 1], the crowd worker is
asked to guess the object in the image, typically in terms of multiple-choice questions.
We consider that if an XAI method is “interpretable” enough, the crowd worker can
correctly answer the question at a small exposure rate r.

Specifically, the evaluation procedure consists of the following steps:
� �

1) Prepare a pre-trained prediction model, a dataset, and several XAI methods to
be evaluated.
2) Apply all XAI methods and a random baseline to each image.
3) Get a saliency map from each XAI method and the random baseline.
4) A series of images with a part of top importance pixel features are generated
from the saliency map (Fig. 4).
5) Start with the smallest percentage of pixels (e.g., 5%) and ask the crowd workers
about the class of object. If they do not know, show more pixels and record the
percentage of images when the worker answers correctly.

� �

4 Results

We conduct experiments to answer the following four questions:
Q1. Are human and automated evaluations really different?
Q2. Which XAI methods are deemed better by humans?
Q3. Which automated evaluation scheme is closer to humans?
Q4. How does the number and ability of crowd evaluators affect the evaluation results?
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Fig. 4. “Explanations” for a cat image provided by five XAI methods (Grad-CAM, Guided-BP,
SmoothGrad, VanillaGrad, and Random) at different exposure rates (5%, 10%, 15%, 20%, 30%,
50%, and 75%).

4.1 Experimental Settings

We use two datasets for the evaluation; namely, Food101 [4] and Animal95. Animal95
is a subset of OpenImages v6 dataset [17]. We use bounding box data to filter the dataset
to extract object areas. Subsequently, we select only images with either single animals
or multiple animals of the same class. Images with multiple classes (multiple types of
animals) are not included, but those with several animals of a single class (e.g., three
dogs) or non-animal classes are included.

We shortlist the 30 most common food classes from all the classes in Food101, and
randomly select ten images in each class. Similarly, we select 95 most frequent animals
from OpenImages for the Animal95 dataset.
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The XAI methods used in our experiments include GradCAM, Guided-
backpropagation, SmoothGrad, and Vanilla Gradient. We implement the four XAI
methods as well as the random baseline with a pre-trained ResNet50 model [11]. In
total, 1500 pairs and 4750 of (image, XAI method) are generated for Food101 and Ani-
mal95, respectively2.

We use Amazon Mechanical Turk (AMT)3 and Lancers4 as the crowdsourcing plat-
forms for crowd-based evaluation. Each (image, XAI method)-pair is evaluated ten
times. Each crowd worker is required to evaluate 20 pairs for a reward of USD 0.5
in AMT, or JPY 40 in Lancers. To avoid biases, we randomly sample (image, XAI
method)-pairs assigned to each worker. Approximately 3200 crowd workers participate
in the evaluation tasks.

We compare ROAR, KAR, ROAE, and KAE schemes (introduced in Sect. 2.2) as
the representatives of automated evaluation schemes. The performance of each XAI
method is evaluated by an accuracy-exposure curve. For the crowd-based evaluation,
We calculate the average accuracy of crowd answers at each exposure rate, while the
human evaluators are replaced by a machine classifier in the automated evaluation.

In addition, we also provide the area under curve (AUC) of each accuracy-exposure
curve. Let a series of exposure rates be r1 = 0, r2, r3, . . . , rn = 1, where ri < rj

for i < j. Let ak
i denote the accuracy at exposure rate ri for XAI method k both in

crowd-based and automated evaluations. The value of AUC in XAI method k denoted
by AUCk is defined as

AUCk =
n∑

i=2

1
2
(ri − ri−1)(ak

i + ak
i−1).

4.2 Results

Q1. Are Human and Automated Evaluations Really Different?
The first question we investigate is the difference between automated and crowd-based
evaluation schemes, because the latter requires higher time and financial costs, and there
is no reason to resort to human evaluation if they both give the same results.

Figure 5 shows the accuracy-exposure curves of different XAI methods at different
exposure rates by different evaluation methods. For the crowd-based evaluation scheme
(denoted by Crowd) and two automated evaluation schemes (KAR and KAE), higher
curves indicate better performance. In contrast, for the other two automated evaluation
schemes, ROAR and ROAE, lower curves indicate better performance.

Table 2 shows the AUCs of each scheme; each row and column correspond to an
evaluation scheme and an XAI method, respectively. The numbers in the brackets show
the ranks. The bold numbers show the best results. Although we can see some con-
sistency between the ranking of AUC by the crowd-based ranking and those by the

2 30 classes×10 images×5 XAI methods = 1500 for Food101, and 95 classes×10 images×
5 XAI methods = 4750 for Animal95.

3 https://www.mturk.com/.
4 https://www.lancers.jp/.

https://www.mturk.com/
https://www.lancers.jp/
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Fig. 5. Performance curves of different XAI methods on the two datasets (Food101 and Ani-
mal95). The horizontal and vertical axis indicates the exposure rate and accuracy, respectively.
For the crowd-based evaluation (Crowd), KAR, and KAE, upper curves indicate better perfor-
mance. In contrast, for ROAR and ROAE, lower curves are better.

automatic evaluation schemes, no automated evaluation scheme obtains the same rank-
ing of AUC as the crowd-based evaluation. (We will see more detailed comparisons
later.)

Now, we discuss the impact of different datasets on the results. It is evident from
Table 2 that the values of AUC are different among the two datasets, Food101 and Ani-
mal95. The AUCs for Animal95 datasets are generally better than those for Food101 in
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(a) Image difficulty (Food101) (b) Image difficulty (Animal95)

(c) Worker ability (Food101) (d) Worker ability (Animal95)

Fig. 6. Histograms of average exposure rates of correct answers. The horizontal and vertical axes
indicate the exposure rate and frequency, respectively; the top and bottom rows indicate the fre-
quencies of images and workers, which show the distributions of “image difficulty” and “worker
ability”, respectively. Comparing (a) and (b), the mean image difficulty of Animal95 dataset is
higher than that of Food101, indicating the Animal95 dataset is relatively easier than Food101. In
the bottom row ((c) and (d)), the variance of the worker ability in the Food 101 dataset is higher
than that of Animal95, which is probably because the difficulty of recognizing food can be sig-
nificantly affected by cultural differences. In spite of the large variations in the worker ability,
Table 3 shows they have no significant impacts on the results.

all the schemes. This is probably because it is rather easier to recognize animals than
foods; this is also suggested by Fig. 6 showing the distribution of the “difficulty” of the
images.

In contrast, Fig. 5 shows that the ranking of XAI methods is not entirely different
among the datasets, except for the slight difference in SmoothGrad and Vanilla Gradi-
ents. This shows that the difference of datasets does not significantly impact the relative
superiority or inferiority of the different schemes. However, this conclusion is drawn
from only two datasets and needs to be validated with more datasets in the future.

Q2. Which XAI Methods Are Deemed Better by Humans?
Because different XAI methods provide different pixel rankings, the next question we
investigate is which XAI method is more reliable. It can be observed from Table 2 that



442 X. Lu et al.

(a) Spearman@Food101 (b) Kendall@Food101

(c) Spearman@Animal95 (d) Kendall@Animal95

Fig. 7. Correlations of XAI methods ranking between the crowd-based evaluation and the four
automated evaluations at different exposure rates in the Food101 and Animal95 datasets (the
higher, the better). The correlations are given both in the Spearman ranking correlation and the
Kendall ranking correlation. The horizontal and vertical axes indicate the exposure rate and the
ranking correlation value, respectively.

GradCAM exhibits the best performance in the crowd-based evaluation scheme. This
is probably because GradCAM produces low resolution feature maps (e.g., 7 × 7 for
ResNet family when the input size is 224 × 224), which are then linearly interpolated
to the resolution of the input image, thereby producing mostly connected regions rather
than distributed regions.

In addition, this result is also consistent with the conclusion of previous work on
sanity checking [1].

Q3. Which Automated Evaluation Scheme Is Closer to Humans?
Once we assume that the human assessments are the ground truths, automated eval-
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Table 2. AUCs of different methods by different evaluation schemes. The numbers in the bracket
show the rank of the XAI method. The bold numbers show the best results. For the crowd-based
evaluation (Crowd), KAR, and KAE, larger AUC values show better performance, that is, impor-
tant areas of images are shown earlier. On the other hand, for ROAR and ROAE, smaller AUCs
indicate better performance, that is, important areas are removed earlier. (Also see Fig. 5.)

Dataset Scheme GradCAM Guided-bp SmoothGrad Vanilla Gradients Random

Food101 Crowd (ours) 0.639 (1) 0.469 (2) 0.425 (3) 0.396 (4) 0.334 (5)

KAR 0.667 (1) 0.494 (3) 0.478 (4) 0.570 (2) 0.340 (5)

KAE 0.669 (1) 0.340 (2) 0.265 (4) 0.316 (3) 0.136 (5)

ROAR 0.211 (2) 0.140 (1) 0.258 (3) 0.346 (4) 0.366 (5)

ROAE 0.159 (5) 0.060 (1) 0.072 (2) 0.087 (3) 0.140 (4)

Animal95 Crowd (ours) 0.752 (1) 0.696 (2) 0.592 (4) 0.608 (3) 0.354 (5)

KAR 0.627 (1) 0.456 (3) 0.445 (4) 0.515 (2) 0.365 (5)

KAE 0.619 (1) 0.311 (3) 0.294 (4) 0.354 (2) 0.137 (5)

ROAR 0.142 (2) 0.088 (1) 0.194 (3) 0.200 (4) 0.385 (5)

ROAE 0.115 (4) 0.048 (1) 0.054 (2) 0.059 (3) 0.137 (5)

uation scheme which is closer to the crowd-based evaluation scheme indicates better
performance. Quantifying the goodness of automated evaluation schemes is not only
useful for evaluating them but will also help improving themselves.

We investigate the ranking similarity between the four automated evaluations and
the crowd-based evaluations. Figure 7 shows the correlations of XAI methods ranking
between the crowd-based evaluation and the four automated evaluations at different
exposure rates in the Food101 and Animal95 datasets.

Most of the automated evaluation schemes show positive correlations with crowd-
based evaluation, but only ROAE shows the lowest correlations, and even gives negative
correlations for high exposure rates; this is probably because the mechanism of ROAE
equals adding white noises to the images at high exposure rates, which is also known
as an approach for generating adversarial examples.

ROAR shows the better performance than ROAE, which is consistent with the report
in the previous study [12], which implies the importance of re-training. KAE consis-
tently performs well independent of the change of datasets, correlation types, and expo-
sure rates. KAR performs sub-optimally, but it maintains almost the same performances
at high exposure rates, while other automated evaluation schemes tend to decrease the
performance at high exposure rates.

Q4. How Does the Number and Ability of Crowd Evaluators Affect the Evaluation
Results?
Finally, we investigate the stability of the proposed crowd-based evaluation scheme in
terms of the number of crowd workers participating in the evaluation. Crowd workers
have different abilities and diligence; for example, some crowd workers do not work
seriously on tasks. Figure 6c and Fig. 6d show the histograms of the average exposure
rate at which each crowd worker made a correct answer, which can be considered as
the distribution of the worker ability; large variations are observed in the ability of the
workers.
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Table 3. AUCs for different average numbers of crowd workers per (image, XAI method)-pair.
The numbers in the bracket show the rank of the XAI method. Although the performance of crowd
workers varies greatly due to their different ability and diligence (Fig. 6 (c)(d)), the ranking of
XAI methods does not change according to the number of workers.

Dataset Workers per image GradCAM Guided-bp SmoothGrad Vanilla Gradients Random

Food101 0.3 0.647 (1) 0.492 (2) 0.474 (3) 0.422 (4) 0.337 (5)

0.5 0.618 (1) 0.468 (2) 0.450 (3) 0.419 (4) 0.348 (5)

1 0.610 (1) 0.465 (2) 0.446 (3) 0.422 (4) 0.331 (5)

3 0.632 (1) 0.462 (2) 0.421 (3) 0.395 (4) 0.330 (5)

5 0.636 (1) 0.470 (2) 0.431 (3) 0.399 (4) 0.332 (5)

7 0.638 (1) 0.469 (2) 0.428 (3) 0.397 (4) 0.333 (5)

10 0.639 (1) 0.469 (2) 0.425 (3) 0.396 (4) 0.334 (5)

Animal95 0.3 0.742 (1) 0.675 (2) 0.624 (3) 0.622 (4) 0.367 (5)

0.5 0.752 (1) 0.667 (2) 0.591 (4) 0.616 (3) 0.347 (5)

1 0.745 (1) 0.683 (2) 0.603 (4) 0.622 (3) 0.339 (5)

3 0.758 (1) 0.695 (2) 0.604 (4) 0.608 (3) 0.365 (5)

5 0.755 (1) 0.696 (2) 0.596 (4) 0.608 (3) 0.357 (5)

7 0.752 (1) 0.696 (2) 0.593 (4) 0.609 (3) 0.358 (5)

10 0.752 (1) 0.696 (2) 0.592 (4) 0.608 (3) 0.354 (5)

Table 3 summarizes the AUC values of the performance curves when the average
number of workers per (XAI method, image)-pair is changed. Some variations are
observed in the results when the average number of workers was changed; however,
no significant change was found in the qualitative results, which shows the stability and
efficiency of the proposed crowd evaluation scheme.

5 Conclusion

In this study, we investigated schemes for evaluation of XAI methods. Based on the
hypothesis that interpretability for humans can ultimately only be assessed by humans,
We proposed a new human-based evaluation scheme using crowdsourcing and com-
pared it with existing automated evaluation schemes. We convened a total of 3,200
crowd workers to conduct experiments using four XAI methods and two datasets. The
results showed that there are differences between the crowd-based evaluation and auto-
matic evaluation. Among the various automatic evaluation schemes, KAE gave the most
similar XAI evaluations to human evaluation.

In the report by Hooker et al. [12], ROAR performed better than KAR, but the
results of our experiment indicate the opposite, which can be further investigated in the
future.

In addition, among the four XAI methods, Grad-CAM was found to be the XAI
method closest to human evaluation. This is rather counter intuitive if we focus only on
saliency maps because Guided-Backpropagation and SmoothGrad highlight the outline
of objects more accurately (as shown in Fig. 1); however, in our scheme, we present a
combination of the original image and the saliency map so that Grad-CAM can convey
more information with the fewer pixels.
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We also confirmed that the number of crowd workers and datasets did not signifi-
cantly impact the results; however, larger-scale experiments using more datasets will be
desirable in the future.
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Abstract. Current AutoML systems have been benchmarked with tra-
ditional natural image datasets. Differences between satellite images and
natural images (e.g., bit-wise resolution, the number, and type of spectral
bands) and lack of labeled satellite images for training models, pose open
questions about the applicability of current AutoML systems on satellite
data. In this paper, we demonstrate how AutoML can be leveraged for
classification tasks on satellite data. Specifically, we deploy the Auto-
Keras system for image classification tasks and create two new variants,
IMG-AK and RS-AK, for satellite image classification that respectively
incorporate transfer learning using models pre-trained with (i) natural
images (using ImageNet) and (ii) remote sensing datasets. For evalua-
tion, we compared the performance of these variants against manually
designed architectures on a benchmark set of 7 satellite datasets. Our
results show that in 71% of the cases the AutoML systems outperformed
the best previously proposed model, highlighting the usefulness of a cus-
tomized satellite data search space in AutoML systems. Our RS-AK
variant performed better than IMG-AK for small datasets with a lim-
ited amount of training data. Furthermore, it found the best automated
model for the datasets composed of near-infrared, green, and red bands.

Keywords: Remote sensing · AutoML · Transfer learning ·
Classification

1 Introduction

Remote sensing satellites continuously monitor the Earth’s surface and collect
data representing the state and health of the planet. The range of applications
that can benefit from such data varies from environmental mapping to urban
planning, emergency response, and many more [3]. To make use of such data,
remote sensing practitioners commonly adopt methods of computer vision and
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machine learning. Classical machine learning approaches benefit from domain-
specific, hand-crafted features to account for dependencies in time or space, but
rarely exploit spatio-temporal dependencies exhaustively. Modern deep learning
methods can automatically extract such spatio-temporal features. However, cur-
rently, two obstacles are limiting the use of deep learning for satellite data. The
first one is the lack of sufficient labeled data and the difficulty of getting labels
considering that satellite images are not as interpretable as natural images for
the human eye [3]. The second obstacle lies in the difficulty of designing appro-
priate architectures that take the characteristics of satellite images into account.
Satellite images are different from natural images due to their additional spec-
tral information content. Natural color images always include the same three
channels (RGB) but for satellite images, the number and type of channels are
variable, depending on the satellite instrument. A multi-spectral satellite image
captures information of the electromagnetic spectrum related to different pro-
cesses on Earth (e.g., land, ocean, atmosphere). The images from the most com-
mon satellites can have up to 13 spectral bands that each could be relevant
for observing a different process. For instance, examples of channels related to
vegetation features are near-infrared and short-wave infrared bands.

Fig. 1. Preliminary experiments using the
EuroSAT dataset [9]. A random forest and
three different CNNs built from scratch
based on machine learning (a simple
CNN with 3 convolutional layers (CNN1))
and remote sensing literature (CNN2 [1],
CNN3 [15]) are compared. For each model,
two versions are shown: a vanilla model per-
formance using default configurations and a
tuned model. The tuned models show the
performance after applying hyperparame-
ter tuning for the optimizer, learning rate,
batch size, and the number of epochs in the
case of the CNNs and the number of fea-
tures for the random forest.

Furthermore, natural images have
an 8 bits precision, while remote
sensing input data usually comes at
higher precision (16 or 32 bits). Cre-
ating new high-performing models
for satellite data requires designing
new architectures while taking into
account these characteristics. Fur-
thermore, the hyperparameters need
to be set properly. These tasks can be
complex for remote sensing experts.

To overcome these obstacles, we
propose to systematically leverage recent
developments in two different machine
learning fields: (i) transfer learning [22]
and (ii) automated machine learn-
ing (AutoML) [11]. Transfer learning
addresses the lack of labeled data by
re-using the knowledge gained from
previously seen tasks and transfer-
ring it to a newly created model in
another task (e.g., through using pre-
trained models). AutoML [11] aims to
automatically design high-performing
models for each dataset in a data-
driven manner and thus making machine
learning accessible to non-machine learning experts. Hyperparameter optimiza-
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tion and Neural Architecture Search (NAS) are both exemplars of techniques that
are scoped in this field. Specifically, with the increased interest in using deep learn-
ing algorithms, NAS has become an important area that aims at finding the best
neural network architecture given a task and a dataset by automatically tuning
various hyperparameters.

As far as we are aware, NAS research systems have been benchmarked with
natural image datasets but not with satellite images. This brings us to the ques-
tions: what is the performance of current AutoML systems for satellite data? and
how can we further improve their performance for satellite data by transferring
the knowledge gained from previous research in the field of remote sensing? Fig. 1
shows the results of one of our preliminary experiments, demonstrating the poten-
tial of applying the most recent advances in AutoML regarding hyperparameter
optimization to a remote sensing dataset. We know that positive results in specific
applications are based on human priors. By incorporating domain expert prior
knowledge into machine learning systems the performance of resultant models
can significantly improve. Therefore, in this paper, we propose to tailor the neu-
ral architecture search space of Auto-Keras [12] (a popular AutoML system) by
integrating findings of the remote sensing field in form of pre-trained models on
ImageNet and remote sensing datasets.

To the best of our knowledge, this is the first work considering the design of
AutoML systems for machine learning tasks based on remote sensing datasets.
More specifically, to achieve this goal our contributions in this paper are as follows:
(i) composing a diverse benchmark of already available satellite datasets using
a standardized format, (ii) evaluating the performance of the deployed AutoML
NAS system on these datasets, and finally, (iii) enriching this system by incorpo-
rating pre-trained models on remote sensing datasets in a new block called RS-AK.

2 RelatedWork

In this section, we review the most popular deep learning approaches applied to
satellite data and the current status of AutoML in remote sensing.

Deep Learning in Remote Sensing: The remote sensing research commu-
nity increasingly relies on the use of deep learning models. The authors of [3]
indicate that CNN-based methods have obtained impressive results when numer-
ous annotated samples to fine-tune or train a network from scratch are available.
Due to the difficulty of acquiring labeled data, researchers typically rely on tech-
niques from transfer learning, with models pre-trained on natural image datasets
(e.g., ImageNet) but also remote sensing benchmark datasets (e.g., EuroSat [9],
BigEarthNet [25]). Some works that rely on this technique are [9,16,18,23]. The
authors of [19] analyze three different transfer learning strategies to improve the
performance of CNNs for satellite image scene classification, i.e., full training, fine-
tuning, and using CNNs as feature extractors. They conclude that the fine-tuning
approach tends to be a good option in various scenarios. The authors of [9] evalu-
ated various CNN architectures on the EuroSAT dataset, achieving the best accu-
racy using a fine-tuned ResNet-50 pre-trained on ImageNet for the RGB data. The
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authors of [19,30] reported high-performance results using CNNs too. The authors
of [15] suggest that an ensemble of Inception and ResNet modules is an effective
architecture for land cover classification. Current remote sensing research does not
fully exploit hyperparameter tuning to further improve these models; researchers
have mainly considered optimizing a subset of hyperparameters using a parameter
sweep approach [6,18]. The authors of [13] have considered AutoML for a specific
application of high-throughput image-based plant phenotyping. They use Auto-
Keras and compare its results with human-designed ImageNet pre-trained CNN
architectures, finding the best performance while using the pre-trained network.
However, they did not use all the potential of Auto-Keras. In this paper, we con-
sider more general applicability by performing a systematic analysis on a diverse
benchmark of problems and we propose the customization of Auto-Keras for satel-
lite tasks. Moreover, we see that many architectures have been applied to remote
sensing problems, but no clear consensus has been reached about which one works
best. This makes a compelling argument for using AutoML, which can explore and
select the best option in a data-driven way.

AutoML and Neural Architecture Search: AutoML aims to automate the
different stages of a machine learning pipeline. These steps typically are data col-
lection, data preparation, feature engineering, preprocessing, algorithm selection,
hyperparameter optimization, model training, and deployment. Current AutoML
systems commonly cover stages from data preparation to model training [11].
Auto-Sklearn [7], Auto-WEKA [26] and T-POT [20] are examples of AutoML sys-
tems focusing on traditional machine learning (such as SVM, random forest, K-
nearest neighbors). So far, only a few open-source AutoML systems focus on deep
learning. One of the biggest challenges of NAS compared to previously mentioned
AutoML systems is maintaining computational efficiency. The time required to
successfully solve the NAS problem is linked to the time needed to train a candi-
date network and the number of candidates existing in the search space. Two pop-
ular AutoML systems that focus on deep learning are Auto-Keras [12] and Auto-
Pytorch [17], both supporting image classification tasks. Auto-Pytorch uses multi-
fidelity optimization and Bayesian optimization (BOHB) [5] while Auto-Keras
uses a Bayesian optimization with a neural network kernel and a tree-structured
acquisition function to search for the best settings. The search space of Auto-
Keras is defined based on network morphism, it encloses all architectures that
can be created by morphing the initial architecture. Auto-Pytorch is delimited
to multi-layer perceptron networks and funnel-shaped residual networks. To deal
with the memory limitations, Auto-Pytorch asks the user to choose between small,
medium, and full configuration spaces, whereas Auto-Keras adapts the configura-
tion space automatically based on a memory estimation function. Both systems
have focused on solving traditional machine learning tasks, in the case of image
classification the attention is only on natural images. Our goal in this paper is to
focus on Earth observation data. We propose to customize AutoML systems for
satellite data tasks. The challenge of adapting NAS for specific problems falls into
a right delimitation of the search space. By doing this, the remote sensing prac-
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titioners can reduce the amount of time needed to find a suitable model for their
data and instead focus on other major tasks.

3 Methodology

To discover automatically generated high-performance architectures for satellite
data classification tasks, we integrate the deep learning solutions for remote sens-
ing in an AutoML framework. We propose to increase the efficiency of AutoML
systems by reducing the complexity of the search space focusing on the most likely
well-performance architectures for satellite data tasks.

We selected one of the deployed AutoML systems to build upon. We select
Auto-Keras [12], an efficient NAS with network morphism, where Bayesian opti-
mization is used to guide the exploration of the search space. The search space of
Auto-Keras is based on network morphism, enclosing all architectures that can
be created by morphing the initial architecture. The generation of the candidate
architectures depends on the acquisition function of the Bayesian optimization. As
the NAS space is not Euclidean, Auto-Keras uses an edit-distance neural network
kernel for the Gaussian Process. This kernel measures the number of operations
needed to morph one network into another one. It considers morphing the layers
and the skip-connections. Different from fixed layer width methods [14], the mor-
phism operations can change the number of filters in a convolutional layer and
then make the search space larger. Therefore, finding a good architecture could
take more time. By focusing on the most likely well-performance architectures for
specific tasks, the searching time would be reduced.

To measure the benefits of the development of specific tasks for satellite data,
we decided to gradually enhance the search space of the system and proposed three
different settings for our experiments. Those settings and the motivation behind
them are explained in the following subsections.

3.1 Original Auto-Keras System (V-AK)

Auto-Keras search space is built upon network morphism where the search space
of NAS is created using morphism operations. An initial network architecture G is
given and, with the use of morphism operations, new networks are created. Auto-
Keras’ authors use a three-layer convolutional network as starting architecture
for the experiments presented in their paper to test the efficiency of their app-
roach compared with other methods. However, the deployed Auto-Keras system
has a task-oriented API, in which 3 different initial architectures are applied for
the image classification task: first, it tries a vanilla network with 2 layers, second
a ResNet50 model without pre-training, and thirdly an Efficientb7 network pre-
trained with ImageNet. This change influences the possible architectures to select
and outperforms the system initialized with a three-layer convolutional network.
To the best of our knowledge, the selection of the initial architectures was based
on human expert knowledge and state-of-the-art architectures for specific tasks
based on natural image data.
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Fig. 2. (a) An abstract illustration of how the final architecture can be build based on
pre-defined blocks. A network consists of one preprocessing block, several model blocks,
and one classification head. V-AK and IMG-AK compose the model by using Vanilla,
Resnet, Xception and/or Efficient blocks. In addition to these, RS-AK can make use of
the RS Block as well. (b) The RS Block, only available to RS-AK. It can be extracted
from various different remote sensing datasets, which is controlled by the hyperparam-
eter rs dataset source

3.2 Models Pre-trained Using ImageNet Dataset (IMG-AK)

Based on remote sensing research, we know that models pre-trained with Ima-
geNet can lead to promising results for satellite data classification tasks [3]. The
Auto-Keras search space already includes blocks with weights acquired by pre-
training on ImageNet. However, the decision to use such blocks depends on the
process of selecting new candidate architectures. It could be the case that, due
to trials budget and the vast search space, these pre-trained architectures are not
considered. Figure 2 provides an abstract illustration of how the final architecture
for the image classification task can be build based on pre-defined blocks existing
in Auto-Keras. The model blocks in which the ImageNet weights are available have
a hyperparameter called pretrained, which defines whether or not a pre-trained
version of the model will be used.

Therefore, in this approach, although we make use of the available pre-trained
models in the current systems, we still modify the configuration of G by defin-
ing an initial architecture for the new specific task: satellite image classification.
We expect to improve the classification results by starting the neural architecture
search with a block pre-trained with ImageNet. The model block can be selected
based on the remote sensing literature findings. As reviewed in Sect. 2, ResNet
architectures have shown promising results in classification of satellite images in
the literature (see, e.g., [9,15]). Thus, we configure the initial G with a ResNet
block and we set the parameter pretrained to true.

3.3 Models Pre-trained Using Remote Sensing Datasets (RS-AK)

Transfer learning can be most successful when the source and target domain are
similar [4,18,27]. Within the remote sensing community, there are models pre-
trained with remote sensing datasets [18,25] but none of these are available yet in
AutoML systems. Therefore, we proposed to incorporate this type of pre-trained
models and customize the Auto-Keras image classification task for satellite data.
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We need to initially decide what needs to be changed in Auto-Keras to be able
to add this feature. The Auto-Keras task-oriented NAS approach can be inferred
from the open-source deployed system. The image classification task builds an
architecture based on pre-defined cells or blocks. These blocks can be divided into
three categories: preprocessing, model, and classification head. For the prepro-
cessing category, two blocks are considered: (i) normalization, which performs a
feature-wise normalization on the data; and (ii) an image augmentation block,
which can apply various methods including flipping, rotation, and translation.
The addition of such blocks to the final architecture in Auto-Keras is treated as a
hyperparameter. The model blocks represent all the possible cells that will shape
the hidden layers of the network. Each block consists of parameterized modules of
well-known CNNs with various hyperparameters to be tuned. The third category
is the classification head block, which creates the output layer of the network based
on the number of classes and the classification type. The only hyperparameter to
tune in this block is a dropout value. The preprocessing steps correspond to the
ones applied by the authors of our satellite datasets, and the classification head
block does not need to be changed because the nature of the classification is the
same as any image classification task. We only need to change the model blocks
and how our new block (which we refer to as RS Block) will interact with the clas-
sification head block. Figure 2 is an abstract illustration of this. TheRS Block first
checks the shape of the input and resizes the pixels if necessary. It chooses between
different pre-trained module versions (trained with satellite data). This choice is
considered as another hyperparameter to tune. Hence, it uses the same hyperpa-
rameter tuner that is used for all the other blocks. The optimization method is
explained next.

Hyperparameter Tuning. Different tuners can be used to determine which
combination of hyperparameters will be sent for training in each trial during NAS.
We used an oracle combining random search and greedy algorithm [12,21] pre-
sented inside of Auto-Keras. The hyperparameters are arranged by grouping them
into several categories according to the level or functionality. The oracle tunes each
category separately using random search. In each trial, it uses a greedy strategy
to generate new values for one of the categories of hyperparameters and use the
best trial so far for the rest.

Remote Sensing Pre-trained Models. Our RS Block is composed of mod-
ules of different satellite learning representations acquired from different pre-
trained models. These pre-trained models were trained with 5 different satellite
datasets (BigEarthNet [25], EuroSAT [9], RESISC-45 [2], So2Sat [30], and UC
Merced [28]). Based on the number of spectral bands of the collected datasets we
considered two types of pre-trained models: (i) 3-channels and (ii) 13-channels.
Figure 3 shows the architectures and datasets used for pre-training. The 3-channel
pre-trained models were taken from the publicly available models posted by [18].
Inspired by the findings in [15] and the selected architecture in [18], we decided to
create in-domain representations for 13-channels datasets using ResNet architec-
tures and training with the EuroSAT dataset [9].
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Fig. 3. Remote sensing pre-trained models considered for the RS Block. The first layer
indicates the number of channels, the second layer the architecture used, and, the
third layer the remote sensing dataset used. 3-channels models were created by Google
Research [18], 13-channels were created by us.

To rapidly test the performance of our new block, we made two changes in the
Auto-Keras search space. We first added the proposed RS Block to the model
blocks structure. Secondly, we adapted the initial architecture G to start with our
new remote sensing block. We would like to be able to study which of the remote
sensing representations (pre-trained blocks) are used more often and, thus are
more promising. We can inspect this, by studying the rs dataset source param-
eter of the RS Block, which indicates the source dataset used for pre-training in
the case of the 3-channel datasets.

4 Experiments

In our evaluation we aim to address the following research questions:

– Q1. Can we achieve a performance similar to the non-automated deep learning
research in remote sensing by using AutoML systems?

– Q2. How do different Auto-Keras variants perform for datasets with different
characteristics (different number of spectral bands, sizes, and class distribu-
tions)?

– Q3. Which of the remote sensing pre-trained modules used in the RS-AK shows
more promising results for developing NAS systems for remote sensing?

4.1 Datasets

To have a broader idea of the applicability of this framework in the remote sens-
ing field, we have composed a benchmark of 7 diverse and well-known multi-
spectral satellite datasets. Furthermore, this selection shows a variety of clas-
sification tasks with presumably different degrees of difficulty and complexity.
Table 1 presents the characteristics of these datasets and summarizes the app-
roach taken by their corresponding authors, as well as its performance. Except for
the EuroSAT, So2Sat, and UC Merced datasets, the performance and approach
showed in this table is the state-of-the-art (SOTA) considered for our experiments.
For the case of these 3 datasets, better results are reported by the Google research
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Table 1. Overview of available labelled datasets and the presented approach and per-
formance from the paper in which the dataset was introduced.

Dataset Satellite (Bands) Resolution Images Labels No. Perf (%) Approach

BigEarthNet Sentinel-2 (3/12) Med-high 590k (L) Land 43 67.59 CNN 3-Conv[25]

BrazilDam Sentinel-2 (13) High 1.92k (S) Dam? 2 94.1 DenseNet [6]

Brazilian Coffee SPOT (3) High 2.87k (S) Coffee? 2 83.04 2 OverFeat networks [23]

Cerrado-Savanna RapidEye (3) High 1.31k (S) Veg. 4 90.5 Fine-tuning AlexNet [19]

EuroSAT Sentinel-2 (3/13) High 27k (L) Land 10 98.57 Pre-trained ResNet [9]

So2Sat Sentinel-2 (3) High 376k (L) Land 17 61 ResNet [30]

UC Merced USGS(3) Very high 2.1k (S) Land 21 NA BoVW [28]

team in [18] using ResNet models pre-trained with remote sensing datasets; thus
their results are the SOTA in Table 2.

The use of bands different from the RGB spectrum is a common practice
in remote sensing applications due to the additional information that can be
extracted from other spectral bands. A clear example is the creation of vegeta-
tion indexes for different applications; such indexes involve non-RGB channels
like near-infrared. The number of samples available for training in remote sensing
real-world problems is usually small. The Coffee scenes, BrazilDam, and Cerrado-
Savanna datasets meet these characteristics. The Cerrado-Savanna scenes [19] is
one of the most challenging datasets for classification. As explained by the authors,
this is due to the high intraclass variance of the dataset, caused by different spa-
tial configurations and densities of the same vegetation type, as well as its high
inter-class similarity, caused by the similar appearance of different vegetation
species [19]. Moreover, from 1,311 samples included in this dataset, 73% corre-
spond to the Arboreal vegetation.

4.2 Experimental Setup

For all our experiments, the datasets were first randomly divided into train and
test sets. The test set was created by reserving 20% of all the available data from
Eurosat, BigEartNet, So2Sat, and UC Merced datasets. In the case of the Brazil-
Dam dataset, only the Sentinel fold from 2019 was extracted to study. The Coffee
scenes and Savanna datasets are originally divided into five folds. The first four
were used for training and the last fold is reserved for testing. Next, another split
of 80-20 was applied to the training set, assigning 20% of it for validation, which is
used for the AutoML system to tune hyperparameters and select the best model.
As most of the datasets are also used as a source for creating pre-trained models,
when evaluating RS-AK, we should be careful not to include pre-trained blocks
from the dataset that we want to use to test on, to avoid being exposed to labels
from the test set. As such, when evaluating on a given dataset, we remove the pre-
trained blocks coming from this dataset from the search space. To exclude the
corresponding dataset, before running the task, we keep out this option from the
set of pre-trained models available for the rs dataset source hyperparameter in
the RS Block.
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To be able to show the significance of the results we performed a Wilcoxon
signed-rank test, first ensuring that the data was not normally distributed and
considering a p value of 0.05. The outcomes presented in this paper are based on
the 10 trials experiments. Each trial, varying per dataset, ranges from few minutes
to around 6 h. All the experiments were run on a compute cluster using nodes with
4 GPUs (PNY GeForce RTX 2080TI). We delimited the memory to 32 and 64 GB
for the experiments. For better reproducibility, we have made the source code of
our experiments available in a public repository.1

5 Results

In this section we will answer the research questions that were stated in Sect. 4.

5.1 AutoML vs Non-automated Models

Table 2 summarizes the performance of the three different AutoML approaches on
the test set for the different datasets. The performance metric shown here, same as
the baseline papers, is the overall classification accuracy. For the BigEarthNet-rgb
dataset, we decided to change the performance metric to be able to compare with
the baseline. We achieved an F1-score of 67.84% using an ImageNet pre-trained
module, while the result presented in [25] is 67.59%. There is no benchmark perfor-
mance available for the full spectral version of EuroSAT. Resultant of our exper-
iments, we established one with 97.8% overall accuracy.

To answer Q1 we grouped the results of the three variants (V-AK, IMG-AK,
and RS-AK) and we took the maximum performance. In this way, we can analyze
the AutoML competency against the non-automated architectures. We outper-
formed the literature in 5 out of 7 datasets, improving the state-of-the-art result
for So2Sat by a rate of 34.5%. Therefore, we can conclude that the performance
found by using AutoML systems can be competitive and even better for some of
these datasets.

5.2 AutoML Variants and the Different Type of Datasets

To address Q2, we group our datasets based on size, number, and type of spec-
tral bands (channels). We consider four small datasets. We have 2 datasets with 13
channels (BrazilDam and EuroSAT-all) and 6 with 3 channels. The 3-channels are
either RGB bands or near-infrared, green, and red bands. Note that the EuroSAT-
all dataset has an empty entry for the SOTA and RS-AK approach. Since the pre-
trained blocks from the 13-band dataset come all from the EuroSAT-all dataset,
we could not fairly deploy this model (see experimental setup). To facilitate com-
parisons with the SOTA found in literature and among our experiments, in Table 2
the boldfaced entries indicate the best approach among the 3 Auto-Keras variants.

1 https://github.com/palaciosnrps/automl-rs-project.

https://github.com/palaciosnrps/automl-rs-project
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Table 2. Performance on test dataset considering 10 runs (Except for BigEarthNet
which had 3 runs) of each of our experiments and the state-of-the-art (SOTA) found in
literature for each dataset. BigEarthNet performance metric is F1-score, all the other
datasets use overall accuracy. An asterisk (*) represents statistically significant results.

Dataset Type SOTA V-AK IMG-AK RS-AK

BrazilDam Small-13 94.1 [6] 89.09 ± .05 76.54 ± .13 85.57 ± .01

Coffee scenes Small-3 83.4 [23] 86.18 ± .02 82.96 ± .04 88.84 ± .00*

Cerrado-Savanna Small-3 90.5 [19] 85.79 ± .01 84.33 ± .03 89.92 ± .01

UCMerced Small-rgb 99.61 [18] 99.62 ± .00 76.43 ± .13 91.19 ± .06

EuroSAT-all Large-13 – 95.38 ± .02 97.82 ± .00* –

EuroSAT-rgb Large-rgb 99.2 [18] 99.18 ± .00 99.54 ± .00* 95.90 ± .01

So2Sat-rgb Large-rgb 63.25 [18] 95.47 ± .00 97.80 ± .00* 76.92± .00

BigEarthNet-rgb Large-rgb 67.59 [25] 50.62 ± .00 67.84 ± .00 65.29 ± .00

If the results are statistically significant to both other approaches according to the
Wilcoxon Signed rank test the entry is marked with an asterisk (*). Please note
that the paired comparison of second-best approaches is not shown in the table.

The original Auto-Keras V-AK and the IMG-AK version performed well on
the EuroSAT-all dataset. In this case, IMG-AK performs better than V-AK.
For the case of the BrazilDam dataset, the initialization with a pre-trained Ima-
geNet model did not benefit the performance (see IMG-AK Table 2) and it even
decreased the average accuracy. This can be explained considering the differ-
ence in the number of input channels (increasing the complexity) and the size
of the dataset. BrazilDam dataset has 13 channels; therefore, the direct use of
pre-trained models from ImageNet (3-channel) does not apply. Different from
EuroSAT, the number of labeled samples of BrazilDam is small. We can notice
an improvement using RS-AK but this is not enough to beat the baselines.

We can see that for the RGB channel datasets either V-AK or IMG-AK
approaches lead to the best performance. We achieved a large improvement for
the So2Sat-rgb dataset, compared to the work presented in [18]. Even though the
authors of [18] also used pre-trained models, the variety of model versions and the
more sophisticated hyperparameter tuning method provided by the AutoML sys-
tems played an important role in achieving better performance for this dataset.
Conversely, the RS-AK variant obtained the best results for the Coffee scenes
and Cerrado-Savanna datasets. These two datasets are composed of near-infrared,
green, and red bands and the classification task differs from land cover identifica-
tion. Based on that, we can infer that the 3-channel remote sensing representations
are an option for transfer learning when the target dataset is different from the
well-known RGB channel datasets. In the case of the 13-channel representations
used for the BrazilDam dataset, the results were not as successful as what was
obtained by manually designed architectures. The best-automated model gener-
ated using the original Auto-Keras consists of convolutional blocks without pre-
trained modules, suggesting that for this dataset training from scratch rather than
using the available pre-trained models is a better approach. Based on the results
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of the non-RGB datasets, we can expect that improving the 13-channel represen-
tations could lead us to better performance.

Considering the dataset size, we notice that comparing the initialization of
G with ImageNet pre-trained models (IMG-AK) versus the implementation of
remote sensing pre-trained models (RS-AK), RS-AK gives better performance
for the small datasets. Meanwhile, IMG-AK consistently results in better per-
formance for large datasets. This could be explained by (i) the amount of data
available for pre-training and (ii) the degree of similarity between the target and
source domains that both determine the quality of the transfer-learning tech-
nique [24,27,29]. Bigger datasets should produce better representations. But data
similarity also needs to be taken into account. It is possible that for the classes
represented in the small datasets the current remote sensing representations are
enough and the best performance is acquired, as the domain source is similar.
However, in the case of the large datasets the quality of the representations gener-
ated with the ImageNet dataset (being over 2 times bigger than the BigEarthNet
dataset) gain over the domain similarity. To improve the performance of classi-
fication for the bigger datasets using RS-AK, more studies are needed and some
of those should investigate different fine-tuning strategies and improving the per-
formance of the BigEarthNet representation, which so far is the most promising
one.

Fig. 4. Comparison of confusion matrices for Cerrado-Savanna dataset. Classes are
Agriculture (AGR), Arboreal Vegetation (FOR), Herbaceous Vegetation (HRB) and
Shrubby Vegetation (SHR).
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The overall accuracy only gives a general idea of the performance, for datasets
in which the samples per class are not balanced we need to look with more detail
into the performance achieved for each class to know if there is still any room for
improvement. We generate confusion matrices to inspect the performance in more
detail. Figure 4a is the confusion matrix of the best model found for the Cerrado-
Savanna dataset by using RS-AK. The classes with originally more samples (FOR,
HRB) are the classes with better performance. For the SHR and AGR classes, the
misclassification is still high. However, while comparing with the results given by
using a non-pre-trained model obtained with V-AK (Fig. 4b), we can appreciate
a big improvement of 13% and 44% in the less representative classes (SHR, AGR)
acquired by the use of pre-trained blocks.

Table 3 summarizes the findings of the confusion matrices for datasets with
a major difference in the distribution of class samples. To measure the impact
of pre-trained blocks, in this table, we compare the performance achieved for the
minority and majority classes, with and without pre-training. We notice that while
using pre-trained blocks, the recall of the least representative classes in all datasets
increases between 7% and 44 % while the values for majority classes slightly
decrease between 1% and 9%. However, the overall accuracy is impacted more by
the majority class, ignoring the large improvements on the minority classes. For
remote sensing applications in which the class distribution is non-balanced, this
improvement for the minority class is important.

5.3 The Remote Sensing Block RS-AK

In this section, we aim to address Q3. Figure 5 shows the frequency at which each
source model was selected as part of the customized block for each dataset. For the
Savanna Cerrado, Coffee scenes, and So2Sat datasets the most chosen pre-trained
model was BigEarthNet. So2Sat was the most selected model in the case of UC
Merced dataset and it tied with BigEarthNet for the EuroSAT dataset. These
results are expected due to the big size of the datasets but differ from the find-
ings of [18] who conclude that the RESISC-45 representation achieves the highest
performance. We found the RESISC-45 representation to achieve the best results
only when used for classification on the BigEarthNet dataset. Our experiments
differ in the way we are using a more efficient framework for tuning a large set of
possible hyperparameters (including learning rate, optimizer, regularization, pre-
processing) and selecting the design choices using an oracle combining random
search and a greedy algorithm (explained in Sect. 3.3) while the authors of [18]
optimize by sweeping only a fixed set of hyperparameters (learning rate, weight
decay, training schedules, preprocessing). The authors of [18] utilized the same
ResNet50V2 architecture [8] to fine-tune the remote sensing datasets using SGD
with momentum set to 0.9, in our approach the pre-trained model is only a block
that is part of the full architecture (see Fig. 2). In [18], the comparison of the differ-
ent pre-trained models was made after finishing the fine-tuning using partial (100,
1000) and full training samples; in our study, the selection of the best-performed
model was based on the validation set inside the Auto-Keras framework. Consid-
ering that, we believe that our experiments have exploited the potential of each
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Table 3. Recall value of the classes with most and
least samples for the non-balanced datasets.

Dataset Class Non-pre Pre-trained

Cerrado Majority (73.6%) 0.99 0.98

savanna Minority (3.4%) 0.00 0.44

So2Sat Majority (12.3%) 0.95 0.99

Minority (0.6%) 0.76 0.94

BrazilDam Majority (57.9%) 0.95 0.86

Minority (42.1%) 0.78 0.85

Fig. 5. Remote sensing pre-trained
models selected for the 3-channels
datasets during the 3rd experi-
ment.

dataset representation by using a more sophisticated framework for the design of
the architecture and the hyperparameter tuning; moreover, our results are consis-
tent with the expectations of the remote sensing community about the promising
applications of BigEarthNet on remote sensing tasks [25].

6 Conclusions and FutureWork

We demonstrated how AutoML can be used to leverage the implementation of
deep learning models for satellite data tasks, outperforming some state-of-the-
art research results. We focused on classification tasks for multi-spectral satellite
datasets. We assessed the performance of the original Auto-Keras [12] (V-AK)
and modified its search space to create two different variants of its image classifi-
cation task: (i) initializing the architecture to morph with a model pre-trained on
ImageNet (IMG-AK) and (ii) adding models pre-trained on well-known remote
sensing datasets (RS-AK) such as BigEarthNet and UC Merced. Our experimen-
tal results on a varied selection of satellite datasets showed that for 3-channel
datasets, current AutoML systems can beat state-of-the-art results for land cover
classification tasks. Analyzing the performance of the two Auto-Keras variants ini-
tialized with pre-trained blocks (IMG-AK and RS-AK), we noticed that RS-AK
performed better for small datasets meanwhile IMG-AK was best for relatively
large datasets. Moreover, we showed that these pre-trained versions exhibit supe-
rior performance on minority classes. The use of bands different from RGB is a
common practice in remote sensing due to the extra spectral information that can
be extracted from such bands. Besides, the amount of samples available for train-
ing in remote sensing real-world problems is often small. Our remote sensing block
achieved the best results in such situations. This highlights the usefulness of a cus-
tomized satellite data search space in AutoML systems for real-world datasets.
The 13-channel pre-trained models can be downloaded and used for other remote
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sensing tasks; due to the number of channels these models are useful when work-
ing with Sentinel-2 satellite images. There is still room for improvement in such
remote sensing representations. In future work, we will first aim at improving the
transferability of the remote sensing pre-trained models and work on covering
the widely used image segmentation task. A more sophisticated transfer learn-
ing method, deep meta-learning [10], or customized techniques per dataset & task
(based on [24,29]) integrated into AutoML systems could improve the usage of
remote sensing data representations. Based on our experiments, we recommend
the remote sensing practitioners to make use of the existing open-source AutoML
tools. By making this framework publicly available, we enable the community to
further experiment with relevant remote sensing datasets and expect to expand
the use of AutoML for different applications.
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Abstract. Nowadays, live video streaming events have become a main-
stay in viewer’s communication in large international enterprises. Pro-
vided that viewers are distributed worldwide, the main challenge resides
on how to schedule the optimal event’s time so as to improve both the
viewer’s engagement and adoption. In this paper we present a multi-
task deep reinforcement learning model to select the time of a live video
streaming event, aiming to optimize the viewer’s engagement and adop-
tion at the same time. We consider the engagement and adoption of
the viewers as independent tasks and formulate a unified loss function
to learn a common policy. In addition, we account for the fact that
each task might have different contribution to the training strategy of
the agent. Therefore, to determine the contribution of each task to the
agent’s training, we design a Transformer’s architecture for the state-
action transitions of each task. We evaluate our proposed model on four
real-world datasets, generated by the live video streaming events of four
large enterprises spanning from January 2019 until March 2021. Our
experiments demonstrate the effectiveness of the proposed model when
compared with several state-of-the-art strategies. For reproduction pur-
poses, our evaluation datasets and implementation are publicly available
at https://github.com/stefanosantaris/merlin.

Keywords: Multi-task learning · Reinforcement learning · Live video
streaming

1 Introduction

Over the last years, video streaming technologies have been widely exploited by
large international enterprises as the main internal communication medium [3].
The enterprises schedule several live video streaming events to communicate with
thousands of their employees, who are spread around the world. To ensure that
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every employee/viewer attends the event without experiencing poor network per-
formance, the enterprises exploit distributed live video streaming solutions. Such
solutions account for each office’s internal bandwidth to overcome network con-
gestion and distribute the streaming video to viewers [4]. Although distributed
solutions ensure that every viewer can attend the event, an erroneously scheduled
time of an event negatively affects the viewer’s engagement, that is the percent-
age of the event’s duration that a viewer attends [1]. In practice, the viewers
partially attend the entire duration of an event, when an event is erroneously
scheduled on a non-preferred time e.g., day and hour, resulting in a low viewer’s
engagement. Moreover, the erroneously scheduled time impacts the number of
enterprise’s events that each viewer participates, reflecting on the viewer’s adop-
tion. In particular, the viewers with several time zones have low adoption, when
organizing the events and ignoring the viewer’s availability. Instead of manually
organizing the events, it is important for the enterprises to develop a mechanism
to learn how to schedule an event on the day and hour that optimizes both the
viewer’s engagement and adoption.

To organize an event, enterprises interact with a centralized agent that is
located in a company offering the live video streaming solution. However, cur-
rent streaming solutions do not account for the optimal selection of the time of
the next event. To overcome the shortcomings of current live video streaming
solutions, in this study we follow a reinforcement learning strategy and design
an agent that receives the viewer’s engagement and adoption as two different
reward signals for the selection of the event’s time. Reinforcement learning has
been proven an efficient means for optimizing a reward signal in various domains
such as robotics [18,28], games [19,27], recommendation systems [14,26], and so
on. However, such approaches train an agent on a single task, where the learned
policy maximizes a single cumulative reward. Nonetheless, the goal of the agent
in our case of the event’s time selection problem is to optimize both the viewer’s
engagement and adoption rewards. Recently, multi-task reinforcement learning
approaches have been proposed to generate a single agent that learns a pol-
icy which optimizes multiple tasks, with each task corresponding to a different
reward signal [8,11,23]. State-of-the-art approaches train an agent by sharing
knowledge among similar tasks [25]. For example, the attentive multi-task deep
reinforcement learning (AMT) model [5] exploits a soft-attention mechanism to
train a single agent on tasks that follow different distributions in the reward
signal. However, AMT transfers knowledge among similar tasks, while isolat-
ing dissimilar tasks during the agent’s training. This means that AMT achieves
sub-optimal performance when tasks have completely different characteristics,
as it happens in the case of live video streaming events. For instance, as we will
demonstrate in Sect. 2 the viewers have a low engagement behavior over time,
whereas the viewer’s adoption increases among consecutive events.

In addition, to efficiently select the event’s time, the agent has to capture
the evolution of the viewer’s engagement and adoption. Towards this aim, the
Transformer’s architecture has been emerged as a state-of-the-art learning model
across a wide variety of evolving tasks [24]. For example, in [17] the Transformer’s
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architecture has been exploited in a reinforcement learning strategy to provide
memory to the agent by preserving the sequence of the past observations. How-
ever, baseline approaches based on the Transformer’s architecture have not been
studied for multi-task reinforcement learning problems.

To address the shortcomings of state-of-the-art strategies, in this study we
propose a Multi-task lEaRning model for user engagement and adoption in Live
vIdeo streamiNg events (MERLIN), making the following contributions:

– We formulate the viewer’s engagement and adoption tasks as different Markov
Decision Processes (MDPs) and propose a multi-task reinforcement learning
strategy to train an agent that selects the optimal time, that is day and hour
of the enterprise’s next event aiming to maximize both tasks.

– We design a Transformer’s architecture to weigh the importance of each task
during the training of the agent, that is to determine the contribution of each
task to the learning strategy of the agent’s policy.

– We transfer knowledge among tasks through a joint loss function in a multi-
task learner component and compute a common policy that optimizes both
the viewer’s engagement and adoption in a live video streaming event.

Our experimental evaluation on four real-world datasets with live video stream-
ing events show the superiority of the proposed MERLIN model over baseline
multi-task reinforcement learning strategies. The remainder of this paper is orga-
nized as follows, in Sect. 2 we present the main characteristics of the live video
streaming events as well as the evolution of the viewer’s engagement and adop-
tion. In Sect. 3 we formally define the multi-task problem of scheduling live video
streaming events, and detail the proposed MERLIN model. Then, in Sect. 4 we
present the experimental evaluation of our model against baseline strategies, and
conclude the study in Sect. 5.

2 Live Video Streaming Events

Table 1. Statistics of the datasets with all the live video streaming events that took
place in four international enterprises from January 2019 until March 2021.

Enterprise 1 (E1) Enterprise 2 (E2) Enterprise 3 (E3) Enterprise 4 (E4)

#Events 833 1, 303 3, 025 7, 249

#Viewers 98, 296 59, 090 194, 026 508, 654

#Countries 63 97 167 150

#Time zones 5 12 19 22

Avg. Engagement (ut) 0.455 0.422 0.383 0.409

Avg. Adoption (vt) 1.275 6.905 8.528 6.375

We collected four real-world datasets with all the events that occurred in four
large enterprises worldwide from January 2019 until March 2021. The video
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Fig. 1. Evolution of viewer’s engagement ut and adoption vt in the events.

streaming solution of the events was supported by our company. We monitored
a set E of live video streaming events, where for each event et ∈ E on date t the
viewers reported to a backend server of our company the timezones, as well as
their joining and leaving times during the event. The datasets were anonymized
and made publicly available. In Table 1, we summarize the statistics of the four
evaluation datasets. Each enterprise has a different number of viewers, located
in several countries around the world with different time zones. We observe
that the viewers in Enterprise 1 are distributed to less time zones than the other
enterprises, whereas Enterprise 4 hosts the largest number of live video streaming
events with approximately 0.5M viewers in total. In Fig. 1, we present the average
viewer’s engagement to the live video streaming events throughout the time span.
We define the average engagement ut of the viewers that participated in the event
et ∈ E on the date t as follows:

ut =
1
n

n∑

i=1

ki

m
(1)

where n is the number of viewers that participated in the event et, ki is each
viewer’s attendance time and m is the duration of the event. In all enterprises
the viewers have low engagement, that is in all enterprises the viewers attended
less than the half duration of each live video streaming event with average
viewer’s engagement ut <0.5 (Table 1). In addition, the average viewer’s adop-
tion expresses how many events the viewers attended until a date t, where large
adoption scores indicate that viewers were willing to participate in the enter-
prise’s previous events. We formally define the average adoption vt as follows:

vt =
∑n

i=1 ci

n
(2)

where ci is the number of events that each viewer i attended prior to the event et.
We observe that the viewers in Enterprise 1 adopted less events than the other
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enterprises with average adoption vt = 1.275. On one of the last dates Enterprise
1 organized an all-hands event where all the viewers were invited, which explains
the pick of the adoption score for Enterprise 1 in Fig. 1. The adoption scores for
Enterprises 2, 3 and 4 increase over time in the last year, as enterprises started
to organize more events than the previous years for viewers who most of them
worked from home due to the COVID’19 pandemic.

3 Proposed Model

An enterprise organizes T = |E| events, where each event on a date/step t is
defined as et = (h, n,m, ut, vt, z), with h being a timestamp that corresponds to
the event’s day and hour. Notice that a date/step t has 24 different timestamps h
and an event et has a duration of m minutes with n viewers. The viewers attend
the event with different time zones which is represented as an one-hot vector
z ∈ R

dz , where dz is the number of different time zones of the viewers. The goal of
the enterprise is to organize each event et ∈ E on the timestamp h, to maximize
the average engagement ut and adoption vt of the viewers. We formulate the
scheduling of the next event as a Markov Decision Process (MDP), where the
agent interacts with the environment/enterprise by selecting the timestamp h of
the next event et+1 and maximizing the cumulative rewards. In particular, we
define the MDP of the live video streaming event as follows [21]:

Definition 1. Live Video Streaming Event MDP. At each step t =
1, . . . , T , the agent interacts with the environment and selects an action at ∈ A.
An action at corresponds to the selection of the timestamp h of the next event
et+1 based on the state st ∈ S of the enterprise. We define the state st of
the enterprise as a sequence of the l previous events st = {et−l, . . . , et}1. The
agent receives a reward r(st,at, st+1) ∈ R for selecting the action at ∈ A in
state st ∈ S, considering the enterprise transitions to state st+1 with a prob-
ability p(st+1|st,at) ∈ P. The goal of the agent is to find the optimal policy
πθ : S × A → R, where θ is the set of policy parameters, assigning a probability
πθ(at|st) of selecting an action at ∈ A provided a state st ∈ S. Having computed
the policy πθ, the agent maximizes the expectation of the discounted cumulative
reward maxE[

∑T
t=0 γtr(st,at, st+1)|πθ], with γ ∈ [0, 1] being the discount factor.

In our model, we focus on training a common agent that optimizes both the
viewer’s engagement ut and adoption vt. As mentioned in Sect. 2, the viewer’s
engagement and adoption behavior vary over time. Therefore, we first consider
the viewer’s engagement and adoption as independent tasks, and then train a
common agent to optimize the cumulative rewards of both tasks at the same
time. We define the multi-task Reinforcement Learning (RL) problem in live
video streaming events as follows [5,6,8,11]:

1 We consider only the l previous events to capture the most recent viewers behavior.
As we will demonstrate in Sect. 4, considering large values of l does not necessarily
improve the model’s performance.
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Definition 2. Multi-task RL in Live Video Streaming. In the multi-task
RL problem for live video streaming events, we consider a set of tasks T , that is
the engagement and adoption tasks with |T | = 2. We formulate each task τ ∈ T
as a different MDP, where the tasks have the same state S and action space A
with a different set of rewards R. For the engagement task we compute reward
r(st,at) as the average engagement ut in Eq. 1, and for the adoption task the
reward corresponds to the average adoption vt in Eq. 2 at the t-th step. The goal
of the agent is to learn a common policy πθ that solves each task τ ∈ T , by
maximizing the expected return maxEτ∼T [[

∑T
t=0 γtr(sτ

t ,aτ
t , sτ

t+1)|πθ]] for both
tasks. sτ

t is the state of the agent and aτ
t is the action taken by the agent for the

task τ at the t-th step.

3.1 MERLIN’s Architecture

Fig. 2. The architecture of the proposed MERLIN model for the viewer’s engagement
and adoption tasks. MERLIN consists of: (i) the policy (ii) task importance and (iii)
multi-task learner components.

As illustrated in Fig. 2, the proposed MERLIN model consists of three main
components: the policy, task importance and multi-task learner components.
The goal of MERLIN is to compute a common policy πθ that maximizes the
future rewards for the viewer’s engagement and adoption tasks τ ∈ T .
- Policy Component. The role of the policy component is to compute the
action aτ

t of both tasks. During training, the agent interacts with two environ-
ments in the enterprise, that is the different two tasks τ ∈ T . The input of the
policy component is the l previous events {eτ

t−l, . . . , e
τ
t } of each task. We imple-

ment a shared state representation module to compute the state sτ
t of task τ .

In our architecture, we design the respective two actors to generate the actions
aτ

t for the engagement and adoption tasks [8]. Then, the generated state-action
transitions by both actors are stored in the replay buffer with size lb to train the
common agent.
- Task Importance Component. The task importance component determines
the contribution of each task to the learning process of the agent. Notice that
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state-of-the-art RL strategies are designed to learn a policy of a single agent
that optimizes similar tasks, ignoring the information of each task’s state-action
transition [25]. Instead, in the proposed MERLIN model to account for the
impact of each state-action transition on the policy πθ, we consider the encoder
model of the Transformer’s architecture for the state-action transition sequences.
In doing so, we capture the information of the state-action transitions of both
the engagement and adoption actors over time [15,17]. In addition, the task
importance component computes a weight matrix M ∈ R

lb×|T | which reflects on
the contribution of each actor to the learning process of the policy πθ.
- Multi-task Learner Component. The role of the multi-task learner compo-
nent is to optimize the policy πθ based on the lb state-action transitions stored
in the replay buffer. Provided the stored state-action transitions in the replay
buffer and the weight matrix M of the task importance component, the multi-
task learner updates the policy parameters through a joint loss function Lpolicy

and the parameters of the task importance component via the Llearner function,
following the temporal-difference learning strategy [21]. In particular, matrix M
first weighs the state-action transitions in the replay buffer, and then the multi-
task learner optimizes the joint loss function Lpolicy to compute the parameters
of the policy component. In addition, the multi-task learner learns its parame-
ters via the joint loss function Llearner, and updates the parameters of the task
importance component accordingly.

3.2 Policy Component

At each step t = 1, . . . , T , the policy component takes as an input the l previous
events {eτ

t−l, . . . , e
τ
t } of each task τ ∈ T . The goal of the policy component

is to learn a policy πθ that solves each task τ . Provided that the engagement
and adoption tasks have the same state space S and action space A, the policy
component consists of a shared state representation module and two actors, that
is the engagement and adoption actors.
- State Representation Module. The state representation module takes as
an input the l previous events {eτ

t−l, . . . , e
τ
t }, and generates the state sτ

t of each
task τ at the t-th step. We represent each event eτ

t as a dx-dimensional vector
xτ

t ∈ R
k concatenating the event’s features xτ

t = Concat(h, n,m, g, o, z). Given
the representations {xτ

t−l, . . . ,x
τ
t } of the l previous events, we compute the ds-

dimensional state representation vector sτ
t ∈ R

ds as follows: [29,30]:

sτ
t = ξw(xτ

t ,Δ(t)) = Time-LSTM(xτ
t ,Δ(t)) (3)

where w are the trainable parameters of the Time-LSTM function ξ(·) [29].
Notice that Time-LSTM models the time difference Δ(t) of the event eτ

t and the
previous event eτ

t−1 as follows:
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gt = σ

(
xτ

t Wxg + σ(Δ(t)Wg + bg)
)

qt = ft � qt−1 + it � gt � σ

(
xτ

t Wxq + st−1Wsq + bq

)

ot = σ(xτ
t Wxo + Δ(t)Wo + sτ

t−1Wso + qt � Wqo + bo)
sτ
t = ot � σ(qt)

(4)

where gt is the time dependent gate influencing the memory cell and the output
gate ot, qt is the memory cell of LSTM, and ft and it are the forget and input
gates, respectively [10,30]. The symbol � represents the Hadamard element-wise
product and σ(·) is the sigmoid function. The different weight matrices W∗ in
Eq. 4 transform the event embedding xτ

t and the time difference Δ(t) to the ds-
dimensional latent space, and b∗ are the respective bias terms. Notice that the
time difference Δ(t) is important to capture the similarity among consecutive
events in the state sτ

t . Provided that the engagement and adoption of the viewers
vary over time, our goal is to capture the most recent viewer’s behaviour in the
state space sτ

t . Therefore, the Time-LSTM in Eq. 4 tends to forget events with
high time difference, and focuses on the recent events.
- Engagement and Adoption Actors. The engagement and adoption actors
take as input the state sτ

t of each task τ ∈ T . The state representation sτ
t

captures the evolution of the enterprise over time. Given the state sτ
t and a

policy πθ, each actor computes a da-dimensional action vector aτ
t ∈ R

da , where
da is the number of all the possible timestamps. Each dimension of the action
vector aτ

t corresponds to the probability of selecting the timestamp h for the
next event et+1. We implement a two-layer perceptron (MLP) to transform the
state vector sτ

t ∈ R
b to the action vector aτ

t ∈ R
u as follows:

aτ
t = πθ(sτ

t ) = MLP (sτ
t ) (5)

where θ are the trainable parameters of the MLP, that is the policy parameters
of the agent. Given the action vector aτ

t of each actor, we normalize the action
vector aτ

t based on the softmax function and select the action with the highest
value using the ε-greedy exploration technique [21]. The generated state-action
transitions are stored in the replay buffer to learn the optimal policy πθ based
on the past experiences of each task.

3.3 Task Importance Component

The goal of the task importance component is to determine the contribution
of each task to the learning strategy of the policy πθ. The input of the task
importance component is the set of state-action transitions stored in the replay
buffer by the engagement and adoption actors. At each step t = 1, . . . , T , the
engagement and adoption actors store in the replay buffer the respective state-
action transition (sτ

t ,aτ
t ) of the task τ ∈ T . Having stored the lb state-action

transitions of each task τ in the replay buffer, the task importance component
computes the similarity among the tasks. As the replay buffer contains a sequence
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of state-action transitions, we employ the encoder of the Transformer’s model to
capture the information of the lb states to dy-dimensional vectors Yτ ∈ R

lb×dy

[24]. To overcome any stability problems that might occur at the early stages of
the training, we implement the Gated Transformer(-XL) (GTrXL) model of the
Transformer’s architecture as follows [17]:

Yτ = ψη({sτ
t−lb

, . . . , sτ
t }) = GTrXL({sτ

t−lb
, . . . , sτ

t }) (6)

where {sτ
t−lb

, . . . , sτ
t } is the states sequence of the task τ stored in the replay

buffer. Parameters η denote the trainable weights of the GTRrXL function
ψ(·) [17].

By computing the dy-dimensional vectors, that is the rows of matrix Yτ of
each task τ , we deduce the importance of each state sτ

t in the actions selected by
the actor over time for task τ . Therefore, we can compute a weight matrix M ∈
R

lb×|T | of each state sτ
t during the training of the agent’s policy πθ. To calculate

the weight matrix M, we employ a two-layer MLP with softmax activation:

M = λω(Yτ ) = softmax

(
MLP (Yτ )

)
(7)

where ω are the parameters of the MLP transformation function λ(·). Intuitively,
we give stronger preference to the states sτ

t that contribute more to the learning
strategy of the agent than the rest of the states. This means that our agent
learns the policy πθ based on the most important states sτ

t .

3.4 Multi-task Learner Component

According to our architecture in Sect. 3.1 the multi-task learner optimizes the
joint loss function Lpolicy to compute the parameters w and θ of the policy
component of Eqs. 3 and 5. In addition, based on the joint loss function Llearner

we calculate the parameters ζ of the multi-task learner component, and update
the parameters η and ω of the task importance component of Eqs. 6 and 7.

The input of the multi-task learner component is the lb state-action tran-
sitions, of each task τ , stored in the replay buffer, and the weight matrix M
generated by the task importance component. The multi-task learner compo-
nent calculates the state-action value Q(sτ

t ,aτ
t ), which is an approximation of

the expected cumulative rewards of the agent, given the state sτ
t and action aτ

t .
We compute the state-action value Q(sτ

t , aτ
t ), as follows:

Q(sτ
t ,aτ

t ) = φζ(sτ
t ,aτ

t ) = MLP (sτ
t ⊕ aτ

t ) (8)

where ζ are the trainable parameters of the MLP function φ(·), and ⊕ denotes
the concatenation of the state sτ

t and action aτ
t vectors. Intuitively, the value

Q(sτ
t ,aτ

t ) corresponds to the benefit of the agent in terms of the expected reward
for each task τ , when taking the action aτ

t given the state sτ
t and following the

policy πθ. By computing the value Q(sτ
t ,aτ

t ) based on Eq. 8, we can optimize
the joint loss function Lpolicy with respect to the parameters w and θ as follows
[13,20]:
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w ← w − α∇wLpolicy(πθ)
θ ← θ − α∇θLpolicy(πθ)

min
w,θ

Lpolicy = − 1
|T |lb

∑
τ∈T

∑lb
k=0 logπθ(aτ

k, sτ
k)[r(sτ

k,aτ
k) − Mτ,kQ(sτ

k,aτ
k)]

(9)

where α is the learning rate. The term [r(sτ
k,aτ

k) − Mτ,kQ(sτ
k,aτ

k)] corresponds
to the benefit of taking the action aτ

k given the state sτ
k. The expected value

Q(sτ
k,aτ

k) is weighted by Mτ,k so as to strengthen/weaken the contribution of
the state sτ

k when learning the policy πθ, accordingly.
The joint loss function Llearner is formulated as a minimization mean squared

error function with respect to parameters η ω and ζ as follows:

η ← η − α∇ηLlearner(πθ)
ω ← ω − α∇ωLlearner(πθ)
ζ ← ζ − α∇ζLlearner(πθ)

min
η,ω,ζ

Llearner = 1
|T |lb

∑
τ∈T

∑lb
k=0

(
r(sτ

k,aτ
k) − Mτ,kQ(sτ

k,aτ
k)

)2
(10)

Overall, to train our model we consider that the agent interacts with the
environment in an episodic manner [21]. This means that the agent interacts
with the environment within a finite horizon of T interactions/events. We train
our model for multiple episodes and optimize the joint loss functions Lpolicy and
Llearner in Eqs. 9 and 10 with respect to the parameters w, θ, η ω and ζ through
backpropagation with the Adam optimizer [12].

4 Experiments

4.1 Setup

- Environment. In our experiments, we evaluate the performance of the pro-
posed model to select the timestamp h of each event that maximizes the viewer’s
engagement ut and adoption vt. For each dataset we order the events accord-
ing to the timestamps, and consider the first 70% of the events as training set
Etrain, 10% for validation Eval and 20% for testing Etest. The agent interacts
with an emulated environment2 which models the behavioural policy πβ of the
events of each dataset. Following [7,9,30], to emulate the behavioural policy πβ

we train a multi-head neural network on each dataset, which takes as input a
sequence of events and outputs the average engagement and adoption of the
next event. During the agent’s training, we initialize the reinforcement learning
environment with the events of the training set Etrain. To initialize the state
sτ
t of the agent, we randomly select an event et ∈ Etrain of the training set.
2 Provided the high risk that might hinder when evaluating the learned policy πθ

directly to the enterprises, in our study we perform off-line A/B testing based on
the events of each dataset [9,30].
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At each step t = 1, . . . , T , the agent takes an action aτ
t for each task τ . Then,

the agent receives the average engagement ut and adoption vt generated by the
behavioural policy πβ as a reward of each task. To evaluate the learned policy πθ,
we initialize the reinforcement learning environment with the events of the test
set Etest. Similar to the training strategy, the state sτ

t of the agent is initialized
by randomly selecting an event et ∈ Etest from the test set. The agent takes an
action aτ

t and receives the reward by the multi-head network which models the
behaviour policy πβ of the test set Etest.
- Evaluation Metrics. We evaluate the performance of our proposed model
in terms of the step-wise variant of Normalized Capping Importance Sampling
(NCIS) for each task as follows: [22,30]:

NCIS =
∑T

t=1
ρ̄r(sτ

t ,aτ
t )∑T

k=1 ρ̄

ρ̄ = min{δ,
∏T

t=1
πθ(a

τ
t |sτ

t )
πβ(aτ

t |sτ
t )

}
(11)

where ρ̄ is the max capping of the importance ratio, and δ is a threshold to ensure
small variance and control the bias of the policy πθ towards the behavioural
policy πβ . The term ρ̄r(sτ

t ,aτ
t ) is the capped importance weighted reward of

a task τ . Intuitively, by adopting different rewards in the term ρ̄r(sτ
t ,aτ

t ), we
can measure the performance of the policy πθ to approximate the behavioural
policy πβ . By setting each reward r(sτ

t ,aτ
t ) equal to the viewer’s engagement and

adoption as in Sect. 3, we can evaluate the performance of the proposed model
based on the respective metrics Eng. NCIS and Ad. NCIS for both tasks. As the
emulated environment is initialized randomly, we repeated our experiments five
times and report average Eng. NCIS and Ad. NCIS in our experiments.
- Baselines. We compare the proposed MERLIN model against the following
strategies: FeedRec [30], AMT3 [5], IMPALA4 [8] and PopART [11]. As there are
no publicly available implementations of FeedRec and PopART, we implemented
both from scratch and published our source codes5.
- Parameter Configuration. For each examined model, we tuned the hyper-
parameters on the validation set, following a grid-selection strategy. In FeedRec,
we set the state representation dimensionality ds = 256 for Enterprises 1 and 3,
and ds = 128 for Enterprises 2 and 4. At the t-th step, the FeedRec model takes
as an input all the events occurred prior to the current step with l = 0. In AMT
we fix a ds = 128 dimensional state representation for all datasets, with a time
window l = 30 previous events. In IMPALA and PopART the state representa-
tion’s dimensionality is fixed to ds = 64 for all Enterprises. The window length l
in IMPALA and PopART is set to 20 and 23, respectively. In the proposed MER-
LIN model we use a ds = 128 dimensional state representation for Enterprises 1
and 4, and 256 and 64 for Enterprises 2 and 3, respectively. The window length l
is fixed to 10 for Enterprise 1, and 15 for Enterprises 2, 3 and 4. In addition, the
size of the replay buffer lb is set to 128 for all Enterprises. In all the examined

3 https://github.com/braemt/attentive-multi-task-deep-reinforcement-learning.
4 https://github.com/deepmind/scalable agent.
5 https://github.com/stefanosantaris/merlin.

https://github.com/braemt/attentive-multi-task-deep-reinforcement-learning
https://github.com/deepmind/scalable_agent
https://github.com/stefanosantaris/merlin
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models, we follow an ε-greedy exploration-exploitation strategy and set ε = 0.1.
The discount factor γ is fixed to 0.92 and the learning rate is set to α = 0.001.
In the emulated environment, we set the number of interactions/events to 200
and the number of episodes to 300.

All our experiments were conducted on a single server with an Intel Xeon
Bronze 3106, 1.70 GHz CPU. The operating system of the server was Ubuntu
18.04 LTS. We accelerated the training of the model using the GPU Geforce
RTX 2080 Ti graph card. Our proposed MERLIN model was implemented in
Pytorch 1.7.1 and we created the reinforcement learning environment with the
OpenAI Gym 0.17.3 library.

4.2 Performance Evaluation

Table 2. Performance comparison of the examined models on the engagement and
adoption tasks in terms of average Eng. NCIS and Ad. NCIS. Bold values indicate the
best method using a statistical significance t-test with p < 0.01.

Task Model Datasets

E1 E2 E3 E4

Avg. Eng. NCIS FeedRec 0.553 0.591 0.423 0.467

AMT 0.462 0.513 0.371 0.380

IMPALA 0.452 0.493 0.352 0.314

PopART 0.421 0.460 0.432 0.401

MERLIN 0.622 0.663 0.512 0.552

Avg. Ad. NCIS FeedRec 8.122 15.271 14.393 27.292

AMT 6.284 12.781 11.842 20.962

IMPALA 5.023 10.523 9.232 18.284

PopART 4.891 9.362 9.013 16.642

MERLIN 10.112 17.292 16.961 29.554

In Table 2, we evaluate the performance of the examined models in terms of aver-
age Eng. NCIS and Ad. NCIS over the five trials in the emulated environment
for the engagement and adoption tasks, respectively. The proposed MERLIN
model significantly outperforms the baselines in all datasets. This indicates that
MERLIN can efficiently learn a common policy πθ that optimizes both tasks con-
currently. Compared with the second best method FeedRec, MERLIN achieves
relative improvements of 15.76 and 15.96% in terms of Eng. NCIS and Ad.
NCIS, respectively. FeedRec performs better than the other baseline approaches
because FeedRec formulates a joint loss function for training the agent on the
different tasks. However, each task in FeedRec contributes equally when learning
the policy πθ, and therefore the agent ignores the evolutionary patterns and the
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Fig. 3. The Eng. reward and Ad.reward based on Eqs. 1 and 2 of the examined models
for the engagement and adoption tasks, when the interactions/events evolve in the
emulated environment.

importance of the state-action transitions for each task. The proposed MER-
LIN model overcomes this problem by integrating the training parameters of the
task importance component in the common learning strategy of the policy and
multi-task learner components. In doing so, MERLIN balances the contribution
of each task to the generated policy.

In Fig. 3 we report the Eng. reward and Ad. reward based on Eqs. 1 and 2 for
the engagement and adoption tasks, respectively, when the interactions/events
evolve in the emulated environment. We observe that MERLIN constantly
achieves higher rewards than the other baseline approaches at the first inter-
actions. This demonstrates the effectiveness of MERLIN to weigh the impor-
tance of each task during training and learn a policy that optimizes both tasks.
In addition, we observe that the Ad. reward in the adoption task of MERLIN
converges faster in Enterprises 2, 3 and 4 than in Enterprise 1. As discussed
in Sect. 2, the viewer’s adoption in Enterprises 2, 3 and 4 increase over time.
Therefore, the task importance component promotes the adoption task during
the training of the policy, thus achieving high reward in Enterprises 2, 3 and 4
at the beginning of the interactions.

4.3 Multi-task Vs Single-Task Learning in Parameter Configuration

In the next set of experiments we compare the proposed MERLIN model with its
variant MERLIN-S. In particular, the agent of the variant MERLIN-S is trained
on a single task, ignoring the multi-task learning strategy of MERLIN. In Fig. 4,
we study the impact of the state representation’s dimensionality ds on the perfor-
mances of MERLIN and MERLIN-S in terms of Eng. NCIS and Ad. NCIS for the
engagement and adoption tasks, when varying ds in {32, 64, 128, 256, 512}. We
observe that MERLIN achieves the best performance when setting 128 dimen-
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Fig. 4. Impact of the state representation’s dimensionality ds on the performance of
MERLIN and its single-task variant MERLIN-S for the engagement and adoption tasks.

Fig. 5. Impact of the window length l on MERLIN and MERLIN-S.

sions for Enterprises 1 and 4, 256 for Enterprise 2, and 64 for Enterprise 3. By
increasing the dimensionality ds of the state representation, the agent of MER-
LIN achieves similar performances in both tasks. We observe that MERLIN
significantly outperforms the MERLIN-S model in both tasks, indicating the
importance of the multi-task learning strategy to efficiently extract knowledge
from both tasks. In Fig. 5, we present the impact of the window length l on MER-
LIN and MERLIN-S. We vary the window length l from 5 to 20 by a step of 5.
MERLIN requires 10 past events in Enterprise 1, and 15 events in Enterprises 2,
3 and 4. Moreover, we observe that MERLIN constantly outperforms the single
task variant MERLIN-S. Notice that MERLIN-S achieves the best performance
when the window length l is set to 15 past events for Enterprise 1, and 20 for
Enterprises 2, 3 and 4. Therefore, MERLIN-S requires a higher window length l
than MERLIN in all Enterprises, as MERLIN-S omits the auxiliary information
of the other task when training the agent.
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5 Conclusions

In this study, we presented a multi-task reinforcement learning strategy to train
an agent so as to select the optimal time of a live video streaming event in large
enterprises, aiming to improve the viewer’s engagement and adoption. In the
proposed MERLIN model, we formulate the engagement and adoption tasks as
different MDPs and design a joint loss function to extract knowledge from both
tasks. To determine the contribution of each task to the training strategy of
the agent, we implement a task importance learner component that extracts the
most important information, that is the most important state-action transitions
from the replay buffer based on the Transformer’s architecture. Having weighted
the transitions, the agent of MERLIN learns a common policy for both tasks.
Our experiments with four real-world datasets demonstrate the superiority of
our model against several baseline approaches in terms of viewer’s engagement
and adoption. The proposed MERLIN model can significantly help enterprises in
selecting the optimal time of an event. Provided that nowadays the majority of
the events are online, the enterprises want to ensure that their employees/viewers
adopt the video streaming events with high engagement. This means that with
the help of MERLIN in scheduling the live video streaming events, the enterprises
can communicate with their employees efficiently, which as a consequence reflects
on significant productivity gains [2]. An interesting future direction is to study
the influence of distillation strategies on the proposed MERLIN model [16].
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Abstract. Online hate speech is a phenomenon with considerable con-
sequences for our society. Its automatic detection using machine learn-
ing is a promising approach to contain its spread. However, classifying
abusive language with a model that purely relies on text data is lim-
ited in performance due to the complexity and diversity of speech (e.g.,
irony, sarcasm). Moreover, studies have shown that a significant amount
of hate on social media platforms stems from online hate communities.
Therefore, we develop an abusive language detection model leveraging
user and network data to improve the classification performance. We
integrate the explainable AI framework SHAP (SHapley Additive exPla-
nations) to alleviate the general issue of missing transparency associated
with deep learning models, allowing us to assess the model’s vulnerabil-
ity toward bias and systematic discrimination reliably. Furthermore, we
evaluate our multimodel architecture on three datasets in two languages
(i.e., English and German). Our results show that user-specific timeline
and network data can improve the classification, while the additional
explanations resulting from SHAP make the predictions of the model
interpretable to humans.

Keywords: Hate speech · Abusive language · Classification model ·
Social network · Deep learning · Explainable AI

1 Introduction

Hate speech is a severe challenge that social media platforms such as Twitter and
Facebook face nowadays. However, it is not purely an online phenomenon and
can spill over to the offline world resulting in physical violence [36]. The Capitol
riots in the US at the beginning of the year are a tragic yet prime example.
Therefore, the fight against hate speech is a crucial societal challenge.

The enormous amount of user-generated content excludes manual monitoring
as a viable solution. Hence, automatic detection of hate speech becomes the
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key component of this challenge. A technology to facilitate the identification
is Machine Learning. Especially in recent years, Natural Language Processing
(NLP) has made significant progress. Even if these advances also enhanced hate
speech classification models, there is room for improvement [29].

However, gaining the last points of the F1 score is a massive challenge in
the context of hate speech. Firstly, abusive language has various forms, types,
and targets [32]. Secondly, language itself is a complex and evolving construct;
e.g., a word can have multiple meanings, people create new words or use them
differently [29]. This complexity exacerbates classifying abusive language purely
based on textual data. Therefore, researchers have started to look beyond pure
text-driven classification and discovered the relevance of social network data [10].
Kreißel et al. [11], for example, showed that small subnetworks cause a significant
portion of offensive and hateful content on social media platforms. Thus, it is
beneficial to integrate network data into the model [3,5,6,15,22]. However, to
the best of our knowledge, no one has investigated the impact of combining the
text data of the post that is meant to be classified, the user’s previous posts,
and their social network data.

An issue with such an approach is its vulnerability to bias, meaning that a
system “systematically and unfairly discriminate[s] against certain individuals or
groups of individuals in favor of others” [7, p. 332]. Deep Learning (DL) models
often used in NLP are particularly prone to this issue because of their black-box
nature [17]. Conversely, a system combining various data sources and leveraging
user-related data has a more considerable potential of discriminating individuals
or groups. Consequently, such systems should integrate eXplainable AI (XAI)
techniques to address this issue and increase trustworthiness.

We address the following two research questions in our paper concerning the
two discussed aspects:

RQ1 Can abusive language classification be improved by leveraging users’ pre-
vious posts and their social network data?

RQ2 Can explainable AI be used to make predictions of a multimodal hate
speech classification model more understandable?

To answer the research questions, we develop an explainable multimodal
classification model for abusive language using the mentioned data sources1. We
evaluate our model on three different datasets—Waseem [33], Davidson [4],
and Wich [35]. Furthermore, we report findings of integrating user and social
network data that are relevant for future work.

2 Related Work

Most work in the abusive language detection domain has focused on developing
models that only use the text data of the document to be classified [16,24,29].

1 Code available on https://github.com/mawic/multimodal-abusive-language-
detection.

https://github.com/mawic/multimodal-abusive-language-detection
https://github.com/mawic/multimodal-abusive-language-detection
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Other works, however, have started to integrate context-related data into abu-
sive language detection [18,24,29]. One promising data source is the users’ social
network because it has been shown that hater networks on social media plat-
forms cause a considerable amount of online hate [8,11]. Combining network and
text data from Twitter was already successfully applied to predict whether an
account is verified [2] or to identify extremist accounts [38]. In the case of abusive
language, Papegnies et al. [19] built a classification model using local and global
topological measures from graphs as features for cyberbullying detection (e.g.,
average distance, betweenness centrality). A similar approach has been applied
by Chatzakou et al. [3], but they also integrated user-related data (e.g., number
of posts, account age) and textual data (e.g., number of hashtags). This approach
was picked up and extended by other researchers [5,6] (e.g., integrating users’
gender, geolocation) who confirmed the usefulness of additional context-related
data sources. They all have in common that the network features are only topo-
logical measures and do not contain any information about the relations. Mishra
et al. [15] addressed this downside and modeled the users’ follower network with
a node2vec embedding that serves as an additional input for the classification
model. Ribeiro et al. [22] developed a similar model; they, however, used the
graph embedding GraphSAGE to model the retweet network and combined it
with a document embedding for the text data [9]. For this purpose, they collected
a dataset that has a fully connected network. Unfortunately, they released only
the network data and the document embeddings but not the raw text. Recently,
Li et al. [12] refined this approach.

Another data source that supports abusive language detection is the user’s
history of previous posts. Qian et al. [20] improved a hate speech classifier for
tweets by adding the previous tweets of the author. Raisi and Huang [21] pro-
posed a model that leverages the user’s history of posts and the post directed
to the user to calculate a bully and victim score for each user. However, to the
best of our knowledge, no one has integrated user’s previous posts and social
networks into abusive language detection.

Besides multimodality, XAI in abusive language detection is another topic
that we have to consider in this section. Since XAI is a relatively new field,
it has not been frequently applied to abusive language detection with some
exceptions [14,18,27,30,31,34]. All models use only the text as input, except
[30]. Their model also relies on network data. But the network submodel is very
simple; it is only a binary vector encoding whether the user follows pre-defined
hater accounts. Furthermore, the explanations for this submodel are not detailed.
Hence, the explainable model that we propose is an advancement.

3 Data

For our experiment, we use three abusive language datasets that are from Twit-
ter. Table 1 provides an overview of the datasets’ characteristics. Figure 1 visu-
alizes the social network graph of the datasets.
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Table 1. Overview of the datasets’ statistics

Davidson Waseem Wich

Number of tweets 14,939 16,907 68.443

Number of users 6,725 2,024 939

Avg. number of tweets per user 2.22 8.35 72.9

Class Hate Offensive Neither Sexism Racsim None Offensive Non-offensive

Class distribution 814 11,800 2,325 3,430 1,976 11,501 26,205 42,238

Network: avg. degree 1.85 3.44 1.63

Network: graph density 0.0005 0.0034 0.0002

Davidson Davidson et al. [4] released an English abusive language dataset con-
taining 24,783 tweets annotated as hate, offensive, or neither. Unfortunately, the
dataset does not contain any data about the user or the network. Therefore, we
used the Twitter API to get the original tweets and the related user and network
data. Since not all tweets are still available on Twitter, our dataset has shrunk
to 14,939 tweets.

Waseem Waseem et al. [33] published an English abusive language dataset con-
taining 16,907 tweets annotated as sexist, racist, or none. Similar to Davidson,
the dataset does not provide any user- or network-related data. The authors
of [15] shared their enriched Waseem dataset with us containing the user and
network data.

(a) Davidson (blue: hate-
ful users, red: offensive
users, green: standard
user)

(b) Waseem (blue: racist
user, red: sexist user,
green: standard user)

(c) Wich (red: offen-
sive user, green: standard
user)

Fig. 1. Visual comparison of the network topologies. Standalone nodes or very small
subnetworks that do not connect to the main graph for Davidson and Waseem are
excluded. (Color figure online)

Wich Wich et al. [35] released a German offensive language dataset containing
4,647,200 tweets annotated as offensive or non-offensive. Most of the tweets are
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pseudo-labeled with a BERT-based classifier; a smaller portion of the dataset
is also manually annotated. The difference between this dataset and the other
two is the way it was collected. Wich et al. applied a snowball sampling strategy
focusing on users. Starting from seed users, the authors collected the connected
users and their tweets based on their offensiveness. Hence, the network graph has
a star-shaped network topology contrary to the other two, as depicted in Fig. 1c.
We select only 68,443 tweets and the related user and network information to
better handle the data. The manually annotated tweets are used as a test set.

4 Methodology

The section is split into two subsections. The first one deals with the model
architecture and training of the multimodal classification model. The second
one considers the XAI technique that we use to explain the predictions of our
multimodal model.

4.1 Multimodal Classification Model

Architecture. The multimodal classification model for abusive language con-
sists of three submodels that process the different inputs:

1. Text model: It processes the text data of the tweet that is meant to be
classified. For this purpose, we use DistilBERT with a classification head.

2. History model: It processes the tweet history of the user.
3. Network model: It processes the social network data of the tweet’s user.

To model the network data, we use the vector embedding framework Graph-
SAGE.

The three models’ outputs are combined in a linear layer, which outputs the
prediction for the tweet to be classified.

Text Model. The text data of the tweet is fed into a pre-trained DistilBERT
model with a classification head. DistilBERT is a lighter and faster version of
the transformer-based model BERT [23]. Despite the parameter reduction, its
performance is comparable to BERT in general [23] and in the context of abusive
language detection [28]. In order to implement the model, we use the Transform-
ers library from Hugging Face2 and its implementation of DistilBERT [37]. As
pre-trained models, we use distilbert-base-uncased for the English datasets
and distilbert-base-german-cased for the German one. Before tokenizing
the text data, we remove username mentions from the tweets, but we keep the
“@” from the mention3. The purpose of this procedure is to avoid the classifier
memorizing the username and associating it with one of the classes. But the
classifier should recognize that the tweet addresses another user.

2 https://huggingface.co/transformers/.
3 If a user is mentioned in a tweet, an “@” symbol appears before the user name.

https://huggingface.co/transformers/
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History Model. We use a bag-of-words model to model the user’s tweet his-
tory, comprising the 500 most common terms from the dataset based on
term frequency-inverse document frequency (tf-idf). For each user, it is a 500-
dimensional binary vector that reflects which of the most common terms appear
in the user’s tweet history.

Network Model. In order to model the user’s social network, we apply the induc-
tive representation learning framework GraphSAGE [9]. The advantage of an
inductive learning framework is that it can be applied to previously unseen
data, meaning the model can generate an embedding for a new user in a net-
work, which is a desirable property for our use case. Our GraphSAGE model
is trained on the undirected network graph of the social relations. Furthermore,
we assign to each user/node a class derived from the labels of their tweets. The
output of the model is a 32-dimensional graph embedding for each user. The
graphs are modeled as follows:

– Davidson: An edge between two users exists if at least one follows the other.
A user is labeled as hater, if he or she has at least one hate tweet; as offensive,
if he or she has at least one offensive tweet, but no hate tweet; as neither, if
he or she has only neither tweets.

– Waseem: An edge between two users exists if at least one follows the other.
A user is labeled as racist, if he or she has at least one tweet labeled as racist;
same for sexist; as none, if he or she is neither racist nor sexist.

– Wich: An edge between two users exists if at least one has retweeted the
other. A user is labeled as offensive, if he or she has at least three offensive
tweets.

Users without network connections in their respective dataset, so-called soli-
tary users, do not receive a GraphSAGE embedding; their embedding vector
only contains zeros.

The output of the three models is concatenated to a 534 or 535 respectively
dimensional vector (DistilBERT: 2 or 3 dimensions depending on the output
speech classes; GraphSAGE: 32 dimensions; bag-of-words: 500 dimensions) and
fed into a hidden linear layer. This final layer with softmax activation reduces
the output to the number of classes according to the selected dataset.

Training. Several challenges have to be faced when it comes to training the
model. In terms of sampling, we cannot randomly split the dataset: We have to
ensure that tweets of any user do not appear in the train and test set; otherwise,
we would have a data leakage. Therefore, sampling is done on the user level.
Users are categorized into groups based on their class and the existence of a
network. We gather six different categories for Waseem and Davidson and
four categories for Wich. The train, validation, and test set all contain users
from different classes by sampling these categories to prevent bias toward certain
user groups. Due to the different tweet counts per user, the train set size varies
between 60–70% depending on the dataset.
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We under- and oversample the classes during training since all datasets are
unbalanced. Moreover, we have to train the three submodels separately because
the unsupervised training process of GraphSAGE cannot be combined with the
supervised training of DistilBERT. DistilBERT is fine-tuned for two epochs with
a batch size of 64 and an Adam optimizer (initial learning rate of 5 × 10−5 and
a weight decay of 0.01). We train our GraphSAGE model, consisting of three
hidden layers with 32 channels each, for 50 epochs with an Adam optimzer (initial
learning rate of 5 × 10−3). The bag-of-words model does not require training.
After training the submodels, we freeze them and train the hidden layer (10
epochs; Adam optimizer with an initial learning rate of 1 × 10−3).

4.2 Explainable AI Technique

We set model interpretability as a core objective of our work. To this end, we pro-
duce Shapley-values-based explanations at different levels of granularity. Shapley
values are an established technique to estimate the contribution of input features
w.r.t. the model’s output [13,25]. Their suitability for this task has been proven
both on a theoretical as well as on an empirical level [13].

As computing exact Shapley values is exponentially complex w.r.t. the input
size and hence not feasible, accurate approximations are fundamental for their
estimation [13]. As shown in Algorithm 1, we compute them by iteratively aver-
aging each feature’s marginal contribution to a specific output class. We find that
15 iterations are sufficient for Shapley values to converge. A random sampling
of features was used for reasons of simplicity. Finally, we can assign each feature
a Shapley value, representing its relative impact score. A similar approximation
approach has been used in [26].

There are two different granularity levels in terms of features: For instance, we
can treat each model component (tweet, network, history) as a single feature and
derive impact scores (Shapley values) for these components. Alternatively, each
model component input or feature (e.g., each token of a tweet) can be treated
separately on a more fine-grained level. As Shapley values are additive, they
can be aggregated to represent component-level Shapley values. The way feature
and components are excluded in order to compute their respective Shapley value
changes based on these two levels listed in Table 2. Thus, our multimodal model
can be explained on a single instance, and the role played by each model can
always be retrieved.

Additionally, we partition the network graph into communities using the
Louvain algorithm to derive Shapley values for individual network connections
[1]. All user edges in that community with the target user are disabled to obtain
the impact of a specific community, resulting in a new GraphSAGE generated
user embedding as input for the multimodal model. The embedding vectors of
solitary users that only contain zeros result in Shapley values equal to zero for
the network component of all these users.
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Result: Shapley value {φt}M
t=1 for every feature {xt}M

t=1

Input: p sample probability, x instance, f model, I number of iterations
for i = 0, ..., I do

for t = 1, ..., M do
sample a Bernoulli vector P = {0, 1}M with probability p
pick S a subset of the features {xt}M

t=1 \ {xt} according to P
build xS alteration of x with only features in S

φt ← φt
i−1
i

+
f(xS∪{xt})−f(xS)

i

end

end
Algorithm 1: Shapley value approximation algorithm. In our experiments,
p = 0.7 and I = 15 were used as parameters.

Table 2. Masking strategies for SHAP on component and feature level

Text Network History

Component

wise

Masking BERT output

with 0s

Setting GraphSAGE

embedding to 0

Setting all vocabulary

counts to 0

Feature

wise

Masking each token

individually

Disabling edges to user based

on community and generating

new embedding

Setting each vocabulary

token count to 0

individually

5 Results

In the first subsection, we deal with answering RQ1 based on the classification
performance of our architecture. The second subsection addresses the explain-
ability of the models and related findings to answer RQ2.

Table 3. Classification models’ performance by different architectures and datasets

Model Davidson Waseem Wich

P R F1 P R F1 P R F1

Text 75.3 77.1 76.1 77.5 84.1 80.3 89.8 91.7 90.7

Text + History 73.7 77.8 75.5 79.3 87.8 82.7 89.8 91.7 90.7

Text + Network 75.3 77.2 76.2 77.5 84.4 80.4 89.9 91.7 90.8

All 74.5 78.9 76.5 79.2 88.1 82.7 90.0 91.7 90.8

5.1 Classification Performance

Table 3 displays the different model architecture performance metrics for the
three datasets. We find that combining text, history, and network increases the
macro F1 score of Waseem by 2.4 pp and of Davidson by 0.4 pp. In the case of
Wich, we observe only a minor increase of the precision by 0.1 pp. We ascribe
these diverging increases to two aspects: Firstly, the network of Waseem is the
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densest one of all three, followed by Davidson and Wich, as depicted in Table 1.
Secondly, Wich’s text model has a high F1 score, meaning that this submodel
presumably drives the predictions of the multimodal model. Our impact analysis
using SHAP to identify each submodel’s relevance confirms this hypothesis, as
depicted in Fig. 2. It shows that the network and history data are less relevant
for Wich’s multimodal model than for the other two models.

In order to answer RQ1, these results signify that leveraging a user’s previous
posts and their social network data does improve abusive language classification.
Additionally, the improvement of the F1 score is proportional to the network’s
density – the higher the density, the higher the improvement.

1%

3%

2%

4%

35%

21%

95%

62%

77%

Wich

Waseem

Davidson
Tweet
Vocabulary
Network

(a) Complete test set

1%

8%

4%

4%

14%

19%

95%

79%

77%

Wich

Waseem

Davidson
Tweet
Vocabulary
Network

(b) Test data that contain network data

Fig. 2. Avg. impact of each classifier’s submodels on the respective test set based on
shapley values

5.2 Explainability

In this subsection, we present the results of the XAI technique, SHAP, that we
applied to our multimodal model. Firstly, we further investigate the impact of
the network and history data added to the text model. Secondly, we show the
explanation of a single tweet.

Impact Analysis of the Submodels. Figure 2 visualizes the impact of the
submodels on the multimodal model. We calculate the impact by aggregating the
Shapley values for each submodel based on the tweets in the test set. Figure 2a
displays the impact on the complete test set of each dataset, while Fig. 2b shows
the impact on test data that contains network data4.

Our first observation is that all classifiers are mainly driven by the text model,
followed by the history and network model. Comparing Fig. 2a and 2b, we see
that network data, if available, contributes to the predictions of Waseem’s and
Davidson’s multimodal models. If we compare the network model’s impact of
both datasets in the context of network density (Davidson: 5×10−4; Waseem:
3.4 × 10−3), we can conclude that the denser the network is, the more relevant
it is for the classification. These findings confirm our answer to RQ1.

In the case of Waseem, we observe a large contribution of the history model
(35%) for the complete test set. We can trace it back to four users that produced

4 Network data is not avaiable for all users.
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a large portion of the dataset and mainly produced all abusive tweets. In general,
the number of tweets in the user’s history correlates positively with the Shapley
value for the history model, reflecting the impact of the history model on the
prediction. While the correlation within Wich’s dataset is only weak (rWich =
0.172), we observe a moderate correlation for the other two datasets (rDavidson =
0.500 and rWaseem = 0.501).

Regarding Wich’s dataset, the Shapley values indicate that the text model
dominates (95%) the multimodal model’s prediction, while the other two (4%
and 1%) play only a minor role. There are two reasons for this: First, the tweets
are pseudo-labeled by a BERT model. Since we use a DistilBERT model similar
to BERT, we achieve an outstanding F1 score of the text model (90.7%). The
downside of such a good classification performance is that the multimodal model
relies mainly on the text model’s output. Therefore, the history and network
model are less relevant. Furthermore, the dataset’s network is characterized by
a low degree of interconnectivity compared to the networks of the other two
datasets (cf. Table 1).

We established that aggregating the Shapley values of the test set with
respect to RQ2 helps us better understand the relevance of each submodel. The
insights gained by the applied XAI technique also confirmed our answer to RQ1
that user’s network and history data contribute to abusive language detection.

Explaining a Single Tweet Classification. After investigating the model on
an aggregated level, we focus on explaining the prediction of a single tweet. To
do so, we select the following tweet from the Davidson dataset that is labeled
and correctly predicted as hateful by our multimodal model:

@user i can guarantee a few things: you’re white. you’ve never been any-
where NEAR a real ghetto. you, or a relative is a pig. 100%

In the following, we demonstrate the explainable capabilities of our multi-
modal model based on the selected tweet. Figure 3 plots the Shapley values of
the tweet’s tokens and the user’s history and network (last two rows). These
Shapley values indicate the relevance of the feature on the multimodal model’s
prediction as hateful. A positive value (red-colored) represents a contribution
favoring the classification as hateful, a negative value (blue-colored) that favors
the classification as non-hateful.

We see that the most relevant word for the classification as hateful is “white”,
which should not be surprising because of the racist context. Furthermore, the
@-symbol (representing a user mention) and “you(’)re” are relevant for the clas-
sification model, indicating that directly addressing someone is recognized as
a sign of hate for the classifier. In contrast, the punctuation of the tweet neg-
atively influences the classification as hateful. A possible explanation is that
correct spelling and punctuation are often disregarded in the context of abu-
sive language. Beyond the textual perspective, we observe that the history and
network submodels favor the classification as hateful. These inputs are relevant
for our multimodal model to classify the tweet correctly. Considering Fig. 4a
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History
Network

Fig. 3. Relevance of the different features in the form of Shapely values; positive, red
values represent favoring a classification as hateful; negative, blue ones the opposite;
Shapley values for history and network submodel are aggregated (Color figure online)

(an alternative visualization of the Shapely values), we see that the text model
slightly favors the classification as non-hateful, represented by the negative sum
of Shapley values. Due to the input from the other two submodel, however, the
multimodal model classifies the tweet correctly, making this an excellent example
of how abusive language detection can profit from additional data.

Figures 4b and 4c break down the contribution of the history and network
model, where Fig. 4b is a waterfall chart displaying the most relevant terms that
the user used in their previous posts—less relevant terms are summarized in the
column named REST. As in the previous charts, red represents a positive con-
tribution to the classification as hateful and blue vice versa. The last column,
called OVERALL, is the sum of all terms’ Shapley values. In this case, the pre-
vious tweets of the user contain words words that are primarily associated with
hateful tweets; consequently, the history model favors a classification as hateful.
Figure 4c shows the user’s ego network and its impact on the classification. The
nodes connected to the user represent communities identified by the Louvain
algorithm. The first number of a node’s label is an identifier; the second number
is the number of haters in the community; the third number is the community’s
total number of users. The color of the nodes and edges have the same meaning
as in the other visualizations. In our case, two connected communities contribute
to a hateful classification, while the left-pointing community counteracts this.

The presented explanations of the complete model and its submodels provide
meaningful and reasonable information to understand better how the model
decides to make predictions. These findings extend our answer to RQ2 from the
previous section. Our explainable model provides explanations on an aggregated
level and a single prediction level to make the classification more understandable.
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(a) Text

(b) User’s history (c) User’s network (colored
nodes represent communi-
ties)

Fig. 4. Explanations for predictions of test, history, and network submodel in the form
of Shapely values (red, positive values favor a classification as hateful; blue, negative
values favor a classification as non-hateful) (Color figure online)

6 Discussion

We demonstrated that leveraging a user’s history and ego network can improve
abusive language detection regarding RQ1, consistent with the findings from
other researchers [15,20,22]. Our multimodal approach is novel because we com-
bine text, users’ previous tweets, and their social relations in one model. The
additional data sources provide further indications for the classification model
to detect abusive language better. That can be helpful, especially when the clas-
sifier struggles with a precise prediction, as in our example in Sect. 5.2. Other
examples are implicit language, irony, or sarcasm, which are hard to detect from
a textual perspective. The improvement, however, varies between the datasets.
We trace this back to the network density of the available data. Waseem has
the network with the highest density and exhibits the best improvement if we
integrate history and network data. In contrast, the classification model based
on Wich, the dataset with the least dense network, could be improved only
slightly. A further difficulty concerning Wich’s dataset is that the tweets are
pseudo-labeled with a BERT model, and our text submodel uses DistilBERT.
Hence, our text submodel performs so well that the multimodal model nearly
ignores the outputs of the history and network submodels. Therefore, it was
hard to identify any improvement. Relating to Davidson, we had the problem
of data degradation. Since the dataset does not contain any user or network
data, we used the Twitter API to obtain them. But not all tweets were still
available, causing us to use only 60% of the original dataset for our experi-
ment. We require more appropriate datasets to investigate the integration of
additional data sources in abusive language detection and refine this approach.
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For example, Riberio et al. [22] have released a comprehensive dataset contain-
ing 4,972 labeled users. Unfortunately, they have not published the tweets of the
users. We are aware that releasing a dataset containing social relations and text
might violate the users’ privacy. Therefore, we suggest anonymizing the data by
replacing all user names with anonymous identifiers.

We proved that our multimodal model combined with the SHAP framework
provides reasonable and meaningful explanations of its predictions associated
with RQ2. These explanations allow us to gain a better understanding with
respect of the models in two different ways: (1) the influence of the different
submodels on the final predictions on an aggregated level; (2) the relevance of
individual features (e.g., word, social relationship) for a single prediction. These
explainable capabilities of our multimodal model are a further novelty. To our
best knowledge, no one has developed such an explainable model for abusive
language detection.

Even though the SHAP explanations are only an approximation, they are
necessary for the reliable application of a hate speech detection model, as we
have developed. It should be humanly interpretable how each of the three models
influences predictions since we combine various data sources, which is especially
true when one data source, such as the social network, is not fully transparent for
the user. The reason for the missing transparency is that our network submodel
learns patterns from social relations, which are more challenging to understand
without any additional information than the ones from the text model. Therefore,
these explainable capabilities are indispensable for such a system to provide a
certain degree of transparency and build trustworthiness.

After focusing on the individual research questions, we have to add an ethical
consideration regarding our developed model for various reasons. One may criti-
cize that we integrate social network data, which is personal data, into our model
and that the benefit gained by it bears no relation to the invasion of the user’s
privacy. However, we argue against it based on the following reasons: (1) We use
social network data to train embeddings and identify patterns that do not con-
tain any personal data. (2) The user’s history and network are shown to enhance
the detection rate, even if the used datasets are not the most appropriate ones for
this experiment because of the limited density. Furthermore, detecting abusive
language can be challenging if the author uses irony, sarcasm, or implicit word-
ing. Therefore, context information (e.g., user’s history or network) should be
included because its benefit outweighs the damage caused by abusive language.

Another point of criticism could be the possible vulnerability to bias and
systematic discrimination of users. In general, DL models are vulnerable to bias
due to their black-box nature. In the case of a multimodal model, however, the
issue is more aggravated because one submodel can dominate the prediction
without any transparency for the user. For example, a model that classifies a
user’s tweet only because of their social relations discriminates the user with a
high probability. We address this challenge by adding explainable capabilities
with SHAP. Therefore, we claim that our multimodal model is less vulnerable
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to bias than classical abusive language detection models applying DL techniques
without XAI integration.

7 Conclusion and Outlook

This paper investigated whether users’ previous posts and social network data
can be leveraged to achieve good, humanly interpretable classification results
in the context of abusive language. Concerning the classification performance
(RQ1), we showed that the additional data improves the performance depending
on the dataset and its network density. For Waseem, we increased the macro
F1 score by 2.4 pp, for Davidson by 0.4 pp, and Wich by 0.1 pp. We found
that the denser the network, the higher the gain. Nevertheless, the availability
of appropriate datasets is a remaining challenge.

The model’s interpretability (RQ2) demonstrated that our multimodal model
using the SHAP framework produces meaningful and understandable explana-
tions for its predictions. The explanations are provided both on a word level and
connections to social communities in the user’s ego network. The explanations
help better understand a single prediction and the complete model if relevance
scores are aggregated on a submodel level. Furthermore, explainability is a nec-
essary feature of such a multimodal model to prevent bias and discrimination.

Integrating a user’s previous posts and social network to enhance abusive
language detection produced promising results. Therefore, the research commu-
nity should continue exploring this approach because it might be a feasible way
to address the challenge of detecting implicit hate, irony, or sarcasm. Concrete
aspects that have to be addressed by future work are the following: (1) collecting
appropriate data (in terms of size and network density) to refine our approach,
(2) improving our model’s architecture.
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Abstract. Reputed by their low-cost, easy-access, real-time and valu-
able information, social media also wildly spread unverified or fake news.
Rumors can notably cause severe damage on individuals and the soci-
ety. Therefore, rumor detection on social media has recently attracted
tremendous attention. Most rumor detection approaches focus on rumor
feature analysis and social features, i.e., metadata in social media. Unfor-
tunately, these features are data-specific and may not always be available.
In contrast, post contents (including images or videos) play an impor-
tant role and can indicate the diffusion purpose of a rumor. Furthermore,
rumor classification is also closely related to opinion mining and senti-
ment analysis. Yet, to the best of our knowledge, exploiting images and
sentiments is little investigated. Considering the available multimodal
features from microblogs, notably, we propose in this paper an end-to-
end model called deepMONITOR that is based on deep neural networks,
by utilizing all three characteristics: post textual and image contents, as
well as sentiment. deepMONITOR concatenates image features with the
joint text and sentiment features to produce a reliable, fused classifica-
tion. We conduct extensive experiments on two large-scale, real-world
datasets. The results show that deepMONITOR achieves a higher accu-
racy than state-of-the-art methods.

Keywords: Social networks · Rumor detection · Deep neural networks

1 Introduction

Nowadays, more and more people consume news from social media rather than
traditional news organizations, thanks to social media features such as informa-
tion sharing, real time, interactivity, diversity of content and virtual identities.
However, conveniently publishing news also fosters the emergence of various
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rumors and fake news that can spread promptly through social networks and
result in serious consequences.

To detect rumors on microblogs, which we particularly target in this paper,
most existing studies focus on the social features available in social media. Such
features are post metadata, including the information on how post propagate,
e.g., the number of retweets, followers, hashtags (#), user information, etc.
To exploit such features, many innovative solutions [4,23] have been proposed.
Unfortunately, these features are not always available, e.g., in case the rumor has
just been published and not yet propagated, and do not indicate the purpose of
a rumor, which is one of its most important aspects. Moreover, although social
features are useful in rumor analysis, contents reveal more relevant in expressing
the diffusion purpose of rumors [17]. Hence, in this paper, we analyse message
contents from three aspects to automatically detect rumors in microblogs.

First, social media messages have rich textual contents. Therefore, under-
standing the semantics of a post is important for rumor detection. Attempts to
automate the classification of posts as true or false usually exploit natural lan-
guage processing and machine learning techniques that rely on hand-crafted and
data-specific textual features [4,16]. These approaches are limited because the
linguistic characteristics of fake news vary across different types of fake news,
topics and media platforms. Second, images and videos have gained popularity
on microblogs recently and attract great attention. Rich visual information can
also be helpful in classifying rumors [10]. Yet, taking images into account for
verifying post veracity is not sufficiently explored, with only a few recent studies
exploiting multimedia content [10,11]. Third, liars can be detected, as they tend
to frequently use words carrying negative emotions out of unconscious guilt [20].
Since emotion is closely related to fake news [1], analyzing emotions with opinion
mining and sentiment analysis methods may help classifying rumors.

Automating rumor detection with respect to one of the three characteristics
mentioned above is already challenging. Hand-crafted textual features are data-
specific and time consuming to produce; and linguistic characteristics are not
fully understood. Image features and emotions, which are a significant indicators
for fake news detection in microblogs, are still insufficiently investigated.

To address these limitations, we propose an end-to-end model called deep-
MONITOR, based on deep neural network that are efficient in learning textual or
visual representations and that jointly exploits textual contents, sentiment and
images. To the best of our knowledge, we are the first to do this. Hence, deep-
MONITOR can leverage information from different modalities and capture the
underlying dependencies between the context, emotions and visual information
of a rumour.

More precisely, deepMONITOR is a multi-channel deep model where we first
employ a Long-term Recurrent Convolutional Network (LRCN) to capture and
represent text semantics and sentiments through emotional lexicons. This archi-
tecture combines the advantages of Convolutional Neural Network (CNN) for
extracting local features and the memory capacity of Long Short-Term Memory
Networks (LSTM) to connect the extracted features well. Second, we employ
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the pretrained VGG19 model [26] to extract salient visual features from post
images. Image features are then fused with the joint representations of text and
sentiment to classify messages. Eventually, we experimentally show that deep-
MONITOR outperforms state-of-the-art rumor detection models on two large
multimedia datasets collected from Twitter.

The remainder of this paper is organized as follows. In Sect. 2, we survey
and discuss related works. In Sect. 3, we thoroughly details the deepMONITOR
framework. In Sect. 4, we experimentally validate deepMONITOR with respect
to the state of the art. Finally, in Sect. 5, we conclude this paper and hint at
future research.

2 Related Works

Most studies in the literature address the automatic rumor detection task as
feature-based. Features can be extracted from text, social context, sentiment
and even attached images. Thus, we review existing work from the following two
categories: single modality-based rumor detection and multimodal-based rumor
detection.

2.1 Monomodal-Based Rumor Detection

Textual Features are extracted from textual post contents. They are derived
from the linguistics of a text, such as lexical and syntactic features. In the liter-
ature, there is a wide range of textual features [4,25]. Unfortunately, linguistic
patterns are highly dependent on specific events and the corresponding domain
knowledge. Thus, it is difficult to manually design textual features for traditional
machine learning-based rumor detection models. To overcome this limitation, a
Recurrent Neural Network (RNN) can learn the representations of posts in time
series as textual features [18].

Social Context Features represent user engagements in news on social media,
such as the number of mentions(@), hashtags(#) and URLs [25]. Graph struc-
tures can capture message propagation patterns [27]. However, as textual fea-
tures, social context features are very noisy, unstructured and require intensive
labor to collect. Moreover, it is difficult to detect rumors using social context-
based methods when the rumor has just popped up and not yet propagated, i.e.,
there is no social context information.

Visual Features are typically extracted from images and videos. Very few
studies address the verification of multimedia content credibility on social media.
Basic message features are characterized [8,27] and various visual features are
extracted [11]. Visual features include clarity, coherence, diversity and cluster-
ing scores, as well as similarity distribution histogram. However, these features
remain hand-crafted and can hardly represent complex distributions of visual
contents.
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Sentiment Features are emotional signals. There exists a relationship between
rumors and sentiments in messages and an emotion feature, i.e., the ratio of the
count of negative and positive words, can be built [1]. Besides, emotion features
can also be extracted with respect to emotional lexicons from news contents [6].

2.2 Multimodal Rumor Detection

To learn feature representations from multiple aspects, deep neural networks, and
especially CNNs and RNNs, are successfully applied to various tasks, including
visual question answering [2], image captioning [12] and rumor detection [10,28].
In [10] authors propose a deep model uses attention mechanisms to fuse and
capture the relations between visual features and joint textual/social features.
Yet, it is very hard to identify high-level visual semantics in rumor detection,
compared with object-level semantics in traditional visual recognition tasks. As
a result, there is no mechanism that explicitly guarantees the learning of this
matching relation in the attention model.

Zhou et al. [28] propose a neural-network-based method named SAFE that
utilizes news multimodal information for fake news detection, where news rep-
resentation is learned jointly by news textual and visual information along with
their relationship (similarity). Assessing the similarity between text and image
helps classify rumors where objects in the image are not mentioned in the text.
Yet, other types of rumors escape this rule, e.g., caricatures widely used by jour-
nalists, where the text might be very different from the image, while it does not
necessarily mean that the article is fake.

3 deepMONITOR Model

In this section, we formally define the problem and introduce some key notations,
then introduce the components of deepMONITOR.

3.1 Problem Definition and Model Overview

We define a message instance as M = {T, S, V } consisting of textual informa-
tion T , Sentiment information S, and visual information V . We denote CT , CS

and CV the corresponding representations. Our goal is to learn a discriminable
feature representation CM as the aggregation of T , S and V for a given mes-
sage M , to predict whether M is a fake (ŷ = 1) or a real message (ŷ = 0).
First, we learn text with a CNN, then we merge the output with a sentiment
vector with two stacked LSTMs, which generates a joint representation CTS for
these two modalities. Visual feature CV is obtained with a pretrained deep CNN
model. Finally, CTS and CV are concatenated to form the final multimodal fea-
ture representation CM of message M . CM is the input of a binary classifier
that predicts whether the message instance is fake or real. A global overview of
deepMONITOR is presented in Fig. 1.
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Fig. 1. Overview of deepMONITOR

3.2 LSTM Networks

For completeness, we present a brief introduction of the sequential LSTM model.
LSTM is a special type of feed-forward RNN that can be used to model variable-
length sequential information. Its structure is shown in Fig. 2.

Fig. 2. Structure of an LSTM cell

Given an input sequence {x1, x2..., xT }, a basic RNN model generates the
output sequence {y1, y2..., yT }, where T depends on the length of the input.
Between the input layer and the output layer, there is a hidden layer, and the
current hidden state ht is estimated using a recurrent unit:

ht = f(ht−1, xt) (1)
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where xt is the current input, ht−1 is the previous hidden state and f can be
an activation function or other unit accepting both xt and ht−1 as input and
producing the current output ht.

To deal with vanishing or exploding gradients [3,21] in learning long-distance
temporal dependencies, LSTMs extend basic RNNs by storing information over
long time periods in elaborately designed memory units. Specifically, each LSTM
cell c is controlled by a group of sigmoid gates: an input gate i, an output gate o
and a forget gate f that remembers the error during error propagation [9]. For
each time step t, the LSTM cell receives input from the current input xt, the
previous hidden state ht−1 and the previous memory cell ct−1. These gates are
updated [5,9] as follows:

it = σ(W i
xxt + W i

hht−1 + bi) (2)

ft = σ(W f
x xt + W f

h ht−1 + bf ) (3)

ot = σ(W o
xxt + W o

hht−1 + bo) (4)

c̃t = tanh(W c
xxt + W c

hht−1 + bc) (5)

ct = ft � ct−1 + it � c̃t (6)

ht = ot � tanh(ct) (7)

where W i
. , W f

. , W o
. are weight matrices for corresponding gates, and b. are bias

terms that are learned from the network. � denotes the element-wise multi-
plication between two vectors. σ is the logistic sigmoid function. tanh is the
hyperbolic tangent function. The input gate i decides the degree to which new
memory is added to the memory cell. The forget gate f determines the degree
to which the existing memory is forgotten. The memory cell c is updated by
forgetting part of the existing memory and adding new memory c̃.

3.3 Multimodal Feature Learning

Text Feature Extraction. To extract informative features from textual con-
tents, we employ a CNN. CNNs have indeed been proven to be effective in many
fields. We incorporate a modified CNN model, namely a Text-CNN [15], in our
textual feature extraction. The architecture of the Text-CNN is shown in Fig. 3.

The Text-CNN takes advantage of multiple filters with various window sizes
to capture different granularities of features. Specifically, each word in the mes-
sage is first represented as a word embedding vector that, for each word, is
initialized with a pretrained word embedding model. Given a piece of message
with n words, we denote as Ti ∈ Rk the corresponding k dimensional word
embedding vector for the ith word in the message. Thus, the message can be
represented as:

T1:n = T1 ⊕ T2 ⊕ ... ⊕ Tn (8)

where ⊕ is the concatenation operator. To produce a new feature, a convolution
filter with window size h takes the contiguous sequence of h words in the message
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Fig. 3. Text-CNN architecture

as input. For example, the feature ti generated from a window size h starting
with the ith word, can be represented as:

ti = σ(Wc.Ti:i+h−1 + bc) (9)

where, Wc ∈ Rhk and bc ∈ R are the weight and bias of the filter, respectively,
and σ is the rectified linear activation function (ReLU). This filter is applied to
each possible window of h words in the message to produce a feature map:

t = [t1, t2, ..., tn−h+1] (10)

For every feature vector t ∈ Rn−h+1, we then apply a max-pooling operation
to capture the most important information. Now, we get the corresponding fea-
ture for one particular filter. The process is repeated until we get the features of
all filters. In order to extract textual features with different granularities, various
window sizes are applied. For a specific window size, we have d different filters.
Thus, assuming there are c possible window sizes, we have c × d filters in total.
Following the max-pooling operations, a flatten layer is needed to ensure that
the representation of the textual features CT ′ ∈ Rc×d is fed back as input to the
LSTM network.

Note that the Text-CNN above is only capable of handling a single message,
transforming it from input words into an internal vector representation. We want
to apply the Text-CNN model to each input message and pass on the output
of each input message to the LSTM as a single time step. Thus, We need to
repeat this operation across multiple messages and allow the next layer (LSTM)
to build up internal state and update weights across a sequence of the internal
vector representations of input messages. Thus, we wrap each layer in the Text-
CNN in a Time-Distributed layer [14]. This layer achieves the desired outcome
of applying the same layers multiple times and providing a sequence of message
features to the LSTM to work on.
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Sentiment Feature Extraction. We hypothesize that incorporating emo-
tional signals into the rumor classification model should have some benefits.
To extract emotional signals from messages, we adopt a lexicon-based approach,
i.e., the Valence Aware Dictionary and sEntiment Reasoner (VADER), which
is a lexicon and rule-based sentiment analysis tool that is specifically attuned
to sentiments expressed in social media [7]. This model is sensitive to both the
polarity (positive/negative) and the intensity (strength) of emotion. VADER
relies on a dictionary that maps lexical features to emotion intensities known as
sentiment scores. The sentiment score of a text can be obtained by summing up
the intensity of each word in the text. In addition, we calculate some textual
features that express specific semantics or sentiments, such as emotional marks
(question and exclamation marks) and emoticons. We form the initial sentiment
representation CS = [s1, s2, ..., sl]T , where l is the dimension of sentiment fea-
tures and si is the scalar value of the ith dimension. We first use a fully connected
layer (S-fc in Fig. 1) to output a proper representation of sentiment vector CS′:

CS′ = WsfCS (11)

where Wsf are weights in the fully-connected layer. Then, we use a Repeat Vector
layer [13] to ensure that CS′ has the same dimension (3D) as the representation
of the textual features CT ′. To connect the extracted features well, the repre-
sentations of sentiment and those of textual features are then concatenated and
fed as input to a two-stacked LSTM. Stacking LSTM hidden layers makes the
model deeper, enables a more complex representation of our sequence data, and
captures information at different scales. At each time step i, the LSTM takes as
input [CTi′, CS′], i.e., the concatenation of the ith message CTi′ and the trans-
formed sentiment feature CS′. The resultant joint representation of text and
sentiment features, denoted as CTS ∈ Rp, has the same dimension (denoted as
p) as the visual feature representation that is addressed in the next subsection.
The whole process is illustrated in Fig. 4.

Fig. 4. Fusion process of text and sentiment features with Text-CNN and LSTM
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Image Feature Extraction. The images attached to messages form the input
of the visual sub-network (the bottom branch in Fig. 1). We employ the pre-
trained VGG-19 model [26] to generate visual neurons as image features. We
retain all front layers of the VGG-19 model and remove the last dense output
layer, as well as the classification output layer. We extract the features from all
images and store them into files. The benefit is that the very large pretrained
VGG-19 does not need to be loaded, held in memory and used to process each
image while training the textual submodel. For each loaded visual feature, we
add a fully connected layer (Vis-fc in Fig. 1) to adjust the dimension of the final
visual feature representation CV ∈ Rp, as follows:

CV = ψ(WvfCVvgg
) (12)

where CVvgg
is the visual feature representation obtained from pretrained VGG-

19, Wvf is the weight matrix of the fully connected layer and ψ denotes the ReLU
activation function. The resultant joint representation of textual and sentiment
features CTS and the visual feature representation CV are then concatenated to
form the final multimodal feature representation of a given message, denoted as
CM = CTS ⊕ CV ∈ R2p.

3.4 Model Learning

Till now, we have obtained the joint multimodal feature representation CM of
a given message M , which is fed into a first fully connected layer with ReLu
activation function, and a second fully connected layer with sigmoid activation
function to predict whether the messages are fake. The output of the sigmoid
layer for the ith message, denoted as p(CMi), is the probability of this post being
fake:

p(CMi) = σ(Wdf2ψ(Wdf1CMi)) (13)

where Wdf1 and Wdf2 are weights in the two fully-connected layers, CMi is
the multimodal representation of the ith message instance and σ and ψ are the
sigmoid and ReLu functions, respectively. We employ the cross-entropy to define
the detection loss of ith message:

L(M i) = −yi log p(CMi) − (1 − yi) log (1 − p(CMi)) (14)

where yi represents the ground truth label of the ith message instance with 1
representing false messages and 0 representing real messages. To minimize the
loss function, the whole model is trained end-to-end with batched Stochastic
Gradient Descent:

L = − 1
N

N∑

i=1

[yi log p(CMi) + (1 − yi) log (1 − p(CMi))] (15)

where N is the total number of message instances.
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4 Experimental Validation

In this section, we first detail two real-world social media datasets used in our
experiments. Then, we present the state-of-the-art rumor detection approaches,
followed by the details of our experimental setup. We finally analyze the perfor-
mance of deepMONITOR with respect to existing methods.

4.1 Datasets

To provide a fair evaluation deepMONITOR’s performance, we conduct exper-
iments on two real-world social media datasets collected from Twitter. Let us
first detail both datasets.

FakeNewsNet [24] is one of the most comprehensive fake news detection bench-
mark. Fake and real news articles are collected from the fact-checking websites
PolitiFact and GossipCop. Ground truth labels (fake or true) of news articles
in both datasets are provided by human experts, which guarantees the quality
of labels. We consider that all the tweets that discuss a particular news article
bear the truth value, i.e., the label of the article, because it contributes to the
diffusion of a rumor (true or false), even if the tweet denies or remains skeptical
regarding the veracity of the rumor.

Since we are particularly interested in images in this work, we extract and
exploit the image information of all tweets. We first remove duplicated and low-
quality images. We also remove duplicated tweets and tweets without images,
finally obtaining 207,768 tweets with 212,774 attached images. We carefully split
the training and testing datasets so that tweets concerning the same events are
not contained in both the training and testing sets.

DAT@Z20 is a novel dataset we collected from Twitter. More concretely, we
retrieve all statements and reports of various nature verified by human experts
from a fact-checking website; specifically contents published on June 1st, 2020.
To guarantee a high quality ground truth, we retain only the data and metadata
from 8,999 news articles explicitly labeled as fake or real. To extract tweets that
discuss news articles, we create queries with the most representative keywords
from the articles’ abstracts and titles. Then, we refine keywords by adding,
deleting or replacing words manually with respect to each article’s context. We
use the Twitter API to obtain the searched tweets by sending, as arguments,
the queries prepared previously. Moreover, we employ Twitter Get status API
to retrieve the available surrounding social context (retweets, reposts, replies,
etc.) of each tweet.

Since we aim to build a multimedia dataset with images, we collect both the
tweets’ textual contents and attached images. Thus, from the 2,496,980 collected
tweets, we remove text-only tweets and duplicated images to obtain 249,076
tweets with attached images. Finally, we split the whole dataset into training
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and testing sets and ensure that they do not contain any common event. Tweets
take the label of the news articles they refer to, for the same reason as above.

The detailed statistics of the two datasets are shown in Table 1.

Table 1. Datasets statistics

Statistics Dataset

FakeNewsNet DAT@Z20

True Fake Overall True Fake Overall

News articles 17,441 5,755 23,196 2,503 6,496 8,999

News articles with images 17,214 1,986 19,200 455 858 1313

All Tweets 1,042,446 565,314 1,607,760 875,205 1,621,775 2,496,980

Tweets with images 161,743 46,025 207,768 81,452 167,624 249,076

Images 163,192 49,582 212,774 93,147 202,651 295,798

4.2 Experimental Settings

To learn a textual representation of tweets, we use the pretrained GloVe word
embedding model [22] after standard text preprocessing. We obtain a k = 50-
dimensional word embedding vector for each word in both datasets. One reason
to choose the GloVe model is that the embedding is trained on tweets. We set
the Text-CNN network’s filters number to d = 32 and the window size of filters
to {4, 6, 8}. We extract 14 sentiment features from both datasets (Table 2). The
hidden size of the fully connected layer of sentiment features is 32. The joint
representation of text and sentiment uses a first LSTM with hidden size 64 and
a second LSTM with hidden size 32.

Table 2. Sentiment features’ details

Feature

Vader negative/Positive/Neutral/Compound score

# Positive/Negative words, Fraction of positive/negative words

# Sad/Happy emoticons, # Exclamation/question mark

# Uppercase characters, Words/Characters

Image features come from the output of the antepenultimate layer of the
pretrained VGG-19 model, to generate a 4096-dimensional vector. This vector is
fed to a fully connected layer with hidden size 32. The final multimodal feature
representation is fed into a fully connected layer with hidden size 10. deepMON-
ITOR uses a batch size of 64 instances. In our experiments, each dataset was
separated into 70% for training and 30% for testing. The number of iterations is
100 in the training stage with an early stopping strategy on both datasets. The
learning rate is 10−2.
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4.3 Baselines

We compare deepMONITOR with three groups of baseline methods: monomodal
methods, multimodal methods, and a variant of deepMONITOR.

Monomodal Methods. We propose three baselines, where text, sentiment and
image information are used separately for rumor classification.

– Text: deepMONITOR using textual information only.
– Image: deepMONITOR using visual information only.
– Sent: deepMONITOR using sentiment information only.

Multimodal Methods. We compare deepMONITOR with two state-of-the-art
methods for multi-modal rumor detection.

– att-RNN [10] is a deep model that employs LSTM and VGG-19 with atten-
tion mechanism to fuse textual, visual and social-context features of news
articles. We set the hyper-parameters as in [10] and exclude the social con-
text features for a fair comparison.

– SAFE [28] is a neural-network-based method that explores the relationships
(similarities) between the textual and visual features in news articles. We set
the hyper-parameters as in [28].

Eventually, we also include a variant deepMONITOR- of deepMONITOR,
where sentiment information is removed.

4.4 Performance Analysis

We first present the general performance of deepMONITOR by comparing it with
baselines. Then, we conduct a component analysis by comparing deepMONITOR
with its variants. Finally, we analyze the LRCN part. We use accuracy, precision,
recall, and F1 score as evaluation metrics.

General Performance Analysis. Table 3 shows the experimental results of
baselines and deepMONITOR on FakeNewsNet and DAT@Z20. We can observe
that the overall performance of deepMONITOR is significantly better than the
baselines in terms of accuracy, recall and F1 score. Moreover, the general perfor-
mance of multimodal methods is deepMONITOR > SAFE > att-RNN. Deep-
MONITOR indeed achieves an overall accuracy of 94.3% on FakeNewsNet set
and 92.2% on DAT@Z20, which indicates it can learn effectively the joint features
of multiple modalities. Compared to the state-of-the-art methods, deepMONI-
TOR achieves an accuracy improvement of more than 6% and 8% with respect
to SAFE; and 15% and 18% with respect to att-RNN, on FakeNewsNet and
DAT@Z20, respectively.
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Table 3. Performance comparison

Text Image Sent deep

MONITOR-

att-RNN SAFE deep

MONITOR

FakeNews Net Acc. 0.865 0.776 0.650 0.874 0.799 0.888 0.943

Prec. 0.875 0.775 0.638 0.932 0.787 0.866 0.934

Rec. 0.852 0.778 0.698 0.808 0.823 0.943 0.955

F1 0.863 0.777 0.667 0.865 0.805 0903 0.944

DAT@Z20 Acc. 0.840 0.714 0.568 0.885 0.742 0.842 0.922

Prec. 0.847 0.728 0.574 0.928 0.774 0.843 0.938

Rec. 0.829 0.684 0.532 0.836 0.582 0.903 0.905

F1 0.838 0.705 0.552 0.880 0.665 0.872 0.921

(a) FakeNewsNet (b) DAT@Z20

Fig. 5. Component analysis results

Component Analysis. The performance of deepMONITOR and its variants
are presented in Table 3 and Fig. 5. Results hint at the following insights.

1. Integrating tweets’ textual information, sentiment and image information per-
forms best among all variants. This confirms that integrating multiple modal-
ities works better for rumor detection.

2. Combining textual and visual modalities (deepMONITOR-) performs better
than monomodal variants because, when learning textual information, our
model employs a CNN with multiple filters and different word window sizes.
Since the length of each message is relatively short (smaller than 240 char-
acters), the CNN may capture more local representative features, which are
then fed to LSTM networks to deeply and well connect the extracted features.

3. The performance achieved with textual information is better than that of
visual information. Textual features are indeed more transferable and help
capture the more shareable patterns contained in texts to assess the veracity
of messages. The reason is probably that both dataset have sufficient data
diversity. Thus, useful linguistic patterns can be extracted for rumor detec-
tion.

4. Visual information is more important than sentiment information. Although
images are challenging in terms of semantics, the use of the powerful tool
VGG19 allows extracting useful features representations.
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5. The performance achieved with sentiment information is the worst among
multimodal variants, because without textual and visual contents, the actual
meaning of tweets is lost. However, its contribution is non-negligible since the
use of sentiment features (deepMONITOR- vs. deepMONITOR) can improve
accuracy by 6% and 4% on FakeNewsNet and DAT@Z20, respectively.

LRCN Analysis. In this subsection, we analyze the importance of the LRCN
component from the quantitative and qualitative perspectives.

Quantitative Analysis. From deepMONITOR, we design two new models, remov-
ing the text-CNN in the first (deepMONITOR-CNN), and the two LSTM net-
works in the second (deepMONITOR-LSTM). Then, we run the two models on
the FakeNewsNet dataset. Figure 6 displays the results in terms of F1 score and
accuracy. Figure 6 shows that both accuracy and F1 score of deepMONITOR
are better than those of deepMONITOR-CNN and deepMONITOR-LSTM.

Fig. 6. Performance comparison of the LRCN component

Qualitative Analysis. To further analyze the importance of the LRCN compo-
nent in deepMONITOR, we qualitatively visualize the feature representation
CTS learned by deepMONITOR, deepMONITOR-CNN and deepMONITOR-
LSTM on the testing data of FakeNewsNet with t-SNE [19] (Fig. 7). The label
of each post is fake (orange color) or real (blue color). We can observe that
deepMONITOR-CNN and deepMONITOR-LSTM can learn discriminable fea-
tures, but the learned features are intertwined. In contrast, the feature rep-
resentations learned by deepMONITOR are more discriminable and there are
bigger segregated areas among samples with different labels. This is because, in
the training stage, the Text-CNN can effectively extract local features and the
LSTM networks connect and interpret the features across time steps. Thus, we
can draw the conclusion that incorporating the LRCN component is essential
and effective for the task of rumor detection.
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(a) deepMONITOR-LSTM (b) deepMONITOR-CNN (c) deepMONITOR

Fig. 7. Visualizations of learned latent text and sentiment feature representations on
the testing data of FakeNewsNet (the orange colored points are fake tweets and the
blue ones are real) (Color figure online)

5 Conclusion

In this paper, we propose deepMONITOR, a deep hybrid model for rumour
classification in microblogs. The model extracts and concatenates textual, visual
and sentiment information altogether. For a given message, we first fuse text and
emotional signals with an LRCN network, which is an appropriate architecture
for problems that have a 1-dimension structure of words in a sentence, such
as microblog posts. This joint representation is then fused with image features
extracted from a pretrained deep CNN. Extensive experiments on two large-scale
dataset collected from Twitter show that deepMONITOR outperforms state-of-
the-art methods.

A future line of research is to further investigate the contribution of sentiment
features in the detection of rumors. Dedicating a deep submodel for learning
such features instead of using our current, lexicon-based approach could indeed
further improve the performance of deepMONITOR.
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