
Yuxiao Dong · Nicolas Kourtellis ·
Barbara Hammer · Jose A. Lozano (Eds.)

 123

LN
AI

 1
29

78

European Conference, ECML PKDD 2021
Bilbao, Spain, September 13–17, 2021
Proceedings, Part IV

Machine Learning and
Knowledge Discovery
in Databases
Applied Data Science Track

Lecture Notes in Artificial Intelligence 12978

Subseries of Lecture Notes in Computer Science

Series Editors

Randy Goebel
University of Alberta, Edmonton, Canada

Yuzuru Tanaka
Hokkaido University, Sapporo, Japan

Wolfgang Wahlster
DFKI and Saarland University, Saarbrücken, Germany

Founding Editor

Jörg Siekmann
DFKI and Saarland University, Saarbrücken, Germany

More information about this subseries at http://www.springer.com/series/1244

http://www.springer.com/series/1244

Yuxiao Dong • Nicolas Kourtellis •

Barbara Hammer • Jose A. Lozano (Eds.)

Machine Learning and
Knowledge Discovery
in Databases
Applied Data Science Track

European Conference, ECML PKDD 2021
Bilbao, Spain, September 13–17, 2021
Proceedings, Part IV

123

Editors
Yuxiao Dong
Facebook AI
Seattle, WA, USA

Nicolas Kourtellis
Torre Telefonica
Barcelona, Spain

Barbara Hammer
Bielefeld University, CITEC
Bielefeld, Germany

Jose A. Lozano
Basque Center for Applied Mathematics
Bilbao, Spain

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Artificial Intelligence
ISBN 978-3-030-86513-9 ISBN 978-3-030-86514-6 (eBook)
https://doi.org/10.1007/978-3-030-86514-6

LNCS Sublibrary: SL7 – Artificial Intelligence

© Springer Nature Switzerland AG 2021
Chapter “Multitask Recalibrated Aggregation Network for Medical Code Prediction” is licensed under the
terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/
by/4.0/). For further details see license information in the chapter.
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-4683-8111
https://doi.org/10.1007/978-3-030-86514-6
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Preface

This edition of the European Conference on Machine Learning and Principles and
Practice of Knowledge Discovery in Databases (ECML PKDD 2021) has still been
affected by the COVID-19 pandemic. Unfortunately it had to be held online and we
could only meet each other virtually. However, the experience gained in the previous
edition joined to the knowledge collected from other virtual conferences allowed us to
provide an attractive and engaging agenda.

ECML PKDD is an annual conference that provides an international forum for the
latest research in all areas related to machine learning and knowledge discovery in
databases, including innovative applications. It is the leading European machine
learning and data mining conference and builds upon a very successful series of
ECML PKDD conferences. Scheduled to take place in Bilbao, Spain, ECML PKDD
2021 was held fully virtually, during September 13–17, 2021. The conference attracted
over 1000 participants from all over the world. More generally, the conference received
substantial attention from industry through sponsorship, participation, and also the
industry track.

The main conference program consisted of presentations of 210 accepted conference
papers, 40 papers accepted in the journal track and 4 keynote talks: Jie Tang (Tsinghua
University), Susan Athey (Stanford University), Joaquin Quiñonero Candela (Face-
book), and Marta Kwiatkowska (University of Oxford). In addition, there were 22
workshops, 8 tutorials, 2 combined workshop-tutorials, the PhD forum, and the dis-
covery challenge. Papers presented during the three main conference days were
organized in three different tracks:

– Research Track: research or methodology papers from all areas in machine learning,
knowledge discovery, and data mining.

– Applied Data Science Track: papers on novel applications of machine learning, data
mining, and knowledge discovery to solve real-world use cases, thereby bridging
the gap between practice and current theory.

– Journal Track: papers that were published in special issues of the Springer journals
Machine Learning and Data Mining and Knowledge Discovery.

We received a similar number of submissions to last year with 685 and 220 sub-
missions for the Research and Applied Data Science Tracks respectively. We accepted
146 (21%) and 64 (29%) of these. In addition, there were 40 papers from the Journal
Track. All in all, the high-quality submissions allowed us to put together an excep-
tionally rich and exciting program.

The Awards Committee selected research papers that were considered to be of
exceptional quality and worthy of special recognition:

– Best (Student) Machine Learning Paper Award: Reparameterized Sampling for
Generative Adversarial Networks, by Yifei Wang, Yisen Wang, Jiansheng Yang
and Zhouchen Lin.

– First Runner-up (Student) Machine Learning Paper Award: “Continual Learning
with Dual Regularizations”, by Xuejun Han and Yuhong Guo.

– Best Applied Data Science Paper Award: “Open Data Science to fight COVID-19:
Winning the 500k XPRIZE Pandemic Response Challenge”, by Miguel Angel
Lozano, Oscar Garibo, Eloy Piñol, Miguel Rebollo, Kristina Polotskaya, Miguel
Angel Garcia-March, J. Alberto Conejero, Francisco Escolano and Nuria Oliver.

– Best Student Data Mining Paper Award: “Conditional Neural Relational Inference
for Interacting Systems”, by Joao Candido Ramos, Lionel Blondé, Stéphane
Armand and Alexandros Kalousis.

– Test of Time Award for highest-impact paper from ECML PKDD 2011: “Influence
and Passivity in Social Media”, by Daniel M. Romero, Wojciech Galuba, Sitaram
Asur and Bernardo A. Huberman.

We would like to wholeheartedly thank all participants, authors, Program Com-
mittee members, area chairs, session chairs, volunteers, co-organizers, and organizers
of workshops and tutorials for their contributions that helped make ECML PKDD 2021
a great success. We would also like to thank the ECML PKDD Steering Committee and
all sponsors.

September 2021 Jose A. Lozano
Nuria Oliver

Fernando Pérez-Cruz
Stefan Kramer

Jesse Read
Yuxiao Dong

Nicolas Kourtellis
Barbara Hammer

vi Preface

Organization

General Chair

Jose A. Lozano Basque Center for Applied Mathematics, Spain

Research Track Program Chairs

Nuria Oliver Vodafone Institute for Society and Communications,
Germany, and Data-Pop Alliance, USA

Fernando Pérez-Cruz Swiss Data Science Center, Switzerland
Stefan Kramer Johannes Gutenberg Universität Mainz, Germany
Jesse Read École Polytechnique, France

Applied Data Science Track Program Chairs

Yuxiao Dong Facebook AI, Seattle, USA
Nicolas Kourtellis Telefonica Research, Barcelona, Spain
Barbara Hammer Bielefeld University, Germany

Journal Track Chairs

Sergio Escalera Universitat de Barcelona, Spain
Heike Trautmann University of Münster, Germany
Annalisa Appice Università degli Studi di Bari, Italy
Jose A. Gámez Universidad de Castilla-La Mancha, Spain

Discovery Challenge Chairs

Paula Brito Universidade do Porto, Portugal
Dino Ienco Université Montpellier, France

Workshop and Tutorial Chairs

Alipio Jorge Universidade do Porto, Portugal
Yun Sing Koh University of Auckland, New Zealand

Industrial Track Chairs

Miguel Veganzones Sherpa.ia, Portugal
Sabri Skhiri EURA NOVA, Belgium

Award Chairs

Myra Spiliopoulou Otto-von-Guericke-University Magdeburg, Germany
João Gama University of Porto, Portugal

PhD Forum Chairs

Jeronimo Hernandez University of Barcelona, Spain
Zahra Ahmadi Johannes Gutenberg Universität Mainz, Germany

Production, Publicity, and Public Relations Chairs

Sophie Burkhardt Johannes Gutenberg Universität Mainz, Germany
Julia Sidorova Universidad Complutense de Madrid, Spain

Local Chairs

Iñaki Inza University of the Basque Country, Spain
Alexander Mendiburu University of the Basque Country, Spain
Santiago Mazuelas Basque Center for Applied Mathematics, Spain
Aritz Pèrez Basque Center for Applied Mathematics, Spain
Borja Calvo University of the Basque Country, Spain

Proceedings Chair

Tania Cerquitelli Politecnico di Torino, Italy

Sponsorship Chair

Santiago Mazuelas Basque Center for Applied Mathematics, Spain

Web Chairs

Olatz Hernandez
Aretxabaleta

Basque Center for Applied Mathematics, Spain

Estíbaliz Gutièrrez Basque Center for Applied Mathematics, Spain

ECML PKDD Steering Committee

Andrea Passerini University of Trento, Italy
Francesco Bonchi ISI Foundation, Italy
Albert Bifet Télécom ParisTech, France
Sašo Džeroski Jožef Stefan Institute, Slovenia
Katharina Morik TU Dortmund, Germany
Arno Siebes Utrecht University, The Netherlands
Siegfried Nijssen Université Catholique de Louvain, Belgium

viii Organization

Luís Moreira-Matias Finiata GmbH, Germany
Alessandra Sala Shutterstock, Ireland
Georgiana Ifrim University College Dublin, Ireland
Thomas Gärtner University of Nottingham, UK
Neil Hurley University College Dublin, Ireland
Michele Berlingerio IBM Research, Ireland
Elisa Fromont Université de Rennes, France
Arno Knobbe Universiteit Leiden, The Netherlands
Ulf Brefeld Leuphana Universität Lüneburg, Germany
Andreas Hotho Julius-Maximilians-Universität Würzburg, Germany
Ira Assent Aarhus University, Denmark
Kristian Kersting TU Darmstadt University, Germany
Jefrey Lijffijt Ghent University, Belgium
Isabel Valera Saarland University, Germany

Program Committee

Guest Editorial Board, Journal Track

Richard Allmendinger University of Manchester
Marie Anastacio Leiden University
Ana Paula Appel IBM Research Brazil
Dennis Assenmacher University of Münster
Ira Assent Aarhus University
Martin Atzmueller Osnabrueck University
Jaume Bacardit Newcastle University
Anthony Bagnall University of East Anglia
Mitra Baratchi University of Twente
Srikanta Bedathur IIT Delhi
Alessio Benavoli CSIS
Viktor Bengs Paderborn University
Massimo Bilancia University of Bari “Aldo Moro”
Klemens Böhm Karlsruhe Institute of Technology
Veronica Bolon Canedo Universidade da Coruna
Ilaria Bordino UniCredit R&D
Jakob Bossek University of Adelaide
Ulf Brefeld Leuphana Universität Luneburg
Michelangelo Ceci Universita degli Studi di Bari “Aldo Moro”
Loïc Cerf Universidade Federal de Minas Gerais
Victor Manuel Cerqueira University of Porto
Laetitia Chapel IRISA
Silvia Chiusano Politecnico di Torino
Roberto Corizzo American University, Washington D.C.
Marco de Gemmis Università degli Studi di Bari “Aldo Moro”
Sébastien Destercke Università degli Studi di Bari “Aldo Moro”
Shridhar Devamane Visvesvaraya Technological University

Organization ix

Carlotta Domeniconi George Mason University
Wouter Duivesteijn Eindhoven University of Technology
Tapio Elomaa Tampere University of Technology
Hugo Jair Escalante INAOE
Nicola Fanizzi Università degli Studi di Bari “Aldo Moro”
Stefano Ferilli Università degli Studi di Bari “Aldo Moro”
Pedro Ferreira Universidade de Lisboa
Cesar Ferri Valencia Polytechnic University
Julia Flores University of Castilla-La Mancha
Germain Forestier Université de Haute Alsace
Marco Frasca University of Milan
Ricardo J. G. B. Campello University of Newcastle
Esther Galbrun University of Eastern Finland
João Gama University of Porto
Paolo Garza Politecnico di Torino
Pascal Germain Université Laval
Fabian Gieseke University of Münster
Josif Grabocka University of Hildesheim
Gianluigi Greco University of Calabria
Riccardo Guidotti University of Pisa
Francesco Gullo UniCredit
Stephan Günnemann Technical University of Munich
Tias Guns Vrije Universiteit Brussel
Antonella Guzzo University of Calabria
Alexander Hagg Hochschule Bonn-Rhein-Sieg University of Applied

Sciences
Jin-Kao Hao University of Angers
Daniel Hernández-Lobato Universidad Autónoma de Madrid
Jose Hernández-Orallo Universitat Politècnica de València
Martin Holena Institute of Computer Science, Academy of Sciences

of the Czech Republic
Jaakko Hollmén Aalto University
Dino Ienco IRSTEA
Georgiana Ifrim University College Dublin
Felix Iglesias TU Wien
Angelo Impedovo University of Bari “Aldo Moro”
Mahdi Jalili RMIT University
Nathalie Japkowicz University of Ottawa
Szymon Jaroszewicz Institute of Computer Science, Polish Academy

of Sciences
Michael Kamp Monash University
Mehdi Kaytoue Infologic
Pascal Kerschke University of Münster
Dragi Kocev Jozef Stefan Institute
Lars Kotthoff University of Wyoming
Tipaluck Krityakierne University of Bern

x Organization

Peer Kröger Ludwig Maximilian University of Munich
Meelis Kull University of Tartu
Michel Lang TU Dortmund University
Helge Langseth Norwegian University of Science and Technology
Oswald Lanz FBK
Mark Last Ben-Gurion University of the Negev
Kangwook Lee University of Wisconsin-Madison
Jurica Levatic IRB Barcelona
Thomar Liebig TU Dortmund
Hsuan-Tien Lin National Taiwan University
Marius Lindauer Leibniz University Hannover
Marco Lippi University of Modena and Reggio Emilia
Corrado Loglisci Università degli Studi di Bari
Manuel Lopez-Ibanez University of Malaga
Nuno Lourenço University of Coimbra
Claudio Lucchese Ca’ Foscari University of Venice
Brian Mac Namee University College Dublin
Gjorgji Madjarov Ss. Cyril and Methodius University
Davide Maiorca University of Cagliari
Giuseppe Manco ICAR-CNR
Elena Marchiori Radboud University
Elio Masciari Università di Napoli Federico II
Andres R. Masegosa Norwegian University of Science and Technology
Ernestina Menasalvas Universidad Politécnica de Madrid
Rosa Meo University of Torino
Paolo Mignone University of Bari “Aldo Moro”
Anna Monreale University of Pisa
Giovanni Montana University of Warwick
Grègoire Montavon TU Berlin
Katharina Morik TU Dortmund
Animesh Mukherjee Indian Institute of Technology, Kharagpur
Amedeo Napoli LORIA Nancy
Frank Naumann University of Adelaide
Thomas Dyhre Aalborg University
Bruno Ordozgoiti Aalto University
Rita P. Ribeiro University of Porto
Pance Panov Jozef Stefan Institute
Apostolos Papadopoulos Aristotle University of Thessaloniki
Panagiotis Papapetrou Stockholm University
Andrea Passerini University of Trento
Mykola Pechenizkiy Eindhoven University of Technology
Charlotte Pelletier Université Bretagne Sud
Ruggero G. Pensa University of Torino
Nico Piatkowski TU Dortmund
Dario Piga IDSIA Dalle Molle Institute for Artificial Intelligence

Research - USI/SUPSI

Organization xi

Gianvito Pio Università degli Studi di Bari “Aldo Moro”
Marc Plantevit LIRIS - Université Claude Bernard Lyon 1
Marius Popescu University of Bucharest
Raphael Prager University of Münster
Mike Preuss Universiteit Leiden
Jose M. Puerta Universidad de Castilla-La Mancha
Kai Puolamäki University of Helsinki
Chedy Raïssi Inria
Jan Ramon Inria
Matteo Riondato Amherst College
Thomas A. Runkler Siemens Corporate Technology
Antonio Salmerón University of Almería
Joerg Sander University of Alberta
Roberto Santana University of the Basque Country
Michael Schaub RWTH Aachen
Lars Schmidt-Thieme University of Hildesheim
Santiago Segui Universitat de Barcelona
Thomas Seidl Ludwig-Maximilians-Universitaet Muenchen
Moritz Seiler University of Münster
Shinichi Shirakawa Yokohama National University
Jim Smith University of the West of England
Carlos Soares University of Porto
Gerasimos Spanakis Maastricht University
Giancarlo Sperlì University of Naples Federico II
Myra Spiliopoulou Otto-von-Guericke-University Magdeburg
Giovanni Stilo Università degli Studi dell’Aquila
Catalin Stoean University of Craiova
Mahito Sugiyama National Institute of Informatics
Nikolaj Tatti University of Helsinki
Alexandre Termier Université de Rennes 1
Kevin Tierney Bielefeld University
Luis Torgo University of Porto
Roberto Trasarti CNR Pisa
Sébastien Treguer Inria
Leonardo Trujillo Instituto Tecnológico de Tijuana
Ivor Tsang University of Technology Sydney
Grigorios Tsoumakas Aristotle University of Thessaloniki
Steffen Udluft Siemens
Arnaud Vandaele Université de Mons
Matthijs van Leeuwen Leiden University
Celine Vens KU Leuven Kulak
Herna Viktor University of Ottawa
Marco Virgolin Centrum Wiskunde & Informatica
Jordi Vitrià Universitat de Barcelona
Christel Vrain LIFO – University of Orléans
Jilles Vreeken Helmholtz Center for Information Security

xii Organization

Willem Waegeman Ghent University
David Walker University of Plymouth
Hao Wang Leiden University
Elizabeth F. Wanner CEFET
Tu Wei-Wei 4paradigm
Pascal Welke University of Bonn
Marcel Wever Paderborn University
Man Leung Wong Lingnan University
Stefan Wrobel Fraunhofer IAIS, University of Bonn
Zheng Ying Inria
Guoxian Yu Shandong University
Xiang Zhang Harvard University
Ye Zhu Deakin University
Arthur Zimek University of Southern Denmark
Albrecht Zimmermann Université Caen Normandie
Marinka Zitnik Harvard University

Area Chairs, Research Track

Fabrizio Angiulli University of Calabria
Ricardo Baeza-Yates Universitat Pompeu Fabra
Roberto Bayardo Google
Bettina Berendt Katholieke Universiteit Leuven
Philipp Berens University of Tübingen
Michael Berthold University of Konstanz
Hendrik Blockeel Katholieke Universiteit Leuven
Juergen Branke University of Warwick
Ulf Brefeld Leuphana University Lüneburg
Toon Calders Universiteit Antwerpen
Michelangelo Ceci Università degli Studi di Bari “Aldo Moro”
Duen Horng Chau Georgia Institute of Technology
Nicolas Courty Université Bretagne Sud, IRISA Research Institute

Computer and Systems Aléatoires
Bruno Cremilleux Université de Caen Normandie
Philippe Cudre-Mauroux University of Fribourg
James Cussens University of Bristol
Jesse Davis Katholieke Universiteit Leuven
Bob Durrant University of Waikato
Tapio Elomaa Tampere University
Johannes Fürnkranz Johannes Kepler University Linz
Eibe Frank University of Waikato
Elisa Fromont Université de Rennes 1
Stephan Günnemann Technical University of Munich
Patrick Gallinari LIP6 - University of Paris
Joao Gama University of Porto
Przemyslaw Grabowicz University of Massachusetts, Amherst

Organization xiii

Eyke Hüllermeier Paderborn University
Allan Hanbury Vienna University of Technology
Daniel Hernández-Lobato Universidad Autónoma de Madrid
José Hernández-Orallo Universitat Politècnica de València
Andreas Hotho University of Wuerzburg
Inaki Inza University of the Basque Country
Marius Kloft TU Kaiserslautern
Arno Knobbe Universiteit Leiden
Lars Kotthoff University of Wyoming
Danica Kragic KTH Royal Institute of Technology
Sébastien Lefèvre Université Bretagne Sud
Bruno Lepri FBK-Irst
Patrick Loiseau Inria and Ecole Polytechnique
Jorg Lucke University of Oldenburg
Fragkiskos Malliaros Paris-Saclay University, CentraleSupelec, and Inria
Giuseppe Manco ICAR-CNR
Dunja Mladenic Jozef Stefan Institute
Katharina Morik TU Dortmund
Sriraam Natarajan Indiana University Bloomington
Siegfried Nijssen Université catholique de Louvain
Andrea Passerini University of Trento
Mykola Pechenizkiy Eindhoven University of Technology
Jaakko Peltonen Aalto University and University of Tampere
Marian-Andrei Rizoiu University of Technology Sydney
Céline Robardet INSA Lyon
Maja Rudolph Bosch
Lars Schmidt-Thieme University of Hildesheim
Thomas Seidl Ludwig-Maximilians-Universität München
Arno Siebes Utrecht University
Myra Spiliopoulou Otto-von-Guericke-University Magdeburg
Yizhou Sun University of California, Los Angeles
Einoshin Suzuki Kyushu University
Jie Tang Tsinghua University
Ke Tang Southern University of Science and Technology
Marc Tommasi University of Lille
Isabel Valera Saarland University
Celine Vens KU Leuven Kulak
Christel Vrain LIFO - University of Orléans
Jilles Vreeken Helmholtz Center for Information Security
Willem Waegeman Ghent University
Stefan Wrobel Fraunhofer IAIS, University of Bonn
Min-Ling Zhang Southeast University

xiv Organization

Area Chairs, Applied Data Science Track

Francesco Calabrese Vodafone
Michelangelo Ceci Università degli Studi di Bari “Aldo Moro”
Gianmarco De Francisci

Morales
ISI Foundation

Tom Diethe Amazon
Johannes Frünkranz Johannes Kepler University Linz
Han Fang Facebook
Faisal Farooq Qatar Computing Research Institute
Rayid Ghani Carnegie Mellon Univiersity
Francesco Gullo UniCredit
Xiangnan He University of Science and Technology of China
Georgiana Ifrim University College Dublin
Thorsten Jungeblut Bielefeld University of Applied Sciences
John A. Lee Université catholique de Louvain
Ilias Leontiadis Samsung AI
Viktor Losing Honda Research Institute Europe
Yin Lou Ant Group
Gabor Melli Sony PlayStation
Luis Moreira-Matias University of Porto
Nicolò Navarin University of Padova
Benjamin Paaßen German Research Center for Artificial Intelligence
Kitsuchart Pasupa King Mongkut’s Institute of Technology Ladkrabang
Mykola Pechenizkiy Eindhoven University of Technology
Julien Perez Naver Labs Europe
Fabio Pinelli IMT Lucca
Zhaochun Ren Shandong University
Sascha Saralajew Porsche AG
Fabrizio Silvestri Facebook
Sinong Wang Facebook AI
Xing Xie Microsoft Research Asia
Jian Xu Citadel
Jing Zhang Renmin University of China

Program Committee Members, Research Track

Hanno Ackermann Leibniz University Hannover
Linara Adilova Fraunhofer IAIS
Zahra Ahmadi Johannes Gutenberg University
Cuneyt Gurcan Akcora University of Manitoba
Omer Deniz Akyildiz University of Warwick
Carlos M. Alaíz Gudín Universidad Autónoma de Madrid
Mohamed Alami Ecole Polytechnique
Chehbourne Abdullah

Alchihabi
Carleton University

Pegah Alizadeh University of Caen Normandy

Organization xv

Reem Alotaibi King Abdulaziz University
Massih-Reza Amini Université Grenoble Alpes
Shin Ando Tokyo University of Science
Thiago Andrade INESC TEC
Kimon Antonakopoulos Inria
Alessandro Antonucci IDSIA
Muhammad Umer Anwaar Technical University of Munich
Eva Armengol IIIA-SIC
Dennis Assenmacher University of Münster
Matthias Aßenmacher Ludwig-Maximilians-Universität München
Martin Atzmueller Osnabrueck University
Behrouz Babaki Polytechnique Montreal
Rohit Babbar Aalto University
Elena Baralis Politecnico di Torino
Mitra Baratchi University of Twente
Christian Bauckhage University of Bonn, Fraunhofer IAIS
Martin Becker University of Würzburg
Jessa Bekker Katholieke Universiteit Leuven
Colin Bellinger National Research Council of Canada
Khalid Benabdeslem LIRIS Laboratory, Claude Bernard University Lyon I
Diana Benavides-Prado Auckland University of Technology
Anes Bendimerad LIRIS
Christoph Bergmeir University of Granada
Alexander Binder UiO
Aleksandar Bojchevski Technical University of Munich
Ahcène Boubekki UiT Arctic University of Norway
Paula Branco EECS University of Ottawa
Tanya Braun University of Lübeck
Katharina Breininger Friedrich-Alexander-Universität Erlangen Nürnberg
Wieland Brendel University of Tübingen
John Burden University of Cambridge
Sophie Burkhardt TU Kaiserslautern
Sebastian Buschjäger TU Dortmund
Borja Calvo University of the Basque Country
Stephane Canu LITIS, INSA de Rouen
Cornelia Caragea University of Illinois at Chicago
Paula Carroll University College Dublin
Giuseppe Casalicchio Ludwig Maximilian University of Munich
Bogdan Cautis Paris-Saclay University
Rémy Cazabet Université de Lyon
Josu Ceberio University of the Basque Country
Peggy Cellier IRISA/INSA Rennes
Mattia Cerrato Università degli Studi di Torino
Ricardo Cerri Federal University of Sao Carlos
Alessandra Cervone Amazon
Ayman Chaouki Institut Mines-Télécom

xvi Organization

Paco Charte Universidad de Jaén
Rita Chattopadhyay Intel Corporation
Vaggos Chatziafratis Stanford University
Tianyi Chen Zhejiang University City College
Yuzhou Chen Southern Methodist University
Yiu-Ming Cheung Hong Kong Baptist University
Anshuman Chhabra University of California, Davis
Ting-Wu Chin Carnegie Mellon University
Oana Cocarascu King’s College London
Lidia Contreras-Ochando Universitat Politècnica de València
Roberto Corizzo American University
Anna Helena Reali Costa Universidade de São Paulo
Fabrizio Costa University of Exeter
Gustavo De Assis Costa Instituto Federal de Educação, Ciância e Tecnologia

de Goiás
Bertrand Cuissart GREYC
Thi-Bich-Hanh Dao University of Orleans
Mayukh Das Microsoft Research Lab
Padraig Davidson Universität Würzburg
Paul Davidsson Malmö University
Gwendoline De Bie ENS
Tijl De Bie Ghent University
Andre de Carvalho Universidade de São Paulo
Orphée De Clercq Ghent University
Alper Demir Ízmir University of Economics
Nicola Di Mauro Università degli Studi di Bari “Aldo Moro”
Yao-Xiang Ding Nanjing University
Carola Doerr Sorbonne University
Boxiang Dong Montclair State University
Ruihai Dong University College Dublin
Xin Du Eindhoven University of Technology
Stefan Duffner LIRIS
Wouter Duivesteijn Eindhoven University of Technology
Audrey Durand McGill University
Inês Dutra University of Porto
Saso Dzeroski Jozef Stefan Institute
Hamid Eghbalzadeh Johannes Kepler University
Dominik Endres University of Marburg
Roberto Esposito Università degli Studi di Torino
Samuel G. Fadel Universidade Estadual de Campinas
Xiuyi Fan Imperial College London
Hadi Fanaee-T. Halmstad University
Elaine Faria Federal University of Uberlandia
Fabio Fassetti University of Calabria
Kilian Fatras Inria
Ad Feelders Utrecht University

Organization xvii

Songhe Feng Beijing Jiaotong University
Àngela Fernández-Pascual Universidad Autónoma de Madrid
Daniel Fernández-Sánchez Universidad Autónoma de Madrid
Sofia Fernandes University of Aveiro
Cesar Ferri Universitat Politécnica de Valéncia
Rémi Flamary École Polytechnique
Michael Flynn University of East Anglia
Germain Forestier Université de Haute Alsace
Kary Främling Umeå University
Benoît Frénay Université de Namur
Vincent Francois University of Amsterdam
Emilia Gómez Joint Research Centre - European Commission
Luis Galárraga Inria
Esther Galbrun University of Eastern Finland
Claudio Gallicchio University of Pisa
Jochen Garcke University of Bonn
Clément Gautrais KU Leuven
Yulia Gel University of Texas at Dallas and University

of Waterloo
Pierre Geurts University of Liège
Amirata Ghorbani Stanford University
Heitor Murilo Gomes University of Waikato
Chen Gong Shanghai Jiao Tong University
Bedartha Goswami University of Tübingen
Henry Gouk University of Edinburgh
James Goulding University of Nottingham
Antoine Gourru Université Lumière Lyon 2
Massimo Guarascio ICAR-CNR
Riccardo Guidotti University of Pisa
Ekta Gujral University of California, Riverside
Francesco Gullo UniCredit
Tias Guns Vrije Universiteit Brussel
Thomas Guyet Institut Agro, IRISA
Tom Hanika University of Kassel
Valentin Hartmann Ecole Polytechnique Fédérale de Lausanne
Marwan Hassani Eindhoven University of Technology
Jukka Heikkonen University of Turku
Fredrik Heintz Linköping University
Sibylle Hess TU Eindhoven
Jaakko Hollmén Aalto University
Tamas Horvath University of Bonn, Fraunhofer IAIS
Binbin Hu Ant Group
Hong Huang UGoe
Georgiana Ifrim University College Dublin
Angelo Impedovo Università degli studi di Bari “Aldo Moro”

xviii Organization

Nathalie Japkowicz American University
Szymon Jaroszewicz Institute of Computer Science, Polish Academy

of Sciences
Saumya Jetley Inria
Binbin Jia Southeast University
Xiuyi Jia School of Computer Science and Technology, Nanjing

University of Science and Technology
Yuheng Jia City University of Hong Kong
Siyang Jiang National Taiwan University
Priyadarshini Kumari IIT Bombay
Ata Kaban University of Birmingham
Tomasz Kajdanowicz Wroclaw University of Technology
Vana Kalogeraki Athens University of Economics and Business
Toshihiro Kamishima National Institute of Advanced Industrial Science

and Technology
Michael Kamp Monash University
Bo Kang Ghent University
Dimitrios Karapiperis Hellenic Open University
Panagiotis Karras Aarhus University
George Karypis University of Minnesota
Mark Keane University College Dublin
Kristian Kersting TU Darmstadt
Masahiro Kimura Ryukoku University
Jiri Klema Czech Technical University
Dragi Kocev Jozef Stefan Institute
Masahiro Kohjima NTT
Lukasz Korycki Virginia Commonwealth University
Peer Kröger Ludwig Maximilian University of Münich
Anna Krause University of Würzburg
Bartosz Krawczyk Virginia Commonwealth University
Georg Krempl Utrecht University
Meelis Kull University of Tartu
Vladimir Kuzmanovski Aalto University
Ariel Kwiatkowski Ecole Polytechnique
Emanuele La Malfa University of Oxford
Beatriz López University of Girona
Preethi Lahoti Aalto University
Ichraf Lahouli Euranova
Niklas Lavesson Jönköping University
Aonghus Lawlor University College Dublin
Jeongmin Lee University of Pittsburgh
Daniel Lemire LICEF Research Center and Université du Québec
Florian Lemmerich University of Passau
Elisabeth Lex Graz University of Technology
Jiani Li Vanderbilt University
Rui Li Inspur Group
Wentong Liao Lebniz University Hannover

Organization xix

Jiayin Lin University of Wollongong
Rudolf Lioutikov UT Austin
Marco Lippi University of Modena and Reggio Emilia
Suzanne Little Dublin City University
Shengcai Liu University of Science and Technology of China
Shenghua Liu Institute of Computing Technology, Chinese Academy

of Sciences
Philipp Liznerski Technische Universität Kaiserslautern
Corrado Loglisci Università degli Studi di Bari “Aldo Moro”
Ting Long Shanghai Jiaotong University
Tsai-Ching Lu HRL Laboratories
Yunpu Ma Siemens AG
Zichen Ma The Chinese University of Hong Kong
Sara Madeira Universidade de Lisboa
Simona Maggio Dataiku
Sara Magliacane IBM
Sebastian Mair Leuphana University Lüneburg
Lorenzo Malandri University of Milan Bicocca
Donato Malerba Università degli Studi di Bari “Aldo Moro”
Pekka Malo Aalto University
Robin Manhaeve KU Leuven
Silviu Maniu Université Paris-Sud
Giuseppe Marra KU Leuven
Fernando Martínez-Plumed Joint Research Centre - European Commission
Alexander Marx Max Plank Institue for Informatics and Saarland

University
Florent Masseglia Inria
Tetsu Matsukawa Kyushu University
Wolfgang Mayer University of South Australia
Santiago Mazuelas Basque center for Applied Mathematics
Stefano Melacci University of Siena
Ernestina Menasalvas Universidad Politécnica de Madrid
Rosa Meo Università degli Studi di Torino
Alberto Maria Metelli Politecnico di Milano
Saskia Metzler Max Planck Institute for Informatics
Alessio Micheli University of Pisa
Paolo Mignone Università degli studi di Bari “Aldo Moro”
Matej Mihelčić University of Zagreb
Decebal Constantin Mocanu University of Twente
Nuno Moniz INESC TEC and University of Porto
Carlos Monserrat Universitat Politécnica de Valéncia
Corrado Monti ISI Foundation
Jacob Montiel University of Waikato
Ahmadreza Mosallanezhad Arizona State University
Tanmoy Mukherjee University of Tennessee
Martin Mundt Goethe University

xx Organization

Mohamed Nadif Université de Paris
Omer Nagar Bar Ilan University
Felipe Kenji Nakano Katholieke Universiteit Leuven
Mirco Nanni KDD-Lab ISTI-CNR Pisa
Apurva Narayan University of Waterloo
Nicolò Navarin University of Padova
Benjamin Negrevergne Paris Dauphine University
Hurley Neil University College Dublin
Stefan Neumann University of Vienna
Ngoc-Tri Ngo The University of Danang - University of Science

and Technology
Dai Nguyen Monash University
Eirini Ntoutsi Free University Berlin
Andrea Nuernberger Otto-von-Guericke-Universität Magdeburg
Pablo Olmos University Carlos III
James O’Neill University of Liverpool
Barry O’Sullivan University College Cork
Rita P. Ribeiro University of Porto
Aritz Pèrez Basque Center for Applied Mathematics
Joao Palotti Qatar Computing Research Institute
Guansong Pang University of Adelaide
Pance Panov Jozef Stefan Institute
Evangelos Papalexakis University of California, Riverside
Haekyu Park Georgia Institute of Technology
Sudipta Paul Umeå University
Yulong Pei Eindhoven University of Technology
Charlotte Pelletier Université Bretagne Sud
Ruggero G. Pensa University of Torino
Bryan Perozzi Google
Nathanael Perraudin ETH Zurich
Lukas Pfahler TU Dortmund
Bastian Pfeifer Medical University of Graz
Nico Piatkowski TU Dortmund
Robert Pienta Georgia Institute of Technology
Fábio Pinto Faculdade de Economia do Porto
Gianvito Pio University of Bari “Aldo Moro”
Giuseppe Pirrò Sapienza University of Rome
Claudia Plant University of Vienna
Marc Plantevit LIRIS - Universitè Claude Bernard Lyon 1
Amit Portnoy Ben Gurion University
Melanie Pradier Harvard University
Paul Prasse University of Potsdam
Philippe Preux Inria, LIFL, Universitè de Lille
Ricardo Prudencio Federal University of Pernambuco
Zhou Qifei Peking University
Erik Quaeghebeur TU Eindhoven

Organization xxi

Tahrima Rahman University of Texas at Dallas
Herilalaina Rakotoarison Inria
Alexander Rakowski Hasso Plattner Institute
María José Ramírez Universitat Politècnica de Valècia
Visvanathan Ramesh Goethe University
Jan Ramon Inria
Huzefa Rangwala George Mason University
Aleksandra Rashkovska Jožef Stefan Institute
Joe Redshaw University of Nottingham
Matthias Renz Christian-Albrechts-Universität zu Kiel
Matteo Riondato Amherst College
Ettore Ritacco ICAR-CNR
Mateus Riva Télécom ParisTech
Antonio Rivera Universidad Politécnica de Madrid
Marko Robnik-Sikonja University of Ljubljana
Simon Rodriguez Santana Institute of Mathematical Sciences (ICMAT-CSIC)
Mohammad Rostami University of Southern California
Céline Rouveirol Laboratoire LIPN-UMR CNRS
Jože Rožanec Jožef Stefan Institute
Peter Rubbens Flanders Marine Institute
David Ruegamer LMU Munich
Salvatore Ruggieri Università di Pisa
Francisco Ruiz DeepMind
Anne Sabourin Télécom ParisTech
Tapio Salakoski University of Turku
Pablo Sanchez-Martin Max Planck Institute for Intelligent Systems
Emanuele Sansone KU Leuven
Yucel Saygin Sabanci University
Patrick Schäfer Humboldt Universität zu Berlin
Pierre Schaus UCLouvain
Ute Schmid University of Bamberg
Sebastian Schmoll Ludwig Maximilian University of Munich
Marc Schoenauer Inria
Matthias Schubert Ludwig Maximilian University of Munich
Marian Scuturici LIRIS-INSA de Lyon
Junming Shao University of Science and Technology of China
Manali Sharma Samsung Semiconductor Inc.
Abdul Saboor Sheikh Zalando Research
Jacquelyn Shelton Hong Kong Polytechnic University
Feihong Shen Jilin University
Gavin Smith University of Nottingham
Kma Solaiman Purdue University
Arnaud Soulet Université François Rabelais Tours
Alessandro Sperduti University of Padua
Giovanni Stilo Università degli Studi dell’Aquila
Michiel Stock Ghent University

xxii Organization

Lech Szymanski University of Otago
Shazia Tabassum University of Porto
Andrea Tagarelli University of Calabria
Acar Tamersoy NortonLifeLock Research Group
Chang Wei Tan Monash University
Sasu Tarkoma University of Helsinki
Bouadi Tassadit IRISA-Université Rennes 1
Nikolaj Tatti University of Helsinki
Maryam Tavakol Eindhoven University of Technology
Pooya Tavallali University of California, Los Angeles
Maguelonne Teisseire Irstea - UMR Tetis
Alexandre Termier Université de Rennes 1
Stefano Teso University of Trento
Janek Thomas Fraunhofer Institute for Integrated Circuits IIS
Alessandro Tibo Aalborg University
Sofia Triantafillou University of Pittsburgh
Grigorios Tsoumakas Aristotle University of Thessaloniki
Peter van der Putten LIACS, Leiden University and Pegasystems
Elia Van Wolputte KU Leuven
Robert A. Vandermeulen Technische Universität Berlin
Fabio Vandin University of Padova
Filipe Veiga Massachusetts Institute of Technology
Bruno Veloso Universidade Portucalense and LIAAD - INESC TEC
Sebastián Ventura University of Cordoba
Rosana Veroneze UNICAMP
Herna Viktor University of Ottawa
João Vinagre INESC TEC
Huaiyu Wan Beijing Jiaotong University
Beilun Wang Southeast University
Hu Wang University of Adelaide
Lun Wang University of California, Berkeley
Yu Wang Peking University
Zijie J. Wang Georgia Tech
Tong Wei Nanjing University
Pascal Welke University of Bonn
Joerg Wicker University of Auckland
Moritz Wolter University of Bonn
Ning Xu Southeast University
Akihiro Yamaguchi Toshiba Corporation
Haitian Yang Institute of Information Engineering, Chinese Academy

of Sciences
Yang Yang Nanjing University
Zhuang Yang Sun Yat-sen University
Helen Yannakoudakis King’s College London
Heng Yao Tongji University
Han-Jia Ye Nanjing University

Organization xxiii

Kristina Yordanova University of Rostock
Tetsuya Yoshida Nara Women’s University
Guoxian Yu Shandong University, China
Sha Yuan Tsinghua University
Valentina Zantedeschi INSA Lyon
Albin Zehe University of Würzburg
Bob Zhang University of Macau
Teng Zhang Huazhong University of Science and Technology
Liang Zhao University of São Paulo
Bingxin Zhou University of Sydney
Kenny Zhu Shanghai Jiao Tong University
Yanqiao Zhu Institute of Automation, Chinese Academy of Sciences
Arthur Zimek University of Southern Denmark
Albrecht Zimmermann Université Caen Normandie
Indre Zliobaite University of Helsinki
Markus Zopf NEC Labs Europe

Program Committee Members, Applied Data Science Track

Mahdi Abolghasemi Monash University
Evrim Acar Simula Research Lab
Deepak Ajwani University College Dublin
Pegah Alizadeh University of Caen Normandy
Jean-Marc Andreoli Naver Labs Europe
Giorgio Angelotti ISAE Supaero
Stefanos Antaris KTH Royal Institute of Technology
Xiang Ao Institute of Computing Technology, Chinese Academy

of Sciences
Yusuf Arslan University of Luxembourg
Cristian Axenie Huawei European Research Center
Hanane Azzag Université Sorbonne Paris Nord
Pedro Baiz Imperial College London
Idir Benouaret CNRS, Université Grenoble Alpes
Laurent Besacier Laboratoire d’Informatique de Grenoble
Antonio Bevilacqua Insight Centre for Data Analytics
Adrien Bibal University of Namur
Wu Bin Zhengzhou University
Patrick Blöbaum Amazon
Pavel Blinov Sber Artificial Intelligence Laboratory
Ludovico Boratto University of Cagliari
Stefano Bortoli Huawei Technologies Duesseldorf
Zekun Cai University of Tokyo
Nicolas Carrara University of Toronto
John Cartlidge University of Bristol
Oded Cats Delft University of Technology
Tania Cerquitelli Politecnico di Torino

xxiv Organization

Prithwish Chakraborty IBM
Rita Chattopadhyay Intel Corp.
Keru Chen GrabTaxi Pte Ltd.
Liang Chen Sun Yat-sen University
Zhiyong Cheng Shandong Artificial Intelligence Institute
Silvia Chiusano Politecnico di Torino
Minqi Chong Citadel
Jeremie Clos University of Nottingham
J. Albert Conejero Casares Universitat Politécnica de Vaécia
Evan Crothers University of Ottawa
Henggang Cui Uber ATG
Tiago Cunha University of Porto
Padraig Cunningham University College Dublin
Eustache Diemert CRITEO Research
Nat Dilokthanakul Vidyasirimedhi Institute of Science and Technology
Daizong Ding Fudan University
Kaize Ding ASU
Michele Donini Amazon
Lukas Ewecker Porsche AG
Zipei Fan University of Tokyo
Bojing Feng National Laboratory of Pattern Recognition, Institute

of Automation, Chinese Academy of Science
Flavio Figueiredo Universidade Federal de Minas Gerais
Blaz Fortuna Qlector d.o.o.
Zuohui Fu Rutgers University
Fabio Fumarola University of Bari “Aldo Moro”
Chen Gao Tsinghua University
Luis Garcia University of Brasília
Cinmayii

Garillos-Manliguez
University of the Philippines Mindanao

Kiran Garimella Aalto University
Etienne Goffinet Laboratoire LIPN-UMR CNRS
Michael Granitzer University of Passau
Xinyu Guan Xi’an Jiaotong University
Thomas Guyet Institut Agro, IRISA
Massinissa Hamidi Laboratoire LIPN-UMR CNRS
Junheng Hao University of California, Los Angeles
Martina Hasenjaeger Honda Research Institute Europe GmbH
Lars Holdijk University of Amsterdam
Chao Huang University of Notre Dame
Guanjie Huang Penn State University
Hong Huang UGoe
Yiran Huang TECO
Madiha Ijaz IBM
Roberto Interdonato CIRAD - UMR TETIS
Omid Isfahani Alamdari University of Pisa

Organization xxv

Guillaume Jacquet JRC
Nathalie Japkowicz American University
Shaoxiong Ji Aalto University
Nan Jiang Purdue University
Renhe Jiang University of Tokyo
Song Jiang University of California, Los Angeles
Adan Jose-Garcia University of Exeter
Jihed Khiari Johannes Kepler Universität
Hyunju Kim KAIST
Tomas Kliegr University of Economics
Yun Sing Koh University of Auckland
Pawan Kumar IIIT, Hyderabad
Chandresh Kumar Maurya CSE, IIT Indore
Thach Le Nguyen The Insight Centre for Data Analytics
Mustapha Lebbah Université Paris 13, LIPN-CNRS
Dongman Lee Korea Advanced Institute of Science and Technology
Rui Li Sony
Xiaoting Li Pennsylvania State University
Zeyu Li University of California, Los Angeles
Defu Lian University of Science and Technology of China
Jiayin Lin University of Wollongong
Jason Lines University of East Anglia
Bowen Liu Stanford University
Pedro Henrique Luz de

Araujo
University of Brasilia

Fenglong Ma Pennsylvania State University
Brian Mac Namee University College Dublin
Manchit Madan Myntra
Ajay Mahimkar AT&T Labs
Domenico Mandaglio Università della Calabria
Koji Maruhashi Fujitsu Laboratories Ltd.
Sarah Masud LCS2, IIIT-D
Eric Meissner University of Cambridge
João Mendes-Moreira INESC TEC
Chuan Meng Shandong University
Fabio Mercorio University of Milano-Bicocca
Angela Meyer Bern University of Applied Sciences
Congcong Miao Tsinghua University
Stéphane Moreau Université de Sherbrooke
Koyel Mukherjee IBM Research India
Fabricio Murai Universidade Federal de Minas Gerais
Taichi Murayama NAIST
Philip Nadler Imperial College London
Franco Maria Nardini ISTI-CNR
Ngoc-Tri Ngo The University of Danang - University of Science and

Technology

xxvi Organization

Anna Nguyen Karlsruhe Institute of Technology
Hao Niu KDDI Research, Inc.
Inna Novalija Jožef Stefan Institute
Tsuyosh Okita Kyushu Institute of Technology
Aoma Osmani LIPN-UMR CNRS 7030, Université Paris 13
Latifa Oukhellou IFSTTAR
Andrei Paleyes University of Cambridge
Chanyoung Park KAIST
Juan Manuel Parrilla

Gutierrez
University of Glasgow

Luca Pasa Università degli Studi Di Padova
Pedro Pereira Rodrigues University of Porto
Miquel Perelló-Nieto University of Bristol
Beatrice Perez Dartmouth College
Alan Perotti ISI Foundation
Mirko Polato University of Padua
Giovanni Ponti ENEA
Nicolas Posocco Eura Nova
Cedric Pradalier GeorgiaTech Lorraine
Giulia Preti ISI Foundation
A. A. A. Qahtan Utrecht University
Chuan Qin University of Science and Technology of China
Dimitrios Rafailidis University of Thessaly
Cyril Ray Arts et Metiers Institute of Technology, Ecole Navale,

IRENav
Wolfgang Reif University of Augsburg
Kit Rodolfa Carnegie Mellon University
Christophe Rodrigues Pôle Universitaire Léonard de Vinci
Natali Ruchansky Netflix
Hajer Salem AUDENSIEL
Parinya Sanguansat Panyapiwat Institute of Management
Atul Saroop Amazon
Alexander Schiendorfer Technische Hochschule Ingolstadt
Peter Schlicht Volkswagen
Jens Schreiber University of Kassel
Alexander Schulz Bielefeld University
Andrea Schwung FH SWF
Edoardo Serra Boise State University
Lorenzo Severini UniCredit
Ammar Shaker Paderborn University
Jiaming Shen University of Illinois at Urbana-Champaign
Rongye Shi Columbia University
Wang Siyu Southwestern University of Finance and Economics
Hao Song University of Bristol
Francesca Spezzano Boise State University
Simon Stieber University of Augsburg

Organization xxvii

Laurens Stoop Utrecht University
Hongyang Su Harbin Institute of Technology
David Sun Apple
Weiwei Sun Shandong University
Maryam Tabar Pennsylvania State University
Anika Tabassum Virginia Tech
Garth Tarr University of Sydney
Dinh Van Tran University of Padova
Sreekanth Vempati Myntra
Herna Viktor University of Ottawa
Daheng Wang University of Notre Dame
Hongwei Wang Stanford University
Wenjie Wang National University of Singapore
Yue Wang Microsoft Research
Zhaonan Wang University of Tokyo and National Institute

of Advanced Industrial Science and Technology
Michael Wilbur Vanderbilt University
Roberto Wolfler Calvo LIPN, Université Paris 13
Di Wu Chongqing Institute of Green and Intelligent

Technology
Gang Xiong Chinese Academy of Sciences
Xiaoyu Xu Chongqing Institute of Green and Intelligent

Technology
Yexiang Xue Purdue University
Sangeeta Yadav Indian Institute of Science
Hao Yan Washington University in St. Louis
Chuang Yang University of Tokyo
Yang Yang Northwestern University
You Yizhe Institute of Information Engineering, Chinese Academy

of Sciences
Alexander Ypma ASML
Jun Yuan The Boeing Company
Mingxuan Yue University of Southern California
Danqing Zhang Amazon
Jiangwei Zhang Tencent
Xiaohan Zhang Sony Interactive Entertainment
Xinyang Zhang University of Illinois at Urbana-Champaign
Yongxin Zhang Sun Yat-sen University
Mia Zhao Airbnb
Tong Zhao University of Notre Dame
Bin Zhou National University of Defense Technology
Bo Zhou Baidu
Louis Zigrand Université Sorbonne Paris Nord

xxviii Organization

Sponsors

Organization xxix

Contents – Part IV

Anomaly Detection and Malware

Anomaly Detection: How to Artificially Increase Your F1-Score
with a Biased Evaluation Protocol . 3

Damien Fourure, Muhammad Usama Javaid, Nicolas Posocco,
and Simon Tihon

Mining Anomalies in Subspaces of High-Dimensional Time Series
for Financial Transactional Data . 19

Jingzhu He, Chin-Chia Michael Yeh, Yanhong Wu, Liang Wang,
and Wei Zhang

AIMED-RL: Exploring Adversarial Malware Examples with
Reinforcement Learning . 37

Raphael Labaca-Castro, Sebastian Franz, and Gabi Dreo Rodosek

Learning Explainable Representations of Malware Behavior 53
Paul Prasse, Jan Brabec, Jan Kohout, Martin Kopp, Lukas Bajer,
and Tobias Scheffer

Strategic Mitigation Against Wireless Attacks on Autonomous Platoons. 69
Guoxin Sun, Tansu Alpcan, Benjamin I. P. Rubinstein,
and Seyit Camtepe

DeFraudNet: An End-to-End Weak Supervision Framework to Detect
Fraud in Online Food Delivery . 85

Jose Mathew, Meghana Negi, Rutvik Vijjali, and Jairaj Sathyanarayana

Spatio-Temporal Data

Time Series Forecasting with Gaussian Processes Needs Priors 103
Giorgio Corani, Alessio Benavoli, and Marco Zaffalon

Task Embedding Temporal Convolution Networks for Transfer Learning
Problems in Renewable Power Time Series Forecast 118

Jens Schreiber, Stephan Vogt, and Bernhard Sick

Generating Multi-type Temporal Sequences to Mitigate
Class-Imbalanced Problem . 135

Lun Jiang, Nima Salehi Sadghiani, Zhuo Tao, and Andrew Cohen

Recognizing Skeleton-Based Hand Gestures by a Spatio-
Temporal Network . 151

Xin Li, Jun Liao, and Li Liu

E-commerce and Finance

Smurf-Based Anti-money Laundering in Time-Evolving Transaction
Networks . 171

Michele Starnini, Charalampos E. Tsourakakis, Maryam Zamanipour,
André Panisson, Walter Allasia, Marco Fornasiero, Laura Li Puma,
Valeria Ricci, Silvia Ronchiadin, Angela Ugrinoska, Marco Varetto,
and Dario Moncalvo

Spatio-Temporal Multi-graph Networks for Demand Forecasting
in Online Marketplaces . 187

Ankit Gandhi, Aakanksha, Sivaramakrishnan Kaveri, and Vineet Chaoji

The Limit Order Book Recreation Model (LOBRM):
An Extended Analysis . 204

Zijian Shi and John Cartlidge

Taking over the Stock Market: Adversarial Perturbations Against
Algorithmic Traders . 221

Elior Nehemya, Yael Mathov, Asaf Shabtai, and Yuval Elovici

Continuous-Action Reinforcement Learning for Portfolio Allocation
of a Life Insurance Company . 237

Carlo Abrate, Alessio Angius, Gianmarco De Francisci Morales,
Stefano Cozzini, Francesca Iadanza, Laura Li Puma, Simone Pavanelli,
Alan Perotti, Stefano Pignataro, and Silvia Ronchiadin

XRR: Explainable Risk Ranking for Financial Reports 253
Ting-Wei Lin, Ruei-Yao Sun, Hsuan-Ling Chang, Chuan-Ju Wang,
and Ming-Feng Tsai

Healthcare and Medical Applications (including Covid)

Self-disclosure on Twitter During the COVID-19 Pandemic:
A Network Perspective . 271

Prasanna Umar, Chandan Akiti, Anna Squicciarini,
and Sarah Rajtmajer

COVID Edge-Net: Automated COVID-19 Lung Lesion Edge Detection
in Chest CT Images. 287

Kang Wang, Yang Zhao, Yong Dou, Dong Wen, and Zikai Gao

xxxii Contents – Part IV

Improving Ambulance Dispatching with Machine Learning
and Simulation . 302

Nikki Theeuwes, Geert-Jan van Houtum, and Yingqian Zhang

Countrywide Origin-Destination Matrix Prediction and Its Application
for COVID-19 . 319

Renhe Jiang, Zhaonan Wang, Zekun Cai, Chuang Yang, Zipei Fan,
Tianqi Xia, Go Matsubara, Hiroto Mizuseki, Xuan Song,
and Ryosuke Shibasaki

Single Model for Influenza Forecasting of Multiple Countries by Multi-task
Learning . 335

Taichi Murayama, Shoko Wakamiya, and Eiji Aramaki

Automatic Acoustic Mosquito Tagging with Bayesian Neural Networks. 351
Ivan Kiskin, Adam D. Cobb, Marianne Sinka, Kathy Willis,
and Stephen J. Roberts

Multitask Recalibrated Aggregation Network for Medical Code Prediction . . . 367
Wei Sun, Shaoxiong Ji, Erik Cambria, and Pekka Marttinen

Open Data Science to Fight COVID-19: Winning the 500k XPRIZE
Pandemic Response Challenge . 384

Miguel Angel Lozano, Òscar Garibo i Orts, Eloy Piñol, Miguel Rebollo,
Kristina Polotskaya, Miguel Angel Garcia-March, J. Alberto Conejero,
Francisco Escolano, and Nuria Oliver

Mobility and Transportation

Getting Your Package to the Right Place: Supervised Machine Learning
for Geolocation. 403

George Forman

Machine Learning Guided Optimization for Demand Responsive
Transport Systems. 420

Louis Zigrand, Pegah Alizadeh, Emiliano Traversi,
and Roberto Wolfler Calvo

OBELISC: Oscillator-Based Modelling and Control Using Efficient Neural
Learning for Intelligent Road Traffic Signal Calculation. 437

Cristian Axenie, Rongye Shi, Daniele Foroni, Alexander Wieder,
Mohamad Al Hajj Hassan, Paolo Sottovia, Margherita Grossi,
Stefano Bortoli, and Götz Brasche

VAMBC: A Variational Approach for Mobility Behavior Clustering 453
Mingxuan Yue, Yao-Yi Chiang, and Cyrus Shahabi

Contents – Part IV xxxiii

Multi-agent Deep Reinforcement Learning with Spatio-Temporal Feature
Fusion for Traffic Signal Control . 470

Xin Du, Jiahai Wang, Siyuan Chen, and Zhiyue Liu

Monte Carlo Search Algorithms for Network Traffic Engineering 486
Chen Dang, Cristina Bazgan, Tristan Cazenave, Morgan Chopin,
and Pierre-Henri Wuillemin

Energy and Emission Prediction for Mixed-Vehicle Transit Fleets Using
Multi-task and Inductive Transfer Learning . 502

Michael Wilbur, Ayan Mukhopadhyay, Sayyed Vazirizade,
Philip Pugliese, Aron Laszka, and Abhishek Dubey

CQNet: A Clustering-Based Quadruplet Network for Decentralized
Application Classification via Encrypted Traffic . 518

Yu Wang, Gang Xiong, Chang Liu, Zhen Li, Mingxin Cui,
and Gaopeng Gou

SPOT: A Framework for Selection of Prototypes Using
Optimal Transport . 535

Karthik S. Gurumoorthy, Pratik Jawanpuria, and Bamdev Mishra

Author Index . 553

xxxiv Contents – Part IV

Anomaly Detection and Malware

Anomaly Detection: How to Artificially
Increase Your F1-Score with a Biased

Evaluation Protocol

Damien Fourure(B) , Muhammad Usama Javaid , Nicolas Posocco ,
and Simon Tihon

EURA NOVA, Mont-St-Guibert, Belgium
{damien.fourure,muhammad.javaid,nicolas.posocco,simon.tihon}@euranova.eu

Abstract. Anomaly detection is a widely explored domain in machine
learning. Many models are proposed in the literature, and compared
through different metrics measured on various datasets. The most popu-
lar metrics used to compare performances are F1-score, AUC and AVPR.
In this paper, we show that F1-score and AVPR are highly sensitive to the
contamination rate. One consequence is that it is possible to artificially
increase their values by modifying the train-test split procedure. This
leads to misleading comparisons between algorithms in the literature,
especially when the evaluation protocol is not well detailed. Moreover,
we show that the F1-score and the AVPR cannot be used to compare
performances on different datasets as they do not reflect the intrinsic dif-
ficulty of modeling such data. Based on these observations, we claim that
F1-score and AVPR should not be used as metrics for anomaly detection.
We recommend a generic evaluation procedure for unsupervised anomaly
detection, including the use of other metrics such as the AUC, which are
more robust to arbitrary choices in the evaluation protocol.

Keywords: Anomaly detection · One-class classification ·
Contamination rate · Metrics

1 Introduction

Anomaly detection has been widely studied in the past few years, mostly for its
immediate usability in real-world applications. Though there are multiple def-
initions of anomalies in the literature, most definitions agree on the fact that
anomalies are data points which do not come from the main distribution. In the
setting of unsupervised anomaly detection, the goal is to create a model which
can distinguish anomalous samples from normal ones without being given such
label at train time. In order to do so, most approaches follow a one-class classifi-
cation framework, which models the normal data from the train set, and predicts
as anomalous any point which does not fit this distribution of normal samples.

D. Fourure, M. U. Javaid, N. Posocco and S. Tihon—Equal contribution.

c© Springer Nature Switzerland AG 2021
Y. Dong et al. (Eds.): ECML PKDD 2021, LNAI 12978, pp. 3–18, 2021.
https://doi.org/10.1007/978-3-030-86514-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86514-6_1&domain=pdf
http://orcid.org/0000-0001-5085-0052
http://orcid.org/0000-0001-9262-2250
http://orcid.org/0000-0002-1795-6039
http://orcid.org/0000-0002-3985-1967
https://doi.org/10.1007/978-3-030-86514-6_1

4 D. Fourure et al.

Such prediction needs some prior knowledge provided through a contamination
rate on the test set, which is the ratio of anomalous data within. This ratio is
used to build the model’s decision rule.

In this setting, a lot of the literature uses the F1-score or the average precision
(AVPR) to evaluate and compare models. In this paper we show that the evalu-
ation protocol (train-test split and contamination rate estimation) has a direct
influence on the contamination rate of the test set and the decision threshold,
which in turn has a direct influence on these metrics. We highlight a comparabil-
ity issue between results in different papers based on such evidence, and suggest
an unbiased protocol to evaluate and compare unsupervised anomaly detection
algorithms.

After an extensive study of the unsupervised anomaly detection field and of
previous analyses of the evaluation methods (Sect. 2), we study the impact of
the evaluation procedure on commonly used metrics (Sect. 3). Identified issues
include a possibility to artificially increase the obtained scores and a non-
comparability of the results over different datasets. Taking these into account,
we suggest the use of a protocol leading to a better comparability in Sect. 4.

2 Related Work

Anomaly detection has been heavily dominated by unsupervised classification
settings. One very popular approach in unsupervised anomaly detection is one-
class classification, which refers to the setting where at train time, the model is
given only normal samples to learn what the normal distribution is. The goal
is to learn a scoring function to assign each data point an abnormality score.
A threshold is then calculated from either a known or estimated contamination
rate to turn scores into labels, samples with higher scores being considered as
anomalies. In the literature different scoring functions have been used:

Proximity-based methods use heuristics based on distances between samples in
some relevant space. These algorithms estimate the local density of data points
through distances, and point out the most isolated ones. Legacy approaches
include a simple distance to the Kth neighbour [2], Angle-Based Outlier Detec-
tion (ABOD) [11], which uses the variance over the angles between the different
vectors to all pairs of points weighted by the distances between them, Local
Outlier Factor (LOF) [3], which measures the local deviation of a given data
point with respect to its neighbours, Connectivity-based Outlier Factor (COF)
[23], which uses a ratio of averages of chaining distances with neighbours and
Clustering-Based Local Outlier Factor (CBLOF) [10], which clusters the data
and scores samples based on the size of the cluster they belong to and the dis-
tance to the closest big cluster. More recent approaches include DROCC [8],
which makes the assumption that normal points lie on a well-sampled, locally
linear low dimensional manifold and abnormal points lie at least at a certain
distance from this manifold.

Anomaly Detection: F1-Score is Biased 5

Reconstruction-based approaches use notions of reconstruction error to deter-
mine which data points are anomalous, the reconstruction of the densest parts
of the distribution being easier to learn in general. In [17] for instance, the projec-
tion of each point on the main PCA axes is used to detect anomalies. As for [28],
a GAN with a memory matrix is presented, each row containing a memorised
latent vector with the objective to enclose all the normal data, in latent space, in
between memorised vectors. The optimisation introduces a reconstruction error.

Representation-based approaches attempt to project the data in a space in which
it is easy to identify outliers. Following this idea, One-Class SVM (OC-SVM) [22]
uses a hypersphere to encompass all of the instances in the projection space. [12]
proposed a neural network with robust subspace recovery layer. IDAGMM [13]
presents an iterative algorithm based on an autoencoder and clustering, with the
hypothesis that normal data points form a cluster with low variance. OneFlow
[16], is a normalising-flow based method which aims at learning a minimum
enclosing ball containing most of the data in the latent space, the optimisation
ensuring that denser regions are projected close to the origin.

Adversarial scoring use the output of a discriminator as a proxy for abnormality,
since it is precisely the goal of a discriminator to distinguish normal samples from
other inputs. Driven by the motivation, an ensemble gan method is proposed in
[9]. GANomaly [1] presents a conditional generative adversarial network with a
encoder-decoder-encoder network to train better on normal images at training,
and [27] presents Adversarially Learned Interface method with cycle consistency
to ensure good reconstruction of normal data in one-class setting. [29] presents
a gan network with autoencoder as generator for anomaly detection on images
datasets.

Feature-level approaches try to detect anomalies at feature-level, and aggregate
such information on each sample to produce an abnormality score at sample level.
HBOS [7] assumes feature independence and calculates the degree of abnormality
by building histograms. RVAE [5] uses a variational autencoder to introduce cell
abnormality, which is converted into sample anomaly detection.

All of these categories are of course non-exclusive, and some approaches, as
the very popular Isolation Forest [15], which uses the mean depth at which each
sample is isolated in a forest of randomly built trees, do not fall in any of these.
On the opposite, some recent methods combine multiple of such proxies for
abnormality to reach better performances, each one using different hypotheses
to model anomalies. For example [31] presents an end-to-end anomaly detection
architecture. The model uses an autoencoder to perform dimensionality reduc-
tion to one or two dimensions and calculates several similarity errors, feeding
then both latent representation and reconstruction errors to the gaussian mixture
model. AnoGAN [21], which uses both a reconstruction error and a discriminator
score to detect anomalies, also falls in this category.

Even if the original one-class setting requires data to be all normal at
train time (which makes one-class approaches not strictly unsupervised) some

6 D. Fourure et al.

approaches do not require clean data at train time, since they use what they
learn about normal data to reduce as much as possible the impact of anomalies
[13,16].

For all these settings, the main evaluation metrics used in the literature are
the F1-score, the AUC (area under ROC curve) and the AVPR (average pre-
cision). The link between sensitivity, specificity and F1-score has been studied
in [14], providing thresholding-related insights. In this work, we highlight the
heterogeneity of current evaluation procedures in unsupervised anomaly detec-
tion performed in a one-class framework, would it be in terms of metrics or
contamination-rate determination. For instance, many papers do not provide
complete information about how the train-test splits are made [5,16]. For the
same datasets, some papers re-inject the train anomalies in the test set [9,24,31]1

and some others do not [30,31]. In some cases, it is not clear which contamination
rate was used to compute the threshold [9,16,28,29,31], and some approaches
prefer evaluating their model with multiple thresholds [12]. Different metrics are
used to evaluate performences - F1-score [8,9,13,27,29,31], precision [9,27,31],
recall [9,27,31], sensitivity [21], specificity [21], AUC [1,5,6,8,9,12,13,21,25,27–
29], AVPR [5,12,13,25]. Finally many papers report directly the results from
other papers and do not test the associated algorithms in their particular eval-
uation setting.

We show that all above-mentioned setup details have a direct impact on the
F1-score and the AVPR. Since such heterogeneity leads to reproducibility and
comparability issues, we suggest the use of an evaluation protocol with a robust
metric which allows comparison.

3 Issues When Using F1-Score and AVPR Metrics

In this section, we analyse the sensitivity of the F1-score and AVPR metrics with
respect to the contamination rate of the test set. First, we define the problem
and different metrics and explain the impact of the estimation of the contami-
nation rate. Then, we analyse the evolution of the metrics according to the true
contamination rate of the test set. After having explained different evaluation
protocols used in the literature, we show how they can be used to produce artifi-
cially good results using the F1-score and AVPR metrics. Finally, we show that
these two metrics are also unsuitable for estimating the difficulty of datasets.

3.1 Formalism and Problem Statement

Consider a dataset D = {(x1, y1), . . . , (xN , yN)} ⊂ R
d × {0, 1}, with xi the

d-dimensional samples and yi the corresponding labels. We assume both classes
are composed of i.i.d. samples. We also assume the normal class labeled 0 out-
numbers the anomaly class labeled 1. Therefore, we choose the anomaly class as
1 [31] do not publish their code but an unofficial implementation widely used (264 stars

and 76 forks at the time of writing) is available at https://github.com/danieltan07/
dagmm.

https://github.com/danieltan07/dagmm
https://github.com/danieltan07/dagmm

Anomaly Detection: F1-Score is Biased 7

Actual Actual
Anomaly Normal

Predicted
tp fp

Anomaly
Predicted

fn tn
Normal

(a) Confusion Matrix

precision =
tp

tp+ fp

recall =
tp

tp+ fn

F1-score =
2

precision−1 + recall−1

(b) Metrics based on binary predictions

Fig. 1. Metrics definitions.

positive class and use + to refer to it, while using − to refer to the normal class.
This dataset is split into a train set Dtrain ⊂ D and a test set Dtest = D\Dtrain.
Different procedures are used in the anomaly-detection community to perform
this split, as detailed in Sect. 3.3. We denote N+

t (resp. N−
t) the number of

anomalous (resp. normal) samples in the test set.
We consider one-class classifiers, which are models learning an anomaly-score

function f based only on clean samples Xclean = {x ∀(x, y) ∈ Dtrain | y = 0}.
The anomaly-score function returns, for a given sample x, an anomaly score
ŝ = f(x) ∈ R such that the higher the score, the more likely it is that x is an
anomaly. We define P+(ŝ) (resp. P−(ŝ)) the probability that an anomaly (resp.
a clean sample) obtains an anomaly-score ŝ with the trained model.

To get a binary prediction ŷ for a sample x with anomaly score ŝ, we need
to apply a threshold t to the anomaly score such that ŷ = 1 if ŝ ≥ t else ŷ = 0.
Different ways to compute this threshold are used in the literature. A common
approach is to choose it according to an estimation α̂ of the contamination rate α.
The contamination rate is the proportion of anomalous samples in the dataset. It
can be taken as domain knowledge, estimated on the train set or, for evaluation
purposes only, on the test set directly.

3.2 Definition of the Metrics

Using the final prediction and the ground truth labels, we can count the true
positives tp, true negatives tn, false positives fp and false negatives fn, as shown
in Fig. 1a. The precision, recall and F1-score are computed using these quantities
as shown in the equations of Fig. 1b. An example of these metrics applied with a
varying contamination rate estimation α̂, inducing a varying threshold, is shown
in Fig. 2. It is interesting to note that, if the estimated contamination rate α̂ is
equal to the true contamination rate α, we have precision = recall = F1-score.
This can be easily explained: if the estimated contamination rate is the true
contamination rate, the threshold is computed such that the number of samples
predicted as anomalous is equal to the number of true anomalies in the set. Thus,
if a normal sample is wrongly predicted as anomalous (i.e. is a false positive), it
necessarily means that an anomalous sample has been predicted as normal (i.e.
is a false negative). That is, fp = fn. Given the formulas of precision and recall

8 D. Fourure et al.

Fig. 2. Evolution of the Precisions, Recalls and F1-scores according to the estimated
contamination rate on three different datasets. The curves are obtained using the Algo-
rithm 1 introduced in Sect. 3.3.

(see equations of Fig. 1b) we have precision = recall. As the F1-score is the
harmonic mean of precision and recall, we have precision = recall = F1-score.
Inversely, if this equality can be observed in reported results, it is safe to assume
the estimation of the contamination rate is equal to the true contamination rate.

We also include the AUC and AVPR in our analysis. These metrics are
obtained by analysing the results with different thresholds. The AUC is defined
through the receiver-operator characteristic (ROC) curve, a curve of the true
positive rate over the false positive rate for various thresholds. Therefore, we
redefine tp, fp, fn and tn as functions depending on the threshold. The area
under the ROC curve AUC, sometimes written AUROC, is the total area under
this curve, that is:

AUC =
∫ ∞

t=−∞

tp(t)
tp(t) + fn(t)

d

dt

(
fp

fp + tn

)∣∣∣
t
dt. (1)

Fig. 3. Example of ROC curve and precision recall curve obtained on the Arrhythmia
dataset. The scores are obtained using the Algorithm 1 introduced in Sect. 3.3.

Anomaly Detection: F1-Score is Biased 9

Similarly, the AVPR is defined through the precision-recall (PR) curve, a
curve of precision over recall for different thresholds. The area under this curve
is referred to as the average precision (AVPR) metric, as it can be seen as a
weighted average of the precision for different recall. We have

AV PR =
∫ ∞

t=−∞
precision(t)

d

dt
(recall)

∣∣∣
t
dt. (2)

An example of a ROC curve and a precision recall curve is given in Fig. 3.
We show in this paper that the F1-score and AVPR metrics are highly sensi-

tive to the true contamination rate of the test set. We show this sensitivity has a
negative impact on the comparison of different classifiers or datasets, especially
when using different protocols.

3.3 Evaluation Protocols: Theory vs Practice

Machine learning theory tells us that the evaluation of an algorithm should be
done on a test set completely separated from the train set. Algorithm 1 presents
the unbiased procedure to train and evaluate an anomaly detection model. A
dataset (containing both normal and anomalous samples) is split into a train set
and a test set. The anomalous samples from the train set are removed to get a
clean set that is used to train a model. The train set is also used to compute
the contamination rate and fix the threshold, for example using a threshold such
that the train set has as many anomalies as predicted anomalies, i.e. fp = fn.
This threshold is finally used on the predictions made on the new (unseen)
samples composing the test set to measure the F1-score. The AUC and AVPR
are computed using the predicted scores directly. Even though this procedure is
theoretically the correct way to evaluate a model, it has a significant drawback
in practice. The anomalous samples in the train set are used only to compute
the threshold for the F1-score and are then thrown away. Because there are, by
definition, few anomalies in a dataset, one could be tempted to use these samples
in the test set. Indeed, as visible in Fig. 4, the more anomalous samples we can
use to evaluate a model, the more precise the evaluation.

To make full use of the anomalous samples, the procedure described in Algo-
rithm 2 recycles the anomalous samples contained in the train set. The threshold
is then computed on the test set as there are no anomalies left in the train set
to estimate it. This leads to a situation where precision = recall = F1-score
as described in Sect. 3.1. This recycling procedure makes sense in the context of
anomaly detection as it obtains more precise results, and can be found in the
literature [24,31].

Algorithms 1 and 2 take as input any dataset and any trainable anomaly-score
function. For the dataset, if not specified otherwise, we use the Arrhythmia and
Thyroid datasets from the ODDS repository [20] and the Kddcup dataset from
the UCI repository [4]. These datasets are often used in the anomaly-detection
literature, and are therefore all indicated for our analysis. They have respectively
452, 3772 and 494020 samples, with a contamination rate of respectively 14.6%,

http://odds.cs.stonybrook.edu/about-odds/
http://archive.ics.uci.edu/ml/index.php

10 D. Fourure et al.

Algorithm 1: Theoretically unbiased evaluation protocol
Input:

D ⊂ R
d × {0, 1} a set of N d-dimensional input samples and their

corresponding labels (1 = anomaly, 0 = normal)
β the amount of data used for the test set
f a trainable anomaly-score function

Output:
F1-score, AUC and AVPR

Procedure:
Dtrain,Dtest = split train test(D, β)
Xclean = {x ∀(x, y) ∈ Dtrain | y = 0}
Normalise the data based on Xclean if necessary
Train f using Xclean

ŝtrain = {(f(x), y) ∀(x, y) ∈ Dtrain}
Compute estimated contamination rate α̂ = |{(x,y) ∀(x,y)∈Dtrain|y=1}|

|Dtrain|
Compute threshold t such that |{(ŝ,y) ∀(ŝ,y)∈ŝtrain|ŝ≥t}|

|̂strain| = α̂

ŝtest = {(f(x), y) ∀(x, y) ∈ Dtest}
ŷtest = {(ŷ, y) ∀(ŝ, y) ∈ ŝtest ∀ŷ ∈ {0, 1} | ŷ = 1 if ŝ ≥ t else ŷ = 0}
Compute F1-score using ŷtest

Compute AUC and AVPR using ŝtest

Algorithm 2: Recycling evaluation protocol for anomaly detection
Input:

D ⊂ R
d × {0, 1} a set of N d-dimensional input samples and their

corresponding labels (1 = anomaly, 0 = normal)
β the amount of data used for the test set
f a trainable anomaly-score function

Output:
F1-score, AUC and AVPR

Procedure:
Dtrain,Dtest = split train test(D, β)
Xclean = {x ∀(x, y) ∈ Dtrain | y = 0}
Add {(x, y) ∀(x, y) ∈ Dtrain | y = 1} to Dtest

Normalise the data based on Xclean if necessary
Train f using Xclean

ŝtest = {(f(x), y) ∀(x, y) ∈ Dtest}
Compute contamination rate α = |{(x,y) ∀(x,y)∈Dtest|y=1}|

|Dtest|
Compute threshold t such that |{(ŝ,y) ∀(ŝ,y)∈ŝtest|ŝ≥t}|

|̂stest| = α

ŷtest = {(ŷ, y) ∀(ŝ, y) ∈ ŝtest ∀ŷ ∈ {0, 1} | ŷ = 1 if ŝ ≥ t else ŷ = 0}
Compute F1-score using ŷtest

Compute AUC and AVPR using ŝtest

2.5% and 19.7%. For Kddcup, as done in the literature, the samples labeled
as “normal” are considered as anomalous and, for computational reasons, only

Anomaly Detection: F1-Score is Biased 11

Fig. 4. F1-Score, AUC and AVPR versus the number of anomalies in the test set for
three different datasets.

10% are used. For the trainable anomaly-score function, if not specified other-
wise, we use OC-SVM [22] with its default hyper-parameters, as implemented
in sklearn [18]. We choose this model as it has proven its worth and is often
used as a baseline in the literature. We run all our experiments 100 times to
report meaningful means and standard deviations. The code to reproduce all
our figures and results is available at https://github.com/euranova/F1-Score-is-
Biased.

3.4 Metrics Sensitivity to the Contamination Rate of the Test Set

We analyse the effect of the contamination rate of the test set on the F1-score
and AVPR metrics. To do so, we use a variant of Algorithm 2 with a 20–80
train-test split on the clean samples only. We then re-inject a varying number
of anomalous samples in the test set, from none to all of them. Figure 4 shows
that F1-score and AVPR improve as more anomalies are added to the test set.
Because the train set is fixed, this clearly shows that the F1-score and AVPR
metrics are biased by the amount of anomalous samples in the test set. This
sensitivity can be analysed theoretically.

First, note that the contamination rate α = N+
t

N+
t +N−

t

= N+
t

N−
t

/
(

N+
t

N−
t

+ 1
)

is

increasing with N+
t

N−
t

. We start the analysis in a constant-threshold setting where
the threshold t does not depend on the test set, e.g. as in Algorithm 1. In this
setting, we can compute p− =

∫ t

ŝ=−∞ P−(ŝ)dŝ the probability that the model
classifies correctly a normal sample and p+ =

∫ ∞
ŝ=t

P+(ŝ)dŝ the probability that
the model classifies correctly an anomalous sample (the recall). We observe that
tn = N−

t ∗ p− and fp = N−
t ∗ (1 − p−) are directly proportional to N−

t , while
tp = N+

t ∗ p+ and fn = N+
t ∗ (1 − p+) are directly proportional to N+

t . As
such, the recall p+ does not depend on α while the precision (= N+

t ∗p+

N+
t ∗p++N−

t ∗p− =
N

+
t

N
−
t

p+

N
+
t

N
−
t

p++p−
) increases with N+

t

N−
t

and therefore with α. This proves the AVPR

increases with α as the only value changing in Eq. 2 is the increasing precision.

https://github.com/euranova/F1-Score-is-Biased
https://github.com/euranova/F1-Score-is-Biased

12 D. Fourure et al.

Fig. 5. Theoretical F1-score for varying contamination rates of the test set, anomaly-
detection capabilities p+ and normal-detection capabilities p−.

This also proves the F1-score with a fixed threshold is increasing with α, as it
is the harmonic mean of a constant and an increasing value. This theoretical
variation of the F1-score is shown in Fig. 5.

We now analyse the case where the threshold t for the F1-score is computed
using the test set as done in Algorithm 2. As we use a perfect estimation of
the contamination rate, we have recall = precision = F1-score. Let us analyse
this quantity in the view of the recall and compare it to the constant-threshold
setting. If we add an anomaly to the test set, there are two possibilities:

– It is at the right side of the threshold, hence the threshold stays constant as
there are still as many samples detected as anomalies as there are anomalies.

– It is at the wrong side of the threshold. The threshold therefore decreases to
include one more sample as a predicted anomaly. There are two possibilities:

• This additional sample is an anomaly, in which case the recall increases,
whereas it would have decreased in the constant-threshold setting.

• This additional sample is a clean sample, in which case the recall decreases
the same way it would have decreased in the constant-threshold setting.

Compared to the constant-threshold setting, the only difference is the case where
the recall is better than expected thanks to the shift of the threshold. There-
fore, adding anomalies increases the F1-score even more than in the constant-
threshold setting, meaning the variable-threshold setting is even more biased by
the contamination rate of the test set. More formally, if we add anomalies with-
out changing the number of clean samples, the new threshold t′ will be smaller
(or equal in the case of a perfect classifier) than the old one t, as we want
to select more samples as being anomalies. The recall, precision and F1-score
therefore increase from

∫ ∞
ŝ=t

P+(ŝ)dŝ (i.e. p+ in the previous demonstration) to∫ t

ŝ=t′ P+(ŝ)dŝ+
∫ ∞
ŝ=t

P+(ŝ)dŝ, which is greater or equal as a probability is always
positive. Thus, if the classifier is not a perfect classifier, the F1-score increases
with the contamination rate of the test set.

This concludes our demonstration that both the AVPR and the F1-score
metrics are biased by the contamination rate of the test set.

Anomaly Detection: F1-Score is Biased 13

Table 1. Demonstration of the sensitivity of the metrics to the evaluation protocol.
Optimal threshold is the threshold computed on the test set to obtain the best F1-score
possible (unapplicable to AUC and AVPR).

Split procedure Algorithm 1 Algorithm 2 Algorithm 2 Algorithm 2

Test size 20% 20% 5% 5%

Threshold Estimated Estimated Estimated Optimal

F1 arrhythmia 0.451(± 0.103) 0.715(± 0.025) 0.867(± 0.021) 0.888(± 0.012)

kddcup 0.102(± 0.025) 0.762(± 0.004) 0.940(± 0.002) 0.971(± 0.001)

thyroid 0.446(± 0.110) 0.647(± 0.022) 0.781(± 0.021) 0.803(± 0.017)

AVPR arrhythmia 0.481(± 0.116) 0.770(± 0.041) 0.924(± 0.028) 0.924(± 0.029)

kddcup 0.299(± 0.017) 0.653(± 0.015) 0.872(± 0.008) 0.873(± 0.007)

thyroid 0.488(± 0.113) 0.719(± 0.020) 0.880(± 0.017) 0.881(± 0.017)

AUC arrhythmia 0.809(± 0.065) 0.806(± 0.020) 0.803(± 0.042) 0.799(± 0.042)

kddcup 0.736(± 0.007) 0.735(± 0.007) 0.735(± 0.011) 0.737(± 0.011)

thyroid 0.935(± 0.027) 0.931(± 0.005) 0.929(± 0.009) 0.929(± 0.009)

3.5 How to Artificially Increase Your F1-Score and AVPR

Combining the previous results and algorithms, we can define an algorithm to
get an arbitrarily good F1-score or AVPR on any dataset. As shown in Sect. 3.4,
the F1-score and AVPR are sensitive to the contamination rate of the test set.
Using the Algorithm 2 from Sect. 3.3, we can make this contamination rate vary.
To do so, we only have to modify β, the amount of data used for the test set.
Indeed, it modifies the number of normal samples N−

t in the test set while the
number of anomalies N+

t stays the same. Pushed to the extreme, we can have
near to no clean samples in the test set, resulting in a near-to-perfect F1-score
and AVPR. This phenomenon is shown in Table 1. We can see that, by using
the Algorithm 2 the F1-score increases for all three datasets. This is because the
anomalous sample of the train set are re-injected and thus the contamination
rate of the test set increases. Then, using 5% of the data for the test set instead
of 20% increase again the F1-score and AVPR.

Another interesting observation is that fixing the threshold according to the
contamination rate does not give the optimal F1-score [14]. In practice, using
a threshold smaller than this one often results in a better F1-score, as visible
in Fig. 2 and shown in Fig. 6. As a consequence, we can artificially increase the
F1-scores even more by computing the optimal threshold. This is shown in the
last two columns of Table 1.

This proves that, with the exact same model and seemingly identical metrics,
the F1-score can be greater and greater. This clearly supports the importance
of specifying in detail the train-test split used and the way the threshold is com-
puted. We observe in the literature that this part of the evaluation protocols is
often missing or unclear [5,9,29,31], and the reported results are therefore impos-
sible to compare with. This is part of the reproducibility problem observed in

14 D. Fourure et al.

Fig. 6. Theoretical example of the evolution of the F1-score for different thresholds and
contamination rates of the test set. The model used is a toy model having P+(ŝ) = 2∗ ŝ
and P −(ŝ) = 2 ∗ (1− ŝ) for 0 ≤ ŝ ≤ 1. Dots are the fp = fn thresholds and crosses are
the optimal thresholds.

the machine learning community. More importantly, some papers report results
computed using different evaluation protocols [9,24], leading to meaningless com-
parisons that are nonetheless used to draw arbitrary conclusions.

3.6 F1-Score Cannot Compare Datasets Difficulty

Another shortcoming of the F1-score and AVPR metrics is the comparison
between datasets. One may be tempted to conclude that a dataset on which
an approach has a higher F1-score is easier to model than another dataset with
a lower score. However, this intuition is flawed when using these metrics as they
strongly depend on the contamination rate of these datasets.

Figure 7 highlights the dataset comparison problem. Figure 7d shows the F1-
score and AUC obtained on two toy datasets, an easy one (with a big radius) and
a hard one (with a small radius). We show that we can obtain a better F1-score
on a hard dataset (Fig. 7c) than on an easy dataset (Fig. 7a) just by changing
the contamination rate. With an equal contamination rate (Fig. 7b) we can see
that the easy dataset is indeed easier to model.

This situation also appears in real-world datasets. Indeed, in Table 1 with
Algorithm 1, the kdd cup dataset appears harder than arrhythmia and thyroid
as it obtains a worse F1-score. However, if we compare them with Algorithm 2,
the kdd cup dataset obtains better results than the other two. The comparison
of the datasets difficulty is inconsistent and therefore unreliable.

4 Call for Action

Given the instability shown in Sect. 3, we suggest the anomaly-detection com-
munity to use the evaluation protocol described in Algorithm 2 but using only
the AUC metric. Other approaches could be adopted, but this one will give
better comparability between reported results and these results will have lower
variances.

Anomaly Detection: F1-Score is Biased 15

Fig. 7. Analysis of the dataset comparison through different metrics. We randomly
draw normal samples from a standard gaussian distribution, and anomalous samples
from a noisy a around the mean. By varying the radius of the circle - 2.5 for the easy
case, 2.1 for the hard one - we change the difficulty of the dataset. The greater the
radius, the easier it is to separate both distributions. A simple gaussian is used as
model.

4.1 Use AUC

We have demonstrated in Sect. 3 how the F1-score and AVPR metrics can be
tricky to use and lead to wrong conclusions, slowing down the research in the
field. To avoid these pitfalls, we recommend using the AUC metric. First of all,
AUC is not sensitive to the contamination rate of the test set, as shown in Fig. 4.
This can be proven by developing Eq. 1:

AUC =
∫ ∞

t=−∞

tp(t)
tp(t) + fn(t)

d

dt

(
fp

fp + tn

)∣∣∣
t
dt (3)

=
∫ ∞

t=−∞

∫ ∞

ŝ=t

P+(ŝ)dŝ
d

dt

(∫ t

ŝ′=−∞
P−(ŝ′)dŝ′

)∣∣∣
t
dt (4)

=
∫

{(ŝ,t)∈R2|ŝ≥t}
P+(ŝ)P−(t) dŝ dt (5)

16 D. Fourure et al.

which depends only on the model properties (P+ and P−) and not on the test
set. This independence prevents most of the problems identified in the previ-
ous section. As illustrated in Fig. 7, datasets are more comparable using AUC.
Moreover, Table 1 highlights the stability of the AUC.

Additionally, there is no need to define a threshold when using AUC. This
is a good thing as the choice of a threshold can prevent comparability. Indeed,
most of the proposed models in the literature [9,16,19,29,31] do not include a
way to train a threshold. Therefore, arbitrary thresholds are used to compute
the F1-score. The way to arbitrarily choose this threshold can vary from one
paper to the other and lead to incomparable results. Even worse, this threshold
could depend on the test set, such as the one producing fp = fn, thus having
results biased by the contamination rate of the test set. This is not a problem
with the AUC as it does not need a threshold.

Finally, another source of non-comparability is the choice of the positive class.
Some may choose the normal class as positive [8,19] and other the anomaly class
as positive [9,12,26]. AUC has the advantage of being independent of the choice
of which class is seen as positive, as long as the scores are negated accordingly.
Indeed, Eq. 5 is symmetric between P+ and P− up to the ŝ ≥ t part which is
solved by negating the scores.

All in all, AUC is insensitive to many arbitrary choices in the evaluation pro-
tocol. It results in a better comparability between the different reported results.

4.2 Do Not Waste Anomalous Samples

As, by definition, anomalous samples are rare, it is important to re-inject them
in the test set, as described in Algorithm 2. Indeed, by using more anomalous
samples in the test set, the variance in the metrics is lower.

As shown in Table 1, when using AUC, Algorithm 2 gives the same mean
result than Algorithm 1, but with a better precision (lower standard deviation).
This is easily explained by the fact that there are more anomalies in the test set,
increasing the applicability of the law of large numbers. This increased precision
can be useful to obtain significant results rather than random-looking ones. Algo-
rithm 2 can be used as long as the metric used is not biased by the contamination
rate of the test set. It is therefore compatible with the AUC metric.

5 Conclusion

The literature in the field of anomaly detection lacks precision in describing eval-
uation protocols. Because of the sensitivity of the F1-score and AVPR metrics to
the contamination rate of the test set, this results in a reproducibility issue of the
proposed works as well as a comparison problem between said works. Moreover,
we observe that some works do the subtle mistake of comparing results pro-
duced with different evaluation protocols and draw arbitrary conclusions from
it. To solve this problem, we suggest the anomaly-detection community to use

Anomaly Detection: F1-Score is Biased 17

the AUC, which is insensitive to most arbitrary choices in the evaluation pro-
tocol. Moreover, we propose to use a recycling algorithm (Algorithm 2) for the
train-test split to make the most of anomalies in each dataset. These two actions
will result in more comparable and more precise results across research teams.

References

1. Akcay, S., Atapour-Abarghouei, A., Breckon, T.P.: GANomaly: semi-supervised
anomaly detection via adversarial training. In: Jawahar, C.V., Li, H., Mori, G.,
Schindler, K. (eds.) ACCV 2018. LNCS, vol. 11363, pp. 622–637. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-20893-6 39

2. Angiulli, F., Pizzuti, C.: Fast outlier detection in high dimensional spaces. In:
Elomaa, T., Mannila, H., Toivonen, H. (eds.) PKDD 2002. LNCS, vol. 2431, pp.
15–27. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45681-3 2

3. Breunig, M.M., Kriegel, H.P., Ng, R.T., Sander, J.: LOF: identifying density-based
local outliers. In: Proceedings of the 2000 ACM SIGMOD International Conference
on Management of Data, pp. 93–104 (2000)

4. Dua, D., Graff, C.: UCI machine learning repository (2017). http://archive.ics.uci.
edu/ml

5. Eduardo, S., Nazábal, A., Williams, C.K., Sutton, C.: Robust variational autoen-
coders for outlier detection and repair of mixed-type data. In: International Con-
ference on Artificial Intelligence and Statistics, pp. 4056–4066. PMLR (2020)

6. Ergen, T., Kozat, S.S.: Unsupervised anomaly detection with LSTM neural net-
works. IEEE trans. Neural Netw. Learn. Syst. 31(8), 3127–3141 (2019)

7. Goldstein, M., Dengel, A.: Histogram-based outlier score (HBOS): a fast unsuper-
vised anomaly detection algorithm. KI-2012: Poster and Demo Track, pp. 59–63
(2012)

8. Goyal, S., Raghunathan, A., Jain, M., Simhadri, H.V., Jain, P.: DROCC: deep
robust one-class classification. In: International Conference on Machine Learning,
pp. 3711–3721. PMLR (2020)

9. Han, X., Chen, X., Liu, L.P.: GAN ensemble for anomaly detection. arXiv preprint
arXiv:2012.07988 (2020)

10. He, Z., Xu, X., Deng, S.: Discovering cluster-based local outliers. Pattern Recogn.
Lett. 24(9–10), 1641–1650 (2003)

11. Kriegel, H.P., Schubert, M., Zimek, A.: Angle-based outlier detection in high-
dimensional data. In: Proceedings of the ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pp. 444–452, August 2008. https://doi.
org/10.1145/1401890.1401946

12. Lai, C.H., Zou, D., Lerman, G.: Robust subspace recovery layer for unsuper-
vised anomaly detection. In: International Conference on Learning Representations
(2020). https://openreview.net/forum?id=rylb3eBtwr

13. Li, T., Wang, Z., Liu, S., Lin, W.Y.: Deep unsupervised anomaly detection. In:
Proceedings of the IEEE/CVF Winter Conference on Applications of Computer
Vision (WACV), pp. 3636–3645, January 2021

14. Lipton, Z.C., Elkan, C., Naryanaswamy, B.: Optimal thresholding of classifiers to
maximize F1 measure. In: Calders, T., Esposito, F., Hüllermeier, E., Meo, R. (eds.)
ECML PKDD 2014. LNCS (LNAI), vol. 8725, pp. 225–239. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-662-44851-9 15

https://doi.org/10.1007/978-3-030-20893-6_39
https://doi.org/10.1007/3-540-45681-3_2
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://arxiv.org/abs/2012.07988
https://doi.org/10.1145/1401890.1401946
https://doi.org/10.1145/1401890.1401946
https://openreview.net/forum?id=rylb3eBtwr
https://doi.org/10.1007/978-3-662-44851-9_15

18 D. Fourure et al.

15. Liu, F.T., Ting, K.M., Zhou, Z.H.: Isolation forest. In: Proceedings of the 2008
Eighth IEEE International Conference on Data Mining, ICDM 2008, pp. 413–422.
IEEE Computer Society, USA (2008). https://doi.org/10.1109/ICDM.2008.17

16. Maziarka, �L., Śmieja, M., Sendera, M., Struski, �L., Tabor, J., Spurek, P.: Flow-
based anomaly detection (2020)

17. Parra, L., Deco, G., Miesbach, S.: Statistical independence and novelty detection
with information preserving nonlinear maps. Neural Comput. 8 (1997). https://
doi.org/10.1162/neco.1996.8.2.260

18. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn.
Res. 12, 2825–2830 (2011)

19. Perera, P., Nallapati, R., Xiang, B.: Ocgan: One-class novelty detection using gans
with constrained latent representations. In: Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR), June 2019

20. Rayana, S.: ODDS library (2016). http://odds.cs.stonybrook.edu
21. Schlegl, T., Seeböck, P., Waldstein, S.M., Schmidt-Erfurth, U., Langs, G.: Unsu-

pervised anomaly detection with generative adversarial networks to guide marker
discovery. In: Niethammer, M., et al. (eds.) IPMI 2017. LNCS, vol. 10265, pp.
146–157. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59050-9 12

22. Schölkopf, B., Williamson, R.C., Smola, A.J., Shawe-Taylor, J., Platt, J.C., et al.:
Support vector method for novelty detection. In: NIPS, vol. 12, pp. 582–588. Cite-
seer (1999)

23. Tang, J., Chen, Z., Fu, A.W., Cheung, D.W.: Enhancing effectiveness of outlier
detections for low density patterns. In: Chen, M.-S., Yu, P.S., Liu, B. (eds.) PAKDD
2002. LNCS (LNAI), vol. 2336, pp. 535–548. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-47887-6 53

24. Wang, J., Sun, S., Yu, Y.: Multivariate triangular quantile maps for novelty detec-
tion. In: Advances in Neural Information Processing Systems, vol. 32. Curran Asso-
ciates, Inc. (2019)

25. Wang, S., et al.: Effective end-to-end unsupervised outlier detection via inlier pri-
ority of discriminative network. In: NeurIPS, pp. 5960–5973 (2019)

26. Xu, X., Liu, H., Yao, M.: Recent progress of anomaly detection. Complexity 2019,
1–11 (2019). https://doi.org/10.1155/2019/2686378

27. Yang, Z., Bozchalooi, I.S., Darve, E.: Regularized cycle consistent generative adver-
sarial network for anomaly detection (2020)

28. Yang, Z., Zhang, T., Bozchalooi, I.S., Darve, E.: Memory augmented generative
adversarial networks for anomaly detection (2020)

29. Zaigham Zaheer, M., Lee, J.H., Astrid, M., Lee, S.I.: Old is gold: redefining the
adversarially learned one-class classifier training paradigm. In: 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 14171–
14181 (2020). https://doi.org/10.1109/CVPR42600.2020.01419

30. Zhai, S., Cheng, Y., Lu, W., Zhang, Z.: Deep structured energy based models for
anomaly detection. In: International Conference on Machine Learning, pp. 1100–
1109. PMLR (2016)

31. Zong, B., et al.: Deep autoencoding gaussian mixture model for unsupervised
anomaly detection. In: International Conference on Learning Representations
(2018)

https://doi.org/10.1109/ICDM.2008.17
https://doi.org/10.1162/neco.1996.8.2.260
https://doi.org/10.1162/neco.1996.8.2.260
http://odds.cs.stonybrook.edu
https://doi.org/10.1007/978-3-319-59050-9_12
https://doi.org/10.1007/3-540-47887-6_53
https://doi.org/10.1007/3-540-47887-6_53
https://doi.org/10.1155/2019/2686378
https://doi.org/10.1109/CVPR42600.2020.01419

Mining Anomalies in Subspaces
of High-Dimensional Time Series
for Financial Transactional Data

Jingzhu He1(B), Chin-Chia Michael Yeh2, Yanhong Wu2, Liang Wang2,
and Wei Zhang2

1 North Carolina State University, Raleigh, NC, USA
jhe16@ncsu.edu

2 Visa Research, Palo Alto, CA, USA
{miyeh,yanwu,liawang,wzhan}@visa.com

Abstract. Anomaly detection for high-dimensional time series is always
a difficult problem due to its vast search space. For general high-
dimensional data, the anomalies often manifest in subspaces rather than
the whole data space, and it requires an O(2N) combinatorial search
for finding the exact solution (i.e., the anomalous subspaces) where N
denotes the number of dimensions. In this paper, we present a novel
and practical unsupervised anomaly retrieval system to retrieve anoma-
lies from a large volume of high dimensional transactional time series.
Our system consists of two integrated modules: subspace searching mod-
ule and time series discord mining module. For the subspace searching
module, we propose two approximate searching methods which are capa-
ble of finding quality anomalous subspaces orders of magnitudes faster
than the brute-force solution. For the discord mining module, we adopt
a simple, yet effective nearest neighbor method. The proposed system
is implemented and evaluated on both synthetic and real-world transac-
tional data. The results indicate that our anomaly retrieval system can
localize high quality anomaly candidates in seconds, making it practical
to use in a production environment.

Keywords: Unsupervised anomaly retrieval · High-dimensional time
series · Subspace searching · Data mining

1 Introduction

Time series anomaly detection is important for building automatic monitoring
systems. Although anomaly detection in time series data has been extensively
studied in literature for decades, the majority of prior work only detects anoma-
lies on either one or all dimensions. While searching anomalies in subspaces is
commonly studied in vector space-based methods [4,11], nearly no work has been
done in searching anomalies in subspaces of multidimensional time series. If the
system does not retrieve anomalies from the correct subspace, it often results
c© Springer Nature Switzerland AG 2021
Y. Dong et al. (Eds.): ECML PKDD 2021, LNAI 12978, pp. 19–36, 2021.
https://doi.org/10.1007/978-3-030-86514-6_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86514-6_2&domain=pdf
https://doi.org/10.1007/978-3-030-86514-6_2

20 J. He et al.

in producing undesirable results due to false dismissals similar to the case of
multidimensional motif discovery [35].

Let us consider an example as shown in Fig. 1 where we have a three-
dimensional time series and aim to identify the days containing anomalies.
The state-of-the-art discord mining-based methods [4,17] generally compare the
distances between time series associated with each pair of days and generate
anomaly alerts once the nearest neighbor distances exceed certain thresholds. If
we apply these methods independently on each dimension (dim. 0, 1, or 2), as
every daily pattern occurs twice, all nearest neighbor distances between the days
are low and no alert will be generated on any of these dimensions. These results
also hold if we apply the same algorithm to the combined time series (all dim.).
Only if we combine dimension 0 and dimension 1 (dim. 0 + 1), the anomaly,
which occur on day one, can be detected by the discord mining-based method.
In other words, the anomaly detection system will falsely dismiss the anoma-
lies if it does not exhaustively search anomalies in all possible combinations of
dimensions (i.e., subspaces).

Fig. 1. The anomalous patterns
(red/bold) are detectable only
when dimension 0 and dimension 1
are combined. The blue/thin lines
are recurrent (i.e., normal) pat-
terns. (Color figure online)

Detecting anomalies in subspaces is cru-
cial in many domains. In this paper, we focus
on finding anomalies in financial transac-
tion data, a particular area where a failed
detection strategy may cause multi-million-
dollar losses. For example, during the 2013
ATM cyber looting attack, US$2.4 million
was looted from about 3,000 ATMs in New
York City [27]. The attackers evenly dis-
tributed looting to the targeted ATMs so that
only an extra US$800 was withdrawn from
each ATM. Given that such a small amount
of perturbation can be considered as a normal
daily fluctuation, this attack is not discover-
able by monitoring ATM’s associated time
series1 individually. Meanwhile, this attack
can neither be detected by monitoring the aggregated transaction volume of
all the ATMs in the U.S. as the targeted ATMs represent only 5% of the total
ATMs [32]. Although some pre-defined rules (e.g., detecting withdrawals with
the same dollar amount that occurred at multiple ATMs within a short time)
can capture the anomalies in this case, attackers can quickly learn the rules and
adapt their behaviors accordingly. Therefore, we need to develop an algorithm
to detect the “correct” combinations of time series associated with each ATM
without relying on simple rules.

A simple solution is exhaustive search (i.e., brute-force), by examining
anomalies in all possible subspaces (i.e., combination of dimensions), potential
anomalies manifested in subspaces can be identified. However, such brute-force
solution is not scalable: searching all possible dimension combinations requires an

1 The time series is generated by hourly withdrawn amount.

Mining Anomalies in Subspaces of High-Dimensional Time Series 21

O(2N) time complexity where N denotes the number of dimensions. Such com-
plexity is infeasible for most real-world data, especially for transactional data.
Collectively, a typical global payment company generates hundreds of millions
of transaction records per day and each transaction record is typically asso-
ciated with hundreds of attributes, representing different characteristics, such
as transaction type, zipcode, and transaction amount. By aggregating statistics
for transaction records associated with different common categorical attributes
(e.g., a particular zipcode) hourly, we can generate multidimensional time series
from transactional data. As anomalies may manifest in subspaces of the multi-
dimensional time series, the anomaly retrieval system needs to quickly identify
the potential most suspicious subspaces.

This paper presents a novel unsupervised anomaly retrieval system on multi-
dimensional time series data. We design the anomaly retrieval system with two
modules, i.e., subspace searching and time series discord mining. We present and
evaluate two alternative approaches to perform approximate subspace search,
i.e., greedy search and evolutionary search. The proposed approximate subspace
searching methods are capable of finding quality anomalies with their runtime
being an order of magnitude faster than the brute-force solution. For time series
discord mining, we design a nearest neighbor-based method with Dynamic Time
Warping (DTW) to locate and score the anomalies. We outline two different
advanced implementations of the discord mining method with 86% runtime
reduction over the naive implementation. Adopting improvements proposed for
both modules, the proposed system is practical for deployment in the production
environment for monitoring transactional data. Our paper makes the following
contributions.

1. We investigate the unsupervised anomaly retrieval problem on multidimen-
sional time series. We divide the problem into two sub-problems and design an
anomaly retrieval system with two modules: subspace searching and discord
mining.

2. We propose two different approaches to find the most anomalous subspace
from an O(2N) search space for financial transactional data.

3. We design an efficient discord mining method based on DTW distances to
identify the temporal location of the anomalies and evaluate the anomalous
degree of the anomalies.

4. We implement our algorithm and conduct comprehensive experiments on both
synthetic data and real-world transactional data. The experiment results show
that our system outperforms all alternative approaches and it is practical for
applications in real-world products.

2 Related Work

The anomaly detection problem has been extensively studied for over a decade,
and there are many variants of the problem [2,4,11,12]. In this section, we focus
on two variants that are mostly relevant to this work: high-dimensional data
anomaly detection and time series anomaly detection.

22 J. He et al.

High-Dimensional Data Anomaly Detection: The proposed methods for
high-dimensional data anomaly detection problem usually attempt to solve the
curse of dimensionality associated with high-dimensional data and find anoma-
lies that manifest in subspace span by a subset of dimensions [12]. These methods
either use alternative anomaly scores to combat the curse of dimensionality or
define/search for a subspace where the anomalies are most likely to manifest.
For example, angle-based methods solve the curse of dimensionality by mining
anomalies based on angles between the vector space representation of the data
instead of Euclidean distance [12,18,38,39]. The hyperplane-based method pro-
posed in [19] defines subspaces with respect to each data point’s neighbors. The
UBL [5] method performs anomaly detection on all dimensions of system metrics
based on neural networks. To search the subspaces where anomalies may man-
ifest, various approaches have been explored such as bottom-up search [23,34],
dependency among different dimensions [16], dimensionality unbiasedness [31],
set enumeration tree [6], evolutionary algorithm [1] and domain knowledge [33].
Nevertheless, existing work typically identifies anomalous records in a database
using the associated attributes represented as high-dimensional feature vectors.
Even in the works that deal with streaming data [37–39], time series view of the
data is not considered for the anomaly detection problem. To the best of our
knowledge, our work is the first one to adopt time series representation of high
dimensional data for anomaly detection.

Time Series Anomaly Detection: Various techniques like Markov models,
dynamic Bayesian networks, and neural networks are explored for time series
anomaly detection [11], and different techniques are proposed to capture differ-
ent types of anomalies. For example, Siffer et al. [29] designed an extreme value
detection system based on extreme value theory for streaming time series data
without requiring any manually-determined thresholds. Both DILOF [24] and
MiLOF [26] detect time series anomaly based on the Local Outlier Factor (LOF)
scores. Existing work such as [21] and [10] defines the anomaly based on data den-
sity. Another simple yet effective definition for time series anomaly is time series
discord [4,17]. It defines time series anomalies as the most unusual subsequences
(subsets of consecutive data points) in time series. Besides these studies, many
efforts have been made to apply deep learning-based anomaly detection on time
series in various domains [3,8,15]. Malhotra et al. [20] and Su et al. [30] detect
time series anomalies based on the reconstructed error computed from recurrent
neural networks. The TScope method [13] adopts a unique feature extraction
method and a customized Self-Organizing Map-based score to detect anomalies
in system call traces. Most of the aforementioned work either considers each
data point independently [10,21,24,26,29], or does not consider the fact that
anomalies could manifest in subspace instead of full space [3,8,13,15,17,20,30].
As a result, to the best of our knowledge, our method is the only method that
is capable of identifying anomalies based on time series discord definition in
high-dimensional data.

Mining Anomalies in Subspaces of High-Dimensional Time Series 23

3 Definitions and Notation

Definition 1 (Transaction record). Each record is formulated as D =
[d1, d2, d3, ..., dn, t, a], where each di represents a discrete attribute that has a
finite set of possible values. n is the number of discrete attributes. Besides these
discrete attributes, each transaction record has a timestamp t indicating the
occurring time of the transaction and the transaction amount a, which is a
numerical value.

Definition 2 (Transaction database). A transaction database D stores a col-
lection of transaction records.

Table 1. Four records from an example
transaction database.

Customer Merchant Location Timestamp Amount

Alice eBay CA 1559854527 35

Bob eBay CA 1559854635 35

Alice Amazon WA 1559854800 50

Carlos Walmart CA 1559859053 38

An example of a transaction
database, consisting of four transac-
tion records, is shown in Table 1. Three
individuals (Alice, Bob, and Carlos)
have transactions at three different
merchants (eBay, Amazon, and Wal-
mart) in two different states (Califor-
nia and Washington). To account for temporal variations of the transaction
database, we generate a time series from the database using a sliding aggregator.

Definition 3 (Sliding aggregator). Given a transaction database D, a sliding
aggregator A(·) is an aggregating function that generates a time series by sum-
marizing the statistics of transactions satisfied given conditions with a sliding
window of window size w and hop size h.

For example, we want to look at the per hour transaction amounts in Cali-
fornia for a database D. Then we apply the sliding aggregator A(count(), w =
1hour, h = 1hour, Location = CA) on D. Using the example database shown in
Table 1, the first two transaction records, i.e., Alice and Bob, are fed into the
count() function as they satisfy the condition Location = CA and occur within
the same hour-long window. The function output is a time series that includes
the aggregated transaction amounts of each sliding window.

Applying a single sliding aggregator only creates one view of the transaction
database. To represent the database more holistically, we define the subspace set
of a given transaction database as follows.

Definition 4 (Subspace set). Given a transaction database D, the correspond-
ing subspace set SD = [T1, T2, T3, ..., Tm] is a set of m univariate time series,
where each Ti ∈ SD is generated by applying different sliding aggregators and
is considered as one of m subspaces.

As each Ti ∈ SD stores one view of the database D, we regard each Ti as
a subspace of SD. Continuing with the example shown in Table 1, by simply
calculating the hourly counts for all combinations of locations, the total number

24 J. He et al.

of subspaces (i.e., number of Ti ∈ SD) will be 250 − 1 ≈ 1 quadrillion. To help us
explain our subspace search methodology, we further define the concept of unit
subspace.

Definition 5 (Unit subspace). Given a subspace set SD, a unit subspace is a
subspace that cannot be obtained through a combination of other subspaces
within SD.

Let us say that the SD consists of the aforementioned one quadrillion sub-
spaces generated by selecting all combinations of locations, a unit subspace
is a subspace associated with a single location. For instance, the subspace
TCA = A(Location = CA)2 is a unit subspace while the subspace TCA,WA =
A(Location = CA ∨ Location = WA) is not a unit subspace as TCA,WA can be
generated by combining TCA and TWA. Throughout the paper, we use the term
“dimension” and “unit subspace” interchangeably. Therefore, each dimension of
the multivariate time series shown in Fig. 1 is a unit subspace, and the overall
subspace set includes both the unit subspaces and all possible combinations of
the unit subspaces.

Fig. 2. The discord (red) is the
subsequence with the largest
distance with its nearest neigh-
bor. Each subsequence’s near-
est neighbor is indicated by the
curved arrow and the curved
arrow is pointed toward its
neighbor. The distances are
shown next to the curved arrow.
(Color figure online)

With all the essential concepts associated
with subspace defined, we are at the stage of
defining concepts associated with time series dis-
cord mining.

Definition 6 (Time series discord). Given a
time series T , the time series discord is the sub-
sequence with maximum dynamic time warping
(DTW) distance with its nearest neighbor, and
the anomaly score is the DTW distance between
the discord and its nearest neighbor.

In order to identify the discord, we search for
the nearest neighbor of each subsequence based
on the z-normalizing DTW distance within T;
then, store the distance between each subse-
quence and its nearest neighbor (see Fig. 2).
Based on the stored distance values, we identify
the discord from T in Fig. 2 by locating the sub-
sequence with largest nearest neighbor distance.

4 System Architecture

In Fig. 3, we provide an overview of the proposed anomaly retrieval system. First,
a set of sliding aggregators are applied to the transaction database to extract
unit subspaces. We then feed the unit subspaces into the Subspace Searching
Module (see Sect. 4.1). The Subspace Searching Module executes iteratively and
2 Other inputs (i.e., count(), w = 1h and h = 1h) of A() are omitted for brevity.

Mining Anomalies in Subspaces of High-Dimensional Time Series 25

Fig. 3. The architecture of the proposed anomaly search system.

searches for the subspace(s) with the largest possibility of being anomalous. The
set of suggested subspace(s) is sent to Discord Mining Module for evaluating
the anomaly score of the subspaces. The results of Discord Mining Module are
then sent back to the Subspace Searching Module to guide the search direction in
the next iteration. The goal of the Subspace Searching Module is to suggest the
next anomalous subspace in each iteration and the goal of the Discord Mining
Module is to evaluate the anomaly scores of the identified subspaces output
by the Subspace Searching Module. Finally, once the iterative process is done
(i.e., convergence is reached), a ranked list containing the identified anomalous
subspaces, anomaly scores, temporal location of the anomalies, and the anomaly
patterns are returned to the user for further investigation. The ranked list is
formed by storing all the evaluated anomalies during the search process.

4.1 Subspace Searching Module

As we describe in Sect. 3, it is impossible to perform discord mining on all the
combinations of unit subspaces for real-world transactional data because the
size of search space is exponential with respect to the number of unit subspaces.
We design two heuristic searching algorithms for the subspace search problem:
greedy search and evolutionary search.

Greedy Search: The greedy search method finds the most anomalous subspace
by making a greedy choice at each iteration. We demonstrate the greedy search
method with an example. Assume we have four unit subspaces (i.e., S1, S2, S3,
and S4) initially. In the first step, we evaluate each unit subspace individually and
find out that S2 has the largest anomaly score. Next, we evaluate the combined
subspace of S2 with S1, S3, and S4, separately. Let us say the combined subspace
of S2 and S3 has the largest anomaly score; we aggregate them together (S2 +
S3 = S2,3). For the next step, we evaluate the aggregated spaces by combining

26 J. He et al.

S2,3 with other unit spaces, i.e., S1 and S4, separately. The subspace produced
by aggregating S2,3 with S1 has the largest anomaly score; therefore, we proceed
with S1,2,3 for the next iteration. Finally, we aggregate S1,2,3 with the last unit
subspace S4 to form the last candidate subspace. By comparing the anomaly
scores of S2, S2,3, S1,2,3, and S1,2,3,4, the algorithm returns a list of subspaces
ordered based on anomaly scores.

Evolutionary Search: Evolutionary search [7,14] is a heuristic optimization
method. As its name suggests, evolutionary algorithms mimic the natural selec-
tion process, and applying such a method to our problem requires defining
the following functions: genetic representation, fitness function, initialization,
crossover, mutate, and selection strategy. We use a bit vector to represent a sub-
space, where the 1’s in the vector indicating the presence of a unit subspace. The
length of the bit vector is equal to the number of unit subspaces. For example,
if we have unit subspaces S1, S2 and S3, we use [101] to represent a particular
subspace that is generated by combining S1 and S3. The fitness function is the
anomaly score generated from the Discord Mining Module.

For the initialization, each individual within the population can be produced
by generating a random binary vector. Given two parent binary vectors for the
crossover, for every position of the offspring’s binary vector, we randomly copy
the value from one of the parents. If a mutation occurs, we randomly flip the
mutated bit in the binary vector. For selection strategy, we use the tournament
selection method with three tournament participants. The particular evolution-
ary algorithm we used is the (μ + λ) algorithm [9], and a ranked list of the
individuals (subspaces) ordered based on anomaly scores is returned.

There are several hyperparameters in the evolutionary search method (i.e.,
population size per generation μ, number of offspring λ, probability of crossover
pcx, and number of generation n), and the time complexity is determined based
on the hyperparameter setting. Specifically, the time complexity is O(nλ) where
n is the number of generations and λ is the number of offsprings. There are two
major factors that users need to consider when deciding hyperparameter settings:
the runtime requirement and the domain knowledge about the potential solution.
Other model hyperparameters can be set based on the user’s domain knowledge.
For example, if users believe the solution should only consist of different unit
subspaces, users should initialize the initial population with binary vectors with
higher sparsity.

Greedy Versus Evolutionary Search: There is no clear winner when com-
paring the greedy search method with the evolutionary search method. The
decision on which method to adopt should be decided in a case-by-case fash-
ion. To help the decision process, we show the cost comparison between the two
approaches in Table 2.

Mining Anomalies in Subspaces of High-Dimensional Time Series 27

Table 2. Comparison between greedy and evolu-
tionary search.

Advantages Disadvantages

Greedy Fixed time complexity

O(n2) No

hyperparameter

Inflexible cost

Evolutionary Flexible computational

cost

Hyperparameters

The major differences bet-
ween the two methods are
1) flexibility in computational
cost and 2) the number of
hyperparameters. The greedy
search method has a fixed time
complexity of O(n2) where n is
the number of unit subspace.
The time complexity is sub-
stantially better than the naive approach of O(2n), but it still could be too
expensive for problems that demand a faster algorithm. Because the time com-
plexity of the evolutionary search method only depends on the hyperparameter
setting, the evolutionary search method can be parameterized in a way that the
required speed can be achieved. The adjustable time complexity associated with
evolutionary search comes with a disadvantage: it requires users to provide a set
of hyperparameters while greedy search requires no hyperparameters. In other
words, the greedy search method is much easier to use compared to the evolu-
tionary algorithm. We perform an empirical comparison of the two methods in
Sect. 5.2.

4.2 Discord Mining Module

For the Discord Mining Module, we apply a nearest neighbor searching strategy
based on DTW distances. The brute-force method computes the distances of
all pairs of subsequences. The output is the subsequence with the largest DTW
distance with the nearest neighbor. We call this method Discord Mining V0
(DM-V0).

Can We Do Better Than DM-V0? Since computing the Euclidean distance
is an order of magnitude faster than the DTW distance, it is possible to derive a
faster discord mining algorithm using the fact that the z-normalized Euclidean
distance for a pair of subsequences is always greater than their z-normalized
DTW distance. We only need to evaluate the DTW distance of a subsequence
pair when their Euclidean distance is greater than the current solution (i.e.,
the pair with the largest DTW distance in the current iteration of the search
process); therefore, we can avoid unnecessary DTW distance computation using
precomputed Euclidean distances. On top of that, we can also guide the search
process using the precomputed Euclidean distances by evaluating the pair with
the largest Euclidean distances first because the pair is more likely to contain the
discord. We call the improved version Discord Mining V1 (DM-V1). The time
complexity of DM-V1 is still O(n2m2) where n is the number of subsequences
and m is the length of a subsequence, but empirically it has a smaller runtime
comparing to DM-V0 (see Fig. 4).

28 J. He et al.

Fig. 4. The runtime of DM-V0, DM-
V1, and DM-V2 under different over-
lapping condition. Note, the y-axis is
runtime on a logarithmic scale.

Can We Do Even Better Than DM-
V1? Many existing time series data min-
ing algorithms take advantage of the fact
that subsequences could be overlapped
with each other [22,25,40]. Their supe-
rior computational speed is achieved by
avoiding redundant computation for the
overlapped regions. It has been shown
by Zhu et al. [40] that computing pair-
wise z-normalized Euclidean distance for
every subsequence in a time series can be
reduced from O(n2m) with naive imple-
mentation to O(n2) using a more optimal
implementation. Using the STOMP algo-
rithm introduced in [40], we further improve the efficiency of DM-V1. Note, the
original purpose of the STOMP is to compute the matrix profile [36]. We modify
the algorithm to return the pairwise distance matrix (i.e., all computed distance
profiles [36]) instead of the matrix profile. We call the newly-introduced algo-
rithm, Discord Mining V2 (DM-V2).

When Do We Use DM-V2 Versus V1? DM-V2 takes advantage of the
fact that subsequences within the subsequence set are overlapped with each
other. However, the runtime of the STOMP algorithm is longer than pair-wise
Euclidean distance computation when the overlap between subsequences is small.
To study the relationship between the runtime of different discord mining meth-
ods and the overlap ratio, we have performed experiments on a synthetic random
walk time series (|T | = 2, 880). We set the subsequence length to 48, and the
overlap between consecutive subsequences are varied from 0 to 47. The exper-
iment is repeated 100 times and the average value is reported; the result is
presented in Fig. 4.

DM-V1 is faster than DM-V0 which shows how precomputing the z-
normalized Euclidean distance can indeed reduce the search time. When the
overlap is close to 100% of the subsequence length, the runtime reduction is
72% by replacing DM-V0 with DM-V1. When DM-V2 is adopted, the runtime
reduction is 86% comparing to DM-V0, and the runtime reduction is 51% com-
paring to DM-V1. On the contrary, when the subsequences have zero overlaps,
the runtime of DM-V1 is the shortest compared with the alternatives, and the
runtime for DM-V2 requires an extra 119 ms compared to DM-V1 and 58 mil-
liseconds compared to DM-V0. The runtime for DM-V1 and DM-V2 intersect
when the overlap of subsequence is around 63.5%. In other words, to achieve
the optimal performance under this particular experiment setup, we should use
DM-V1 when the overlap between subsequence is less than or equal to 63.5%
and DM-V2 when the overlap is greater than 63.5%.

Mining Anomalies in Subspaces of High-Dimensional Time Series 29

4.3 Discussion

The goal of our anomaly retrieval system is to obtain a list of anomalies ordered
based on their corresponding anomaly scores, and the anomaly with the highest
anomaly score may not be a true anomaly from the user’s standpoint. However,
by providing users a list of anomaly candidates with its contextual information
(i.e., which subspace the candidate is from, the candidate’s temporal location,
the shape of the anomaly pattern), the user can investigate further using the
contextual information of each candidate. Such interaction is similar to how
people use an online search engine.

Our two-module design can be easily extended for different applications.
Currently, we use a nearest neighbor-based method to mine time series discord
since we find it is suitable for finding anomalies (e.g., extreme values, abnormal
trends, and sudden changes) in transactional time series data. In other applica-
tions, the Discord Mining Module can be replaced by a more suitable anomaly
mining method for the application. As a result, we fix the Discord Mining Module
design to the time series discord-based method and focus on comparing different
subspace searching methods in Sect. 5.

5 Evaluation

The experiments are all conducted on a Linux server with Intel Xeon CPU E5-
2650 v4. We present several alternative algorithms for subspace searching to
compare with our system firstly. We then perform a stress test with synthetic
transactional data to understand our system’s runtime and output quality under
different scenarios. Finally, we evaluate our anomaly retrieval system on real
transactional data to show its effectiveness in real-world scenarios.

5.1 Alternative Approaches

Now, we introduce several alternative algorithms for the Subspace Searching
Module to compare with greedy and evolutionary search.

– All-dimension: The method returns the subspace that consists of all dimen-
sions, i.e., it aggregates all the unit subspaces then returns it as the output.

– One-best dimension: The method computes the anomaly score associated
with each dimension (i.e., unit subspace), then returns the dimension (i.e.,
unit subspace) with the largest anomaly score.

– Hierarchical clustering: The method performs hierarchical clustering on
dimensions, which means that dimensions with similar time series are clus-
tered together. Suppose we have n dimensions, the clustering process groups
the dimensions in n − 1 steps. In each step, the hierarchical clustering algo-
rithm merges either a dimension or a pre-existing cluster (i.e., grouped dimen-
sions) with another dimension or pre-existing cluster. We consider each clus-
ter of dimensions as a subspace, and we evaluate each subspace then return
the ranked list of subspaces ordered by the anomaly scores. This method
explores the possibility of using the similarity among dimensions for reducing
the search space.

30 J. He et al.

5.2 Synthetic Data

Methodology: Since it is beyond the modern computers’ capability to obtain
the optimal solution on real-world transactional data, we generate a set of syn-
thetic data where the set of all possible combinations of unit subspaces is small
enough for the brute-force subspace searching. Additionally, we generate the
time series for each unit subspace directly instead of raw transactional data to
streamline the data generation process as both the Subspace Searching Module
and the Discord Mining Module work on time series representation of a transac-
tion database. The synthetic data generated using the default experiment setting
consists of 8 unit subspaces, and each unit subspace consists of 30 days of trans-
actional data where each day is represented with 48 data points.

To study the effect of various variables associated with the synthetic dataset
on the runtime and quality of the solution, we have varied one variable in the
default experiment setting for each set of experiments. We generate 100 synthetic
data points using different random seeds for each experiment setting to minimize
the randomness effect.

Fig. 5. The time series data of the most
and least anomalous subspace.

To obtain the optimal solution, we
generate all the subspaces Sbf (i.e., all
combinations of the unit subspaces) by
brute force. Figure 5 shows the most
anomalous subspace and the least anoma-
lous subspace. The anomalies are high-
lighted in red.

Aside from the runtime, we also measure the performance of our system
with averaged rank which captures the quality of the approximated solution.
The averaged rank is computed as follows: given a subspace S discovered by an
approximated algorithm, we find the rank of S in Sbf . Because we repeat the
experiment on 100 synthetic data points generated using different random seeds
(with the same experiment setting), we compute the average of these 100 ranks
and report the averaged rank as the performance measurement of the solution
quality.

In addition to the two subspace search approaches, we also include the result
of a random baseline. The random baseline returns a random subspace as the
solution. Out of all the alternative approaches, we only include the hierarchical
clustering-based method because all the other approaches are only capable of
returning subspaces that consist of either one unit subspace or all unit subspaces.
For all the experiments, we use multi-thread implementation with the number
of threads set to 48. We use DM-V1 in all experiments as there is no overlap
between subsequences.

Mining Anomalies in Subspaces of High-Dimensional Time Series 31

Fig. 6. Experiment result on synthetic data.
Note that the y-axis of the plot in the first
row is on a logarithmic scale.

Results: The experiment result
is summarized in Fig. 6. The first
row of Fig. 6 shows the averaged
rank (i.e., quality of solution) under
different Subspace Searching Mod-
ules. The number of unit spaces
ranges from 4 to 16, constitut-
ing 24 − 1 to 216 − 1 subspaces.
As the number of unit subspace
increases exponentially, the ranks
of all the subspace searching meth-
ods increase correspondingly. All
three subspace searching methods
grow at a much slower rate com-
pared to the exponential growth
of the random baseline. We also
observe that the performance of the
proposed methods (i.e., greedy and evolutionary) is better than the hierarchical
clustering-based method. On the contrary, the variable of the number of days
does not have any correlation with the average rank: increasing or decreasing the
number of days does not change the search space for anomaly retrieval. When
the number of samples per day increases, the average ranks of the proposed
algorithms slightly improve.

The second row of Fig. 6 depicts the runtime under different Subspace Search-
ing Modules. We do not include the runtime of the random baseline in this study
because there is no subspace search operation in the random baseline. When we
change the number of unit subspaces, the size of the search space explored by
the Subspace Searching Module is changed, thus varying such a variable could
influence the runtime of the Subspace Searching Module. For the greedy method,
the result shows that the computational cost is linear to the number of unit sub-
spaces. For the evolutionary method, the time complexity only depends on the
hyperparameter settings of the algorithm. Since we use the same hyperparam-
eter setting (i.e., the default setting presented in the next section) throughout
the experiment, the runtime is not affected by the change in the number of unit
subspaces. Note that though the runtime of the greedy method more than triples
when the number of subspaces grows from 4 to 16, it is still much faster than
the brute force method as the brute force method requires a whopping 33 min
to find the solution compared to the six seconds for the greedy method.

When we change either the number of days or the number of samples per day,
the module that is mostly affected by the change is the Discord Mining Module.
Increasing either of these variables, in theory, should increase the computational
time quadratically of the Discord Mining Module. Nevertheless, the number of
days has a limited effect on the greedy search method and the growing trend of
the evolutionary search method suggests a quadratic growth rate. The number of
samples per day has a similar impact on the runtime of both the greedy search

32 J. He et al.

method and the evolutionary search method. The trend suggests a quadratic
growth in both methods’ runtime with respect to the number of samples per
day. Overall, the hierarchical clustering-based method is faster than the other
methods due to its smaller search space; however, it also has the worst averaged
rank for the same reason. We also generated figures with other common perfor-
mance measurements for retrieval systems (i.e., MAP and NDCG [28]). Because
the conclusion remains the same, we omit those figures for brevity.

Fig. 7. Performance of evolutionary search
under different hyperparameter settings.

Sensitivity Analysis for Evolu-
tionary Search: As there are many
hyperparameters associated with the
evolutionary search method, we per-
form sensitivity analysis using syn-
thetic data with 12 unit subspaces,
30 days of transactional data, and
48 data points per day. This anal-
ysis also compares greedy search
with evolutionary search under dif-
ferent hyperparameter settings to
help users decide on which sub-
space searching method to use. The
result is shown in Fig. 7. Similar to
Fig. 6, the y-axis indicates perfor-
mance measurements like rank and
time while the x-axis indicates varied hyperparameters. The “default” hyperpa-
rameter setting is: μ = 64, λ = 32, pcx = 0.7, and n = 8 where μ is population
size per generation, λ is number of offspring, pcx is probability of crossover, and
n is number of generation.

First of all, the runtime mostly depends on λ and n. When we increase either
λ or n, the runtime also increases linearly and the rank improves considerably
before saturation. The value associated with μ also has a positive correlation with
the runtime, but the growth rate is much less than λ and n while the improvement
in rank remains prominent. On the contrary, pcx does not affect the runtime,
and setting it to 0.9 gives us the best result comparing to other pcx settings.
Note, although the evolutionary search method almost always outperforms the
greedy search throughout the sensitivity analysis, there are still cases where
the evolutionary search method is surpassed by the greedy search method when
the hyperparameter setting is not ideal. This demonstrates the benefit of the
greedy search method: there is no sensitivity analysis required for using greedy
search because there are no hyperparameters associated with the greedy search
method. Similar to previous experiments, the figures with other performance
measurements are omitted for brevity.

Mining Anomalies in Subspaces of High-Dimensional Time Series 33

5.3 Real-World Transactional Data

Data Collection: We collect all the California state transactional data in
July 2018 from a payment company. Each transaction is associated with tens
of attributes. Particularly, we determine that the unit subspaces are defined by
Merchant Category Code (MCC). The MCC is the code used to determine the
business type (e.g., department store, clothing store, and grocery) of a merchant.
When transactions of different MCC are analyzed together (i.e., combining their
corresponding unit subspace to form a subspace), it could reveal valuable infor-
mation regarding certain business sectors. Discovered anomalous MCC subspaces
can be interpreted and used as guidance for designing business strategies. For
example, let’s say MCC1 stands for department stores, and MCC2 stands for
clothing stores. If an anomalous event with unusual rising transaction volume is
detected in the subspace (MCC1,MCC2) on a specific date, such an event could
indicate that there could be a big sale on the date for stores that sell garments.

The dataset is 70 GB and consists of over 600 million transactions from 415
MCCs. In each trial of the experiment, we randomly select one day and a subset
of MCCs (1% of the MCCs) in the transaction database; we then randomly
add synthesized transactions belonging to the selected MCCs to the day and
randomly remove transactions from the selected MCCs occurring on that day.
We repeat the experiment 16 times. When we apply the sliding aggregator, we
use a sliding window of a half-hour and a hop size of the same length. The
particular statistics we compute with the sliding aggregator is the sum of the
transaction amounts spent in the window.

Table 3. Experiment results with real trans-
actional data.

Method Average rank MAP NDCG Runtime (Sec)
Random 15.50 0.63 0.34 –
All-dimension 20.75 0.36 0.24 0.02
One-best dimension 17.31 0.47 0.28 9.58
Hierarchical clustering 17.31 0.47 0.28 4.17
Greedy search 5.94 0.86 0.46 1,345.50
Evolutionary search 8.63 0.72 0.39 87.62

Since we have the ground truth
about the temporal location of the
anomalies, we return the averaged
rank of the real anomalous day in
the ranked list returned by different
anomaly retrieval systems over the
16 trials. To obtain the ranked list,
the anomaly score associated with
each day in the subspace returned
by each system is computed; then the computed scores are used as the sorting
criteria. Because the tested systems are retrieval systems, we measure the per-
formance of the systems using information retrieval performance measures like
MAP [28] and NDCG [28] to evaluate the quality of the ranked list in addition
to the averaged rank. Note, for the averaged rank, a lower number means better
performance; for MAP and NDCG, a higher number means better performance.

Results: The experiment results are shown in Table 3. All alternative
approaches listed in Sect. 5.1 are examined. The proposed system, either with
greedy search or evolutionary search, considerably outperforms the baseline
methods with the greedy search being slightly better than the evolutionary
search. On the contrary, either the one dimension or all dimension system fails
to reliably detect the injected anomalies as their corresponding performance

34 J. He et al.

is even worse than the random baseline. The use of all dimension system fails
because the injected anomalies only affect 1% of the unit subspace. Additionally,
the one dimension system fails because it cannot locate the anomaly when only
one dimension is considered. The anomaly on one dimension is too small to be
captured. The hierarchical clustering-based system also produces poor results as
the assumption that the anomalous space consists of similar unit subspaces does
not hold for our database. In terms of the runtime, the proposed system, even
with the slower greedy search method, is capable of running in real-time as the
runtimes are all less than the data sampling period (i.e., 1,800 s). Similar to the
results we present in Fig. 6, the evolutionary search method is capable of finding
a solution that has a comparable quality with the solution located by greedy
search with a shorter runtime.

6 Conclusion

In this paper, we propose an anomaly retrieval system for high-dimensional time
series. The proposed system consists of two integrated modules, i.e., subspace
searching module and discord mining module. We implement the proposed sys-
tem and perform a comprehensive evaluation with synthetic data and real-world
transactional data. Our experimental results show that our system outperforms
the baseline algorithms with an execution time suitable for real-time analysis
in the production environment. It only takes 22 min to process one month of
transaction records (i.e., 600 million records) with the greedy search variant of
the proposed system, and 1.5 min for the evolutionary search variant.

References

1. Aggarwal, C.C., Yu, P.S.: Outlier detection for high dimensional data. In: ACM
Sigmod Record (2001)

2. Breunig, M.M., Kriegel, H.P., Ng, R.T., Sander, J.: LOF: identifying density-based
local outliers. In: ACM Sigmod Record (2000)

3. Chakraborty, K., Mehrotra, K., Mohan, C.K., Ranka, S.: Forecasting the behavior
of multivariate time series using neural networks. Neural Netw. 5, 961–970 (1992)

4. Chandola, V., et al.: Anomaly detection: a survey. ACM Comput. Surv. 41, 1–58
(2009)

5. Dean, D.J., Nguyen, H., Gu, X.: UBL: Unsupervised behavior learning for predict-
ing performance anomalies in virtualized cloud systems. In: ICAC (2012)

6. Duan, L., et al.: Mining outlying aspects on numeric data. DMKD 29, 1116–1151
(2015)

7. Eiben, A.E., et al.: Introduction to Evolutionary Computing. Springer, Heidelberg
(2003). https://doi.org/10.1007/978-3-662-05094-1

8. Faruk, D.Ö.: A hybrid neural network and ARIMA model for water quality time
series prediction. Eng. Appl. Artif. Intell. 23, 586–594 (2010)

9. Fortin, F.A., et al.: DEAP: evolutionary algorithms made easy. JMLR 13, 2171–
2175 (2012)

10. Gong, S., Zhang, Y., Yu, G.: Clustering stream data by exploring the evolution of
density mountain. VLDB 11, 393–405 (2017)

https://doi.org/10.1007/978-3-662-05094-1

Mining Anomalies in Subspaces of High-Dimensional Time Series 35

11. Gupta, M., et al.: Outlier detection for temporal data: a survey. IEEE TMKD 26,
2250–2267 (2013)

12. Han, J., Pei, J., Kamber, M.: Data Mining: Concepts and Techniques. Elsevier,
Amsterdam (2011)

13. He, J., et al.: TScope: automatic timeout bug identification for server systems. In:
ICAC (2018)

14. Holland, J.H.: Genetic algorithms. Sci. Am. 267, 66–73 (1992)
15. Kaastra, I., Boyd, M.: Designing a neural network for forecasting financial and

economic time series. Neurocomputing 10, 215–236 (1996)
16. Keller, F., Muller, E., Bohm, K.: HICS: high contrast subspaces for density-based

outlier ranking. In: ICDE (2012)
17. Keogh, E., Lin, J., Lee, S.H., Van Herle, H.: Finding the most unusual time series

subsequence: algorithms and applications. KIS 11, 1–27 (2007)
18. Kriegel, H.-P., Kröger, P., Schubert, E., Zimek, A.: Outlier detection in axis-parallel

subspaces of high dimensional data. In: Theeramunkong, T., Kijsirikul, B., Cer-
cone, N., Ho, T.-B. (eds.) PAKDD 2009. LNCS (LNAI), vol. 5476, pp. 831–838.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01307-2 86

19. Kriegel, H.P., Schubert, M., Zimek, A.: Angle-based outlier detection in high-
dimensional data. In: SIGKDD (2008)

20. Malhotra, P., Vig, L., Shroff, G., Agarwal, P.: Long short term memory networks
for anomaly detection in time series. In: Proceedings. Presses universitaires de
Louvain (2015)

21. Manzoor, E., Lamba, H., Akoglu, L.: xStream: outlier detection in feature-evolving
data streams. In: SIGKDD (2018)

22. Mueen, A., et al.: Time series join on subsequence correlation. In: ICDM (2014)
23. Müller, E., Schiffer, M., Seidl, T.: Statistical selection of relevant subspace projec-

tions for outlier ranking. In: ICDE (2011)
24. Na, G.S., Kim, D., Yu, H.: DILOF: effective and memory efficient local outlier

detection in data streams. In: SIGKDD (2018)
25. Rakthanmanon, T., et al.: Searching and mining trillions of time series subse-

quences under dynamic time warping. In: SIGKDD. ACM (2012)
26. Salehi, M., Leckie, C., Bezdek, J.C., Vaithianathan, T., Zhang, X.: Fast memory

efficient local outlier detection in data streams. TKDE 28, 3246–3260 (2016)
27. Santora, M.: In hours, thieves took $45 million in A.T.M. scheme (2013). https://

www.nytimes.com/2013/05/10/nyregion/eight-charged-in-45-million-global-cyber
-bank-thefts.html

28. Schütze, H., Manning, C.D., Raghavan, P.: Introduction to Information Retrieval,
vol. 39. Cambridge University Press, Cambridge (2008)

29. Siffer, A., Fouque, P.A., Termier, A., Largouet, C.: Anomaly detection in streams
with extreme value theory. In: SIGKDD. ACM (2017)

30. Su, Y., Zhao, Y., Niu, C., Liu, R., Sun, W., Pei, D.: Robust anomaly detection for
multivariate time series through stochastic recurrent neural network. In: SIGKDD
(2019)

31. Vinh, N.X., et al.: Discovering outlying aspects in large datasets. DMKD 30, 1520–
1555 (2016)

32. World Bank Group: World bank open data (2019). https://data.worldbank.org/
33. Wu, T., et al.: Promotion analysis in multi-dimensional space. VLDB 2, 109–120

(2009)
34. Ye, M., Li, X., Orlowska, M.E.: Projected outlier detection in high-dimensional

mixed-attributes data set. Expert Syst. Appl. 36, 7104–7113 (2009)

https://doi.org/10.1007/978-3-642-01307-2_86
https://www.nytimes.com/2013/05/10/nyregion/eight-charged-in-45-million-global-cyber-bank-thefts.html
https://www.nytimes.com/2013/05/10/nyregion/eight-charged-in-45-million-global-cyber-bank-thefts.html
https://www.nytimes.com/2013/05/10/nyregion/eight-charged-in-45-million-global-cyber-bank-thefts.html
https://data.worldbank.org/

36 J. He et al.

35. Yeh, C.C.M., Kavantzas, N., Keogh, E.: Matrix profile VI: Meaningful multidimen-
sional motif discovery. In: ICDM (2017)

36. Yeh, C.C.M., et al.: Matrix profile I: all pairs similarity joins for time series: a
unifying view that includes motifs, discords and shapelets. In: ICDM (2016)

37. Zhang, J., Gao, Q., Wang, H.: SPOT: a system for detecting projected outliers
from high-dimensional data streams. In: ICDE (2008)

38. Zhang, L., Lin, J., Karim, R.: An angle-based subspace anomaly detection approach
to high-dimensional data: with an application to industrial fault detection. Reliabil.
Eng. Syst. Saf. 142, 482–497 (2015)

39. Zhang, L., Lin, J., Karim, R.: Sliding window-based fault detection from high-
dimensional data streams. IEEE Trans. Syst. Man Cybern.: Syst. 47, 289–303
(2016)

40. Zhu, Y., et al.: Matrix profile II: exploiting a novel algorithm and GPUs to break
the one hundred million barrier for time series motifs and joins. In: ICDM (2016)

AIMED-RL: Exploring Adversarial
Malware Examples with Reinforcement

Learning

Raphael Labaca-Castro1,2(B), Sebastian Franz3, and Gabi Dreo Rodosek1,2

1 Research Institute CODE, 81739 Munich, Germany
2 Universität der Bundeswehr München, 85577 Neubiberg, Germany

raphael.labaca@unibw.de
3 Technische Universität München, 85748 Munich, Germany

Abstract. Machine learning models have been widely implemented to
classify software. These models allow to generalize static features of Win-
dows portable executable files. While highly accurate in terms of clas-
sification, they still exhibit weaknesses that can be exploited by apply-
ing subtle transformations to the input object. Despite their semantic-
preserving nature, such transformations can render the file corrupt.
Hence, unlike in the computer vision domain, integrity verification is vital
to the generation of adversarial malware examples. Many approaches
have been explored in the literature, however, most of them have either
overestimated the semantic-preserving transformations or achieved mod-
est evasion rates across general files. We therefore present AIMED-RL,
Automatic Intelligent Malware modifications to Evade Detection using
Reinforcement Learning. Our approach is able to generate adversarial
examples that lead machine learning models to misclassify malware files,
without compromising their functionality. We implement our approach
using a Distributional Double Deep Q-Network agent, adding a penalty
to improve diversity of transformations. Thereby, we achieve competitive
results compared to previous research based on reinforcement learning
while minimizing the required sequence of transformations.

Keywords: Adversarial learning · Reinforcement learning · Malware

1 Introduction

Malicious software, known as malware, has been a prevalent digital threat. Large
efforts have been conducted to correctly and efficiently detect malicious applica-
tions using Machine Learning (ML) [1,2]. However, ML models can be fooled by
tricking the classifier into returning the incorrect label [3]. Subtle transforma-
tions, referred to as perturbations, inserted into the file can be responsible for

S. Franz—Work done at Research Institute CODE while a student at LMU Munich.
This research is partially supported by EC H2020 Project CONCORDIA GA 830927.

c© Springer Nature Switzerland AG 2021
Y. Dong et al. (Eds.): ECML PKDD 2021, LNAI 12978, pp. 37–52, 2021.
https://doi.org/10.1007/978-3-030-86514-6_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86514-6_3&domain=pdf
https://doi.org/10.1007/978-3-030-86514-6_3

38 R. Labaca-Castro et al.

misclassification. For this reason, the generation of adversarial malware examples
has become an intensive area of research in the last decade [4]. Unlike in the com-
puter vision domain, where images can be randomly modified with adversarial
perturbations, Windows Portable Executable (PE) files can lose their integrity
and functionality following a series of too many or strong injections [5].

Recent advances have shown that ML-based malware classifiers report weak-
nesses when confronted with gradient-based attacks [6]. Generative Adversarial
Networks (GAN) were also successful in generating adversarial examples. In this
case, a surrogate model was trained based on the target malware classifier. Both
approaches rely heavily on feature-space adversarial examples, thus merely pro-
ducing a representation of the input object rather than a real file [7,8].

Conversely, further research has been looking at the problem-space on the
Windows platform. Anderson et al. [9] were one of the first to show that reinforce-
ment learning (RL) can be successfully used to generate adversarial examples
in the problem space for Windows PE. Yet, the use of semantic-preserving per-
turbations can still lead to corrupt adversarial examples. Hence, an integrity
verification is paramount to ensure functionality. Further approaches, including
Labaca-Castro et al. [10], explored Genetic Programming (GP) with integrity
verification that outperforms similar strategies without rendering the files cor-
rupt. However, the inherent issue of getting stuck in local-minima may prevent
the system from finding the best sequence of adversarial transformations.

We, therefore, present AIMED-RL: Automatic Intelligent Malware modi-
fications to Evade Detection with Reinforcement Learning. This approach com-
bines integrity analysis with improved reinforcement learning techniques. We
assume that an attacker use a toolbox with a set of transformations, which can
be injected into an original malware file and prevent a ML-based model from
properly classifying it as malicious. Our approach shows that RL can be imple-
mented to increase the success rate of such attacks against malware classifiers
and is able to outperform previous research in the field by significantly reducing
the efforts. This paper is structured as follows: In Sect. 2, we take an extensive
look at the existing literature about adversarial machine learning in the malware
domain focusing mainly on RL. Next, we describe the methodology in Sect. 3
and illuminate the design of our reinforcement learning approach. In Sect. 4 we
present the results and further explores the experiments conducted. Finally, we
conclude this work with a short summary in Sect. 6.

2 Related Work

Here we evaluate the existing literature about adversarial machine learning in
the malware domain. We discuss related research and elaborate on the current
state of the field.

2.1 Reinforcement Learning

Reinforcement learning has become an increasing area of scientific interest in
the past decade. The usage of RL has extended beyond traditional applications
and entered new fields, such as networking and security [11–14].

AIMED-RL 39

One of the first attempts to generate adversarial malware examples using
RL was presented by Anderson et al. [9]. The authors implemented ten different
perturbations designed to be semantic- and functionality-preserving; that is, they
do not negatively affect the structure of the actual code. A maximum budget
of ten turns, equivalent to ten injected perturbations, was allowed before the
attempt was cancelled and the next episode was started. The reward function
only consisted of the detection result by the classifier, where 0 stands for a
detected file and 10 for an evasive. The environment was based on the OpenAI
gym framework [15]. The article reports an evasion rate of up to 24%, and
an average rate of 16.25% over 200 holdout malware examples. According to
the authors, the results must be seen as modest in comparison to white-box
based gradient attacks or grey-box attempts. Although the perturbations were
intended to be functionality-preserving, they did, in fact, hamper the integrity
of the adversarial examples since no integrity verification took place.

Building on the same idea, Fang et al., [16] undertook a similar approach
using different parameters. The state input was reduced to 513 dimensions and
consisted only of byte and entropy histograms. The authors assumed that a
smaller and thus more comprehensive input could simplify the training of the
agent. The action space was also decreased to four actions, which were expected
to maintain improved functionality-preserving properties. A value-based Dou-
ble Deep Q-Network (DDQN) was trained. In addition, it is reported the use
of integrity verification to validate that the created examples remained func-
tional [17]. An evasion rate of 46.56% was reported, which can be considered a
strong improvement compared to previous approaches. However, the use of 80
injections based on only four different perturbations could potentially make it
easier to detect and identify files that have been respectively modified.

Fang, Zeng, et al., [18] criticized that previous work [9] claimed to use a black-
box scenario, while using the same feature-space for the reinforcement learning
agent as well as for the detection engine, resembling more a grey-box attack.
To avoid this problem, they trained their own classifier to detect PE files using
2,478 dimensions. Still, it remains unclear if this solves the issue since attackers
usually have domain knowledge and could be able to anticipate which features
are likely to be used by a static malware classifier. They further suggested that
the high amount of randomness in the perturbations used in previous work [9,16]
could lead to instability during the training process. Instead of picking an import
function at random, for instance, they crafted an individual perturbation for each
import function. These alterations led to a significantly increased action space
with 218 dimensions, which raises the question about whether the agent is able
to explore the possible states satisfactorily and register the small differences
between the many individual perturbations. A DDQN model in combination
with a Dueling DQN (DuDDQN) was implemented and the agent was trained
for 3,000 episodes, which then reported an evasion rate of 19.13%.

40 R. Labaca-Castro et al.

2.2 Further Approaches

In a stochastic approach [5] perturbations were randomly injected into the mal-
ware to explore the potential of automated malware manipulation. An integrity
test was implemented using a sandbox [17] to check whether the malware is
still functional after the injections. It was reported that an increasing number
of injected perturbations reduced the number of functional examples consider-
ably, ranging from 50% functionality for three injected perturbations to only
7.5% for 25. Overall, 18% of manipulated files were reported to be functional on
average. The detection was tested by malware scanners on VirusTotal [19]. The
best manipulated and functional examples achieved a reduction in the detection
rate by about 80%. Interestingly, examples using only five perturbations showed
similar results as those relying on an extreme number of 500 perturbations.
Moreover, the length of the perturbation sequence proved to be less important
than the order of the injected perturbations. However, the approach was slow to
find adversarial examples when scaling and, hence, optimization techniques will
be needed to improve efficiency.

To address the limitations discussed, another strategy was proposed [10].
This time, a genetic programming algorithm was implemented to find adversarial
malware examples. Unlike reinforcement learning, this technique does not require
any training time. The fitness function was composed of four parameters, namely
functionality, detection, similarity (to the original file on byte-level) and distance
(number of generations). Compared to previous approach [5], the current solution
was significantly faster, thus requiring less processing time to create files. It
also produced fewer corrupted, non-functioning examples. Probing the functional
examples against four classifiers, evasion rates of about 24% were reported.

In [20], another similar genetic programming approach to evade static detec-
tion was introduced. In this case, the authors only used two perturbations,
both of which were meant to be functionality-preserving by design. They, there-
fore, did not employ an integrity step to check the generated examples for
functionality. The perturbations were padding (adding bytes at the end of the
file) and section injection, which were previously used by Anderson et al. and
Labaca-Castro et al., among other perturbations. By removing the functionality
check, the process of generating adversarial malware was sped up significantly,
thus avoiding the most limiting factor regarding the performance in previous
approaches [5,10]. However, no evidence was presented to confirm the function-
ality of the malware, as the files did not appear to be verified a posteriori. In
fact, the original perturbations used in [9] were also declared to be functionality-
preserving, but turned out to produce corrupted malware as it was acknowledged
in the article. Nonetheless, the authors reported that the approach managed to
evade, on average, a considerable amount of 12 commercial classifiers.

3 AIMED-RL

In this section, we present how the experiments using reinforcement learning
for adversarial malware have been designed. We start providing the theoretical

AIMED-RL 41

context and continue defining the experimental settings and environment of our
approach.

3.1 Framework and Notation

The idea behind reinforcement learning is to find the best decision or action
for a given input state. Because every state will be linked to a certain reward,
a machine learning model based on reinforcement learning is programmed to
maximize this reward over a sequence of states. The entity that is deciding
and executing the actions is called agent in RL-terms. By exploring a lot of
possible states over the course of many episodes, the agent will eventually learn
to link actions and states to some amount of reward. After the exploratory
training stage, it should now be able to perform the best possible action for each
state, leading to the highest reward. This process can be formalized as a Markov
Decision Process (MDP), consisting of a 4-tuple:

MDP := (S,A, γ,R(S,A)) (1)

For S being a finite set of possible states, A the set of possible actions, γ a
discount factor for future rewards and R(S,A) the reward function. A transition
from one state to another can formally be described as:

(st, at, rt+1, st+1) (2)

This makes clear that for every timestep (turn) t an action has to be chosen by
the agent to transition to the next state s. The rule by which the agent decides
which action to take is called the policy of the agent. It can be formalized as a
probability distribution over the available set of actions given a certain state:

π(a|s) = P [At = a|St = s] (3)

It is necessary to describe the policy of the agent as non-deterministic, because
it has some random component in the training stage.

After all, the most important goal in reinforcement learning is for the agent
to learn a (near) optimal policy.

Q-Learning and Deep Q-Learning. Q-learning has already been introduced
in the early 1990s [21]. Following the reinforcement learning process described in
Eq. 1–3, it becomes clear that each different state has its own value determined
by its current reward and the possible future reward that the next states can
deliver. The function that ascribes these values to the state is called the value
function V (s). However, for practical reasons, it is simpler to consider the actions
associated with the state transitions. This relation is defined by the eponymous
Q-function:

Q(s, a) = r(s, a) + γ max
a′∈A

Q(s′, a′) (4)

42 R. Labaca-Castro et al.

The discount factor γ controls hereby, how much the agent is grinding for a
long-term reward (high value for γ), or is just greedily considering the current
reward (low value for γ). This means that the Q-value is the expected discounted
reward for executing action a at state s and following policy π thereafter [21].

To track and update the Q-values, they have to be stored together with
their associated state and action pair. In a simple case, with only few states and
actions available, a 2D table can be used to accomplish the task. This approach
can be regarded similarly to dynamic programming. Even if one only stores the
visited and thus relevant states, complexity and storage limits are exceeded very
fast. The application of deep neural networks allows to handle this problem.

Instead of directly calculating the Q-values and storing them, a deep neural
network with weights θ can be used as a non-linear function approximator. The
network can be trained by minimizing the loss function L(θ) over the course
of training episodes with stochastic gradient descent. The size of the output
layer of the network must match the number of possible actions. This mimics
a supervised learning process, where the reward defines the labeled data for
a state. The network has to learn to predict these rewards correctly in order
to minimize the loss function. From these predictions, the optimal actions to
achieve the highest reward can eventually be inferred [22].

3.2 Experimental Setting

Attacker Knowledge. Following previous work [4,23], training data knowledge
is defined by D and feature set X , algorithm g, and hyperparameters w.

Limited Knowledge (LK). Based upon θLK = { D̂ }, attackers can query the
model in unlimited fashion and receive binary outputs labelling the adversarial
examples into malicious or benign. Moreover, they could also transfer the results
of the queries into a surrogate classifier in case the attackers have additional
knowledge of the learning algorithm and feature set θLK = { D̂, X̂ , ĝ, ŵ }. In our
scenario, the LK capability fits the situation appropriately since the agent is
only able to assign a reward based on the output of the classifier. None of the
underlying architecture from the model nor its training set are relevant for the
attackers.

Target Model. A LightGBM [24] model is implemented, which was trained on
600,000 benign and malicious software files. In terms of performance, the model
scores an ROC-AUC of 0.993 [9]. After analyzing an input file, the classifier
returns a value between 0 and 1 for benign or malicious examples respectively.
Ergo, a larger value corresponds to a higher confidence in the examined file
being malicious. As used in the literature [5,9], for the evaluation, we keep the
threshold set to 0.9 to label a file as malware and, hence, be able to benchmark
performance against different approaches. Regarding the training stage however,
we decided to lower the confidence rate to 0.8, providing a bigger challenge for
the RL agent. Note that this threshold is only known to the detection model and

AIMED-RL 43

is not used by the RL agent, in order to keep the characteristics of a black-box
scenario and attack.

Injection Strategy. Within the literature, a number of publications used vary-
ing numbers to define the maximum of allowed perturbations for the agent, rang-
ing from 10 [9] to 100 [18]. However, in [10] the authors suggested that a smaller
number of around five perturbations showed similar results and that the order
of perturbations could be more relevant than the actual quantity. We therefore
limited the number of allowed injections to five perturbations.

Furthermore, we introduced an additional reset strategy to enhance the idea
of order matters more than numbers. Our environment is allowed to reset the
malware example back to its original state if the classifier is still able to detect
it after five perturbations. This allows the agent a second shot at the same file,
if the first attempt failed to successfully generate an adversarial example.

3.3 Environment

State. The state input for the agent presented by the environment consists of
both, handcrafted PE features extracted from the bytes of the binary file as
well as structure-agnostic byte(-entropy) histograms. To extract the PE-specific
information, the LIEF library [25] is employed. The state relies on the feature
space defined by [9]:

PE-Specific Features. i) Metadata from PE header file information (62 dim.):
Extracted features from the PE header, such as OS information, linker version
or the magic number. ii) Metadata about the PE sections (255 dim.): Stores
information about section names, sizes and entropy. A hash function is used to
compress these values into 255 dimensions for every PE file. iii) Metadata about
Import Table (1280 dim.): Contains information about the names of imported
functions and libraries in the import table of the data directory. The names are
stored up to a maximum amount of 10,000 characters. iv) Metadata about Export
Table (128 dim.): Stores the names of exported functions. The length of the
stored value is also limited to 10,000 characters. v) Counts of human-readable
strings (104 dim.): Counts the number of certain strings like URLs (https),
registry entries (HKEY) or paths (c:/), and creates a histogram that stores
the distribution of characters within the strings. vi) General file information (10
dim.): General metadata about the file. For instance, whether it has a debug
section or a signature, and the length of export and import tables. It also stores
the size of the whole file.

Structure-Independent Features. i) Byte histogram (256 dim.): Creates a his-
togram with byte occurrences over the whole binary file. ii) 2D byte-entropy
histogram (256 dim.): To compute the byte-entropy histogram, windows with
size 2048 bytes are slided over the raw bytes from the file with a step size of
1024 bytes. For every block created in this way, the entropy is calculated as the

44 R. Labaca-Castro et al.

base 2 logarithm of the bytes in the block. After that, the byte-entropy histogram
is created with these computed values and flattened into a 256 dimensional fea-
ture vector. The method is based on the work by [26]; this original work used
both a smaller window (1024 bytes) and step size (256 bytes) than applied here.

Both, PE-specific and structure-independent information sum up to a 2,351
dimensional feature vector.

Reward. The reward is one of the most important aspects of the environment,
as it directly influences the policy of the agent. In our implementation, the reward
consists of a linear function of three individual parameters. We hereby decided
to set Rmax = 10 as the maximum reward for each.

In [9], only detection Rdet was used to calculate the reward R, returning
Rdet = 0 for detected and Rdet = 10 for adversarial examples.

More recent approaches [5,16,18], also included the distance Rdis from the
original file in their reward function. Rdis is expressed by the number of turns
that have passed. We multiplied it with a factor that gives the maximum number
of allowed perturbations tmax = 5 the highest reward. Thus we incentivised our
agents to use our domain knowledge that five perturbations seem to be the most
promising in terms of evasion and functionality. Rdis can therefore be defined as
follows:

Rdis =
Rmax

tmax
∗ t (5)

This work further includes the similarity Rsim of a manipulated file com-
pared to the original one for the reward function, which is inspired by a genetic
programming approach [10]. The similarity value is calculated based on a byte-
level comparison of the two respective files. A bigger distance between the two
files results in a larger value, leading to a higher diversity caused by the injected
perturbation.

Given that the value can vary within a larger range, we decided to calculate
a ratio between the modified file size, Smod, and the original, Sorig, aiming
to maintain consistency across the adversarial examples. Based on empirical
examination, we determined that a percentage value of Sbest = 40% should work
best to create the most promising modifications. That is why we calculated Rsim

according to the difference to this value:

Rsim = (1 − |Sbest − Smod

Sorig
|) ∗ Rmax (6)

In order to be able to tune the model based on importance of each parameter,
we introduced weights, ω, for each of the rewards. We therefore present the
different weight distributions in Table 1.

The following equation summarizes the reward, R, for our environment:

R = Rdet ∗ ωdet + Rsim ∗ ωsim + Rdis ∗ ωdis (7)

AIMED-RL 45

Table 1. Weight distribution strategies for the reward function. Standard sets the same
weight to each parameter whilst Incremental shifts the attention towards detection.

Rdet Rsim Rdist Strategy

0.33 0.33 0.33 Standard

0.50 0.20 0.30 Incremental

We have established that agents tend to inject the same perturbation repeat-
edly and, thus, we introduced a penalization to the reward function. The change
consists in a reward penalty if the agent uses duplicated perturbations, ρ, within
the same file:

R =

⎧
⎪⎨

⎪⎩

R for ρ = 0
R ∗ 0.8 for ρ = 1
R ∗ 0.6 for ρ > 1

(8)

Actions. The agent’s task is to decide on each turn which perturbation should
be injected into the PE file. The actions are injected sequentially, so that every
turn builds on the modified file from the previous injection. The perturbations
injected [9], with the exception of identity and create new entry point, which
were left out because of technical problems [5], are described as follows: i) over-
lay append : Appends a sequence of bytes at the end of the PE file (overlay);
length and entropy are random. ii) imports append : Adds an unused function to
the import table in the data directory. The function is chosen randomly from
a predefined list of DLL imports. iii) section rename: Manipulates an existing
section name. For all section perturbations the section name is chosen at ran-
dom from a list of known benign section names. iv) section add : Creates a new
unused section in the section table. v) section append : Appends bytes at the
end of a section. The length and entropy of the injected bytes is again chosen
at random. vi) upx pack : Uses the UPX [27] packer to pack the whole PE file.
Note that the compression level (between 1 and 9) is also chosen at random.
vii) upx unpack : Unpacks the file using the UPX packer. viii) remove signature:
Removes the signer information in the certificate table of the data directory.
ix) remove debug : Manipulates the debug information in the data directory. x)
break optional header checksum: Modifies and thus breaks the optional header
checksum by setting it to 0. Note that the first six perturbations use random-
ization. The implications of this have already been discussed in section Sect.
2.1.

Agent. While an Actor Critic model with Experience Replay (ACER) has been
used [9] as a policy-based approach for generating adversarial malware exam-
ples, it has been shown [16,18] that value-based networks are also suited for RL
problems in the malware context. Hence, we implement Deep Q-Networks with

46 R. Labaca-Castro et al.

additional enhancements [28] that account for data efficiency and performance
as can be observed in Table 2.

Table 2. Overview of RL-based approaches and its parameters. While related work
implemented ACER, DDQN and Dueling DDQN (DuDDQN), we use a Distributional
DDQN (DiDDQN) agent and Noisy Nets as exploration strategy.

Approach Agent Optimizer D. Factor Exploration

Fang et al., 2019 DDQN Adam 0.99 ε − greedy

F., Zeng et al., 2020 DuDDQN RMSProp N/A Boltzmann

Anderson et al., 2018 ACER Adam 0.95 Boltzmann

AIMED-RL DiDDQN Adam 0.95 Noisy Nets

Our experiments with baseline DQN showed a concentrated distribution of
Q-values whilst Distributional DQN allowed more precise decisions and improve-
ments in the learning process.

Instead of a regular DQN, we used a Distributional DQN [29] with two hidden
layers and 64 nodes each and Vmin = −10, Vmax = 10, Natoms = 51 that focus
in learning the distribution of rewards rather than the expected reward value.

In addition, we implemented a Double DQN [30], which is a well-known
extension to Q-Learning that solves the problem of action-value overestimation.
The neural network uses Adam [31] as optimizer with the following parameters:
α = 0.001, β1 = 0.9, β2 = 0.999 and ε = 0.01. Another enhancement was to
apply prioritized experience replay [32] with α = 0.6, β0 = 0.4, betasteps =
tmax ∗ episodes, capacity = 1, 000, instead of usual replay buffers. This allows
to select episodes from the replay buffer with higher information for the agent
more often, which leads to a more efficient training process. For exploration, we
chose Noisy Nets [33] with σ = 0.5 since it allowed for better exploration of the
action space and more diversified transformation vectors.

4 Experimental Results

In this section we discuss the results from the experiments. Motivated by limita-
tions from previous work, we focus on answering the following research questions:

RQ1: Is it possible to increase diversity in the sequence of adversarial pertur-
bations? (Sect. 4.1)

RQ2: Can RL-based agents efficiently learn to evade malware classifiers with
shorter sequences of perturbations? (Sect. 4.2)

During the training stage of our agents, we sampled 4,187 portable executable
files from VirusShare [34]. The experiments have been evaluated on a holdout set
of 200 malware examples that were not included in the training set. The integrity
is verified by executing the adversarial example in a protected environment [17].

AIMED-RL 47

Fig. 1. Usage of perturbations of best agent to create adversarial files. While two
perturbations are particularly dominant, a broad range of actions can be observed.

4.1 Diversity of Perturbations

As we can observe in Fig. 1, the agent employs a broad variety of perturbations
throughout the evaluation to generate adversarial examples. In line with previous
research [9,18,20], upx pack turned out to be the most dominant perturbation
in our environment.

Table 3. Comparison of evasion rates among agents using two different strategies:
incremental and standard weights with (WP) and with no penalty (NP). An additional
set was included to compare RL-based agents with random results.

Strategy Episodes Avg. Evasion Best Agent

Incremental (WP) 1000 23.52% 40.00%

1500 20.35% 33.84%

Incremental (NP) 1000 18.78% 30.81%

1500 23.06% 35.35%

Standard (WP) 1000 21.07% 35.86%

1500 26.29% 43.15%

Standard (NP) 1000 21.6% 30.0%

1500 23.74% 41.41%

Random Agent – 21.21% 24.62%

Since packing strongly impacts the structure of the file and this is an impor-
tant feature for static malware classifiers, its dominance over other perturbations
appears reasonable. In fact, packing is a common practice amongst commercial
(benign) software vendors to obfuscate their code or to reduce the size of their
executable files. Further research [20] suggests that these kind of perturbations

48 R. Labaca-Castro et al.

(i.e., packing) increase the probability of a file to be flagged as malicious. How-
ever, from the classifier perspective, considering compressing with UPX packing
a malicious behavior itself would necessarily increase the number of false-positive
results and is therefore not encouraged. At this point, we must note that some
attacks will always be more prominent and, therefore, we advise to focus on the
diversity of perturbations instead of concentrating on the most dominant. Most
of the agents created used heterogeneous sequences of perturbations, indicating
the success of our enhancements to the environment.

While some transformations may be more prevalent, others may be flagged
by security techniques such as pre-analysis. For instance, overlay append can
indeed be a strong sign of a modified, probably malicious, file. For a benign
PE it would be unusual to have bytes randomly appended after the overlay,
as these would only increase its file size without adding any value. Packing or
unpacking the file before presenting it to the ML-model could also be applied as
a pre-analysis technique to avoid packers to fool the classifier.

4.2 Evasion Rate

In Table 3 we observe the comparison of evasion results among agents taking
into account different strategies. In each case, 10 agents were trained for 1000
and 1500 episodes respectively. A random agent has also been added to compare
the generation of adversarial examples with the use of reinforcement learning.
Note that some combinations of perturbations can render the adversarial exam-
ples corrupt. These files were excluded from both the training and the evaluation
sets, resulting in non-uniform values for some evasion rates. While the best aver-
age evasion rate improvement scores 7%, the best agent is improved by more
than 20%. Both weight distributions returned agents that scored significantly
better than a purely random approach. The best agents, however, were trained
with the help of our reward penalty strategy. In fact, the agents implement-
ing the penalty technique always outperform their non-penalized counterparts,
as depicted in Fig. 2 where a comparison among four different configuration of
agents is displayed.

The best agent, trained within 1, 500 episodes using standard strategy with
penalty, managed to score an evasion rate of 43.15% on the holdout set. The
adversarial examples created were 97.64% functional, leading to an overall eva-
sion rate of 42.13%. Even considering the reset strategy that de-facto doubles
the amount of episodes to 3, 000, this number of episodes is still arguably small.
In fact, the agent was updated only about 13,900 times during training. This is
equivalent to the number of modifications created during training and is consid-
erably lower than the budget of 50,000 modifications used by [9] in their previous
approach. Thus, such an agent can be trained without highly powerful hardware
in a short period of time.

Table 4 summarizes the results of AIMED-RL compared to previous work.
While Fang et al. [16] report a higher evasion rate of 46.56% with functional
files, it is important to note that we were not able to reproduce these results
given that no artifact was made available.

AIMED-RL 49

Fig. 2. Comparing our best results regarding the reward penalty strategy. The lines
represent the average of generated adversarial files over ten trained agents. For both
numbers of training episodes, the agents with the penalty outperform their counter-
parts. This concerns both the best and the average evasion rate.

We experienced a similar situation with F., Zeng et al. [18]. In this case only
the malware set was published.

Table 4. Comparison of evasion results of AIMED-RL against different approaches in
the literature. The LGBM model is employed widely across the literature and serves as
a benchmark. Only one approach implemented DeepDetectNet (DDNet), which makes
their evasion rates less comparable. The functionality test (FT) returns a binary output.

Approach Space Reward Perts. Model FT Evasion

Fang et al., 2019 4 Rdet, Rdist 80 LGBM Yes 46.56%

F., Zeng et al., 2020 218 Rdet, Rdist 100 DDNet Yes 19.13%

Anderson et al., 2018 11 Rdet 10 LGBM No 16.25%

AIMED-RL 10 Rdet, Rdist, Rsim 5 LGBM Yes 42.13%

Therefore, in order to evaluate the data, we proceeded to acquire their pool of
malware files and modified them with our best agent. By adding only five pertur-
bations we were able to get 42 out of 50 to be functional, ergo 84%. In their work,
however, they were injecting up to 100 transformations. Even if their results keep
the functionality rate that we had with five perturbations, the evasion rate with
our integrity tests would be around 16.07%. Since this is an extrapolation we
do not strive for formal comparison. Nevertheless, we believe these reproducible

50 R. Labaca-Castro et al.

steps are important given that highly-perturbed PE files are reported to break
after a large number of modifications [5]. This argument similarly applies to [16]
which also used a high budget of 80 perturbations.

On the other hand, further approaches [16,18] also reported the use of IDA
Pro [35] to generate control flow graphs as a means of checking whether the
examples still showed the exact same behavior. Although this approach may
seem compelling, in order to be thoroughly implemented, it is likely to require
manual verification and, therefore, strongly increase the cost of generating fully-
functional adversarial examples. Regarding the remaining approach by Anderson
et al. [9], while the environment was published, integrity verification did not take
place.

With respect to the reward, the distribution of the parameters contributed in
different degrees towards the total reward. Similarity accounts for 24%, Detection
32%, and Distance 44%. In our approach, distance is updated on every turn and
hence has stronger role. However, further room for optimization may still be
available in terms of how parameters are updated.

Overall, the agent that reports the best evasion result on the holdout dataset
needs 1, 500 episodes of training with standard strategy and penalization acti-
vated. Unlike what can generally be observed in the literature, the evasion rate
for successful adversarial examples seems to improve by a better combination of
small factors rather than a larger sequence of adversarial perturbations.

5 Availability

In order to foster further research in this area we are releasing AIMED-RL1.
While we are aware that the work could be misused by adversaries, we believe
that enforcing security to protect from adversarial examples outweighs the poten-
tially negative impact. Malicious actors have available resources to generate
sophisticated attacks and even legitimate software can be exploited by com-
mitted adversaries. However, releasing the code to the community can enable
researchers to protect towards adaptive attacks and therefore increase the level
of defenses against adversarial malware.

6 Conclusion

In this paper we presented AIMED-RL, which aims to extend the capabilities of
existing approaches to generate fully functional adversarial examples in the mal-
ware domain. We redefined the reward function and evaluated different weight
strategies to maximize the output. To address the limitation of homogeneous
sequences of perturbations, which are a widely discussed limitation in reinforce-
ment learning approaches, we introduced and demonstrated the importance of a
penalty technique. Moreover, we showed that is possible to train a competitive
agent that generates adversarial examples with a shorter sequence of transfor-
mations, which leads to less manipulated adversarial malware, without compro-
mising its functionality.
1 https://github.com/zRapha/AIMED.

https://github.com/zRapha/AIMED

AIMED-RL 51

References

1. Ucci, D., Aniello, L., Baldoni, R.: Survey of machine learning techniques for mal-
ware analysis. Comput. Secur. 81, 123–147 (2019)

2. Raff, E., Nicholas, C.: Survey of machine learning methods and challenges for
windows malware classification. arXiv:2006.09271 (2020)

3. Szegedy, C., et al.: Intriguing properties of neural networks. arXiv (2013)
4. Biggio, B., Roli, F.: Wild patterns: ten years after the rise of adversarial machine

learning. Pattern Recogn. 84, 317–331 (2018)
5. Labaca-Castro, R., Schmitt, C., Rodosek, G.D.: ARMED: how automatic malware

modifications can evade static detection? In: 2019 5th International Conference on
Information Management (ICIM), pp. 20–27 (2019)

6. Labaca-Castro, R., Biggio, B., Rodosek, G.D.: Poster: attacking malware classifiers
by crafting gradient-attacks that preserve functionality. In: Proceedings of the 2019
ACM SIGSAC Conference on Computer and Communications Security, pp. 2565–
2567 (2019)

7. Hu, W., Tan, Y.: Generating adversarial malware examples for black-box attacks
based on GAN. ArXiv (2017)

8. Castro, R.L., Schmitt, C., Rodosek, G.D.: Poster: training GANs to generate adver-
sarial examples against malware classification. IEEE Secur. Priv. (2019)

9. Anderson, H.S., Kharkar, A., Filar, B., Evans, D., Roth, P.: Learning to evade
static PE machine learning malware models via RL. ArXiv (2018)

10. Labaca-Castro, R., Schmitt, C., Rodosek, G.D.: AIMED: evolving malware with
genetic programming to evade detection. In: 2019 18th IEEE International Con-
ference on Trust, Security and Privacy in Computing and Communications/13th
IEEE International Conference On Big Data Science And Engineering (Trust-
Com/BigDataSE), pp. 240–247 (2019)

11. Chen, T., Liu, J., Xiang, Y., Niu, W., Tong, E., Han, Z.: Adversarial attack and
defense in reinforcement learning-from AI security view. Cybersecurity 2(1), 11
(2019)

12. Luong, N.C., et al.: Applications of deep reinforcement learning in communications
and networking: A survey. IEEE Commun. Surv. Tutor. 21(4), 3133–3174 (2019)

13. Nguyen, T.T., Reddi, V.J.: Deep reinforcement learning for cyber security. arXiv
preprint arXiv:1906.05799 (2019)

14. Qian, Y., Wu, J., Wang, R., Zhu, F., Zhang, W.: Survey on reinforcement learning
applications in communication networks. J. Commun. Inform. Netw. 4(2), 30–39
(2019)

15. Brockman, G., et al.: OpenAI gym. ArXiv (2016)
16. Fang, Z., Wang, J., Li, B., Wu, S., Zhou, Y., Huang, H.: Evading anti-malware

engines with deep reinforcement learning. IEEE Access 7, 48867–48879 (2019)
17. Guarnieri, C., Tanasi, A., Bremer, J., Schloesser, M.: Cuckoo sandbox - automated

malware analysis. Cuckoo (2021)
18. Fang, Y., Zeng, Y., Li, B., Liu, L., Zhang, L.: DeepDetectNet vs RLAttackNet:

an adversarial method to improve deep learning-based static malware detection
model. PLOS One 15(4), e0231626 (2020)

19. VirusTotal. Analyze suspicious files and URLs to detect types of malware, auto-
matically share them with the security community (2021). https://virustotal.com.
Accessed 25 Feb 2021

20. Demetrio, L., Biggio, B., Lagorio, G., Roli, F., Armando, A.: Functionality-
preserving black-box optimization of adversarial windows malware. ArXiv (2020)

http://arxiv.org/abs/2006.09271
http://arxiv.org/abs/1906.05799
https://virustotal.com

52 R. Labaca-Castro et al.

21. Christopher, J.C.H.: Watkins and Peter Dayan. Q-learning. Mach. Learn. 8(1992),
279–292 (1992)

22. Mnih, V., et al.: Playing atari with deep reinforcement learning. ArXiv (2013)
23. Carlini, N., et al.: On evaluating adversarial robustness. CoRR, abs/1902.06705

(2019)
24. Ke, G., et al.: LightGBM: a highly efficient gradient boosting decision tree. In:

Guyon, I., et al. (eds.) Advances in Neural Information Processing Systems, vol.
30, pp. 3146–3154. Curran Associates Inc. (2017)

25. Quarkslab: LIEF: library to instrument executable formats. QuarksLab (2020)
26. Saxe, J., Berlin, K.: Deep neural network based malware detection using two dimen-

sional binary program features. ArXiv (2015)
27. Oberhumer, M.F.X.J., Molnár, L., Reiser, J.F.: UPX: the ultimate packer for exe-

cutables - homepage. GitHub (2020)
28. Hessel, M., et al.: Rainbow: combining improvements in deep reinforcement learn-

ing. Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32, no. 1,
pp. 3215–3222 (2018)

29. Bellemare, M.G., Dabney, W., Munos, R.: A distributional perspective on rein-
forcement learning. ArXiv, 21 July 2017

30. van Hasselt, H., Guez, A., Silver, D.: Deep reinforcement learning with double q-
learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol.
30, no. 1 (2016)

31. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. ArXiv (2014)
32. Schaul, T., Quan, J., Antonoglou, I., Silver, D.: Prioritized experience replay. ArXiv

(2015)
33. Fortunato, M., et al.: Noisy networks for exploration. In: Proceedings of the Inter-

national Conference on Representation Learning (ICLR 2018), Vancouver, Canada
(2018)

34. VirusShare. VirusShare: a repository of malware samples for security researchers
(2021). https://virusshare.com. Accessed 12 Mar 2021

35. Hex-Rays. IDA Pro: A powerful disassembler and a versatile debugger (2021).
https://www.hex-rays.com/products/ida/. Accessed 29 Mar 2021

https://virusshare.com
https://www.hex-rays.com/products/ida/

Learning Explainable Representations
of Malware Behavior

Paul Prasse1(B), Jan Brabec2, Jan Kohout2, Martin Kopp2, Lukas Bajer2,
and Tobias Scheffer1

1 Department of Computer Science, University of Potsdam, Potsdam, Germany
{prasse,scheffer}@uni-potsdam.de

2 Cisco Systems, Cognitive Intelligence, Prague, Czech Republic
{janbrabe,jkohout,markopp,lubajer}@cisco.com

Abstract. We address the problems of identifying malware in network
telemetry logs and providing indicators of compromise—comprehensible
explanations of behavioral patterns that identify the threat. In our sys-
tem, an array of specialized detectors abstracts network-flow data into
comprehensible network events in a first step. We develop a neural net-
work that processes this sequence of events and identifies specific threats,
malware families and broad categories of malware. We then use the
integrated-gradients method to highlight events that jointly constitute
the characteristic behavioral pattern of the threat. We compare network
architectures based on CNNs, LSTMs, and transformers, and explore
the efficacy of unsupervised pre-training experimentally on large-scale
telemetry data. We demonstrate how this system detects njRAT and
other malware based on behavioral patterns.

Keywords: Neural networks · Malware detection · Sequence models ·
Unsupervised pre-training

1 Introduction

Toady’s malware can exhibit different kinds of malicious behaviour. Malware col-
lects personal and financial data, can encrypt users’ files for ransom, is used to
commit click-fraud, or promotes financial scams by intrusive advertising. Client-
based antivirus tools employ signature-based analysis, static analysis of portable-
executable files, emulation, and dynamic, behavior-based analysis to detect mal-
ware [34]. Systems that analyze network telemetry data complement antivirus
software and are widely used in corporate networks. They allow organizations to
enforce acceptable-use and security policies throughout the network and mini-
mize management overhead. Telemetry analysis makes it possible to encapsulate
malware detection into network devices or cloud services [6,17].

Research on applying machine learning to malware detection is abundant.
However, the principal obstacle that impedes the deployment of machine-
learning solutions in practice is that computer-security analysts need to be able
c© Springer Nature Switzerland AG 2021
Y. Dong et al. (Eds.): ECML PKDD 2021, LNAI 12978, pp. 53–68, 2021.
https://doi.org/10.1007/978-3-030-86514-6_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86514-6_4&domain=pdf
https://doi.org/10.1007/978-3-030-86514-6_4

54 P. Prasse et al.

to validate and confirm—or overturn—decisions to block software as malware.
However, machine-learning models usually work as black boxes and do not pro-
vide a decision rationale that analysts can understand and verify. In computer
security, indicators of compromise refer to specific, observable evidence that indi-
cates, with high confidence, malicious behavior. Security analysts consider indi-
cators of compromise to be grounds for the classification of software as malware.
For instance, indicators of compromise that identify software as variants of the
WannaCry malware family include the presence of the WannaCry ransom note
in the executable file and communication patterns to specific URLs that are used
exclusively by a kill-switch mechanism of the virus [3].

In recent years, machine-learning models have been developed that empha-
size explainability of the decisions and underlying representations. For instance,
Shapley values [22], and the DeepLift [32] and integrated gradients methods [33]
quantify the contribution of input attributes to the model decision. However,
in order to be part of a comprehensible explanation of why software is in fact
malicious, the importance weights would have to refer to events that analysts
can relate to specific behavior of malicious software.

In this paper, we first discuss a framework of classifiers that detect a wide
range of intuitively meaningful network events. We then develop neural networks
that detect malware based on behavioral patterns composed of these behaviors.
We compare network architectures based on CNNs, LSTMs, and transformers.
In order to address the relative scarcity of labeled data, we investigate whether
initializing the models by unsupervised pre-training improves their performance.
We review how the model detects the njRAT and other malware families based
on behavioral indicators of compromise.

2 Related Work

Prior work on the analysis of HTTP logs [25] has addressed the problems of
identifying command-and-control servers [24], unsupervised detection of mal-
ware [7,19], and supervised detection of malware using domain blacklists as
labels [6,8,13]. HTTP log files contain the full URL string, from which a wide
array of informative features can be extracted [6].

A body of recent work has aimed at detecting Android malware by network-
traffic analysis. Arora et al. [5] use the average packet size, average flow duration,
and a small set of other features to identify 48 malicious Android apps. Lashkari
et al. [20] collect 1,500 benign and 400 malicious Android apps, extract flow
duration and volume feature, and apply several machine-learning algorithms
from the Weka library. They observe high accuracy values on the level of indi-
vidual flows. Demontie et al. [10] model different types of attacks against such
detection mechanisms and devise a feature-learning paradigm that mitigates
these attacks. Malik and Kaushal [23] aggregate the VirusTotal ranking of an
app with a crowd-sourced domain-reputation service (Web of Trust) and the
app’s resource permission to arrive at a ranking.

Prior work on HTTPS logs has aimed at identifying the application layer
protocol [9,12,37]. In order to cluster web servers that host similar applica-
tions, Kohout et al. [18] developed features that are derived from a histogram

Learning Explainable Representations of Malware Behavior 55

of observable time intervals and data volumes of connections. Using this feature
representation, Lokoč et al. [21] introduced an approximate k-NN classifier that
identifies servers which are contacted by malware.

Graph-based classification methods [4] have been explored, but they can
only be applied by an agent that is able to perceive a significant portion of the
global network graph—which raises substantial logistic and privacy challenges.
By contrast, this paper studies an approach that relies only on the agent’s ability
to observe the traffic of a single organization.

Prior work on neural networks for network-flow analysis [26] has worked with
labels for client computers (infected and not infected)—which leads to a multi-
instance learning problem. CNNs have also been applied to analyzing URLs
which are observable as long as clients use the HTTP instead of the encrypted
HTTPS protocol [30]. Malware detection from HTTPS traffic has been stud-
ied using a combination of word2vec embeddings of domain names and long
short term memory networks (LSTMs) [27] as well as convolutional neural net-
works [28]. Since the network-flow data only logs communication events between
clients and hosts, these models act as black boxes that do not provide security
analysts any verifiable decision rationale. Since we collected data containing only
specific network events without the information of the used domain names, we
are not able to apply these models to our data.

Recent findings suggest that the greater robustness of convolutional neu-
ral networks (CNNs) may outweight the ability of LSTMs to account for long-
term dependencies [14]. This motivates us to explore convolutional architectures.
Transformer networks [36] are encoder-decoder architectures using multi-head
self-attention layers and positional encodings widely used for NLP tasks. GPT-
2 [29] and BERT [11] show that transformers pre-trained on a large corpus learn
representations that can be fine-tuned for classification problems.

3 Problem Setting and Operating Environment

This section first describes the operating environment and the first stage of the
Cisco Cognitive Intelligence system that abstracts network traffic into network
events. Section 3.2 proceeds to define the threat taxonomy and to lay out the
problem setting. Section 3.3 describes the data set that we collect for the exper-
iments described in this paper.

3.1 Network Events

The Cisco Cognitive Intelligence (CI) [35] intrusion detection system monitors
the network traffic of the customer organization for which it is deployed. Initially,
the traffic is captured in the form of web proxy logs that enumerate which
users connect to which servers on the internet, and include timestamps and the
data volume sent and received. The CI engine then abstracts log entries into a
set of network events—high-level behavioral indicators that can be interpreted
by security analysts. Individual network events are not generally suspicious by

56 P. Prasse et al.

themselves, but specific patterns of network events can constitute indicators of
compromise that identify threats. In total, CI distinguishes hundreds of events;
their detection mechanisms fall into four main categories.

– Signature-based events are detected by matching behavioral signatures that
have been created manually by a domain expert. This includes detection based
on known URL patterns or known host names.

– Classifier-based events are detected by special-purpose classifiers that have
been trained on historical proxy logs. These classifiers included models that
identify specific popular applications.

– Anomaly-based events are detected by a multitude of statistical, volumetric,
proximity-based, targeted, and domain-specific anomaly detectors. Events in
this category include, for example, contacting a server which is unlikely for
the given user, or communication patterns that are too regular to be caused
by a human user using a web browser.

– Contextual events capture various network behaviors to provide additional
context; for instance, file downloads, direct access of a raw IP address without
specified host name, or software updates.

For purposes of the work, each interval of five minutes in which at least one
network flow is detected, the set of network events is timestamped and logged.
Events are indexed by the users who sent or received the traffic. No data are
logged for intervals in which no event occurs. The resulting data structure for
each organization is a sparse sequence of sets of network events for each user
within the organization.

3.2 Identification of Threats

We use a malware taxonomy with three levels: threat ID, malware family, and
malware category. The threat ID identifies a particular version of a malware
product, or versions that are so similar that a security analyst cannot distin-
guish them. For instance, a threat ID can correspond to a particular version of
the njRAT malware [1], all instances of which use the same user-agent and URL
pattern for communication. The malware family entails all versions of a malware
product—for instance, WannaCry is a malware family of which multiple versions
are known to differ in their communication behavior. Finally, the malware cat-
egory broadly characterizes the monetization scheme or harmful behavior of a
wide range of malware products. For instance, advertisement injector, informa-
tion stealer, and cryptocurrency miner are malware categories.

Labeled training and evaluation data consist of sets of network events of five-
minute intervals associated with a particular user in which threats have been
identified by security analysts. In order to determine threat IDs, malware fam-
ilies, and categories, security analysts inspect network events and any available
external sources of information about contacted servers. In some cases, hash keys
of the executable files are also available and can be matched against databases
of known malware to determine the ground truth. Due to this involvement of
qualified experts, labeled data are valuable and relatively scarce.

Learning Explainable Representations of Malware Behavior 57

Table 1. Data set statistics for malware category evaluation.

Malware category Training instances Test instances

Potentially unwanted application 14,675 10,026

Ad injector 14,434 17,174

Malicious advertising 3,287 1,354

Malicious content distribution 2,232 9,088

Cryptocurrency miner 1,114 1,857

Scareware 198 398

Information stealer 128 131

The problem setting for the malware-detection model is to detect for each
organization, user, and each five-minute interval in which at least one network
event has occurred, which threat ID, malware family, and malware category the
user has been exposed to. That is, each instance is a combination of an organi-
zation, a user and a five-minute time interval. Threats are presented to security
analysts on the most specific level on which they can be detected. Specific threat
IDs provide the most concrete actionable information for analysts. However, for
unknown or unidentifiable threats, the malware family or category provides a
lead which an analyst can follow up on. In addition to the threat, indicators of
compromise in the form of the relevant network events that identify the threat
have to be presented to the analysts for review.

The analysis of this paper focuses on distinguishing between different threat
IDs, malware families, and categories, and offering comprehensive indicators of
compromise. The equally important problem of distinguishing between malware
and benign activities has, for instance, been studied by Prasse et al. [28]. The
majority of benign network traffic is not included in our data because only time
intervals in which network events occur are logged.

We will measure precision-recall curves, the multi-class accuracy, and the
macro-averaged AUC to evaluate the models under investigation. The average
AUC is calculated as the mean of the AUC values of the individual classes.
Precision—the fraction of alarms that are not false alarms—directly measures
the amount of unnecessary workload imposed on security analysts, while recall
quantifies the detection rate. We also compare the models in terms of ROC cuves
because these curves are invariant to class ratios.

3.3 Data Collection and Quantitative Analysis

We collected the entire network traffic of 348 companies for one day in June
2020 as training data, and for one day in July 2020 as evaluation data. The
training data contain the network traffic of 1,506,105 users while the evaluation
data contain the traffic of 1,402,554 unique users. In total, the data set consists
of 9,776,911 training instances and 9,970,560 test instances, where each instance
is a combination of an organization, a user, and a five-minute interval in which

58 P. Prasse et al.

Table 2. Data set statistics for malware family evaluation.

Malware family Training Test Malware category

ArcadeYum 12,051 6,231 Potentially unwanted application

Malicious Android firmware 38 30 Information stealer

njRAT 15 37 Information stealer

WannaCry 4 7 Ransomware

Table 3. Data set statistics for threat ID evaluation.

Threat ID Training instances Test instances Malware category

Threat ID 1 8,900 9,710 Ad injector

Threat ID 2 900 924 Potentially unwanted application

Threat ID 3 11,894 6,075 Potentially unwanted application

Threat ID 4 641 783 Potentially unwanted application

Threat ID 5 606 425 Ad injector

Threat ID 6 392 567 Malicious advertising

Threat ID 7 2,099 9,027 Malicious content distribution

Threat ID 8 119 54 Typosquatting

Threat ID 9 282 193 Phishing

at least one network event was observed. In total, 216 distinct network events
occur at least once in training and evaluation data—most of these events occur
frequently. On average, 2.69 network events are observed in each five-minute
interval in the training data and 2.73 events in the test data.

Table 1 shows the seven malware categories that occur in the data at least 100
times. Potentially unwanted applications (PUAs) are the most frequent class of
malware; these free applications are mostly installed voluntarily for some adver-
tised functionality, but then cannot be uninstalled without expert knowledge
and expose the user to intrusive advertisements or steal user data. Table 2 shows
all malware families that analysts have identified in our data. Most malware
families fall into the category of PUA, but analysts have been able to identify
a number of high-risk viruses. Comparing Tables 1 and 2 shows that for many
threats, analysts are able to determine the malware category, but not the specific
malware family.

Finally, Table 3 shows those threat IDs for which at least 100 instances occur
in our data. In many cases, analysts identify a specific threat which is assigned
a threat ID based on the malware’s behavior, without being able to ultimately
determine which malware family it has been derived from.

4 Models

This section develops the neural network architectures that we will explore in the
experimental part of this paper. All networks process the sequence of network

Learning Explainable Representations of Malware Behavior 59

Fig. 1. Model architecture.

events provided by the detector array. In one version of the networks, we employ
unsupervised pre-training of the models—see Fig. 1. We will compare the pre-
trained models to reference versions without pre-training.

4.1 Architectures

Here we develop three different model architectures: an LSTM model using sever-
eral bidirectional LSTM layers [16], a CNN model using stacked one-dimensional
CNN layers [14], and a transformer model that uses multiple multi-head atten-
tion blocks [36]. We also implement a random forest baseline.

The input to the different model architectures consists of a window of w
five-minute intervals, each of which is represented by a set of network events,
a timestamp, and the numbers of bytes sent and received. The width w of the
window is a tunable hyperparameter. The set of network events for each time
step are processed by an embedding layer followed by an averaging layer that
computes the mean embedding for all the network events for the current five-
minute interval (see Fig. 2a). The mean embedding is than concatenated with
the log transformed time differences between subsequent elements in the window
and the log-transformed number of bytes sent and received.

The LSTM model consists of multiple layers of bidirectional LSTM units,
followed by a number of dense layers with a dropout rate of 0.1. The number of
layers of each type and the number of units per layer for each of the models are
hyperparameters that we will tune in Sect. 5; see Table 4. The output layer con-
sists of a softmax layer with the number of units equal to the number of different
classes (see Fig. 2b). The CNN model starts off with a concatenation layer that
combines the elements in the input window. The next layers are multiple pairs
of a one-dimensional convolutional layer followed by a max-pooling layer. The
last CNN layer is connected to an average-pooling layer and a number of dense
layers on top of it. The last layer is a softmax layer with one unit per output
classes (see Fig. 2c).

60 P. Prasse et al.

network event 1 network event n

Embedding
[embedding size ⋅ n]

Average
[embedding size]

[embedding size + 3]

…

me
differences

bytes
received

bytes
sent

(a) Model input for a single five-
minute interval.

…
LSTMLSTMLSTM LSTMLSTMLSTM

LSTMLSTMLSTM LSTMLSTMLSTM

Dense Layers

… … … … … …

M
ul

pl
e

LS
TM

 La
ye

r

(b) LSTM model architecture.

…

Dense Layers

M
ul

pl
e

Co
nv

 L
ay

er

Concatenate

1D Conv Layer + Max Pooling

…

1D Conv Layer + Max Pooling

Average Pooling

(c) CNN model architecture.

…

Dense Layers

M
ul

pl
e

A
en

on
 La

ye
r

Posi onal Encoding

Mul Head A en on Block
…

Mul Head A en on Block

(d) Transformer model architecture.

Fig. 2. Model input and models.

The transformer model consists of an absolute positional encoding layer
that outputs the sum of the positional encoding and the concatenated input
sequence [31]. The output of the positional encoding layer is fed into multiple
attention layers [36]. The output of the last multi-head attention layer is fed into
a sequence of dense layers. The last layer consists of a softmax layer with one
unit per output class (see Fig. 2d).

The random forest (RF), which serves as natural baseline, consumes the one-
hot encodings of all network events within the window and the concatenated list
of all log transformed bytes sent, log-transformed bytes received, and the time
differences between susequent elements within the window.

Learning Explainable Representations of Malware Behavior 61

Table 4. Best hyperparameters found using grid search.

Hyperparameter Parameter range Best value

LSTM embedding size {26, . . . , 28} 128

LSTM layers {1, · · · , 4} 1

LSTM units {23, . . . , 211} 1024

Dense layers {1, . . . , 3} 2

Dense units {26, . . . , 210} 256

CNN embedding size {26, . . . , 28} 128

CNN layers {1, · · · , 4} 3

kernel size {21, . . . , 23} 4

filters {22, . . . , 27} 32

Dense layers {1, . . . , 3} 2

Dense units {26, . . . , 210} 256

Transformer embedding size {26, . . . , 28} 128

attention blocks {1, · · · , 4} 2

attention heads {22, . . . , 27} 8

Dense attention units {22, . . . , 27} 512

Dense layers {1, . . . , 3} 2

Dense units {26, . . . , 210} 512

RF # trees {10, 100, 1000} 100

max depth {2, 10, 100, None} 10

4.2 Unsupervised Pre-training

Since labeling training data requires highly-trained analysts to identify and ana-
lyze threats, labeled data are relatively scarce. While the number of labels is in
the tens of thousands in our study, the number of unlabeled instances collected
over two days is around 20 millions. Unsupervised pre-training offers the poten-
tial for the network to learn a low-level representation that structures the data
in such a way that the subsequent supervised learning problem becomes easier
to solve with limited labeled data.

To pre-train the models, we use all 9,776,911 training instances. The training
objective is to predict the set of network events present at time step tw+1 given
the sets of events of previous time steps t1, . . . tw (see Fig. 1). This is a multi-
label classification problem, since we want to predict all present network events
at time step tw+1. This model serves as a “language model” [11,29] for network
events that learns an internal representation which is able to predict the next
network events given their context. For the pre-training step, we add a fully
connected dense layer with sigmoid activation function to the models. We train
these models using the binary cross entropy loss function. We will compare the
pre-trained models to their counterparts that have been trained from scratch
with Glorot initialization [15].

5 Experiments

This section reports on malware-detection performance of the models under
investigation, and on the interpretability of the indicators of compromise. We

62 P. Prasse et al.

split the data into a training part that we acquired in June 2020 and an evalu-
ation part acquired in July 2020.

5.1 Hyperparameter Optimization

We optimize the width of the window of five-minute time intervals w used to
train the models by evaluating values from 3 to 41 with a nested training-test
split on the training part of the data using the threat-ID classification task. In
the following experiments, we fix the number of used five-minute intervals w to
21 (see Fig. 2). That is, each training and test instance is a sequence of 21 five-
minute intervals; training and test sequences are split into overlapping sequences
of that length. We tune the number of layers of each type, and the number of
units per layer for all models using a 5-fold cross-validation on the training part
of the data using the threat-ID classification task. The grid of parameters and the
best hyperparameters can be found in Table 4. The optimal parameters for the
random forest baseline are found using a 5-fold cross-validation on the training
data of the given task.

We train all models on a single server with 40-core Intel(R) Xeon(R) CPU
E5-2640 processor and 512 GB of memory. We train all neural networks using
the Keras and Tensorflow libraries on a GeForce GTX TITAN X GPU using
the NVidia CUDA platform. We implement the evaluation framework using the
scikit-learn machine learning package. The code can be found online1.

5.2 Malware-Classification Performance

In the following we compare the classification performance of the different models
for the tasks of detecting threat IDs, malware categories, and malware families.
We compare neural networks that are trained from scratch using Glorot initial-
ization and models initialized with pre-trained weights as described in Sect. 4.2.
We also investigate how the number of training data points per class effects the
performance. To do so, we measure the accuracy acc@n and average AUC@n
after the models have been trained on n instances per class. Since obtaining
malware labels is time consuming and costly, this gives us an estimation of how
the models behave in a few-shot learning scenario.

Table 5 shows the overall results for all described models and all the different
levels of the threat taxonomy on the evaluation data. We see that the transformer
outperforms CNN and LSTM most of the time, and that the pre-trained models
almost always significantly outperform their counterparts that have been trained
from scratch, based on a two-sided, paired t test with p < 0.05. Only the LSTM
models are in some cases not able to benefit from pre-training. We also see
that the neural network architectures outperform the random forest baseline in
all settings, so we conclude that using the sequential information and sequential
patterns can be exploited to classify different malware types. Using more training
instances nearly always boosts the overall performance. Only for the detection

1 https://github.com/prassepaul/Learning-Explainable-Representations-of-Malware-
Behavior.

https://github.com/prassepaul/Learning-Explainable-Representations-of-Malware-Behavior
https://github.com/prassepaul/Learning-Explainable-Representations-of-Malware-Behavior

Learning Explainable Representations of Malware Behavior 63

of different malware families the performance in terms of the average AUC is
lower when training with the full data set. We think this is caused by highly
imbalanced class distribution pushing the models to favor for specific classes.

From Table 5, we conclude that in almost all cases the transformer model with
unsupervised pre-training is the overall best model. Because of that, the following
detailed analysis is performed using only the transformer model architecture.

Additional experiments in which we determine the ROC and precision-recall
curves that the transformer with pre-training achieves for individual threats,
malware families, and malware categories can be found in an online appendix2.
From these experiments, we can furthermore conclude that threat IDs that have
a one-to-one relationship with a malware family are the easiest ones to identify,
and that broad categories such as PUA that include a wide range of different
threats are the most difficult to pin down.

Table 5. Accuracy and AUC for the detection of threat IDs, malware families, and
categories, after training on some or all training data, with and without pre-training.
Acc@n and AUC@n refer to the accuracy and AUC, respectively, after training on
up to n instances per class. For results marked “*”, the accuracy of pre-trained models
is significantly better (p < 0.05) compared to the same model trained from scratch.
Results marked “†” are significantly better (p < 0.05) than the next-best model.

CNN LSTM Transformer Random

Forest

Scratch Pre-tr. Scratch Pre-tr. Scratch Pre-tr. Scratch

Threat ID acc@10 0.394 0.437* 0.314 0.375* 0.352 0.559*† 0.413

acc@50 0.618 0.648* 0.567 0.478 0.612 0.731*† 0.57

acc@100 0.666 0.689* 0.624 0.54 0.685 0.759*† 0.614

acc 0.785 0.799 0.806 0.843*† 0.769 0.776 0.809

AUC@10 0.794 0.773 0.75 0.698 0.748 0.848* 0.832

AUC@50 0.889 0.893 0.874 0.807 0.893 0.941*† 0.902

AUC@100 0.906 0.914* 0.897 0.829 0.902 0.948*† 0.912

AUC 0.937 0.952* 0.935 0.942 0.915 0.95* 0.925

Malware category acc@10 0.23 0.396* 0.196 0.312* 0.228 0.456*† 0.338

acc@50 0.524 0.598* 0.515 0.485 0.575 0.652*† 0.54

acc@100 0.618 0.669* 0.597 0.539 0.652 0.703*† 0.606

acc 0.77 0.785* 0.769 0.772 0.771 0.802*† 0.73

AUC@10 0.752 0.813* 0.73 0.728 0.747 0.821* 0.819

AUC@50 0.86 0.901* 0.861 0.808 0.879 0.924*† 0.889

AUC@100 0.881 0.91* 0.877 0.831 0.914 0.938*† 0.907

AUC 0.917 0.937* 0.908 0.902 0.912 0.96*† 0.916

Malware family acc@10 0.439 0.91* 0.01 0.894* 0.322 0.893* 0.846

acc@50 0.839 0.939* 0.592 0.923* 0.808 0.946* 0.923

acc@100 0.87 0.959 0.875 0.952 0.866 0.977*† 0.962

acc 0.929 0.993* 0.889 0.995*† 0.954 0.992 0.994

AUC@10 0.886 0.985* 0.785 0.964* 0.855 0.983* 0.106

AUC@50 0.96 0.992* 0.832 0.982* 0.967 0.993* 0.199

AUC@100 0.96 0.993* 0.922 0.983 0.969 0.995* 0.199

AUC 0.921 0.983* 0.923 0.983* 0.486 0.947* 0.322

2 https://www.uni-potsdam.de/fileadmin/projects/cs-ml/media/prasse ecml2021 ap
pendix.pdf.

https://www.uni-potsdam.de/fileadmin/projects/cs-ml/media/prasse_ecml2021_appendix.pdf
https://www.uni-potsdam.de/fileadmin/projects/cs-ml/media/prasse_ecml2021_appendix.pdf

64 P. Prasse et al.

5.3 Indicators of Compromise

This section explores the interpretablility of the indicators of compromise
inferred from the transformer model. We use the integrated gradients method to
highlight the most important features for a given input sequence [33]. Integrated
gradients can compute the contribution of each network event when classifying
a given input sequence. We calculate the impact of all input features using

IGi(x) = (xi − x′
i) ×

∫ 1

α=0

∂F (x′ + α × (x − x′))
∂xi

dα, (1)

where i denotes the i-th feature, x the input to the model, x′ the baseline, and α
the interpolation constant for the perturbation of the features. The term (xi−x′

i)
denotes the difference between original input and “baseline”. Similar to the all-
zeros baseline that is used for input images, we set the baseline to the instance
with all zero-embeddings and original numerical features. The baseline input is
needed to scale the integrated gradients. In practice we approximate this integral
by the numerical approximation

IGapprox
i (x) = (xi − x′

i) ×
m∑

k=1

∂F (x′ + k
m × (x − x′))
∂xi

× 1
m

, (2)

where k is the number of approximation steps.

me

so
w

ar
e

up
da

te
, a

no
m

al
ou

sd
es

na
on

so
w

ar
e

up
da

te

an
om

al
ou

sd
es

na
on

, h
p

to
ip

ad
dr

es
s,

 c
on

ne
ct

tu

nn
el

in
g,

 s
er

ve
ri

p
m

ism
at

ch
, h

ps
 c

om
m

un
ic

a
on

an
om

al
ou

sd
es

na
on

, h
p

to
ip

ad
dr

es
s,

 c
on

ne
ct

tu

nn
el

in
g ,

 h
ps

 c
om

m
un

ic
a

on

an
om

al
ou

sd
es

na
on

, h
ps

 c
om

m
un

ic
a

on

un
ex

pe
ct

ed
ap

pl
ic

a
on

, i
nf

or
m

a
on

st
ea

le
r,…

, n
on

-u
se

r
ac

vi
ty

, s
us

pi
ci

ou
sd

om
ai

n
fr

om
dy

na
m

ic
dn

s

no
n-

us
er

 a
c

vi
ty

un
ex

pe
ct

ed
ap

pl
ic

a
on

,
in

fo
rm

a
on

st
ea

le
r,

…
, n

on
-u

se
r

ac
vi

ty
, s

us
pi

ci
ou

sd
om

ai
n

fr
om

dy
na

m
ic

dn
s

an
om

al
ou

sd
es

na
on

, h
ps

 c
om

m
un

ic
a

on

un
ex

pe
ct

ed
ap

pl
ic

a
on

, i
nf

or
m

a
on

st
ea

le
r,

…
, n

on
-u

se
r

ac
vi

ty
, s

us
pi

ci
ou

sd
om

ai
n

fr
om

dy
na

m
ic

dn
s

no
n-

us
er

 a
c

vi
ty

, d
ow

nl
oa

di
ng

gr
ap

hi
ca

li
m

ag
e

an
om

al
ou

sd
es

na
on

, h
ps

 c
om

m
un

ic
a

on

h
ps

 c
om

m
un

ic
a

on
, u

ne
xp

ec
te

d
us

er
de

s
na

on

an
om

al
ou

sd
es

na
on

no
n -

us
er

 a
c

vi
ty

, r
eq

ue
st

to
no

n-
ex

ist
en

t d
om

ai
n

an
om

al
ou

sd
es

na
on

, h
ps

 c
om

m
un

ic
a

on

h
p

to
ip

ad
dr

es
s,

 n
on

-u
se

r a
c

vi
ty

h
ps

 c
om

m
un

ic
a

on

h
ps

 c
om

m
un

ic
a

on

an
om

al
ou

sd
es

na
on

h
p

to
ip

ad
dr

es
s,

 n
on

-u
se

r a
c

vi
ty

Fig. 3. Feature importance for detection of njRAT using integrated gradients for a
single instance. The intensity of the red hue indicates the importance of network events.

Single-Instance Evaluation. Using the Integrated Gradients from Eq. 2, we
determine which input time steps contributed to which extend to the overall clas-
sification. Figure 3 shows an example output for an instance classified as njRAT.
The njRAT malware family, also called Bladabindi, is a widespread remote access

Learning Explainable Representations of Malware Behavior 65

trojan (RAT). It allows attackers to steal passwords, log keystrokes, activate
webcam and microphone, give access to the command line, and allows attackers
to remotely execute and manipulate files and system registry.

It uses the HTTP user-agent field (this is reflected in the event unexpected
application in Fig. 3) to exfiltrate sensitive information (event information stealer
in Fig. 3) from the infected machine. The communication with C&C server
uses dynamic DNS with string patterns such as maroco.dyndns.org/is-rinoy or
man2010.no-ip.org/is-ready and specifically crafted host names. This usage of
dynamic DNS is reflected in event suspicious domain from dynamic DNS in
Fig. 3, the specific host names as event anomalous destination. These character-
istic features of njRAT are also the most important features for the transformer.
We conclude that this explanation matches known behavior of njRAT.

(a) ArcadeYum (b) Malicious Android firmware

(c) WannaCry (d) njRAT

Fig. 4. Feature importances of the top 10 features for detection of different malware
families. The width of the bar is computed by using the integrated gradients method
for each positively classified instance and averaging the obtained values for all network
events. Error bars denote the standard deviation.

Feature Importance. We add the feature importance values for all the
instances classified as a particular malware family. Figure 4 shows the feature
importance for different families. For njRAT, we see that the top four fea-
tures captured in Fig. 4d match the behavior of njRAT described above. The
ArcadeYum family is a typical example of the PUA/adware category. When
installed, it starts to download large amounts of advertisement and present it as
additional banners rendered on top of legitimate websites or as pop-up windows.
The advertisement images are downloaded on the background without users
knowledge and often from hosts that may be a source of additional infections.
This behaviour is again captures by the most important features in Fig. 4a.

66 P. Prasse et al.

Most of the WannaCry samples that we were able to detect are older versions
that use DGA domains as a kill switch—see [3] for details. The behavioral indica-
tors dga, non-user activity, anomalous destination, inconsistent user time activ-
ity in Fig. 4c are related to the regular attempt to contact these DGA domains.
Some of the identified samples are actually WannaMine [2], a crypto-mining
modification of the original WannaCry malware. Their activity is captured by
the cryptomining event as well as the http to IP address, which is the mechanism
through which WannaMine downloads additional modules. Malicious Android
firmware, Fig. 4b, is known for gathering and exfiltrating sensitive user informa-
tion and using dynamic DNS to avoid blacklists. Both behaviors are represented
as the top two features. The further actions depend on the type and version
of the infected device. Usually, an advertisement auction service is contacted
and advertisement images or videos are being displayed (multimedia streaming,
repetitive requests, non-user activity, dga).

6 Conclusion

We have studied the problem of identifying threats based on sequences of sets
of human-comprehensible network events that are the output of a wide array of
specialized detectors. We can conclude that the transformer architecture outper-
forms both the CNN and LSTM models at identifying threat IDs, malware fam-
ilies, and malware categories. Furthermore, unsupervised pre-training improves
the transformer’s performance over supervised learning from scratch. We use the
integrated gradients method to determine the sequence of the most important
network events that constitute indicators of compromise which can be verified
by security analysts. Our detailed analysis of the njRAT malware shows that
the sequence of highly important events corresponds to the known behavior of
the virus. We can conclude that for the four most frequent malware families, the
network events that reach the highest aggregated feature importance across all
occurrences match known indicators of compromise.

References

1. MSIL/Bladabindi. https://www.microsoft.com/en-us/wdsi/threats/malware-ency
clopedia-description?name=MSIL/Bladabindi. Accessed 31 Mar 2021

2. Wannamine cryptominer that uses eternalblue still active. https://www.
cybereason.com/blog/wannamine-cryptominer-eternalblue-wannacry. Accessed 31
Mar 2021

3. Indicators associated with wannacry ransomware (2017). https://us-cert.cisa.gov/
ncas/alerts/TA17-132A. Accessed 24 Mar 2021

4. Anderson, B., Quist, D., Neil, J., Storlie, C., Lane, T.: Graph-based malware detec-
tion using dynamic analysis. J. Comput. Virol. 7(4), 247–258 (2011)

5. Arora, A., Garg, S., Peddoju, S.K.: Malware detection using network traffic analysis
in android based mobile devices. In: International Conference on Next Generation
Mobile Apps, Services and Technologies, pp. 66–71 (2014)

https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?name=MSIL/Bladabindi
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?name=MSIL/Bladabindi
https://www.cybereason.com/blog/wannamine-cryptominer-eternalblue-wannacry
https://www.cybereason.com/blog/wannamine-cryptominer-eternalblue-wannacry
https://us-cert.cisa.gov/ncas/alerts/TA17-132A
https://us-cert.cisa.gov/ncas/alerts/TA17-132A

Learning Explainable Representations of Malware Behavior 67

6. Bartos, K., Sofka, M.: Robust representation for domain adaptation in network
security. In: Bifet, A., et al. (eds.) ECML PKDD 2015. LNCS (LNAI), vol. 9286,
pp. 116–132. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23461-8 8

7. Bartoš, K., Sofka, M., Franc, V.: Optimized invariant representation of network
traffic for detecting unseen malware variants. In: USENIX Security Symposium,
pp. 807–822 (2016)

8. Brabec, J., Machlica, L.: Decision-forest voting scheme for classification of rare
classes in network intrusion detection. In: 2018 IEEE International Conference on
Systems, Man, and Cybernetics (SMC), pp. 3325–3330 (2018)

9. Crotti, M., Dusi, M., Gringoli, F., Salgarelli, L.: Traffic classification through simple
statistical fingerprinting. ACM SIGCOMM Comput. Commun. Rev. 37(1), 5–16
(2007)

10. Demontis, A., et al.: Yes, machine learning can be more secure! a case study on
Android malware detection. IEEE Trans. Dependable Secure Comput. 1 (2018)

11. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of
deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805 (2018)

12. Dusi, M., Crotti, M., Gringoli, F., Salgarelli, L.: Tunnel hunter: detecting
application-layer tunnels with statistical fingerprinting. Comput. Netw. 53(1), 81–
97 (2009)

13. Franc, V., Sofka, M., Bartos, K.: Learning detector of malicious network traffic
from weak labels. In: Bifet, A., et al. (eds.) ECML PKDD 2015. LNCS (LNAI),
vol. 9286, pp. 85–99. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
23461-8 6

14. Gehring, J., Auli, M., Grangier, D., Yarats, D., Dauphin, Y.N.: Convolutional
sequence to sequence learning. In: International Conference on Machine Learning,
pp. 1243–1252. PMLR (2017)

15. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward
neural networks. In: Teh, Y.W., Titterington, M. (eds.) Proceedings of the Thir-
teenth International Conference on Artificial Intelligence and Statistics. Proceed-
ings of Machine Learning Research, vol. 9, pp. 249–256. Chia Laguna Resort, Sar-
dinia, Italy, 13–15 May 2010

16. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

17. Karim, M.E., Walenstein, A., Lakhotia, A., Parida, L.: Malware phylogeny gener-
ation using permutations of code. J. Comput. Virol. 1(1–2), 13–23 (2005)

18. Kohout, J., Pevný, T.: Automatic discovery of web servers hosting similar applica-
tions. In: Proceedings of the IFIP/IEEE International Symposium on Integrated
Network Management (2015)

19. Kohout, J., Pevný, T.: Unsupervised detection of malware in persistent web traffic.
In: Proceedings of the IEEE International Conference on Acoustics, Speech and
Signal Processing (2015)

20. Lashkari, A., Kadir, A., Gonzalez, H., Mbah, K., Ghorbani, A.: Towards a network-
based framework for Android malware detection and characterization. In: Proceed-
ings International Conference on Privacy, Security, and Trust (2015)

21. Lokoč, J., Kohout, J., Čech, P., Skopal, T., Pevný, T.: k-NN classification of mal-
ware in HTTPS traffic using the metric space approach. In: Chau, M., Wang, G.A.,
Chen, H. (eds.) PAISI 2016. LNCS, vol. 9650, pp. 131–145. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-31863-9 10

https://doi.org/10.1007/978-3-319-23461-8_8
http://arxiv.org/abs/1810.04805
https://doi.org/10.1007/978-3-319-23461-8_6
https://doi.org/10.1007/978-3-319-23461-8_6
https://doi.org/10.1007/978-3-319-31863-9_10

68 P. Prasse et al.

22. Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions.
In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan,
S., Garnett, R. (eds.) Advances in Neural Information Processing Systems 30, pp.
4765–4774 (2017)

23. Malik, J., Kaushal, R.: CREDROID: Android malware detection by network traffic
analysis. In: Proceedings of the First ACM Workshop on Privacy-Aware Mobile
Computing, pp. 28–36. ACM (2016)

24. Nelms, T., Perdisci, R., Ahamad, M.: ExecScent: mining for new C&C domains
in live networks with adaptive control protocol templates. In: Proceedings of the
USENIX Security Symposium (2013)

25. Nguyen, T., Armitage, G.: A survey of techniques for internet traffic classification
using machine learning. IEEE Commun. Surv. Tutor. 10(4), 56–76 (2008)

26. Pevný, T., Somol, P.: Discriminative models for multi-instance problems with tree
structure. In: Proceedings of the International Workshop on Artificial Intelligence
for Computer Security (2016)

27. Prasse, P., Machlica, L., Pevný, T., Havelka, J., Scheffer, T.: Malware detection by
analysing network traffic with neural networks. In: Proceedings of the European
Conference on Machine Learning (2017)

28. Prasse, P., Knaebel, R., Machlica, L., Pevný, T., Scheffer, T.: Joint detection of
malicious domains and infected clients. Mach. Learn. 108(8), 1353–1368 (2019)

29. Radford, A., et al.: Better language models and their implications. OpenAI Blog
(2019). https://openai.com/blog/better-language-models

30. Saxe, J., Berlin, K.: eXpose: a character-level convolutional neural network with
embeddings for detecting malicious URLs, file paths and registry keys. arXiv
preprint arXiv:1702.08568 (2017)

31. Shaw, P., Uszkoreit, J., Vaswani, A.: Self-attention with relative position represen-
tations. arXiv preprint arXiv:1803.02155 (2018)

32. Shrikumar, A., Greenside, P., Shcherbina, A., Kundaje, A.: Not just a black
box: learning important features through propagating activation differences. arXiv
preprint arXiv:1605.01713 (2016)

33. Sundararajan, M., Taly, A., Yan, Q.: Axiomatic attribution for deep networks. In:
International Conference on Machine Learning, pp. 3319–3328. PMLR (2017)

34. Swinnen, A., Mesbahi, A.: One packer to rule them all: empirical identification,
comparison and circumvention of current antivirus detection techniques. BlackHat
USA (2014)

35. Valeros, V., Somol, P., Rehak, M., Grill, M.: Cognitive threat analytics: turn
your proxy into security device. Cisco Security Blog (2016). https://blogs.cisco.
com/security/cognitive-threat-analytics-turn-your-proxy-into-security-device.
Accessed 24 Mar 2021

36. Vaswani, A., et al.: Attention is all you need. arXiv preprint arXiv:1706.03762
(2017)

37. Wright, C.V., Monrose, F., Masson, G.M.: On inferring application protocol behav-
iors in encrypted network traffic. J. Mach. Learn. Res. 7, 2745–2769 (2006)

https://openai.com/blog/better-language-models
http://arxiv.org/abs/1702.08568
http://arxiv.org/abs/1803.02155
http://arxiv.org/abs/1605.01713
https://blogs.cisco.com/security/cognitive-threat-analytics-turn-your-proxy-into-security-device
https://blogs.cisco.com/security/cognitive-threat-analytics-turn-your-proxy-into-security-device
http://arxiv.org/abs/1706.03762

Strategic Mitigation Against Wireless
Attacks on Autonomous Platoons

Guoxin Sun1(B), Tansu Alpcan1, Benjamin I. P. Rubinstein1,
and Seyit Camtepe2

1 University of Melbourne, Parkville, Australia
guoxins@student.unimelb.edu.au,

{tansu.alpcan,brubinstein}@unimelb.edu.au
2 CSIRO Data61, Eveleigh, Australia
seyit.camtepe@data61.csiro.au

Abstract. With the increased demand for connected and autonomous
vehicles, vehicle platoons will play a significant role in the near future,
enhancing traffic efficiency and safety. However, their reliance on wireless
communication channels makes such systems susceptible to a range of
cyber-attacks. An intelligent adversary could target the platoon through
message falsification between vehicles to carry out high-impact attacks.
This would create persistent degradation of platoon stability or even
cause catastrophic collisions. In this paper, we present a novel, end-to-
end attack detection and mitigation framework. We use a deep neural
network as an example anomaly detector tuned to reduce false alarm
rate. We then model the interactions between the imperfect detector,
the intelligent adversary and the defense system as a non-cooperative
security game with imperfect information. In this setting, the adversary
performs a test-time boiling frog attack against the detector. The Nash-
equilibrium solution considers the downstream effects of the test-time
attack, to guide the control system reconfiguration for the vehicles to
mitigate communication-based attacks. The simulations conducted in a
sophisticated simulator demonstrate the potential for real-world online
deployment in a distributed manner. Results show that our approach out-
performs baseline methods by up to 30% in terms of increase of defense
utilities, leading up to 176% increase in minimum inter-vehicle distances
for collision avoidance under attacks.

1 Introduction

Connected and autonomous vehicles have emerged as an extensive and promis-
ing research area over the past two decades [11]. As a closely related topic,
vehicular platooning earns its reputation by providing driver/passenger com-
fort, improved energy efficiency, pollution reduction as well as increase of traffic

We gratefully acknowledge support from the DSTG Next Generation Technology Fund
and CSIRO Data61 CRP ‘Adversarial Machine Learning for Cyber’, and a CSIRO
Data61 PhD scholarship.

c© Springer Nature Switzerland AG 2021
Y. Dong et al. (Eds.): ECML PKDD 2021, LNAI 12978, pp. 69–84, 2021.
https://doi.org/10.1007/978-3-030-86514-6_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86514-6_5&domain=pdf
https://doi.org/10.1007/978-3-030-86514-6_5

70 G. Sun et al.

throughput. The platooning concept involves a group of vehicles travelling in a
tightly coupled manner from an origin to a destination as a single unit. A pla-
toon member receives other vehicles’ dynamics and maneuver-related informa-
tion via a vehicle-to-vehicle (V2V) communication network to compute control
commands accordingly and maintain platoon stability, i.e., to maintain a narrow
inter-vehicle distance and relative velocity.

However, such V2V communication implementations also expose novel attack
vectors, which increase security vulnerabilities and highlight vehicle platoons as
an appealing target for cyber-physical attacks. Adversaries could inject multiple
falsified vehicle nodes into the platoon remotely. This allows them to publish
carefully crafted beacon messages to gain the privilege of the road or to cause
traffic congestion and even serious collisions [3]. There is a growing body of
literature that recognises the effectiveness of machine learning based anomaly
detection algorithms applied on vehicular platooning [1,6,18]. Even though such
studies aim to maximise their detection performance, inevitable false alarm and
miss rates still limit the possibility of real-world deployment where hundreds of
thousands of detections may be required per second. Yet, attack detection is
barely the first step. How to react upon a detection report is still an essential
and open research problem that remains to be answered. Furthermore, an intel-
ligent adversary could reconnoitre the platoon system and the deployed defense
measures for a period of time to launch stealthy attacks. Unlike traditional adver-
saries, they leverage knowledge of defense actions and detector characteristics to
adapt attack strategies, thereby evading detection.

Our work aims to answer the following questions to improve the security and
safety of vehicle platoons: (1) How to overcome the limitations of the state-
of-the-art anomaly detection algorithms especially those purposely tuned to
decrease the false positive rate? (2) How to use the detection report to miti-
gate a potential attack? (3) How to defend against intelligent adversaries who
leverage their prior knowledge about the defense system? (4) How to acquire
adequate data for detector training and to evaluate the performance of the pro-
posed approach applied on complex platoon systems?

In this paper, we propose an end-to-end attack detection and mitigation
framework to answer these questions. We firstly construct a vehicle platoon and
traffic flows on a highway segment in a sophisticated simulator Webots [16].
Two control policies are implemented for each platoon member: one sensor-
based controller using local measurements from embedded sensor modules and
one communication-based controller using messages transmitted via V2V com-
munication network. Secondly, we investigate a particular type of data corrup-
tion attack and with this solid simulation foundation, we collect data to train
a deep neural net (DNN) model as an anomaly detector. The detector tuning
process is in favour of low false positives to increase its real-world usability
and public acceptance. Thirdly, we model the interactions between the imper-
fect detector, the intelligent adversary and defense vehicle as a security game
with imperfect information and use the Nash-equilibrium solution to guide con-
trol system reconfiguration for the vehicle to mitigate the attack. Lastly, we
test our proposed system under different simulation scenarios to demonstrate

Strategic Mitigation Against Wireless Attacks on Autonomous Platoons 71

its effectiveness and potential for real-world online deployment in a distributed
manner. The contributions of this paper include:

(1) We propose a novel attack detection and mitigation framework that intelli-
gently switches between two platoon control policies to improve the security
level of vehicle platoons against intelligent communication-based attacks.

(2) We develop a unique approach that uses game theory to guide the controller
switching process.

(3) Our security game formulation captures imperfect detectors as a chance
node in our security game structure, and takes detection errors (e.g., false
alarms and misses) into account. We consider a boiling frog attack and its
downstream effects on the platoon – far beyond the typical myopic focus on
accuracy.

(4) The results are illustrated using sophisticated, system-level simulations,
where our approach outperforms baseline methods by 30% in terms of
increase of defense utilities, leading up to 176% increase in minimum inter-
vehicle distances under attacks.

The rest of the paper is organised as follows. The next subsection summa-
rizes related work. Section 2 describes the considered platoon control policies,
attack model as well as the anomaly detector. Section 3 presents the details of
our proposed defense framework. Simulation setup and training procedures are
presented in Sect. 4. Results and discussions are covered in Sect. 5. Lastly, Sect. 6
outlines some concluding remarks.

1.1 Related Work

Sumra et al. [15] provide a comprehensive survey of the attacks on major secu-
rity goals, i.e., confidentiality, integrity and availability. Malicious attackers can
breach privacy by attempting an eavesdropping attack to steal and misuse con-
fidential information [17]. The use of vehicular botnets to attempt a denial-of-
service (DoS) or distributed denial-of-service (DDoS) attack may cause serious
network congestion or disruption [19]. The attacker may disrupt the platoon
operation by hijacking the sensors to conduct the replay attack with the aim
to feed the control system with outdated signals generated previously by the
system [10]. Therefore, there is urgent need to address the safety risks caused
by such communication-based attacks.

Several attempts have been made to detect communication-based attacks.
In [6], authors compare the effectiveness of deep neural net and convolutional
neural net models in the identification of a malicious insider who tries to cause
collisions by altering the controller gains. Yang et al. [18] propose an ensemble
learning model that consists of 4 tree-based ML algorithms to improve detec-
tion accuracy against attacks on Controller Area Network (CAN) bus. Alotibi
et al. [1] combine a data driven anomaly detection algorithm based on general-
ized extreme studentized deviate (ESD) with the physical laws of kinematics to
perform real-time detection. Although these methods provide reasonably good
attack detection performance, how to respond to the imperfect detection reports
still remains an open research question.

72 G. Sun et al.

Game-theoretic analysis has become a popular tool in adversarial machine
learning and cybersecurity analysis [2]. Extensive research has examined problems
of allocating limited defense resources (e.g., energy [13], manpower [5], communi-
cation bandwidth [14]) against intelligent adversaries in a network. The present
work builds on these existing advancements in machine learning as well as game
theory and introduces a novel, end-to-end attack detection and mitigation frame-
work to improve platoon security in an online and distributed manner.

2 Message Falsification Attacks Against Platoons

2.1 Vehicular Platoon Control Policy

In the present work, we consider a vehicle platoon traveling on a straight highway
segment. We start by implementing a popular platoon control policy – coopera-
tive adaptive cruise control (CACC [12]) on each platoon member. In particular,
data packets containing location, speed and acceleration information of the lead
vehicle and the preceding vehicle are transmitted periodically to each vehicle via
V2V communication, based on which longitudinal control decisions are made to
maintain platoon stability. Adaptive cruise control (ACC) is a relatively mature
control policy widely deployed in many modern vehicles. It performs the lon-
gitudinal following control task using measurements from sensors like a Radar.
With the aid of V2V communication, CACC is expected to have a smaller dis-
tance headway and an increase in control bandwidth and reliability compared
to sensor-based ACC [8]. Besides, long time operation of ACC controller will
destroy so-called string stability of the vehicle platoon [12]. Therefore, we treat
CACC as the primary controller and ACC as the supplementary controller acti-
vated only when a communication attack is expected to happen.

2.2 Attack Model

As a starting point, we consider the attacker compromises the communication link
between two consecutive vehicles and performs messages falsification attacks [11].
By continuously monitoring the communication network, the adversary may
change the content of transmitted messages and inserts them back into the net-
work. The presence of this type of attack could cause instabilities to the vehicle
platoon or even collisions. For the rest of the paper, we consider the attacker mod-
ifies the velocity messages in a subtle way before broadcasting to the following
vehicle by adopting a boiling frog attack strategy. In such attacks, the attacker
progressively increases the falsified velocity magnitude aiming to evade detection.
The modified messages are very similar to the original ones at the beginning of the
attack. It might be already too late when the control centre or a detector notices
this attack leading to very short respond time or collision. The falsified velocity
vfalse(t), assuming attack starts at time t = 0, can be expressed as:

vfalse(t) = max

⎧
⎨

⎩
vorig(t) +

t′=t∑

t′=0

γ · Vmax, vorig(t) + Vmax

⎫
⎬

⎭
, (1)

Strategic Mitigation Against Wireless Attacks on Autonomous Platoons 73

where Vmax is the maximum velocity modification set by the attacker, vorig(t)
is the current original velocity, γ ∈ [0, 1) is the incremental gradient.

2.3 Attack Detection Algorithm

Our defense framework builds upon recent advances in anomaly detection [4].
We treat it as a classification problem and train the anomaly detection model
through supervised learning on class-imbalanced data sets. Although super-
vised learning is often more accurate than semi-supervised and unsupervised
approaches, the exact type of training approaches and anomaly detectors are
not key factors in our proposed defense framework. Any types of detectors could
easily fit in with only minor parameter changes of the framework.

We demonstrate the proposed defense framework with DNN based anomaly
detectors. Apart from the input layer, we choose to have three hidden layers
activated by Rectified Linear (Relu) function and one output layer activated by
sigmoid function to return the probability of a received message being malicious.
There are two dropout layers (having rate equal 0.3) after the second and third
hidden layers respectively to reduce overfitting. Optimizer, learning rate and
objective function are key hyperparameters used to adjust the weight update
process of neurons in hidden layers. The optimizer used in this analysis is Adam
with 0.01 as the learning rate. Binary crossentropy is chosen to be the objective
function and the whole training process is divided to 50 batches of size 2048
with 20% of the training data-set used for validation.

3 Security Game-Based Mitigation Framework

We model the interactions between the imperfect anomaly detector, the intelli-
gent adversary (i.e., the Attacker) and the defense system (i.e., the Defender)
as a non-cooperative cybersecurity game in extensive form. In formulating our
game-theoretic defense framework, we adopt the following commonly accepted
definitions from game theory [2]: (1) Chance node: A chance node can be seen
as a fictitious (virtual) player who performs actions according to a probability
distribution. (2) Information set : An information set is a collection of decision
nodes of one player. As the game reaches the information set, the player cannot
distinguish the nodes within the information set.

The game begins with the Attacker deciding whether to initiate the boil-
ing frog attack or not. Regardless of whether transmitted messages have been
maliciously modified, each vehicle performs anomaly detection upon receiving
the messages. Each detection report is associated with a certain probability of
error (i.e., false alarms and misses) and we use chance nodes to model the uncer-
tainty of detection results. Consequently, once the Defender obtains the detection
results, it is still unclear whether an attack has been actually carried out or not.
This unique situation is captured by two information sets for the Defender: one
indicating an attack and one for no attack. This essentially means the Defender
must consider the consequences of both an actual attack having occurred, and
no attack having occurred, when an attack has been reported by the detector.

74 G. Sun et al.

Eventually, after considering a rational Attacker’s actions and the chances
of detection errors, the Defender decides whether to downgrade the CACC con-
troller to the ACC controller or remain with the CACC controller based on Nash
equilibrium solution of the game.

Formally, we model the game with the following components: (a) Attacker’s
action space AA := {a: boiling frog attack; na: not attacking} (b) Chance
nodes C := {r: reporting an attack; nr: not reporting an attack} (c) Defender’s
action space AD := {acc: local sensor-based controller (ACC); cacc: collaborative
communication-based controller (CACC)}

The strategy profile is modeled as 〈a, c, d〉 for a ∈ AA, c ∈ C and d ∈ AD. In
this work, we focus on Nash equilibrium as the solution concept in which there is
no profitable deviation of rational player’s chosen strategy after considering their
opponent’s choice. This is based on a reasonable assumption of rationality that
each player acts for their best interests. Other solution concepts exist for players
with different levels of rationality. The pseudo-code for our defense framework
is presented in Algorithm 1.

Algorithm 1: End-to-end Anomaly Detection and Mitigation
initialization;
while Destination is not reached do

Platoon progresses on the road;
Vehicle receives message S;
Detection result R ← Anomaly Detection(S);
Utility value U ← Utility(S);
Nash Equilibrium, Decision ← Game Solver(R, U);
if Decision is acc then

Activate ACC;
else

Activate CACC;
end

end

Utilities of the Players. The utility functions UD(a, c, d) and UA(a, c, d) (of
strategy profiles) are essential to represent the preference over every outcome for
the Attacker and the Defender respectively. In our framework, each utility func-
tion consists of two components represented in matrix form to capture different
cases:

UD(a, c, d) = UD
1 (a, d) + U2(c, d), (2)

UA(a, c, d) = UA
1 (a, d) − U2(c, d), (3)

UD
1 (a, d) =

(a) (na)
[]

αd −αf (acc)

−αm 0 (cacc)
, UA

1 (a, d) =

(a) (na)
[]
−αd 0 (acc)

αm 0 (cacc)
, (4)

Strategic Mitigation Against Wireless Attacks on Autonomous Platoons 75

U2(c, d) =

(r) (nr)
[]
βt βs (acc)

βs βt (cacc)
, (5)

where α’s and β’s are integers and terms in parentheses are the actions avail-
able for different players. The first utility component U1 is with respect to the
Attacker and the Defender’s actions. The parameter αd quantifies the Defender’s
gain for correctly deploying ACC controller to mitigate the attack a, whose nega-
tion is assumed as the Attacker’s loss. The quantities −αf and −αm are the costs
of a false alarm and missing an attack for the Defender respectively. For instance,
the Defender may downgrade to ACC controller with higher chance when the
cost of a miss outweigh a false alarm. There is a cost of missing an attack for the
Defender, however, false alarms cost nothing to the Attacker, which is denoted
by zero entry in (4).

The second utility component U2(c, d) captures how trustworthy the deployed
detector is from the Defender’s prospective. For instance, if the Defender trusts
heavily in the detector then the gain βt is very large to represent the large
benefits of performing actions based on the detection results or similarly the gain
of discarding the detection results βs from this detector is very small or even
negative. When the inter-vehicle distance reduces abnormally but there is still
no attacks being reported, this indicates that the deployed detector becomes less
trustworthy, so that the gain of performing actions irrespective of the detection
reports increases. Note that utility values have a meaning only relative to each
other since any affine transformation of the utilities would result in the same
strategy profile. Therefore, we fix βt and set βs as an adaptive quantity utilizing
sensor readings to incorporate the system dynamics.

βs =
{�ks log2 (ku · εradar)�, if εradar > εmax,

−kc, otherwise, (6)

where k′s and εmax are positive constants. ks and ku adjust the growth speed
and x-axis intersection of the logarithm respectively. εradar is the inter-vehicle
spacing error with respect to a prefixed desired inter-vehicle distance calculated
based on Radar measurements. Under normal platoon operation where εradar is
small, the deployed detector is trustworthy from the Defender’s viewpoint. This
is represented by a large constant kc. When εradar > εmax, the gain of discarding
detection results increases gradually with logarithmic growth. In the simulation,
the desired inter-vehicle distance is set to be 2 m and εmax is 0.1 m.

3.1 Numerical Example

We present one instance of the game shown graphically as in Fig. 1 to further
explain our proposed game-theoretic framework. Both players’ actions and detec-
tion reports are represented as edges and the resulting states are represented as
nodes in the game tree. The utilities of each strategy profile are at the leaves
highlighted in red for the Attacker and blue for the Defender. The example

76 G. Sun et al.

anomaly detector 85% of the time correctly reports benign data when there is
no attack; it makes false alarms for the remaining 15% of the time. When an
attack has truly occurred, this detector correctly reports it 65% of the time and
misses for the remaining 35% of the time. We use a popular open-source game
solver Gambit [9] to find Nash equilibrium solutions. The probability distribu-
tion of each player’s actions is shown under the respective branches. A path from
left to right in the figure follows the order of players’ actions. For instance, the
Attacker will attack with 73.91% of the chance and if the Detector reports no
attack being detected, the Defender would still choose to downgrade to sensor
based ACC controller 11.24% of the chance to react to this high attack intention
and imperfect detection results. Code is available at https://garrisonsun.github.
io/End-to-end-atttack-detection-and-mitigation-framework/.

na
0.2609

nr
0.85

cacc
0.8876 -15 15

acc
0.1124 -10 1

r
0.15

cacc
0.0000 -10 10

acc
1.0000 -15 6

0.7391

nr
0.35

cacc
0.8876 -3 3

acc
0.1124 -15 15

r
0.65

cacc
0.0000 2 -2

acc
1.0000 -20 20

Defender

Defender

Defender

Defender

Detector

Detector
Attacker

a

Fig. 1. An example game structure: the attacker’s actions are in red, detection results
are in green, and defender’s controller switching decisions are in blue. (Color figure
online)

4 Simulation Setup

Platoon and Traffic Simulation. To simulate the vehicle platoon, we use
Webots [16], which is a multi-purpose simulator that provides a wide variety
of virtual vehicle models, sensor modules including camera, radar, etc. as well
as static objects and materials to construct different simulation circumstances.
The simulation for our vehicle platoon use case can be divided into two major
components: (1) vehicle platoon simulation; and (2) traffic flow simulation. For
vehicle platoon simulation, we simulate a highway driving scenario in which a
vehicle platoon consisting of 4 identical BMW X5 vehicles driving along a high-
way segment of 5 km length in total. BMW X5 is one of the built-in vehicle
models in Webots with vehicle properties calibrated based on real-world vehicle
dynamics. There are also multiple sensors equipped on different sensor slots to
measure, receive and transmit critical driving information. For instance, location
and acceleration are obtained from GPS and accelerometer readings respectively.

https://garrisonsun.github.io/End-to-end-atttack-detection-and-mitigation-framework/
https://garrisonsun.github.io/End-to-end-atttack-detection-and-mitigation-framework/

Strategic Mitigation Against Wireless Attacks on Autonomous Platoons 77

Speed information can be read directly from the speedometer on each vehicle.
These vehicle dynamic messages are transmitted and received by its emitter and
receiver modules as an approximation of Vehicular Ad hoc Network (VANET).
We implement both CACC and ACC controllers in Python for each vehicle,
which take the transmitted messages and sensor measurements as inputs to
compute high level control outputs respectively.

For traffic flow simulation, we use Simulation of Urban MObility (SUMO) [7]
to generate a large number of vehicles in real-time in order to construct a more
realistic driving environment. 4 types of vehicles (i.e., motorcycles, light-weight
vehicles, trucks, and trailers) with different moving characteristics are simu-
lated. Different drivers also have different driving characteristics (cooperative
or competitive) and intentions to merge introducing many random situations.
The complete explanation and default parameter values are available in SUMO’s
documentation.

Detector Training. We next use the simulation platform to prepare data sets
for detector training and testing purposes. At each simulation step, each vehicle
receives critical dynamic information such as position, velocity and acceleration
from its immediate predecessor and the lead vehicle, which correspond to the
input variables of the CACC controller. These variables are combined as an
input feature vector to the neural networks. We implement the proposed defense
framework on each vehicle in a distributed manner. Therefore, without loss of
generality, we demonstrate its performance by defending the third vehicle of the
platoon with the communication channel established from the second vehicle
being compromised by intelligent adversaries.

To prepare training and testing data sets, the platoon accelerates from sta-
tionary position to reach a desired velocity set by the platoon leader based on
traffic conditions while maintaining a prefixed inter-vehicle distance and relative
velocity. Once the platoon has driven 4900 m, message falsification attack initi-
ates from the second vehicle against the third. The attacker maliciously adds an
extra term to the original speed as shown in (1) with 10 km/h as the maximum
altered speed and gradient γ = 0.001. An entire run of the simulation generates
18000 feature vectors on average, among which only 500 feature vectors belong
to the attack class. Due to the imbalanced nature of the collected data, we assign
weights as the inverse number of data samples to both benign class and attack
class so as to heavily weight the few attack examples that are available.

To train a more robust detector applicable to various types of driving con-
ditions, we investigate the vehicle driving characteristics with CACC controller
under different traffic conditions. Heavy traffic condition leads to more frequent
merging behaviour from other vehicles. Note that, the vehicle platoon adapts
the disturbance introduced by different traffic conditions with only minimum
variation of inter-vehicle distance as shown in Fig. 2a (zoomed-in view). Despite
its performance in maintaining platoon stability, heavy traffic condition causes
more acceleration and breaking maneuvers as shown in Fig. 2b and 2c. To balance
the effects of traffic conditions, we train the network with 6 runs of simulation

78 G. Sun et al.

0 50 100 150 200
time (s)

0

1

2

3

D
is

ta
nc

e
(m

)

Light traffic
Heavy traffic

60 80 100
1.94
1.96
1.98

(a) Inter-vehicle distance.

0 50 100 150 200
time (s)

0

20

40

60

80

100

V
el

oc
ity

 (
km

/h
)

Light traffic
Heavy traffic

(b) Vehicle velocity.

0 50 100 150 200
time (s)

-5

0

5

A
cc

e.
 (

m
/s

2)
Light traffic
Heavy traffic

(c) Vehicle acceleration.

Fig. 2. Impact of different traffic conditions on the third vehicle within the platoon,
showing inter-vehicle distance (a), vehicle velocity (b), and acceleration (c).

including 3 runs each for light and heavy traffic conditions respectively. There
are 108534 feature vectors in total consisting of 104020 benign data samples and
4514 data samples with attack.

All hyperparameters (see Sect. 2.3) are tuned in a way that favours low
false alarm rate to increase the usability and public acceptance of such defense
method. We also set a high classification threshold. The detector reports a fea-
ture vector as malicious only if the malicious score form the output layer is
greater than 0.9. The testing process involves 26 runs of simulation (half for
each traffic condition) with 448744 benign samples and 19505 attack samples,
based on which false alarm rate and miss rate are computed. As a result, this
detector achieves a recall of 1 on benign samples but only 0.34 on attack sam-
ples, which defines the probability distribution of the chance node in the game
tree. The downside of this detector is the increased detection miss rate, which is
handled by the proposed game-theoretic model.

5 Simulation Results and Discussion

We consider three scenarios next to demonstrate that the proposed framework
achieves the three primary goals of the paper. As an illustration, the same mes-
sage falsification attack targets the second platoon member in a way causing the
third vehicle to accelerate and collide. In the first two scenarios, we simulate a
highway segment of 1 km length without traffic for simple illustration. The attack
initiates once the platoon has driven for 500 m. We show its performance in a
more realistic environment (i.e., longer operation time and disturbance from

Strategic Mitigation Against Wireless Attacks on Autonomous Platoons 79

other vehicles) in the last scenario. We use inter-vehicle distance as a metric
to show the mitigation effects in each of these scenarios. In addition, we also
compare their corresponding utilities to show the effectiveness of our proposed
approach from another viewpoint.

The built-in Radar module in Webots simulates sensor noise with a Gaussian
distribution. We set its standard deviation as 0.3 with zero mean. However, the
exact noise level depends on individual sensors and ambient environment. Due
to limitations of the current simulation setup however, other disadvantages of
ACC such as string stability violation is not explicitly shown.

Comparison of Defense Strategies. Figure 3 shows the inter-vehicle distance
and the corresponding probability of downgrading from communication-based
controller CACC to sensor-based controller ACC of vehicle 3 under different
scenarios. To show our approach provides superior attack effect reduction and
collision avoidance compared to a popular mitigation approach, we consider the
following cases as indicated by the legend of the figure:

Ideal case: This is used for ease of comparison which indicates what happens
if there is no attack and disturbance from traffic.

No attack mitigation: This indicates what happens if an attack is initiated
but the platoon member is not equipped with any mitigation approaches.

Rule-based mitigation: The vehicle downgrades from CACC to ACC only if
the anomaly score from the anomaly detector is greater than a predetermined
threshold.

Low cost of miss: Cost of miss is a hyperparameter of our proposed approach
indicating the cost of not responding to an attack.

High cost of miss: In this case, the cost of miss is set to a larger value.

The platoon starts to move from a stationary position with initial inter-
vehicle distance of more than 2.5 m at time t = 0 s. This distance eventually
reduces to the desired inter-vehicle spacing (2 m) as the platoon reaches steady
(or equilibrium) state. If there is no attack or disturbance from other vehicles
(i.e., the ideal case), platoon stability is maintained throughout the whole sim-
ulation as shown with pink dashed lines in the figure. There is also no need to
deploy ACC controller so the probability of controller switching remains at zero
as shown in Fig. 3b. After reaching steady driving state, the attack begins at
time t = 19.4 s right after the platoon has moved 500 m. If no attack mitiga-
tion strategies are deployed, vehicle 3 will slowly move towards its predecessor
leading to a collision (inter-vehicle distance equals zero) at t = 27 s as indicated
by black dotted lines. If the defender chooses to follow a rule-based attack mit-
igation strategy as suggested in the existing literature, the collision is avoided
as the backup controller kicks in at t = 25.1 s but the minimum inter-vehicle
distance almost reaches 0.58 m (red triangle in Fig. 3a), which is very dangerous
given all vehicles are driving at significant highway speeds.

80 G. Sun et al.

0 5 10 15 20 25 30 35 40
time (s)

0

1

2

3

In
te

r-
ve

hi
cl

e
D

is
t.

(m
)

Ideal case
No attack mitigation
Rule-based mitigation
Low cost of miss (Game Utility)
High cost of miss (Game Utility)

(a) Inter-vehicle distance.

0 5 10 15 20 25 30 35 40
time (s)

-0.5

0

0.5

1

1.5

A
C

C
 A

ct
iv

at
io

n
P

ro
b.

Ideal case
No attack mitigation
Rule-based mitigation
Low cost of miss (Game Utility)
High cost of miss (Game Utility)

(b) Probability of ACC activation.

Fig. 3. Comparison of different attack detection and mitigation approaches. Two real-
isations of our approach (in blue and green) result in a safer minimum inter-vehicle
distance as marked by triangles in (a). (Color figure online)

With our proposed defense framework, the situation is greatly improved and
the minimum inter-vehicle distance is increased to a much safer value. Under nor-
mal platoon operation conditions (where εradar is tiny), the gain βt of responding
according to detection results dominates its counterpart βs. The trustworthiness
of the detection results reduces dynamically as the inter-vehicle distance reduces
abnormally. After passing the warning distance error set by εmax, the gain βs

starts to increase and the resulting utility values would in favour the vehicle of
activating ACC even though the detected anomaly probability of the received
beacon message is still low. As vehicle 3 moves closer toward its preceding vehi-
cle, this gain value βs keeps increasing. As a result, the probability of deploying
ACC increases, which coincides with the intuition that it is more likely to require
mitigation acts as the situation is getting worse. In Figs. 3a and 3b, results from
two utility settings are presented. With lower cost of a miss −αm = −10, the
minimum inter-vehicle distance increases to 1.1 m (blue triangle in Fig. 3a). And
this number increases to 1.6 m (green triangle in Fig. 3a) when the cost of miss-
ing an attack is high as −αm = −30. Note that, we are able to increase the
minimum inter-vehicle distance by 90% and 176% respectively compared to the
one (0.58 m) resulting from the rule-based mitigation approach. Higher αm value
increases the starting controller switching probability from 0.43 to 0.70 after the
inter-vehicle distance passes the preset warning distance as indicated by green
and blue plots at t = 20.6 s in Fig. 3b.

While higher αm improves safety in this attack mitigation simulation, it is
not always beneficial. High missing cost αm leads to higher chance of early-
stage ACC controller intervention. However, in comparison with CACC, ACC
controller has disadvantages in distance headway, control bandwidth and relia-
bility. Moreover, ACC controller fails to guarantee the string stability of vehi-
cle platoon, which results in undesirable disturbance recovery characteristics.
By altering the utility values such as αm and αf , the defender may trade off
between the use of the sensor-based and communication-based controllers. The
tuning process of this hyperparameter depends on factors such as the confidence
in equipped sensors, the desired gap distance, vehicle characteristics, etc.

Strategic Mitigation Against Wireless Attacks on Autonomous Platoons 81

0 5 10 15 20 25 30 35 40
time (s)

0

1

2

3
In

te
r-

ve
hi

cl
e

D
is

t (
m

)

Our approach against the greedy attacker
Our approach against the intelligent attacker

Extended attack duration
from the intelligent attacker
(shaded in light blue)

(a) Inter-vehicle distance.

0 10 20 30 40
time (s)

-0.5

0

0.5

1

1.5

A
C

C
 A

ct
iv

at
io

n
P

ro
b.

-0.5

0

0.5

1

1.5

A
tta

ck
in

g
P

ro
b.

Our approach against the greedy attacker
Our approach against the intelligent attacker
Attacting Prob. from the intelligent attacker

(b) ACC activation probability (left y-axis)
and attacking probability from the intelli-
gent attacker (right y-axis).

Fig. 4. Comparison of different types of attackers. The intelligent attacker keeps adjust-
ing its attacking strategies shown by the dark green line in (b). This results in a slightly
increased minimum inter-vehicle distance but allows the attack effects last much longer
as shown by the shaded area in (a). (Color figure online)

Defense Against Greedy and Rational Attackers. An intelligent attacker
may leverage knowledge about the platoon and deployed defense measures to per-
form targeted and stealthy attacks. In this subsection, we consider: (1) Greedy
attacker: Once it decides to attack, it attacks the system all the time. (2) Intel-
ligent attacker: It randomises its attack strategies based on the solution of the
security game. In particular, once it senses being detected, it may suspend the
attack behaviour.

Figure 4a presents the resulting inter-vehicle distance by our proposed defense
framework against two types of attackers. Figure 4b contains the corresponding
probability of controller switching (in orange) and probability of attacking (in
dark green) based on the solution of the security game. The attacking probability
of the greedy attacker is neglected in the figure. As shown in Fig. 4b, the attacker
attacks with full intensity between 19.4 s and 20.75 s. Instead of maintaining this
attacking intensity all the way till the end of the simulation, the game-instructed
attacker reduces the probability of attacking after the preset suspicious gap
error εmax has been reached in order to avoid detection. The reduced attacking
probability decreases the probability of controller switching and delays the time
when the sensor based controller is fully activated. This effectively benefits the
attacker with extended duration of the attacking effects as seen between 25 s and
35 s in Fig. 4a. Nevertheless, the proposed framework is still capable of improving
the system’s safety and reliability.

5.1 Realistic Driving Scenario

The simulation shown in Fig. 5 considers realistic driving environment (e.g.,
traffic) to demonstrate that our proposed approach can tolerate normal vehicle
maneuvers such as breaking resulting from merging behaviour of other vehicles.
In this simulation, the platoon aims to maintain a desired inter-vehicle distance
of 2 m driving at 90 km/h for 5 km. Traffic could cause fluctuations in vehicle

82 G. Sun et al.

0 50 100 150 200 250
time (s)

0

1

2

3

In
te

r-
ve

hi
cl

e
D

is
t (

m
)

0

1

2

3

A
C

C
 A

ct
iv

at
io

n
P

ro
b.

Inter-vehicle Dist.
Prob. of switching to ACC

(a) Inter-vehicle distance (left y-axis) and
probability of ACC activation (right y-
axis).

(b) Webots simulation screenshots. The
green line indicates the desired inter-
vehicle spacing.

Fig. 5. Our proposed defense framework in realistic driving environment, with statics
shown in (a) and simulation screenshots in (b).

dynamics, for example at time t = 125 s and t = 170 s in Fig. 5a, but such distur-
bances do not trigger undesired control system reconfiguration. The same type
of boiling frog attack starts right after the platoon drove 4 km at time t = 180 s.
Simulation comparison of different mitigation approaches is presented in Fig. 5b.
As expected, our approach successfully mitigated the attack effects and hold the
attacked vehicle at a relatively safe minimum inter-vehicle distance.

Comparison of Players’ Utilities. In the previous subsections, we have
shown the effectiveness of our proposed approach in terms of the increase of min-
imum inter-vehicle distance and the probability of ACC controller activation. We
now illustrate its effectiveness from another viewpoint, namely in terms of util-
ity values under different scenarios. We consider two specific Attacker behaviour,
greedy and intelligent (adopting game solution) and two Defender types, adopt-
ing Rule-based mitigation and our security game-based mitigation as defined in
earlier subsections. We record their interactions within a time window of 200
simulation steps and present their average utilities in Table 1. The Attacker’s
utility is negative in the left of the parentheses and the other positive value is
the Defender’s utility. Note that the game played is not a zero-sum game and
players’ utilities do not necessarily add up to zero.

Table 1. Average utility values of four combinations of attack-defence strategies with
negative values for the Attacker and positive values for the Defender. The higher the
value the better the outcome for that player.

Attacker Defender

Rule-based Our approach

Greedy (−7.1, 7.1) (−11.0, 9.3)

Intelligent (−8.8, 8.8) (−10.4, 9.0)

Strategic Mitigation Against Wireless Attacks on Autonomous Platoons 83

It is important to note that in Table 1, the nominal utility values are not
important and relative values highlight players’ outcomes based on their strate-
gies. For example, our defense approach receives utilities of 9.3 and 9.0 instead
of 7.1 and 8.8 against greedy and intelligent attackers respectively. This demon-
strates that our approach outperforms the rule-based method up to 30% against
both types of attackers. Unsurprisingly, if the Attacker happens to be greedy in
against our defense approach, the Defender will gain more. On the other hand,
both types of attackers will have less utilities against our proposed defense app-
roach compared to against the rule-based one. Yet, an attacker may choose to be
greedy instead of intelligent to gain more if they know the defense side is deployed
with the rule-based method, which is less capable of defending the system. Dif-
ferent solution concepts other than the Nash equilibrium could be explored in
the future to capture different assumptions on players’ common knowledge and
rationality.

6 Conclusion

In this paper, we have presented a novel approach for detecting and mitigating
attacks against vehicle platoons, thereby enhancing system safety in an adversar-
ial environment. Our approach uniquely combines the advancements of machine
learning and game theory, where the interactions between an intelligent attacker,
defense system in possession of an imperfect detector have been investigated. In
this setting, the attacker launches a boiling frog test-time attack against the
learner. The Nash equilibrium solution guides control system reconfiguration, in
which the benefits of a communication-based and a sensor-based controller are
optimised. Evaluating in a sophisticated simulation, our approach successfully
avoids a collision, and outperforms the rule-based mitigation method by signif-
icantly increasing the worse-case inter-vehicle distance. It also defeats an intel-
ligent adversary although the duration of the attack effects has been extended.
Furthermore, the defense framework can be deployed on each platoon member
operating in an online manner, which demonstrates its potential for real-world
deployment. These results provide fresh insights and help answer the questions
set out in this paper. Further research will explore the robustness of the proposed
method against other types of attacks (e.g., position or acceleration falsification)
initiated from different communication channels and against different types of
anomaly detectors.

References

1. Alotibi, F., Abdelhakim, M.: Anomaly detection for cooperative adaptive cruise
control in autonomous vehicles using statistical learning and kinematic model.
IEEE Trans. Intell. Transp. Syst. (2020)

2. Alpcan, T., Başar, T.: Network Security: A Decision and Game-Theoretic App-
roach. Cambridge University Press, Cambridge (2010)

84 G. Sun et al.

3. Boeira, F., Barcellos, M.P., de Freitas, E.P., Vinel, A., Asplund, M.: Effects of
colluding sybil nodes in message falsification attacks for vehicular platooning. In:
2017 IEEE Vehicular Networking Conference (VNC), pp. 53–60. IEEE (2017)

4. Chalapathy, R., Chawla, S.: Deep learning for anomaly detection: a survey. arXiv
preprint arXiv:1901.03407 (2019)

5. Fang, F., et al.: Deploying paws: field optimization of the protection assistant for
wildlife security. In: AAAI, vol. 16, pp. 3966–3973 (2016)

6. Khanapuri, E., Chintalapati, T., Sharma, R., Gerdes, R.: Learning-based adver-
sarial agent detection and identification in cyber physical systems applied to
autonomous vehicular platoon. In: 2019 IEEE/ACM 5th International Workshop
on Software Engineering for Smart Cyber-Physical Systems (SEsCPS), pp. 39–45.
IEEE (2019)

7. Lopez, P.A., et al.: Microscopic traffic simulation using sumo. In: The 21st IEEE
International Conference on Intelligent Transportation Systems. IEEE (2018).
https://elib.dlr.de/124092/

8. Lu, X.Y., Hedrick, J.K., Drew, M.: ACC/CACC-control design, stability and
robust performance. In: Proceedings of the 2002 American Control Conference
(IEEE Cat. No. CH37301), vol. 6, pp. 4327–4332. IEEE (2002)

9. McKelvey, R.D., McLennan, A.M., Turocy, T.L.: Gambit: software tools for game
theory (2006)

10. Merco, R., Biron, Z.A., Pisu, P.: Replay attack detection in a platoon of connected
vehicles with cooperative adaptive cruise control. In: 2018 Annual American Con-
trol Conference (ACC), pp. 5582–5587. IEEE (2018)

11. Qayyum, A., Usama, M., Qadir, J., Al-Fuqaha, A.: Securing connected &
autonomous vehicles: challenges posed by adversarial machine learning and the
way forward. IEEE Commun. Surv. Tutor. 22(2), 998–1026 (2020)

12. Rajamani, R.: Vehicle Dynamics and Control. Springer, Heidelberg (2011)
13. Sedjelmaci, H., Senouci, S.M., Al-Bahri, M.: A lightweight anomaly detection tech-

nique for low-resource IoT devices: a game-theoretic methodology. In: 2016 IEEE
International Conference on Communications (ICC), pp. 1–6. IEEE (2016)

14. Subba, B., Biswas, S., Karmakar, S.: A game theory based multi layered intrusion
detection framework for wireless sensor networks. Int. J. Wirel. Inf. Netw. 25(4),
399–421 (2018)

15. Sumra, I.A., Hasbullah, H.B., AbManan, J.B.: Attacks on security goals (confiden-
tiality, integrity, availability) in VANET: a survey. In: Laouiti, A., Qayyum, A.,
Mohamad Saad, M.N. (eds.) Vehicular Ad-hoc Networks for Smart Cities. AISC,
vol. 306, pp. 51–61. Springer, Singapore (2015). https://doi.org/10.1007/978-981-
287-158-9 5

16. Webots: http://www.cyberbotics.com. Open-source Mobile Robot Simulation Soft-
ware

17. Wiedersheim, B., Ma, Z., Kargl, F., Papadimitratos, P.: Privacy in inter-vehicular
networks: why simple pseudonym change is not enough. In: 2010 Seventh Interna-
tional Conference on Wireless on-Demand Network Systems and Services (WONS),
pp. 176–183. IEEE (2010)

18. Yang, L., Moubayed, A., Hamieh, I., Shami, A.: Tree-based intelligent intrusion
detection system in internet of vehicles. In: 2019 IEEE Global Communications
Conference (GLOBECOM), pp. 1–6. IEEE (2019)

19. Zhang, D., Shen, Y.P., Zhou, S.Q., Dong, X.W., Yu, L.: Distributed secure platoon
control of connected vehicles subject to dos attack: theory and application. IEEE
Trans. Syst. Man Cybern. Syst. (2020)

http://arxiv.org/abs/1901.03407
https://elib.dlr.de/124092/
https://doi.org/10.1007/978-981-287-158-9_5
https://doi.org/10.1007/978-981-287-158-9_5
http://www.cyberbotics.com

DeFraudNet: An End-to-End Weak
Supervision Framework to Detect Fraud

in Online Food Delivery

Jose Mathew, Meghana Negi, Rutvik Vijjali(B), and Jairaj Sathyanarayana

Swiggy, Bangalore, India
{jose.matthew,meghana.negi,vijjali.reddy,jairaj.s}@swiggy.in

Abstract. Detecting abusive and fraudulent claims is one of the key
challenges in online food delivery. This is further aggravated by the
fact that it is not practical to do reverse-logistics on food unlike in e-
commerce. This makes the already-hard problem of harvesting labels for
fraud even harder because we cannot confirm if the claim was legitimate
by inspecting the item(s). Using manual effort to analyze transactions
to generate labels is often expensive and time-consuming. On the other
hand, typically, there is a wealth of ‘noisy’ information about what con-
stitutes fraud, in the form of customer service interactions, weak and
hard rules derived from data analytics, business intuition and domain
understanding.

In this paper, we present a novel end-to-end framework for detecting
fraudulent transactions based on large-scale label generation using weak
supervision. We directly use Stanford AI Lab’s (SAIL) Snorkel and tree
based methods to do manual and automated discovery of labeling func-
tions, to generate weak labels. We follow this up with an auto-encoder
reconstruction-error based method to reduce label noise. The final step
is a discriminator model which is an ensemble of an MLP and an LSTM.
In addition to cross-sectional and longitudinal features around customer
history, transactions, we also harvest customer embeddings from a Graph
Convolution Network (GCN) on a customer-customer relationship graph,
to capture collusive behavior. The final score is thresholded and used in
decision making.

This solution is currently deployed for real-time serving and has
yielded a 16% points’ improvement in recall at a given precision level.
These results are against a baseline MLP model based on manually
labeled data and are highly significant at our scale. Our approach can
easily scale to additional fraud scenarios or to use-cases where ‘strong’
labels are hard to get but weak labels are prevalent.

Keywords: Automated labelling functions · Snorkel · Class-specific
autoencoders · LSTM · Graph Convolution Network

c© Springer Nature Switzerland AG 2021
Y. Dong et al. (Eds.): ECML PKDD 2021, LNAI 12978, pp. 85–99, 2021.
https://doi.org/10.1007/978-3-030-86514-6_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86514-6_6&domain=pdf
https://doi.org/10.1007/978-3-030-86514-6_6

86 J. Mathew et al.

1 Introduction

At hyperlocal online food delivery platforms, the prevalence of fraud and abuse
necessitates strong prevention systems that can identify and alert other systems
and humans. Since most online food ordering platforms are three-sided market-
places, abuse can originate from customers, delivery partners, restaurants and
collusion between any combination of these entities.

Typically, a combination of online and offline ML models is at play in most
fraud detection systems. When a customer makes a claim against a delivered
order, real-time models kick in and offer fraud decisioning which is, in turn,
used by a customer-service agent or a bot to make the final decision. Supervised
models rely on labels and signals harvested from transactions from the past.
While there is, typically, plenty of data available on the signals’ side, generating
labels is a time-consuming and expensive process. However, to achieve reason-
able coverage over fraud modus operandi (MOs), the training data needs to be
exhaustive, requiring a broad set of labels. Given that fraud is ever-evolving and
dynamic, it makes it even more difficult to rely solely on manual labeling. Hence
the need to complement human labeling with label generation at scale using
other ML methods.

Our baseline is an MLP based discriminator model built on a limited set of
‘strongly’ labeled data from human experts. In this work, we start with insights
and intuitions from the way human experts label transactions and convert them
to ‘labeling functions’ (LFs). These LFs label a data point as either fraud or non-
fraud or abstain from assigning any label. These labels (and features) are then
fed to a Snorkel [1] generative model which synthesizes a single weak label for
each data point. We then introduce a class-specific autoencoder based method to
further ‘denoise’ these weak labels. Lastly, we fit a discriminator model (ensem-
ble of a shallow MLP and an LSTM) to produce the final fraud score. In addi-
tion to the usual set of cross-sectional and longitudinal features, we also use
embeddings harvested from a Graph Convolution Network (GCN) built on a
customer-customer relationship graph. This helps us encapsulate connectedness
and collusive behavior.

The final, winning pipeline is currently in production and has yielded a 16pp
improvement in recall at a given precision level, which is highly significant at our
scale. Additionally, this method saved us about 1.5 million person-hours worth
of manual labeling effort.

In summary, our contributions are listed below.

1. We propose a novel end-to-end pipeline for real-time fraud detection based
on a weak supervision framework consisting of the Snorkel generative model
followed by a class specific autoencoder. A MLP/LSTM based discriminator
model built on features spanning user/restaurant/delivery partner history,
transaction details and entity-relationship graph based embeddings constitute
the inferencing pipeline.

2. We report results from an extensive ablation study where we progressively
evaluate a) flavors of LFs (handcrafted vs. decision-tree generated vs. com-
bined), b) various features (historical cross-sectional, sequence, graph based,

DeFraudNet 87

near & real time), c) modeling methodologies, and arrive at an optimized
configuration that provides 16pp improvement in recall for a given precision.

3. We have deployed the DeFraudNet model in production where it currently
provides real-time decisions for hundreds of thousands of claims per week.

The remainder of the paper is organized as follows. In Sect. 2, we discuss related
work. In Sect. 3, we introduce the end-to-end pipeline. Sections 4, 5, 6, 7 provide
details about individual components of the pipeline and production deployment.
We present the experiments and results from the ablative study in Sect. 8 fol-
lowed by a summary and directions for future work in Sect. 9.

2 Related Work

We build a part of our work upon SAIL’s Snorkel [1] data programming app-
roach. Snorkel uses an ensemble of weak heuristics and rules based on domain
knowledge to create a generative algorithm and apply it to an unlabelled dataset.
As an extension of this work, in [2], the authors present a tree based modeling
technique wherein the end-to-end process of weak label generation is automated.
We take inspiration from this to automate and remove human bias from the pro-
cess of creating LFs. We further take inspiration from [3] to use a class-specific
autoencoder based method to reduce noise from the weak labels.

A vast majority of the published literature in the domain of fraud detection
centers around credit cards and other financial instruments. [4] describes the use
of Random Forests in credit card fraud detection while [5] compares and con-
trasts trees and SVMs for the same task. [6] proposes a deep learning model for
identifying fraud in card payments while [7] shows the utility of sequential data
to extract temporal patterns using RNNs. The authors use sequences of sessions
and encode using an LSTM to predict a risk score. A GAN based denoising
autoencoder architecture was implemented by Zheng et al. [15] for fraud detec-
tion in the telecom domain. Deng et al. [16] developed a methodology for fraud
detection in online payment platforms where the availability of labelled cus-
tomer data is limited, by learning latent representations based on adversarial
autoencoders.

Recent works have also focussed on fraud detection using graph based
approaches. The authors in [8] used a combination GCNs as well as processing
meta information of nodes for generating combined representations and training
from their labels.

In practice, efficient fraud detection systems operate by integrating several
individual working pieces to form a whole pipeline. The authors of [9] propose
a real time fraud detection pipeline that can flag multiple transactions using a
combination of graph based embeddings and a decision tree based classifier. [10]
makes use of a multi-graph framework where embeddings are used in conjunction
with raw features cleaned using autoencoder, are fed into a gradient boosted tree
parameter server for classification. [11] predicts fraud using interleaved transac-
tions and processes them as a batch in multi-sequence RNNs with stacked GRUs,
storing intermediate hidden states in a cache database.

88 J. Mathew et al.

Irrespective of the algorithm used or the domain, the common bottleneck
is the availability of reliable labels and most literature that we have surveyed
presumes the existence of labeled data.

3 The Framework: DeFraudNet

3.1 Problem Definition

We use the term order to represent a customer’s transaction with our platform.
Customers who have completed an order can raise a request for claiming issues
with food delivery like food spillage, missing item, order delivered late, etc.
If a claim is found to be genuine then a restitution of some sort is made to
the customer. While the majority of claims are genuine, a small but significant
minority is abusive. With millions of orders in a month, it is impossible to do
manual adjudication of claims. It easily takes 45–60 min for a human expert to
evaluate a claim by looking at a battery of signals across all the actors (customer,
restaurant, delivery-partner, platform issues, collusions) involved.

Hence the problem definition is two-fold: a) Augment strong labels with a
large number of weak labels and use historical and transactional data to design
a training pipeline, b) design an inference pipeline to predict whether a claim is
fraudulent or not in real time.

3.2 Fraud Detection Pipeline

Most existing fraud detection research presumes the existence of labeled data
and reliability of these labels and emphasizes ML techniques to better predict
fraud. To the best of our knowledge, DeFraudNet is the first end-to-end system
that combines label generation to model serving in a unified framework. Our
system consists of 4 stages (Fig. 1).

1. Data and feature pipeline: This is responsible for building the features
that go into the training, validation and ‘golden’ datasets (Sect. 4).

2. Label generation pipeline: This contains the components to generate weak
labels for all data points in the training and validation datasets (Sect. 5).

3. Discriminator pipeline: This trains the final discriminator models on fea-
tures and labels from the previous stages (Sect. 6).

4. Evaluation: This facilitates ongoing evaluation of the fraud detection system
by sending a sample of claims to human evaluators and using their judgment
to compute precision, recall and related health-check metrics.

4 Data and Feature Processing

4.1 Dataset

Initially the dataset consists of all unclassified claims U. A small random sample
from U is sent to the Risk Management Team (RMT) which manually adju-
dicates cases to generate ‘strong’ labels. We call this the ‘golden’ dataset G.

DeFraudNet 89

Fig. 1. DeFraudNet end to end framework

This dataset is inherently expensive and slow to generate (a few hundred labels
per week) and we accumulate this across several months. We further split the
human-labeled set G into Dlabel gen and Deval around an arbitrary date t, to
generate a training dataset and an out-of-time evaluation dataset, respectively.
Dlabel gen is used to learn decision tree-based LFs (interchangeably called auto
LFs) while Deval (or a random subsample) is used to evaluate all the models.

After isolating G from U, we create Dul train by sampling a large portion of
U. Dul train and Dlabel gen are inputs to the label generation pipeline. The output
of this pipeline is a denoised, weak-labeled training dataset Dtrain.

Fig. 2 shows how these datasets are created and Table 1 represents the number
of samples in these datasets over a period of 4 months which are used in our
study.

Table 1. Overview of the datasets

Number of samples

Unlabelled training data(Dul train) 1.5 M

Golden label generation dataset(Dlabel gen) 6000

De-noised labelled Training dataset(Dtrain) 1.48 M

Golden evaluation dataset(Deval) 5407

4.2 Feature Engineering

The features we use can be categorized into 4 types (Fig. 3):

a) F1: historical cross-sectional for all entities (i.e., customer, restaurant,
delivery-partner, geolocation) involved in the claim (for example, customer
tenure, restaurant’s popularity, delivery-partner’s experience level). These
help encode medium to longer term behavior of the entities involved.

90 J. Mathew et al.

Fig. 2. Datasets

b) F2: real time & near real time (for example, current order’s details like bill
amount, number of claims in the last 15 min, time-of-day, claim type). These
help capture the here & now information.

c) F3: customer’s orders-sequence related information (cross-sectional and real
time features at the time-steps of current and previous k orders). F3 when
fed into an LSTM help capture the sequential nature which F1 and F2 do
not fully encapsulate.

d) F4: customer graph embeddings. This is motivated by the insight that some
fraudsters fly below the radar when looked at in isolation but patterns emerge
when analyzed in conjunction with their ‘neighbors’ in some space. We found
that shared payment instruments are one of the most common links in fraud
rings. We use embeddings from a GCN learned on the customer-payment
instrument graph, to capture this connectedness.

e) F5: Additionally, we take a subset of F1– mainly features focused on the
restaurant and the delivery-partner. These help in learning the attribution
of ‘responsibility’ to the restaurant and/or delivery-partner in a claim. For
example, in a claim about a missing-item in the order, the restaurant may
have missed packing the item and/or the delivery-partner may have dropped
the item (irrespective of intention). We call these ‘negative features’ since
they lead to bad customer experience.

DeFraudNet 91

Fig. 3. Categories of features

5 Label Generation

5.1 Generating Noisy Labels Using LFs

We generate LFs via two methods: manually and using decision trees. Hand-
crafted LFs are a direct, best-effort encapsulation of domain expertise and tend
to be fairly simple rules based on, typically, 2–3 features. However, hard-coded
thresholds on features in these LFs can make them brittle. If the business changes
or new fraud patterns emerge, while human evaluators can make mental adjust-
ments to their judgments, the LFs need to be revisited. Decision-tree derived
(auto) LFs help alleviate these shortcomings because they learn feature combi-
nations and thresholds from the (human-labeled Dlabel gen) data. However, also
because of this dependency, the extent of patterns they can learn is limited by
the patterns covered in human labels. Hence we combine both the approaches
resulting in a corpus of 45 handcrafted LFs and 150 auto LFs.

Following is an example of a hypothetical LF using two features.

@labeling function()
def Fraud Rule 1(x):

“““if feature1 > X and feature2 = 1 then the request is Not Fraud:”””
return Negative if ((x[feature1]>X) & (x[feature2] == 1)) else Abstain

In general, all LFs have the following properties: a) An LF can either assign
or abstain from generating a label, b) LF decisions can overlap or conflict with
other LFs.

5.2 Snorkel Generative Model

Once the LFs are created, we synthesize labels using Snorkel over Dul train. Inter-
nally, the Snorkel generative model creates a label matrix by applying LFs over

92 J. Mathew et al.

each data point and formulates label generation as a matrix completion prob-
lem to produce noise-aware, confidence-weighted labels with 3 possible values–
0, 1,−1 (abstain). In our case, <1% of labels were of the type abstain and we
chose to drop the corresponding data points from further training process. Addi-
tionally, Snorkel emits several statistics for LFs, like coverage, conflicts, overlap
and accuracy.

We tested the hypothesis of whether more LFs are always better. We experi-
mented by a) pruning LFs at different accuracy thresholds, b) learning a discrim-
inator model over the new labeled dataset (say, D′

train), c) testing final perfor-
mance on Deval. We found that a model using roughly 70% of all LFs had 3.3%
better F1-score compared to a model using all the LFs. We hypothesize that this
could be due to the dynamic nature of fraud patterns leading to volatility in the
effectiveness of LFs and that the full set of LFs may not always be needed.

5.3 Class-Specific Autoencoders for Denoising

While Snorkel emits a consolidated label for each sample, our analysis showed
that some labels were still noisy. For example, we observed that, among cases
which had very similar features, a small minority had opposing labels due to the
fact that just one or two minor (in terms of their intuitive contribution towards
fraud) features were different. One way to approach cleaning these labels would
be to look at individual feature distributions for each class and consider samples
with highly deviant features as outliers. However, there may be conflicting sam-
ples wherein one feature might be deviant for one class and flipping the label
might cause another feature to be deviant for that label’s distribution. This
requires generating representations that capture overall distributions of samples
belonging to a particular class. We use class-specific autoencoder networks for
cleaning the labels. The hypothesis is that, for a given class, the majority of
data is correctly labelled by the generative model hence an autoencoder can
be learned to reconstruct the correctly-labelled data with low error, and will
reconstruct outliers with high error.

Two autoencoder models were trained, let’s call them model a (trained with
samples labeled 0) and model b (trained with samples labeled 1). Several archi-
tectures for autoencoders were explored and verified by examining the separation
of reconstruction errors between same-class samples and opposite-class samples
against Deval. The architecture that achieved maximum separation in terms of
median values of reconstruction errors with early stopping, was an expansive
(latent dimension > input dimension) autoencoder with latent dimension (128)
being roughly 2X the size of input dimension (54). We visualize the separation
of classes in the validation dataset through box plots (Fig. 4).

As seen in Fig. 4, the models learn to separate the classes at roughly the 75th
percentile boundary (where the two boxes roughly ‘meet’). Based on this, we set
two thresholds, threshold a, the 75th percentile reconstruction error of 0-labeled
samples on model a and threshold b equivalently for model b. To achieve denois-
ing we use the following logic: if reconstruction error of a sample on model a is
greater than threshold a and less than threshold b, we assign the sample a label

DeFraudNet 93

Fig. 4. a. Box plot visualization for model a. b. Box plot visualization for model b

of 1 and vice versa. Once the training data is cleaned using this denoising logic,
we retrain the autoencoders with cleaned data and all steps are repeated. No
new labels were flipped after two iterations.

6 Discriminator Models

We use Neural Network (NN) based methods as the final discriminator model.
All discriminator models detailed below use weak labels of Dtrain and reduce the
categorical cross entropy loss. Figure 5 illustrates how combinations of features
and models are put together to predict the fraud decision.

Fig. 5. Discriminator pipeline

94 J. Mathew et al.

6.1 Multi Layer Perceptron

Vanilla MLP. The inputs to the MLP include features from F1, F2 and
F5. Each feature is transformed depending on how it is originally dis-
tributed. For example, normally-distributed features are transformed into z-
scores while power-law-distributed features are log-transformed, specifically,
ln((1 + feature value)/(1 + feature median)). The final model configuration
was a 2-layer MLP with hidden layers of size (25, 3) with ReLu activations.
Making the network deeper did not improve the downstream metric of recall.

MLP with Graph Embeddings. We experimented with augmenting the
inputs to the MLP with the graph embeddings (F4). We construct a customer
graph g defined as

g = (V,E), V= {customer1, customer2, ...customern}, E = customer to cus-
tomer link with same payment id.

As is evident, g is a homogenous graph with a single edge-type. Each customer
node is decorated with a subset of features from F1. A GCN was learned using
the Deep Graph Infomax method on Dtrain (without the labels) and fine-tuned
using Dlabel gen. Customer node embeddings of size 128 are extracted from the
final layer of the GCN. These embeddings are concatenated to F1, F2 and F5
and the MLP is retrained. The final MLP-with-graph-embeddings model had 3
layers of size (80,15,3) with ReLu activation.

The ablation study in Sect. 8 illustrates the lift in recall due to this change.

6.2 LSTM Sequence Model

Previous research like [7] and [11] have shown that learning from activity
sequences is more effective in identifying fraud patterns than hand-engineered
features. Hence, we develop a sequence prediction model that uses F3 as fea-
tures (i.e.,customer’s last k orders, their sequence and the (k+1)th (current)
order’s transactional features). We arrived at k = 20 by evaluating the F1-score
for different values of k. We use a multi-layer stacked LSTM and the averaged
representation of all hidden states is fed to the final softmax layer. We landed
on the final architecture of an LSTM with 4 layers and 128 hidden units each
followed by 2 dense layers with 256 and 64 hidden units respectively with ReLU
activation using the Xavier initializer.

7 Deployment and Serving Infrastructure

All streaming logs, fact tables and entity data are available in our Hive based
data warehouse. Most historical features are generated by Spark jobs while the
near real-time features are generated using SQL-like queries on streaming data
using Flink. All features are written to two sinks: to S3 for periodic retraining
of models and to Amazon DynamoDB-DAX (DDB-DAX) for online inference of
the production model.

DeFraudNet 95

Fig. 6. LSTM architecture

At inference time, when a claim is made, the fraud detection microservice
calls the model API hosted using Tensorflow Serving (TFS). The request con-
sists of transaction details and real-time features. TFS fetches other feature
values from the DDB-DAX cache. The TF model pipeline transforms features
using tf.feature columns, runs model predictions, ensembles and returns the final
prediction to the client. We implemented custom transformers to do data trans-
formations not natively available in TFS.

For model training, we used Tensorflow and p2.2xlarge GPU instances on
AWS. Model decisions are evaluated on a weekly basis by RMT using a random
sample.

The flow of the training and serving architecture is illustrated in Fig. 7.

Fig. 7. Training and serving infrastructure

8 Ablation Experiments

8.1 Setup and Baseline

Most consumer-facing fraud detection systems are precision-first. Meaning, the
downside of calling a ‘good’ customer fraudulent is asymmetrically high com-

96 J. Mathew et al.

pared to the opposite. Hence we designed the ablation study to quantify impact
of various pipelines on recall where precision has been fixed at the same, high
value for all the variants. Table 2 shows the various pipelines studied. Our base-
line is an MLP trained over Dlabel gen and is evaluated over Deval.

8.2 Experiments

In all the non-baseline variants, Snorkel is used to generate labels for Dul train

spanning about 1.5 M samples.

Table 2. Results for different architectures

Pipeline 2, which uses only the labels from handcrafted LFs generates a recall
improvement of 6.63 pp vs. baseline. This can be attributed to the training for
pipeline 2 happening over a much larger dataset resulting in more patterns being
learned.

The auto LF-augmented pipeline 3 performs worse with only a 2.3 pp
improvement in recall. Auto LFs are limited by decision tree performance as
well as the smaller dataset (Dlabel gen) they are trained on. We hypothesize that
auto LFs are adding more noisy labels and it is not always true that adding more
LFs will improve performance. But since the manual curation of LFs is not scal-
able as fraud patterns frequently drift with time, we keep the auto LFs and add
a denoising component resulting in pipeline 4. The results from denoising the
weak labels is shown in Fig. 8. Here, dark blue colored nodes in Fig. 8.a and red
coloured in Fig. 8.b represent samples originally labelled 0 and 1 respectively,
that remained unchanged. Light blue coloured nodes represent the samples that
were originally labelled 0 but flipped to 1 and pink coloured nodes represent the
samples originally labelled 1 but flipped to 0. This resulted in 8% of label-1 and
11% of label-0 samples being flipped. The MLP discriminator model trained on
these ‘cleaned’ labels showed a 10.43 pp recall improvement vs. the baseline.

DeFraudNet 97

Fig. 8. t-SNE visualisation of latent representation for a. model a and b. model b

As explained in Sect. 6, we experimented with different modeling techniques
to improve the performance of the discriminator. We keep the label genera-
tion components the same in the subsequent pipelines to measure incremental
value of the different modelling techniques or feature generation methods. In
pipeline 5, we replace the MLP with an LSTM as the discriminator. With an
8.61 pp improvement in recall, LSTM was not able to best the MLP discrimina-
tor. However, we should point out that the LSTM only used features from F3
and we couldn’t use features from F1, F2 and F4 due to cost and infrastructural
limitations. However, we qualitatively observed that the LSTM performed better
than the MLP in cases where the customer’s recent behavior was ‘bursty’.

Pipeline 6 builds on pipeline 4 by adding the graph embeddings. This
improves the recall by 11.42 pp (and 1 pp over pipeline 4, demonstrating the
additional value-add from graph embeddings). Customers that were identified
as fraudulent by pipeline 6 and not by pipeline 4 had one or more edges with a
fraudulent claim rate that was 3× higher than the median.

Finally, we combine all components into pipeline 7 and ensemble the predic-
tions from the MLP and the LSTM to achieve a 16 pp improvement in recall. This
winning pipeline is currently deployed in production serving real-time decisions
in milliseconds on hundreds of thousands of claims per week.

9 Conclusion

This work demonstrated the effectiveness of a pipeline consisting of handcrafted
and auto-generated LFs followed by class-specific denoising autoencoders, to
build effective supervised models when strongly labeled data is scarce. We show
through our experiments how each step in the pipeline improves the evaluation
metrics and propose a final multi-stage architecture for fraud detection. Our final
model achieved a 16 pp improvement in recall when compared to the baseline
MLP trained on limited, manually annotated data. This approach can easily
scale to additional fraud scenarios and to use-cases where labeled data is sparse.

98 J. Mathew et al.

A sample of future work includes using variational autoencoders to generate
synthetic data around pockets where the naturally-occurring data appears to
be sparse but is known to be abuse-prone [12,13]. While we take into account
longer term history of the customer, at an aggregate level, the recent bursty
behavior can sometimes overwhelm the final prediction. Hence we could focus on
extending the LSTM using attention based mechanisms [14]. While we explored
connectedness via a homogeneous graph of one edge-type, fraud patterns usually
tend to be multi-tenant. Identifying fraud spread through multiple edge types
(for example, deviceIDs/wifiIDs) and heterogeneous graphs with restaurant and
delivery partners into the mix is an active area of research for us.

References

1. Ratner, A., Bach, S.H., Ehrenberg, H., Fries, J., Wu, S., Ré, C.: Snorkel: rapid
training data creation with weak supervision. In: VLDB Endow 11, 3, 269–282
(2017). https://doi.org/10.14778/3157794.3157797

2. Varma, P., Ré, C.: Snuba: automating weak supervision to label training data. In:
VLDB Endow 12, 3, 223–236 (2018). https://doi.org/10.14778/3291264.3291268

3. Zhang, W., Wang, D., Tan, X.: Robust class-specific autoencoder for data cleaning
and classification in the presence of label noise. Neural Process. Lett. 50(2), 1845–
1860 (2018). https://doi.org/10.1007/s11063-018-9963-9

4. Xuan, S., Liu, G., Li, Z., Zheng, L., Wang, S., Jiang, C.: Random forest for credit
card fraud detection. In: 2018 IEEE 15th International Conference on Networking,
Sensing and Control (ICNSC), Zhuhai, pp. 1–6 (2018). https://doi.org/10.1109/
ICNSC.2018.8361343

5. Sahin, P.Y., Duman, E.: Detecting credit card fraud by decision trees and support
vector machines. In: IMECS 2011 - International Multi Conference of Engineers
and Computer Scientists, 1, 442–447 (2011)

6. Gomez, J.A., Arevalo, J., Paredes, R., Nin, J.: End-to-end neural network archi-
tecture for fraud scoring in card payments. Pattern Recogn. Lett. 105, 175–181
(2018)

7. Wang, S., Liu, C., Gao, X., Qu, H., Xu, W.: Session-based fraud detection in
online e-commerce transactions using recurrent neural networks. In: Altun, Y.,
Das, K., Mielikäinen, T., Malerba, D., Stefanowski, J., Read, J., Žitnik, M., Ceci,
M., Džeroski, S. (eds.) ECML PKDD 2017. LNCS (LNAI), vol. 10536, pp. 241–252.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71273-4 20

8. Jiang, J., et al.: Anomaly detection with graph convolutional networks for insider
threat and fraud detection. In: MILCOM 2019–2019 IEEE Military Communica-
tions Conference (MILCOM), Norfolk, VA, USA, pp. 109–114 (2019). https://doi.
org/10.1109/MILCOM47813.2019.9020760

9. Cao, S., Yang, X., Chen, C., Zhou, J., Li, X., Qi, Y.: TitAnt: Online Real-time
Transaction Fraud Detection in Ant Financial (2019)

10. Chen, C., et al.: InfDetect: a Large Scale Graph-based Fraud Detection System for
E-Commerce Insurance (2020)

11. Branco, B., Abreu, P., Gomes, A., Almeida, M., Ascensão, J., Bizarro, P.: Inter-
leaved sequence RNNs for fraud detection. In: Proceedings of the 26th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining
(2020)

https://doi.org/10.14778/3157794.3157797
https://doi.org/10.14778/3291264.3291268
https://doi.org/10.1007/s11063-018-9963-9
https://doi.org/10.1109/ICNSC.2018.8361343
https://doi.org/10.1109/ICNSC.2018.8361343
https://doi.org/10.1007/978-3-319-71273-4_20
https://doi.org/10.1109/MILCOM47813.2019.9020760
https://doi.org/10.1109/MILCOM47813.2019.9020760

DeFraudNet 99

12. Kingma, D.P., Welling, M.: Auto-Encoding Variational Bayes (2014)
13. Im, D., Ahn, S., Memisevic, R., Bengio, Y.: Denoising criterion for variational

auto-encoding framework. In: Proceedings of the Thirty-First AAAI Conference
on Artificial Intelligence, pp. 2059–2065 (2017). AAAI Press

14. Guo, J., Liu, G., Zuo, Y., Wu, J.: Learning sequential behavior representations for
fraud detection. In: 2018 IEEE International Conference on Data Mining (ICDM),
Singapore, pp. 127–136 (2018). https://doi.org/10.1109/ICDM.2018.00028

15. Zheng, Y.J., Zhou, X.H., Sheng, W.G., Xue, Y., Chen, S.Y.: Generative adversarial
network based telecom fraud detection at the receiving bank. Neural Netw. 102,
78–86 (2018)

16. Deng, R., Rua, N., Zhang, G., Zhang, X.: FraudJudger: Fraud Detection on Digital
Payment Platforms with Fewer Labels, arXiv:1909.02398 (2019)

https://doi.org/10.1109/ICDM.2018.00028
http://arxiv.org/abs/1909.02398

Spatio-Temporal Data

Time Series Forecasting with Gaussian
Processes Needs Priors

Giorgio Corani1(B) , Alessio Benavoli2 , and Marco Zaffalon1

1 Istituto Dalle Molle di Studi sull’Intelligenza Artificiale (IDSIA), USI - SUPSI,
Lugano, Switzerland

{giorgio.corani,marco.zaffalon}@idsia.ch
2 School of Computer Science and Statistics, Trinity College Dublin, Dublin, Ireland

alessio.benavoli@tcd.ie

Abstract. Automatic forecasting is the task of receiving a time series
and returning a forecast for the next time steps without any human
intervention. Gaussian Processes (GPs) are a powerful tool for modeling
time series, but so far there are no competitive approaches for automatic
forecasting based on GPs. We propose practical solutions to two prob-
lems: automatic selection of the optimal kernel and reliable estimation of
the hyperparameters. We propose a fixed composition of kernels, which
contains the components needed to model most time series: linear trend,
periodic patterns, and other flexible kernel for modeling the non-linear
trend. Not all components are necessary to model each time series; during
training the unnecessary components are automatically made irrelevant
via automatic relevance determination (ARD). We moreover assign priors
to the hyperparameters, in order to keep the inference within a plausi-
ble range; we design such priors through an empirical Bayes approach.
We present results on many time series of different types; our GP model
is more accurate than state-of-the-art time series models. Thanks to the
priors, a single restart is enough the estimate the hyperparameters; hence
the model is also fast to train.

1 Introduction

Automatic forecasting [14] is the task of receiving a time series and returning a
probabilistic forecast for the next time steps without any human intervention.
The algorithm should be both accurate and fast, in order to scale on a large
number of time series,

Time series models such as exponential smoothing (ets, [12]) and automated
arima procedures (auto.arima [14]) are strong baselines on monthly and quar-
terly time series, which contain limited number of samples. In these cases they
generally outperform recurrent neural networks [11], which are also much more
time-consuming to train.

Time series which are sampled at higher frequency generally contain multiple
seasonal patterns. For instance, a time series of hourly data typically contains

c© Springer Nature Switzerland AG 2021
Y. Dong et al. (Eds.): ECML PKDD 2021, LNAI 12978, pp. 103–117, 2021.
https://doi.org/10.1007/978-3-030-86514-6_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86514-6_7&domain=pdf
http://orcid.org/0000-0002-1541-8384
http://orcid.org/0000-0002-2522-7178
http://orcid.org/0000-0001-8908-1502
https://doi.org/10.1007/978-3-030-86514-6_7

104 G. Corani et al.

a daily and a weekly seasonal pattern. This type of time series can be forecast
with models such as tbats [5] and Prophet [27].

Gaussian Processes (GPs) [21] are a powerful tool for modeling correlated
observations, including time series. The GP provides a prior over functions,
which captures prior beliefs about the function behavior, such as smoothness
or periodicity. Given some observations, the prior is updated to form the poste-
rior distribution over the functions. Dealing with Gaussian noise, this posterior
distribution is again a GP. The posterior GP is used to predict the value of the
function in points which have yet to be sampled; this prediction is accompanied
by a principled quantification of the uncertainty. GPs have been used for the
analysis of astronomical time series (see [7] and the references therein), forecast-
ing of electric load [17] and analysis of correlated and irregularly-sampled time
series [22].

Within a GP model, the kernel determines which functions are used for curve
fitting. Complex functions can be obtained by summing or multiplying basic
kernels; this is called kernel composition. In some cases the composition can be
based on physical considerations [7] or personal expertise [17]. However algo-
rithms which automatically optimize the kernel composition [6,15,19] do not
scale, given the need for training a large number of competing GP models, each
with cubic complexity. Moreover, there is no result showing that this strategy
can forecast as accurately as the best time series models.

Summing up, there are currently no competitive approaches for automatic
forecasting based on Gaussian Processes. In this paper we fill this gap, proposing
a GP model which is accurate, fast to train and suitable for different types of
time series.

We propose a kernel composition which contains useful components for mod-
eling time series: linear trend, periodic patterns, and other flexible kernel for
modeling the non-linear trend. We keep this composition fixed, thus avoiding
kernel search. When dealing with a specific time series, some components might
be unnecessary; during training they are made automatically irrelevant by auto-
matic relevance determination (ARD) [18]. Indeed, ARD yields automatic fea-
ture selection for GPs.

We then consider how to reliably estimate the hyperparameters even on short
time series. We keep their inference within a reasonable range by assigning pri-
ors to them. We define the parameters of such priors by means of a Bayesian
hierarchical model trained on a separate subset of time series.

Extensive results show that our model is very accurate and versatile. It gen-
erally outperforms the state-of-the-art competitors on monthly and quarterly
time series; moreover, it can be easily extended to model time series with double
seasonality. Also in this case, it compares favorably to specialized time series
models. A single restart is enough to sensibly estimate the hyperparameters;
hence the model is also fast to train.

Time Series Forecasting with Gaussian Processes Needs Priors 105

The paper is organized as follows: in Sect. 2 we introduce GPs; in Sect. 2.2
we present our kernel composition and the definition of the priors; in Sect. 3 we
present the experiments.

2 Gaussian Processes

We cast time-series modeling as a regression problem:

y = f(x) + v, (1)

where x ∈ R
p, f : Rp → R and v ∼ N(0, s2v) is the noise. We assume a Gaussian

Process (GP) as a prior distribution about function f :

f ∼ GP (0, kθ),

where kθ denotes the kernel with hyperparameters θ. It is common to adopt the
zero function as a mean function, since a priori we do not know whether at any
point the trend will be below or above the average [22].

The kernel defines the covariance between the value of the function in dif-
ferent locations: Cov(f(x), f(x∗)) = kθ (x,x∗), kθ : Rp × R

p → R
+ and thus it

determines which functions are likely under the GP prior.
The most common kernel is the squared exponential, also referred to as radial

basis funcion (RBF):

RBF : kθ (x1, x2) = s2r exp
(

− (x1 − x2)2

2�2r

)
,

whose hyperparameters are the variance s2r and the lengthscale �r. Longer length-
scales yields smoother functions and shorter lengthscales yields wigglier func-
tions. A limit of the RBF kernel is that, once conditioned on the training data,
it does not extrapolate more than � units away from the observations.

The periodic (PER) kernels yields periodic functions which repeat themselves
exactly. Such function correspond to the sum of infinite Fourier terms [4,26] and
hence the PER kernel can represent any periodic function. It is defined as:

PER: kθ (x1, x2) = s2p exp
(

− (2 sin2(π|x1 − x2|/pe)
�2p

)
,

where �2p controls the wiggliness of the functions, pe denotes the period and s2p
the variance.

Notice that in general, when the lengthscale of a kernel tends to infinity, or
its variance tends to zero, the kernel yields functions that vary less and less as
a function of x.

106 G. Corani et al.

The linear kernel, which yields linear functions, is:

LIN : kθ (x1, x2) = s2b + s2l x1x2,

A GP with LIN kernel is equivalent [21] to a Bayesian linear regression.
The white noise (WN) kernel, which is used to represent the noise of the

regression, is:
WN : kθ (x1, x2) = s2vδx1,x2 .

The above expressions are valid for p = 1, which is the case of a univariate
time series; see [21] for the case p > 1 and further kernels.

2.1 Kernel Compositions

Positive definite kernels (i.e., those which define valid covariance functions) are
closed under addition and multiplication [21]. Hence, complex functions can be
modeled by adding or multiplying simpler kernels; this is called composition.

There are algorithms which iteratively train and compare GPs equipped with
different kernel compositions [6,19], but they are characterized by large computa-
tional complexity. Even if recent works have made the procedures more scalable
[15,28], they are still not comparable to lighting-fast time series model.

The spectral mixture kernel [30] allows the GP to fit complex functions with-
out kernel search. It is defined as the sum of Q components, where the i-th
component is:

SMi : kθ (x1, x2) = s2mi
exp

(
− (x1 − x2)2

2�2mi

)
cos

(
x1 − x2

τmi

)
,

with hyperparameters are smi
, �mi

and τmi
. It also corresponds to the product

of a RBF kernel and another kernel called cosine kernel. Estimating the hyper-
parameters of the SM kernel is however challenging: the marginal likelihood is
highly multimodal and it is unclear how to initialize the optimization. In [31]
Bayesian optimization is used for deciding the initialization at each restart. This
is effective but requires quite a few restarts.

2.2 The Composition

We propose the following kernel composition:

K = PER + LIN + RBF + SM1 + SM2, (2)

which arguably contains the most important components for forecasting.
The periodic kernel (PER) models the seasonal pattern; for monthly and

quarterly time series, we assume a period of one year and we set pe = 1. Time
series with a double seasonality can be modeled by adding a second periodic
kernel, as we do in Sect. 4.

The LIN kernel provides the linear trend. This is an important component:
for instance, auto.arima [14] adds a linear trend (by applying first differences) to
about 40% of the monthly time series of the M3 competition. The RBF and the
two SM kernels are intended to model non-linear trends which might characterize
the time series.

Time Series Forecasting with Gaussian Processes Needs Priors 107

Automatic Relevance Determination. Some components of the composi-
tion might be unnecessary when fitting a certain time series: for instance, a time
series might show no seasonal pattern or no linear trend. This is automatically
managed via automatic relevance determination (ARD) [18]. When fitting the
hyperparameters, the unnecessary components are given long lengthscale and/or
small variance; in this way they are made irrelevant within the curve being fitted.

2.3 Training Strategy

Reliably estimating the hyperparameters of the GP can be challenging (see e.g.
[31]), especially when dealing with small data sets such as monthly and quarterly
time.

We keep the inference of the hyperparameters within a plausible range by
assigning priors to them. Variances and lengthscales are non-negative parame-
ters, to which we assign log-normal priors:

s2l , s
2
r, s

2
p, s

2
m1

, s2m2
, s2v ∼ LogN(νs, λs) (3)

�r ∼ LogN(νr, λ�) (4)
�p ∼ LogN(νp, λ�) (5)
�m1 ∼ LogN(νm1 , λ�) (6)
�m2 ∼ LogN(νm2 , λ�) (7)
τm1 ∼ LogN(νt1 , λ�) (8)
τm2 ∼ LogN(νt2 , λ�), (9)

where LogN(ν, λ) denotes the distribution with mean ν and variance λ.
According to Eq. (3), all components share the same prior on the variance.

This assign to every component the same prior probability of being irrelevant,
as a component can be made irrelevant by pushing its variance to zero. We
assign moreover a shared variance λ� to all lengthscales, in order to simplify the
numerical fitting of the hierarchical model described in the next section.

We manage time such that time increases of one unit when one year has
passed. The lengthscales can be readily interpreted; for instance an RBF kernel
with lengthscale of 1.5 years is able to forecast about 1.5 years in the future
before reverting to the prior mean.

Hierarchical GP Model. To numerically define the priors (3)–(9), we adopt an
empirical Bayes approach. We select a set of B time series and we fit a hierarchical
GP model to extract distributional information about the hyperparameters. The
hierarchical Bayes model allows learning different models from different related
data sets [8, Chap. 5]. Example of hierarchical GP models, not related to time
series, are given in [16] and [25].

We assume the hyperparameters of the different time series to be drawn from
higher-level priors (hyperprior). For instance the lengthscales of the RBF kernel
(�(1)r , �

(2)
r , ..., �

(B)
r) are all drawn from the same hyperprior.

108 G. Corani et al.

The generative model for the j-th time series is hence:

s
2(j)
l , s2(j)r , s2(j)p , s2(j)m1

, s2(j)m2
, s2(j)v ∼ LogN(νs, λs)

�(j)r ∼ LogN(νr, λ�)

�(j)p ∼ LogN(νp, λl),

�(j)m1
∼ LogN(νm1 , λ�)

�(j)m2
∼ LogN(νm2 , λ�),

τ (j)
m1

∼ LogN(ντ1 , λ�)

τ (j)
m2

∼ LogN(ντ2 , λ�),

y(j) ∼ N(0,K
(j)
θ (X(j),X(j))),

where K denotes our kernel composition, instantiated with the hyper-parameters
of the j-th time series; θ(j) denotes the hyper-parameters of the j-th time series.

We assign weakly-informative priors to the ν, λ parameters:

νs, νp, νr, νm2 ∼ N(0, 5) (10)
νm1 ∼ N(−1.5, 5) (11)
λs, λl ∼ Gamma(1, 1). (12)

The lower prior mean for νm1 is helpful for differentiating the estimation of SM1

and SM2 towards shorter-term and longer-term trends respectively.

Fig. 1. Left: prior on �r induced by the hierarchical model. Right: posterior on �r
estimated by the hierarchical model using 350 time-series. The Half-Cauchy distribution
(with scale = 1) is shown for comparison. In this paper we represent time such that,
when one year has passed, x increases of one unit.

We implemented the model in PyMC3 [24]. We use automatic differentiation
variational inference to approximate the posterior distribution of the ν’s and
λ’s. We fit the hierarchical model on 350 monthly time series from the M3
competition. Before fitting the hierarchical model, we standardize each time

Time Series Forecasting with Gaussian Processes Needs Priors 109

series to have mean 0 and variance 1. Moreover, we manage time such that time
increases of one unit when one year has passed.

The priors induced by the hierarchical model have fat tails. Consider for
instance the prior induced on �r, which according to Eq. (10)–(12) is: p(�r) =∫∫

LogN(�r; νr, λ�)N(νr; 0, 5)Gamma(λl; 1, 1)dνrdλl. It is shown in the left plot
of Fig. 1, and its tails are actually fatter than those of the Half-Cauchy distribu-
tion.

Figure 1(right) shows instead the distribution on �r obtained using the pos-
terior means of νr and λl, estimated by the hierarchical model. This yields a
distribution on �r which we use as prior when fitting the GP. This prior has fat
tails too, see the comparison with the half-Cauchy; nevertheless, it does inform
the optimizer about the order of magnitude of �r. The median and the 95-th
percentile of the prior of each hyperparameter are given in Table 1.

Table 1. Quantiles on the hyperparameters implied by the lognormal priors and param-
eters (ν, λ) of the lognormal priors. By design, the λs are equal for all lengthscales.

parameter median 95th ν λ

variance 0.2 1.2 −1.5 1.0

std periodic 1.2 6.3 0.2 1.0

rbf 3.0 15.4 1.1 1.0

SM1 (rbf) 0.5 2.5 −0.7 1.0

SM1 (cos) 1.7 8.6 0.5 1.0

SM2 (rbf) 3.0 15.4 1.1 1.0

SM2 (cos) 5.0 25.8 1.6 1.0

The prior on the variance is coherent with the fact that we work with stan-
dardized time series, whose variance is one.

The priors over the lengthscales also yield plausible ranges, every component
having a median lengthscale comprised between 0.5 and 3 years, with long tails
arriving up to 25 years.

All the experiments of this paper are thus computed using the priors of
Table 1. To remove any danger of overfitting, we remove the 350 time series used
to fit the hierarchical model from our experiments.

Further Considerations. In the jargon of time series, models which are fitted to
a set of time series are referred to as global models, see for instance [20,23]. The
hierarchical model is a global model, as it jointly analyzes different time series.
Global models can be more accurate than univariate models, if the time series
are characterized by some common patterns. Yet, they are also more complicated
to fit. In this paper we do not consider global models. We use the hierarchical
model only for defining the priors on the hyperparameters of the GP.

110 G. Corani et al.

2.4 MAP Estimation

We estimate the hyperparameters by computing the maximum a-posteriori
(MAP) estimate of θ, thus approximating the marginal of f∗ with (14). We thus
maximize w.r.t. θ the joint marginal probability of y,θ, which is the product of
the prior p(θ) and the marginal likelihood [21, Ch.2]:

p(y|X,θ) = N(y; 0,Kθ (X,X)). (13)

Using a single restart, MAP estimation is generally accomplished in less than a
second (on a standard computer) on monthly and quarterly time series, yielding
thus quick training times.

2.5 Forecasting

Based on the training data XT = [x1, . . . ,xn], y = [y1, . . . , yn]T , and given m
test inputs (X∗)T = [x∗

1, . . . ,x
∗
m], we wish to find the posterior distribution of

f∗ = [f(x∗
1), . . . , f(x∗

m)]T .

Fig. 2. Examples of GP forecasts on monthly time series, computed up to 18 months
ahead.

From (1) and the properties of the Gaussian distribution,1 the posterior
distribution of f∗ is [21, Sec. 2.2]:

p(f∗|X∗,X,y,θ) = N(f∗; μ̂θ (X∗|X,y), K̂θ (X∗,X∗|X)), (14)

1 In the paper, we incorporate the additive noise v into the kernel by adding a White
noise kernel term.

Time Series Forecasting with Gaussian Processes Needs Priors 111

with mean and covariance given by:

μ̂θ (f∗|X,y) = Kθ (X∗,X)(Kθ (X,X))−1y,

K̂θ (X∗,X∗|X) = Kθ (X∗,X∗) (15)

− Kθ (X∗,X)(Kθ (X,X))−1Kθ (X,X∗).

Our kernel composition, trained using the proposed priors, yields sensible
forecasts in very different contexts, as in Fig. 2.

3 Experiments

We run experiments on the monthly and quarterly time series of the M1 and M3
competitions, available from the package Mcomp [13] for R. The original 1428
time series of the M3 competition drop to 1078 once we remove the 350 time
series used to fit the hierarchical model. Overall we consider about 959 quarterly
time series (203 from M1, 756 from M3) and 1695 monthly time series (617 from
M1 and 1078 from M3). The test set of monthly time series contains 18 months;
the test set of quarterly time series contains 8 quarters. We standardize each
time series to have mean 0 and variance 1 on the training set (Table 2).

Table 2. Main characteristics of the M1 and M3 data sets.

quarterly monthly

M1 M3 M1 M3

number of time series 203 756 617 1078

median training length 40 44 66 115

Test set length 8 8 18 18

We denote by GP our model trained with priors and by GP0 our model
trained without priors, i.e., by maximizing the marginal likelihood. We use a
single restart when training both GP and GP0; on these time series, which
contain around 100 observations, the average training is generally less than one
second on a standard laptop.

As competitors we consider auto.arima and ets, both available from the fore-
cast package [12] for R. We tried also Prophet [27], but its accuracy was not
competitive. We thus dropped it; we will consider it later in experiments with
different types of time series.

Indicators
Let us denote by yt and ŷt the actual and the expected value of the time series
at time t; by σ2

t the variance of the forecast at time t; by T the length of the
test set. The mean absolute error (MAE) on the test set is:

112 G. Corani et al.

Table 3. Median results on M1 and M3 time series. The best-performing model is
boldfaced. Starred results correspond to the GP yielding a significant improvement
over the competitor (95%, Bayesian signed-rank test).

competition freq score GP ets arima GP0

M1 monthly MAE 0.58 0.59 0.62∗ 0.72∗

M1 monthly CRPS 0.41 0.45∗ 0.45∗ 0.53∗

M1 monthly LL −1.13 −1.27∗ −1.28∗ −1.67∗

M1 quarterly MAE 0.57 0.63∗ 0.62∗ 0.75∗

M1 quarterly CRPS 0.39 0.47∗ 0.44∗ 0.59∗

M1 quarterly LL −1.07 −1.41∗ −1.44∗ −2.66∗

M3 monthly MAE 0.48 0.51∗ 0.51∗ 0.59∗

M3 monthly CRPS 0.35 0.38∗ 0.37∗ 0.42∗

M3 monthly LL −1.01 −1.05∗ −1.06∗ −1.23∗

M3 quarterly MAE 0.42 0.41 0.41 0.54∗

M3 quarterly CRPS 0.30 0.31 0.31 0.40∗

M3 quarterly LL −0.85 −0.90∗ −0.94∗ −1.61∗

MAE =
T∑

t=1

|yt − ŷt|

The continuous-ranked probability score (CRPS) [9] is a proper scoring rule
which generalizes MAE to probabilistic forecasts. Let us denote by Ft the cumu-
lative predictive distribution at time t and by z the variable over which we
integrate. The CRPS is:

CRPS(Ft, yt) = −
∫ ∞

−∞
(Ft(z) − 1{z ≥ yt})2dz.

The log-likelihood of the test set (LL) is defined as:

LL =
1
T

(
− 1

2

T∑
t=1

log(2πσ2
t) − 1

2σ2
t

T∑
t=1

(yt − ŷt)2
)

MAE and CRPS are loss functions, hence the lower the better; instead for
LL, the higher the better.

In Table 3 we report the median results for each indicator and each data set.
In each setting the GP yields the best median on almost all indicators. However
GP0 is instead clearly outperformed by both ets and auto.arima. Hence, our GP
model needs priors on the hyperparameters to produce highly accurate forecasts.

Time Series Forecasting with Gaussian Processes Needs Priors 113

We then check the significance of the differences on the medians via the
Bayesian signed-rank test [3], which is a Bayesian counterpart of the Wilcoxon
signed-rank test. It returns posterior probabilities instead of the p-value. An
advantage of this test over the frequentist one is that we can set a region of
practical equivalence (rope) between the two algorithms being compared. When
comparing algorithms A and B, the test returns three posterior probabilities:
the probability of the two algorithms being practically equivalent, i.e., the prob-
ability of the median difference belonging to the rope; the probability of A being
significantly better than B, and vice versa. As already pointed out, better means
lower MAE, lower CRPS, higher LL. We considered a rope of ±0.01 on each
indicator, similarly to [2]. We consider as significant the differences in which
the probability of an algorithm being better than another is at least 95%. The
improvement yielded by the GP over the competitors are significant in most
cases; see the starred entries in Table 3. When the median of some competitor
was better than that of the GP, the difference was not statistically significant.

Fig. 3. Distribution of MAE on the monthly and quarterly time series of the M1 and
M3 competition.

The improvement is not only on the medians, but it also involve the distribu-
tion across time series, as shown by the boxplots of MAE (Fig. 3). Similar results
hold also for the distribution of the other indicators, which we do not show for
reasons of space.

114 G. Corani et al.

4 Dealing with Multiple Seasonalities

We then test the versatility of our GP model, by considering time series with
multiple seasonalities. We consider the electricity data set2, which contains 370
time series regarding electricity demand for different Portuguese households.

Each time series covers the period January 2011–September 2015 with a
sampling frequency of 15 mins, totaling 140k points. To have a more manageable
data set we aggregate the data to 6-h steps. We consider a training set containing
of 250 days (1000 points) and a test set of 10.5 days (42 steps).

Such time series have a daily and a weekly seasonal pattern. This can
be addressed by approaches which model seasonality using Fourier terms. For
instance TBATS [5] introduces Fourier terms within an exponential smoothing
state space model. Prophet [27] is a decomposable Bayesian time series model,
whose final forecast is the sum of different functions, which account for different
effects. The seasonality function is modeled by Fourier terms. Prophet however
is not very effective on time series with simpler seasonality, such as monthly and
quarterly time series, as we have already seen.

We adapt the kernel composition by adding a second periodic kernel:

K = PERw + PERd + LIN + RBF + SM1 + SM2,

where PERw and PERd represents respectively the weekly and the daily pattern.
We thus set the period of PERw to 1

52.18 and the period of PERd to 1
(365.25) As

in previous experiments, we standardize time series and one year corresponds to
time increasing of one unit. We can keep unchanged the priors.

Table 4. Median results on the electricy data sets (370 time series). Starred results
imply statistical significance (Bayesian signed rank test).

GP Tbats Prophet

MAE 0.26 0.30∗ 0.29∗

CRPS 0.19 0.23∗ 0.21∗

LL −0.37 −0.60∗ −0.49∗

In Table 4 we report the median results across the 370 time series; the GP
delivers the best performance on all indicators. The GP model compares favor-
ably to the competitors also as for the distribution of the MAE (Fig. 4) across
time series.

2 https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014.

https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014

Time Series Forecasting with Gaussian Processes Needs Priors 115

Fig. 4. Boxplot of MAE on the 370 electricity time series.

5 Code and Replicability

We make available our code and the data of M1 and M3 time series at the link:
https://github.com/IDSIA/gpforecasting/. Our implementation is based on the
GPy library [10].

6 Conclusions

As far as we know, these are the best results obtained so far in automatic fore-
casting with Gaussian processes. Our model is competitive with the best time
series models on different types of time series: monthly, quarterly and time series
with multiple seasonalities.

The model is fast to train, at least on time series containing less than 500 data
points. Recent computational advances with GPs in time series [1,26] could allow
the application of our methodology also to time series thousands of observations.

Our GP model yields both good point forecast and a reliable quantification
of the uncertainty, as shown by the CRPS and LL indicators. It is thus an
interesting candidate for problems of hierarchical forecasting [29], which require
forecasts with a sound quantification of the uncertainty.

Due to the general properties of the GP, the model can be learned also from
irregularly sampled or incomplete time series.

Acknowledgments. Work for this paper has been partially supported by the Swiss
NSF grant n. 167199 of the funding scheme NRP 75 Big Data.

We thank David Huber for polishing our initial implementation and helping with
the experiments.

References

1. Ambikasaran, S., Foreman-Mackey, D., Greengard, L., Hogg, D.W., O’Neil, M.:
Fast direct methods for gaussian processes. IEEE Trans. Pattern Anal. Mach.
Intell. 38(2), 252–265 (2015)

2. Benavoli, A., Corani, G., Demšar, J., Zaffalon, M.: Time for a change: a tutorial
for comparing multiple classifiers through Bayesian analysis. J. Mach. Learn. Res.
18(1), 2653–2688 (2017)

https://github.com/IDSIA/gpforecasting/

116 G. Corani et al.

3. Benavoli, A., Corani, G., Mangili, F., Zaffalon, M., Ruggeri, F.: A Bayesian
Wilcoxon signed-rank test based on the Dirichlet process. In: Proceedings of the
International Conference on Machine Learning, pp. 1026–1034 (2014)

4. Benavoli, A., Zaffalon, M.: State Space representation of non-stationary Gaussian
processes. arXiv preprint arXiv:1601.01544 (2016)

5. De Livera, A.M., Hyndman, R.J., Snyder, R.D.: Forecasting time series with com-
plex seasonal patterns using exponential smoothing. J. Am. Stat. Assoc. 106(496),
1513–1527 (2011)

6. Duvenaud, D., Lloyd, J., Grosse, R., Tenenbaum, J., Zoubin, G.: Structure discov-
ery in nonparametric regression through compositional kernel search. In: Proceed-
ings of the International Conference on Machine Learning, pp. 1166–1174 (2013)

7. Foreman-Mackey, D., Agol, E., Ambikasaran, S., Angus, R.: Fast and scalable
Gaussian process modeling with applications to astronomical time series. Astron.
J. 154(6), 220 (2017)

8. Gelman, A., Carlin, J., Stern, H., Dunson, D., Vehtari, A., Rubin, D.: Bayesian
Data Analysis, 3rd edn. Chapman and Hall/CRC, Boca Raton (2013)

9. Gneiting, T., Raftery, A.E.: Strictly proper scoring rules, prediction, and estima-
tion. J. Am. Stat. Assoc. 102(477), 359–378 (2007)

10. GPy: GPy: A Gaussian process framework in Python (since 2012). http://github.
com/SheffieldML/GPy

11. Hewamalage, H., Bergmeir, C., Bandara, K.: Recurrent neural networks for time
series forecasting: Current status and future directions. Int. J. Forecast. 37(1),
388–427 (2021)

12. Hyndman, R.J., Athanasopoulos, G.: Forecasting: Principles and Practice, 2nd edn.
OTexts: Melbourne (2018). OTexts.com/fpp2

13. Hyndman, R.: Mcomp: Data from the M-Competitions (2018). https://CRAN.R-
project.org/package=Mcomp, r package version 2.8

14. Hyndman, R.J., Khandakar, Y.: Automatic time series forecasting: the forecast
package for R. J. Stat. Softw. 26(3), 1–22 (2008). http://www.jstatsoft.org/article/
view/v027i03

15. Kim, H., Teh, Y.W.: Scaling up the automatic statistician: scalable structure dis-
covery using Gaussian processes. In: International Conference on Artificial Intelli-
gence and Statistics, pp. 575–584. PMLR (2018)

16. Lawrence, N.D., Platt, J.C.: Learning to learn with the informative vector machine.
In: Proceedings of the Twenty-First International Conference on Machine Learning,
p. 65 (2004)

17. Lloyd, J.R.: GEFCom2012 hierarchical load forecasting: gradient boosting
machines and Gaussian processes. Int. J. Forecast. 30(2), 369–374 (2014)

18. MacKay, D.J.: Introduction to Gaussian processes. NATO ASI Ser. F Comput.
Syst. Sci. 168, 133–166 (1998)

19. Malkomes, G., Schaff, C., Garnett, R.: Bayesian optimization for automated model
selection. In: Hutter, F., Kotthoff, L., Vanschoren, J. (eds.) Proceedings of the
Workshop on Automatic Machine Learning, vol. 64, pp. 41–47 (2016)

20. Montero-Manso, P., Athanasopoulos, G., Hyndman, R.J., Talagala, T.S.:
FFORMA: feature-based forecast model averaging. Int. J. Forecast. 36(1), 86–92
(2020)

21. Rasmussen, C., Williams, C.: Gaussian Processes for Machine Learning (2006)
22. Roberts, S., Osborne, M., Ebden, M., Reece, S., Gibson, N., Aigrain, S.: Gaussian

processes for time-series modelling. Philos. Trans. R. Soc. A: Math. Phys. Eng.
Sci. 371(1984), 20110550 (2013)

http://arxiv.org/abs/1601.01544
http://github.com/SheffieldML/GPy
http://github.com/SheffieldML/GPy
https://otexts.com/fpp2/
https://CRAN.R-project.org/package=Mcomp
https://CRAN.R-project.org/package=Mcomp
http://www.jstatsoft.org/article/view/v027i03
http://www.jstatsoft.org/article/view/v027i03

Time Series Forecasting with Gaussian Processes Needs Priors 117

23. Salinas, D., Flunkert, V., Gasthaus, J., Januschowski, T.: DeepAR: probabilistic
forecasting with autoregressive recurrent networks. Int. J. Forecast. 36(3), 1181–
1191 (2020)

24. Salvatier, J., Wiecki, T.V., Fonnesbeck, C.: Probabilistic programming in Python
using PyMC3. PeerJ Comput. Sci. 2, e55 (2016)

25. Schwaighofer, A., Tresp, V., Yu, K.: Learning gaussian process kernels via hierarchi-
cal Bayes. In: Advances in Neural Information Processing Systems, pp. 1209–1216
(2005)

26. Solin, A., Särkkä, S.: Explicit link between periodic covariance functions and state
space models. In: Artificial Intelligence and Statistics, pp. 904–912. PMLR (2014)

27. Taylor, S.J., Letham, B.: Forecasting at scale. Am. Stat. 72(1), 37–45 (2018)
28. Teng, T., Chen, J., Zhang, Y., Low, B.K.H.: Scalable variational Bayesian ker-

nel selection for sparse Gaussian process regression. In: Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 34, pp. 5997–6004 (2020)

29. Wickramasuriya, S.L., Athanasopoulos, G., Hyndman, R.J.: Optimal forecast rec-
onciliation for hierarchical and grouped time series through trace minimization. J.
Am. Stat. Assoc. 114(526), 804–819 (2019)

30. Wilson, A., Adams, R.: Gaussian process kernels for pattern discovery and extrap-
olation. In: Proceedings of the International Conference on Machine Learning, pp.
1067–1075 (2013)

31. Wu, J., Poloczek, M., Wilson, A.G., Frazier, P.: Bayesian optimization with gra-
dients. In: Advances in Neural Information Processing Systems, pp. 5267–5278
(2017)

Task Embedding Temporal Convolution
Networks for Transfer Learning Problems
in Renewable Power Time Series Forecast

Jens Schreiber(B) , Stephan Vogt , and Bernhard Sick

University of Kassel, Wilhelmshöher Allee 71, 34121 Kassel, Germany
{j.schreiber,stephan.vogt,bsick}@uni-kassel.de

Abstract. Task embeddings in multi-layer perceptrons (MLP) for
multi-task learning and inductive transfer learning in renewable power
forecasts is an exciting new technique. In many cases, this approach
improves the forecast error and reduces the required training data. How-
ever, it does not take the periodic influences in power forecasts within
a day into account, i.e., the diurnal cycle. Therefore, we extended this
idea to temporal convolutional networks to consider those in tasks of
day-ahead power forecasts for renewables. We propose transforming the
embedding space, which contains the latent similarities between tasks,
through convolution and providing these results to the network’s residual
block. The proposed architecture significantly improves the forecast accu-
racy up to 25% for multi-task learning for power forecasts on the open
EuropeWindFarm and GermanSolarFarm datasets compared to the MLP
approach. Based on the same data, we achieve a ten percent improve-
ment for the wind datasets and more than 20% in most cases for the
solar dataset for inductive transfer learning without catastrophic forget-
ting. Finally, we are the first to propose zero-shot learning for renewable
power forecasts. The proposed architecture achieves an error as good as
the task embedding MLP with a full year of training data in the respec-
tive experiments.

Keywords: Transfer learning · Time series · CNN · Renewables ·
TCN

1 Introduction

The Paris commitment demands to limit human-induced global warming below
2 ◦C above pre-industrial levels to reduce the impact of the climate crisis. To
achieve the commitment, renewable energy resources need to increase their
share from 14% in 2015 to 63% in 2050 in the worldwide energy production [1].
To assure grid stability, energy suppliers require reliable power forecasts based
on numerical weather predictions (NWPs) as input due to the weather depen-
dency. These predicted weather features, such as wind speed or radiation, are the
input to models predicting the expected power generation in day-ahead forecasts
between 24 and 48 h into the future.
c© Springer Nature Switzerland AG 2021
Y. Dong et al. (Eds.): ECML PKDD 2021, LNAI 12978, pp. 118–134, 2021.
https://doi.org/10.1007/978-3-030-86514-6_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86514-6_8&domain=pdf
http://orcid.org/0000-0002-9979-8053
http://orcid.org/0000-0002-3230-8822
http://orcid.org/0000-0001-9467-656X
https://doi.org/10.1007/978-3-030-86514-6_8

Task Embedding Temporal Convolution Networks for Transfer Learning 119

Another problem is that each of those parks typically has individual char-
acteristics to learn by the forecast models. Therefore, a single forecast model is
learned per park or even for a single wind turbine in practice. Assuming there
are 30, 000 wind facilities with an average number of 10, 000 parameters per
model solely in Germany, this makes a total of 300 million parameters to train.
Additionally, the hyperparameters need to be optimized.

The training of those models contradicts the Paris commitment, as the train-
ing and even the inference themselves have an extensive energy demand and
cause a considerable amount of carbon emmission [2]. To reduce the number of
models that need to be optimized, while leveraging knowledge between parks, [3]
proposed to utilize multi-task learning (MTL) approaches. In their task embed-
ding multi-layer perceptron (MLP) the discrete task information, which task is
to be predicted, is encoded through an embedding layer and concatenated with
other input features. However, this approach still requires a reasonable amount
of training data in the task of day-ahead power forecasts for renewables. This
training data is often not available for new parks. Therefore, in [4], the task
embedding MLP extracts knowledge from a set of source tasks, e.g., several
known wind parks. This knowledge is adapted to unseen target tasks, during
initial training, with limited training instances. In their approach, a Bayesian
variant of the task embedding MLP leads to the best results for wind parks with
limited training data.

However, there are periodic patterns, i.e., the diurnal cycle, within day-ahead
forecasts affecting the forecast error [5]. Those are not considered within an MLP,
even though the substantial benefits of time series forecasts through convolu-
tional neural networks (CNNs) are known [6]. Further, ideally, we can fore-
cast parks without any historical power measurements. This zero-shot learning
paradigm is essential to assure reasonable forecasts from the beginning of a new
park. Therefore, we are interested in answering the following research questions:

Question 1. Can an MTL CNN architecture improve the forecast error for wind
and photovoltaic (PV) parks compared to a similar MLP MTL architecture?

Question 2. Are CNN based MTL architectures capable of providing good fore-
casts in zero-shot learning for renewable power forecasts?

Question 3. Are CNN based MTL architectures beneficial during induc-
tive transfer learning (TL) compared to a similar MLP MTL approach?

To answer those questions, we propose task-temporal convolution network
(TCN), see Fig. 1. Task-TCN encodes task-specific information through an
embedding layer. Thus, each park gets an increasing task ID (m ∈ N

+) assigned
as input to the embedding layer. We assure that the TCN learns relations
between tasks during training by adding the encoded task information in a
residual block. By encoding the task ID through an embedding layer, we can
extend the network to new parks while avoiding catastrophic forgetting of pre-
vious parks. We utilize the idea of task embeddings in our proposed method as

120 J. Schreiber et al.

Fig. 1. Task-TCN encodes a task ID, for each task, through an embedding layer. The
learned encoding from the embedding space is added in the residual block to provide
task-specific forecasts.

well in our baseline to assure a comparison of similar MTL architectures. Evalu-
ation of the task-TCN on the open EuropeWindFarm and GermanSolarFarm1,
in comparison to the Bayesian task embedding MLP as the baseline, leads to
the following contributions:

– The proposed task-TCN architecture, for MTL renewable power forecasts,
leads to improvements of up to 25%.

– The proposed task-TCN leads to improvements of more than ten percent for
wind and up to 40% for the solar dataset for inductive ML problems.

– We are the first to propose zero-shot learning for renewables and the task-
TCN achieves an error as good as the task embedding MLP with a full year
of training data in the respective experiments.

The source code and supplementary material of the experiments are openly
accessible2. The remainder of this article is structured as follows. Section 2
describes related work. The following Sect. 3 introduces relevant definitions and
details the proposed approach. We describe the datasets, discuss the experiment
and most essential findings in Sect. 4. In the final section, we summarize our
work and provide insides for future work.

2 Related Work

To answer our research question, we review related work in the field of MTL,
(inductive) TL, and zero-shot learning focusing on power forecasts for wind and
PV. Formal definitions of those topics are given in Sect. 3.1. For comprehensive
surveys on TL and MTL, outside the domain of renewables, refer to [7,8].

Most of the related work applying TL focuses on utilizing neural networks.
However, the study of [9] proposes an MTL strategy for Gaussian processes
to forecast PV targets. By clustering wind parks through their distribution, a
weighting scheme provides predictions for a new park in [10]. The approach of [11]
utilizes an auxiliary dataset, created through k-nearest neighbors, to improve the
1 https://www.uni-kassel.de/eecs/ies/downloads, accessed 2021-06-30.
2 https://github.com/scribbler00/task-TCN, accessed 2021-06-30.

https://www.uni-kassel.de/eecs/ies/downloads
https://github.com/scribbler00/task-TCN

Task Embedding Temporal Convolution Networks for Transfer Learning 121

forecasts error in short-term wind power predictions. This data driven method
is in principle adaptable to our approach but is outside the focus of our work.
The same argument holds for the instance-based TL for day-ahead solar power
forecasts proposed in [12].

To find a suitable representation for (inductive) TL and MTL various arti-
cles utilize autoencoders, e.g., [13,14] and more recently a self-attention based
encoder-decoder structure [15]. One problem with autoencoders is that the infor-
mation extraction is typically limited to the input space and neglects knowledge
shared between tasks in the target space, which is, e.g., achieved through hard
parameter sharing (HPS). Further, all of those articles consider (ultra) short-
term forecasts and do not examine the more difficult day-ahead predictions.
Most of the previously mentioned work utilizing neural networks focuses on feed
forward networks neglecting the time series problem at hand. However, more
recent work also considers recurrent networks and finetuning to achieve good
results for ultra-short-term forecast horizon of PV [16]. Moreover, the article [17]
provides a strategy for quantile regression for day-ahead solar power forecasts
using CNNs and finetuning. But both articles are missing out on making use of
multiple targets, which we consider in our approach.

The authors of [3] utilize a task embedding for encoding of task-specific
information in a HPS network. This approach is similar to word2vec [18] and
encoding of categorical features to replace one-hot encodings in [19]. The task
embedding improves the forecast error with a minimal amount of parameters
for day-ahead wind and solar power forecasts in a MTL setting. A thorough
evaluation of inductive TL for day-ahead wind power forecast is given in [4].
Furthermore, a Bayesian task embedding assures that similar tasks are close to
one another in case of limited data. The Bayesian task embedding is superior
to models learned from scratch and a traditional HPS. The task embedding
can be considered state of the art due to their excellent results with minimal
parameters even when trained with limited data. Further, the approach of task
embedding avoids catastrophic forgetting. However, both of the articles utilizing
task embeddings neglect to extend this approach to CNNs that we address.

Overall, the related work shows limited research on TL and MTL for day-
ahead power forecasts. Furthermore, none of those approaches provide a frame-
work for wind as well as PV power forecasts. Moreover, there is limited research
in addressing TL challenges through recent work in time series forecasts [20].
Note, due to the recent success and benefits of CNNs over recurrent net-
works [20,21] we focus on the former. Further, to the best of our knowledge,
there has been no attempt to provide zero-shot forecasts in the field of renew-
able energies. Besides, none of those proposals consider a unified framework that
takes recent advances in time series forecast into account, such as TCN, while
being applicable to MTL, inductive TL, and zero-shot learning.

3 Proposed Method

In the following, we detail essential definitions, relate the task embedding MLP
to MTL, and describe our proposed architecture.

122 J. Schreiber et al.

3.1 Definition of MTL, TL, and Zero-Shot Learning

The following definitions have been introduced in [7,8]. We slightly modified
them for a consistent formulation of multi-source TL and MTL.

Definition 1 (Domain). A domain is defined by D = {X , P (X)}, where X
is the feature space and P (X) is the marginal distribution with X = {x | xi ∈
X , i = 1, . . . , N}.
Definition 2 (Task). The task of a domain is defined with T = {Y, f(·)},
where the function is defined by f : X → Y. The function f(·) is learned by
training instances {xi, yi} with xi ∈ X and yi ∈ Y , where Y = {y | yi ∈
Y, i = 1, . . . , N}. The function f(·) describes characteristics of the distribution
P (Y | X). In a Bayesian approach those are samples and the expectation in a
frequentist view.

Note, in these definitions, xi are available weather predictions and yi are histor-
ical power measurements of a park. We assume that X and Y are ordered sets
for the required time series forecasts for simplicity.

Definition 3 (Inductive Transfer Learning). Inductive Transfer Learning
has the goal to transfer knowledge from source (S) tasks {TSm

}m=M
m=1 to a target

(T) task TT . Therefore, we use M ∈ N
+ source domains {(DSm

, TSm
) | m =

1, . . . ,M} and (limited) training instances {xTi
, yTi

} with xTi
∈ XT and yTi

∈
YT to learn a function fT (·).
In contrast to transductive TL, labeled training data in the target domain is
available in inductive TL.

Definition 4 (Zero-shot learning). Zero-shot learning can be interpreted as
unsupervised transductive TL [22]. In this setting, meta-information from source
and target tasks is used to select an appropriate prediction function fSm

(·) to
predict the target task.

In comparison to transductive TL, zero-shot learning is not using a domain adap-
tion approach between the source(s) and the target. This unsupervised approach
makes it an even more challenging problem as no assumptions are made of the
source and target domain [22].

Definition 5 (Multi-Task Learning). In MTL approaches, each task is
accompanied by a domain Dm with i ∈ {1, . . . , N} training instances (xm

i , ym
i),

where xm
i ∈ Xm, ym

i ∈ Y m, m ∈ 1, . . . ,M , and M ∈ N
+ tasks.

In contrast to inductive transfer and zero-shot learning, all tasks have a sufficient
amount of training data in MTL problems. Furthermore, in MTL we are typically
interested in improving all tasks’ forecast errors simultaneously.

Task Embedding Temporal Convolution Networks for Transfer Learning 123

3.2 Proposed Method

Typically, in MTL, there are two approaches to share knowledge and improve
the forecasts error: soft parameter sharing (SPS) and HPS. In HPS architectures,
there are predominantly common layers that are the same for all tasks and few
task-specific layers. In SPS, each task has an individual model and similarity
is enforced through regularization [8]. As SPS requires additional parameters
compared to HPS, due to the separate networks for each task, we focus on the
latter to reduce the energy demand by the additional parameters.

Previously, we argued that the function f(·) describes the conditional dis-
tribution P (Y | X), where Y is a set of observed power generations and X
are observations of the numerical weather prediction. However, this descrip-
tion neglects the possibility to model individual forecasts for different parks in
MTL settings. Therefore, we describe how to model this dependency through an
embedding layer in an MLP as suggested in [3,4]. By doing so, we are the first to
provide a mathematical description between the task embedding and the MTL
definition. Afterward, we explain the Bayesian embedding layer and detail how
our approach extends the idea of task embeddings to TCNs.

Task-Embedding for MLPs encodes an increasing (discrete) task ID about
which task m ∈ N

+ is to be predicted through an embedding layer and con-
catenates results of this embedding space with other continuous input fea-
tures [3,4]. In the following we connect embedding layers to the MTL definition.
Therefore, consider a common function h(·) for all M tasks that approximates
P (ym | Xm, g(m)), where m is the discrete information whose task is to be pre-
dicted with m ∈ 1, . . . , M and M ∈ N

+. g(m) is then a transformation into an
arbitrary real valued dimension.

Assuming we have such a transformation, the conditional modeling allows
us to develop a model without task-specific layers. The required information
on the task is given through g(m). Therefore, the function h(·) for MTL has
the training instances {xm

i , ym
i , g(m)}. Ideally, we want a mapping g that is

beneficial for the MTL problems, e.g., similar tasks are close to another in the
embedding space. Respectively, an MTL approach needs to learn this mapping
function during training. For such a problem, the authors of [19] propose the
following equation of an embedding layer:

g(m) =
M∑

α=1

wαβδmα = wmβ , (1)

where δmα is the Kronecker delta. Therefore, δmα is a vector of length M (M
tasks), where only the entry with α = m is non-zero and wαβ ∈ R

D is the
learnable vector at this position. Respectively, the function g maps the discrete
value m of a task ID through a one-hot encoding to a trainable vector.

This transformation is then concatenated with other (continuous) features.
Due to the joint training for multiple tasks, e.g., within one batch we have
various tasks, it is beneficial for the network to learn a mapping where similar

124 J. Schreiber et al.

Fig. 2. Residual block of the task-TCN. The encoded task ID, from the embedding
space, is transformed through a 1D convolution. The transformed task ID is then
added to the results of the original TCN residual block.

tasks have a similar vector wαβ . This mapping allows the utilization of a similar
transformation in later layers for similar domains and targets.

Bayesian Task-Embeddings are especially interesting in the scenario where
limited data for a (single) task is available. If a limited amount of data is avail-
able, e.g., in the inductive transfer learning problem, a Bayesian approach allows
placing an identical, independent prior on wmβ . This prior ensures that indis-
tinguishable tasks, due to limited data, are within a similar neighborhood. At
the same time, tasks with sufficient data have an encoding that is different from
other tasks. We apply Bayes by backprop solely on the embedding layer. By using
a standard normal distribution and sampling weights solely from the embedding,
to minimize the expected lower bound (ELBO) [23], we limit the training effort
for the number of additional parameters and benefit from the embedding space’s
Bayesian approach.

Task-Embedding for Temporal Convolution Neural Networks are a
way to take advantage of periodic patterns, e.g., the diurnal cycle, in day-ahead
forecasts [5] in an MTL architecture. In MTL day-ahead power forecast problems,
we forecast the expected power ym

24, . . . , y
m
48 for m ∈ 1, . . . ,M parks. In contrast

to intra-day forecasts between 0 and 23 hours into the future, day-ahead forecasts
are more challenging as the forecast error increases with an increasing forecast
horizon [24]. We have the numerical weather features xm

24, . . . ,x
m
48 from a weather

prediction originating from t0 (e.g. originating from 0 o’clock UTC) as input. The
fundamental building block of task-TCN is the TCN [21], a CNN architecture
for time series. In this architecture, the residual blocks limit the problem of
vanishing gradients, see Fig. 2.

In the previously discussed task embedding for MLPs, the embedding is con-
catenated with the continuous weather input features to provide task-specific
forecasts. However, simply concatenating the embedding output along the time
axis in CNNs leads to additional channels with the same information for each
time step. Respectively, having redundant information along the time axis. We

Task Embedding Temporal Convolution Networks for Transfer Learning 125

found this not to work well in preliminary experiments due to the redundant
information causing a plateau in the training error.

Instead, we propose to add the result from g(mi) at the end of the residual
block, see Fig. 2. Therefore, we first transform the encoded task ID through a 1-D
convolution layer with a kernel size of one. The transformation gives the network
the possibility to learn an encoding that is different in each channel. Effectively,
this allows the network to adjust each feature (channel) specifically for the task
at hand. For instance consider, that the output of the first residual block has 100
channels of 24 time steps. For a single sample, the dimension will be 1×100×24.
Also, consider that each task has an embedding vector of dimension 1 × 10. The
embedding tensor will then be 1 × 10 × 24. After applying the transformation,
through the 1D convolution, the transformed embedding tensor will also be of
dimension 1 × 100 × 24. By adding this tensor in the residual block, we provide
distinct task related information in each channel, giving the network the pos-
sibility to learn task specific features in each channel while limiting redundant
information in contrast to a concatenation. This principle applies to any residual
block within the network. A study on the diverse learned similarities of tasks
per channel is presented in the supplementary material.

4 Experimental Evaluation of the Task-Temporal
Convolution Network

To answer our research questions, we conducted one experiment for each of the
three research questions. We evaluate each of these experiments on the datasets
explained in Sect. 4.1. Sect. 4.2 lists relevant evaluation measures. The design of
experiments and the evaluations are detailed in Sect. 4.3, 4.4, and 4.5. The mod-
els detailed in Sect. 4.3 are the source models for the other experiments. The
description also includes the Bayesian MLP that is the baseline in all experi-
ments. All models are similar in the sense that they share the task embedding
architecture and hyperparameters are identical. We refer to TCN first and MLP
first when the encoded information is considered only in the first layer and TCN
all when the task information is added in all, except the last, residual blocks.

4.1 GemanSolarFarm and EuropeWindFarm Dataset

In the GermanSolarFarm and the EuropeWindFarm dataset, the uncertainty of
the NWP makes it challenging to predict the generated power. We refer to these
as wind and solar datasets in the following. This mismatch between the weather
forecast and power can be seen in Fig. 3 and Fig. 4. As weather forecasts are valid
for a larger area, a mismatch between the forecast horizon and the placement
of a park causes uncertainty. The uncertainty also increases with the increasing
forecast horizon of the weather prediction [5].

The solar dataset consists of 21 parks, while the wind dataset consists of
45 parks. Both datasets include day-ahead weather forecasts, between 24 and
48 h into the future, of the European center for medium-range weather forecast

126 J. Schreiber et al.

Fig. 3. Forecasts of a solar park with
30 days training data.

Fig. 4. Forecasts of a wind park with
30 days training data.

model [25]. The data also includes the normalized historical power measure-
ments. The solar dataset has a three-hourly resolution for two years and two
months. We linearly interpolate the data to have a resolution of one hour to
increase the number of samples, especially for the inductive TL problem. The
wind dataset has data from two years with an hourly resolution. The data is
linearly interpolated to have a 15-min resolution. Respectively, the PV dataset
has 24 timestamps per day and 96 for the wind dataset. Days not fulfilling these
criteria are neglected. The first year is considered for training while the remain-
ing data is used for testing. Weather features are standardized on the training
data. This process results in about 8200 samples per park for training and 9400
for testing in the solar dataset. The wind dataset has about 28400 training and
27400 test samples. The solar dataset contains 38 features, such as sun posi-
tion and solar radiation. The wind dataset contains seven features, such as wind
speed and wind direction. To test the algorithm for inductive TL and zero-shot
learning, we split the parks through five-fold cross-validation so that each park
is a target task once while having different source tasks.

One disadvantage of these two datasets is that they do not contain any
meta-information directly, not even the location. Typically, the meta-information
in zero-shot learning is used as a proxy to find a similar source task. How-
ever, this information is also not available in other open datasets for renewable
power forecasts. Therefore, we create meta-information through the input space,
see Sect. 4.4. One advantage of the datasets is that they are distributed through-
out Germany and even Europe. This distribution makes the MTL, inductive TL,
and zero-shot learning more realistic as one cannot assume that parks are nearby
in practice.

4.2 Evaluation Measures

In all experiments, we are considering the normalized root-mean-squared error
(nRMSE). A significant difference between a (reference) model and the baseline
is tested through the Wilcoxon test (with α = 0.05), by comparing the nRMSE
of a park from the baseline and a reference model. To calculate improvements
against the baseline, we consider the mean skill of all m parks by

Task Embedding Temporal Convolution Networks for Transfer Learning 127

skillm = 1 − nRMSEreferencem

nRMSEbaselinem

and skill =
1
M

m=M∑

m=1

skillm, (2)

where values larger than zero indicate an improvement upon the baseline.

4.3 MTL Experiment

In this section, we conduct an experiment to answer the research question:

Question 1. Can an MTL CNN architecture improve the forecast error for wind
and PV parks compared to a similar MLP MTL architecture?

Findings: The proposed task-TCN improves the baseline up to 18% for the
solar dataset and 13% for the wind dataset.

Design of Experiment: Ten percent of the training data is validation data
for hyperparameter optimization. Details on the grid search for hyperparame-
ter optimization are available in the supplementary material. Due to the five-
fold cross-validation, each park is trained four times, see Sect. 4.1. We calculate
the mean nRMSE of a park for these runs. In total, we train six models and
evaluate them through the nRMSE and the skill. The first two are the task
embedding MLP (MLP first) and the Bayesian variant of the embedding layer,
where the latter is considered the baseline. Both MLP variants can be consid-
ered as state of the art, see Sect. 2. For the TCN we provide the encoded task
ID from the embedding once only to the first residual block (TCN first) and
in the other variant to all except the last layer (TCN all). We exclude the last
layer as we assume that sufficient information from the embedding is available
at this point in the network. Afterward, only a transformation to the power of
a specific task is required. For each of those two models, we consider a Bayesian
and a non-Bayesian variant. We do not consider an ablation study without the
task embedding as the architecture would then no longer be extendable to new
tasks without catastrophic forgetting for inductive TL. Further, the improvement
through the embedding over single-task learning is also shown in [3,4].

Detailed Findings: All variants of the TCN lead to a significant improvement
compared to the Bayesian MLP first as the baseline, see Table 1. The non-
Bayesian MLP first has significantly worse results than the baseline for both
datasets. In the case of the PV dataset, the non-Bayesian TCN all has the
smallest mean nRMSE (0.071), std, and best skill. It is essential to consider
that probably due to the larger correlation between PV parks in this dataset, as
described in [3], it is beneficial for the TCN to share information in all residual
blocks. In contrast, the wind dataset tasks are less correlated compared to the
PV dataset [3]. Therefore, the non-Bayesian TCN first has the best results with
a mean nRMSE of 0.136.

128 J. Schreiber et al.

Table 1. Evaluation results for the wind and PV dataset for the mean nRMSE and
standard deviation (std) from all parks. The asterisk symbol marks significantly differ-
ent nRMSE values of reference (Ref.) models than the baseline (BS). The significance
is tested through the Wilcoxon signed-rank test with α = 0.05. In case that the skill is
larger than zero, this indicates a significant improvement upon the baseline.

Model Type DataType PV Wind

EmbPos Skill nRMSE std Skill nRMSE std

MLP Bayes First (BS) 0.000 0.087 0.005 0.000 0.184 0.007

Normal First (Ref.) −0.087 0.095* 0.015 −0.239 0.229* 0.047

TCN Bayes All (Ref.) 0.092 0.079* 0.002 0.092 0.169* 0.005

First (Ref.) 0.098 0.078* 0.002 0.089 0.169* 0.007

Normal All (Ref.) 0.181 0.071* 0.001 0.254 0.137* 0.002

First (Ref.) 0.174 0.072* 0.001 0.258 0.136* 0.002

Interestingly, for both datasets, the Bayesian TCN perform substantially
worse than their non-Bayesian variants. However, the Bayesian MLP first error is
significantly better than the non-Bayesian approach. In the case of the Bayesian
MLP first, the prior probably allows the model to better learn the common-
alities and differences between tasks, especially in case of insufficient data [4].
However, in the case of the TCN, the additional channel wise transform allows
the network to learn an encoding that is different in each channel. Due to this
possibility of learning a vast amount of features that reflect different amounts
of similarities between tasks, it makes the benefits of a Bayesian approach dis-
pensable, especially since they are sensitive to the selection of the prior, which
is constant in all experiments. Nonetheless, the results are promising for the
following experiments, as the Bayesian MLP first baseline improves upon the
non-Bayesian MLP similar to [4] and the proposed task-TCN improves upon the
baseline.

4.4 Zero-Shot Learning Experiment

In this section, we conduct an experiment to answer the research question:

Question 2. Are CNN based MTL architectures capable of providing good fore-
casts in zero-shot learning for renewable power forecasts?

Findings: The best TCN models achieve excellent forecast errors for PV and
wind as these models have a similar mean nRMSE compared to the baseline
from the previous experiment with a full year of data. However, outliers for the
wind dataset are present that need to be considered in future work.

Design of Experiment: In this experiment, we use the same model as
described in the previous section. Initially, we need to find a suitable source task

Task Embedding Temporal Convolution Networks for Transfer Learning 129

applicable to an unknown task. As stated earlier in Sect. 4.1, the two datasets
do not have meta-information directly applicable to select an appropriate source
task. However, a common approach in TL for time series is to use dynamic
time warping (DTW) as a similarity measure in the feature space between the
source and the target [20]. We assume that a similar park type, e.g., the same
rotor diameter, is placed in similar regions with identical weather features. Even
though this is not optimal, it is still a reasonable assumption to make. For
instance, wind parks near coasts typically have larger rotor diameters than parks
placed in a forest. To determine the most similar wind or PV park, we calculate
the mean squared difference through DTW between the source and the target.
In the case of the wind dataset, we use the wind speed at 100 m height. For
the solar dataset, we utilize direct radiation, as those two are the most relevant
features to forecast the expected power [24]. We calculate the similarity based on
the first year’s training data of the source and target task. Using the entire year
is possible, as the input features are themselves forecasts and are extractable
for the past. After finding the most prominent candidate through the training
data, we forecast on the test dataset. Based on these forecasts, we calculate the
nRMSE for each park and the skill to measure the improvement.

Detailed Findings: Table 2 summarizes the respective results. For the PV
dataset, the non-Bayesian TCN all achieves the best mean nRMSE of 0.081. All
other TCN models have a similar mean nRMSE of 0.082. This zero-shot learning
result is outstanding since it is still better than the baseline from the previous
experiment with a mean nRMSE of 0.087 with a full year of training data.

The Bayesian TCN all and TCN first have the best mean nRMSE with
0.182 and improvements above 10% compared to the zero-shot baseline of this
experiment for the wind dataset. The non-Bayesian TCNs have a similar nRMSE
of 0.188. Again, the result of the best TCNs is less than the mean nRMSE (0.184)
of the baseline from the previous experiment.

Nonetheless, there are two interesting observations. First, for all models on
the wind dataset, outliers above an nRMSE of 0.5 are present. As the wind
dataset has parks spread throughout Europe with distinct topographies and
weather situations, these outliers are not surprising. Furthermore, the source task
selection is solely based on DTW, as a proxy for the missing meta-information.
Respectively, these outliers need to be considered in future work, e.g., through
additional meta-information. Second, for the wind dataset, the Bayesian TCN
variants are better than their non-Bayesian counterparts. This effect is surpris-
ing, as their basis from the previous experiment behaves inversely. We can assume
that due to the prior, acting as a regularizer, in Bayesian TCNs we have fewer
outliers for indistinguishable tasks. However, this should be considered in future
work.

4.5 Inductive TL Experiment

In this section, we conduct an experiment to answer the research question:

130 J. Schreiber et al.

Table 2. Result for zero-shot learning, cf. with Table 1.

Model Type DataType PV Wind

EmbPos Skill nRMSE std Skill nRMSE std

MLP Bayes First (BS) 0.000 0.093 0.018 0.000 0.202 0.071

Normal First (Ref.) −0.055 0.098 0.028 −0.159 0.226* 0.082

TCN Bayes All (Ref.) 0.123 0.082* 0.018 0.109 0.182* 0.076

First (Ref.) 0.123 0.082* 0.019 0.104 0.182* 0.073

Normal All (Ref.) 0.129 0.081* 0.020 0.058 0.188 0.078

First (Ref.) 0.127 0.082* 0.019 0.059 0.188 0.077

Question 3. Are CNN based MTL architectures beneficial during inductive TL
compared to a similar MLP MTL approach?

Findings: With only 90 days of training data, the nRMSE of the TCN archi-
tecture is similar to the TCN with an entire year of training data. This result
shows that the proposed model is extendable to new tasks having a similar error
while avoiding catastrophic forgetting with improvements above 25% compared
to the baseline.

Design of Experiment: As seasonal influences affect the forecast error [24],
we test how the different seasons as training data result in other target errors.
Further, to test the influence of the amount of available training data, we train
with data from 7, 14, 30, 60, 90 and additionally 365 days. To avoid catastrophic
forgetting, we only finetune the embedding layer. In this way, the network needs
to learn a transformation of the task ID similar to previous source parks and use
this encoding. Finally, we tested two methods to initialize the embedding of the
new task. The first one uses the default initialization strategy of pytorch. The
second one copies the task embedding based on the most similar task through
the smallest mean squared error on 10% of the training data.

Detailed Findings: In the following, we show exemplary results of the spring
season for both datasets. Those lead to the best results compared to other seasons
for training. When comparing models with another, observations are similar to
those presented in the following also for other seasons. The results with a year
of training data and other seasons are available in the supplementary material.

The results for the wind dataset are summarized in Table 3. For all except
one case, copying the task ID leads to an improved mean nRMSE compared to
the default initialization strategy for all models and available training amounts.
All TCN variants achieve a significant improvement upon the baseline for all
different numbers of training data. The non-Bayesian TCN all, where we copy
the most similar embedding vector, has the best mean nRMSE for most training

Task Embedding Temporal Convolution Networks for Transfer Learning 131

Table 3. Mean nRMSE for spring of wind data set. Significant differences of the
reference (Ref.) compared to the baseline (BS) is tested through the Wilcoxon signed-
rank test with α = 0.05 and marked with *.

Model Embedding
Type

Embedding
Position

DaysTraining nRMSE

Embedding
Initialization

7 14 30 60 90

MLP Bayes First Copy (Ref.) 0.233 0.229 0.213 0.206 0.186

Default (BS) 0.234 0.229 0.213 0.205 0.186

Normal First Copy (Ref.) 0.237 0.233 0.212 0.200 0.181

Default (Ref.) 0.255 0.247* 0.229* 0.217* 0.200*

TCN Bayes All Copy (Ref.) 0.178* 0.192* 0.171* 0.170* 0.162*

Default (Ref.) 0.186* 0.200* 0.177* 0.173* 0.163*

First Copy (Ref.) 0.177* 0.195* 0.176* 0.172* 0.165*

Default (Ref.) 0.184* 0.202* 0.180* 0.175* 0.165*

Normal All Copy (Ref.) 0.161* 0.173* 0.152* 0.141* 0.137*

Default (Ref.) 0.179* 0.188* 0.155* 0.146* 0.139*

First Copy (Ref.) 0.163* 0.181* 0.148* 0.142* 0.137*

Default (Ref.) 0.187* 0.199* 0.162* 0.152* 0.142*

amounts. The non-Bayesian MLP first is either significant worse or has a similar
nRMSE than the Bayesian MLP.

Table 4 summarizes the same results for the solar dataset. Again, copying
the task ID leads to an improved mean nRMSE for all models, compared to the
default initialization strategy, except in one case. A significant improvement is
achieved through the non-Bayesian MLP first and copying the encoded task ID.
All TCN models achieve a significant improvement upon the baseline. In most
cases, the TCN first that copies the embedding vector has the best or at least
a similar result. Interestingly, the non-Bayesian MLP first is significantly better
than the Bayesian baseline, which contrasts with the results from the MTL
experiment. Potentially, this contradiction is caused by an insufficient amount
of training epochs during inductive TL for the Bayesian model that is required
to reduce the ELBO.

Due to these results, we can summarize that the TCN models achieve signif-
icant improvements compared to the MLP baselines. This result is not surpris-
ing, as, also in other research domains [20], the hierarchical learning structure
of CNNs is beneficial for TL in time series. In our cases, the best PV results
are when considering the embedding vector solely at the first residual block. It
is probably sufficient since the network can bypass information to later layers,
without losing information, due to the residual block. However, for the more
non-linear problem of wind power forecasts, it is also beneficial to consider the
encoded task ID in all residual blocks.

132 J. Schreiber et al.

Table 4. Mean nRMSE for spring of pv data set, cf. with Table 3.

Model Embedding
Type

Embedding
Position

DaysTraining nRMSE

Embedding
Initialization

7 14 30 60 90

MLP Bayes First Copy (Ref.) 0.305 0.204 0.167 0.110 0.116

Default (BS) 0.305 0.204 0.167 0.110 0.116

Normal First Copy (Ref.) 0.170* 0.192 0.096* 0.086* 0.089*

Default (Ref.) 0.263 0.199 0.132 0.093* 0.097*

TCN Bayes All Copy (Ref.) 0.094* 0.100* 0.097* 0.083* 0.084*

Default (Ref.) 0.095* 0.098* 0.097* 0.083* 0.084*

First Copy (Ref.) 0.106* 0.104* 0.091* 0.084* 0.084*

Default (Ref.) 0.106* 0.104* 0.092* 0.084* 0.084*

Normal All Copy (Ref.) 0.096* 0.083* 0.078* 0.076* 0.077*

Default (Ref.) 0.106* 0.105* 0.117 0.079* 0.078*

First Copy (Ref.) 0.106* 0.081* 0.076* 0.076* 0.078*

Default (Ref.) 0.117* 0.090* 0.099* 0.078* 0.080*

5 Conclusion and Future Work

We successfully showed the applicability of the proposed task TCN for wind
and PV day-ahead power forecasts. The proposed architecture provides the pos-
sibility to solve critical real-world challenges in renewable power forecasts. It pro-
vides a framework for MTL, inductive TL, and zero-shot learning and improves
the forecast error significantly compared to the Bayesian MLP task embedding
as the baseline in all three domains. However, some results of the Bayesian archi-
tecture for the inductive TL are contradictory. Those contradictions are probably
caused by insufficient training epochs to reduce the ELBO that should be inves-
tigated in future work. The most intriguing result for future work concerns the
zero-shot learning experiment as the proposed TCN architecture achieves at least
a similar low forecast error, without training data, as the Bayesian MLP with a
full year of training data. Even though we achieve excellent results for the PV
and wind dataset, the wind dataset led to some outliers that can be considered
by taking additional meta-information into account in future work.

Acknowledgments. This work results from the project TRANSFER (01IS20020B)
funded by BMBF (German Federal Ministry of Education and Research).

References

1. Gielen, D., Boshell, F., Saygin, D., et al.: The role of renewable energy in the global
energy transformation. Energy Strategy Rev. 24, 38–50 (2019)

2. Schwartz, R., Dodge, J., Smith, N.A., et al.: Green AI. CoRR, pp. 1–12 (2019).
arXiv: 1907.10597

3. Schreiber, J., Sick, B.: Emerging relation network and task embedding for multi-
task regression problems. In: ICPR (2020)

http://arxiv.org/abs/1907.10597

Task Embedding Temporal Convolution Networks for Transfer Learning 133

4. Vogt, S., Braun, A., Dobschinski, J., et al.: Wind power forecasting based on deep
neural networks and transfer learning. In: 18th Wind Integration Workshop, pp. 8
(2019)

5. Schreiber, J., Buschin, A., Sick, B.: Influences in forecast errors for wind and
photovoltaic power: a study on machine learning models. In: INFORMATIK 2019,
pp. 585–598. Gesellschaft für Informatik e.V. (2019)

6. Solas, M., Cepeda, N., Viegas, J.L.: Convolutional neural network for short-term
wind power forecasting. In: Proceedings of the ISGT-Europe 2019 (2019)

7. Fuzhen, Z., Zhiyuan, Q., Keyu, D., et al.: A comprehensive survey on transfer
learning. Proc. IEEE 109(1), 43–76 (2021)

8. Zhang, Y., Yang, Q.: A survey on multi-task learning. IEEE TKDE, 1–20 (2021,
early access)

9. Shireen, T., Shao, C., Wang, H., et al.: Iterative multi-task learning for time-series
modeling of solar panel PV outputs. Appl. Energy 212, 654–662 (2018)

10. Tasnim, S., Rahman, A., Oo, A.M.T., et al.: Wind power prediction in new stations
based on knowledge of existing Stations: A cluster based multi source domain
adaptation approach. Knowl.-Based Syst. 145, 15–24 (2018)

11. Cao, L., Wang, L., Huang, C., et al.: A transfer learning strategy for short-term
wind power forecasting. In: Chinese Automation Congress, pp. 3070–3075. IEEE
(2018)

12. Cai, L., Gu, J., Ma, J., et al.: Probabilistic wind power forecasting approach via
instance-based transfer learning embedded gradient boosting decision trees. Ener-
gies 12(1), 159 (2019)

13. Qureshi, A.S., Khan, A.: Adaptive transfer learning in deep neural networks: Wind
power prediction using knowledge transfer from region to region and between dif-
ferent task domains. Comput. Intell. 35(4), 1088–1112 (2019)

14. Liu, X., Cao, Z., Zhang, Z.: Short-term predictions of multiple wind turbine power
outputs based on deep neural networks with transfer learning. Energy 217, 119356
(2021)

15. Ju, Y., Li, J., Sun, G.: Ultra-short-term photovoltaic power prediction based on
self-attention mechanism and multi-task learning. IEEE Access 8, 44821–44829
(2020)

16. Zhou, S., Zhou, L., Mao, M., et al.: Transfer learning for photovoltaic power fore-
casting with long short-term memory neural network. In: Proceedings of the Big-
Comp 2020, pp. 125–132 (2020)

17. Zang, H., Cheng, L., Ding, T., et al.: Day-ahead photovoltaic power forecasting
approach based on deep convolutional neural networks and meta learning. Int.
JEPE 118, 105790 (2020)

18. Mikolov, T., Chen, K., Corrado, G., et al.: Distributed representations of words
and phrases and their compositionality. In: NIPS, pp. 3111–3119 (2013)

19. Guo, C., Berkhahn, F.: Entity embeddings of categorical variables. CoRR, pp. 1–9
(2016). arXiv: 1604.06737

20. Fawaz, H.I., Forestier, G., Weber, J., et al.: Transfer learning for time series clas-
sification. In: 2018 IEEE BigData, pp. 1367–1376 (2019)

21. Yan, J., Mu, L., Wang, L., Ranjan, R., Zomaya, A.Y.: Temporal convolutional
networks for the advance prediction of ENSO. Sci. Rep. 10(1), 1–15 (2020)

22. Reis, J., Gonçalves, G.: Hyper-process model: a zero-shot learning algorithm for
regression problems based on shape analysis. JMLR 1, 1–36 (2018)

23. Blundell, C., Cornebise, J., Kavukcuoglu, K., et al.: Weight uncertainty in neural
networks. In: 32nd ICML 2015, vol. 37, pp. 1613–1622 (2015)

http://arxiv.org/abs/1604.06737

134 J. Schreiber et al.

24. Schreiber, J., Siefert, M., Winter, K., et al.: Prophesy: Prognoseunsicherheiten von
Windenergie und Photovoltaik in zukünftigen Stromversorgungssystemen. German
National Library of Science and Technology, p. 159 (2020)

25. European centre for medium-range weather forecasts (2020). http://www.ecmwf.
int/. Accessed 30 Mar 2021

http://www.ecmwf.int/
http://www.ecmwf.int/

Generating Multi-type Temporal
Sequences to Mitigate Class-Imbalanced

Problem

Lun Jiang, Nima Salehi Sadghiani(B), Zhuo Tao, and Andrew Cohen

Unity, San Francisco, CA 94103, USA
{lun,nimas,zhuo,andrew.cohen}@unity3d.com

Abstract. From the ad network standpoint, a user’s activity is a multi-
type sequence of temporal events consisting of event types and time inter-
vals. Understanding user patterns in ad networks has received increasing
attention from the machine learning community. Particularly, the prob-
lems of fraud detection, Conversion Rate (CVR), and Click-Through
Rate (CTR) prediction are of interest. However, the class imbalance
between major and minor classes in these tasks can bias a machine learn-
ing model leading to poor performance. This study proposes using two
multi-type (continuous and discrete) training approaches for GANs to
deal with the limitations of traditional GANs in passing the gradient
updates for discrete tokens. First, we used the Reinforcement Learn-
ing (RL)-based training approach and then, an approximation of the
multinomial distribution parameterized in terms of the softmax function
(Gumble-Softmax). Our extensive experiments based on synthetic data
have shown the trained generator can generate sequences with desired
properties measured by multiple criteria.

Keywords: Multi-type sequences · Temporal events · Generative
adversarial network · Reinforcement learning

1 Introduction

Game developers can monetize their games by selling in-game ad placements
to advertisers. Ads can be integrated in multiple ways such as a banner in the
background or commercials during breaks (when a specific part of the game is
completed). There are four main elements in the game advertising ecosystem:
publishers or developers, advertisers, advertising networks, and users [21]. Game
advertising networks connect advertisers with game developers and serve billions
of ads to user devices, triggering enormous ad events. For example, Unity Ads
reports 22.9B+ monthly global ad impressions, reaching 2B+ monthly active
end-users worldwide1.
1 https://www.businesswire.com/news/home/20201013005191/en/.

L. Jiang, N. S. Sadghiani and Z. Tao—Authors contributed equally.

c© Springer Nature Switzerland AG 2021
Y. Dong et al. (Eds.): ECML PKDD 2021, LNAI 12978, pp. 135–150, 2021.
https://doi.org/10.1007/978-3-030-86514-6_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86514-6_9&domain=pdf
https://www.businesswire.com/news/home/20201013005191/en/
https://doi.org/10.1007/978-3-030-86514-6_9

136 L. Jiang et al.

An ad event is a user interaction e.g. request, start, view, click, and install.
Each type stands for one specific kind of ad-related user action happening at
a specific time. A complete ad life cycle consists of a temporal sequence of ad
events, each of which is a tuple of event types with corresponding time intervals.
Click and install are two kinds of ad events commonly associated with ad revenue.
Pay-Per-Click [17] and Pay-Per-Install [27] are the most widely used advertising
models for pricing.

Unlike traditional advertising, online advertising offers services that link user
interactions to conversions or clicks. Due to this, predicting a user’s probability
of clicking or conversion rate has become one of the most important problems
in online advertising [4]. Predicting Conversion Rate (CVR) and Click-Through
Rate (CTR) are usually treated as supervised learning problems [7]. For exam-
ple, in CTR prediction, the labels are click/not-click an ad for every user. The
sequence of events before a click/not-click response are used as features of the
supervised learning model.

Unfortunately, as advertisers allocate more of their budget into this ecosys-
tem, there is more incentive to abuse the advertising networks and defraud adver-
tisers of their money [22]. Fraudulent ad activity aimed at generating illegitimate
ad revenue or unearned benefits are one of the major threats to online advertis-
ing models. Common types of fraudulent activities include fake impressions [14],
click bots [13,19], or click farms [24].

Given the massive ad activity data in-game advertising networks, machine
learning-based approaches have become popular in the industry. However, it
is not a straightforward task to train machine learning models directly on the
sequences collected from ad activities [5].

The primary issue in these problems is class imbalance. By definition, the
ratio of typical user behavior to anomalous will heavily favor typical. For exam-
ple, the CVR can be as low as 0.01% for game ads. Similarly, most ad traffic
is non-fraudulent, and data labeling by human experts is time-consuming. In
these scenarios, label sparsity leads to low availability of labeled sequences for
the minor class. Simply oversampling the minority class can cause significant
overfitting, while undersampling the majority may lead to information loss and
yield a tiny training dataset [1]. In this study, we present a novel method to
generate synthetic data to mitigate class imbalance.

The main contributions of our work can be summarized as follows:

1. A novel reinforcement learning formulation that trains a generator to generate
multi-type temporal sequences with non-uniform time intervals.

2. A novel training method for sequence GAN that uses a critic network.
3. A new application for event-based sequence GAN in game advertising.

2 Related Work

Generative Adversarial Networks (GANs) [11] have drawn significant attention
as a framework for training generative models capable of producing synthetic
data with desired structures and properties [18]. It was proposed to use GANs to

Generating Multi-type Temporal Sequences 137

generate data that mimics training data as an augmented oversampling method
with an application in credit card fraud. The generated data is used to assist
the classification of credit card fraud [1].

2.1 GAN for Sequence Data

Despite the remarkable success of GANs in generating synthetic data, very few
studies focus on generating sequential data. This is due to additional challenges
in generating temporally dependent samples. Recurrent Neural Network (RNN)
solutions are state-of-the-art in modeling sequential data. Recurrent Conditional
GAN (RCGAN) generates real-valued multi-dimensional time series and then
uses the generated series for supervised training [10]. The time series data in their
study were physiological signals sampled at specific fixed frequencies. However,
ad event data has higher complexity due to non-uniform time intervals and
discrete event types and thus can not be modeled as wave signals. In ad event
sequences, two events with a short time interval tend to be more correlated than
events with larger time intervals.

A GAN-based generative model for DNA along with an activation maxi-
mization technique for DNA sequence data is proposed by [18]. Their exper-
iments have shown that these generative techniques can learn the important
structure from DNA sequences and can be used to design new DNA sequences
with desired properties. Similarly to the previous study, their focus is on fixed
interval sequences.

The Long Short-Term Memory (LSTM)-Autoencoder is used to encode the
benign users into a latent space [30]. They proposed using One-Class Adver-
sarial Network (OCAN) for the training process of the GAN model. In their
training framework, the discriminator is trained to be a classifier for distinguish-
ing benign users, and the generator produces samples that are complementary
to the representations of benign users.

2.2 RL for GANs with Sequences of Discrete Tokens

When generating continuous outputs, gradient updates can be passed from the
discriminator to the generator. However, for discrete outputs, this is not straight-
forward due to a lack of differentiability. The issue of training GAN models
to generate sequences of discrete tokens is addressed in [28]. They proposed a
sequence generation framework called SeqGAN that models the data generator
as a stochastic policy learned via Reinforcement Learning (RL) [26]. SeqGAN
learns a policy using the vanilla policy gradient and Monte Carlo (MC) rollouts
to approximate the advantage. MC rollouts are a computationally expensive
process in the training loop. Moreover, SeqGAN is limited to discrete token
generation. In our work, we propose a modified version of SeqGAN that can
generate both discrete tokens and continuous time-intervals. Additionally, to
efficiently train the policy network, we employ a Critic network to approximate
the return given a partially generated sequence to speed up the training process.
This approach also brings the potential to use a trained Critic network for early
fraud detection from partial sequences.

138 L. Jiang et al.

An application of SeqGAN in recommendation systems is presented in [29].
The paper solves the slow convergence and unstable RL training by using the
Actor-Critic algorithm instead of MC roll-outs. Their generator model produces
the entire recommended sequences given the interaction history while the discrim-
inator learns to maximize the score of ground-truth and minimize the score of gen-
erated sequences. In each step, the generator G generates a token by top-k beam
search based on the model distribution. In our work, we directly sample from the
distribution of the output probabilities of the tokens. While our methodologies are
close, we are aiming for different goals. We optimize the generated data to solve
the sample imbalance problem while they optimize for better recommendations.
Therefore, different evaluation metrics are needed. Our methodologies also differ
in the training strategy. For example, we used a Critic network as the baseline,
whereas they used Temporal-Difference bootstrap targets. They pre-trained the
discriminator on the generated data to reduce the exposure bias, while we pre-
trained the discriminator on the actual training data for improving the metrics
we use in our experiments. More importantly, they do not include time intervals
as an attribute in their model while we have time intervals in our models.

The idea of using SeqGan to adversarially learn the output sequences while
optimizing towards chemical metrics with the algorithm REINFORCE [26] is
proposed in [12]. They have shown that it is often advantageous to guide the
generative model towards some desirable characteristics, while ensuring that the
samples resemble the initial distribution.

2.3 Gumbel-Softmax Distribution for GANs with Sequences of
Discrete Tokens

The Gumbel-Softmax distribution is proposed in [20] to address the limitation
of GANs for generating sequences of discrete tokens. The Gumbel-Softmax is
a continuous approximation to a multinomial distribution parameterized over a
softmax function. This approximation is differentiable thus enabling backpropa-
gation through an approximation of a discrete sampling procedure. A tempera-
ture parameter can be used to controll the degree of approximation [16]. When
the temperature is lower, the approximation is closer to the one hot distribution;
when it is higher, the approximation is closer to a uniform distribution.

Another application of Gumbel-Softmax distributions is proposed in [6] for
generating small molecular graphs.

3 Methodology

In this section, we introduce a new methodology to generate multi-type
sequences using GAN, which can be trained by using RL and Gumbel-Softmax
reparametrization.

3.1 Definitions

The sequence of an ad event with length L is composed of two sub-sequences, the
sub-sequence of event types x and the sub-sequence of time stamps. First, we

Generating Multi-type Temporal Sequences 139

Fig. 1. Architecture of the Generator and the Discriminator.

transform the time stamps t into time intervals Δt and Δtm = tm − tm−1,∀m ∈
[1, L], and Δt1 = t1 − 0. Then, we combine the event types and time intervals
into a joint multi-type sequence A:

A = A1:L = {(x1,Δt1), (x2,Δt2), . . . ,Δ(xm,Δtm), . . . , (xL,ΔtL)}

where a bold A1:m denotes a partial sequence from step 1 to step m, and a
non-bold Am = (xm,Δtm) denotes a single pair in the sequence.

3.2 RL and Policy Improvement to Train GAN

We implemented a modified version of SeqGAN model to generate multi-type
temporal sequences. The architecture is shown in Fig. 1.

The sequence generation process of our generator G can be modeled as a
sequential decision process in RL. hm and Tm are the hidden states of LSTM
cells, and Z ∼ N (0, 1) is the normal noise used to initialize hm and Tm at the
beginning of each generation process.

From the perspective of RL, at each step m, we define the state Sm as the
partial sequence A1:m, a.k.a,

Sm = A1:m (1)

During the generation process, at each step m, a new pair

Am+1 = (xm+1,Δtm+1) (2)

is appended to the current partial sequence A1:m to formulate a new partial
sequence A1:m+1, and thus transit to a new state Sm+1, based on the definition
of state in (1). This process repeats step by step, until a complete sequence A
of length L described in (Sect. 3.1) is fully constructed.

140 L. Jiang et al.

To make decisions in this sequence generation process, we employ a hybrid
policy to represent action spaces with both continuous and discrete dimensions
(similar to the idea in [23]). This policy is designed to choose discrete event types
and continuous time intervals, assuming their action spaces are independent.
Then we use a categorical distribution and a Gaussian distribution to model the
policy distributions for the event types and the time intervals respectively. So
the hybrid generator policy can be defined as:

Gθ(am|Sm) = πx
θ (ax

m|Sm) · πΔt
θ (aΔt

m |Sm)

= Cat(x|αθ(Sm)) · N (Δt|μθ(Sm), σ2
θ(Sm)) (3)

where x ∈ K,Δt ∈ R≥0. K is the set of all event types. Then an action am is
taken at step m to sample the next event type xm+1 and the next time interval
Δtm+1 given the hybrid policy (3). So the action has discrete part and the
continuous part sampled independently:

am = {ax
m, aΔt

m } (4)
ax

m = xm+1 ∼ Cat(x|αθ(Sm)) (5)

aΔt
m = Δtm+1 ∼ N (Δt|μθ(Sm), σ2

θ(Sm)) (6)

where ax
m is the action to find the next event type xm+1 and aΔt

m is the action
to find the next time interval Δtm+1.

When generating a new event type and time interval at each step, we follow
the generator policy and sample from categorical and Gaussian distributions
independently and concatenate them to obtain the action vector am, then append
them to the current partial sequence A1:m to obtain a new partial sequence
A1:m+1. Once a complete sequence of length L has been generated, we pass
the sequence A to the Discriminator D which predicts the probability of the
sequence to be real against fake:

Dφ(A) = Pr(Y = 1|A;φ) (7)

The feedback from D can be used to train G to generate sequences similar to
real training data to deceive D. Because the discrete data is not differentiable,
gradients can not passed back to generator like in image-base GANs.

The original SeqGAN training uses Policy Gradient method with MC roll-
out to optimize the policy [28]. In order to reduce variance in the optimization
process, SeqGAN runs the roll-out policy starting from current state till the
end of the sequence for multiple times to get the mean return. Here we use an
Actor-Critic method with a Critic network instead of MC roll-out to estimate
the value of any state, which is computationally more efficient [2].

The critic network models a state-dependent value V̂ Gθ

ψ (Sm) for a partially
generated sequence A1:m under policy Gθ. The output of the critic is defined as
the expected future return for the current state Sm = A1:m, which will be given
by the discriminator D when a complete sequence A is generated.

V̂ Gθ

ψ (Sm) = EAm+1:L∼Gθ(Sm)[Dφ(A)] (8)

Generating Multi-type Temporal Sequences 141

The parameters in the critic value function V̂ Gθ

ψ (Sm) are updated during training
by minimizing the mean squared error between the true return Dφ(A) and the
critic value:

J(ψ) = E[(Dφ(A) − V̂ Gθ

ψ (Sm))2] (9)

The difference between them, Dφ(A) − V̂ Gθ

ψ (Sm), is named the advantage func-
tion, which can be used in G training and helps to reduce variance.

The goal of G training is to choose actions based on a policy that maximizes
expected return. The object function of G follows Policy Gradient method [26]
which can be derived as:

∇θJ(θ) =
L−1∑

m=0

Eam∼Gθ(am|Sm)[∇θ log Gθ(am|Sm) · (Dφ(A) − V̂ Gθ

ψ (Sm))] (10)

Because of the independence assumption we made, the policy gradient term can
be broken down and written into a categorical cross-entropy and a Gaussian
log-likelihood as follows:

∇θ log Gθ(am|Sm)

= ∇θ[log Cat(x = xm+1|αθ(Sm)) + log N (Δt = Δtm+1|μθ(Sm), σ2
θ(Sm))]

= ∇θ[Ex∈K1x(xm+1) Pr(x = xm+1) − (Δtm+1 − μθ(Sm))2

2σ2
θ(Sm)

− 1
2

log(2πσ2
θ(Sm))]

(11)

The goal of D training to use distinguish generated sequences with true
sequences from training data. Dφ is updated through minimizing binary cross-
entropy loss. G and D alternatively in GAN training.

The training data are taken from the positive class Ω+ of our synthetic Ad
event dataset Ω, which are shown in the Sect. 4.1.

Before GAN training, We pre-train G with Maximum Likelihood Estimation
(MLE) self-regression on the sequences and pre-train D with binary classification
for better convergence. Details about pre-training and GAN training The Pseudo
code of the entire process is shown in Algorithm 1.

3.3 An Approximation with Gumbel-Softmax Distribution

Beside RL, we also tried to overcome the gradient updates problem for discrete
token in GAN using Gumbel-Softmax reparametrization. We use the same gen-
erator G and discriminator D setups as described in Sect. 3.2, except that the
generator policy Gθ(am|Sm) is different from that in (3). For the continuous part,
we no longer sample time intervals from a parametrized Normal distribution, but
directly take G outputs as the next time interval.

aΔt
m = Δtm+1 = Δtθ(Sm) (12)

142 L. Jiang et al.

Algorithm 1. Sequence Generative Adversarial Nets Training with RL
Require: training dataset Ω+, generator Gθ, discriminator Dφ, critic V̂

Gθ
ψ .

1: Initialize Gθ, Dφ, V̂
Gθ

ψ with random weights θ, φ, ψ

2: Pre-train Gθ with MLE self-regression on Ω+.
3: Generate fake dataset Ω+fake using pre-trained Gθ.
4: Pre-train Dφ via minimizing binary cross-entropy on Ω+ ∪ Ω+fake

5: repeat
6: for G-steps do
7: Generate a batch of fake sequences Afake ∼ Gθ

8: Get true rewards Dφ(A) from discriminator
9: for m in 1 : L do

10: Sm ← Afake
1:m

11: am ← (xm+1, Δtm+1) ∈ Afake

12: αθ(Sm), μθ(Sm), σθ(Sm) ← Gθ(Sm)
13: Compute policy gradient as shown in Eq. (11)
14: Compute value estimate V̂ Gθ

ψ (Sm)) by Eq. (8)

15: Compute the advantage (Dφ(A) − V̂
Gθ

ψ (Sm))

16: Update critic param. ψ by minimizing Eq. (9)
17: Update generator param. θ via Eq. (10)

18: for D-steps do
19: Generate a batch of sequences Afake ∼ Gθ

20: Sample a batch of sequences Atrue from Ω+

21: Train discriminator Dφ on Afake ∪ Atrue and update param. φ via mini-
mizing binary cross-entropy

22: until terminate condition satisfied

For the discrete part, in the forward pass of training the generator G, we add a
Gumbel noise to the probability distribution of event types at each step m, and
use argmax operator to sample the next event type xm+1:

ax
m = xm+1 = arg max

i
(log(αθ(Sm)i) + gi) for i = 1, . . . , |K| (13)

where τ is the temperature and g is a random variable with a standard Gumbel
distribution:

g = − log(− log(U)), where U ∼ Uniform([0, 1]) (14)

In the backward pass of G training, we reparametrize the categorical distribution
using a Gumbel random variable g to create a differentiable approximation of
the discrete representation of ax

m to calculate gradients:

Pr(ax
m = xi, xi ∈ K|Sm) =

exp ((log(αθ(Sm)i) + gi)/τ)
∑k

j=1 exp ((log(αθ(Sm)j) + gj)/τ)
(15)

for i = 1, . . . , |K|

Generating Multi-type Temporal Sequences 143

After the Gumbel-Softmax reparametrization, we can train the multi-type
GAN with discrete event types using a similar approach in [20].

4 Data Experiments

Due to data privacy laws (e.g. GDPR2, CCPA3), and to protect confidential
details of the Unity Ads Exchange and Fraud Detection service, we opt not
to use real-world ad events data in this study to avoid releasing user behav-
ior patterns to the public. While anonymizing the real-world dataset can hide
users’ identities, it cannot disguise the users’ behavior patterns and distribu-
tions. Fraudsters can easily employ bots to simulate the features of real users to
bypass fraud detection systems, if given access to the real data.

Instead, we conduct our experiments on a synthetic dataset, which contains
simplified data patterns we observed and abstracted from real-world ad events.
The design philosophy is explained in Sect. 4.1. The synthetic dataset and code
used to generate it are publicly available4.

4.1 Synthetic Dataset

We define the synthetic dataset as Ω. There are 4 types of hypothetical ad events
in Ω, shown as K = {a, b, c, d}. Each sequence in the synthetic dataset Ω has
a uniform length L = 20. A step at m corresponds to a tuple of event type and
time interval, (xm,Δtm), where xm is sampled uniformly from K, and Δtm is
sampled from a Chi-Square distribution with the degree of freedom conditioned
on xm, i.e.:

xm ∼ Uniform{a, b, c, d} Δtm ∼ X 2(k), k =

⎧
⎪⎪⎨

⎪⎪⎩

10 if xm = a
20 if xm = b
40 if xm = c
80 if xm = d

(16)

One example of a complete synthetic sequence is as below:

Ae.g. = [(a, 5), (a, 22), (b, 27), (c, 44), (c, 43),
(d, 87), (b, 30), (c, 36), (d, 75), (c, 28),
(a, 9), (b, 24), (a, 9), (c, 40), (b, 29),
(c, 37), (a, 10), (b, 19), (c, 26), (b, 7)]

2 General Data Protection Regulation.
3 California Consumer Privacy Act.
4 https://github.com/project-basileus/multitype-sequence-generation-by-tlstm-gan.

https://github.com/project-basileus/multitype-sequence-generation-by-tlstm-gan

144 L. Jiang et al.

There are two classes in Ω, the positive class Ω+ and the negative class
Ω−. As the two classes can be highly imbalanced in real-world Ad events data
(e.g. fraud/non-fraud, buyer/non-Buyer, conversion/non-conversion, etc.), the
positive class is the minority in Ω, with a positive-to-negative ratio of 1 : 500.
A positive sequence has the following properties:

1. The time delay between any two consecutive events of the same event type is
greater than or equal to 20.

2. Each d event is paired with one and only one previous c event. Each c event
can be paired with at most one d event after it.

3. The time delay between any two paired c and d events is smaller than or
equal to 200.

Sequences failing to have all 3 properties above are considered negative. The
positive class Ω+ is the training dataset. We train a GAN to generate data
points from the minority class with the above properties. We will employ them
as an oracle to evaluate the quality of GAN-generated sequences, as described
in Sect. 4.2.

The design philosophy of the synthetic dataset is to simulate real-world pat-
terns with as much fidelity as possible while hiding real parameters to pre-
vent reverse-engineering by fraudsters. Specifically, the hypothetical ad events
{a, b, c, d} mimic four typical real ad events: starts, views, clicks, and installs.
Real-world time delay between ad events follows a long-tail distribution, while
in the synthetic dataset, it is modeled with a Chi-Square distribution condi-
tioned on the preceding event type. Moreover, the three properties of a positive
sequence are also abstracted from real-world data patterns: property 1 detects
high-frequency attacks; property 2 describes the ad attribution process between
clicks and installs; property 3 checks the validity of an attribution window. Ad
attribution refers to the process of determining the user actions that led to the
desired outcome between the click of the ad and the conversion.

4.2 Evaluation Metric

In the last few years, several different evaluation metrics for GANs have been
introduced in the literature. Among them, Fréchet Inception Distance (FID) [15]
has been used extensively [8]. However, this only captures the numerical part
of a sequence, but our sequences are multi-type containing both the discrete
categorical part (event type) and the continuous numerical part (time interval).
Thus, we propose using multiple metrics to measure the quality of generated
sequences. We use Mean Absolute Deviation (MAD) to measure the discrete
event types, and use FID to evaluate the continuous time intervals. In addition,
we employ an oracle score based on the known properties in the training data to

Generating Multi-type Temporal Sequences 145

Table 1. Oracle metrics calculated using Ω+ as base

Samp. Reinforcement Learning (RL) Gumbel-Softmax (GS)

MAD ↓ FID ↓ Oracle ↑ MAD ↓ FID ↓ Oracle ↑
G0 0.8265 19892.4782 0.0015 0.7368 10045.2759 0.1477

G1 0.6622 101.7972 0.0820 0.6399 10455.6409 0.3600

G2 0.2849 6495.2955 0.5407 0.5427 9111.5298 0.55875

measure the similarity between generated sequences and the training data. The
arrows (↑↓) show the improvement directions.

MAD ↓. We propose using MAD to evaluate the statistical dispersion between
the categorical part (i.e., the event types) of the generated multi-type sequences
and that of the training data. We use the training dataset Ω+ as the comparison
base, and then one-hot encode the event types of training sequences to calculate
the medians at each step m. Median is known to be more robust to noise and
fits our need to have categorical values as opposed to mean.

The MAD score of any batches of generated sequences B is computed as
the mean absolute deviation of each sequence from the base medians, shown as
below as MAD can be computed using:

MAD(B) =
1

|B|
∑

A∈B

L∑

m=1

∣∣∣xA
m − Ẽm(Ω+)

∣∣∣ (17)

where B is a batch of generated sequences, |B| is the batch size, A is a sequence
of length L in B, xA

m is the event type of step m in A, Ẽm(Ω+) is the base
median of the event types at step m across the training dataset Ω+.

FID ↓. Similarly to MAD, we use FID to measure the distance between the
numerical part (i.e., the time intervals) of the multi-type sequences and that of
the training data. This score focuses on capturing certain desirable properties
including the quality and diversity of the generated sequences. FID performs well
in terms of robustness and computational efficiency [3]. The Fréchet distance
between two Gaussians is defined as:

FID(x, g) =
∥∥μx − μg

∥∥2

2
+ Tr

(
Σx + Σg − 2

(
ΣxΣg

) 1
2

)
(18)

where (μx, Σx) and
(
μg, Σg

)
are the means and covariances for the training and

generated data distribution, respectively.

Oracle ↑. One of the most direct ways to measure the quality of a generated
sequence is to check whether it has the known data properties of the positive

146 L. Jiang et al.

class (described in Sect. 4.1). For a batch of generated sequences, we calculate
the percentage of sequences having all 3 properties of the positive class over
all sequences, and then use this ratio as the oracle score. For example, for a
data batch from the training dataset Ω+, the oracle score is 1. The oracle score
is a metric taking both the continuous and discrete part of a sequence into
consideration.

4.3 Experiment Setup

We take 4000 samples from the Ω+ dataset defined in Sect. 4.1 for model train-
ing. As is described in Algorithm 1, we first pre-train G and D and then start
GAN training from the pre-trained G and D. We define the following terms to
describe the generator at different training phases:

– G0: Generator with initial random model parameters.
– G1: Generator pre-trained using MLE self-regression.
– G2: Generator after GAN training.

The ratio between G training steps and D training steps is set to 1 : 1. Both G
and D have the same batch size 256, and use the Adam optimizer with learning
rate 10−4.

During the pre-training and training processes, we evaluated the performance
of the trained generator G after some steps. The trained generator was then
used to generate a batch of data points and the batch evaluated according to
the metrics defined in Sect. 4.2.

To avoid mode collapse and convergence problems, we used several techniques
including label smoothing and noisy labels [25] in GAN training. In RL training,
we added entropy regularizers [9] to the reward for discrete token and continuous
time interval generation to avoid over-fitting.

4.4 Experiment Results

Table 1 shows the evaluation metric values of the sequences generated by G at
different phases of training. The MAD, FID score are calculated respectively
using data sampled from Ω+ as the base for the comparisons.

The curves of evaluation metrics during pre-training and training are shown
in Fig. 2 and Fig. 3, respectively.

The results in Table 1 demonstrate that the sequences generated by GAN-
trained G2 have a significantly higher oracle score than that generated by the
MLE pre-trained generator G1 and randomly initialized generator G0, for both
RL and Gumbel-Softmax training. This indicates that the generator is able to
learn the intrinsic patterns and properties in the training data Ω+, and is able
to mimic these patterns to deceive the discriminator.

Generating Multi-type Temporal Sequences 147

Fig. 2. Metrics of generated sequences over pre-training steps for Reinforcement Learn-
ing (RL) and Gumbel-Softmax (GS).

From the perspective of metric curves, we noticed that in the pre-training
of RL, the FID score of the generator decayed sharply from around 20, 000
to around 100, while the improvements of MAD score and oracle score were
stalling. It suggested that the MLE training was over-fitting in learning the
continuous distribution of the time interval Δt, while paying much less effort to
learn the patterns in the discrete event type x, and the relationships and hidden
connections between the continuous and the discrete parts.

Comparing the performance of RL and Gumbel-Softmax training approaches,
we found that the RL approach converged faster in pre-training and training
with smoother metrics curves, but it was vulnerable to over-fitting and Gaussian
model collapsing. Meanwhile, the Gumbel-Softmax approach converged slower
with more curve oscillations, but it was less prone to over-fitting, even with the
entropy regularizers in reward.

148 L. Jiang et al.

Fig. 3. Metrics of generated sequences over training steps for Reinforcement Learning
(RL) and Gumbel-Softmax (GS).

5 Conclusions

In this paper, we have described, trained, and evaluated a novel methodology
for generating artificial sequences with multi-type tokens. As this task poses
new challenges, we have presented and compared the policy gradient (RL) and
Gumbel-Softmax approaches for training a multi-type GAN. The generator pro-
posed in this paper is capable of generating multi-type temporal sequences with
non-uniform time intervals. We have also proposed using multiple criteria to
measure the quality of the generated sequences. Experiments demonstrate that
the generated multi-type sequences contain the desired properties.

Furthermore, we compared the performance of our generator for both RL
and GS approaches with data from our carefully designed synthetic dataset. We
concluded that the SeqGAN-trained generator has a higher performance com-
pared to pre-trained generators using self-regression MLE, measured by multiple
criteria including MAD, FID, oracle scores that are appropriate for evaluating
multi-type sequences.

Acknowledgments. The authors would like to thank Unity for giving the opportunity
to work on this project during Unity’s HackWeek 2020.

Generating Multi-type Temporal Sequences 149

References

1. Ba, H.: Improving detection of credit card fraudulent transactions using generative
adversarial networks. arXiv preprint arXiv:1907.03355 (2019)

2. Bhatnagar, S., Sutton, R.S., Ghavamzadeh, M., Lee, M.: Natural gradient actor-
critic algorithms. Automatica (2007)

3. Borji, A.: Pros and cons of GAN evaluation measures. Comput. Vis. Image Underst.
179, 41–65 (2019)

4. Chapelle, O., Manavoglu, E., Rosales, R.: Simple and scalable response prediction
for display advertising. ACM Trans. Intell. Syst. Technol. (TIST) 5(4), 1–34 (2014)

5. Choi, J.A., Lim, K.: Identifying machine learning techniques for classification of
target advertising. ICT Express (2020)

6. De Cao, N., Kipf, T.: MolGAN: an implicit generative model for small molecular
graphs. arXiv preprint arXiv:1805.11973 (2018)

7. Deng, C., Wang, H., Tan, Q., Xu, J., Gai, K.: Calibrating user response predictions
in online advertising. In: Dong, Y., Mladenić, D., Saunders, C. (eds.) ECML PKDD
2020. LNCS (LNAI), vol. 12460, pp. 208–223. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-67667-4 13

8. DeVries, T., Romero, A., Pineda, L., Taylor, G.W., Drozdzal, M.: On the evaluation
of conditional GANs. arXiv preprint arXiv:1907.08175 (2019)

9. Dieng, A.B., Ruiz, F.J., Blei, D.M., Titsias, M.K.: Prescribed generative adversarial
networks. arXiv preprint arXiv:1910.04302 (2019)

10. Esteban, C., Hyland, S.L., Rätsch, G.: Real-valued (medical) time series generation
with recurrent conditional GANs. arXiv preprint arXiv:1706.02633 (2017)

11. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Infor-
mation Processing Systems, pp. 2672–2680 (2014)

12. Guimaraes, G.L., Sanchez-Lengeling, B., Outeiral, C., Farias, P.L.C., Aspuru-
Guzik, A.: Objective-reinforced generative adversarial networks (organ) for
sequence generation models. arXiv preprint arXiv:1705.10843 (2017)

13. Haddadi, H.: Fighting online click-fraud using bluff ads. ACM SIGCOMM Comput.
Commun. Rev. 40(2), 21–25 (2010)

14. Haider, C.M.R., Iqbal, A., Rahman, A.H., Rahman, M.S.: An ensemble learn-
ing based approach for impression fraud detection in mobile advertising. J. Netw.
Comput. Appl. 112, 126–141 (2018)

15. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs
trained by a two time-scale update rule converge to a local Nash equilibrium.
In: Advances in Neural Information Processing Systems, pp. 6626–6637 (2017)

16. Jang, E., Gu, S., Poole, B.: Categorical reparameterization with gumbel-softmax.
arXiv preprint arXiv:1611.01144 (2016)

17. Kapoor, K.K., Dwivedi, Y.K., Piercy, N.C.: Pay-per-click advertising: a literature
review. Mark. Rev. 16(2), 183–202 (2016)

18. Killoran, N., Lee, L.J., Delong, A., Duvenaud, D., Frey, B.J.: Generating and
designing DNA with deep generative models. arXiv preprint arXiv:1712.06148
(2017)

19. Kudugunta, S.: Deep neural networks for bot detection. Inf. Sci. 467, 312–322
(2018)

20. Kusner, M.J., Hernández-Lobato, J.M.: GANs for sequences of discrete elements
with the gumbel-softmax distribution. arXiv preprint arXiv:1611.04051 (2016)

21. Mouawi, R., Elhajj, I.H., Chehab, A., Kayssi, A.: Crowdsourcing for click fraud
detection. EURASIP J. Inf. Secur. 2019(1), 11 (2019)

http://arxiv.org/abs/1907.03355
http://arxiv.org/abs/1805.11973
https://doi.org/10.1007/978-3-030-67667-4_13
https://doi.org/10.1007/978-3-030-67667-4_13
http://arxiv.org/abs/1907.08175
http://arxiv.org/abs/1910.04302
http://arxiv.org/abs/1706.02633
http://arxiv.org/abs/1705.10843
http://arxiv.org/abs/1611.01144
http://arxiv.org/abs/1712.06148
http://arxiv.org/abs/1611.04051

150 L. Jiang et al.

22. Nagaraja, S., Shah, R.: Clicktok: click fraud detection using traffic analysis. In:
Proceedings of the 12th Conference on Security and Privacy in Wireless and Mobile
Networks, pp. 105–116 (2019)

23. Neunert, M., et al.: Continuous-discrete reinforcement learning for hybrid control
in robotics. arXiv preprint arXiv:2001.00449 (2020)

24. Oentaryo, R., et al.: Detecting click fraud in online advertising: a data mining
approach. J. Mach. Learn. Res. 15(1), 99–140 (2014)

25. Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X.:
Improved techniques for training GANs. In: Advances in Neural Information Pro-
cessing System, vol. 29, pp. 2234–2242 (2016)

26. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press,
Cambridge (2018)

27. Thomas, K., et al.: Investigating commercial pay-per-install and the distribution
of unwanted software. In: 25th USENIX Security Symposium (USENIX Security
2016), pp. 721–739 (2016)

28. Yu, L., Zhang, W., Wang, J., Yu, Y.: SeqGAN: sequence generative adversarial nets
with policy gradient. In: Thirty-First AAAI Conference on Artificial Intelligence
(2017)

29. Zhao, P., Shui, T., Zhang, Y., Xiao, K., Bian, K.: Adversarial oracular seq2seq
learning for sequential recommendation. In: Proceedings of the Twenty-Ninth Inter-
national Joint Conference on Artificial Intelligence, IJCAI, pp. 1905–1911 (2020)

30. Zheng, P., Yuan, S., Wu, X., Li, J., Lu, A.: One-class adversarial nets for fraud
detection. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol.
33, pp. 1286–1293 (2019)

http://arxiv.org/abs/2001.00449

Recognizing Skeleton-Based Hand
Gestures by a Spatio-Temporal Network

Xin Li , Jun Liao , and Li Liu(B)

School of Big Data and Software Engineering, Chongqing University,
Chongqing 401331, China

{cquxinli,liaojun,dcsliuli}@cqu.edu.cn

Abstract. A key challenge in skeleton-based hand gesture recognition
is the fact that a gesture can often be performed in several different ways,
with each consisting of its own configuration of poses and their spatio-
temporal dependencies. This leads us to define a spatio-temporal network
model that explicitly characterizes these internal configurations of poses
and their local spatio-temporal dependencies. The model introduces a
latent vector variable from the coordinates embedding to characterize
these unique fine-grained configurations among joints of a particular
hand gesture. Furthermore, an attention scorer is devised to exchange
joint-pose information in the encoder structure, and as a result, all local
spatio-temporal dependencies are globally consistent. Empirical evalua-
tions on two benchmark datasets and one in-house dataset suggest our
approach significantly outperforms the state-of-the-art methods.

Keywords: Hand gesture recognition · Skeleton data ·
Spatio-temporal dependency · Feature consistency

1 Introduction

Hand gesture recognition has become an active research field, given its role in
facilitating a broad range of applications in human-computer interaction such
as touchless interfaces [13] and human behavior understanding [12]. Computer
vision-based approaches have been at the forefront of this field. In particular,
current techniques are becoming mature to recognize static hand poses from
3D skeleton collection devices like the Leap Motion Controller. Compared with
RGB-D images, skeleton-based approaches have the advantages of smaller data
size, leading to less computational costs, and are robust to complex phenomena
such as variable lighting effects and occlusions. For example, hand poses like
grasp can be collected by depth sensors with their 3D skeleton data recording
the locations of hand joints. Such pose consists of a fixed number of hand bones
and joints and can be inferred from a single video frame.

The main focus of this paper is on dynamic hand gesture recognition, where
a gesture is a collection of spatio-temporally related hand poses, with each being
detected in a single frame. However, a key challenge in hand gesture recognition
c© Springer Nature Switzerland AG 2021
Y. Dong et al. (Eds.): ECML PKDD 2021, LNAI 12978, pp. 151–167, 2021.
https://doi.org/10.1007/978-3-030-86514-6_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86514-6_10&domain=pdf
http://orcid.org/0000-0002-8283-3625
http://orcid.org/0000-0003-1873-489X
http://orcid.org/0000-0002-4776-5292
https://doi.org/10.1007/978-3-030-86514-6_10

152 X. Li et al.

is the fact that a hand gesture can often be performed in several different ways,
with each consisting of its own configuration of poses and their spatio-temporal
dependencies. For instance, it is found that there are 17 different hand shapes
to perform a grasp [8]. In addition, individuals often possess diverse styles of
performing the same hand gestures, and consequently, it is rather challenge to
manage similar or intricate relations with skeleton data that only involves simple
coordinate information. Accordingly, understanding hand gestures requires not
only the detection of hand poses, but also the interpretation of their rich spatio-
temporal dependencies. That is to say, a dynamic hand gesture recognition model
should capture inherent structures associated with individual poses as well as
their spatio-temporal dependencies.

Despite being a very challenging problem, in recent years there has been
a rapid growth of interest in modeling and recognizing articulated hand ges-
tures. Traditional approaches have gained attention in recent years for addressing
hand gesture recognition problems. These approaches are often rich in modeling
internal relations among poses by leveraging expert knowledge about kinematics
and employing hand-crafted features of 3D joint positions like Fisher Vector [5],
SPD matrices [18], joint distances [23] to characterize gesture sequences. These
approaches have the advantages of being semantically clear, logically elegant,
and reusable. However, these manually encoded features need to be carefully
defined by domain experts, which could be rather difficult to scale up and is
almost impossible for many practical scenarios where spatio-temporal relations
among poses are intricate. In addition, they can only manage the connections
between joints but often ignore the useful information from a single joint, and
as a result, it would be fairly limited to build a unified model for representing
these various features.

On the other hand, the most popular modeling paradigm might be that of
the deep neural networks, which include techniques such as recurrent neural net-
work (RNN), long short-term memory model (LSTM) and gated recurrent unit
(GRU). Due to the capacity of generating high-level semantic features in the
latent space, it is not surprising that these neural network-based models gen-
erally surpass their conventional counterparts that only consider utilizing joint-
level information by a large margin. However, they have difficulties in capturing
rich fine-grained (low-level or joint-level) spatial relationships among joints [11].
In fact, these models mostly focus on coarse-grained (high-level or pose-level)
spatial information (e.g. taking all the joints as a whole in a pose and describing
their relations between two adjacent frames on pose level), ignoring internal joint
dependency within a single frame and external joint relations among different
frames. As a result, only spatial relations associated with entire hand can be suf-
ficiently captured. They often cannot distinguish between two similar gestures
like grab and pinch, which only differ in the degrees of bending of the fingers, as
illustrated in Fig. 1. Moreover, most of the existing approaches adopt shake ges-
ture, which only repeats a fixed style of regular movements, to demonstrate their
superiority on dynamic recognition. However, we found these models can only
perform well on such simple gestures but not others (e.g. Danbian in Tai Chi

Recognizing Skeleton-Based Hand Gestures by a Spatio-Temporal Network 153

gestures, which contains complex grasping and rotating movements), especially
for the gestures with complicate discipline.

(a) Grab (b) Pinch (c) Shake (d) Danbian

Fig. 1. Visualization of different skeleton-based hand gestures. Note that Danbian is
a Tai Chi gesture from our in-house dataset TaiChi2021 collected by ourself.

To address the above issues in hand gesture recognition, we present a skeleton-
based spatio-temporal network to explicitly model the skeletal context of spatio-
temporal relations. In particular, our approach considers a principled way of deal-
ing with the inherit structural variability in hand gestures. Briefly speaking, to
describe an articulated hand, we first propose to introduce a set of latent vector
variables, named coordinates embedding, to represent several separate kinematic
locations of hand joints. Now each resulting vector from the coordinates embed-
ding representation contains its unique set of high-level poses together with their
low-level joint features of spatial information. To fully characterize a certain
cluster of instances that possess similar hand gestures and their spatio-temporal
dependencies, a spatio-temporal network is devised to encode the spatial rela-
tionships along with the temporal relations. Specifically, a unit variable that rep-
resents a joint in a frame is updated by exchanging information with other unit
variables from the same frame and different frames, allowing our model to man-
age both spatial and temporal dependencies among joints from various frames.
In addition, an attention scorer is incorporated into the units in each layer to
capture pose-level spatio-temporal relations, and subsequently it ensures fea-
ture consistency between the high-level pose space and the low-level joint space
without loss of their internal spacial relations. In this way, our network-based
approach is more capable of characterizing the inherit spatio-temporal structural
variability in hand gestures when compared to existing methods, which is also
verified during empirical evaluations on two publicly-available datasets and one
in-house dataset (Tai Chi gestures) collected by ourselves, which will be detailed
in later sections.

2 Related Work

2.1 Hand Pose and Gesture Representation

There are typically three categories to represent hand poses and gestures: sensor-
based representation, RGB-based representation and skeleton-based representa-
tion. We refer the interested readers to the excellent literatures [14,20] for the

154 X. Li et al.

first two approaches. Here we mainly focus on skeleton-based representation,
which has attracted a lot of attentions owing to its robustness against viewpoint
change and the geometric description of rigid body. Such representation regards
skeleton as a set of independent joint points with 3D coordinates to represent a
hand pose. Besides, gesture representation is also very important that it should
effectively capture the spatio-temporal dynamic characteristics of joints from a
collection of time-ordered coordinates. Three most common methods are Euler
angle representation, unit quaternion representation and manifold-based repre-
sentation. However, they suffers from their unique challenges: the Euler angle
representation is subjected to non-intrinsic singularity or gimbal lock issue, which
leads to numerical and analytical difficulty; the unit quaternions approach leads
to singularity-free parametrization of rotation matrices, but at the cost of one
additional parameter; and the manifold-based approaches such as Lie group-
based representation was found that their relative geometry provides a more
sensible description compared to absolute locations of one joint. Moreover, most
of existing approaches are specifically designed for human body representation,
which is hard to deploy in hand scenarios where the structure of hand joints
cannot be duplicated directly from that of full body. This inspires us to employ
the coordinates embedding to describe an articulated hand to retain its skeletal
location restrictions on hand joints.

2.2 Hand Gesture Recognition

Many studies focus on encoding input motion sequences to characterize the kine-
matic features for enhancing hand gesture recognition. As aforementioned in the
introduction section, conventional approaches such as SVM and HMM [1,5,9]
need to be handcrafted from domain knowledge. Therefore, deep neural networks
are commonly used to detect motions in recent years. RNN-based approaches
were widely implemented for motion modeling, which were adopted to capture
the temporal features. Chen et al. [2] used bidirectional LSTM to model hand
motion features (rotation and translation), while Maghoumi et al. [16] chose
GRU to directly process raw skeleton data for gesture recognition. However,
neither of them takes into account the spatio-temporal connections between
joints, and they are computationally expensive and difficult for parallel comput-
ing due to the sequential structure of RNN. In such cases CNN-based methods
like STA-Res-TCN [10] are introduced to address such issues of managing spa-
tial relationship and improving the training speed for skeleton-based gesture
recognition. DD-Net [23] employs 1D CNN with two embedded features (one
between joint points and one between frames, both of which require manual
calculation) without considering the connection between various joints on dif-
ferent frames. Liu et al. [15] combines 3D CNN and 2D CNN to characterize
spatial and temporal features for hand poses and movements separately, but
neglects the connection between the two features. TCN, a variant of CNN, is
used to capture the spatio-temporal relationship in skeleton data [10]. All of these
models are capable of handling coarse-grained spatial relationships, but unfortu-
nately they are weak in maintaining fine-grained spatial information sufficiently.

Recognizing Skeleton-Based Hand Gestures by a Spatio-Temporal Network 155

To fully exploiting spatio-temporal features, geometric deep learning such as
manifolds and graphs [17,22] is applied to skeleton-based gesture recognition.
DG-STA [3] constructs a fully-connected graph from the hand skeleton, repre-
senting the spatio-temporal relations by connecting the joint points in the same
frame and between adjacent frames. ST-TS-HGR-NET [17] uses SPD matrices
to represent temporal relationships of hand joints in the graph. However, these
approaches are limited to capture the local spatio-temporal features of joints
interactively among different frames. To address the problems in these models
(as mentioned in the introduction section), we present the spatio-temporal net-
work to explicitly capture the inherent structural varieties of skeleton motions
with spatio-temporal dependencies.

3 Problem Formulation

3.1 Definition

Give a dataset D of M samples from a set of C hand gestures, a spatio-temporal
neural network is constructed with respect to the spatial and temporal relations
among low-level joints and high-level poses. Each sample is a sequence of T
frames measured in time and spaced at uniform time intervals. In the field of
skeleton-based hand gesture recognition, it is usually described as a sequence of
hand poses in ordered frames, with each being consisting of a collection of hand
joints’ position information (such as 3D Cartesian coordinates) at a certain frame.
Formally, given a sample of hand gesture g = <pt|t = 1, 2, . . . , T>, a pose pt

is associated with a certain joints’ configuration of the hand skeleton at the t-
th frame, which is composed of the 3D coordinates of joints. We denote it as
pt = {jtn|n = 1, 2, . . . , N}, where jtn is a 3-dimensional vector representing the
3D coordinates of the n-th joint at the t-th frame, i.e., jtn = [xtn, ytn, ztn]. N is
the number of joints, and here, N = 22 in hand skeleton.

3.2 Embedding Representation for Skeletal Data

It is hardly to represent the spatial relations directly within a joint by only using
such simple and raw 3-dimensional coordinates. To further characterize the inter-
nal spatial features of a hand joint, there are typically two types of embedding
representations, i.e., interaction embedding, where interactive relations between
any two coordinates of a joint are embedded into the skeleton-based feature
space, thereby describing local spatial dependencies of the coordinates in the
same joint at a certain frame such as xtn ⊕ ytn (⊕ refers to a binary operation
such as addition, subtraction, multiplication), and polynomial embedding, which
may simply power the feature to form a new one, e.g., x2

tn and x3
tn, or to further

complicate the matter,
∑∞

i,j,k=0 θijkxi
tnyj

tnzk
tn (θ is a constant parameter).

However, these two embedding representations suffer from catastrophic error
degradation when the raw coordinates exists bias. They will exaggerate such
errors, and thus they are not robust to hand motion drifts, which often occurs

156 X. Li et al.

in skeleton-based hand gesture recognition. Furthermore, their new generated
features are built though the joint compensation of the effects of all monomials
or polynomials of different order, and because these are unbounded, a slight
deviation over that range will surely break such joint compensation and some
term will dominate over the other, leading to rapid deviation, which is unsuitable
for extrapolation. In addition, the number of monomials and their composition
mechanisms should be manually formulated, which is impractical in the scenarios
of complex hand gesture recognition. This inspires us to introduce in what follows
a novel embedding representation, named coordinates embedding, which can be
automatically learned through a spatio-temporal neural network defined in the
next section.

Coordinates Embedding. Different from other embedding representations,
our approach aims to map the three-dimensional coordinates of a joint into
a higher-dimensional vector in a simple but effective way, rather than merely
increasing the number of features. Formally, the coordinates embedding maps
each jtn into a latent vector of size λ, as defined as follows:

ĵtn = W(0) × jtn + B(0) =

⎡

⎢
⎣

w1x w1y w1z

...
...

...
wλx wλy wλz

⎤

⎥
⎦ ·

⎡

⎣
xtn

ytn

ztn

⎤

⎦ +

⎡

⎢
⎣

b1
...

bλ

⎤

⎥
⎦ , (1)

where W(0) is a weight matrix of size 3λ, and B(0) is a bias vector of size λ. ĵtn is
the new coordinates embedding features of the joint n at the frame t, which can
fully characterize the internal spatial dependencies on the low-level coordinates
in any joint. In the end, the skeleton are mapped to a series of coordinates
embedding vectors: Ĵ = [̂j11, ĵ12, . . . , ĵ1N , . . . , ĵT1, ĵT2, . . . , ĵTN].

In this way, all the generated features can form a joint network-based feature
space that describes a unique hand gesture. This inspires us to present in what
follows a spatio-temporal model where these joint-pose feature-based networks
can be systematically constructed to characterize the hand gestures of interests.

4 Our Model

It is known that the spatio-temporal relations of joint-pose dependencies can be
described by an encoder-decoder structure in hand gesture recognition. Given a
hand gesture sample consisting of a sequence of poses g = <p1,p2, . . . ,pT >, the
spatio-temporal relationship among various joints in the same frame or among
different frames can be characterized by leveraging the coordinates embedding in
our encoder-classifier structure, which a spatio-temporal neural network that can
be divided into two parts: a spatio-temporal feature encoder and a network-based
classifier, as illustrated in Fig. 2. In summary, we employ the feature encoder to
map both the raw skeletal data J and its corresponding coordinates embedding
Ĵ into a unified spatio-temporal feature space that characterizes gesture motions.
It is also worth noting that an attention scorer is incorporated to ensure feature

Recognizing Skeleton-Based Hand Gestures by a Spatio-Temporal Network 157

Fig. 2. The framework of our approach.

consistency between the high-level pose space and the low-level joint space. As
for decoder, a simple network-based classifier is constructed with a collection of
2D convolutional layers and fully-connected layers.

4.1 Spatio-Temporal Feature Encoder

We argue that encoding raw skeletal data and their corresponding embedded
data should facilitate learning a certain of information in their own latent space
simultaneously. To this end, our model contains two streams that maintain their
respective private features separately. Without loss of generality, we define a ges-
ture sample g contains N joints in a time frame, with each joint being composed
of a K-dimensional vector (e.g., K = 3 for raw data, and K = λ for embedded
data). It is worth noting that the private feature space can be easily extended to
other embedding data such as interaction embedding and polynomial embedding
in our model. For the convenience of understanding, g can be regarded as an
image of size T × N × K, where K is considered as the number of channels. An
element at location (t, n, k) in the image refers to the data point of joint n at
frame t with the k-th information about the gesture. For each private encoder,
our model divides the feature encoding procedure into two stages, namely, spa-
tial feature encoding which discovers the interactions of adjacent joints within
a certain frame, and spatio-temporal feature encoding which explicitly captures
the temporal connections of spatial features among successive frames, and as a
result can learn the fined-grained (or joint-level) features of the gesture g.

Spatial Feature Encoding. In this stage, we encode the spatial relations
among adjacent joints in each frame to form a spatial feature map (Fig. 3). In
details, take the raw feature space as an example, the feature map of raw skeletal

158 X. Li et al.

data is denoted by R, which has T frames, with each containing N spatial states,
i.e., the spatial relations among U adjacent joints (1 < U ≤ N). Formally,
R = {Rt,n|t = 1, . . . , T ;n = 1, . . . , N}, where Rt,n = {rt,n,k|k = 1, 2, . . . , K} is
K-dimensional vector representing the spatial state of the joint n at the frame
t. Its element rt,n,k ∈ R can be calculated as follows:

rt,n,k = Jt,n,U ∗ W(11)
k =

U∑

i=1

K∑

j=1

jt,n−1+i,j × w
(11)
k,i,j , (2)

where ∗ means the convolutional product. Jt,n,U is a U ×K matrix of the coordi-
nates from the n-th joint to the (n+U −1)-th joint at the t-th frame, and W(11)

k

is a filtering matrix of size U × K. Similarly, in the embedded feature space, the
feature map of spatial states is denoted by R̂, where r̂t,n,k = Ĵt,n,U ∗ W(12)

k .
It is worth mentioning that to keep the same shape as the skeletal data
(i.e., N × T × K) in these new feature maps, we set all the coordinates data
Jt,n−1+i,j = 0 or Ĵt,n−1+i,j = 0 when n − 1 + i > N .

Fig. 3. Illustration of dataflows that update spatial feature states and spatio-temporal
feature states in our model. The spatial state Rt,n is updated by exchanging informa-
tion with the states of multiple joints (blue dashed line), while the spatio-temporal
state Qt,n is updated according to multiple spatial states Rt,n in different time frames
(red dashed line). (Color figure online)

Spatio-Temporal Feature Encoding. To further capture the spatio-temporal
relations among joints from different frames, we continue to generate the spatio-
temporal feature map based on the spatial feature map (Fig. 3). It maps the
spatial states into a spatio-temporal space of N spatial relations among V

Recognizing Skeleton-Based Hand Gestures by a Spatio-Temporal Network 159

adjacent joints (1 < V ≤ N) in H successive frames (1 < H ≤ T) over all
the T frames. We call such features as spatio-temporal states. Mathematically,
Q = {Qt,n|t = 1, . . . , T ;n = 1, . . . , N}, where Qt,n = {qt,n,k|k = 1, . . . , K},
representing the spatio-temporal states of joint n at frame t. In details, qt,n,k is
computed by:

qt,n,k = Rt,n,V ∗ W(21)
k =

H∑

h=1

V∑

i=1

K∑

j=1

rt−1+h,2n−2+i,j × w
(21)
k,h,i,j , (3)

where Rt,n,V is a H×V ×K matrix of the spatial states indicating the V adjacent
joints among the H successive frames in R, and W(21)

k is a filtering matrix of
size H × V × K. Likewise, we can also obtain the spatio-temporal feature map
in embedded feature space denoted by Q̂, where q̂t,n,k = R̂t,n,V ∗ W(22)

k .

4.2 Attention Scorer

It is straightforward to obtain final features by adding an attention mechanism,
which can capture long-term dependencies during our encoding process. We con-
sider the pyramid contextual attention from PEN-Net [24], which uses attention
at different joints. However, it is computationally expensive to calculate atten-
tion scores of feature states for all the joints. Inspired by DG-STA [3], we further
adopt a shared attention scores to reduce the computational cost.

To reduce the number of trainable parameters and interchange the features
between raw data and embedded data, we combine Q in the raw feature space
and Q̂ in the embedded feature space by defining a feature weight matrix. Specif-
ically, a scoring function is designed to calculate the attention weight of each
spatio-temporal state in the raw skeletal feature map Q to determine the impor-
tance of each state, thereby obtaining the feature weight matrix of T ×N , repre-
sented by A = {at,n|t = 1, . . . , T ;n = 1, . . . , N}, with each at,n being calculated
as follows:

at,n =
1

1 + e− ∑K
k=1(w

(3)
k ×qt,n,k+b

(3)
k)

, (4)

where w
(3)
k ∈ W(3) is the weight parameter for the k-th channel and b

(3)
k ∈ B(3)

is the bias.
By adhering to the principle that the importance of features will be enlarged

or reduced by weight, we combine the embedded feature maps with the feature
weight matrix to get a final spatio-temporal feature map M that is capable
of highlighting the most critical features with a shape of T × N × K. Here,
M = {mt,n,k|t = 1, . . . , T ;n = 1, . . . , N ; k = 1, . . . , K}, where

mt,n,k = q̂t,n,k × at,n. (5)

In this way, the shared space generated by the attention scorer ensures feature
consistency between the raw skeleton space and the embedded coordinate space
without loss of their internal spacial relations at joint level.

160 X. Li et al.

4.3 Network-Based Classifier

Now we are ready to build a dynamic hand gesture recognition classifier by
treating these encoded feature maps as new inputs. In particular, during the
training stage, we put all the generated features together to form a joint skeleton-
based feature space. Within this joint skeleton-based feature space, each sample
g from the c-th type of hand gesture in the training set can be represented by
a feature map of size T × N × K, and each entry in the feature map represents
a spatio-temporal weight value of the corresponding joint at a certain frame.
Since neural network-based models are capable of learning high-level (or pose-
level) spatial information, we can feed these low-level (or joint-level) feature
maps into any appropriate network-based models for the recognition task. Here
we train a simple neural network model as shown in Fig. 2, which consists of two
convolutional blocks and one fully-connected block to achieve the tasks of hand
gesture recognition. In our model, global average pooling and global maximum
pooling are respectively used and concatenated to regularize the entire network
structure to prevent overfitting.

For simplicity, we choose categorical cross-entropy as the loss function which
is commonly used during network training:

Loss(ϕ, ϕ̂) = −
C∑

c=1

ϕc · log ϕ̂c, (6)

where C is the number of classes, ϕ is the ground truth and ϕ̂ is the
prediction. Finally, the parameters W = {W(0),W(11),W(12),W(21),W(22),
W(3),W(4),B(0),B(3)} in our encoder-classifier model can be estimated by opti-
mizing the following objective over the dataset D:

Ŵ = arg min
W,D

Loss(ϕ, ϕ̂), (7)

where W(4) is the parameters in the network-based classifier. There are probably
a number of (2U + 2V H + 1)K2 + 5K training parameters on W, which is
acceptable for dynamic hand gesture in practice.

5 Experiments

5.1 Datasets and Preprocessing

Three skeleton-based hand gesture datasets are considered in our experiments,
including two publicly-available benchmark datasets and one in-house dataset
on Tai Chi gestures collected by ourselves.

DHG14/28 [5]. This publicly-available dataset contains 2, 800 samples, includ-
ing 14 gestures. Each gesture is performed five times in two finger configurations
by 20 participants, and thus it can also be divided into 28 categories to discrimi-
nate such fine-grained finger gestures. We applied the same leave-one-subject-out
training as that in [3,5,17] for fair comparison.

Recognizing Skeleton-Based Hand Gestures by a Spatio-Temporal Network 161

SHREC2017 [6]. It consists of 14 hand gestures performed by 28 individuals
with a number of 2, 800 samples in two ways: using one finger, or the whole hand.
The ratio of training and testing sequences is 7 : 3.

TaiChi2021. To our best knowledge, the two above mentioned datasets are so
far the only ones publicly available for the field of skeleton-based hand gesture
recognition. In particular, the instances of these gestures are relatively simple
without considering the fine-grained joint-level actions. To this end, we propose
a new dataset about Tai Chi gestures on Leapmotion, which is an ongoing effort,
and at the moment it contains 3, 600 annotated samples of nine gestures per-
formed by 10 participants (five males and five females) on 20 hand joints. Each
gesture is performed 20 runs by each participant with each hand. Considering
the difference between left-hand and right-hand actions, the dataset was divided
into 18 categories in our experiment. The ratio of training and testing sequences
is 7 : 3.

5.2 Experimental Set-Ups and Baselines

Our model is implemented by Keras with backend of Tensorflow. It is optimized
by Adam optimizer (β1 = 0.9 and β2 = 0.999) with the learning rate of 1×10−3

and the step size of e−0.1 on one GeForce GTX 750Ti GPU. We set the hyper-
parameters T = 32, λ = 32, U = 3, V = 9 and H = 3. The batch size is fixed
to 256. All the skeletal sequences are resampled with the same length of T by
employing median filtering.

The classification performance of our model is compared 2 conventional meth-
ods and 13 network-based methods. For fair comparison, we did not apply any
data augmentation or pre-trained weights to boost the performance. Accuracy is
employed as the evaluation metric, which is computed as the proportion of true
results among the total number of samples.

5.3 Comparison Results on Publicly-Available Datasets

Table 1 depicts the comparison results with Accuracy. Our model clearly outper-
forms the other models with a large margin on all two datasets. This is mainly
due to their abilities to take advantage of the rich spatio-temporal dependency
information among both low-level joints and high-level poses. Notably, although
network-based models such as GCN family encode spatio-temporal information,
during training they neglect all the low-level relations among joints at the same
frame and among different frames. This might explain why STA-GCN performs
slightly better than our model on SHREC2017(14) involving simple spatial rela-
tions, but most of such models give much worse performance on 28 gestures
than that on 14 gestures where more complicate relationships are required to be
handled at joint level. Unfortunately, these models are rather limited in charac-
terizing such fine-grained information.

162 X. Li et al.

Table 1. Accuracy comparisons on DHG14/28 and SHREC2017. The percentage in
the bracket shows the accuracy change taken our approach as a baseline. − means not
applicable in this case.

Methods Accuracy (%)

DHG(14) DHG(28) SHREC(14) SHREC(28)

SoCJ+HoHD+HoWR [5] 83.1(−10.2) 80.0(−11.8) 88.2(−7.1) 81.9(−11.7)

GST+AG [4] 82.5(−10.8) 68.1(−23.7) 88.2(−7.1) 81.9(−11.7)

CNN+LSTM [19] 85.6(−7.7) 81.1(−10.7) – –

MF-RNN [2] 84.6(−8.7) 80.4(−11.4) – –

DPTC [21] 85.8(−7.5) 80.2(−11.6) – –

Res-TCN [10] 86.9(−6.4) 83.6(−8.2) 91.1(−4.2) 87.3(−6.3)

STA-Res-TCN [10] 89.2(−4.1) 85.0(−6.8) 93.6(−1.7) 90.7(−2.9)

P-CNN [7] 91.2(−2.1) 84.3(−7.5) – –

DeepGRU [16] – – 94.5(−0.8) 91.4(−2.2)

ST-GCN [22] 91.2(−2.1) 87.1(−4.7) 92.7(−2.6) 87.7(−5.9)

DG-STA [3] 91.9(−1.4) 88.0(−3.8) 94.4(−0.9) 90.7(−2.9)

ST-TS-HGR-NET [17] 87.3(−6.0) 83.4(−8.4) 94.2(−1.1) 89.4(−4.2)

DD-Net [23] – – 94.6(−0.7) 91.9(−1.7)

STA-GCN [25] 91.5(−1.8) 87.7(−4.1) 95.4(+0.1) 91.8(−1.8)

HPEV-HMM-NET [15] 92.5(−0.8) 88.8(−3.0) 94.8(−0.5) 92.2(−0.7)

Ours 93.3 91.8 95.3 93.6

5.4 Comparisons Results on TaiChi2021

Unlike the two publicly-available datasets, TaiChi2021 dataset is more challeng-
ing due to its stochastic nature which causes difficulties to category its gestures.
The quantitative results of the comparison with other competing models as well
as the performance of our model on each Tai Chi gestures are reported in Fig. 4.
It can be observed that our model is relative more accurate to distinguish among
these hand gestures than other three competing models. It also can be seen that
our model is faster than other methods on convergence, and consequently facil-
itates the training optimization process. For instance, Grasp and Danbian are
more challenging than others because they contain more finger movements than
hand movements. Fortunately, our model can effectively encode fingers’ joint
relations and hand’s pose relations simultaneously. In contrast, other models
encode high-level sequential relations between poses only. In addition, it is clear
that our model performs better than other models on distinguishing between
two similar gestures Rise and Up, which only differ in the bending degrees of
the fingers. This might be that some Tai Chi gestures only change their finger
motions slightly. It can verify our conjecture that our spatio-temporal learning
network can capture these fine-grained changes, but others may suffer from the
similarity indistinguishability issue. Also, we compared the convergence speed

Recognizing Skeleton-Based Hand Gestures by a Spatio-Temporal Network 163

(a) Accuracy and convergence speed. (b) Confusion matrix on each gesture.

Fig. 4. Comparisons of the competing methods on TaiChi2021 dataset. The odd (resp.
even) labels indicate left-hand (resp. right-hand) gestures.

of our model against that of P-CNN as the baseline. For the sake of fairness,
they are trained under the same settings on the parameters such as batch sizes.
Figure 4(a) shows the comparison results of their performance metrics in the first
100 epochs. It can be seen that our model is faster than other competing models
on convergence, and consequently facilitates the training optimization process.

5.5 Ablation Study

In this section, we conduct two ablation studies to measure the effectiveness
of the modules in our model. It is worth noting that we show the results on
SHREC2017 here, and the studies from other datasets are not shown due to
page limitation, but similar results are obtained in our experiment.

Coordinates Embedding. We evaluate the effectiveness of coordinates embed-
ding by varying the size of embedded features λ. We used the same parameter
settings depicted in Sect. 5.2. As shown in Fig. 5(a), it is obvious that there is
an improvement in accuracy when λ grows to 32, and a slight decline when λ
is larger than 128. This is mainly because the duration of poses in a gesture is
very short. For instance, Tap, which happens rapidly, are only associated with a
handful of frames. Consequently, the coordinates embedding vector is overfitted
when a large feature size is set, leading to fake relations remained in the spatio-
temporal network, which is harmful to the model training. In addition, a very
large value of λ may result in computational burden.

164 X. Li et al.

(a) Changes on different λ. (b) Changes on different attention
mechanisms.

Fig. 5. Accuracy comparisons of different settings of our model on SHREC2017.

Attention Mechanism. The attention mechanism is an important structure in
our spatio-temporal feature encoder. We compared our attention scorer against
other three commonly used structures, the difference of which lies in the ways
how to combine spatio-temporal feature map and feature weight matrix, includ-
ing multiplication, connection, and addition. Figure 5(b) reports the comparison
results of average accuracy on all the gestures. It can be found that the multipli-
cation performs slightly better than other two mechanisms due to its capability
of reducing encoder states Rt,n and Qt,n into attention scores, by applying sim-
ple matrix multiplications. In general, the performance of multiplicative and
additive functions are similar but the multiplicative function is faster and more
space-efficient.

Component Effectiveness. We separately evaluate the effects of different
components in our network by removing modules or replacing them with con-
ventional methods. They are evaluated by testing for two types of investigations
that are common with neural network models: coordinates embedding effects
(i.e. remove coordinates embedding features and only remain raw skeletal fea-
tures) and encoder component effects (i.e. replace our structured spatio-temporal
encoder with a näıve CNN of two layers). Table 2 reports the comparison results
on SHREC2017, which can be clearly seen that changing the components may
lead to negative effects on the performance of our model. It is clear that when
removing coordinates embedding features Ĵ, the performance drops faster than
that changing other components. This might be due to the low-level encoding
of fine-grained spatial information in our model. Besides, when using the näıve
CNN encoder, the model gives worse performance than that using our spatio-
temporal decoder, which indicates that our model is more effective to recognize
joints, fingers, and hand gradually than obtaining them at the same time.

Recognizing Skeleton-Based Hand Gestures by a Spatio-Temporal Network 165

Table 2. Investigation of the impact of the components in our model. × refers to no
such component, while

√
means the reservation of it.

No. Embedding Encoder 14-gestures 28-gestures

1 × × 94.8 93.0

2
√ × 95.2 93.2

3 × √
95.0 93.3

4
√ √

95.3 93.6

6 Conclusion

In this paper, we present a spatio-temporal neural network with a coordinates
embedding representation for skeletal data, which can capture the inherit spatial
and temporal varieties of hand gestures at both joint and pose levels simulta-
neously. It is more efficient and flexible than existing methods on hand gesture
recognition. As for future work, we will explore the applications of our model
on raw image videos, and we will consider detecting multiple hand motions with
probabilities and will instead learn a network recognizing gestures under uncer-
tainty.

Acknowledgement. This work was supported by grants from the National Major Sci-
ence and Technology Projects of China (grant no. 2018AAA0100703) and the National
Natural Science Foundation of China (grant no. 61977012).

References

1. Canavan, S., Keyes, W., Mccormick, R., Kunnumpurath, J., Hoelzel, T., Yin, L.:
Hand gesture recognition using a skeleton-based feature representation with a ran-
dom regression forest. In: 2017 IEEE International Conference on Image Processing
(ICIP), pp. 2364–2368. IEEE (2017)

2. Chen, X., Guo, H., Wang, G., Zhang, L.: Motion feature augmented recurrent
neural network for skeleton-based dynamic hand gesture recognition. In: 2017 IEEE
International Conference on Image Processing (ICIP), pp. 2881–2885. IEEE (2017)

3. Chen, Y., Zhao, L., Peng, X., Yuan, J., Metaxas, D.N.: Construct dynamic
graphs for hand gesture recognition via spatial-temporal attention. arXiv preprint
arXiv:1907.08871 (2019)

4. De Smedt, Q., Wannous, H., Vandeborre, J.-P.: 3D hand gesture recognition by
analysing set-of-joints trajectories. In: Wannous, H., Pala, P., Daoudi, M., Flórez-
Revuelta, F. (eds.) UHA3DS 2016. LNCS, vol. 10188, pp. 86–97. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-91863-1 7

5. De Smedt, Q., Wannous, H., Vandeborre, J.P.: Skeleton-based dynamic hand ges-
ture recognition. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition Workshops, pp. 1–9 (2016)

6. De Smedt, Q., Wannous, H., Vandeborre, J.P., Guerry, J., Le Saux, B., Filliat, D.:
Shrec’17 track: 3D hand gesture recognition using a depth and skeletal dataset. In:
3DOR-10th Eurographics Workshop on 3D Object Retrieval, pp. 1–6 (2017)

http://arxiv.org/abs/1907.08871
https://doi.org/10.1007/978-3-319-91863-1_7

166 X. Li et al.

7. Devineau, G., Moutarde, F., Xi, W., Yang, J.: Deep learning for hand gesture recog-
nition on skeletal data. In: 2018 13th IEEE International Conference on Automatic
Face & Gesture Recognition (FG 2018), pp. 106–113. IEEE (2018)

8. Feix, T., Pawlik, R., Schmiedmayer, H.B., Romero, J., Kragic, D.: A comprehensive
grasp taxonomy. In: Robotics, Science and Systems: Workshop on Understanding
the Human Hand for Advancing Robotic Manipulation, Seattle, WA, USA, vol. 2,
pp. 2–3 (2009)

9. Ghotkar, A., Vidap, P., Deo, K.: Dynamic hand gesture recognition using hidden
Markov model by Microsoft Kinect sensor. Int. J. Comput. Appl. 150(5), 5–9
(2016)

10. Hou, J., Wang, G., Chen, X., Xue, J.H., Zhu, R., Yang, H.: Spatial-temporal atten-
tion res-TCN for skeleton-based dynamic hand gesture recognition. In: Proceedings
of the European Conference on Computer Vision (ECCV) Workshops, pp. 273–286
(2018)

11. Hu, J.F., Fan, Z.C., Liao, J., Liu, L.: Predicting long-term skeletal motions by a
spatio-temporal hierarchical recurrent network. In: the 24th European Conference
on Artificial Intelligence (ECAI), pp. 2720–2727 (2020)

12. Sharath Kumar, Y.H., Vinutha, V.: Hand gesture recognition for sign language:
a skeleton approach. In: Das, S., Pal, T., Kar, S., Satapathy, S.C., Mandal, J.K.
(eds.) Proceedings of the 4th International Conference on Frontiers in Intelligent
Computing: Theory and Applications (FICTA) 2015. AISC, vol. 404, pp. 611–623.
Springer, New Delhi (2016). https://doi.org/10.1007/978-81-322-2695-6 52

13. Lee, D.H., Hong, K.S.: Game interface using hand gesture recognition. In: 5th Inter-
national Conference on Computer Sciences and Convergence Information Technol-
ogy, pp. 1092–1097. IEEE (2010)

14. Lin, H.I., Hsu, M.H., Chen, W.K.: Human hand gesture recognition using a con-
volution neural network. In: 2014 IEEE International Conference on Automation
Science and Engineering (CASE), pp. 1038–1043. IEEE (2014)

15. Liu, J., Liu, Y., Wang, Y., Prinet, V., Xiang, S., Pan, C.: Decoupled representation
learning for skeleton-based gesture recognition. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 5751–5760 (2020)

16. Maghoumi, M., LaViola, J.J.: DeepGRU: deep gesture recognition utility. In: Bebis,
G., et al. (eds.) ISVC 2019. LNCS, vol. 11844, pp. 16–31. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-33720-9 2

17. Nguyen, X.S., Brun, L., Lézoray, O., Bougleux, S.: A neural network based on
SPD manifold learning for skeleton-based hand gesture recognition. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
12036–12045 (2019)

18. Nguyen, X.S., Brun, L., Lezoray, O., Bougleux, S.: Skeleton-based hand gesture
recognition by learning SPD matrices with neural networks. In: 2019 14th IEEE
International Conference on Automatic Face & Gesture Recognition (FG 2019),
pp. 1–5. IEEE (2019)

19. Nunez, J.C., Cabido, R., Pantrigo, J.J., Montemayor, A.S., Velez, J.F.: Convo-
lutional neural networks and long short-term memory for skeleton-based human
activity and hand gesture recognition. Pattern Recogn. 76, 80–94 (2018)

20. Pezzuoli, F., Corona, D., Corradini, M.L.: Recognition and classification of dynamic
hand gestures by a wearable data-glove. SN Comput. Sci. 2(1), 1–9 (2021)

21. Weng, J., Liu, M., Jiang, X., Yuan, J.: Deformable pose traversal convolution for
3D action and gesture recognition. In: Proceedings of the European Conference on
Computer Vision (ECCV), pp. 136–152 (2018)

https://doi.org/10.1007/978-81-322-2695-6_52
https://doi.org/10.1007/978-3-030-33720-9_2

Recognizing Skeleton-Based Hand Gestures by a Spatio-Temporal Network 167

22. Yan, S., Xiong, Y., Lin, D.: Spatial temporal graph convolutional networks for
skeleton-based action recognition. In: Proceedings of the AAAI Conference on Arti-
ficial Intelligence, vol. 32 (2018)

23. Yang, F., Wu, Y., Sakti, S., Nakamura, S.: Make skeleton-based action recognition
model smaller, faster and better. In: Proceedings of the ACM Multimedia Asia, pp.
1–6 (2019)

24. Zeng, Y., Fu, J., Chao, H., Guo, B.: Learning pyramid-context encoder network
for high-quality image inpainting. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 1486–1494 (2019)

25. Zhang, W., Lin, Z., Cheng, J., Ma, C., Deng, X., Wang, H.: STA-GCN: two-
stream graph convolutional network with spatial-temporal attention for hand ges-
ture recognition. Vis. Comput. 36(10), 2433–2444 (2020)

E-commerce and Finance

Smurf-Based Anti-money Laundering in
Time-Evolving Transaction Networks

Michele Starnini1(B), Charalampos E. Tsourakakis1,4, Maryam Zamanipour1,
André Panisson1, Walter Allasia2, Marco Fornasiero2, Laura Li Puma3,
Valeria Ricci3, Silvia Ronchiadin3, Angela Ugrinoska2, Marco Varetto2,

and Dario Moncalvo2

1 ISI Foundation, via Chisola 5, 10126 Turin, Italy
{michele.starnini,babis.tsourakakis,maryam.zamanipour}@isi.it

2 Intesa Sanpaolo, Corso Inghilterra 3, 10138 Turin, Italy
{walter.allasia,dario.moncalvo}@intesasanpaolo.com

3 Intesa Sanpaolo Innovation Center, Corso Inghilterra 3, 10138 Turin, Italy
silvia.ronchiadin@intesasanpaolo.com

4 Boston University, 111 Cummington Mall, Boston, MA 02215, USA

Abstract. Money laundering refers to the criminal attempt of conceal-
ing the origins of illegally obtained money, usually by passing it through a
complex sequence of seemingly legitimate financial transactions through
several financial institutions. Given a large time-evolving graph of finan-
cial transactions, how can we spot money laundering activities? In this
work, we focus on detecting smurfing, a money-laundering technique that
involves breaking up large amounts of money into multiple small trans-
actions. Our key contribution is a method that efficiently finds suspicious
smurf-like subgraphs. Specifically, we find that the velocity characteris-
tics of smurfing allow us to find smurfs by using a standard database
join, thus bypassing the computational complexity of the subgraph iso-
morphism problem. We apply our method on a real-world transaction
graph spanning a period of six months, with more than 180M transac-
tions involving more than 31M bank accounts, and we verify its efficiency.
Finally, by a careful analysis of the suspicious motifs found, we provide a
classification of smurf-like motifs into categories that shed light on how
money launderers exploit geography, among other things, in their illicit
transactions.

Keywords: Anti-money laundering · Graph mining · Subgraph
isomorphism · Data mining

1 Introduction

Money laundering is an umbrella term, that captures the processing of criminal
proceeds to disguise their illegal origin in order to legitimize the ill-gotten gains

M. Starnini, C. E. Tsourakakis and M. Zamanipour—Equal contribution.

c© Springer Nature Switzerland AG 2021
Y. Dong et al. (Eds.): ECML PKDD 2021, LNAI 12978, pp. 171–186, 2021.
https://doi.org/10.1007/978-3-030-86514-6_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86514-6_11&domain=pdf
https://doi.org/10.1007/978-3-030-86514-6_11

172 M. Starnini et al.

of crime [12]. While this definition may not include money related to terror
financing, which does not necessarily have a criminal origin, it is broad enough
to cover all possible activities aimed at hiding the origin of illicitly gained assets.
Money laundering has three well-defined stages: (i) placement, (ii) layering, and
(iii) integration. Ebikake [10] describes in great detail how money launderers
adapt to reality. In the placement stage, illicitly gained assets are introduced
into the legitimate financial system while being cleansed of the most obvious
traces of illegality. For example, forged documentation can be used to justify
the money introduced as a legitimate receipt from the sales of real estate or
interest in a business. In this phase, many different bank accounts across different
banks can be used, or front companies that can belong even to high net-worth
people. Once the money is deposited and its origin successfully explained, the
placement stage is complete. In the layering phase, money-launders move around
the money through a series of transactions that have no real purpose other than
hiding the criminal nature of the money. For layering, money-launders may use
banks in countries with poor law enforcement, or which do not cooperate with
international financial authorities. Possible layering activities include investment
in financial products which have good liquidity or which can be bought and
sold easily with limited tracking (e.g. unlisted stocks and shares), real estate,
fake loans that allow transfer of money to a business when in reality there is no
loan, sending money overseas for education purposes, donations, and transferring
money to shell companies [10]. Finally, in the integration stage, these assets are
integrated into the legal economy and other assets can be legally purchased.

Despite the worldwide efforts against it, it is estimated that money launder-
ing involves from 2% to 5% of the world’s domestic product [13,29]. Fighting
organized crime is of paramount importance for financial institutions: Failures
in anti-money laundering (AML) controls may result in huge fines for financial
institutions by national and foreign authorities. For example, Danske bank, the
major Danish bank, faces a possible fine of around 2 billions euros for a money-
laundering case of about 200 billions euros occurring through Danske’s branch
in Estonia, from 2007 to 2015 [15]. Recently, US authorities fined HSBC by 1.9
billion US dollars in a settlement over missing money laundering controls [19].
In order to comply with the current legislation, financial institutions generally
follow several guidelines and recommendation, either official [3,12] or informal
and internal best practices [20,21] that impose specific controls to be carried out
on customers and on their activities/operations. These money-laundering con-
trols have been historically implemented as a set of rules, such as fixed threshold
flagging suspicious transactions, or transactions through countries considered at
high risk, which are later manually inspected. Note that due to the heteroge-
neous financial services landscape and transaction means, there is no regulator
guidance so technically detailed to play a standard-setting role. Each financial
institution has thus the freedom and the responsibility to implement the con-
trols with the techniques it deems most useful and efficient for the purpose. Such
implementations are often made with deterministic approaches based on fixed
rules and conditions to be calibrated over time and adapted to the various cases.

Smurf-Based Anti-money Laundering 173

Rule-based approaches are simple to implement, but suffer from several draw-
backs: rules need to be constantly updated, and performance of single rules is
very difficult to disentangle. Furthermore, rule-based systems perform badly on
unstructured data and expert knowledge is needed to design rules. Finally, as
a result of poor rule-based system design and data quality issues, classifiers for
spotting alerts tend to aim for high recall by introducing a large number of false
positives, that have to be manually inspected later on.

Therefore, there is a need for new data-driven tools for anti-money laun-
dering able to overcome rule-based approaches. In this paper, we will focus on
the central stage of money-laundering, i.e. layering, to detect suspicious transac-
tions aimed at hiding the real origin and target of money transfers. A common
method used by money-launders is to break down the amount of money to laun-
der into smaller amounts and through various entities. This structuring technique
is known as “smurfing”, where smurfs are the financial actors (either companies
or physical persons) responsible for organizing money transfers. These multiple
intermediaries make small cash deposits or buy assets in amounts under a certain
threshold, which is thought to be relevant and more likely to be reported by the
banks to financial authorities. In this way, they try to avoid raising suspicions.
The detection of smurfs in financial transactions is a pivotal task in the finan-
cial industry [37]. Smurfs naturally translate into specific subgraph structures
within transaction graphs, where nodes are financial actors (i.e. bank accounts)
and links represent money transfers between accounts. It is worth mentioning
that, in a completely different field, smurf-like structures play an important role
in security applications, e.g., [8].

Here, we focus on the two smurf-like motifs shown in Fig. 1.

Type 1 Type 2

Fig. 1. Type 1 (left) and type 2 (right) smurf-like motifs. Source (red dotted circles),
middle (squares), and target (green circles) are shown from left to right. (Color figure
online)

The first motif consists of a set of source nodes that send money to a middle
node, who then sends that money to a set of target nodes. The second motif
consists of a single source, sending money to multiple middle nodes, who then
send money to a single target node. We refer to these two subgraphs, as motif
type 1, and motif type 2. We outline that the number of source and target

174 M. Starnini et al.

nodes in motif type 1, and similarly the number of middle nodes in motif type
2 may vary. While prior domain knowledge gives certain bounds on these node
counts, searching for each possible motif instantiation using a state-of-the-art
subgraph isomorphism algorithm is computationally expensive, and infeasible
on large-scale transaction graphs. Our contributions include the following:

• We propose a pipeline that efficiently finds suspicious smurf-like subgraphs
as shown in Fig. 1. Our pipeline exploits the velocity of real-world money
laundering transactions, and allows us to bypass the computational complex-
ity lower bound of subgraph isomorphism. Perhaps surprisingly, our pipeline
is based on a standard database join, and careful pre-, and post-processing
filtering.

• We evaluate our pipeline on a large real-world transaction network with more
than 184 million transactions using the financial services of a major Italian
bank (from now on just referred as MIB). We observe that our pipeline allows
us to find suspicious smurfs efficiently.

• We analyze the output motifs, and provide a systematic classification of sus-
picious motifs. For instance, we observe that certain suspicious motifs have a
u-turn form. The source(s) and the target(s) are MIB bank accounts, whereas
the middle node(s) is (are) non-MIB account(s), that may exist in high risk
countries. Our classification sheds light into money launderers behavior, espe-
cially regarding how they exploit geography.

2 Related Work

For a general overview of machine learning, and data-driven techniques used for
anti-money laundering, see the recent survey by Chen et al. [7]. Here, we briefly
review work that lies close to ours.

Flowscope is a novel tool for discovering dense flows from sources to untrace-
able destinations via many middle accounts that on purpose create chains to
avoid getting flagged. The key intuition behind Flowscope is that large amounts
of money need to be transferred through “dummy” accounts that serve as inter-
mediaries before the dirty money reaches the final destination(s). The authors
focus on detecting dense multi-partite subgraphs. While the Flowscope formula-
tion and the proposed algorithm are important contributions towards AML,
there exist important money laundering schemes that use few intermediary
accounts, and thus do not induce dense subgraphs. Furthermore, Flowscope
relies on the assumption that intermediate accounts have low balance, namely,
they receive a certain amount and transfer it almost entirely. Real bank trans-
action data available to MIB indicate that intermediary nodes may transfer an
amount only approximately similar to the one received from the source. For the
aforementioned reasons, Weber et al. use graph convolutional networks [23] for
fighting money laundering in bitcoin transactions [36]. Their method takes as
input the transaction network, possibly node features, and some labels that are
used to train the neural network. Lee et al. [24] propose a minimum description

Smurf-Based Anti-money Laundering 175

length approach to reorder the node ids in order to reveal all smurf-like sub-
graphs in a transaction network. However, many of these smurf-like subgraphs
do not correspond to money laundering activities. Such false positives have an
immense cost. The false positives are between 75% and 99% of the total alerts
issued. This consumes bank resources, and places in inconvenient spot entities
and people that abide by the law.

Isomorphism. Graph isomorphism is the problem of determining whether two
graphs G1 and G2 are isomorphic. Formally, this is equivalent to determining if
there exists a bijective mapping f from the set of the nodes of G1 to the node
set of G2 such that any two nodes u, v of G1 are adjacent in G1 if and only if
f(u) and f(v) are adjacent in G2. The state-of-the-art algorithm is due to Babai
and Luks [2], and despite the recent progress made by Babai it is not yet clear
whether the problem is solvable in polynomial time or not [1].

The subgraph isomorphism problem asks whether a pattern graph H appears
as a subgraph of a target graph G. This problem is known to be NP -complete as
it generalizes well-known NP -complete problems including the Maximum Clique,
and the Hamiltonian Cycle [14]. Formally, a subgraph isomorphism is an injective
map f from the vertices of H to the vertices of G such that if two vertices u and
v are adjacent in H, then f(u) and f(v) are adjacent in G. In our work, we focus
on the variant of the subgraph isomorphism that aims to list the occurrences of
the pattern H in the target graph G, rather than just decide if any occurrence
of H exists in G. In general, searching for a motif with k nodes requires O(nk)
time. Despite this asymptotic tight lower bound, there exist many algorithms
that perform significantly better in practice compared to brute force. The classic
algorithm is Ullman’s backtracking algorithm with a look ahead function [35].
Given the importance of subgraph isomorphism in mining networks and graph
databases, a lot of research has focused on efficient algorithm design. Notable
algorithms include VF2 [9], GraphQL [16], QuickSI [32], GADDI [38], SPath [39].
ISMAGS is a recent algorithm that provides one solution per symmetry group
[18]. This algorithm is particularly valuable when there is an exponential number
of isomorphisms that are symmetrically equivalent. Another line of research has
focused on designing efficient algorithms for special classes of graphs. A recent
notable algorithm is due to Bressan et al. [6] that finds all occurrences of an
induced k-vertex subgraph in a d-degenerate graph. Their algorithm runs in
O(f(k, d) ·n�) where � is the size of the largest induced matching in the motif to
be searched. It is worth mentioning that subgraph isomorphism lies at the heart
of frequent pattern discovery [22].

3 Dataset Description

In this section we describe in detail the dataset of financial transactions we
used in our experiments. The dataset encompass all wire transfers performed
by the Head Office services of MIB in a period of six months, from August 1st,
2020 to January 31st, 2021 thus including SEPA [11] SCT and SWIFT-enabled

176 M. Starnini et al.

Fig. 2. Some empirical properties of the dataset: (a) Number of transactions in time,
on a daily basis. (b) Probability distribution of the amount transferred in euros (log-
log scale). (c) Probability distribution of the in- and out-degree (log-log scale). (d)
Probability distribution of the time interval τ between two consecutive transactions
involving the same sender and/or receiver (log-log scale).

[34] national and international wire transfers. Data were made available to the
research team in a fully anonymized form respecting the strictest privacy and
security requirements.

The average monthly volume is close to 30 million transactions. Figure 2(a)
shows the number of transactions in time, aggregated on a daily basis. One
can see that the number of transactions monitored is more than one million
per day, excluded weekends. There is a considerable decrease in activity around
the middle of August and during Christmas break. Each data entry includes
a set of features, regarding both the sender/receiver parties and the transac-
tion characteristics. For sender/receiver parties, data includes their anonymized
bank account number, anonymized bank’s BIC, party’s and bank’s country of
residence (both at ISO alpha 2 level), and if the party is legal or physical person.
For each transaction, features include timestamp, amount transferred, currency
used, and transaction means (SEPA or SWIFT).

Figure 2(b) plots the empirical probability distribution of the amount trans-
ferred within the whole data set, in euros. One can see that most transactions
regard an amount between few hundreds and few thousands euros. However,
much larger amounts are present in the data set, up to a few billions euros.
After a few thousands euros, the amount distribution decays as power-law func-
tion, indicating that very large transactions occur with very small probability,
yet different than zero.

Smurf-Based Anti-money Laundering 177

Table 1. Approximate number of nodes, edges, and weakly connected components of
the entire dataset, and broken down by month.

Time period N E # WCCs

Aug. 1st, 2020 -Jan. 31st, 2021 31M 184M 847K

Aug. ’20 16M 26M 859K

Sep. ’20 17M 31M 853K

Oct. ’20 17M 33M 829K

Nov. ’20 18M 32M 831K

Dec. ’20 18M 33M 1073K

Jan. ’21 17M 30M 869K

The dataset is naturally modeled as a time-evolving, directed multi-graph,
a special instance of temporal networks [17]. In such graphs, nodes are a static
collection of elements, edges are dynamic. In our dataset, nodes represent bank
accounts while edges transactions. Table 1 shows the number of nodes N , edges
E, and number of weakly connected components (WCCs), for graphs recon-
structed from the whole dataset and from single months. Out of the 847 092
connected components of the whole dataset graph, the giant component spans
29 693 858 nodes whereas the second largest contains only 304 nodes. We rep-
resent the information that a node i sent w(i, j) financial amount to node j at
time t as the quadruplet (i, j, w, t). We denote by nij and Wij the number of
transactions and the total amount of money transferred from node i to node
j, respectively. The in-degree (out-degree) of node i, kin

i (kout
i), corresponds to

the total number of counter-parties sending (receiving) money from (to) node
i, over the whole time interval under consideration. The total amount of money
sent (received) by node i, W out

i (W in
i) is obtained by summing all outgoing

(incoming) transactions involving node i, W out
i =

∑
j Wij (W in

i =
∑

j Wji).
Figure 2(c) shows the in-degrees and out-degrees of the whole transaction

graph in the 6-month period in log-log scale. Both distributions are heavy-
tailed, compatible with a power-law function P (k) ∼ k−γ , with similar expo-
nents γin � 2.6 and γout � 2.2. This indicates that most actors are involved in
transactions with few counter-parties, only very few parties engage with many
others. However, a typical scale for the number of counter-parties is missing: in
the data set there are present actors receiving money from up to one thousands
different peers, and sending money to up ten thousands different parties. Nodes
with large in- or out-degree typically correspond to companies that are not sus-
picious of money laundering activities; this could involve transferring money
to a large number of employees, and receiving money from numerous business
partners. As we will see in the following, we are interested in spotting actors
interacting with relatively few counterparties. Figure 2(c) shows that, despite
highly-connected nodes being a tiny fraction of the network, their presence is
non-negligible. The scale-free form of the degree distribution suggests that prun-
ing hubs might be effective in reducing the amount of data to monitor, as we will

178 M. Starnini et al.

see. Indeed, removing a hub implies to remove all connected edges and this might
affect the network’s connectivity, possibly breaking the graph into disconnected
components and thus making the motifs extraction easier [30]. This theoretical
observation has been also specifically validated in empirical transaction networks
[31]. A different result would hold if the network had an homogeneous degree
distribution (e.g. Erdos–Renyi graphs).

The time-varying graph representation allows us to take into account the
activation dynamics of nodes and edges, corresponding to the dynamical fea-
tures of sender/receiving parties [17]. Figure 2(d) shows the inter-transaction
time distribution P (τ) between two consecutive activation of the same node,
i.e. the time interval τ between two consecutive transactions involving the same
sender and/or receiver, aggregated over the whole data set, expressed in hours.
The inter-transaction time distribution P (τ) is heavy-tailed, indicating that the
transaction dynamics follows a bursty behavior, as common in several human
and natural contexts [33]: most transactions involving the same parties occur
at small timescales, while large time intervals are increasingly less likely. Here,
we are interested in spotting transactions occurring within a relatively small
time interval, like a few days. Figure 2(d) shows that, accordingly to the bursty
nature of the transaction dynamics, these kind of transactions represent a large
fraction of the total. For instance, 85% of consecutive transactions involving the
same parties occur within 7 days. Therefore, an a priori filter aimed at pruning
transactions occurring within large time-intervals would not be effective in sig-
nificantly reducing the amount of data to monitor, as we will see in the following.

Note that one can generate synthetic time-evolving graphs with properties
similar to the original data, by means of the probability density functions showed
in Figs. 2(b),(c),(d). The degree distribution P (k) (Fig. 2(c)) can be exploited
to generate a directed network by means of the so-called configuration model
[5], allowing the possibility of multiple edges between nodes. The distribution
of amounts (Fig. 2(b)) can be used to generate weights for each edge. The
dynamics of the network can be taken into account by recent modelling frame-
works developed to generate temporal networks, such as activity-driven networks
[28]. Finally, the broad-tailed form of the inter-transaction time distribution
(Fig. 2(d)) can be reproduced by using models for bursty temporal networks
[27], in which the link activation dynamics follows a non-Poissonian process.

4 Extraction of Smurf-Like Motifs from Transaction
Graph

In this Section we exactly define the problem of interest and propose a frame-
work to efficiently solve it. Then, we show the motifs extracted by our method,
classified from the perspective of anti-money laundering stakeholders.

4.1 Proposed Pipeline

Problem Definition. Figure 1 shows type 1 and type 2 subgraphs that we wish
to extract efficiently from a large transaction graph. Observe that when there is

Smurf-Based Anti-money Laundering 179

one source and one target in motif 1, and one middle node in motif 2, the two
motif types coincide. We are interested in finding a set of motifs as shown in
Fig. 1, that may have varying number of nodes, but involve few bank accounts
(less than 20 in total), and are suspicious. The key characteristic we encode as
suspiciousness is the velocity that the transactions within the motif take place.
We state this as the following problem:

Problem 1. Given a time-evolving transaction network, find all motifs of
type 1 and type 2, that involve at least 3 nodes, and at most k nodes,
and all transactions take place within a time window of ΔT days.

Typically all the transactions from the source(s) to the middle node(s), take
place before the transactions from the latter to the target(s). However, there can
exist some asynchrony. From now on, let S,M, T be the sets of sources, middle
nodes, and targets in motifs type 1, and type 2 respectively. Let s = |S|, t = |T |.
We outline that existing anti-money laundering tools based on graph mining,
including Flowscope [25] and AutoAudit [24], are not satisfactory formulations
in our application. Perhaps, the most appropriate formulation is to cast the
aforementioned problem as a subgraph isomorphism problem. Specifically, we
can create a dictionary of motifs that we are interested in, and roll a time
window spanning over the dataset to search for each motif using an efficient
subgraph isomorphism algorithm, e.g., [35]. Unfortunately, this formulation is
computationally expensive and does not scale well to large networks.

Proposed Framework. Before we delve into the details of our proposed frame-
work, it is worth summarizing our key contributions. Our framework consists of
a pipeline that involves few, computationally inexpensive steps, that pre-process
the graph, perform simple database joins, and post-process the output, and is
able to find suspicious subgraphs. Furthermore, by mining the output, we clas-
sify the motifs into categories that are of independent interest to anti-financial
crime investigators and practitioners.

The pre-processing part removes nodes and edges that the bank knows or
believes with high confidence that are not involved in money laundering. This
part imposes the following constraints on the graph: edges whose weight is less
than a certain threshold are removed, nodes with in-degree and out-degree above
a certain threshold are removed. Transactions involving a small amount are
indeed not suspicious for money laundering, as well as bank accounts with very
large activity. Furthermore, we ensure that each path of length 2 involves at least
one cross-border transaction. Since most bank accounts are Italian, this implies
that in each three-nodes path at least one node is non-Italian. Table 2 shows an
example (by using data from the month of November) of how the pre-processing
steps greatly reduce the graph’s size. For instance, even if nodes with in- or
out-degree above 50 are just 0.2% of the transaction network, these account
for almost 50% of edges. Altogether, the pre-processing constraints reduce the
graph’s size of about 1000 times.

180 M. Starnini et al.

Table 2. Effects of the 3 pre-processing steps (highlighted in Table 3) on the graph’s
number of nodes N and edges E. At each pre-processing step the graph’s size signifi-
cantly decreases. As an example, we show data from November.

Graph N E

Original 18M 26M

Min Edge Weight 1.22M 1.28M

Max kin, kout 152K 125K

Min cross-border transactions 21K 46K

Table 3. Values of constraints applied in the pipeline.

Pipeline Constraint Values

Pre-processing Min Edge weight Non-disclosed threshold

Pre-processing Max kin, kout 50

Pre-processing Min cross-border transactions 1

Motifs extraction Motif 1 s, t > 1

Motifs extraction Motif 2 s = t = 1

Motifs extraction Max inter-transaction time ΔT Non-disclosed threshold

Post-processing Min total flow Non-disclosed threshold

Post-processing Flow ratio Non-disclosed thresholds

Our search step is a standard graph database join that finds common neigh-
bors between different pairs of nodes within the time window ΔT we are inter-
ested in. For instance for motif type 2, for a given ordered pair of nodes (u, v)
we find the set of nodes that is out-going neighbors of u, and in-coming neigh-
bors of v. The perhaps surprising finding is that this naive search algorithm
that bypasses the constraint that the middle nodes should not have any edges
between them (or induce few in general) is automatically satisfied by most of the
output of the search step, due to our pre-processing step, and due to enforcing
the velocity constraint. Furthermore, we find that one large motif may unpack
into several smaller suspicious motifs, where the source, and target nodes remain
the same, and the set of intermediary nodes may change over time.

Finally, motifs extracted are post-processed, in order to respect some addi-
tional constraints related to nodes and edges features. For each motif, the total
incoming and outgoing flow can be computed, as the sum of the amount trans-
ferred through incoming and outgoing edges of the middle nodes, respectively.
Similarly, the total flow transferred from source to target nodes is equal to the
minimum between incoming and outgoing flows. Motifs must have a total flow
transferred above a certain threshold, and the ratio between outgoing and incom-
ing flows between a certain interval. The topological, dynamical, and additional
constraints applied to extract the suspicious subgraph are summarized in Table 3.
Note that for security reasons, we do not disclose the exact values used in the
pipeline.

Smurf-Based Anti-money Laundering 181

Table 4. Running times in seconds of ISMAGS [18] for searching an induced path
i → j → k (column 1), a motif of type 1 with s = t = 3 (column 2), and our proposed
method on searching all motifs of type 1 where 1 ≤ s, t ≤ 6 over five different three-day
windows (one per row). Running ISMAGS for searching a motif with s = t = 3 requires
hours.

ISMAGS (s = t = 1) ISMAGS (s = t = 3) Proposed method

88.0 s >1 h 84.0 s

30.4 s >1 h 43.3 s

94.0 s >1 h 87 s

38.4 s >1 h 44.3 s

15.6 s >1 h 26.9 s

73 s >1 h 69 s

4.2 Results

Here we show the results of our pipeline. First, we compare the efficiency of
our method with a state of the art algorithm for subgraph isomorphism search,
ISMAGS [18]. Then, we highlight a few interesting motifs extracted from the
transaction network. Finally, we provide a systematic classification of motifs
found according to the geography of countries involved.

Comparison to Subgraph Isomorphism. Table 4 compares the running time of
ISMAGS [18] and our proposed method on five different time-windows of length
ΔT for finding efficiently motif type 1. ISMAGS runs efficiently only when s =
t = 1. Even when s = 2, ISMAGs may require more than an hour for certain time
windows. When s = t = 3, for all considered time-windows, ISMAGS consistently
requires time at the order of hours to find the motifs. This comes in sheer contrast
to our proposed method, that forgets the constraint of finding induced subgraphs.
Once we find a set of candidate subgraphs, our method checks which ones are
isomorphic to the desired motif. We find all 36 possible instatiations of induced
motifs of type 1 with 1 ≤ s, t ≤ 6. The running time is always less than a minute
and half. This happens since the time constraint we impose by looking into
time-windows biases the dataset towards having this property, i.e., our proposed
method finds induced subgraphs even if it is not explicitly searching for such.
Furthermore, the number and size of subgraphs extracted is relatively small, so
it is possible to check a posteriori if these subgraphs are induced.

Anomalous Subgraphs. Figure 3 shows a subset of the output of our pipeline,
colored accordingly to the geographical risk of each country involved: green for
Italian bank accounts (considered non risky), orange for medium risk countries,
yellow for low risk countries, and red for the high risk countries. Figure 3(a)
shows a type 1 motif, with s = 1, t = 8. The middle node receives on day 1 a
large amount of money from a German (DE) account, and then within the next
couple of days distributes it in smaller amounts to 8 different bank accounts, all

182 M. Starnini et al.

Fig. 3. Different groups of transactions extracted from the platform that are classi-
fied as suspicious due to their smurf-like behaviour. For each motif, nodes are colored
accordingly to the geographical risk of each country involved: green for Italian bank
accounts (considered non risky), orange for medium risk countries, yellow for low risk
countries, and red for the high risk countries. Edge thickness indicates the amount
transferred, also labeled on top of the edges. (Color figure online)

within Italy (IT). Figures 3(b), (c) show two more motifs of type 1 that involves
multiple countries. In Fig. 3(b), the middle node resides in Belgium (BE), while
source and target nodes are in Italy and Croatia (HR), while in Fig. 3(c) the
amount is transferred entirely outside Italy. Figure 3(d) shows an induced path

Smurf-Based Anti-money Laundering 183

Fig. 4. Number of motifs extracted from the whole data set for each class, defined in
the main text.

of length 2 where the source and target nodes reside in Albania and Bosnia,
respectively, while the middle node in Italy. Note that the two transactions
take place within a single day. It is worth outlining that Albania is ranked as
one of two of the countries most at risk from money laundering according to
the Money Laundering and Terrorist Financing Index, published by the Basel
Institute [4]. Similarly, Figs. 3(e),(f) show two more suspicious motifs, involving
Germany (DE), Switzerland (CH), Italy (IT), and Lithuania (LT) Figs. 3(g), (h)
show two examples of type 2 motifs: in Fig. 3(e) the source node resides in Great
Britain (GB), in Fig. 3(e) both middle nodes are outside Italy while source and
target nodes are in Italy.

Motif Classification. The motifs extracted can be classified according to the
needs of further manual inspection, to be performed by anti-financial crime spe-
cialists. Figure 4 shows the distribution of the motifs detected according to our
classification, which relies on the geography of the bank accounts involved. This
classification is performed from the point of view of the financial institutions
monitoring transactions (MIB in this case), but it can be generalized to any
financial institution. The largest share of the motifs extracted can be classified
as “direct involvement”. In these motifs, MIB customers are engaged as pivotal
figures (i.e. middle nodes), while being both beneficiary as well as ordering party
of conspicuous transactions in the velocity schema. Another substantial share of
motifs are classified as “full pass-through”. In these motifs, MIB is supporting
the payment delivery of others banks, so all the nodes involved are not MIB cus-
tomer. Another case can be classified as “hybrid involvement”, in which, while
the pivotal middle node is external to MIB, some of the wire transfers start
from or are directed to MIB customers. In this case, we have MIB nodes only in
one side of the motif. An example of this class are motifs sketched in Fig. 3(c).
Another important category is the one in which all source and target nodes
belong to MIB customer base, while the middle node is external to the bank.
This case is defined as “U-turn” in the literature [26]. The middle node is fre-

184 M. Starnini et al.

quently located abroad in specific countries with inexplicable business reasons.
Those cases are remarkably interesting since they present an enhanced “lack
of economic purpose” feature, combined with the typical triggering red flag of
“money laundering high risk geographies”. Finally, the last class is composed
by motifs in which the “U-turn” is embedded in clusters of “pass-through” pay-
ments. In this case, the middle node is external to MIB, as well as a subset
of sources and/or targets, thus we label it as a specific class “U-turn in pass-
through”.

5 Conclusion

In this work we have proposed a practical pipeline for finding sets of transactions
suspicious of money laundering. We show that our method scales gracefully
with the size of the dataset, and bypasses the computational complexity lower
bound of subgraph isomorphism by exploiting the high velocity characteristics
of smurf-like transactions. Specifically, we show that simple database joins when
combined with prior knowledge result in efficiency, which is crucial for real-
time detection of such illicit activities. Furthermore, by studying the output of
our pipeline, we provide a novel characterization of smurf-like motifs that is of
independent interest to anti-money laundering practitioners and financial crime
units. The latter provides insights on how money launderers use geography and
the efficiency limitations of real-world transaction monitoring systems to perform
their activities. An interesting open direction is learning more complex motifs
that money launderers form by leveraging labeled transactions.

According to the perspective of anti-financial crime stakeholders, mainly
interested into the practical monitoring power of the tools regardless the under-
lying mathematical approach, it is to be stressed that the “direct involvement”
schema may be, at least in a partial manner, spotted with traditional rule-based
algorithms based on counters and thresholds applied to wire transfers involving
the customer base. These methods rely on relational databases only and are
largely popular inside the banking industry. However, they present relevant lim-
itations intrinsic to the fact that they do not consider the features of the whole
transaction graph. Such limitations become almost a state of blindness for the
cases “full pass-through”, “hybrid involvement”, “U-turn”, and “U-turn in pass-
through”. These cases are to be taken into account when not only the customer
base of bank but also counter-parties partially or totally external to it are to be
considered. In this line of work, the presented results are a seminal contribution
far from being maturely exploited in improving transaction monitoring systems.

Acknowledgements. The research was conducted under a cooperative agreement
between ISI Foundation, Intesa Sanpaolo Innovation Center, and Intesa Sanpaolo. The
authors would like to thank Paolo Baracco, Piero Boccassino, Valerio Cencig, Raffaele
Cosimo, Guido de Vecchi, Emmanuele Di Fenza, Maurizio Montagnese, Alessandro
Raso, Mauro Ronzano and Luigi Ruggerone for their useful comments.

Smurf-Based Anti-money Laundering 185

Data Availability Statement. The data supporting the findings of this study is
available from Intesa Sanpaolo upon request to Intesa Sanpaolo Innovation Center
(innovationcenter@pec.intesasanpaolo.com). Please note that restrictions for data
availability apply. Researchers interested in having access to data for academic purposes
will be asked to sign a non-disclosure agreement.

References

1. Babai, L.: Graph isomorphism in quasipolynomial time. In: Proceedings of the
Forty-Eighth Annual ACM Symposium on Theory of Computing, pp. 684–697
(2016)

2. Babai, L., Luks, E.M.: Canonical labeling of graphs. In: Proceedings of the Fif-
teenth Annual ACM Symposium on Theory of Computing, pp. 171–183 (1983)

3. Banca d’Italia - Unita di Informazione Finanziaria per l’Italia. Rapporto annuale
2019 (12) (2020)

4. Basel institute on Governance. Basel AML index: 9th public edition ranking money
laundering and terrorist financing risks around the world (2020)

5. Bender, E.A., Canfield, E.: The asymptotic number of labeled graphs with given
degree sequences. J. Comb. Theory Ser. A 24(3), 296–307 (1978)

6. Bressan, M., Roth, M.: Counting homomorphisms, subgraphs, and induced sub-
graphs in degenerate graphs: new hardness results and complete complexity clas-
sifications. arXiv preprint arXiv:2103.05588 (2021)

7. Chen, Z., Khoa, L.D., Teoh, E.N., Nazir, A., Karuppiah, E.K., Lam, K.S.: Machine
learning techniques for anti-money laundering (AML) solutions in suspicious trans-
action detection: a review. Knowl. Inf. Syst. 57(2), 245–285 (2018). https://doi.
org/10.1007/s10115-017-1144-z

8. Choudhury, S., Holder, L., Chin, G., Ray, A., Beus, S., Feo, J.: StreamWorks:
a system for dynamic graph search. In: Proceedings of the 2013 ACM SIGMOD
International Conference on Management of Data, pp. 1101–1104 (2013)

9. Cordella, L.P., Foggia, P., Sansone, C., Vento, M.: A (sub) graph isomorphism
algorithm for matching large graphs. IEEE Trans. Pattern Anal. Mach. Intell.
26(10), 1367–1372 (2004)

10. Ebikake, E.: Money laundering: an assessment of soft law as a technique for repres-
sive and preventive anti-money laundering control. J. Money Laund. Control.
19(4), 346–375 (2016). https://doi.org/10.1108/JMLC-07-2015-0029

11. European Payments Council (EPC). Sepa single euro payment area
12. FATF, Financial Action Task Force. International standards on combating money

laundering and the financing of terrorism & proliferation (2012–2020)
13. Financial Intelligence Group. From suspicion to action, converting financial

intelligence into greater operational impact. Financial intelligence group (2017).
https://www.europol.europa.eu/publications-documents/suspicion-to-action-
converting-financial-intelligence-greater-operational-impact

14. Garey, M.R., Johnson, D.S.: Computers and intractability. A Guide to the Theory
of Np-Completeness (1979)

15. Guardian. Danske bank money laundering is biggest scandal in Europe (2018).
https://www.theguardian.com/business/2018/sep/20/danske-bank-money-
laundering-is-biggest-scandal-in-europe-european-commission

16. He, H., Singh, A.K.: Graphs-at-a-time: query language and access methods for
graph databases. In: Proceedings of the 2008 ACM SIGMOD International Con-
ference on Management of Data, pp. 405–418 (2008)

http://arxiv.org/abs/2103.05588
https://doi.org/10.1007/s10115-017-1144-z
https://doi.org/10.1007/s10115-017-1144-z
https://doi.org/10.1108/JMLC-07-2015-0029
https://www.europol.europa.eu/publications-documents/suspicion-to-action-converting-financial-intelligence-greater-operational-impact
https://www.europol.europa.eu/publications-documents/suspicion-to-action-converting-financial-intelligence-greater-operational-impact
https://www.theguardian.com/business/2018/sep/20/danske-bank-money-laundering-is-biggest-scandal-in-europe-european-commission
https://www.theguardian.com/business/2018/sep/20/danske-bank-money-laundering-is-biggest-scandal-in-europe-european-commission

186 M. Starnini et al.

17. Holme, P., Saramäki, J. (eds.): Temporal Networks. Springer, Berlin (2013).
https://doi.org/10.1007/978-3-642-36461-7

18. Houbraken, M., Demeyer, S., Michoel, T., Audenaert, P., Colle, D., Pickavet,
M.: The index-based subgraph matching algorithm with general symmetries
(ISMAGS): exploiting symmetry for faster subgraph enumeration. PloS One 9(5),
e97896 (2014)

19. Huang, J.: Effectiveness of US anti-money laundering regulations and HSBC case
study. J. Money Laund. Control. 18, 525–532 (2015). https://doi.org/10.1108/
JMLC-05-2015-0018

20. IntesaSanpaolo. Anti-money laundering rulebook, international branches (2019).
Internal document (restricted)

21. IntesaSanpaolo. Guidelines for combating money laundering and terrorist financing
and for managing embargoes (2019). Internal document (restricted)

22. Jiang, C., Coenen, F., Zito, M.: A survey of frequent subgraph mining algorithms.
Knowl. Eng. Rev. 28(1), 75–105 (2013)

23. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907 (2016)

24. Lee, M.-C., et al.: AutoAudit: mining accounting and time-evolving graphs. arXiv
preprint arXiv:2011.00447 (2020)

25. Li, X., et al.: FlowScope: spotting money laundering based on graphs. In: AAAI,
pp. 4731–4738 (2020)

26. MAS – Monetary authority of Singapore. Red flag indicators for banks (2015)
27. Moinet, A., Starnini, M., Pastor-Satorras, R.: Burstiness and aging in social tem-

poral networks. Phys. Rev. Lett. 114, 108701 (2015)
28. Perra, N., Gonçalves, B., Pastor-Satorras, R., Vespignani, A.: Activity driven mod-

eling of time varying networks. Sci. Rep. 2(1), 469 (2012)
29. Schott, P.A.: Reference guide to anti-money laundering and combating the financ-

ing of terrorism (2006). https://openknowledge.worldbank.org/bitstream/handle/
10986/6977/350520Referenc1Money01OFFICIAL0USE1.pdf;sequence=1

30. Schwartz, N., Cohen, R., Ben-Avraham, D., Barabási, A.-L., Havlin, S.: Percolation
in directed scale-free networks. Phys. Rev. E 66(1), 15104 (2002)

31. Semeraro, A., Tambuscio, M., Ronchiadin, S., Li Puma, L., Ruffo, G.: Structural
inequalities emerging from a large wire transfers network. Appl. Netw. Sci. 5(1),
1–35 (2020). https://doi.org/10.1007/s41109-020-00314-x

32. Shang, H., Zhang, Y., Lin, X., Yu, J.X.: Taming verification hardness: an efficient
algorithm for testing subgraph isomorphism. Proc. VLDB Endow. 1(1), 364–375
(2008)

33. Song, C., Koren, T., Wang, P., Barabasi, A.-L.: Modelling the scaling properties
of human mobility. Nat. Phys. 6(10), 818–823 (2010)

34. S.W.I.F.T. Society for worldwide interbank financial telecommunication
35. Ullmann, J.R.: An algorithm for subgraph isomorphism. J. ACM (JACM) 23(1),

31–42 (1976)
36. Weber, M., et al.: Scalable graph learning for anti-money laundering: a first look.

arXiv preprint arXiv:1812.00076 (2018)
37. Welling, S.N.: Smurfs, money laundering and the federal criminal law: the crime

of structuring transactions. Fla. Law Rev. 41, 287–343 (1989)
38. Zhang, S., Li, S., Yang, J.: GADDI: distance index based subgraph matching in bio-

logical networks. In: Proceedings of the 12th International Conference on Extend-
ing Database Technology: Advances in Database Technology, pp. 192–203 (2009)

39. Zhao, P., Han, J.: On graph query optimization in large networks. Proc. VLDB
Endow. 3(1–2), 340–351 (2010)

https://doi.org/10.1007/978-3-642-36461-7
https://doi.org/10.1108/JMLC-05-2015-0018
https://doi.org/10.1108/JMLC-05-2015-0018
http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/2011.00447
https://openknowledge.worldbank.org/bitstream/handle/10986/6977/350520Referenc1Money01OFFICIAL0USE1.pdf;sequence=1
https://openknowledge.worldbank.org/bitstream/handle/10986/6977/350520Referenc1Money01OFFICIAL0USE1.pdf;sequence=1
https://doi.org/10.1007/s41109-020-00314-x
http://arxiv.org/abs/1812.00076

Spatio-Temporal Multi-graph Networks
for Demand Forecasting in Online

Marketplaces

Ankit Gandhi1(B), Aakanksha2, Sivaramakrishnan Kaveri1,
and Vineet Chaoji1

1 Amazon – India Machine Learning, Bengaluru, India
{ganankit,kavers,vchaoji}@amazon.com

2 Microsoft, Hyderabad, India
aakanksha@microsoft.com

Abstract. Demand forecasting is fundamental to successful inventory
planning and optimisation of logistics costs for online marketplaces such
as Amazon. Millions of products and thousands of sellers are competing
against each other in an online marketplace. In this paper, we propose
a framework to forecast demand for a product from a particular seller
(referred as offer/seller-product demand in the paper). Inventory plan-
ning and placements based on these forecasts help sellers in lowering ful-
filment costs, improving instock availability and increasing shorter deliv-
ery promises to the customers. Most of the recent forecasting approaches
in the literature are one-dimensional, i.e., during prediction, the future
forecast mainly depends on the offer i.e. its historical sales and features.
These approaches don’t consider the effect of other offers and hence, fail
to capture the correlations across different sellers and products seen in
situations like, (i) competition between sellers offering similar products,
(ii) effect of a seller going out of stock for the product on competing
seller, (iii) launch of new competing products/offers and (iv) cold start
offers or offers with very limited historical sales data. In this paper, we
propose a general demand forecasting framework for multivariate corre-
lated time series. The proposed technique models the homogeneous and
heterogeneous correlations between sellers and products across different
time series using graph neural networks (GNN) and uses state-of-the-art
forecasting models based upon LSTMs and TCNs for modelling individ-
ual time series. We have experimented with various GNN architectures
such as GCNs, GraphSAGE and GATs for modelling the correlations.
We applied the framework to forecast the future demand of products,
sold on Amazon, for each seller and we show that it performs ∼16%
better than state-of-the-art forecasting approaches.

Keywords: Demand forecasting in e-commerce · Time-series
forecasting · Graph neural networks · Correlated multivariate time
series

Aakanksha—Work was done as part of internship at Amazon.

c© Springer Nature Switzerland AG 2021
Y. Dong et al. (Eds.): ECML PKDD 2021, LNAI 12978, pp. 187–203, 2021.
https://doi.org/10.1007/978-3-030-86514-6_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86514-6_12&domain=pdf
https://doi.org/10.1007/978-3-030-86514-6_12

188 A. Gandhi et al.

1 Introduction

Forecasting product demand for different sellers is important for e-commerce
marketplaces for successful inventory planning and optimizing supply chain
costs. These forecasted demand recommendations are then used by sellers to
stock inventory in their warehouses or fulfilment centres. In online marketplaces
such as Amazon, there are hundreds of thousands of sellers offering millions of
products. A single product can be offered by multiple sellers and a seller can
sell multiple products. Demand for a particular offer not only depends on its
historical sales but also on other factors such as competition with other sell-
ers, other sellers offering same/similar product going out of stock, other sellers
increasing or decreasing the price, launch of new competing products, etc. In
order to accurately predict offer level demand, it is imperative to capture the
correlations between different offers in the model.

In e-commerce, the demand is highly dynamic and often fluctuating because
of holidays, deals, discounts, intermittent offer campaigns, competitor trends,
etc. Recent works for e-commerce demand forecasting based on neural net-
works [19–21,25] have shown that they significantly outperform traditional fore-
casting models such as ARIMA [4,5] and exponential smoothing [13]. The tra-
ditional methods are univariate and forecast for each time series in isolation.
Whereas in e-commerce, products are often related in terms of grouping, cate-
gories or sub-categories, and hence, their demand patterns are correlated. Neural
networks take into account these correlations using dynamic historical attributes
and static covariates to extract higher order features, and identify complex pat-
terns within and across time series.

Even though these deep models are trained on all offers to capture these
correlations, during prediction they only focus on using an offer’s historical time
series data to predict the future time series. However, for offer demand fore-
casting, looking into other time series may be useful during prediction time, for
instance, it might be beneficial to look at (i) out of stock status for the same
product from other sellers, (ii) launch of competing/similar products, (iii) price
increase/decrease from other sellers offering same product, (iv) performance of
competing seller going up/down suddenly (rating, shipping, reviews, etc.). In
the past, authors in [15], proposed a combination of convolution and recurrent
connections that takes multiple time series as input to the network, thus cap-
turing some of the above scenarios during prediction. However, it doesn’t scale
beyond a few time series as the input layer size grows. In [22], authors propose a
scalable network that can leverage both local and global patterns during training
and prediction. They combine a global matrix factorization model over all time
series regularized by a temporal convolution network with another temporal net-
work to capture local properties of each time-series and associated covariates. In
this paper, we propose a more systematic method of modelling the correlation
between different entities across time series using GNNs.

Graphs are an extremely powerful tool to capture and represent interactions
between entities in a seamless manner. The entities (sellers and products) can be
represented as nodes of a graph and their direct correlation can be represented

Spatio-Temporal Multi-graph Networks for Demand Forecasting 189

by edges (refer to Sect. 3.2 for graph construction). This results in a multi-
modal1 and multi-relational2 graph. In addition, nodes and edges can be repre-
sented using a set of historical features, characterizing their intrinsic properties.
Recently, researchers have proposed various methods that are capable of learning
from graph-structured data [6,10–12,14,18,23,27,28,30]. All of these methods
are based on Graph Convolutional Networks (GCNs) and its extensions. GCNs
learn to aggregate feature information from local graph neighborhoods using
neural networks. These methods have been shown to boost the performance of
many graph-level tasks such as node classification, link prediction, graph classi-
fication, subgraph classification, etc.

In this work, we propose a framework for performing demand forecasting in
multivariate correlated time series data. We model the homogeneous and hetero-
geneous correlations between different sellers and products across time series at
the time of training as well as prediction, and inject the learned representations
into state-of-the-art neural network architectures [1,8,25] for demand forecast-
ing. At each time step, we define a graph structure based on seller attributes,
product attributes, offer demand, product similarity/substitute [17,24], and
obtain the seller and product representations. The edge structure in the graph
vary over time based upon demand and other connections. Thus, an unrolled
version of the network comprises of multiple graphs (referred to here as multi-
graph networks) sharing the same parameters (refer to Fig. 1). The sequence of
representations from GNNs along with historical demand is then fed into sequen-
tial neural model such as LSTMs, TCNs, etc., to forecast the future demand. We
experiment with different variations of GNN architectures such as GCNs [14],
GraphSAGE [11], GAT [23], etc. by incorporating various node and edge fea-
tures to learn the seller and product embeddings at each time step. While the
LSTM/TCN modules make use of just the sequential information present in the
data, our aim is to augment these modules with correlations across time series
learnt using GNNs. We train the complete spatio-temporal multigraph network
in an end-to-end fashion, where embeddings from the GNN layer are fed into the
sequential model to make demand forecasts, and the loss is optimized over the
entire network. Following are the main contributions of the paper – (i) a generic
framework for handling competing/correlated time series in demand forecasting,
(ii) use of GNNs for modelling the effect of sellers and products on each other in
online marketplaces during training and prediction, (iii) the framework can be
plugged into any state-of-the-art sequential model for better demand forecasts,
(iv) extension of standard GNN architectures to heterogeneous graphs by lever-
aging edge features and (v) empirical evaluation of framework using real world
marketplace data from Amazon against other forecasting techniques.

We evaluate the framework for forecasting demand of offers sold on Amazon
marketplace on a dataset comprising of 21K sellers and 1.89MM products, and
show that the proposed models have ∼16% lower mean absolute percentage
error (MAPE) than state-of-the-art demand forecasting approaches used in e-
commerce. For products that are sold by more than one seller, the improvement is

1 Graph having different kinds of nodes (sellers, products).
2 Graph having multiple types of edges between nodes (in-stock, product substitute).

190 A. Gandhi et al.

∼30%, and for cold and warm start offers (that has history of less than 3 months),
the improvement is ∼25%. The rest of the paper is organized as follows. Section 2
provides an overview of the extensive literature on forecasting models, especially
for e-commerce and correlated time series. In Sect. 3, we present the proposed
framework of spatio-temporal multi-graph networks for demand forecasting. In
Sect. 4, we compare the performance of the proposed model and its variants
with the state-of-the-art approaches for demand forecasting as well as some of
the implementation details. We conclude with the final remarks in Sect. 5.

2 Prior Work

Time series forecasting is a key component in many industrial and business deci-
sion processes, and hence, a wide variety of different forecasting methods have
been developed in the past. ARIMA models [4,5] and state space models [9,13]
have been well established de-facto forecasting models in the industry. How-
ever, for retail demand forecasting they don’t seem to work well as they cannot
infer shared patterns from a dataset of similar time series. Deep neural network
based forecasting solutions provide an alternative [1,20–22,25]. In this section,
we mostly focus on recent deep learning approaches. Benidis et al. provide an
excellent summary and review of various neural forecasting approaches in [3].
DeepAR [21] proposed an auto regressive recurrent neural network model on
a large number of related time series to estimate the probability distribution
of future demand. DeepState [20] models time series forecasting by marrying
state space models with deep recurrent neural networks to learn complex pat-
terns from data while retaining the interpretability. Wen et al. [25] proposed a
multi-horizon quantile recurrent forecaster where the time series history is mod-
elled using LSTMs, and an MLP is used to decode the input into multi horizon
demand forecasts. LSTNet [15] uses a combination of CNN and RNN to extract
short-term temporal patterns as well as correlations among variables. Chen et
al. [8] proposed a probabilistic framework with temporal convolutional neural
networks for forecasting based on dilated causal convolutions. DeepGLO [22] is
a hybrid model that combines a global matrix factorization model regularized by
a temporal convolution network and another temporal network to capture the
local properties of time series and associated covariates. There have been meth-
ods to take into account correlation between time series like DeepGLO [22],
LSTNet [15], etc., however, we provide a more systematic method of modelling
the correlations between different entities in the time series using GNNs.

There have been few works in the past focusing specifically on retail demand
forecasting. Mukherjee et al. [19] developed an MLP and LSTM based archi-
tecture for the eRetail company – Flipkart, and outputs the probability distri-
bution of future demand as a mixture of Gaussians. Bandara et al. [2] built an
LSTM based network for forecasting on real world dataset from Walmart. How-
ever, none of the previous works focus on demand forecasting for ‘marketplaces’,
where multiple sellers are involved and explicitly model the correlations in their
time-series.

There are also a few prior works that use GNNs for demand forecasting focus-
ing mainly on the application of traffic forecasting. DCRNN [16] incorporates

Spatio-Temporal Multi-graph Networks for Demand Forecasting 191

Fig. 1. Training architecture of the demand forecasting model for online marketplaces.
At each time-step, a graph is defined between seller and product nodes that models
the correlation between them using ‘demand’ and ‘substitute’ relations. From these
graphs, product and seller embeddings are learned using GNN layer. The embeddings
from GNN are then concatenated with static features and demand value for that time-
step, and fed into the sequential model (in this case, LSTM) to forecast offer-level
demand.

both spatial and temporal dependency in the traffic flow using diffusion convo-
lution and RNNs for traffic forecasting. ST-GCN [29] is a deep learning frame-
work that integrates graph convolution and gated temporal convolution through
spatio-temporal convolutional blocks for traffic forecasting. GraphWaveNet [26]
captures spatio-temporal dependencies by combining graph convolution with
dilated casual convolution. StemGNN [7] is a spectral temporal GNN that cap-
tures inter series correlations and temporal dependencies jointly in the spectral
domain for demand forecasting. To the best of our knowledge, this is the first
work, that predicts offer demand for online marketplaces by explicitly modelling
the correlations between different sellers and products in the time series, and
accounting for their effects on each other.

3 Proposed Method

This section describes the problem formulation and the technical details of the
network architecture employed to solve the problem of demand forecasting in

192 A. Gandhi et al.

online marketplaces. We start with the problem formulation, and by describing
the general graph structure for modelling the correlations between time series
containing different sellers and products. In Sect. 3.3, we describe various GNN
architectures to produce node (seller and product) representations and how they
have been adapted for our problem. Finally, we describe some of the sequential
models that have been considered for the experimentation for extracting the tem-
poral patterns in the historical time series data. Figure 1 represents the overall
architecture of the proposed method.

3.1 Problem Formulation

Let S denote the set of sellers and P denote the set of products in the market-
place. Given a set of N time series, each series comprising of a seller, a product
and historical demand, <si, pi, [yi

t−k,t]>
N
i=1, where yi

t−k,t = [dit−k, d
i
t−k+1, . . . d

i
t],

dit denotes the demand for a seller-product at time t, k represents the length
of the time series, si ∈ S and pi ∈ P denotes the seller and product respec-
tively for ith time series, and N is the number of time series. Our goal is
to predict [ŷi

t+1,t+K]Ni=1, where ŷi
t+1,t+K = [d̂it+1, d̂

i
t+2, . . . d̂

i
t+K], the demand

for future K time steps. Let xi
t be the feature vector for ith time series at

time t. We can break down this feature vector into four different components,
xi
t = [xt(pi), xt(si), xt(pi, si), xt(st)]–

(i) xt(pi) denotes the features specific to product only such as product brand,
product category, total product sales in trailing months, total product gross
merchandise sales (GMS) in trailing months, product shipping charges,
number of product views/clicks in trailing months, etc.,

(ii) xt(si) denotes the features specific to seller only such as seller rating, seller
performance metrics, seller reviews, total GMS in trailing months for the
seller, total sales by the seller in trailing months, total views of all the
products offered by a seller in trailing months, etc.,

(iii) xt(pi, si) denotes the features dependent on both seller and product of
the time series such as total views of pi offered by si in trailing months,
total sales of pi offered by si in trailing months, total GMS of pi offered
by si in trailing months, whether product belongs to seller’s main cate-
gory/subcategory, out of stock history of pi from si, etc., and

(iv) xt(st) denotes static features independent of the seller as well as product
such as the number of days to the nearest holidays that have significant
impact on the future demand, bank related offers and cashbacks on the
platform, etc.

We formulate the demand forecasting for an offer as a regression problem where
we have to predict the future demand (ŷi

t+1,t+K) given the historical demand
(yi

t−k,t), and the time series features (xi
t−k:t).

3.2 Graph Construction

We represent correlation between different sellers and products across time series
using graphs. Sellers and products are represented as nodes, and their inter-

Spatio-Temporal Multi-graph Networks for Demand Forecasting 193

actions are represented as edges in the graph. For instance, products can be
correlated to each other in terms of their similarity or substitutability; sellers
can be correlated to each other if they are selling similar products, their ship-
ping channels are same (self-fulfilled vs marketplace-fulfilled), primary category
of the products offered by them is same, etc. The goal is to generate accurate
embeddings or representations of the sellers and products, in order to use them
effectively to predict their demand for a specified period in the future. To learn
these embeddings for time t, in this work, we construct a graph Gt = ([P,S], Et)
consisting of nodes in two disjoint sets, namely, S (representing sellers) and P
(representing the products they offer), and the set of edges Et with following
connections to capture their correlatedness:

(i) Demand edge: It is defined between seller si and product pi, 1 ≤ i ≤ N , at
time t, if there exists a demand for product pi from seller si at time t. This
edge models the dynamic connections in the graphs.

(ii) Substitute edge: It is defined between two products, pi and pj , representing
their similarity or substitutability. This edge models the static connections
in the graphs and is not dependent on time.

These graphs are constructed for each time step of the historical data, i.e., there
are as many graphs as the number of time steps (Gt−k,Gt−k+1, . . . ,Gt). In addi-
tion to the graph structure, we utilise xi

t (defined in Sect. 3.1) as the input
features of the nodes and edges in the graph Gt. The seller node i in the graph
Gt is initialized with seller specific feature – xt(si), the product node i is initial-
ized with product specific feature – xt(pi), demand edges (if exist) are initialized
with seller-product features – xt(pi, si), whereas the substitute edges are just
binary connections with no features. Hence, we efficiently utilise the seller and
product characteristics in conjunction with the graphical information and edge
features to produce high-quality embeddings. These embeddings are then fed
into a time series model for the generation of accurate forecasts. Figure 1 repre-
sents the sequence of graphs constructed for modelling the correlation between
sellers and products over time.

3.3 Graph Neural Networks

In this section, we present the details of various GNN architectures and their
adaptations that we have employed to generate representations for seller and
product nodes in our graphs. The basic unit for all the architectures is GCN,
which uses localized convolutional modules that capture information from the
node’s neighborhood. Following subsections describe all the architectures in
detail. We empirically evaluate each of these methods in Sect. 4 on a real-world
online marketplace dataset. We create graph for each timestep t separately,
hence, dropping the subscript t from the notation in this section.

Graph Convolutional Networks: Using GCNs, we capture the homogeneous
correlations in the graph. In this case, we construct a graph with only one type
of node and edge. Since, we have two types of nodes in the graph – sellers and

194 A. Gandhi et al.

products, a 2-layer MLP is used for the input features to map them to the same
dimension before GCN layer, so that the nodes can be treated homogeneously.
Also, we consider only the demand relation in this homogeneous graph. The
idea behind GCNs is that it learns how to transform and propagate information
across the graph, captured by node feature vectors [14]. To generate embedding
for a node, it uses the localized convolutional module that captures information
from the node’s neighborhood. In GCNs, we stack multiple such convolutional
modules to capture information about the graph topology. Initial node features
are provided as input to the GCN and then, the node embeddings are computed
by applying the series of convolutional modules.

Let hl(i) denote the embedding of ith node at lth layer from graph G. Then,
hl(i) can be computed as follows -

hl(i) = σ

⎛
⎝ 1

| N (i) |
∑

u∈N (i)

W lhl−1(u)

⎞
⎠ (1)

where, N (i) denotes the neighborhood of node i, and W l is the learnable weight
for layer l that is shared across nodes. This technique is referred as Homo-GCN
in the paper. Edge features (xt(pi, si)) are not used in this formulation, only a
binary relation is considered.

GraphSAGE (GS): A seller can offer thousands of products. And if the seller
has demand for all the products, then it is very inefficient to take the full size
of a seller’s neighborhood for learning its representation as is done in GCN. In
GS [11], a sampling mechanism is adopted to obtain a fixed number of neigh-
bors for each node, which makes it suitable for representation learning in such
large graphs. This technique also captures only the homogeneous correlations. It
performs graph convolutions and obtains the node embeddings in the following
manner –

hl(i) = σ

⎛
⎝W

′lhl−1(i) +
1

| SN (i)|

∑
u∈SN(i)

W lhl−1(u)

⎞
⎠ (2)

where, SN (i) is a random sample of the ith node neighbors, and W l & W
′l are the

learnable weights shared across all the nodes. Note that we perform aggregation
on neighborhood information using the mean function. However, any alternate
function can be employed for this operation. For GS formulation also, we ignore
the edge features, and map the seller and product features using a 2-layer MLP
network to the same dimension, to treat the nodes homogeneously. We refer to
this method as Homo-GS.

Heterogeneous GraphSAGE with Edge Features: The graphs built in
Sect. 3.2 to capture the correlatedness are inherently heterogeneous in nature
(attributing to the presence of two node types – ‘sellers’ and ‘products’, and two
relation types – ‘demand’ and ‘substitute’). Homo-GCN and Homo-GS methods
considered above treat the neighborhood of seller and product nodes in a sim-
ilar manner. In this formulation, we extend Homo-GS to heterogeneous graphs

Spatio-Temporal Multi-graph Networks for Demand Forecasting 195

where a separate convolutional module for each relation type is learned. Let us
denote the hidden representation of ith seller node at layer l by hl

s(i) and ith

product node at layer l by hl
p(i). Then, we obtain the seller representations using

following –

hl
s(i) = σ(W

′l
s hl−1

s (i) +
1

| SNs(i)|

∑
u∈SNs(i)

W l
p[h

l−1
p (u)

edge features︷ ︸︸ ︷
⊕x(u, i)]

︸ ︷︷ ︸
aggregation under relation demand

) (3)

where, SNs(i) is a random sample of the ith seller node neighbors under relation
‘demand’ (neighbors for seller nodes would be product nodes), W l

p is the learn-
able weight matrix under relation demand and W

′l
s is the learnable self weight

matrix for seller nodes. Before performing the aggregation over product nodes,
we also concatenate (denoted by ⊕) the edge features x(u, i) with the product
embeddings.

Product representations are computed by aggregation under two relations –
demand and substitute, using the following equation –

hl
p(i) = σ

⎛
⎜⎜⎜⎜⎜⎝

W
′l
p hl−1

p (i) +
1

| SNp(i)|

∑
u∈SNp(i)

W l
s[h

l−1
s (u) ⊕ x(i, u)]

︸ ︷︷ ︸
aggregation under relation demand

+
1

| SN ′′
p (i)|

∑
u∈SN′′

p (i)

W
′′l
p hl−1

p (u)

︸ ︷︷ ︸
aggregation under relation substitute

⎞
⎟⎟⎟⎟⎟⎟⎠

(4)

where, SNp(i) is a random sample of the ith product node neighbors under rela-
tion ‘demand’ (neighbors of product nodes would be seller nodes), W l

s is the
learnable weight matrix under relation demand, W

′l
p is the learnable self weight

matrix for product nodes, SN ′′
p (i) is a random sample of the ith product node

neighbors under relation ‘substitute’ (neighbors for product nodes would be
product nodes), and W

′′l
p is the learnable weight matrix under relation ‘substi-

tute’. Here also, we concatenate the ‘demand’ edge features as explained above.
This architecture is referred as Hetero-GS-Demand-Substitute.

Heterogeneous Graph Attention Networks with Edge Features: In all
the above architectures, we compute hidden representations of seller and prod-
uct nodes by assigning equal importance to all their neighboring nodes. In the
context of demand forecasting, we may want to assign higher weight to more
similar products or to products that have higher demand in the neighborhood

196 A. Gandhi et al.

while learning the representation, as that will help in capturing the correlation
between nodes in a better way and accurately predicting the future demand.
GAT [23] networks allow us to compute the hidden representation of each node
in the graph by attending over its neighbors, following a self-attention strategy.
As opposed to GCN or GS, GAT allows for implicitly assigning different impor-
tances to neighboring nodes. We compute the seller embeddings by extending
Hetero-GS-Demand-Substitute architecture using attention weights –

hl
s(i) = σ

⎛
⎝W

′l
s hl−1

s (i) +
1

| SNs(i)|

∑
u∈SNs(i)

αl
iuW l

p[h
l−1
p (u) ⊕ x(u, i)]

⎞
⎠ (5)

where αl
iu denotes the attention weights for lth layer and is computed as follows –

eliu = LeakyReLU(alT .[hl−1
p (u)⊕hl−1

s (i)⊕x(u, i)]), αl
iu =

exp(eliu)∑
v∈SNs(i)

exp(eliv)
(6)

where al is the shared learnable linear transformation applied to every node.
Attention scores are computed by utilizing source node embeddings, destination
node embeddings and the edge features between source and destination as shown
in Eq. 6.

Likewise, by modifying the Eq. 4, we obtain the product representations as
follows –

hl
p(i) = σ

⎛
⎝W

′l
p hl−1

p (i) +
1

| SNp(i)|

∑
u∈SNp(i)

α
′l
iuW l

s[h
l−1
s (u) ⊕ x(i, u)]

+
1

| SN ′′
p (i)|

∑
u∈SN′′

p (i)

α
′′l
p W

′′l
p hl−1

p (u)

⎞
⎟⎠

(7)

where α
′l
iu and α

′′l
p denote the attention weights and are computed in a similar

manner as shown in Eq. 6. This architecture is referred as Hetero-GAT-Demand-
Substitute in the experimental section.

3.4 Sequential Model

The seller and product representations are obtained from the above GNN mod-
ule for each timestep of the time series data. Given the tuple <si, pi, yi

t−k,t>

(refer to Sect. 3.1), the sequence of ith product and ith seller representations –
(hpt−k

(i), hpt−k+1(i), . . . , hpt
(i)) and (hst−k

(i), hst−k+1(i), . . . , hst(i)) is obtained
from the GNN module using graphs Gt−k,Gt−k+1, . . . ,Gt respectively. These
embeddings are aggregated with the demand, static features and the available
seller-product features, which are then fed into the sequential model for predict-
ing the future demand. The final input to the sequential model is given by –(

hpt−k
(i) ⊕ hst−k

(i) ⊕ xt−k(pi, si) ⊕ xt−k(st) ⊕ dit−k,

. . . , hpt
(i) ⊕ hst(i) ⊕ xt(pi, si) ⊕ xt(st) ⊕ dit

)N
i=1

(8)

Spatio-Temporal Multi-graph Networks for Demand Forecasting 197

This module consists primarily of a sequential network to capture the tempo-
ral characteristics of the historical demand data. We employ an encoder-decoder
based Seq2Seq model for this purpose which has shown to outperform other
models for e-commerce forecasting [2,19,25]. The sequential model we experi-
mented with resembles the one used by Wen et al. [25], where a vanilla LSTM is
used to encode the history into hidden state and an MLP is used as a decoder for
predicting the future demand. Furthermore, MLP is used instead of LSTM as
a decoder to avoid feeding predictions recursively as surrogate of ground truth,
since it leads to error accumulation. Figure 1 represents the complete architecture
of the model pictorially.

We also employed TCN [1] architecture for modelling the above sequential
data. In the past, TCNs have been shown to outperform recurrent architectures
across a broad range of sequence modelling tasks, and we observed the same for
our task. TCNs perform dilated causal convolutions, and a key characteristic is
that the output at time t is only convolved with the elements that occurred before
t so that there is no information leakage. Some of the key advantages of TCNs are
that they are easily parallelisable because of convolutional architecture, require
less memory as compared to recurrent architectures and have flexible receptive
field making them easy to adapt to different domains.

Note that in this work, we conducted our experiments using mainly LSTMs
and TCNs. However, the GNN module can easily extend to any other suitable
and relevant network for sequence modelling.

4 Experimental Results

This section outlines our experiments using different GNN architectures for
demand forecasting in online marketplaces. We validate the proposed frame-
work on a real-world dataset from Amazon for forecasting product demand for
different sellers.

Dataset Details: We use a random sample of the demand data (weekly sales of
products from sellers) on Amazon from January 2016 to July 2018 for evaluating
our models. For training the models, we use the demand data from January 2016
to July 2017 (∼1.5 years). For validation and testing, we use the demand data
from August 2017 to Jan 2018 (6 months) and Feb 2018 to July 2018 (6 months)
respectively to perform out of window evaluation. Table 1 shows the statistics
on number of sellers and number of products on the random sample of demand
data used for experimentation. We organize the time-series at weekly level, i.e.,
a single time-step in our models corresponds to demand for 1 week. We use the
historical demand data for the last 2 years (104 weeks) for a seller and a product,
to predict the future demand for next 4 weeks. Therefore, the length of our time
series is k = 104 and we predict the demand for future K = 4 weeks in all our
experiments.

Metrics: We mainly use mean absolute percentage error (MAPE) to compare
our models. We compute the MAPE metric over a span of four weeks after

198 A. Gandhi et al.

Table 1. Statistics on the train, validation and test dataset used for the experimenta-
tion

Dataset No. of time series No. of sellers No. of products

Train 6,411,000 21,020 1,889,908

Validation 2,136,002 22,476 1,801,478

Test 2,154,694 23,700 1,812,206

skipping the week of forecast creation date. MAPE is defined as the average of
absolute percentage errors over all time series in the test set, i.e.,

MAPE =
1
M

⎛
⎝∑

i

L(
5∑

j=2

dit+j ,

5∑
k=2

d̂it+j)

⎞
⎠

where, M = #time series in test set

L(d, d̂) = 1, if d = 0 and d̂ �= 0, L(d, d̂) = 0, if d = 0 and d̂ = 0,

L(d, d̂) =
||d − d̂||

d
, otherwise

Loss Function: We train our multi-graph network in an end-to-end supervised
manner using the quantile loss at the 50th percentile, also known as the P50
loss. A quantile is the value below which a certain fraction of samples in the
distribution fall. The quantile loss can be defined as:

Loss =
∑
i

5∑
j=2

q × max(0, dit+j − d̂it+j) + (1 − q) × max(0, d̂it+j − dit+j)

where q is the required quantile (between 0 and 1). Here, q = 0.5.

4.1 Implementation Details

We use DGL and PyTorch for implementing all our architectures. We train our
networks in a minibatch fashion. In each minibatch, we take 1048 (= batch size)
time series, identify the unique sellers and products in them (seed nodes), per-
form sampling in all the graphs to identify the neighbors for these seed nodes,
compute embeddings for the seed nodes from each of the sampled graphs, feed it
into a sequential network for generating predictions, and finally back-propagate
the loss to train the network. A 2-layer GNN network (16 hidden units) followed
by a 2-layer LSTM network (16 hidden units) is used in all the variants. For
decoder, an MLP with 2-layers, having 512 hidden units each is used. All the
variants converge after 8–10 epochs of training with learning rate = 0.003. We

Spatio-Temporal Multi-graph Networks for Demand Forecasting 199

finetune these hyparameters by optimizing the performance on the validation
set. For TCNs, we use an 8-layer network with kernel size as 7. For training
multi-graph networks, we make use of a multi-GPU approach using Torch’s Dis-
tributedDataParallel library. The main computational bottleneck while training
such a huge network is the sampling mechanism. And, the sampling has to
be done for all the graphs at each minibatch, based on the sellers and prod-
ucts in that minibatch. Presently, sampling in DGL is implemented in CPU
and consumes a large amount of time. For example, in an p3.8x AWS instance,
LSTM takes 30 min/epoch for training whereas Homo-GCN and Homo-GS take
1.5 h/epoch and 3 h/epoch respectively for training. The feature dimension of
our input features is as follows – xt(si) = 26, xt(pi) = 16, xt(pi, si) = 83, and
xt(st) = 8.

4.2 Comparison with Baseline

We perform the exhaustive evaluation of various GNN architectures proposed in
the Sect. 3.3. The methods under contention are –

1. LSTM: This is our baseline method. This architecture resembles the one
proposed by Wen et al. [25], where a vanilla LSTM is used to encode all
history into hidden state and an MLP is used as a decoder for predicting the
future demand. At each time-step, we concatenate the features xi

t with the
demand value dit and provide it as an input to the LSTM.

2. Homo-GCN: In this architecture, GCN is applied to homogeneous graph
without considering the edge features in the graph.

3. Homo-GS: In this architecture, GS is applied to homogeneous graph without
considering the edge features in the graph.

4. Homo-GAT: This is an extension of Homo-GCN or Homo-GS to GAT net-
works. For this method also, we convert the graph into a homogeneous graph,
and ignore the edge related features in the graph.

5. Homo-GS-Demand: This architecture is an extension of Homo-GS. Along
with the input node features, we also add the demand relation features in the
homogeneous graph.

6. Homo-GAT-Demand: This architecture is an extension of Homo-GAT. In
the homogeneous graph, demand relation features are added.

7. Hetero-GS-Demand-Substitute: This architecture is proposed in
Sect. 3.3. It includes both demand and substitute relations in the graph along
with their features.

8. Hetero-GAT-Demand-Substitute: This architecture is also proposed in
Sect. 3.3. It includes both demand and substitute relations in the graph along
with their features.

Table 2 summarizes the performance of above models relative to an LSTM model
based baseline. As it can be seen, the best performing GNN model results in
∼16% improvement in MAPE as compared to LSTM model. Hence, there is
a merit in modelling correlations in the times series using GNNs. The GNN

200 A. Gandhi et al.

Table 2. Improvement in MAPE metric for different variants of GNN architectures
relative to an LSTM model based baseline. We also report improvement in MAPE for
two special cases – (i) when a product is being sold by more than one seller (multi-seller
products), (ii) cold/warm start offers, and show that the performance improvement is
even more significant in these cases.

Method MAPE (all offers) MAPE (multi-seller
products)

MAPE (cold start
offers)

Homo-GCN 4.08% 4.91% 10.20%

Homo-GS 9.33% 12.60% 17.41%

Homo-GAT 10.13% 14.78% 17.54%

Homo-GS-Demand 13.05% 20.51% 20.72%

Homo-GAT-Demand 14.82% 25.48% 21.51%

Hetero-GS-Demand-Substitute 14.34% 27.43% 23.56%

Hetero-GAT-Demand-Substitute 16.30% 29.43% 24.43%

module allows us to capture the homogeneous and heterogeneous correlations
residing in the time series data of online marketplaces in a principled manner. In
all the experiments, on expected lines, we see that GAT performs significantly
better than the GCN and GS variants, and GS performs better than the GCN.
Also, adding the features for demand relation in the graph improves the perfor-
mance by ∼3.7% and ∼4.7% for Homo-GS and Homo-GAT respectively. Finally,
moving to a heterogeneous setup with multiple kinds of relation (demand and
substitute), further improves the performance by ∼1.5% and yields the best
model.

As discussed in Sect. 3.4, we have also experimented with TCNs as the
sequential model. We plugged the GNN modules into TCN network and trained
the complete network in an end-to-end fashion. With Homo-GS, we observed
that the MAPE improves by 5.43% and with Homo-GAT, the MAPE improves
by 6.65% relative to an TCN baseline.

4.3 Demand Forecasting for Multi-seller Products and Cold Start
Offers

The idea behind using GNNs with sequential model is to model the homogeneous
and heterogeneous correlations in the multivariate time series data. Intuitively,
the correlation is high when a single product is being offered by multiple sellers
on the platform due to competition, being out of stock, price increase/decrease
by other sellers, etc. In order to validate this, we filter out the time series from
the test set that contain products being offered by more than one seller. There
are 505,485 such time series in the test data. We evaluate the MAPE on this
set explicitly and show that the best GNN model performs 29.34% better than
the LSTM model (refer to Table 2). This improvement is much higher than the
improvement on the full test set (16.30%), thereby, highlighting the fact that the
selected subset of the data has more correlations and the proposed framework is
able to capture them across different time series using GNNs.

Spatio-Temporal Multi-graph Networks for Demand Forecasting 201

Fig. 2. Future forecast for (a) a cold-start offer and (b) a multi-seller product (from
2 sellers) from our dataset using different techniques. Note that the cold start offer
has historical demand for 3 weeks only (101, 102 and 103) whereas for multi-seller
offer, there are 2 sellers offering the same product, and history is available for both
the offers for 104 weeks. The task is to predict the demand for future 4 weeks. As the
LSTM architecture looks only at the offer sales and features to forecast the demand, it
performs much worse than the GNN based techniques. GNN techniques leverage other
correlated time series also for predicting the future demand.

Another scenario that can greatly benefit with the modelling of correla-
tions is the problem of forecasting demand for cold-start or warm-start offers.
The cold/warm-start offers do not have enough history to predict their future
demand accurately. This happens quite often in online marketplaces when a
seller launches a new product or a new seller starts offering any of the existing
products on the platform. In such cases, the proposed framework can be lever-
aged to derive their demand from other correlated time series in the data. To
empirically validate this, we filter out the time series from the test data that con-
tain offers which have less than 3 months (12 weeks) of history. On this set, the
best performing GNN model improves MAPE by ∼24.43% which is again much
higher than the improvement on the overall test set. Figure 2 shows the actual
forecast values using different methods for a cold-start offer and a multi-seller
product.

5 Conclusion

In this work, we propose a generic framework for handling competing/correlated
time series in demand forecasting. We evaluated the framework for the task of
demand forecasting in online marketplaces. We capture the correlation between
sellers and products using different variants of GNN, and show that it can be
plugged into any sequential model for demand prediction. The proposed tech-
nique improves the MAPE on a real-world marketplace data by ∼16% by cap-

202 A. Gandhi et al.

turing the homogeneous and heterogeneous correlations across multivariate time
series using GNNs. We also extended various standard GNN architectures to
utilise edge features as well for updating the node embeddings.

References

1. Bai, S., Kolter, J.Z., Koltun, V.: An empirical evaluation of generic convolutional
and recurrent networks for sequence modeling (2018)

2. Bandara, K., et al.: Sales demand forecast in e-commerce using a long short-term
memory neural network methodology. In: Neural Information Processing (2019)

3. Benidis, K., Rangapuram, S.S., Flunkert, V., et. al.: Neural forecasting: introduc-
tion and literature overview (2020)

4. Box, G.E.P., Cox, D.R.: An analysis of transformations. J. Roy. Stat. Soc.: Ser. B
(Methodol.) 26, 211–243 (1964)

5. Box, G.E.P., Jenkins, G.M., Reinsel, G.C., Ljung, G.M.: Time Series Analysis:
Forecasting and Control. Wiley, New York (2015)

6. Bronstein, M.M., Bruna, J., LeCun, Y., Szlam, A., Vandergheynst, P.: Geometric
deep learning: going beyond Euclidean data. CoRR (2016)

7. Cao, D., Wang, Y., Duan, J., Zhang, C., Zhu, X., et al.: Spectral temporal graph
neural network for multivariate time-series forecasting. In: NeurIPS (2020)

8. Chen, Y., Kang, Y., Chen, Y., Wang, Z.: Probabilistic forecasting with temporal
convolutional neural network (2020)

9. Durbin, J., Koopman, S.J.: Time Series Analysis by State Space Methods, 2nd
edn. Oxford University Press, Oxford (2012)

10. Ghorbani, M., Baghshah, M.S., Rabiee, H.R.: Multi-layered graph embedding with
graph convolutional networks. CoRR (2018)

11. Hamilton, W.L., Ying, R., Leskovec, J.: Inductive representation learning on large
graphs. CoRR (2017)

12. Hamilton, W.L., Ying, R., Leskovec, J.: Representation learning on graphs: meth-
ods and applications. CoRR (2017)

13. Hyndman, R., Koehler, A.B., Ord, J.K., Snyder, R.D.: Forecasting with Exponen-
tial Smoothing: The State Space Approach. Springer Series in Statistics, Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-71918-2

14. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. CoRR (2016)

15. Lai, G., Chang, W., Yang, Y., Liu, H.: Modeling long- and short-term temporal
patterns with deep neural networks. CoRR (2017)

16. Li, Y., Yu, R., Shahabi, C., Liu, Y.: Diffusion convolutional recurrent neural net-
work: data-driven traffic forecasting. In: ICLR (2018)

17. McAuley, J., Pandey, R., Leskovec, J.: Inferring networks of substitutable and
complementary products. In: KDD (2015)

18. Monti, F., Bronstein, M.M., Bresson, X.: Geometric matrix completion with recur-
rent multi-graph neural networks. CoRR (2017)

19. Mukherjee, S., Shankar, D., Ghosh, A., et al.: ARMDN: associative and recurrent
mixture density networks for eRetail demand forecasting. CoRR (2018)

20. Rangapuram, S.S., Seeger, M.W., Gasthaus, J., Stella, L., Wang, Y., Januschowski,
T.: Deep state space models for time series forecasting. In: NeurIPS (2018)

21. Salinas, D., Flunkert, V., Gasthaus, J.: DeepAR: probabilistic forecasting with
autoregressive recurrent networks (2019)

https://doi.org/10.1007/978-3-540-71918-2

Spatio-Temporal Multi-graph Networks for Demand Forecasting 203

22. Sen, R., Yu, H.F., Dhillon, I.S.: Think globally, act locally: a deep neural network
approach to high-dimensional time series forecasting. In: NeurIPS (2019)

23. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph
attention networks. In: ICLR (2018)

24. Wang, Z., Jiang, Z., Ren, Z., et al.: A path-constrained framework for discriminat-
ing substitutable and complementary products in e-commerce. In: WSDM (2018)

25. Wen, R., Torkkola, K., Narayanaswamy, B., Madeka, D.: A multi-horizon quantile
recurrent forecaster (2018)

26. Wu, Z., Pan, S., Long, G., Jiang, J., Zhang, C.: Graph WaveNet for deep spatial-
temporal graph modeling. In: IJCAI-2019 (2019)

27. Ying, R., He, R., Chen, K., Eksombatchai, P., Hamilton, W.L., Leskovec, J.: Graph
convolutional neural networks for web-scale recommender systems. CoRR (2018)

28. You, J., Ying, R., Ren, X., Hamilton, W.L., Leskovec, J.: GraphRNN: a deep
generative model for graphs. CoRR (2018)

29. Yu, B., Yin, H., Zhu, Z.: Spatio-temporal graph convolutional networks: a deep
learning framework for traffic forecasting. In: IJCAI (2018)

30. Zitnik, M., Agrawal, M., Leskovec, J.: Modeling polypharmacy side effects with
graph convolutional networks. CoRR (2018)

The Limit Order Book Recreation Model
(LOBRM): An Extended Analysis

Zijian Shi(B) and John Cartlidge

Department of Computer Science, University of Bristol, Bristol BS8 1UB, UK
{zijian.shi,john.cartlidge}@bristol.ac.uk

Abstract. The limit order book (LOB) depicts the fine-grained demand
and supply relationship for financial assets and is widely used in mar-
ket microstructure studies. Nevertheless, the availability and high cost
of LOB data restrict its wider application. The LOB recreation model
(LOBRM) was recently proposed to bridge this gap by synthesizing
the LOB from trades and quotes (TAQ) data. However, in the original
LOBRM study, there were two limitations: (1) experiments were con-
ducted on a relatively small dataset containing only one day of LOB data;
and (2) the training and testing were performed in a non-chronological
fashion, which essentially re-frames the task as interpolation and poten-
tially introduces lookahead bias. In this study, we extend the research on
LOBRM and further validate its use in real-world application scenarios.
We first advance the workflow of LOBRM by (1) adding a time-weighted
z-score standardization for the LOB and (2) substituting the ordinary
differential equation kernel with an exponential decay kernel to lower
computation complexity. Experiments are conducted on the extended
LOBSTER dataset in a chronological fashion, as it would be used in
a real-world application. We find that (1) LOBRM with decay kernel
is superior to traditional non-linear models, and module ensembling is
effective; (2) prediction accuracy is negatively related to the volatility
of order volumes resting in the LOB; (3) the proposed sparse encoding
method for TAQ exhibits good generalization ability and can facilitate
manifold tasks; and (4) the influence of stochastic drift on prediction
accuracy can be alleviated by increasing historical samples.

Keywords: Limit order book · Time series prediction · Financial
machine learning

1 Introduction

The majority of financial exchange venues utilise a continuous double auction
(CDA) mechanism [11] for matching orders. Under CDA formation, both ask
orders (orders to sell a given quantity at a given price) and bid orders (orders to
buy a given quantity at a given price) arrive at the venue continuously, with no
minimum time interval limit. When a new order arrives, if it does not immedi-
ately execute, it will enter the limit order book (LOB); which contains a list of
c© Springer Nature Switzerland AG 2021
Y. Dong et al. (Eds.): ECML PKDD 2021, LNAI 12978, pp. 204–220, 2021.
https://doi.org/10.1007/978-3-030-86514-6_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86514-6_13&domain=pdf
http://orcid.org/0000-0001-7823-8527
http://orcid.org/0000-0002-3143-6355
https://doi.org/10.1007/978-3-030-86514-6_13

Exploring the LOB Recreation Model 205

current bids and a list of current asks, both sorted by price-time priority. There-
fore, the LOB contains valuable information on the instantaneous demand and
supply for a particular financial asset (e.g., a stock, a commodity, a derivative,
etc.). For this reason, LOB data has been used for many and various studies,
including exploration of the price formation mechanism [20], market anomaly
detection [26], and testing of trading algorithms [1].

However, there remain some obstacles for the wider application of LOB data.
Firstly, LOB data subscription fees are usually high, sometimes amounting to
tens of thousands of dollars per annum.1 This might be a trivial sum for an insti-
tutional subscriber, however for individual investors and researchers this signif-
icant expense can hold them back. Further, LOB data is entirely unavailable in
venues that deliberately do not make order information public, for instance some
e-commercial markets and dark pools (e.g., see [6,7]). This challenge attracts
researchers to consider the possibility of recreating the LOB from a more easily
available source, such as trades and quotes (TAQ) data. TAQ data contains the
top price level information of a LOB (the lowest-priced ask and highest-priced
bid), together with a history of transactions. It is published to the public for
free in most venues. Blanchet et al. [5] have previously demonstrated that it is
possible to predict daily average order volumes resting at different price levels of
the LOB, using only TAQ data for parameter estimation. More recently, from a
deep learning perspective, the LOB recreation model (LOBRM) was proposed
to formalize the task as a time series prediction problem, and an ensembled
recurrent neural network (RNN) model was successfully used to predict order
volumes in a high frequency manner for the first time [23]. Nevertheless, there
exist two key restrictions in the LOBRM study: (1) The original LOBRM study
was conducted in an interpolation style on only one day’s length of LOB data, for
two stocks. For the model to be applied in a real world application scenario, such
as online prediction of market price movements, LOBRM performance requires
evaluation on an extended multi-day dataset, with chronological training and
testing such that there is no possibility of lookahead bias; (2) The ordinary dif-
ferential equation (ODE) kernel used in the original LOBRM model has high
computation complexity and is therefore inefficient for more realistic application
scenarios when large amounts (weeks or months) of training data is used.

Contributions:

1. We advance the workflow and structure of the LOBRM model, such that: (i) a
time-weighted z-score standardization for LOB features is used to enhance the
model’s generalization ability; and (ii) the original ODE kernel is substituted
for an exponential decay kernel to enable faster inference of latent states,
greater runtime efficiency, and a reduction in overfitting.

2. We use chronological training and testing to conduct experiments on an
extended LOBSTER dataset that is an order of magnitude larger than the
original dataset. We find that: (i) LOBRM with continuous decay kernel

1 http://www.nasdaqtrader.com/Trader.aspx?id=DPUSdata.

http://www.nasdaqtrader.com/Trader.aspx?id=DPUSdata

206 Z. Shi and J. Cartlidge

Fig. 1. A LOB of four price levels evolving with time. White and blue boxes indicate
the top level and deeper levels of the LOB. Grey boxes indicate market events stream.
Orange box indicates trade records. White and orange boxes together form TAQ. (Color
figure online)

is superior in modelling the irregularly sampled LOB; and (ii) the module
ensembling of LOBRM is effective.

3. We draw new empirical findings that further enrich the current literature: (i)
the proposed sparse encoding method for TAQ data has good generalization
ability and can facilitate manifold tasks including LOB prediction and price
trend prediction; (ii) prediction accuracy of the LOBRM is negatively related
to volume volatility at unseen price levels; and (iii) the influence of stochastic
drift on model performance can be alleviated by increasing the amount of
historical training samples.

2 Background and Related Work

2.1 The Limit Order Book (LOB)

In a CDA market, bids and asks with specified price and quantity (or volume)
are submitted, cancelled, and transacted continuously. The LOB contains an ask
side and a bid side, with ask orders arranged in price ascending order and bid
orders arranged in price descending order. Ask orders with the lowest price (best
ask) and bid orders with the highest price (best bid) form the top level of a LOB,
and their respective prices are called quotes. If a newly submitted ask (or bid)
price is not higher (or lower) than the best bid (or ask), a trade happens. TAQ
data contains all historical quotes and trades in the venue. That is, LOB data
contains strictly more information than TAQ data. Figure 1 provides a visual
illustration of a LOB and the relationship between the LOB and the TAQ data.

Traditional statistical models of the LOB assume that LOB evolution follows
the rules of a Markovian system, with market events (order submission, cancel-
lation, and transaction) following stochastic point processes, such as a Hawkes
process or a Poisson process [2,10]. This formulation generalizes a LOB market
of high complexity to a dynamic system controlled by a few parameters, where
probabilistic theorems like the law of large numbers [12] and stationary equilib-
rium in a Markovian system [5] can be utilized to draw long-term empirical con-
clusions. However, while statistical modelling can capture long term behaviour
patterns of the LOB, these models cannot consistently perform well in a high

Exploring the LOB Recreation Model 207

frequency domain. In recent years, there has been an emergence of research
using deep learning approaches to model and exploit the LOB. Sirignano et al.
[24] performed a significant study on a comprehensive pool of 500 stocks. They
revealed that features learned by a Long Short-Term Memory (LSTM) network
can be utilized to predict next mid-price movement direction {up, down} with
accuracy range [0.65, 0.76] across all 500 stocks. Their study also demonstrated
that deep learning models suffer less from problems such as stochastic drift that
exist in statistical models of the LOB. Other deep learning studies of the LOB
include extracting high frequency indicators [21,25], predicting future stock price
movement [16,27], and training reinforcement trading agents [13,18].

2.2 Generating Synthetic LOB Data

Synthetic LOB data, generated by models that learn from the real LOB or
imitate the stylized facts of a CDA market, has been used as an alternative when
real LOB data is unavailable. The advantages of using synthetic LOB data lie
in its low cost and infinite availability. It has been widely adopted to backtest
trading algorithms, explore market dynamics, and facilitate teaching activities.

Synthetic LOB data can be generated using three mainstream methodolo-
gies. Agent-based models have been well studied and are the most popular
approach for generating a synthetic LOB. By configuring agents that trade using
common strategies, such as market makers, momentum traders, and mean rever-
sion traders, the synthetic LOB can closely approximate the stylised facts of a
real LOB [17]. Stock market simulators have a long history, from the Santa Fe
artificial stock exchange [3] to recent multi-agent exchange environments [4].
Generative models attempt to learn regularities embedded in market event
streams or the LOB directly. One representative research by Li et al. [15] utilized
generative adversarial networks to learn and replicate the historical dependency
among orders. The synthesised order stream and resulting LOB were found to
closely resemble the real market data.

We consider the aforementioned two approaches as unsupervised, since no real
LOB data is used to verify the authenticity of the generated data. Model quality
can only be verified by testing whether certain stylized facts exist in the synthetic
data. In contrast, supervised models use real LOB data as ground truth. As
indicated in [5], TAQ data is informative of LOB volumes for small-tick stocks.
By modelling the tail probability of price change per trade in a Markovian LOB,
daily average order volumes at unseen price levels can be estimated by the steady-
state distribution of the infinite server queue. Shi et al. [23] further formulate
the task of generating a synthetic LOB as a time series prediction problem using
a continuous RNN. The proposed model (LOBRM) is able to predict LOB order
volumes using a defined length of TAQ data as input. As long as a historical
TAQ trajectory is available, the model is able to produce a historical replay of
the LOB based on the knowledge it learned from supervised training. This paper
concentrates on a further exploration of the LOBRM model presented in [23].

208 Z. Shi and J. Cartlidge

3 Model Formulation

3.1 Motivation

The LOBRM model represents the first attempt to synthesize LOB data from
a supervised deep learning perspective [23]. LOBRM is essentially an ensemble
of RNNs that take TAQ data as input and produce LOB volume predictions as
output. However, in the original study, there were three restrictions present: (1)
Experiments were performed using a relatively small LOB dataset consisting of
only one day’s LOB data for two small-tick stocks. To verify its generalization
ability, LOBRM requires testing on multi-day LOB data for a variety of stocks.
(2) Experiments adopted a non-chronological approach to the formation of time
series samples, such that samples were shuffled before splitting into training and
testing sets. We intend to test model performance using a strictly chronological
approach to ensure that LOBRM is applicable to real world online scenarios,
with no possibility of introducing lookahead bias. Specifically, we use the first
three days’ data for training, the fourth day’s data for validation, and the fifth
day’s data for testing. Time series samples are not shuffled, thus ensuring that
chronological ordering is preserved. (3) The core module of the original LOBRM
made use of an ODE-RNN, a RNN variant with ODE kernels to derive fine-
grained time-continuous latent states [22]. As the computational complexity of
ODE-RNN is n times that of a vanilla RNN – where n is the granularity of
the latent state – it is not efficient for training data of large size. Therefore, we
substitute the ODE-RNN for an RNN-decay module [8], which has been shown
to be a more time-efficient model for irregularly sampled time series [14].

3.2 Problem Description

To simplify the problem of recreating the LOB, we make the same assumptions
proposed in [23]: (1) Following common practice (e.g., [5,12]), the bid and ask
sides of the LOB are modelled separately; (2) We only consider instantaneous
LOB data at the time of each trade event, and ignore the LOB for all other
events, such as order submission and cancellation; (3) We only consider the top
five price levels of the LOB; (4) We assume that the price interval between each
price level is exactly one tick – the smallest increment permitted in quoting
or trading a security at a particular exchange venue – which is supported by
empirical evidence that orders in the LOB for small-tick stocks tend to be densely
distributed around the top price levels [5]. Following these assumptions, the price
at different LOB levels can be directly deduced from the known quote price at
target time. Therefore, the LOB recreation task resolves to the simpler problem
of only predicting order volumes resting at each price level.

For generalization, we denote trades and quotes streams as {TDi}i∈n and
{QTi}i∈n respectively, and trajectories of time points for TAQ records as {Ti}i∈n

indexed by n = {1, . . . , N}, where N equals the number of time points in TAQ.
The LOB sampled at {Ti}i∈n are denoted as {LOBi}i∈n. For each record at time

Ti, QTi =
(
p

a(1)
i , v

a(1)
i , p

b(1)
i , v

b(1)
i

)
, where p

a(1)
i , v

a(1)
i , p

b(1)
i , v

b(1)
i denote best ask

Exploring the LOB Recreation Model 209

price, order volume at best ask, best bid price, and order volume at best bid,
respectively. TDi =

(
ptd

i , vtd
i , dtd

i

)
, where ptd

i , vtd
i , dtd

i denote price, volume, and
direction of the trade, with +1 and −1 indicating orders being sold or bought.
LOBi = (pa(l)

i , v
a(l)
i , p

b(l)
i , v

b(l)
i) depicts the price and volume information at all

price levels, with l ∈ (1, ..., L), here L = 5. From the aforementioned model
assumptions, we have p

a(l)
i = p

a(1)
i +(l − 1)τ and p

b(l)
i = p

b(1)
i − (l − 1)τ , where τ

is the minimum tick size (1 cent in the US market). For a single sample, the model
predicts (va(2)

I , ..., v
a(L)
I) and (vb(2)

I , ..., v
b(L)
I) conditioned on the observations of

{QTi}I−S:I and {TDi}I−S:I , with S being the time series sample size, i.e., the
maximum number of time steps that the model looks back in TAQ data history.

3.3 Formalized Workflow of LOBRM

LOB Data Standardization. As we intend to apply the LOBRM model on
LOBs of five days’ length for different financial assets, data standardization is
necessary for the model’s understanding of data of various numerical scales. We
perform time-weighted z-score standardization on all LOB volumes, based on the
fact that the LOB is a continuous dynamic system with uneven time intervals
between updates. We use

{
v
(l)
n

}
0:N

and {Tn}0:N to indicate volume trajectory
on price level l, and affiliated timestamps N as the total number of LOB updates
for training. Time-weighted mean and standard deviation are calculated as:

Mean(l) =
∑N−1

i=0 (Ti+1 − Ti) v
(l)
i

/ (TN − T0) (1)

Std(l) =
(∑N−1

i=0 (Ti+1 − Ti)
(
v
(l)
i − Mean(l)

)2
/ (TN − T0)

) 1
2

(2)

From empirical observation, we witness that the volume statistics on deeper
price levels

{
v
(2−5)
n

}
0:N

have similar patterns, while those statistics deviate from

volume statistics on the top price level
{

v
(1)
n

}
0:N

. In particular, the top level

tends to have much lower mean and much higher standard deviation (e.g., see
later Table 1). Thus, we treat ‘top’ and ‘deeper’ levels as two separate sets to
standardize. As trade volumes {vtq

n }0:N are discrete events and do not persist in
time, we use a normal z-score standardization for trade data. To avoid lookahead
bias, statistics are calculated without considering test data. Finally, using these
statistics, LOBs for training, validation, and testing are standardized.

Sparse Encoding for TAQ. TAQ data contains multi-modal information,
including order type (bid or ask), price, and volume. While under the formulation
of LOBRM, only order volumes at derived price levels (i.e., deeper levels 2–5)
are predicted. We use a one-hot positional encoding, such that only volume
information is encoded explicitly; while price is indicated by the position of
non-zero elements in the one-hot vector.

210 Z. Shi and J. Cartlidge

Take the encoding of an ask quote as an example. Conditioned on current
best ask price p

a(1)
I and best bid price p

b(1)
I at TI , we represent the ask quote

record (pa(1)
I−s , v

a(1)
I−s) and bid quote record (pb(1)

I−s, v
b(1)
I−s) at TI−s, s ∈ {0, . . . , S} as:

{
Oaq

2k−1,where ok+spa
s

= v
a(1)
I−s

Obq
2k−1,where ok+spb

s
= v

b(1)
I−s

(3)

where k ∈ R, spa
s = (pa(1)

I−s − p
a(1)
I)/τ and spb

s = (pb(1)
I−s − p

b(1)
I)/τ . O2k−1 is a

one-hot vector with dimension 1× (2k −1); and osp denotes the sp-th element of
the vector. The value of k is chosen to cover more than 90% of past quote price
fluctuations, relative to the current quote price. Here k = 8, which means his-
torical quotes with relative price [−7,+7] ticks are encoded into feature vectors.
Then, a trade record (ptd

I−s, v
td
I−s, d

td
I−s), is represented as:

{
Otd

2k−1,where o
ptd
I−s−p

a(1)
I

= vtd
I−s if dtd

I−s < 0

Otd
2k−1,where o

ptd
I−s−p

b(1)
I

= vtd
I−s if dtd

I−s > 0 (4)

Finally, those three features are concatenated into (Oaq, Obq, Otd) and are
used as input. It can also be a concatenation of four features, with ask and bid
trade represented separately. Later, in experiment Sect. 4.4, we show this sparse
encoding method can achieve enhanced robustness in LOB volume prediction
and price trend prediction.

Market Event Simulator Module (ES). The ES module models the overall
net order arrivals as inhomogeneous poisson processes, and predicts LOB vol-
umes from a dynamic perspective. If an RNN structure is used to iteratively
receive encoded LOB features at every timestep, its latent state can be deemed
as reflective of market microstructure condition over a short historical time win-
dow. A multi-layer perceptron (MLP) layer can then be used to decode latent
states directly into vectors representing net order arrival rates at each price level.

The original LOBRM model uses ODE-RNN, a continuous RNN variant that
learns fine-grained latent state between discrete inputs in a data-driven manner,
to model the continuous evolution of market conditions. In ODE-RNN, a hidden
state h(t) is defined as a solution to an ODE initial value problem. The latent
state between two inputs can then be derived using an ODE solver as:

dh(t)
dt = fθ(h(t), t) where h(t0) = h0 (5)

hi
′ = ODEsolver(fθ, hi−1, (ti−1, ti)) (6)

in which function fθ is a separate neural network parameterized by θ.
Even though ODE-RNN contributes most to prediction accuracy, it is of high

computation complexity (see Sect. 3.1). Therefore, for an efficient use of LOBRM,
especially when trained on large amounts of data, or used for online prediction,
the ODE-RNN is unsuitable. Also, we find in chronological experiments that the
ODE-RNN tends to cause overfitting due to the fully flexible latent states.

Exploring the LOB Recreation Model 211

Faced with these challenges, we propose the use of a pre-defined exponential
decay kernel [8,14], instead of the ODE kernel in the ES module. The inference
of latent states between discrete inputs is denoted as:

hi
′ = hi−1 ∗ exp (−fθ (hi−1) ∗ Φ (ti−1, ti)) (7)

hi = GRUunit
(
hi

′, xi

)
(8)

where fθ is a separate neural network parameterized by θ, and Φ is a smoothing
function for time intervals to avoid gradient diminishing. A GRU unit [9] is then
used for instant updating of the latent state at input timesteps. The advantages
of employing an exponential decay kernel are threefold: (1) It allows for efficient
inference of latent states; (2) It is a continuous RNN that imitates continuity
of market evolution and includes temporal information within the model struc-
ture itself, sharing the advantages of continuous RNN in modelling irregularly
sampled time series; (3) It is less likely to cause overfitting as the kernel form is
predefined, whereas the latent state evolution in ODE-RNN is fully flexible.

We derive the vector of net order arrival rates ΛI−s = [λa(2)
I−s , ..., λ

a(L)
I−s] at

time TI−s directly from the latent state hI−s, using an MLP layer as:

ΛI−s = MLP (hI−s) (9)

After acquiring the trajectory of Λ at all trade times over the defined length of
time steps, we calculate the accumulated order volumes between [TI−S , TI] as:

∑I
i=I−S Λi × Φ (Ti+1 − Ti) (10)

History Compiler Module (HC). The HC module predicts LOB volumes
from a historical perspective. It concentrates on historical quotes that are most
relevant to current LOB volumes at deeper price levels. More precisely, for an
ask side model the volumes to be predicted at target time are of prices {p

a(1)
I +

τ, . . . , p
a(1)
I + (L − 1)τ}. Only historical ask quotes with price within this range

are used as inputs into the HC module. As one-hot encoded ask quotes fall within
the price range of {p

a(1)
I − kτ, . . . , p

a(1)
I + kτ}, vectors need to be trimmed to

remove verbose information and retain the most relevant information. Formally,
we represent a trimmed ask quote record (pa(1)

I−s , v
a(1)
I−s) as:

{
OL−1,where ospa

s
= v

a(1)
I−s if spa

s ∈ [1, L − 1]
ZL−1 otherwise

(11)

where OL−1 is a one-hot vector of dimension 1× (L−1); ospa
s

denotes the spa
s -th

element of the vector; and ZL−1 denotes a zero vector of the same dimension.
The intention of the HC module is to look back in history to check how many
orders were resting at price levels we are interested in at target time. Thus, we
manually trim input feature vectors to leave out verbose information. A discrete
GRU unit is used to compile trimmed features and generate volume predictions
which are used as supplements to ES predictions.

212 Z. Shi and J. Cartlidge

Weighting Scheme Module (WS). This module is designed to combine the
predictions from the ES and HC modules into a final prediction. We follow the
intuition that if the HC prediction for a particular price level is reliable from
a historical perspective, a higher weight will be allocated to it, and vice versa.
If quote history for a target time price level is both abundant and recent, we
weight the information provided on current LOB volumes as more reliable. The
abundancy and timing of historical quotes are denoted by the masking sequence
of HC inputs. Formally, we represent the mask of an ask side HC input as:

{
OL−1,where ospa

s
= 1 if spa

s ∈ [1, L − 1]
ZL−1 otherwise (12)

A GRU unit is used to receive the whole masking sequence to generate a weight-
ing vector of size 1 × (L − 1) to combine predictions from ES and HC modules.

4 Experiment and Empirical Analysis

In this section, experiments are conducted on the extended LOBSTER dataset.
These data were kindly provided by lobsterdata.com for academic research. The
stocks and time periods were not selected by the authors. The dataset contains
LOB data of five days’ length for three small-tick stocks (Microsoft, symbol
MSFT; Intel, INTC; and JPMorgan, JPM). To ensure that there is no selection bias
or “cherry-picking” of data, all three available small-tick stocks were used in this
study. The extended dataset is approximately ten times the size of the dataset
used in [23] and is a strict superset, therefore enabling easier results comparison.

Model Specification: The ES module consists of a GRU with 64 units, a two
layered MLP with 32 units and ReLU activation for deriving parameters of the
decay kernel, and a two layered MLP decoder with 64 units and Tanh activation.
The HC module consists of a GRU with 64 units, and a two layered MLP
decoder with 64 units and LeakyReLU activation. The latent state size is set at
32 in ES and HC modules. The WS module consists of a GRU with 16 units,
and a one-layered MLP decoder with 16 units and Sigmoid activation. The latent
state size is set at 16 in the WS module. L1 loss is used as the loss function; and
all models are trained for 150 iterations, with a learning rate of 2e−4. Model
parameters are chosen based on the lowest loss on the validation set.

4.1 Data Preprocessing

We clean the dataset by retaining only LOB updates at trade times, and remov-
ing LOB data during the first half-hour after market open and the last half-hour
before market close as these periods tend to be volatile. To alleviate the effect
of outliers, we divide all volume numbers by 100 and winsorize the data by the
range [0.005, 0.995]. Then, the standardization method proposed in Sect. 3.3 is
applied to the cleansed LOB data. Data statistics are illustrated in Table 1.

https://lobsterdata.com/

Exploring the LOB Recreation Model 213

Table 1. Volume statistics before standardization, showing time-weighted mean vol-
ume and standard deviation on the top level and deep levels (levels 2 to 5).

MSFT INTC JPM

Bid Ask Bid Ask Bid Ask

Top 119.7/89.1 127.1/98.3 32.7/38.5

Deep 189.6/51.7 192.7/53.4 185.6/62.3 178.9/51.4 61.3/23.9 63.4/40.5

We use the first three days’ data for training, the fourth day’s data for valida-
tion, and the fifth day’s data for testing. This is a significantly different approach
to that taken in [23], in which the task was essentially interpolation, as all time
series samples were shuffled before splitting into training and testing sets (i.e.,
training and testing sets were not ordered chronologically). We extract TAQ data
and labels directly from the standardized LOB. These data are then converted
to time series samples using a rolling window of size S, such that the first sample
consists of TAQ histories at timesteps 1 to S and is labeled by LOB volume at
deep price levels at time step S. The second sample consists of TAQ history at
timesteps 2 to S + 1 and is labeled using LOB at time step S + 1, etc. We set
parameters S = 100 and k = 8, as in the original LOBRM model [23].

4.2 Model Comparison

In this section, we illustrate training results on generating synthetic LOB
using mainstream regression and machine learning methods: (1) Support Vec-
tor Machine Regression with linear kernel (LSVR); (2) Ridge Regression (RR);
(3) Single Layer Feedforward Network (SLFN); and (4) XGBoost Regression
(XGBR). We then evaluate the performance of LOBRM with either discrete
RNN or Continuous RNN module: (1) GRU; (2) GRU-T, with time concate-
nated input; (3) Decay; and (4) Decay-T, with time concatenated input. Two
criteria are used: (1) L1 loss on test set. As all labels are standardized into z-
score, the loss indicates the multiple of standard deviations between prediction
and ground truth; (2) R-squared, calculated on the test data using the method
presented by Blanchet et al. [5], to enable us to perform a strict comparison with
the existing literature.

Table 2 presents evaluation results. Judging from both criteria, we observe
that non-linear models outperform linear models (LSVR and RR). The LOBRM
family also outperforms traditional non-linear models (especially in terms of
R-squared) by effective ensembling of RNNs. This indicates that the recurrent
structure of RNNs can facilitate the model’s capability in explaining temporal
variance in LOB volume. Further, LOBRMs with a continuous RNN module
exhibit superior performance over those with a discrete RNN module in 4 out of
6 experiments. LOBRM (Decay-T) achieves the lowest average L1 test loss and
highest average R-squared, indicating that incorporating temporal information
in both feature vectors and latent state dynamics is the most suitable approach to

214 Z. Shi and J. Cartlidge

Table 2. Model comparison. Criteria shown in format: test loss/R-squared; all numbers
are in 1e−1. The lowest test loss and highest R-squared in each set are underlined.

Model MSFT INTC JPM

Bid Ask Bid Ask Bid Ask

LSVR 10.00/0.29 9.74/0.36 8.72/0.21 10.30/0.14 6.91/0.54 3.96/0.51

RR 7.90/0.55 7.70/0.67 6.18/0.53 7.00/0.40 6.86/0.65 4.10/0.46

SLFN 7.06/0.68 6.88/0.88 5.55/0.86 5.88/0.53 6.61/0.71 3.69/0.62

XGBR 6.50/0.43 6.91/0.80 5.21/0.82 5.93/0.83 6.81/0.76 3.73/0.69

LOBRM (GRU) 6.44/1.24 6.44/1.55 5.34/1.05 5.70/0.53 6.27/1.17 3.30/1.25

LOBRM (GRU-T) 6.45/1.38 6.45/1.56 5.36/1.06 5.65/0.84 6.13/1.48 3.34/1.73

LOBRM (Decay) 6.54/1.30 6.47/1.49 5.33/1.11 5.52/0.73 6.35/1.20 3.29/1.37

LOBRM (Decay-T) 6.28/1.58 6.15/1.77 5.33/1.07 5.64/0.82 6.18/1.54 3.32/1.65

Fig. 2. Training (dash) and validation
(line) loss curves for bid-side models.

Fig. 3. Hourly test loss plotted against
hourly volume standard deviation.

capture the model’s dependence on time. Meanwhile we find the model tends to
be overfitting, with validation loss starting to rise before training loss converges.
Figure 2 shows loss curves for LOBRM (Decay-T) trained with a higher learning
rate of 2e-3. The phenomenon of overfitting also explains why we use a pre-
defined exponential decay kernel instead of a fully flexible ODE kernel involving
a lot more parameters to model temporal dependence. Thus, in the following
experiments, we continue using LOBRM (Decay-T) as the main model.

As shown in Table 2, test losses across 6 sets of experiments fluctuate in
the range [0.332, 0.628] for LOBRM (Decay-T). To test whether this fluctuation
results from order volume volatility, we use the pre-trained model to calculate
the correlation of (hourly) test L1 loss across all experiments against the (hourly)
standard deviation of non-standardized volume resting at deep price levels (see
Fig. 3). We find that the correlation between hourly L1 loss and volume volatility

Exploring the LOB Recreation Model 215

Table 3. Ablation study: test loss.

MSFT INTC JPM Avg.

Bid Ask Bid Ask Bid Ask

HC 6.79 7.42 5.47 6.78 6.22 3.86 6.09

ES 6.31 6.99 5.94 5.70 6.04 3.36 5.72

HC+ES 6.26 6.45 5.40 5.50 6.02 3.32 5.49

HC+ES+WS 6.28 6.15 5.33 5.64 6.18 3.38 5.49

is significant (p-value< 0.01) with a correlation coefficient of ρ = 0.48. Thus, we
conclude that LOB prediction accuracy is negatively related to volume volatility.

Compared with the original LOBRM study, which uses a non-chronological
training and testing method, we find that the performance of LOBRM trained in
a chronological manner is weakened. In order to make the criteria comparable,
we first transform the L1 loss in z-score into L1 loss on volume as a percentage
of average volume, using (zscore ∗ stdi)/meani for each dataset i. The trans-
formed loss on LOBRM (Decay-T) ranges in [16.1%, 24.1%] with a mean value of
18.9%, whereas this criteria in non-chronological experiments has an average of
6.9%. The main reason lies in that, in non-chronological experiments the model
attempts to predict the volume at a target timestep when both volumes at past
and future timesteps are known and used for training. This leakage of informa-
tion from the future introduces a form of lookahead bias into the model that
tends to increase the prediction accuracy. In the experiments presented here, no
future labels are used for training, thus lookahead bias is eliminated.

We further compare our results of R-squared with results from the statistical
model approaching a similar task proposed in [5], in which presented R-squared
values ranged in [0.81, 0.88] for daily average volume at different price levels.
However, in comparison, our R-squared values presented in Table 2 are regressed
against the ground truth with no averaging procedure. As we have only one-day
length of data for training, we cannot generate daily average volume prediction
for R-squared calculation. When we average volume predictions into hourly fre-
quency, the value of R-squared across 6 experiments ranges in [0.48, 0.88] with an
average value of 0.71. We find our results comparable to the existing literature,
even though those results are not measured using identical conditions.

4.3 Ablation Study

We conduct an ablation study to demonstrate the effectiveness of module ensem-
bling. Four experiments are conducted: HC, using only the history compiler; ES,
using only the market events simulator; HC+ES, which includes the history com-
piler and event simulator, using a pre-defined weight to combine outputs; and
HC+ES+WS, which is the full LOBRM with adaptive weighting scheme.

Results are shown in Table 3. We see that predictions from the HC alone
have the highest test error, as the inputs it receives are trimmed to contain

216 Z. Shi and J. Cartlidge

Table 4. LOBRM test loss comparison of explicit and sparse encodings of TAQ data.

MSFT INTC JPM Avg.

Bid Ask Bid Ask Bid Ask

Explicit 6.87 6.43 6.80 9.95 7.60 4.14 6.97

Sparse 6.31 6.99 5.94 5.70 6.04 3.36 5.72

only the most relevant data for current LOB volume prediction. ES module, by
receiving complete TAQ data input and modelling market events as a stochastic
process using a continuous RNN, achieves a lower error than HC module and is
the dominant module that contributes to prediction accuracy. Combining both
HC and ES modules, either using a predefined or adaptive weight, achieves
the best performance, which suggests that the predictions from HC and ES
are complementary and can be effectively combined to gain a higher accuracy
prediction. The purpose of the WS module in the original LOBRM study is
to facilitate the model’s use in transfer learning and it does not contribute to
prediction accuracy when tested on the same stock that it was trained, as is the
case here.

4.4 Superiority of Sparse Encoding for TAQ

LOB Volume Prediction. In sparse encoding, only volume information in
TAQ is encoded explicitly and price information are embedded implicitly by
positions of non-zero elements in one-hot vectors. In explicit encoding, informa-
tion including price, volume, and trade direction are encoded directly as non-zero
elements in feature vectors. Here we use the ES module in LOBRM (Decay-T)
as the main model and tested the model prediction accuracy when these two dif-
ferent encoding methods are used. We don’t choose the full model as explicitly
encoded input cannot be trimmed so HC module is not used. Results are shown
in Table 4. We see that the model with sparse encoding achieves lower test loss
error in 5 out of 6 experiments. The average test loss for the model with sparse
encoding is 17.9% lower than the model with explicit encoding.

Price Trend Prediction. We compare the sparse encoding method with the
convolution method proposed in [27] for quotes data in the task of stock price
trend prediction. On the basis of explicit encoding, the convolution encoding
method applies two convolution layers with filters of size [1×2] and stride [1×2]
on quote data. This structure first convolutionalize price and volume information
at ask and bid sides respectively and then convolutionalize two sides’ information
together. We approach a similar task presented in [27] but simplify the model
structure to concentrate on the prediction accuracy variation brought by different
encoding methods. We set length of time series samples as S = 50. For sparse
encoding, we set k = 5. For convolution encoding, we use 16 [1 × 2] kernels with
stride [1 × 2] followed by LeakyReLU activation. We standardize features using

Exploring the LOB Recreation Model 217

Table 5. Future price prediction: validation/test accuracy.

Sparse (implicit
price)

Convolution
(explicit price)

Convolution (no price)

Min-max 59.8%/55.2% 55.9%/54.4% 57.2%/53.9%

Z-score 60.2%/57.4% 57.1%/54.0% 58.3%/55.0%

Table 6. LOBRM (Decay-T) test loss against training size.

MSFT INTC JPM Avg.

Bid Ask Bid Ask Bid Ask

Day3 7.15 7.15 6.05 6.18 6.29 3.33 6.03

Day2+3 6.25 6.58 5.86 5.73 6.40 3.32 5.69

Day1+2+3 6.28 6.15 5.33 5.64 6.18 3.32 5.48

min-max or z-score standardization. Encoded data are passed to an MLP with
ReLU activation. A GRU unit is used to receive iterative inputs and the final
latent state is connected with an MLP with Softmax activation to generate a
possibility distribution over three labels {down, same, up}. We test the model
on MSFT five-day dataset, using first three days for training, the fourth day
for validation, and the fifth day for testing. We run a rolling average of five
timesteps to alleviate label imbalance [19], with 29%, 40%, and 31% for up,
same, and down. We train the model with cross entropy loss for 50 iterations
and choose the model with highest validation accuracy.

Results are shown in Table 5. We can see that the sparse encoding method
with two different standardization methods has superior performance in the task
of price trend prediction, compared with convolution encoding either with or
without price information. Thus, we draw the conclusion that the sparse encod-
ing method for TAQ data can not only benefit the task of LOB volume prediction,
but also other tasks including stock price trend prediction.

4.5 Is the Model Well-Trained?

As financial time series suffer from stochastic drift, in the sense that the distri-
bution of data is unstable and tends to vary temporarily, large amounts of data
is needed for model training. For example, the LOB used in [5] and [24] is of
one month’s and seventeen month’s length. Here, for all six sets of experiments
(3 stocks × 2 sides) we use three days’ LOB data for training, one day’s data
for validation, and one day’s data for testing. We would like to test whether this
amount of training data is abundant enough for out-of-sample testing.

As the dataset we possess contains five consecutive trading days’ LOB data,
we leave out the fourth day’s and fifth day’s LOB data for validation and testing.
We first use the third day’s data for training and then iteratively add in the sec-
ond and the first day’s historical data to observe how the validation and testing

218 Z. Shi and J. Cartlidge

loss change. Results are shown in Table 6. We can see that there is a downward
tendency in average test loss as more historical data is used for training. This is
especially true for MSFT ask, INTC bid, and INTC ask. This phenomenon suggests
that the influence of stochastic drift may be alleviated by exposing the model to
more historical samples. Therefore, we would expect even lower out-of-sample
errors if more historical data can be used for training.

5 Conclusion

We have extended the research on the LOBRM, the first deep learning model for
generating synthetic LOB data. Two major revisions were proposed: standardiz-
ing LOB data with time-weighted z-score to improve the model’s generalization
ability; and substituting the original ODE kernel with an exponential decay ker-
nel (Decay-T) to improve time efficiency. Experiments were conducted on an
extended LOBSTER dataset, a strict superset of the data used in the original
study, with size approximately ten times larger. Using a fully chronological train-
ing and testing regime, we demonstrated that LOBRM (Decay-T) has superior
performance over traditional models, and showed the efficacy of module ensem-
bling. We further found that: (1) LOB volume prediction accuracy is negatively
related to volume volatility; (2) sparse one-hot positional encoding of TAQ data
can benefit manifold tasks; and (3) there is some evidence that the influence of
stochastic drift can be alleviated by increasing the number of historical samples.
As a whole, this study validates the use of LOBRM in demanding application
scenarios that require efficient inference and involve large amounts of data for
training and predicting.

Acknowledgements. Zijian Shi’s PhD is supported by a China Scholarship Council
(CSC)/University of Bristol joint-funded scholarship. John Cartlidge is sponsored by
Refinitiv.

References

1. Abergel, F., Huré, C., Pham, H.: Algorithmic trading in a microstructural limit
order book model. Quant. Finance 20(8), 1263–1283 (2020)

2. Abergel, F., Jedidi, A.: Long-time behavior of a Hawkes process-based limit order
book. SIAM J. Financ. Math. 6(1), 1026–1043 (2015)

3. Arthur, W.B., Holland, J.H., LeBaron, B., Palmer, R., Tayler, P.: Asset Pricing
Under Endogenous Expectations in An Artificial Stock Market. The Economy as
an Evolving Complex System II 27 (1996)

4. Belcak, P., Calliess, J.P., Zohren, S.: Fast agent-based simulation framework of
limit order books with applications to pro-rata markets and the study of latency
effects (2020). arXiv preprint. https://arxiv.org/abs/2008.07871

5. Blanchet, J., Chen, X., Pei, Y.: Unraveling limit order books using just bid/ask
prices (2017). https://web.stanford.edu/∼jblanche/papers/LOB v1.pdf. Unpub-
lished preprint

https://arxiv.org/abs/2008.07871
https://web.stanford.edu/~jblanche/papers/LOB_v1.pdf

Exploring the LOB Recreation Model 219

6. Cartlidge, J., Smart, N.P., Talibi Alaoui, Y.: MPC joins the dark side. In: ACM
Asia Conference on Computer and Communications Security, pp. 148–159 (2019)

7. Cartlidge, J., Smart, N.P., Talibi Alaoui, Y.: Multi-party computation mechanism
for anonymous equity block trading: a secure implementation of Turquoise Plato
Uncross (2020). Cryptology ePrint Archive. https://eprint.iacr.org/2020/662

8. Che, Z., Purushotham, S., Cho, K., Sontag, D., Liu, Y.: Recurrent neural networks
for multivariate time series with missing values. Sci. Rep. 8(1), 1–12 (2018)

9. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for
statistical machine translation. In: Conference on Empirical Methods in Natural
Language Processing, pp. 1724–1734 (2014)

10. Cont, R., De Larrard, A.: Price dynamics in a Markovian limit order market. SIAM
J. Financ. Math. 4(1), 1–25 (2013)

11. Friedman, D.: The double auction market institution: a survey. In: The Double
Auction Market: Institutions, Theories, and Evidence, vol. 14, pp. 3–25 (1993)

12. Horst, U., Kreher, D.: A weak law of large numbers for a limit order book model
with fully state dependent order dynamics. SIAM J. Financ. Math. 8(1), 314–343
(2017)

13. Kumar, P.: Deep reinforcement learning for market making. In: 19th International
Conference on Autonomous Agents and MultiAgent Systems, pp. 1892–1894 (2020)

14. Lechner, M., Hasani, R.: Learning long-term dependencies in irregularly-sampled
time series. In: Annual Conference on Advances in Neural Information Processing
Systems (2020, preprint). https://arxiv.org/abs/2006.04418

15. Li, J., Wang, X., Lin, Y., Sinha, A., Wellman, M.: Generating realistic stock market
order streams. In: 34th AAAI Conference on Artificial Intelligence, pp. 727–734
(2020)

16. Mäkinen, Y., Kanniainen, J., Gabbouj, M., Iosifidis, A.: Forecasting jump arrivals
in stock prices: new attention-based network architecture using limit order book
data. Quant. Finance 19(12), 2033–2050 (2019)

17. McGroarty, F., Booth, A., Gerding, E., Chinthalapati, V.L.R.: High frequency trad-
ing strategies, market fragility and price spikes: an agent based model perspective.
Ann. Oper. Res. 217–244 (2018). https://doi.org/10.1007/s10479-018-3019-4

18. Nevmyvaka, Y., Feng, Y., Kearns, M.: Reinforcement learning for optimized trade
execution. In: 23rd International Conference on Machine Learning (ICML), pp.
673–680 (2006)

19. Ntakaris, A., Magris, M., Kanniainen, J., Gabbouj, M., Iosifidis, A.: Benchmark
dataset for mid-price forecasting of limit order book data with machine learning
methods. J. Forecast. 37(8), 852–866 (2018)

20. Parlour, C.A.: Price dynamics in limit order markets. Rev. Financ. Stud. 11(4),
789–816 (1998)

21. Passalis, N., Tefas, A., Kanniainen, J., Gabbouj, M., Iosifidis, A.: Temporal logistic
neural bag-of-features for financial time series forecasting leveraging limit order
book data. Pattern Recogn. Lett. 136, 183–189 (2020)

22. Rubanova, Y., Chen, T.Q., Duvenaud, D.K.: Latent ordinary differential equations
for irregularly-sampled time series. In: Annual Conference on Advances in Neural
Information Processing Systems, pp. 5321–5331 (2019)

23. Shi, Z., Chen, Y., Cartlidge, J.: The LOB recreation model: Predicting the limit
order book from TAQ history using an ordinary differential equation recurrent
neural network. In: 35th AAAI Conference on Artificial Intelligence, pp. 548–556
(2021)

24. Sirignano, J., Cont, R.: Universal features of price formation in financial markets:
perspectives from deep learning. Quant. Finance 19(9), 1449–1459 (2019)

https://eprint.iacr.org/2020/662
https://arxiv.org/abs/2006.04418
https://doi.org/10.1007/s10479-018-3019-4

220 Z. Shi and J. Cartlidge

25. Tsantekidis, A., Passalis, N., Tefas, A., Kanniainen, J., Gabbouj, M., Iosifidis, A.:
Using deep learning for price prediction by exploiting stationary limit order book
features. Appl. Soft Comput. 93, 106401 (2020)

26. Ye, Z., Florescu, I.: Extracting information from the limit order book: new measures
to evaluate equity data flow. High Freq. 2(1), 37–47 (2019)

27. Zhang, Z., Zohren, S., Roberts, S.: DeepLOB: deep convolutional neural networks
for limit order books. IEEE Trans. Signal Process. 67(11), 3001–3012 (2019)

Taking over the Stock Market:
Adversarial Perturbations Against

Algorithmic Traders

Elior Nehemya(B) , Yael Mathov , Asaf Shabtai , and Yuval Elovici

Department of Software and Information Systems Engineering,
Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel

{nehemya,yaelmath}@post.bgu.ac.il, {shabtaia,elovici}@bgu.ac.il

Abstract. In recent years, machine learning has become prevalent in
numerous tasks, including algorithmic trading. Stock market traders
utilize machine learning models to predict the market’s behavior and
execute an investment strategy accordingly. However, machine learning
models have been shown to be susceptible to input manipulations called
adversarial examples. Despite this risk, the trading domain remains
largely unexplored in the context of adversarial learning. In this study,
we present a realistic scenario in which an attacker influences algorithmic
trading systems by using adversarial learning techniques to manipulate
the input data stream in real time. The attacker creates a universal
adversarial perturbation that is agnostic to the target model and time
of use, which remains imperceptible when added to the input stream.
We evaluate our attack on a real-world market data stream and tar-
get three different trading algorithms. We show that when added to the
input stream, our perturbation can fool the trading algorithms at future
unseen data points, in both white-box and black-box settings. Finally, we
present various mitigation methods and discuss their limitations, which
stem from the algorithmic trading domain. We believe that these find-
ings should serve as a warning to the finance community regarding the
threats in this area and promote further research on the risks associated
with using automated learning models in the trading domain.

Keywords: Adversarial examples · Algorithmic trading

1 Introduction

In recent history, stock markets have been a significant vehicle for personal and
institutional investing. When buying or selling financial assets via the stock
exchange, traders gain or lose money based on changes in the assets’ value. To
maximize his/her profits, the trader needs to accurately predict changes in the
market. Yet, predicting the prices of financial assets is a challenging task, due to

E. Nehemya and Y. Mathov—Both authors contributed equally.

c© Springer Nature Switzerland AG 2021
Y. Dong et al. (Eds.): ECML PKDD 2021, LNAI 12978, pp. 221–236, 2021.
https://doi.org/10.1007/978-3-030-86514-6_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86514-6_14&domain=pdf
http://orcid.org/0000-0001-5363-3723
http://orcid.org/0000-0001-7004-1375
http://orcid.org/0000-0003-0630-4059
http://orcid.org/0000-0002-9641-128X
https://doi.org/10.1007/978-3-030-86514-6_14

222 E. Nehemya et al.

the complex dynamics of the market’s behavior. To do so, a trader processes a
vast amount of market data and uses it to try to predict the value of a specific
stock. Based on this prediction, the trader develops an investment strategy con-
cerning the stock, which results in one of the following actions: (1) selling the
stock, (2) buying more of the stock, or (3) holding his/her assets intact.

To gain a possible advantage, traders use computers to analyze financial mar-
ket data quickly and execute trades automatically; known as algorithmic trad-
ing (AT), this is the most common form of stock trading performed today [28].
Most AT systems use a similar process, consisting of three main steps: data pre-
processing, applying prediction model, and investment strategy execution. The
preprocessed data is used to predict the market’s behavior using a prediction
unit known as the alpha model, and based on this prediction, the best invest-
ment strategy is chosen and executed. In the past, a set of predefined rules was
used to calculate the market predictions and choose the investment strategy [8],
but today, the popularity of machine learning is changing the picture. More
traders are relying on machine learning-based alpha models, such as support
vector machine (SVM) and artificial neural network (ANN) architectures [15],
which can automatically make multiple predictions in milliseconds based a large
amount of data; the edge they provide is especially useful in high-frequency
trading (HFT). However, since most of the methods used to choose the invest-
ment strategy are still rule-based, the alpha model has become the heart of AT
systems.

In recent years, hackers have profited from the stock market by spreading
fake news [10] or published stolen sensitive information [4,9] on companies as a
means of decreasing their stock price. Additionally, cyber attacks can be used to
compromise various players in the market to affect the market directly (e.g., by
hacking traders’ accounts and performing transactions on their behalf [20,24]).
Since no one is safe from those threats [21], regulatory authorities fight them by
monitoring the stock market to identify fraudulent activity performed by mali-
cious or compromised entities. However, the nature of AT makes it challenging to
monitor and understand the bots’ behaviors, especially in HFT systems that per-
form many transactions in a short period of time, making it difficult to identify
real-time changes in their operation. Therefore, changes regarding the behavior
of an AT bot can only be identified retrospectively, which may be too late. More-
over, AT bots can use complex learning algorithms (i.e., ANNs), which remain
a focus of research due to their lack of explainability [14].

Along with the potential cyber attacks and the monitoring challenges men-
tioned above, a new threat has emerged from the rapid technological improve-
ments seen in recent years: Machine learning models have been shown to be
vulnerable to adversarial inputs known as adversarial examples, which are mali-
ciously modified data samples that are designed so that they will be misclassified
by the target model [27]. This vulnerability threatens the reliability of machine
learning models and could potentially jeopardize sensitive applications, such as
those used in the trading domain. By exploiting the existence of adversarial
examples, an attacker can gain control of an AT bot’s alpha model and, as a
result, influence the system’s actions. Moreover, by gaining control of multiple

Adversarial Perturbations Against Algorithmic Traders 223

AT systems, an attacker could put the entire stock market at risk. Yet, adver-
sarial perturbations in AT are rare, mainly due to the data, which is extremely
dynamic, unpredictable, and heavily monitored by law enforcement agencies;
thus, state-of-the-art attacks successfully used in other domains may be ineffec-
tive in the trading realm. Unlike images, where the features are pixels that can
be easily perturbed, AT data is extracted from a live stream of the stock market,
with numeric features that are inclined to change rapidly and sometimes in a
chaotic manner. Additionally, since AT alpha models use real-time data, crafting
a perturbation for a specific data point in advance is challenging. Due to the fre-
quent changes in the data, by the time the attacker has crafted the adversarial
perturbation, the data may have changed completely. Since the attacker cannot
predict the market’s behavior, he/she cannot craft a perturbation in real time.

In this study, we investigate the existence of adversarial perturbations in the
AT domain, taking all of the aforementioned challenges into account. We present
a realistic scenario where an attacker who manipulates the HFT data stream can
gain control of an AT bot’s actions in real time. To achieve this goal, we present
an algorithm that utilizes known market data to craft a targeted universal adver-
sarial perturbation (TUAP), which can fool the alpha model. The algorithm is
designed to create a small, imperceptible TUAP to avoid detection; the TUAP
created is agnostic to the target alpha model, as well as to the unseen data
samples to which it is added. Our method is evaluated using real-world stock
data and three different prediction models in both white-box and black-box set-
tings. We also demonstrate different mitigation methods against our attack and
discuss their limitations when used to protect AT systems. Our results suggest
that the risk of adversarial examples in the trading domain is significantly higher
than expected. Based on our review of the literature, it seems that adversarial
learning in the trading domain largely remains an unexplored field of research.
Therefore, we encourage both regulators and traders to address this concern and
implement the methods needed to reduce the risk caused by the use of vulnerable
models for algorithmic trading.

2 Background

2.1 Algorithmic Trading

Algorithmic trading refers to the use of computer programs that perform trad-
ing transactions based on an analysis of the stock market. Both human and AT
system traders aim to maximize their profit by perfecting their ability to predict
a stock’s future price, use it to define an investment strategy, and perform bene-
ficial transactions [28]. Since an accurate prediction results in a more profitable
investment, the AT system maintains an alpha model that models the market’s
behavior. The system also has an execution logic unit which turns the prediction
into a transaction based on risk management policies. A popular type of AT is
HFT, where traders perform a large number of transactions in a short period of
time [28]. Since HFT requires split-second decisions, it relies solely on automated
software [5], and thus, we focus on this type of trading in this paper.

224 E. Nehemya et al.

To predict the future stock price, the alpha model obtains data from an online
broker or other external sources. There are two main types of features used for
stock market prediction [15]: fundamental indicators and technical indicators,
which are used for fundamental and technical analysis, respectively. Fundamen-
tal analysis focuses on macro factors that might correlate with the stock’s price,
such as financial records, economic reports, and balance sheets. Conversely, tech-
nical analysis assumes that all of the relevant information is factored into the
stock’s price. More than 80% of alpha models use technical indicators as input
features [15]. Since the AT system’s decisions are based on the market predic-
tion, traders are constantly seeking new methods to improve their alpha models.
In the past, traders made predictions by manually building trading strategies
based on known patterns in the market data stream [8]. However, increases in
computational capabilities caused traders to switch to sophisticated statistical
methods, which were later replaced by machine learning-based alpha models
that were shown to better estimate the market’s behavior. The emergence of the
big data era introduced new models, and traders requiring rapid analysis of the
massive amount of market data began to use ANNs [11], such as deep neural
networks (DNNs) [1,7], and recurrent neural networks (RNNs) [6,23].

2.2 Adversarial Learning

The term adversarial example was first used in [27] to describe a well-crafted
perturbation added to an input sample that fools a target DNN. Crafting an
adversarial example is done by adding an imperceptible perturbation to an input
sample, resulting in misclassification by the model. Additionally, adversarial per-
turbations can fool other models, even those trained on different training sets,
which is known as the transferability property of adversarial examples [27]. Those
findings caused the research community to delve deeper in order to better under-
stand this vulnerability and develop new methods for crafting adversarial per-
turbations [13,16]. To use adversarial examples in more realistic scenarios, some
studies utilized the transferability property to perform an attack in black-box
settings. The attacker creates adversarial examples for a surrogate model and
then transfers them to the target model, which he/she knows little about. Ini-
tially, adversarial perturbations were crafted based on a specific data sample; this
changed when the universal adversarial perturbation (UAP) was presented [19].
The UAP is a single perturbation that can fool a learning model when added to
both the samples in the training set and unseen data samples and is also trans-
ferable to other neural networks. Since this method allows an attacker to craft
one perturbation and use it against unseen samples, it can be used in domains
where the data is unknown (e.g., AT).

Initial research targeted images, but recent studies have expanded to other
domains, yet the AT domain remained unexplored. While the simple attacks
targeting AT presented in [2] can easily be identified by regulation authorities,
they demonstrate how AT increases volatility in the market. Therefore, it is
reasonable to suspect that adversarial examples could be used in the trading
domain since it increasingly relies on machine learning models. An adversarial

Adversarial Perturbations Against Algorithmic Traders 225

Fig. 1. A simplified illustration of the HFT ecosystem. All traders (humans and AT
bots) collect market data and send transaction requests to the broker. The broker
executes the transaction and sends the market data to the trader.

learning-based attack was demonstrated with a UAP that was used to identify
transactions that manipulate the limit order book data and, as a result, cause
the target AT bot to change its behavior [12]. However, this method is limited
to stocks with low trading volume because by the time the attacker finalizes the
transactions, the limit order book can completely change, which can make the
malicious transactions less effective or not effective at all.

3 Problem Description

3.1 Trading Setup

We assume the simplified HFT environment presented in Fig. 1, with the follow-
ing entities: a broker, traders (humans or AT bots), and the stock market. Stock
market transactions are limited to trusted members only, which may limit the
traders’ ability to exchange assets in the market [25]. Therefore, a broker is a
trusted entity that connects traders and the stock market by receiving and exe-
cuting buy and sell requests on behalf of the traders. Each transaction changes
the market’s supply and demand, thus affecting the stock price. Information
about the market changes, including changes in stock prices, is sent to the traders
via the broker. However, data anomalies are common in HFT due to software
bugs, errors in transaction requests, environmental conditions, and more [18].
Thus, some AT systems embed anomaly detection filters during preprocessing
and ignore abnormal changes in the data. In this work, we focus on discount
brokers who play a major role in HFT by providing online trading platforms to
encourage frequent trade execution. The target AT system receives data from
the broker, in the form of one-minute intraday stock prices, and processes and
feeds it to a machine learning-based alpha model, which tries to predict whether
the stock price will increase or decrease. Based on the prediction, the AT system
chooses an investment strategy and performs the corresponding action.

226 E. Nehemya et al.

Fig. 2. An illustration of the attack flow. The attacker can be one of the following:
(1) A cyber attacker that targets a specific AT bot, (2) a malicious broker, or (3) a
compromised broker. While (1) manipulates just the data feed for one AT bot, (2) and
(3) perturb the data to all traders that collect data from the broker.

3.2 Threat Model

Since fraudulent behavior or cyber crimes performed by any entity in the stock
market can result in significant financial gain [21], we can assume that even a bro-
ker cannot be trusted. Therefore, we consider the three threat models shown in
Fig. 2: a cyber attacker performs a man-in-the-middle attack on the data stream
sent from the broker to the bot and gains control of the data sent to the alpha
model; a malicious broker manipulates the data he/she sends to the traders to
personally benefit from the effects of the perturbed data on the traders; and a
compromised broker unknowingly sends the traders data that was manipulated
by an attacker. In all cases, the attacker’s goal is to profit financially or person-
ally by sabotaging one or more AT systems. We assume that the attacker can
manipulate the market stream and send it to the AT system, which uses the
data as an input. Additionally, the attacker is aware of the existence of regu-
latory monitoring and the possibility that an anomaly detector might be used
to filter significant changes in the data, and wants to bypass both by perform-
ing minor changes in the data stream. We start by assuming that the attacker
has complete knowledge of the target model, and later this assumption will be
dropped. Since the three threat models share similar characteristics, we examine
our solution under a single scenario in which the attacker can manipulate the
input to the AT system in real time.

4 Proposed Attack

As illustrated in Fig. 2, the attacker wants to perturb the market data stream
to fool the alpha model and control the AT system’s behavior. However, the
trading domain introduces new challenges that need to be addressed to build a
realistic attack against AT systems. First, stock market data rapidly changes over
time, and by the time the attacker crafts the perturbation, it may be no longer

Adversarial Perturbations Against Algorithmic Traders 227

relevant since the prices have likely changed. Second, the attacker does not know
the true label ahead of time, and perturbing the data might create an undesired
outcome; if at a specific time both the target and true labels are ‘increase,’
adding a perturbation might cause the undesired effect in which the sample is
classified as ‘decrease.’ To address those challenges, we suggest a targeted version
of a UAP [19]. Since the perturbation is effective when added to unseen data,
the attacker can craft one TUAP in advance and apply it to the data stream in
real time. We craft the TUAP using past data samples with equal representation
of all classes to ensure that input samples that were originally classified as the
target class will output the same result after applying the TUAP.

We define f to be the AT system’s alpha model, which receives a snapshot x
of a stock’s price for a period of k minutes and outputs an estimation f(x) for
the price behavior in the next few minutes (‘increase’ or ‘decrease’). For a set of
snapshots of stock prices X, a target label y, and an alpha model f , the attacker
aims to craft a TUAP v, such that the number of x ∈ X, where f(x + v) = y,
is maximal. Therefore, we define a successful attack using the targeted fooling
rate (TFR): the percentage of x ∈ X such that f(x + v) = y. To maintain the
imperceptibility and make the TUAP look like a normal price fluctuation, the
size of v, ‖v‖2, should be minimal. Thus, the attacker chooses two thresholds
that determine the attack’s requirements: δ denotes the minimal TFR value for
f(x + v) with regard to y, while ε defines the maximal perturbation size.

To craft the TUAP, Algorithm 1 receives a set of data points X, a target
label y, a classifier f , a minimal TFR δ threshold, and a maximal perturbation
size ε, and iteratively crafts a TUAP v such that TFR(f(X + v), y) ≥ δ and
‖v‖2 ≤ ε. Thus, the TUAP is smaller than ε, yet it fools f for at least δ% of
X. To calculate the TUAP, we initialize v to a zero vector (line 1) and split
X into batches to improve the convergence time of the optimization process.
Next, we iteratively calculate TUAP v by checking each batch XB in X, and if
TFR(f(XB + v), y) ≥ δ (line 4), we update v as follows: First, we compute a
perturbation vi with minimal size and maximal TFR (line 5) using a modified
version of projected gradient descent [16], which we chose due to its simplicity,
short runtime, and reliable results. Then, to update v (line 6), we use Projection
to project v + vi into an epsilon ball under the L2 distance; thus ensuring that
‖v‖2 ≤ ε. If the algorithm finds a TUAP where TFR(f(X + v), y) ≥ δ (line 9),
then it returns v. Otherwise, the loop ends after E iterations without finding a
result, and the attacker should consider changing the constraints (i.e., δ or ε).

5 Evaluation Setup

5.1 Dataset

We use real intraday market data from the S&P 500 index from Kaggle [22].
For each stock, the dataset contains the open-high-low-close data at one-minute
intervals between 11/9/2017-16/2/2018. We define an input sample as a stream
of 25 continuous one-minute records, where each record consists of the open-
ing price, high price, low price, closing price, and the traded stock volume at

228 E. Nehemya et al.

Algorithm 1: Crafting a targeted universal adversarial perturbation.
input : Dataset X, target class y, alpha model f , maximal perturbation size ε,

minimal expected TFR δ, and maximal number of iterations E.
output: A targeted universal adversarial perturbation v.

initialize v ← 0
for k = 1 up to E do

foreach batch XB in X do
if TFR(f(XB + v), y) < δ then

vi ← arg minr ‖r‖2 s.t. TFR(f(XB + v + r), y) ≥ δ
v ← Projection(v + vi, ε)

if TFR(f(X + v), y) ≥ δ then
return v

the end of the minute. The dataset is divided into a set for training the alpha
models, a set for crafting TUAPs, and six test sets to evaluate the attack. The
data between 11/9/2017-1/1/2018 is used to train the alpha models. To craft
the TUAPs, 40 samples are uniformly sampled from each of the three trading
days between 2/1/2018-4/1/2018 (a total of 120 samples). The data between
5/1/2018-15/2/2018 (five trading days per week) are used to create six test sets:
T1, ..., T6. For each week, we build a corresponding test set by uniformly sam-
pling 100 samples that represent an increase of the stock price and an additional
100 that represent a decrease of the stock price. For 1 ≤ i ≤ 6, Ti denotes
the test set of the i’th week (i.e., we use the first week for T1, etc.). This sam-
pling method helps to ensure that imbalances in the data do not influence our
evaluation process.

5.2 Feature Extraction

Before feeding the input into the models, we perform preprocessing on the raw
data based on [1]. However, while [1] only uses the closing price of each minute, we
aggregate five groups of five consecutive minutes, and for each group, we extract
the following features: the trend’s indicator, standard deviation of the price, and
average price. The trend indicator is set to be the linear coefficient among the
closing prices of five consecutive minutes. The features extracted from the sliding
window of 25 min of the raw data are used to build one input sample for our alpha
model. Each sample is a vector of the following features: the last five pseudo-log
returns, the last five standard deviations of price, the last five trend indicators,
the last minute, and the last hour. The pseudo-log return is calculated based on
the average price of each five-minute group AV Gp1, ..., AV Gp5 and defined as
log(AVGpi

AVGpi−1
). Thus, the preprocessing takes a sliding window of 25 min of the

raw data and creates an input sample with 17 features.

Adversarial Perturbations Against Algorithmic Traders 229

5.3 Models

We use TensorFlow and Keras to implement three supervised alpha models
which, for each processed sample, predict the stock’s price movement at the
end of the next five minutes. The models differ in terms of their architecture:
The DNN is a deep neural network with five hidden dense layers and a softmax
layer; the CNN has a 1D convolution layer, two dense layers, and a softmax layer;
and the RNN has two LSTM layers, a dense layer, and a softmax layer. Since a
model with high directional accuracy (DA) allows the user to develop a profitable
investment strategy, the models are trained on the same data to maximize the
DA. The models achieve 66.6%–67.2% and 65.6%–68.3% DA on the training and
test sets respectively, promising results when compared to the results of other
HFT alpha models [1,6,11]. Since the models perform binary classification, a
DA above 50% can be used to build a profitable trading strategy.

5.4 Evaluation

For simplicity, we create TUAPs that force the three alpha models to predict
that the stock price will increase. For each model, we evaluate the TUAPs’
performance using the six test sets (T1 − T6) with the following measurements:
targeted fooling rate (TFR), untargeted fooling rate (UFR), and perturbation
size. The TFR denotes the percentage of input samples that are classified as
the target label and reflects the attacker’s ability to control the AT system’s
decision regardless of the stock’s state. Although technical analysis is common
in HFT, to the best of our knowledge, there are no known attacks against HFT
AT systems that use technical indicators. Therefore, to demonstrate the attack’s
added value, we compare the attack to random perturbations of the same size.
However, measuring random perturbations with the TFR fails to reflect the
unwanted prediction flips caused by random noise. Thus, we measure the UFR
of the perturbations, which is defined as the percentage of input samples that
are misclassified. It is important to note that the goal of the TUAP is to cause
all samples to be classified as the adversary’s target, regardless of the true label.
Therefore, a successful attack is measured with TFR, while UFR measures the
randomness effect of the perturbation on the prediction result. The perturbation
size is the average percentage of change in the stock’s closing price, ensuring that
the perturbation remains undetected for each stock. A TUAP of a dollar size
is small for a stock that is $2000 a share, yet dramatic for a penny stock. The
relative size is also helpful for comparing the effects of different perturbations
on different stocks. Therefore, in this study, all of the perturbations are relative
to the target stock price: 0.02% of the price. Our code is available at https://
github.com/nehemya/Algo-Trade-Adversarial-Examples.

6 White-Box Attack

In this experiment, we examine five stocks: Google (GOOG), Amazon
(AMZN), BlackRock (BLK), IBM, and Apple (AAPL). For each stock, we use

https://github.com/nehemya/Algo-Trade-Adversarial-Examples
https://github.com/nehemya/Algo-Trade-Adversarial-Examples

230 E. Nehemya et al.

(a) DNN (b) CNN (c) RNN

Fig. 3. The mean TFR (percentage) of five stocks for the TUAP, random perturbation,
and clean data. The TFR is presented for each of the six test sets and the three models.

Algorithm 1 to craft three TUAPs, one for each alpha model, and randomly
sample three perturbations that are the same size as the TUAPs (i.e., 0.02%
of the stock’s price). Then, we evaluate the attack performance on the six test
sets T1 − T6. Since the perturbations are trained on data from one point in time
and evaluated on six unknown test sets from later periods of time, we expect
that the performance of the TUAPs will gradually degrade as we move away in
time from the time period of the training set; hence, the TUAP will achieve the
highest TFR and UFR for T1, and the lowest for T6. Nevertheless, the random
perturbations are not expected to show any predictable behavior, and their effect
on the classification result will not correlate to the time that has elapsed from
the training set time.

We examine the TFR for the TUAP and random perturbation for each of the
three alpha models and compare them to the clean (original) results. As shown
in Fig. 3, the random noise does not have a major impact on any of the models
On average, the random perturbations cause changes in the TFR that do not
exceed 2%, and thus the alpha models’ prediction is not largely affected by them.
However, the TUAP creates dramatic changes in all alpha models’ classification
results, and the average TFR scores obtained by the TUAP are greater than
92%. The results support the hypothesis that the attacker can use the TUAP to
control the alpha model’s prediction. To improve our understanding of the effect
of the random perturbation, we also examine the UFR (see Fig. 4). The results
suggest that the TUAP causes a higher UFR than the random perturbation.
However, Fig. 3 suggests that the classification flips caused by the TUAP are
the result of input samples that have been pushed to be classified as the target
label. Such effects are not demonstrated by the random perturbation.

As expected, while the effects of the random perturbations do not follow
a certain pattern, the TUAP’s TFR is highest for the earlier test sets (e.g.,
T1) and gradually decreases for the later test sets. However, an exception is
found for T5, which represents data of 2/2/2018-8/2/2018 and demonstrates
poorer performance than any other test set, including the later test set T6. This
exception may stem from several massive drops in the market that occurred
during this time period [17,26]. Although our datasets are balanced, each sample
is based on 25 min of market data which reflect the drop in the market. Thus,

Adversarial Perturbations Against Algorithmic Traders 231

(a) DNN (b) CNN (c) RNN

Fig. 4. The mean UFR (percentage) of five stocks for the TUAP and random pertur-
bation. The UFR is presented for each of the six test sets and the three models.

fooling an alpha model to predict an increase in a stock value in this week is a
challenging task for a TUAP trained on normal market data.

Additionally, due to the heavy monitoring of the stock market, an attacker
should consider the TUAP’s size: a larger perturbation is more likely to fool
the alpha model, but also has a higher risk of being detected. Therefore, we
examine how the perturbation size affects the fooling rate. Since we can achieve
a high TFR by using TUAPs with a small size relative to the stock’s price (i.e.,
0.02%), we now examine the attack’s effect on stocks in different price ranges,
thus inspecting perturbations from similar absolute sizes (i.e., the number of
dollars). To do so, we define three price categories and randomly choose five
stocks from each category:

– High ($900+): GOOG, GOOGL, AMZN, ISRG, and PCLN.
– Medium ($400 − −$650): BLK, REGN, EQIX, AZO, and MTD.
– Low ($100 − −$200): ADP, UPS, IBM, AAPL, and AON.

As shown in Table 1, the TUAPs fool the alpha models for stock data from
all price categories examined, with a TFR greater than 89.5%. While the relative
perturbation size is similar, the TUAPs affected each category differently; the
effect on low-priced stocks is the greatest, but the medium-priced stocks are
less affected by the attack. The results regarding the untargeted fooling rate
support the findings from our previous experiment. We note that we examine
the low-priced stocks in data from the S&P 500 index, which contains only large
companies. Since the results indicate that targeting the low-priced stocks is the
safer option for the attacker, we believe that future work should examine stocks
with a price lower than 100$.

7 Black-Box Attack

Assuming the attacker has full knowledge of the target system is unrealistic in
the real world, where traders conceal this information. Therefore, we evaluate
the attack under black-box settings, where the attacker only has access to the
model’s input. Since the attacker can manipulate the market stream, he/she
can utilize the TUAP’s transferability property to attack AT systems with an

232 E. Nehemya et al.

Table 1. Comparison of the TUAP and random perturbation effect on stocks at three
price levels, including the average stock price and average absolute perturbation price.
Each category is evaluated using the directional accuracy on clean data, the TFR and
UFR on data with the TUAP, and the UFR on data with the random perturbation.

Stock price
category

Average
stock price

Average
TUAP size

Clean
DA

TFR
TUAP

UFR
TUAP

UFR
random

High $1100 $0.266 66.65 91.35 41.41 15.64

Medium $545 $0.152 68.01 89.55 39.58 15.96

Low $141 $0.036 67.26 93.93 43.93 18.08

Table 2. The transferability (TFR) of the TUAP between the three alpha models on
(a) IBM and (b) Apple data. The rows are the source (surrogate) models, the columns
define the target (unknown) model, and the size denotes the relative TUAP size.

Target DNN CNN RNN Size

S
o
u
rc

e DNN - 95.04 95.00 0.027

CNN 94.45 - 94.75 0.028

RNN 94.25 95.00 - 0.026

(a) IBM

Target DNN CNN RNN Size

S
o
u
rc

e DNN - 93.7 93.66 0.024

CNN 93.16 - 93.41 0.022

RNN 93.95 94.62 - 0.024

(b) AAPL

unknown alpha model architecture. Thus, the broker sends compromised mar-
ket data targeting one AT system, which could affect other bots and, in turn,
potentially influence the entire market. Since traders are protective of their AT
systems’ architecture, there is a lack of open-source AT implementations, and
thus inexperienced traders often use alpha models with similar architecture; this
increases the risk of a transferable perturbation.

In this experiment, we craft a TUAP for each alpha model and transfer it
to the other two models. The results in Table 2 show that all of the TUAPs
are highly transferable and sometimes achieved a TFR similar to that of the
attacked model. This likely stems from the models’ preprocessing; although the
alpha models have different learning model architectures, they share the same
code and vulnerability. However, our results indicate that an attack from a mali-
cious or compromised broker targeting a popular open-source AT system imple-
mentation could affect other bots using that software. The presence of multiple
compromised AT systems could cause a misrepresentation of the market’s supply
and demand, which might affect the behavior of AT systems that do not share
that vulnerability.

8 Mitigation

While technology is advancing at a rapid pace, government regulation and
enforcement systems are largely unaware of the risks that such advancement

Adversarial Perturbations Against Algorithmic Traders 233

poses (e.g., the threat of adversarial examples). Unlike known cyber attacks on
the stock market, which perform notable transactions (e.g., hack, pump and
dump [20]), our attack performs small perturbations that can be considered a
common error in the data. Combining an imperceptible attack and the lack of
knowledge about this threat allows attackers to exploit the market with minimal
risk. Therefore, we call on the finance community to raise awareness of the risks
associated with using machine learning models in AT. Since the traders using
the AT systems will be the first entity to suffer from our attack, we examine sev-
eral mitigation methods that can be used to protect AT bots. In this section, we
assume that the TUAP, its training set, and the percentage of perturbed samples
in the test sets are known to the defender, and the attacker cannot tweak the
attack to bypass the defense, as shown in various domains [3]. Although it is an
unrealistic assumption that gives a significant edge to the defender, it allows us
to discuss the challenges of protecting against adversarial perturbations in AT.

A common mitigation approach involves the use of a detector to identify per-
turbed data and filter it out. Due to the defender’s unrealistic advantage, we can
use the TUAP to build two simple classifiers, with k-nearest neighbors (kNN)
and ANN architectures, to identify perturbed data. We trained the detectors on
the same training set used to craft the TUAP, but added the perturbation to 10%
of the data. Then, we created T ′

1, ..., T
′
6 test sets, such that T ′

i is a combination
of 10% perturbed data (i.e., Ti) and 90% benign data that was sampled from
ith week. Figure 5 shows that while the kNN detector failed to detect the per-
turbed data, the ANN detector identified more samples but obtained a high false
positive rate, which makes it unreliable. A possible explanation for the results
is that identifying adversarial perturbations requires the detector to model and
predict the normal behavior of the market, a challenging task that the entire AT
system tries to perform. Moreover, the performance of both detectors decreases
as time passes; thus, the defender will have to retrain a new detector every few
weeks. This is not feasible since in real life the defender would have to build the
detector for unseen TUAPs without knowing their distribution in the market
data. Additionally, a complex detector adds computational overhead to the AT
system, which can make it irrelevant in HFT. Therefore, some traders might
prefer to risk being attacked in order to maintain an effective AT system.

An alternative approach is to train the model to correctly classifying both
benign and perturbed data samples, which can be achieved by performing adver-
sarial retraining [13]: After training the alpha model, the defender creates per-
turbed data, which is labeled as the benign samples and then used to retrain the
model. By doing so, the defender avoids the computational overhead associated
with an additional component to the AT system. We used the attack’s TUAP to
perform adversarial retraining on the alpha model. As shown in Fig. 6, the alpha
model loses its ability to predict the market when the percentage of adversarial
examples used for retraining increases. When adversarial examples are 40% of
the retraining data, the TFR decreases from more than 90% to around 70%,
and the directional accuracy drops from almost 70% to less than 60%, which
indicates that the defense reduces the alpha model’s ability to learn from the

234 E. Nehemya et al.

(a) kNN (b) ANN

Fig. 5. The precision (blue) and recall (orange) of supervised detectors trained on the
TUAP training set, with 10% perturbed data: (a) kNN and (b) neural networks. (Color
figure online)

(a) TUAP (TFR) (b) Clean Data (DA)

Fig. 6. The effects of adversarial retraining for different portions of adversarial exam-
ples in the retraining set on (a) the perturbed evaluation sets (TFR), and (b) on the
model’s ability to predict the market for clean data (DA).

training set. Therefore, improving the model’s robustness to adversarial exam-
ples is unsuitable for this domain.

Finally, we suggest a simple solution in which the trader collects the mar-
ket data from several brokers, compares it and filters out mismatches. While
the solution is trivial, it might be expensive for an individual trader who must
pay multiple brokers for the market data. Additionally, in HFT, the data might
contain inaccuracies due to technical issues or mismatches due to time differ-
ences between brokers operating around the world. As a result, traders may
prefer to risk an attack over losing money or decreasing the AT system’s per-
formance. However, regulatory authorities are not limited by the challenges dis-
cussed. They can perform offline analysis, compare the data from many brokers,
and utilize complex detectors. Even if those methods are not used routinely,
they can be applied when unexplained abnormal behavior is seen in the market.
Although securing the stock market may be challenging and no comprehensive
solution currently exists, the war may already have begun, and efforts to defend
against adversarial examples should start with increasing the finance commu-
nity’s awareness of the risks of using learning models in the stock market.

Adversarial Perturbations Against Algorithmic Traders 235

9 Conclusions

In this study, we demonstrate how adding a TUAP to the market data stream
in real time, allows an attacker to influence the alpha model’s predictions, thus
controlling the entire AT system. Our results show that HFT systems are highly
susceptible to adversarial inputs. The use of a TUAP ensures that the attack can
be performed in real life, where attackers cannot predict the market’s behavior.
Adversarial perturbations are much stealthier than known manipulations against
the stock market. Since the size of our TUAPs is 0.02% of the stock price, the
attack might not be flagged as such by monitoring systems and instead be viewed
as a common error in the data. Our experiments also showed that TUAPs are
transferable to different AT systems and that a perturbation targeting one alpha
model can also fool another model. Since the manipulated data in this study is
sent by the broker, a TUAP added to the market data can change the behavior
of multiple AT bots, and their actions may start a cascade effect, influencing
other invulnerable systems and possibly the entire market. Given the lack of
diversity in open-source bot implementations online, inexperienced traders often
use alpha models with similar architecture, a situation in which transferable
perturbations can increase the potential damage, as shown in our study. Finally,
we demonstrated potential mitigation methods against adversarial perturbations
and discussed the concerning findings. Since many regulatory authorities and
traders are unfamiliar with adversarial perturbation, we strongly suggest that
the finance community examine this risk and take the steps required to protect
financial markets from such threats.

References

1. Arévalo, A., Niño, J., Hernández, G., Sandoval, J.: High-frequency trading strategy
based on deep neural networks. In: Huang, D.-S., Han, K., Hussain, A. (eds.) ICIC
2016. LNCS (LNAI), vol. 9773, pp. 424–436. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-42297-8 40

2. Arnoldi, J.: Computer algorithms, market manipulation and the institutionaliza-
tion of high frequency trading. Theory Cult. Soc. 33(1), 29–52 (2016)

3. Athalye, A., Carlini, N., Wagner, D.: Obfuscated gradients give a false sense of
security: circumventing defenses to adversarial examples. In: International Confer-
ence on Machine Learning, pp. 274–283. PMLR (2018)

4. Bianchi, D., Tosun, O.K.: Cyber attacks and stock market activity. SSRN (2019)
5. Bigiotti, A., Navarra, A.: Optimizing automated trading systems. In: Antipova,

T., Rocha, A. (eds.) DSIC18 2018. AISC, vol. 850, pp. 254–261. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-02351-5 30

6. Chen, G., Chen, Y., Fushimi, T.: Application of deep learning to algorithmic trad-
ing. Stanford. https://stanford.io/3dllsMC. Accessed June 2021

7. Chong, E., Han, C., Park, F.C.: Deep learning networks for stock market analysis
and prediction: methodology, data representations, and case studies. Expert Syst.
Appl. 83, 187–205 (2017)

8. Coutts, J.A., Cheung, K.C.: Trading rules and stock returns: some preliminary
short run evidence from the Hang Seng 1985–1997. Appl. Financ. Econ. 10(6),
579–586 (2000)

https://doi.org/10.1007/978-3-319-42297-8_40
https://doi.org/10.1007/978-3-319-42297-8_40
https://doi.org/10.1007/978-3-030-02351-5_30
https://stanford.io/3dllsMC

236 E. Nehemya et al.

9. Domm, P.: False rumor of explosion at white house causes stocks to briefly plunge.
CNBC (2013). https://cnb.cx/35SVKKU. Accessed June 2021

10. Fisher, M.: Syrian hackers claim AP hack that tipped stock market by $136 billion.
Is it terrorism? Washington Post 23 (2013)

11. Giacomel, F., Galante, R., Pereira, A.: An algorithmic trading agent based on a
neural network ensemble: a case of study in North American and Brazilian stock
markets. In: 2015 IEEE/WIC/ACM International Conference on Web Intelligence
and Intelligent Agent Technology (WI-IAT), vol. 2, pp. 230–233. IEEE (2015)

12. Goldblum, M., Schwarzschild, A., Cohen, N., Balch, T., Patel, A.B., Goldstein,
T.: Adversarial attacks on machine learning systems for high-frequency trading.
arXiv:2002.09565 (2020)

13. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial
examples. arXiv:1412.6572 (2014)

14. Gunning, D.: Explainable artificial intelligence (XAI). Defense Advanced Research
Projects Agency (DARPA), nd Web 2, 2 (2017)

15. Kumar, G., Jain, S., Singh, U.P.: Stock market forecasting using computational
intelligence: a survey. Arch. Comput. Methods Eng. 28(3), 1069–1101 (2020).
https://doi.org/10.1007/s11831-020-09413-5

16. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning
models resistant to adversarial attacks. arXiv:1706.06083 (2017)

17. Matt, E.: February was an insane month for the stock market. CNN (2018). https://
cnn.it/3j8Q7Ah. Accessed June 2021

18. Mitchell, C.: Erroneous trade. Investopedia (2021). https://bit.ly/2SxaU5C.
Accessed June 2021

19. Moosavi-Dezfooli, S.M., Fawzi, A., Fawzi, O., Frossard, P.: Universal adversarial
perturbations. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 1765–1773 (2017)

20. Nakashima, E.: Hack, pump and dump. The Washington Post (2007). https://
wapo.st/3vSsIWs. Accessed June 2021

21. Neyret, A.: Stock market cybercrime. Autorité des Marchés Financiers (2020).
https://bit.ly/3xPE0wg. Accessed June 2021

22. Nickdl: S&P 500 intraday data. Kaggle (2018). https://bit.ly/3gRJgJV. Accessed
June 2021

23. Pang, X., Zhou, Y., Wang, P., Lin, W., Chang, V.: An innovative neural network
approach for stock market prediction. J. Supercomput. 76(3), 2098–2118 (2018).
https://doi.org/10.1007/s11227-017-2228-y

24. Rooney, K., Khorram, Y.: Hackers look to buy brokerage log-ins on the dark web
with Robinhood fetching highest prices. CNBC (2020). https://cnb.cx/3zX9an1.
Accessed June 2021

25. Smith, T.: Broker. Investopedia (2020). https://bit.ly/2SVpWCC. Accessed June
2021

26. Stacey, B.C., Bar-Yam, Y.: The stock market has grown unstable since February
2018. arXiv:1806.00529 (2018)

27. Szegedy, C., et al.: Intriguing properties of neural networks. arXiv:1312.6199 (2013)
28. Treleaven, P., Galas, M., Lalchand, V.: Algorithmic trading review. Commun. ACM

56(11), 76–85 (2013)

https://cnb.cx/35SVKKU
http://arxiv.org/abs/2002.09565
http://arxiv.org/abs/1412.6572
https://doi.org/10.1007/s11831-020-09413-5
http://arxiv.org/abs/1706.06083
https://cnn.it/3j8Q7Ah
https://cnn.it/3j8Q7Ah
https://bit.ly/2SxaU5C
https://wapo.st/3vSsIWs
https://wapo.st/3vSsIWs
https://bit.ly/3xPE0wg
https://bit.ly/3gRJgJV
https://doi.org/10.1007/s11227-017-2228-y
https://cnb.cx/3zX9an1
https://bit.ly/2SVpWCC
http://arxiv.org/abs/1806.00529
http://arxiv.org/abs/1312.6199

Continuous-Action Reinforcement
Learning for Portfolio Allocation of a Life

Insurance Company

Carlo Abrate1, Alessio Angius1, Gianmarco De Francisci Morales1,
Stefano Cozzini2, Francesca Iadanza2, Laura Li Puma3, Simone Pavanelli2,

Alan Perotti1(B), Stefano Pignataro2, and Silvia Ronchiadin3

1 ISI Foundation, Turin, Italy
alan.perotti@isi.it

2 Intesa Sanpaolo Vita, Turin, Italy
3 Intesa Sanpaolo Innovation Center, Turin, Italy

Abstract. The asset management of an insurance company is more
complex than traditional portfolio management due to the presence of
obligations that the insurance company must fulfill toward the clients.
These obligations, commonly referred to as liabilities, are payments
whose magnitude and occurrence are a byproduct of insurance contracts
with the clients, and of portfolio performances.

In particular, while clients must be refunded in case of adverse events,
such as car accidents or death, they also contribute to a common financial
portfolio to earn annual returns. Customer withdrawals might increase
whenever these returns are too low or, in the presence of an annual min-
imum guaranteed, the company might have to integrate the difference.
Hence, in this context, any investment strategy cannot omit the inter-
dependency between financial assets and liabilities.

To deal with this problem, we present a stochastic model that com-
bines portfolio returns with the liabilities generated by the insurance
products offered by the company. Furthermore, we propose a risk-
adjusted optimization problem to maximize the capital of the company
over a pre-determined time horizon.

Since traditional financial tools are inadequate for such a setting, we
develop the model as a Markov Decision Process. In this way, we can use
Reinforcement Learning algorithms to solve the underlying optimization
problem. Finally, we provide experiments that show how the optimal
asset allocation can be found by training an agent with the algorithm
Deep Deterministic Policy Gradient.

Keywords: Reinforcement learning · Portfolio allocation

1 Introduction

Portfolio management is a core activity in finance, whereby an entity, such as a
fund manager or an insurance company, oversees the investments of its clients
c© Springer Nature Switzerland AG 2021
Y. Dong et al. (Eds.): ECML PKDD 2021, LNAI 12978, pp. 237–252, 2021.
https://doi.org/10.1007/978-3-030-86514-6_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86514-6_15&domain=pdf
https://doi.org/10.1007/978-3-030-86514-6_15

238 C. Abrate et al.

to meet some agreed-upon financial objectives. In the context of an insurance
company (henceforth simply referred to as ‘company’), the clients not only con-
tribute premiums to a common fund to buy assets, but also acquire the right
to be paid in case of certain events (e.g., death in the case of a life insurance
policy). Therefore, the company has to manage not only the assets, but also the
liabilities deriving from the insurance. This combination of asset-liability man-
agement, and their inter-dependency, is one of the reasons why the insurance
case is more complex than traditional portfolio management.

In this paper, we consider the problem of a company that handles insurance
products for its clients, and wishes to optimize the risk-adjusted returns of the
investment portfolio, while at the same time ensuring that its future liabilities are
covered despite possible market fluctuations. These liabilities can be stochastic,
and are usually correlated to some of the assets available to the company. In
this scenario, one cannot just optimize for the risk-adjusted return, rather the
investment portfolio has also to match the liabilities, and in particular their due
dates. Finally, in a life insurance setting, the time horizon of the problem is
relatively long (e.g., 30 years), and the portfolio gets rebalanced sporadically.

Commonly used financial tools for asset allocation such as Modern Portfolio
Theory (MPT) [17] are inadequate for the considered setting. First, Markowitz’s
theory does not take into account liabilities and the future negative cash flows
they generate. Second, it assumes a single decision point where the portfolio is
optimized. While the methodology can be repeatedly applied at each decision
point, it fails to take account for the path dependency of the problem: previous
choices affect later ones. For instance, the decision to buy a risky asset early on
in the lifetime of the fund might affect the ability to face negative cash flows later
on, and thus inform a more conservative strategy. Clearly, an optimal strategy
needs to take into account the whole decision space of the problem, i.e., the
whole sequence of decisions (asset allocations) that lead to the final outcome.

Given the stochastic nature of markets and the multi-period decision nature
of the problem, it is only natural to use a Markov Decision Process (MDP) as
a model. An MDP is an extension of a Markov chain (a stochastic model of a
sequence of events) that allows for account possible actions so that the stochastic
outcomes are partly under the control of a ‘decision maker’. The system moves in
discrete steps from a state s to a new state s′ according to some transition prob-
ability Pa(s, s′), which also depends on the action a taken. The transition gener-
ates a reward Ra(s, s′), and the goal is to find an optimal policy, i.e., a (stochastic)
mapping of states to actions, such that the expected reward is maximized.

While there are several possible ways to solve an MDP, such as linear and
dynamic programming [5], for large systems Reinforcement Learning (RL) is the
de-facto standard tool to tackle the problem [26].

The contributions of this paper can be summarized as follows:

• We describe, formalize, and implement a realistic model of the asset-liability
management process for an insurance company as a Markov Decision Process.
The action space of the model is particularly challenging to explore, as each
action can be sampled from a continuous k−1 simplex (where k is the number
of available assets).

Reinforcement Learning for Portfolio Allocation 239

• We adapt a well-known algorithm for deep reinforcement learning for con-
tinuous action spaces (DDPG [14]) to our problem. To do so, we employ
several techniques that are necessary for a quick and stable convergence: a
warm-up stage to pre-train the critic network, a modification to the explo-
ration policy to maintain important structural constraints of the problem,
and a careful crafting of the reward function to implement domain-specific,
parametric asset allocation constraints.

• We show experimentally that our solution is able to outperform a traditional
mean-variance optimization baseline computed via Monte-Carlo sampling.

2 Problem Definition

This section provides a detailed description of the inner workings of a life-
insurance company. We begin with a description of the mathematical model
underlying the financial evolution of the company. Then, we provide a brief
description of the implementation in terms of components and their interaction.
Finally, we formalize the optimization problem. The Appendix includes further
details about the components described in this Section.

The problem consists in optimizing the investments of an insurance company
in order to maximize the profits. On the one side, the company manages a
segregated fund that handles a portfolio of assets of different nature (equity,
bonds, cash). On the other side, the company sells insurance products that
differ from each other in their client characterization (in terms of age, behavioral
properties such as the probability to pay premiums), and the percentage of the
profits owed to the client from the returns generated by the segregated fund
during the year. Irrespective of the profits generated by the portfolio, policies
usually stipulate a guaranteed minimum return on investment for the clients.
This minimum, referred to as Minimum Annual Yield (MAY) and denoted with
κ, is particularly important because the insurance company must integrate the
amount whenever the returns of the segregated fund are not able to meet the
MAY. Conversely, the insurance company is allowed to take part of the Surplus
(SP), by retaining a fixed spread over the surplus, or a fraction of it.

The profit of the company consists of the residual surplus once all the cash
flows of the policies have been paid off. These payments, referred to as liabilities,
are a consequence of several factors such as: insurance claims, and integration to
reach the MAY. Liabilities depend on the type of insurance policy, but are also
connected to the profits generated during the year for the client. For instance,
the probability of client withdrawal may be affected by the amount of profits
generated by the fund. To cover the liabilities, every insurance product is asso-
ciated with reserves, which represent the value of the outstanding liabilities.
Unused reserves contribute to the profits of the company.

2.1 Formalization

Our goal is to optimize the asset-liability management of the fund given an
economic scenario, over a finite time horizon in [0, T] divided into discrete slots

240 C. Abrate et al.

of one year. This scenario is a stochastic process which describes the financial
market, based on existing models whose parameters are calibrated by using
historical data. The model which generates the scenario is a black box from
the point of view of the optimization, and can only be queried to generate a
new realization from the process. Each realization from the process provides the
information necessary to characterize the financial assets along the considered
time interval. These random variables describe Key Financial Indicators(KFI)
such as equity indexes, interest rates, and market spreads. Therefore:

Definition 1. An Economy is a realization of KFIs from the stochastic process
E which defines the economic scenario.

We assume a set of financial asset classes, denoted with C and indexed from
1 to |C|, that can be exchanged during the considered time horizon. Assets of
each class are created at every time unit by combining a set of basic properties
specific of the asset class with their corresponding KFIs. The creation of an
asset corresponds to the definition of the minimal set of terms that allow for its
accounting.

Definition 2. An asset is a tuple composed of seven terms Y = 〈c, t0, p0, tp,m,
r, χ〉:
• c ∈ C the class of the asset;
• t0 ∈ [−∞, T] the issue time (can be arbitrarily back in time);
• p0 ∈ R the issue price, the market price of the asset at the moment of creation;
• tp ∈ [−∞, T] the purchase time (can be arbitrarily back in time);
• m ∈ [0,M] the remaining maturity of the asset;
• r ∈ R the redeem value of the asset;
• χ ∈ R

M a vector of coupons paid every year by the asset up to maturity
(maximum maturity M).

The accounting of any single asset Y at a given time t requires four basic
functions: market value fMV (t, Y), book value fBV (t, Y), cash-flow fCF (t, Y),
and generated income fGI(t, Y). The collection of assets owned by the fund at
time t is the portfolio.

Definition 3. The portfolio is a multiset P(t) = {Y1 : n1, Y2 : n2, . . . } where
every Yi is an asset that has not been sold yet and has tpi ≤ t < tpi +mi (purchased
before t and not expired yet), and ni ∈ R is its nominal amount, i.e., how many
units of that asset the portfolio contains.

The accounting functions listed above apply to the portfolio as the sum of the
function applied to each asset weighted by its nominal amount. To disambiguate
the notation, we use the letter g to denote the functions applied to the portfolio
while we keep the letter f for the functions applied to a single asset. As an
example, the market value applied to the portfolio corresponds to gMV (t).

The contribution of a single asset class c to the portfolio value is calculated
as follows:

Ac(t) =

∑
Yi∈P(t)|ci=c ni · fMV (t, Yi)

gMV (t)
. (1)

Reinforcement Learning for Portfolio Allocation 241

Definition 4. We define the asset allocation at time t as a vector A(t) =
〈A1(t), A2(t), . . . , A|C|(t)〉.
The portfolio is modified by means of selling and buying functions that
take in input the current portfolio P(t) and a target asset allocation Xt =
〈X1,X2, . . . , X|C|〉.

Selling is performed first in order to free resources to buy new assets. Selling is
guided by a projection function gsell(P(t),Xt) that returns in output a multiset
S = {Y1 : s1, Y2 : s2, . . .} which contain the nominal amount of each asset in
the portfolio that has to be sold in order to move the asset allocation toward
X. Thus, after the selling actions, the nominal amount of every asset Yi ∈ P(t)
is equal to ni − si. The purchase of new assets is done in a similar way by
using a projection function gbuy(P(t),Xt) that provides a multiset of new assets
{Ỹ1 : nb

1, Ỹ2 : nb
1, . . . , Ỹk : nb

k} bought from the market where nb
i is the nominal

amount of the asset to be added to the portfolio.
Putting all together, we can derive the portfolio at the next time step as:

P(t + 1) = (P(t) \ gsell(P(t),Xt)) ∪ gbuy(P(t),Xt). (2)

In order to complete the functions necessary to describe the segregated fund,
let us define the capital gain of the portfolio at time t as follows:

gCG(t, S) =
∑

Yi∈P(t)

si · (fMV (t, Yi) − fBV (t, Yi)), (3)

and the portfolio return as gPR(t, S) = gGI(t)+gCG(t,S)
1/2(gBV (t−1)+gBV (t)) . The insurance com-

pany has to face liabilities in the form of insurance claims due to deaths and
client withdrawal from the contract (surrender). Each insurance product guaran-
tees different benefits to the clients. Hence, its liabilities affect the profits of the
company differently from those of another product. For this reason, we assume
that the ith insurance product is completely described in terms of the negative
cash flow generated by the product.

Definition 5. The i-th insurance product is a function qNF (Zi,R(t)) which
determines the negative cash flow generated by the product as function of a set
of parameters Zi and the set of portfolio returns R(t) for time t ∈ [1, T].

The market value of the portfolio is monitored yearly and adjusted every
time it moves outside a certain range in comparison with a projection of the
(discounted) liabilities in the future, denoted by qDL(t).

Adjustments are capital injections/ejections that corresponds to loans. Let
gCI(t) be the function that determines the amount of cash that is paid or earned
at time t by applying the interest rate φinj

t to the open loans plus an additional
penalty ε for cash injections. Finally, we can define the return on capital at
time t as gR(t) = gCA(t)−gCA(t−1)

gCA(t−1) where gCA(t) = gMV (t) − qDL(t) − (gMV (0) −
qDL(0)) + gIJ (t) is the fund capital gain, net of the overall discounted liabilities
and the total injection gIJ (t) which corresponds to of the sum all the capital
adjustments (injections and ejections).

242 C. Abrate et al.

Fig. 1. Diagram describing the main components and interactions of the Insurance
Company Model.

2.2 Implementation Details

Figure 1 provides a graphical description of the model, its components, and their
interactions. Components have been realized as black boxes, so that they can be
implemented with the desired level of detail and substituted without affecting
the soundness of the model as a whole.

At the top of the figure, we observe the Economy which provides three dif-
ferent classes of KFIs. The current implementation is based on a combination of
Cox-Ingersoll-Ross models [3] but the underlying process can be changed trans-
parently.

At the bottom we find the block Decision Maker which is composed of: Buy-
ing and Selling strategy which correspond to the the functions gsell(P(t),X), and
gbuy(P(t),X), respectively; the Discounting which perform the projection of the
liabilities in the future and discounts them according to a discount curve given
by the Economy; finally, the component named Capital Monitor implements
capital injection/ejection mechanism.

The component labelled as Loans manages the state of the loans and com-
putes the costs at every time unit. Costs are computed by using an interest curve
taken from the Economy. Insurance Products is a collection of insurance prod-
ucts where each entry stores the state of the reserves and calculates the negative
cash flow generated by the product. Finally, the component Portfolio contains
all the assets that have been bought and have not reached their maturity. The
asset referring to Cash is unique and always present because it interacts with
other components.

To exemplify the temporal dynamic of the interactions, Algorithm1 shows the
pseudo-code of the routine required to move the Company one year forward in the
future. This function constitutes the cornerstone for building the environment
of our RL framework.

The first observation is that the time update does not occur at the end of the
function but in the middle. This is because, in principle, this routine describes

Reinforcement Learning for Portfolio Allocation 243

Algorithm 1. Step forward in the evolution of the segregated fund in time
function Step(X)

costLoans = loans.gCI (t)
discounting = disc.qDL(t)insuranceProds
inj = capitalMonitor.verify(portfolio.gMV (t), discounting)
if inj �= 0 then

loans.insert(inj)
sells ← gsell(portfolio,X)
new ← gbuy(portfolio,X)
portfolio = (portfolio\sells) ∪ new
returns = returns ∪ portfolio.getReturn(sells)
t = t + 1
ncashflow = insuranceProds.qNF (returns)
pcashflow = portfolio.gCF (t)
portfolio.updateCash(pcashflow, ncashflow, costLoans)
return portfolio.gCA(t)

what happens between the end of the current year and the beginning of the next.
The operations performed at the end of the year are: the computation of the costs
of the loans which can be either positive or negative and will be subtracted from
the cash in the next year; the capital injection/ejection if needed; finally, the
selling and buying operations as well as the computation of the capital gain of the
year. Then, the time counter is increased and the cash is updated by considering
negative and positive cash flow together with the costs of the loans. Finally, the
routine ends by returning the current capital. Let us remark that the capital
does not change only because of the cash flow, but also as a consequence of the
changes of the KFIs that are embedded in the assets composing the portfolio.

2.3 Optimization Problem

Our goal is to optimize the average final return on capital, adjusted for its
volatility. Specifically, we measure volatility as the standard deviation of the
return on capital over the time horizon, given an asset allocation strategy and
an economic scenario.

The volatility provides an estimation of the yearly oscillations of the returns
within each simulation run. The idea behind its use is to penalize portfo-
lios that lead to large oscillations of the returns during the considered time
interval, which are a hindrance to the payment of the liabilities. Let μ =
1
T

∑T
t=1 gR(t) be the average of the return within the same realization, and let

σ =
√

1
T

∑T
t=1 (gR(t) − μ)2 be the standard deviation. The objective function

can be written as follows:

argmax
X0,...,XT−1

= E
E

[μ − λ · σ] (4)

where X0, . . . ,XT−1 are the asset allocations at any point in time and λ is a
risk aversion factor representing the weight of the volatility over the return on
capital, and the expectation is over the possible realizations of the economy E .

We define the problem in such a way that the objective function in Eq. (4)
can be guided by two different classes of constraints. The first class (Type 1)
is necessary to maintain the problem sound from a theoretical point of view:

244 C. Abrate et al.

Xt,i ≥ 0 ∀t, i;
∣
∣Xt

∣
∣ = 1 ∀t, which verifies that each target asset alloca-

tion is long-only and properly defined on a simplex. The second class (Type 2)
includes constraints depending on external parameters that are used to restrict
the domain of the asset allocation; for example, we might want to set bound-
aries for the allocation of a subset of the asset classes (e.g., no more than 60%
allocation on all bonds). By denoting the subset with Q ⊂ C, we can formalize
this type of constraint as β̌ ≤ ∑

q∈Q Ac(t)q ≤ β̂, ∀t.

3 Solution

We use DDPG [14] as a starting point for the implementation of our Rein-
forcement Learning agent. DDPG, or Deep Deterministic Policy Gradient, is an
actor-critic, off-policy, model-free algorithm based on deterministic policy gra-
dient, and that can operate over continuous action spaces. DDPG belong to the
set of actor-critic agents, whose high-level architecture is depicted in Fig. 2.

Actor Network

Critic Network

Q-value

ActionState

Fig. 2. Actor-Critic agent architecture

The critic network learns to approximate the temporally discounted cumu-
lative reward of an action on a given state, exploiting the Bellman equation as
in Q-learning. The actor network, given a state, learns to produce actions that
maximize the Q-value estimated by the critic. It is worth observing that the
actor receives no direct feedback from the environment: the back-propagated
error used to train the actor flows through the critic first. During the exper-
imental phase, which will be described in the next section, we observed that,
thanks to the off-policy property of the algorithm, pre-training the critic on
randomly sampled actions (and the respective environment-generated rewards)
had a strong positive impact on the performance of the RL agent. We therefore
systematically perform a critic warm-up phase before undergoing the standard
actor-critic training loop.

3.1 Structural and Parametric Constraints

In our specific settings, actions are asset allocations, and are therefore modeled
as a point on a simplex. Within our Reinforcement Learning agent, the actions
are produced by the actor, and ensuring that these actions are on a simplex

Reinforcement Learning for Portfolio Allocation 245

can be easily achieved by setting the last actor activation function as a softmax.
We call these requirements structural constraints. However, DDPG imple-
ments RL-exploration by means of a perturbation policy that adds to the action
noise produced by an Ornstein-Uhlenbeck process [6]. Clearly, a noisy action
would likely violate the structural constraints, thus producing non-admissible
actions. In order to maintain action admissibility, we modified the standard
DDPG approach by moving the perturbation upstream with respect to the acti-
vation function. We have adopted the recently-proposed parameter perturbation
approach, where in order to perform explorative actions we add noise to the
actor weights [23]. By doing so we are sure to produce exploratory actions that
satisfy the structural constraints, as the action is produced by the final softmax
activation function of the actor. The weights are then reverted to their previous
values before proceeding with the training.

Our specific setting might impose additional, domain-related constraints,
such as upper or lower bounds on specific assets, for instance: the Equity asset
shall not surpass 20% of the total asset allocation. Since these values vary from
one scenario to another, we have implemented them in a parametric fashion,
where the threshold values are read from external configuration files, and we
call them parametric constraints. Unlike the structural constraints, there is
no straightforward way to design an actor network so that all proposed actions
are compliant with the parametric constraints. Instead of structurally prevent-
ing the actor from expressing actions that violate the parametric constraints,
we elected to teach the agent, as a whole, that such actions are undesirable.
We have therefore added a regularization term to the environment reward that
penalizes the action by an amount proportional to the excess threshold violation,
by using a hinge loss function. With this approach, the actor can quickly learn
that the simplest way to obtain higher rewards is to propose admissible actions.
At the same time, this approach allows for high flexibility, since the paramet-
ric constraints are set in the environment, and thus decoupled from the agent
architecture.

4 Experimental Evaluation

Before presenting the results obtained by using the reinforcement learning frame-
work to solve the asset allocation problem, we describe those settings that are
shared by all the experiments presented in this section. We assume an initial
asset allocation composed of cash only. The initial amount of cash is equal to
1050, while the reserves amount to 1000, which implies an initial capital of 50.
The interest rate on loans is set to the interest rate of the “Italian BTP” bond
with one year maturity, and the penalty ε is set to 2%. Similarly, the discount-
ing interest rate is set to the 30% of “Italian BTP” bonds. A single insurance
product is considered. The product guarantees a minimum yield of 0.5% per
annum, and uses a uniform distribution over time of the payments for surrender
or death.

246 C. Abrate et al.

In order to have a baseline to compare our RL framework to, we evaluate it on
a simplified scenario on which the traditional Markowitz/Black-Litterman [1,17]
approach can be applied. In particular, we consider a scenario in which:

• a single asset allocation is decided at time zero;
• rebalancing aims only to replenish negative amounts of cash by selling the

other assets “pro quota” at every time t > 0.

These assumptions lead to a “fire and forget” scenario in which a single decision
taken at the beginning determines the overall quality of the investments. Hence,
X0 is the only decisional variable, and the entries of asset allocations Xt>0 are
determined directly the from state of the portfolio according to the formula:

Xt,i =

{
max(0, Ai(t)) i = Cash

Ai(t)
max(0,AC(t))+

∑
i�=C Ai(t)

otherwise.
(5)

The use of a single decisional variable allows the comparison of the policy
found by the agent with the results obtained by performing a gird search
on the action space combined with Monte-Carlo sampling. The grid search
is performed by exploring the action space simplex with a fixed step size in
{0.20, 0.10, 0.05, 0.02, 0.01}. Each action is evaluated by averaging the obtained
reward over 500 realizations of the economy. To avoid stochastic effects from
affecting the comparison, these realizations are drawn in advance and fixed for
all the actions of the search, and are used in round-robin during the training
of the agent. The number of realization is sufficiently large that the probability
of an agent exploring all them on a given small section of the action space is
negligible.

4.1 Three Assets Scenario.

In the first experiment we focus on a scenario with three assets: cash, equity, and
bond. We include a parametric constraint that sets 0.17 as an upper bound for
the equity asset, and set the λ risk-aversion coefficient to 0.2. In order to create a
controlled experimental environment, we run a set of simulations with 0.01 grid
step – corresponding in this scenario to 5151 simulations. From this fine-grained
set of experiments we can obviously extract coarser subsets by increasing the
grid step size, as shown in Table 1.

We use the coarsest grid (step = 0.20) for the warm-up phase of the Critic,
while keeping the more fine-grained best actions and rewards aside in order to use
them to evaluate the Actor’s performance during and after training. The warm-
up phase is a standard fully supervised learning task, and we report the Critic
loss (computed as mean absolute percentage error) during training in Fig. 3a.
We then store the pre-trained critic weights and re-load them in subsequent
experiments.

The core learning task for all our experiments is the training of our cus-
tom DDPG agent, and this process involves several hyper-parameters. These

Reinforcement Learning for Portfolio Allocation 247

Table 1. Parameters and results for the grid-search based simulations: respectively,
step size for the grid, number of different actions explored, best action found with the
given grid, corresponding average reward estimated on the 500 fixed realizations of the
economy.

Step # actions Best action Best reward

0.20 21 [0.0, 0.20, 0.80] 2.552

0.10 66 [0.0, 0.10, 0.90] 2.707

0.05 231 [0.0, 0.15, 0.85] 2.790

0.02 1326 [0.0, 0.16, 0.84] 2.799

0.01 5151 [0.0, 0.17, 0.83] 2.811

include structural details for the Actor neural network (number of neurons
per layer, weight initialization parameters), training details (learning rate and
decay for both the Actor and Critic), memory buffer parameters (capacity, batch
size), and a noise parameter governing the weight perturbation process used for
exploration. We therefore carried out a hyper-parameter optimization, where we
observed that our system is rather sensitive to hyperparameter setting, with the
Actor prone to converge on one-hot actions – most commonly assigning every-
thing to bonds. The first hyper-parameter search rounds were used to define
an ‘admissibility subspace’ of hyper-parameters that did not cause the agent to
spiral into such states, while subsequent iterations (such as the one visualized
in Fig. 3b) allowed to progressively approximate the known optimal scores. To
obtain these results we trained a batch of 32 agents with different configurations
of hyper-parameters and, every 100 iterations, measured their average score on
the set of 500 pre-computed realizations. In Fig. 3b we show the cross-agent
average score and, as shaded area, its 99% confidence interval; we also show the
known best scores for grids with increasing granularity (as reported in Table 1)
as horizontal lines, with the black line corresponding to the .20 step used for the
Critic warm-up.

Figure 3c shows the learning curve of the optimal agent, able to match
and even surpass the best known action, corresponding to the 0.01-step grid.
Figure 3d also reports the actions played by the optimal Actor during the train-
ing phase. It clearly shows that the agent learns to assign the Equity asset (which
gives the highest reward) to the highest possible value that would not incur a
penalty (horizontal black line, corresponding to the set parametric constraint of
.17).

We remark that we use this three assets scenario as a sandbox where it is
still feasible to exhaustively explore the action space with non-trivial grid steps
in order to compute the best action and reward; with an increasing number
of assets this procedure quickly becomes computationally too expensive, as the
number of actions to explore grows exponentially.

248 C. Abrate et al.

Fig. 3. Training agents on a three assets scenario.

4.2 Six Assets Scenario

The second experiment aims to show that a near optimal solution can still be
found when actions have larger dimensionality. In particular, we test the case
in which the portfolio is composed only of cash, and Italian BTP Bonds with
3, 5, 10, 20, and 30 years tenors. No constraints have been considered; hence,
any portion of the action space might contain candidates for the optimum. Fur-
thermore, the risk-aversion factor λ has been set to a high value of 4 in order
to avoid that the optimal solution comprises solely of the most profitable and
most risky asset, i.e., the 30-years bond. In this setting, we perform 15 trainings
of the agent by using only 21 actions for the warm-up. This number of actions
corresponds to an exhaustive search on a grid with step size equal to 0.5. Only
two actions used for the warm-up were able to provide a positive reward. The
largest average reward included in the warm-up was equal to 0.0607 and was
obtained by investing equally in BTP with 5 and 30 years tenors.

All the experiments provided an improvement from the initial warm-up from
a minimum of 3.9% (reward 0.0631) to a maximum of 21.7% (0.0739). Figure 4
provides a summary of the experiments by showing the evolution of the best
action found by the agent, both in terms of asset allocation1 and reward over

1 The other three assets are omitted as they go to zero very quickly.

Reinforcement Learning for Portfolio Allocation 249

the training epochs. In order to provide a further comparison, we provide also
the best action found with an exhaustive search performed with a step size 0.1.
In this setting, the testing of a single action for all the 500 economies requires
around one minute, and the grid contains 3003 actions; hence, whole computation
required more than 2 days. In spite of this, the obtained reward is still quite far
from the best found by the agent, whose training requires only two hours. The
rationale behind this gap can be explained by observing the evolution of the best
asset allocation in Fig. 4b where we can notice that a near optimal solution can
be found only at precision below 1%. In particular, the best reward found was
generated by an action representing an asset allocation where only BTP at 5,10,
and 30 years had non-zero weights equal to 0.19, 0.361, and 0.449, respectively.

(a) Average Reward (b) Asset Allocation

Fig. 4. Training agents on a six assets scenario

5 Related Work

The excellent results obtained in games [18,25] and robotics [13,22] have put the
spotlight on the ability of RL to find near optimal solutions in large multi-stage,
high-dimensional problems. And as such, they have drawn the attention of the
financial sector since modern portfolio theory deals with similar settings.

Modern portfolio theory, initiated by Nobel-prize-winner Markowitz [17] and
improved by Black and Litterman [1], consists in finding the optimal finan-
cial allocation over a single time horizon by using mean-variance asset alloca-
tion models. These models heavily rely on Markov processes to characterize the
stochastic nature of the economy. Hence, they naturally suggests the coupling of
Markov Decision Process (MDP) with Reinforcement Learning (RL) as a frame-
work to solve these problems [26]. It is thus not surprising that the literature on
RL methods for asset allocation problems is growing year by year [24].

For example, Wang and Zhou [27] present a framework, called exploratory-
mean-variance (EMV), for continuous portfolio selection (action) in continuous
time and continuous wealth (state) spaces. Q-learning methods are also common.
Halperin [8] provides an example of a data-driven and model-free methods for

250 C. Abrate et al.

optimal pricing and hedging of options with RL by constructing a risk-adjusted
MDP for a discrete-time version of the classical Black-Scholes-Merton model.
Nevmyvaka et al. [21] use Q-learning for large scale optimal order execution.

Direct policy search for portfolio allocation is instead presented by Moody et
al. [19,20], and a tree-search approach that integrates the advantages in solving
continuous action bandit problem with sample-based rollout methods is intro-
duced by Mansley et al. [15]. The algorithm, named Hierarchical Optimistic
Optimization applied to Tree (HOOT), adaptively partitions the action space,
thus enabling it to avoid the pitfalls encountered in algorithms that use a fixed
action discretization.

De Asis et al. [4] explore fixed-horizon temporal difference (TD) reinforce-
ment learning algorithms for a new kind of value function that predicts the sum
of rewards over a fixed number of future time steps. Jangmin et al. [9] perform
dynamic asset allocation with a reinforcement-learning framework which uses
the temporal information from both stock recommendations and the ratio of the
stock fund over the asset. Buhler et al. [2] tackle option pricing and hedging by
using deep RL methods. [10] explains how to handle When the model available to
the agent is estimated from data, Since the seventies, portfolio theory has been
extended in order to consider liabilities. Notable examples are Asset-Liability
Management (ALM) and dedicated portfolio theory models [12]. These models
were considered intractable before it was suggested that they can be handled
with an underlying Markovian structure and deep learning techniques [2,11]. In
this direction, Fontoura et al. [7] consider the optimization of investment portfo-
lios where investments have to match (or outperform) a future flow of liabilities
within a time constraint. They address an ALM problem with a variation of Deep
Deterministic Policy Gradient algorithm (DDPG). In spite of the fast growing
literature, only one work [7], takes in consideration a multi-stage setting that
takes into account both asset-allocation and liabilities by still allowing the use
of off-the-shelf RL methods. However, liabilities are far from the level of detail of
those presented in the current work, since their description is limited to simple
phenomena such as inflation. To the best of our knowledge, our work is the first
RL framework able to describe a strong correlation between asset allocation and
liabilities.

6 Conclusions

This paper presented a framework for the asset management of a life insurance
company which differs from traditional portfolio management due to the strong
dependency between the profits of the portfolio and the liabilities generated
by the obligations toward the clients. The framework has been developed as a
Reinforcement Learning environment by maintaining flexibility in many aspects
of the problem. The most important are: (i) not being bound to any specific set
of assets; (ii) having user-defined buying/selling strategies; (iii) the modeling
of the liabilities directly from the parameters of the insurance products that
generate them; (iv) general strategies for capital control and leverage.

Reinforcement Learning for Portfolio Allocation 251

We defined a risk-adjusted optimization problem to maximize the capital
over a finite time horizon by choosing the asset-allocations at possibly any time
unit. We validated the framework by means of a set of experiments performed on
a simplified scenario where a single asset allocation must be chosen at time zero.
Despite the smaller setting, experiments demonstrate how fast the problem grows
in complexity by pointing at RL as the only viable solution for the problem.

Testing our proposed framework in a proper multi-stage setting is the future
work with the highest priority, although proper baselines for this case need to be
devised. However, the generality of the framework suggests many other problems.
For example, the compounding effect on the capital is currently not addressed
but should be taken into account as well as the definition of different measures
for the control of the risk. In addition, while our framework defines the objec-
tive function in line with modern portfolio theory for comparison purposes, the
literature on risk-adjusted MDPs [16] might provide a more robust grounding
for our portfolio allocation problem. On the experimental side, since the results
so far have shown marked oscillations when the agent is close to a near opti-
mal policy, early stopping strategies should be explored. Finally, the design of
more advanced buying and selling strategies is an orthogonal but nevertheless
interesting future direction.

Acknowledgements. The research was conducted under a cooperative agreement
between ISI Foundation, Intesa Sanpaolo Innovation Center, and Intesa Sanpaolo
Vita. The authors would like to thank Lauretta Filangieri, Antonino Galatà, Giuseppe
Loforese, Pietro Materozzi and Luigi Ruggerone for their useful comments.

References

1. Black, F., Litterman, R.: Global portfolio optimization. Financ. Anal. J. 48(5),
28–43 (1992)

2. Buhler, H., Gonon, L., Teichmann, J., Wood, B.: Deep hedging (2018)
3. Cox, J.C., Ingersoll, J.E., Ross, S.A.: A theory of the term structure of interest

rates. Econometrica 53(2), 385–407 (1985). ISSN 00129682, 14680262
4. De Asis, K., Chan, A., Pitis, S., Sutton, R.S., Graves, D.: Fixed-horizon

temporal difference methods for stable reinforcement learning. arXiv preprint
arXiv:1909.03906 (2019)

5. Denardo, E.V.: On linear programming in a Markov decision problem. Manag. Sci.
16(5), 281–288 (1970)

6. Doob, J.L.: The Brownian movement and stochastic equations. Ann. Math. 351–
369 (1942)

7. Fontoura, A., Haddad, D., Bezerra, E.: A deep reinforcement learning approach
to asset-liability management. In: 2019 8th Brazilian Conference on Intelligent
Systems (BRACIS), pp. 216–221. IEEE (2019)

8. Halperin, I.: QLBS: Q-learner in the Black-Scholes(-Merton) worlds. arXiv preprint
arXiv:1712.04609 (2017)

9. Jangmin, O., Lee, J., Lee, J.W., Zhang, B.T.: Adaptive stock trading with dynamic
asset allocation using reinforcement learning. Inf. Sci. 176(15), 2121–2147 (2006)

http://arxiv.org/abs/1909.03906
http://arxiv.org/abs/1712.04609

252 C. Abrate et al.

10. Jiang, N., Kulesza, A., Singh, S., Lewis, R.: The dependence of effective planning
horizon on model accuracy. In: Proceedings of the 2015 International Conference
on Autonomous Agents and Multiagent Systems, AAMAS 2015, Richland, SC,
pp. 1181–1189. International Foundation for Autonomous Agents and Multiagent
Systems (2015). ISBN 9781450334136

11. Krabichler, T., Teichmann, J.: Deep replication of a runoff portfolio (2020)
12. Leibowitz, M., Fabozzi, F.J., Sharpe, W.: Investing: The Collected Works of Martin

L. Leibowitz. Probus Professional Pub (1992)
13. Levine, S., Finn, C., Darrell, T., Abbeel, P.: End-to-end training of deep visuomotor

policies. J. Mach. Learn. Res. 17(39), 1–40 (2016)
14. Lillicrap, T.P., et al.: Continuous control with deep reinforcement learning. arXiv

preprint arXiv:1509.02971 (2015)
15. Mansley, C., Weinstein, A., Littman, M.: Sample-based planning for continuous

action Markov decision processes. In: Twenty-First International Conference on
Automated Planning and Scheduling (2011)

16. Marcus, S.I., Fernández-Gaucherand, E., Hernández-Hernandez, D., Coraluppi, S.,
Fard, P.: Risk sensitive Markov decision processes. In: Byrnes, C.I., Datta, B.N.,
Martin, C.F., Gilliam, D.S. (eds.) Systems and Control in the Twenty-First Cen-
tury. PSCT, vol. 22, pp. 263–279. Springer, Heidelberg (1997). https://doi.org/10.
1007/978-1-4612-4120-1 14

17. Markowitz, H.: Portfolio selection. J. Financ. 7(1), 77–91 (1952)
18. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature

518(7540), 529–533 (2015). ISSN 00280836
19. Moody, J., Saffell, M.: Learning to trade via direct reinforcement. IEEE Trans.

Neural Netw. 12(4), 875–89 (2001)
20. Moody, J., Wu, L., Liao, Y., Saffell, M.: Performance functions and reinforcement

learning for trading systems and portfolios. J. Forecast. 17(5–6), 441–470 (1998)
21. Nevmyvaka, Y., Feng, Y., Kearns, M.: Reinforcement learning for optimized trade

execution. In: Proceedings of the 23rd International Conference on Machine Learn-
ing, ICML 2006, pp. 673–680. Association for Computing Machinery, New York
(2006)

22. Peters, J., Vijayakumar, S., Schaal, S.: Reinforcement learning for humanoid
robotics. In: IEEE-RAS International Conference on Humanoid Robots
(Humanoids2003), Karlsruhe, Germany, 29–30 September (2003). CLMC

23. Plappert, M., et al.: Parameter space noise for exploration. arXiv preprint
arXiv:1706.01905 (2017)

24. de Prado, M.L.: Advances in Financial Machine Learning, 1st edn. Wiley, Hoboken
(2018)

25. Silver, D., Hassabis, D.: Mastering the game of go with deep neural networks and
tree search. Nature 529, 484–503 (2016)

26. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press,
Cambridge (2018)

27. Wang, H., Zhou, X.Y.: Continuous-time mean-variance portfolio selection: a rein-
forcement learning framework. Math. Financ. 30(4), 1273–1308 (2020)

http://arxiv.org/abs/1509.02971
https://doi.org/10.1007/978-1-4612-4120-1_14
https://doi.org/10.1007/978-1-4612-4120-1_14
http://arxiv.org/abs/1706.01905

XRR: Explainable Risk Ranking
for Financial Reports

Ting-Wei Lin1, Ruei-Yao Sun1, Hsuan-Ling Chang2, Chuan-Ju Wang3,
and Ming-Feng Tsai1(B)

1 Department of Computer Science, National Chengchi University,
Taipei City, Taiwan
mftsai@nccu.edu.tw

2 Department of Finance, National Taiwan University,
Taipei City, Taiwan

D05723004@ntu.edu.tw
3 Research Center for Information Technology Innovation, Academia Sinica,

Taipei City, Taiwan
cjwang@citi.sinica.edu.tw

Abstract. We propose an eXplainable Risk Ranking (XRR) model that
uses multilevel encoders and attention mechanisms to analyze financial
risks among companies. In specific, the proposed method utilizes the
textual information in financial reports to rank the relative risks among
companies and locate top high-risk companies; moreover, via attention
mechanisms, XRR enables to highlight the critical words and sentences
within financial reports that are most likely to influence financial risk
and thus boasts better model explainability. Experimental results evalu-
ated on 10-K financial reports show that XRR significantly outperforms
several baselines, yielding up to 7.4% improvement in terms of ranking
correlation metrics. Furthermore, in our experiments, the model explain-
ability is evaluated by using finance-specific sentiment lexicons at word
level and a newly-provided annotated reference list at the sentence level
to examine the learned attention models.

Keywords: Financial risk ranking · Finance text mining · Financial
sentiment analysis

1 Introduction

Most finance literature on risk analysis has focused on quantitative approaches [1,
9,23]. One of the most important works [9] discovered that the size of a company
and its book-to-market ratio are the key factors to financial risk; outside of
these two key factors, other factors that may as well affect financial risk are still
uncertain. With the progress in text analytics, there have been many studies
trying to uncover other potential risk factors by exploiting alternative textual
information (e.g., news, reviews, and financial reports) to analyze financial risk [7,
14,19,21,24].
c© Springer Nature Switzerland AG 2021
Y. Dong et al. (Eds.): ECML PKDD 2021, LNAI 12978, pp. 253–268, 2021.
https://doi.org/10.1007/978-3-030-86514-6_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86514-6_16&domain=pdf
https://doi.org/10.1007/978-3-030-86514-6_16

254 T.-W. Lin et al.

Due to the noise within finance documents and the information gap between
texts and financial numerical measures, it is difficult to predict the exact finance
quantities (e.g., stock return and volatility) and to extract useful information and
relations directly by using textual information. Thus, the work in [24] proposes
using ranking-based methods for analyzing financial risk with the use of tex-
tual information and shows that ranking-based methods are more suitable than
regression-based methods for such an analytic task. However, the work in [24]
and other pioneering studies such as [14,22] mainly use simple and hand-crafted
features to describe financial documents, like bags-of-words, noun phrases, and
named entities. Thus, these approaches are difficult to model complex structures
or semantics in texts, which limits their potential and usage scenarios.

In recent years, deep neural networks such as CNN [15], GRU [5], and
BERT [6] have demonstrated promising results across NLP tasks such as docu-
ment classification and sentiment analysis [2,8]. The advancements are due to
the superiority of these techniques in learning semantically meaningful represen-
tations. Although such deep learning approaches can extract the latent features
from texts, most of these models are not explainable, which is however a vital
ingredient in models for finance applications. To some extent, attention mech-
anisms alleviate the explainability problem [26], since attention layers explic-
itly weight the components’ representations; thus, it can be said that attention
mechanisms are in some way capable of identifying meaningful information as a
post-hoc justification of the model prediction.

To advance the state of the art, we propose an eXplainable Risk Ranking
model (XRR) to capture key information from financial reports and investigate
related financial risks. Specifically, XRR is a deep neural network model incor-
porating multilevel explainable structures and learning to rank techniques for
ranking relative risks defined by post-event return volatility [16] among compa-
nies. To build the XRR model, we first design a multilevel explainable struc-
ture to model the complex structures within financial texts by using sequence
encoders based on bidirectional gated recurrent units (GRUs) at both the word
and sentence levels. At each level, the attention mechanism is leveraged to make
the model explainable. Moreover, unlike many previous hierarchical deep neu-
ral network architectures, which are mainly on classification tasks [7,17], XRR
ranks the relative risks among companies and locates top high-risk companies.
To enable this, we propose a pairwise ranking loss based on a siamese network
with two parallel multilevel explainable structures. In addition, instead of adopt-
ing naive stock return volatility, we propose using the post-event return volatility
as the proxy of financial risk because it excludes the effect of several important
macro-economic factors and is thus more effective for monitoring the event effect
on the change of stock prices than the stock return volatility [16,25].

We conduct comprehensive experiments using a large collection of 10-K finan-
cial reports from 1996 to 2013, consisting of 39,083 reports in total. The results
show that the proposed XRR significantly outperforms other baselines in terms
of all evaluation metrics. For robustness, we also conduct a comparison on
different financial risk proxies and conduct several financial analyses to verify

XRR: Explainable Risk Ranking for Financial Reports 255

Fig. 1. XRR network structure

our results. Moreover, we conduct evaluation and discussion by using external
finance-specific sentiment lexicons and an annotated reference list at the sen-
tence level to examine the learned financial sentiment texts with high attention
scores and the corresponding financial risks. In this evaluation, XRR exhibits a
stronger retrieval power compared to the baselines and provides more insightful
understanding into the impact of the financial texts on companies’ future risks.
In summary, XRR advances the state of the art in the following three dimensions.

1. (Model) We propose a multilevel explainable network architecture for risk
ranking with financial reports, allowing for modeling financial texts with more
complex structures and highlighting crucial information at both the word and
sentence levels.

2. (Risk measure) We propose using the post-event return volatility as a risk
proxy for such text analytic tasks, and our experiments also attest the appro-
priateness of the proxy for the tasks.

3. (Resource) We provide a high quality sentence-level risk-annotated list and
use the list to evaluate the attention weights for sentences and examine the
explainability of our model.

2 Methodology

We first formulate the risk ranking problem, and then provide a brief description
of the post-event return volatility. Finally, we describe the proposed XRR model
in detail.

256 T.-W. Lin et al.

2.1 Definitions and Problem Formulation

We rank the companies along with their relative financial risks with the use of
companies’ associated textual information via a pairwise ranking model. Note
that we here use the post-event return volatility as a proxy of financial risk for
each company. Following the work in [24], we slot the volatilities within a year
into several risk levels; thus, each company ci corresponds to a risk level vi ∈ Z.
Given a collection of financial reports D, we generate a set of pairs of financial
reports {(d�, dj)|d�, dj ∈ D}, each element in which corresponds to a pair of
financial reports for two companies c� and cj . We thus have the pairwise risk
model f : Rp → R for comparison between companies c� and cj such that

E (d�, dj) = 1{v�>vj}, (1)

where vi denotes the risk level of company ci and p denotes the dimension of the
representation of a report di. Note that the rank order of the set of companies is
specified by the real score that the model f takes. In particular, f(d�) > f(dj)
is taken to mean that the model asserts that c� � cj , where di ∈ Rp denotes the
representation of report di and c� � cj means that c� is ranked higher than cj ;
that is, the company c� is riskier than cj .

2.2 Post-event Return Volatility

Post-event volatility has been widely used as a proxy of financial risk in finance
research, especially in the case of event study [13]. In contrast to the naive stock
return volatility, which is defined as the standard deviation of the daily stock
returns over a certain period, post-event volatility calculation takes into account
macro-economic factors; thus, such a measure excludes the effect of these macro-
economic factors and is effective for monitoring the event’s effect on the change
of stock prices. As a result, for event study, it is considered a more suitable risk
proxy than the naive stock return volatility, though many data mining works
adopt the naive stock return volatility to conduct the analysis. Note that in the
above context, “event” refers to the filing of a financial report.

Following the definition in [16,25], we define the post-event return volatility
as the root-mean-square error from a Fama and French three-factor model [9] for
days [6, 252] after the event and at least 60 daily observations. Then, we focus
on modeling the effect on the post-event return volatility of a company after its
report filing. For comparison purposes, we also include the results of naive stock
return volatility in the Experiments section.

2.3 Multilevel Explanation Structure

Inspired by several hierarchical language networks [7,12,27], we construct XRR,
our pairwise risk ranking model, using a multilevel structure to represent pairs
of financial reports. The structure is mainly made of a word-level embedding
matrix and two major components at both word and sentence levels: the GRU
sequence encoder and the multilevel attention mechanism (see Fig. 1).

XRR: Explainable Risk Ranking for Financial Reports 257

Embedding Matrix. Given the set of word vocabulary W, we embed each word
w ∈ W into a real-valued vector x through a embedding matrix We ∈ R

|W|×m,
where m is the dimension of word vectors.

GRU Sequence Encoder. Given a report d ∈ D with L sentences
{s1, s2, . . . sL}, st denotes the embedded representation of the t-th sentence.
In each report, the t-th sentence consists of l words {wt1, wt2, . . . , wtl}, where
wti ∈ W. To encode both sentences and documents, we adopt bidirectional GRUs
at both the word and sentence level, respectively, which leverage past and future
information to better utilize contextual finance information. Generally speaking,
in the sentence encoder, for the �-th word in the t-th sentence, wt�, with its
corresponding word embedding xt� from We, the word can be depicted by con-
catenating the forward hidden state

−→
h t� and the backward one

←−
h t� of the GRU

encoders; that is, the annotation of the �-th word in the t-th sentence becomes

ht� =
−→
h t� ⊕ ←−

h t� =
−−−→
GRU(xt�) ⊕ ←−−−

GRU(xt�),

for � = 1, 2, . . . l, where
−→
h t�,

←−
h t� ∈ R

h, ⊕ denotes the concatenation operator,
and h refers to the hidden size of a GRU encoder. Then, we have ht� ∈ R

2h and
Hw = (ht1, · · · , htl) ∈ R

l×2h.
Following the same process, in the document encoder, the t-th sentence is

represented by concatenating the forward hidden state
−→
h t and the backward

one
←−
h t, i.e.,

ht =
−→
h t ⊕ ←−

h t =
−−−→
GRU(st) ⊕ ←−−−

GRU(st),

Then we have ht ∈ R
2h and Hs = (h1, · · · , hL) ∈ R

L×2h.

Multilevel Attention Mechanism. To provide fine-grained explainable
results, the proposed XRR involves one level of attention at the word level and
one at the sentence level; these pay more or less attention to individual words
and sentences and capture influential texts in financial reports with respect to
financial risks. Specifically, for the t-th sentence, we feed each word annotation
ht� through a fully-connected layer to yield ut� as the hidden representation of
ht�, after which the attention mechanism measures the importance of the hidden
representation ut� with a word level context vector Uw and obtains a normalized
importance weight αt� through a softmax function. After that, we compute the
sentence vector st as a weighted sum of the word annotations. Mathematically
speaking, we have

ut� = tanh (Wwht� + bw) , � = 1, 2, . . . l,

αt� =
exp(u�

t�Uw)
∑l

i=1 exp(u�
tiUw)

, � = 1, 2, . . . l,

st =
l∑

�=1

αt�ht�,

258 T.-W. Lin et al.

where Ww ∈ R
a×2h, bw ∈ R

a, and Uw ∈ R
a.

Similar to the above procedure, we feed the hidden representation of each
sentence annotation ht by using a single-layer perceptron to get ut, which is
associated with a normalized importance weight αt via a sentence level context
vector Us, i.e.,

ut = tanh (Wsht + bs) , t = 1, 2, . . . L,

αt =
exp(u�

t Us)
∑L

i=1 exp(u�
i Us)

, t = 1, 2, . . . L,

where Ws ∈ R
a×2h, bw ∈ R

a, and Us ∈ R
a.

Finally, with the weight vector αt for t = 1, · · · , L, the representation of each
report di ∈ D, di, is computed as a weighted sum of the sentence annotations as

di =
L∑

t=1

αtht. (2)

2.4 Pairwise Deep Ranking

We use a pairwise approach to rank the financial reports according to their
financial risk levels. To this end, we build a pair of multilevel structures described
in the previous subsection, with the weights shared across both sides of the
structures, as illustrated in Fig. 1. Given a pair of financial reports (d�, dj), where
the company associated with d� is riskier than that with dj according to their
risk levels, the goal of the ranking model f(·) is to generate a higher score for
d�. Denote Ψ =

{
(d�, dj) |E (d�, dj) = 1

}
as the set of all “positive” pairs, each

element in which is fed into two separate but identical hierarchical structures.
Our goal is to learn a score function f(·) that satisfies

f(d�) > f(dj), ∀(d�, dj) ∈ Ψ, (3)

where di denotes the dense representation of report di obtained from Eq. (2).
Note that in practice, we implement a siamese network for f(·) that adopts the
same weights while working in tandem on two different input vectors to compute
comparable output vectors. To obtain an overall risk ranking for all companies
(reports), we adopt a standard RankNet [4] loss layer to learn a posterior prob-
ability distribution P�j that is close to the target probability E (d�, dj) defined
in Eq. (1) for each pair (d�, dj), where

P�j =
exp (f(d�) − f(dj))

1 + exp (f(d�) − f(dj))
. (4)

A natural choice for measuring the closeness between two probability dis-
tributions is binary cross-entropy; thus we have the objective function to be
minimized as

min −
∑

(d�,dj)∈Ψ

(E (d�, dj) log P�j + (1 − E (d�, dj)) log (1 − P�j)) . (5)

XRR: Explainable Risk Ranking for Financial Reports 259

3 Experiments

3.1 Data Description

We conducted experiments on a large collection of 10-K reports from year 1996
to year 2013 provided by [25], which are annual reports required by the Secu-
rities and Exchange Commission (SEC) providing comprehensive overviews of
companies’ business and financial conditions and which include audited finan-
cial statements. Specifically, following previous studies in [3,14,24,25], we used
only Item 7 “Management’s Discussion and Analysis of Financial Conditions
and Results of Operations” (MD&A) in the experiments as it contains the most
important forward-looking statements for companies. Moreover, the post-event
volatilities corresponding to each report is also provided by [25].

3.2 Experimental Settings

We first split the post-event return volatilities of companies within a year into
five different risk levels1 and generated a set of pairs of financial reports based on
the relative difference of levels among the companies. Due to the huge numbers
of document pairs, we sampled 3,000 pairs to train the model in each epoch;
moreover, we differentiated the pair sampling probabilities based on their degree
of proximity to the testing year; that is, pairs closer to the testing year were given
a higher sampling probability. In addition, the dimension of the word vector, m,
depended on the pre-trained word embedding models used, the hidden size of the
GRU (h) was set to 100, and the attention size (a) was set to 100. The maximum
number of words in sentences (l) and that of sentences in documents (L) were
set to 150 and 70, respectively. The values of the model hyperparameters for the
compared method were decided using a grid search over different settings; we
used the combination that led to the best performance.

3.3 Pre-trained Word Embedding

We evaluated different word embedding models to construct the pre-trained word
embedding matrix We.

1. Fin-Word2Vec [25] denotes vectors pre-trained via Word2Vec with a skip-
gram model trained on the 10-K Corpus (39083 reports from 18 years); each
word is represented as a 300-dimensional vector.

2. BERT-Large, Uncased [6] contains 24-layer, 1024-hidden, 16 heads, and
340M parameters; each word in a document is represented by a 1024-
dimensional vector, and only the word embedding is used in our model.2

1 We here split the volatilities based on 30-th, 60-th, 80-th, and 90-th percentiles,
yielding the average numbers of the five categories per year as 702, 702, 467, 234,
and 234, respectively.

2 Note that in BERT models, words in different sentences (or documents) are associ-
ated with different representations; to reflect this, we treat words in different docu-
ments as different words.

260 T.-W. Lin et al.

Table 1. Performance comparison

Metric Method Model Test year

2001 2002 2003 . . . 2010 2011 2012 2013 Average

τ Classification Fasttext 0.475 0.388 0.401 . . . 0.449 0.460 0.452 0.463 0.426

HAN 0.527 0.474 0.582 . . . 0.557 0.569 0.590 0.593 0.535

Ranking RankSVM 0.549 0.521 0.525 . . . 0.589 0.592 0.593 0.591 0.547

XRR (G) 0.536 0.501 0.502 . . . 0.580 0.607 0.623 0.607 0.547

XRR (B) 0.541 0.525 0.518 . . . 0.591 0.616 0.632 0.625 0.559

XRR (F) 0.570 0.541 0.553 . . . 0.605 0.616 0.637 0.629 0.573∗

ρ Classification Fasttext 0.589 0.493 0.506 . . . 0.573 0.583 0.568 0.585 0.540

HAN 0.648 0.587 0.599 . . . 0.690 0.702 0.720 0.727 0.661

Ranking RankSVM 0.685 0.657 0.661 . . . 0.733 0.733 0.731 0.732 0.686

XRR (G) 0.671 0.632 0.636 . . . 0.720 0.750 0.762 0.748 0.684

XRR (B) 0.675 0.659 0.657 . . . 0.732 0.756 0.772 0.766 0.697

XRR (F) 0.702 0.675 0.691 . . . 0.749 0.760 0.773 0.768 0.711∗

Notation * denotes significance compared to the best baseline under a permutation test with p < 0:05.

3. GloVe [20] representations are 300-dimensional word vectors3 trained on 840
billion tokens of Common Crawl data.

In the following experiments, we denote each word embedding model with the
first character of its name (i.e., F, B, G) with parentheses, e.g., XRR (B) for
XRR with BERT-Large. For fair comparison, the original word embeddings are
all fine-tuned in both our proposed XRR and the baseline HAN in the following
experiments.

3.4 Compared Methods

We compare XRR with several baseline models including a ranking-based and
two multi-class classification models.

1. TFIDF-Rank4 uses TF-IDF as reports’ representations plus pairwise deep
ranking.

2. FastText is proposed by [11], a simple and efficient baseline for document
classification.

3. HAN is proposed by [27], adopting hierarchical networks with attention
mechanisms for document classification. We here used GloVe as the pre-
trained word embedding and sorted the companies using the probabilities
of the high-risk class in the softmax layer.

3.5 Experimental Results

To evaluate the performance of our model, we adopted Spearman’s Rho (ρ) [18]
and Kendall’s Tau (τ) [10] as our rank correlation metric. Table 1 tabulates the
3 https://nlp.stanford.edu/projects/glove/.
4 We also adopt RankSVM with TF-IDF as features by following [24], the results of

which are close to the ones of TFIDF-Rank.

https://nlp.stanford.edu/projects/glove/

XRR: Explainable Risk Ranking for Financial Reports 261

(a) Recall (b) Precision

Fig. 2. Evaluation on high-risk companies

experimental results, in which all reports from the five-year period preceding
the testing year are used as the training data. For example, the reports from
1996 to 2000 constitute the training data, and the trained model is tested on
the reports of year 2001. The boldface number in the table denotes the best
result among all methods per test year. As shown in the table, the proposed
XRR reveals the strong correlations between the predicted financial risk levels
and the actual levels. We attribute the superior performance of XRR to the
following observations: 1) The TFIDF-Rank and XRR ranking-based methods
successfully identify relative risks between each financial document pair and yield
better performance than the two classification models; 2) XRR models a much
more complex structure of representations of financial texts than the traditional
bag-of-words model, yielding better performance than TFIDF-Rank.

In addition, we compare the proposed XRR using different pre-trained word
embeddings. The results show that XRR (F), the model with Fin-Word2Vec,
yields consistently better performance than those with GloVe or BERT. A closer
look at the results shows that although XRR with BERT yields better results
than that with GloVe, the model using a domain-specific word embedding, i.e.,
XRR (F), still achieves the best performance among the three. This demonstrates
that a high-quality, domain-specific word embedding is also an important factor
for such a task.5 On the other hand, while correctly ranking all reports along
with their financial risk is important, financial scholars and practitioners may
care more about locating the most risky companies. To examine this type of
performance,6 we further use the concepts of precision@K and recall in infor-
mation retrieval as our evaluation metrics, where we use the realized post-event
volatilities to rank the companies in each year and treat the top-K companies as

5 Due to resource limitations, we could not train a domain-specific BERT model; how-
ever, we speculate that using a domain-specific BERT would yield further improve-
ments.

6 We omit the comparison to Fasttext here as its performance in Table 1 distances it
from the other three models.

262 T.-W. Lin et al.

Table 2. Firm size analysis

Variables Rank 1 Rank 2 Rank 3 Rank 4 Rank 5

Firm size 8.5052 7.8410 6.9821 6.1892 5.7281

our ground truth when calculating precision. In addition, in terms of recall, we
take the companies with the highest risk levels as the ground truth. As shown in
Fig. 2, our method outperforms both TFIDF-Rank and HAN in terms of these
two metrics, indicating that the proposed XRR is more effective at locating
high-risk companies than the other two methods. Note that in the following sub-
sections, we use the results of XRR (F), the best model, for further analyses and
explainability discussion. We also omit the notation denoting the pre-trained
word embedding, i.e., “(F)”, to simplify the notation.

3.6 Fine-Grained Analysis

We here conduct a fined-grained analysis to further investigate the performance
of companies associated with different risk levels. To do so, we first equally split
the companies within a year into five different risk levels according to their
realized post-event return volatilities; we then calculate the ρ and τ correlation
metrics for companies in each rank. As shown in the heat map in Fig. 3, where
the color denotes the correlation, the proposed model yields better performance
for companies with higher financial risk, which shows that the model effectively
locates high-risk companies, thus making our approach useful in practice. Also,
we investigate the relation between the predicted risk levels and the average
firm size7 of the companies at each risk level. According to [9], smaller firms are
typically associated with higher financial risk than larger ones. To examine the
rationality of our prediction, we equally split the firms based on our predicted
scores in each year into five risk levels and calculate the average firm size sep-
arately in each of the five groups. Table 2 shows that the predicted high-risk
companies (Rank 5) are on average small in terms of their firm size, which indi-
cates that our model learned from textual information from financial reports
yields findings consistent with the literature in finance.

3.7 Different Risk Measure Analysis

To demonstrate the suitability of using post-event return volatility as our risk
proxy, we compare its performance with the naive stock volatility in Fig. 4. The
definition of the naive stock volatility is the standard deviation of stock returns8

over a certain period. Following the setting in [25], we choose daily stock returns

7 The firm size is defined as the logarithm of the sum of all current and long-term
assets held by a company (in million dollars).

8 The stock return is the appreciation in the price plus any dividends paid, divided
by the original price of the stock.

XRR: Explainable Risk Ranking for Financial Reports 263

for 12 months after the report filing date to calculate the naive stock return
volatility. In Fig. 4 we observe that the correlations between the predicted risk
scores and post-event volatilities are much higher than those between the pre-
dicted scores and the naive stock return volatility. This is because the naive
stock return volatility is a noisy risk proxy for pure textual analysis, as it does
not exclude other macro-economic or human behavior risk, making it difficult for
models to capture the relation between text and risk. One obvious case in year
2008, the well-known financial crisis, shows that the naive stock return volatility
was drastically affected by the market, causing its lowest correlation of the whole
sample period.

(a) τ (b) ρ

Fig. 3. Fine-grained correlation analysis

4 Discussions on Explainability

In financial practice, instead of directly making final decisions, machine learn-
ing models usually play roles in assisting financial professionals; thus, model
explainability is vital in many finance application scenarios. To make our model
applicable in practice, we here conduct post-hoc justifications to examine the
expainability of our model.

264 T.-W. Lin et al.

(a) τ (b) ρ

Fig. 4. Comparison of different volatility measures

4.1 Financial Sentiment Terms Analysis

We evaluate the word attention mechanism of XRR and HAN by using the
finance-specific sentiment lexicon (FL) proposed by [16], which consists of the
following six word lists:9

1. Fin-Neg: negative business terminologies (e.g., deficit)
2. Modal: words expressing different levels of confidence (e.g., could, might).
3. Fin-Pos: positive business terminologies (e.g., profit)
4. Fin-Unc: words denoting uncertainty, with emphasis on the general notion

of imprecision rather than exclusively focusing on risk (e.g., appear, doubt).
5. Fin-Con: words denoting constraining, a factor that restricts the amount or

quality of investment options (e.g., prevent, limit).
6. Fin-Lit: words reflecting a propensity for legal contest or, per our label,

litigiousness (e.g., amend, forbear).

We first rank the terms in each sentence according to their learned attention
weights and use the top-10 terms to conduct the evaluation. The left panel in
Fig. 5 plots the precision@10 for each method, for which the terms in the union of
the six word lists are considered as the ground truth. Observe that compared to
the other two methods, XRR captures more terms listed in the lexicon; note that
Random denotes the methods that randomly select 10 terms from each sentence.
In addition, in the right panel of Fig. 5, we conduct a finer analysis by treating the
words in each word list as the ground truth. An interesting finding is that XRR
locates more negative words in Fin-Neg than the other two methods. Moreover,
our XRR gains the top-3 performance increment compared with HAN for the
word lists Fin-Lit (15.3%), Fin-Unc (14.7%) and Fin-Neg (14.6%). Previous
literature shows that negative and litigious terms are usually highly correlated
with financial risk [16,24]. For instance, deficit usually means “an excess of
liabilities over assets, of losses over profits, or of expenditure over income in
9 https://sraf.nd.edu/textual-analysis/resources/.

https://sraf.nd.edu/textual-analysis/resources/

XRR: Explainable Risk Ranking for Financial Reports 265

(a) Precision@10 (b) Precision@10

Fig. 5. Sentence attention analysis

finance”; it is clear that a company’s report that is highly associated with deficit
usually implies higher future risk. This finding shows that the proposed model is
consistent with many previous findings and highlights negative financial words
more than other models.

4.2 Financial Sentiment Sentences Analysis

We further use an annotated list at the sentence level to analyze the results of
sentence-level attention mechanisms in XRR. The reference list contains 2,432
sentences labeled as risk-related ones. In particular, there are 1,539 high risk-
related sentences and 896 low risk-related ones, each of which is selected from
the MD&A sections of the used 10-K dataset.10 For evaluation, we treat the
1,539 high risk-related sentences in financial reports as our ground truth. In
each financial report containing at least one high-risk labeled sentence, we rank
all of the sentences according to their learned attention weights and use the
top-10 sentences to conduct the evaluation in terms of precision and recall. As
shown in Fig. 6, the XRR model is generally capable of highlighting more risky
sentences in terms of both metrics; note that the dotted lines in the figure denote
the average performance over different years. These results again demonstrate
that the sentence-level attention weights of XRR reveal a stronger and a more
straightforward relation between texts and financial risk than other models.

Furthermore, we provide two example sentences that are associated with
high attention scores in Fig. 7, where that in (a) is in the annotated list and its
attention weight is four times the average attention weight of sentences in the
reports associated with the highest risk level. Also, our model also identifies a
non-labeled sentence (b) as a high weighted sentence in which the terms “redeem”
and “loss” are both associated with negative effects for the company and might
bring uncertainty and risk in the future. Such results demonstrate that the XRR
model effectively finds the important parts within a document regarding financial

10 The list will be publicly available upon publication.

266 T.-W. Lin et al.

(a) Recall (b) Precision

Fig. 6. Sentence attention analysis

risk. Therefore, considering financial scholars and practitioners’ concerns about
risky information in financial reports, these examples indicate that our model
spotlights texts that are highly correlated to high risk in financial reports and
effectively provides the important parts within a document as a brief summary
thereof.

Fig. 7. Examples of sentence attention

5 Conclusion

We propose XRR to rank companies to keep them in line with their relative risk
levels specified by their post-event volatilities, in which the textual information
in financial reports is leveraged to make the prediction. Experimental results
on a large-scale financial report dataset demonstrate that our approach exhibits
a stronger ranking power compared to the baselines. Also, the evaluation on
explainability attests the effectiveness of our model for providing explainable
results.

XRR: Explainable Risk Ranking for Financial Reports 267

Reproducibility

To facilitate reproducibility of the results in this paper, we are sharing the code
at https://github.com/cnclabs/codes.fin.attention.git.

References

1. Aikman, D., et al.: Funding liquidity risk in a quantitative model of systemic
stability. Cent. Bank. Anal. Econ. Policies Book Ser. 15, 371–410 (2011)

2. Akhtar, M.S., Kumar, A., Ghosal, D., Ekbal, A., Bhattacharyya, P.: A multilayer
perceptron based ensemble technique for fine-grained financial sentiment analysis.
In: Proceedings of EMNLP, pp. 540–546 (2017)

3. Buehlmaier, M.M., Whited, T.M.: Are financial constraints priced? Evidence from
textual analysis. Rev. Financ. Stud. 31(7), 2693–2728 (2018)

4. Burges, C., et al.: Learning to rank using gradient descent. In: Proceedings of
ICML, pp. 89–96 (2005)

5. Chung, J., Gulcehre, C., Cho, K., Bengio, Y.: Empirical evaluation of gated recur-
rent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555 (2014)

6. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep
bidirectional transformers for language understanding. In: Proceedings of NAACL-
HLT, pp. 4171–4186 (2018)

7. Ding, X., Zhang, Y., Liu, T., Duan, J.: Deep learning for event-driven stock pre-
diction. In: Proceedings of IJCAI, pp. 2327–2333 (2015)

8. Dos Santos, C., Gatti, M.: Deep convolutional neural networks for sentiment anal-
ysis of short texts. In: Proceedings of COLING, pp. 69–78 (2014)

9. Fama, E.F., French, K.R.: Common risk factors in the returns on stocks and bonds.
J. Financ. Econ. 33(1), 3–56 (1993)

10. Kendall, M.G.: A new measure of rank correlation. Biometrika 30(1/2), 81–93
(1938)

11. Grave, E., Mikolov, T., Joulin, A., Bojanowski, P.: Bag of tricks for efficient text
classification. In: Proceedings of EACL, pp. 427–431 (2017)

12. Hu, Z., Liu, W., Bian, J., Liu, X., Liu, T.Y.: Listening to chaotic whispers: a deep
learning framework for news-oriented stock trend prediction. In: Proceedings of
WSDM, pp. 261–269 (2018)

13. Ito, T., Lyons, R.K., Melvin, M.T.: Is there private information in the FX market?
the Tokyo experiment. J. Financ. 53(3), 1111–1130 (1998)

14. Kogan, S., Levin, D., Routledge, B.R., Sagi, J.S., Smith, N.A.: Predicting risk from
financial reports with regression. In: Proceedings of NAACL, pp. 272–280 (2009)

15. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., et al.: Gradient-based learning
applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

16. Loughran, T., McDonald, B.: When is a liability not a liability? Textual analysis,
dictionaries, and 10-Ks. J. Financ. 30(1), 81–93 (2011)

17. Luo, L., et al.: Beyond polarity: interpretable financial sentiment analysis with
hierarchical query-driven attention. In: Proceedings of IJCAI, pp. 4244–4250 (2018)

18. Myers, J.L., Well, A., Lorch, R.F.: Research Design and Statistical Analysis, vol.
30. Lawrence Erlbaum (2003)

19. Nopp, C., Hanbury, A.: Detecting risks in the banking system by sentiment analysis.
In: Proceedings of EMNLP, pp. 591–600 (2015)

https://github.com/cnclabs/codes.fin.attention.git
http://arxiv.org/abs/1412.3555

268 T.-W. Lin et al.

20. Pennington, J., Socher, R., Manning, C.D.: GloVe: global vectors for word repre-
sentation. In: Proceedings of EMNLP, pp. 1532–1543 (2014). http://www.aclweb.
org/anthology/D14-1162

21. Rekabsaz, N., Lupu, M., Baklanov, A., Hanbury, A., Dür, A., Anderson, L.: Volatil-
ity prediction using financial disclosures sentiments with word embedding-based IR
models. arXiv preprint arXiv:1702.01978 (2017)

22. Schumaker, R.P., Chen, H.: Textual analysis of stock market prediction using break-
ing financial news: the AZFin text system. ACM Trans. Inform. Syst. (TOIS) 27(2),
12 (2009)

23. Toma, A., Dedua, S.: Quantitative techniques for financial risk assessment: a com-
parative approach using different risk measures and estimation methods. Proc.
Econ. Financ. 8, 712–719 (2014)

24. Tsai, M.F., Wang, C.J.: On the risk prediction and analysis of soft information in
finance reports. Eur. J. Oper. Res. 257(1), 243–250 (2016)

25. Tsai, M.F., Wang, C.J., Chien, P.C.: Discovering finance keywords via continuous-
space language models. ACM Trans. Manage. Inform. Syst. (TMIS) 7(3), 7 (2016)

26. Wiegreffe, S., Pinter, Y.: Attention is not not explanation. arXiv preprint
arXiv:1908.04626 (2019)

27. Yang, Z., Yang, D., Dyer, C., He, X., Smola, A., Hovy, E.: Hierarchical attention
networks for document classification. In: Proceedings of NAACL, pp. 1480–1489
(2016)

http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D14-1162
http://arxiv.org/abs/1702.01978
http://arxiv.org/abs/1908.04626

Healthcare and Medical Applications
(including Covid)

Self-disclosure on Twitter During
the COVID-19 Pandemic: A Network

Perspective

Prasanna Umar, Chandan Akiti, Anna Squicciarini(B), and Sarah Rajtmajer

College of Information Sciences and Technology, Pennsylvania State University,
University Park, State College, PA 16802, USA

{pxu3,cra5302,acs20,smr48}@psu.edu

Abstract. Amidst social distancing, quarantines, and everyday disrup-
tions caused by the COVID-19 pandemic, users’ heightened activity
on online social media has provided enhanced opportunities for self-
disclosure. We study the incidence and the evolution of self-disclosure
temporally as important events unfold throughout the pandemic’s time-
line. Using a BERT-based supervised learning approach, we label a
dataset of over 31 million COVID-19 related tweets for self-disclosure. We
map users’ self-disclosure patterns, characterize personal revelations, and
examine users’ disclosures within evolving reply networks. We employ
natural language processing models and social network analyses to inves-
tigate self-disclosure patterns in users’ interaction networks as they seek
social connectedness and focused conversations during COVID-19 pan-
demic. Our analyses show heightened self-disclosure levels in tweets fol-
lowing the World Health Organization’s declaration of pandemic world-
wide on March 11, 2020. We disentangle network-level patterns of self-
disclosure and show how self-disclosure characterizes temporally persis-
tent social connections. We argue that in pursuit of social rewards users
intentionally self-disclose and associate with similarly disclosing users.
Finally, our work illustrates that in this pursuit users may disclose inti-
mate personal health information such as personal ailments and under-
lying conditions which pose privacy risks.

Keywords: Self-disclosure · Twitter · Privacy

1 Introduction

The COVID-19 pandemic has impacted a majority of the world population. As
of March 2021, more than 117 million people worldwide have been infected by
the coronavirus and more than 2.59 million have died. Much of the world has
been living with lockdowns and quarantines since the early months of 2020.
Amidst these circumstances, people have resorted to online resources to stay
connected in their personal and professional lives. As a result, there has been
an unprecedented surge in online activity. Social media usage has increased by
c© Springer Nature Switzerland AG 2021
Y. Dong et al. (Eds.): ECML PKDD 2021, LNAI 12978, pp. 271–286, 2021.
https://doi.org/10.1007/978-3-030-86514-6_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86514-6_17&domain=pdf
https://doi.org/10.1007/978-3-030-86514-6_17

272 P. Umar et al.

61% as people converge to these online platforms to support their social inter-
actions [25]. Twitter, a popular microblogging site, has seen substantial increase
in number of active users during the pandemic [2].

The convergence of people to social media, particularly micro-blogging sites
like Twitter, is an evident phenomenon during natural disasters (e.g., earth-
quakes, hurricanes, floods) and social change events (e.g., black lives matter,
occupy wall street) [28,31]. Amidst the heightened online activity, users can dis-
close sensitive and private information. In fact, existing literature on social media
use during disasters has maintained that a significant portion of user messaging
is of a personal nature [27,42]. Some informational and emotional disclosures
are relevant to raising situational awareness during these events and helping in
response (e.g., location, life and property loss, mental states) [27]. But, instances
of personal disclosures not directly relevant to disaster response have also been
observed [27]. Therefore, it is yet unknown how this behavior is different from
usual sharing practices. Further, it is unclear how to characterize self-disclosure
in health-related crises.

Notably, the COVID-19 pandemic as a health crisis is different than other
types of disasters given the scale of the crisis and the global restrictions on move-
ment it has brought for such an extended period of time. Amidst concerns of
financial security, health risks and social isolation [35], social media provides an
avenue for “collective coping” wherein users seek and receive emotional, infor-
mational and instrumental support [28]. Individuals find a sense of community
online and feel supported through sharing with others co-experiencing similar
problems. Online sharing serves therapeutic functions [18] and enables sense-
making in stressful crisis situations [28]. In addition, stressful life events have
been shown to mitigate privacy concerns linked to self-disclosure in online social
networks [48,49]. Accordingly, we suggest that users curate their social connec-
tions and disclose intentionally to reap social benefits during difficult times.

In this work, we seek to detect levels of self-disclosure in users’ public
tweets related to the COVID-19 pandemic and characterize these disclosures.
We categorize self-disclosure in tweets along several dimensions, namely, infor-
mation, thoughts, feelings, intimacy and relationships. Leveraging a BERT-based
automated labelling scheme trained on human annotations, we assess levels of
self-disclosure and its dimensions in more than 31 million tweets. We analyze
the labelled data to characterize the phenomenon of self-disclosure during the
COVID-19 pandemic. Our work is guided by the following research questions.

– RQ1: What sharing patterns characterize the interaction networks in Twitter
and how do these patterns evolve temporally?

– RQ2: Does self-disclosure aid in fostering persistent and focused social inter-
actions?

– RQ3: What content characterizes health-related disclosures among temporally
persistent user interactions during the pandemic?

Our findings support the role of self-disclosure in soliciting social connect-
edness and curating support networks during the pandemic. Our analyses pro-
vide several important insights that lead to the following observations. First,

Self-disclosure on Twitter During the COVID-19 Pandemic 273

we observe heightened self-disclosure levels in tweets following the World Health
Organization’s March 11 2020 pandemic declaration, signaling a shift in users’
sharing patterns in step with heightened awareness and anxiety around the crisis.
Second, we find that self-disclosure levels remain consistently high many months
into the pandemic. Our analyses of users’ reply networks yield novel insights
into the temporal evolution of user groups in terms of self-disclosure levels and
topical conformity. Specifically, users’ interactions within reply networks show
more frequent and more intimate self-disclosures temporally. Further, users tend
to connect with other users with similar self-disclosure levels, i.e., users show
assortative [34] behavior in terms of sharing patterns. Self-disclosures appear to
foster more focused and on-topic conversations. Finally, health-related conversa-
tions among users include disclosures of personal ailments and health conditions
signaling shifts in users’ risk perceptions towards sensitive personal health infor-
mation (PHI) and engagement in such disclosures for potential social rewards.

2 Dataset

The dataset used in our analyses is a subset of a recently collected COVID-
specific Twitter repository [14]. The original repository consisted of about 508
million tweet IDs. These tweet IDs corresponded to tweets that were collected
using a specific set of keywords (e.g., Coronavirus, CDC, COVID-19, pandemic,
SocialDistancing, quarentinelife, etc.) and by following a set of accounts focused
on COVID-19 (e.g., CoronaVirusInfo, V2019N, CDCemergency, CDCgov, WHO,
etc.). Around June 6th, there was a significant increase in volume of the tweets
collected because of changes in collection infrastructure. The transition, how-
ever, did not result in any gaps within the timeline of the collected tweets (See
[14] for details). Using Python’s Twarc package, we re-hydrated the tweets from
the tweet IDs. We considered only the original content (English) posted by users
i.e., replies and filtered all retweets and quotes. It has been noted that users
with high number of followers do not necessarily reciprocate interactions from
other users [29]. Highly followed users, by this measure, are not necessarily the
most important in the network. Hence, we also removed all tweets from verified
accounts. Direct replies to tweets from verified accounts were also removed to
exclude the mostly non-reciprocated and one-way interactions within the Twitter
network. Similarly, we found majority of user mentions to be targeted towards
verified accounts and were not reciprocated. Therefore, we removed user men-
tions. Our resulting corpus contained just over 31 million tweets, collected from
1/21/2020 till 8/28/2020. We grouped the tweets temporally into three phases.
Division into phases was done to test temporal changes in self-disclosing trends
that occurred as a result of real-world events related to the pandemic. Specifi-
cally, we considered the World Health Organization’s declaration of the global
pandemic on March 11, 2020 as a “starting” point for the pandemic [41]. Simi-
larly, we selected July 1, 2020 as the beginning of Phase III in our data to reflect
the relative easing of strict quarantine and travel restrictions [1]. Accordingly,
Phases I (Jan 21 - Mar 11), II (Mar 12 - Jun 30), and III (Jul 1 - Aug 28)
comprised of over 4.18 million, 11.83 million, and 15 million tweets respectively.

274 P. Umar et al.

3 Self-disclosure Measurements

3.1 Measurement Scale

We adopted an existing self-disclosure scale [46] to measure level of personal dis-
closure in tweets1. Self-disclosure is operationalized per this measurement scale
as a composite value of five items, each measured on an integer scale between
1 (not at all) and 7 (completely), where 1 represents no disclosure and 7
is the highest level of self-disclosure. Individual items within this framework
measure disclosure of: personal information; personal thoughts; personal feelings
and emotions; importance/intimacy of the disclosure; and, disclosure of close
relationships (See Fig. 1 for details).

3.2 Manual Annotations

We labelled a sample of 5000 tweets for self-disclosure using the survey in [46].
The labelling survey was deployed on Amazon Mechanical Turk where each
tweet was labelled by three crowd-sourced raters. The labeling task was con-
ducted under the protocol 14947 approved by the Pennsylvania State Univer-
sity’s Institutional Review Board (IRB). To ensure quality labels, we provided
detailed instructions and examples in the survey. Raters were asked to label each
tweet along the five dimensions of self-disclosure considering only the text of the
tweet. We, therefore, replaced the weblinks in the tweets with a token :URL:
and replaced any emoticon with its textual version. We authorized workers only
in United States with at least 98% of their past submissions and at least 100
submissions accepted. Further, we discarded responses (about 1% of total sub-
missions) from workers who failed to answer an attention check question within
the survey.

Fig. 1. Labelling survey for a tweet showing five questions that represent five dimen-
sions of self-disclosure.

The crowd-sourced workers rated each tweet on an integer scale from 1 (Not
at all) to 7 (Completely) for presence of self-disclosure according to each of
the five dimensions – namely information, thoughts, feelings, intimacy and rela-
tions (See Fig. 1). For each of these individual ratings, we calculated Gwet’s
AC2, a chance-corrected agreement statistic [24]. As the individual dimensions

1 Authors of [46] reported a reliability of 0.72 (Cronbachś alpha) for the scale.

Self-disclosure on Twitter During the COVID-19 Pandemic 275

Table 1. Inter-rater agreement for self-disclosure dimensions.

Items Gwetś AC2 95% CI Percent agreement Benchmark

Information 0.869 0.860–0.877 0.922 Almost perfect

Thought 0.258 0.240–0.276 0.797 Fair

Feeling 0.651 0.636–0.666 0.859 Substantial

Intimacy 0.849 0.842–0.856 0.905 Almost perfect

Relation 0.971 0.969–0.974 0.975 Almost perfect

of self-disclosure were measured on an ordinal scale, we used the weighted ver-
sion (ordinal) of Gwet’s AC2 statistic and interpreted the magnitude using a
bench-marking procedure in [24]. Agreement between raters varied for individ-
ual dimensions ranging from fair agreement for thought to better agreement for
other dimensions (See Table 1). Ratings for each dimension were calculated by
averaging the ratings provided by three raters. A final self-disclosure rating was
compiled as an average of ratings across the five individual dimensions.

3.3 Label Generation

We generated labels for an unlabelled tweet using labelled examples of tweets in
each of the five dimensions of self-disclosure: information, thought, feeling, inti-
macy and relation. We built separate models for each dimension and aggregated
the ratings for all five dimensions to get a self-disclosure rating.

We formulate the labeling process as a regression problem. Formally, we learn
a model hθ(x) from a set of (Nu + Nl) training samples, where Nu and Nl are
the number of unlabeled and labeled examples respectively. The labeled dataset
Dl = {(xi, yi)}Nl

i=1 where yi ∈ [1, 7] is a small dataset of 5000 samples. We use few-
shot learning method [16] to give the model the ability to label unseen samples
with only a few labeled known samples. Our learning model is the transformer-
based language model called BERT [16]. This learning model has state-of-the-
art performance on several standard NLP tasks [44] that closely relate to our
regression problem. Thus, BERT is extremely suitable for transferring the learnt
knowledge θ to our regression problem.

Domain Fine-Tuning. Following [23], we fine-tuned the pre-trained BERT
again on the huge unlabeled data Du. We use the Masked Language Modeling
(MLM) and Next Sentence Prediction (NSP) objectives to fine-tune the BERT
model. Fine-tuning the language model on target domain data improves perfor-
mance of NLP tasks and we observe the same in our results in Table 2.

Training Method. In a standard supervised training method, we sample a
batch of b samples Br = {(xri

, yri
)}b

i=1 sampled randomly from the Nl labeled
samples. We then pass the training batch B to the model hθ to obtain the outputs

276 P. Umar et al.

Table 2. RMSE and accuracy (weighted) within ±0.5 and ±1 ranges of true labels.

Label BERT-base Fine-tuned Few-Shot

rmse ±0.5 ±1.0 rmse ±0.5 ±1.0 rmse ±0.5 ±1.0

Information 1.689 46.4 63.5 1.213 51.3 68.1 1.027 57.2 74.1

Thoughts 1.827 27.8 45.4 1.653 31.2 47.3 1.406 33.2 54.9

Feelings 1.522 47.8 59.1 1.454 46.9 58.7 1.339 49.6 64.0

Intimacy 0.903 59.8 88.9 0.855 67.2 90.1 0.921 87.6 88.8

Relation 0.639 88.3 94.7 0.632 88.1 94.9 0.586 94.8 95.7

{ŷri
}b

i=1. The parameters θ are trained with the loss 1
b

∑b
i=1(yri

− ŷri
). As the

data-imbalances add huge bias to the model, we re-sample the training samples
to balance the samples for each class or ranges.

The few-shot learning method [8] learns to predict labels using a support
sample set as knowledge. This learning paradigm works well in low-resource set-
tings. We sample episodes instead of batches, where each episode has a support
batch Bs = {(xsi

, ysi
)}b

i=1 and query batch Bq = {(xqi
, yqi

)}b
i=1. Every batch

we sample has nearly equal representation from all label classes/ranges. The
regression layer θR ⊂ θ is removed in this model. Instead, θR is inferred from the
sentence representations of support set samples. In each episode θR is learned
with respect to Bs and then used to predict the labels on Bq. The regression loss
is calculated similarly to the supervised learning method and model parameters
θ are updated using back-propagation.

We set batch size b to 50, as a lower batch size leads to instability in solving
for θR. The BERT model outputs sentence representations of dimension 768. We
train the model for 3 epochs. Our batch sampling strategy ensures equal number
of samples in the six range spans for labels in [1.0–7.0] that are – [1.0–1.5), [1.5,
2.5), [2.5, 3.5), [3.5, 4.5), [4.5, 5.5), [5.5, 7.0].

Evaluation. We use two baseline models to evaluate the performance of our
method – namely a standard pre-trained bert-base model and a bert-base model
fine-tuned on the unlabeled dataset. Both baselines are trained with batch size
of 32 with a learning rate of 5e−4 and for 2 epochs. For each sample, we assign
an appropriate range/class based on the true label (e.g., [1.5, 2.5) is the range
for true label 2.3). Then, the sample prediction is evaluated for this range as a
true positive if it falls within margins of ±0.5 (and ±1.0) of the selected range.
The results shown in Table 2 indicate that average performance of our method
is better than the baseline models.

4 Analysis

In this section, we describe our methodology to understand patterns of self-
disclosure during the Covid-19 pandemic, and present our findings. We construct

Self-disclosure on Twitter During the COVID-19 Pandemic 277

both directed and undirected reply-based graphs wherein users are represented
as vertices and pairwise reply interactions between users are represented as edges.
We posit that for our study of predominantly conversation-oriented behaviors
such as self-disclosure a suitable representation of the system is a network that
captures reply-based interactions between users. While studies often characterize
Twitter as a static network [6,29], it has been acknowledged that such networks
can be misleading [22,26]. The follower/following relationships are mostly not
reciprocated and follower/following-based networks do not give actual represen-
tations of users’ active reciprocated interactions [26].

4.1 Self-disclosure Assortativity in Twitter Reply Networks

In order to understand the self-disclosure patterns that characterize the Twitter
interaction network (RQ1), we examine if users’ sharing patterns are similar to
their social connections. That is, we peruse the assorativity of users’ interaction
networks in terms of self-disclosure patterns.

Reciprocal-Reply Network. We create reciprocal-reply networks [11] to
explore the assortative mixing of users according to their patterns of self-
disclosure. Particularly, we define an undirected graph G(V,E) with a set of
vertices, V and a set of edges pairwise amongst them, E. For users vj ∈ V and
vk ∈ V , an edge ejk represents a reciprocal reply relationship between them, i.e.,
existence of replies by both users to each other. Each edge is assigned a weight
wjk calculated as the sum of number of interactions (replies) between two users
vj and vk. Three reciprocal-reply networks were created to represent each tem-
poral Phase in the dataset. Here, mean self-disclosure characterizes each node as
an attribute and it is calculated as the average of self-disclosure levels across all
tweets posted by the user (node) within the particular phase. Essentially, two
nodes vj and vk connected by an undirected edge ei had attributes ji and ki.
We calculate assortativity based on average self-disclosure using a weighted ver-
sion of the continuous assortativity coefficient in [21]. Specifically, assortativity
coefficient is defined using the Eq. 1 where W is the sum of all edge weights. The
values for assortativity coefficient range from −1 to 1. Positive values of this
coefficient means similarities among connected nodes and dissimilarities results
in negative values.

rw
c =

∑
i wijiki − W−1

∑
i wiji

∑
i′ wi′ki′

√
[
∑

i wij2i − W−1
∑

i wij2i][
∑

i wik2
i − W−1

∑
i wik2

i]
(1)

Results. We found evidences of assortativity for mean self-disclosure among
users (See Table 3). For the first Phase, the network had negligible but positive
assortativity coefficient (0.003) which increased for Phase II (0.239) and Phase
III (0.218). While there are no formal guidelines for interpreting assortative
coefficient, we follow the most recent study that re-purposes correlation coeffi-
cient ranges to classify networks into levels of assortativity [30]. Accordingly, the

278 P. Umar et al.

Table 3. Assortative coefficient for reciprocal reply networks.

Phase #Nodes #Edges SD Information Thought Feeling Intimacy Relation

Phase I 9474 5479 0.003 0.165 −0.001 −0.002 −0.014 −0.005

Phase II 8201 4334 0.239 0.245 0.313 0.259 0.147 0.156

Phase III 25372 14216 0.218 0.263 0.280 0.248 0.116 0.148

first Phase network is interpreted as neutral (i.e., neither assortative nor disas-
sortative) and the networks in subsequent phases are considered to be weakly
assortative. Along the dimensions of self-disclosure, similar increasing patterns
were observed. However, the reciprocal-reply networks in all three phases are
neutral for feeling and intimacy dimensions of self-disclosure.

4.2 Persistent Groups and Self-disclosure

In order to understand how the occurrences of self-disclosure characterize and
aid in the persistent and focused social interactions (RQ2), we examine the tem-
porally persistent social groups. For these groups of users, we peruse temporal
evolution of self-disclosure and the relationships with topical conformity.

Directed Reply Networks. We use directed sub-networks to extract self-
disclosure patterns and the relationships between self-disclosure and the topical
conformity (divergence) within the social connections that temporally persistent
groups of users maintain. Specifically, we define a graph G(V,E) on vertex set V
and edge set E. For a user vi ∈ V , edge eij represents a reply by user vi to user vj .
Each directed edge eij is assigned a weight wij representing the number of these
replies. Three such graphs were created, one for each temporal Phase in the data
and each graph consisted of all reply interactions between all interacting users
within that Phase. We then detect communities in the graphs associated with
each Phase using a directed Louvain community detection algorithm optimized
for directed modularity [17]. Higher values closer to 1 for modularity indicates
stronger community structure and as such, the directed modularity scores for
three phases in our study were 0.93, 0.98 and 0.94 respectively. We identify
persistent groups of (at least 2) users which interact within same communities
across three phases. That is, a persistent group represents a set of users which is
a part of a larger community in Phase I and persisted as a group within common
communities across subsequent phases, although the group as a whole can be
a part of different communities in subsequent phases as communities evolve. In
total, we pulled out 549 persistent groups totalling 13469 users. Figure 2 shows
an example of a persistent group across three phases of the pandemic timeline.
For these persistent groups, we examined self-disclosing behaviors across three
phases. Additionally, we disentangled the relationship between self-disclosure
and the tightness of conversational content posted by the set of users in the
persistent group as measured by topical divergence.

Self-disclosure on Twitter During the COVID-19 Pandemic 279

Fig. 2. Directed reply networks for an exemplarly persistent group across phases. Node
size is proportional to activity of the user and edge width is proportional to number of
replies. Average self-disclosures per phase are 1.18, 1.30, and 1.27 respectively.

Topical Divergence. We perform topical modeling (using Latent Dirichlet
Allocation (LDA) [10]) of the tweets from all users in all the persistent groups in
order to understand if there is a relationship between self-disclosure in temporally
persistent groups and topical conformity in their conversations. We removed
hashtags, user mentions, weblinks, and emoticons. We also removed words that
appeared in over 90% of the tweets and those that appeared in less than 20
tweets. Multiple topic models were created for a corpus of pre-processed tweets
with number of topics varying from 1 to 20. We used coherence score [38] as
a measure of quality and interpretability of the topic models. Our extracted
best topic model included 17 topics and a coherence score of 0.50 (See Table 4).
According to this 17-topic model, we assigned a latent topic distribution vector
for each tweet representing probabilities corresponding to each of the topics.

For persistent groups across phases, we measure conformity or lack thereof
in conversational content across group members by means of topical divergence.
Specifically, we computed the Jensen-Shannon divergence (JSD) for each persis-
tent group across the three phases using the following formulation [37]:

JS(gs) = H(βs
g) −

∑
tεT s

g
H(βt)

|T s
g | (2)

where βs
g(i) =

∑
tεT s

g
βt(i)

|T s
g | ,∀i = 1, ..., n for n the number of topics is the mean

topic distribution of group g at Phase s over all its users’ tweets (T s
g). Here, βt

is the latent topic distribution of tweet t and H is the Shannon-entropy function
(logarithmic base 2). The divergence score ranges from 0 to 1 with 1 being totally
conforming conversation.

Results. Here, we present our findings on temporal evolution of self-disclosure
for persistent groups. Also, we report on the relationship between self-disclosure
and topical conformity in the content by the users within these groups.

280 P. Umar et al.

Table 4. Top keywords for topics generated using LDA with coherence score of 0.50.

1 Home, reopen, close, open, stay 10 Health, outbreak, warn, spread, travel

2 Mask, wear, face, people, social distancing 11 News, live, update, late, australia

3 Cdc, government, control, datum, expert 12 School, child, family, student, kid

4 Test, positive, testing, result, symptom 13 Like, look, good, time, day

5 People, know, bad, think, die 14 Trump, president, response, white house, election

6 Death, case, number, rate, toll 15 Vaccine, study, scientist, new, drug

7 Crisis, million, business, pay, government 16 Fight, india, th, june, july

8 Case, new, report, death, total 17 Market, economy, fear, hit, amid

9 Patient, hospital, die, doctor, care

Disclosure Patterns. For 549 persistent user groups across three phases, there was
a significant difference in self-disclosure rating (χ2(2) = 469.93, p < 0.001,W =
0.428). Post-hoc analysis with Friedman-Conover tests and Holm-Bonferroni cor-
rection revealed significant differences across all phase pairs (p < 0.001). Mean
values of self-disclosure for three phases were 1.19, 1.38 and 1.35 respectively.
It is in line with the overall trend in self-disclosing behavior across all tweets in
the dataset through three phases (See Fig. 3).

Fig. 3. Average values of SD and its dimensions across phases.

Topical Divergence. We find significant negative correlation between topical
divergence and self-disclosure in Phase II and Phase III . Correlations for con-
secutive phases were −0.11 (p < 0.05), −0.55 (p < 0.001) and −0.49 (p < 0.001)
respectively. These findings show that as self-disclosure increases, conversations
are more focused and on-topic.

4.3 Characterizing Sensitive Disclosures in Temporally Persistent
Social Connections

As users maintained social connections through the pandemic with parallel
increases in sharing behavior, we delve further into the content of the disclosures.

Self-disclosure on Twitter During the COVID-19 Pandemic 281

COVID-19 being a health related crises, we seek to answer RQ3 and characterize
the sensitive health disclosures within the persistent social connections.

Sensitive Health-Related Disclosure. We analysed tweets for specific types
of health-related disclosure, namely, disclosure of symptoms and diseases. We
looked for these specific revelations within the tweets of persistent group
members that were classified as having some level (>1) of informational self-
disclosure. To extract these fine-grained utterances, we created a supervised
learning model to classify health related tweets. We used an existing manu-
ally annotated Twitter dataset [36] with labels specifying health-related content
for training purposes. The dataset contained 5128 tweet IDs corresponding to
tweets that were labeled according one of five categories: sick, health, unrelated,
not English, and ambigous. Excluding the tweets that could not be retrieved,
non-English and ambiguous tweets, we compiled 2419 tweets. We binarized the
dataset into 987 health-related tweets (sick, health) and 1432 non-health related
tweets. We use our first baseline BERT based model to train on this dataset and
we infer a binary health-related vs non-health related label for all the tweets from
all persistent groups. We use the same hyperparameters used in our labeling base-
line. The model trained with 5-fold cross-validation yielded average (validation)
precision, recall and F1-score of 78.8%, 84.4%, and 81.4% respectively.

We used a pre-trained model [40] to detect disclosures of symptoms and dis-
eases in health-related tweets that were tagged as containing at least some (>1)
levels of information disclosure. Authors of [40] trained and evaluated this model
on a Twitter dataset and reported 72% F1-score for detection of medical entities.
Using the trained model, we detected the sensitive disclosures of symptoms and
diseases within the informational disclosures in the health-related tweets by the
persistent groups.

Results. Topics of conversation within persistent groups highlighted health-
related discussions. About 29% of all tweets within persistent groups were tagged
as health-related and 83% of the persistent groups had at least some health-
related tweets. Notably, 99.7% of these health related tweets belonged to the
seven topics that featured health-related keywords (See topics 3–6, 8–9, 15 in
Table 4). Zooming in on health-related tweets that had at least some informa-
tional disclosure (rating > 1), we detected disclosures of personal ailments and
symptoms (see Table 5).

5 Discussion

Our analyses showed increased levels of self-disclosure in COVID-19 related
tweets after March 11, 2020 when the WHO declared the outbreak a global
pandemic (also observed in recent work [41]). This increase, registered both in
terms of quantity and intimacy of self disclosure, coincided with acute tem-
poral events in pandemic timeline and suggests that self-disclosure has served

282 P. Umar et al.

Table 5. Examples of disclosures of personal ailments.

‘Damn. 1. I have a cold. 2. I have not been to China. 3. I have
travelled in the last week. Once to London. How worried should I
be?’

‘cold’

‘Wondering if the sore throat I developed this afternoon is the
coronavirus. I guess we shall soon see’

‘sore throat’,
‘coronavirus’

‘I though i will be fine at ome spend the dya sleeping yesterday and
now woke up with a head ache again and diff breathing before going
to see a cardiologist i need to pass a test to eliminate f∗ ∗ ∗ing covid
do not want to go too tired’

‘head ache’,
‘breathing’

‘I have very little positivity to share I am afraid today. My Son is
visiting & we are going out with Dogs. I am concerned for him, he
has the same Kidney Condition as I, he inherited before I knew I
had from my Dad. My Girls & Grandchildren as is in’

‘Kidney
Condition’

an important role ameliorating social and emotional challenges linked with the
crisis. Users have turned to online communities for support [13]. Recent work
studying potential changes in individual perceptions of self-disclosure and pri-
vacy during the pandemic [33] supports this view.

Reciprocal-reply networks reveal assortative mixing of users based on self-
disclosure behavior after March 11. Such self-organized mixing patterns in online
social networks as a result of acute disaster has been observed in recent work
[19]. Authors of [19] showed that (degree) assortative mixing patterns vary with
evolution of disaster as critical events unfold and emergent social cohesion is
intentional in pursuit of specific needs. We suggest that stresses of the pandemic
may have likewise enabled selective mixing of users in terms of self-disclosure,
following work on the role of self-disclosure in maintaining relationships and
psychological coping [3]. Our results provide initial evidence of users’ curation
of social connections and strategic self-disclosure in pursuit of social rewards.

We have also shown that self-disclosure by users within temporally persis-
tent social groups supports focused, on-topic conversations, highlighting the role
of self-disclosure in maintaining stable support structure. Further studies could
delve deeper into these effects in emergent support-oriented communities, par-
ticularly in crisis.

Amongst users within persistent social groups, we found disclosure of sensi-
tive personal health information (PHI) such as physical ailments, symptoms and
underlying health conditions. While observed in dedicated online health commu-
nities (OHC) [47], such sensitive voluntary disclosures in Twitter during crises
is relatively under-studied. Studies on OHC show that pursuit of informational
and emotional support motivates PHI disclosures [50]. We speculate that users
in our dataset similarly disclosed sensitive PHI to garner support from their
Twitter community. As noted by [33], the pandemic may have changed privacy
perceptions towards sensitive PHI. Additional work in this area could shed light

Self-disclosure on Twitter During the COVID-19 Pandemic 283

on the motivations for and differences in PHI disclosures in user engagements
during crises vs normal times.

6 Related Work

Since 2020, a body of literature has emerged studying activity in Twitter to
understand user sentiment [39], explore prevalence and prevention of misinforma-
tion [45], and analyze hate speech [20] during the pandemic. Often, these studies
perform raw tweets collection, conduct content analyses, and build models to
answer specific research questions related to trends in online social behavior. As
a result, over the past year several Twitter datasets [7,15] and computational
models [32,51] have been released. Yet, studies to date have not focused on
analyses of the extant network in which these trends occur. Further, we are not
aware of any study that looks into network effects on self-disclosure during the
pandemic. We attempt to fill these gaps.

Outside the domain of crisis informatics, self-disclosure has been studied as
an intentional and influenced behavior which has both intrinsic and extrinsic
rewards [3]. Intrinsically, it has therapeutic benefits that can help in psycho-
logical well-being [43] and extrinsically, it plays a role in building relationships,
social connectedness, and maintaining relationships [4]. Increasingly, studies have
perused self-disclosure in social networking sites where users look to interact
with others for both intrinsic and extrinsic benefits. However, we find differing
approaches for operationalization and measurement of self-disclosure through-
out the literature [3]. Of interest for observational studies, [9] proposed a 3-item
scale (levels of information, thoughts and feelings) to measure self-disclosure in
online posts. However, we follow a more recent work [46] that modified this scale
to include the intimacy of disclosure.

Similar to [46], most studies create automated models to scale self-disclosure
labels in small manually annotated data to larger samples [5,12]. Such models
employ highly curated dictionaries and extensive feature engineering which limit
the inference process and performance on unseen data. Here, we use transfer-
learning techniques on NLP models for labeling of our self-disclosure text.

7 Conclusion

Our study sheds light on the increase in users’ self-disclosure during the pandemic
and the role of self-disclosure in persistent and transient online groups. We have
suggested that users share personal information in their online communities to
garner social support. Reinforcing this argument, our results showed that as users
maintained social connections temporally, self-disclosure increased as did topical
conformity within conversations. Disclosures of users within persistent groups
revealed sensitive personal health information. As such, our study points toward
shifts in users’ privacy perceptions in the wake of the COVID-19 pandemic.

As our findings are empirical in nature, a limitation of our work relates to the
data we rely on. Although the dataset captures tweets in the important timeline

284 P. Umar et al.

of the pandemic, it is a sample of COVID-19 related conversations on Twitter.
Hence, the results of this study need to be interpreted accounting for the effects
of missing data in the sample.

Acknowledgements. Work from all the authors was supported in part by the
National Science Foundation under Grant 2027757.

References

1. Coronavirus: How lockdown is being lifted across Europe. Accessed 08 Mar 2021
2. Twitter sees record number of users during pandemic, but advertising sales slow.

Accessed 08 Mar 2021
3. Abramova, O., Wagner, A., Krasnova, H., Buxmann, P.: Understanding self-

disclosure on social networking sites - a literature review. In: AMCIS 2017 Pro-
ceedings, pp. 1–10, no. August (2017)

4. Aharony, N.: Relationships among attachment theory, social capital perspective,
personality characteristics, and Facebook self-disclosure. Aslib J. Inf. Manag.
(2016)

5. Bak, J., Lin, C.Y., Oh, A.: Self-disclosure topic model for classifying and analyz-
ing Twitter conversations. In: 2014 Conference on Empirical Methods in Natu-
ral Language Processing (EMNLP), Doha, Qatar, pp. 1986–1996. Association for
Computational Linguistics, October 2014

6. Bakshy, E., Hofman, J.M., Mason, W.A., Watts, D.J.: Everyone’s an influencer:
quantifying influence on Twitter. In: Proceedings of the Fourth ACM International
Conference on Web Search and Data Mining, pp. 65–74 (2011)

7. Banda, J.M., et al.: A large-scale Covid-19 Twitter chatter dataset for open sci-
entific research-an international collaboration. arXiv preprint arXiv:2004.03688
(2020)

8. Bao, Y., Wu, M., Chang, S., Barzilay, R.: Few-shot text classification with distri-
butional signatures (2020)

9. Barak, A., Gluck-Ofri, O.: Degree and reciprocity of self-disclosure in online forums.
CyberPsychol. Behav. 10(3), 407–417 (2007)

10. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J. Mach. Learn.
Res. 3, 993–1022 (2003)

11. Bliss, C.A., Kloumann, I.M., Harris, K.D., Danforth, C.M., Dodds, P.S.: Twit-
ter reciprocal reply networks exhibit assortativity with respect to happiness. J.
Comput. Sci. 3(5), 388–397 (2012)

12. Caliskan Islam, A., Walsh, J., Greenstadt, R.: Privacy detective: detecting private
information and collective privacy behavior in a large social network. In: 13th
Workshop on Privacy in the Electronic Society, pp. 35–46. ACM (2014)

13. Chakraborty, T., Kumar, A., Upadhyay, P., Dwivedi, Y.K.: Link between social dis-
tancing, cognitive dissonance, and social networking site usage intensity: a country-
level study during the Covid-19 outbreak. Internet Research (2020)

14. Chen, E., Lerman, K., Ferrara, E.: COVID-19: the first public coronavirus Twitter
dataset. arXiv e-prints arXiv:2003.07372, March 2020

15. Chen, E., Lerman, K., Ferrara, E.: Tracking social media discourse about the
Covid-19 pandemic: development of a public coronavirus Twitter data set. JMIR
Public Health Surveill. 6(2), e19273 (2020)

http://arxiv.org/abs/2004.03688
http://arxiv.org/abs/2003.07372

Self-disclosure on Twitter During the COVID-19 Pandemic 285

16. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep
bidirectional transformers for language understanding (2019)

17. Dugué, N., Perez, A.: Directed Louvain: maximizing modularity in directed net-
works. Ph.D. thesis, Université d’Orléans (2015)

18. Ernala, S.K., Rizvi, A.F., Birnbaum, M.L., Kane, J.M., De Choudhury, M.: Lin-
guistic markers indicating therapeutic outcomes of social media disclosures of
schizophrenia. Proc. ACM Hum.-Comput. Interact. 1(CSCW), 1–27 (2017)

19. Fan, C., Jiang, Y., Mostafavi, A.: Emergent social cohesion for coping with com-
munity disruptions in disasters. J. R. Soc. Interface 17(164), 20190778 (2020)

20. Fan, L., Yu, H., Yin, Z.: Stigmatization in social media: documenting and analyzing
hate speech for Covid-19 on Twitter. Proc. Assoc. Inf. Sci. Technol. 57(1), e313
(2020)

21. Farine, D.: Measuring phenotypic assortment in animal social networks: weighted
associations are more robust than binary edges. Anim. Behav. 89, 141–153 (2014)

22. Gonçalves, B., Perra, N., Vespignani, A.: Modeling users’ activity on Twitter net-
works: validation of Dunbar’s number. PloS One 6(8), e22656 (2011)

23. Gururangan, S., et al.: Don’t stop pretraining: adapt language models to domains
and tasks (2020)

24. Gwet, K.L.: Handbook of inter-rater reliability: the definitive guide to measuring
the extent of agreement among raters. Advanced Analytics, LLC (2014)

25. Holmes, R.: Is Covid-19 social media’s levelling up moment? Forbes 24 (2020)
26. Huberman, B.A., Romero, D.M., Wu, F.: Social networks that matter: Twitter

under the microscope. arXiv preprint arXiv:0812.1045 (2008)
27. Imran, M., Elbassuoni, S., Castillo, C., Diaz, F., Meier, P.: Extracting information

nuggets from disaster-related messages in social media. In: ISCRAM (2013)
28. Jurgens, M., Helsloot, I.: The effect of social media on the dynamics of (self)

resilience during disasters: a literature review. J. Contingencies Crisis Manag.
26(1), 79–88 (2018)

29. Kwak, H., Lee, C., Park, H., Moon, S.: What is Twitter, a social network or a news
media? In: Proceedings of the 19th International Conference on World Wide Web,
pp. 591–600 (2010)

30. Meghanathan, N.: Assortativity analysis of real-world network graphs based on
centrality metrics. Comput. Inf. Sci. 9(3), 7–25 (2016)

31. Miyabe, M., Miura, A., Aramaki, E.: Use trend analysis of Twitter after the great
east Japan earthquake. In: ACM 2012 Conference on Computer Supported Coop-
erative Work Companion, pp. 175–178 (2012)

32. Müller, M., Salathé, M., Kummervold, P.E.: Covid-Twitter-BERT: a natural lan-
guage processing model to analyse Covid-19 content on Twitter. arXiv preprint
arXiv:2005.07503 (2020)

33. Nabity-Grover, T., Cheung, C.M., Thatcher, J.B.: Inside out and outside in: how
the Covid-19 pandemic affects self-disclosure on social media. Int. J. Inf. Manag.
55, 102188 (2020)

34. Noldus, R., Van Mieghem, P.: Assortativity in complex networks. J. Complex Netw.
3(4), 507–542 (2015)

35. Ognyanova, K., et al.: The state of the nation: a 50-state Covid-19 survey report
#4 (2020)

36. Paul, M., Dredze, M.: You are what you tweet: analyzing Twitter for public health.
In: International AAAI Conference on Web and Social Media, vol. 5 (2011)

37. Purohit, H., Ruan, Y., Fuhry, D., Parthasarathy, S., Sheth, A.: On understanding
the divergence of online social group discussion. In: International AAAI Conference
on Web and Social Media, vol. 8 (2014)

http://arxiv.org/abs/0812.1045
http://arxiv.org/abs/2005.07503

286 P. Umar et al.

38. Röder, M., Both, A., Hinneburg, A.: Exploring the space of topic coherence mea-
sures. In: Eighth ACM International Conference on Web Search and Data Mining,
pp. 399–408. ACM (2015)

39. Sanders, A.C., et al.: Unmasking the conversation on masks: natural language
processing for topical sentiment analysis of Covid-19 Twitter discourse. medRxiv,
pp. 2020–08 (2021)

40. Scepanovic, S., Martin-Lopez, E., Quercia, D., Baykaner, K.: Extracting medical
entities from social media. In: ACM Conference on Health, Inference, and Learning,
pp. 170–181 (2020)

41. Squicciarini, A., Raitmaier, S., Umar, P., Blose, T.: A tipping point? Heightened
self-disclosure during the coronavirus pandemic. In: IEEE Second International
Conference on Cognitive Machine Intelligence (CogMI), pp. 141–146. IEEE (2020)

42. Takahashi, B., Tandoc, E.C., Jr., Carmichael, C.: Communicating on Twitter dur-
ing a disaster: an analysis of tweets during typhoon Haiyan in the Philippines.
Comput. Hum. Behav. 50, 392–398 (2015)

43. Tamir, D.I., Mitchell, J.P.: Disclosing information about the self is intrinsically
rewarding. Proc. Natl. Acad. Sci. 109(21), 8038–8043 (2012)

44. Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., Bowman, S.R.: Glue: a multi-
task benchmark and analysis platform for natural language understanding (2019)

45. Wang, Y., Gao, S., Gao, W.: Can predominant credible information suppress mis-
information in crises? Empirical studies of tweets related to prevention measures
during Covid-19. arXiv preprint arXiv:2102.00976 (2021)

46. Wang, Y.C., Burke, M., Kraut, R.: Modeling self-disclosure in social networking
sites. In: 19th ACM Conference on Computer-Supported Cooperative Work &
Social Computing, CSCW 2016, pp. 74–85. ACM (2016)

47. Yuchao, W., Ying, Z., Liao, Z.: Health privacy information self-disclosure in online
health community. Front. Public Health 8, 1023 (2020)

48. Zhang, R.: The stress-buffering effect of self-disclosure on Facebook: an exami-
nation of stressful life events, social support, and mental health among college
students. Comput. Hum. Behav. 75, 527–537 (2017)

49. Zhang, R., Fu, J.S.: Privacy management and self-disclosure on social network
sites: the moderating effects of stress and gender. J. Comput.-Mediat. Commun.
25(3), 236–251 (2020)

50. Zhang, X., Liu, S., Chen, X., Wang, L., Gao, B., Zhu, Q.: Health information
privacy concerns, antecedents, and information disclosure intention in online health
communities. Inf. Manag. 55(4), 482–493 (2018)

51. Zong, S., Baheti, A., Xu, W., Ritter, A.: Extracting Covid-19 events from Twitter.
arXiv preprint arXiv:2006.02567 (2020)

http://arxiv.org/abs/2102.00976
http://arxiv.org/abs/2006.02567

COVID Edge-Net: Automated COVID-19
Lung Lesion Edge Detection in Chest CT

Images

Kang Wang(B), Yang Zhao, Yong Dou, Dong Wen, and Zikai Gao

National Laboratory for Parallel and Distributed Processing, School of Computer,
National University of Defense Technology, Changsha, Hunan, China
{wangkang,zhaoyang10,yongdou,wendong19,gaozk18}@nudt.edu.cn

Abstract. Coronavirus Disease 2019 (COVID-19) has been spread-
ing rapidly, threatening global health. Computer-aided screening on
chest computed tomography (CT) images using deep learning, espe-
cially, lesion segmentation, is an effective complement for COVID-19
diagnosis. Although edge detection highly benefits lesion segmentation,
an independent COVID-19 edge detection task in CT scans has been
unprecedented and faces several difficulties, e.g., ambiguous boundaries,
noises and diverse edge shapes. To this end, we propose the first COVID-
19 lesion edge detection model: COVID Edge-Net, containing one edge
detection backbone and two new modules: the multi-scale residual dual
attention (MSRDA) module and the Canny operator module. MSRDA
module helps capture richer contextual relationships for obtaining better
deep learning features, which are fused with Canny features from Canny
operator module to extract more accurate, refined, clearer and sharper
edges. Our approach achieves the state-of-the-art performance and can
be a benchmark for COVID-19 edge detection. Code related to this paper
is available at: https://github.com/Elephant-123/COVID-Edge-Net.

Keywords: COVID-19 · Edge detection · Canny operator ·
Multi-scale residual dual attention · Computed tomography (CT)
images

1 Introduction

As one of the most serious pandemics, Coronavirus Disease 2019 (COVID-19)
[1–3] has been spreading violently around the world since December 2019, caus-
ing a devastating effect on global public health and economy. Because it has fast
progression and infectious ability [4], it is necessary to develop effective tools or
methods to accurately diagnose and evaluate COVID-19. Although the reverse
transcription polymerase chain reaction (RT-PCR) [7,8] becomes the gold stan-
dard for COVID-19 screening, it is time-consuming and suffers from high false

Supported by the National Key Research and Development Program of China (Grant
No. 2018YFB0204301).

c© Springer Nature Switzerland AG 2021
Y. Dong et al. (Eds.): ECML PKDD 2021, LNAI 12978, pp. 287–301, 2021.
https://doi.org/10.1007/978-3-030-86514-6_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86514-6_18&domain=pdf
https://github.com/Elephant-123/COVID-Edge-Net
https://doi.org/10.1007/978-3-030-86514-6_18

288 K. Wang et al.

negative rates [5,6]. Computed tomography (CT) technique [9] is widely pre-
ferred due to its non-invasive imaging and three-dimensional view of the lung,
which is regarded as a significant complement to RT-PCR tests.

Recently, deep learning-based applications on COVID-19 CT images have
demonstrated quite promising results in lesion segmentation [13,15–19] and
COVID-19 diagnosis [10,11], particularly, COVID-19 segmentation is an essen-
tial step for COVID-19 follow-up assessment. Several COVID-19 segmentation
works [13,15–19] in CT scans have appeared, among which the Inf-Net model
[13] achieves the state-of-the-art performance. Different from other segmentation
approaches, Inf-Net utilizes the edge attention to model infection boundaries for
better feature representations, effectively illustrating edges benefit segmentation
performance. However, Inf-Net mainly exploits low-level features to represent
edges and its edge extraction is a part of segmentation, thus, edge detection is
insufficient. Moreover, there is no independent COVID-19 edge detection task
currently. Based on above inspirations, we propose a new task of independent
COVID-19 edge detection.

Up to now, to improve edge detection performance, some edge detection
works [12,14] using deep learning methods have existed in many applications,
where [12] presents a dynamic feature fusion (DFF) model to produce weighted
fusion features, acquiring excellent performance in semantic edge detection. How-
ever, DFF model is unable to enjoy same superiority in COVID-19 edge detection
due to COVID-19 CT scans’s characteristics: (1) ambiguous boundaries caused
by the low contrast between infected regions and normal tissues, (2) noises (e.g.,
blood vessels in lungs), (3) the high variation in shapes, sizes and positions
of infected edges. Furthermore, DFF model ignores capturing richer contextual
relationships from original images in the initial feature extraction stage and
merely considers deep learning features as edge features, which leads to limited
COVID-19 edge representations.

To alleviate above problems, we come up with the first COVID-19 lung lesion
edge detection model named COVID Edge-Net. Our COVID Edge-Net consists
of the edge detection backbone, an effective multi-scale residual dual attention
(MSRDA) module and the Canny operator module. The edge detection back-
bone is capable of detecting basic but coarse COVID-19 edges by extracting
discriminative deep learning features. The MSRDA module added in the back-
bone mainly focuses on semantic features (i.e., edge shapes, sizes and positions),
helping to capture richer contextual relationships from CT slices and boost edge
identification with better deep feature representations. The Canny edge detec-
tion operator can highlight and locate thinner, more continuous and more refined
boundaries, which is combined with the deep learning method to further enrich
edge information. In a nutshell, our contributions in this paper are fourfold:

– It is the first time to propose a COVID-19 infection lesion edge detection
model called COVID Edge-Net, which has the following clinical implications:
(1) Due blurred edges of lesions make it difficult for doctors to identify bound-
aries accurately, this work can assist doctors to locate boundaries of lesions
more intuitively and provide appropriate clinical guidance. (2) It is also able
to raise COVID-19 infected segmentation performance in CT scans.

COVID Edge-Net: Automated COVID-19 Lung Lesion Edge Detection 289

– An effective multi-scale residual dual attention (MSRDA) module is designed
to help capture richer semantic relationships from multiple scales for detecting
more accurate and clearer edges.

– The traditional Canny operator is considered and combined with the deep
learning method to enhance feature representations for extracting more
refined, more continuous and sharper edges.

– Our proposed method is superior to existing models and advances the state-
of-the-art performance, which can be regarded as a benchmark for COVID-19
infection lesion edge detection.

2 Related Works

2.1 COVID-19 Segmentation

Up to now, abundant COVID-19 segmentation researches have occurred. For
instance, [17] exploited several preprocessing and data augmentation methods to
generate random image patches for COVID-19 segmentation, reducing the over-
fitting risk. Zhou et al. [18] incorporated spatial and channel attention strategies
to the U-Net model and introduced the focal tversky loss to solve small lesion
segmentation. Aggregated residual transformations and soft attention mecha-
nism were used by Chen et al. [19] to improve the ability of distinguishing vari-
ous COVID-19 symptoms. Although these approaches overcome some problems
caused by limited data and diverse lesion shapes in COVID-19 segmentation
tasks, they ignore another important information, i.e., lesion edge information,
which has the potential to improve segmentation performance. Later, Fan et al.
[13] put forward the Inf-Net model, which achieves the state-of-the-art result in
COVID-19 segmentation. It exploits a parallel partial decoder to aggregate high-
level features and uses the reverse attention to enhance feature representations.
Furthermore, the edge attention is utilized to model COVID-19 boundaries, pro-
viding more plentiful feature descriptions for the segmentation. Different from
other works, Fan et al. considered COVID-19 edge information, which benefits
COVID-19 segmentation. However, Inf-Net’s edge extraction is merely used as
a submodule of the segmentation task, and mainly low-level features are used as
edge features, all of which lead to insufficient edge detection. Currently, there
does not exist the sole edge detection task of COVID-19 infected regions. To this
end, we propose an independent COVID-19 lesion edge detection task rather
than as a submodule for the first time.

2.2 Edge Detection

Several semantic edge detection works achieve fantastic results in other applica-
tions, such as natural scenes. Yu et al. proposed the CASENet model [14], which
is a novel end-to-end deep semantic edge detection architecture via ResNet. In
CASENet model, category-wise edge activations from the top layer are fused
with the same set of bottom layer features. Its multi-scale feature fusion method

290 K. Wang et al.

greatly benefits the semantic edge detection task, however, it adopts a fixed
weight fusion strategy that forces images with different semantics to share the
same weights. To better consider the heterogeneity in contributions made by dif-
ferent locations of feature maps, a new dynamic feature fusion (DFF) strategy
was proposed by Hu et al. [12]. They designed a weight learner to assign different
fusion weights for different feature maps and locations adaptively. Although Hu
et al.’s DFF method reaches superior performance in edge detection of natural
scenes, it is not completely suitable for COVID-19 edge detection due COVID-
19 CT scans have their own traits (e.g., unclear infected edges, diverse lesion
shapes of the same disease, noises) compared with natural images. Meanwhile,
DFF’s multi-layer features extracted from ResNet are directly applied to the fea-
ture fusion layer, ignoring capturing richer contextual relationships from orig-
inal images. Merely deep learning features are considered in DFF, which are
still unable to depict edge information fully. To solve above issues, we propose
two new modules, where the multi-scale residual dual attention (MSRDA) mod-
ule is designed to capture richer contextual features from original images and
the Canny operator module is used to extract more edges and emphasize edge
information.

3 Methodology

3.1 Task Definition

COVID-19 infection lesion edge detection task aims to outline specific contours
of infected areas. Particularly, given an one-channel grayscale input image X,
the task outputs an edge map Ŷ with single channel, which has the same size
as X. Each value in Ŷ is denoted as Ŷ (p|X,W) ∈ [0, 1], indicating the com-
puted COVID-19 edge probability at pixel p, where W stands for edge detection
network’s parameters, and p ∈ {1, 2 · · · , |X|}.

3.2 Overview of COVID Edge-Net

To extract more accurate, more continuous and sharper edges, we address
COVID Edge-Net model for COVID-19 edge detection (shown in Fig. 1). The
input image is fed to residual blocks to generate multi-scale basic features. Then
an effective multi-scale residual dual attention (MSRDA) module is used to gen-
erate semantically enhanced features, which are processed by feature normal-
ization blocks and a concatenation operation. Later, the adaptive weight fusion
block produces weighted deep learning features, which are combined with tradi-
tional Canny features from the Canny operator module to further highlight edge
features. In the end, one 1 × 1 convolution operation and the sigmoid function
follow to obtain predicted edges. The backbone consisting of residual blocks, fea-
ture normalization blocks and the adaptive weight fusion block is described in
Sect. 3.3. The MSRDA module and the Canny operator module are specifically
introduced in Sect. 3.4 and Sect. 3.5, respectively. And global loss function is
displayed in Sect. 3.6.

COVID Edge-Net: Automated COVID-19 Lung Lesion Edge Detection 291

Input image X

Res1

Res2

Res3

Res4

Res5

RDA1

RDA2

RDA3

RDA5

Side1 FN

Side2 FN

Side3 FN

MSRDA
module

Side5 FN

Side5-w
FN AWL

Canny

Canny operator module

1x1 Conv

Detected egdes Ŷ GT Y

Residual block (Res)

Residual dual attention module (RDA)

Feature normalization block (FN)

Shared concatenation operation

Adaptive weight learner block (AWL)

1x1 Conv layer

Element-wise multiplication and
channel-wise summation operations

Element-wise summation operation

Sigmoid function

Loss function

Canny operator module

Flow of data

Sigmoid

Sigmoid

Loss

1x1 Conv

Deep learning features
C

anny features

Fig. 1. Overall architecture of our COVID Edge-Net model.

3.3 The Edge Detection Backbone

Our edge detection backbone adopts a dynamic feature fusion (DFF) model [12]
via ResNet [21]. In detail, the input image X is transmitted into residual blocks
to generate a set of features with different scales. The first three and the fifth
stack of residual blocks are directly followed by feature normalization blocks,
producing one-channel and K -channel response maps with original image size
for Side1-3 and Side5 respectively. K is the number of categories of objects, and
K = 1 in our task. These response maps are concatenated into a 4K -channel
feature map Fcat by shared concatenation, which replicates three one-channel
response maps of Side1-3 for K times to separately concatenate with each map
of the K -channel response maps in Side5. Another feature normalization block
(Side5-w) is connected to the fifth stack of the residual block to generate a
4K -channel feature map, which goes into the adaptive weight learner to predict
dynamic fusion weights Wl. The final output ŶD of DFF is computed as ŶD =
σ(f(Fcat,Wl)), where f represents element-wise multiplication and channel-wise
summation operations, σ is the sigmoid function.

Loss Function. The backbone’s loss function L is disassembled to two losses:

L = w1Lfuse + w2Lside,

292 K. Wang et al.

Fig. 2. Residual dual attention module.

Lfuse =
∑

p
{−αY (p)logŶD(p|X,WD) − (1 − α)

(1 − Y (p))log(1 − ŶD(p|X,WD))},

Lside =
∑

p
{−αY (p)logŶD s(p|X,WD) − (1 − α)

(1 − Y (p))log(1 − ŶD s(p|X,WD))}, (1)

where Lfuse, Lside denote its loss function for final output and Side5 output,
respectively. w1, w2 are corresponding weighting factors to balance two losses.
Lfuse and Lside adopt class-balanced cross-entropy loss function for balancing
the loss between positive and negative classes. α is a class-balancing weight,
α = |Yedge|/|Y |, |Yedge| expresses the size of the edge ground truth (GT) label
set. Y (p) ∈ {0, 1}, ŶD(p|X,WD) ∈ [0, 1] and ŶD s(p|X,WD) ∈ [0, 1] are the
GT, the predicted final edge probability and the edge probability from Side5
output at pixel p ∈ {1, 2 · · · , |X|}, respectively. WD stands for the backbone’s
parameters.

3.4 Multi-scale Residual Dual Attention (MSRDA) Module

To strengthen semantic information in captured features, we design a novel
parallel dual attention module as shown in Fig. 2, including channel-wise and
spatial-wise attention sub-modules.

In the channel attention sub-module, the input feature F is processed by max
pooling and average pooling operations to aggregate each feature map’s spatial
information, respectively. Then a fast and shared 1D convolution with kernel
size 3 rather than MLP [29] follows to capture non-linear dependencies across
all channels, due that the dimensionality reduction in MLP may have a negative
impact on the final accuracy performance [30]. In the end, the channel-wise
attention feature Fc is expressed as:

Fc = F ⊗ σ(1Dconv(AvgPool(F)) ⊕ 1Dconv(MaxPool(F))), (2)

COVID Edge-Net: Automated COVID-19 Lung Lesion Edge Detection 293

CT image Ground truth Detected edges
(w/o MSRDA)

Detected edges
(w/ MSRDA)

Fig. 3. Visualization of the edge detection with (w/) and without (w/o) the MSRDA
module.

where ⊕ denotes the element-wise summation; σ is the sigmoid function; ⊗
stands for the element-wise multiplication. In the spatial attention sub-module,
max pooling and average pooling operations are performed along the channel
axis, respectively. Two produced feature maps are concatenated and forwarded
to a standard convolution with kernel size 7, generating the spatial attention
map. The spatial-wise attention feature Fs is computed as:

Fs = F ⊗ σ(Conv7 × 7([AvgPool(F);MaxPool(F)])). (3)

To make full use of more features and enrich context information, we propose
the residual structure to combine original features with attention features. The
residual dual attention feature F

′
is represented as:

F
′
= Fc ⊕ Fs ⊕ F, (4)

where ⊕ is the element-wise summation operation. Then the residual dual atten-
tion mechanism is used for multiple basic descriptors generated by residual blocks
to enhance feature representations, forming the multi-scale residual dual atten-
tion (MSRDA) module as shown in Fig. 1. Visualized results in Fig. 3 clarify
that the MSRDA module helps detect more accurate and complex edges, which
is beneficial to COVID-19 edge detection.

3.5 Canny Operator Module

Canny operator [28] is considered as one of the most classical algorithms for
image edge detection. It is simple and its specific steps are as follows:

Step1: Use Gaussian filter to smooth the image.
Step2: Calculate the amplitude and direction of the image gradient after
filtering.
Step3: Perform the non-maximum suppression for gradient amplitude to
obtain thinner edges.
Step4: Select two thresholds T1 and T2 and connect edges. A pixel can be
regarded as a strong edge point, weak edge point, or non-edge point when its
gradient is beyond T1, between T1 and T2, or lower than T2. When strong

294 K. Wang et al.

CT image Ground truth Detected edges
(w/o Canny)

Detected edges
(w/ Canny)

Fig. 4. Visualization of the edge detection with (w/) and without (w/o) the Canny
module.

edge points appear in the 8 neighborhoods around the weak edge point, the
weak edge point is changed into a strong edge point to augment the strong
edge set.

The Canny feature FCanny of the input image X is obtained through Canny
operator, and then combined with weighted deep learning feature Fw. The final
fusion feature Ff fuse is represented as:

Ff fuse = Conv1 × 1(FCanny ⊕ Fw), (5)

where ⊕ is the element-wise summation operation. The visualization in Fig. 4
demonstrates that our Canny module helps detect thinner, clearer and sharper
edges, contributing to COVID-19 infection edge detection.

3.6 Global Loss Function

Based on the final fusion features Ff fuse, our final prediction Ŷ is computed
as:

Ŷ = σ(Ff fuse), (6)

where σ is the sigmoid function. Our COVID Edge-Net adopts the same loss func-
tion as the backbone (Sect. 3.3), considering two losses. However, ŶD(p|X,WD) ∈
[0, 1] in backbone’s Lfuse is replaced by Ŷ (p|X,W) ∈ [0, 1], which is our final
predicted edge probability at pixel p. ŶD s(p|X,WD) ∈ [0, 1] in backbone’s Lside

is changed into Ŷ
s
(p|X,W) ∈ [0, 1] that is our Side5 output’s edge probability

in Fig. 1, where Canny features are incorporated.

4 Experiments and Discussions

4.1 Experimental Settings

The Experimental Dataset and Augmentations. Our experiments rely on
two COVID-19 CT datasets [20]: COVID-19 CT segmentation dataset and Seg-
mentation dataset nr.2 (13th April), which are publicly available. COVID-19

COVID Edge-Net: Automated COVID-19 Lung Lesion Edge Detection 295

CT segmentation dataset [20] contains 100 CT images from different COVID-
19 patients and is collected by the Italian Society of Medical and Interventional
Radiology. We randomly select 50 CT images as training samples and the remain-
ing 50 images for testing, whose GT edges are generated via their segmentation
labels. The larger Segmentation dataset nr.2 (13th April) released later consists
of 829 slices (373 infected slices and 456 non-infected slices) extracted from 9 CT
volumes of real COVID-19 patients, where 373 infected CT images are used as
our experimental data for COVID-19 lung lesion edge detection. Among them,
186 randomly selected slices are regarded as the training set and the rest as the
test set, whose GT edges are also produced based on segmentation marks given
by radiologists. These experimental datasets suffer from a small sample size,
thus, we augment training samples in each dataset by resizing each CT image
with scaling factors {0.5, 0.75, 1, 1.25, 1.5} referring to [12] and employing ran-
dom mirroring and cropping during the training process. In the test phase, each
CT slice in COVID-19 CT segmentation dataset is resized to 512 × 512, and
Segmentation dataset nr.2 (13th April)’s each CT image is cropped into 576 ×
576.

Training Settings. Our model is based on ResNet18 [21] pre-trained on Ima-
geNet [22]. K in Sect. 3.3 is set as one, and weighting factors in loss function are
set as w1 = w2 = 1. Two thresholds T1 and T2 we used in the Canny operator are
set to 200 and 100, respectively. We use SGD optimization, the learning rate is
initialized to 0.05 and the “poly” policy is used for its decay. The crop size, batch
size, training epoch, momentum, weight decay, and seed are set as 352 × 352,
16, 50, 0.9, 1e−4, 1, respectively. Our experiments depend on PyTorch and one
NVIDIA 2080 Ti GPU. For fair comparisons, all edge detection experiments use
the same training settings.

Evaluation Metrics. Following [12], Maximum F-measure (MF) at optimal
dataset scale (ODS) with different matching distance tolerances is used as a
common metric for edge detection performance, where F-measure is the harmonic
average of precision and recall as shown in Eq. (7) and ODS means each image
in the dataset uses the same threshold to evaluate image edges and achieve the
entire dataset’s maximum F-measure.

F − measure =
2 · precision · recall

precision + recall
. (7)

We also consider two cases of MF (ODS) metric under one matching distance tol-
erance: with morphological thinning (w/ MT) and without morphological thin-
ning (w/o MT).

4.2 Comparison with State-of-the-Arts

We compare the performance of our COVID Edge-Net model with state-of-the-
art edge detection methods [12,14,28] on COVID-19 CT segmentation dataset
and Segmentation dataset nr.2 (13th April), and evaluate MF(ODS) with dif-
ferent matching distance tolerances that are set as 0.02, 0.06, 0.10, respectively.

296 K. Wang et al.

Table 1. Performance comparison of edge detection on COVID-19 CT segmentation
dataset

Edge detection methods MF(0.02) MF(0.06) MF(0.10)

w/ MT w/o MT w/ MT w/o MT w/ MT w/o MT

Canny [28] 32.20% 45.15% 32.55% 46.77% 32.55% 46.77%

CASENet [14] 60.38% 42.87% 84.37% 56.71% 90.73% 66.78%

DFF [12] 84.14% 54.53% 90.83% 72.02% 93.45% 72.89%

Ours 83.58% 63.80% 94.70% 85.30% 95.94% 91.57%

Table 2. Performance comparison of edge detection on Segmentation dataset nr.2
(13th April)

Edge detection methods MF(0.02) MF(0.06) MF(0.10)

w/ MT w/o MT w/ MT w/o MT w/ MT w/o MT

Canny [28] 3.46% 5.76% 3.46% 5.76% 3.46% 5.76%

CASENet [14] 79.67% 74.74% 89.92% 98.96% 89.92% 98.96%

DFF [12] 75.38% 64.31% 90.77% 98.62% 90.77% 98.62%

Ours 92.54% 78.29% 94.03% 96.05% 94.03% 96.05%

On the COVID-19 CT segmentation dataset, Table 1 shows that ours exceeds
the DFF method in almost all cases, and is completely superior to Canny
and CASENet methods. When the matching distance tolerance is 0.10, ours
achieves state-of-the-art results that are 95.94% MF(ODS) with MT and 91.57%
MF(ODS) without MT. Specifically, our method surpasses DFF with 2.49% and
18.68% under 0.10 matching distance tolerance, respectively. As the matching
distance tolerance is stricter, our approach is 3.87% and 13.28% better than the
DFF under 0.06 matching distance tolerance, respectively. Under the strictest
matching distance tolerance (0.02), our approach is 9.27% higher than DFF
when ignoring MT, 23.20% and 20.93% better than CASENet with and without
MT, 51.38% and 18.65% higher than Canny with and without MT. We also
present performance comparison results of COVID-19 lung lesion edge detection
on the larger Segmentation dataset nr.2 (13th April) in Table 2. It is evident that
our proposed approach is far better than Canny method in all cases. Meanwhile,
when the matching distance tolerance is the strictest 0.02, ours is obviously supe-
rior to other competing approaches. Specifically, ours achieves promising results
that are 92.54% MF(ODS) with MT and 78.29% MF(ODS) without MT, which
are 17.16% and 13.98% better than DFF considering MT and ignoring MT,
12.87% and 3.55% higher than CASENet with and without MT, respectively.
Under 0.06 and 0.10 matching distance tolerances, our proposed approach has
94.03% MF(ODS) with MT, which is beyond DFF 3.26% and 4.11% higher than
CASENet method; however, DFF and CASENet have slightly better MF(ODS)
leaving the MT out of consideration. In the case of higher matching distance

COVID Edge-Net: Automated COVID-19 Lung Lesion Edge Detection 297

CT images Ground truth DFF OursCanny CASENet

Fig. 5. Qualitative comparison of edge detection on COVID-19 CT segmentation
dataset.

tolerance, COVID-19 lung lesion edges produced by CASENet and DFF are
more accurate without MT; our proposed method is able to get more promising
results after MT. In general, our proposed method outperforms other state-of-
the-arts in most cases. In addition, qualitative comparisons are also provided by
visualizing some edge detection results in Fig. 5 and Fig. 6. On two datasets, we
observe that Canny detects excessive useless edges because of the low contrast
between infected regions and non-infected regions. Compared with other deep
learning methods: CASENet and DFF, results in red boxes demonstrate that
our COVID Edge-Net method has the capability of predicting more accurate,
more continuous, sharper and clearer object edges, having higher edge detection
performance by taking full advantage of multi-scale semantic information and
fused features.

4.3 Ablation Study

In this subsection, we conduct ablation experiments to validate the performance
of each newly proposed module in our COVID Edge-Net, taking COVID-19 CT
segmentation dataset as an example, results of which are displayed in Table 3.
DFF via ResNet18 is our baseline model. The comparison of Baseline (DFF) and
Baseline+Canny clearly shows that Canny operator boosts performance without
MT. Thus, the Canny operator module has the ability of refining and enhancing
edges in COVID-19 CT images. Baseline (DFF) and Baseline+MSRDA demon-
strate that the MSRDA module increases the baseline performance with MT.
MSRDA strategy enables a model to identify much more edges that cannot be
detected by the baseline. With these two complementary modules, the perfor-
mance of our model is significantly enhanced no matter whether MT is considered
or not considered. Furthermore, our MSRDA module is compared with multi-
scale residual convolutional block attention module (MSRCBAM), where convo-
lutional block attention module (CBAM) is proposed in [29]. It can be shown that

298 K. Wang et al.

CT images Ground truth DFF OursCanny CASENet

Fig. 6. Qualitative comparison of edge detection on Segmentation dataset nr.2 (13th
April).

Table 3. Ablation study of our COVID Edge-Net on COVID-19 CT segmentation
dataset

Edge detection methods MF(0.02) MF(0.06) MF(0.10)

w/ MT w/o MT w/ MT w/o MT w/ MT w/o MT

Baseline (DFF) 84.14% 54.53% 90.83% 72.02% 93.45% 72.89%

Baseline+Canny 73.41% 55.67% 90.36% 74.31% 93.64% 83.11%

Baseline+MSRCBAM 72.67% 44.59% 87.45% 63.59% 92.89% 78.12%

Baseline+MSRDA 84.85% 44.58% 94.70% 60.61% 95.71% 66.49%

Baseline+MSRCBAM+Canny 79.57% 60.57% 93.39% 80.16% 93.52% 85.56%

Ours 83.58% 63.80% 94.70% 85.30% 95.94% 91.57%

Baseline+MSRDA is superior to Baseline+MSRCBAM with MT, and the whole
method we proposed completely outperforms Baseline+MSRCBAM+Canny.
Above all demonstrate the effectiveness of the integration of the two modules
(i.e., MSRDA and Canny modules) into the Baseline (DFF).

4.4 Additional Experiments

We conduct COVID-19 segmentation experiments to further verify the perfor-
mance of our algorithm on two COVID-19 segmentation datasets. The one-
channel edge feature map from each edge detection model (e.g., our model,
Canny, DFF) is replicated into a 64-channel map and then replaces Inf-Net’s
64-channel edge feature [13]. We introduce GT edges via same operation as well.
To make fair comparisons, we use the same training parameters and evaluated
metrics as Inf-Net, and comparisons are shown in Table 4 and Table 5. The seg-
mentation effect with the best edge features (GT edges) is far beyond original
Inf-Net in Table 4 and Table 5, which reflects that better edges benefit segmen-
tation. Furthermore, on the COVID-19 CT segmentation dataset, we observe

COVID Edge-Net: Automated COVID-19 Lung Lesion Edge Detection 299

Table 4. Performance comparison of segmentation on COVID-19 CT segmentation
dataset

Segmentation methods Dice Sen. Spec. Sα Emean
∅ MAE

U-Net [23]∗ 0.439 0.534 0.858 0.622 0.625 0.186

Dense-UNet [26]∗ 0.515 0.594 0.840 0.655 0.662 0.184

Attention-UNet [25]∗ 0.583 0.637 0.921 0.744 0.739 0.112

U-Net++ [24]∗ 0.581 0.672 0.902 0.722 0.720 0.120

Gated-UNet [27]∗ 0.623 0.658 0.926 0.725 0.814 0.102

Inf-Net [13]∗ 0.682 0.692 0.943 0.781 0.838 0.082

Inf-Net(with Canny’s edges) 0.722 0.823 0.920 0.773 0.865 0.083

Inf-Net(with DFF’s edges) 0.713 0.732 0.946 0.798 0.870 0.075

Inf-Net(with our edges) 0.718 0.736 0.948 0.798 0.872 0.074

Inf-Net(with GT edges) 0.780 0.821 0.952 0.861 0.888 0.059

Note: Dice: Dice similarity coefficient, Sen.: Sensitivity, Spec.: Specificity, Sα:
Structure Measure, Emean

∅ : Enhance-alignment Measure, MAE: Mean Abso-
lute Error.
∗: All experiment data here refer to [13].

Table 5. Performance comparison of segmentation on Segmentation dataset nr.2 (13th
April)

Segmentation methods Dice Sen Spec Sα Emean
∅ MAE

Inf-Net [13] 0.802 0.831 0.961 0.861 0.938 0.020

Inf-Net(with Canny’s edges) 0.808 0.855 0.964 0.861 0.945 0.019

Inf-Net(with DFF’s edges) 0.812 0.849 0.963 0.867 0.942 0.018

Inf-Net(with our edges) 0.814 0.850 0.967 0.868 0.943 0.018

Inf-Net(with GT edges) 0.894 0.904 0.988 0.930 0.965 0.012

Note: Dice: Dice similarity coefficient, Sen.: Sensitivity, Spec.: Specificity, Sα:
Structure Measure, Emean

∅ : Enhance-alignment Measure, MAE: Mean Abso-
lute Error.

that Inf-Net(with our edges) outperforms other excellent segmentation models
[13] (e.g., U-Net-based models [23–27] and Inf-Net) for all metrics and exceeds
Canny and DFF methods in segmentation for most metrics from Table 4. Sim-
ilarly, Table 5 describes that Inf-Net(with our edges) absolutely defeats Inf-Net
and outperforms Canny and DFF approaches in segmentation under most evalu-
ation metrics on the Segmentation dataset nr.2 (13th April). Obviously, COVID
Edge-Net is able to extract more accurate and richer edges than Inf-Net’s edge
extraction submodule, further enhancing segmentation performance.

5 Conclusions

In this paper, we present the first COVID Edge-Net for automatic COVID-
19 lung lesion edge detection. On the one hand, an effective MSRDA mod-

300 K. Wang et al.

ule is designed and combined with edge detection backbone to extract more
distinguishable deep learning features by capturing richer contextual relation-
ships from CT scans. On the other hand, our network leverages Canny fea-
tures to further enrich edge information by multi-feature fusion. Our proposed
method achieves state-of-the-art COVID-19 edge detection performance com-
pared to other competing approaches, and significantly benefits segmentation
performance. It has the potential to be developed as a clinical tool for COVID-
19 CT images analysis. Code related to this paper is available at: https://github.
com/Elephant-123/COVID-Edge-Net.

References

1. Zhu, N., et al.: A novel coronavirus from patients with pneumonia in China, 2019.
N. Engl. J. Med. 382(8) (2020)

2. Wang, C., Horby, P.W., Hayden, F.G., Gao, G.F.: A novel coronavirus outbreak
of global health concern. Lancet 395(10223), 470–473 (2020)

3. Oudkerk, M., Büller, H.R., Kuijpers, D., et al.: Diagnosis, prevention, and treat-
ment of thromboembolic complications in COVID-19: report of the national insti-
tute for public health of the Netherlands. Radiology 297(1), E216–E222 (2020)

4. Coronavirus COVID-19 global cases by the center for systems science and engineer-
ing at johns Hopkins university. https://coronavirus.jhu.edu/map.html. Accessed
24 November 2020

5. Liang, T., et al.: Handbook of COVID-19 prevention and treatment. The first
affiliated hospital, Zhejiang university school of medicine. Compil. Accord. Clin.
Exp. 68 (2020)

6. Shan, F., et al.: Lung infection quantification of COVID-19 in CT images with
deep learning. arXiv preprint arXiv:2003.04655 (2020)

7. Fang, Y., et al.: Sensitivity of chest CT for COVID-19: comparison to RT-PCR.
Radiology 296(2), E115–E117 (2020)

8. Ai, T., et al.: Correlation of chest CT and RT-PCR testing for coronavirus disease
2019 (COVID-19) in china: a report of 1014 cases. Radiology 296(2), E32–E40
(2020)

9. Ng, M.Y., et al.: Imaging profile of the COVID-19 infection: radiologic findings
and literature review. Radiol. Cardiothorac. Imaging 2(1), e200034 (2020)

10. Kang, H., et al.: Diagnosis of coronavirus disease 2019 (COVID-19) with structured
latent multi-view representation learning. IEEE Trans. Med. Imaging 39(8), 2606–
2614 (2020)

11. Wang, J., et al.: Prior-attention residual learning for more discriminative COVID-
19 screening in CT images. IEEE Trans. Med. Imaging 39(8), 2572–2583 (2020)

12. Hu, Y., Chen, Y., Li, X., Feng, J.: Dynamic feature fusion for semantic edge detec-
tion. arXiv preprint arXiv:1902.09104 (2019)

13. Fan, D.P., et al.: Inf-net: automatic COVID-19 lung infection segmentation from
CT images. IEEE Trans. Med. Imaging 39(8), 2626–2637 (2020)

14. Yu, Z., Feng, C., Liu, M.Y., Ramalingam, S.: CASENet: deep category-aware
semantic edge detection. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 5964–5973 (2017). https://doi.org/10.1109/
CVPR.2017.191

15. Qiu, Y., Liu, Y., Xu, J.: Miniseg: An extremely minimum network for efficient
covid-19 segmentation. arXiv preprint arXiv:2004.09750 (2020)

https://github.com/Elephant-123/COVID-Edge-Net
https://github.com/Elephant-123/COVID-Edge-Net
https://coronavirus.jhu.edu/map.html
http://arxiv.org/abs/2003.04655
http://arxiv.org/abs/1902.09104
https://doi.org/10.1109/CVPR.2017.191
https://doi.org/10.1109/CVPR.2017.191
http://arxiv.org/abs/2004.09750

COVID Edge-Net: Automated COVID-19 Lung Lesion Edge Detection 301

16. Wang, Y., et al.: Does non-COVID19 lung lesion help? investigating transferability
in COVID-19 CT image segmentation. arXiv preprint arXiv:2006.13877 (2020)

17. Müller, D., Rey, I.S., Kramer, F.: Automated chest CT image segmentation of
COVID-19 lung infection based on 3d u-net. arXiv preprint arXiv:2007.04774
(2020)

18. Zhou, T., Canu, S., Ruan, S.: An automatic COVID-19 CT segmentation network
using spatial and channel attention mechanism. arXiv preprint arXiv:2004.06673
(2020)

19. Chen, X., Yao, L., Zhang, Y.: Residual attention u-net for automated multi-class
segmentation of COVID-19 chest CT images. arXiv preprint arXiv:2004.05645
(2020)

20. COVID-19 CT segmentation dataset. https://medicalsegmentation.com/covid19/
21. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90

22. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale
hierarchical image database. In: 2009 IEEE Conference on Computer Vision and
Pattern Recognition, pp. 248–255. IEEE (2009). https://doi.org/10.1109/CVPR.
2009.5206848

23. Ronneberger, O.: Invited talk: u-net convolutional networks for biomedical image
segmentation. In: Bildverarbeitung für die Medizin 2017. I, pp. 3–3. Springer, Hei-
delberg (2017). https://doi.org/10.1007/978-3-662-54345-0 3

24. Zhou, Z., Rahman Siddiquee, M.M., Tajbakhsh, N., Liang, J.: UNet++: a nested
u-net architecture for medical image segmentation. In: Stoyanov, D., et al. (eds.)
DLMIA/ML-CDS -2018. LNCS, vol. 11045, pp. 3–11. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-00889-5 1

25. Oktay, O., et al.: Attention u-net: Learning where to look for the pancreas. arXiv
preprint arXiv:1804.03999 (2018)

26. Li, X., Chen, H., Qi, X., Dou, Q., Fu, C.W., Heng, P.A.: H-DenseUNet: hybrid
densely connected UNet for liver and tumor segmentation from CT volumes. IEEE
Trans. Med. Imaging 37(12), 2663–2674 (2018)

27. Schlemper, J., et al.: Attention gated networks: learning to leverage salient regions
in medical images. Med. Image Anal. 53, 197–207 (2019)

28. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal.
Mach. Intell. PAMI 8(6), 679–698 (1986)

29. Woo, S., Park, J., Lee, J.Y., So Kweon, I.: CBAM: convolutional block attention
module. In: Proceedings of the European Conference on Computer Vision (ECCV),
pp. 3–19 (2018). https://doi.org/10.1007/978-3-030-01234-2 1

30. Wang, Q., Wu, B., Zhu, P., Li, P., Zuo, W., Hu, Q.: ECA-Net: efficient channel
attention for deep convolutional neural networks. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 11534–11542 (2020)

http://arxiv.org/abs/2006.13877
http://arxiv.org/abs/2007.04774
http://arxiv.org/abs/2004.06673
http://arxiv.org/abs/2004.05645
https://medicalsegmentation.com/covid19/
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1007/978-3-662-54345-0_3
https://doi.org/10.1007/978-3-030-00889-5_1
http://arxiv.org/abs/1804.03999
https://doi.org/10.1007/978-3-030-01234-2_1

Improving Ambulance Dispatching
with Machine Learning and Simulation

Nikki Theeuwes, Geert-Jan van Houtum , and Yingqian Zhang(B)

Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands
{G.J.v.Houtum,yqzhang}@tue.nl

Abstract. As an industry where performance improvements can save
lives, but resources are often scarce, emergency medical services (EMS)
providers continuously look for ways to deploy available resources more
efficiently. In this paper, we report a case study executed at a Dutch EMS
region to improve ambulance dispatching. We first capture the way in
which dispatch human agents currently make decisions on which ambu-
lance to dispatch to a request. We build a decision tree based on historical
data to learn human agents’ dispatch decisions. Then, insights from the
fitted decision tree are used to enrich the commonly assumed closest-idle
dispatch policy. Subsequently, we use the captured dispatch policy as
input to a discrete event simulation to investigate two enhancements to
current practices and evaluate their performance relative to the current
policy. Our results show that complementing the current dispatch policy
with redispatching and reevaluation policies yields an improvement of
the on-time performance of highly urgent ambulance requests of 0.77%
points. The performance gain is significant, which is equivalent to adding
additional seven weekly ambulance shifts.

Keywords: Ambulance dispatching · Machine learning · Decision
trees · Discrete event simulation · Logistics

1 Introduction

Emergency medical services (EMS) providers continuously look for ways to
deploy limited available resources more efficiently. In the Netherlands, the frac-
tion of highly urgent ambulance requests (A1 requests) with a response time
of fewer than 15 min has been consistently below the national target of 95%
throughout the past years, with a performance of 92.4% in 2017. Advances in
ambulance logistics will contribute to the provision of sufficient emergency med-
ical care, given the available resources.

The operational problems in EMS literature include both ambulance dis-
patching and relocation in order to maximize the fraction of ambulance requests
with a response time below a certain threshold time, or the on-time perfor-
mance. Response time is defined as the time between the moment an ambulance
request arrives at a dispatch center and the moment the ambulance arrives at the
c© Springer Nature Switzerland AG 2021
Y. Dong et al. (Eds.): ECML PKDD 2021, LNAI 12978, pp. 302–318, 2021.
https://doi.org/10.1007/978-3-030-86514-6_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86514-6_19&domain=pdf
http://orcid.org/0000-0003-4225-5434
http://orcid.org/0000-0002-5073-0787
https://doi.org/10.1007/978-3-030-86514-6_19

Improving Ambulance Dispatching with Machine Learning and Simulation 303

request location. It is predominantly assumed that ambulances are dispatched
according to a ‘closest-idle’ policy (e.g. [10,13]). Alternative dispatch policies are
often modifications of this policy (e.g. [7,8]). However, not only does this pol-
icy neglect practical considerations (e.g. the distinction between urgency levels
or shift ends), it is also known to be suboptimal when maximizing the on-time
performance [4]. Therefore, it can be expected that in practice dispatch agents
tend to deviate from this commonly assumed dispatch policy, jeopardizing the
relevance of alternative policies developed with the closest-idle policy at its foun-
dation.

Knowledge obtained by dispatch agents in practice can be very useful in
the development of improved dispatching policies [1]. In this paper, we formally
capture this knowledge, or expertise, in the form of the current dispatch policy
for the Dutch EMS region of Brabant Zuid-Oost (BZO). Capturing the current
dispatch policy has three main benefits: (1) Creating transparency : Insights can
be deducted that can help create awareness among dispatch agents, which might
improve consistency and fairness of the process. (2) Improving process: Insights
from the captured dispatch policy also give rise to opportunities for improvement.
The captured dispatch policy provides a basis to improve upon by extending it
with a number of additional or adapted decision rules. Contrary to developing
an improved dispatch policy from scratch, our approach complements, rather
than replaces, current dispatch practices. This ensures both the incorporation of
practical considerations in the resulting policy and that it is in line with the way
in which dispatch agents currently work, which are expected to foster adoption
in practice; (3) Evaluating fairly : the captured dispatch policy can be used as
input to a simulation of an EMS region. Such a simulation can also be used to
fairly evaluate potential improvements of the dispatch process by comparing its
performance to that of the current dispatch policy. The use of a benchmark that
resembles current practices allows for more accurate conclusions regarding the
potential of the evaluated alternative policy in practice.

Decision makers are often not completely aware of the reasoning behind their
expert judgments, making it hard for them to verbally express their decision pro-
cess [6]. However, mental decision models can be formally approximated through
machine learning models. We select decision tree induction to capture the cur-
rent dispatch policy of the BZO region, since this method results in a policy
representation that is both transparent and interpretable. In the BZO region
the fraction of A1 requests has been consistently below the nationally-set tar-
get of 95% (i.e., 91.7% in 2017), while the fraction of moderately urgent (A2)
requests with a response time of less than 30 min has consistently exceeded its
target of 95%. Therefore, the on-time performance for A1 requests is generally
regarded as the main performance measure in EMS management.

Our work contributes to the field of EMS management as well as to that of
applying machine learning to capture expert decisions:

– We are the first to formally capture current ambulance dispatch prac-
tices using machine learning. We apply decision tree induction to obtain a

304 N. Theeuwes et al.

transparent representation of the current dispatch decision process in the
BZO region (see Sect. 4.1).

– We apply a unique post-processing phase which combines knowledge from
both practice and literature with the learned decision tree to further improve
the quality of the learned model in terms of accuracy and conciseness. The
resulting model enriches the commonly assumed closest-idle dispatch policy
through the use of penalty values that reflect the risk associated with certain
ambulance characteristics (Sect. 4.2).

– We illustrate an application of the captured current dispatch policy by propos-
ing two enhancements to it and evaluating these in a simulation using the
captured policy as a practically relevant benchmark (Sect. 5).

Before making these contributions in Sect. 4 and Sect. 5, we discuss related
literature in Sect. 2 and the collection of data in Sect. 3. We conclude this paper
in Sect. 6.

2 Related Work

The existing studies in EMS management generally evaluate the proposed dis-
patch policies through a simulation in which many simplifying modelling choices
and assumptions are made. For example, Lee [7] simulated a hypothetical square
grid of 25 vertices with a fixed driving time for all edges. He did not distinguish
between urgency levels and assumed a general distribution for transfer times and
a static number of ambulances. Jagtenberg et al. [4] simulated the actual EMS
region of Utrecht, but assumed a static relocation policy, static request arrivals,
and static ambulance capacity, treatment and transfer times.

The existing, limited number of studies applying machine learning to model
expert decisions generally seems to have the captured expert knowledge as the
ultimate goal of their efforts, mostly to automate decision making. Maghrebi et
al. [9] conducted a feasibility study of automating the process of determining the
order of concrete deliveries. They employ machine learning to match expert deci-
sions with the objective of decreasing dependency on human resources. Lafond
et al. [5] compare three machine learning techniques in capturing human clas-
sification behavior using a simulated naval air defense task. However, capturing
expert decisions with the objective to support future decisions implicitly assumes
that the captured expert knowledge is optimal, or at least neglects the fact that
insight into current practices provides a good opportunity for the identification
and evaluation of improvement of the decision making process. In Lafond et al.
[6], a learning technique is applied to functionally mirror expert mental models.
Their objective is to improve decision quality by recognizing when a decision
maker is deviating from his usual decision patterns, since this might indicate
probable errors. It still assumes the captured policy to be the correct, or desired
one, which was a limitation as acknowledged by the authors. Donnot et al. [3] first
apply a deep neural network to historic decision data to mimic human decisions
in the prevention of violating power flow limits in a power plant, and then use
simple simulation to evaluate the effect of each action proposed by the captured

Improving Ambulance Dispatching with Machine Learning and Simulation 305

decision model before suggesting it to the decision maker. While this approach
does not actually improve on the captured decisions, it does distinguish between
bad and good decisions and only uses the good ones to support future decision
making.

To the best of our knowledge, there are no studies which have captured expert
decisions with the objective to use the resulting policy as a basis to improve
upon or as input for fair evaluation of alternative policies. Moreover, most of the
studies did not derive decisions from real data, but rather generated this data by
presenting experts with an artificial (simulated) task. In comparison, we expect
decisions derived from historic data resemble actual decisions more closely. In
addition, in capturing ambulance dispatch decisions, we apply a post-processing
phase which combines knowledge from both the domain and literature with the
learned model to further improve the quality the resulting model.

3 The Data Set: Historic Dispatch Decisions

We approached the induction of the current dispatch policy as a classification
problem. We gathered data on historic dispatch decisions made by BZO’s dis-
patch agents. The data set has been compiled such that it reflects all information
available to the agent at the decision moment, which might have affected the
decision. We have structured the decision to be captured around the dispatch
proposal. In the Netherlands, upon being presented with an ambulance request,
a dispatch agent uses the national dispatch system to generate such a dispatch
proposal. A dispatch proposal is an ordered list of all ambulances available for
dispatch to the concerned request, based on an increasing driving time to the
request location. By structuring the decision to be captured around such a dis-
patch proposal, we have implicitly assumed that, for any dispatch decision to
be made, a dispatch proposal is generated and one of the ambulances in the
proposal is dispatched. The set of ambulances available for dispatch depends on
the request’s urgency. Regardless of the request’s urgency this set includes all
idle ambulances, i.e. those driving to, or waiting at, a station. Besides idle ambu-
lances, this set includes ambulances which have already been dispatched to a less
urgent request, but did not arrive at that request’s location yet, and ambulances
that have arrived at a hospital and are busy transferring a patient. While these
ambulances are not idle (yet), they might be redispatched or requested to accel-
erate the transfer process respectively. Lastly, since dispatch agents have the
possibility to request assistance from neighbouring EMS regions, these ambu-
lances are also included in the dispatch proposal. Summarizing, the objective of
our formalization effort was to determine which ambulance is dispatched to a
request, given the corresponding dispatch proposal, and why a dispatch agent
might decide to deviate from dispatching the closest-idle ambulance. This implies
that the class of each instance is the rank of the ambulance that was actually
dispatched in the corresponding dispatch proposal.

306 N. Theeuwes et al.

Table 1. Features with i ∈ {1, 2, 3, 4, 5} being dispatch proposal options

No. Feature Symbol Data type

0 Rank of i in dispatch proposal (class) C Nominal: {1, 2, 3, 4, 5+}
1 Urgency U Ordinal: {A1, A2}
2 Passed time P Numeric (minutes)

3–7 Driving time of i Di Numeric (minutes)

8–12 Status of i Si Nominal: {1, 2, 3, 6}
13–17 Idle status indicator of i SIi Binary

18–22 Status time of i STi Numeric (minutes)

23–27 Remaining shift time of i RSi Numeric (minutes)

28–32 Own ambulance indicator of i Rowni Binary

33–37 Region BZO & BNO indicator of i Rboi Binary

38 Number of idle ambulances I Numeric

39 Single coverage Cov Numeric (%)

40–44 Percentual coverage reduction of i PCRi Numeric (%)

45–49 Absolute coverage reduction of i ACRi Numeric (%)

50–53 Driving time diff. i and i + 1 ΔDi Numeric (Min.)

54–57 Perc. coverage reduction diff. i and i + 1 ΔPCRi Numeric (%)

58–61 Abs. coverage reduction diff. i and i + 1 ΔACRi Numeric (%)

62–66 Expected response time of i Ei Numeric (Min.)

3.1 Feature Engineering

Upon making a dispatch decision, a dispatch agent has multiple screens at
his/her disposal which show information regarding the concerned ambulance
request, the ambulance options included in the generated dispatch proposal,
and a map of the region displaying all on-duty ambulance locations and sta-
tuses. Since dispatch agents are dedicated to making dispatch decisions, which
happens under time pressure, we assume that all information presented to a
dispatch agent is considered to be relevant to the dispatch decision. We trans-
formed such domain knowledge by the process of feature engineering. Data was
obtained for September and October 2018 from GMS. Only data on ambulance
requests (dispatches) within the BZO region were used. This led to a total of
4506 instances to fit BZO’s current dispatch policy on. Table 1 shows the features
for which values were obtained from the available data for each of the instances.
For a more detailed description of data collection and (pre-)processing, we refer
to [12].

The first two features relate to the ambulance request which requires a dis-
patch decision. The urgency (U) of this request is relevant since it determines the
response time target. 95% of highly urgent (A1) requests should have a response
time less than fifteen minutes, while 95% of moderately urgent (A2) requests
should have a response time less than thirty minutes. Since the response time

Improving Ambulance Dispatching with Machine Learning and Simulation 307

of a request starts at the moment the corresponding call arrives at the dispatch
center, the time that has passed since call arrival (P) is also relevant.

Features three to thirty-seven concern pieces of information listed for each
of the ambulance options in the generated dispatch proposal, with i referring
to the ith option in a dispatch proposal, i ∈ {1, 2, 3, 4, 5}. Note that for each
instance only features referring to properties of the first five options in the con-
cerned proposal are included. This choice was made since the class distribution
in our instance set is particularly unbalanced, with the higher ranked dispatch
options being represented more strongly. Recall that ambulances in a dispatch
proposal are ordered based on their driving time to the concerned incident and
the main performance measure depends strongly on this driving time, which
leads to a natural preference for higher ranked options. To ensure a sufficient
number of samples of each class to be available, classes five and up were combined
to form one class. Furthermore, we were especially interested in an agent’s rea-
sons for deviating from sending the closest idle ambulance, which were expected
to become apparent by distinguishing between the first few options of a dis-
patch proposal. The resulting class distribution is: 67% (class 1), 20% (class 2),
7% (class 3), 3% (class 4), 3% (class 5). Since the importance of the classes is
ordered, it is more important that the higher ranked classes are predicted cor-
rectly. Hence we do not balance the dataset but let the decision tree algorithm
favour the more important classes during learning.

The status of each dispatch option i (Si) may either be idle (driving towards
or waiting at a station) or busy but available for dispatch (on its way to a less
urgent request or transferring a patient at a hospital). The idle status indicator
of dispatch option i (SIi) indicates whether Si is idle. Furthermore, the status
time of option i (STi) is equal to the time since the status of each dispatch option
last changed, while the time until the end of each dispatch option’s eight hour
shift, which may be negative in case of overtime, is reflected by feature RSi. The
dispatch proposal shows for each option to which region it belongs, and thus by
which region it is controlled. We captured this information in binary features
Rowni and Rboi, where the first reflects whether option i belongs to the own
region (BZO), and the second indicates whether option i belongs to either the
own region or the adjacent BNO region, where dispatch agents operate from the
same dispatch center as BZO’s dispatch agent.

Features thirty-eight through forty-nine reflect the information that the dis-
patch agent might deduct from the map of the region displaying all on-duty
ambulance locations and statuses. The number of idle ambulances (I) and the
single coverage (Cov) reflect the extent to which the region is prepared for future
requests. Based on discussions with BZO’s dispatch agents, I includes both idle
ambulances and ambulances that are busy transferring a patient at a hospital,
since these are expected to become idle in the very near future and may even
be requested to accelerate the transfer process if necessary. The single coverage
feature refers to the fraction of the BZO region (in terms of 4-digit postal code
areas) that can be reached within a response time of fifteen minutes by at least
one ambulance [2]. Additionally, we introduced two features that relate to the

308 N. Theeuwes et al.

reduction in preparedness, i.e. single coverage, of the region that would be caused
by dispatching option i. ACRi does so in absolute terms, while PCRi relates
the coverage reduction to the current single coverage (Cov).

A dispatch agent might infer relevant information based on the relation
between feature values. Features fifty through sixty-six were constructed by per-
forming logical operations on our initial list of features and selecting meaningful
ones. These additional features include the difference between subsequent dis-
patch options in driving time (ΔDi), percentual and absolute coverage reduction
(ΔPCRi and ΔACRi), and the expected response time of each dispatch option
i (Ei). Here, the expected response time of option i is made up of the time that
passed since arrival of the call (P), its driving time to the request’s location
(Di), and one minute that is expected to be required for making the dispatch
decision and for an ambulance to start driving after being dispatched.

4 Capturing the Dispatch Policy with a Decision Tree

We use a decision tree to learn the current dispatch process, due to its transpar-
ent nature. Its interpretability allows us to gain insight into the current dispatch
routine, which can be leveraged both as a basis to improve the current dispatch
process and as a benchmark in the evaluation of potential improvements.

We split the data into a training set (70% of instances) and a test set (remain-
ing 30% of instances). We use the implementation of CART (Classification and
Regression Trees) in scikit-learn [11]. We tune the parameters, i.e. feature selec-
tion method, maximum tree depth, and the minimum number of instances at
a leaf node, by applying stratified 10-fold cross-validation on the training set.
Then the final decision tree has been trained on the complete training set. Sub-
sequently, the resulting decision tree has been evaluated using the test set.

Since our objective of capturing the current dispatch process is to identify
which ambulance is actually dispatched, the larger sized classes are of greater
interest than the smaller ones. By definition, this relative interest in correctly
predicting each class is reflected in the class distribution. Hence, we do not
balance the training set but let the algorithm favour the more important classes.
In addition, we choose the weighted F1-score, where the F1-score of each class
is weighted by its sample size, as the main performance measure.

4.1 Performance Analysis of the Learned Decision Tree and Policy

Additionally, we define the Weighted Mean Error performance measure. For the
problem at hand, if the actual dispatch decision was to dispatch the first option,
predicting dispatch of the third option is actually more wrong than predicting
dispatch of the second option. Therefore, we defined the following additional
performance measure:

WME =

∑k−1
d=0 d

∑
i,j∈{1,2,...,k}:|i−j|=d mi,j

∑
i,j∈{1,2,...,k} mi,j

,

Improving Ambulance Dispatching with Machine Learning and Simulation 309

where k equals the number of possible classes, in our case k = 5, and the mi,j

are cells in the confusion matrix, where rows and columns are indicated by i and
j respectively. Naturally, while we strive towards a dispatch prediction model
with a weighted F1-score that is as high as possible, we prefer the mean distance
to the actual class to be as low as possible.

To place the performance of the resulting decision tree into perspective,
its performance has been compared to the dispatch policy that is commonly
assumed in literature, the closest-idle policy. Notice that in literature this pol-
icy generally does not include the additional dispatch options that are available
to BZO’s dispatch agents, namely ambulances that are not completely idle but
nevertheless available to (certain) incidents and external ambulances that belong
to other regions. Therefore, we have defined two dispatch policies to which the
performance of our fitted dispatch policy have been compared: (1) The limited
closest-idle policy : corresponding to the policy that is commonly assumed in
literature, i.e. dispatching the highest ranked ambulance in the dispatch pro-
posal that is completely idle (on the road or at station) and belongs to the
own region. (2) The extended closest-idle policy : corresponding to the commonly
assumed policy but adapted to include the additional available dispatch options,
i.e. always dispatching option one in the dispatch proposal.

Figure 1 depicts the learned decision tree. Figures 2a, b, and c show the
confusion matrices and performance measures for the learned dispatch policy,
the limited closest-idle policy and the extended closest-idle policy respectively.
Figure 2 shows that the learned dispatch model outperforms both interpreta-
tions of the closest-idle policy, in terms of the weighted F1-score, as well as the
weighted mean error. However, while the difference in performance between the
learned model (a) and the extended closest-idle policy (c) is quite significant, the
improvement in predictive performance of the learned model (a) relative to the
basic, limited closest-idle policy (b) is less apparent. This observation leads us to
believe that BZO’s dispatch agents generally make limited use of the additional
dispatch options available to them.

This insight is confirmed by studying the learned decision tree, depicted in
Fig. 1a, in more detail. There are several clear ‘decision paths’, which have been
highlighted in Fig. 1b. These highlighted decision paths indicate the dominant
dispatch decision. Note that some of these paths, and the insights derived from
them, can be regarded as more important than others due to the larger number
of samples following that path. The weight of each path indicates the number of
samples following that path.

The main reasons that might lead a dispatch agent to deviate from dispatch-
ing the highest ranking dispatch option (i.e. option 1) quickly become clear
from the splits on the most dominant path (leading to [A]). These main reasons
include this highest ranking ambulance:

– Not being immediately available for dispatch: due to its status. For
example, the ambulance is transferring a patient at a hospital, meaning that
it might require some time to be relieved from its current request and redis-
patched to the new request.

310 N. Theeuwes et al.

– Not belonging to the own region: meaning that the concerned dispatch
center needs to be requested, which takes time, and the dispatch request
might be denied.

– Nearing the end of its shift: causing a risk of overtime if it is dispatched.

The first two of these reasons confirm that dispatch agents make limited use
of the additional dispatch options available to them. Possibly, this is the case
because these issues add a potential delay to the indicated driving time. Such a
potential delay adds a degree of uncertainty to the ambulance’s expected driving
time, which gives the dispatch agent good reasons to deviate from this option.
Naturally, the potential delay is only relevant if the difference between the driving
time of that option and the subsequent option is less than this expected delay.
This is reflected by the node at the top of node group [A] in Fig. 1b, as well as
at several other nodes in the tree.

It can be deducted that, if there are enough reasons to deviate from the
highest ranking ambulance option, the subsequent option is considered. However,
the same reasons to deviate seem to hold for this option, e.g. see the path in
Fig. 1b leading to node [B], where option 3 is considered due to the status of
option 2, and that same path eventually leading to leaf node [C], where option
4 is considered due to the status of option 3.

However, subsequent options cannot be considered indefinitely, since the driv-
ing time to the request increases with each option. Naturally, despite the dispatch
agents being risk averse and preferring subsequent options if there is a potential
delay for the closest option, the selected option should still be able to arrive
on-time. Since the driving time increases with each option, the driving time, or
expected response time, of the furthest option we consider, option 5, is a good
indication of whether previous options are able to arrive on-time. This is why
multiple nodes testing for the closeness of option 5 to the incident are present
in the decision tree, see nodes [D] and [E]. It can be seen that if the closeness
of option 5 is sufficiently small, generally lower ranked options are selected for
dispatch than when this is not the case.

This is also why the learned model performs significantly better than the lim-
ited closest-idle policy in terms of its weighted mean error. In case of sufficient
available capacity, dispatch agents clearly prefer risk averse dispatch options.
However, while the learned model recognizes that in case of scarcity the dis-
patch agent is required to choose an ambulance to be dispatched among risky
options, the limited closest-idle policy keeps considering subsequent options until
a risk-free (completely idle and own region) option is found. In other words, while
the performance of the fitted model is similar to the limited closest-idle policy for
the majority of dispatch decisions to be made, i.e. in case of sufficient capacity,
it strongly outperforms this commonly assumed policy in case of scarce capac-
ity. This ability of the fitted model is especially relevant since dispatch decisions
made under scarce capacity are precisely where the expertise and human judg-
ment of the dispatch agents can make a difference.

Improving Ambulance Dispatching with Machine Learning and Simulation 311

Fig. 1. Visualization of learned dispatch decision model with colors indicating the class
distribution of the instances reaching each node: (a) complete model and (b) model
including highlighted decision paths indicating its dominant dispatch decision

312 N. Theeuwes et al.

Fig. 2. Confusion matrices and performance measures for (a) the learned dispatch
policy, (b) the limited closest-idle policy, and (c) the extended closest-idle policy

4.2 The Penalty-Based Closest-Idle Policy

The fitted dispatch policy is quite complex. Combined with the fact that a simple
model such as the limited closest-idle policy is able to predict dispatch decisions
quite well in case of sufficient ambulance capacity, but performs very bad in
case of limited capacity due to its inability to consider risky options, leads us to
propose a concise, penalty-based policy to represent the dispatch decisions made
by BZO’s dispatch agents. In line with the three main reasons to deviate from
dispatching an ambulance that were deducted from the learned decision tree,
penalty terms are defined based on an ambulance’s status, region and time until
the end of its shift to reflect the potential delay or risk associated with the value
of these features. For each ambulance option, its total time penalty is determined
based on its status, region and remaining shift time, after which it is added to its
driving time. Then, the dispatch option with the lowest driving time plus total
penalty is dispatched. In other words, this policy can be called the penalty-based
closest-idle (PBCI) policy. This approach reflects dispatching agents’ preference
for a completely idle ambulance from the own region, but ensures that in case
of scarce capacity still one of the risky options is selected for dispatch.

These penalty terms are fitted on the training data, such that they result
in a maximum weighted F1-score. This is done through an exhaustive search
of integer penalty values. The performance of the resulting penalty model is
evaluated on the test data. Figure 3 shows the fitted penalty values, the confusion
matrix and performance measures. It is shown that both the weighted F1-score
and the weighted mean error have improved even further compared to the fitted
decision tree. Algorithm 1 shows the resulting PBCI dispatch policy.

The PBCI policy has been presented to and validated by BZO’s dispatch
agents. Not only did they confirm that the PBCI policy makes sense and is likely
to resemble the majority of their dispatch decisions, it also started a constructive
discussion on how to improve upon their current decisions. In conclusion, insights
from our learned dispatch decision prediction model were used to enrich the
commonly assumed closest-idle dispatch policy using penalty values reflecting the

Improving Ambulance Dispatching with Machine Learning and Simulation 313

Fig. 3. Fitted penalty values (on train data) and performance (on test data) of PBCI

Algorithm 1. Algorithm of the PBCI dispatching policy
1: for each dispatch option in the dispatch proposal i do
2: penaltyi = 0
3: if ambulance is transferring a patient at a hospital then
4: penaltyi = penaltyi + 7 (min.)
5: else if ambulance is on its way to a less urgent request then
6: penaltyi = penaltyi + 4 (min.)

7: if ambulance is of BNO region then
8: penaltyi = penaltyi + 6 (min.)
9: else if ambulance is of neither BZO nor BNO region then
10: penaltyi = penaltyi + 10 (min.)

11: if shift of ambulance ends within 40 minutes then
12: penaltyi = penaltyi + 4 (min.)

13: Penalized driving time of i = driving time of ambulance i + penaltyi

14: Dispatch ambulance with smallest penalized driving time

risk associated with certain ambulance characteristics. The result of this post-
processing phase is a concise policy that has significantly greater resemblance to
the actual dispatch decisions made by BZO’s dispatch agents compared to the
policy that is generally assumed in literature.

5 Current Policy as a Basis for Improvement

The captured dispatch policy provides insight into current practices and gives
rise to opportunity for improvement. The PBCI policy provides a basis to
improve upon, as well as a benchmark that is close to current practices. To
illustrate a possible application of the PBCI policy, we have defined two poten-
tial enhancements to current practices and evaluated their potential using a
realistic simulation. These enhancements were defined to complement, rather
than replace, the current dispatch decision process. Using the PBCI policy as
a basis for improvements ensures that practically relevant considerations are
included in the improved decision process, fostering adoption. The two poten-
tial enhancements to the current dispatch process we propose are (1) consistently

314 N. Theeuwes et al.

redispatching ambulances that are on their way to a less urgent request to a more
urgent request if this leads to a response time improvement and (2) reevaluation
of active dispatch decisions upon service completion of an ambulance.

Consistent Redispatching. From the captured current dispatching process, it can
be seen that a dispatch option that is not completely free (on the road or at a
station) is considered to be risky due to a potential delay. While a potential
delay is difficult to avoid if the ambulance is busy transferring a patient at
a hospital, it might be avoided in case of redispatching an ambulance that is
currently on its way to a less urgent request. The consistent redispatching policy
always dispatch an ambulance that is currently on its way to a less or non-
urgent request if this is the best dispatch option for a highly urgent (A1) request.
The enhancement is similar to ‘reroute-enabled dispatching’ as proposed by [8],
who evaluated this policy for a hypothetical EMS region consisting of a 16 ×
16 grid, deterministic environment. It is interesting to evaluate the potential
performance improvement of consistently redispatching an ambulance whenever
it is the best dispatch option, since the performance improvement might outweigh
the disadvantages.

Reevaluation of Dispatch Decision. Currently dispatch decisions are only made
upon arrival of a new request. A dispatch decision is made by selecting the
best option from those ambulances that are available at that moment. However,
the system of ambulances is very dynamic and during the time the dispatched
ambulance is driving towards the request, another ambulance may complete
serving another request. This other ambulance may in fact be a better dispatch
decision than the ambulance that is already on its way. Reevaluation of the
dispatch decision might contribute towards improving performance. Contrary to
the ‘Parallelism’ dispatch policy of [7], the consideration of a busy ambulance
only after it has completed service, prevents dependency on the realization of
highly variable treatment times. Furthermore, to prevent reevaluated dispatch
decisions resulting in only a marginal difference in response time, as is the case for
the ‘free ambulance exploitation’ policy of [8], in our case a reevaluated dispatch
decision will only lead to the recently freed ambulance being dispatched instead
of the current one if this leads to a response time improvement of at least one
minute for highly urgent (A1) requests, or a direct improvement of the on-time
performance for less urgent (A2) requests.

5.1 Evaluating Potential Enhancements Using Simulation

These two potential enhancements to the current dispatch policy have been eval-
uated using a realistic simulation that accurately captures the complex dynamics
of a real-life size ambulance system within a reasonable computation time. We
developed a discrete-event simulation in which the BZO region is aggregated into
138 subregions, corresponding to 4-digit postal codes. Locations of ambulance
stations, hospitals, and requests are mapped onto the centroid of its postal code.
While our focus is on the performance of urgent (i.e. A1 and A2) requests, we

Improving Ambulance Dispatching with Machine Learning and Simulation 315

Table 2. Realized and simulated performance under current dispatch policy

A1 requests A2 requests

On-time (%) Mean RT (min:sec) On-time (%) Mean RT (min:sec)

Realized 92.13 9:33 97.10 14:32

Simulated 93.63 9:02 97.07 13:38

Table 3. Resulting performance for potential dispatch enhancements

A1 requests A2 requests

On-time Mean RT On-time Mean RT(1
)
R
e
d
is
p
a
tc
h
in
g

(2
)
R
e
e
v
a
lu
a
ti
n
g

(%) (min:sec) (%) (min:sec)

R
e
d
is
p
a
tc
h
e
s/

y
r.

R
e
e
v
a
lu
a
ti
o
n
s/

y
r.

Base 93.63 (+/-0.05) 9:02 (+/-0:00) 97.07 (+/-0.05) 13:38 (+/-0:01) 1425

x 94.06 (+/-0.05) 8:55 (+/-0:00) 96.15 (+/-0.05) 14:04 (+/-0:01) 3293

x 94.04 (+/-0.04) 8:56 (+/-0:01) 97.50 (+/-0.05) 13:34 (+/-0:01) 1413 823

x x 94.40 (+/-0.05) 8:50 (+/-0:00) 96.73 (+/-0.05) 13:58 (+/-0:02) 3269 772

also simulate non-urgent patient transports to capture all dynamics in the uti-
lization of the available ambulance capacity. Furthermore, driving times between
each pair of postal codes are assumed to be deterministic, but dynamic, as sup-
plied by the driving time model of the RIVM (non-public). The simulation is
able to accurately deal with the dynamic arrival of ambulance requests of mul-
tiple urgency levels, dynamic ambulance capacity, realistic relocation decisions
and a wide range of practical considerations. Furthermore, the captured current
dispatch process allowed us to be the first to evaluate alternative dispatch poli-
cies by comparing the simulated performance to that of a practically relevant
benchmark. The interaction with neighbouring EMS regions was excluded from
the simulation due to its complexity. Its effect on the extent to which the sim-
ulation resembles reality is expected to be limited due to the fact that external
ambulances are rarely dispatched (<2% of requests).

Table 2 shows that simulating current practices, represented by the PBCI
policy, results in a slightly better performance for highly urgent A1 requests and
similar performance for moderately urgent A2 requests compared to realized
values in the practice of the BZO region. The simulation slightly outperforms
reality because the simulation decisions are made consistently, while in practice
variations in dispatch decisions occur due to human judgment and differences
between dispatch agents. Because we have only a small difference between the

316 N. Theeuwes et al.

realized and simulated performance, we can conclude that our simulation model,
with the use of the PBCI policy, is representative for the BZO region.

5.2 Performance of the Improved Policy

Table 3 shows the resulting performance measures for the two potential enhance-
ments. Besides the main performance measures relating to the response time of
urgent requests, the last two columns provide further insight into the effect of
both enhancements from which conclusions regarding the effect on ambulance
crew disturbance can be deducted. From the effects on performance caused by
each dispatch enhancement individually, it can be concluded that both con-
sistent redispatching and reevaluation of active dispatch decisions upon service
completion of an ambulance lead to a significant improvement of the fraction of
A1 requests that is served on-time, namely 0.43 and 0.41% points (pp) respec-
tively. However, while consistent redispatching is quite detrimental for the on-
time performance of A2 requests, the reevaluation enhancement even improved
this measure with 0.43 pp. This detrimental effect of the consistent redispatching
enhancement on the A2 on-time performance is mostly caused by the fact that
an ambulance is redispatched regardless of whether an alternative ambulance
is available for dispatch to the original request, and whether this ambulance is
able to arrive on-time. While under the current dispatch policy on average 3.9
redispatches are initiated each day, this number increases to a little over 9 redis-
patches per day in case of consistent redispatching. Given the number of shifts
on an average day, this implies that an ambulance crew is only redispatched once
every four shifts, which does not seem excessive. From the number of reevalu-
ations leading to the recently freed ambulance being dispatched, and thus for
the currently dispatched ambulance to be redirected, it can be deducted that
such a decision is made on average 2.3 times per day. The disturbance to the
ambulance crew of this number of redirections is likely to be quite limited.

We also simulated the combination of enhancements. Adding both the consis-
tent redispatch and reevaluation enhancement yields an even larger performance
gain, improving the A1 on-time performance by 0.77 pp. The performance gain
of both of these enhancements individually is quite complementary, as combin-
ing these enhancements leads to an A1 on-time performance gain of almost the
sum of the individuals performance gains. Further, the fact that the reevaluation
enhancement is beneficial to the performance of A2 requests mitigates part of
the detrimental effect of the consistent redispatch enhancement, leading only to a
reduction of 0.33 pp. Combining these two enhancements, however, also leads to
a larger number of redirections (resulting from either being redispatched or from
a reevaluated dispatch decision), which may cause disturbance to ambulance
crews. Yet with an average of approximately eleven redirections per day, or an
ambulance being redirected once every three eight-hour shifts, this disturbance
is likely to be outweighed by the resulting performance gain.

To place the performance gain into perspective, we added additional weekly
shifts to the shift roster. The performance gain from our approach is equivalent

Improving Ambulance Dispatching with Machine Learning and Simulation 317

to adding more than seven weekly ambulance shifts, while our approach does
not require additional available resources (see [12] for more details).

6 Conclusion

We captured the way in which dispatch agents currently make decisions on
which ambulance to dispatch to a request. Insights from the fitted decision
tree were used to enrich the commonly assumed closest-idle dispatch policy,
using penalty values reflecting the risk associated with ambulance characteris-
tics. Subsequently, we illustrated an application of the captured dispatch policy
by defining two enhancements to current practices and evaluating their perfor-
mance in a simulation. The proposed approach can be applied to other EMS
regions to improve ambulance dispatching.

Dispatch agents in the EMS region Brabant-Zuidoost have indicated to be
very happy about the potential of these enhancements to the current dispatch
policy in their attempt to push the on-time performance of highly urgent A1
requests to 95%. These process adaptations are essentially free and instantaneous
measures to improve performance without increasing the available ambulance
capacity. As future research, it is interesting to conduct a field experiment to
confirm the potential of the proposed enhancements in practice.

Acknowledgements. We would like to thank GGD Brabant-Zuidoost for providing
us dispatch data and the overall collaboration. We would like to thank Marko Boon
for his help with the development of our simulation model.

References

1. Aringhieri, R., Bruni, M.E., Khodaparasti, S., Van Essen, J.: Emergency medical
services and beyond: addressing new challenges through a wide literature review.
Comput. Oper. Res. 78, 349–368 (2017)

2. Bélanger, V., Ruiz, A., Soriano, P.: Recent optimization models and trends in
location, relocation, and dispatching of emergency medical vehicles. Eur. J. Oper.
Res. 272(1), 1–23 (2019)

3. Donnot, B., Guyon, I., Schoenauer, M., Panciatici, P., Marot, A.: Introduc-
ing machine learning for power system operation support. arXiv preprint
arXiv:1709.09527 (2017)

4. Jagtenberg, C.J., Bhulai, S., van der Mei, R.D.: Dynamic ambulance dispatching:
is the closest-idle policy always optimal? Health Care Manage. Sci. 20(4), 517–531
(2016). https://doi.org/10.1007/s10729-016-9368-0

5. Lafond, D., Roberge-Vallières, B., Vachon, F., Tremblay, S.: Judgment analysis
in a dynamic multitask environment: capturing nonlinear policies using decision
trees. J. Cogn. Eng. Decis. Making 11(2), 122–135 (2017)

6. Lafond, D., Tremblay, S., Banbury, S.: Cognitive shadow: a policy capturing
tool to support naturalistic decision making. In: 2013 IEEE International Multi-
Disciplinary Conference on Cognitive Methods in Situation Awareness and Deci-
sion Support (CogSIMA), pp. 139–142. IEEE (2013)

http://arxiv.org/abs/1709.09527
https://doi.org/10.1007/s10729-016-9368-0

318 N. Theeuwes et al.

7. Lee, S.: Role of parallelism in ambulance dispatching. IEEE Trans. Syst. Man
Cybern.: Syst. 44(8), 1113–1122 (2014)

8. Lim, C.S., Mamat, R., Braunl, T.: Impact of ambulance dispatch policies on per-
formance of emergency medical services. IEEE Trans. Intell. Transp. Syst. 12(2),
624–632 (2011)

9. Maghrebi, M., Sammut, C., Waller, S.T.: Feasibility study of automatically per-
forming the concrete delivery dispatching through machine learning techniques.
Eng. Constr. Archit. Manage. 22(5), 573–590 (2015)

10. Maxwell, M.S., Restrepo, M., Henderson, S.G., Topaloglu, H.: Approximate
dynamic programming for ambulance redeployment. INFORMS J. Comput. 22(2),
266–281 (2010)

11. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn.
Res. 12, 2825–2830 (2011)

12. Theeuwes, N.: Formalization and improvement of ambulance dispatching in
Brabant-Zuidoost. Master’s thesis, Eindhoven University of Technology (2019)

13. Van Barneveld, T.: The minimum expected penalty relocation problem for the
computation of compliance tables for ambulance vehicles. INFORMS J. Comput.
28(2), 370–384 (2016)

Countrywide Origin-Destination Matrix
Prediction and Its Application

for COVID-19

Renhe Jiang1,4, Zhaonan Wang1, Zekun Cai1, Chuang Yang1, Zipei Fan1,4,
Tianqi Xia2, Go Matsubara2, Hiroto Mizuseki3, Xuan Song1,4(B),

and Ryosuke Shibasaki1

1 The University of Tokyo, Tokyo, Japan
{jiangrh,znwang,songxuan}@csis.u-tokyo.ac.jp

2 LocationMind Inc., Tokyo, Japan
3 BlogWatcher Inc., Tokyo, Japan

4 Southern University of Science and Technology, Shenzhen, China

Abstract. Modeling and predicting human mobility are of great signif-
icance to various application scenarios such as intelligent transportation
system, crowd management, and disaster response. In particular, in a
severe pandemic situation like COVID-19, human movements among dif-
ferent regions are taken as the most important point for understanding
and forecasting the epidemic spread in a country. Thus, in this study,
we collect big human GPS trajectory data covering the total 47 prefec-
tures of Japan and model the daily human movements between each pair
of prefectures with time-series Origin-Destination (OD) matrix. Then,
given the historical observations from past days, we predict the country-
wide OD matrices for the future one or more weeks by proposing a novel
deep learning model called Origin-Destination Convolutional Recurrent
Network (ODCRN). It integrates the recurrent and 2-dimensional graph
convolutional components to deal with the highly complex spatiotem-
poral dependencies in sequential OD matrices. Experiment results over
the entire COVID-19 period demonstrate the superiority of our proposed
methodology over existing OD prediction models. Last, we apply the pre-
dicted countrywide OD matrices to the SEIR model, one of the most clas-
sic and widely used epidemic simulation model, to forecast the COVID-
19 infection numbers for the entire Japan. The simulation results also
demonstrate the high reliability and applicability of our countrywide
OD prediction model for a pandemic scenario like COVID-19.

Keywords: Human mobility · Origin-destination · OD matrix ·
Graph convolutional network · Deep learning · COVID-19

1 Introduction

Nowadays big human mobility data are being collected from various sources
such as smart phone apps, car navigation systems, WiFi access points, and laser

R. Jiang and Z. Wang—Equal contribution.

c© Springer Nature Switzerland AG 2021
Y. Dong et al. (Eds.): ECML PKDD 2021, LNAI 12978, pp. 319–334, 2021.
https://doi.org/10.1007/978-3-030-86514-6_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86514-6_20&domain=pdf
https://doi.org/10.1007/978-3-030-86514-6_20

320 R. Jiang et al.

Fig. 1. Illustration of the total 47 prefectures of Japan (left) and the OD matrix among
the 47 prefectures on 2020/01/01 (right).

sensors, with which modeling and predicting crowd flow [16,20,39,40] and
taxi/bike demand [13,25,31,35] become possible and essential for smart-city
application scenarios. On the other hand, the coronavirus disease 2019 (COVID-
19) outbreak has swept more than 180 countries and territories since late January
2020, which has caused significant losses to public health as well as the economy
at a worldwide scale. Against this background, human mobility data are also
utilized to understand and forecast the epidemic spread situation in city, coun-
try, or all over the world, as human movements are taken as the most important
factor for highly contagious diseases with human-to-human transmission. In this
study, to model and predict the COVID-19 spread over the entire Japan, we col-
lect big human GPS trajectory data covering the total 47 prefectures of Japan
and model the daily human movements between each pair of prefectures with
time-series Origin-Destination (OD) matrix. With the daily OD matrix, we can
easily know how many people move from one prefecture to another, and further
apply the SEIR model, one of the most fundamental compartmental models in
epidemiology, to simulate the COVID-19 infection number for each prefecture of
Japan by taking the effects of human movements among prefectures into account.

To this end, we aim to predict the countrywide OD matrices of Japan as
illustrated in Fig. 1. However, it is a non-trivial and quite unique task in the
following aspects. (1) Each prefecture is in an irregular polygon shape, which
forms together as a non-euclidean space. Normal convolution neural network
(CNN) [22] is difficult to be directly applied to capture the spatial dependen-
cies among the prefectures. Therefore, some grid-based state-of-the-arts for OD
matrix prediction including GEML [32] and CSTN [26] can’t perform well on
our prefecture-level OD matrix prediction task, neither for some CNN-based
deep models for crowd flow prediction tasks [20,25,35,39,40,42]. (2) The spatial
dependencies simultaneously exist along both Origin axis and Destination axis
in OD matrix. Taking the capital city Tokyo as an example, people from other
prefectures transit to Tokyo, meanwhile Tokyo people leave Tokyo for other pre-

Countrywide OD Matrix Prediction for COVID-19 321

fectures. (3) It is necessary to predict multiple days of OD matrix like one week
or more for COVID-19 application scenario, so that experts and officials can cor-
respondingly make and publish the intervention policies for the following period
of time. However, previous OD matrix models (i.e., GEML [32], CSTN [26], and
MPGCN [29]) are only able to do next-one-step forecast, where each step is
merely half an hour or one hour.

To tackle these challenges, we present Origin-Destination Convolutional
Recurrent Network (ODCRN) for multi-step Origin-Destination matrix predic-
tion. Specifically, ODCRN consists of two types of graph convolution units: one
takes in a pre-defined static graph (e.g. adjacency matrix) as auxiliary input,
while the other utilizes Dynamic Graph Constructor (DGC) to dynamically gen-
erate an OD graph pair based on the current observation. Each unit recurrently
performs OD convolution (OD-Conv) to simultaneously capture the two-sided
spatial dependency in Origin-Destination matrix and the temporal dependency
in observational sequence. In addition, ODCRN has an encoder-decoder struc-
ture to firstly encode a sequence of OD matrices into hidden tensors, then step-
wise decode them to make a sequence of predictions. In summary, our work has
the following contributions:

– We collect big human GPS trajectory data for the total 47 prefectures
of Japan that cover the entire COVID-19 period from 2020/01/01 to
2021/02/28.

– We propose a novel deep model for countrywide OD matrix prediction that
utilizes the graph convolution network and the recurrent neural network to
capture the complex spatial and temporal dependencies in the countrywide
OD matrix sequence.

– We implement a classic epidemic simulation model (SEIR model) to forecast
the COVID-19 infection number for the entire Japan by taking the human
movements among prefectures into account.

– We further collect the reported COVID-19 infection number of each prefecture
in Japan. With the ground-truth infection data and the epidemic simulation
model, we validate the applicability of our predicted OD matrices for long-
term countrywide COVID-19 infection forecast.

The remainder of this paper is organized as follows. In Sect. 2, we introduce
the related works about the crowd/traffic flow prediction and mobility-based
COVID-19 prediction. In Sect. 3, we describe our problem definition. In Sect. 4,
we propose a deep learning model for countrywide OD matrix prediction. In
Sect. 5, we implement an OD matrix-based epidemic simulation model. In Sect. 6,
we present the evaluation results about OD matrix prediction and COVID-19
prediction. In Sect. 7, we give our conclusion.

2 Related Work

2.1 Crowd and Traffic Flow Prediction

Trajectory-based deep learning models [10,11,18,19,27] have been proposed to
predict each individual’s movement by utilizing the recurrent neural networks

322 R. Jiang et al.

(RNNs). However, due to the limitation of scalability, it is difficult to apply the
trajectory-based models to a country-level prediction task as there are just too
many trajectories to learn. On the other hand, by meshing a city map into sev-
eral grid-regions and aggregating the trajectories for each grid-region, crowd
and traffic flow information can be obtained [16]. Following this strategy, a
series of spatiotemporal models [25,31,35,36,39,42] were proposed to predict
the demand, inflow and outflow of taxi/bike/crowd for each grid-region. Thanks
to the euclidean property of the grid space, these approaches can employ nor-
mal convolution neural networks (CNNs) to capture the spatial dependency in
an analogous way with the image/video prediction task. In parallel with the
grid-based modeling strategy, graph is used as a more general solution for mod-
eling the crowd/traffic demand or flow among irregular regions with arbitrary
polygon shapes [3,13,30]. Also, some graph-based models like STGCN [37], AST-
GCN [14], DCRNN [24], and GraphWaveNet [33] are proposed to predict the
traffic volume recorded by the roadway sensors. To learn the spatial correlations
among nodes, all of these models employ graph convolution network (GCN) that
can work in a non-euclidean space.

However, no matter based on grid or graph, the inflow and outflow models
can only indicate how many people will flow into or out from a region over a
period of time. They can’t answer how many of these people or cars come from
or transit to which regions. To address this, [20,40] are proposed to model the
grid-based crowd transition which depicts how a crowd of people transit among
the entire mesh-grids. In particular, GEML [32], CSTN [26], and MPGCN [29]
are specially designed for OD matrix prediction task. But still they are not ideal
or well-validated solutions for our COVID-19 application scenario due to the
following reasons. (1) [26,29,32] are tailored for single-step OD prediction, while
our task requires a multi-step prediction. Because forecasting the COVID-19
infection numbers for the next one or more weeks rather than only one day is
more meaningful and useful for experts and policy makers. Correspondingly, the
OD matrices must be predicted for multiple days. (2) [26,32] are based on mesh-
grids, while our OD matrix is based on prefectures that have irregular shapes.
(3) The OD prediction of [26,29,32] is conducted at a citywide and level in short
term (1 h), while our task needs to do the OD prediction at a countrywide level
with relatively longer term (one or more weeks).

2.2 Mobility-Based COVID-19 Simulation

Since the outbreak of COVID-19, mobility data has been widely used to model
the disease’s spatial propagation and shown great potential [1,4,6–8,12,21,23].
For example, [7] utilizes the Baidu Migration Data [1] and the airline transporta-
tion data to simulate the spread of COVID-19 on both national and international
levels, [23] infers the undocumented infection rate of COVID-19 and its substan-
tial impact in conjunction with mobility data.

Accurately capture the inter-regional mobility patterns is essential for model-
ing and predicting disease spread. The mobility patterns used in current studies
mainly derived from three aspects: (a) Official Trip Census Data [4,8,12]. (b)

Countrywide OD Matrix Prediction for COVID-19 323

Mobilephone Location Data [6,7,23]. (c) Transportation Flux Data (e.g., Air-
line, Railway) [7,8]. Based on data sources’ spatial scale, propagation simula-
tions with different spatial resolutions have been proposed, e.g., [4] models the
spread of COVID-19 in Italy at the province level with the official published com-
muter data among cities. Besides, some works predicted the future propagations
to validate the model’s efficiency [6,21], e.g., [6] did out-of-sample prediction of
daily confirmed cases for the Chicago metro area. However, none of these works
consider possible mobility changes in the future. Instead, they used historical
mobility directly when predicting, which is our work trying to address.

3 Problem Definition

Given big human GPS trajectory data, Origin-Destination (OD) matrix predic-
tion can be performed through the following definitions.

Definition 1 (Trajectory and Trip Segmentation): Typically, a user’s trajectory
is a sequence of timestamp-location pairs denoted as [(t1, l1), (t2, l2), ..., (tn, ln)],
where each location l is represented by a longitude-latitude coordinate. Then
we do trip segmentation for each user’s trajectory and obtain the origin and
destination of each trip as follows:

[(t1, l1), (t2, l2), ..., (tn, ln)]
segmentation−−−−−−−−−→ [(o1, d1), (o2, d2), ..., (om, dm)], (1)

where the original trajectory is segmented into m trips, i.e. m OD pairs, o.l and
d.l are the origin and destination location, o.t is the departure time leaving from
origin o, and d.t is the arrival time for destination. The origin and destination
locations are essentially a series of stay points among any consecutive two of
which people move from one to another by different means of transportation
such as TRAIN, BUS, WALK, BIKE, and etc. We let T denote all of the trip-
segmented trajectories.

Definition 2 (Origin-Destination Matrix): Given a spatial area divided into N
non-overlapping regions {r1,r2,...,rN} and a temporal range equally divided into
T consecutive and non-overlapping timeslots {τ1,τ2,...,τT }, Origin-Destination
(OD) matrix Ω ∈ R

N×N can be aggregated from the trip-segmented trajectories
T . OD transition number Ωij

τ between each two regions ri,rj with respect to
timeslot τ is defined as follows:

Ωij
τ = |{(o, d) ∈ T | o.l ∈ ri ∧ d.l ∈ rj ∧ o.t ∈ τ ∧ d.t ∈ τ}|, (2)

where | · | denotes the cardinality of a set. In our study, we take the entire Japan
as the spatial area, total 47 prefectures as the non-overlapping 47 regions, and
set each timeslot τ as one day. Since the main application scenario of our study is
COVID-19, we collect the GPS trajectory data from the beginning of COVID-19
pandemic to the very latest, i.e., 2020/01/01∼2021/02/28, 425 days in total.

324 R. Jiang et al.

Definition 3 (Origin-Destination Matrix Prediction): Given historical a steps of
OD matrices Xτ ∈ R

α×N×N = [Ωτ−α+1, ..., Ωτ−1, Ωτ] from timeslot τ -(α − 1)
to to τ , predicting the next β steps of OD matrices Yτ ∈ R

β×N×N = [Ωτ+1,
Ωτ+2, ..., Ωτ+β] from timeslot τ to τ+β is to build a model f as follows:

Xτ = [Ωτ−α+1, ..., Ωτ−1, Ωτ]
f(·)−−−−−−→
θ

Yτ = [Ωτ+1, Ωτ+2, ..., Ωτ+β] (3)

4 OD Matrix Prediction Model

4.1 Overview

We present Origin-Destination Convolutional Recurrent Network (ODCRN),
demonstrated in Fig. 2, for multi-step Origin-Destination matrix prediction. To
be specific, ODCRN consists of two types of computational units: one type
of Origin-Destination Convolutional Recurrent Unit (ODCRU) takes in a pre-
defined static graph (e.g. adjacency matrix) as auxiliary input, while the other
ODCRU utilizes Dynamic Graph Constructor (DGC) to dynamically generate an
OD graph pair based on the current observation. Each ODCRU cell recurrently
performs OD convolution (OD-Conv) to simultaneously capture the two-sided
spatial dependency (i.e., along Origin axis and Destination axis) in OD matrix
and the temporal dependency in observational sequence. In addition, ODCRN
has an encoder-decoder structure to firstly encode a sequence of OD matrices
into hidden tensors, then stepwise decode them to make a sequence of predictions.

4.2 Origin-Destination Convolution (OD-Conv)

In Origin-Destination matrix, one can observe both local and global spatial cor-
relations which entangle and exist on both sides of the origin and destination.
In reality, this two-sided dependency does not necessarily hold equivalent on the
origin side and destination side. It is quite straightforward that the correlation
between prefectures being origins depends on the similarity of their residen-
tial functionality, while the correlation between prefectures being destinations
is mostly decided by the similarity of their commercial or entertaining function-
ality. To capture this special two-sided dependency, one intuitive solution is to
treat an OD matrix as an image (of one channel) and filter it with regular con-
volutional kernel. However, this approach is in fact inappropriate as it not only
loses the global view but regards submatrices in an OD matrix as equivalent,
in which most OD transitions actually happen close to the diagonal. Keeping
the big picture in mind, we adopt MGCNN [28], which is an extended bidimen-
sional form of GCN based on the two-dimensional discrete Fourier transform
(2D-DFT), and propose an Origin-Destination Convolution (OD-Conv) to solve
the problem, which is formulated as:

H = σ(Θ �(P(O),P(D)) Ω) = σ(
K∑

ko,kd=0

Ω ×1 P̃ ko

(O) ×2 P̃ kd

(D) ×3 Wko,kd
) (4)

Countrywide OD Matrix Prediction for COVID-19 325

Fig. 2. Proposed Origin-Destination Convolutional Recurrent Network (ODCRN) for
multi-step OD matrix prediction. ODCRN consists of two types of computational units
(ODCRU): one takes in pre-defined static graph as auxiliary input, the other dynami-
cally generates od graph pair based on the current observation.

In the equation, Ω ∈ R
N×N×ν and H ∈ R

N×N×μ are the input and hid-
den state of an OD-Conv operation, which is denoted by Θ�(P(O),P(D)), where
Θ or W stands for learnable parameters given an OD graph pair (P(O), P(D))
representing the correlations of prefectures being origins and being destinations,
respectively. It is noteworthy that MPGCN [29] also employs Eq. 4 to handle the
two-sided dependency in OD matrices and further utilizes LSTM and pre-defines
a rule for deriving momentary correlation graphs to model temporal dynamics
in OD matrices. However, we find these two additions are in fact suboptimal and
propose ODCRU with DGC for finer temporal dynamic modelling.

4.3 Origin-Destination Convolutional Recurrent Unit (ODCRU)

Convolutional Recurrent Unit (CRU) is a class of computational methods that
utilizes convolution to replace matrix multiplication as the basic operation in
a recurrent cell (e.g. GRU to ConvGRU). Such substitution equips the unit
with extra capability to capture localized spatial dependency, with the natural
advantage of handling sequential dependency by the recurrent structure. As a
result, CRU has been widely adopted in not only video tasks [34], but also
general spatio-temporal prediction problems [20,26,38,42]. Moreover, the recent

326 R. Jiang et al.

advances in Graph Convolution Networks (GCN) [5,15,28] prompt attempts to
generalize CRU to Graph Convolutional Recurrent Unit (GCRU) [17,24] so that
the global, non-Euclidean spatial dependency could be further captured.

In a similar fashion, we extend CRU to ODCRU by utilizing Origin-
Destination Convolution (OD-Conv) in each recurrent cell to simultaneously cap-
ture the two-sided spatial dependency and temporal dependency in a sequence
of OD matrices. Taking the form of GRU, we define ODCRU as:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

uτ = sigmoid(Θu �(P(O),P(D)) [Ω(l)
τ , H

(l)
τ−1] + bu)

rτ = sigmoid(Θr �(P(O),P(D)) [Ω(l)
τ , H

(l)
τ−1] + br)

Cτ = tanh(ΘC �(P(O),P(D)) [Ω(l)
τ , (rτ � H

(l)
τ−1)] + bC

H(l)
τ = uτ � H

(l)
τ−1 + (1 − uτ) � Cτ

(5)

where Ωτ ∈ R
N×N×ν and Hτ ∈ R

N×N×μ denote the input and hidden state
at timeslot τ ; uτ , rτ and Cτ represent update gate, reset gate and candidate
state, respectively; and Θu, Θr, ΘC are learnable parameters in corresponding
OD-Convs. As the basic building block of ODCRN framework, ODCRU requires
auxiliary inputs of an OD graph pair (P(O), P(D)) to account for the two-sided
dependency. Based on the observation that most OD transitions concentrated
around the diagonal of an OD matrix, one can easily infer that the spatial
closeness plays an important role in OD matrix prediction. In practice, we adopt
the definition of adjacency matrix to represent this spatial locality, formally:

Ai,j =

{
1, if prefecture i and j are geographically adjacent
0, otherwise

(6)

Then, letting (P(O), P(D)) = (A,Aᵀ) gives the most straightforward assign-
ment for the input OD graph pair. However, solely relying on this definition is
not enough for three reasons: (1) global view is absent; (2) two-sided dependency
is not really handled because adjacency matrix is symmetric; (3) dynamic spa-
tial correlation is overlooked since A is time-invariant. The dynamicity of spatial
correlation manifests itself in the cases where people commute across-prefecture
for work in workdays and go out on weekends.

4.4 Dynamic Graph Constructor (DGC)

To solve the aforementioned three problems, we propose a Dynamic Graph Con-
structor (DGC) to dynamically generate an observation-dependent OD graph
pair at each timeslot. This idea is rooted in the field of graph signal processing
where an important task is to learn a reasonable graph structure based on obser-
vational data [9,14,41]. In our case, we aim to learn a pair of time-variant graphs
to represent the dynamic two-sided dependency in prefectures. Specifically, we
propose the learning schema below to satisfy our needs:

{
P (O)

τ = softmax(relu(ΩτWOΩᵀ
τ))

P (D)
τ = softmax(relu(Ωᵀ

τ WDΩτ))
(7)

Countrywide OD Matrix Prediction for COVID-19 327

where Ωτ ∈ R
N×N is the input of OD matrix observation at timeslot τ ; WO ∈

R
N×N and WD ∈ R

N×N are two learnable parameter matrices, used for discover-
ing hidden patterns under destinations and origins, respectively; relu rectifies the
core term to be non-negative and softmax normalizes each row. The learnt OD
graph pair (P (O)

τ , P
(D)
τ) has good properties to represent the time-variant, two-

sided, entangled local and global dependencies on a scale of 0 to 1.

5 OD Matrix Based Epidemic Simulation Model

SIR is seen as one of the most fundamental compartmental models in epidemi-
ology, widely used for modeling and predicting the spread of infectious diseases
such as measles, mumps and rubella [2]. SEIR, as a variant of SIR, consists of four
compartments: S for the number of susceptible, E for the number of exposed,
which means the individuals in an incubation period but not yet infectious, I
for the number of infectious, and R for the number of recovered or deceased
(or immune) individuals. To represent the number of susceptible, infected and
recovered individuals varying over time, SEIR model is formally expressed by
the following set of ordinary differential equations:

dS

dt
= μN − βS

I

N
− μS

dE

dt
= βS

I

N
− εE − μE

dI

dt
= εE − γI − μI

dR

dt
= γI − μR

(8)

where N = S + E + I + R, β is the effective contact rate of infected individual1,
ε is the progression rate to infectious state, γ and μ are the rates of recovery
and mortality, respectively. In our implementation, we ignore μ and only use β,
ε, γ to construct the model.

However, the classic SIR and SEIR model can only simulate the infection
number varying over time for single region. Thus, in this study, we extend it to
a multi-region SEIR model that can simultaneously simulate the time-varying
infection numbers for multiple regions and take the OD transitions among regions
into account. To this end, we introduce an SEIR matrix Ψ ∈ R

N×4 to denote the
S, E, I, R numbers of N regions. Note that according to the population density
and the intervention policy, the effective contact rate β varies from region to
region also from time to time, so we introduce a vector Bt ∈ R

N to denote the
different β values for N regions at time t. Meanwhile, ε and γ prove to be decided
by the intrinsic property of specific infectious disease, therefore, regions share
the same time-constant value under COVID-19 scenario.

Ψ i,:
t = [S(i)

t , E
(i)
t , I

(i)
t , R

(i)
t]

Eq. (8)−−−−−→
B(i)

t ,ε,γ

Ψ ′i,:
t = [S′

t
(i)

, E′
t
(i)

, I ′
t
(i)

, R′
t
(i)],∀i ∈ N (9)

1 β here different with Definition 3 is a widely used notation for epidemic parameter.

328 R. Jiang et al.

+ ΔΨt = [Ωt]T · Ψt (10)

− ΔΨt = [Ωt]Σ � Ψt (11)

Ψt+1 = Ψ ′
t + σ(+ΔΨt − ΔΨt) (12)

Then the OD matrix-based SEIR algorithm is proposed as follows: (1) Ini-
tialize the SEIR matrix Ψ with the population data and infection data of each
prefecture; (2) Given B(i)

t and ε, γ, the S, E, I, R numbers for each region ri can
be updated as Eq. (9); (3) Normalize the OD transition matrix by row to get the
transition probability from origin-region ri to destination-region rj , and further
set the diagonal value to zero to eliminate the self-transition value; (4) We denote
the normalized OD matrix with zero diagonal value as Ω. Using Ω, the inflow of
S, E, I, R coming from other regions (i.e., +ΔΨ) can be calculated with Eq. (10),
where []T denotes matrix transpose and · denotes matrix multiplication; (5) To
derive the outflow of S, E, I, R (leaving SEIR) of each region (i.e., −ΔΨ), we
sum Ω by row to get the total outside transition probability of each origin-region,
and let S, E, I, R people in each origin-region share the same transition value.
These two operations are together denoted as []Σ. As shown by Eq. (11), −ΔΨ
can be calculated through element-wise product � between [Ω]Σ ∈ R

N×4 and
Ψ ∈ R

N×4; (6) Ψ can be updated from t to t+1 by adding up the three parts,
namely intra-region SEIR, inflow SEIR, and outflow SEIR as Eq. (12). σ is a
new introduced parameter that denotes the actual inter-region transition rate
under epidemic control policies such as self-quarantine and work-from-home.

In our study, ε, γ, and σ are empirically tuned and set to 0.2, 0.1, 0.1, respec-
tively. By using the daily OD matrices [Ω1, Ω2, ..., ΩT] and reported COVID-19
infection number of each prefecture [I1:N

1 , I1:N
2 , ..., I1:N

T], we employ Particle
Swarm Optimization (PSO) algorithm to estimate the time-varying and region-
varying B through Eq. (9)–(12). Finally, using the optimized B and the predicted
OD matrices [Ω̂T+1, Ω̂T+2, ..., Ω̂T+7], we can forecast the COVID-19 infection
numbers [Î1:N

T+1, Î1:N
T+2, ..., Î1:N

T+7] for the future one week via Eq. (9)–(12).

6 Experiment

6.1 Data

We collaborate with Blogwatcher Inc. to get big human GPS trajectory data
that cover 5 million people in the 47 prefectures of Japan. The location data are
collected through smartphone apps that have a built-in module provided by Blog-
watcher Inc. under user’s consent. Any personally identifiable information were
not collected. Data attributes are anonymized ID, timestamp, longitude, latitude,
accuracy, OS type. The raw data file of one month is approximately 1TB in csv
format, and contains around 180 GPS records per day per user. After data clean-
ing and trip segmentation, each ID has average 10 GPS records corresponding
to either origin location or destination location. We select 2020/1/1/–2021/2/28
(425 days) as the target time period. Correspondingly, we collect COVID-19
infection number of each prefecture in the same time period. To check the repre-
sentativeness of our GPS data, we further compare the population proportion of

Countrywide OD Matrix Prediction for COVID-19 329

each prefecture with Census data and obtain R
2 ≥ 0.8. According to Definition

1–3, OD transition data among 47 prefectures are stored as a (425, 47, 47) tensor
and COVID19 infection data are stored as a (425, 47) tensor.

6.2 Setting

We make natural logarithm of the original OD tensor to have a relatively neat
distribution. We split the data with ratio 6.4:1.6:2 to get train/validation/test
datasets respectively. Adam is employed as the optimizer, where the batch size
set to 16 and the learning rate to 0.0001. The training algorithm would either be
early-stopped if the validation error converged within 20 epochs or be stopped
after 200 epochs. The observation step α and prediction step β are both set
to 7, which means we use the past one week of observations to do the next
one week prediction. PyTorch was used to implement our proposed model. The
experiments are performed on a GPU server with four 1080Ti graphics cards.
Two layers of ODCRU are respectively used to construct the encoder and decoder
of our proposed ODCRN. In each ODCRU, the size of the hidden state is set
to 32. Finally, we evaluate the overall performance on the multi-step OD matrix
prediction using three metrics: MSE (Mean Square Error), RMSE (Root Mean
Square Error), MAE (Mean Absolute Error).

6.3 Evaluation on OD Matrix Prediction

We implement four classes of baselines to compare and evaluate our proposed
model on the OD matrix prediction task, including:

Naive Forecasting Methods: (1) MonthlyAverage. We take the average
of past 28 days of OD matrices as the prediction. (2) CopyLastWeek. We
directly copy the OD matrix from last week (recent 7 days) as the prediction.

Video-Like Predictive Models: (3) ST-ResNet [39]. ST-ResNet is proposed
to predict crowd flow of each region in a city. This model merges the time and
flow dimensions together and uses three branches of CNN network to extract the
seasonality of the data. (4) PCRN [42]. PCRN is built based on ConvGRU to
take both recent observations and periodic weekly/daily patterns into account.

Graph-based Spatio-Temporal Models: (5) ST-GCN [37]. ST-GCN is
one of the earliest models that integrate temporal convolution (TCN) and graph
convolution (GCN) to do spatiotemporal modeling. (6) DCRNN [24]. DCRNN
developed a new type of GCN called diffusion convolution and embedded it into
GRU to perform recurrent graph convolution. (7) Graph WaveNet [33]. Graph
WaveNet is also based on TCN and GCN, but it proposes an adaptive/learnable
graph to replace the static adjacency graph.

OD Matrix Prediction Models: (8) GEML [32]. The origin-destination
matrix prediction model is a state-of-the-art graph-based transition prediction
model that utilizes graph embedding and periodic-skip LSTM to predict the
OD matrix. (9) CSTN [26]. CSTN is a grid-based model for taxi OD matrix

330 R. Jiang et al.

Table 1. Comparison of overall performance between four classes of baselines and
proposed ODCRN on multi-step origin-destination matrix prediction task in power on
natural exponential function

Model MSE RMSE MAE

MonthlyAverage 0.1915 0.4376 0.3000

CopyLastWeek 0.2630 0.5128 0.3191

STResNet [39] 0.1648 0.4060 0.2822

PCRN [42] 0.1636 0.4044 0.2864

STGCN [37] 0.1656 0.4070 0.2910

DCRNN [24] 0.1682 0.4102 0.2954

Graph WaveNet [33] 0.1632 0.4040 0.2887

GEML [32] 0.1606 0.4008 0.2806

CSTN [26] 0.1608 0.4010 0.2857

MPGCN [29] 0.1609 0.4011 0.2859

ODCRN (w/o DGC) 0.1585 0.3982 0.2820

ODCRN 0.1558 0.3947 0.2802

prediction, where the OD matrix and DO matrix are respectively modeled by
two branches of euclidean CNNs and then fused together. (10) MPGCN [29].
MPGCN applied 2DGCN to multiple graphs including adjacency graph, POI
similarity graph, and correlation graph to predict the OD matrix.

Overall Performance: In Table 1, we compare the overall performance between
the adopted four classes of baselines and proposed ODCRN on the multi-step
OD matrix prediction task. Overall, deep learning based approaches as a group

Fig. 3. Comparison of stepwise performance between deep learning based models on
multi-step origin-destination matrix prediction task

Countrywide OD Matrix Prediction for COVID-19 331

outperforms two naive forecasting methods to a great extent. The experimental
results also show that the difference between video-like and graph-based predic-
tive models are not significant. This phenomenon might be explained by the
way we define the static graph, for which we employ adjacency matrix that only
accounts for local dependency. In addition, OD matrix prediction oriented mod-
els demonstrate superior performance compared with regular graph-based meth-
ods. Our proposed ODCRN model, by simultaneously capturing the dynamic
two-sided spatial and temporal dependency, reaches the best performance in
all metrics. Besides, Fig. 3 illustrates the comparison of stepwise performance
between all deep learning based models. Generally, the prediction accuracy drops
as the forecasting horizon increases. Compared with other models, ODCRN turns
out to be less prone to extreme values and more stable and consistent throughout
the whole-week prediction period.

6.4 Evaluation on COVID-19 Simulation

With the predicted OD matrices, we use the OD matrix based SEIR model
Eq. (9)–(12) to forecast the COVID-19 infection numbers from 2020/12/12 to
2021/1/6 (four weeks). The epidemic parameter B is estimated with the COVID-
19 data from 2020/11/12 to 2020/12/11. We demonstrate the performance over
two metropolitan areas as shown in Fig. 4. Kanto metropolitan area (Fig. 4-
Left) consists of four prefectures, Tokyo, Chiba, Kanagawa, and Saitama. Kansai
metropolitan area (Fig. 4-Right) consists of three prefectures, Osaka, Kyoto, and
Hyogo. These two areas respectively containing the biggest two cities of Japan,
namely Tokyo and Osaka, have extremely high population density, that results
in a severe epidemic situation during COVID-19. Japanese government specially
lifted The State of Emergency for these two areas. We plot the time-series ground-
truth and prediction number with solid line and dotted line respectively as Fig. 4,
through which we can see that our model generally achieves a satisfactory per-
formance and behaves rather robust for the first three weeks. However, since the

Fig. 4. OD matrix based COVID-19 prediction for Kanto and Kansai area.

332 R. Jiang et al.

epidemic situation in both Kanto and Kansai area was changing very rapidly,
the pre-estimated time-varying B could not remain effective for the fourth week.

7 Conclusion

In the worldwide COVID-19 emergency, human mobility has been taken as a
significant factor for the epidemic spread. In this study, we model countrywide
human mobility with origin-destination transition matrix and apply it to fore-
cast the COVID-19 infection numbers for all of the prefectures in Japan. For
multi-step Origin-Destination matrix prediction, we present a novel deep learn-
ing model called Origin-Destination Convolutional Recurrent Network (ODCRN)
with encoder-decoder structure. It can perform graph convolution along the Ori-
gin axis and the Destination axis to simultaneously capture the two-sided spa-
tial dependency in Origin-Destination matrix. Then we extend the classic SEIR
model to OD matrix based epidemic model to do the multi-region infection pre-
diction. The evaluation results demonstrate the high reliability and applicability
of our model for COVID-19 scenario. The code of our model has been uploaded
to github https://github.com/deepkashiwa20/ODCRN.git.

References

1. https://qianxi.baidu.com/
2. https://en.wikipedia.org/wiki/Compartmental models in epidemiology/The SIR

model
3. Bai, L., Yao, L., Kanhere, S., Wang, X., Sheng, Q., et al.: STG2Seq: spatial-

temporal graph to sequence model for multi-step passenger demand forecasting.
In: IJCAI, pp. 1981–1987 (2019)

4. Bertuzzo, E., et al.: The geography of COVID-19 spread in Italy and implications
for the relaxation of confinement measures. Nat. Commun. 11(1), 1–11 (2020)

5. Bruna, J., Zaremba, W., Szlam, A., Lecun, Y.: Spectral networks and locally con-
nected networks on graphs. In: International Conference on Learning Representa-
tions (2014)

6. Chang, S., et al.: Mobility network models of COVID-19 explain inequities and
inform reopening. Nature 589(7840), 82–87 (2021)

7. Chinazzi, M., et al.: The effect of travel restrictions on the spread of the 2019 novel
coronavirus (COVID-19) outbreak. Science 368(6489), 395–400 (2020)

8. Della Rossa, F., et al.: A network model of Italy shows that intermittent regional
strategies can alleviate the COVID-19 epidemic. Nat. Commun. 11(1), 1–9 (2020)

9. Diao, Z., Wang, X., Zhang, D., Liu, Y., Xie, K., He, S.: Dynamic spatial-temporal
graph convolutional neural networks for traffic forecasting. In: Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 33, pp. 890–897 (2019)

10. Feng, J., et al.: DeepMove: predicting human mobility with attentional recurrent
networks. In: Proceedings of the 2018 World Wide Web Conference, pp. 1459–1468.
International World Wide Web Conferences Steering Committee (2018)

11. Gao, Q., Zhou, F., Trajcevski, G., Zhang, K., Zhong, T., Zhang, F.: Predicting
human mobility via variational attention. In: The World Wide Web Conference,
pp. 2750–2756. ACM (2019)

https://github.com/deepkashiwa20/ODCRN.git
https://qianxi.baidu.com/
https://en.wikipedia.org/wiki/Compartmental_models_in_epidemiology/The_SIR_model
https://en.wikipedia.org/wiki/Compartmental_models_in_epidemiology/The_SIR_model

Countrywide OD Matrix Prediction for COVID-19 333

12. Gatto, M., et al.: Spread and dynamics of the COVID-19 epidemic in Italy: effects
of emergency containment measures. Proc. Natl. Acad. Sci. 117(19), 10484–10491
(2020)

13. Geng, X., et al.: Spatiotemporal multi-graph convolution network for ride-hailing
demand forecasting. In: 2019 AAAI Conference on Artificial Intelligence (AAAI
2019) (2019)

14. Guo, S., Lin, Y., Feng, N., Song, C., Wan, H.: Attention based spatial-temporal
graph convolutional networks for traffic flow forecasting. In: Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 33, pp. 922–929 (2019)

15. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large
graphs. In: Advances in Neural Information Processing Systems, pp. 1024–1034
(2017)

16. Hoang, M.X., Zheng, Y., Singh, A.K.: FCCF: forecasting citywide crowd flows
based on big data. In: Proceedings of the 24th ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems, pp. 1–10 (2016)

17. Hu, J., Yang, B., Guo, C., Jensen, C.S., Xiong, H.: Stochastic origin-destination
matrix forecasting using dual-stage graph convolutional, recurrent neural networks.
In: 2020 IEEE 36th International Conference on Data Engineering (ICDE), pp.
1417–1428. IEEE (2020)

18. Jiang, R., et al.: Deep ROI-based modeling for urban human mobility prediction.
Proc. ACM Interact. Mob. Wearable Ubiquit. Technol. 2(1), 1–29 (2018)

19. Jiang, R., et al.: DeepUrbanMomentum: an online deep-learning system for short-
term urban mobility prediction. In: AAAI, pp. 784–791 (2018)

20. Jiang, R., et al.: DeepUrbanEvent: a system for predicting citywide crowd dynamics
at big events. In: Proceedings of the 25th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, pp. 2114–2122. ACM (2019)

21. Kraemer, M.U., et al.: The effect of human mobility and control measures on the
COVID-19 epidemic in china. Science 368(6490), 493–497 (2020)

22. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

23. Li, R., et al.: Substantial undocumented infection facilitates the rapid dissemina-
tion of novel coronavirus (SARS-CoV-2). Science 368(6490), 489–493 (2020)

24. Li, Y., Yu, R., Shahabi, C., Liu, Y.: Diffusion convolutional recurrent neural net-
work: data-driven traffic forecasting. In: International Conference on Learning Rep-
resentations (2018)

25. Lin, Z., Feng, J., Lu, Z., Li, Y., Jin, D.: DeepSTN+: context-aware spatial-temporal
neural network for crowd flow prediction in metropolis. In: Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 33, pp. 1020–1027 (2019)

26. Liu, L., Qiu, Z., Li, G., Wang, Q., Ouyang, W., Lin, L.: Contextualized spatial-
temporal network for taxi origin-destination demand prediction. IEEE Trans. Intell.
Transp. Syst. 20(10), 3875–3887 (2019)

27. Liu, Q., Wu, S., Wang, L., Tan, T.: Predicting the next location: a recurrent model
with spatial and temporal contexts. In: Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 30 (2016)

28. Monti, F., Bronstein, M., Bresson, X.: Geometric matrix completion with recur-
rent multi-graph neural networks. In: Advances in Neural Information Processing
Systems, pp. 3697–3707 (2017)

29. Shi, H., et al.: Predicting origin-destination flow via multi-perspective graph con-
volutional network. In: 2020 IEEE 36th International Conference on Data Engi-
neering (ICDE), pp. 1818–1821. IEEE (2020)

334 R. Jiang et al.

30. Sun, J., Zhang, J., Li, Q., Yi, X., Liang, Y., Zheng, Y.: Predicting citywide crowd
flows in irregular regions using multi-view graph convolutional networks. IEEE
Trans. Knowl. Data Eng. (2020)

31. Wang, D., Cao, W., Li, J., Ye, J.: DeepSD: supply-demand prediction for online
car-hailing services using deep neural networks. In: 2017 IEEE 33rd International
Conference on Data Engineering (ICDE), pp. 243–254. IEEE (2017)

32. Wang, Y., Yin, H., Chen, H., Wo, T., Xu, J., Zheng, K.: Origin-destination matrix
prediction via graph convolution: a new perspective of passenger demand modeling.
In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pp. 1227–1235 (2019)

33. Wu, Z., Pan, S., Long, G., Jiang, J., Zhang, C.: Graph WaveNet for deep spatial-
temporal graph modeling. In: IJCAI, pp. 1907–1913 (2019)

34. Xingjian, S., Chen, Z., Wang, H., Yeung, D.Y., Wong, W.K., Woo, W.C.: Convo-
lutional LSTM network: a machine learning approach for precipitation nowcasting.
In: Advances in Neural Information Processing Systems, pp. 802–810 (2015)

35. Yao, H., et al.: Deep multi-view spatial-temporal network for taxi demand pre-
diction. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32
(2018)

36. Ye, J., Sun, L., Du, B., Fu, Y., Tong, X., Xiong, H.: Co-prediction of multiple trans-
portation demands based on deep spatio-temporal neural network. In: Proceedings
of the 25th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, pp. 305–313 (2019)

37. Yu, B., Yin, H., Zhu, Z.: Spatio-temporal graph convolutional networks: a deep
learning framework for traffic forecasting. In: Proceedings of the 27th International
Joint Conference on Artificial Intelligence, pp. 3634–3640. AAAI Press (2018)

38. Yuan, Z., Zhou, X., Yang, T.: Hetero-ConvLSTM: a deep learning approach to
traffic accident prediction on heterogeneous spatio-temporal data. In: Proceedings
of the 24th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, pp. 984–992. ACM (2018)

39. Zhang, J., Zheng, Y., Qi, D.: Deep spatio-temporal residual networks for citywide
crowd flows prediction. In: Proceedings of the AAAI Conference on Artificial Intel-
ligence, vol. 31 (2017)

40. Zhang, J., Zheng, Y., Sun, J., Qi, D.: Flow prediction in spatio-temporal networks
based on multitask deep learning. IEEE Trans. Knowl. Data Eng. 32(3), 468–478
(2019)

41. Zhang, Q., Chang, J., Meng, G., Xiang, S., Pan, C.: Spatio-temporal graph struc-
ture learning for traffic forecasting. In: Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 34, pp. 1177–1185 (2020)

42. Zonoozi, A., Kim, J.J., Li, X.L., Cong, G.: Periodic-CRN: a convolutional recurrent
model for crowd density prediction with recurring periodic patterns. In: IJCAI, pp.
3732–3738 (2018)

Single Model for Influenza Forecasting
of Multiple Countries by Multi-task

Learning

Taichi Murayama(B) , Shoko Wakamiya , and Eiji Aramaki

Nara Institute of Science and Technology (NAIST), Ikoma, Japan
{taichi.murayama.mk1,wakamiya,aramaki}@is.naist.jp

Abstract. The accurate forecasting of infectious epidemic diseases
such as influenza is a crucial task undertaken by medical institutions.
Although numerous flu forecasting methods and models based mainly on
historical flu activity data and online user-generated contents have been
proposed in previous studies, no flu forecasting model targeting multiple
countries using two types of data exists at present. Our paper leverages
multi-task learning to tackle the challenge of building one flu forecast-
ing model targeting multiple countries; each country as each task. Also,
to develop the flu prediction model with higher performance, we solved
two issues; finding suitable search queries, which are part of the user-
generated contents, and how to leverage search queries efficiently in the
model creation. For the first issue, we propose the transfer approaches
from English to other languages. For the second issue, we propose a
novel flu forecasting model that takes advantage of search queries using
an attention mechanism and extend the model to a multi-task model for
multiple countries’ flu forecasts. Experiments on forecasting flu epidemics
in five countries demonstrate that our model significantly improved the
performance by leveraging the search queries and multi-task learning
compared to the baselines.

Keywords: Infectious disease · Influenza · User-generated content ·
Time-series prediction · Attention · Multi-task learning

1 Introduction

The control of infectious diseases is an important task for public health authori-
ties as well as all industry stakeholders worldwide. Various infectious diseases in
addition to COVID-19, which has recently attracted global attention, have had
a significant impact on global health and the economy. The forecasting of infec-
tious disease epidemics is necessary to execute appropriate measures for their
control. In particular, influenza epidemics, a representative class of severe infec-
tious diseases, leads to 290,000 to 650,000 deaths annually [25]. Such instances
have motivated public health authorities to forecast the consequences of influenza
in different countries.
c© Springer Nature Switzerland AG 2021
Y. Dong et al. (Eds.): ECML PKDD 2021, LNAI 12978, pp. 335–350, 2021.
https://doi.org/10.1007/978-3-030-86514-6_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86514-6_21&domain=pdf
http://orcid.org/0000-0003-1148-711X
http://orcid.org/0000-0002-9371-1340
http://orcid.org/0000-0003-0201-3609
https://doi.org/10.1007/978-3-030-86514-6_21

336 T. Murayama et al.

Many studies relating to flu forecasting models have been conducted for a long
time. In recent years, besides models by leveraging historical flu activity, several
models have been proposed to forecast the flu volume by exploiting online user-
generated contents (UGCs) such as search query data and social media posts to
capture human movements as social sensors [4,10,22]. The majority of existing
flu forecasting models by leveraging UGCs and historical flu activity data focus
on one country or each area in one country. However, we assume that it is feasible
to create a single flu forecasting model targeting multiple countries because the
flu time series in each country exhibit strong seasonality and therefore, hold
strong similarity. For example, Pearson correlations of the flu time series in the
five countries (US, JP, UK, AU and FR) with different cultures, locations, and
languages have a moderate correlation with one another (almost all correlations
are over 0.6, refer to Appendix A.1.) Moreover, in terms of search queries, which
are a representative resource, it has been reported that the user search behaviors
for health themes in different countries are similar [3,18,29]; for example, similar
search queries are used when looking for a specific disease. Thus, it is possible
that a single model can achieve sufficient flu forecasting for different countries.
Also, the training of a single model using various flu-related data can capture
the nature of flu epidemics in each country by escaping from overfitting, which
is caused by a lesser degree of historical data in one country for training [14,15].

Our study challenges flu forecasting for various countries with one model as
a multi-task problem, which enables two or more tasks to be learned jointly and
shares information between the respective tasks. In other words, we treat each
country as each task within the framework of multi-task learning. Besides, for
the development of a flu prediction model with higher performance, we solve two
issues; how to find suitable search queries and how to leverage the search queries
in the model construction. We address these issues in the following parts of the
paper.

The first issue is how to select queries and keywords in search engines as a
resource for flu forecasting. Many methods using UGCs for forecasting the flu vol-
ume have been developed since the emergence of Google Flu [10], which demon-
strated that the number of search queries capturing human behaviors was a good
resource for forecasting. Certain studies [12,27,28,32] have depended on “Google
Correlate,” which returns English search queries that are the most highly corre-
lated to an input time series, for the selection of suitable search queries. However,
this approach cannot be used in many areas (non-English-speaking areas) and
it has already been unavailable since December 2019. Therefore, we discuss a
method for selecting search queries in languages other than English to create
a flu forecasting model for multiple countries. In particular, we examine two
transfer methods of search queries from English to other languages (Japanese
and French): the translation-based method and the combination method of word
alignment and time-series correlation (Sect. 3).

1 Our appendix file is uploaded to https://hkefka385.github.io/project/file/PKDD
2021 Appendix.pdf.

https://hkefka385.github.io/project/file/PKDD2021_Appendix.pdf
https://hkefka385.github.io/project/file/PKDD2021_Appendix.pdf

Single Model for Influenza Forecasting of Multiple Countries 337

The second issue is how to effectively incorporate search queries into a flu
forecasting model. Two types of data have been applied extensively: histori-
cal flu activity data involving the previous year’s data (known as “historical
ILI data”) [23,24,26] and online UGC data [4,31,32], which mainly consist of
search query data. A representative example of simultaneous inputs is the ARGO
model [27], which is based on linear regression using the input data of the Google
search time series and the historical ILI data. The ARGO has exhibited superior
results for flu forecasting in the US [17]. However, it has recently been reported
that the effect of the search query data in a forecast model is small, and histor-
ical ILI data is sufficient as input [1]. According to these reports, there remains
room for considering how to effectively integrate the search query data, whereas
these data have improved the forecasting performance in certain cases. That is,
the simple methods of handling these two resources are insufficient for improving
forecasting models. Furthermore, the overall mutual effect between the historical
ILI data and search query data is difficult to capture effectively using existing
models, which makes it difficult to extract this effect and apply it to tasks. To
tackle this issue, we propose a model that combines inputs by considering the
characteristics of input data. This approach is based on two aspects: the flu time
series exhibits strong seasonality and search query data are useful features for
forecasting non-seasonal parts. Specifically, the search query data are used to
forecast the deseasonalized component of flu data by leveraging the attention
mechanism [5], which is useful for considering the feature importance (Sect. 4.2).
Subsequently, we use the model addressing the task as a base and extend it to
the flu forecasting model for multiple countries (Sect. 4.3).

Similar to ours, Zou et al. [31] proposed a multi-task model based on linear
and Gaussian regression to forecast the flu volume in the following two problem
settings: several states in the US, and two countries, namely the US and England.
Our multi-task model further develops the above in two aspects: we tackle flu
forecasting in five countries, each of which differs in terms of the area or language,
and we apply not a simple model such as a statistical model, but our novel neural
network-based model for multi-task learning to achieve higher accuracy and long-
term forecasting. Other related studies are discussed in detail in Appendix B.

In summary, we aim to construct a flu forecasting model targeting multiple
countries by leveraging multi-task learning while solving two issues as below.
First, to find suitable search queries, we examine the transfer methods of the
search queries from English to other languages. Second, we effectively incorporate
the search query data into the model, and propose a novel forecasting model
that considers the characteristics of the input data, historical ILI data, and
search query data. The experiments demonstrate that the proposed models and
methods achieve the best accuracy among comparative models for forecasting
flu epidemics in five countries.

2 Datasets

ILI Rates from Health Agencies. We obtained weekly ILI rates, represent-
ing the number of ILI cases per 100,000 people in a population, as a measure

338 T. Murayama et al.

of ILI activity for the US, Japan, Australia, England, and France from their
established syndromic surveillance systems, namely the Centers for Disease Con-
trol and Prevention2, the National Institute of Infectious Diseases3, Australian
Sentinel Practices Research Network4, Public Health England5, and GPs Sen-
tinelles Network6, respectively. The England data span from 2013/41st week to
2020/29th week, whereas the others span from 2013/26th week to 2020/29th
week. We denote these countries using the corresponding country codes, namely
US, JP, AU, FR, and UK.

Search Query Data. Time series of weekly search query frequencies were
retrieved through Google Trends7 as the UGC data. The frequency represents the
weekly search activity of the queries within a specific region. The two methods
for selecting search queries are described in Sect. 3. The time series of the Google
Trends data in the training period were normalized to have a minimum value of
zero and maximum value of one (min-max normalization). The data span was
the same as that of the ILI rate data.

3 Methods for Finding Search Queries

We proposed two transfer methods, namely the translation-based and word-
alignment and temporal correlation based (WT-based) methods, to explore mul-
tilingual search queries using a list of English search queries, which were created
in previous research [31] and placed in a URL8. As input for the proposed model,
we selected the top L English search queries for the US, AU, and UK based on the
list, and selected each search query in JP and FR corresponding to the English
search query based on these one-to-one query mapping methods. The usefulness
of mapping from English to other languages is described in [18,29,32]. These
studies pointed out that the volume movement in the search queries is similar
among countries with certain health conditions.

Translation-Based Method: This is the simplest transfer method for the
conversion of English into other languages. To select other languages’ queries,
we translated English search queries into those of the target language. We used
Google Translate9 for the translation-based method. For Japanese morphemes,
which are not separated by spaces, we divided each morpheme and inserted
spaces between them.

2 https://www.cdc.gov/.
3 https://www.niid.go.jp/niid/ja/.
4 https://aspren.dmac.adelaide.edu.au/.
5 https://www.gov.uk/government/organisations/public-health-england.
6 https://www.sentiweb.fr/.
7 https://trends.google.com.
8 https://github.com/binzou-ucl/google-flu-mtl.
9 https://translate.google.com.

https://www.cdc.gov/
https://www.niid.go.jp/niid/ja/
https://aspren.dmac.adelaide.edu.au/
https://www.gov.uk/government/organisations/public-health-england
https://www.sentiweb.fr/
https://trends.google.com
https://github.com/binzou-ucl/google-flu-mtl
https://translate.google.com

Single Model for Influenza Forecasting of Multiple Countries 339

WT-Based Method: It is possible that the translation-based approach, which
simply maps the queries to the target language, will not capture suitable queries.
For example, in Japanese, the abbreviation of influenza, “flu,” is translated into
“I-N-FU-LU-E-N-ZA” and is not translated into the Japanese abbreviation of
influenza, “I-N-FU-LU.” Moreover, it is difficult to select the suitable ortho-
graphical variant, the three categories of which used by the three Japanese writ-
ing scripts are applied (kanji-script, hiragana-script, and katakana-script). We
solved these problems using the combination WT-based method, which consid-
ers the semantic similarity to the English search queries and temporal similarity
to the historical ILI data.

Word alignment is one method that is used for creating cross-lingual word
embeddings to compute word similarities in different languages, and is trained
using sources of monolingual text with a smaller cross-lingual corpus of aligned
text [19]. This approach can solve the above problems. For the word alignment,
we used the method to learn cross-lingual word embeddings proposed by Zhou et
al. [30]. We needed to prepare word embeddings based on the monolingual text
for English and the target languages (Japanese and French). For this purpose,
we obtained the word embedding dataset [11] learned by fasttext from Wikipedia
corpora [7]. Thereafter, we applied these word embeddings to the word alignment
method. To search for words with similar meanings, we used cosine similarity to
map each word in the search query, except for prepositions and articles, to the k
most similar words in other languages using the common word embedding space
created by the word alignment. The similarity score was represented by Θw.

Temporal correlation is a method for finding a better search query based on
the similarity of the time series of the search queries to the time series of the
historical ILI data for the forecast. It was calculated by the Pearson correlation
between the time series of the search query, for which candidates were provided
by the word alignment, and the time series of the historical ILI in each country.
The score was represented by Θt.

The WT-based method selects the search query with the best score in the
equation Θw + Θt corresponding to an English search query. This is inspired
by [32], which used a similar method of selecting search queries for creating a
transfer model of flu forecasts. Our research differs from the previous research
in terms of the motivation whereby we discuss how to find better search queries
for flu forecasts.

4 Building a Flu Forecasting Model for Multiple
Countries

4.1 Problem Formulation

Our aim is to forecast the future ILI rates in various countries. We formulate this
problem as a supervised machine learning task. Let X = {xt−N+1, ..., xt−1, xt} ∈
R

N be a time series of historical ILI data containing N weekly data points.
Let Q = {qt−N+1, ..., qt−1, qt} ∈ R

N×L be the search query data containing N

340 T. Murayama et al.

Fig. 1. Architecture of proposed model. Historical ILI data are divided into sea-
sonalized and deseasonalized components. We apply the deseasonalized part to the
encoder—decoder model comprising GRUs with an attention mechanism considering
search queries.

Fig. 2. Architecture of proposed model expanded to multi-task learning. The red boxes
indicate the share of different parameters in the model for each country. The blue boxes
indicate the same parameters. Furthermore, country embedding is introduced as the
initial latent state of the GRUs. (Color figure online)

weekly data points and L queries. Our model forecasts the true S-step-ahead
values Y = {xt+1, ..., xt+S} ∈ R

S . We learn a function f : {X,Q} → Y that
maximizes the prediction accuracy in each country.

4.2 Model Structure

Our model is motivated by the idea that search query data are useful features
for forecasting non-seasonal parts of flu data. This concept originates from a pre-
vious study [20], which reported that the flu forecasting accuracy is improved
by splitting the forecasting part from the historical ILI data and search query
data. The model architecture is presented in Fig. 1. For the data preparation,
we divide the historical ILI data into the seasonalized and deseasonalized com-
ponents. Under the assumption that the seasonalized component has a constant
frequency in the future, we forecast the deseasonalized component in the future.
For the forecasting, we apply the encoder—decoder model considering the search
query data using an attention mechanism [5].

Flu Decomposition: We use the seasonal-trend decomposition using LOESS
(STL) method [9], which considers the following time-series model with the trend

Single Model for Influenza Forecasting of Multiple Countries 341

and seasonality: yt = τt + st + rt, t = 1, 2, ..., N, where yt denotes the historical
ILI data at time t, τt is the trend in the time series, st is the seasonal signal
with period T , and rt is the reminder signal. The seasonal signal describes the
repeated patterns in the specified period T , which remain constant over time.
The trend describes the continuous increase or decrease. The detailed decompo-
sition algorithm is outlined in [9].

In our method, the historical ILI data are divided into seasonalized and desea-
sonalized components. The deseasonalized component Xτ represents the residual
that is obtained by subtracting the seasonalized part Xs from the historical ILI
data X; Xτ = X − Xs. Our neural network-based architecture is developed to
forecast the future value of a deseasonalized component. It is assumed that the
seasonalized component Xs exhibits a constant pattern in the future. Subse-
quently, the flu forecast value Y is output by simply adding the value based on
the pattern of the seasonalized component to the forecast value of the deseason-
alized component using our model.

Encoder–decoder Model of Deseasonalized Component: Our model
employs an encoder—decoder architecture to forecast more than two weeks
ahead. This architecture is composed of gated recurrent units (GRUs) [8], repre-
senting a simple and powerful variant of the RNN, and an attention mechanism,
which indicates that the neural network pays close attention to parts of the data
when performing tasks. The GRUs are used to capture the hidden representa-
tions of the deseasonalized component of the historical ILI data Xτ and search
query data Q, and the attention is used to help our model to focus on salient
changes in the time series in each query regarding the historical ILI data. The
attention mechanism computes the importance of each query with respect to the
forecast and aids in making our model transparent and interpretable.

To capture the hidden representation of the deseasonalized component of the
historical ILI data Xτ as the encoder, the GRUs use the input data Xτ

t and
previous hidden representation Ht−1, as follows:

rt = σ (UrXτ
t + WrHt−1) , ft = tanh (UhXτ

t + Ht−1 � Whrt) ,

zt = σ (UzXτ
t + WzHt−1) , Ht = (1 − zt) � Ht−1 + zt � ft,

(1)

where zt and rt represent the reset and update gates at time t, respectively. In
this case, Uz, Ur, Uh ∈ R

1×M , and Wz,Wr,Wh ∈ R
M×M are parameters for the

respective gates, whereas M is the GRU output dimension. We combine Eq. (1)
as follows:

Hτ
i = GRU (Xτ

i) , i ∈ {t − N + 1, ..., t} , (2)

where Hτ
t ∈ R

1×M , which is the last GRU hidden state, is used as the hidden
representation. The search query data also leverage the GRU, as is the case with
the historical ILI data.

Hq
i,j = GRU

(
Qi,j

)
, i ∈ {t − N + 1, ..., t} , j ∈ {1, ..., L} , (3)

342 T. Murayama et al.

where Hq
t ∈ R

L×M , which is the last GRU hidden state, is used as the hidden
representation and L is the number of queries.

The combination representation by the attention mechanism is obtained from
the hidden representations Hτ

t and Hq
t . In general, an attention mechanism can

be defined as mapping a query q and a set of key–value pairs {k, v} to an output
o. For each position i, we compute the attention weighting as the inner product
between the query qi and key ki at every position. For the application of our
model, we treat the hidden representation of the deseasonalized component Hτ

t

as the query, and the hidden representation of the search queries Hq
t as the key

and value. Position i indicates the location of each search query representation
(i ∈ {1, ..., L}). The query, key, and value representations are calculated from
each representation through linear projection, as follows:

Sq = WqHτ
t , Sk = WkHq

t , Sv = WvHq
t , (4)

where Sq ∈ R
1×M indicates the query representation, and Sk,Sv ∈ R

L×M

indicate the key and value representations, respectively. Following the linear
projection, the dot-product attention computes the importance of each query
representation and the attention representation Hτq; Hτq = Softmax(SqSk)Sv,
where Softmax(SqSk) represents the importance of each query and the dimen-
sion of Hτq is M . Thereafter, we apply the feature, concatenating the attention
representation Hτq and hidden representation of the deseasonalized component
Hτ

t , to a multi-layer perceptron (MLP); Henc = MLP([Hτ
t · Hτq]), where the

dimension of Henc is M .
For the inference of the deseasonalized value of the flu data in the forecast

{t + 1, ..., t + S}, we apply Henc to the GRU as the decoder and MLP, which
constitute two layers.

{
Hdec

i = GRU (Xτ
t ,Henc) , i = t + 1

Hdec
i = GRU

(
Oschedule

i−1

)
, i ∈ {t + 2, ..., t + S} (5)

Ôi = MLP (Hdec
i), i ∈ {t + 1, ..., t + S} , (6)

where Ôi, which is the decoder output, represents the forecast of the desea-
sonalized value at time i. Moreover, Oschedule

i−1 refers to the value to be applied
the scheduled sampling [6], which is a system of feeding the model with either
ground truth values with a probability of ε or forecasts from the model with a
probability of 1− ε. This resolves the problem that the discrepancy between the
input distributions of the training and testing can lead to poor performance, as
the ground truth values are replaced by forecast values generated by the model.

Finally, we can calculate the forecast of the flu volume Ŷi at time i by simply
adding the forecast of the deseasonalized value Ôi to the seasonalized value Xs

i ;
Ŷi = Ôi + Xs

i , i ∈ {t + 1, ..., t + S}.

Training: For the model training, we need to determine the true value of the
deseasonalized component Oi. This is achieved by a simple method, namely

Single Model for Influenza Forecasting of Multiple Countries 343

subtracting the seasonal part Xs
i that is assumed to have a constant frequency

in the future season from the true flu volume Yi. We use the mean squared error
(MSE) loss between the true value of the deseasonalized component O and the
forecast value Ô.

4.3 Extension to Multi-task Model

We extend the proposed model to possess the capability of multi-task learning
for flu forecasting in various countries. Our model aims to improve the expres-
sive ability by means of multi-task learning, which shares part of the learning
representations. The architecture of our multi-task model is presented in Fig. 2.
In Fig. 2, the components surrounded by blue share all the parameters of the
hidden features, whereas those surrounded by red have different parameters set
depending on the country. The GRUs in our model use the same parameters
for each task; in particular, parameters of Eqs. (1), (2), (3), and (5) are the
same. The attention and MLP for the final output are set as country-specific;
parameters of Eqs. (4) and (6) differ for each country.

Furthermore, we propose “country embedding” as the initial latent represen-
tation of two GRUs regarding the time series of the search queries and deseason-
alized component for the multi-task learning of the flu forecasting. The proposal
is based on the possibility of flexible modeling even in the shared representations
by changing the initial latent state depending on the forecast target. The coun-
try embedding is calculated as follows: Hcountry = MLP(Country id), where
Hcountry ∈ R

M indicates the initial hidden representation of the GRUs as the
input of Eqs. (2) and (3), and “Country id” is the value assigned according to
the country (e.g., the “Country id” of US is 1 and that of JP is 2). At each step
in the training process of the multi-task learning, we randomly select a country,
followed by a random training batch {Xcountry id,Qcountry id,Ycountry id}; that
is, we set one batch containing only the data of one country at a time. Our
experimental code is public in https://github.com/hkefka385/single-model-for-
influenza-forecasting

5 Experiments and Results

5.1 Experimental Settings

We forecasted the ILI rates in the five countries (US, JP, AU, FR, and UK)
using the proposed model. To validate the forecasting model, the proposed model
and other comparative models forecasted the ILI rates from weeks 1 to 5. We
assessed the forecasting performance using three year-long datasets including
three flu terms (2017/30th to 2018/29th weeks, 2018/30th to 2019/29th weeks,
and 2019/30th to 2020/29th weeks). We set 52 weeks (one year) as the valida-
tion period before the testing period, and we set more than three years from
the initial week of the ILI data to before the validation period as the train-
ing period. We decided to use the WT-based method to identify search queries

https://github.com/hkefka385/single-model-for-influenza-forecasting
https://github.com/hkefka385/single-model-for-influenza-forecasting

344 T. Murayama et al.

with all of the models, because the WT-based method is a better approach than
translation-based method. (Note that the comparison between the WT-based
and translation-based methods is examined in Sect. 6.3.) We set 52 weeks as N
and 5 weeks as S, which indicated the number of weeks ahead for the forecast.
Furthermore, we set 10 as L, which indicated the number of search queries in
the English list as input, and set 100 as k, which indicated the parameter of the
WT-based method. We subsequently selected the learning rate and hidden layer
sizes of GRU M as (0.001, 0.01, 0.1, 1.0) and (8, 16, 32, 64), respectively, in
the validation period. During training, all model parameters were updated in a
gradient-based manner following the Adam update rule [13]. We set the number
of epochs to 300 with early stopping.

We validated the proposed model in the experiments.

– Proposed w/o sq: The proposed model was trained using only the historical
ILI data of a target country.

– Proposed single: The proposed model was trained using the data of a target
country. The model was the same as that introduced in Sect. 4.2.

– Proposed multi2: The proposed model was trained using the data of two
target countries, namely the US and JP, for multi-task learning, as in the
model introduced in Sect. 4.3.

– Proposed multi5: The proposed model was trained using the data of five
target countries for multi-task learning.

5.2 Comparative Models

– GRU: The GRU model, one of the recurrent-based models, captures the
temporal dependencies in the data and preserves the back-propagated error
through the time and layers, referring to Eq. (1). It has been used successfully
in influenza forecasting [16]. We employed an encoder—decoder architecture
based on the GRU for the multi-step-ahead forecast. Two variations of the
GRU were used in the experiments: “GRU w/o sq” had only historical ILI
data, and “GRU” had historical ILI and search query data.

– ARGO: The ARGO model [27] is an autoregressive (AR) model with Google
search queries as exogenous variables. The simple architecture of this model
enables one-step-ahead forecast of the flu volume [2,17,21]. The model fails
to produce a multi-step-ahead forecast because it requires search query data
in advance of the week that we wish to forecast. The parameters and input
data are the same as those of the proposed model.

– Transformer: The Transformer is one of the most successful models in the
NLP. Thus far, the Transformer-based flu forecasting model has achieved the
highest accuracy [32].

– Two-stage: The Two-stage model [20], composed of long short-term model
and AR model, was developed inspired by a similar idea to ours, in that
the usefulness of the input data differs; historical ILI data and search query
data are useful for forecasting the seasonality and trend, respectively. For the
multi-step-ahead forecast, we extended the two-stage model to the encoder—
decoder architecture.

Single Model for Influenza Forecasting of Multiple Countries 345

– Multi-task Elastic Net (MTEN): The MTEN [31] was proposed as a
multi-task model for flu forecasting of US regional areas from search query
data. This model extends the standard elastic net model to a multi-task
version. We used the same search queries as those of the proposed model as
input. The model outputs a one-step-ahead forecast for the same reason as
that of the ARGO model.

– GRU multi: For the simple comparative method for multi-task, we make
one unified model on GRUs, which is trained on the aggregated data of five
countries. The model is the same setting as GRU, which is one of the com-
parative methods.

To compare the forecast performance levels of each model, we use two evalu-
ation metrics: the coefficient of determination R2 with a higher value indicating
better performance, and root mean squared error RMSE with a lower value
indicating better performance.

5.3 Results

The experimental results for US are presented in Table 1. (We examine the exper-
imental results of the other countries in Sect. 6.1, and the experimental results
for JP in detail are presented in Appendix C.) This result indicates that the
proposed model (particularly our multi-task model) outperformed most base-
line methods, confirming the benefits of the model architecture and multi-task
learning. GRU w/o sq and GRU were superior baseline models and achieved
approximately 0.8 to 0.9 for R2 in the one-week-ahead forecasts for each country
by capturing the temporal dependencies with the RNN architecture. Trans-
former, a state-of-the-art flu forecasting method, and Two-stage achieved rel-
atively better scores in the near-ahead forecasts (from 1-week to 3-week) than the
GRU-based models, but had almost the same scores in the far-ahead forecasts
(from 4-week to 5-week). These results indicate that it is not easy to improve
the accuracy of far-ahead forecasts. In contrast, the statistical model ARGO
achieved relatively lower accuracy than the deep learning models. We assume
that the deep learning-based models were more suitable for flu forecasting in
terms of obtaining far-ahead forecast architecture with ease and exhibiting rela-
tively higher accuracy than the statistical-based models, although the calculation
cost was high. Likewise, MTEN based on the statistical model and multi-task
learning had the same characteristics. It tended to exhibit lower accuracy than
the other models because its input was only search query data. GRU multi,
a comparative method for the validation of multi-task, had lower accuracy. It
shows the difficulty of forecasting with a single model without devising model
architecture and learning.

Compared to these models, the proposed models (Proposed single, Pro-
posed multi2, and Proposed multi5) achieved the best scores with respect to
the terms, metrics, and any-ahead forecasts. These results reveal that the archi-
tecture in the proposed model is useful for flu forecasting. Proposed single
achieved the best score among the models without multi-task learning in almost

346 T. Murayama et al.

Table 1. Model forecasting performances for US.

Term Model Multi Input 1-week 2-week 3-week 4-week 5-week

Historical Query RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2

GRU w/o sq � 0.797 0.841 0.925 0.787 1.033 0.734 1.103 0.697 1.150 0.671

Transformer � 0.509 0.917 0.673 0.860 0.903 0.811 1.005 0.744 1.221 0.641

*Proposed w/o sq � 0.392 0.961 0.599 0.905 0.819 0.832 0.984 0.758 1.109 0.695

GRU � � 0.783 0.849 0.905 0.791 1.025 0.741 1.097 0.705 1.138 0.654

2017/30th ARGO � � 0.405 0.954 — — — — — — — —

– Two-stage � � 0.450 0.938 0.667 0.879 0.849 0.825 0.977 0.752 1.405 0.527

2018/29th *Proposed single � � 0.323 0.973 0.558 0.922 0.770 0.849 0.947 0.776 1.078 0.711

MTEN � � 0.450 0.934 — — — — — — — —

GRU multi � � � 0.284 0.956 0.665 0.863 0.826 0.695 1.078 0.595 1.233 0.651

*Proposed multi2 � � � 0.276 0.981 0.550 0.924 0.768 0.853 0.925 0.787 1.038 0.732

*Proposed multi5 � � � 0.237 0.986 0.498 0.941 0.692 0.837 0.805 0.832 0.942 0.770

GRU w/o sq � 0.305 0.945 0.400 0.906 0.451 0.880 0.496 0.855 0.546 0.811

Transformer � 0.263 0.942 0.359 0.917 0.403 0.904 0.451 0.873 0.511 0.843

*Proposed w/o sq � 0.248 0.961 0.323 0.937 0.391 0.909 0.454 0.878 0.525 0.838

GRU � � 0.283 0.940 0.371 0.915 0.439 0.887 0.472 0.865 0.528 0.838

2018/30th ARGO � � 0.467 0.875 — — — — — — — —

– Two-stage � � 0.308 0.947 0.417 0.891 0.481 0.854 0.517 0.857 0.541 0.810

2019/29th *Proposed single � � 0.201 0.976 0.302 0.946 0.378 0.916 0.439 0.886 0.494 0.855

MTEN � � 0.429 0.915 — — — — — — — —

GRU multi � � � 0.383 0.910 0.448 0.888 0.603 0.725 0.739 0.689 0.820 0.644

*Proposed multi2 � � � 0.232 0.968 0.268 0.957 0.323 0.938 0.388 0.888 0.454 0.856

*Proposed multi5 � � � 0.255 0.963 0.296 0.941 0.369 0.915 0.404 0.877 0.499 0.843

GRU w/o sq � 0.698 0.882 0.910 0.807 1.096 0.713 1.153 0.683 1.167 0.648

Transformer � 0.659 0.892 0.919 0.807 1.099 0.712 1.154 0.680 1.218 0.652

*Proposed w/o sq � 0.538 0.932 0.838 0.837 1.084 0.725 1.171 0.683 1.241 0.605

GRU � � 0.705 0.870 0.925 0.791 1.108 0.702 1.165 0.681 1.176 0.620

2019/30th ARGO � � 0.984 0.758 — — — — — — — —

– Two-stage � � 0.602 0.918 0.924 0.817 1.081 0.726 1.231 0.609 1.224 0.590

2020/29th *Proposed single � � 0.469 0.949 0.694 0.881 0.809 0.846 0.863 0.824 0.918 0.799

MTEN � � 0.992 0.760 — — — — — — — —

GRU multi � � � 0.724 0.889 0.980 0.740 1.185 0.635 1.304 0.589 1.305 0.590

*Proposed multi2 � � � 0.409 0.961 0.641 0.904 0.770 0.861 0.840 0.833 0.910 0.802

*Proposed multi5 � � � 0.370 0.971 0.605 0.920 0.696 0.878 0.787 0.853 0.831 0.841

* indicates the variation in the proposed model. Bold indicates the best score in
each metric and each term.

all terms, in which it exhibited the best score in the near-ahead forecast, whereas
it had a lower score in the far-ahead forecast than the GRU-based models.

The high degree of the score improvement in Proposed multi2 and Pro-
posed multi5 compared to Proposed single demonstrated the usefulness of the
multi-task learning. In the near-ahead forecast, the multi-task learning effects
were sometimes not observed, whereas the scores of these models in the far-ahead
forecast were significantly improved. For example, in the term 2017 to 2018 in
US, the five-week-ahead forecast by Proposed multi5 achieved an improvement
of 0.136 points in the RMSE and 0.059 points in the R2 compared to Pro-
posed single. Using data from different countries for simultaneous training, the
model obtained the latent features of the time series of the ILI rates, thereby
improving the forecasting performance. The difference in the accuracy of the
model trained using the data of two countries (Proposed multi2) and that trained
using the data of five countries (Proposed multi5) was not large.

Single Model for Influenza Forecasting of Multiple Countries 347

Table 2. Forecasting performances of each model for ILI rates in JP, UK, AU, and
FR from 2017/30th week to 2018/29th week.

Country Model 1-week 2-week 3-week 4-week 5-week

RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2

JP GRU 3.412 0.939 4.019 0.923 5.223 0.915 5.982 0.826 6.164 0.813

Proposed single 2.517 0.964 3.218 0.944 3.688 0.934 4.898 0.884 5.822 0.836

GRU multi 3.261 0.944 3.901 0.882 5.072 0.820 6.552 0.776 6.752 0.756

Proposed multi5 2.429 0.970 2.878 0.951 3.411 0.941 4.057 0.920 4.423 0.905

UK GRU 1.900 0.910 2.639 0.809 2.738 0.794 2.783 0.787 3.185 0.722

Proposed single 1.794 0.912 2.591 0.816 2.959 0.770 2.901 0.741 3.100 0.729

GRU multi 6.080 0.757 8.751 0.629 9.764 0.538 10.546 0.461 10.797 0.435

Proposed multi5 1.510 0.935 2.199 0.873 2.675 0.808 2.709 0.783 2.992 0.745

AU GRU 1.754 0.939 2.085 0.914 2.430 0.884 2.739 0.852 3.122 0.807

Proposed single 1.764 0.938 2.131 0.922 2.480 0.883 2.683 0.859 3.058 0.816

GRU multi 2.458 0.933 3.099 0.876 4.080 0.821 4.674 0.765 5.018 0.728

Proposed multi5 1.650 0.942 1.999 0.928 2.391 0.899 2.592 0.879 2.794 0.849

FR GRU 0.283 0.868 0.427 0.675 0.521 0.517 0.565 0.434 0.587 0.391

Proposed single 0.266 0.874 0.413 0.696 0.507 0.542 0.551 0.461 0.560 0.443

GRU multi 0.377 0.883 0.500 0.601 0.791 0.333 0.945 0.170 1.180 0.067

Proposed multi5 0.234 0.904 0.375 0.751 0.452 0.611 0.527 0.511 0.552 0.466

Table 3. Comparison of forecasting performances of translation-based and WT-based
methods using Proposed single model in JP and FR from 2017/30th week to 2018/29th
week.

Country Method 1-week 2-week 3-week 4-week 5-week

RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2

JP Translation-based 2.492 0.964 3.307 0.939 3.770 0.929 4.800 0.880 5.976 0.828

WT-based 2.517 0.964 3.218 0.944 3.688 0.934 4.898 0.884 5.822 0.836

FR Translation-based 0.278 0.856 0.432 0.661 0.531 0.491 0.592 0.407 0.594 0.405

WT-based 0.266 0.874 0.413 0.696 0.507 0.542 0.551 0.461 0.560 0.443

6 Discussions

6.1 Multi-model Performance for Other Countries

Table 2 displays the forecast performances of four models (GRU, Pro-
posed single, GRU multi, and Proposed multi5) for the ILI rates in JP, UK, AU,
and FR from 2017/30th week to 2018/29th week. These results suggest that the
multi-task learning model Proposed multi5 achieved the best score in almost all
ahead forecasts, as well as the flu forecasting result in US. Multi-task learning
is not limited to a number of countries, but can be applied to various countries
with different languages and environments, and the experimental results revealed
that the multi-task method improved the forecasting performance.

6.2 Comparison of Models Without and with Search Queries

Recent research relating to flu forecasts [1] claimed that the effect of search
queries is small. To tackle this problem, our research presents a model with an

348 T. Murayama et al.

attention mechanism that effectively considers search queries. To examine the
search queries’ effectiveness, we validated the degree of improvement of the two
variation models, namely the GRU-based (GRU w/o sq and GRU) and proposed
(Proposed w/o sq and Proposed single) models, without and with search queries.

The experimental results for the flu forecast in US (Table 1) indicate that
the change from GRU w/o sq to GRU resulted in an average improvement of
0.007 points in the RMSE, and of 0.001 points in the R2. However, the change
from Proposed w/o sq to Propose single resulted in an average improvement of
0.091 points in the RMSE, and of 0.017 points in the R2. This suggests that
the search query data resulted in the GRU-based models, which simply used the
search query data as input, exhibits low improvement scores by adding them.
However, the proposed model, with a well-crafted architecture for the search
query data input, achieved a significantly improved score. These results confirm
that it is difficult to treat search queries as input for flu forecasting, and it
is necessary to contribute to the score improvement by considering the model
devices, such as the introduction of an attention mechanism.

6.3 Analysis of the Methods to Find Search Queries

We compared the translation-based and WT-based methods for the selection
of search queries. For comparison, we experimented with the flu forecast from
2017/30th week to 2018/29th week in JP and FR using the Proposed single
model with the translation-based and WT-based methods.

The results in Table 3 demonstrate that the WT-based method achieved bet-
ter scores than the translation-based method in all experimental metrics in FR
and most experimental metrics in JP. However, the degree of improvement in
the accuracy was not large. For example, for R2, the two-week-ahead forecast for
JP exhibited only a 0.005 point improvement, and that for FR exhibited only
a 0.035 point improvement. Our model based on a neural network can consider
a small number of search queries as input for efficient calculation, compared to
the multi-task model [31] based on a statistical method that can consider many
search queries. We assume that the architecture of our model, which does not
involve a large number of search queries as input, is insignificantly affected by
the selection of search queries. Although the results demonstrated that the WT-
based method was superior as the selection method for our flu forecasting model,
substantial room for consideration remains, such as which method is better for
models dealing with a large number of search queries.

7 Conclusions

In this study, we attempted to construct a flu forecasting model targeting multi-
ple countries by leveraging multi-task framework. Also, we addressed two tasks:
finding suitable search queries in languages other than English and leveraging
the search query data as input for the forecasting model. We revealed that the
WT-based method is a better approach for the exploration of search queries.

Single Model for Influenza Forecasting of Multiple Countries 349

Moreover, we proposed a novel forecasting model considering the characteristics
of the input data, historical ILI data and search query data, and demonstrated
the usefulness of the model architecture. Throughout the flu forecasting exper-
iments in multiple countries, the proposed model achieved the highest perfor-
mance by acquiring the latent features in the flu time series and by treating the
task as multi-task learning.

Our experiments demonstrated the feasibility of constructing a flu forecast-
ing model targeting multiple countries and the usefulness of search query data
as input for the proposed model. However, the method of searching for suit-
able search queries remains a major challenge, which our research has not yet
solved. Although we used the list of English search queries, a method for identify-
ing appropriate search queries without relying on external resources is required.
Moreover, it is necessary to examine a method to apply the proposed flu forecast-
ing model to new infectious diseases from short period data, such as COVID-19,
for dealing with a pandemic.

References

1. Aiken, E.L., Nguyen, A.T., Santillana, M.: Towards the use of neural net-
works for influenza prediction at multiple spatial resolutions. arXiv preprint
arXiv:1911.02673 (2019)

2. Aiken, E.L., et al.: Real-time estimation of disease activity in emerging outbreaks
using internet search information. PLoS Comput. Biol. 16(8), e1008117 (2020)

3. Andreassen, H.K., et al.: European citizens’ use of e-health services: a study of
seven countries. BMC Public Health 7(53) (2007)

4. Aramaki, E., Maskawa, S., Morita, M.: Twitter catches the flu: detecting influenza
epidemics using Twitter. In: Proceedings of EMNLP, pp. 1568–1576 (2011)

5. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning
to align and translate. arXiv preprint arXiv:1409.0473 (2014)

6. Bengio, S., et al.: Scheduled sampling for sequence prediction with recurrent neural
networks. In: Proceedings of NIPS, pp. 1171–1179 (2015)

7. Bojanowski, P., et al.: Enriching word vectors with subword information. Trans.
Assoc. Comput. Linguist. 5, 135–146 (2017)

8. Chung, J., et al.: Empirical evaluation of gated recurrent neural networks on
sequence modeling. arXiv preprint arXiv:1412.3555 (2014)

9. Cleveland, R.B., et al.: STL: a seasonal-trend decomposition. J. Off. Stat. 6(1),
3–73 (1990)

10. Ginsberg, J., et al.: Detecting influenza epidemics using search engine query data.
Nature 457(7232), 1012–1014 (2009)

11. Grave, E., et al.: Learning word vectors for 157 languages. In: Proceedings of LREC
(2018)

12. Hansen, D., et al.: Seasonal web search query selection for influenza-like illness
(ILI) estimation. In: Proceedings of SIGIR, pp. 1197–1200 (2017)

13. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

14. Lampos, V., Zou, B., Cox, I.J.: Enhancing feature selection using word embeddings:
the case of flu surveillance. In: Proceedings of Web Conference, pp. 695–704 (2017)

http://arxiv.org/abs/1911.02673
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1412.3555
http://arxiv.org/abs/1412.6980

350 T. Murayama et al.

15. Lazer, D., et al.: The parable of Google flu: traps in big data analysis. Science
343(6176), 1203–1205 (2014)

16. Liu, L., Han, M., Zhou, Y., Wang, Y.: LSTM recurrent neural networks for
influenza trends prediction. In: Zhang, F., Cai, Z., Skums, P., Zhang, S. (eds.)
ISBRA 2018. LNCS, vol. 10847, pp. 259–264. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-94968-0 25

17. Lu, F.S., et al.: Improved state-level influenza nowcasting in the United States
leveraging internet-based data and network approaches. Nat. Commun. 10(1), 1–
10 (2019)

18. Mavragani, A., Ochoa, G., Tsagarakis, K.P.: Assessing the methods, tools, and
statistical approaches in google trends research: systematic review. JMIR 20(11),
e270 (2018)

19. Mogadala, A., Rettinger, A.: Bilingual word embeddings from parallel and non-
parallel corpora for cross-language text classification. In: Proceedings of NAACL,
pp. 692–702 (2016)

20. Murayama, T., et al.: Robust two-stage influenza prediction model considering
regular and irregular trends. PloS One 15(5), e0233126 (2020)

21. Ning, S., Yang, S., Kou, S.: Accurate regional influenza epidemics tracking using
internet search data. Sci. Rep. 9(1), 1–8 (2019)

22. Polgreen, P.M., et al.: Using internet searches for influenza surveillance. Clin.
Infect. Dis. 47(11), 1443–1448 (2008)

23. Venna, S.R., et al.: A novel data-driven model for real-time influenza forecasting.
IEEE Access 7, 7691–7701 (2019)

24. Wang, L., Chen, J., Marathe, M.: DEFSI: deep learning based epidemic forecasting
with synthetic information. In: Proceedings of AAAI, vol. 33, pp. 9607–9612 (2019)

25. W.H.O. website: Influenza (seasonal) (2018). http://www.who.int/news-room/
fact-sheets/detail/influenza-(seasonal)

26. Wu, Y., et al.: Deep learning for epidemiological predictions. In: Proceedings of
SIGIR, pp. 1085–1088 (2018)

27. Yang, S., Santillana, M., Kou, S.C.: Accurate estimation of influenza epidemics
using Google search data via ARGO. PNAS 112(47), 14473–14478 (2015)

28. Yang, S., et al.: Using electronic health records and internet search information for
accurate influenza forecasting. BMC Infect. Dis. 17(1), 332 (2017)

29. Ybarra, M., Suman, M.: Reasons, assessments and actions taken: sex and age
differences in uses of internet health information. Health Educ. Res. 23(3), 512–
521 (2008)

30. Zhou, C., et al.: Density matching for bilingual word embedding. In: Proceedings
of NAACL, pp. 1588–1598 (2019)

31. Zou, B., Lampos, V., Cox, I.: Multi-task learning improves disease models from
web search. In: Proceedings of Web Conference, pp. 87–96 (2018)

32. Zou, B., Lampos, V., Cox, I.: Transfer learning for unsupervised influenza-like
illness models from online search data. In: Proceedings of Web Conference, pp.
2505–2516 (2019)

https://doi.org/10.1007/978-3-319-94968-0_25
https://doi.org/10.1007/978-3-319-94968-0_25
http://www.who.int/news-room/fact-sheets/detail/influenza-(seasonal)
http://www.who.int/news-room/fact-sheets/detail/influenza-(seasonal)

Automatic Acoustic Mosquito Tagging
with Bayesian Neural Networks

Ivan Kiskin1(B) , Adam D. Cobb3 , Marianne Sinka2 , Kathy Willis2 ,
and Stephen J. Roberts1

1 Department of Engineering, University of Oxford, Oxford OX1 3PJ, UK
{ikiskin,sjrob}@robots.ox.ac.uk

2 Department of Zoology, University of Oxford, Oxford OX1 3SZ, UK
{marianne.sinka,kathy.willis}@zoo.ox.ac.uk

3 SRI International, Washington, D.C., VA 22209, USA
adam.cobb@sri.com

Abstract. Deep learning models are now widely used in decision-
making applications. These models must be robust to noise and carefully
map to the underlying uncertainty in the data. Standard deterministic
neural networks are well known to be poor at providing reliable esti-
mates of uncertainty and often lack the robustness that is required for
real-world deployment. In this paper, we work with an application that
requires accurate uncertainty estimates in addition to good predictive
performance. In particular, we consider the task of detecting a mosquito
from its acoustic signature. We use Bayesian neural networks (BNNs)
to infer predictive distributions over outputs and incorporate this uncer-
tainty as part of an automatic labelling process. We demonstrate the
utility of BNNs by performing the first fully automated data collection
procedure to identify acoustic mosquito data on over 1,500 h of unla-
belled field data collected with low-cost smartphones in Tanzania. We
use uncertainty metrics such as predictive entropy and mutual informa-
tion to help with the labelling process. We show how to bridge the gap
between theory and practice by describing our pipeline from data pre-
processing to model output visualisation. Additionally, we supply all of
our data and code. The successful autonomous detection of mosquitoes
allows us to perform analysis which is critical to the project goals of
tackling mosquito-borne diseases such as malaria and dengue fever.

Keywords: Acoustic machine learning · Bayesian deep learning ·
Audio event detection

1 Introduction

Vector-borne diseases are responsible for over 700,000 deaths annually [42].
Vectors are living organisms that can transmit infectious pathogens between
humans, or from animals to humans. Dengue, yellow fever and malaria are exam-
ples of such mosquito-borne diseases, with malaria constituting one of the most
c© Springer Nature Switzerland AG 2021
Y. Dong et al. (Eds.): ECML PKDD 2021, LNAI 12978, pp. 351–366, 2021.
https://doi.org/10.1007/978-3-030-86514-6_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86514-6_22&domain=pdf
http://orcid.org/0000-0002-2551-840X
http://orcid.org/0000-0003-2868-6983
http://orcid.org/0000-0001-7145-3179
http://orcid.org/0000-0002-6763-2489
http://orcid.org/0000-0002-9305-9268
https://doi.org/10.1007/978-3-030-86514-6_22

352 I. Kiskin et al.

severe public health problems in the developing world. While there are many
challenges associated with tackling these diseases, one important task is in infor-
mation gathering. In order to respond to large outbreaks quickly and even predict
future ones, it is vital that we develop models that are able to reliably detect
and identify mosquitoes.

As part of this work, we demonstrate a novel application of Bayesian deep
learning for labelling large amounts of acoustic mosquito data that has been
collected in an unsupervised manner. We showcase that incorporating Bayesian
methods into the tagging process can be extremely beneficial to domain experts
who must eventually check and label data for themselves. As part of the Hum-
Bug project, we have developed an end-to-end pipeline to autonomously record,
detect and archive mosquito sound. Our pipeline utilises conventional micro-
phones that are found in low-cost mobile phones, and simple adaptions to bed-
nets already commonly used in malaria-endemic areas [38]. This allows broad
participation, and the possibility of providing a method for widespread detec-
tion in people’s homes. Our work is part of an emerging field where image and
acoustic data is used for building solutions to mosquito control [10,11,18,29].
In order to assist research in methods utilising the acoustics of mosquitoes, we
describe our open-source research contributions as follows:

– Code: https://github.com/HumBug-Mosquito/MozzBNN. A Bayesian con-
volutional neural network (BCNN) pipeline for mosquito acoustic event detec-
tion. The model achieves 89% sensitivity and 97% specificity on out-of-sample
test data. We demonstrate how to apply this model to difficult, raw, unla-
belled field data through filtering predictions by uncertainty metrics intrinsic
to probabilistic models. In carefully setting the thresholds of the uncertainty
metrics, we avoid the need to manually filter through hundreds of hours of
data that mostly consists of noise.

– Data: http://doi.org/10.5281/zenodo.4904800. We provide the output of our
prediction pipeline applied to a diverse set of acoustic mosquito recordings
of over 1,500 h of uncurated field data. We also supply all the data used
for training, validating, and testing this model. In total, this forms 20 h of
mosquito audio recordings expertly labelled with tags precise in time, of which
18 h are annotated with 36 different mosquito species.

The remainder of the paper is structured as follows. In Sect. 2.1 we describe
previous mosquito detection efforts, and the context for our contributions. In
Sect. 2.2 we review related work in acoustic machine learning and Bayesian deep
learning. Section 3.1 describes our full pipeline, breaking down the function of
each component. In Sect. 3.2, we formally introduce BNNs and the uncertainty
metrics which we use for autonomous data collection. Section 4 showcases our
BCNN, detailing the exact architecture, and its parameterisation. In Sect. 5.1
we show how our model performs on out-of-sample database data, and discuss
our expectation of real-world performance from these results. Section 5.2 shows
how we use uncertainty metrics to evaluate performance of our algorithm over
large-scale, real-world, unlabelled data. In Sect. 6 we identify future directions
and summarise our findings.

https://github.com/HumBug-Mosquito/MozzBNN
http://doi.org/10.5281/zenodo.4904800

Automatic Acoustic Mosquito Tagging with Bayesian Neural Networks 353

2 Background

2.1 Mosquito Control Efforts

Mosquitoes are unique in the way they fly. They have a particularly short, trun-
cated wingbeat allowing them to flap their wings faster than any other insect of
equivalent size – up to 1,000 beats per second [2,37]. This produces their very
distinct and identifiable flight tone and has led many researchers to try and use
their sound to attract, trap or kill them [11,15,16,30,33].

There are over 100 genera of mosquito in the world containing over 3,500
species [14]. Only one genus (Anopheles) contains species capable of transmit-
ting the parasites responsible for human malaria. It contains over 475 formally
recognised species of which, approximately 75 are vectors of human malaria and
around 40 are considered truly dangerous [39]. These 40 species are inadver-
tently responsible for more human deaths than any other creature. In 2019, for
example, malaria caused around 229 million cases of disease across more than
100 countries resulting in an estimated 409,000 deaths [42]. Mosquito surveys
are used to establish vector species’ composition and abundance, human biting
rates and thus their potential to transmit pathogens. Traditional survey meth-
ods, such as human landing catches, which collect mosquitoes as they land on the
exposed skin of a collector, can be time consuming, expensive and are limited in
the number of sites they can survey. They can also be subject to collector bias,
either due to variability in the skill or experience of the collector, or in their
inherent attractiveness to local mosquito fauna. These surveys can also expose
collectors to disease. Moreover, once the mosquitoes are collected, the specimens
still need to undergo post-sampling processing for accurate species identifica-
tion. Consequently, an affordable automated survey method that detects, iden-
tifies and counts mosquitoes could generate unprecedented levels of high-quality
occurrence and abundance data.

2.2 Acoustic Machine Learning

Detecting the presence of a mosquito in audio data falls within the broader area
of audio event detection. Within speech recognition, where audio applications
were most common, previous work in applying machine learning techniques has
seen approaches evolve from using Hidden Markov models for making classifica-
tions on phenomes or Mel-frequency cepstral coefficients (MFCCs) [19], to using
convolutional neural networks (CNNs) for end-to-end learning [35]. Similarly to
computer vision, audio event recognition has undergone a paradigm shift from
hand-crafted representations to models which also learn end to end [9]. Recently,
much of the success in this area has been seen from applying CNNs [34,36], where
the task is to classify signals in the spectral feature space (such as short-time
Fourier and log-mel transforms). Examples of successful applications in audio
event and scene classification tasks can be found in the Detection and Classifica-
tion of Acoustic Scenes and Events (DCASE) challenges of the years 2018 to 2020
[7,8]. For an event detection tagging-based task in 2018, the top five submissions

354 I. Kiskin et al.

were found to commonly utilise the log-mel feature space. Across a range of tasks
in 2020, log-mel energies were overwhelmingly the most commonly used feature
transform in high-ranking submissions [8]. Other feature spaces such as wavelets
[25] have shown potential in acoustic insect classification. However, more work is
to be done before finding computationally viable continuous wavelet transforms
for real-time use. We therefore also utilise log-mel features in our work. We also
use a model similar to the supplied baseline in 2018 Task 2, with elements of the
top-performing models [7], as we would like to deploy a well-tested architecture
for robust model performance in the field.

The vast majority of acoustic ML works have focused on deterministic
approaches to classification, where uncertainty over predictions is not factored
in (and is not encouraged due to the scoring function of typical ML challenges
[7,8,20]). While deep learning has become an important tool for machine learn-
ing practitioners, the ability to generalise this tool to a wide range of scientific
challenges is still in its infancy. In particular, we stress the importance of quan-
tifying the uncertainty associated with the outputs of these models, through the
use of BNNs. It is for this reason that our approach is to use current state-of-the-
art methods to signal classification and place them in a Bayesian framework. The
use of BNNs has not become widespread in audio classification, though recent
applications have emerged [4], and BNNs are growing in interest in parallel
application domains [5,12]. As a final point, we will also highlight the option to
use the framework of Bayesian decision theory with Bayesian neural networks
to estimate the risk associated with certain classifications [3]. This is especially
important for mosquito detection, as asymmetrical cost functions for making
classifications are often encountered [26].

3 Methods

3.1 HumBug Pipeline

To showcase our application, we show a schematic of our pipeline in Fig. 1. In
the following paragraphs we break down the system by each component.

Fig. 1. Project workflow. Our MozzWear app is used to record audio. The app syn-
chronises to a central server. Audio input to BNN(s). Successful detections are used to
create a curated PostgreSQL database. Information feeds back to improve the model.

Automatic Acoustic Mosquito Tagging with Bayesian Neural Networks 355

Capturing Mosquito Acoustic Data on a Smartphone. Mosquitoes are
small insects and the physical movement of air caused by their beating wings,
responsible for the high-pitched whine of their flight tone, can easily be lost
within even moderate background noise. Thus, to ensure our smartphones record
data of high enough quality we needed to complete two steps. First, to develop
an app (MozzWear) to detect and record the mosquito’s flight tone using the in-
built microphone on a smartphone. For the app, we use 16-bit mono PCM wave
audio sampled at 8,000 Hz. These parameters are chosen as a result of prior work
on acoustic low-cost smartphone recording solutions for mosquitoes [22,25,27].1

Secondly, we require a means to ensure that a mosquito flies close enough to
the smartphone microphone to capture its flight tone (the adapted bednet).
We have developed an adapted bednet that uses the inherent behaviour of
host-seeking mosquitoes to make them fly close enough to the phone’s inter-
nal microphone to passively record flight tone (Fig. 2). Its design is based on
traditional rectangular bednets found across the malaria-endemic world. The
bednet is adapted by the addition of a second outer canopy and a detachable
pocket [38]. The pocket is placed at the highest point of the outer canopy above
the occupant’s head and holds a budget smartphone running the MozzWear app
(Fig. 2b). The occupant switches on the app as they enter the bednet at night.
Host-seeking mosquitoes are attracted to the CO2 in the breath of the occupant
and become trapped within the second canopy of the bednet. Here they natu-
rally migrate to the highest point of the net where their flight tone is recorded.
This design targets night-active mosquito species with a predilection to feed
on humans. These characteristics are common amongst the dominant malaria
vectors in Sub-Saharan Africa.

(a) Bednet with four smartphones positioned to
trial the best location for recording mosquitoes.

(b) Bednet pockets to
hold smartphones.

Fig. 2. Deployment in Tanzania (Oct 2020) to trial the effectiveness of acoustic
mosquito detection with low-cost non-invasive measures.

1 Due to bandwidth requirements in rural areas, our latest version uses 32 kbps AAC.

356 I. Kiskin et al.

(a) Sample cups used to record
wild captured mosquitoes.

(b) Low-budget Itel A16 smartphones used
for data collection of bednet data.

Fig. 3. Equipment used in the recording process for curated and field data.

Central Server. Following app recording, the audio is synchronised by the user
to a central server, which performs voice activity detection for removing speech
to preserve privacy. The data then enters the classification engine, in its current
iteration a Bayesian convolutional neural network (BCNN), which we describe in
Sects. 3.2 and 4. Positive predictions are then filtered and screened, and stored in
a curated database (Sect. 5.2). The data is then fed back to the server to update
the model. We note that our database and algorithms are constantly undergoing
improvement thanks to the feedback loop in our workflow. Please visit [24] or
the links from Sect. 1 for the latest models and data.

Mosquito Database. There are a number of variables that influence mosquito
flight tone including the size of the mosquito [41], its age [32] and the air temper-
ature [40]. Thus, in order to develop an algorithm to discern different mosquito
species from their flight tone, a training dataset is needed that captures the nat-
ural variation within a population. We therefore built a database of flight tones
recorded from both laboratory grown and wild captured mosquitoes. Details of
the dataset and a full breakdown of all available metadata, including time of
recording, method of capture, recording device, species, and more are given in
[24]. In summary, live mosquitoes were captured and recorded in Thailand, and
South East Tanzania. To record the mosquito sounds, each captured mosquito
was placed into a sample cup large enough for free flight (Fig. 3a) and their flight
tone was recorded using a high specification field microphone (Telinga EM-23)
or a selection of locally available smartphones (Fig. 3b) running our MozzWear
app.

We also included in this database flight tone data of multiple species recorded
from laboratory cultures (either free flying in culture cages, or free flying
around bednets as in Fig. 2a). These included recordings from the Ifakara Health
Institute, Tanzania, the United States Army Medical Research Unit in Kenya
(USAMRU-K), the Center for Disease Control (CDC) Atlanta, the London
School of Tropical Medicine and Hygiene (LSTMH), and the department of
Zoology at the University of Oxford.

Automatic Acoustic Mosquito Tagging with Bayesian Neural Networks 357

3.2 Bayesian Neural Networks

To provide principled uncertainty estimation for our described pipeline, we
require a model that can provide distributions for each section of audio data.
Bayesian neural networks offer a probabilistic alternative to neural networks by
specifying prior distributions over the weights [28,31]. The placement of a prior
p(ωi) over each weight ωi leads to a distribution over a parametric set of func-
tions. The motivation for working with BNNs comes from the availability of
uncertainty in its function approximation, fω (x). When training on a dataset
{X,Y} we want to infer the posterior p(ω|X,Y) over the weights:

p(ω|X,Y) =
p(Y|ω,X)p(ω)

p(Y|X)
. (1)

We define the prior p(ω) for each layer l ∈ L as a product of multivariate
normal distributions

∏L
l=1 N (0, λ−1

l I) (where λl is the prior length-scale) and
the likelihood p(y|ω,x) as a softmax for multi-class (ci) classification:

p(y = ci|ω,x) =
exp{fω

ci (x)}
∑

cj
exp{fω

cj (x)} . (2)

In testing, the posterior is then required for calculating the predictive distribu-
tion p(y∗|x∗,X,Y) for a given test point x∗. At test time, techniques involving
variational inference (VI) [17] replace the posterior over the weights with a vari-
ational distribution qθ (ω), where we have defined our distribution to depend
on the variational parameters θ. Dropping weights during test time is known
as Monte Carlo (MC) dropout [12] and acts as a test-time approximation for
calculating the predictive distribution. We opt for MC dropout for our models,
as MC dropout provides a cheap approximation of the predictive distribution
without requiring the storage of any additional variational parameters or large
ensembles of network samples.

Having trained a BNN, we have a collection of model weights {ω}Ss=1 for
our MC inference scheme of S dropout samples, but only a single model for a
regular deterministic network. We want the output of our model y∗ to display its
confidence in a label. For example, for binary detection, the least confident pre-
diction would be a vector of [0.5, 0.5]. This vector corresponds to the maximum
entropy prediction, which indicates a high level of uncertainty. On the other
hand, a minimum entropy prediction would be a vector of [1.0, 0.0] or [0.0, 1.0],
which corresponds to the highest confidence possible. For a model displaying any
degree of confidence, we would like to verify to which degree this is consistent,
and correct [4]. Therefore, the predictive entropy is a useful way to navigate from
the softmax output to a single value that can indicate the confidence of a model
in its prediction. For a deterministic network this is simply −∑

c pc log pc for a
single test input x∗, where pc is the probability of each class (i.e. each element
in the vector). For the MC approach there are multiple outputs, where each
output corresponds to a different weight sample, ω(s). There are different ways
to work with the entropy formulation, but we start with the standard solution

358 I. Kiskin et al.

which is to average over the outputs and then work with the expected value of
the output. This forms the posterior predictive entropy H̃:

H̃ = −
∑

c

p̃c log p̃c, where p̃c = 1/S
∑

s

p(s)c . (3)

This does not take into account the origin of the uncertainty (i.e. is it the model
that is unsure, or is the data simply noisy), but for practical purposes it is a
useful tool as it will tell us how much to trust the prediction. However, there
are other ways that we can decompose the uncertainty to distinguish the model
uncertainty from the data uncertainty. For example, it would be helpful to dis-
tinguish between two scenarios that H̃ cannot capture:

A: All samples equally uncertain, e.g. S = 2, y∗ = {[0.5, 0.5], [0.5, 0.5]}
B: All samples are certain, yet fully disagree, e.g. y∗ = {[1.0, 0.0], [0.0, 1.0]}
It might be the case that all the MC samples for the same input result in multi-
ple predictions, with all having the same exact maximum entropy distribution,
[0.5, 0.5]. The H̃ resulting from this scenario would, however, be the same as
sampling two Monte Carlo predictions, where each prediction assigns a 1.0 to
a different class. To distinguish between the two cases, we first introduce the
expectation over the entropy with respect to the parameters E[H]:

E[H] = 1/S
∑

s

h(ωs), where h(ω) = −
∑

c

pc(ω) log pc(ω). (4)

Now, if we go back to scenario A, H̃ = log 2, E[H] = 0. Let us compare to
scenario B, where H̃ = log 2, but now E[H] = log 2 (see AppendixA). As the
prediction is independent of the samples drawn, the expectation of the entropy
with respect to the weights here is equal to the posterior predictive entropy, and
hence despite sharing the same posterior predictive entropy, the expectations
are not equal. This allows us to determine whether the uncertainty in our model
is due to high disagreement between samples, which could be due to an out of
distribution test point, or whether the model is familiar with the data regime
but correctly shows a higher entropy prediction due to the presence of noise.

The mutual information (MI) [13], I(y∗,ω) between the prediction y∗ and
the model posterior over ω can then be written as:

I(y∗,ω) = H̃ − E[H]. (5)

The MI will measure how much one variable, say ω, tells us about the other
random variable, say y∗ (or vice-versa). If I(y∗,ω) = 0, then that tells us that
ω and y∗ are independent, given the data. In the scenario where the predictions
completely disagree with each other for a given x∗, for each ωs drawn from
the posterior, we get very different predictions. This informs us that y∗ is very
dependent on the posterior draw and thus I(y∗,ω) = log 2−0 = log 2. However, if
y∗ = [0.5, 0.5] for all ωs ∼ p(ω|Y,X), then the different draws from the posterior
distribution have no effect on the predictive distribution and therefore the mutual

Automatic Acoustic Mosquito Tagging with Bayesian Neural Networks 359

information between the two distributions is zero, as E[H] = h(ω) = H̃ (they
are independent). We therefore use the MI to threshold incoming predictions to
help autonomously label our field data in Sect. 5.2.

4 Model Configuration

Fig. 4. BCNN architecture with tensor dimensions. Log-mel spectrograms are input
with w = 40, h = 128, and passed into two convolutional layers, with 32, and 64,
(3 × 3) kernels of stride 1. Following repeated pooling and dropout, the feature maps
are flattened and fully connected to a dense layer of 128 units, before a final dropout
and softmax output layer. All activation functions are ReLUs, omitted here for clarity.

We utilise log-mel spectrogram features for our model input (illustrated in Fig. 4
for a particularly loud mosquito sample). It is important to consider how to
parameterise the feature transform, based on trading off frequency and time
resolution, which is a direct result of the Heisenberg uncertainty principle [6]. A
crucial related design decision is the selection of the number of feature windows
that are used to represent a sample, x ∈ R

h×w, where h is the height of the two-
dimensional matrix, and w is the width. The longer the window, w, the better
potential the network has of learning appropriate dynamics, but the smaller
the resulting dataset in number of samples. It may also be more difficult to
learn the salient parts of the sample that are responsible for the signal, resulting
in a weak labelling problem [21]. Early mosquito detection efforts have used
small windows due to a restriction in dataset size. For example, [11] supplies a
rich database of audio, however the samples are limited to just under a second.
However, despite the mosquito’s simple harmonic structure, its characteristic
sound also derives from the temporal variations. We suspect this flight behaviour
tone is better captured over longer windows, since we achieved more robust
results with w = 40, h = 128, corresponding to 40 frames per window, each of
64 ms duration for a total audio slice of 2.56 s per sample (hop length of 512
samples and NFFT of 2048). We use a BCNN with the architecture as shown
in Fig. 4. This model structure is directly based on previous work in mosquito

360 I. Kiskin et al.

detection. In [25], the authors demonstrated mosquito detection capability better
than that of human domain experts, when trained on held out recordings within a
controlled experiment. In [22] they also compared a range of 1-D feature vector
classifiers (Support Vector Machines, Random Forests, etc.) and showed that
the neural network model gave the best performance. Therefore we use the same
proven model but incorporate MC dropout at test time. We further increased
the size of a training input, and added an additional convolution and pooling
layer due to the greater availability of data compared to the model used in [23].
The utilisation of dropout layers in both training and testing produces estimates
of uncertainty.

5 Results

5.1 Validation Performance

An important assumption in modelling is that training and test data have been
generated from the same underlying distribution. We aim to train a model which
learns to discriminate classes of that underlying distribution. However, in prac-
tice, due to the myriad of variables that can change for an acoustic recording,
such as the environmental conditions, we find this assumption to not hold true.
As an example, the statistics of noise are varying throughout time by the intro-
duction of novel environments, resulting in non-stationary dynamics. In particu-
lar, consider our binary model of detecting a mosquito signal, and detecting the
absence of signal, i.e. noise. We require a noise class which is representative of the
deployment scenario, which is not known in advance. There are several sources
of noise which we need to address, e.g. the noise profile of the recording devices
themselves, as well as the non-stationary environments in which the devices are
deployed. We have attempted to mitigate this by collecting data from a wide
range of devices in varying conditions as described in Sect. 3.1.

We would like to both maximise the data available for training, but also
reserve sufficient data for rigorous evaluation. As of April 2021, our dataset con-
tains data from 7 experimental setups, and 5 input devices. One strategy is to
hold out entire recordings from each experiment to produce a training dataset
that has sources from each experimental setup. However, training the model on
signal and noise sources for those experiments will allow memorisation of the
signal and noise characteristics. As the samples seen during test time will very
closely approximate those seen in training [25], the model will report results that
will not be representative of its true predictive power. Instead, if we have suffi-
cient data to split training and testing into three experiments used for training,
and one held out for testing, we can use a K-fold cross-validation that with-
holds entire experiments. We also note that in practice, these experiments will
all contain varying quantities (and quality) of samples per class, which further
complicates issues. We believe there is no one-size-fits-all approach, and empha-
sise it is important to understand the sources of data when designing a model.
We opt to hold out two experiments for testing purposes, and cross-validate our
model on the remaining five experiments.

Automatic Acoustic Mosquito Tagging with Bayesian Neural Networks 361

Duration (h) Class acc. (%)

Signal A 2.8 89.27± 0.07
Noise A 1.3 94.05± 0.11

Noise B 3.0 97.99± 0.05

(a) Signal A: collation of laboratory
mosquito recording; Noise A: corre-
sponding background. Noise B: En-
vironmental background noise near
bednets.

(b) Confusion matrix of (a).

Fig. 5. Out-of-sample performance on held-out test data, estimated with S = 10 MC
dropout samples (mean ± standard deviation).

We collate the test data experiments into the sources of Fig. 5 and achieve a
mean classification accuracy of 97% for the noise class (over 4.3 h of data), and
89% on the mosquito class (over 2.8 h of data). The standard deviation is given
across 10 MC dropout samples drawn at test time. These class accuracies would
be highly desirable for a model deployed in the field. However, it is important to
consider the process of data labelling. In forming samples for the BNN input, any
audio clip which is shorter than the window length of 2.56 s is discarded, and thus
the resulting test data only consists of sections that contain either signal or noise
for the entire duration. It is therefore expected to encounter lower classification
accuracy when generalising to new incoming data, as we do not have guarantees
on performance over shorter mosquito events, or if the sample contains partially
noise, and partially mosquito. This can be in part mitigated by stepping through
incoming data, and aggregating neighbouring predictions to provide resolution
at a finer time scale.

5.2 Automatically Labelling Field Data with Uncertainty Metrics

In this section we tackle the challenge of analysing model performance from
data collected at large scale in field studies. To do so, we make use of the open-
source audio editor Audacity [1] to produce an audio-visual output. This serves
as a useful tool for researchers from a range of communities to easily disseminate
results. In the field trial we conducted in Tanzania in November 2020 we gathered
1,500 h of recordings from 16 mobile phones (Fig. 3b). As is common in biological
applications, manually labelling such a dataset is near impossible due to its size.
Algorithm 1 summarises the process by which we pass incoming audio data
through the BNN and then import the audio and predicted labels to screen
detections in Audacity. Figure 6 illustrates the automatic tagging process for
one particular section of recording from the field trial. The upper graphic shows
the spectrogram, and the label track is generated by the BCNN.

Our probabilistic model allows us to both estimate the presence of a
mosquito, as well as quantify how certain our model is in its predictions. To

362 I. Kiskin et al.

Algorithm 1: BCNN detection
for audio file do

Calculate sliding window log-mel (40 × 128 frames, each frame 64ms);
Calculate BCNN predictions with S MC dropout samples;
Calculate mean of p̄c, H, I(y∗,ω) per section with p̄mosquito > pthreshold;

Write labels as {tstart, tend, p̂c, Ĥ, Î(y∗,ω)};
end

Fig. 6. BCNN predictions on unlabelled field data (Nov 2020) in Audacity in the form:
{p̂mosquito, Ĥ, Î}. Two windows with mosquito present were correctly identified in this
section of audio, recorded with the arrangement of Fig. 2.

showcase its effectiveness on field data collected from South East Tanzania,
we vary the threshold of uncertainty and study the performance metrics that
result from them. We fix the model probability and predictive entropy thresh-
old, and threshold by the MI, which best captures model confidence, as discussed
in Sect. 3.2. We vary the MI threshold from its maximum value of 1.0 (log2(2),
Appendix A for max MI calculation) through a series of discrete steps as given in
Table 1. We calculate the quantity of positives that the model produces for those
values, and estimate the precision and negative predictive value, NPV (which
can be thought of as the precision for the negative class), by manually screening

Table 1. Effect of mutual information thresholding on the precision and the negative
predictive value (NPV). Positives: duration of audio which was predicted as positive.
Mosquito recovered: duration of the mosquito audio recovered from all the data.

pthreshold Ithreshold(y
∗,ω) NPV Positives Precision Mosquito recovered

0.7 1.0 �98% 18 h 1 m 12% 2 h

0.7 0.1 �99% 5 h 30 m 30% 1 h 39 m

0.7 0.05 �99% 1 h 39 m 54% 53 m

0.7 0.02 �99% 38 m 58% 22 m

0.7 0.01 �99.9% 20 m 60% 12 m

0.7 0.005 �99.99% 5 m 99% 5 m

Automatic Acoustic Mosquito Tagging with Bayesian Neural Networks 363

the detections. Our key result is that the model has well-calibrated uncertainty,
as the precision increases from 12% to 99% with the tightening of the mutual
information threshold from 1.0 to 0.005. It also illustrates the problems an equiv-
alent deterministic neural network would have, as a probability threshold of 0.7
on its own is not sufficient to provide a useful detector, despite showing strong
performance in previous tasks. At the extreme end of confidence, we approach
100% precision and negative predictive value, which is a remarkable result from
an input of 1,500 h of novel data. The trade-off this comes with is a prediction of
a very small quantity of data (low recall). In practice, we would choose a point on
the MI operating curve which balances an acceptable precision and recall of the
model. Following further tweaking based on the results of Table 1, we screened
the predictions with thresholds of p = 0.8,H = 0.5, I = 0.09. The results of this
process have been uploaded to our database in [24], and can be accessed with
the metadata country: Tanzania, location type: field.

6 Conclusion

In this paper we demonstrated how to successfully deploy Bayesian convolutional
neural networks for the automatic identification and labelling of mosquitoes. We
used BCNNs to lessen the burden of manually labelling the rare mosquito events.
The automatic identification of likely mosquitoes reduced the size of the data
required for labelling from 1,500 h to 18 h, or less, depending on the uncertainty
threshold. As a result, the challenge of tagging extremely rare mosquito events
was made easier by using the model to correctly identify likely mosquito events
and remove large proportions of the noise.

Key to the success of our implementation was the use of uncertainty metrics.
We used the mutual information to filter through the real-world data and verified
that the model’s precision increased as the mutual information threshold was
reduced. We highlight that the use of the mutual information was only possible
because we used a BNN. Standard neural networks do not provide stochastic
output and therefore do not allow for meaningful measurements of the mutual
information. As a result, the analysis shown in Sect. 5.2 would not be possible
with deterministic networks.

In conclusion, we are the first to apply Bayesian neural networks in the con-
text of mosquito detection and highlight the utility of estimating the uncertainty
as part of the labelling process. In future work we will continue to explore further
inference schemes for neural networks as well as incorporate Bayesian decision
theory. We also hope to use our pipeline for automatically tagging mosquitoes to
build larger labelled datasets that can then be used to build more sophisticated
models for future real-world field experiments.

Acknowledgements. This work was funded by the Bill and Melinda Gates Founda-
tion (OPP1209888). We would like to thank Dr. Emanuel Kaindoa, Dickson Msaky
(IHI Tanzania), Paul I Howell and Dustin Miller (CDC, Atlanta), Dr. Sheila Ogoma
(USAMRU-K), Dr. Vanessa Chen-Hussey, James Pearce (LSHTM), Prof. Theeraphap,
Dr. Rungarun Tisgratog and Jirod Nararak (Kasesart University, Bangkok). We also
thank NVIDIA for the grant of a Titan Xp GPU.

364 I. Kiskin et al.

A Appendix

Scenario B (samples are certain, yet fully disagree), y∗ = {[1.0, 0.0], [0.0, 1.0]}:

p̃1 =
1
2

∑

s

p
(s)
1 =

1
2
(1 + 0) =

1
2
, p̃2 =

1
2

∑

s

p
(s)
2 =

1
2
(0 + 1) =

1
2
, (6)

H̃ = −(
1
2

log
1
2

+
1
2

log
1
2
) = log 2, (7)

h(1) = −((0) log 0 + (1) log 1) = 0, h(2) = −((1) log 1 + (0) log 0) = 0, (8)

E[H] =
1
2
(0 + 0) = 0, (9)

I(y∗,ω) = H̃ − E[H] = log 2. (10)

Scenario A (all samples equally uncertain), y∗ = {[0.5, 0.5], [0.5, 0.5]}:

p̃1 =
1
2

∑

s

p
(s)
1 =

1
2
(
1
2

+
1
2
) =

1
2
, p̃2 =

1
2

∑

s

p
(s)
2 =

1
2
(
1
2

+
1
2
) =

1
2
, (11)

H̃ = −(
1
2

log
1
2

+
1
2

log
1
2
) = log 2, (12)

E[H] = h(ω) = H̃ = log 2, (13)

I(y∗,ω) = H̃ − E[H] = 0. (14)

References

1. Audacity: Audacity(R): Free audio editor and recorder [computer application]
(2018). https://audacityteam.org/. version 2.2.2. Accessed 21 Jan 2021

2. Bomphrey, R.J., Nakata, T., Phillips, N., Walker, S.M.: Smart wing rotation and
trailing-edge vortices enable high frequency mosquito flight. Nature 544(7648),
92–95 (2017)

3. Cobb, A.D.: The practicalities of scaling Bayesian neural networks to real-world
applications. Ph.D. thesis, University of Oxford (2020)

4. Cobb, A.D., Jalaian, B.: Scaling Hamiltonian Monte Carlo inference for Bayesian
neural networks with symmetric splitting. arXiv preprint arXiv:2010.06772 (2020)

5. Cobb, A.D., Roberts, S.J., Gal, Y.: Loss-calibrated approximate inference in
Bayesian neural networks. arXiv preprint arXiv:1805.03901 (2018)

6. De Bruijn, N.: Uncertainty principles in Fourier analysis. Inequalities 2(1), 57–71
(1967)

7. Detection and Classification of Acoustic Scenes and Events 2018: 2018 results
(2018). http://dcase.community/challenge2018/task-general-purpose-audio-taggi
ng-results. Accessed 04 Apr 2021

8. Detection and Classification of Acoustic Scenes and Events 2020: 2020 results
(2020). http://dcase.community/challenge2020/task-acoustic-scene-classification-
results-a. Accessed 04 Apr 2021

https://audacityteam.org/
http://arxiv.org/abs/2010.06772
http://arxiv.org/abs/1805.03901
http://dcase.community/challenge2018/task-general-purpose-audio-tagging-results
http://dcase.community/challenge2018/task-general-purpose-audio-tagging-results
http://dcase.community/challenge2020/task-acoustic-scene-classification-results-a
http://dcase.community/challenge2020/task-acoustic-scene-classification-results-a

Automatic Acoustic Mosquito Tagging with Bayesian Neural Networks 365

9. Dieleman, S., Schrauwen, B.: End-to-end learning for music audio. In: IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.
6964–6968 (2014)

10. Dou, Z., et al.: Acoustotactic response of mosquitoes in untethered flight to inci-
dental sound. Sci. Rep. 11(1), 1–9 (2021)

11. Fanioudakis, E., Geismar, M., Potamitis, I.: Mosquito wingbeat analysis and classi-
fication using deep learning. In: 2018 26th European Signal Processing Conference
(EUSIPCO), pp. 2410–2414 (2018)

12. Gal, Y., Ghahramani, Z.: Dropout as a Bayesian approximation: representing
model uncertainty in deep learning. In: International Conference on Machine Learn-
ing, pp. 1050–1059 (2016)

13. Gal, Y., Islam, R., Ghahramani, Z.: Deep Bayesian active learning with image
data. In: International Conference on Machine Learning, pp. 1183–1192. PMLR
(2017)

14. Greenwalt, Y.S., Siljeström, S.M., Rose, T., Harbach, R.E.: Hemoglobin-derived
porphyrins preserved in a middle Eocene blood-engorged mosquito. Proc. Natl.
Acad. Sci. 110(46), 18496–18500 (2013)

15. Jakhete, S., Allan, S., Mankin, R.: Wingbeat frequency-sweep and visual stimuli
for trapping male Aedes aegypti (Diptera: Culicidae). J. Med. Entomol. 54(5),
1415–1419 (2017)

16. Johnson, B.J., Ritchie, S.A.: The siren’s song: exploitation of female flight tones
to passively capture male Aedes aegypti (Diptera: Culicidae). J. Med. Entomol.
53(1), 245–248 (2016)

17. Jordan, M.I., Ghahramani, Z., Jaakkola, T.S., et al.: An introduction to variational
methods for graphical models. In: Jordan, M.I. (ed.) Learning in Graphical Mod-
els, pp. 105–161. Springer, Heidelberg (1998). https://doi.org/10.1007/978-94-011-
5014-9 5

18. Joshi, A., Miller, C.: Review of machine learning techniques for mosquito control
in urban environments. Ecol. Inform. 101241 (2021)

19. Juang, B.H., Rabiner, L.R.: Automatic speech recognition - a brief history of the
technology development. Georgia Institute of Technology and the University of
California 1, 67 (2005)

20. Kaggle: BirdCLEF 2021 - Birdcall Identification (2021). https://www.kaggle.com/
c/birdclef-2021/leaderboards. Accessed 01 Apr 2021

21. Kiskin, I., Meepegama, U., Roberts, S.: Super-resolution of time-series labels for
bootstrapped event detection. In: Time-series Workshop at the International Con-
ference on Machine Learning (2019)

22. Kiskin, I., et al.: Mosquito detection with neural networks: the buzz of deep learn-
ing. arXiv preprint arXiv:1705.05180 (2017)

23. Kiskin, I., Wang, L., Cobb, A., et al.: Humbug Zooniverse: a crowd-sourced acoustic
mosquito dataset. In: International Conference on Acoustics, Speech, and Signal
Processing 2020, NeurIPS Machine Learning for the Developing World Workshop
2019 (2019, 2020)

24. Kiskin, I., et al.: HumBugDB: a large-scale acoustic mosquito dataset. Zenodo
(2021). https://doi.org/10.5281/zenodo.4904800

25. Kiskin, I., Zilli, D., Li, Y., Sinka, M., Willis, K., Roberts, S.: Bioacoustic detection
with wavelet-conditioned convolutional neural networks. Neural Comput. Appl.
32(4), 915–927 (2018). https://doi.org/10.1007/s00521-018-3626-7

26. Li, Y., et al.: Cost-sensitive detection with variational autoencoders for environ-
mental acoustic sensing. In: NeurIPS Workshop on Machine Learning for Audio
Signal Processing (2017)

https://doi.org/10.1007/978-94-011-5014-9_5
https://doi.org/10.1007/978-94-011-5014-9_5
https://www.kaggle.com/c/birdclef-2021/leaderboards
https://www.kaggle.com/c/birdclef-2021/leaderboards
http://arxiv.org/abs/1705.05180
https://doi.org/10.5281/zenodo.4904800
https://doi.org/10.1007/s00521-018-3626-7

366 I. Kiskin et al.

27. Li, Y., et al.: Mosquito detection with low-cost smartphones: data acquisition for
malaria research. In NeurIPS Workshop on Machine Learning for the Developing
World (2017)

28. MacKay, D.J.: A practical Bayesian framework for backpropagation networks. Neu-
ral Comput. 4(3), 448–472 (1992)

29. Minakshi, M., Bharti, P., Chellappan, S.: Identifying mosquito species using smart-
phone cameras. In: 2017 European Conference on Networks and Communications
(EuCNC), pp. 1–6. IEEE (2017)

30. Mukundarajan, H., Hol, F.J.H., Castillo, E.A., Newby, C., Prakash, M.: Using
mobile phones as acoustic sensors for high-throughput mosquito surveillance. elife
6, e27854 (2017)

31. Neal, R.M.: Bayesian Learning for Neural Networks. Lecture Notes in Statistics,
vol. 118. Springer, Heidelberg (2012). https://doi.org/10.1007/978-1-4612-0745-0

32. Ogawa, K., Kanda, T.: Wingbeat frequencies of some anopheline mosquitoes of
East Asia (Diptera: Culicidae). Appl. Entomol. Zool. 21(3), 430–435 (1986)

33. Perevozkin, V.P., Bondarchuk, S.S.: Species specificity of acoustic signals of malar-
ial mosquitoes of anopheles maculipennis complex. Int. J. Mosq. Res. 2(3), 150–155
(2015)

34. Piczak, K.J.: Environmental sound classification with convolutional neural net-
works. In: 2015 IEEE 25th International Workshop on Machine Learning for Signal
Processing (MLSP). IEEE (2015)

35. Sainath, T.N., et al.: Deep convolutional neural networks for large-scale speech
tasks. Neural Netw. 64, 39–48 (2015)

36. Salamon, J., Bello, J.P.: Deep convolutional neural networks and data augmen-
tation for environmental sound classification. IEEE Signal Process. Lett. 24(3),
279–283 (2017)

37. Simões, P.M., Ingham, R.A., Gibson, G., Russell, I.J.: A role for acoustic distortion
in novel rapid frequency modulation behaviour in free-flying male mosquitoes. J.
Exp. Biol. 219(13), 2039–2047 (2016)

38. Sinka, M.E., et al.: HumBug – an acoustic mosquito monitoring tool for use on
budget smartphones. Methods in Ecology and Evolution (2021). https://doi.org/
10.1111/2041-210X.13663

39. Sinka, M.E.: A global map of dominant malaria vectors. Parasites Vectors 5(1),
1–11 (2012)

40. Unwin, D., Corbet, S.A.: Wingbeat frequency, temperature and body size in bees
and flies. Physiol. Entomol. 9(1), 115–121 (1984)

41. Villarreal, S.M., Winokur, O., Harrington, L.: The impact of temperature and
body size on fundamental flight tone variation in the mosquito vector Aedes aegypti
(diptera: Culicidae): implications for acoustic lures. J. Med. Entomol. 54(5), 1116–
1121 (2017)

42. World Health Organization: Fact Sheet (2020). https://www.who.int/news-room/
fact-sheets/detail/vector-borne-diseases. Accessed 26 Jan 2020

https://doi.org/10.1007/978-1-4612-0745-0
https://doi.org/10.1111/2041-210X.13663
https://doi.org/10.1111/2041-210X.13663
https://www.who.int/news-room/fact-sheets/detail/vector-borne-diseases
https://www.who.int/news-room/fact-sheets/detail/vector-borne-diseases

Multitask Recalibrated Aggregation
Network for Medical Code Prediction

Wei Sun1 , Shaoxiong Ji1(B) , Erik Cambria2 , and Pekka Marttinen1

1 Aalto University, 02150 Espoo, Finland
{wei.sun,shaoxiong.ji,pekka.marttinen}@aalto.fi

2 Nanyang Technological University, Singapore 639798, Singapore
cambria@ntu.edu.sg

Abstract. Medical coding translates professionally written medical
reports into standardized codes, which is an essential part of medical
information systems and health insurance reimbursement. Manual cod-
ing by trained human coders is time-consuming and error-prone. Thus,
automated coding algorithms have been developed, building especially
on the recent advances in machine learning and deep neural networks.
To solve the challenges of encoding lengthy and noisy clinical documents
and capturing code associations, we propose a multitask recalibrated
aggregation network. In particular, multitask learning shares information
across different coding schemes and captures the dependencies between
different medical codes. Feature recalibration and aggregation in shared
modules enhance representation learning for lengthy notes. Experiments
with a real-world MIMIC-III dataset show significantly improved predic-
tive performance.

Keywords: Medical code prediction · Multitask learning ·
Recalibrated aggregation network

1 Introduction

Clinical notes generated by clinicians contain rich information about patients’
diagnoses and treatment procedures. Healthcare institutions digitized these clin-
ical texts into Electronic Health Records (EHRs), together with other structural
medical and treatment histories of patients, for clinical data management, health
condition tracking and automation. To facilitate information management, clin-
ical notes are usually annotated with standardized statistical codes. Different
diagnosis classification systems utilize various medical coding systems. One of
the most widely used coding systems is the International Classification of Dis-
eases (ICD) maintained by the World Health Organization1. The ICD system
is used to transform diseases, symptoms, signs, and treatment procedures into
standard medical codes and has been widely used for clinical data analysis, auto-
mated medical decision support [8], and medical insurance reimbursement [24].
1 https://www.who.int/standards/classifications/classification-of-diseases.

c© The Author(s) 2021
Y. Dong et al. (Eds.): ECML PKDD 2021, LNAI 12978, pp. 367–383, 2021.
https://doi.org/10.1007/978-3-030-86514-6_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86514-6_23&domain=pdf
http://orcid.org/0000-0001-6724-0584
http://orcid.org/0000-0003-3281-8002
http://orcid.org/0000-0002-3030-1280
http://orcid.org/0000-0001-7078-7927
https://www.who.int/standards/classifications/classification-of-diseases
https://doi.org/10.1007/978-3-030-86514-6_23

368 W. Sun et al.

The latest ICD version is ICD-11 that will become effective in 2022, while older
versions such as ICD-9 and ICD-9-CM, ICD-10 are also concurrently used. Other
popular medical condition classification tools include the Clinical Classifications
Software (CCS) and Hierarchical Condition Category (HCC) coding.

This paper primarily studies ICD and CCS coding systems because of their
individual characteristics of popularization and simplicity. CCS codes main-
tained by the Healthcare Cost and Utilization Project (HCUP2) provide medical
workers, insurance companies, and researchers with an easy-to-understand cod-
ing scheme of diagnoses and processes. On the other hand, the ICD coding sys-
tem provides a comprehensive classification tool for diseases and related health
problems. Nonetheless, the CCS and ICD codes have a one-to-many relationship
that enables the CCS software to convert ICD codes into CCS codes with a
smaller label space at different levels. For instance, in Fig. 1, the ICD-CCS map-
ping scheme converts “921.3” (“Contusion of eyeball”) and “918.1” (“Superficial
injury of cornea”) to the same CCS code “239”, which represents the “Superfi-
cial injury; contusion”. The CCS code “239” establishes a connection between
two different ICD codes.

Medical
Coding
Model

... the patient was
found on imaging to

have a type dens
fracture ... right
medial canthus

laceration with duct
involvement right

microhyphema and
right lower lid ...

ICD code

921.3 Contusion of eyeball

918.1 Superficial injury of
cornea

870.2

Laceration of eyelid,
full-thickness, not
involving lacrimal
passages

CCS code

239 Superficial injury;
contusion

235 Open wounds of head;
neck; and trunk

Clinical Document

Fig. 1. An example of medical code prediction, where ICD and CCS codes are used
as the coding systems. The second column of each tables shows the disease name
corresponding to each medical code.

Medical codes concisely summarize useful information from vast amounts of
inpatient discharge summaries, and have high medical and commercial value.
They are consequently of interest for both medical institutions and health insur-
ance companies. For example, major insurance companies use standard medical
codes in their insurance claim business [4]. Professional coders do the medi-
cal coding task by annotating clinical texts with corresponding medical codes.
Since manual coding is error-prone and labor-consuming [23], automated cod-
ing is needed. Taking the ICD coding as an example, many publications have
2 www.hcup-us.ahrq.gov/toolssoftware/ccs/ccs.jsp.

www.hcup-us.ahrq.gov/toolssoftware/ccs/ccs.jsp

Multitask Recalibrated Aggregation Network for Medical Code Prediction 369

proposed automated coding approaches, including feature engineering-based
machine learning methods [15,25] and deep learning methods [5,17,22].

However, the automated medical coding task is still challenging as reflected
in the following two aspects. Clinical notes contain noisy information, such as
spelling errors, irrelevant information, and incorrect wording, which may have
an adverse impact on representation learning, increasing the difficulty of medi-
cal coding. Also, it is a challenge to benefit from the relationship between dif-
ferent medical codes, especially when the label is high-dimensional. Existing
automatic ICD coding models, such as CAML [22] and MultiResCNN [17], have
limited performance because they do not consider the relationship between ICD
codes. In the medical ontology, there exists certain connections between different
concepts. For example, in the ICD coding system, “921.3” and “918.1”, repre-
senting “Contusion of eyeball” and “Superficial injury of cornea”, respectively,
belong to “Superficial injury; contusion”. Medical coding models may suffer from
underperformance if they can not effectively capture the relationships between
medical codes. For example in Fig. 1, the highlight area in a clinical document
is converted into corresponding medical codes, including ICD codes and CCS
codes.

In this paper, we propose a novel framework called MT-RAM, which com-
bines MultiTask (MT) learning with a Recalibrated Aggregation Module
(RAM) for medical code prediction. In particular, the RAM improves the qual-
ity of representation learning of clinical documents, by injecting rich contextual
information and performing nested convolutions, thereby solving the challenge of
encoding noisy and lengthy clinical notes. In multitask training, we consider the
joint training on two tasks, ICD and CCS code prediction. MultiTask Learning
(MTL) is inspired by human learning, where people often apply the knowledge
from previous tasks to help with a new task [33]. It makes full use of the infor-
mation contained in each task, shares information between related tasks through
common parameters, and enhances training efficiency [6,30]. In addition, MTL
reduces over-fitting to specific tasks by regularizing the learned representation
to be generalizable across tasks [18]. In the context of the two medical coding
systems, CCS coding can promote the training on the ICD codes; further, the
CCS codes can inform about the relationship between the ICD codes, thereby
improving model performance.

Our contributions fall into the following four aspects.

– To the best of our knowledge, this paper is the first to adopt multitask learn-
ing for medical code prediction and demonstrate the benefits of leveraging
multiple coding schemes.

– We design a recalibrated aggregation module (RAM) to generate clinical doc-
ument features with better quality and less noise.

– We propose a novel framework called MT-RAM, which combines multitask
learning, bidirectional GRU, RAM and label-aware attention mechanism.

– Experimental results show competitive performance of our framework across
different evaluation criteria on the standard real-world MIMIC-III database
when compared with several strong baselines.

370 W. Sun et al.

Our paper is organized as follows: Sect. 2 introduces related work; Sect. 3
describes the proposed model; Sect. 4 performs a series of comparison experi-
ments, an ablation study and a detailed analysis of the properties of the RAM;
finally, Sect. 5 provides concluding remarks.

2 Related Work

Automated Medical Coding. Automated medical coding is an essential and chal-
lenging task in medical information systems [25]. Healthcare institutes use dif-
ferent medical coding systems such as ICD, one of the most widely used coding
schemes. The majority of early automated medical coding works use machine
learning algorithms. Larkey and Croft [16] proposed a ICD code classifier with
multiple models, including K-nearest neighbor, relevance feedback, and Bayesian
independence classifiers. Perotte et al. [25] presented two ICD coding approaches:
a flat and a hierarchy-based SVM classifier. The experiments showed that hier-
archical SVM model outperforms flat SVM because it captures the hierarchical
structure of ICD codes.

Neural networks have gained popularity for medical coding with the recent
advances of deep learning techniques. Recurrent neural networks capture the
sequential nature of medical text and have been applied by several studies such
as the attention LSTM [26], the Hierarchical Attention Gated Recurrent Unit
(HA-GRU) [2], and the multilayer attention-based bidirectional RNN [31]. Con-
volutional networks also play an important role in this field. Mullenbach et
al. [22] proposed Convolutional Attention network for Multi-Label classification
(CAML). Li and Yu [17] utilized a Multi-Filter Residual Convolutional Neural
Network (MultiResCNN), and Ji et al. [11] developed a dilated convolutional
network. Fine-tuning retrained language models as an emerging trend for NLP
applications has been reported to have limits in medical coding by several ini-
tial studies [11,17] and a comprehensive analysis on the pretraining domain and
fine-tuning architectures [12].

Multitask Learning. Multitask learning is a machine learning paradigm that
jointly trains multiple related tasks to improve the performance of each task
and the generalization of the model. Multitask learning is widely used in various
medical applications such as drug action extraction [34], biological image anal-
ysis [32] and clinical information extraction [3,28]. In recent years, researchers
have studied leveraging multitask learning strategies to better process medical
notes. Malakouti et al. [20] jointly trained different diagnostic models to improve
performance of each diagnostic task. This work implemented the parameter shar-
ing between tasks by utilizing the bottom-up and top-down steps. This multitask
learning framework improved the performance and the generalization ability of
independently learned models. Si and Roberts [27] presented a CNN-based mul-
titask learning network for inpatient mortality prediction task, which comprises
some related tasks such as 0-day, 30-day, 1-year patient death prediction.

Multitask Recalibrated Aggregation Network for Medical Code Prediction 371

Softmax

Softmax

CCS Loss

ICD Loss

H

Us

Ud

As

Ad

Vs

Vd

Ws

Wd

BiGRU

RAM

X

A

A'

B

O

L

A

H'
Joint Loss

Fig. 2. Model architecture. In the Recalibrated Aggregation Module (RAM), “⊙”
denotes as element-wise multiplication, “◻” represent a down node; ‘◻” indicates a
lateral node; “◻” represents a up node; “⊗” is the matrix multiplication operation.

3 Method

This section describes the proposed Multi-Task Recalibrated Aggregation Net-
work, referred as MT-RAM, as it combines the Multi-Task learning scheme
and a Recalibrated Aggregation Module. The overall architecture of our MT-
RAM network has five parts as shown in Fig. 2. We use word embeddings pre-
trained by the word2vec [21] as the input. Secondly, we use the bidirectional
gated recurrent unit (BiGRU) [7] layer to extract document representation fea-
tures capturing sequential dependencies in clinical notes. Next, a RAM module
is used to improve the quality of the feature matrix and the efficiency of training
for the multitask objective. Fourthly, the attention classification layers with two
branches of ICD and CCS codes are composed of label-wise attention mechanism
and linear classification layers. The last part combines the respective losses of
the two classification heads and performs multitask training.

3.1 Input Layer

Denote a clinical document with n tokens as w = {w1, w2, . . . , wn}. We utilize
word2vec [21] to pretrain each clinical document to obtain word embedding
matrices. A word embedding matrix, referred to X = [x1,x2, . . . ,xn]T, is the
combination of each word vector xn ∈ R

de , where de is the embedding dimension.
Next, we feed word embedding matrix X ∈ Rn×de into the BiGRU layer to extract
document representation features.

3.2 Bidirectional GRU Layer

We use a bidirectional GRU layer to extract the contextual information from
the word embeddings X of the input documents. We calculate the latent states
of GRUs on i-th tokenxi:

372 W. Sun et al.

−→
hi =
−−−−→
GRU(xi,

−−−→
hi−1) (1)

←−
hi =

←−−−−
GRU(xi,

←−−−
hi+1) (2)

where
−−−−→
GRU and

←−−−−
GRU represent forward and backward GRUs, respectively. Final

operation is to concatenate the
−→
hi and then

←−
hi into hidden vector hi:

hi = Concat(
−→
hi,

←−
hi) (3)

Dimension of forward or backward GRU is set to dr. Bidirectional hidden vectors
hi ∈ R

2dr are horizontally concatenated into a resulting hidden representation
matrix H = [h1,h2, . . . ,hn]T , where the dimension of H ∈ Rn×2dr .

3.3 Recalibrated Aggregation Module

We propose a Recalibrated Aggregation Module (RAM) that abstracts features
learned by the BiGRU, recalibrates the abstraction, aggregates the abstraction
and the recalibrated features, and eventually combines the new representation
with the original one. This way, the RAM module can reduce the effect of noise
in the clinical notes and lead to improved representations for medical code classi-
fication. In detail, the RAM leverages a nested convolution structure to extract
and aggregate contextual information, which is used to recalibrate the noisy
input features. In addition to this, through the convolutions, the RAM attains
global receptive fields during feature extraction, which is complementary to the
GRU-based recurrent structure described in Sect. 3.2. With these two character-
istics, our RAM can improve the encoding of noisy and lengthy clinical notes.
The RAM consists of feature aggregation and recalibration. The calculation flow
of RAM is shown in Fig. 3 and described as below.

H A A'

LBH' O

Down
Node

Down
Node

Lateral
 Node

Up
Node

Up
Node

Fig. 3. The calculation flow of the RAM

Multitask Recalibrated Aggregation Network for Medical Code Prediction 373

Firstly, the hidden representation H from the BiGRU layer passes through
two down nodes to obtain matrices A and A′. This downsampling process can
be denoted as:

A =
dr∧

n=1

{
Kd1

2

[
tanh

(
dr∧

m=1

(
Kd1

1 H
)

m

)]

n

}
∈ R

n×dr , (4)

where
∧dr

m=1 represents dislocation addition, i.e., the second matrix is shifted by
one unit to the right based on the position of the first matrix. The overlapped
area is summed up. We repeat this operation until the last matrix and cut off
unit vectors on both sides of the concatenated matrix. In Eq. 4, Kd1

1 ∈R
2dr×k×dr

and Kd1
2 ∈ R

dr×k×dr represent two convolutional kernel groups in the first down
node and k is the kernel size. The second downsampled matrix A′

∈ R
n× dr

2 can
also be obtained in a similar way with different convolutional kernel groups
Kd2

1 ∈ R
dr×k×

dr
2 and Kd2

2 ∈ R
dr
2 ×k× dr

2 . Next, we use a lateral node with another
two convolutional kernel groups Kl

1 ∈ R
dr
2 ×k× dr

2 and Kl
2 ∈ R

dr
2 ×k× dr

2 , which have
consistent in and out channel dimensions, to transform A′ into lateral feature
matrix L∈Rn× dr

2 . We recover L with a up node and pair-wisely add the recovered
signal with the first downsampled feature matrix A to obtain the primarily
aggregated matrix B ∈ Rn×dr as denoted in Eq. 5, where Ku1

1 ∈ R
dr
2 ×k×dr and

Ku1
2 ∈ R

dr×k×dr represent deconvolutional kernel groups in the first up node.

B =A +
dr∧

n=1

{
Ku1

2

[
tanh

(
dr∧

m=1

(Ku1
1 L)m

)]

n

}
(5)

B T

n n
dr

dr
k

2dr
2dr

n
k

T'

2drDislocation
Addition

O

n
2dr

2dr
k

2dr

n
k

Dislocation
Addition

O'

2dr

Fig. 4. Recover weight matrix O from the primary aggregation B in the RAM module.
k is the kernel size, and dr and 2dr refer to the input and output feature dimensions
in a up node.

Secondly, we perform upsampling operations on the aggregated feature
matrix B to obtain weight matrix O ∈ Rn×2dr as illustrated in Fig. 4. Specifi-
cally, we leverage a deconvolution kernel group Ku2

1 ∈ R
dr×k×2dr to obtain the

374 W. Sun et al.

intermediate representation T ∈Rn×2dr . The different colors of Ku2
1 in Fig. 7 cor-

respond to how the different parts of the matrix T′
∈ R

n×k×2dr are calculated.
This process is denoted as:

T =
2dr∧

m=1

T′
m =

2dr∧

m=1

(BKu2
1)m. (6)

We adopt a deconvolution operation on the intermediate representation T to get
the weight matrix O ∈ Rn×2dr , denoted as:

O =
2dr∧

n=1

O′
n =

2dr∧

n=1

(tanh (T)Ku2
2)n , (7)

where Ku2
2 represents the deconvolution kernel group.

Finally, we employ the feature recalibration in a way similar to the attention
mechanism, where the “attention” score is learned by an iterative procedure with
convolutional feature abstraction (Eq. 4) and de-convolutional feature excitation
(Eq. 7). Specifically, we multiply the input feature matrix H by the weight matrix
O to obtain the recalibrated feature matrix H′

∈ R
n×2dr , denoted as:

H′
= tanh (O ⊙H) , (8)

where “⊙” represents element-wise multiplication. The recalibration operation
enhances the original features with contextual information injection through
the weight matrix O, which comprises rich semantic information that is conse-
quently less sensitive to errors. It enables the RAM module to have improved
generalization ability and, in the end, improved performance in medical coding.

3.4 Attention Classification Layers

Features extracted by lower layers in shared modules are label-agnostic. The
Recalibrated Aggregation Module inherits the capacity of learning label-specific
features from the Squeeze-and-Excitation block [10] to some extent. In order to
make different positions of clinical notes correspond to different medical codes,
we develop the label attention for classification layers to reorganize the charac-
teristic information related to medical codes and enhance label specifications.
Working together with the RAM module and label attention mechanism, our
model can achieve label-aware representation learning, which is helpful for mul-
titask heads as described in the next section (Sect. 3.5).

The attention classification layers are described as follows. We take a sub-
script d to denote a type of medical code. It can be generalized into different
coding systems. Specifically, d represents the ICD code in our paper. For sim-
plicity, the bias term is omitted. The attention scores of medical code Ad ∈R

n×m

can be calculated as:
Ad = Softmax(H′Ud) (9)

Multitask Recalibrated Aggregation Network for Medical Code Prediction 375

where H′ is the document features extracted by the RAM block, Ud ∈ R
dr×md

represents the parameter matrix of query in the attention mechanism, and md

denotes the number of target medical code. The attentive document features
Vd ∈ R

dr×md can be obtained by:

Vd =AT
dH

′ (10)

The label-wise attention mechanism captures the selective information contained
in the document encoding H′ and the query matrix Ud determines what infor-
mation in the encoding matrix to prioritize.

Then, we use a fully-connected max pooling layer as a classifier, which affines
the weight matrix to obtain the score vector Yd ∈ R

md×1 denoted as:

Yd = Pooling(WdVT
d) (11)

where Wd ∈ R
md×md represents the linear weight of the score vector. We use

the Sigmoid activation function to produce the probability logits ȳd for final
prediction.

3.5 Multitask Training

We introduce two self-contained tasks for multitask learning, i.e., ICD and CCS
code prediction. The two medical coding branch tasks enter different coding
processes and back-propagate the ICD code loss and CCS code loss, respectively.
The structure of the two coding processing branches is similar. By passing the
encoded features of clinical notes through the label attention module, we can get
the weighted document features of the ICD code Vd ∈R

dr×md and the CCS code
Vs∈R

dr×ms , where md and ms is the number of ICD and CCS codes respectively.
With the linear classifier layer, the prediction probability of ICD and CCS codes
are generated as ȳd and ȳs.

The medical code assignment is a typical multi-label classification task. We
use the binary cross entropy loss as the loss function of each sub-task in the
multitask setting. The ICD coding loss and CCS coding loss are denoted as:

Ld =

md∑

i=1

[
− ydi

log(ȳdi
) − (1 − ydi

) log(1 − ȳdi
)
]

(12)

Ls =

ms∑

i=1

[
− ysi log(ȳsi) − (1 − ysi) log(1 − ȳsi)

]
(13)

where ydi
, ysi ∈ {0, 1} are the target medical code labels. ȳdi

and ȳsi represent
prediction probability of ICD and CCS codes, and the number of ICD and CCS
codes are denoted as md and ms respectively. We adopt joint training for the
two medical coding losses to facilitate multitask learning. The joint training loss
is defined as

LM = λdLd + λsLs, (14)

where λd and λs are scaling factors of ICD and CCS codes.

376 W. Sun et al.

4 Experiments

We perform a series of experiments to validate the effectiveness of our proposed
model on public real-world datasets. Source code is available at https://github.
com/VRCMF/MT-RAM.

4.1 Datasets

MIMIC-III (ICD). The third version of Medical Information Mart for Inten-
sive Care (MIMIC-III)3 is a large, open-access dataset consists of clinical data
associated with above 40,000 inpatients in critical care units of the Beth Israel
Deaconess Medical Center between 2001 and 2012 [13]. Following Mullenbach
et al. [22] and Li and Yu [17], we segment all discharge summaries documents
based on the patient IDs, and generate 50 most frequent ICD codes for exper-
iments. We refer MIMIC-III dataset with top 50 ICD codes as the MIMIC-III
ICD dataset. There are 8,067 discharge summaries for training, and 1,574 and
1,730 documents for validation and testing, respectively.

MIMIC-III (CCS). We utilize the ICD-CCS mapping scheme, provided by the
HCUP, to convert the ICD codes and obtain the dataset with CCS codes. The
converted CCS dataset denotes as MIMIC-III CCS, which contains 38 frequent
CCS labels. Because the MIMIC-III ICD dataset shares the discharge summary
documents with the CCS dataset, the documents used for CCS code training,
validation and testing are consistent with the ICD code documents. We change
several conflicting mapping items so that ICD and CCS codes can achieve one-
versus-one matching. The converted CCS codes are then used as the labels of
discharge summaries.

4.2 Settings

Data Preprocessing. Following the processing flow of CAML [22], the non-
alphabetic tokens, such as punctuation and numbers, are removed from clinical
text. All tokens are transformed into lowercase format, and we replace low-
frequency tokens (appearing in fewer than three documents) into the ‘UNK’
token. We train the word2vec [21] on all discharge summaries to obtain the
word embeddings. The maximum length of each document is limited to 2,500,
i.e., documents longer than this length are truncated. The kernel size of convo-
lution layer in the RAM module is 3.

Evaluation Metrics. To evaluate the performance of models in CCS and ICD
code (collectively called medical code) datasets, we follow the evaluation pro-
tocols of previous works [17,22]. We utilize micro-averaged and macro-averaged
F1, micro-averaged and macro-averaged AUC (area under the receiver operat-
ing characteristic curve), precision at k as the evaluation methods. Precision

3 https://mimic.physionet.org/gettingstarted/access/.

https://github.com/VRCMF/MT-RAM
https://github.com/VRCMF/MT-RAM
https://mimic.physionet.org/gettingstarted/access/

Multitask Recalibrated Aggregation Network for Medical Code Prediction 377

at k (‘P@k’ in shorthand) is the proportion of k highest scored labels in the
ground truth labels. When calculating of micro-averaged scores, each clinical
text and medical codes are treated as separate predictions. During the comput-
ing of macro-averaged metrics, we calculate the scores for each medical code and
take the average of them. We run our model ten times and report the mean and
standard deviation of all the metrics.

Hyper-parameter Tuning. We refer to the previous works [17,22] and apply
some common hyper-parameter settings. Specifically, we set the word embed-
ding dimension to 100, the maximum document length to 2500, dropout rate to
0.2, the batch size to 16, and the dimension of hidden units to 300. In the choice
of learning rate, 0.008 is the optimal learning rate, which achieves good model
performance and consumes moderate time to converge. We set the scaling factors
λd and λs to 0.7 and 0.3 respectively. We use different optimizers to train our
model, including Adam [14], AdamW [19] and SGD+momemtum [29]. Although
the AdamW optimizer can shorten the training time, its predictive performance
is not as good as the Adam. The performance of the SGD+momentum and the
Adam are close, while Adam converges faster.

4.3 Baselines

CAML [22] comprises a single convolutional backbone and a label-wise attention
mechanism, achieving high performance for ICD code prediction.
DR-CAML [22], i.e., the Description Regularized CAML, is an extension of
CAML that incorporates the ICD description to regularize the CAML model.
HyperCore [5] uses the hyperbolic representation space to leverage the code
hierarchy and utilize the graph convolutional network to capture the ICD code
co-occurrence correlation.
MultiResCNN [17] adopts a multi-filter convolutional layer to capture various
text patterns and a residual connection to enlarge the receptive field.

4.4 Results

MIMIC-III (ICD Codes). Table 1 shows that the results of our MT-RAM
model performs better than all baseline models on all evaluation metrics. When
compared with the state-of-the-art MultiResCNN [17], our model has improved
the scores of macro-AUC, micro-AUC, macro-F1, micro-F1 and P@5 by 2.2%,
1.5% 4.5%, 3.6% and 2.3% respectively. Our model outperforms the CAML [22],
which is the classical automated ICD coding model, by 4.6%, 3.4%, 11.9%, 9.2%
and 5.5%. The improvement of our model in macro-F1 and micro-F1 is more
significant than other metrics by comparing with HyperCore [5], specifically by
4.2% and 4.3% respectively. While other scores see moderate improvement by
1% ∼ 3%. Recent pretrained language models such as BERT [9] and its domain-
specific variants like ClinicalBERT [1] are omitted from the comparison because

378 W. Sun et al.

Table 1. MIMIC-III results (ICD code). Results are shown in %. We set different
random seeds for initialization to run our model for 10 times. Results of MT-RAM are
demonstrated in means ± standard deviation

Models AUC-ROC F1 P@5

Macro Micro Macro Micro

CNN 87.6 90.7 57.6 62.5 62.0

CAML 87.5 90.9 53.2 61.4 60.9

DR-CAML 88.4 91.6 57.6 63.3 61.8

HyperCore 89.5± 0.3 92.9± 0.2 60.9± 0.1 66.3 ± 0.1 63.2± 0.2

MultiResCNN 89.9± 0.4 92.8± 0.2 60.6± 1.1 67.0± 0.3 64.1 ± 0.1

MT-RAM (ours) 92.1 ± 0.1 94.3 ± 0.1 65.2 ± 0.3 70.7± 0.2 66.4± 0.2

these models are limited to process text with 512 tokens and have been reported
with poor performance by two recent studies [12,17].

MIMIC-III (CCS Code). We evaluate the CAML, DR-CAML and the Mul-
tiResCNN on the MIMIC-III CCS dataset and record the results in Table 2.
Since the Hypercore [5] does not provide the source code, we omit it from the
comparison. Following the practice described in the section of hyper-parameter
tuning, we set all the parameters of the CAML and the MultiResCNN to be con-
sistent with the hyper-parameters of the original works except for the learning
rate.

As shown in Table 2, we can see that our model obtains better results in the
macro AUC, micro AUC, macro F1, micro F1, P@5, compared with the strong
MultiResCNN baseline. The improvement of our model is 1.6% in both macro
AUC and micro AUC, 4.2% in macro F1, 3.4% in micro F1, and 2.7% in P@5.
DR-CAML uses the ICD code description to achieve performance improvement.
DR-CAML uses the description of ICD codes to improve the performance of
CAML. But on MIMIC-III (CCS) dataset, this description will cause interference
to CAML, so the result of DR-CAML is worse. Our model improves the F1 macro
metric by 5.5%, comparing with the CAML model.

Table 2. MIMIC-III results (CCS code). We run each model for 10 times and each time
set different random seeds for initialization. Results of all models are demonstrated in
means ± standard deviation

Models AUC-ROC F1 P@5

Macro Micro Macro Micro

CAML 89.2± 0.3 92.2± 0.3 60.9± 0.9 67.5± 0.4 64.5± 0.4

DR-CAML 87.5± 0.4 90.5± 0.4 59.3± 1.0 65.6± 0.6 62.6± 0.5

MultiResCNN 89.2± 0.2 92.4± 0.2 62.9± 0.9 68.8± 0.6 64.6± 0.3

MT-RAM (ours) 92.2 ± 0.1 94.6 ± 0.1 69.4 ± 0.1 74.4 ± 0.2 68.4 ± 0.1

Multitask Recalibrated Aggregation Network for Medical Code Prediction 379

4.5 Ablation Study

We examine the general usefulness of the two main components - multitask
training (MTL) and RAM module, by conducting an ablation study, where we
consider the performance of three representative ICD coding models: CAML,
MultiResCNN, and the GRU-based model (our method), with and without the
specific components.

Multitask Learning. We firstly investigate the effectiveness of the multitask
learning (MTL) scheme. From Table 3, we can observe that CAML and BiGRU
have been improved by a relatively large margin across all evaluation metrics
with multitask training. The CAML with MTL achieves 7.6% and 5.2% improve-
ment in macro and micro F1, respectively, and obtains increases by about 2%
to 3% in other scores. Similarly, the BiGRU with MTL has achieved a good
improvement in macro and micro F1, increased by 4.2% and 3.3% respectively.
For the MultiResCNN model, the multitask learning also contributes to relatively
good results, which is 2.3% improvement in the macro F1 score. The reason why
multitask learning can improve the performance of the model is the information
exchange between the two tasks. Intuitively, there exists a correlation relation-
ship between ICD and CCS coding systems This leads to complementary ben-
efits for both ICD and CCS code prediction tasks. CAML and MultiResCNN
have achieved significant gains by incorporating the multitask learning aggre-
gation framework as a whole, i.e., the multitask learning scheme and the RAM
together. Therefore, the gain of the multitask learning aggregation framework is
not limited to some special network structures, and it has strong generalization
ability.

Table 3. Ablation study

Models AUC-ROC F1 P@5

Macro Micro Macro Micro

CAML 87.5 90.9 53.2 61.4 60.9

CAML + RAM 91.3 93.5 61.4 67.4 65.1

CAML + MTL 90.8 93.2 60.8 66.6 64.0

CAML + MTL + RAM 91.4 93.8 62.5 68.7 65.3

MultiResCNN 89.9 92.8 60.6 67.0 64.1

MultiResCNN + RAM 91.2 93.4 62.4 68.1 64.7

MultiResCNN + MTL 90.8 93.2 62.9 67.8 64.3

MultiResCNN + MTL + RAM 91.7 93.9 64.1 69.0 65.0

BiGRU 91.0 93.4 60.4 66.6 64.4

BiGRU + RAM 91.7 93.6 63.5 69.1 65.0

BiGRU + MTL 91.8 94.1 64.6 69.9 66.2

BiGRU + MTL + RAM (MT-RAM) 92.1 94.3 65.1 70.6 66.4

380 W. Sun et al.

Recalibrated Aggregation Module. The second part of ablation study if
examines whether the proposed Recalibrated Aggregation Module (RAM) can
learn useful features and consequently lead to better performance. In Table 3,
the performance of the three models has been greatly improved after including
the RAM module to the multitask BiGRU architecture. The micro F1 scores
of CAML, MultiResCNN and MT-RAM have been improved by 2.1%, 1.2%
and 0.8%, respectively. The RAM module helps the GRU-based model achieve
greater improvement than convolution-based models.

4.6 A Detailed Analysis of the Properties of the RAM

We conduct an exploratory study to investigate the effectiveness of element-wise
multiplication in the final feature weighting stage. We denote models applying
the multitask learning and multiplicative to CAML and MultiResCNN as MT-
CAML + RAM (Mult) and MT-MultiResCNN + RAM (Mult), respectively. The
RAM (Add) means to replace the multiplication operation in RAM with an addi-
tion operation. From Table 4, we can observe that the model with RAM (Mult)
outperforms models with RAM (Add) in most evaluation metrics. Although the
results of MT-RAM (Add) in F1 macro, F1 micro and P@5 are slightly better
than the results of MT-RAM (Mult), the gap is marginal. Considering the gen-
eralization ability and performance improvement of the two modules, the RAM
with multiplication operation outperforms the RAM with addition operation.

Table 4. Analysis of RAM: multiplicative versus additive

Models AUC-ROC F1 P@5

Macro Micro Macro Micro

MT-CAML + RAM (Add) 91.1 93.5 62.1 68.1 65.0

MT-CAML + RAM (Mult) 91.4 93.8 62.5 68.7 65.3

MT-MultiResCNN + RAM (Add) 91.1 93.3 62.4 67.7 64.1

MT-MultiResCNN+ RAM (Mult) 91.7 93.9 64.1 69.0 65.0

MT-RAM (Add) 92.0 94.1 65.9 70.8 66.7

MT-RAM (Mult) 92.1 94.3 65.1 70.6 66.4

Regarding to the position of RAM in the multitasking learning framework,
we found that it is best to embed the RAM in the shared layers. Compared with
putting RAM in the two branches of the framework, RAM module embedded
in the shared layers helps two sub-tasks share more information. If RAM is
embedded in two sub-branch networks, the depth of the sub-network will increase
and the shared part will decrease. The deepening of the sub-network will interfere
with the network convergence and make training more difficult. At the same time,
reducing the shared part will reduce the amount of information exchange between
sub-tasks, which will affect the improvement of the model by the multitask
learning scheme.

Multitask Recalibrated Aggregation Network for Medical Code Prediction 381

5 Conclusion

In this paper, we proposed a novel multitask framework for the automated med-
ical coding task, which improved feature learning for clinical documents and
accounted for the dependencies between different medical coding systems. We
designed a Recalibrated Aggregation Module (RAM) to enrich document fea-
tures and reduce noisy information. Furthermore, we leveraged multitask learn-
ing to share information across different medical codes. We demonstrated that
the combination of multitask learning and RAM improved automatic medical
coding considerably. In addition, these components are generalizable and can be
successfully integrated to other overall architectures. The experimental results
on the real-world clinical MIMIC-III database showed that our framework out-
performed previous strong baselines. Finally, we believe our framework can be
beneficial not only in medical coding tasks, but also in other text label prediction
tasks.

Acknowledgments. This work was supported by the Academy of Finland (grant
336033) and EU H2020 (grant 101016775). We acknowledge the computational
resources provided by the Aalto Science-IT project. The authors wish to acknowledge
CSC - IT Center for Science, Finland, for computational resources.

References

1. Alsentzer, E., et al.: Publicly available clinical BERT embeddings. In: Proceedings
of the 2nd Clinical Natural Language Processing Workshop, pp. 72–78 (2019)

2. Baumel, T., Nassour-Kassis, J., Cohen, R., Elhadad, M., Elhadad, N.: Multi-label
classification of patient notes a case study on ICD code assignment. arXiv preprint
arXiv:1709.09587 (2017)

3. Bi, J., Xiong, T., Yu, S., Dundar, M., Rao, R.B.: An improved multi-task learning
approach with applications in medical diagnosis. In: Daelemans, W., Goethals,
B., Morik, K. (eds.) ECML PKDD 2008. LNCS (LNAI), vol. 5211, pp. 117–132.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87479-9 26

4. Bottle, A., Aylin, P.: Intelligent information: a national system for monitoring
clinical performance. Health Serv. Res. 43(1p1), 10–31 (2008)

5. Cao, P., Chen, Y., Liu, K., Zhao, J., Liu, S., Chong, W.: HyperCore: hyperbolic
and co-graph representation for automatic ICD coding. In: Proceedings of the 58th
Annual Meeting of the Association for Computational Linguistics, pp. 3105–3114
(2020)

6. Chandra, R., Gupta, A., Ong, Y.-S., Goh, C.-K.: Evolutionary multi-task learning
for modular training of feedforward neural networks. In: Hirose, A., Ozawa, S.,
Doya, K., Ikeda, K., Lee, M., Liu, D. (eds.) ICONIP 2016. LNCS, vol. 9948, pp.
37–46. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46672-9 5

7. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for
statistical machine translation. arXiv preprint arXiv:1406.1078 (2014)

8. Choi, E., Bahadori, M.T., Schuetz, A., Stewart, W.F., Sun, J.: Doctor AI: pre-
dicting clinical events via recurrent neural networks. In: Machine Learning for
Healthcare Conference, pp. 301–318. PMLR (2016)

http://arxiv.org/abs/1709.09587
https://doi.org/10.1007/978-3-540-87479-9_26
https://doi.org/10.1007/978-3-319-46672-9_5
http://arxiv.org/abs/1406.1078

382 W. Sun et al.

9. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.L.: BERT: pre-training of deep
bidirectional transformers for language understanding. In: NAACL-HLT (2019)

10. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the
IEEE Conference on Computer Vision And Pattern Recognition, pp. 7132–7141
(2018)

11. Ji, S., Cambria, E., Marttinen, P.: Dilated convolutional attention network for
medical code assignment from clinical text. In: Proceedings of the 3rd Clinical
Natural Language Processing Workshop at EMNLP, pp. 73–78 (2020)

12. Ji, S., Hölttä, M., Marttinen, P.: Does the magic of BERT apply to medical code
assignment? A quantitative study. arXiv preprint arXiv:2103.06511 (2021)

13. Johnson, A.E.W., et al.: MIMIC-III, a freely accessible critical care database. Sci.
Data 3(1), 1–9 (2016)

14. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

15. Koopman, B., Zuccon, G., Nguyen, A., Bergheim, A., Grayson, N.: Automatic ICD-
10 classification of cancers from free-text death certificates. Int. J. Med. Inform.
84(11), 956–965 (2015)

16. Larkey, L.S., Croft, W.B.: Combining classifiers in text categorization. In: Pro-
ceedings of the 19th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, pp. 289–297 (1996)

17. Li, F., Hong, Y.: ICD coding from clinical text using multi-filter residual con-
volutional neural network. In: Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 34, pp. 8180–8187 (2020)

18. Liu, X., He, P., Chen, W., Gao, J.: Multi-task deep neural networks for natural
language understanding. arXiv preprint arXiv:1901.11504 (2019)

19. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101 (2017)

20. Malakouti, S., Hauskrecht, M.: Hierarchical adaptive multi-task learning frame-
work for patient diagnoses and diagnostic category classification. In: 2019 IEEE
International Conference on Bioinformatics and Biomedicine (BIBM), pp. 701–706.
IEEE (2019)

21. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed rep-
resentations of words and phrases and their compositionality. arXiv preprint
arXiv:1310.4546 (2013)

22. Mullenbach, J., Wiegreffe, S., Duke, J., Sun, J., Eisenstein, J.: Explainable predic-
tion of medical codes from clinical text. arXiv preprint arXiv:1802.05695 (2018)

23. O’malley, K.J., Cook, K.F., Price, M.D., Wildes, K.R., Hurdle, J.F., Ashton, C.M.:
Measuring diagnoses: ICD code accuracy. Health Serv. Res. 40(5p2), 1620–1639
(2005)

24. Park, J.-K., et al.: The accuracy of ICD codes for cerebrovascular diseases in med-
ical insurance claims. J. Prev. Med. Public Health 33(1), 76–82 (2000)

25. Perotte, A., Pivovarov, R., Natarajan, K., Weiskopf, N., Wood, F., Elhadad, N.:
Diagnosis code assignment: models and evaluation metrics. J. Am. Med. Inform.
Assoc. 21(2), 231–237 (2014)

26. Shi, H., Xie, P., Hu, Z., Zhang, M., Xing, E.P.: Towards automated ICD coding
using deep learning. arXiv preprint arXiv:1711.04075 (2017)

27. Si, Y., Roberts, K.: Deep patient representation of clinical notes via multi-task
learning for mortality prediction. In: AMIA Summits on Translational Science
Proceedings 2019, p. 779 (2019)

http://arxiv.org/abs/2103.06511
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1901.11504
http://arxiv.org/abs/1711.05101
http://arxiv.org/abs/1310.4546
http://arxiv.org/abs/1802.05695
http://arxiv.org/abs/1711.04075

Multitask Recalibrated Aggregation Network for Medical Code Prediction 383

28. Suk, H.-I., Lee, S.-W., Shen, D.: Deep sparse multi-task learning for feature selec-
tion in Alzheimer’s disease diagnosis. Brain Struct. Funct. 221(5), 2569–2587
(2016). https://doi.org/10.1007/s00429-015-1059-y

29. Sutskever, I., Martens, J., Dahl, G., Hinton, G.: On the importance of initializa-
tion and momentum in deep learning. In: International Conference on Machine
Learning, pp. 1139–1147. PMLR (2013)

30. Yosinski, J., Clune, J., Bengio, Y., Lipson, H.: How transferable are features in
deep neural networks? arXiv preprint arXiv:1411.1792 (2014)

31. Yu, Y., Li, M., Liu, L., Fei, Z., Wu, F.X., Wang, J.: Automatic ICD code assignment
of Chinese clinical notes based on multilayer attention BiRNN. J. Biomed. Inform.
91, 103114 (2019)

32. Zhang, W., Li, R., Zeng, T., Sun, Q., Kumar, S., Ye, J., Ji, S.: Deep model based
transfer and multi-task learning for biological image analysis. IEEE Trans. Big
Data 6(2), 322–333 (2016)

33. Zhang, Y., Yang, Q.: A survey on multi-task learning. arXiv preprint
arXiv:1707.08114 (2017)

34. Zhou, D., Miao, L., He, Y.: Position-aware deep multi-task learning for drug-drug
interaction extraction. Artif. Intell. Med. 87, 1–8 (2018)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/s00429-015-1059-y
http://arxiv.org/abs/1411.1792
http://arxiv.org/abs/1707.08114
http://creativecommons.org/licenses/by/4.0/

Open Data Science to Fight COVID-19:
Winning the 500k XPRIZE Pandemic

Response Challenge

Miguel Angel Lozano1(B) , Òscar Garibo i Orts2 , Eloy Piñol2 ,
Miguel Rebollo2 , Kristina Polotskaya3 , Miguel Angel Garcia-March2 ,

J. Alberto Conejero2 , Francisco Escolano1 , and Nuria Oliver4

1 University of Alicante, Alicante, Spain
malozano@ua.es

2 IUMPA and VRAIN, Universitat Politècnica de València, València, Spain
3 University Miguel Hernández, Elche, Spain

4 ELLIS (European Lab. for Learning and Intelligent Systems) Unit Alicante,
Alicante, Spain

Abstract. In this paper, we describe the deep learning-based COVID-19
cases predictor and the Pareto-optimal Non-Pharmaceutical Intervention
(NPI) prescriptor developed by the winning team of the 500k XPRIZE
Pandemic Response Challenge, a four-month global competition orga-
nized by the XPRIZE Foundation. The competition aimed at developing
data-driven AI models to predict COVID-19 infection rates and to pre-
scribe NPI Plans that governments, business leaders and organizations
could implement to minimize harm when reopening their economies. In
addition to the validation performed by XPRIZE with real data, the win-
ning models were validated in a real-world scenario thanks to an ongoing
collaboration with the Valencian Government in Spain. We believe that
this experience contributes to the necessary transition to more evidence-
driven policy-making, particularly during a pandemic.

Keywords: SARS-CoV-2 · Computational epidemiology · Data
science for public health · Recurrent neural networks ·
Non-pharmaceutical interventions · Pareto-front optimization

1 Introduction

During a pandemic, predicting the number of infections under different circum-
stances is important to inform public health, health care and emergency system
responses. Different approaches to predict the evolution of a pandemic have been
proposed in the literature, including traditional compartmental meta-population
models –such as SIR or SEIR [12], complex network [18], agent-based individual
[9] and purely data-driven time series forecasting [23] models.

Given the exponential growth in the number of SARS-CoV-2 infections and
the pressure in the health care systems, most countries in the world have imple-
mented non-pharmaceutical interventions (NPIs) during the current coronavirus
c© Springer Nature Switzerland AG 2021
Y. Dong et al. (Eds.): ECML PKDD 2021, LNAI 12978, pp. 384–399, 2021.
https://doi.org/10.1007/978-3-030-86514-6_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86514-6_24&domain=pdf
http://orcid.org/0000-0002-4757-5587
http://orcid.org/0000-0001-8089-1904
http://orcid.org/0000-0002-3763-175X
http://orcid.org/0000-0002-5115-8751
http://orcid.org/0000-0002-6116-6368
http://orcid.org/0000-0001-7092-838X
http://orcid.org/0000-0003-3681-7533
http://orcid.org/0000-0003-3238-4021
http://orcid.org/0000-0001-5985-691X
https://doi.org/10.1007/978-3-030-86514-6_24

Open Data Science to Fight COVID-19 385

pandemic, designed to reduce human mobility and limit human interactions to
contain the spread of the virus. These NPIs range from closing schools and non-
essential workplaces to requiring citizens to wear masks and limiting national
and/or international travel. How to model the impact that the applied NPIs have
on the progression of the pandemic is a non-trivial task, particularly for tradi-
tional meta-population approaches. Moreover, the social and economic costs of
applying NPIs for a sustained period of time has led to the largest global reces-
sion in history, with more than a third of the global population under confine-
ment during the first wave of the pandemic in March - April of 2020. The global
GDP shrunk by nearly 22 trillion of US dollars as of January 2021, according
to the IMF1. Beyond the economic cost, the social cost of the pandemic is also
staggering, preventing children and teenagers from attending schools, cancelling
cultural activities and forbidding people to visit their friends or relatives.

In view of these challenges, the XPRIZE foundation organized in Novem-
ber of 2020 a global competition called the 500K XPRIZE Pandemic Response
Challenge sponsored by Cognizant [1]. This four-month challenge focused on the
development of data-driven AI systems to predict COVID-19 infection rates and
prescribe Non-pharmaceutical Intervention Plans that governments and commu-
nities could implement to minimize harm when reopening their economies.

In this paper, we describe the predictor and prescriptor models developed by
ValenciaIA4COVID, the winning team of the competition. The paper is orga-
nized as follows: Sect. 2 provides an overview of the most relevant related work.
The data used in the competition is described in Sect. 3. The predictor and the
prescriptor models are presented in Sect. 4 and 5, respectively, followed by the
experimental results in Sect. 6. The main conclusions of our work and our future
lines of research are outlined in Sect. 7.

2 Related Work

We built a COVID-19 infections predictor based on Long Short Term Memory
(LSTM) networks [13]. Here, we briefly provide an overview of the approaches
that are the most similar to ours, i.e. based on recurrent neural networks. Com-
parative analyses with other methods can be found in e.g. [25].

Chatterjee et al. [7] applied stacked, bidirectional LSTMs and compared them
with multilayer LSTMs. They obtained good accuracy in the prediction of the
total number of cases and deaths in the world. Moreover, they did not find any
statistical correlation between COVID-19 cases and temperature, sunshine, and
precipitation, showing that the number of infections mostly depends on the behav-
ior and density of the population. In [8], LSTMs were used to predict the evolu-
tion of the pandemic in Canada and compared it with the USA, Spain, and Italy.
Prompt interventions were found to have a strong impact in minimizing the total
number of infections, though the accuracy of their predictions was good only for a
relatively short time period. Other examples of early works explored using LSTMs
1 https://www.dw.com/en/coronavirus-global-gdp-to-sink-by-22-trillion-over-covid-

says-imf/a-56349323.

https://www.dw.com/en/coronavirus-global-gdp-to-sink-by-22-trillion-over-covid-says-imf/a-56349323
https://www.dw.com/en/coronavirus-global-gdp-to-sink-by-22-trillion-over-covid-says-imf/a-56349323

386 M. A. Lozano et al.

to predict COVID-19 cases and the effect of NPIs in India [3] and Iran [4], with
accurate results within a prediction interval of one week up to a month.

Clustering algorithms have been used to improve the models’ performance.
In [19] the authors use an LSTM to predict cases in different states of Brazil.
First, they cluster nations by their temporal series of infections and then assign
each Brazilian state to the closest cluster. Global COVID-19 case data was also
used in [14] to cluster countries according to their outcomes.

To the best of our knowledge, our work is the first to propose a bank of
LSTMs to predict the evolution of the coronavirus pandemic in 236 countries and
regions in the world, with good prediction results over a long time period (up to
180 days) and taking into consideration the NPIs applied in each country/region.

Regarding the prescriptor part of our work, there are very few related refer-
ences. In [24] a multi-objective genetic algorithm was used to find optimal policies
using data from Wuhan. Sameni presents an approach to find a balance between
interventions and the number of cases with a core compartmental model. This app-
roach requires evaluating the impact of the policy on the evolution of the disease
[22]. Several works evaluated the effectiveness of NPIs: see [20,21] for studies in
Italy, Taiwan and Malaysia or [6,10] for recent studies in Europe. Finally, Miikku-
lainen et al. propose a neuroevolution approach to identify a Pareto-optimal set
of NPIs [17], that was recommended during the Challenge.

3 Data

The coronavirus is the first global pandemic for which there is extensive data
captured and shared on a daily basis for most countries and regions in the
world. The Challenge leveraged publicly available official COVID-19 case data
together with the Oxford COVID-19 Government Response Tracker data set2

as the main data sources to be used during the competition [11]. This data set
provides information for 186 countries and state/region-level data for the US,
UK, Canada, and Brazil. The Challenge considered 182 countries3, the 50 US
states and the 4 regions in the UK, yielding a total of 236 countries or regions.
In the rest of the paper, we will use GEO to denote the countries/regions.

The available data sources can be split into case-related data, i.e. number
of daily confirmed COVID-19 cases, and action or NPI -related data, i.e. the
NPIs and their level of activation each day for each GEO. In the Challenge, we
considered 12 NPIs of two types: confinement-based and public health-based, that
are summarized with all their possible levels of activation in Table 1.

4 Predictors of COVID-19 Cases

This part of the Challenge required building a predictor of the number of con-
firmed COVID-19 cases in the 236 GEOs for up to 180 days into the future,
2 https://www.bsg.ox.ac.uk/research/research-projects/coronavirus-government-

response-tracker.
3 Tonga, Malta, Turkmenistan and Virgin Islands- were not considered due to lack of

reliable data.

https://www.bsg.ox.ac.uk/research/research-projects/coronavirus-government-response-tracker
https://www.bsg.ox.ac.uk/research/research-projects/coronavirus-government-response-tracker

Open Data Science to Fight COVID-19 387

Table 1. NPIs considered in the Challenge and their possible activation values. The
predictor is trained with confinement interventions (C1 to C8). Both confinement and
public health interventions (H1 to H3 and H6) are considered in the prescriptor.

NPI name Values NPI name Values

C1. School closing [0,1,2,3] C7. Internal movement restrictions [0,1,2]

C2. Workplace closing [0,1,2,3] C8. International travel controls [0,1,2,3]

C3. Cancel public events [0,1,2] H1. Public information campaigns [0,1,2]

C4. Restrictions on gatherings [0,1,2,3] H2. Testing policy [0,1,2,3]

C5. Close public transport [0,1,2] H3. Contact tracing [0,1,2]

C6. Stay at home requirements [0,1,2,3] H6. Facial coverings [0,1,2,3,4]

and considering the different NPIs implemented in each GEO. Evidently, the
NPIs should impact the transmission of the disease and hence the number of
cases. Next, we summarize our notation, followed by a description of our deep
learning-based predictive model.

4.1 Notation

In the following, we will use the following terms and notation:

1. GEO: We denote as GEO a country or a region (e.g. California). We use
the index j to refer to each GEO.
2. Population (P j): P j denotes the total population of GEO j. We assume
that each GEO’s population is constant during the entire period of time.
3. NewCases (Xj

n): The daily number of new cases on day n and GEO j is
denoted by Xj

n. The first day considered is March, 11th 2020.
4. ConfirmedCases (Y j

n): The cumulative number of confirmed cases up to
day n in GEO j is given by Y j

n =
∑n

i=1 Xj
i .

5. SmoothedNewCases (Zj
n): We compute the average number of new cases

between days n−K +1 and n in GEO j as Zj
n = 1

K

∑K−1
i=0 Xj

n−i. This prevents
noise due to different imputation policies (some GEOs do not report cases on
weekends, while others do). We use K = 7 to smooth over one week.
6. CaseRatio (Cj

n): The ratio of cases between two consecutive days is denoted
by Cj

n = Zj
n/Zj

n−1. It indicates the growth/decrease in the number of cases.
7. Susceptible Population (Sj

n): The number of susceptible individuals to
be infected with coronavirus on day n and for GEO j is denoted by Sj

n.
8. ScaledCaseRatio (Rj

n): It is the CaseRatio Cj
n divided by the proportion

of susceptible individuals in GEO j, Rj
n = Cj

n
P j

Sj
n
. It captures the effects of a

finite population, as it depends on proportion of susceptible individuals in GEO
j.
9. Action (Aj

n): The vector with the applied NPIs in GEO j on day n.
10. Stringency of Aj

n (StrjAn
): The stringency of an NPI applied in GEO j on

day n is given by StrjAn
=

∑H6
i=C1 aj

n(i) ·Costj(i), where Costj is the cost vector
of each of the 12 different types of NPIs ([C1...C8,H1,H2,H3,H6]) in GEO j.
11. Intervention Policy (IP): The sequence of daily 12-dimensional NPI or
action vectors applied over a time period T .

388 M. A. Lozano et al.

12. Stringency of an Intervention Policy: The sum of the stringencies of
the NPIs or actions Aj

n applied each day n over the time period T .

We denote estimations with a .̂ symbol, e.g. X̂j
n is the estimated number new

cases and R̂j
n the estimated scaled case ratio, both for GEO j and day n.

4.2 SIR Epidemiological Model

The predictors model the dynamics of the epidemics in each GEO j using an
underlying basic SIR compartmental meta-population model [2]. In this model,
the population is divided into three different states: S (Susceptible), Z (Infected),
and D (Removed, due to recovery or death). The dynamics of such an SIR model
is included in the S.M.4 The evolution of the number of infected individuals is
given by dZj

dt = β Sj

Pj
Zj − μZj , where β is the infection rate which controls the

probability of transition between the S and Z; and μ is the recovery or removal
rate, controlling the probability of transition between the Z and D states. When
discretizing dZj

dt for two consecutive days, we obtain

Zj
n = Zj

n−1 + β
Sj
n−1

Pj
Zj
n−1 − μZj

n−1 =

(

1 + β
Sj
n−1

Pj
− μ

)

Zj
n−1. (1)

which yields

Rj
n =

(1 − μ)Pj

Sj
n

+ β =
Zj
n

Zj
n−1

P j

Sj
n

. (2)

This equation links Rj
n with the parameters of the SIR model. The larger the

Rj
n, the larger Zj

n

Zj
n−1

and hence the larger the growth in the number of cases.

Given that μ is constant in (2), the larger the infection rate β, the larger the
Rj

n. Moreover, the infection rate and thus Rj
n depend on the applied NPIs.

If we predict R̂j
n, we can estimate the number of cases for day n at GEO j:

X̂j
n =

(

R̂j
n

Sj
n−1

Pj
− 1

)

KZj
n−1 + Xj

n−K . (3)

where K = 7 is the size of the temporal window used to compute Zn. As pre-
viously explained, Xn−K is the reported new cases for day n − K; R̂j

n is the
predicted Rj

n; P j is the population of GEO j; and Zj
n−1 is the cumulative num-

ber of cases averaged over K days for day n − 1 in GEO j.
Thus, the goal of the predictors is to estimate R̂j

n given the data up to day
n − 1. Since Rj

n depends on the transmission rate and the dependency of the
transmission rate on the NPIs, the predictors consider the number of COVID-19
infections (context) and the applied NPIs (actions) each day in each GEO.

4 https://github.com/malozano/valencia-ia4covid-xprize/raw/master/docs/
supplementary.pdf.

https://github.com/malozano/valencia-ia4covid-xprize/raw/master/docs/supplementary.pdf
https://github.com/malozano/valencia-ia4covid-xprize/raw/master/docs/supplementary.pdf

Open Data Science to Fight COVID-19 389

4.3 Baseline or Standard Predictor

The baseline or standard predictor was provided by the Challenge organizers
[17]. It consists of two parallel LSTMs, one to model the context – given by
the Rj

n – and the other to model the actions (Aj
n) applied on day n in GEO j.

Figure 1 (left) depicts the architecture of this baseline model. It uses the context
and action data to get predictions separately, joining both outputs via a lambda
merge layer.

Fig. 1. Left: Baseline LSTM-based predictor; Right: ValenciaIA4COVID predictor.

The lambda layer combines the output of the context LSTM h (top) and
the output of the action LSTM g (down), represented in Fig. 1. The input to
the LSTM h is the vector of values of Rn in the previous T days in GEO j,
namely Rj

n−1 = (Rj
n−T , . . . , Rj

n−1). The input to the LSTM g is the matrix
of 12-dimensional NPIs (actions) taken during the previous T days in GEO j,
namely Aj

n−1 = (Aj
n−T , . . . , Aj

n−1).
In our experiments we set T = 21, similarly to [17]. Such time window mit-

igates the noise due to how different GEOs report cases (e.g. Spain does not
report confirmed cases during the weekends and holidays, France reports just
four days per week, etc.). Moreover, this temporal granularity enables the model
to consider the average period of 12–15 days between being exposed to the coro-
navirus, being detected and tested as a new confirmed case [15].

The output of the lambda layer for day n is the predicted R̂j
n given by

R̂j
n = f(Aj

n−1,R
j
n−1) = (1 − g(Aj

n−1))h(Rj
n−1) (4)

with g(Aj
n−1) ∈ [0, 1] and h(Rj

n−1) ≥ 0. More details about the baseline model
can be found in [17]. Note that when making predictions into the future, the
Rj

n−i values in the vector Rj
n are replaced by the estimations provided by the

predictor, namely R̂j
n−i, for n − i > current day, i = 1, . . . , T .

390 M. A. Lozano et al.

4.4 ValenciaIA4COVID (V4C) Predictor

Similarly to the baseline predictor, we implemented an architecture with 2
LSTM-based branches: a context branch, where we modeled the Rn time series
and an action branch, where we modeled the time series of the eight confinement-
based ([C1...C8]) Non-pharmaceutical Interventions. While we did not consider
public health-based NPIs, we improved the baseline predictor in several ways.
We denote this improved model as the ValenciaIA4COVID or V4C predictor.

4.4.1 Context Branch

We identified large variability in the time series of confirmed COVID-19 cases
depending on the GEO, which made it difficult for a single LSTM context model
to perform well everywhere. More precisely, the analysis of the weights of a single
model trained on all the data showed that the LSTM matrices were full rank.
Hence, we opted for a bank of LSTM context models, shown in Fig. 1 (right).

Bank of Context Models. We created the bank as follows: First, we clustered
the GEOs via a K-means algorithm applied to the time series of reported number
of COVID-19 cases per 100K inhabitants. We optimized the number of clusters
using the Elbow method, obtaining 15 different clusters shown in the S.M.

Next, we trained a reference LSTM model with data from the 20 most-
affected GEOs and 15 different cluster LSTM models using data from all the
GEOs in each of the 15 clusters. In our experiments, we set March 11th, 2020
as the starting date for training the models. We then evaluated the reference
and all the cluster models on our testing data for all the GEOs. Our testing
period started on Nov. 1st for long-term evaluation and Dec. 1st for short-term
evaluation, ending on Dec. 21st, 2020. We automatically selected the model with
the lowest MAE per 100K inhabitants in each GEO, applying Occam’s razor
principle to minimize the number of models in our bank. Thus, we favored the
reference model when it obtained a similar performance to the best of the cluster
models. As a result of this process, we selected nine models: the reference model,
applied in 135 GEOs; and eight cluster models applied in the remaining GEOs.
A visualization of the cluster and model assignments can be found here5.

LSTMs Architecture. In the context branch (h) we implemented two different
LSTM-based architectures, as depicted in Fig. 1 (right): one for the reference
model and the other for each of the eight cluster models. The reference model
includes a convolutional layer with ReLu activation function and a bidirectional
LSTM followed by a dense layer. Each convolutional layer has 64 filters of size
8. This reference model empirically generalized well for 135 GEOs.

The cluster models consist of a stacked version of the architecture of the
reference model, with two convolutional layers and two stacked bidirectional
LSTMs. Each convolutional layer also has 64 filters of size 8 with ReLu as the
activation function and add a final dense layer. After the double 1D convolution
spans the characterization of the input sequence, the first LSTM encodes such
5 https://tinyurl.com/cjstz4yc.

https://tinyurl.com/cjstz4yc

Open Data Science to Fight COVID-19 391

a characterization in states of 64 dimensions (bidirectional) and feeds into the
second LSTM, whose units can now operate at a different time scale. This added
complexity enabled the models to perform well in the GEOs where the reference
model did not. After model selection, we obtained a bank of eight different cluster
models.

4.4.2 Action Branch

We used an LSTM followed by two dense layers to smooth the output and hence
better capture non-linearities. Similarly to [17], we used a sigmoid activation
function to guarantee that the action layer’s output to be in [0,1]. Since increasing
the activation or stringency of an NPI should not decrease its effectiveness, g is
constrained to satisfy the condition: if min(A − A′) ≥ 0 −→ g(A) ≥ g(A′). This
constraint is enforced by setting all trainable parameters of g to be non-negative
(absolute value) after each parameter update. Note that convolution here is not
considered in order to keep the raw NPI constraints. The V4C predictor only
considers the confinement NPIs, so each Aj

n is an 8-dimensional vector with the
level of activation of the eight confinement NPIs (see Table 1).

4.4.3 Merge Function

The two branches use the data from the last 21 days that are combined into a
final dense layer to get the predicted R̂n. The outputs of each branch (h and
g) are merged by the lambda function defined in (4). Thus, the predicted R̂n

provided by the context branch is modified by the output from the action branch.
The stricter the NPIs, the larger the output from the action layer, thus reducing
the context layer’s output. Finally, once the model gives the predicted R̂n, the
predicted number of new infections for day n, X̂n, is obtained using (3).

5 Prescriptor of Intervention Policies

The final phase of the XPRIZE competition required building a prescriptor which
would recommend for each GEO and for any period of time, up to 10 different
Intervention Policies (IP) with the best balance between their economic/social
cost and the resulting number of COVID-19 cases.

Thus, it entailed solving a two-objective optimization problem by identifying
the set of solutions that would be on the Pareto front [5,16,17]. On the one hand,
there is the stringency of a certain IP which captured the sum of the costs of
implementing such a policy. On the other hand, there is the number of COVID-
19 cases per 100K inhabitants which would result from applying such IP. Given
that this is a hypothetical scenario, the number of COVID-19 infections under
the IPs was estimated by the baseline or standard predictor provided by the
XPRIZE Challenge organizers. All the teams used the same predictor to enable
the judges to compare the prescriptors from different teams properly.

Our goal in the Prescription phase of the competition was to develop an
interpretable, data-driven and flexible prescription framework that would be

392 M. A. Lozano et al.

Fig. 2. V4C Prescriptor. The (offline) learning box (in blue) infers the convergence ̂Rn

for the sampled NPIs, and the Gradient Boosted Trees identify the feature importance.
The prescriptor relies on the standard XPRIZE predictor. The first set of NPIs is
obtained by the NPI- ̂Rn mapping; the second set, using a feature importance-based
greedy algorithm. These two sets compete and up to 10 non-dominated IPs are selected.
(Color figure online)

usable by non machine-learning experts, such as citizens and policymakers in
the Valencian Government. Our design principles were therefore driven by devel-
oping explainable and transparent models. The Challenge entailed finding the
set of Pareto-optimal IPs with the best trade-off between their economic/social
costs and their associated number of resulting COVID-19 cases. An intervention
policy IP1 dominates another intervention policy IP2 if the stringency(IP1) ≤
stringency(IP2) and the resulting number of COVID-19 cases under IP1 < than
under IP2. The goal was to find up to 10 IPs for each GEO, for any time period
and any costs that would dominate the rest of possible IPs. As in the case of
our predictor, we decided to combine complementary approaches to have a more
robust solution, shown in Fig. 2.

5.1 Modeling the NPI - COVID-19 Cases Space

Before building the prescriptor, we performed an exploratory data analysis of
the problem space. Our goal was to shed light on the relationship between the
NPIs and the resulting number of COVID-19 cases. Considering all the possible
values of each dimension of the NPI or action vector, there are 7,776,000 possible
combinations of NPI vectors that could be applied at each time step.

Each NPI vector, when applied for a minimum amount of time, would lead
to a reduction or increase in the number of COVID-19 cases in the GEO where
it is applied (see Eq. 4). To better understand the impact that different NPI
vectors have on the number of COVID-19 cases, we ran numerous experiments
where we called the predictor with different values of the NPI vector over varying
time periods of 30 to 90 days and on a sample of 21 representative GEOs from
different continents6, namely: United States, Brazil, India, Mexico, Italy, China,
United Kingdom, France, England, Russia, Iran, Spain, Argentina, Colombia,
New York State, Peru, Germany, Poland, South Africa, Texas and California.
For each case, we obtained the resulting R̂n estimated by the predictor.
6 We selected amongst the most affected countries and regions across the globe.

Open Data Science to Fight COVID-19 393

In our experiments, we observed that the same NPI vector would lead to
the same convergence R̂n in all the GEOs and over any time period pro-
vided that the NPI was applied for long enough (see a justification in the S.M.).
Moreover, we found that the convergence time of R̂n is inversely proportional
to its value. As per Eq. (2), note that the larger the R̂n, the larger the number
of resulting COVID-19 cases. We refer to this finding as the Rn synchroniza-
tion principle. Moreover, all countries underwent a transitory period of ≈ 21
days since the application of a certain NPI before their R̂n started converging
towards its convergence value. Figure 3 illustrates the convergence of the R̂n for
two different NPI vectors in the 21 selected GEOs.

5.2 Prescriptors

5.2.1 Prescriptor Method 1: Rn -based NPI Selection

Based on the Rn synchronization principle, one could easily obtain the Pareto-
optimal front of intervention policies if the mapping between the 7.8 million of
possible combinations of the NPI vector and their associated convergence R̂n

were to be known. Unfortunately, generating such a mapping was not feasible in
the time frame provided by the Challenge as it would require making millions
of calls to the predict function. Hence, we opted for computing a sample of such
a matrix (whose distribution is shown in the S.M.), obtained as (1) all the NPI
vectors with stringencies [0 to 6] and [28 to 34]; (2) all NPI vectors with one and
two non-zero entries; and (3) a random sample of 10,000 NPIs.

For each NPI in the sample, we computed the convergence R̂n, and the
resulting total number of COVID-19 cases in 20 and 60 days.

Using this NPI-R̂n matrix, we trained state-of-the-art machine-learning mod-
els to predict the R̂n for any given NPI vector. The best performing and explain-
able model were Gradient Boosted Trees, which obtained a MAE on the test set
of 0.0003. While such MAE was still too large for us to be able to fill-in all
the missing elements in the NPI-R̂n matrix, we carried out a feature importance
analysis and discovered that the C2, C1, H2, C4 and C5 interventions are, in this
order, the most important to predict their associated R̂n and hence the resulting
number of COVID-19 cases (see S.M. for details).

Thus, we also included in our NPI-R̂n matrix all the NPI vectors with non-
zero values in their C1, C2, C4, C5 and H2 interventions and zero in the rest of
the dimensions. This led to a total of 54,652 NPI vectors.

As a result, we generated a matrix with the mapping between these different
NPI vectors, their associated stringencies (at cost 1), the number of cases that
they would lead to at 20 days and at 60 days, and their convergence R̂n. We
carried out all computations on the sample of 21 previously listed GEOs.

At run time, given an input cost vector, the prescriptor computes the strin-
gency of each row in the NPI-R̂n matrix and identifies the NPI combinations
that are on the Pareto front by selecting those that lead to the best trade-off
between their stringencies, their associated number of cases at 20 and 60 days
and their convergence R̂n. More details are included in the S.M.

394 M. A. Lozano et al.

Fig. 3. R̂n convergence for two different NPI vectors on 21 representative GEOs.

5.2.2 Prescriptor Method 2: Feature Greedy NPI Selection

As per the feature importance analysis described above and given a cost vector,
we developed a greedy NPI prescriptor as follows: each dimension of the NPI
vector is ranked by its priority, computed as its feature importance divided by its
cost. This prescriptor consists of a greedy algorithm that consecutively activates
to its maximum value each NPI dimension by order of its priority. This method
is related to the greedy strategies developed to solve the knapsack problem7.

5.2.3 Prescriptor Combination

Each of the methods above provides a set of NPI recommendations for each
GEO for each day. From such a set, we select the 10 best NPIs that satisfy the
following criteria: (1) they are not dominated by any other NPI; and (2) they
contribute to having a diverse set of NPIs that cover the full range of possible
stringency values. Additional details are included in the S.M.

5.3 Intervention Policy Definition

Finally, the prescriptor needs to provide a set of up to 10 Intervention Policies,
i.e. dynamic regimes of applying the selected NPIs over the time period of inter-
est. To do so, we compute all possible combinations of subsequently applying
the selected NPIs in chunks of minimum 14 days (to enable the NPIs to act)
and identify the Pareto-front set of combinations that would yield the optimal
trade-off between stringency and number of cases. The total number of chunks
is dynamically determined. From this set of combinations, we again select the
10 that (1) are not dominated by any other policy; (2) contribute to having a
diverse set of policies along the stringency axis and (3) minimize the changes in
NPIs, as every NPI change has a social cost from a practical perspective.

Two screenshots of the interactive visualization that we developed so policy-
makers could easily compare the prescribed IPs are shown in the S.M. and can
be found here8.
7 See https://en.wikipedia.org/wiki/Knapsack problem..
8 https://public.tableau.com/app/profile/kristina.p8284/viz/PrescriptionsWeb/

Visualize.

https://en.wikipedia.org/wiki/Knapsack_problem.
https://public.tableau.com/app/profile/kristina.p8284/viz/PrescriptionsWeb/Visualize
https://public.tableau.com/app/profile/kristina.p8284/viz/PrescriptionsWeb/Visualize

Open Data Science to Fight COVID-19 395

6 Experimental Results

In this Section, we report the results of quantitatively evaluating our predic-
tor both in short and long-term prediction scenarios and qualitatively assessing
the performance of our predictor and prescriptor in hypothetical scenarios. Our
source code is publicly available9.

6.1 Predictor

We evaluated the predictive performance of our COVID-19 cases predictor and
compared it to the baseline model under different scenarios. We computed both
the Mean Absolute Error (MAE) of the estimated number of COVID-19 cases
per 100K inhabitants for each GEO in the Challenge and the Mean Rank of our
model when compared to the baseline model.

All the models were trained with data from the Oxford COVID-19 Govern-
ment Response Tracker dataset, from March 11th to December 17th 2020, for
the 20 most affected countries in terms of confirmed cases.

03
Jan

17 31 14
Feb

28 14
Mar

28 11
Apr

25 09
May

23 06
Jun

0

10M

20M

30M

40M XPRIZE baseline model
V4C model

Date

D
ai

ly
 n

ew
 c

as
es

 7
-d

ay
 a

ve
ra

ge

03
Jan

17 31 14
Feb

28 14
Mar

28 11
Apr

25 09
May

23 06
Jun

0.5M

1M

1.5M

2M

2.5M

3M

XPRIZE baseline model
V4C model

Date

D
ai

ly
 n

ew
 c

as
es

 7
-d

ay
 a

ve
ra

ge

03
Jan

17 31 14
Feb

28 14
Mar

28 11
Apr

25 09
May

23 06
Jun

0

200k

400k

600k

800k

XPRIZE baseline model
V4C model

Date

D
ai

ly
 n

ew
 c

as
es

 7
-d

ay
 a

ve
ra

ge

Fig. 4. Smoothed predicted daily new cases worldwide (7-day average) for three dif-
ferent future scenarios based on different values of the NPI vector: zero (left), frozen
(center) and maximal (right) NPIs applied. Note how without any NPIs there is a large
wave of infections, which is avoided when the NPIs set to their maximal values.

As the consistency of the model is an important characteristic to assess, we
evaluated the models both in short-term and long-term predictions. Short-term
evaluations consisted in generating predictions for 3 weeks ahead into the future
for the time period between Dec 1st and Dec 21st, 2020. Long-term evaluations
were two-fold: First, with historic data, we tested the predictions between Nov
1st and Dec 21st, 2020; Second, we ran the predictors under three different 180-
day prediction scenarios: (i) a scenario where the NPIs were frozen as of their
values in Dec 21st 2020; (ii) a scenario with all NPIs in all GEOs were set to
their maximum levels; and (iii) a scenario where all NPIs in all GEOs were set to
0. The behavior of our model under these three conditions made intuitive sense,
as depicted in Fig. 4.

Table 2 displays the MAE per 100K inhabitants and the Mean Rank of the
proposed model when compared to the baseline model provided by the XPRIZE
organizers. We also include the results of only using our reference context model
9 https://github.com/malozano/valencia-ia4covid-xprize.

https://github.com/malozano/valencia-ia4covid-xprize

396 M. A. Lozano et al.

without the clusters. As seen on the Table, our model outperforms the baseline
model in all evaluation scenarios in terms of MAE and Mean Rank. Moreover,
during the predictor evaluation phase of the XPRIZE Challenge, our predictor
ranked third in the world in Mean Rank amongst all the teams, first in Mean
Rank in Asian and in European GEOs. As per our collaboration with the Presi-
dent of the Valencian Government in Spain, we were able to share the predictions
of our predictor during the 3rd wave of the COVID-19 pandemic that started
right after Christmas of 2020. Figure 5 shows the predictions of our model (blue)
when compared to the baseline predictor (red) and the ground truth (yellow).
As seen in the Figure, our predictor was very accurate in predicting the evo-
lution of the pandemic while taking into account the different NPIs that were
implemented at the time. It provided valuable input to the Government in their
decision-making.

Table 2. Predictor results in short and long-term evaluations in the 236 GEOS.

Predictor Short-term Long-term

MAE Mean Rank MAE Mean Rank

XPRIZE LSTM baseline 157.924142 2.106383 935.340780 2.297872

V4C (w/o clusters) 138.208982 2.144681 825.375377 1.834043

V4C with clusters 126.331216 1.748936 803.587381 1.868085

6.2 Speed and Resource Use

In terms of training, we used an Intel Core i7 with 256 Gb RAM and GPU.
The training time of the reference model with 20 trials was 108 min and of the
cluster models ranged between 24 min (largest cluster with 106 GEOs) and 44 s
(smallest cluster with 2 GEOs).

06
Dec

13 20 27 03
Jan

10 17 24 31 07
Feb

14 21 28 07
Mar

14 21 28

0

2k

4k

6k

8k

10k

12k

14k
Ground Truth
XPRIZE standard model
V4C model

Date

D
ai

ly
 n

ew
 c

as
es

06
Dec

13 20 27 03
Jan

10 17 24 31 07
Feb

14 21 28 07
Mar

14 21 28

0

2k

4k

6k

8k

10k

12k Ground Truth
XPRIZE standard model
V4C model

Date

D
ai

ly
 n

ew
 c

as
es

 7
-d

ay
 a

ve
ra

ge

Fig. 5. Predictions vs ground truth for the Valencian region (Spain) during the third
wave: daily new cases (left) and smoothed daily new cases (right).

We carried out our prediction experiments on an Intel Core i7, 4 cores,
2,7 Ghz, 16 GB 2133 MHz LPDDR3. Table 3 (Top) summarizes the times needed

Open Data Science to Fight COVID-19 397

Table 3. Top: Total time needed to generate predictions for all the GEOs. Bottom:
Prescriptor results: # of dominating / # of dominated prescriptions for 5-day (from
Aug 1st to Aug 5th, 2020), 31-day (from Jan 1st to Jan 31st, 2021) and 90-day (from
Jan 1st to Mar 31st, 2021) time periods.

Window size of prediction

Predictor 31-days 61-days 180-days

Baseline 212 s 409 s 1,092 s

V4C 417 s 597 s 1,239 s

Prescriptor 31-days 61-days 180-days

Greedy 127/1814 130/1829 163/1839

Feature greedy 921/114 930/117 986/163

V4C prescriptor 927/47 934/48 986/137

to produce a prediction for all the GEOs by the baseline model and our proposed
model for three different sizes of the prediction period. As seen on the Table,
the computation needs of our model were well below the maximum time allowed
in the XPRIZE competition (60 min). We favored simplicity in our design and
aimed to minimize the energy consumption to be as planet-friendly as possible.

6.3 Prescriptor

Given the hypothetical nature of the prescriptor, we were not able to quantita-
tively evaluate its performance against ground truth. However, we did carry out
domination tests between the IPs recommended by our model when compared
to a greedy algorithm for the 236 GEOs in the Challenge and under both unitary
and random costs policies for a time period of 60 days into the future. Figure 6
depicts the recommended IPs by our model (orange and green) when compared
to a greedy prescriptor (blue).

Table 3 (bottom) shows the number of times the IPs recommended by our
prescriptor dominated and were dominated by the IPs suggested by the greedy
approach for all GEOs. Moreover, our prescriptor provided the IP recommen-
dations in under 2 h for all GEOs in the Challenge, well below the maximum
allowed limit of 6 h.

0 5 10 15 20 25
Mean stringency

1750

1800

1850

1900

1950

2000

M
ea

n
ca

se
s

pe
r

da
y

pe
r

ge
o

BlindGreedy
V4C
FeatGreedy

0 5 10 15 20 25 30
Mean stringency

5000

6000

7000

8000

9000

M
ea

n
ca

se
s

pe
r

da
y

pe
r

ge
o

BlindGreedy
V4C
FeatGreedy

0 5 10 15 20 25 30
Mean stringency

15000

20000

25000

30000

35000

40000

45000

50000

M
ea

n
ca

se
s

pe
r

da
y

pe
r

ge
o

BlindGreedy
V4C
FeatGreedy

Fig. 6. Number of cases vs stringency obtained from prescriptions generated for 5 days
(left), 31 days (center) and 90 days (right).

398 M. A. Lozano et al.

7 Conclusions and Future Work

In this paper, we have described the models developed by the winning team
of the 500K XPRIZE Pandemic Response Challenge. The competition entailed
first developing a model to predict the number of COVID-19 cases in 236 coun-
tries/regions in the world, for up to 180 days into the future and considering
the Non-pharmaceutical Interventions deployed in each country/region. In this
phase, we developed an LSTM-based bank of models which outperformed the
baseline model provided by the Challenge organizers and yielded the third best
Mean Rank amongst all the teams in the competition. The proposed model was
successfully used by the President of the Valencian government in Spain during
the third wave of COVID-19 infections in December - February 2021.

Next, the teams were asked to develop a prescription model that would rec-
ommend up to 10 Intervention Policies (IPs) in each of the 236 GEOs in the world
for any time period and costs that would achieve the best trade-off between the
total cost of the IP and the resulting number of coronavirus infections. Our
winning solution leveraged the Rn synchronization principle to provide Pareto-
optimal IPs that clearly dominated other approaches.

We believe that this work contributes to the necessary transition to more
evidence-driven policy-making, particularly during a pandemic. Future lines of
work include developing the intervention prescriptor within the Valencian Gov-
ernment, developing a theoretical proof of the Rn synchronization principle and
including the impact of vaccinations in our model.

Acknowledgements. The authors have been partially supported by grants FON-
DOS SUPERA COVID-19 Santander-CRUE (CD4COVID19 2020–2021), Fundación
BBVA for SARS-CoV-2 research (IA4COVID19 2020-2022) and the Valencian Gov-
ernment. We thank the University of Alicante’s Institute for Computer Research for
their support with computing resources, co-financed by the European Union and ERDF
funds through IDIFEDER/2020/003. MAGM acknowledges funding from MEFP Beat-
riz Galindo program (BEAGAL18/00203).

References

1. 500k XPRIZE Pandemic Response Challenge, sponsored by Cognizant. https://
www.xprize.org/challenge/pandemicresponse

2. Allen, L.: Some discrete-time SI, SIR, and SIS epidemic models. Math. Biosci.
124(1), 83–105 (1994)

3. Arora, P., Kumar, H., Panigrahi, B.K.: Prediction and analysis of COVID-19 pos-
itive cases using deep learning models: a descriptive case study of India. Chaos
Solit. Fractals 139, 110017 (2020)

4. Ayyoubzadeh, S., Ayyoubzadeh, S., Zahedi, H., Ahmadi, M., Kalhori, S.: Pre-
dicting COVID-19 incidence through analysis of Google trends data in Iran: data
mining and deep learning pilot study. JMIR Public Health Surveill. 6(2), e18828
(2020)

5. Belakaria, S., Deshwal, A., Doppa, J.: Max-value entropy search for multi-objective
bayesian optimization. In: Wallach, H., Larochelle, H., Beygelzimer, A., d’Alché-
Buc, F., Fox, E., Garnett, R. (eds.) NeurIPS, vol. 32 (2019)

https://www.xprize.org/challenge/pandemicresponse
https://www.xprize.org/challenge/pandemicresponse

Open Data Science to Fight COVID-19 399

6. Brauner, J.M., et al.: Inferring the effectiveness of government interventions against
COVID-19. Science 371(6531) (2021)

7. Chatterjee, A., Gerdes, M., Martinez, S.: Statistical explorations and univariate
timeseries analysis on COVID-19 datasets to understand the trend of disease
spreading and death. Sensors 20(11), 3089 (2020)

8. Chimmula, V.K.R., Zhang, L.: Time series forecasting of COVID-19 transmission
in Canada using LSTM networks. Chaos Solit. Fractals 135, 109864 (2020)

9. Ferguson, N., et al.: Strategies for containing an emerging influenza pandemic in
Southeast Asia. Nature 437(7056), 209–214 (2005)

10. Flaxman, S., et al.: Estimating the effects of non-pharmaceutical interventions on
COVID-19 in Europe. Nature 584, 257–261 (2020)

11. Hale, T., et al.: A global panel database of pandemic policies (Oxford COVID-19
Government Response Tracker). Nat. Hum. Behav. 1–10 (2021)

12. Hethcote, H.: The mathematics of infectious diseases. SIAM Rev. 42(4), 599–653
(2000)

13. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

14. Khan, M., Hossain, A.: Machine learning approaches reveal that the number of
tests do not matter to the prediction of global confirmed COVID-19 cases. Front.
Artif. Intell. Appl. 3, 90 (2020)

15. Lauer, S., Grantz, K., Bi, Q., Jones, F., et al.: The incubation period of coronavirus
disease 2019 (COVID-19) from publicly reported confirmed cases: estimation and
application. Ann. Intern. Med. 172(9), 577–582 (2020)

16. Lu, Z., et al.: NSGA-Net: neural architecture search using multi-objective genetic
algorithm (extended abstract). In: Bessiere, C. (ed.) Proceedings of the 29th Inter-
national Joint Conference on Artificial Intelligence (AI), IJCAI-20, pp. 4750–4754
(2020)

17. Miikkulainen, R., et al.: From prediction to prescription: evolutionary optimization
of nonpharmaceutical interventions in the COVID-19 pandemic. IEEE Trans. Evol.
Comput. 25(2), 386–401 (2021)

18. Pastor-Satorras, R., Castellano, C., Van Mieghem, P., Vespignani, A.: Epidemic
processes in complex networks. Rev. Mod. Phys. 87, 925–979 (2015)

19. Pereira, I., et al.: Forecasting COVID-19 dynamics in Brazil: a data driven app-
roach. Int. J. Environ. Res. Public Health 17(14), 5115 (2020)

20. Rahman, M., et al.: Data-driven dynamic clustering framework for mitigating the
adverse economic impact of COVID-19 lockdown practices. Sustain. Cities Soc.
62, 102372 (2020)

21. Riccardi, A., Gemignani, J., Fernández-Navarro, F., Heffernan, A.: Optimisation
of non-pharmaceutical measures in COVID-19 growth via neural networks. IEEE
Trans. Emerg. Topics Comput. 5(1), 79–91 (2021)

22. Sameni, R.: Model-based prediction and optimal control of pandemics by nonphar-
maceutical interventions. arXiv preprint arXiv:2102.06609 (2021)

23. Tayarani, N., Mohammad, H.: Applications of artificial intelligence in battling
against COVID-19: a literature review. Chaos Solit. Fractals 110338 (2020)

24. Yousefpour, A., Jahanshahi, H., Bekiros, S.: Optimal policies for control of the
novel coronavirus disease outbreak. Chaos Solit. Fractals 136, 1109883 (2020)

25. Zeroual, A., Harrou, F., Dairi, A., Sun, Y.: Deep learning methods for forecasting
COVID-19 time-series data: a comparative study. Chaos Solit. Fractals 140, 110121
(2020)

http://arxiv.org/abs/2102.06609

Mobility and Transportation

Getting Your Package to the Right Place:
Supervised Machine Learning

for Geolocation

George Forman(B)

Amazon, Bellevue, WA, USA
ghforman@amazon.com

Abstract. Amazon Last Mile strives to learn an accurate delivery point
for each address by using the noisy GPS locations reported from past
deliveries. Centroids and other center-finding methods do not serve well,
because the noise is consistently biased. The problem calls for supervised
machine learning, but how? We addressed it with a novel adaptation of
learning to rank from the information retrieval domain. This also enabled
information fusion from map layers. Offline experiments show outstand-
ing reduction in error distance, and online experiments estimated millions
in annualized savings.

Keywords: Learning to rank · Geospatial supervised learning

1 Introduction

Amazon Last Mile delivers millions of packages daily to homes and businesses all
over the world. To do this efficiently requires myriad optimization technologies,
most of which rely on accurate geocoding. The geolocation (latitude, longitude)
of each address is needed for partitioning and optimizing routes among vehicles,
and guiding drivers on the road and to the door. Here we focus on the geolocation

Fig. 1. (Left) The centroid (cyan) of the GPS fixes from past deliveries (blue) lies
in the middle of the street, whereas GeoRank correctly identified the doorstep (red),
which is neither a centroid nor a high density point. (Right) The centroid (cyan) lies at
an unrelated building between GPS clusters near the apartment (east) and the leasing
office (west). The doorstep (black) was correctly identified by the machine learning
ranking model (red). (Color figure online)

c© Springer Nature Switzerland AG 2021
Y. Dong et al. (Eds.): ECML PKDD 2021, LNAI 12978, pp. 403–419, 2021.
https://doi.org/10.1007/978-3-030-86514-6_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86514-6_25&domain=pdf
http://orcid.org/0000-0003-2179-4930
https://doi.org/10.1007/978-3-030-86514-6_25

404 G. Forman

problem of determining a precise delivery point (DP) geocode for each address,
i.e. the location of the customer’s doorstep, building entrance, or loading dock,
as appropriate. Marking an accurate DP on the driver’s map is especially useful
and time-saving wherever house number signage is weak, missing, or obscured
by trees. Inaccurate DPs lead to a bad driver experience, which may require
walking around to find neighboring house numbers to deduce the correct delivery
location. And this effort may get repeated each day by different drivers. Further,
badly mislocated DPs can lead to inefficient route planning, sending packages
on the wrong vehicles, and even misdeliveries or missed delivery time promises.

A strawman method for the DP would be to compute the centroid of GPS
fixes from past deliveries.1 Unfortunately, this can point drivers to the middle
of the street (see the hypothetical example in Fig. 1 left) or to an unrelated
building, depending on GPS noise and exactly when the driver marks the delivery
complete. Centroids and mediods are prone to outliers (frequently miles away)
and also make poor choices with multi-modal distributions, where they can fall
on an unrelated building between popular delivery locations (Fig. 1 right). These
examples also illustrate that selecting dense locations via clustering or Kernel
Density Estimation (KDE) [18] does not quite suit, as the best point may have
low density at the edge of the cloud.

The complexity of the geospatial inference problem clearly calls for some kind
of supervised machine learning (ML) rather than a relatively simple geometric
computation, but the research literature does not provide guidance. We need to
train from a collection of situations where we have labeled the best point, and
expect the system to learn to estimate the best point in new situations.

To do this, we have adapted learning to rank from the information retrieval
domain, where, for example, if a user clicks on only the #3 search result, it
implies a preference for #3 over #1 and over #2; these two implicitly labeled
preference pairs can then be added to a training set to learn to rank more
effectively for future searches. In our geospatial domain, when we manually label
the best building entrance as the DP for an address, it can yield hundreds of
labeled preference pairs between candidate locations based on distance. After
training the ML ranking model on many labeled addresses, it can be applied to
new situations to estimate the best DP.

This approach, which we call GeoRank, has several advantages: It is highly
accurate and dominates other methods we have explored. It can deal with a
variety of different situations simply by additional supervision. It is much easier
to evaluate or label individual cases in this domain (with satellite map back-
grounds) and, it is more objective than traditional information retrieval or ads
ranking, where it is difficult to know that any given document or ad is truly not
of interest to an anonymous user. Finally, it can leverage information from the
underlying map while not requiring the map to be complete or even accurate.

1 Before there is any delivery history for an address, the process is bootstrapped by
other approximate geocoding methods to guide the driver. Third-party geocodes are
not used in our geocode computations.

Getting Your Package to the Right Place: Learning for Geolocation 405

Fig. 2. Diagram representing rank comparisons between 3 candidate locations (black
squares), the arrows indicating the winner of each pairwise comparison using feature
vectors involving historical GPS point density (blue) and distances to roads and build-
ings (red or green lines), if present in the map. Given the three pairwise comparisons,
it chooses the eastern point as the delivery point. (Color figure online)

The contributions of this paper include (1) a description of a valuable geospa-
tial task not previously in the machine learning research literature, (2) two very
large ranking datasets (387K;445K cases with 43M;49M candidates with pre-
computed feature vectors and loss labels) released publicly to enable others to
research effective, scalable ranking methods in this domain, and (3) our novel,
geospatial supervised learning method, and evaluations thereof. The following
section describes the GeoRank method in more detail, including candidate gen-
eration, feature extraction, and other algorithmic issues. Section 3 shows the
method is highly effective in experiments on the New York and Washington
datasets. Section 4 discusses limitations of the model and a brief description
of additional offline and online evaluations we conducted before deploying the
method in Amazon Last Mile. Section 5 describes related work and Sect. 6 con-
cludes with future work.

2 Supervised Geolocation by Ranking

The inference task for each address is to estimate the best delivery point (DP)
given as input a set of noisy GPS fixes of past deliveries. We adapt supervised
ranking for our geospatial task as follows: For each address, we determine a
set of candidate DP points and make pairs thereof (Sect. 2.1). For each pair,
we extract a feature vector (Sect. 2.2), which includes information drawn from
the map, where available. During training, we use the measured loss from the
ground-truth labeled DP point to establish the preference order of each pair. We
frame the base learning task as binary classification of the preference order, as
in pairwise ranking [14, ch. 3]. During inference, we simply apply the pairwise
binary classifier to all pairs to predict the candidate point of minimum loss.

The loss for a candidate location is its distance to the ground-truth labeled
DP point. Additionally, we add a +20 m penalty if that candidate lies atop a
different building outline than the one attached to the label, if available. This is
to train the system to prefer ambiguous locations outside buildings rather than
show a pin on the wrong building. Note that some areas of the map have no
building outlines available, and some may be missing or incorrect.

2.1 Candidate Filtering and Generation

Simply considering each past delivery location as a candidate naturally results
in long O(N2) run times when there are thousands of past deliveries. We greatly

406 G. Forman

improved scalability by filtering near-duplicate candidates on a virtual hash grid;
this filter and other scalability improvements reduced several days of computing
for the US to less than half a day.

When there are very few past deliveries, the best point available may not be
particularly close to the building. Where building outlines are available, we also
generate candidate points along the faces of nearby buildings (see the diagram
in Fig. 2). This helps solve a troublesome problem with occasional tall buildings
with multipath GPS reflections that exhibit a consistent GPS bias away from the
building, not generally noted in the GPS literature. Even where all the past GPS
fixes are on the wrong side of the street, the system can recover by considering
candidates on building faces.

We are able to generate a class-balanced training set by randomly choos-
ing whether to put the better candidate in the first or second position of each
pair. For training, rather than generate all N(N−1)

2 pairs of candidates—which
produces vastly more pairs for those addresses having more delivery history (or
having more scattered points that get past deduplication)—we generate just
O(N) pairs, selecting the best vs. each of the others. Not only did training time
improve, but it also led to improved model accuracy. This is akin to research
in information retrieval ranking that shows selecting more pairs with the most
relevant documents can lead to improved ranking, e.g. [4]. (We also limit the
number of training pairs from any single address to 100, so that addresses with
many deliveries do not dominate the learning.)

2.2 Feature Vectors

We compute three kinds of features from which the GeoRank model learns to
do its ranking. Each feature is designed to be invariant to rotation and resilient
to outliers or missing information in the map.

Features based on the GPS fixes from past deliveries
Our app gathers a GPS fix at various driver events, e.g. photo-on-delivery or
when the driver marks a package as delivered, which may or may not be close
to where the package was actually dropped off. Given a history of G GPS fixes
for a particular address, we compute the following features for each candidate
DP: the density of past GPS fixes nearby (e.g. using Gaussian KDE with a
bandwidth of 25m), the distance to the GPS fix having maximum KDE, the
mean distance to the K-nearest neighbors (K =

√
G), and the percentage of

those K neighbors that were delivered to the office (mail room, receptionist,
etc., rather than the customer or customer’s doorstep, as noted by the driver).
The intuition behind this last feature is to discriminate between the leasing office
and separate apartment buildings. We intend the DP to identify the individual
apartment building entrance, as it is comparatively trivial for the driver to
find the shared leasing office. (For scalability we limit G to a random sample
of ≤500 past deliveries. Here we cannot use the near-duplicate filter described
previously, else we lose fine-grained information about density.)

Getting Your Package to the Right Place: Learning for Geolocation 407

Features drawn from the underlying map
The local map can provide useful geospatial context. For example, drivers often
mark packages as delivered when they get back to their vehicle, but GPS fixes
located on the street or in a parking lot are unlikely to be good customer DP
locations compared to GPS fixes nearer building outlines. Thus, for each can-
didate DP, we compute: the distance to the nearest street, the distance to the
nearest parking lot (zero inside the parking lot), the distance to the nearest
building (zero inside), the distance to the building closest to most GPS fixes,
etc. To compute these features efficiently, we build in-memory geospatial indices:
a KD-tree for map points marked with an address, and Sort-Tile-Recursive R-
trees [16] for streets, buildings, and parking lots.
We use a maximum feature distance of 1000m to cover the common situation
where the map is incomplete, e.g. areas lacking parking lots or building outlines.
This maximum value serves as an indicator to the ML model that the feature
is locally missing.
Occasionally the map contains an explicitly marked address point. Where avail-
able, one can imagine using such information to bypass the ranking computation
altogether, but any map error would cause DP errors. Instead, we include this
information as an additional feature: the distance to the nearest building or
point that is marked with the sought house number and street name, if avail-
able (else 1000m). This feature, which includes text address matching logic,
enables the ranker to leverage the information but also to override it where
there is sufficient evidence from past GPS data that disagree with the map.
The discrepancy may be because of errors in the map (see Fig. 3 where house
number 18 is recorded incorrectly) or because deliveries are actually around
back or are redirected to another building.
Context features
For all candidate pairs, we compute these context features: the number of past
deliveries, the number of building outlines nearby (some areas have none), the
median and P10 distance between pairs of GPS fixes (indicating how dispersed
the points are; we found the average or P75 very sensitive to a single outlier),
the point density (number of GPS points ÷ median distance), the median GPS-
reported accuracy of the fixes (worse in city canyons), and whether there is

Fig. 3. Though the map marks house 18 at the south (black circle), the GPS evidence
(blue) indicates it is actually at the north, which the GeoRank model correctly selected
(red). Meanwhile the centroid (cyan; some data not shown) is near the street, which
would leave ambiguity between the two northerly buildings for the driver. (Color figure
online)

408 G. Forman

Fig. 4. Research GUI showing our Amazon building in Bellevue. Blue circles show past
GPS fixes; square dots show candidate points to rank; dashed circles show DP choices
by different methods. (Color figure online)

any nearby address in the map with an exact match. These context features
can be leveraged across the whole training set to learn preferences in different
situations. For example, the ranker could potentially learn different behavior
where GPS accuracy tends to be weaker.

Pairwise ranking for a linear model f often uses the difference-vector u − v,
where u and v are the feature vectors of the two candidates in the pair. (Proof
sketch: the pairwise binary classifier f(u) ?> f(v) ≡ w·u ?> w·v ≡ w·(u−v) ?> 0,
where w is the weight vector to be learned by the model.) Since pairs stem from
the same address, context features have the same value for both candidates,
rendering their difference useless to the classifier. Thus, we compute u and v from
only the first two kinds of features above, and generate the composite feature
vector of the pair as (u − v,u,v, c), where c are the context features appended
at the end. Evaluations of feature importance show that all four portions of the
feature vector are used by the base classifiers.

2.3 Base Classifiers and Implementation

Although the difference-vector representation is motivated by linear classifiers,
we found better performance with non-linear models. We experimented with
a variety of base classifiers, such as logistic regression, SVM, decision trees,
Random Forests and Gradient Boosted Decision Trees. The number of training
pairs can be in the millions for a region, but with an efficient, thread-parallel
implementation of decision tree learning, such as in the SMILE library [12],
the base classifier usually trains in 1–10 minutes and exhibits 98–99% pairwise
accuracy on a holdout set. Once the data is staged, separate regions are computed
as embarrassingly parallel jobs on a fleet of AWS EC2 instances.

Figure 4 shows a screenshot of our custom Java Swing GUI tool, which was
essential to research, develop, and debug the details of our GeoRank method.

Getting Your Package to the Right Place: Learning for Geolocation 409

Table 1. Datasets

New York (NY) Washington (WA)
370,544450,783sesac

candidates 43,436,526 48,992,148
avg candidates/case 112.2 (2–500) 110.1 (2–500)
file size 6.1 GB 6.8 GB

We used it to inspect results, label DP locations, and sort & search a table with
millions of addresses for informative cases to label, e.g. via active learning where
multiple models disagree widely.

3 Experiments

We have done extensive offline and online experiments to develop, refine, and
validate our geospatial supervised learning method. Here we describe a limited
set of experiments to answer fundamental questions about its performance, which
illustrate its effectiveness.

3.1 Datasets

The experiments are conducted on two labeled ranking datasets that we gener-
ated for New York state and Washington state, each containing many millions
of candidate points (see Table 1). Although the ranking problem is fundamen-
tally geospatial, in order to release the data for research and reproducibility, we
have constructed it so that it does not contain any information about actual
addresses or physical locations, and it is not a random sample of our actual
cases. Nonetheless, it is a valuable resource for research: this domain has fun-
damentally different qualities than ranking datasets in information retrieval and
ad ranking, where query sets are sparse, subjective, and discretized into a few
levels. But for these datasets the average number of candidates to be ranked
per case is over 100, and each is labeled with a non-negative scalar loss. When
we split the dataset into folds for train and test sets, we partition based on a
hash of the normalized address fields (excluding the apartment number, so an
apartment complex will not be split across train and test). Only the randomized
fold number is included in the dataset, which has 100 distinct folds, should oth-
ers wish to perform consistent cross-validation splits and/or consider learning
curves with fine granularity. These datasets have 18 features per candidate, plus
16 context features per case. Together they generate 70 features per pair, when
expanded as described at the end of Sect. 2.2.

3.2 Loss vs. Business Objective

Recall that the loss is a measure of distance to the ground truth label, which
represents a judgment of the best delivery point, penalized by +20m if the point
falls on the wrong building. In this domain there are very many addresses that

410 G. Forman

are relatively straightforward to process, e.g. where the GPS fixes are fairly close
together and are near the best delivery point, such as the front door of a lone
building. But it is the occasional large geolocation errors that cause the greatest
expense: because of a stray geocode far away, we may place packages on the
wrong delivery vehicle, and the driver may either have to drive far outside their
planned route and time, or else return the package to the delivery station at the
end of their route for a later redelivery attempt—running the risk of missing the
delivery date promised to the customer. Thus, rather than focus on the mean
loss, as most machine learning work, we focus on the P95 loss.

This objective is fundamentally different than optimizing the average loss or
the mean squared error. Consider two Gedanken experiments to make this plain.
First, suppose that 90% of the cases had 1m loss, and with a variant model we
could reduce loss to exactly zero for only these cases. It would bring the average
down, but the last meter of perfection would hardly make a difference to delivery
drivers in the real world. If this variant model were also slightly worse in the tail,
the performance objective should reflect this problem. Second, suppose that the
P99.99 were either in the next state or else in another country. The difference
between these two can have a large effect on the average or the mean squared
error, but the business cost of these two problems would be about the same.
Hence, we focus on the P95 loss as the objective to optimize in this paper (in
practice we also use higher tails). Another advantage of using a percentile instead
of a mean is that the metric is unaffected by small errors in labeling precision,
such as when an auditor clicks a few pixels off from the ground truth point; this
also speeds up labeling and greatly focuses label validation efforts on a small
minority of points.

3.3 How Does It Perform Against Baselines?

We begin by framing the performance against several baselines: random selec-
tion, centroid/mediod, maximum KDE, and oracle selection. These illustrate the
feasible range of performance, and the latter represents an unrealizable lower
bound. Even the oracle cannot achieve zero loss in many cases, because no can-
didate has been generated that is exactly zero distance from the DP label, which
may itself be imperfect.

Figure 5 shows, for each dataset, the loss of each method across the whole
distribution from P01 to P99 (lower is better). Each point was determined by 20-
fold cross-validation (CV), and the vertical width represents the 95% confidence

Fig. 5. Comparing methods across whole CDF loss distribution; each point shows 95%
confidence interval from 20-fold CV.

Getting Your Package to the Right Place: Learning for Geolocation 411

interval of the value (using T-distribution with 19 degrees of freedom). Zoom to
see the width, which is barely discernable in many cases.

Random: selects one of the candidate DP points at random. Its median loss (54
NY; 55 WA) and P95 loss (157; 138) are off the chart, literally. This oblivious
method does nothing to avoid outlier points, and represents a kind of upper-
bound just as a majority-voting baseline does in classification experiments.

Mediod: selects the candidate nearest the centroid. Its P95 loss is also off the chart
(84; 78). Whenever there are multi-modal point distributions, e.g. between the
leasing office and the customer’s apartment building in a large multi-building
community, it will tend to select a point between the two, usually an unrelated
building. This would point drivers to the wrong building for delivery (as in Fig. 1
right). In situations such as large warehouses or malls with multiple entry points,
the centroid will tend to point to the middle of the building. This is sufficient for
most drivers, assuming the entrances are plain, but may not enable an optimized
route plan.

Maximum KDE: selects the candidate in the densest cloud of GPS fixes. This can
be quite competitive. If there are multiple clusters at different building entrances,
it usually picks the more popular entry. These points tend to be somewhat away
from the face of the building, however. Often the densest locations tend toward
the parking location of the vehicle. All of these methods so far are oblivious to the
real-world constraints, e.g. that building entrances do not lie inside parking lots
(actually, there can be underground buildings on hillsides with rooftop parking—
everything happens in this domain).

Oracle: selects the best available candidate point. It does this, of course, by
cheating: it uses the hidden loss of the test case to make its choice, and as such
is not a practical algorithm. It is useful here to understand the lower bound on
loss, given the candidate DPs that are available from the practical generation
algorithm described in Sect. 2.1. Its loss at P99 suggests future work in candidate
generation.

GeoRank: supervised geolocation learning. Overall, this approach solves this
geospatial problem very nicely: its loss distribution tightly hugs the oracle per-
formance up until the tail of the distribution, and at P99 it rejoins the loss of the
KDE method—but does not exceed it, as we shall see. If we subtract the oracle
loss as the lower bound, GeoRank at P95 reduced the delta loss by 50–53% of
the KDE algorithm.

To complete the 20-fold CV in a timely manner, rather than train on all
95% of the dataset available for training, we trained each fold on only 20% of
the dataset. (Thus, the confidence intervals are more accurate than if the models
each trained on highly overlapped training sets.) This yielded 6–7M labeled pairs
to train each model—plenty for an accurate pairwise classifier. The decision
tree learning algorithm simply splits nodes best-first based on the Gini index,

412 G. Forman

Fig. 6. Zooming on the tail of the loss distribution, as we vary model capacity: the
number of leaves in the decision tree.

up to a maximum of 1024 leaf nodes, which it always used. Each fold trains
in ∼5 min in parallel on 16 Xeon 2.3 GHz CPUs; together they inference 13K
addresses/second, even with the O(N2) pairwise comparisons used to determine
which candidate has the most wins.

3.4 How Is the Tail Affected by Model Capacity?

In Fig. 6 we zoom in on the tail of the loss curve (P90–P99), as we vary the
pairwise classifier’s model capacity: the number of leaf nodes in the decision
tree. When just 4 leaves are permitted, its performance was worse than KDE.
With 16 leaves, it beat KDE except for the extreme tail of the distribution. With
more model capacity, it always beat KDE. The 1024 curve represents our default
for GeoRank.

3.5 Lesion Studies and RankNet Comparison

Finally, we perform a series of independent lesion studies on the method, in
order to measure the relative importance of various component ideas. For these
experiments, we want to have confidence intervals, so we again use 20-fold CV,
but to reduce the computation load we train on just 5% of the data (which the
previous experiment showed was sufficient, and it saves a great deal of time, esp.
for the RankNet comparison, later).

Figure 7 shows the P95 loss of each variant under 20-fold cross-validation,
and the whiskers extend to cover the 95% confidence interval. Just for reference,
the vertical lines indicate the performance of the oracle and the KDE method.
The baseline performance is the basic GeoRank method.

The second data point indicates the performance of using the classifier trained
from the opposite state. In both cases the result was statistically significantly
worse. This endorses the idea of having separate models trained for each region,
as regional geometric patterns may vary. For example, we observed the setbacks
from the road were often larger in Arizona.

The next comparison simply removes two components from the four-part
composite feature vector; u and v are removed, reducing the total number of
features from 70 to 34 (18 difference features u−v and the 16 context features).

Getting Your Package to the Right Place: Learning for Geolocation 413

Fig. 7. Lesion studies on the GeoRank method and RankNet comparison.

Removing these features had a relatively smaller effect on performance, which
was not statistically significant for NY.

The next two bars represent changes in how we generate training pairs. Recall
that we pair the best candidate against each of the other candidates. A common
approach is simply to generate random pairs, rather than all O(N2) pairs, which
can overwhelm computing resources. For each candidate, we pick another at
random to pair with it, producing O(N) pairs, but the result is significantly and
substantially worse.

The other variant, marked with the √ symbol, generates training pairs as
follows: for each candidate i = 2..n in the training list sorted by loss, we randomly
select one of the first �√i� candidates. The idea is to focus more attention on the
better candidates, but not overly focus on the single best candidate. It worked
better than random pairs on average for both states (though not significantly
so for NY); it is nonetheless significantly worse than the ‘best vs. rest’ strategy
employed by GeoRank.

Finally, we replaced our pairwise ranker with RankNet [7] from the RankLib
research implementation [9]. The four variants represent efforts at parameter
tuning, varying the number of training epochs and whether or not the con-
text features were included (oddly, they often hurt RankNet’s performance). In
all cases and for both states it performed worse on average than the baseline,
though not always statistically significantly. We considered running similar com-
parisons with other well-known information retrieval ranking algorithms such as
LambdaMART, but adapting them to use our loss scale rather than discretized
document relevance is beyond the scope of this paper—potential future work.

4 Discussion

We have done additional lesion studies that are beyond the scope of this paper.
For example, we have demonstrated that if all building outlines are removed
from the map when generating the features for the test cases, the quality of the
geolocation degrades only a little. This is an important property, for there are
whole regions of our world map that contain no building outlines yet. It would
be complicated to have to train separate models for situations with and without
building outlines, and then to correctly classify when to use each model. Better
to have a single robust model that can cope with their absence.

414 G. Forman

4.1 Real-World Offline Evaluations

When we began to apply machine learning to this business problem, we ran into
a hitch: For years our established way to measure the quality of our DPs was by
their average distance to deliveries, as reported by the GPS fixes. And yet, by this
objective metric, there would be no way to outperform the centroid, by definition.
Thus, we had to drive the adoption of a different goal metric, which would rightly
show improvement when we selected a good building entrance, even if it were
away from the dense center of the point cloud. But we had no automated way to
determine the true quality of a DP, otherwise we would already have solved the
problem. In view of this, our internal Curated Ground Truth (CGT) program
was born: a worldwide manual labeling effort, with various quality controls to
ensure that we are grading ourselves against accurate points. Given this labeled
dataset of thousands of randomly selected addresses, we were able to determine
that the GeoRank method reduced the P95 error distance vs. the existing legacy
system by ∼18%. These CGT points were only used for evaluation of the final
model, not for model training or hyper-parameter optimization. In fact, we need
to maintain separation of the points used for training and model selection vs.
those held-out points that are secreted away only for use in monitoring the health
and quality of our systems. Because the majority of cases are straightforward
and provide little incremental insight, the sampling of points for training and
model selection are biased toward the tail by various means, including query-by-
committee active learning. Given that the CGT points are randomly sampled in
order to correctly identify the percentiles, we sought additional validation of the
GeoRank model before risking its live deployment. We explored the tail in further
offline testing. In some states we identified thousands of cases (excluding training
cases) where GeoRank moved the DP by over 100m from what was previously
vended. Though this was a only a small fraction of the whole dataset, they could
prove to be costly if the software threw some points far astray, which would break
customer delivery date promises and erode trust. We obtained a random sample
of such points using the research GUI and were able to quickly label a good
fraction of them, though some tail cases are quite difficult to understand. In
this skewed sample, we determined that the median loss of the old points was
∼16x the median loss of the GeoRank model. This was a strong endorsement
indeed, though only for a small sample. We also performed some automated
offline testing against a large number of OpenStreetMap addresses [1], which
again showed strongly favorable results.

4.2 Real-World Online Evaluations

Once we believed that the GeoRank delivery points were superior in offline
testing, we moved to online A/B testing, dialing up to 10% treatment across the
US. The assignment of treatment and control groups was determined by a hash
of the address, excluding any apartment number so that a complex would not
fall into both groups, for greater statistical power. Analysis of the service time
per package determined a substantial and statistically significant improvement,

Getting Your Package to the Right Place: Learning for Geolocation 415

projecting millions of dollars saved annually. One aspect of owning the data
quality of an upstream system is that your errors impact many downstream
processes. Besides service time improvements, there were also savings because of
improved planning, since the DPs were now more truthful.

4.3 Limitations

Several things have become clear after substantial labeling and domain experi-
ence. First, there is no way to do the job accurately without seeing the historical
delivery data. Although you may identify the front door of a building address by
three methods and even walk there yourself, it might be that deliveries are actu-
ally redirected around back to a loading dock or even to a distant campus-wide
mail hub.

Second, having more delivery history helps both in labeling as well as in
GeoRanking. However, a good fraction of customer addresses are new and have
very little history to work from, especially in areas of rapidly growing demand,
such as India. Thus, there is a natural labeling bias and research bias toward
addresses with more delivery history. How can one accurately geocode given a
single, possibly noisy delivery event in an area of the map that is yet uncharted?

Third, there can be more than one delivery location for a single address,
and in different ways. From the event history, we may see multiple clusters, but
only by deeper investigation (or machine learning) can we determining things
like ‘small packages are accepted at the office, but large packages must go to
the loading dock.’ Or that ‘packages are accepted at the leasing office on Tues-
day and Saturday mornings, but otherwise all packages must be driven to the
individual apartments.’ Though manual labeling for multiple delivery locations
is harder, fortunately they can easily be represented in a ranking dataset: for
each candidate, simply take the minimum loss compared to the alternative DP
labels. If we wish to compute the alternate DP locations, we can re-run the rank-
ing algorithm after removing candidates near the DP that was chosen on the first
iteration. Though ranking is fast, we can avoid the O(N2) pairwise comparisons
if we keep track of the matrix of pairwise wins. If the second run chooses a suf-
ficiently distant point, then it identified an alternative; but sometimes it would

Fig. 8. Long driveway with locked gate. The model experienced high distance loss
because it picked the gate (red) instead of the southern garage or the house (black
label). (Color figure online)

416 G. Forman

simply pick the next closest candidate to the removed area. This is another area
for future work. It can be difficult to decide whether multiple alternatives are
warranted or not, given scattered data.

Fourth, labeling or locating the best building entrance or loading dock in
the real world can be arbitrarily difficult. There are addresses that have large
amounts of delivery history, and yet remain impossible to nail down, such as a
complex hospital with multiple entrances, buildings, and delivery procedure com-
plexity as well. Because of these biases and others, none of our labeled datasets
fairly represent the full difficulty of the general problem. And regardless of label-
ing difficulty, it is unclear what the best distributed sample should be: Should
it be weighted by package volume? Or by service time, so difficult addresses are
worth more? Or by the frequency that inexperienced drivers visit an unfamiliar,
complex location. We know that the cases with high loss do not always represent
high business cost. For example, in the tail we see a plethora of cases where a
customer has a locked gate across a long driveway (see Fig. 8). Though the best
DP is at the house, it may be that nearly all packages are delivered near the
locked gate. Though this results in high measured loss, it does not result in any
real driver confusion or delays. And though we would like to label the apart-
ment door as the correct DP, what about situations where 99% of deliveries go
to the leasing office? Should we consider it a high loss case if the GeoRank model
chooses the office?

5 Related Work

The task of geocoding is the process of mapping address text or an IP address
to an (often coarse) geographic location, which requires geographic databases.
Our geolocation problem is substantially different: given multiple noisy samples
of a location, determine a (precise) geographic location for future deliveries; this
can be done with the points alone by computing the centroid, or the argmax
KDE point—or by the supervised GeoRank method we developed, which has
the advantage that it can also leverage features from maps.

Note that our geolocation problem is not to be confused with research on
‘geographic information retrieval,’ which are traditional information retrieval
(IR) applications that aim to improve the ranking of their search results by
leveraging the user’s location in order to adapt to regional preferences [2]. ML
ranking has also been applied to Point-Of-Interest (POI) information retrieval,
which leverages the user’s noisy GPS position as well as features such as user his-
tory, popularity of venue, and nearby social network friends. The learned ranking
model optimizes the short list of potential named locations (such as tourist sites
or restaurants) from which the user may select to ‘check-in,’ i.e. confirm their
location [13,20,22]. These confirmations can be used as a ground-truth POI label
for testing or retraining the ranking model. Such IR applications measure their
success by metrics on the ranked position of the correct answer(s) in the search
results list; whereas our task measures loss in terms of meters away from the
ground-truth location. Other related work includes the destination prediction

Getting Your Package to the Right Place: Learning for Geolocation 417

problem popularized by the ECML/PKDD taxi trajectory prediction competi-
tion [3,6], although some have approached destination prediction by building
models to score or rank a few candidates, such as home, work, or school (which
is akin to classification models with a few classes) or a city’s popular tourist des-
tinations [5,11]. Finally, there is general geospatial work to re-identify delivery
locations, such as by [17] which used centroids of past ‘stay point’ locations.

There has been a tremendous amount of research in learning to rank [14],
esp. for information retrieval (IR) and, more profitably, for advertising. The
field has benefited greatly from having research datasets available, such as the
LETOR collection [15]. Similarly, we hope to launch research in supervised geolo-
cation with the two datasets we provide; being orders of magnitude larger than
LETOR, they are useful for more general ranking research, e.g. selective sam-
pling or scalability research [19]. For confidentiality reasons, neither the address
nor the actual locations can be reconstructed from the data; thus, we have also
provided location-invariant feature vectors based on attributes from the map,
etc. Should some future researcher be in a position to release data including
latitude/longitude locations, many creative research avenues could be pursued
involving features from maps.

As mentioned in Sect. 3.1, geo-ranking data is substantially different. First,
each case has many labeled candidates, whereas traditional ranking datasets are
much sparser. Second, relevance judgments for traditional datasets, which are
hard to obtain objective truth for, often have a small ordinal ranking for each
query, indicating the rough degree of document relevance, with a default of ‘irrel-
evant’ for most ungraded documents. Geo-ranking datasets have a continuous
real-number for the loss, which provides a total ranking of all candidate points.
Third, traditional datasets often have shared pool candidates, e.g. documents in
a fixed collection searched by many different queries. In our datasets, candidate
points are not shared across addresses; each has a distinct loss and feature vector
dependent on the target address.

There have been a variety of algorithmic improvements in learning to rank,
following a progression: (1) point-wise learns a regression for each point inde-
pendently; (2) pair-wise learns to select the better of a pair of points; and (3)
list-wise learns to return a list of the top-K points optimized by any list-scoring
method. List-wise ranking is not necessary for our domain, as we only seek a sin-
gle best location. A common methodology for low-latency situations is to train a
model on pairwise examples with known or implicitly inferred user preferences,
in order to learn a pointwise scoring function that can be run independently in
O(N) time (embarrassingly parallel) for thousands of candidate documents or
ads selected by a traditional information retrieval system [8]. In our domain, we
only have hundreds not thousands of candidates per address, so an O(N2) pair-
wise comparison is plenty fast and appears to be more accurate generally. There
is algorithmic research to reduce the O(N2) pairwise comparisons to O(N logN),
which may help scale other applications [10,21].

418 G. Forman

6 Conclusion and Future Work

We hypothesized that the learning to rank paradigm would adapt well for our
geolocation problem. It proved able to efficiently and accurately place delivery
points near building entrances. By showing an accurate point on the map in our
app, we help drivers more quickly and accurately identify the correct delivery
address. Online A/B tests showed that it resulted in time savings worth millions
of dollars annualized.

It is fortunate that the method was effective with the existing data quality.
This is faster and more frugal than efforts to try to obtain better input data,
e.g. expensive GPS devices. The GeoRank method makes up for relatively poor
GPS precision in big cities by leveraging map information, which also tends to
be more complete in cities. And yet the method is not dependent on the map,
for there are large regions with few building outlines and many missing roads.
We have since applied ranking to other geolocation problems successfully, such
as the parking location. It’s always ‘Day 1’ at Amazon.

References

1. Open Street Map (OSM). www.openstreetmap.org
2. GIR’10: 6th Workshop on Geographic Information Retrieval. ACM (2010)
3. ECML/PKDD Competition: Taxi Trajectory Prediction (2015). https://www.

kaggle.com/c/pkdd-15-predict-taxi-service-trajectory-i
4. Aslam, J.A., Kanoulas, E., Pavlu, V., Savev, S., Yilmaz, E.: Document selection

methodologies for efficient and effective learning-to-rank. In: SIGIR’09 (2009)
5. Baraglia, R., Muntean, C.I., Nardini, F.M., Silvestri, F.: Learnext: learning to

predict tourists movements. In: CIKM ’13, pp. 751–756 (2013)
6. de Brébisson, A., Simon, É., Auvolat, A., Vincent, P., Bengio, Y.: Artificial neural

networks applied to taxi destination prediction. arXiv:1508.00021 (2015)
7. Burges, C., et al.: Learning to rank using gradient descent. In: ICML ’05, pp. 89–96

(2005)
8. Burges, C.J.: From RankNet to LambdaRank to LambdaMart: an overview. Tech-

nical report MSR-TR-2010-82, Microsoft Research (2010)
9. Dang, V.: The Lemur Project-RankLib. https://sourceforge.net/p/lemur/wiki/

RankLib/
10. Hong, L.J., Luo, J., Zhong, Y.: Speeding up pairwise comparisons for large scale

ranking and selection. In: IEEE WSC ’16, pp. 749–757 (2016)
11. Lassoued, Y., Monteil, J., Gu, Y., Russo, G., Shorten, R., Mevissen, M.: A hidden

Markov model for route and destination prediction. In: ITSC’17, pp. 1–6 (2017)
12. Li, H.: SMILE: statistical machine intelligence and learning engine. https://

haifengl.github.io/
13. Lian, D., Xie, X.: Mining check-in history for personalized location naming. ACM

Trans. Intell. Syst. Technol. 5(2), 1–25 (2014)
14. Liu, T.Y.: Learning to Rank for Information Retrieval. Springer, Heidelberg (2011).

https://doi.org/10.1007/978-3-642-14267-3
15. Qin, T., Liu, T.Y., Xu, J., Li, H.: LETOR: a benchmark collection for research

on learning to rank for information retrieval. Inf. Retrieval 13(4), 346–374 (2010).
https://doi.org/10.1007/s10791-009-9123-y

www.openstreetmap.org
https://www.kaggle.com/c/pkdd-15-predict-taxi-service-trajectory-i
https://www.kaggle.com/c/pkdd-15-predict-taxi-service-trajectory-i
http://arxiv.org/abs/1508.00021
https://arxiv.org/abs/1508.00021
https://sourceforge.net/p/lemur/wiki/RankLib/
https://sourceforge.net/p/lemur/wiki/RankLib/
https://haifengl.github.io/
https://haifengl.github.io/
https://doi.org/10.1007/978-3-642-14267-3
https://doi.org/10.1007/s10791-009-9123-y

Getting Your Package to the Right Place: Learning for Geolocation 419

16. Rigaux, P., Scholl, M., Voisard, A.: Spatial Databases with Application to GIS.
Morgan Kaufmann, Boston (2002)

17. Ruan, S., et al.: Doing in one go: delivery time inference based on couriers’ trajec-
tories. In: KDD’20, pp. 2813–2821 (2020)

18. Scott, D.: Multivariate Density Estimation: Theory, Practice, and Visualization.
Wiley, Hoboken (1992)

19. Sculley, D.: Large scale learning to rank. In: NIPS 2009 Workshop on Advances in
Ranking (2009)

20. Shaw, B., Shea, J., Sinha, S., Hogue, A.: Learning to rank for spatiotemporal
search. In: WSDM’13, pp. 717–726 (2013)

21. Wauthier, F., Jordan, M., Jojic, N.: Efficient ranking from pairwise comparisons.
In: ICML’13, Atlanta, Georgia, USA, vol. 28, pp. 109–117 (2013)

22. Ying, J.J.C., Lu, E.H.C., Kuo, W.N., Tseng, V.S.: Urban point-of-interest recom-
mendation by mining user check-in behaviors. In: UrbComp’12, pp. 63–70 (2012)

Machine Learning Guided Optimization
for Demand Responsive Transport

Systems

Louis Zigrand1(B) , Pegah Alizadeh2 , Emiliano Traversi1 ,
and Roberto Wolfler Calvo1,3

1 LIPN (CNRS – UMR 7030), Université Sorbonne Paris Nord, Paris, France
{zigrand,traversi,wolfler}@lipn.univ-paris13.fr

2 Léonard de Vinci Pôle Universitaire, Research Center, Paris La Défense, France
pegah.alizadeh@devinci.fr

3 DIM, Università di Cagliari, Cagliari, Italy

Abstract. Most of the time, objective functions used for solving static
combinatorial optimization problems cannot deal efficiently with their
real-time counterparts. It is notably the case of Shared Mobility Systems
where the dispatching framework must adapt itself dynamically to the
demand. More precisely, in the context of Demand Responsive Transport
(DRT) services, various objective functions have been proposed in the
literature to optimize the vehicles routes. However, these objective func-
tions are limited in practice because they discard the dynamic evolution
of the demand. To overcome such a limitation, we propose a Machine
Learning Guided Optimization methodology to build a new objective
function based on simulations and historical data. This way, we are able
to take the demand’s dynamic evolution into account. We also present
how to design the main components of the proposed framework to fit a
DRT application: data generation and evaluation, training process and
model optimization. We show the efficiency of our proposed method-
ology on real-world instances, obtained in a collaboration with Padam
Mobility, an international company developing Shared Mobility Systems.

Keywords: Demand responsive transport · Surrogate modeling ·
Combinatorial optimization

1 Introduction

Shared Mobility Systems cover all means of transport that are shared between
users, either sequentially or with grouping. In particular, Demand Responsive
Transports (DRTs) are shared transport systems where the vehicles adapt their
routes dynamically to the demand rather than using fixed routes and timetables.
This growing mode of transport, unlike classic public transport, allows the users

Supported by Padam Mobility under CIFRE Convention 2019/1809 (to L. Z.).

c© Springer Nature Switzerland AG 2021
Y. Dong et al. (Eds.): ECML PKDD 2021, LNAI 12978, pp. 420–436, 2021.
https://doi.org/10.1007/978-3-030-86514-6_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86514-6_26&domain=pdf
http://orcid.org/0000-0003-4472-4855
http://orcid.org/0000-0002-7231-5840
http://orcid.org/0000-0003-4673-3982
http://orcid.org/0000-0002-5459-5797
https://doi.org/10.1007/978-3-030-86514-6_26

Machine Learning Guided Optimization for DRT Systems 421

to book a place in a vehicle by requesting in real time their departure and arrival
points as well as their desired pick-up or drop-off time [3]. The motivation of
using such hybrid models is twofold: they straddle conventional public transport
and taxis, as their schedules and routes are quite flexible, and they constitute
a viable alternative to individual transport due to a lower cost of use. Still, the
management of a DRT system needs efficient decision tools to handle the users’
requests, the routing of the vehicles as well as the quality of the service [14,28].

1.1 Context

This work is performed jointly with Padam Mobility, a well-established company
that provides technological support to DRT services. Their production, which
has been operational in around 50 territories for 5 years, generates a significant
amount of data: each territory involves hundreds of service points and thousands
of travel requests monthly. They operate as follows: at any time, a user can
submit a new request to the system via an application. A request stands for a
departure location, an arrival location and a desired time of pick-up or drop-off.
If the request needs to be served on the same day, it is named an online request;
otherwise, it is named an offline request (also called in-advance in the literature).
Each night, Padam Mobility optimizes the initial vehicles’ routes for the next
day by giving the offline requests to an Offline Optimization Framework (OOF).
The day after, the vehicles start following the routes scheduled by this offline
planning. During the day, each time that an online request pops up, an insertion
algorithm decides either to accept the request and suggest a trip proposition to
the user, or to reject it immediately. Then, if a proposition is validated by the
user, the algorithm updates the routes with regards to the accepted request.

1.2 Motivation

The optimization of the vehicles offline scheduling can be modeled as a Dial-a-
Ride Problem (DaRP) [13]. A DaRP can be static or dynamic: in the first case,
all requests are known in advance, while the system handles requests as they
occur in the second case . Our work is on the Dynamic DaRP but the design of
the offline planning can be viewed as a Static DaRP tackled with a scenario based
optimization algorithm to take into account the future online requests. The vast
majority of the algorithms present in the DaRP literature use objective functions
related to the minimization of the time traveled [22]. As for Padam Mobility, it
is the Total Duration of the Rides (TDR) i.e., the accumulated time on the road
of all vehicles during the service that is being minimized.

We display in Fig. 1 a basic example of what motivated our work. Here, we
describe six requests by their pick-up (P) and drop-off (D) locations. In each
scheduled path, the first four, in blue, are offline requests while the last two,
in red, are the online ones. The solid lines represent the offline planning of the
vehicles while the dotted ones show the possibility to insert the online requests
within those initial schedules.

In terms of operational cost, Fig. 1a shows an optimized offline planning
regarding the offline requests and the TDR. However, this set of routes cannot

422 L. Zigrand et al.

P1

D1

P2

D2

P3

D3

P4

D4

P5
D5

P6
D6

(a) TDR-optimized schedule

P1

D1

P2

D2

P3

D3

P4

D4

P5
D5

P6
D6

(b) Flexible schedule

Fig. 1. Visual comparison between two offline schedules

serve every online request due to the implied detour. On the other hand, the
initial routes displayed in Fig. 1b are sub-optimal in terms of TDR but allow
the system to serve all the online requests. This is a very simple but visual case
where minimizing the TDR can lead to bad routes when online requests start to
arrive. Since the online requests are unknown to our system, we are interested
in studying the historical demand’s data for a specific city. This will allow us to
design more flexible offline schedules regarding the online requests, like the ones
shown in Fig. 1b, and thus to increase their acceptance rate.

1.3 Contribution

In this work, we mainly focus on improving the algorithms used to optimize
the offline planning of a DRT service, in order to increase its online requests
acceptance rate. To the best of our knowledge, there exist only a few works that
deal with the scheduling of routes without knowing all the requests ahead of
time (see Sect. 2) and none of them considers such a procedure. Therefore, the
main contributions of this work are the following:

– In Sect. 3, we propose to build a Machine Learning model able to estimate,
for a given set of routes of vehicles, the expected number of online requests
that such initial set of routes will be able to serve the day after. We then
optimize the offline planning of a DRT service using this objective function.

– The data used to train the proposed model is produced via a Simulation
Framework, based on the historical data of Padam Mobility. To analyse the
challenging data with Machine Learning approaches, we propose in Sect. 4
a framework that models the data generation, the training process and the
prediction phase with a generic approach.

– The results compared to the existing objective functions in Sect. 5 show the
efficiency of our approach. We experimentally demonstrate that using tradi-
tional myopic approaches do not provide routes with the necessary flexibility
to react to the arrival of online requests.

We stress the fact that the proposed methodology is not tailored only for
Padam Mobility as it could be adapted to many DRT systems.

Machine Learning Guided Optimization for DRT Systems 423

2 Related Work

Our methodology is at the frontiers of 3 computer science fields: Combinatorial
Optimization, Simulation-based Optimization (SbO) and Machine Learning. The
first provides the application, the DaRP, and the general techniques to solve it.
Then, looking at the problem under the lenses of SbO allows us to view the
problem in a new light with the definition of a new objective function. Finally,
Machine Learning techniques applied to Surrogate Modeling provide a solution
to computational limitations met with SbO, with means to learn a more suitable
objective function. In the rest of this section, we present the literature related
to each of the mentioned fields that are the most related to our approach.

Dial-a-Ride Problem. There is a large body of research directed at the Static
DaRP in Combinatorial Optimization [13]. The exact approaches [7], which are
mainly based on the Branch and Bound method, can guarantee the optimal-
ity of the solution but are expensive in terms of time and resources. Heuris-
tic approaches [17] are far less expensive but can return sub-optimal solutions
instead of globally optimized ones. Among them, the Adaptive Large Neighbor-
hood Search (ALNS) method has been shown to perform well on several instances
of the Static DaRP [11,28]. In all those approaches, the most classic objectives
are either linked to operating costs or to the service quality, such as the num-
ber of unserved requests, the total duration of passenger transport, the total
duration of the rides, the number of vehicles required, etc. [22]. The uncertainty
related to the online requests in the dynamic version of the DaRP can be tackled
by working on the algorithms in charge of the offline planning and the insertion
of the online requests. Given the center of interest of this work, we solely focus
on the first axis. One way to make space in the offline schedule is to add fake
requests from a clustering of historical data to the set of in-advance requests and
solve a Static DaRP [26] but this model proved too simple to improve the flex-
ibility of the rides. Two-stage [6] and multi-stage [24] stochastic programming
models have been proposed for the Dynamic and Stochastic Vehicle Routing
Problem to optimize the offline schedule but these approaches provide limited
enhancement due to the simplified models used within the recourse phase.

Simulation-Based Optimization. SbO designs a subfield of Operations Research
where the evaluation of a solution is not computed with an explicit mathematical
formula but by the means of simulations [2]. Such models can provide a better
description of real-world situations than simplified procedures, if any exists, but
at the price of needing bigger computation resources. Hence, SbO often goes
with Surrogate-based Optimization [4]. To the best of our knowledge, there has
been no research on using SbO to handle the offline planning of DRT services.

Surrogate Modeling. Also known as Metamodeling, it forms a subfield of Machine
Learning that consists in representing a complex model f with a simpler model
f̂ at the price of some approximation. The purpose of the latter can be, for
instance, to enable a faster computation of new values of f . As simulations are

424 L. Zigrand et al.

usually expensive in both computer resources and time, this paradigm is often
found in the context of SbO [2,4] and is one of many interactions between the
Machine Learning and Combinatorial Optimization fields [5]. In particular, how
to obtain simple but accurate models in the fewest possible simulations has been
studied in various works, such as for non-differentiable objective functions [9],
complex multi-objective optimization [20] or large-scale problems [21]. For a
more in-depth analysis of Surrogate Modeling, we refer the reader to [1].

Machine Learning Techniques. As the resulting model should be able to discrim-
inate between good and bad solutions, we face here a ranking problem. This kind
of problem is well known and can be tackled with various “Learning to Rank”
techniques [18]. In our case, as the output of a simulation is not deterministic
(see Sect. 4.3), we do not have a reliable ground truth of the ranking between
the solutions. Consequently, we cannot apply conventional pairwise nor listwise
algorithms to handle our problem. Thus, our objective is to learn a pointwise
ranking function where the diversity of the training set will allow us to sta-
tistically describe the best solutions. To do so, the most common Supervised
Machine Learning techniques in the literature are Gaussian Process Regressions
(GPRs), Artificial Neural Networks (ANNs) and Radial Basis Functions (RBFs).
A GPR model, also known as Kriging method, is based on the idea of consid-
ering the function f as a Bayesian model [25]. These models have been used
in various applications, such as the optimization of the gait for quadrupedal
and bipedal robots [19] or the optimization of hydrofoil shape design [23]. An
ANN is a set of connected processing units that receive, transform and transfer
information from one to another. They have been shown to outperform classic
regression models (see for example [16]). General guidelines about how to model
a stochastic simulator with ANNs are discussed in [10] and applied to a job shop
problem. Recently, Convolutional Neural Networks (CNNs) have notably proven
to be effective in modeling fluid dynamics applications [12,31]. RBFs follow the
idea that the value of an entry depends solely on its distance to predefined refer-
ence points [15]. A particular variant, Radial Basis Function Networks (RBFNs),
designs a kind of neural network where RBFs are used in place of activation func-
tions and has shown promising results [30].

3 Machine Learning Guided Optimization

To better illustrate the generality of our methodology, namely Machine Learning
Guided Optimization (MLGO) framework, we keep this section as general as
possible. Ideally, we would like to solve the following optimization problem:

max
x∈X

f(x) (1)

where X represents the domain of the variables x and f is a generic objective
function defined over the domain X.

However, the evaluation of f can only be done through simulations and such a
process is too time consuming to be used in practice in an optimization algorithm

Machine Learning Guided Optimization for DRT Systems 425

where thousands of calls to f would be made. To overcome this drawback, we
propose to use a surrogate model f̂ of f . A key aspect in our method is therefore
to ensure that the obtained model is sufficiently accurate and simple.

SOLUTIONS
GENERATION

N solutions
(x1, ..., xN)

TRAINING SET
SAMPLING

nS solutions
(x1, ..., xnS)

SIMULATIONS
Y = f (X)

nS evaluations
(y1, ..., ynS)

(a) Generation of a Training Dataset
Training set of size nS
((x1, y1) ..., (xnS , ynS))

TRAINING SET
PRE-PROCESSING

Pre-processed training set
((x1, ŷ1) ..., (xnS , ŷnS))

SURROGATE MODEL
TRAINING

Model
f̂

(b) Construction of a Surrogate Model

Surrogate Model
f̂

MODEL OPTIMIZATION
max
x∈X

f̂ (x)
Proposed solution

x�

(c) Optimization using the Surrogate Model

Fig. 2. Overview of the MLGO Framework

We present in Fig. 2 an overview of the MLGO approach in 3 steps:

– Fig. 2a − Training Dataset. The goal of this step is to create the dataset
required to train the model. It starts by generating a pool of solutions of our
problem from which a set of nS distinct solutions (x1, . . . , xnS

) is sampled
(see Sect. 4.2). Then, those solutions are evaluated with f (see Sect. 4.3) to
obtain their realized values (y1 = f(x1), . . . , ynS

= f(xnS
)).

– Fig. 2b − Model Training. This second step takes the training dataset from
the previous step, ((x1, y1), . . . , (xnS

, ynS
)), pre-processes it and computes the

surrogate model f̂ through a training phase (see Sect. 4.4).
– Fig. 2c − Optimization. Finally, f̂ is defined as the objective function within

an optimizer (see Sect. 4.5) to obtain a solution to the problem.

4 MLGO Applied to DRT Systems

We describe in this section how the main components of the MLGO framework
are developed to fit a DRT application and ours in particular.

4.1 Model and Notations

Before going into detail, we present some notations and definitions that will
be used in the rest of the paper. We note V the set of nV vehicles available,
B = [latmin, latmax]× [longmin, longmax] a bounding box defining the considered
territory and D ∈ B the coordinates of the vehicles depot. The time horizon T
is discretized into a sequence of nT regular time steps (t1...tnT).

426 L. Zigrand et al.

Definition 1. An online request is represented by a pick-up time tp ∈ T and
place

(
latp, longp

) ∈ B, a drop-off time td ∈ T and place (latd, longd) ∈ B, and
an arrival time ta ∈ T. An offline request has the same elements, except for the
absence of a ta as the user’s request arrived in the past and is already served.

Definition 2. An online (resp. offline) scenario is a set of online (resp. offline)
requests that want to (resp. must) be served by the fleet V of vehicles.

0 1 2 3 4 5 6 7 8 9 10
0
1
2
3
4
5
6
7
8
9

10

Longitude

L
at
it
ud

e

t = 0

t = 20

t = 40

t = 80

t = 0

t = 40
t = 50

t = 70

t = 90

Offline schedule
(0.100 0.800) (0.900 0.100)

(0.250 0.700) (0.850 0.275)

(0.400 0.600) (0.800 0.450)

(0.500 0.450) (0.750 0.625)

(0.600 0.300) (0.700 0.800)

(0.650 0.375) (0.400 0.900)

(0.700 0.450) (0.400 0.600)

(0.750 0.525) (0.400 0.300)

(0.800 0.600) (0.250 0.200)

(0.800 0.600) (0.100 0.100)

⎡

⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢⎢
⎢
⎣

⎤

⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥⎥
⎥
⎦

S
t1 = 0
t2 = 10
t3 = 20
t4 = 30
t5 = 40
t6 = 50
t7 = 60
t8 = 70
t9 = 80
t10 = 90

Tv1 v2

Fig. 3. Modeling of the offline schedule of two vehicles as a tensor

Definition 3. A solution x corresponds to a set of routes for the nV vehicles,
leaving from D after t1 and returning to D before tnT

. A solution is formally
modeled by a tensor S ∈ R

V×T×2 where, ∀ (v, t) ∈ V × T, Sv,t is the normalized
position (with respect to B) of the vehicle v at time step t. A solution is said
feasible for a given offline scenario if its planning can serve all its offline requests.

Definition 3 implies that, in general, a randomly chosen tensor S ∈ R
V×T×2

does not represent a feasible solution. It is therefore not an easy task to obtain
a set of diversified solutions (see Sect. 4.2 for more details). We provide in Fig. 3
a simple but visual example of the tensor representation of a solution.

We recall that, in this work, we suppose the offline scenario to be given and
the online scenario to be uncertain, which matches the situation where the OOF
is executed each night for the next service. This implies that the generation
of solutions and the optimization (see Fig. 2) take as input the same offline
scenario: in both cases, we need to produce one or more feasible solutions while
the feasibility of a solution only depends on the offline scenario considered.

Also, the objective function f used in Equation (1) and Fig. 2 is the expected
rate of accepted online requests returned by a simulator, being in our case the
one developed by Padam Mobility (see Sect. 4.3).

Machine Learning Guided Optimization for DRT Systems 427

4.2 Generation of Feasible Solutions

In the literature, most of the works on surrogate modeling consider problems
where generating a sample of the space of solutions can easily be done with tech-
niques such as Latin Hypercube Sampling [15] or Full Factorial Sampling [23].
Nonetheless, such methods can be used only if no restriction holds on the solu-
tions. In our case, the high number of constraints defining the feasible region of
the underlying DaRP (see Definition 3) requires the use of more sophisticated
techniques to generate a solution.

To generate a diversified set of feasible solutions, we chose to launch the
Adaptive Large Neighborhood Search (ALNS) developed by Padam Mobility
(see Sect. 4.5) on the considered offline scenario without any objective function
for a few minutes and save each new schedule found during the search. Once a
large enough number of solutions has been obtained by this procedure, we use a
stratified sampling strategy based on the KMeans clustering algorithm, the ten-
sor representation of the solutions (see Definition 3) and the Euclidean distance
to cover the solution space as homogeneously as possible. In practice, this proce-
dure allowed us to produce diversified training sets of 1800 samples, validation
sets of 200 samples and testing sets of 1000 samples for all our instances.

4.3 Simulation Framework

The Simulation Framework must take as input a feasible solution x and return
the expected number of accepted online requests f(x, s) for an online scenario s.

Any procedure that does this job can be used. In our case, Padam Mobility
has its own simulator that provides a good enough representation of how a DRT
service behaves through a working day. In particular, it induces some randomness
in the behaviour of the virtual users when they are facing equivalent propositions
for their requests to be served. As a change of a few minutes on a serving time can
have an impact on future requests and considering practical experiments, we will
then consider the output of a simulation as stochastic but stable. More precisely,
∼ 10 runs of a solution through the simulator is enough to fully evaluate it.

The set of online requests that will actually arrive along the day can be viewed
as a random variable. In this work, we make the hypothesis that we have at our
disposal a stochastic model to generate plausible scenarios of online requests for
a given day. Recent works, such as [27] or [29], sustain this assumption.

We therefore decide to design a new objective function by first selecting nσ

online scenarios from a given pool of online scenarios (see Sect. 5). Then, we
simulate once the working day for each of the selected online scenario, starting
from a given offline scenario, and we return the average percentage of accepted
online requests over the nσ online scenarios.

4.4 Surrogate Model

The Surrogate Model must be a model f̂ that imitates the original and unknown
objective function f : for a feasible solution x and a set of online scenarios S,
f̂(x) ∼ f(x, S). In principle, any supervised approach can be used to obtain f̂ .

428 L. Zigrand et al.

In our case, we present in Sect. 5.1 the various Machine Learning models
considered within this study as well as the methodology used to decide which
one should be used for the optimization. Nonetheless, the design choices of f̂
should follow two main principles: firstly, it must be a relatively minimalist and
compact model so that the training phase is not significantly time consuming.
Secondly, it must scale well with the size of the instances without losing in
quality.

In terms of data pre-processing, the input values are the tensor representation
of the schedules (see Definition 3) while the output values of the training set are
standardized. Then, as we experimentally observed that our instances present
Gaussian-like distributions of values over their generated pool of offline schedules,
the weights of the Weighted Mean Square Error loss function used to train the
models are designed so that each value has a similar impact on the loss.

4.5 Offline Optimization Framework

The Offline Optimization Framework (OOF) must consider an offline scenario
sOff and return an optimized schedule x = OOF (sOff,O) for an objective O.

In this work, we used a version of ALNS [11,28] modified by Padam Mobility
to handle their own application, in order to respect their customized constraints.
The ALNS method is a Local Search metaheuristic. This variety of algorithms
explores the search space of feasible solutions by applying local changes until no
improvement can be found and therefore a (locally) optimal solution is identified.

In our context, the advantage of this method is that we can keep the structure
of the in-house ALNS and change only the part related to the evaluation of
a solution by using the surrogate model presented in Sect. 4.4 in place of the
currently used objective function, based on the minimization of the TDR.

5 Experiments

To assess the quality of our framework, we consider 25 challenging instances pro-
vided by our industrial partner. In Table 1, we display the following information
relative to the selected instances: the identifier of each Instance, used in later
references, the service Duration i.e., the time length during which users’ requests
can be served, the number of Vehicles, the number of historical Offline requests
and the number of historical Online requests. Regardless of the service duration,
the discrete time horizon T for the proposed instances is always of size 100.

Table 1. Presentation of the considered instances

Instance A B C D E F G H I J K L M N O P Q R S T U V W X Y

Vehicles 2 2 3 2 2 3 3 2 2 2 12 12 5 6 12 11 12 9 8 13 11 11 9 12 11

Duration (in h) 7 7 7 7 7 7 7 7 7 7 12 15 13 13 15 15 15 15 13 13 15 15 13 15 15

Surface (in km) 46 46 46 46 46 46 46 46 46 46 197 197 144 144 197 197 197 197 144 144 197 197 144 197 197

Offline requests 30 41 35 30 41 48 45 42 44 52 41 49 45 58 62 45 51 63 91 86 82 92 109 86 86

Online requests 32 24 32 41 36 31 42 50 54 60 74 68 79 85 92 109 104 107 80 88 156 154 179 204 204

Machine Learning Guided Optimization for DRT Systems 429

We note I the set of instances. Regarding the Simulation Framework pre-
sented in Sect. 4.3, we consider two sets of scenarios of online requests:

– Historical Configuration (HC)
This option represents the optimistic point of view, where the online requests
are perfectly known in-advance. Hence, we use nσ = 1 scenario made of the
historical online requests that occurred during the actual service.

– Robust Configuration (RC)
This option represents a noisy forecast of the upcoming online requests. We
generate nσ = 5 scenarios based on the historical set of online requests with
a randomized order of arrival. Furthermore, the departure and destination
positions are moved randomly in a 500 meters radius as well as the requested
time in a 30 minutes time window. This manually added noise represents the
generation of scenarios based on a forecasted Origin-Destination matrix with
areas of 1 km2 and time steps of 30 minutes [29].

5.1 Choice of a Machine Learning Model for the Optimization

In this section, we first describe the Machine Learning techniques that we have
implemented and tested to approximate the Simulation Framework. Then, we
present the methodology used to evaluate the different models in order to choose
which one should be used within the optimization process.

Presentation of the Surrogate Models

Radial Basis Function Network (RBFN). We implement the variant of this
model where the centers of the Radial Basis Functions are computed based
on a clustering technique, using the KMeans method of the scikit-learn Python
package1, before being fed to an ANN, using the TensorFlow Python package2.

Gaussian Process Regression (GPR). We use the model provided by the scikit-
learn Python package (See footnote 1) named GaussianProcessRegressor.

Feedforward Neural Network (FNN). Our FNN structure consists of a first layer
to flatten the tensors provided in input as vectors of size 200 × nV, 4 hidden
layers with 1024 neurons, and a final layer with a single neuron to compute the
output of the model. All nodes of the FNN have a linear activation function.
The hyperparameters used for the training phase are: 5000 epochs, a batch size
equal to the Training Set size, and an Adam optimizer with a learning rate of
1E-5. We implemented this model with the TensorFlow Python package (See
footnote 2) .

1 See https://scikit-learn.org/ for more information..
2 See https://www.tensorflow.org/ for more information..

https://scikit-learn.org/
https://www.tensorflow.org/

430 L. Zigrand et al.

Convolutional Neural Network (CNN). Our architecture consists of 5 successive
Convolutional Layers with a Kernel size of (1, 3), a Stride of (1, 2), a Dropout
rate of 0.5 and a Rectified Linear Unit (ReLU) as activation function. The size of
the tensor after each layer is respectively: nV×49×32, nV×24×64, nV×11×128,
nV×5×256 and nV×1×512. The output of the last Convolutional Layer is then
flattened as a vector of size 512 × nV and fed to a Fully Connected Layer of the
same size with a linear activation function. Finally, the last layer is the Output
Layer with a single neuron and a linear activation function to compute the output
of the model. The hyperparameters used for the training of the CNN are: 10000
epochs, a batch size equal to the Training Set size, and an Adam optimizer with
a learning rate of 1E-4. We implement this model with TensorFlow (See footnote
2) .

Ensemble Learning Model (ELM). We define this model as a weighted sum of the
previously cited models: as each Machine Learning technique learns differently
through its learning phase, such model can take the best of them [8]. In practice,
we used the following combination as it proved to be the most stable one, in terms
of noise reduction: ELM = 0.5 × FNN + 0.35 × CNN + 0.15 × GPR.

For the sake of fairness, the hyperparameters of each model have been opti-
mized to obtain the highest possible accuracy, while maintaining a size that
allows to train the methods in a reasonable amount of time.

Evaluation of the Surrogate Models

Notations. For each instance I ∈ I, we note TrainI the training set and TestI

the test set generated for I. We note M the set of considered surrogate models.

Methodology. In order to evaluate the generalization capacity of the different
surrogate models, we use the following process:

– For each instance I ∈ I, we define Train10%I the subset of TrainI that contains
the solutions with a value in the top 10% values of the set:

Train10%I =
{

(x; y) ∈ TrainI | y ≥ 0.9 ×
(

max
(x′;y′)∈TrainI

y′
)

+ 0.1 ×
(

min
(x′;y′)∈TrainI

y′
)}

– For each surrogate model M ∈ M, we train M on TrainI \ Train10%I and
evaluate the extended test set TestI ∪ Train10%I with the obtained model.

Then, we note
(
yM

I,k

)

1≤k≤K
the full evaluation by the Simulation Framework

of the top K solutions of the extended test set of I according to M for a given
K ∈ N�. If more than one solution can be fully evaluated at the end of the
optimization, this K represents some tolerance on the model forecast.

Machine Learning Guided Optimization for DRT Systems 431

– Finally, ∀ I ∈ I, ∀ M ∈ M, we define gM
I,K the Relative Difference to the

Best Solution of order K ∈ N� as follows: gM
I,K =

yBest
I,K −

(
max

1≤k≤K
yM

I,k

)

yBest
I,K

, where

yBest
I,K = max

M ′∈M
1≤k≤K

yM ′
I,k . The idea behind gM

I,K is to measure how well each model

has learned what made a solution a good one in comparison to the others,
up to a given tolerance, defined by the number of solutions considered K.

(a) Historical Configuration - K = 1 (b) Robust Configuration - K = 1

(c) Historical Configuration - K = 5 (d) Robust Configuration - K = 5

Fig. 4. Evaluation of the surrogate models

Results. We present in Fig. 4 the aggregated results of the previously cited sur-
rogate models over the 25 considered instances. In both Fig. 4a and Fig. 4d, we
can see that the ELM clearly provides the best results overall, in spite of a few
outliers. In Fig. 4c and Fig. 4b, the situation is slightly more contrasted with
similar performances of the FNN, CNN and ELM models. On the other hand,
ELM clearly provides the best results in Fig. 4d, which is the most robust case,
where we use the Robust Configuration, paired with a tolerance of 5 instances.

432 L. Zigrand et al.

Therefore, as the ELM model provides the most stable results overall, we decide
to use it within the OOF. We note ELM (HC) (resp. ELM (RC)) the ELM
trained with the Historical (resp. Robust) Configuration.

5.2 Computational Results

The experiments were led on a computer equipped with an AMD Ryzen 7 3700x
for CPU, allowing us to parallelize the evaluation through the simulator of the
training set, a GeForce RTX 2060 SUPER for GPU, making the training of our
ANNs be quick, and 16 Go of RAM while running on Ubuntu 20.04 LTS. Based
on this configuration, we can evaluate the computational gain of our surrogate
model in contrast with using the actual simulator within the OOF:

– Instances A to J: it takes a few seconds to run a simulation while it takes ∼ 15
min to build our model then ∼ 20 ms to make an evaluation. Thus, hours of
computation time are saved after a thousand iterations of the optimizer.

– Instances K to Y: it takes more than ten seconds to run a single simulation
while it takes ∼ 30 min to build our model then ∼ 40 ms to evaluate a
solution afterwards. Hence, the time saved during the optimization phase
becomes sizable even faster than for smaller instances.

To sum up, the design of our framework is a time-saver in contrast with
a SbO design, notably by letting our model learn the stochastic behaviour of
the Simulation Framework through the diversification of the training set and by
making use of the parallelization capacity of modern computers.

5.3 Optimization Results

In this section, we compare the performances of the schedules obtained using
the ELM with the ones that we obtain using the objective functions present
in the literature: the Total Duration of the Rides (TDR), the Total Detour
Time (TDT), the Forward Slack Time (FST), the Onboard Time (OT) and the
Onboard Deviation (OD), all detailed in Table 2 (see [22,28] for more details).

Table 2. Classic objective functions from the literature

Name Direction Formula

TDR Min
∑

vehicle

[Total Travel Time]vehicle

TDT Min
∑

user

[
Actual Travel Time
Direct Travel Time

]
user

FST Max
∑

s∈stopsa
[Maximal Arrival Time]s − [Arrival Time]s

OT Min
∑

user

[Actual Travel Time]user

OD Min
∑

s∈segmentsb

[Passengers Onboard]s × [Travel Time]s

a A stop is a location and time where a vehicle handles a request.
b A segment is a trip of a vehicle between two consecutive stops.

Machine Learning Guided Optimization for DRT Systems 433

For each instance I ∈ I, we run the OOF on its offline scenario with the
objectives shown in Table 2 and with our fully trained ELM (HC) and ELM (RC)
models. We set a time limit of 30 min for the optimizer to run and, to limit the
impact of randomness, each combination of instance and objective function is
solved 10 times with different random seeds. Then, for each objective O, we note
xO

I the best solution found according to O for instance I and we evaluate it with
25 runs of the Simulation Framework for both configurations of online scenarios.
Finally, for C ∈ {HC,RC}, we note yO

I,C the full evaluation with the Simulation
Framework of xO

I for the set of online scenarios defined in C.
To analyze the performance of the objective functions in both configurations

C ∈ {HC,RC}, we define y�
I,C = y

ELM (C)
I,C as a reference value: our ELM models

have been designed to maximize it. Then, we define gO
I,C the Relative Difference

to Best Solution of objective O in configuration C as gO
I,C = y�

I,C−yO
I,C

y�
I,C

.

(a) Historical Configuration (b) Robust Configuration

Fig. 5. Evaluation of the objective functions

We present in Fig. 5 the aggregated results of our study over all instances.
Figure 5a presents how the solutions associated to each objective function would
have performed in the reality. In the case of our ELM (RC) model, the observed
gap can be interpreted as the cost of robustness. In spite of this, we can see
that our model is more stable and provides better results than the traditional
objectives overall. On the other side, Fig. 5b shows how much the newly proposed
objective function performs better in comparison to the more classic objectives
present in the literature in an uncertain scenario. More precisely, the ELM (RC)
model is on average 9.5% better than TDR, its closest competitor, in such a
context. The gap that we can find for most objectives and instances shows the
lack of robustness of these functions and the place for improvement that we aim
at filling with our method. Therefore, this study proves that the classic objective
functions seem to be particularly unfit for the Dynamic DaRP.

434 L. Zigrand et al.

6 Conclusion

In this paper, we present a new approach to model and optimize the offline
planning of a Demand Responsive Transport (DRT) system, namely Machine
Learning Guided Optimization. The idea of this framework is to train a Surrogate
Model to estimate the expected number of online requests that a given offline
schedule will be able to serve. Integrated within an optimizer, this model can
then be used as an objective function to optimize the offline planning, in order to
maximize the expected number of accepted online requests in the day after. We
apply this methodology to a real DRT case study in collaboration with Padam
Mobility, an international company specialized in Shared Mobility Systems. To
obtain an effective algorithm, several aspects need to be considered: the definition
of a proper dataset, an ad-hoc predictive model, and an optimisation algorithm.
In this work, we show how to take care of each aspect. The experimental section
of the paper clearly proves that the traditional approaches in the literature are
outclassed by our framework, which provides the best performances overall. We
hope that the presented work could motivate other researchers to investigate
similar paradigms for other applications related to transportation problems.

Acknowledgement. We thank Anh-Dung NGUYEN and Samir NAIM from Padam
Mobility for all the useful discussions and their continuous support throughout this
project.

References

1. Alizadeh, R., Allen, J.K., Mistree, F.: Managing computational complexity using
surrogate models: a critical review. Res. Eng. Des. 31(3), 275–298 (2020)

2. Amaran, S., Sahinidis, N.V., Sharda, B., Bury, S.J.: Simulation optimization: a
review of algorithms and applications. Ann. Oper. Res. 240(1), 351–380 (2016)

3. Ambrosino, G., Nelson, J., Romanazzo, M.: Demand responsive transport services:
towards the flexible mobility agency. ENEA (2004)

4. Barton, R.R., Meckesheimer, M.: Metamodel-based simulation optimization.
Handb. Oper. Res. Manag. Sci. 13, 535–574 (2006)

5. Bengio, Y., Lodi, A., Prouvost, A.: Machine learning for combinatorial optimiza-
tion: a methodological tour d’horizon. Eur. J. Oper. Res. (2020). https://doi.org/
10.1016/j.ejor.2020.07.063

6. Bernardo, M., Pannek, J.: Robust solution approach for the dynamic and stochastic
vehicle routing problem. J. Adv. Transp. 2018 (2018). https://doi.org/10.1155/
2018/9848104

7. Cordeau, J.F.: A branch-and-cut algorithm for the dial-a-ride problem. Oper. Res.
54(3), 573–586 (2006)

8. Dietterich, T.G.: Ensemble methods in machine learning. In: Kittler, J., Roli, F.
(eds.) MCS 2000. LNCS, vol. 1857, pp. 1–15. Springer, Heidelberg (2000). https://
doi.org/10.1007/3-540-45014-9 1

9. Engilberge, M., Chevallier, L., Pérez, P., Cord, M.: Sodeep: a sorting deep net to
learn ranking loss surrogates. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 10792–10801 (2019)

https://doi.org/10.1016/j.ejor.2020.07.063
https://doi.org/10.1016/j.ejor.2020.07.063
https://doi.org/10.1155/2018/9848104
https://doi.org/10.1155/2018/9848104
https://doi.org/10.1007/3-540-45014-9_1
https://doi.org/10.1007/3-540-45014-9_1

Machine Learning Guided Optimization for DRT Systems 435

10. Fonseca, D.J., Navaresse, D.O., Moynihan, G.P.: Simulation metamodeling through
artificial neural networks. Eng. Appl. Artif. Intell. 16(3), 177–183 (2003)

11. Gschwind, T., Drexl, M.: Adaptive large neighborhood search with a constant-time
feasibility test for the dial-a-ride problem. Transp. Sci. 53(2), 480–491 (2019)

12. Guo, X., Li, W., Iorio, F.: Convolutional neural networks for steady flow approx-
imation. In: Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 481–490 (2016)

13. Ho, S.C., Szeto, W.Y., Kuo, Y.H., Leung, J.M., Petering, M., Tou, T.W.: A survey
of dial-a-ride problems: literature review and recent developments. Transp. Res.
Part B Methodol. 111, 395–421 (2018)

14. Huang, A., Dou, Z., Qi, L., Wang, L.: Flexible route optimization for demand-
responsive public transit service. J. Transp. Eng. Part A Syst. 146(12), 04020132
(2020)

15. Ilievski, I., Akhtar, T., Feng, J., Shoemaker, C.: Efficient hyperparameter optimiza-
tion for deep learning algorithms using deterministic RBF surrogates. In: Proceed-
ings of the AAAI Conference on Artificial Intelligence (2017)

16. Johnson, V.M., Rogers, L.L.: Accuracy of neural network approximators in
simulation-optimization. J. Water Resour. Plan. Manag. - ASCE 126(2), 48–56
(2000)

17. Kirchler, D., Wolfler Calvo, R.: A granular tabu search algorithm for the dial-a-ride
problem. Transp. Res. Part B Methodol. 56, 120–135 (2013)

18. Liu, T.Y.: Learning to Rank for Information Retrieval. Springer, Heidelberg (2011)
19. Lizotte, D.J., Wang, T., Bowling, M.H., Schuurmans, D.: Automatic gait optimiza-

tion with gaussian process regression. In: IJCAI, vol. 7, pp. 944–949 (2007)
20. Lv, Z., Wang, L., Han, Z., Zhao, J., Wang, W.: Surrogate-assisted particle swarm

optimization algorithm with pareto active learning for expensive multi-objective
optimization. IEEE/CAA J. Autom. Sinica 6(3), 838–849 (2019)

21. Mairal, J.: Optimization with first-order surrogate functions. In: International Con-
ference on Machine Learning, pp. 783–791. PMLR (2013)

22. Parragh, S.N., Doerner, K.F., Hartl, R.F.: A survey on pickup and delivery prob-
lems. J. für Betriebswirtschaft 58(2), 81–117 (2008)

23. Ploé, P.: Surrogate-based optimization of hydrofoil shapes using RANS simulations.
Ph.D. thesis, École centrale de Nantes (2018)

24. Saint-Guillain, M., Deville, Y., Solnon, C.: A multistage stochastic programming
approach to the dynamic and stochastic VRPTW. In: Michel, L. (ed.) CPAIOR
2015. LNCS, vol. 9075, pp. 357–374. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-18008-3 25

25. Snoek, J., Larochelle, H., Adams, R.P.: Practical Bayesian optimization of machine
learning algorithms. In: Bartlett, P.L., Pereira, F.C.N., Burges, C.J.C., Bot-
tou, L. (eds.) Advances in Neural Information Processing Systems 25: 26th
Annual Conference on Neural Information Processing Systems 2012. Proceed-
ings of a meeting held December 3-6, 2012, Lake Tahoe, Nevada, United
States, pp. 2960–2968 (2012). https://proceedings.neurips.cc/paper/2012/hash/
05311655a15b75fab86956663e1819cd-Abstract.html

26. Tensen, I.: Stochastic optimization of the dial-a-ride problem. Dealing with variable
travel times and irregular arrival of requests in the planning of special transport
services. Master’s thesis, University of Twente (2015)

27. Toqué, F., Côme, E., El Mahrsi, M.K., Oukhellou, L.: Forecasting dynamic pub-
lic transport origin-destination matrices with long-short term memory recurrent
neural networks. In: 2016 IEEE 19th ITSC, pp. 1071–1076. IEEE (2016)

https://doi.org/10.1007/978-3-319-18008-3_25
https://doi.org/10.1007/978-3-319-18008-3_25
https://proceedings.neurips.cc/paper/2012/hash/05311655a15b75fab86956663e1819cd-Abstract.html
https://proceedings.neurips.cc/paper/2012/hash/05311655a15b75fab86956663e1819cd-Abstract.html

436 L. Zigrand et al.

28. Vallée, S., Oulamara, A., Cherif-Khettaf, W.R.: Maximizing the number of served
requests in an online shared transport system by solving a dynamic DARP. In:
ICCL 2017. LNCS, vol. 10572, pp. 64–78. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-68496-3 5

29. Wang, Y., Yin, H., Chen, H., Wo, T., Xu, J., Zheng, K.: Origin-destination matrix
prediction via graph convolution: a new perspective of passenger demand modeling.
In: Proceedings of the 25th ACM SIGKDD, pp. 1227–1235 (2019)

30. Yao, W., Chen, X., Huang, Y., van Tooren, M.: A surrogate-based optimization
method with RBF neural network enhanced by linear interpolation and hybrid
infill strategy. Optim. Methods Softw. 29(2), 406–429 (2014)

31. Zhang, Y., Sung, W.J., Mavris, D.N.: Application of convolutional neural network
to predict airfoil lift coefficient. In: AIAA/ASCE/AHS/ASC Conference (2018)

https://doi.org/10.1007/978-3-319-68496-3_5
https://doi.org/10.1007/978-3-319-68496-3_5

OBELISC: Oscillator-Based Modelling
and Control Using Efficient Neural
Learning for Intelligent Road Traffic

Signal Calculation

Cristian Axenie1, Rongye Shi2(B), Daniele Foroni1, Alexander Wieder1,
Mohamad Al Hajj Hassan1, Paolo Sottovia1, Margherita Grossi1,

Stefano Bortoli1, and Götz Brasche1

1 Intelligent Cloud Technologies Lab, Huawei Munich Research Center,
Riesstrasse 25, 80992 Munich, Germany

cristian.axenie@huawei.com
2 EI Intelligence Twins Program, Huawei Cloud BU, Shenzhen, China

shirongye@huawei.com

Abstract. Traffic congestion poses serious challenges to urban infras-
tructures through the unpredictable dynamical loading of their vehic-
ular arteries. Despite the advances in traffic light control systems, the
problem of optimal traffic signal timing is still resistant to straight-
forward solutions. Fundamentally nonlinear, traffic flows exhibit both
locally periodic dynamics and globally coupled correlations under deep
uncertainty. This paper introduces Oscillator-Based modelling and con-
trol using Efficient neural Learning for Intelligent road traffic Signal Cal-
culation (OBELISC), an end-to-end system capable of modelling the
cyclic dynamics of traffic flow and robustly compensate for uncertainty
while still keeping the system feasible for real-world deployments. To
achieve this goal, the system employs an efficient representation of the
traffic flows and their dynamics in populations of spiking neural networks.
Such a computation and learning framework enables OBELISC to model
and control the complex dynamics of traffic flows in order to dynami-
cally adapt the green light phase. In order to emphasize the advantages of
the proposed system, an extensive experimental evaluation on real-world
data completes the study.

Keywords: Traffic control · Oscillator model · Spiking neural
networks

1 Introduction

Road traffic congestion poses serious challenges to urban infrastructures and
impacts both the social and the economic lives of people. Such fundamental

C. Axenie, R. Shi, D. Foroni, A. Wieder, M. A. H. Hassan, P. Sottovia, M. Grossi and
S. Bortoli—Authors contributed equally to this research.

c© Springer Nature Switzerland AG 2021
Y. Dong et al. (Eds.): ECML PKDD 2021, LNAI 12978, pp. 437–452, 2021.
https://doi.org/10.1007/978-3-030-86514-6_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86514-6_27&domain=pdf
https://doi.org/10.1007/978-3-030-86514-6_27

438 C. Axenie et al.

reason motivated large amounts of research and systems developed to analyze,
model, and control road traffic towards avoiding congestion [17]. Looking at
actual technology instantiations, such as SCOOT [9], SCATS [12], PRODYN
[7], or LISA [6], adaptive traffic signal control systems detect vehicles as they
approach a signalized cross well in advance of the stop line. This detection, from
multiple crosses, is subsequently fed into a central system, which models the
flow of traffic in the area. The traffic model is then used to adapt the phasing
of the traffic light signals in accordance with the flow of traffic, thus minimiz-
ing unnecessary green phases and allowing the traffic to flow most efficiently.
Despite the increasing complexity of such end-to-end solutions, research on opti-
mization is still going on. Basically, one of the differentiating aspects among
the existing systems is the traffic model they use, in other words, those aspects
of the physics of traffic they capture. For instance, based on large amounts of
high-resolution field traffic data, work in [8] used the conditional distribution of
the green start times and traffic demand scenarios for improved performance.
However, high amounts of high-resolution traffic data are expensive to acquire at
scale and doesn’t exploit the temporal periodicity at the local level of adjacent
traffic lights. Using a relatively simple model to predict arrivals at coordinated
signal approaches, the work of [3] assumes nearest-neighbor interactions between
signals and uses a linear superposition of distributions to optimize traffic lights
phase duration. Despite finding the optimal coordination, the algorithm couldn’t
handle unpredictable changes to platoon shapes (i.e. occasionally caused by pla-
toon splitting and merging) or prediction during saturated conditions (i.e. traffic
jams, accidents). Hence its rather limited adaptation capabilities to disruptions
that can propagate in time and space in the system.

The main goal of this study is to introduce Oscillator-Based modelling and
control using Efficient neural Learning for Intelligent road traffic Signal Calcula-
tion (OBELISC), a new methodology and system for jointly modelling, learning,
and controlling the dynamics of traffic flows for effective phase duration calcu-
lation. In a very good review and perspective, the study of [2], introduced the
formalism of oscillator-based traffic modelling and control. Despite the good
mathematical grounding, the proposed approach was static, in that it removed
all convergence and self-organization dynamics of the oscillators, by replacing
it with the steady-state solution. Such an approach has benefits at the single
intersection level, as also the authors claim, but will fail in large-scale heteroge-
neous road networks (i.e. non-uniform road geometry, disrupted traffic patterns,
etc.). The approach of OBELISC introduces a novel type of nonlinear coupled
oscillators model based on [15], along with a nonlinear control mechanism that
allows it to capture complex flow patterns and unpredictable variations [16] in
large road networks. This ensures a robust control of the oscillator-based model
under dynamical demand changes based on measurement of local traffic data. A
similar oscillator approach was used in [13] and later in [5] as area-wide signal
control of an urban traffic network. Yet, due to their complex-valued dynamics
and optimization, the systems could not capture both the spatial and tempo-
ral correlations under a realistic computational cost for real-world deployment.

OBELISC 439

Additionally, we are contributing with the release of a multi-cross urban traf-
fic dataset, which contains 59 d of real urban road traffic data from 8 crosses
in a city in China. Targeting a real-world deployment and superior run-time
performance under real traffic flows, OBELISC is:

– using an efficient implementation in spiking neural networks [4],
– is avoiding optimization routines and operates in real-time,
– it excels in minimizing typical traffic key performance indices when the phase

duration is calculated depending on the real-time demand measurements.

2 Materials and Methods

The dynamics of a traffic signal is periodic, with a phase of green - yellow - red
light in one cycle, and is defined by three control parameters: a cycle length (i.e.
sum of phases), a (phase) offset, and a split. The scope of our study, the phase
duration calculation, is described for adjacent crosses signals in Fig. 1. Typically,
for a responsive traffic signal control system, adjusting the phase duration is
equivalent to optimizing a given objective function (e.g. such as minimizing travel
time, waiting time, or stops) in real-time, based upon perceived traffic conditions.
In this section, we introduce OBELISC, as a methodology and system for jointly
modelling, learning, and controlling phase calculation that exploits the periodic
(i.e. oscillatory) dynamics of traffic.1

Fig. 1. Traffic light signal calculations: phase duration, offset, and cycles.

2.1 Oscillator-Based Modelling of Traffic Dynamics

Traffic has a strong periodic behavior. This motivates us to describe traffic light
phasing phenomenon as a repeated collective synchronization problem, in which
a large network of oscillators, each representing a traffic light controlling a pos-
sible movement direction in a cross, spontaneously locks to a common operation
1 Codebase available at: https://github.com/omlstreaming/ecml2021.

https://github.com/omlstreaming/ecml2021

440 C. Axenie et al.

phase. Subsequently, the phase duration adjustment factor is computed as a
function of the oscillator time to synchronization. The intuition is the following:
1) each of the oscillators is injected with external traffic flow data impacting its
local dynamics, and 2) the oscillator network converges to a steady state used to
extract adaptive factor to adjust the traffic light phases. Despite the inevitable
differences in the natural oscillation frequencies and injected data of each oscil-
lator the network ensures that each of the coupled oscillators repeatedly locks
phase. We extend the basic Kuramoto oscillator [10] with additional components
to account for spatial as well as temporal interactions among the oscillators and
an external perturbation model as described in Eq. 1.

dθi(t)
dt

= ωi(t) + ki(t)
N∑

j=1

Aijsin(θj(t) − θi(t)) + Fisin(θ∗(t) − θi(t)) (1)

where:
θi - the amount of green time of traffic light i
ωi - the frequency of traffic light i oscillator
ki - the flow of cars passing through the direction controlled by oscillator i
Aij - the static spatial adjacency coupling between oscillator i and oscillator j
Fi - the coupling of external perturbations (e.g. maximum cycle time per phase)
θ∗ - the external perturbation (e.g. traffic signal limits imposed by law)
The model underlying OBELISC assumes that the change in allocated green
time θi for a certain traffic light i, for a certain direction, depends on the: 1) the
internal frequency of the corresponding (traffic light) oscillator ω; 2) the current
flow of cars ki in that direction; 3) the spatial coupling Aij of the oscillators
through the street network that weights the impact of a nonlinear periodic cou-
pling of the oscillators sin(θj(t) − θi(t)); and 4) the external perturbation θ∗

with weight Fi which ensures, for instance, that the output of the system stays
in the bounds of realistic green time values imposed from the traffic laws. Given
the known topological layout of the road network and the computed green times
of each of the oscillators, when the dynamics converge (i.e. the solution of the
differential Eq. 1), we infer the actual adaptive factor to be applied to the traf-
fic light phase duration between adjacent (coupled) oscillators corresponding to
adjacent moving directions. More precisely, given the steady state value of the
green time (i.e. the solution θi(tf)), we calculate the phase duration as the time
to synchronization of each oscillator relative to the ones coupled to it. From the
dynamics synchronization matrix ρ at each time t the phase duration update is
calculated as arg max

t
{ρ(t) > τ} where ρij(t) = cos(θi(t)− θj(t)) and 0 < τ < 1.

In order to ground the analytic formulation, we describe a simple, regular
5×5 lattice composed of N = 25 oscillators. For simplicity, in this example, each
oscillator is responsible for an entire cross (i.e. the 4 adjacent directions: N, S, W,
E) and the spatial coupling Aij is given by the topology of the lattice, as shown
in Fig. 2 a. Here, each oscillator i dynamics is described by the superposition
of its natural oscillation frequency ωi and the cumulative impact of neighboring
(coupled through Aij) oscillators weighted by the flow of cars ki through the cross

OBELISC 441

Fig. 2. Oscillator-based dynamics.

controlled by oscillator i. The external perturbation term Fisin(θ∗(t)− θi(t)) is
neglected for simplicity. Figure 2 b describes the internal dynamics of such a
network model for traffic control where given the different initial conditions of
each oscillator, the coupling dynamics enforces consensus after some time (i.e.
2.1s). The steady state is then used to extract the actual phase duration by
simply calculating the time to synchronization arg max

x
{ρ(t) > τ}, as a per

oscillator relative time difference, from the ρ matrix in Fig. 2 c. Here, the choice
of τ determines how fast a suitable steady state is reached.

2.2 Robust Control of the Oscillator-Based Networked Dynamics

The network dynamics of OBELISC (Eq. 1), is judiciously parametrized to cope
with the normal daily traffic profile. This can be visible in Fig. 3 where the
model is able to keep the lost time through a single cross to an acceptable
value, around 70s (see Fig. 3 b). In the case of traffic disruptions (e.g. accident,
sport events, or adverse weather conditions), the system cannot capture the fast
changing dynamics (i.e. steep derivatives) of the traffic flow (see Fig. 3 a) and,
hence, performs poorly, for instance in preserving an acceptable time loss (i.e.
difference in the duration of a trip in the traffic free vs. full traffic) over rush-hour
(see Fig. 3b around 18:00). The example in Fig. 3 illustrates a limitation of such
dynamic networked models, namely robustness to uncertainty. Be it structured
uncertainty (e.g. sub-optimal choice of the internal oscillator frequency ω or
a sudden time varying topological coupling Aij through trajectory re-routing)
or unstructured uncertainty (e.g. unmodelled dynamics through the single use
of θ̇(t) and neglecting rate of change given by the Laplace operator θ̈(t)), the
system in Eq. 1 is unable to converge to a satisfactory solution given input k and
coupling constraints.

442 C. Axenie et al.

Fig. 3. Oscillator-based model dynamics adaptation capabilities.

To address this challenge, we extend Eq. 1 with a robust control law. We
chose to systematically maintain stability of the oscillatory dynamics by using
a robust control approach which ensures consistent performance in the face of
uncertainties. Sliding mode control [16] is a well established control engineering
method to compensate for uncertainty and handle highly nonlinear problems.
At its core it captures and controls the impact of higher-order motion (i.e. sec-
ond derivative) through a high-frequency switching of the control law towards
synchronization. Such a discontinuous robust control “drives”, through a regu-
larizing control law term u(t), the coupled dynamics of the oscillators towards a
desired dynamics (i.e. sliding surface).

dθi(t)
dt

= ωi(t) + ki(t)
N∑

j=1

Aijsin(θj(t) − θi(t)) + Fisin(θ∗(t)− θi(t)) + ui(t) (2)

with

ui(t) = ε1

∫ t

0

ŝi(τ)dτ

dŝi(t)
dt

= ε2(
∑

i,j

(ŝj(t) − ŝi(t)) + si(t))

dsi(t)
dt

= ε3
∑

j

(sj(t) − dŝi(t)
dt

) − sign(ŝi(t))
d2θi(t)

dt2

0 < ε1 < ε2 < ε3 < 1

(3)

where:
si(t) - the surplus energy of traffic light i oscillator
ŝi(t) - the estimated surplus energy of traffic light i oscillator

OBELISC 443

The goal of the regularizing sliding mode control law ui is to “push” the
network of coupled oscillators, with a step size of ε, towards a dynamics which
accommodates the disruptions in the flow of cars k (i.e. captured by θ̈i(t)). Intu-
itively, this assumes that the controller captures the second-order motion (i.e.
θ̈i(t)) of the oscillator and compensates for it asymptotically until the surface is
reached. This assumes, in first instance, choosing an appropriate sliding surface
that minimizes the energy surplus si(t) as illustrated in Fig. 4 c. Following Eq. 3,
the regularizing control law ui(t) applied to oscillator i is the area under the
curve (i.e. the integral) of the estimated energy surplus, depicted in Fig. 4 c.
Interestingly, the (estimated) surplus energy, which keeps oscillator i away from
the desired robust dynamics ŝi(t) depends on the local oscillators interaction∑

i,j(ŝj(t) − ŝi(t)) and the actual surplus energy. The change in surplus energy
is the actual dynamics of convergence to the sliding surface and is based on the
cumulative impact of neighboring oscillators

∑
j sj(t) and the Laplacean of the

green time θ̈i(t) weighted by the direction of the convergence sign(ŝi(t)). The
property of insensitivity of sliding surface in Eq. 2 to the oscillatory dynamics2

is utilized to control the reaction of the network of coupled oscillators to uncer-
tainty. We realized this practically by adding the regularizing term ui(t) in the
local dynamics of each oscillator described by Eq. 1. To get a better understand-
ing of Eq. 2, we now exemplify, in Fig. 4, the impact the sliding mode controller
has upon the dynamics of a road network when facing traffic disruptions from a
real scenario (details about the data is provided in the Experiments and Results
section). We consider a region composed of 8 crosses and N = 29 oscillators as
described in Fig. 4 a.

Fig. 4. Sliding Mode Control for oscillator-based model dynamics adaptation.

In our case, the network of coupled oscillators is a system with discontinuous
control (i.e. the control law ui(t) uses the sign of the energy surplus to drive the
2 For a thorough analysis of sliding modes invariance see [16].

444 C. Axenie et al.

system towards the robust dynamics). Basically, as shown in Fig. 4 b, c, given
each sample of flow data ki(ti...tj ...tk) (from the road sensors) there is a fast
convergence time-scale which allows the oscillators to reach steady state. This
state is reached under sliding mode control by compensating for the disruptions
in the traffic flow modelled by the second-order motion θ̈i(t). The stationary state
is subsequently probed for the actual phase duration, relative to each coupled
oscillator by solving arg max

x
{ρ(t) > τ} where ρij(t) = cos(θi(t) − θj(t)) and

0 < τ < 1. Due to the fast changes, occurring during disruptions (see Fig. 4
b - rush hour around 18h00), in the slow time-scale of traffic flow (i.e. sensory
data), the network of coupled oscillators benefits from the sliding mode control
law to compensate for the abrupt changes and to reach consensus, as shown in
Fig. 4 c - right panel. This consensus state describes the point when the system
dynamics reached the sliding surface, in other words when the magnitude of
the surplus energy decayed at a finite rate over the finite time interval (i.e. fast
timescale in Fig. 4 c - left panel). The regularization approach we propose has a
simple physical interpretation. Uncertainty in the system behavior in the face of
disruptions appears because the motion equations of the dynamics in Eq. 1 are
an ideal system model. Non-ideal factors such as unmodelled dynamics and sub-
optimal parameter selection are neglected in the ideal model. But, incorporating
them into the system model eliminates ambiguity in the system behavior which
“slides” to a robust dynamics.

2.3 Representation, Learning, and Dynamics in Neural Networks

The notion of phase allows for a direct identification of the system’s state in terms
of a one-dimensional variable, described in Eq. 1. This facilitates an analytic
approach to robustly control such dynamics, as shown in Eq. 3. Yet, such complex
analytical description of networked dynamics is not tractable for large real-world
deployments. In order to deploy an efficient traffic signal phase optimization
with OBELISC, the data representation, the oscillatory network dynamics, and
the robust controller, are implemented in the Neural Engineering Framework
(NEF) [4]. NEF offers a systematic method of “compiling” high-level dynamics,
such as ordinary differential equations (ODEs), into synaptic connection weights
between populations of spiking neurons with efficient learning capabilities.

Representation of Traffic Flow Data. In NEF, neural populations represent
time-varying signals, such as traffic flow data, through their spiking activity. Such
signals drive neural populations based on each neuron’s tuning curve, which
describes how much a particular neuron will fire as a function of the input
signal (see Fig. 5 - Encoding Neural Population, upper panel). The role of the
representation (i.e. complemented by a pair of operations for encoding/decoding)
is to provide a distributed version of the real-valued input signal. Basically,
using this representation, we can estimate the input signal originally encoded by
decoding the pattern of spikes (see Fig. 5 - Encoding Neural Population). The
decoding weights are determined by minimizing the squared difference between

OBELISC 445

the decoded estimate and the actual input signal and accounts for the weights
learning process3.

Learning Arbitrary Functions of Flow Data. Encoding and decoding oper-
ations on NEF neural populations representations allow us to encode traffic flow
signals over time, and decode transformations (i.e. mathematical functions) of
those signals. In fact, NEF allows us to decode arbitrary transformations of
the input signal. In our case the right-hand side of Eq. 1 contains a non-linear
combination of terms, out of which, for instance, the sinus of the relative phase
difference sin(θj(t)− θi(t)) is decoded as a sinus transformation from a popula-
tion encoding the phase difference θj(t)−θi(t). The same principle applies to the
robust controlled dynamics in Eq. 2 and is depicted in Fig. 5. This process deter-
mines how we can decode spike trains to compute linear and nonlinear transfor-
mations of the various signals encoded in a population of neurons. Essentially,
this provides the means of learning the neural connection weights to compute
the function between populations (e.g. product between the population encod-
ing the spatial adjacency coupling Aij and the population encoding the sinus
transformation of the phase difference θj(t) − θi(t)).

Dynamics of Traffic Oscillator Network in Neural Networks Fundamen-
tally, NEF automatically translates from standard dynamical systems descrip-
tions to descriptions consistent with neural dynamics. Using the distributed neu-
ral representation of the traffic data and learning arbitrary functions of traffic
data, we can now describe the combined dynamics implementation of the network
of oscillators and the sliding mode controller. Figure 5 introduces the high-level
implementation details. The neural implementation in Fig. 5 is bound to each
oscillator i in the network. Each oscillator is fed with traffic flow data ki(t) cor-
responding to the direction it controls. The real-valued data is then encoded in
a distributed pattern in the Encoding Neural Population. This encoding pro-
cess is visible in the Spiking Activity and Neural Activation panels of Fig. 5,
where each neuron encodes the input data in a frequency modulated train of
spikes (Spiking Activity). The temporal activation of each of the encoding neu-
rons relative to each other is illustrated in the Neural Activation panel. As one
can see, in Fig. 5 - left and low-left panels, the decoded flow if cars is a noisy
version of the actual input (intuitively, more neurons will provide a better recon-
struction but more computational cost). The encoded traffic flow data is then
fed to the actual combined dynamics (i.e. oscillator network and sliding mode
controller) in the Robust Controller OBELISC Population. This neural popu-
lation has a recurrent connection that implements the dynamics of the right-
hand side of Eq. 2. More precisely, this population splits the Eq. 2 in terms and
realizes each multiplication, nonlinear function, and summation in separate con-
nected populations. Basically, the population encoding the oscillation frequency
ωi will be connected through a sum function to the population encoding the

3 For a thorough overview of practical Neural Engineering Framework (NEF) see [4].

446 C. Axenie et al.

Fig. 5. Representation, Learning, and Dynamics of Robust Oscillator Network

sum of the external constraints (e.g. Aij and Fi) weighting the phase differences
θj(t) − θi(t), both decoded from separate neural populations implementing the
product and sinus functions. These operations implemented in neurons corre-
spond to Aijsin(θj(t) − θi(t)) + Fisin(θ∗(t) − θi(t)). In order to visualize the
benefit of the sliding mode control in the overall dynamics, we also compute the
time loss, as a simple metric, in the Robust Controller OBELISC Population. As
previously mentioned, the sliding mode controller makes a trade-off between per-
formance and control activity (i.e. better performance in terms of time loss under
faster switches of the control law). Basically, this is visible in Fig. 5 - low right
panel, between 18:00 and 24:00, where the OBELISC oscillator network dynam-
ics performs smoother but worst in optimizing the time loss, whereas the Robust
OBELISC (i.e. dynamics containing the sliding mode regularization) improves
the time loss with the price of high-frequency low-amplitude oscillations.

3 Experiments and Results

The experiments and evaluation use the SUMMER-MUSTARD (Summer sea-
son Multi-cross Urban Signalized Traffic Aggregated Region Dataset) real-world
dataset, which contains 59 d of real urban road traffic data from 8 crosses in a city
in China4. The road network layout underlying is depicted in Fig. 4 a. In order
to perform experiments and evaluate the system, we used the real-world traffic
flows in the Simulator for Urban Mobility (SUMO) [11]. This realistic vehicular
simulator generates routes, vehicles, and traffic light signals that reproduce the
real car flows in the dataset.

In our experiments, we comparatively evaluated the adaptive behavior of
OBELISC and relevant state-of-the-art approaches, against the static traffic
4 We release the SUMMER-MUSTARD real-world dataset used in OBELISC experi-

ments at: http://doi.org/10.5281/zenodo.5025264.

http://doi.org/10.5281/zenodo.5025264

OBELISC 447

planning (i.e. police parametrized phases), used as baseline. We performed
an extensive battery of experiments starting from the real-world traffic flows
recorded over the 8 crosses in the SUMMER-MUSTARD dataset. In order to
evaluate the adaptation capabilities, we systematically introduced progressive
magnitude disruptions over the initial 59 d of traffic flow data. Disruptions, such
as accidents and adverse weather determine a decrease in the velocity which
might create jams. Additionally, special activities such as sport events or begin-
ning/end of holidays increase the flow magnitude. Such degenerated traffic con-
ditions might happen due to non-recurrent events such as accidents, adverse
weather or special events, such as football matches. Using the real-world flow
and SUMO, we reproduce the traffic flow behavior when disruption occurs start-
ing from normal traffic flow data by reflecting the disruption effect on vehicles
speed and/or network capacity and demand. We sweep the disruption magnitude
from normal traffic up to 5 levels of disruption reflected over all the 8 crosses
over the entire day.

The evaluated systems are the following:

– BASELINE - is a optimized static traffic planning that uses pre-stored timing
plans computed offline using historic data in the real-world.

– MILP - a Mixed-Integer Linear Programming phase plan optimization imple-
mentation inspired from [14].

– OSCILLATOR - A basic implementation of a network of Kuramoto oscillators
[15] for each direction in the road network cross.

– OBELISC - uses the core Kuramoto oscillator model from [15] and consid-
ers an external reference for cycle time F , flow modulation k, and a spatial
topology weight A. We used two implementations, one using an underlying
ODE solver (OBELISC ODE) and the second one using NEF spiking neural
networks (OBELISC NEF).

– Robust OBELISC - extends the basic OBELISC with the regularizing sliding
mode control law u. The Robust OBELISC, similar to OBELISC, has two
versions, Robust OBELISC ODE and Robust OBELISC NEF, respectively.

Evaluation of the Phase Calculation Accuracy. For the evaluation of the
different approaches for phase duration computation (i.e. BASELINE, MILP,
OSCILLATOR, OBELISC, and Robust OBELISC), we followed the next proce-
dure:

– Read relevant data from simulation experiment (without disruptions and with
5 levels of progressive disruptions) for each of the systems.

– Compute relevant traffic aggregation metrics (i.e. average time loss, average
speed, and average waiting time).

– Rank experiments depending on performance.
– Perform statistical tests (i.e. a combination of omnibus ANOVA and posthoc

pairwise T-test with a significance p = 0.05) and adjust ranking depending
on significance.

– Evaluate best algorithms depending on ranking for subsets of relevant metrics
(i.e. the metrics with significant difference).

448 C. Axenie et al.

Table 1. Performance evaluation for the different phase duration calculation methods.

System/Disruption level Normal flow 1.1 1.2 1.3 1.4 1.5

Average time loss(s)

BASELINE 102.535 114.600 136.229 241.383 197.399 202.113

MILP 151.281 153.781 203.301 309.671 223.017 257.464

OSCILLATOR 131.468 161.871 203.301 309.671 199.797 497.124

OBELISC (ODE) 131.825 270.167 131.077 151.281 309.671 134.257

OBELISC (NEF) 135.355 155.782 153.524 200.265 199.357 216.919

Robust OBELISC (ODE) 133.524 143.904 147.524 153.524 200.265 220.008

Robust OBELISC (NEF) 85.726 88.326 89.726 84.165 89.889 84.291

Average speed*

BASELINE 5.81 5.67 5.46 5.02 4.94 4.75

MILP 5.97 5.87 5.46 5.03 4.92 4.61

OSCILLATOR 5.94 5.81 5.46 5.02 5.29 4.54

OBELISC (ODE) 5.97 4.75 5.14 5.22 5.04 5.11

OBELISC (NEF) 5.89 5.91 5.90 5.29 5.31 5.10

Robust OBELISC (ODE) 5.98 5.91 5.80 5.97 5.30 5.04

Robust OBELISC (NEF) 5.98 5.97 5.94 5.18 5.07 5.15

Waiting time(s)

BASELINE 164.5 185.3 222.8 294.5 325.9 351.3

MILP 148.7 148.7 212.8 234.5 293.2 372.9

OSCILLATOR 115.7 142.2 215.8 286.5 208.5 418.3

OBELISC (ODE) 160.3 351.3 158.7 148.7 294.5 161.2

OBELISC (NEF) 137.1 137.6 139.4 216.0 204.2 236.3

Robust OBELISC (ODE) 139.4 141.4 149.4 169.8 216.8 252.5

Robust OBELISC (NEF) 128.7 145.7 148.8 159.2 162.4 158.7

∗ Average speed calculated as the ratio between distance traveled and time of travel.

Our evaluation results are given in Table 1 where each of the approaches is ranked
across the disruption magnitude scale (no disruption to maximum disruption)
over the specific metrics (i.e. average time loss, and average speed, and waiting
time, respectively). For flow magnitude disruptions, the level of disruption (i.e.
1.1 ... 1.5) is a factor used to adjust the number of vehicles or the speed of
vehicles (i.e. for adverse weather) during the disruption. The evaluation was
performed on the entire dataset containing recorded traffic flows over 59 d from
8 crosses. The exhaustive experiments and evaluation in Table 1 demonstrate
where our approach excels and where it fails to provide the best phase duration
calculation. The chosen evaluation metrics reflect the overall performance (i.e.
over multiple days) with respect to the most significant traffic metrics given the
phase duration value computed by each of the systems.

The previous analysis is supported by the normalized ranking over the entire
SUMMER-MUSTARD dataset in Fig. 6, where we provide a condensed visual
representation of each system’s performance. Here, we can see that if we con-
sider the average time loss the BASELINE performs worst due to its pre-defined

OBELISC 449

timings and inability to adapt to unexpected disruptions during the daily traf-
fic profile. At the other end of the ranking, both implementations of Robust
OBELISC provide minimal waiting time capturing the fast and steep changes in
the disrupted flows. Due to their similar core modelling and dynamics, OBELISC
systems and OSCILLATOR tend to provide similar performance, with a rela-
tive improvement on the OBELISC side in terms of duration, waiting time, and
speed metrics. This is due to its spatio-temporal extension beyond the basic
oscillator model that can capture also the spatial contributions of adjacent flows
beyond their temporal regularities when computing the phase duration. Look-
ing at the various implementations of OBELISC, from the computational point
of view, the NEF spiking neural networks excel in performance over the ODE
versions due to their inherent learning and adaptation capabilities coupled with
the distributed representations when solving the dynamics. Finally, the Robust
OBELISC system provides overall superior performance through its discontin-
uous sliding mode control law that captures the deviation of the dynamics in
the presence of disruptions and compensates robustly for their impact on the
oscillator convergence (see Fig. 5).

Fig. 6. Phase Duration Calculation System Ranking on All Metrics and Entire Dataset
(8 crosses over 59 d).

Evaluation of the Run-Time. In terms of run-time, the adaptive methods
provide different levels of performance, mainly due to the modelling and opti-
mization types they use. The BASELINE is excluded as it is just the static
optimized plans allocation for the real traffic setting in SUMMER-MUSTARD,
basically, a simple value recall from a look-up-table. We measured the time
needed by each of the evaluated adaptive systems to provide a phase duration
estimate after a sensory sample (i.e. one sensory reading of traffic flow data).
As mentioned, each system uses a different computational approach: the MILP
uses a solver that implements an LP-based branch-and-bound algorithm, the
OSCILLATOR uses a Runge-Kutta 45 ODE solver, whereas OBELISC can be
implemented using Runge-Kutta 45 ODE solver or connected populations of
NEF spiking neural networks. The evaluation is given in Table 2 where the aver-
age value over the entire range of traffic conditions (normal and disruptions) is
considered. The experimental setup for our experiments used 3 machines, each
with 24 CPU cores and 132 GB RAM, and Apache Flink for stream processing

450 C. Axenie et al.

Table 2. Adaptive phase duration calculation run-time evaluation.

Model Single cross Region (8 crosses)

MILP 0.0510 0.3930

OSCILLATOR 0.0568 0.4544

Robust OBELISC ODE 0.0489 0.4534

Robust OBELISC NEF 0.0071 0.0426

and cluster management. As expected, at the level of a single intersection opti-
mization, ODE solver approaches (i.e. MILP, OSCILLATOR, and OBELISC
(ODE)) lie in the same range, providing a new phase duration value after 50
ms. At the region level, considering all 8 crosses, the run-time increases with an
order of magnitude, with MILP overtaking the OSCILLATOR and OBELISC
(ODE) due to MILP’s constraint optimization efficiency at scale and the similar
computations of OSCILLATOR and OBELISC (ODE). The fastest approach,
both as single cross and regions level, is the NEF neural implementation of
OBELISC. With more than 80% run-time improvement both at single cross-
level and regional-level, OBELISC (NEF) excels due to its efficient computation
and learning substrate.

4 Discussion

Traditionally, phase duration optimization for coordinated traffic signals is based
on average travel times between intersections and average traffic volumes at each
intersection.

Modelling. Our study introduces an end-to-end modelling, control, and learn-
ing system for road traffic phase duration optimization applicable to any road
traffic layout, scale, and architecture (i.e. number of lanes per direction etc.).
More precisely, using an oscillator-based model [15] of the traffic flow dynamics
in large signalized road networks, the system exploits the periodic nature of the
traffic signal circular phasing similar to [1,5] - termed OSCILLATOR in our
experiments. OBELISC goes beyond OSCILLATOR by considering a weighted
external perturbation (e.g. cycle time reference weight F), flow modulation k,
and a spatial topology weight A. Such a modelling approach adapts to unpre-
dictable disruptions in traffic flows (e.g. accidents, re-routing, adverse weather
conditions) up to a certain extent, where the dynamics of the disruption doesn’t
perturb the self-organization of the coupled oscillators.

Robust Control. In reality, the “steep derivatives” of traffic flows do not allow
OBELISC and OSCILLATOR to converge to the best phase duration value. In
order to achieve high performance (i.e. minimizing metrics such as time loss or
maximizing average speed), we complemented OBELISC with a sliding mode

OBELISC 451

controller. Such a robust controller “pushes” the perturbed dynamics under
disruptions towards a dynamics that “drive” the coupled oscillators network
towards the optimal phase. This way, the Robust OBELISC system is capable
to solve local and global traffic dynamics by exploiting the coupling among dif-
ferent oscillators describing traffic periodicity under disruptions. The proposed
system in [14] - termed MILP in our experiments - used exact mathematical
programming techniques (i.e. mixed-integer linear programming) for optimizing
the control of traffic signals and has shown only limited adaptation capabilities.

Computation and Learning. Under real-world constraints of traffic control,
OBELISC and Robust OBELISC cannot be implemented by simply integrating
ODEs. To alleviate the typical convergence, stability, and robustness problems
of ODE integration, we implemented OBELISC in efficient spiking neural net-
works using NEF. Basically, using distributed representations of traffic flow data,
learning arbitrary functions from the data, and “compiling” the ODEs in neural
populations, we gained efficient and flexible implementations of OBELISC (i.e.
OBELISC NEF and Robust OBELISC NEF). Such a choice provided a clear
advantage over the MILP implementation of [14] which formulated phase opti-
mization into a continuous optimization problem without integer variables by
modeling traffic flow as sinusoidal. The system solved a convex relaxation of
the non-convex problem using a tree decomposition reduction and randomized
rounding to recover a near-global solution. Given the complexity in expressing
the system dynamics MILP performed well in simulations, yet the capability to
adapt to sudden changes in the traffic situation are lacking (see the ranking in
time loss, speed and waiting time in Fig. 6).

5 Conclusions

Traffic control is a multi-dimensional problem to be optimized under deep uncer-
tainty. Modelling traffic dynamics is fundamental for traffic control. Aiming at
capturing the periodic nature of traffic, we propose OBELISC, a system using
a network of oscillators capturing the spatial and temporal interactions among
different crosses in a traffic network. In order to adaptively cope with unexpected
traffic flow disruptions OBELISC is extended with a sliding mode controller that
strengthens its adaptation capabilities towards global consensus under high-
magnitude disruptions. The system is implemented as a lightweight learning
system that exploits the coupling interactions among different controlled oscil-
lators. Our extensive evaluation of the system on real-world data and against
state-of-the-art methods, demonstrates the advantages OBELISC brings. From
capturing the periodic dynamics of traffic phasing, to embedding the spatial
correlation among traffic flow along its temporal dimensions, and up to robustly
adapting to unexpected traffic disruptions, OBELISC stands out as a flexible
solution for phase duration calculation. Finally, benefiting from efficient learn-
ing and computation in spiking neural networks, OBELISC is a strong candidate
for actual real-world deployment.

452 C. Axenie et al.

References

1. Akbas, A., Ergun, M.: Dynamic traffic signal control using a nonlinear coupled
oscillators approach. Can. J. Civ. Eng. 32(2), 430–441 (2005)

2. Chedjou, J.C., Kyamakya, K.: A review of traffic light control systems and intro-
duction of a control concept based on coupled nonlinear oscillators. In: Kyamakya,
K., Mathis, W., Stoop, R., Chedjou, J.C., Li, Z. (eds.) Recent Advances in Nonlin-
ear Dynamics and Synchronization. SSDC, vol. 109, pp. 113–149. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-58996-1 6

3. Day, C.M., Bullock, D.M.: Optimization of traffic signal offsets with high resolution
event data. J. Transp. Eng. Part A Syst. 146(3), 04019076 (2020)

4. Eliasmith, C., Anderson, C.H.: Neural Engineering: Computation, Representation,
and Dynamics in Neurobiological Systems. MIT press, Cambridge (2003)

5. Fang, F., Xu, W., Lin, K., Alam, F., Potgieter, J.: Matsuoka neuronal oscillator
for traffic signal control using agent-based simulation. Procedia Comput. Sci. 19,
389–395 (2013)

6. GmbH, S.W.: LISA+ traffic-planning software lisa (2021). https://www.
schlothauer.de/en/references/

7. Henry, J.J., Farges, J.L., Tuffal, J.: The prodyn real time traffic algorithm. In:
Control in Transportation Systems, pp. 305–310. Elsevier (1984)

8. Hu, H., Liu, H.X.: Arterial offset optimization using archived high-resolution traffic
signal data. Transp. Res. Part C Emerg. Technol. 37, 131–144 (2013)

9. Hunt, P., Robertson, D., Bretherton, R., Royle, M.C.: The scoot on-line traffic
signal optimisation technique. Traffic Eng. Control 23(4) (1982)

10. Kuramoto, F., Nishikawa, I.: Onset of collective rhythms in large populations of
coupled oscillators. In: Takayama, H. (eds.) Cooperative Dynamics in Complex
Physical Systems. Springer Series in Synergetics, vol. 43, pp. 300–306. Springer,
Berlin, Heidelberg (1989). https://doi.org/10.1007/978-3-642-74554-6 76

11. Lopez, P.A., et al.: Microscopic traffic simulation using sumo. In: The 21st IEEE
International Conference on Intelligent Transportation Systems. IEEE (2018).
https://elib.dlr.de/124092/

12. Lowrie, P.: Scats, sydney co-ordinated adaptive traffic system: a traffic responsive
method of controlling urban traffic. Roads and Traffic Authority NSW, Traffic
Control Section (1990)

13. Nishikawa, I., Kuroe, Y.: Dynamics of complex-valued neural networks and its
relation to a phase oscillator system. In: Pal, N.R., Kasabov, N., Mudi, R.K.,
Pal, S., Parui, S.K. (eds.) ICONIP 2004. LNCS, vol. 3316, pp. 122–129. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-30499-9 18

14. Ouyang, Y., et al.: Large-scale traffic signal offset optimization. IEEE Trans. Con-
trol Netw. Syst. 7(3), 1176–1187 (2020)

15. Strogatz, S.H.: From Kuramoto to Crawford: exploring the onset of synchronization
in populations of coupled oscillators. Phys. D Nonlinear Phenom. 143(1–4), 1–20
(2000)

16. Utkin, V.I.: Sliding mode control: mathematical tools, design and applications.
In: Nistri, P., Stefani, G. (eds.) Nonlinear and Optimal Control Theory. Lecture
Notes in Mathematics, vol. 1932, pp. 289–347. Springer, Berlin, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-77653-6 5

17. van Wageningen-Kessels, F., Van Lint, H., Vuik, K., Hoogendoorn, S.: Genealogy
of traffic flow models. EURO J. Transp. Logist. 4(4), 445–473 (2015)

https://doi.org/10.1007/978-3-319-58996-1_6
https://www.schlothauer.de/en/references/
https://www.schlothauer.de/en/references/
https://doi.org/10.1007/978-3-642-74554-6_76
https://elib.dlr.de/124092/
https://doi.org/10.1007/978-3-540-30499-9_18
https://doi.org/10.1007/978-3-540-77653-6_5

VAMBC: A Variational Approach
for Mobility Behavior Clustering

Mingxuan Yue(B), Yao-Yi Chiang, and Cyrus Shahabi

University of Southern California, Los Angeles, USA
{mingxuay,yaoyic,shahabi}@usc.edu

Abstract. Many domains including policymaking, urban design, and
geospatial intelligence benefit from understanding people’s mobility
behaviors (e.g., work commute, shopping), which can be achieved by
clustering massive trajectories using the geo-context around the visiting
locations (e.g., sequence of vectors, each describing the geographic envi-
ronment near a visited location). However, existing clustering approaches
on sequential data are not effective for clustering these context sequences
based on the contexts’ transition patterns. They either rely on traditional
pre-defined similarities for specific application requirements or utilize a
two-phase autoencoder-based deep learning process, which is not robust
to training variations. Thus, we propose a variational approach named
VAMBC for clustering context sequences that simultaneously learns the
self-supervision and cluster assignments in a single phase to infer moving
behaviors from context transitions in trajectories. Our experiments show
that VAMBC significantly outperforms the state-of-the-art approaches in
robustness and accuracy of clustering mobility behaviors in trajectories.

1 Introduction

Mobility behavior (of a trajectory) refers to the travel activity that describes a
user’s movements regardless of the spatial and temporal coverage of the move-
ments. For example, the work-to-home commute is one such mobility behav-
ior that is a sequence of visiting locations between one’s home and working
location. Understanding mobility behaviors has enormous values ranging from
location recommendations, geo-advertisements to urban planning, public health,
transportation policies and economic studies [7,17,36]. For example, in target
advertising, a gas station owner can infer that the major mobility behavior of
trajectories passing through their gas station is work commute, thus deciding to
display financial ads on weekdays. For public health during a pandemic, policy-
makers could make a better decision on what types of businesses should be closed
to reduce mobility more effectively in different neighborhoods. For instance, they
may decide to close restaurants/pubs in a neighborhood where the majority of
mobility behavior is for entertainment but not in a neighborhood where the main
mobility behavior is for work commute. The former closure impacts entertain-
ment but the latter will impact work. For economic studies, by labeling work

c© Springer Nature Switzerland AG 2021
Y. Dong et al. (Eds.): ECML PKDD 2021, LNAI 12978, pp. 453–469, 2021.
https://doi.org/10.1007/978-3-030-86514-6_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86514-6_28&domain=pdf
https://doi.org/10.1007/978-3-030-86514-6_28

454 M. Yue et al.

commutes, we can estimate the amount of jobs, or the amount of working peo-
ple in the neighborhoods of a city. For transportation studies, when repairing
(or constructing a new) bridge or a freeway segment, policymakers could better
determine the dates and times for construction by considering the major mobility
behavior passing through the area (e.g., weekend closure vs. weekdays).

Inferring the mobility behavior directly from a trajectory is difficult since the
raw coordinates do not provide useful information about the surrounding envi-
ronment of the visited locations. Instead, one promising approach is to first gen-
erate a “context sequence” for each trajectory from nearby geographic entities,
e.g., Points-Of-Interest (POIs), and then infer mobility behaviors by clustering
context sequences from large numbers of trajectories based on the context tran-
sitions (e.g., [35]). Here, a context sequence is an ordered list of real-value feature
vectors, each describing the “context” of a visited location (e.g., sports, shopping,
or dining venues) in a trajectory. Clustering context sequences based on their
transition patterns (similar dependencies across different dimensions and posi-
tions in the sequences) is challenging. For example, a transition in the context
sequence can be: rest (a place surrounded by many residential POIs)→ shopping
(a place surrounded by many restaurants, theaters, and malls) → dating (a place
surrounded by many scenic POIs). Such transitions are usually driven by the tra-
jectory data and vary from one dataset to another. However, traditional time
series clustering approaches are usually based on pre-defined similarity and align-
ments between sub-sequences and shapes [10,26,27]. Other typical sequence clus-
tering approaches only handle discrete variables (e.g., [18,31,38]). Autoencoder-
based clustering approaches using Recurrent Neural Networks (RNN) can con-
vert sequences of real-value feature vectors into a fixed-length vector for cluster-
ing the dynamics in the sequences using a two-phase training process [23,35]).
The first phase learns an initial representation by self-supervision (i.e., recon-
struction), and the second phase improves the representation and clustering
performance by optimizing a customized clustering objective. However, the first
phase’s self-supervision objective highly depends on the initial parameters and
could lead to a poor initial feature representation (i.e., irrelevant to the clus-
tering objective), which cannot be refined in the second phase to improve the
clustering performance. Consequently, clustering accuracy cannot be guaranteed
across training variations [25].

This paper presents a novel Variational Approach for Mobility Behavior Clus-
tering (VAMBC) that can robustly handle sequences of context vectors in a sin-
gle training phase. VAMBC assumes the pre-existence of clusters in the latent
space and jointly learns the hidden representation and cluster formation in an
end-to-end process. Though variational clustering approaches are recently well
developed for image data [11,13,20,29], directly applying them to variable-length
sequential data requires an RNN decoder, which is sensitive to small changes in
the latent space [4], resulting in poor clustering accuracy and robustness. The
main problem originates from having minimum involvement of cluster assign-
ments when constructing the latent space from the input sequences. Hence, the
model would generate poor clustering results like having only one or a few large

VAMBC: A Variational Approach for Mobility Behavior Clustering 455

clusters, leaving many clusters empty (called the “empty cluster” problem in
the rest of the paper) or several similar clusters (called “trivial solution”). To
address these challenges, VAMBC explicitly constructs two representations: one
captures the unique information of a context sequence, and the other one cap-
tures the shared information within a cluster. We call the former the individual-
ized latent embedding and the latter the cluster latent embedding. VAMBC makes
the cluster latent embedding available to the cluster members during reconstruc-
tion and explicitly uses the embedding in constructing the latent space so that
the final latent embedding is aware of the cluster assignments. VAMBC also
encourages the cluster assignment to be flexible at early stages and become well
separated as the model is trained adequately. Therefore, the model has suffi-
cient involvement of the cluster membership in creating the embeddings and can
avoid producing poor clustering results. We compare our approach with many
baseline approaches, and the experimental results on real-world data show that
VAMBC achieves a better clustering accuracy and robustness than all baselines.

The remainder of the paper is organized as follows. In Sect. 2, we review the
related work. After introducing preliminaries in Sect. 3, we propose our model
VAMBC in Sect. 4. Section 5 describes our experiments on real-world data and
discussion of the ablation analysis followed by our conclusion in Sect. 6.

2 Related Work

Classical time series clustering approaches are widely developed for sequences
indexed by regular time intervals, such as electrocardiogram (ECG) data.
Researchers proposed various distance/similarity measurements (e.g., maximize
the alignment) for time series and developed the corresponding clustering tech-
niques (e.g., [10,26,27]). However, these pre-defined similarities designed for
matching or aligning time series do not apply for context sequences on clustering
the transition and dependencies. Researchers also study clustering other types
of sequences like RNA and protein sequences [38], short text sequences [31,34],
event and action sequences [18,28]. In these papers, the authors proposed vari-
ous approaches using topic models, (Hidden) Markov models, graph transforma-
tions, etc. for specific problems. However, most of these approaches apply only
to sequences of discrete variables and are limited to domain-specific objectives.

Recently deep-learning-based clustering approaches are widely investigated.
One major group of these studies are based on various autoencoders and clus-
tering neural network layers [16,23,32,35]. A few approaches in this group are
designed for sequential data, such as [23,35], by using RNN layers for sequence
modeling. However, these autoencoder-based approaches usually employ a two-
phase training. The two-phase training performance highly relies on the result of
its first phase (self-supervision), which does not always align with the clustering
objective thus is not robust to training variations.

On the other hand, recent variational approaches can jointly learn the self-
supervision and clustering structure from the beginning using various variational
assumptions about the hidden space. For example, Dupont [13] proposed to use

456 M. Yue et al.

both a continuous latent space and a discrete latent space and concatenate the
layers for reconstruction. Dilokthanakul et al. [11], Jiang et al. [20] and Rui
et al. [29] proposed variational autoencoder models with a Gaussian Mixture
assumption in the latent space for capturing the manifolds. However, most of
these approaches studied image data, and it would bring more challenges men-
tioned in Sect. 1 when applying those to variable-length feature sequences that
we study. In contrast, our proposed VAMBC approach explicitly solves the prob-
lems and produces robust and accurate clustering on the context sequences.

3 Preprocessing and Problem Definition

In this paper, we consider the mobility behavior clustering problem proposed
in [35]. The goal is to cluster trajectories into groups that have similar mobility
behaviors. Since raw trajectory data have various temporal and spatial scales and
do not have any contextual information, we prepare our input data by applying
the preprocessing steps in [35].

Here we briefly summarize the preprocessing procedure that transforms the
raw trajectories into context sequences. Figure 1 shows the procedure of the
preprocessing. First, the Stay Point Detection (SPD) step will extract important
stay points (large colored points) from a raw trajectory (small grey points). Then
the POIs (small colored points) surrounding each stay point will be grouped,
counted, and transformed into context vectors (stacked squares at the bottom).
The goal is to cluster these sequences of context vectors into different groups
that have a similar transition of visit patterns. Formally, in the remainder of
this paper, we study the following problem: Given a set of context sequences
X = {xi} where xi = {�xi,1, �xi,2, . . . , �xi,Li

} is a variant-length sequence (i.e.,
Li is the length of sequence xi and is not fixed) of POI context vectors repre-
sented by �xi,l ∈ R

D (where D is the number of POI types). Each element of
the vector represents the likelihood of visiting the corresponding POI type (e.g.,
residence). The goal is to cluster the set of sequences X into K (a predefined
hyper-parameter) groups, s.t., within each group the sequences are of similar
context transitions.

4 The VAMBCModel

This section introduces our model VAMBC. Specifically, we first introduce our
novel idea of decomposing the hidden variables to improve the involvement of
cluster hidden variable y. Then we explain the derived training objectives with
well-designed layers of the model and discuss their roles. Finally, we describe
the network structure of VAMBC followed by a discussion comparing the mech-
anisms of VAMBC and other variational models for clustering.

VAMBC: A Variational Approach for Mobility Behavior Clustering 457

Different Categories of POIs
Raw Trajectory
Stay Points

Fig. 1. Preprocess the raw trajectories

4.1 Decomposing Hidden Variables

The goal of the variational clustering model is maximizing the likelihood of the
training data {xi}N

i=1 while learning a parametric latent embedding zi represent-
ing the hidden information of each input sequence xi and a latent variable yi

describing the cluster membership (i.e., the mobility behavior). In the following
paragraphs, we hide the subscript i for simplicity.

To increase the involvement of cluster assignments (i.e., y) in constructing
the latent embedding z, we decompose the hidden variable z into two indepen-
dent parts: cluster latent information (zc) and individualized latent information
(zb). Intuitively, each input can be represented using its cluster information (the
cluster center) plus its individual (bias) information (the relative position to the
cluster center). The cluster latent information is modeled as variable zc that
fully depends on the discrete variable y and, s.t., zc is a learnable deterministic
mapping from y, zc = fc(y). Since the cluster latent information summarizes the
latent characteristics of a cluster, we explicitly let zc be the center of the cluster in
the latent space that could be shared across x within individual clusters. In other
words, for a given cluster k, E(Zk) is the expectation of Zk = {zi|xi ∈ cluster k},
s.t., E(Zk) = zc

(y=k) = fc(yk). We model the individualized latent representation
as a continuous variable zb that describes the bias to the cluster center, s.t., the
distribution of zb centers at 0 (E(zb) = 0). The overall latent representation z is
modeled as the summation of the cluster latent representation and the individ-
ualized latent representation, i.e., z = zc + zb. In this way, the hidden space z
still preserves the Gaussian-Mixture structure but can also be decomposed into
two embeddings which can be supervised separately. Specifically, the generative
process can be described in Eq. (1).

458 M. Yue et al.

y ∼ Cat(1/K), zc = f(y;W) (1)

zb ∼ N (0, I)

z = zc + zb

x ∼ N (μx(g(z; θ)), σ2
x(g(z; θ))I)

In Eq. (1), y is a discrete variable that follows a categorical prior (denoted by
Cat(·)) and K is the predefined number of clusters. f is a deterministic function
(implemented by a neural layer parameterized by W) of y that maps each cluster
to a vector zc. zb is a continuous variable following a Gaussian prior N (0, I) and
represents the individualized embedding. g(z; θ) denotes a neural network that
decodes z to the input space parameterized by θ. μx(g(z; θ)) denotes the mean of
the Gaussian likelihood distribution of x condition on z. We set σx(g(z; θ)) = 1
which reduces the log likelihood to mean squared error following the common
practice of VAE. We use q(y, z|x) to approximate the posterior of p(x, y, z). The
problem can be reduced to maximizing the log-Evidence Lower Bound (ELBO).
We refer the reader to [12,21] for a detailed explanation of the derivation of
ELBO. Thus the objective is minimizing the negative ELBO written as in Eq. (2).

−LELBO = −Ey,z∼q(y,z|x) log
p(x, y, z)
q(y, z|x)

(2)

According to the proposed generative process, we can substitute p(z) =
p(zb)p(zc), p(x, y, z) = p(y)p(zb)p(zc|y)p(x|y, z), q(y, z|x) = q(y|x)q(zb|x)q(zc|y)
into the ELBO. By ignoring q(zc|y) because it is deterministic, we can break
down Eq. (2) and rewrite the (negative) ELBO as in Eq. (3).

−LELBO (3)

= −Ey,z∼q(y,z|x)(log
p(y)

q(y|x)
+ log

p(zb)
q(zb|x)

+ log p(x|y, z))

= DKL(q(y|x)||p(y)) + DKL(q(zb|x)||p(zb))

− Ey∼q(y|x),zb∼q(zb|x),zc=f(y;W) log p(x|y, zb, zc)

4.2 Training Objectives and Neural Layers

Now we expand all the Right-Hand-Side (RHS) terms in Eq. (3) and formulate
the objectives.

The first RHS term DKL(q(y|x)||p(y)) describes the KL distance between the
posterior estimate q(y|x) and its prior p(y). Since the prior p(y) ∼ Cat(1/K) is
a categorical distribution, we can expand this term as below.

DKL(q(y|x)||p(y)) =
∑

y

q(y|x) log(q(y|x) · K)

= − Entropy(y) + log(K), y ∼ q(y|x)

VAMBC: A Variational Approach for Mobility Behavior Clustering 459

The first RHS term turns out to be the negative entropy of y, where y ∼ q(y|x)
(the constant log(K) could be omitted). Intuitively, a small negative entropy
indicates high randomness in y ∼ q(y|x), and a large negative entropy value indi-
cates less randomness in y ∼ q(y|x). Minimizing the negative entropy could pre-
vent the prediction of cluster probability q(y|x) from being “overly-confident”,
i.e., always assigning the input to one cluster aggressively (output 0.99 as the
probability of assignment). Therefore, the negative entropy term can prevent the
model from having a result of empty clusters.

The posterior probability q(y|x) is estimated using a Softmax activation after
the encoder network. To enable sharing of cluster information, we need to sample
the discrete variable y from q(y|x), for which we employ the Gumbel-Softmax
layer. Gumbel-Softmax can sample a pseudo one-hot vector (a real-value vector
that is very similar to a one-hot vector) and propagates the parameter gradients
backward to the previous Softmax layer [19]. Thus the output will be almost
discrete (e.g., (1,0,0,0)) and multiple input sequences could share the same choice
of y and hence the same cluster embedding zc (e.g., zc

i = zc
j = fc(yk) if xi and

xj are both assigned to cluster k). In addition, Gumbel-Softmax is different
from an Argmax operation on q(y|x), which always chooses the cluster with the
largest probability. Specifically, Gumbel-Softmax introduces randomness when
sampling y according to the probability q(y|x), so an input x assigned to cluster
k1 could “jump” to a different cluster k2 in the next round if the likelihood of
k2 is similar to k1. This avoids x being always assigned to the same cluster that
is initially predicted.

x
LSTM
cell

LSTM
cell

LSTM
cell

Encoder
h q(y|x) GumbelS

oftmax y
FC

zb

zc

FC

z
LSTM
cell

LSTM
cell

LSTM
cell

Decoder

LSTM
cell

LSTM
cell

LSTM
cell

Decoder

Share

xc

x’

FC
Gaussian
Reparameterization

Fig. 2. VAMBC network structure.

The second RHS term DKL(q(zb|x)||p(zb)) measures the Kullback–Leibler
(KL) distance between the posterior q(zb|x) of the individualized latent embed-
ding zb and its prior p(zb) = N(0, I). Here we assume q(zb|x) is a Gaussian
distribution with a learnable mean z̄b and a constant variance following the
constant-variance VAE (CV-VAE) which sacrifices a little capacity for robust-
ness and mitigate the sensitivity in the decoder following [2,15]. Therefore, the
KL term can be rewritten into the following form:

DKL(q(zb|x)||p(zb)) = ||z̄b||22 + constant (4)

460 M. Yue et al.

The last RHS term −Ey∼q(y|x),zb∼q(zb|x),zc=f(y;W) log p(x|y, zb, zc), is the
negative log likelihood of the observation x. Following the common practice
of VAE, we can rewrite it to the mean square error (MSE) between the input
data x and the reconstruction x′.

− Ey∼q(y|x),zb∼q(zb|x),zc=f(y;W) log p(x|y, zb, zc)

= MSE(x, x′)

In addition to the terms in LELBO, we introduce a center loss regularizer
Lcenter = ||x − xc||22. Here xc is a sequence of the same dimension with input
x (after padding), and is decoded from the center embedding zc. The center
loss could prevent the model from overly relying on the individualized embed-
ding. Specifically, it generates a center sequence xc from the cluster embedding
zc and minimizes the distance between xc with all x assigned to this cluster.
Therefore, the cluster embedding zc is learned to be expressive to generate a
sequence xc similar to the sequences in the cluster. And Lcenter also improves
the compactness and discrimination of clusters in the embedding space.

Finally, we can write the loss function of VAMBC in Eq. (5).

L = MSE(x, x′) + ||zb||22 − entropy(y) + ||x − xc||22
= Lrecon + LKL + LNE + Lcenter (5)

4.3 Network Design

Based on the loss function, we design our network structure by modeling the
probabilities q(y|x), q(zb|x), p(x|y, zb, zc) with neural layers. Figure 2 shows our
network structure. On the left side, we use (stacked) LSTM (Long Short-Term
Memory, an advanced RNN) layers and Fully Connected (FC) layers with the
softmax and nonlinear activation to model the posterior q(y|x), q(zb|x). Then in
the middle of the network, the discrete variable y is sampled through a Gumbel-
Softmax layer and mapped to the cluster embedding zc. The continuous indi-
vidualized embedding zb is sampled via the Guassian reparameterization [21].
After obtaining zc and zb, the embedding z of input x is computed by adding
zc and zb in the addition layer denoted by

⊕
. Finally, on the right side of the

network, LSTM layers (decoder) are used to decode the hidden embedding z
into a reconstructed sequence, x′. The shared decoder also generates the cluster
sequence xc from zc for computing the center loss.

As explained in Sect. 4.2, the network is supervised by the RHS terms to
balance the self-supervision and clustering structure. The network also employs
the Gumbel-Softmax and center loss to prevent early/local convergence and
preserve the involvement of cluster memberships.

4.4 Relationship to VAE and Gaussian-Mixture VAE

Here we briefly describe the basic concepts of the Variational AutoEncoder
(VAE), its extension to the clustering scenario and the differences between

VAMBC: A Variational Approach for Mobility Behavior Clustering 461

VAMBC and the existing MoG-based VAEs. The goal of VAE is to learn a para-
metric latent embedding z and a generative model to maximize the marginal
likelihood of the training data {xi}N

i=1. Its objective in Eq. (6) is derived by
approximating the intractable posterior pθ(z|x) with qφ(z|x) and maximizing
the ELBO. In general, the ELBO includes two terms, one for the reconstruction
and the other for regularizing the hidden space to a Gaussian prior.

LVAE = Ep̂(x)[Eqφ(z|x)[−log(pθ(x|z)] + DKL(qφ(z|x)||p(z))] (6)

For clustering purposes, the VAE can be extended to learn the clustering
priors [3] driven by the data. The Gaussian prior in the hidden layer of VAE,
p(z) = N (0, 1), in this case, is replaced with the Mixtures of Gaussians (MoG)
such as in [11,20,29]. The generative process could be described in Eq. (7).
Here y is a discrete hidden variable representing the cluster assignments, and z
is a continuous hidden variable that x is mapped to/conditional on. K is the
predefined number of clusters and Cat(.) is the categorical distribution.

y ∼ Cat(1/K), z ∼ N (μy, σ2
yI) (7)

x ∼ N (μx(z), σ2
x(z)I)

The objective in Eq. (6) is then rewritten as:

LVAEGM
=Ep̂(x)[Eqφ(z,y|x)[−log(pθ(x|z)] (8)

+ DKL(qφ(z, y|x)||p(z, y))]

However when we use RNN to encode and decode the variant-length context
sequences (e.g., for learning the transition patterns of context vectors), the model
above would fall into local optimum and produce undesired clustering results.
Specifically, when applying the variational models to sensitive decoders, such as
RNNs, for sequence modeling, the model might initially learn to ignore the hid-
den variable z or y and go after the low hanging fruit, producing a decoder that
is easy to optimize [4]. Ignoring y could collapse the joint probability qφ(z, y|x)
to qφ(z, y = 1|x) by assigning all data to one cluster y = 1 in the extreme case.
This would cause the problem of empty clusters. It is also possible to learn a triv-
ial parameterization for p(z, c) to collapse to p(z) = N(0, 1) by generating the
same Gaussian components in the MoG, i.e., μy=1 = μy=2 = . . . μy=K . Therefore
the model will be reduced to a general VAE without the clustering ability. The
reason causing the ignorance or the little supervision over y is that the model
requires z to include the information that can reconstruct x and to decide the
cluster assignment y from their conditional relationship. Especially when the
decoder is a sensitive RNN structure, there will not be enough capacity for z to
provide enough supervision on y. Instead, z will focus more on the reconstruction
thus makes the model inaccurate in clustering the context sequences.

On the contrary, VAMBC can avoid these problems by separating z into two
embeddings zc and zb, emphasizing on clustering and reconstruction, respec-
tively. As shown in Fig. 3, we replace the conditional dependency between z and

462 M. Yue et al.

y with a joint relationship and add self-supervision on y with a center loss with
xc. For the proposed modeling of the latent variables zc, zb and y, we carefully
derived the objectives and delicately designed networks to fulfill the assumptions
and prevent practical problems.

(a) General Gaussian Mixture VAE (b) VAMBC

Fig. 3. Compare the graphic notations of a GMVAE and VAMBC

5 Experiments

In this section, we quantitatively evaluate the clustering performance of
VAMBC by comparing it with the state-of-the-art approaches in Sect. 5.2. We
also analyze variants of VAMBC to understand the role of each component in
Sect. 5.3.

5.1 Environment and Experiment Settings

Datasets. Following [35], we utilize the GeoLife dataset [37] and DMCL
dataset [8] produced by real human trajectories for the evaluation of our pro-
posed approach. The POI information of the two datasets are from Open-
StreetMap (OSM) [14] and the PKU Open Research Data [6], respectively. The
experiments are evaluated based on the labeled moving behavior samples of
the GeoLife and DMCL datasets reported in [35]. For GeoLife, six labels were
provided as the ground-truth classes: “campus activities”, “hangouts”, “dining
activities”, “healthcare activities”, “working commutes”, “studying commutes”.
Four clusters were labeled in DMCL dataset: “studying commutes”, “residential
activities”, “campus activities”, “hangouts”.

Baseline Approaches. We compare our approaches with the state-of-the-art
clustering approaches from four categories:

– For classical time series clustering approaches, we include KM-DTW
(KMeans with Dynamic Time Warping distance) [27], KM-GAK (KMeans
with Global Assignment Kernel) [10], k-Shape [26] and DB-LCSS
(DBSCAN with Longest Common Sub-Sequence distance) [24].

VAMBC: A Variational Approach for Mobility Behavior Clustering 463

– For discrete sequence clustering approaches, we include SGT [28] and
MHMM (Mixed Hidden Marcov Model) [30]. Since they work for discrete
sequences, we transform the context sequences into discrete sequences by
mapping the real-value vectors to discrete categories via pre-clustering all
context vectors;

– For AutoEncoder based deep clustering approaches, we include DTC [23],
DETECT [35], and adapted IDEC* [16] and DCN* [32] by replacing the
encoder and decoder with LSTM layers to work with context sequences.

– For variational deep clustering approaches, we adapted GMVAE* [11,29],
VaDE* [20] and JointVAE* [13] in the same way mentioned above. Here we
also add KL Annealing [4] to GMVAE* to solve its KL vanishing problem.
The approaches adapted from image researches are marked with “*” after
their names.

Environment and Parameters. We implemented our approaches on a com-
puting node with a 36 core Intel i9 Extreme processor, 128 GB RAM and 2
RTX2080Ti / Titan RTX GPUs. We implemented the KM-DBA, KM-GAK and
kShape using tslearn1. DBSCAN clustering uses ScikitLearn2 with LCSS dis-
tance3. We set the common sequence threshold as 0.15 for LCSS, and ε = 0.03
and minPts = 18 as the neighborhood thresholds in DBSCAN. The proposed
model VAMBC was built using Keras [9] with Tensorflow [1]. The discrete
sequence clustering approach Mixed-HMM was implemented using the R pack-
age seqHMM.4 The adapted baselines were revised for context sequences based
on their public code on Github.5, 6, 7 Both VAMBC and adapted baselines are
using LSTM layers with 128 units in the encoder and decoder. The dimension
of hidden variable z was set to 64.

5.2 Quantitative Analysis

Evaluation Metrics. We use three clustering metrics that are widely used
in the clustering community [16,20,23,32]: Normalized Mutual Information
(NMI) [5], Adjusted Rand Index (ARI) [33], and Clustering Accuracy (ACC) [5].
These metrics have different emphasis on evaluating the clustering quality; there-
fore, we believe a side-by-side comparison could indicate the overall clustering
performances of the models. All of the three metrics reach 1 if the clustering
result is fully consistent with ground truth. NMI and ACC have minimums of 0,
and ARI has -1 as the minimum for the worst clustering result.

Evaluation Results. We conducted the experiments ten times following the
practice in [16,20] and reported the clustering performance of the best/worst
1 https://github.com/rtavenar/tslearn.
2 https://scikit-learn.org/stable.
3 https://github.com/maikol-solis/trajectory distance.
4 https://cran.r-project.org/web/packages/seqHMM/index.html.
5 https://github.com/XifengGuo/IDEC.
6 https://github.com/sarsbug/DCN keras.
7 https://github.com/slim1017/VaDE.

https://github.com/rtavenar/tslearn
https://scikit-learn.org/stable
https://github.com/maikol-solis/trajectory_distance
https://cran.r-project.org/web/packages/seqHMM/index.html
https://github.com/XifengGuo/IDEC
https://github.com/sarsbug/DCN_keras
https://github.com/slim1017/VaDE

464 M. Yue et al.

run and the average metrics with standard deviations (the numbers after ±)
(Table 1). DB-LCSS always produces the same results, so we did not include its
standard deviation in the table. We believe the average performance is impor-
tant because in real-world use cases one would not be able to tell which run
is better without knowing the ground truth. We compare the performance of
VAMBC with the baselines in Table 1. We observe that VAMBC outperforms all
the baselines on both the worst run and the average metrics in both datasets.
In addition, the standard deviation of the metrics produced by VAMBC is
extremely low, i.e., 1/3-1/8, as compared with the baselines for GeoLife. This
result indicates VAMBC is robust and can produce accurate results regardless
of repeating training. It is interesting to see the adapted DCN got the highest
best NMI in GeoLife. But its variance across different experiments is high, and
the average NMI is not as good which means it does not guarantee it produces
a good result every time. This is because its first-phase training varies from one
time to another and does not always produce a good initial representation for
clustering.

5.3 Ablation Study

In this section, we demonstrate how different components of VAMBC work under
the hood through ablation experiments. Specifically, we create three ablated
variants of VAMBC by removing one component. We compare these variants
by looking at different measurements during their training processes. In Fig. 4,
we plot the curves of these measurements versus the training epoch. Figure 4a
shows the curves of accuracy. Figure 4b shows the curves of negative entropy and
Fig. 4c shows the curves of reconstruction errors. We plot the first 300 epochs
and discard the rest of the curves, which already converge.

Removal of Negative Entropy. The negative entropy term in the loss penal-
izes the model if the clustering prediction is overly confident. In Fig. 4a, we can
observe that the model without using negative entropy (green line) stays at a low
accuracy after some fluctuations and climbs up but fails to converge to high accu-
racy. The low accuracy period is because this variant model aggressively assigns
all data to two or three clusters and does not split more clusters. This can also
be observed in Fig. 4b that during the same period (from epoch 100 to epoch
150), the negative entropy increases sharply. Although the accuracy increases
again after this period (possibly start to split some clusters due to the random-
ness in the Gumbel-softmax component), it cannot fully escape from the over-
confidence problem. In contrast, in Fig. 4b, the curve of VAMBC also increases
but in a relatively restrained pace. This means the VAMBC becomes confident
gradually about the cluster assignment because of the restrain from negative
entropy. This way, using negative entropy in the model prevents the model from
being dominated by one or a few clusters. We can also observe this phenomenon
in Fig. 4c. The reconstruction loss of VAMBC drops relatively slowly during the
first 100 epochs to let the model working on the cluster embedding and assign-
ments. Therefore, we observe the VAMBC would eventually converge to a much

VAMBC: A Variational Approach for Mobility Behavior Clustering 465

T
a
b
le

1
.
C

lu
st

er
in

g
p
er

fo
rm

a
n
ce

co
m

p
a
ri

so
n

D
at

as
et

M
et

h
o
d

N
M

I
(a

ve
r)

N
M

I
(b

es
t)

N
M

I
(w

or
st
)

A
R
I
(a

ve
r)

A
R
I

(b
es

t)
A
R
I

(w
or

st
)

A
C
C

(a
ve

r)
A
C
C

(b
es

t)
A
C
C

(w
or

st
)

G
eo

L
if
e

K
M
-D

T
W

0.
61

0±
0.
02

1
0.
64

5
0.
57

9
0.
63

5±
0.
01

9
0.
65

6
0.
61

7
0.
74

2±
0.
03

1
0.
76

3
0.
65

5
K
M
-G

A
K

0.
59

1±
0.
05

7
0.
65

7
0.
50

7
0.
50

5±
0.
07

6
0.
57

3
0.
39

2
0.
73

7±
0.
03

3
0.
77

0
0.
68

8
K
-S
ha

pe
0.
22

9±
0.
03

3
0.
27

2
0.
17

4
0.
22

0±
0.
04

6
0.
27

1
0.
10

2
0.
52

2±
0.
01

5
0.
55

1
0.
49

5
D
B
-L
C
SS

0.
54

7
0.
54

7
0.
54

7
0.
41

2
0.
41

2
0.
41

2
0.
69

7
0.
69

7
0.
69

7
SG

T
0.
41

9±
0.
02

4
0.
45

4
0.
37

1
0.
21

6±
0.
03

6
0.
27

7
0.
14

9
0.
62

8±
0.
02

9
0.
69

4
0.
57

9
M
H
M
M

0.
53

0±
0.
04

7
0.
61

1
0.
48

6
0.
40

3±
0.
05

7
0.
49

5
0.
34

4
0.
62

7±
0.
01

7
0.
64

9
0.
60

7
ID

E
C
*

0.
60

5±
0.
03

5
0.
67

3
0.
57

2
0.
46

5±
0.
09

7
0.
66

4
0.
40

4
0.
67

±0
.0
8

0.
81

9
0.
59

6
D
C
N
*

0.
64

6±
0.
05

1
0.
72

5
0.
59

4
0.
63

5 ±
0.
06

5
0.
69

3
0.
50

3
0.
78

2±
0.
06

1
0.
84

0
0.
62

4
D
T
C

0.
50

0±
0.
02

7
0.
55

0
0.
47

4
0.
48

3±
0.
02

8
0.
51

2
0.
45

1
0.
68

2±
0.
03

2
0.
73

7
0.
65

5
D
E
T
E
C
T

0.
64

4±
0.
03

7
0.
69

1
0.
58

9
0.
64

6±
0.
04

4
0.
68

8
0.
58

2
0.
8±

0.
01

3
0.
82

2
0.
78

0
G
M
V
A
E
*

0.
44

7 ±
0.
08

3
0.
59

8
0.
36

4
0.
35

3±
0.
07

4
0.
48

0
0.
27

4
0.
53

0±
0.
05

2
0.
61

7
0.
47

9
V
aD

E
*

0.
63

1 ±
0.
05

3
0.
66

9
0.
50

2
0.
60

3±
0.
07

8
0.
65

8
0.
44

0
0.
78

3±
0.
03

7
0.
82

2
0.
72

0
Jo

in
tV

A
E
*
0.
45

9 ±
0.
05

6
0.
55

6
0.
40

8
0.
22

7±
0.
12

3
0.
44

2
0.
16

1
0.
51

9±
0.
06

2
0.
59

7
0.
47

3
V
A
M

B
C

0.
69

7±
0.
01

5
0.
69

9
0.
69

2
0.
7 ±

0.
01

9
0.
71

9
0.
68

2
0.
82

5±
0.
01

0.
84

2
0.
81

0

D
M

C
L

K
M
-D

T
W

0.
36

6
0.
02

3
0.
41

5
0.
35

5
0.
21

1
0.
00

8
0.
22

9
0.
20

8
0.
58

2
0.
00

9
0.
60

0
0.
57

8
K
M
-G

A
K

0.
32

3
0.
01

9
0.
34

5
0.
27

7
0.
16

1
0.
04

0.
27

0
0.
12

0
0.
57

9
0.
05

6
0.
73

3
0.
55

6
K
-S
ha

p e
0.
40

9
0.
05

5
0.
53

1
0.
34

4
0.
24

1
0.
06

0.
39

6
0.
18

3
0.
61

6
0.
08

0.
81

1
0.
52

2
D
B
-L
C
SS

0.
36

5
0.
36

5
0.
36

5
0.
15

8
0.
15

8
0.
15

8
0.
51

1
0.
51

1
0.
51

1
SG

T
0.
45

8
0.
01

2
0.
46

6
0.
44

0
0.
25

6
0.
00

9
0.
26

2
0.
24

2
0.
76

3
0.
00

5
0.
76

6
0.
75

5
H
M
M

0.
32

6
0.
05

5
0.
39

2
0.
20

8
0.
12

6
0.
09

6
0.
33

9
0.
01

1
0.
64

8
0.
06

4
0.
75

6
0.
56

7
ID

E
C
*

0.
44

2
0.
01

2
0.
44

8
0.
40

9
0.
33

3
0.
00

6
0.
33

8
0.
31

8
0.
77

6
0.
00

5
0.
77

8
0.
76

7
D
C
N
*

0.
44

7
0.
02

0.
47

9
0.
41

3
0.
34

3
0.
01

4
0.
37

5
0.
32

8
0.
78

1
0.
01

1
0.
80

0
0.
76

7
D
T
C

0.
42

7
0.
08

1
0.
48

7
0.
22

2
0.
30

4
0.
10

1
0.
36

8
0.
08

3
0.
73

3
0.
08

9
0.
80

0
0.
52

2
D
E
T
E
C
T

0.
48

6
0.
02

2
0.
52

7
0.
44

8
0.
37

8
0.
04

7
0.
39

8
0.
24

7
0.
77

9
0.
06

3
0.
80

0
0.
60

0
G
M
V
A
E
*

0.
31

9
0.
06

3
0.
47

6
0.
25

1
0.
12

7
0.
05

6
0.
25

6
0.
08

2
0.
56

6
0.
02

6
0.
62

2
0.
54

4
V
aD

E
*

0.
45

6
0.
02

0.
49

3
0.
44

6
0.
34

1
0.
00

7
0.
35

5
0.
33

8
0.
77

8
0

0.
77

8
0.
77

8
Jo

in
tV

A
E
*
0.
12

0.
12

3
0.
26

3
0.
00

0
0.
04

4
0.
04

8
0.
10

4
0.
00

0
0.
52

4
0.
01

6
0.
54

4
0.
51

1
V
A
M

B
C

0.
51

2
0.
02

0.
52

7
0.
47

5
0.
38

4
0.
01

3
0.
39

8
0.
35

1
0.
79

9
0.
00

4
0.
80

0
0.
78

9

466 M. Yue et al.

higher accuracy than the ablated variants because VAMBC can escape from the
sub-optimums.

Removal of Gumbel-softmax. The Gumbel-softmax layer enables some ran-
domness in the discrete variable. Such randomness enables an input to “jump”
to a similar cluster if the model is not confident enough about their assignments.
Without the Gumbel-softmax layer, the model would stay in a sub-optimal
assignment and prevent other losses from directing the model to learn a better
representation. As we can see in Fig. 4a, the curve (red line) without Gumbel-
Softmax quickly goes up and stay at a certain accuracy until convergence.

Removal of Center Loss. The center loss regularizer is very important in pre-
venting the model from ignoring the discrete variable and cluster latent embed-
ding. As we can see in Fig. 4a, the curve (orange line) without the center loss
quickly drops to a low accuracy after a spike. This indicates that the model will
soon rely less on the cluster embedding to minimize the reconstruction, which
is not ideal. In Fig. 4b, its negative entropy stays low, which also indicates that
the model is reluctant to differentiate clusters and chooses to rely on the indi-
vidualized embedding only.

(a) Accuracy v.s. training
epochs

(b) Negative Entropy v.s.
training epochs

(c) Recon. Loss v.s. training
epochs

Fig. 4. Changes of metrics by variants over their training epochs (Color figure online)

5.4 The Training Progress of VAMBC

To understand the change of the latent embedding and the cluster embedding
in VAMBC, we visualize the learned embeddings at different epochs in Fig. 5
using t-SNE [22]. The red points denote the latent embeddings of the context
sequences, and the black points represent the cluster embeddings zc for each
cluster. At the initial stages (epoch = 1 and 60), the model learns giant clus-
ters (where many nearby black points locate) that can roughly reconstruct the
data. Subsequently, the negative entropy and the reparameterization by Gumbel-
Softmax encourage the model to split more clusters and finally (epoch = 400) the
clusters are well separated and the cluster embeddings are well-distributed at
the centers of each cluster.

VAMBC: A Variational Approach for Mobility Behavior Clustering 467

(a) epoch = 1 (b) epoch = 60 (c) epoch = 200 (d) epoch = 400

Fig. 5. Visualization of the training progress

6 Conclusion

In this paper, we proposed a novel deep learning framework VAMBC that can
accurately and robustly cluster the context sequences of ordered real-value fea-
ture vectors based on their transition patterns to infer mobility behaviors. The
framework explicitly decomposes the cluster latent representation and individ-
ualized latent representation via two reparameterization layers. Such decom-
position and the finely designed network enable the model to learn the self-
supervision and cluster structure jointly without collapsing to trivial solutions.
The results evaluated on real-world data show that the proposed approach is
more robust and accurate than a variety of baseline approaches.

References

1. Abadi, M., et al.: Tensorflow: large-scale machine learning on heterogeneous dis-
tributed systems. In: OSDI (2016)

2. Ballé, J., Laparra, V., Simoncelli, E.P.: End-to-end optimized image compression.
In: ICLR (2017)

3. Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new
perspectives. TPAMI 35(8), 1798–1828 (2013)

4. Bowman, S., Vilnis, L., Vinyals, O., Dai, A., Jozefowicz, R., Bengio, S.: Generating
sentences from a continuous space. In: SIGNLL, pp. 10–21 (2016)

5. Cai, D., He, X., Han, J.: Locally consistent concept factorization for document
clustering. IEEE TKDE 23(6), 902–913 (2010)

6. Center, S.I.: Map poi (point of interest) data. Peking University Open Research
Data Platform (2017)

7. Chang, B., Park, Y., Park, D., Kim, S., Kang, J.: Content-aware hierarchical point-
of-interest embedding model for successive poi recommendation. In: IJCAI, pp.
3301–3307 (2018)

8. D.U. of Illinois at Chicago: Real trajectory data (2006). https://www.cs.uic.edu/
∼boxu/mp2p/gps data.html

9. Chollet, F., et al.: Keras (2015). https://github.com/fchollet/keras
10. Cuturi, M.: Fast global alignment kernels. In: ICML, pp. 929–936 (2011)
11. Dilokthanakul, N., et al.: Deep unsupervised clustering with gaussian mixture vari-

ational autoencoders. arXiv preprint arXiv:1611.02648 (2016)
12. Doersch, C.: Tutorial on variational autoencoders. arXiv preprint arXiv:1606.05908

(2016)

https://www.cs.uic.edu/~boxu/mp2p/gps_data.html
https://www.cs.uic.edu/~boxu/mp2p/gps_data.html
https://github.com/fchollet/keras
http://arxiv.org/abs/1611.02648
http://arxiv.org/abs/1606.05908

468 M. Yue et al.

13. Dupont, E.: Learning disentangled joint continuous and discrete representations.
In: NIPS, pp. 710–720 (2018)

14. Foundation, O.: Openstreetmap data (2018). http://download.geofabrik.de/north-
america.html

15. Ghosh, P., Sajjadi, M.S., Vergari, A., Black, M., Schölkopf, B.: From variational
to deterministic autoencoders. arXiv preprint arXiv:1903.12436 (2019)

16. Guo, X., Gao, L., Liu, X., Yin, J.: Improved deep embedded clustering with local
structure preservation. In: IJCAI (2017)

17. He, J., Li, X., Liao, L., Song, D., Cheung, W.K.: Inferring a personalized next
point-of-interest recommendation model with latent behavior patterns. In: AAAI
(2016)

18. Helske, S., Helske, J.: Mixture hidden markov models for sequence data: The
seqhmm package in r. arXiv preprint: arXiv:1704.00543 (2017)

19. Jang, E., Gu, S., Poole, B.: Categorical reparameterization with gumbel-softmax.
arXiv preprint arXiv:1611.01144 (2016)

20. Jiang, Z., Zheng, Y., Tan, H., Tang, B., Zhou, H.: Variational deep embedding: an
unsupervised and generative approach to clustering. In: IJCAI (2017)

21. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114 (2013)

22. Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. JMLR 9(11) (2008)
23. Madiraju, N.S., Sadat, S.M., Fisher, D., Karimabadi, H.: Deep temporal clus-

tering: fully unsupervised learning of time-domain features. arXiv preprint
arXiv:1802.01059 (2018)

24. Morris, B., Trivedi, M.: Learning trajectory patterns by clustering: experimental
studies and comparative evaluation. In: CVPR (2009)

25. Mrabah, N., Bouguessa, M., Ksantini, R.: Adversarial deep embedded clustering:
on a better trade-off between feature randomness and feature drift. arXiv preprint
arXiv:1909.11832 (2019)

26. Paparrizos, J., Gravano, L.: k-Shape: efficient and accurate clustering of time series.
In: SIGMOD, pp. 1855–1870 (2015)

27. Petitjean, F., Ketterlin, A., Gançarski, P.: A global averaging method for dynamic
time warping, with applications to clustering. Pattern Recogn. 44(3), 678–693
(2011)

28. Ranjan, C., Ebrahimi, S., Paynabar, K.: Sequence graph transform (sgt): A feature
extraction function for sequence data mining (extended version). arXiv preprint
arXiv:1608.03533 (2016)

29. Shu, R., Brofos, J., Langlotz, C.: A note on deep variational models for unsuper-
vised clustering (2017)

30. Smyth, P.: Clustering sequences with hidden markov models. In: NIPS, pp. 648–654
(1997)

31. Xu, J., Xu, B., Wang, P., Zheng, S., Tian, G., Zhao, J.: Self-taught convolutional
neural networks for short text clustering. Neural Netw. 88, 22–31 (2017)

32. Yang, B., Fu, X., Sidiropoulos, N.D., Hong, M.: Towards k-means-friendly spaces:
simultaneous deep learning and clustering. In: ICML, pp. 3861–3870. JMLR (2017)

33. Yeung, K.Y., Ruzzo, W.L.: Details of the adjusted rand index and clustering algo-
rithms, supplement to the paper an empirical study on principal component anal-
ysis for clustering gene expression data. Bioinformatics 17(9), 763–774 (2001)

34. Yin, J., Wang, J.: A dirichlet multinomial mixture model-based approach for short
text clustering. In: SIGKDD, pp. 233–242 (2014)

http://download.geofabrik.de/north-america.html
http://download.geofabrik.de/north-america.html
http://arxiv.org/abs/1903.12436
http://arxiv.org/abs/1704.00543
http://arxiv.org/abs/1611.01144
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1802.01059
http://arxiv.org/abs/1909.11832
http://arxiv.org/abs/1608.03533

VAMBC: A Variational Approach for Mobility Behavior Clustering 469

35. Yue, M., Li, Y., Yang, H., Ahuja, R., Chiang, Y.Y., Shahabi, C.: Detect: deep
trajectory clustering for mobility-behavior analysis. In: IEEE Big Data, pp. 988–
997. IEEE (2019)

36. Zheng, Y.: Trajectory data mining: an overview. ACM TIST 6(3), 1–41 (2015)
37. Zheng, Y., Zhang, L., Xie, X., Ma, W.Y.: Mining interesting locations and travel

sequences from gps trajectories. In: WWW (2009)
38. Zou, Q., Lin, G., Jiang, X., Liu, X., Zeng, X.: Sequence clustering in bioinformatics:

an empirical study. Brief. Bioinform. 21(1), 1–10 (2020)

Multi-agent Deep Reinforcement
Learning with Spatio-Temporal Feature

Fusion for Traffic Signal Control

Xin Du, Jiahai Wang(B), Siyuan Chen, and Zhiyue Liu

School of Computer Science and Engineering, Sun Yat-sen University,
Guangzhou, China

{duxin23,chensy47,liuzhy93}@mail2.sysu.edu.cn,
wangjiah@mail.sysu.edu.cn

Abstract. Traffic signal control (TSC) plays an important role in intelli-
gent transportation system. It is helpful to improve the efficiency of urban
transportation by controlling the traffic signal intelligently. Recently, var-
ious deep reinforcement learning methods have been proposed to solve
TSC. However, most of these methods ignore the fusion of spatial and
temporal features in traffic roadnets. Besides, these methods pay no
attention to the correlations of the intersections in several local areas.
This paper proposes a novel multi-agent deep reinforcement learning
method with spatio-temporal feature fusion to solve TSC. The proposed
method firstly calculates the correlations among different time steps to
capture their temporal dependencies. Secondly, the proposed method
constructs connected subnetworks to capture interactive relations among
intersections in the subnetwork. Experimental results demonstrate that
our method achieves state-of-the-art performance on synthetic and real-
world datasets.

Keywords: Traffic signal control · Multi-agent deep reinforcement
learning · Spatio-temporal feature fusion

1 Introduction

Along with the rapid urbanization process, a large number of crowd are gather-
ing towards cities constantly. It leads to the increasing number of private cars
and pedestrians. A series of traffic problems are following such as traffic conges-
tions, greenhouse gas emissions, and road accidents. To address these problems,
it is necessary to control traffic signals intelligently to regulate traffic order
and reduce road accidents. The application of traffic signal control (TSC) to
Hangzhou city brain v2.0 [10] is a good example. This city brain made dramatic
achievements in TSC. Up to this year, this city brain controls more than 50% of
the traffic signals on elevated road ramps in Hangzhou. It increases total traffic
efficiency by 15.3%. Therefore, TSC plays an important role in relieving traffic
congestions and increasing traffic efficiency.
c© Springer Nature Switzerland AG 2021
Y. Dong et al. (Eds.): ECML PKDD 2021, LNAI 12978, pp. 470–485, 2021.
https://doi.org/10.1007/978-3-030-86514-6_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86514-6_29&domain=pdf
https://doi.org/10.1007/978-3-030-86514-6_29

Multi-agent DRL for Traffic Signal Control 471

Traditional methods use manually designed rules to control traffic signals.
However, These rules can not adapt to complex traffic flows in modern society.
In recent years, some reinforcement learning (RL) based methods [12,18,24,29]
have emerged to make real-time decisions to solve TSC. These methods can
adjust strategies online according to the feedback of the environment. Moreover,
some multi-agent RL methods [18,29] handle each intersection as a single agent.
These methods use graph neural networks to learn the interactions among agents.
However, these methods only construct spatial dependency and ignore tempo-
ral dependency. Temporal dependency is fundamentally important in TSC. For
example, the traffic conditions on Monday are similar to those on Mondays in
history. This phenomenon reflects the periodic variation of traffic flows. There-
fore, it is necessary to capture temporal dependency in TSC. Besides, these
multi-agent RL methods only pay attention to the interactions of adjacent inter-
sections, but traffic conditions are usually similar in a local area, which includes
multiple intersections. These intersections may form a sequence, a square, or
other shapes. For example, traffic congestions may happen in continuous road
sections. To relieve traffic congestions, the intersections in the continuous road
sections need to share vehicle flow information, but existing methods can not
associate these intersections with each other. To tackle these shortcomings, this
paper proposes a multi-agent deep reinforcement learning method with spatio-
temporal feature fusion (MADRL-STFF) to solve TSC. The proposed method
includes three modules. In the first module, the raw data of initial observations
are inputted into an embedding layer. This layer can encode the raw data into
initial feature representations. In the second module, spatio-temporal feature
fusion components are designed to extract and fuse spatio-temporal features
from the initial feature representations. These components help the agents to
cooperate by exchanging their information to make decisions comprehensively.
In the final module, a Q-value prediction layer is constructed to predict Q-values
of the actions for each agent. The main contributions of this paper are threefold:

– An end-to-end multi-agent deep reinforcement learning method with spatio-
temporal feature fusion, named MADRL-STFF, is proposed to solve TSC.
To achieve the multi-agent cooperation, the proposed method uses graph
neural network to make the neighbor agents and the agents in the same sub-
network share their observations and state representations. MADRL-STFF
is evaluated on two synthetic datasets and three real-world datasets. The
experimental results show the superiority of MADRL-STFF.

– MADRL-STFF captures spatio-temporal dependencies of related traffic sig-
nals by attention mechanism.

– MADRL-STFF constructs connected subnetworks to learn the interaction
of vehicle flows in each local area. These connected subnetworks can share
information among the intersections where traffic conditions are similar.

2 Related Works

For solving TSC task, conventional methods usually design fixed phase change
rules of traffic signals. Some methods are still widely used in today’s traffic sig-

472 X. Du et al.

nal control system, such as SCOOT and SCATS. These methods design a set of
rules and select the best one according to the current traffic flow situation. Some
other methods like [13] define fixed cycle-based phase sequence to control traf-
fic signals. [22] proposes a method named max pressure control (MaxPressure)
to maximizes traffic output volume by changing signal phases. Some methods
use optimization methodologies to solve TSC such as [6,8]. These conventional
methods are proposed based on their assumptions about the traffic model, but
these assumptions can not adaptive enough to the real-time traffic patterns of
modern complex traffic flows [27,34].

To address the shortcomings of conventional methods, recently RL technol-
ogy is proposed to learn traffic signal control strategies online without prior
knowledge. RL based methods can be divided into two types: single agent RL
methods and multi-agent RL methods [9,23].

For single agent RL methods, [14] uses deep stacked autoencoder to approx-
imate the Q-function for a single intersection. [4] proposes a deep recurrent
Q-network to solve TSC. It uses long short-term memory (LSTM) to model
sequential data of traffic signal phases. [17] combines two RL algorithms: policy
gradient and value function based method. It can predict the best traffic signal
phase by the two algorithms. [7] proposes an end-to-end TSC system to collect
raw image data of real-time traffic flows. This system uses convolutional neural
network (CNN) to learn the visual features from the raw image data. These
visual features can be used in configuring TSC policies. [28] proposes a deep
Q-network (DQN) [16] based model, called IntelliLight. IntelliLight consists of
two parts: offline part and online part. The offline part uses the fix-time method
like [13] to initialize the parameters of the model. The online part uses DQN to
optimize the model. [15] combines double DQN and prioritized experience replay
[20] to solve TSC. The common point of these single RL methods is that these
methods are limited to control traffic signals in a single intersection. Besides, the
complexities of these methods become increasingly higher as the scale of TSC
grows. They can not adapt to multi-intersection TSC. Therefore, multi-agent
RL methods are proposed to tackle this problem recent years.

For multi-agent RL methods, [19] first proposes a multi-agent RL method to
solve TSC. It applies DQN and a coordination tool to multiple traffic signals.
Besides, it also designs a new reward function to evaluate the real-time traffic
condition properly. [18] uses graph convolutional networks (GCN) to coordinate
multiple intersections. Similar to [18], [29] uses graph attention network (GAT)
and evaluates it on their open-source traffic simulator CityFlow1 [32]. [21] pro-
poses a decentralized-to-centralized architecture. This architecture divides the
traffic roadnet into multiple local regions. Each region is controlled by a single RL
agent. These local agents are coordinated by a global agent to achieve the aim of
centralized control. [5] proposes an advantage actor-critic based multi-agent RL
method. It uses fingerprints of neighboring agents and a spatial discount factor
to ensure the stable convergence of the method. [24] proposes a cooperative dou-
ble Q-learning (Co-DQL) method. Co-DQL uses upper confidence bound [1] to

1 http://cityflow-project.github.io.

http://cityflow-project.github.io

Multi-agent DRL for Traffic Signal Control 473

balance exploitation and exploration during selecting actions. Besides, Co-DQL
uses mean-field theory to learn a better coordinated strategies among agents.
[12] proposes a two-stage hierarchical framework to combine RL with schedule-
driven traffic control. This framework adopts decentralized training method and
cooperate the agents by exchanging schedule information and traffic statistics.
[3] proposes a decentralized network level method called MPLight to solve TSC.

It is worth noting that these multi-agent RL methods only capture spatial
dependency without temporal dependency. Recently, [25] proposes a method
called spatio-temporal multi-agent reinforcement learning method (STMARL).
STMARL uses LSTM to extract temporal features and uses GAT to extract spa-
tial features. However, STMARL pays no attention to the correlation of each cou-
ple of time steps. Besides, STMARL only fuses the features of neighbor agents.
It pays no attention to the correlations of the intersections in several local areas.
Therefore, to address these problems, this paper proposes MADRL-STFF to
solve TSC. MADRL-STFF firstly uses attention mechanism to capture tempo-
ral dependencies among different time steps. Secondly, MADRL-STFF proposes
two spatial feature fusion components: feature fusion of neighbor agents and fea-
ture fusion in connected subnetworks. These components can share information
among the intersections in several local areas.

3 Problem Definition

Definition 1. (Traffic signal phase): Traffic signal phases indicate the directions
allowing vehicles moving. There are four usually used phases [5] in TSC as shown
in Fig. 1. These phases are going straight from west and east, turning left from
west and east, going straight from north and south, turning left from north and
south, respectively.

(a) (b) (c) (d)

Fig. 1. Traffic signal phases. (a) Going straight from west and east. (b) Turning left
from west and east. (c) Going straight from north and south. (d) Turning left from
north and south.

Definition 2. (Traffic signal control problem): TSC can be casted as a Markov
decision problem. This problem can be defined by the tuple (S,A,P,R, γ):

474 X. Du et al.

– State S: S is the state space of agents. Each agent controls the traffic signals
of one intersection. The state of each agent at time t is denoted as st

i ∈ S,
where i is the index of agents. st

i consists of the traffic signal phase and vehicle
queue length of the lanes connected with the intersection.

– Action A: A is the action space of agents. The agent i can decide the action
at

i ∈ A at time t every Δt period of time. The action at
i can be defined as

traffic signal phase. Each agent can select actions from predefined four kinds
of traffic signal phases.

– Transition Function P: P is the transition function. This function maps
the state-action pair at time t to the next state at time t+1. Formally, given
the state st

i and the corresponding action at
i for agent i at time t, the next

state st+1
i can be arrived with the transition probability P(st+1

i |st
i, a

t
i).

– Reward R: Rt
i represents the immediate reward of agent i after taking the

action at
i at time t. The reward should reflect the condition of traffic con-

gestion. When there is a serious traffic congestion, the vehicle queue length
is longer than ordinary times. Therefore, vehicle queue length can be used
in representing the reward R. Rt

i can be defined as Rt
i = −∑

l Lt
i,l, where

Lt
i,l represents the vehicle queue length at lane l. However, vehicle queue

length only reflects the degree of the traffic congestion for one intersection.
Therefore, travel time is usually adopted as the ultimate objective to quantify
the efficiency of vehicle movements in traffic roadnets, but travel time is not
proper as reward. The reason is that travel time as reward would be delayed
and invalid in presenting the correctness of the action, because traffic signals
and vehicle movements would influence the travel time of a vehicle [27].

– Discount Factor γ: γ ∈ [0, 1] is the discount factor. It can balance the
immediate reward and the future reward.

By the defined tuple above, TSC aims to maximize the reward of each agent
by Q-learning. The optimization objective of TSC is defined as follows:

Minimize E[rt
i + γmax

at+1
i

Q′(st+1
i , at+1

i) − Q(st
i, a

t
i)], (1)

where rt
i is the immediate reward of agent i at time t; γ is the discount factor;

st
i and at

i is the state-action pair at time t; st+1
i and at+1

i is the state-action pair
at time t + 1; Q(s, a) and Q′(s, a) are current Q-network and target Q-network,
respectively.

4 Method

This paper proposes MADRL-STFF to solve TSC. The framework of MADRL-
STFF is presented in Fig. 2. This method includes three modules. The first mod-
ule is spatio-temporal input embedding. This module encodes spatio-temporal
input data into initial spatio-temporal feature representations. The second mod-
ule is spatio-temporal feature fusion. This module includes temporal feature

Multi-agent DRL for Traffic Signal Control 475

T1 T2 T3 T4 Tn

Spatio-Temporal Input Embedding

MLP

Spatio-Temporal Feature Fusion

Temporal Feature Fusion

Self-Attention

XX
T

Spatial Feature Fusion

0.1
0.3

0.5

0.7 0.9

Q-Value Prediction

phase1

action
X

X

Residual ConnectionTCN

Feature Fusion of
Neighbor Agents

Feature Fusion in
Connected Subnetworks

phasek

Fig. 2. The framework of MADRL-STFF. The first module is spatio-temporal input
embedding. This module encodes spatio-temporal input data into initial spatio-
temporal feature representations. The second module is spatio-temporal feature fusion.
This module includes temporal feature fusion and spatial feature fusion. In temporal
feature fusion, attention mechanism is used to capture the correlations and fuse the
temporal features among different time steps. Then, TCN is used to capture temporal
dependencies at regular intervals. In spatial feature fusion, the spatial structure fea-
tures are fused in neighbor agents and constructed connected subnetworks. The final
module predicts Q-values of the actions for each agent.

fusion and spatial feature fusion. In temporal feature fusion, attention mecha-
nism is used to capture the correlations and fuse the temporal features among
different time steps. Then, temporal convolutional network (TCN) [2] is used
to capture temporal dependencies at regular intervals. In spatial feature extrac-
tion, the spatial structure features are fused in neighbor agents and connected
subnetowrks. The final module predicts Q-values of the actions for each agent.
The details of the framework are given as follows.

4.1 Spatio-Temporal Input Embedding

This module aims to encode spatio-temporal input data into initial spatio-
temporal feature representations. Given the state st

i ∈ R
k of agent i at time

t, st
i can be embedded into the initial feature representation xt

i ∈ R
d, where k is

the state dimension; d is the embedding dimension. Here, the embedding layer is
defined as a multi-layer perceptron (MLP). The embedding process is presented
as follows:

xt
i = σ(st

iWe + be), (2)

where xt
i ∈ X; X ∈ R

T×N×k is the spatio-temporal feature matrix; T is the num-
ber of time steps; N is the number of agents; σ is the activation function ReLU;
We ∈ R

k×d and be ∈ R
d are weight parameters and bias vector, respectively.

4.2 Spatio-Temporal Feature Fusion

This module includes temporal feature fusion and spatial feature fusion.

476 X. Du et al.

Temporal Feature Fusion. Temporal feature fusion aims to capture tem-
poral dependencies and fuse temporal features in different time steps. Temporal
feature fusion consists of two components: self-attention layer and temporal con-
volutional network layer. At the self-attention layer, the correlation between two
different time steps can be calculated by self-attention operation. Then, the new
representation for each time step can be generated. The generation method com-
bines the initial representations of all the time steps with their corresponding
correlations. At the temporal convolutional network layer, a three-layer CNN
with different dilation rates is proposed to capture temporal dependencies in
different time steps. Then, a standard CNN is used to fuse the sequential fea-
tures. The details of each component are described as follows.

– Self-Attention: Since the traffic conditions are correlated among different
time steps, this component aims to capture these correlations and fuse the
temporal features in different time steps. Formally, given two feature repre-
sentation vectors xt1

i and xt2
i at time t1 and t2, respectively, the calculation

process is presented as follows:

et1,t2 = (xt1
i)T · xt2

i , (3)

where t1, t2 ∈ {1, ..., T}; et1,t2 is the attention weight between xt1
i and xt2

i .
Then, the feature representation for each time step can be updated as follows:

αt1,t2 =
exp(et1,t2)

∑T
a=1 exp(et1,a)

, (4)

ut1
i = σ(Wu ·

T∑

a=1

αt1,a · xa
i + bu), (5)

where, αt1,t2 is the attention weight after normalization by softmax function;
Wu ∈ R

d×d and bu ∈ R
d are learnable parameters; ut1

i ∈ R
d is the new

representation of agent i at time t.
– Temporal Convolutional Network: In TSC, the evolution tendency of

traffic flows should be learned by each agent to make better decisions. To
achieve this target, the temporal dependencies, which are the correlations of
the vehicle volumes at regular intervals should be captured. Temporal convo-
lutional network (TCN) is adopted to capture these correlations in different
time scales via different dilation rates. Since TCN can learn long sequence
information in a non-recursive manner, TCN can solve sequence modeling
problem more efficient than RNNs [31]. Therefore, a three-layer CNN with
different dilation rates is proposed to fuse temporal features. Then, a stan-
dard CNN is used to merge the features at all the time steps. The feature
fusion process is presented as follows:

(ut
i)

(r) = Θ(r)∗τc([(u1
i)

(r−1), ..., (ut
i)

(r−1)])

=
M−1∑

m=0

w(r)
m · (ut−cm

i)(r−1),
(6)

Multi-agent DRL for Traffic Signal Control 477

yi = Θ′∗([(u1
i)

(3), ..., (uT
i)(3)]) =

T−1∑

t=0

w′
t · (ut+1

i)(3), (7)

where r is the index of CNN layers; c = 2r−1 is the dilation rate; Θ(r) =
[w(r)

0 , ..., w
(r)
M−1] ∈ R

M is the parameters of the r-th layer convolutional kernel;
M is the length of the convolutional kernel; ∗τc is the dilated causal operator
[2] with dilation rate c; Θ′ = [w′

0, ..., w
′
T−1] ∈ R

T is the convolutional kernel
of the standard CNN; yi ∈ R

d is the output feature representation of agent
i. Besides, Zero padding strategy is used to keep the output length the same
as the input length.

Spatial Feature Fusion. Spatial feature fusion aims to fuse spatial structure
features among different traffic intersections in the roadnet. The roadnet is mod-
eled as a simple graph. This section proposes two feature fusion components to
fuse spatial features in this graph: feature fusion of neighbor agents (NeiFu-
sion) and feature fusion in connected subnetworks (ConFusion). In NeiFusion,
GAT is used to share the information of the neighbor agents with the target
agent i. In ConFusion, connected subnetworks are constructed and the features
of agents in the same connected subnetwork are fused by attention mechanism.
Each component is described in detail as follows.

– Feature Fusion of Neighbor Agents: The states and strategies of neighbor
agents support the target agent to make coordinative decisions. Therefore,
this component uses GAT to fuse the features of the neighbor agents. Given
the neighbor agents Ni of agent i, the correlations between Ni and agent i
are calculated by attention mechanism. Then, the new feature representation
of agent i can be generated by combining the representations of Ni with their
corresponding correlations. The process is presented as follows:

e′
i,j = (Wtyi)T · (Wsyj), (8)

βi,j =
exp(e′

i,j)∑
a∈Ni

exp(e′
i,a)

, (9)

gi = σ(Wg ·
∑

j∈Ni

βi,j · yi + bg), (10)

where e′
i,j is the attention weight between yi and yj ; βi,j is the attention

weight after normalization by softmax function; Wt,Ws,Wg ∈ R
d×d and bg ∈

R
d are learnable parameters; gi ∈ R

d is the output feature representation.
– Feature Fusion in Connected Subnetworks: The traffic conditions are

usually highly correlated in connected intersections. These intersections can
be included into a subnetwork to share their information. Therefore, this
component aims to construct connected subnetworks and fuse the features of
agents in the same connected subnetwork. To achieve this target, firstly, con-
nected subnetworks are constructed by collecting the agents with the nearest

478 X. Du et al.

vehicle queue lengths. Secondly, each connected subnetwork can be repre-
sented by fusing agent features in this subnetwork. Thirdly, the correlations
between the target agent i and the connected subnetworks of including agent
i are evaluated by attention mechanism. Finally, the representations of these
connected subnetworks are combined with their correlations to generate the
new feature representation of agent i. The details of the process are given as
follows.
Firstly, connected subnetworks are constructed by collecting the agents of
having the nearest vehicle queue lengths. The construction algorithm is shown
in supplementary material2. Formally, the connected subnetwork csi can be
constructed initially by adding agent i. Then, at each iteration step, csi col-
lects the nearest agent from the neighbor agents NSi of csi by comparing
their vehicle queue lengths. At last, there are N constructed connected sub-
networks corresponding to N agents, respectively.
Secondly, each connected subnetwork can be represented by fusing agent fea-
tures in this subnetwork. Given the agents in csi, a standard CNN is used to
fuse the features of the agents in csi. The feature fusion process is presented
as follows:

pi = Θ′′∗(csi) =
|csi|∑

j=1

w′′
j−1 · gi

j , (11)

where pi is the feature representation of csi; Θ′′ = [w′′
0, ..., w

′′|csi|−1] ∈ R
|csi|

is the convolutional kernel of the standard CNN; gi
j ∈ csi.

Thirdly, to evaluate the importance of agent i in the connected subnetworks
of including agent i, the correlations between the target agent i and these con-
nected subnetworks are calculated by attention mechanism. The calculation
process is presented as follows:

e′′
i,j = (W ′

tgi)T · (W ′
spj) i ∈ csj , (12)

where e′′
i,j is the attention weight between gi and pj ; W ′

t ,W
′
s ∈ R

d×d are
learnable parameters.
Finally, the new feature representation of agent i can be generated by the
connected subnetworks of including agent i. The generation method is com-
bining the feature representations of these connected subnetworks with their
correlations. The calculation process is presented as follows:

ηi,j =
exp(e′′

i,j)∑
i∈csa

exp(e′′
i,a)

, (13)

fi = σ(Wf

∑

i∈csj

ηi,j · pj + bf), (14)

where ηi,j is the attention weight after normalization by softmax function;
Wf ∈ R

d×d and bf ∈ R
d are learnable parameters; fi ∈ R

d is the output
feature representation of this component.

2 https://github.com/08doudou/MADRL-STFF-Appendix.

https://github.com/08doudou/MADRL-STFF-Appendix

Multi-agent DRL for Traffic Signal Control 479

4.3 Q-Value Prediction

This module aims to predict Q-values of the actions for each agent. MLP is used
in the calculation process as follows:

hi = [gi, fi], (15)

oi = σ(hiWh + bh), (16)

where hi is the residual connection of gi and fi; oi is the predicted Q-value of
agent i; Wh ∈ R

d×|A| and bh ∈ R
|A| are weight parameters and bias, respectively.

The pseudo code of MADRL-STFF is shown in supplementary material. To
achieve the multi-agent cooperation, the proposed method uses graph neural
network to make the neighbor agents share their observations and state represen-
tations in the learning process. Besides, connected subnetworks are constructed
to share information among the agents in each subnetwork.

5 Experiment

5.1 Datasets

Following the previous works, our method is evaluated on two synthetic datasets
and three real-world datasets3 [26,29,34]. The two synthetic datasets are 6 × 6
uni-direction traffic roadnet (Unidirec6×6) and 6× 6 bi-direction traffic roadnet
(Bidirec6×6). The three real-world datasets are 3 × 4 traffic roadnet in Jinan
(DJinan), 4×4 traffic roadnet in Hangzhou (DHangzhou) and 28×7 traffic roadnet
in New York (DNewY ork). These datasets are deployed on an open-source traffic
simulator CityFlow [32]. The details of these datasets are described as follows:

– Unidirec6×6: An uni-direction 6 × 6 traffic roadnet. The traffic flow in this
roadnet is generated every 12 s in simulator from west to east and north to
south.

– Bidirec6×6: A bi-direction 6 × 6 traffic roadnet. The traffic flow in this road-
net is generated every 40 s in simulator in both west-east and north-south
directions.

– DJinan: There are 12 intersections in Dongfeng Sub-district, Jinan, China.
The traffic data of these intersections are collected by roadside surveillance
cameras. By these cameras, the time of entering the roadnet and the trajec-
tory for each vehicle are recorded.

– DHangzhou: This dataset is generated by roadside surveillance cameras near
16 intersections in Gudang Sub-district, Hangzhou, China.

– DNewY ork: This dataset includes 196 intersections of Manhattan in New York.
It is collected from open source taxi data.

3 https://traffic-signal-control.github.io/.

https://traffic-signal-control.github.io/

480 X. Du et al.

5.2 Baseline Methods

Our method MADRL-STFF is evaluated with two categories of methods: tra-
ditional transportation methods and RL methods. The details of traditional
transportation methods are described as follows:

– Fixed-Time Control (Fixed-Time) [13]: Fixed-Time uses pre-defined
cycle-based phase sequence to control traffic signals.

– Max Pressure Control (MaxPressure) [22]: MaxPressure is a state-of-
the-art network-level method for TSC. It can maximize traffic output volume
by selecting the phase corresponding to the maximum pressure.

The details of RL methods are described as follows:

– Light-IntellighT (LIT) [33]: LIT is an individual deep RL method without
considering neighbor agent information. It uses DQN to select the action with
new designed state and reward.

– PressLight [30]: PressLight combines RL technology and MaxPressure
method. It adds max pressure value into the reward to essentially evaluate
the real-time traffic condition.

– Graph Convolutional Network (GCN) [18]: This method uses GCN to
fuse neighbor information with the same attention weights.

– CoLight [29]: CoLight uses GAT to extract and fuse traffic features by com-
bining neighbor information with their corresponding correlations.

– Spatio-Temporal Multi-Agent Reinforcement Learning (STMARL)
[25]: STMARL learns spatio-temporal dependencies among multiple traffic
signals. It uses LSTM to extract temporal features and uses GAT to extract
spatial features.

Besides, to verify the effects of the spatio-temporal feature fusion components
in MADRL-STFF, some variants of MADRL-STFF are proposed as follows:

– MADRL-Temporal: A variant of our method only using temporal feature
fusion components.

– MADRL-Spatial: A variant of our method only using spatial feature fusion
components.

– MADRL w/o Att: A variant of our method without self-attention compo-
nent.

– MADRL w/o TCN: A variant of our method without temporal convolu-
tional network component.

– MADRL w/o NeiFusion: A variant of our method without considering the
feature fusion of neighbor agents (NeiFusion).

– MADRL w/o ConFusion: A variant of our method without considering
the feature fusion in connected subnetworks (ConFusion).

Multi-agent DRL for Traffic Signal Control 481

Table 1. Performance comparison on synthetic datasets and real-world datasets w.r.t
average travel time (the lower the better). ∗ indicates the results of this method are
obtained directly from the original paper. Note that the average travel time for LIT
is missing, because LIT cannot be trained and updated simultaneously due to the
limitation of CPU and memory on New York dataset.

Unidirec6×6 Bidirec6×6 DJinan DHangzhou DNewY ork

Fixed-Time [13] 210.94 210.94 814.11 718.29 1830.07

MaxPressure [22] 186.56 195.49 343.90 407.17 1611.08

LIT [33] 261.87 257.52 299.08 299.53 –

PressLight [30] 183.09 175.69 692.72 885.55 1951.47

GCN [18] 208.43 207.65 570.30 481.30 1649.01

CoLight [29] 169.07 176.37 292.12 293.95 1460.86

STMARL∗ [25] 205.34 180.31 – 319.14 –

MADRL-STFF 166.79 171.41 276.90 285.18 1318.55

5.3 Performance Metrics and Parameter Settings

Following the existing methods [29,30], average travel time is used as the per-
formance metric to evaluate the performances of different methods. After each
training episode, the performances of these methods are tested by calculating
the average travel time of all the vehicles spent in the roadnet (in seconds). The
average of the last 10 episodes of testing is reported as the final result.

For all RL methods, the number of episodes is set to 200; the learning rate
is set to 0.001; The discount factor γ is set to 0.8; The dimensions of all hidden
layers in these methods are set to 20; The batch size is set to 20. Specifically for
MADRL-STFF, the number of agents Ncs in a connected subnetwork is set to
4 on all the datasets.

The pseudo codes of MADRL-STFF and connected subnetworks construction
algorithm, the sensitivity of Ncs, algorithm complexity and convergence analysis,
attention visualization are shown in supplementary material.

5.4 Comparison with Baseline Methods

This section compares MADRL-STFF with baseline methods on two synthetic
datasets and three real-world datasets. Most of baseline methods are evaluated
by running their source codes on CityFlow platform, but the code of STMARL
is not open-source. Therefore, the results of STMARL are obtained directly from
the original paper. The source code of MADRL-STFF is available on request.
The experimental results are shown in Table 1. Several observations can be found
as follows:

– MADRL-STFF outperforms traditional transportation methods on synthetic
datasets and real-world datasets in terms of average travel time. On syn-
thetic datasets, MADRL-STFF outperforms Fixed-Time and MaxPressure by

482 X. Du et al.

Table 2. Ablation study of spatio-temporal feature fusion components w.r.t average
travel time (the lower the better).

Unidirec6×6 Bidirec6×6 DJinan DHangzhou DNewY ork

MADRL-Spatial 168.98 180.02 290.65 299.85 1417.59

MADRL-Temporal 168.31 179.40 289.64 295.44 1381.33

MADRL w/o Att 168.65 179.74 289.60 295.15 1366.01

MADRL w/o TCN 167.56 175.04 279.22 286.26 1344.45

MADRL w/o NeiFusion 167.47 179.31 279.26 289.52 1352.83

MADRL w/o ConFusion 166.87 176.73 285.83 292.40 1364.51

MADRL-STFF 166.79 171.41 276.90 285.18 1318.55

19.84% and 11.46% on average, respectively. On real-world datasets, MADRL-
STFF outperforms Fixed-Time and MaxPressure by 51.42% and 22.53% on
average, respectively. These traditional transportation methods control traffic
signals by designing fixed rules and depending on prior knowledge. However,
MADRL-STFF uses the RL technology to update the TSC strategies by the
feedback of the environment. Therefore, MADRL-STFF can adapt to the
dynamics of complex traffic scenarios more than traditional transportation
methods.

– MADRL-STFF outperforms other RL baseline methods on synthetic datasets
and real-world datasets by 14.64% and 26.09% on average, respectively. For
these RL baseline methods, LIT is only applied to single intersection scenario.
PressLight uses a simple DQN network to solve multi-intersection TSC, but
PressLight pays no attention to the interactions among these intersections.
GCN and CoLight capture spatial dependencies among multiple intersections,
but they ignore temporal dependencies. STMARL uses LSTM to extract tem-
poral features and uses GAT to extract spatial features. However, STMARL
pays no attention to the correlation of each couple of time steps. Besides,
STMARL only fuses the features of neighbor agents. It pays no attention
to the correlations of the intersections in several local areas. Compared with
these RL baseline methods, MADRL-STFF not only captures spatio-temporal
dependencies to solve multi-intersection TSC, but also constructs connected
subnetworks to share information among the intersections in several local
areas. Therefore, MADRL-STFF achieves the better results than these RL
baseline methods.

5.5 Effect of Spatio-Temporal Feature Fusion Components

To compare the effectiveness of spatio-temporal feature fusion components, the
experiments are conducted by removing each feature fusion component from
MADRL-STFF. The experimental results are shown in Table 2. The results
demonstrate that MADRL-STFF outperforms all the variants on synthetic

Multi-agent DRL for Traffic Signal Control 483

datasets and real-world datasets by 2.30% and 3.18% on average, respectively. It
indicates the effectiveness of our feature fusion components. Besides, there are
several observations as follows:

– Temporal feature fusion components (MADRL-Temporal) are more effective
than spatial feature fusion components (MADRL-Spatial) on all the datasets.
As shown in Table 2, in terms of average travel time, the increases of MADRL-
Spatial are more than those of MADRL-Temporal on all the datasets. Maybe
temporal feature fusion components can learn more features about variation
tendency of traffic flows in history than spatial feature fusion components.
These features can be used to make better decisions to reduce traffic conges-
tions.

– In temporal feature fusion, self-attention is more effective than TCN. As
shown in Table 2, in terms of average travel time, the increases of MADRL
w/o Att are more than those of MADRL w/o TCN on all the datasets. The
reason may be that self-attention can capture the correlation of each couple of
time steps, but TCN only pays attention to the time steps at regular intervals.
Therefore, self-attention can capture more temporal dependencies than TCN.

– In spatial feature fusion, the feature fusion of neighbor agents (NeiFusion)
is more effective than that in connected subnetworks (ConFusion) on syn-
thetic datasets. In contrast, ConFusion is more effective than NeiFusion on
real-world datasets. As shown in Table 2, in terms of average travel time,
the increases of MADRL w/o NeiFusion are more than those of MADRL
w/o ConFusion on synthetic datasets. on real-world datasets, the increases of
MADRL w/o ConFusion are more than those of MADRL w/o NeiFusion. On
real-world datasets, the vehicle trajectories are more complicated than that
on synthetic datasets. It may lead to the severe traffic congestions in sev-
eral connected intersections, which are not limited to neighbor intersections.
These connected intersections can be correlated by ConFusion. Therefore,
ConFusion outperforms NeiFusion on real-world datasets. However, on syn-
thetic datasets, there are only straight trajectories. In this scenario, neighbor
intersections have direct impacts on the target intersection. Therefore, Nei-
Fusion outperforms ConFusion on synthetic datasets.

6 Conclusion

This paper proposes a multi-agent deep reinforcement learning method with
spatio-temporal feature fusion (MADRL-STFF) to solve TSC. The proposed
method includes three modules. In the first module, the raw data of initial obser-
vations are inputted into an embedding layer. This layer can encode the raw data
into initial feature representations. In the second module, spatio-temporal fea-
tures are extracted and fused from the initial feature representations. For tem-
poral feature fusion, the correlations among different time steps are captured
by attention mechanism. For spatial feature fusion, feature fusion of neighbor
agents and feature fusion in connected subnetworks are proposed to fuse spa-
tial features. In the final module, a Q-value prediction layer is constructed to

484 X. Du et al.

predict Q-values of the actions for each agent. The results of extensive experi-
ments on synthetic datasets and real-world datasets validate the superiority of
our method.

In the future, the proposed method will be extended to large-scale traf-
fic roadnets [3]. Besides, some traditional transportation methods [6,22] and
schedule-driven methods [11] can be used to learn the reward function and the
dynamic lengths of phases in reinforcement learning, respectively.

Acknowledgements. This work is supported by the National Key R&D Program
of China (2018AAA0101203), and the National Natural Science Foundation of China
(62072483).

References

1. Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multiarmed
bandit problem. Mach. Learn. 47(2–3), 235–256 (2002). https://doi.org/10.1023/
A:1013689704352

2. Bai, S., Kolter, J.Z., Koltun, V.: An empirical evaluation of generic convolutional
and recurrent networks for sequence modeling. arXiv preprint arXiv:1803.01271
(2018)

3. Chen, C., et al.: Toward a thousand lights: decentralized deep reinforcement learn-
ing for large-scale traffic signal control. In: AAAI 2020, vol. 34, no. 4, pp. 3414–3421
(2020)

4. Choe, C., Baek, S., Woon, B., Kong, S.H.: Deep Q learning with LSTM for traffic
light control. In: 2018 24th Asia-Pacific Conference on Communications (APCC),
pp. 331–336 (2018)

5. Chu, T., Wang, J., Codec, L., Li, Z.: Multi-agent deep reinforcement learning for
large-scale traffic signal control. IEEE Trans. Intell. Transp. Syst. 21(3), 1086–1095
(2020)

6. Gao, K., et al.: Solving traffic signal scheduling problems in heterogeneous traffic
network by using meta-heuristics. IEEE Trans. Intell. Transp. Syst. 20(9), 3272–
3282 (2019)

7. Garg, D., Chli, M., Vogiatzis, G.: Deep reinforcement learning for autonomous
traffic light control. In: 2018 3rd IEEE International Conference on Intelligent
Transportation Engineering (ICITE), pp. 214–218 (2018)

8. Gottlich, S., Herty, M., Ziegler, U.: Modeling and optimizing traffic light settings
in road networks. Comput. Oper. Res. 55, 36–51 (2015)

9. Haydari, A., Yilmaz, Y.: Deep reinforcement learning for intelligent transportation
systems: a survey. IEEE Trans. Intell. Transp. Syst., 1–22 (2020, in press). https://
doi.org/10.1109/TITS.2020.3008612

10. Hsu, J.: Alibaba cloud launched ‘ET City Brain 2.0’ in Hangzhou (2018)
11. Hu, H.C., Smith, S.F., Goldstein, R.: Cooperative schedule-driven intersection con-

trol with connected and autonomous vehicles. In: IROS 2019, pp. 1668–1673 (2019)
12. Hu, H.C., Smith, S.F.: Learning model parameters for decentralized schedule-

driven traffic control. In: ICAPS 2020, pp. 531–539 (2020)
13. Koonce, P., Rodegerdts, L.: Traffic signal timing manual. Technical report, United

States. Federal Highway Administration (2008)
14. Li, L., Lv, Y., Wang, F.: Traffic signal timing via deep reinforcement learning.

IEEE/CAA J. Autom. Sin. 3(3), 247–254 (2016)

https://doi.org/10.1023/A:1013689704352
https://doi.org/10.1023/A:1013689704352
http://arxiv.org/abs/1803.01271
https://doi.org/10.1109/TITS.2020.3008612
https://doi.org/10.1109/TITS.2020.3008612

Multi-agent DRL for Traffic Signal Control 485

15. Liang, X., Du, X., Wang, G., Han, Z.: A deep reinforcement learning network for
traffic light cycle control. IEEE Trans. Veh. Technol. 68(2), 1243–1253 (2019)

16. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature
518(7540), 529–533 (2015)

17. Mousavi, S.S., Schukat, M., Howley, E.: Traffic light control using deep policy-
gradient and value-function-based reinforcement learning. IET Intell. Transp. Syst.
11(7), 417–423 (2017)

18. Nishi, T., Otaki, K., Hayakawa, K., Yoshimura, T.: Traffic signal control based on
reinforcement learning with graph convolutional neural nets. In: 2018 21st Inter-
national Conference on Intelligent Transportation Systems, pp. 877–883 (2018)

19. Pol, E.V.D., Oliehoek, F.A.: Coordinated deep reinforcement learners for traffic
light control. In: NeurIPS 2016 (2016)

20. Schaul, T., Quan, J., Antonoglou, I., Silver, D.: Prioritized experience replay. In:
ICLR 2016 (2016)

21. Tan, T., et al.: Cooperative deep reinforcement learning for large-scale traffic grid
signal control. IEEE Trans. Cybern. 50(6), 2687–2700 (2020)

22. Varaiya, P.: The max-pressure controller for arbitrary networks of signalized inter-
sections. In: Ukkusuri, S., Ozbay, K. (eds.) Advances in Dynamic Network Model-
ing in Complex Transportation Systems. Complex Networks and Dynamic Systems,
vol. 2, pp. 27–66. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-
6243-9 2

23. Veres, M., Moussa, M.: Deep learning for intelligent transportation systems: A
survey of emerging trends. IEEE Trans. Intell. Transp. Syst. 21(8), 3152–3168
(2020)

24. Wang, X., Ke, L., Qiao, Z., Chai, X.: Large-scale traffic signal control using a novel
multiagent reinforcement learning. IEEE Trans. Cybern. 21(3), 1086–1095 (2020)

25. Wang, Y., et al.: STMARL: A spatio-temporal multi-agent reinforcement learning
approach for cooperative traffic light control. IEEE Trans. Mob. Comput., 1–15
(2020, in press). https://doi.org/10.1109/TMC.2020.3033782

26. Wei, H., Zheng, G., Gayah, V., Li, Z.: A survey on traffic signal control methods.
arXiv preprint arXiv:1904.08117 (2019)

27. Wei, H., Zheng, G., Gayah, V., Li, Z.: Recent advances in reinforcement learning for
traffic signal control: A survey of models and evaluation. ACM SIGKDD Explor.
Newsl. 22(2), 12–18 (2020)

28. Wei, H., Zheng, G., Yao, H., Li, Z.: IntelliLight: A reinforcement learning approach
for intelligent traffic light control. In: KDD 2018, pp. 2496–2505 (2018)

29. Wei, H., et al.: CoLight: Learning network-level cooperation for traffic signal con-
trol. In: CIKM 2019, pp. 1913–1922 (2019)

30. Wei, H., et al.: PressLight: Learning max pressure control to coordinate traffic
signals in arterial network. In: KDD 2019, pp. 1290–1298 (2019)

31. Ye, J., Zhao, J., Ye, K., Xu, C.: How to build a graph-based deep learning archi-
tecture in traffic domain: A survey. IEEE Trans. Intell. Transp. Syst., 1–21 (2020,
in press). https://doi.org/10.1109/TITS.2020.3043250

32. Zhang, H., et al.: CityFlow: A multi-agent reinforcement learning environment for
large scale city traffic scenario. In: WWW 2019, pp. 3620–3624 (2019)

33. Zheng, G., et al.: Diagnosing reinforcement learning for traffic signal control. arXiv
preprint arXiv:1905.04716 (2019)

34. Zheng, G., et al.: Learning phase competition for traffic signal control. In: CIKM
2019, pp. 1963–1972 (2019)

https://doi.org/10.1007/978-1-4614-6243-9_2
https://doi.org/10.1007/978-1-4614-6243-9_2
https://doi.org/10.1109/TMC.2020.3033782
http://arxiv.org/abs/1904.08117
https://doi.org/10.1109/TITS.2020.3043250
http://arxiv.org/abs/1905.04716

Monte Carlo Search Algorithms
for Network Traffic Engineering

Chen Dang1,2(B) , Cristina Bazgan2 , Tristan Cazenave2 ,
Morgan Chopin1 , and Pierre-Henri Wuillemin3

1 Orange Labs, Châtillon, France
{chen.dang,morgan.chopin}@orange.com

2 Université Paris-Dauphine, PSL Research University, CNRS, UMR 7243,
LAMSADE, 75016 Paris, France

{cristina.bazgan,tristan.cazenave}@dauphine.psl.eu
3 Sorbonne Université, CNRS, UMR 7606, LIP6, 75005 Paris, France

pierre-henri.wuillemin@lip6.fr

Abstract. The aim of Traffic Engineering is to provide routing config-
urations in networks such that the used resources are minimized while
maintaining a high level of quality of service (QoS). Among the opti-
mization problems arising in this domain, we address in this paper the
one related to setting weights in networks that are based on shortest
path routing protocols (OSPF, IS-IS). Finding weights that induce effi-
cient routing paths (e.g. that minimize the maximum congested link) is
a computationally hard problem.

We propose to use Monte Carlo Search for the first time for this
problem. More specifically we apply Nested Rollout Policy Adaptation
(NRPA). We also extend NRPA with the force exploration algorithm to
improve the results. In comparison to other algorithms NRPA scales bet-
ter with the size of the instance and can be easily extended to take into
account additional constraints (cost utilization, delay, . . .) or linear/non-
linear optimization criteria. For difficult instances the optimum is not
known but a lower bound can be computed. NRPA gives results close to
the lower bound on a standard dataset of telecommunication networks.

Keywords: Traffic engineering · Policy adaptation · Monte Carlo
search

1 Introduction

Despite the emergence of new network routing technologies such as Segment
Routing or MPLS (MultiProtocol Label Switching), many telecommunication
networks still mostly rely on the computation of shortest paths for the trans-
portation of packets, such as Open Shortest Path First (OSPF) or Intermediate
System to Intermediate System (IS-IS). In such routing protocols, the network
manager controls the data flow by simply supplying so-called administrative
weights to the links of the networks. Then, every packet is routed from its origin
c© Springer Nature Switzerland AG 2021
Y. Dong et al. (Eds.): ECML PKDD 2021, LNAI 12978, pp. 486–501, 2021.
https://doi.org/10.1007/978-3-030-86514-6_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86514-6_30&domain=pdf
http://orcid.org/0000-0003-1885-0583
http://orcid.org/0000-0002-5460-6222
http://orcid.org/0000-0003-4669-9374
http://orcid.org/0000-0002-9668-1300
http://orcid.org/0000-0003-3691-4886
https://doi.org/10.1007/978-3-030-86514-6_30

Monte Carlo Search Algorithms for Network Trafic Engineering 487

to its destination along the shortest paths induced by those weights. While this
method has the advantage of being easy to manage, it lacks precise control over
the paths that are elected to route the traffic because one can only modify those
paths indirectly by changing the weights. As a consequence, the main challenge
for a network manager is to find a set of weights that induce routing paths
such that the load is minimized while maintaining a high level of QoS on opera-
tional networks. Unfortunately, this task turns out to be computationally hard
to solve. In this paper, we are interested in one of the network optimization prob-
lems related to this issue: Given a bidirected graph and a set of demands, the
task is to find a set of weights such that the demands routed along the induced
shortest paths generate a minimum congestion i.e., the maximum ratio value of
the total traffic going through an edge over the edge’s capacity is minimized.
There are mainly two variants of this optimization problem studied in the lit-
erature namely the splittable and unsplittable versions. In the former, we allow
each demand to be routed along several shortest paths while, in the latter, each
demand is required to be routed on a unique shortest path between its origin
and its destination.

Several authors proposed to solve this problem using integer programming
models and meta-heuristics methods, the reader is referred to [6] for a complete
overview of these approaches. Regarding the splittable variant of the problem,
Fortz and Thorup [23] showed that it is NP-hard to approximate within a factor
3
2 − ε for all ε > 0. Hence, to cope with the hardness of this problem, many dif-
ferent meta-heuristics approaches were investigated. Fortz and Thorup [23] first
proposed a local search algorithm to solve the splittable variant which was latter
implemented in the TOTEM library [27] and called IGP-WO. This approach was
further extended to compute robust solutions against single link failures [24] or
in the context of oblivious routing [2]. Genetic algorithms were also proposed to
solve this problem [8,21]. The reader is referred to the surveys [1,22] for more
details and references about the existing meta-heuristics approaches proposed
to solve this splittable variant. Most of the previous meta-heuristics were tested
on networks of small/moderate size and do not consider the unsplittable case
or QoS constraints such as the delay. Regarding the unsplittable case, Bley [4]
showed that this variant is NP-hard even on bidirected cycles and not O(n1−o(1))-
approximable unless P = NP in the general case. In [5], the author proposed
an exact algorithm using a two-phase approach: the problem is decomposed into
a master problem that aims at finding an optimal shortest path routing, and
a client problem which consists in finding a compatible set of weights for those
shortest paths. This master problem is modeled using an integer linear program
and solved using a branch-and-cut algorithm. In [3], further exact algorithms are
proposed either based on a compact formulation of the problem or a dynamic
programming algorithm using a tree decomposition of the input graph. Unfor-
tunately, the current exact methods can only handle networks of moderate size
(e.g. dozens of nodes) while real networks can have hundreds of routers and links.
In this paper, we propose to use a Monte Carlo Search approach in order to get
algorithms that (i) achieve a better scalability and (ii) can easily be extended
to integrate operational constraints (unique shortest paths, delay, . . .).

488 C. Dang et al.

Monte Carlo Search algorithms have been successfully applied to many dif-
ficult problems but not yet to telecommunication networks optimization. We
address in this paper the use of Monte-Carlo Search for this difficult problem.
We compare UCT [26], Nested Monte Carlo Search (NMCS) [9] and Nested Roll-
out Policy Adaptation (NRPA) [32] which is an algorithm that learns a playout
policy online on each instance. NMCS is an algorithm that works well for puz-
zles. It biases its playouts using lower level playouts. At level zero NMCS adopts
a uniform random playout policy. Online learning of playout strategies com-
bined with NMCS has given good results on optimization problems[31]. Other
applications of NMCS include Single Player General Game Playing [28], Coding
Theory [25], Cooperative Pathfinding [7], Software testing and heuristic Model-
Checking [30], the Pancake problem, Games [13], Cryptography and the RNA
inverse folding problem.

Online learning of a playout policy in the context of nested searches has been
further developed for puzzles and optimization with Nested Rollout Policy Adap-
tation (NRPA) [32]. NRPA has found new world records in Morpion Solitaire
and crosswords puzzles. Edelkamp, Cazenave and co-workers have applied the
NRPA algorithm to multiple problems. They have optimized the algorithm for
the Traveling Salesman with Time Windows (TSPTW) problem [15,16]. Other
applications deal with 3D Packing with Object Orientation [18], the physical
traveling salesman problem [19], the Multiple Sequence Alignment problem [20],
Logistics [11,17], Graph Coloring [12] and Inverse Folding [10]. The principle of
NRPA is to adapt the playout policy so as to learn the best sequence of moves
found so far at each level.

The paper is organized as follows. Section 2 is devoted to the basic definitions
and presentation of the optimization problem. Section 3 explains the application
of Monte Carlo Search to the routing problem. Section 4 gives experimental
results while concluding remarks and future research directions are given in
Sect. 5.

2 Problem Formulation

In this paper we consider a bidirected graph that is a digraph where, for any
arc uv, the reverse arc vu is also present. Given a bidirected graph G = (V,A),
every vertex v ∈ V corresponds to a router while an arc uv corresponds to a link
between routers u and v. Every arc uv is associated a capacity denoted by cuv.
Let K denote a set of demands or commodities to be routed in G. Each demand
k ∈ K is defined by a pair of vertices sk and tk representing the source and the
target of k, a traffic volume Dk to be routed from sk to tk. Such a demand k

will be denoted by the quadruplet (sk, tk,Dk). Given a metric w ∈ Z
|A|
+ , each

demand k ∈ K is routed along the shortest paths between sk and tk. If there are
more than one shortest paths joining the extremities of k, the traffic volume Dk is
splitted evenly among those paths according to the so-called ECMP (Equal-Cost
Multi-Path) rule. More precisely, the traffic volume that reaches a node v ∈ V
must be split equally among all arcs leaving v and belonging to the shortest

Monte Carlo Search Algorithms for Network Trafic Engineering 489

paths toward destination tk. We then define the load of an arc uv induced by w,
denoted by load(uv,w), as the amount of traffic traversing the arc uv over its
capacity (see Fig. 1). The congestion cong(w) of a given metric w is defined by
maxuv∈A load(uv,w), that is the maximum load over all arcs.

Fig. 1. Illustration of a shortest path routing with the ECMP rule. In this figure,
we assume unit capacities and suppose that a demand k with traffic volume Dk = 1
must be routed from sk = a to tk = g. A label wuv; load(uv,w) is associated to each
arc uv ∈ A.

We are now in position to define the optimization problem studied in this
paper. The Minimum Congestion Shortest Path Routing (Min-Con-

SPR) problem is to find a metric w ∈ Z
|A|
+ and the routing paths induced

by these weights such that the network congestion cong(w) is minimum. The
problem Min-Con-SPR can be defined formally as follows:

Min-Con-SPR

Input: A bidirected graph G = (V,A), where each arc uv has a capacity cuv ≥ 0
and a set of communities K defined for each k ∈ K by the quadruplet (sk, tk,Dk).

Output: A metric w ∈ Z
|A|
+ of minimum congestion cong(w).

In this paper, we also consider the Min-Con-SPR problem with some or all
of the following additional constraints

Unicity: In this constraint, we require that each demand is routed along a
uniquely determined shortest path.
Delay: This constraint requires that the routing paths have length at most
the length of a shortest (sk, tk)-path (in terms of number of arcs) plus a
constant c ∈ N+.

From an operational point of view, the unicity constraint is sometimes required
by the network manager to monitor the flow circulating in the system more
easily. In addition to minimizing the congestion, the delay constraint ensure a
certain level of QoS regarding the latency of answering the requests made by the
clients.

It is worth noting that all of our results regarding the delay constraint can
easily be extended to the more general case where each arc is associated with
a latency value and each demand k has a delay value Δk and must be routed
along shortest paths with total latency value less than Δk.

490 C. Dang et al.

3 Monte Carlo Search on Routing Problem

Monte Carlo Search is a general optimization technique. We detail in this section
how it can be used and improved for Min-Con-SPR with or without the previ-
ous additional constraints.

3.1 Monte Carlo Search

In this section, we present three different Monte Carlo search-based approaches
which are applicable to the target problem. The first approach is UCT (Upper
Confidence Trees), which uses bandit ideas to guide Monte Carlo planning [26].
Assuming the state s, playouts will be completed in a certain amount of time
and statistics about the states and the actions will be collected. Supposing the
action space for state s is A(s), the action a is chosen such that the upper bound
of the score is maximized:

as = arg max
a∈A(s)

(
Q̄s,a + τ

√
ln(Ns)
Ns,a

)

where Q̄s,a is the estimated score of the action a at state s, Ns is the number of
times state s was visited, Ns,a is the number of times action a was selected at
state s. τ is a constant value which controls the degree of exploration.

Another approach is NMCS (Nested Monte Carlo Search) [13]. By nesting
the evaluation function inside another evaluation function, the ability of the
traditional Monte Carlo is greatly improved. However this approach is more
sensible to the size of the search space.

Algorithm 1: The playout algorithm
Function playout(state, policy):

sequence ← []
while state is not terminal do

z ← ∑
a′∈A(state) epolicy[code(state,a

′)]

Draw a with probability 1
z epolicy[code(state,a)]

state ← play(state, a)
append a to sequence

end
return (score(state), sequence)

NRPA (Nested Rollout Policy Adaptation) [32] is also used in our study. The
NRPA can be decomposed into three principal functions: the playout function,
the adapt function and the NRPA function. The Algorithms 1 and 2 show the
three functions respectively. The NRPA use a domain specific code code(state, a)
for the action a in the representation of the policy, where many actions may share
the same code, and actions with different codes are searched separately. For each
nesting level, NRPA recursively calls to the lower level, searching to improve its

Monte Carlo Search Algorithms for Network Trafic Engineering 491

current best score. When it succeeds, the best score of the corresponding state
score(state) is updated, and the current action sequence is recorded as the best
sequence.

Algorithm 2: The adapt and NRPA algorithm
Function adapt(policy, sequence, α):

pol ← policy
state ← root
for a in sequence do

z ← ∑
a′∈A(state) epolicy[code(state,a

′)]

∀a′ ∈ A(state), pol[code(state, a′)] −= α ∗ 1
z epolicy[code(state,a

′)]

pol[code(state, a)] += α
state ← play(state, a)

end
return pol

end
Function NRPA(level, policy):

if level == 0 then
return playout(root, policy)

end
else

bestScore ← inf
for N iterations do

(result, new) ← NRPA(level − 1, policy)
if result ≤ bestScore then

bestScore ← result
seq ← new

end
policy ← adapt(policy, seq)

end
return (bestScore, seq)

end
end

3.2 Modeling with Monte Carlo Search

To model the Min-Con-SPR problem with Monte Carlo Search algorithms,
we suppose that a solution to the Min-Con-SPR problem is represented by a
point (i.e. the metric w = 〈w1, w2, ..., w|A|〉) in the discrete space [1, 65535]|A|.
To reduce the search space, we set the value space of the metric as a subspace
W of the original space [1, 65535].

For each playout, the metric of the graph is assigned and the objective func-
tion is evaluated. In our case, cong(w) is used as the score. After obtaining the
congestion of the graph, an additional bias will be added in the case that the
constraints are not fully satisfied, which will encourage the algorithm to explore

492 C. Dang et al.

the solutions with smaller congestion value which satisfies all the constraints.
The final score for state s is then Qs = cong(w) + cost(unchecked constraints).

Furthermore, we assume that the arcs of a graph have a default order, and the
metric values corresponding to them are assigned sequentially. Thus, an action
a is therefore a choice of metric values for an arc, and the state s is uniquely
determined by the metric values already assigned to the arcs. For NRPA, the
domain-specific code is uniquely determined by the node of the graph to which
the metric is currently to be assigned.

3.3 Improvement

In order to improve the stability of the NRPA algorithm, a stabilized version
of NRPA is proposed in [14] to encourage exploration before the adaptation of
the policy. During the level 0 of NRPA, instead of running a single playout and
use its result as the score, multiple playouts will be performed and only the best
result will be used as the score. It improves the average scores for many problems.
In our experiments, the stabilized NRPA also achieved better performance than
the original NRPA. For brevity, we denote the stabilized NRPA with m playouts
as NRPA(m).

We also found that, during the execution of the NRPA, for small and medium-
sized graphs, the algorithm tends to prefer exploitation over exploration, which
means that the same metric would be obtained many times without exploring
new ones. To avoid or limit this behavior, we propose to (i) use a hashtable
to record all explored metrics and their scores to avoid recalculation of the
congestion and (ii) a force exploration mechanism, which can be of independent
interest for the NRPA algorithm. This mechanism works as follows: firstly, all
explored metrics w are recorded with their hash codes. Instead of just proposing
the metric based on the policy, if one metric has already been explored, a random
metric value will be assigned to a random arc of the graph until the generated new
metric have never been explored. This simple technique increases the exploration
to the maximum, without changing the original NRPA’s mechanic. We find that
force exploration greatly increases the performance of the NRPA and Stabilized
NRPA.

For some graphs, it is difficult to find routing metrics that satisfy all con-
straints, especially unique path constraints. In such cases, using a unique metric
for each arc can greatly increase the proportion of results that satisfy the con-
straints. However, this limits the number of metrics to be greater than or equal
to the number of arcs. This will in many cases increase the proportion of valid
solutions, i.e. solutions that satisfy the constraints. But as we will show later, in
the absence of constraints, this restriction reduces the quality of the solution.

4 Experimental Results

The algorithms are implemented in C++ and the experiments are done on a
server (64-core Intel(R) Xeon(R) Gold 5218 CPU), with 125 GB of memory.
Only one core is used during the experiments.

Monte Carlo Search Algorithms for Network Trafic Engineering 493

4.1 Dataset

The experiments are done on several graphs from SNDlib [29] of different sizes.
In addition to these instances, some random graphs are also generated using the
same configuration as in [23]. The nodes are generated uniformly in a unit square,
and the probability of having an arc between any two nodes is determined by a
constant. The capacity of all arcs is set to 1000. We also used Waxman graphs
[23] for our test. The probability of having an arc between two nodes is given
by:

p(u, v) = αe
−d(u,v)
βdmax

where d(u, v) is the Euclidean distance between u and v, dmax is the Maximum
Euclidean distance between any two nodes, α and β are parameters which control
the density of the graph. The capacities of the arcs are also set to 1000.

For the generated graphs, demands are generated the same way as [23], i.e.,
the traffic volume Dk for demand k between nodes sk and tk is:

Dk = αSskTtkC(sk,tk)e
−d(sk,tk)

2dmax

where Su, Tu ∈ [0, 1] are two random numbers for node u, and C(s,t) ∈ [0, 1] is
a random number for couple (s, t). Every generated graph is verified to be con-
nected. Table 1 shows the information of the graphs we used in our experiments.
Each graph is pre-processed before the computation: all arcs connected to iso-
lated nodes have a pre-determined metric, since their values do not affect the
traffic and therefore are not considered again in the Monte Carlo computation.

Table 1. Information of networks: network name, number of nodes, number of arcs,
number of demands, total demand, maximum demand

Name |V | |A| |K| ∑
Dk max(Dk) Name |V | |A| |K| ∑

Dk max(Dk)

abilene 12 30 132 3000002 424969 rand50a 50 132 2450 81419 251

atlanta 15 44 210 136726 7275 rand50b 50 278 2450 86981 249

newyork 16 98 240 1774 42 rand100a 100 278 9900 269535 240

france 25 90 300 99830 1808 rand100b 100 534 9900 307699 228

norway 27 102 702 5348 14 wax50a 50 142 2450 85150 235

nobel-us 14 42 91 5420 324 wax50b 50 298 2450 82208 221

nobel-ger 17 52 121 660 50 wax100a 100 284 9900 331386 270

nobel-eu 28 82 378 1898 54 wax100b 100 492 9900 293799 243

brain 161 332 14311 12.3e9 69.1e6

4.2 Comparison of the Monte Carlo Algorithms

With both unique path and delay constraints applied, the Monte Carlo search
approaches are evaluated during a limited runtime.

During our experiments, we found that executing several different runs was
generally better than executing only one long run, because different runs allows

494 C. Dang et al.

the policy to start over, thus avoiding the algorithm getting stuck at some local
minimum. Table 2 shows the average score of each approach on 5 executions.
Since for a limited period of time, UCT and NRPA can perform multiple runs of
short duration or one long run, we kept both results for comparison. For NRPA
and Stabilized NRPA, only force exploration is used.

Table 2. Comparison of the best scores of Monte Carlo Search Algorithms in limited
runtime with all constraints. Format: average score of 5 executions (number of exe-
cutions in which no valid solution was found). “–”: no valid solution is found in all
executions.

Class Name Runtime (min) |W | UCT NMCS NRPA NRPA(10)

Multiple Single Multiple Single

SNDlib abilene 10 50 65.158 87.108 60.905 60.905 60.905 60.905

atlanta 10 50 2.9608 4.3968 2.3626 2.318 2.318 2.318

newyork 30 100 0.1255(1) 0.172(4) 0.0978 0.0636 0.062 0.0622

france 30 100 3.983 – 3.20836 2.892 2.92 2.9268

norway 60 150 – – 0.508(2) 0.3054 0.295 0.3042

nobel-us 10 50 29.48 35.04 25.68 25.2 25.2 25.2

nobel-ger 10 100 4.44 6.06 4.4 4.4 4.4 4.4

nobel-eu 30 100 12.08 14.6(3) 10.94 10.7 10.88 10.74

brain 60 50 1.002 1.0513 0.9848 0.974 0.961 0.98

The table very clearly shows that NRPA and its variants outperform the
other two MC methods. Moreover, the number of playouts of NRPA does not
depend on the size of the graph or the size of the metric space, which makes it
easier to scale the algorithm to larger graphs and search spaces. As for NMCS, it
performs well with smaller graphs and small search spaces, but does not scale well
to larger cases. Therefore, in the subsequent experiments, we will only consider
the use of NRPA-based algorithms.

Since there are many variants for NRPA, we first investigated the effect of
these techniques. Figure 2 shows the distribution of the scores on several SNDlib
graphs with different techniques of NRPA. The more the distribution is concen-
trated around the low values, the higher the chance of getting lower congestion
values, thus the better this configuration is.

The distribution clearly demonstrates the improvement of force exploration
for NRPA and stabilized NRPA, while stabilized NRPA greatly increases the
ratio of valid solutions. However the effect of unique metrics is not as obvious,
and this extra constraint can sometimes make it more difficult to find better
results.

4.3 Impact of the Metric Space

Although in many previous studies of heuristics, the metric space is generally
a continuous set of integers, in the course of our research, we found that the

Monte Carlo Search Algorithms for Network Trafic Engineering 495

Fig. 2. Distribution of the congestion values with all constraints on SNDlib graphs

metric space has an important impact on the performance of the algorithm. For
example, compared to a continuous set of integers or the set of prime numbers,
a set of random numbers of the same size usually gives a much higher rate of
valid solutions. Figure 3 shows an example of the distribution of scores obtained
with different metric spaces of the same size. The random numbers are uniformly
pre-generated in [1, 65535], and remain the same during the experiment.

We also find out that for most graphs, when no constraints are applied, a
smaller metric space helps the algorithm to converge better because the algo-
rithm can better explore the search space. Figure 4 shows the convergence of
different metric space sizes. However when unique path and delay constraints
are applied, a small metric space can make it more difficult to find a metric
that induces a valid solution. Therefore, increasing the search space can greatly
increase the chance of obtaining a solution that satisfies all constraints. Figure 5
shows the influence of the metric space on the percentage of valid solutions.

4.4 Comparison

In this test, we compare the congestion value computed by our algorithm after
a fixed amount of time with the congestion values obtained via other common
approaches. The first approach for the problem, which is also the most basic
approach is the UnitOSPF, which assigns all arcs the same unit metric value.

496 C. Dang et al.

Fig. 3. Distribution of the congestion values with different metric spaces of the same
size using NRPA with force exploration

InvCapOSPF is another approach recommended by Cisco, which sets the metric
inversely proportional to the arc’s capacity. However, in many graphs the capac-
ity on all arcs is the same, so in many cases this method will give the same results
as UnitOSPF. We also compare our algorithm with the local search IGP-WO
implemented in [27] and based on [23]. We slightly modify the objective function
of IGP-WO to minimize the congestion and, when considering the unicity con-
straint, add a high penality for solutions that violate that constraint. We did not
further modify the algorithm to take into account the delay constraint as this
would require deeper modifications and understanding of the implementation of
IGP-WO.

In order to evaluate the quality of the heuristic solutions, we compare them
with the optimal value obtained using the compact formulation of the Maximum

Concurrent Flow (MCF) problem. It is not hard to see that any optimal solu-
tion for MCF is a lower bound for Min-Con-SPR (denoted LPLB for Linear
Programming Lower Bound). Indeed, a solution of a MCF instance defines rout-
ing paths for each demand that are not constrained to follow the ECMP rule or
being induced by shortest paths w.r.t some metric.

Monte Carlo Search Algorithms for Network Trafic Engineering 497

Fig. 4. Convergence of NRPA without constraints. The score is averaged on 10 runs.

Fig. 5. Size of the metric space has a positive impact on the valid solution ratio when
constraints are applied. The result is averaged on 1000 runs

Table 3 shows the comparison of the results. To keep the results consistent
across configurations, for NRPA, the metric space size and computation time of
each graph are consistent with those shown in Table 2 for the constrained cases.
For all generated graphs, the metric space size is 250, and the computation time
is 30 min for graphs of 50 nodes, 60 min for graphs of 100 nodes. However when
no constraints are applied, the metric space for all graphs is set to [1,3] for better
performance. The scores are averaged on 5 executions.

For random graphs and waxman graphs, the applied delay constraint is often
too restrictive so that no valid solutions can be found. In this paper, we propose
an automatic delay relaxation mechanism that allows the NRPA algorithm to
relax the delay constraint when it is difficult to find a valid solution.

In the initial state, the delay constraint is actually defined as the length
of the shortest path (in terms of arcs) plus one for each demand. We relax the
constraint to shortest path plus c, where c ∈ N+. Assuming that the computation
has a target time or total number of runs T , we divide all the computations into
different phases. At each stage, we count the total number of runned playouts,
the number of valid solutions and the number of solutions that violate the delay
constraint. After T×(1− 1

2c) time or iterations, if the percentage of valid solutions

498 C. Dang et al.

is less than 5% and the percentage of results that violate the delay constraint is
greater than 10%, we move to the next stage, where all statistics are recalculated
and c = c + 1, until c reaches a maximum provided value cmax.

Table 3. Maximum congestion value of state-of-the-art heuristics and our NRPA. For
each constraint configuration (“Without constraints”, “Unicity” and “All” i.e. both
“Unicity” and “Delay”) and each heuristic (if available for the given configuration),
we show the congestion induced by the computed weights. This value is in bold if it is
the best one among those returned by the other heuristics (w.r.t the configuration). In
addition, a value is followed by ∗ if equal to the lower bound LPLB (which is reported
in the last column). Finally, an entry c = i indicates the minimum value i of c for
which we were able to find a solution when considering all constraints.

Name Without constraints Unicity All LPLB

Unit InvCap IGP-WO NRPA IGP-WO NRPA NRPA

OSPF OSPF [27]

abilene 187.55 89.48 60.42 60.412 60.41 60.41 60.90 60.411

atlanta 3.26 3.37 2.22 2.22 2.29 2.29 2.32 2.18

newyork 0.076 0.076 0.051 0.053 0.062 0.065 0.064 0.045

france 4.12 4.12 2.53 2.56 2.88 2.88 2.89 2.41

norway 0.42 0.42 0.28 0.29 0.29 0.30 0.31 0.27

nobel-us 37.15 37.15 24.4 24.7 24.7 24.7 25.2 24.2

nobel-ger 5.54 5.54 3.9 3.89 4.4 4.4 4.4 3.87

nobel-eu 13.31 13.31 10.68 10.67∗ 10.7 10.7 10.7 10.67

brain 1.415 1.415 0.962 0.903∗ 0.972 0.972 0.974 0.903

rand50a 7.9 7.9 5.55 5.77 5.84 5.92 5.96(c = 2) 5.55

rand50b 2.88∗ 2.88∗ 2.88∗ 2.88∗ – 2.88 2.88(c = 3) 2.88

rand100a 15.71 15.71 10.42 9.59 – 10.35 10.76(c = 4) 9.35

rand100b 4.15 4.15 4.38 3.85 – 6.06 5.94(c = 5) 3.76

wax50a 6.46 6.46 4.63 4.66 4.665 4.67 4.71(c = 2) 4.59

wax50b 2.279∗ 2.279∗ 2.284 2.279∗ – 2.279 2.279(c = 3) 2.279

wax100a 17.46 17.46 15.049 15.048 – 15.049 15.049(c = 4) 15.048

wax100b 5.51 5.51 4.14 4.04 – 5.86 5.91(c = 5) 3.44

The results show that NRPA performs very well for all three different con-
straint configurations on all sizes of graphs and is very close to the lower bound.
Compared to local search, our algorithm gives better results in most cases. At
the same time, only very little computational time and resources are used. The
different runs can be computed in parallel, which substantially improves the
running time of NRPA.

The proposed automatic delay relaxation mechanism is not the best way to
solve the problem of minimizing the congestion of the graph while keeping the
delay minimized. Nevertheless, we obtained rather encouraging results that show
the strong adaptability of our approach and a promising potential for solving
even more difficult variants of the problem (single-link failure, oblivious routing,
capacity planning, . . .).

Monte Carlo Search Algorithms for Network Trafic Engineering 499

4.5 Random Dense Graphs

For dense networks, the number of potential routing paths increases rapidly,
which makes the problem even harder to solve in particular with the unicity
constraint, as observed in [5]. We show that NRPA can easily scale up to graphs
with large amount of nodes and arcs. So we generated ten random graphs of
different sizes with the same generation mechanism as described in Sect. 4.1,
and the traffic between two nodes are generated with a probability of 0.1. The
largest graph contains 1000 nodes and 99450 arcs.

Figure 6 shows the scores of the random graphs without constraints. The
metric space is set to [1,3] for both local search and NRPA algorithms, and the
scores of NRPA are averaged on 10 executions.

Fig. 6. Congestion with respect to the number of the nodes

Regarding the LPLB bound, with a compact formulation, we were not able
to compute the lower bounds for instances larger than 100 nodes because the
random graphs are more dense and thus the problem is too large to be solved.
In future experiments, using a non-compact path formulation of the MCF may
greatly improve the chances of obtaining lower bounds for larger graphs.

The results show that on large graphs, local search does not provide accept-
able results within an execution time of 30 min. On the contrary, even on graphs
with thousands of nodes, our method still gives reasonable results in a very short
time.

5 Conclusion

In this work we applied for the first time the Monte Carlo Search approach
in the context of setting efficient weights in IP networks, in particular for the
Min-Con-SPR problem. The principle of the Monte Carlo Search algorithm is
to learn a policy online on each instance using nested levels of best solutions.
We compare several Monte Carlo methods and propose the most appropriate
to the target problem. Experiments show that for instances from the literature

500 C. Dang et al.

our approach is comparable with the existing ones. Nevertheless, for graphs
of larger size, our approach outperforms the local search heuristics and gives
results close to the lower bound. At the same time, this approach can be easily
extended for problems with additional constraints and is not sensitive to the size
of the graph or the size of the search space in particular the number of available
weights, giving it a large range of applications. Furthermore, for the unsplittable
case, this method may provide optimal solutions (or close to the optimal) for
instances where exact approaches fail, especially for dense graphs [5]. For some
instances where it is not possible to find a way to satisfy all the constraints, we
also propose a mechanism for automatically relaxing the constraints. Another
algorithm specifically aimed at optimizing congestion with the lowest possible
delay constraint will be the direction of subsequent research.

References

1. Altin, A., Fortz, B., Thorup, M., Ümit, H.: Intra-domain traffic engineering with
shortest path routing protocols. Ann. Oper. Res. 204(1), 65–95 (2013). https://
doi.org/10.1007/s10479-012-1270-7

2. Altin, A., Fortz, B., Ümit, H.: Oblivious OSPF routing with weight optimization
under polyhedral demand uncertainty. Networks 60(2), 132–139 (2012)

3. Benhamiche, A., Chopin, M.: Toward scalable algorithms for the unsplittable short-
est path routing problem. Research report, Orange Labs (2020)

4. Bley, A.: Approximability of unsplittable shortest path routing problems. Networks
54(1), 23–46 (2009)

5. Bley, A.: An integer programming algorithm for routing optimization in IP net-
works. Algorithmica 60(1), 21–45 (2011)

6. Bley, A., Fortz, B., Gourdin, É., Holmberg, K., Klopfenstein, O., Pióro, M.,
Tomaszewski, A., Ümit, H.: Optimization of OSPF routing in IP networks. In:
Koster, A., Muñoz, X. (eds.) Graphs and Algorithms in Communication Net-
works: Studies in Broadband, Optical, Wireless and Ad Hoc Networks. An EATCS
Series, pp. 199–240. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-02250-0 8

7. Bouzy, B.: Monte-Carlo fork search for cooperative path-finding. In: Cazenave, T.,
Winands, M.H.M., Iida, H. (eds.) CGW 2013. CCIS, vol. 408, pp. 1–15. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-05428-5 1

8. Buriol, L.S., Resende, M.G.C., Ribeiro, C.C., Thorup, M.: A hybrid genetic algo-
rithm for the weight setting problem in OSPF/IS-IS routing. Networks 46(1),
36–56 (2005)

9. Cazenave, T.: Nested Monte-Carlo search. In: Boutilier, C. (ed.) IJCAI, pp. 456–
461 (2009)

10. Cazenave, T., Fournier, T.: Monte Carlo inverse folding. In: Monte Search at IJCAI
(2020)

11. Cazenave, T., Lucas, J., Triboulet, T., Kim, H.: Policy adaptation for vehicle rout-
ing. Ai Commun. (2021)

12. Cazenave, T., Negrevergne, B., Sikora, F.: Monte Carlo graph coloring. In: Monte
Search at IJCAI (2020)

13. Cazenave, T., Saffidine, A., Schofield, M.J., Thielscher, M.: Nested Monte Carlo
search for two-player games. In: AAAI, pp. 687–693 (2016)

https://doi.org/10.1007/s10479-012-1270-7
https://doi.org/10.1007/s10479-012-1270-7
https://doi.org/10.1007/978-3-642-02250-0_8
https://doi.org/10.1007/978-3-642-02250-0_8
https://doi.org/10.1007/978-3-319-05428-5_1

Monte Carlo Search Algorithms for Network Trafic Engineering 501

14. Cazenave, T., Sevestre, J.B., Toulemont, M.: Stabilized nested rollout policy adap-
tation. In: Monte Search at IJCAI (2020)

15. Cazenave, T., Teytaud, F.: Application of the nested rollout policy adaptation
algorithm to the traveling salesman problem with time windows. In: Hamadi, Y.,
Schoenauer, M. (eds.) LION 2012. LNCS, pp. 42–54. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-34413-8 4

16. Edelkamp, S., Gath, M., Cazenave, T., Teytaud, F.: Algorithm and knowledge
engineering for the TSPTW problem. In: 2013 IEEE Symposium on Computational
Intelligence in Scheduling (SCIS), pp. 44–51. IEEE (2013)

17. Edelkamp, S., Gath, M., Greulich, C., Humann, M., Herzog, O., Lawo, M.: Monte-
Carlo tree search for logistics. In: Clausen, U., Friedrich, H., Thaller, C., Geiger, C.
(eds.) Commercial Transport. LNL, pp. 427–440. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-21266-1 28

18. Edelkamp, S., Gath, M., Rohde, M.: Monte-Carlo tree search for 3D packing with
object orientation. In: Lutz, C., Thielscher, M. (eds.) KI 2014. LNCS (LNAI),
vol. 8736, pp. 285–296. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
11206-0 28

19. Edelkamp, S., Greulich, C.: Solving physical traveling salesman problems with
policy adaptation. In: 2014 IEEE Conference on Computational Intelligence and
Games (CIG), pp. 1–8. IEEE (2014)

20. Edelkamp, S., Tang, Z.: Monte-Carlo tree search for the multiple sequence align-
ment problem. In: SOCS 2015, pp. 9–17. AAAI Press (2015)

21. Ericsson, M., Resende, M.G.C., Pardalos, P.M.: A genetic algorithm for the weight
setting problem in OSPF routing. J. Comb. Optim. 6(3), 299–333 (2002). https://
doi.org/10.1023/A:1014852026591

22. Fortz, B.: Applications of meta-heuristics to traffic engineering in IP networks. Int.
Trans. Oper. Res. 18(2), 131–147 (2011)

23. Fortz, B., Thorup, M.: Increasing internet capacity using local search. Comput.
Optim. Appl. 29, 13–48 (2000). https://doi.org/10.1023/B:COAP.0000039487.
35027.02

24. Fortz, B., Thorup, M.: Robust optimization of OSPF/IS-IS weights. In: INOC, pp.
225–230 (2003)

25. Kinny, D.: A new approach to the snake-in-the-box problem. In: ECAI 2012, pp.
462–467. IOS Press (2012)

26. Kocsis, L., Szepesvári, C.: Bandit based Monte-Carlo planning. In: Fürnkranz, J.,
Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp.
282–293. Springer, Heidelberg (2006). https://doi.org/10.1007/11871842 29

27. Leduc, G., et al.: An open source traffic engineering toolbox. Comput. Commun.
29(5), 593–610 (2006)

28. Méhat, J., Cazenave, T.: Combining UCT and Nested Monte Carlo search for
single-player general game playing. IEEE TCIAIG 2(4), 271–277 (2010)

29. Orlowski, S., Pióro, M., Tomaszewski, A., Wessäly, R.: SNDlib 1.0-survivable net-
work design library. Networks 55(3), 276–286 (2010)

30. Poulding, S.M., Feldt, R.: Heuristic model checking using a Monte-Carlo tree search
algorithm. In: GECCO, pp. 1359–1366 (2015)

31. Rimmel, A., Teytaud, F., Cazenave, T.: Optimization of the Nested Monte-Carlo
algorithm on the traveling salesman problem with time windows. In: Di Chio,
C., et al. (eds.) EvoApplications 2011. LNCS, vol. 6625, pp. 501–510. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-20520-0 51

32. Rosin, C.D.: Nested rollout policy adaptation for Monte Carlo Tree search. In:
IJCAI, pp. 649–654 (2011)

https://doi.org/10.1007/978-3-642-34413-8_4
https://doi.org/10.1007/978-3-319-21266-1_28
https://doi.org/10.1007/978-3-319-21266-1_28
https://doi.org/10.1007/978-3-319-11206-0_28
https://doi.org/10.1007/978-3-319-11206-0_28
https://doi.org/10.1023/A:1014852026591
https://doi.org/10.1023/A:1014852026591
https://doi.org/10.1023/B:COAP.0000039487.35027.02
https://doi.org/10.1023/B:COAP.0000039487.35027.02
https://doi.org/10.1007/11871842_29
https://doi.org/10.1007/978-3-642-20520-0_51

Energy and Emission Prediction
for Mixed-Vehicle Transit Fleets Using

Multi-task and Inductive Transfer
Learning

Michael Wilbur1(B), Ayan Mukhopadhyay1, Sayyed Vazirizade1,
Philip Pugliese2, Aron Laszka3, and Abhishek Dubey1

1 Vanderbilt University, Nashville, TN 37203, USA
michael.p.wilbur@vanderbilt.edu

2 Chattanooga Area Regional Transportation Authority, Chattanooga, TN, USA
3 University of Houston, Houston, TX, USA

Abstract. Public transit agencies are focused on making their fixed-line
bus systems more energy efficient by introducing electric (EV) and hybrid
(HV) vehicles to their fleets. However, because of the high upfront cost
of these vehicles, most agencies are tasked with managing a mixed-fleet
of internal combustion vehicles (ICEVs), EVs, and HVs. In managing
mixed-fleets, agencies require accurate predictions of energy use for opti-
mizing the assignment of vehicles to transit routes, scheduling charging,
and ensuring that emission standards are met. The current state-of-the-
art is to develop separate neural network models to predict energy con-
sumption for each vehicle class. Although different vehicle classes’ energy
consumption depends on a varied set of covariates, we hypothesize that
there are broader generalizable patterns that govern energy consump-
tion and emissions. In this paper, we seek to extract these patterns to
aid learning to address two problems faced by transit agencies. First,
in the case of a transit agency which operates many ICEVs, HVs, and
EVs, we use multi-task learning (MTL) to improve accuracy of forecast-
ing energy consumption. Second, in the case where there is a significant
variation in vehicles in each category, we use inductive transfer learning
(ITL) to improve predictive accuracy for vehicle class models with insuf-
ficient data. As this work is to be deployed by our partner agency, we
also provide an online pipeline for joining the various sensor streams for
fixed-line transit energy prediction. We find that our approach outper-
forms vehicle-specific baselines in both the MTL and ITL settings.

Keywords: Energy prediction · Smart transit · Transfer learning ·
Multi-task learning

1 Introduction

Context: Public transit agencies are focused on finding ways to make their
fixed-line bus systems more energy efficient by introducing electric vehicles (EVs)
c© Springer Nature Switzerland AG 2021
Y. Dong et al. (Eds.): ECML PKDD 2021, LNAI 12978, pp. 502–517, 2021.
https://doi.org/10.1007/978-3-030-86514-6_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86514-6_31&domain=pdf
https://doi.org/10.1007/978-3-030-86514-6_31

Energy and Emission Prediction for Mixed-Vehicle Transit Fleets 503

and hybrid vehicles (HVs), which have reduced impacts on the environment in
comparison to traditional vehicles with internal combustion engines (ICEVs).
However, EVs and HVs are expensive and in practice, transit agencies have
to manage a mixed-vehicle fleet, requiring complex scheduling and assignment
procedures to maximize the overall energy efficiency [13,20,23] while satisfying
the expectations of transit demand. This is turn requires the ability to estimate
energy and emissions of vehicles on assigned routes and trips. Energy prediction
models can be categorized based on their modeling scale. Microscopic models
aim to estimate vehicle energy consumption at a high frequency [2]; however,
this comes at the cost of reduced accuracy. For most system level optimization,
macroscopic models that aim to predict energy consumption at an aggregated
spatial or temporal span are sufficient [1,2].

State of the Art: There has been significant research on macroscopic mod-
els for EVs over recent years. For example, De Cauwer et al. used a cascade of
ANN and linear regression models for energy consumption prediction for EVs
using vehicle speed, voltage, current, SoC, road network characteristics, alti-
tude, and weather [6]. Their model, however, did not use traffic data and the
approach had a mean absolute error (MAE) of 12–14% of average trip consump-
tion. Vepsäläinen et al. used a linear model using temperature, driver behavior,
and roadway characteristics and found that EV energy consumption was 15%
lower on suburban routes compared to city routes. A recent study by Pamula et
al. used a DNN with stacked autoencoders and an multi-layer perceptron to pre-
dict energy consumption between stops. Their model used travel time, elevation
change, and modeled weather as categorical variables [17]. However, most of the
prior work relied on learning separate models for each vehicle class [1,3,17].

Challenges: There are several unresolved challenges for public transit opera-
tions teams. First, modern public bus fleets include not only a mix of vehicle
classes (ICEV, HV, and EV), but also different vehicle models within each class.
For example, out partner agency, Chattanooga Area Regional Transportation
Authority (CARTA), manages a total of six ICEV models, two HV models, and
two EV models. Training separate models for each type of vehicle ignores gen-
eralizable information that is not explicitly modeled in the feature space. For
example, Ayman et al. modeled EVs and ICEVs without sharing model param-
eters between classes [1]. Second, the number of vehicles in each class varies
greatly, which leads to an uneven distribution of data available for training the
energy or emission prediction models. Third, and similar to the second problem
in principle, when a new vehicle class is added to an existing fleet, the agency
must deploy some vehicles, obtain data, and then learn a new predictive model
from scratch.

Our Contributions: We address these challenges as multi-task learning (MTL)
and inductive transfer learning (ITL) problems. Although different vehicle classes’
energy consumption depends on a varied set of covariates through different non-
linear functions, we hypothesize that there are broader generalizable patterns that
govern the consumption of energy and vehicle emission. That is, if an agency has
access to many vehicles, and consequently data, from each vehicle class (ICEVs,

504 M. Wilbur et al.

HVs, and EVs), we formulate emission (and energy) forecasting as an MTL prob-
lem. We show that this approach improves the predictive accuracy for all vehi-
cle classes compared to a baseline where separate networks are trained to predict
emissions (and energy) for each class. In a situation with imbalanced data or when
an agency introduces a new model or class, we show that it is possible to learn
a model for classes with sufficient data, and transfer the learned abstraction to
improve the predictive accuracy for the class with insufficient data. The benefit
of ITL is the ability to deploy the model earlier than the time required to col-
lect enough samples to train a separate model for the new class. Finally, we high-
light that real-world transit problems require collecting, cleaning, and joining data
from various sources, formats, and precision. We provide a general online pipeline
for joining the various sensor streams (vehicle telemetry and trajectory data with
external data sources such as weather, traffic, and road infrastructure) for training
and maintaining the fixed-line transit energy prediction models. We evaluate our
MTL and ITL models using real-world data from our partner agency’s mixed-fleet
of EVs, HVs, and ICEVs. We show that in both the MTL and ITL settings, our
approach outperforms state-of-the-art methods. The greatest improvements over
baselines were in the ITL setting when the target vehicle class suffers from a lack
of data. However, we also find that in some cases ITL does not work well, such as
when transferring learned abstractions from EV to ICEV.

2 Model

2.1 Predicting Energy Consumed and Emissions

Transit agencies are concerned with reducing a) costs by limiting energy used,
and b) the impact of their vehicles on the environment by reducing emissions.
For ICEVs and HVs, energy expended by a vehicle is a function of the fuel con-
sumed, measured in liters. On the other hand, the energy expended by an EV
is a function of the dissipated charge of its battery, which is the change in its
state-of-charge (SOC). This presents a problem since transit agencies primarily
use prediction models to optimize the assignment of vehicles to trips. As a conse-
quence, they require a common metric to compare across vehicle classes in their
mixed-fleet for both energy consumed and emissions. For energy, we use kWh. For
ICEVs and HVs, we convert liters of diesel fuel consumed to kWh using a conver-
sion rate of 10.639 kWh/liter [7]. For EVs, we multiply the change in SOC and
the capacity of the battery. We measure emissions as kg of CO2. For ICEVs and
HVs, fuel consumed in liters can be converted to emissions (kg CO2) at a rate of
2.689 kg/liter [8]. For EVs, dissipation in charge can be converted to emissions (kg
CO2) at a rate of 0.707 kg/kWh [8]. As shown in Fig. 1, the function gi(Ŷi) rep-
resents the linear conversion between the predicted target (emission) and energy
consumed for an arbitrary vehicle class denoted by the index i.

2.2 Preliminaries and Model Formulation

Our goal is to learn energy consumption and emissions in a mixed fleet of vehi-
cles conditional on a set of relevant determinants (Fig. 1). We refer to learning

Energy and Emission Prediction for Mixed-Vehicle Transit Fleets 505

Vehicle
Speed

Weather
Features

Traffic
Features

Segment
Features

Dense: 300, ReLU

Dense: 300, ReLU

Dense: 300, ReLU

Dense: 300, ReLU

Dense: 300, ReLU

Dense: 64, ReLUDense: 64, ReLU Dense: 64, ReLU

Dense: 32, ReLUDense: 32, ReLU Dense: 32, ReLU

Dense: 16, LinearDense: 16, Linear Dense: 16, Linear

ŶHVŶEV ŶICEV

gHV (·)gEV (·) gICEV (·)

Shared
Hidden
Layers

(a)

Source
Domain

Target
Domain

Dense: 300, ReLU

Dense: 300, ReLU

Dense: 300, ReLU

Dense: 300, ReLU

Dense: 300, ReLU

Dense: 300, ReLU

Dense: 300, ReLU

Dense: 300, ReLU

Dense: 300, ReLU

Dense: 300, ReLU

Dense: 64, ReLU

Dense: 32, ReLU

Dense: 16, Linear

Dense: 64, ReLU

Dense: 32, ReLU

Dense: 16, Linear

ŶS

gS(·)

ŶT

gT (·)

Transfer

(b)

Fig. 1. (a) MTL Model: DNN with hard parameter sharing for predicting emissions (kg
CO2) of EVs (ŶEV), HVs (ŶHV) and ICEVs (ŶICEV). (b) ITL Model: shared-hidden
layer parameters are frozen and transfered to the target model. Energy consumed
(kWh) is a linear function gi(·) for vehicle class i, separate of the neural network per
the conversion discussed in Sect. 2.1.

prediction models as tasks, consistent with the terminology in the area of trans-
fer learning [18]. We introduce the formalism for our problem next. We define a
domain D as the combination of a feature space X and a probability distribu-
tion P (X), where X = {x1, x2, . . . } ∈ X . For example, X can include features
like vehicle speed and weather. Given a specific domain, a task is then defined
as T = {Y, f(·)} where Y is the space of output labels, and f is a predictive
function over y ∈ Y conditional on x. Probabilistically, f denotes the proba-
bility of a realization of y given x (P (y | x)). For example, Y can denote the
energy consumed by a vehicle, and subsequently, the function f can be used to
denote a distribution on the energy consumed conditional on the determinants.
Typically, f is unknown; instead, we assume access to observations (data) in the
form of input-output pairs {(x1, y1), (x2, y2), . . . , (xm, ym)}. We deal with a sce-
nario with multiple tasks (and associated domains). Specifically, there are three
vehicle classes, and therefore three domains DEV ,DHV ,DICEV representing the
domains of EVs, HVs and ICEVs, respectively. Similarly, we have three output
label spaces YEV , YHV , and YICEV , and three predictive functions fEV , fHV ,
and fICEV , which need to be learned.

The functions fEV , fHV , and fICEV are parameterized by a set of param-
eters θ, that we seek to learn by minimizing a predefined loss function given
the observed data. The input features for each of the vehicle class domains
are derived from the characteristics of the road segments, weather, traffic fea-
tures, and vehicle dynamics. Therefore, we can state that the feature spaces
are equivalent, XEV = XHV = XICEV . Additionally, the marginal prob-
ability distributions over the features are independent of vehicle class and

506 M. Wilbur et al.

Table 1. Data description; data collected from Jan 1 2020 to July 1 2020.

Data source Description Features Frequency Scope

ViriCiti - ICEVs Vehicle telemetry Fuel level, GPS 1Hz 3 vehicles

ViriCiti - HVs Vehicle telemetry Fuel level, GPS 1Hz 4 vehicles

ViriCiti - EVs Vehicle telemetry Current, voltage, GPS 1Hz 3 vehicles

Clever Devices Automated vehicle

location

Trip ID, vehicle ID 0.1Hz All vehicles

HERE Traffic (per TMC) Jam factor, current speed,

free flow speed

0.0166Hz Major roads,

highways

DarkSky Weather Visibility, wind speed,

precipitation intensity,

humidity, wind gust,

temperature

0.0033Hz Whole city

Static GTFS Transit schedule Routes, trip IDs, stop

sequences, stop locations

(latitude, longitude),

schedule trip times, trip

shape (GeoJSON)

Static Whole city

GIC - Elevation LiDAR elevation Location, elevation (meters) Static Whole city

Trip Segments Multiple sources Segment length, time to

travel, average speed,

roadway type

Static Whole city

therefore, the marginal probability distributions over the features are equiva-
lent, P (XEV) = P (XHV) = P (XICEV). Finally, given that the feature spaces
and marginal probability distributions are the same for all vehicle classes, we
have that DEV = DHV = DICEV .

As the energy consumed for ICEV and HV vehicles are measured in fuel
(liters) consumed, the space of output labels Y is the set of positive real numbers
R+. On the other hand, EV vehicles have regenerative braking, therefore the
energy consumed can take negative values and the task space for EV vehicles is
R. Additionally, since the performance of the three vehicle classes varies greatly,
we consider that the predictive functions for each vehicle class are different;
as the conditional probability distributions are not equal and P (YEV |XEV) �=
P (YHV |XHV) �= P (YICEV |XICEV). Finally, we can generalize the problem to n
classes of transit vehicles in the fleets (e.g. the classes can be categorized based
on the model and year as well); such a generalization will focus on learning the
tasks {T1 �= T2, · · · , �= Tn} ∈ T , given the domains {D1 = D2, · · · ,= Dn} ∈ D.

3 Approach

We now discuss our approach to learning the energy prediction functions (fEV ,
fHV , and fICEV). In order to perform data-driven learning, we first need to accu-
mulate data from various sources. In real-world problems pertaining to public
transportation, creating a data pipeline is often an arduous task due to the vari-
ety of data sources, formats, recording precision, and data collection frequency.
As a result, we begin by discussing the data sources (Table 1) and the data
pipeline. We gather data from 3 ICEVs, 4 HVs, and 3 EVs from our partner

Energy and Emission Prediction for Mixed-Vehicle Transit Fleets 507

agency for a period of six months from January 1, 2020 to July 1, 2020. Each
vehicle has a telematics kit produced by ViriCiti LLC [22], that provides speed
and GPS positioning at a minimum 1 Hz resolution. In addition, for ICEVs and
HVs the sensors provide fuel consumed (liters) while for EVs we collect current
and voltage levels which are used to calculate energy consumed as well as emis-
sions. Each vehicle is equipped with a kit from Clever Devices [4]. The Clever
Devices feed provides a unique vehicle ID corresponding to the vehicle ID in the
ViriCiti feed, as well as the unique trip ID which maps to scheduled trips in the
static General Transit Feed Specification (GTFS) [21].

We collect weather data from multiple weather stations within the transit
region at 5-minute intervals using the DarkSky API [5], including temperature,
humidity, wind speed, and precipitation. Traffic data was collected at 1-minute
intervals using the HERE API [11], which provides speed recordings for segments
of major roads. The traffic data is reported per TMC (Traffic Message Channel),
which is a custom geographical mapping unit. We perform map matching similar
to prior work [1] to obtain traffic data for each road segment of interest to us.
Road network map data was collected from OpenStreetMaps [9]. Lastly, we
collect static GIS elevation data from the state Geographic Information Council
which provides high-resolution digital elevation models (DEMs) derived from
LiDAR elevation imaging, with a vertical accuracy of approximately 10cm.

Fixed line transit vehicles travel at pre-determined times (trips) covering a
sequence of stops along a route. The latitude and longitude of each stop and
the geographical shape of the path (the route segment) that the vehicles travel
by visiting each stop is specified using the static GTFS schedule published by
CARTA. Using this information, it is straightforward to divide the path taken
by a bus during a given trip into a sequence of segments 〈SEG 〉, where each
segment is marked by a start stop and an end stop. As the specific characteristics
of segments are important, a unique segment is created for every spatial path
that exists between a pair of stops. Note that effectively, each SEGi is described
using a discrete sequence of points (latitude and longitude), close enough to draw
the shape of the road on the map. We use these segments as the fundamental
spatial unit for which we predict emissions (or energy). This has two advantages:
first, the generation of route segments for prediction can be derived directly from
a transit agency’s schedule, rather than relying on external infrastructure data
such as OSM [1] or time intervals [3], and second, segments can be shared between
trips thereby providing additional data for learning.

3.1 Mapping Vehicle Trajectories to Route Segments

To generate the joined data samples, we first map the vehicle trajectories to
segments. By joining the ViriCiti and Clever Device feeds, we determine a set
of GPS points that a vehicle traverses. We refer to this ordered sequence of
points as a trajectory T consisting of spatial points {l1, l2, . . . }. Consider that
the trajectory T serves the trip R. The goal of the mapping process is to label
each location li ∈ T to a corresponding segment SEGj ∈ R, thereby representing
the specific segment that each vehicle traverses at a specific point in time.

508 M. Wilbur et al.

Fig. 2. (a) Overlapping segments. Segments 1 and 5 traverse the same section in
opposite directions. (b) Intersecting segments. Vehicle locations near the intersection
of segments 1 and 4 can lead to incorrect mapping. Stops not shown.

In principle, it is possible to perform an exhaustive search on the segments
to identify the one that matches (or is the closest to) each point in a trajectory.
However, such an approach does not work in practice with real-word trajectory
feeds due to two reasons. First, routes often traverse segments between spatial
points close to each other during trips. For example, consider the overlapping
segments in Fig. 2a in which the vehicle passes through SEG1 relatively early in
the trip and through SEG5 later. Due to noise in the measurement, a point early
in the trip can erroneously get mapped to SEG5, resulting in incorrect represen-
tation of the features that are induced by the segment. Similar problems arrise
when segments cross each other as shown in Fig. 2b. Our exploratory analysis
on the data obtained from our partner agency showed several examples of such
incorrect mappings. Second, the mapping of trajectory data to segments is com-
putationally challenging for transit agencies. As an example, consider our partner
agency CARTA, which operates a total of 60 vehicles. The number for bigger
cities is larger in orders of magnitude; for example, the New York Metropolitan
Transit Authority (NY-MTA) operates more than 5000 buses [16]. Considering
location data collected at the frequency 1 Hz for 3 years, the matching must
be done for over 3.5 × 109 spatial locations, each of which could potentially be
mapped to one out of hundreds of segments (for a larger city like New York, the
number of matches is 3 × 1012).

To alleviate these concerns, we propose an algorithm for mapping vehicle
trajectories to route segments (Algorithm 1). The algorithm takes the trajectory
T of the vehicle traversing the sequence of segments 〈SEG 〉 of trip R. During
matching, we maintain a lookahead window, denoted by W , that represents the
number of segments to consider for the match. For example, if a location li ∈ T
is already matched to segment SEGc in a route, then for matching the next
location li+1 ∈ T , we consider the set {SEGc, . . . ,SEGc+W }. By maintaining a
short lookahead, we alleviate duplicate matches from segments further away in
the route. Also, a shorter lookahead provides computational efficiency as opposed
to an exhaustive search. We maintain a tolerance distance B for matching where
a segment is matched to a location from a trajectory only if the distance between
them is less than or equal to B. The function dist(SEGj , li) is used to calculate
the minimum distance between segment SEGj and GPS point li.

Energy and Emission Prediction for Mixed-Vehicle Transit Fleets 509

Algorithm 1: Mapping Trajectories to Route Segments
Input:
R ← sequence of segments {SEG0, . . . , SEGN} for each trip
T ← set of vehicle GPS locations l along the trip
W ← number of segments to lookahead
B ← max distance between segment and vehicle GPS
Output:
TrajSegMap → list of segments for each SEG in R
Initialization:
c ← 1, index of current segment
TrajSegMap ← []
for i ∈ {1, . . . , |T |} do

SegWindowDist ← []
for j ∈ {c, . . . , c + W} do

if j ≤ |R| then
SegWindowDist.push(dist(SEGj , li))

if min(SegWindowDist) ≤ B then
c ← c + argmin(SegWindowDist) TrajSegMap[i] ← SEGc

else
TrajSegMap[i] ← None

3.2 Generating Samples

To generate the joined data samples, we split each of the trajectories T based on
the locations mapped to trip segments. We create one data sample per continuous
travel on a trip segment, providing average speed and the total fuel/energy con-
sumption and emission on that segment. For ICEVs and HVs, the fuel consumed
is provided in liters. While EVs provide state-of-charge (SOC) readings, the pre-
cision is too low to use for representing energy consumed. Therefore, we estimate
the amount of energy from the battery current A and voltage V . The energy used
between consecutive data points is given by Ei = Ai ·Vi ·(TSi−TSi−1), where Ei,
Ai, and Vi are the consumed energy (Joule), current (Ampere), voltage (Volt) at
time step i, respectively, and TSi is the timestamp (in seconds) at time step i.
To get the energy on a segment, the energy consumed between each sample is
accumulated for all locations of the vehicle mapped to that segment.

Weather features for each sample are taken from the weather reading closest
to the time at which the vehicle starts traversing a segment. For traffic features,
we take the average jam factor (JF) and speed ratio (SR) of all TMCs mapped
to the segment traversed by the vehicle when the vehicle enters a segment. Speed
ratio is defined as the traffic speed divided by the free flow speed.

3.3 Learning

Recall that our goal is to address two specific problems. The first scenario is
where a transit agency has access to many vehicles, and consequently data,

510 M. Wilbur et al.

from each vehicle class. In this case, our goal is to improve the predictive accu-
racy of f for all tasks. One method of addressing this problem is to learn a
predictive model f over each vehicle class. However, we hypothesize that there
are generalizable patterns between vehicle classes that can be leveraged to aid
learning. Consequently, we formulate a MTL model as shown in Fig. 1a. We use
hard parameter sharing to learn a common representation of the input features
which enables us to extract generalizable patterns across the tasks. Addition-
ally, each task (vehicle class) has a vehicle-specific set of hidden layers which
outputs the predicted energy consumed/emissions for EVs (ŶEV), HVs (ŶHV),
and ICEVs (ŶICEV) along route segments. At each training iteration, a batch
of samples from EVs, HVs, and ICEVs is fed through the network and mean-
squared error (MSE) loss is calculated between the predicted target and true
target for each vehicle class. The gradient of the loss is then propagated back
through the network.

The second problem we seek to address is where an agency has significant
variation in the number of vehicles from each class. In such a case, while a
common model can be learned using the MTL framework, the tasks with a
significantly larger number of samples are likely to dominate learning. Also,
learning a model solely for the task with few samples can result in overfitting.
In this case, we seek to learn f for classes with sufficient data (source model)
first, and transfer the learned abstraction to improve the predictive accuracy for
the class with insufficient data (target model). Our ITL framework is shown in
Fig. 1b. When training the target model, the transferred layers are frozen and
only the vehicle-specific layers are updated during training.

4 Experiments and Results

Vehicle telemetry, weather, and traffic data is collected for a six-month period
between January 1, 2020 and July 1, 2020 for 10 vehicles as shown in Table 2.
We include two post-processing steps in generating the final datasets for each
respective vehicle class. First, we remove partial trajectories by eliminating sam-
ples where the total distance traveled was less than 50% of the segment length
and greater than 150% of the segment length. Second, to address outliers and
potential errors in the mapping process, we remove samples with the target value
(energy/emission) in the bottom 2% and top 2% quantiles. The final data size
is shown in last column of Table 2.

The distributions of emissions (kg CO2) and energy (kWh) consumption are
shown in Fig. 3. As energy consumption for ICEVs and HVs is derived from liters
of diesel fuel consumed, emissions must be greater than 0 kg CO2 for these vehicle
classes. The EVs in the fleet have regenerative braking, which allows for energy
consumed, and thus emission, to be negative. We predict energy/emissions per
route segment. The distributions over energy and emission for each of the vehi-
cle classes has a long right tail and the average varies between vehicle classes.
Therefore, the task of energy/emission prediction is also different, by virtue of
having a different distribution over the space of output labels Y.

Energy and Emission Prediction for Mixed-Vehicle Transit Fleets 511

Table 2. Data processing summary.

Class Model year Vehicles Raw samples Distance Filtering Final samples

ICEV 2014 3 139,652 127,212 114,348

HV 2014 4 235,671 223,913 201,491

EV 2018 3 48,969 47,804 43,022

Table 3. Pearson’s correlation coefficient of input features with emissions.

Class Length
segment

Time to
travel

ΔElevation Max
ΔElevation

Speed
ratio

Visibility Wind
speed

Precipitation Humidity Wind
gust

Jam
factor

Temperature Avg
speed

EV 0.860 0.752 0.523 0.222 0.038 0.008 −0.002 −0.003 −0.009 −0.012 −0.015 −0.037 −0.093

HV 0.916 0.838 0.505 0.135 0.038 0.006 0.004 −0.008 −0.008 −0.002 −0.026 0.013 −0.134

ICEV 0.886 0.865 0.539 0.103 0.028 0.004 0.011 −0.005 0.001 ≈0 −0.016 −0.005 −0.262

0 1 2

EV

HV

ICEV

(a) Emissions (kg CO2)

0 5

EV

HV

ICEV

(b) Energy consumption (kWh)

Fig. 3. Distribution of (a) emissions (kg CO2) and (b) energy (kWh) consumption per
trip segment for each vehicle class.

The Pearson correlation coefficient between input features and emissions is
provided in Table 3. Distance traveled and time to traverse the segment have a
strong positive correlation with emissions. Δ Elevation, which is the change in
elevation from the start to the end of the segment, also has a strong correlation
with emissions for all vehicle types. Max Δ elevation, which is defined as the
difference between the maximum and minimum elevation along the segment,
has a relatively weaker correlation. Additionally, the average vehicle speed has
a stronger negative correlation of −0.262 with emissions for ICEVs than with
HVs (−0.134) and EVs (−0.093).

4.1 Hyperparameter Tuning and Baseline Models

We randomly select 43,022 samples from each vehicle class. For each vehicle
class, we use 80% of the samples for training and 20% for testing. Of the training
samples, 10% are withheld from training and used as a validation set to identify
the best set of hyperparameters for the subsequent analyses. We perform the
hyperparameter search using the model derived from the MTL formulation.

We tested shared hidden layer widths of {200, 300, 400} and shared hidden
layer depths of {3, 4, 5}. We use 3 vehicle-specific layers and tested the configu-
rations of {128, 64, 32} and {64, 32, 16}. Mean-squared error (MSE) is used for
the loss function and the networks are optimized using the Adam algorithm [12].

512 M. Wilbur et al.

ICEV HV EV
0

1

2

3

·10−2

Vehicle Class

M
S
E

MTL

Baseline

(a) MSE

ICEV HV EV
0

2

4

6

8

·10−2

Vehicle Class

M
A

E

(b) MAE

Fig. 4. (a) MSE and (b) MAE of MTL model compared to vehicle-specific neural
network models (baseline) on testing set. Prediction target: emissions (kg CO2).

We test learning rates of {0.01, 0.005, 0.001, 0.0005, 0.0001} and batch sizes of
{64, 128, 256, 512}. The best performing configuration is shown in Fig. 1a, which
consists of 5 shared hidden layers of 300 fully connected neurons with ReLU acti-
vation functions [15], and 3 vehicle-specific hidden layers of 64, 32, and 16 hidden
neurons respectively. For the output layer we test using ReLU as well as linear
activation functions for ICEVs and HVs and linear activation function for EVs,
however we find that using a linear activation function as the output layer for
all 3 vehicle classes provides the best performance. An early stopping strategy
was performed, where we stopped training if MSE on the validation set did not
improve for 10 epochs. The best performing learning rate was 0.0005 and the
best batch size was 256.

In the baseline model no layers are shared between vehicle-classes resulting in
a separate neural network for each vehicle class. The same grid search from the
proposed models was used to find the hyperparameters of the baseline models.
In all experiments, we use Kaiming initialization [10] to initialize the weights of
the networks.

4.2 Multi-task Model Evaluation

First, we investigate the performance of the MTL model compared to vehicle-
specific baseline models. To evaluate the robustness of the models, we train 10
MTL models (30 vehicle-specific models, 10 for each vehicle class) and present
the average MSE and MAE in Fig. 4. Models are trained for up to 150 epochs. We
find that for all vehicle classes, the MTL model outperforms the vehicle-specific
baseline models. The mean percent improvement in MSE is 8.6%, 17.0%, and
7.0% for ICEVs, HVs, and EVs, respectively. The mean percent improvement in
MAE is 6.4%, 9.0% and 4.0% for ICEVs, HVs, and EVs respectively.

Energy and Emission Prediction for Mixed-Vehicle Transit Fleets 513

ICEV HV EV

0

0.2

0.4

B
ia

s
MTL Baseline

(a) Emissions (kg CO2)

ICEV HV EV

0

0.5

1

1.5

B
ia

s

MTL Baseline

(b) Energy (kWh)

Fig. 5. Distribution of MTL and baseline model bias per sample for each vehicle class
from bootstrap evaluation, 30 bootstrap iterations. Prediction target: (a) emissions and
(b) energy.

Even with improved accuracy, it is important to investigate the bias and the
variance of the proposed approaches. Therefore, we repeat the entire evaluation
using 30 datasets creating through bootsrapping [19] from the original data.
At each iteration, we sample a training set, with replacement, from the ICEV,
HV, and EV datasets. The samples not selected for each training set are used
as the testing set for that iteration. For each iteration, we train a single MTL
model and vehicle-specific baseline models on the training set and evaluate on
the testing set. The distribution of empirical bias per sample for the MTL and
baseline models is presented in Fig. 5. We observe that the MTL model results
in a lower bias for each vehicle class compared to the baseline models. The MTL
model also results in lower median variance per sample.

4.3 Inductive Transfer Learning Evaluation

Next, we evaluate the performance of the ITL model formulated in Fig. 1b. To
train the ITL models, we use data from all of the three vehicle classes, each of
which contains 43,022 samples, as outlined in Sect. 4.1. For each pair of source
and target task, we first train the source model, freeze the shared hidden layers,
and transfer to the target model. Then, we optimize the target model’s vehicle-
specific layers. For each model, the available sample size to train the target model
is varied from 2%, 5%, 10%, and 15% of the total number of available samples to
investigate the influence of sample size in training of the target models. This is
consistent with what transit agencies might face in practice; as a new vehicle is
introduced, agencies gradually collect more data from it. We test our approach
for all pairs of vehicle classes.

To compare the performance of the models, we train baseline models that
only use the training data from the target domain. For example, while evaluat-
ing inductive transfer from EV to ICEV with 2% of the target data available,
the baseline model is trained exclusively on the same amount data from ICEV
class. In order to consider the randomness in training process, when evaluating

514 M. Wilbur et al.

(a) ICEV −→ HV

2% 5% 10%15%

0

2

4

·10−2

M
S
E

ITL

Baseline

(b) ICEV −→ EV

2% 5% 10%15%

0

2

4

·10−2

(c) HV −→ ICEV

2% 5% 10%15%

0

2

4

·10−2

2% 5% 10%15%

0

2

4

·10−2

% of Target Samples

M
S
E

(d) HV −→ EV

2% 5% 10%15%

0

2

4

·10−2

% of Target Samples

(e) EV −→ ICEV

2% 5% 10%15%

0

2

4

·10−2

% of Target Samples

(f) EV −→ HV

Fig. 6. ITL models compared to corresponding baselines. ITL model is trained on full
dataset in the source vehicle class and is evaluated on the target vehicle class (source
−→ target). Average MSE compared to fraction of data samples used for training in
the target vehicle class. Prediction target: emissions (kg CO2).

the target and baseline models, we trained each model 10 times on 10 random
samples from the target domain’s dataset and 10 different initial values for the
parameters using Kaiming initialization [10].

We provide the results of the proposed ITL approach in Fig. 6. We observe
that in general, the proposed approach results in improved forecasting accuracy
across the tested scenarios (except when EV is used as source and ICEV is used
as target). We also observe that as the amount of data from the target domain
increases, both the ITL and the baseline method show improved forecasting
accuracy; however, the baseline methods shows relatively higher improvement,
to the extent of outperforming the ITL framework in some cases (15% data from
target domain in Fig. 6 b, c, e and f).

Additionally, we seek to understand the role of the shared-hidden layers in our
proposed approach. Conceptually, the role of such layers in the target model is to
extract generalizable patterns across the spectrum of tasks to aid learning in the
target task. We use t-distributed stochastic neighbor embeddings (t-SNE) [14] to
visualize the separation of multi-dimensional information in a two-dimensional
space. In Fig. 7, we show t-SNE on the raw input features of the three vehicle
classes color coded by emissions (kg CO2). All three plots are very similar,

Energy and Emission Prediction for Mixed-Vehicle Transit Fleets 515

Fig. 7. t-SNE on raw input features for each data sample from the source domain.
t-SNE parameters: number of components = 2, perplexity = 10, initialization = PCA,
number of samples = 860 (2% of dataset)

Fig. 8. t-SNE on the output of shared-hidden layers for each data sample from the
target domain. t-SNE parameters same as Fig. 7.

thereby corroborating our assumption that the input features are similar across
the tasks (DEV = DHV = DICEV). We separately apply t-SNE on the output
of the shared-hidden layers across all pairs of source and target tasks and show
the results in Fig. 8. We observe that the ICEV source model and HV source
model (plots (a) to (f) of Fig. 8) effectively discriminate the samples with high
emissions and low emissions (increasing the distance between light points and
dark points). On the other hand, EV source model (plots (g) to (i) in Fig. 8)
shows poor discrimination, reflecting the negative transfer.

4.4 Discussion

We now present the key takeaways from the experiments. First, we observe
that in general, both the MTL and the ITL framework outperform the base-
line methods, thereby resulting in improved emission (and consequently energy)
predictions for transit agencies that operate mixed-fleet vehicles. Second, we
observe that the MTL, ITL, and baseline models are less accurate in predicting

516 M. Wilbur et al.

EV emissions compared to HV and ICEV, most likely due to the complexity
of the energy cycle in EV engines. Third, a key finding for practitioners is that
the greatest improvements over baselines are seen when the target vehicle class
suffers from lack of data. However, it is important to switch to standard models
once sufficient data is collected for the class. The point at which such a switch
should be made depends on the specific task and data at hand. In our work with
CARTA, we implement a periodic check to facilitate such a switch. Fourth, we
find that when the goal is to predict the emissions for ICEV class using a source
model trained based on EV class dataset (this situation rarely arises in prac-
tice due to precedence of the ICEV class), ITL models underperformed baseline
models, irrespective of the size of training data from the target domain. This
indicates negative transfer between the EV domain and the ICEV domain.

Lastly, while this work is a general approach that can be used by cities to
improve their energy prediction models there are a couple limitations agencies
should be aware of. First, our models were trained on data from Chattanooga,
TN, which is a mountainous city in the southern United States with a warm cli-
mate and limited snowfall or freezing temperatures. Therefore any direct transfer
of our pre-trained models to other cities should take into account potential biases
in these determinants. Second, like most macroscopic energy prediction models
we do not take into account the impact of delays at stops or the number of
passengers on the vehicles. We intend on incorporating these parameters into
future work.

Code, data, and supplementary results of this study are available at https://
github.com/smarttransit-ai/ECML-energy-prediction-public

5 Conclusion

By framing emission (and energy) forecasting as an MTL problem, we showed
that an agency with access to many vehicles can improve the predictive accuracy
for EVs, HVs, and ICEVs over current state-of-the-art, vehicle-specific models.
We also showed that in a situation with imbalanced data the predictive accu-
racy of classes with insufficient data can be improved by transferring a learned
abstraction from vehicle classes with sufficient data through ITL. Lastly, we pro-
vided a general online pipeline for joining the various sensor streams for emission
and energy prediction of mixed-vehicle transit fleets.

Acknowledgments. This material is based upon work supported by the National
Science Foundation under grant 1952011 and Department of Energy, Office of Energy
Efficiency and Renewable Energy (EERE), under Award Number DE-EE0008467. Any
opinions, findings, and conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of the National Science
Foundation or the Department of Energy.

https://github.com/smarttransit-ai/ECML-energy-prediction-public
https://github.com/smarttransit-ai/ECML-energy-prediction-public

Energy and Emission Prediction for Mixed-Vehicle Transit Fleets 517

References

1. Ayman, A., Sivagnanam, A., Wilbur, M., Pugliese, P., Dubey, A., Laszka, A.: Data-
driven prediction and optimization of energy use for transit fleets of electric and
ICE vehicles. ACM Trans. Internet Technol. (2020)

2. Chen, Y., Wu, G., Sun, R., Dubey, A., Laszka, A., Pugliese, P.: A review and out-
look of energy consumption estimation models for electric vehicles. Int. J. Sustain.
Transp. Energy Environ. Pol. (2021)

3. Chen, Y., Zhu, L., Gonder, J., Young, S., Walkowicz, K.: Data-driven fuel con-
sumption estimation: a multivariate adaptive regression spline approach. Transp.
Res. Part C: Emerg. Technol. 83, 134–145 (2017)

4. Clever Devices API documentation (2020). https://www.cleverdevices.com/
5. Dark Sky API documentation (2019). https://darksky.net/dev/docs
6. De Cauwer, C., Verbeke, W., Coosemans, T., Faid, S., Van Mierlo, J.: A data-

driven method for energy consumption prediction and energy-efficient routing of
electric vehicles in real-world conditions. Energies 10(5), 608 (2017)

7. EIA energy conversion calculator (2021). https://www.eia.gov/energyexplained/
units-and-calculators/energy-conversion-calculators.php

8. EPA greenhouse gases calculator (2021). https://www.epa.gov/energy/
greenhouse-gases-equivalencies-calculator-calculations-and-references

9. Haklay, M., Weber, P.: OpenStreetMap: user-generated street maps. IEEE Perva-
sive Comput. 7(4), 12–18 (2008)

10. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-
level performance on ImageNet classification. In: Proceedings of the IEEE Inter-
national Conference on Computer Vision, pp. 1026–1034 (2015)

11. HERE Api documentation (2019). https://developer.here.com/documentation
12. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint

arXiv:1412.6980 (2014)
13. Lajunen, A.: Energy consumption and cost-benefit analysis of hybrid and electric

city buses. Transp. Res. Part C 38, 1–15 (2014)
14. Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn.

Res. 9(86), 2579–2605 (2008)
15. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann

machines. In: ICML (2010)
16. NY Mta subway and bus facts 2019 (2019). https://new.mta.info/agency/new-

york-city-transit/subway-bus-facts-2019
17. Pamu�la, T., Pamu�la, W.: Estimation of the energy consumption of battery elec-

tric buses for public transport networks using real-world data and deep learning.
Energies 13(9), 2340 (2020)

18. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng.
22(10), 1345–1359 (2009)

19. Parr, W.C.: A note on the jackknife, the bootstrap and the delta method estimators
of bias and variance. Biometrika 70(3), 719–722 (1983)

20. Sivagnanam, A., Ayman, A., Wilbur, M., Pugliese, P., Dubey, A., Laszka, A.:
Minimizing energy use of mixed-fleet public transit for fixed-route service. In: Pro-
ceedings of the 35th AAAI Conference on Artificial Intelligence (AAAI-21) (2021)

21. Static GTFS reference (2021). https://developers.google.com/transit/gtfs/
reference

22. ViriCiti SDK documentation (2020). https://sdk.viriciti.com/docs
23. Wu, X., Freese, D., Cabrera, A., Kitch, W.A.: Electric vehicles’ energy consumption

measurement and estimation. Transp. Res. Part D: Transp. Environ. 34, 52–67
(2015)

https://www.cleverdevices.com/
https://darksky.net/dev/docs
https://www.eia.gov/energyexplained/units-and-calculators/energy-conversion-calculators.php
https://www.eia.gov/energyexplained/units-and-calculators/energy-conversion-calculators.php
https://www.epa.gov/energy/greenhouse-gases-equivalencies-calculator-calculations-and-references
https://www.epa.gov/energy/greenhouse-gases-equivalencies-calculator-calculations-and-references
https://developer.here.com/documentation
http://arxiv.org/abs/1412.6980
https://new.mta.info/agency/new-york-city-transit/subway-bus-facts-2019
https://new.mta.info/agency/new-york-city-transit/subway-bus-facts-2019
https://developers.google.com/transit/gtfs/reference
https://developers.google.com/transit/gtfs/reference
https://sdk.viriciti.com/docs

CQNet: A Clustering-Based Quadruplet
Network for Decentralized Application

Classification via Encrypted Traffic

Yu Wang1,2, Gang Xiong1,2, Chang Liu1,2, Zhen Li1,2, Mingxin Cui1,2,
and Gaopeng Gou1,2(B)

1 Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China
{wangyu1996,xionggang,liuchang,lizhen,uimingxin,

gougaopeng}@iie.ac.cn
2 School of Cyber Security, University of Chinese Academy of Sciences, Beijing,

China

Abstract. Decentralized applications (DApps), along with the develop-
ment of blockchain technology, are increasingly developed and deployed
on blockchain platforms. DApps based on the same platform usually
adopt similar traffic encryption settings and the same communication
interface, leading to traffic less distinguishable. However, existing clas-
sification methods either require manual-design features or need lots of
data to train the classifier, otherwise suffering from low accuracy. In this
paper, we apply metric learning to DApps encrypted traffic classification
problem and propose the clustering-based quadruplet network (CQNet).
The CQNet can filter out useless samples to reduce the training dataset’s
redundancy data by utilizing the proposed algorithm, thereby improv-
ing the classifier’s efficiency. Moreover, we adopt a quadruplet structure
that can mine more restrictive relationships among quadruplets and pro-
vide rich information to the classifier. Our comprehensive experiments
on the real-world dataset covering 60 DApps indicate that CQNet can
achieve excellent performance with high efficiency and is superior to the
state-of-the-art methods in terms of accuracy and efficiency.

Keywords: Encrypted traffic classification · Decentralized
applications · Clustering · Quadruplet networks · Feature embedding ·
Metric learning

1 Introduction

With the surge in popularity and rapid development of blockchain, the volume
of decentralized applications (DApps) rises sharply. That is attributed dramati-
cally to DApps’ resistance to censorship, making them more freedom. Until now,
more than 3700 DApps are deployed on different blockchain platforms, such as
Etherem (81.91%), Eos (8.97%), Steem (1.62%), etc. We focus on Ethereum [1]
DApps in this paper, as it also has the most significant number of daily active
c© Springer Nature Switzerland AG 2021
Y. Dong et al. (Eds.): ECML PKDD 2021, LNAI 12978, pp. 518–534, 2021.
https://doi.org/10.1007/978-3-030-86514-6_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86514-6_32&domain=pdf
https://doi.org/10.1007/978-3-030-86514-6_32

CQNet: A Clustering-Based Quadruplet Network for DApps Classification 519

users, about one hundred thousand [2]. DApps are autonomously managed with-
out the control of a single entity and blockchain technology can naturally provide
anonymity to each user. These are the unique advantages of DApps that tradi-
tional applications cannot provide.

However, the problems faced by DApps and centralized applications are sim-
ilar, i.e., how to manage the DApps network better and ensure a secure network
environment. Network traffic classification naturally arises because it is a vital
task for these two problems [10]. According to different priority strategies, DApps
traffic should be classified for better network management. Malicious DApps
traffic should also be identified for anomaly detection, thus guaranteeing the
DApps network security. Traffic classification attracts many researchers and lots
of methods have been proposed for website classification [3,14,15,19,20], mobile
application classification [6,12,21,22,26] and user behavior classification [4,24],
but few efforts have been made on DApps encrypted traffic classification.

While prior work has achieved good accuracy results, these methods designed
the sophisticated network architecture combined with features extracted arti-
ficially from flows [9,10,15,18,20], which are based on professional knowledge,
human effort and time-cost. Some studies use fewer or simpler features to achieve
good results [4,5,11,21,24], which are unsatisfactory on DApps encrypted traffic
classification. Some studies also resort to large dataset to improve performance
(e.g., training on a large dataset contains 956 thousand flows [10]), which leads
to the redundancy problem of dataset. All in all, the task of DApps encrypted
traffic classification can be decomposed into two subtasks. The first is how to let
the network automatically extract features and accurately classify DApps traffic.
The second is how to improve the efficiency of training and testing.

In this paper, We propose a novel classification model using metric learn-
ing named clustering-based quadruplet network (CQNet) for DApps encrypted
traffic classification. The CQNet aims to learn an embedding space, thereby
mapping each encrypted traffic flow into the metric space to form an embed-
ded vector. CQNet includes two mechanisms, filtration of easy dataset (FE-set)
algorithm and quadruplet network. FE-set algorithm combines the three parts of
mini-batch KMeans, Kuhn-Munkres algorithm and exploring centers of clusters
to filter out easy samples from all flows. Hence, the original dataset can be split
into the easy dataset and hard dataset. We construct quadruplets on the hard
dataset as the quadruplet network’s input, which can leverage more constraints
among samples. FE-set algorithm and the quadruplet network are designed to
solve DApps encrypted traffic classification efficiency and accuracy, respectively.

Contributions: Our contributions can be summarized as follows:

1) We explored the redundancy problem of DApps encrypted traffic dataset for
the first time. FE-set algorithm can divide easy dataset and hard dataset,
thereby improving the training efficiency.

2) We designed a quadruplet network, which can leverage more restrictive rela-
tionships among quadruplets and provide rich information to the classifier.

520 Y. Wang et al.

3) Our CQNet achieves outstanding results on the real-world network traffic data
for the DApps encrypted traffic classification and outperforms the state-of-
the-art methods.

Roadmap. Section 2 summarizes the related work. Section 3 describes the pre-
liminaries. The detailed system architecture is proposed in Sect. 4. Section 5
shows the evaluation results. Finally, we conclude this paper in Sect. 6.

2 Related Work

Many conventional traffic classification methods are no longer suitable for cur-
rent encryption scenarios, such as DPI (Deep Packet Inspection) and port-based
methods. Here, we only introduce studies that are closely related to our work.
Hence, prior work on encrypted traffic classification falls into three broad cat-
egories: (1) web application classification, (2) mobile application classification
and (3) decentralized applications classification.

2.1 Web Application Classification

Panchenko et al. [13] presented a website fingerprinting method at Internet Scale.
The accumulated sum of packet sizes was used to represent the progress of web-
page loading. Hayes et al. [7] proposed a robust website fingerprinting technique
based on Random Forest. The leaves of Random Forest are used to encode a
new representation of the websites, thereby transforming 175 features into a dif-
ferent feature space, which are fed to a KNN classifier. Shi et al. [19] introduce
an efficient feature optimization approach, based on a deep learning framework.
It enhanced traffic classification performances by removing the redundant fea-
tures. [20] designed convolutional Neural Networks (CNN) with sophisticated
architecture. The model can have high accuracy for Tor websites identification
by using only the packet direction sequence.

2.2 Mobile Application Classification

In [26], the authors used a suite of inference techniques to reveal a specific
user action (i.e., send a tweet) on the Twitter app installed on an Android
smartphone. Taylor et al. proposed a robust application identification method
with the concept of the burst. They used statistical features of packet length with
the Random Forest classifier to build the Appscanner [21], which can identify
110 applications with 96% accuracy. Condi et al. clustered the streams of each
application user behavior by clustering methods [4], then they calculated the
dynamic warping distance for each flow in terms of packet length. Several studies
applied Markov models to identify smartphone applications [8,17].

CQNet: A Clustering-Based Quadruplet Network for DApps Classification 521

2.3 Decentralized Applications Classification

DApps are emerging as a new service paradigm that relies on the underlying
blockchain platform. Shen et al. generated high-dimensional features by fusing
time series, packet length and burst sequence [18]. The accuracy of DApps traffic
classification reached 90%. But the training and testing time of the method is
much longer than other methods because of the large input vectors. Wang et
al. [24] found that more than 60% of flows are short flows, leading to the burst
feature’s poor performance, so they only extracted time series and packet length
to build a classifier using Random Forest. In this paper, we attempt to design
a new deep learning network structure without needing professional knowledge
and hand-crafted features.

3 Preliminaries

While prior work of encrypted traffic classification has obtained some insights,
encrypted traffic classification in distributed DApps is still a considerable chal-
lenge. In this section, we provide DApps background, give the definition of DApps
encrypted traffic classification problem and the limitation of existing methods.

3.1 DApps Background

DApps consist of frontend and backend, where the frontend implements user
interfaces uniformly defined by blockchain platforms to present pages. Smart
contracts acting as the backend connect to blockchain networks, utterly different
from the backend of the web application. Smart contracts are the functionalities
that determine the results of operations in DApp performed by users.

Most DApps provide browser plug-ins or websites so that users can easily
access. When a user visits a DApp, the DApp client obtains the server’s IP
address equipped with the corresponding smart contract through DNS query
and sends a request. Then, the smart contract determines the operation results
and sends them to the mempool. All data records of these are packaged in the
form of blocks by miners and stored on the distributed ledger. After these steps,
the client obtains the updated information from blockchain to present pages
through a new list of servers acquired from the smart contract server.

Ethereum DApps adopt the same communication interface, employ simi-
lar traffic encryption settings, store data and run smart contracts in the same
blockchain platform, making the encrypted traffic of DApps more challenging to
distinguish than the classification of traditional applications.

3.2 Problem Definition

The DApps encrypted traffic classification task is to classify flows into specific
DApps with the raw traffic data as the only classification information. Assume
that there are N samples and K classes of DApps in total. The z-th sample is

522 Y. Wang et al.

defined as fz =
[
b
(z)
1 , . . . , b

(z)
nz

]
, where nz is the length of fz and b

(z)
i stands for

the size of packet b
(z)
i ∈ [0, 1500) in bytes at time step i. The DApps label of fz

is denoted as Lz, 1 ≤ Lz ≤ K. Our goal is to build a model to predict a label
L̂z that is exactly the real label Lz.

3.3 Limitation of Existing Methods

Existing encryption traffic classification methods face two challenges, efficiency
(RQ1) and accuracy (RQ2).

Efficiency. To label dataset, the traffic classification is different from other
research fields (i.e., CV, NLP). Traffic classification dataset can be automat-
ically labeled by SNI (Server Name Indication) or process ID. Therefore, the
dataset may contain many samples (e.g., nearly one million flows in [10]), includ-
ing easy, semi-hard and hard samples [16]. Since the overly easy samples can
satisfy the constraints well and produce almost zero loss, they do not contribute
to the parameter update during back-propagation and consume a lot of time. So,
how to filter out easy samples from the dataset to improve training efficiency?
(RQ1)

Accuracy. As introduced in Sect. 2, the premise of good classification perfor-
mance should be that no experts or a simple model to use.

We are inspired by the triplet network [16]. Flows could be placed in a com-
mon metric space and the explicit closeness could be measured by Euclidean
distance. The function for each pair of flows interaction can be defined as:

d(fa, fp) =
∥∥αfa

− αfp

∥∥2

2
(1)

where ‖∗‖2 denotes the L2 - norm. αf is the representation of traffic flow in the
low dimensional space.

The triplet loss: Given a triple (fa, fp, fn), 1 ≤ a, p, n ≤ N , the label La =
Lp �= Ln. The loss guarantees the distance between anchor fa and negative fn

is larger than that between fa and positive fp by a fixed margin:

d(fa, fp) + m ≤ d (fa, fn) (2)

The final objective function could be expressed as following:

L =
∑

La=Lp

∑
La �=Ln

[d(fa, fp) − d (fa, fn) + m]+ (3)

where [x]+ = max(x, 0) represents the hinge loss.
From a geometric perspective, the triplet loss only considers the relationship

of two edges. The negative flow’s position may be far from the same DApp’s
flow and close to another DApp’s flow. This undoubtedly compromises the per-
formance of the classifier. As shown in Fig. 1, the learning process will be stopped
following the constraint of Eq. 2. We can observe that the sample with blue color
is close to the yellow one and far from the other blue.

CQNet: A Clustering-Based Quadruplet Network for DApps Classification 523

Fig. 1. An illustration of metric learning by using triplet network. The same color
indicates that the samples belong to the same DApps. After training, the sample with
blue color is close to the yellow one and far from the other blue. (Color figure online)

Due to the different distribution of flows for different DApps, the fixed margin
for all DApps may not perform well. So, how to utilize more relationships among
samples and adjust the margin to train the classifier? (RQ2)

Fig. 2. An illustration of our proposed method CQNet. R represents each class’s initial
radius after clustering (including easy samples and semi-hard samples), R*percentage
is the range that we finally selected as the easy dataset. And the semi-hard samples
are classified into the hard dataset. The right of the figure represents the final situation
after completed training.

4 CQNet

In this section, we will illustrate our clustering-based quadruplet network
(CQNet) to circumvent the above two issues (RQ1 and RQ2). An illustration
of CQNet is shown in Fig. 2. The CQNet aims to learn embeddings, such that
flows generated from distinct DApps are embedded into a common metric space.
Thus the embedded features favor discriminative between different DApps. The
overall architecture of CQNet is shown in Fig. 3. We outline the underlying ideas
of the work, including FE-set, the proposed quadruplet network.

Fig. 3. The architecture overview of the CQNet. The FE-set algorithm aims to divide
easy dataset and hard dataset, thus improving training efficiency. The quadruplet net-
work aims to find constraints to improve classification accuracy.

524 Y. Wang et al.

4.1 FE-set (RQ1)

According to the problem definition in Sect. 3.2, given a sample fz. In order
to extract features automatically, we utilize the first n bytes (n = 64*64) to
represent the flow, the raw data is fz =

[
b
(z)
1 , . . . , b

(z)
mz

]
,
∑mz

i=1 b
(z)
i = n. For the

whole dataset, F = [f1, . . . , fN]. As shown in Fig. 4, F are converted to gray
images for visualization [23]. By using the CNN architecture model pre-trained
on the fashion-mnist, F is transformed into the embedded feature as the input
to filter out easy samples, which are defined as X = [x1, . . . , xN].

(a) Meg (b) Avx (c) Bfh (d) Dou (e) Tok (f) For (g) 1in (h) Cha (i) Axi (j) Ael

Fig. 4. Visualization of some classes of DApps traffic. It is obvious that DApps are
different from each other and only a few images are similar.

The Proposed Algorithm. Considering the task of screening easy samples
from N flows to form the easy dataset, E = [EF1, . . . , EFK], Where EFi =[
F

(i)
1 , . . . , F

(i)
li

]
, EFli represents the easy samples belonging to the label i and li

means the number of easy samples with label i, which may be zero. And the hard
(including semi-hard and hard) dataset, H = [HF1, . . . , HFK]. FE-set algorithm
has the main idea: when samples belonging to the same class are also predicted
to be the same class after using clustering, these samples are relatively close in
the embedding space and form a cluster. In other words, these samples are easy
to distinguish. So we choose a distance-based algorithm (mini-batch k-means)
instead of other clustering algorithms (i.e., density-based methods). Next, we
formally present the process, as exhibited in Algorithm 1.

FE-set algorithm considers the embedded features X = [x1, . . . , xN] as the
input and starts with an initialization of the easy dataset E and hard dataset H.
EXi and HXj represents the embedded features of each class. Then, it clusters
X into K clusters through the mini-batch K-Means clustering algorithm. The
number of cluster K is usually specified according to the category of DApps. Each
flow in the dataset has a real label Lz and a predicted label L̂z. To correspond the
real labels L and predicted labels L̂ in the maximum number, we transform the
task into a weighted bipartite graph maximum matching task, Kuhn-Munkres
algorithm is used to solve this problem. We construct a matrix R as the input,
the abscissa is the real label, the ordinate is the predicted label, the value in the
matrix can be understood as the weight value and the number of samples that
satisfy R(i, j), L(i,j) = i, L̂(i,j) = j. The real label corresponds to the predicted
label one-to-one after utilizing the Kuhn-Munkres algorithm. The samples
that corresponded successfully are screened from the dataset and put into the
easy dataset E. The remained samples are put into the hard dataset H.

CQNet: A Clustering-Based Quadruplet Network for DApps Classification 525

Algorithm 1. Filtration of easy dataset (FE-set).
Input:

the embedded features X = [x1, . . . , xN], the real label L = [l1, . . . , lN‘14r],
the raw data F = [f1, . . . , fN], the number of clusters K.

Output:
the easy dataset E = [EF1, . . . , EFK], the hard dataset H = [HF1, . . . , HFK],
the center set CF = [cf1, . . . , cfK], the radius set Perc D = [perc d1, . . . , perc dK].

1: Initialize E, H as empty sets
2: Predict clusters L̂ = MiniBatchKMeans(X, K)

3: Kuhn-Munkres(R = (L, L̂)), obtain the corresponding relationship RE
4: Separate F into E and H according to RE
5: for i ∈ [1, K] do
6: if len(EFi) > 1 then
7: put i into a list Y L
8: else
9: put i into a list NL
10: end if
11: end for
12: for i ∈ Y L do
13: put center ci = KMeans(EXi, 1) into C, put fci

into CF

14: for Xi
li

∈ EXi do

15: put d(Xi
li

, ci) into a list D

16: end for
17: Sort D, put the n percentile of D into Perc D
18: Keep the ρ percentage closest samples in E. Put the others into H
19: end for
20: for j ∈ NL do
21: for Xj

m ∈ HXj do
22: for i ∈ Y L do
23: put di(X

j
m, ci) into a list DC = [dc1, . . . , dcK]

24: end for
25: obtain (index min, d min) = min(DC > 0), let doindex min = d min for the list DO =

[do1, . . . , doK]
26: end for
27: obtain (index, index min, d) = max(DO), put Xj

index into C, put fj
index into CF , let

nl dj = d for the list NLD

28: calculate perc dj = (nl dj − perc dindex min) ∗ ρ
29: end for
30: return E, H, CF, Perc D

Because we use the maximum matching, i.e., the amount of samples contained
in the corresponding labels should be the largest, so the number of samples
contained in a few correspondences between the true and predicted label may be
0 (i.e., R(i, j) = 0). These labels are added into NL and the remained labels are
added into Y L. Then, we directly use K-Means algorithm to obtain the center
for each class in E and construct the center list C = [c1, . . . , cK], there may be
ci = 0. However, considering the samples at the edge of clusters cannot always
be accurately predicted when clustering, we calculate the Euclidean distance D
between each sample in the class to the center and sort D (The most prolonged
d is R in Fig. 2). The percentage ρ closest samples to the center are selected
as the real easy samples (i.e., r or R*percentage in Fig. 2). We record the n
percentile of D as perc di and use it as the radius of category i. The radius set
is Perc D = [perc d1, . . . , perc dK]. The rest of the samples can be regarded as
semi-hard samples and transferred to H, so we obtain the two sets, E,H.

From the above, we get a set of centers C (the value of ci �= 0 if Li ∈ Y L).
However, not all categories have a center in C (Lj ∈ NL), so we need to find the

526 Y. Wang et al.

imaginary center of samples whose labels are in NL. For Lj ∈ NL, it calculates
the Euclidean distance between each sample in category Lj and other existing
centers (ci, i ∈ Y L), takes the smallest value, then gets the sample with the
maximum distance (denoted as NL−D) from the set formed by all the minimum
values. This sample is used as the imaginary center of category Lj , and added
into C. We can also obtain CF . The label of the nearest center and the distance
are recorded as Lq and nl dLj

, respectively. But there is no suitable radius to
represent category Lj , thereby calculating perc dLj

as follows:

perc dLj
=

(
nl dLj

− perc dLq

) ∗ ρ (4)

4.2 The Proposed Quadruplet Network (RQ2)

The triplet network has two constraints, the rationale is to favor distances
between the anchor and negative sample while penalizing distances between the
anchor and positive sample, which is also our network’s goal.

Since each category’s easy samples are around the corresponding center, the
encryption traffic classification problem is turned into calculating the distance
between the samples and the centers. After training the hard samples through
the model, all samples should be close to each cluster’s center. For testing, we can
calculate the distance between the sample and each center and the category of the
closest center is the class of the sample. In this subsection, we will introduce our
proposed network, which leverages more information among samples to improve
classification accuracy.

Quadruplet Composition. With Algorithm 1, we have filtered out easy sam-
ples, thereby reducing the network’s training pressure. Inspired by the center
loss [25], choosing the cluster center as the anchor for training is better and more
efficient than randomly choosing two positive samples. However, only using the
center loss often cannot achieve good results and it needs to be combined with
other loss functions to obtain more feedback information.

We define a quadruplet, which adds a negative sample compared to the
triplet. The illustration of CQNet is shown in Fig. 2. The positive and nega-
tive samples and the two anchors are embedded into the same metric space such
that samples relevant to the two anchors form clusters around them. The main
idea is to measure the six edges’ relationships marked with ‘Pull’ and ‘Push’.
Given two different classes of center from CF as two anchors, (cfi, yi), (cfj , yj)
and two hard samples corresponding to respective center classes, (f (yi)

i , yi) (short
for (fi, yi)), (f (yj)

j , yj) (short for (fj , yj)). Besides the two constraints from the
triplet network, several constraints can be obtained from pairwise combinations
within the quadruplet:

1) fj should be close to cfj .
2) fi(or fj) should be far away from cfj(or cfi).
3) cfi should be far away from cfj .

CQNet: A Clustering-Based Quadruplet Network for DApps Classification 527

Negatives Sampling. As for the quadruplet, some classes of negative samples
may be far away from the positive sample, random sampling from all classes may
lead to many easy restrictive relationships. FE-set Algorithm 1 aims to filter out
simple samples in positive samples, and the purpose of negatives sampling is to
filter out easy negative samples.

For any two centers (ci, cj), we calculate the Euclidean distance d(ci, cj), put
it into the matrix CR, the abscissa and the ordinate both represent labels. After
selecting fi, we get the top τ (τ = 20 in this paper) categories closest to yi

through the yi-th row of CR and fm is randomly selected from these categories
to train the quadruplet network more effectively.

Network Structure. To accommodate the set of quadruplets, we propose a
quadruplet network, which can transform fi to zi with a nonlinear mapping
Qθ : F → Z, θ is the set of weight parameters, F is the raw data of traffic flows.
Since the quadruplet is from the same domain, the quadruplet network comprises
two Siamese networks, the weights shared. We define φ (zi,zj) = d (zi, zj) as the
similarity function between fi and fj .

Distance-Based Quadruplet Loss. The loss function often sets the margin
to a fixed value such as 1 or 2. However, the flow distribution of each category is
different. According to Perc D, each cluster’s radius is a different value in our
dataset, r ∈ (0.5, 3). And the distance between each center pair is also different.
So the proposed distance-based quadruplet loss is improved based on Eq. 3.

As shown in Fig. 2, given outputs quadruplet features
[
zi

f , zj
f , zi

cf , zj
cf

]
, we can

obtain six pairwise similarity value as
{

φ
(
zm

n , zm′
n′

)}m,m′∈{yi,yj}

n,n′∈{cf,f}
. For each pair,

there are two states, pulling close or pushing away. However, there is a restrictive
relationship, cfi should be far away from cfj , our overall method is related to the
cluster center and radius so that we discard this restrictive relationship. Hence,
the quadruplet loss with the fixed margin (i.e., m for pulling close and m′ for
pushing away) can be denoted as follows:

Lm,m′ =
[
−d(zi

f , zj
f) + m′

]
+

+
[
d(zi

f , zi
cf) − m

]
+

+
[
d(zj

f , zj
cf) − m

]
+

+
[
−d(zi

f , zj
cf) + m′

]
+

+
[
−d(zj

f , zi
cf) + m′

]
+

(5)

We have obtained clusters’ radii (i.e., Perc D) through Algorithm 1 and
the Euclidean distance between any two centers (i.e., CR). As shown in Fig. 2,
r ∈ Perc D and d ∈ CR. We adaptively set the margin threshold to make the
network accommodate better to the distribution of different categories.

In order to limit the sample to the cluster, given m(fi, cfi) = perc dyi
and

m(fj , cfj) = perc dyj
. For the margin of sample and other centers, the negative

sample fj should be outside of the ball with d(cfi, cfj) − r(yj), so m(fi, cfj) =
CR(yi, yj) − perc dyj

and m(fj , cfi) = CR(yi, yj) − perc dyi
. For the margin of

528 Y. Wang et al.

two samples with different classes, the distance between them should be larger
than the distance between the closest samples of the two clusters, so m(fi, fj) =
CR(yi, yj) − perc dyi

− perc dyj
.

5 Performance Evaluation

In this section, we first introduce the dataset and experimental settings. Then, we
conduct extensive experiments to evaluate the effectiveness of CQNet, including
hyperparameters selection, performance comparison and ablation studies.

5.1 Dataset Collection

We capture the traffic flows of DApps through the routers of a laboratory, mean-
while filter the non-SSL/TLS encrypted traffic. Due to Chrome is used as the
designated browser by some DApps, so all visits use Chrome. The encrypted
traffic is captured when users visit DApps through their PCs.

Table 1. The scale of DApps encrypted traffic dataset

Categories DApps (Number of flows)

Exchanges 1inch(2703), SushiSwap(1508), dYdX(1641), Curve(1460),
Matcha(6690), Nash(2023), Mirror(2649), Tokenlon(2356)

Development Enigma(1543), Rocket Pool(3822), Aelf(999), MyContract(1573)

Finance Tether(1032), MakerDAO(3863), Nexo(1016), AaveP(4513),
Paxos(3495), Harvest(4589), Ampleforth(926), Synlev(1041),
BarnBridge(3108)

Gambling Dice2win(1551), FunFair(1062), Edgeless(2059), Kingtiger(1129)

Governance Kleros(1510), Decentral Games(1536), Iotex(1026), Aragon(3574)

Marketplace Knownorigin(2009), Ocean Market(6462), OpenSea(2099),
Superrare(1306), District0x(1011), Cryptokitties(4722)

Media AVXChange(46282), Refereum(1074), Megacryptopolis(13924)

Game Axie Infinity(1049), BFH(3415), Evolution Land(1516),
F1deltatime(6119), Nftegg(1006), Pooltogether(2353)

Property Decentraland(3932), FOAM(6558)

Social Livepeer(1337), Loom Network(1073), Catallax(1219), 2key(3705)

High risk DoubleWay(1045), E2X(1054), Gandhiji(1143), Forsage(3501),
Minereum(4557)

Security Chainlink(1173), Quantstamp Security Network(3203)

Storage Storj(1020), Numerai(2107)

Identity LikeCoin(1021), SelfKey(1521)

To construct out DApps dataset, we select top-60 DApps on Ethereum with
the most users [2]. The categories contain social, gambling, finance, marketplaces,

CQNet: A Clustering-Based Quadruplet Network for DApps Classification 529

etc. We collect 199,513 DApps traffic flows. The number of flows for each DApps
is summarized in Tabel 1. The dataset is split into training and testing sets. And
the validation set is constructed by random sampling from the training set (i.e.,
train : val : test = 7 : 1 : 2)

5.2 Experiments Settings

Baselines. To evaluate CQNet, we leverage the following six typical methods
for comparison.

FFP [18], which fuses time series, packet length and burst features to the high-
dimensional feature through a kernel function, which is fed to Random Forest
classifier.

APPS (Appscanner) [21], which captures statistical features of packet length,
such as mean, minimum, standard deviation of incoming, outgoing, and bi-
directional flows. Then using Random Forest to identify mobile applications.

RF+LT [24], which extracts packet length sequence and time series. Then using
Random Forest classifier to identify encrypted flows from 11 DApps.

DF+D (DeepFingerprinting) [20], which only uses the information of packet
direction from flows, and sends it into a Convolutional Neural Networks to clas-
sify the encrypted flows of websites.

FS-net [10], which takes multi-layer bi-GRU encoder and decoder to learn fea-
tures of flow sequence, which are utilized for classification of 18 applications.

DF+L, which uses the same Convolutional Neural Networks as DF+D, but the
input is the packet length sequence.

Setting of the CQNet. We take the raw traffic data as the input of the CQNet.
The feature extractor contains four layers. The first two are convolutional (i.e.,32
and 64 kernels of size of 5*5) and the others are fully-connected. As for the
quadruplet network, it has four branches with shared weight, one of which has
five layers. The first three are convolutional (i.e.,32 kernels of size of 9*9, 64
kernels of size of 5*5, and 128 kernels of 3*3) and we replace the output dimension
of the final FC layer to be a common metric space without a softmax layer. The
SGD optimizer with learning rate of 0.0005 is used and the batch size is 64.

5.3 Hyperparameters of CQNet

CQNet introduces two hyperparameters ρ and τ to control the easy dataset scale
and the selection range of negative samples, respectively. We select 30 epochs
to compare with other methods. When the epoch is larger than 30, the accu-
racy increment becomes trivial, less than 0.003, but the training time increases
significantly. The setting of 30 epochs is also used in [20].

530 Y. Wang et al.

Fig. 5. Performance of CQNet with respect to different value of ρ and τ .

First, we fix τ to 20 and train CQNet with different values of ρ (i.e., from
0.1 to 0.9, the interval is 0.1) and show the results in Fig. 5(a). The ρ represents
the amount of data selected as the easy dataset after clustering. The smaller
the value of ρ, the more samples are used to train the quadruplet network, the
higher time-cost required. As such, we suggest setting ρ to 0.5.

Second, we fix ρ to 0.5. Different values of τ (i.e., 1, 5, 10, 20, 30, 40, 61)
are set and the results are shown in Fig. 5(b). We find that the optimal value is
around 20. Therefore, it is recommended to set τ with 20.

Table 2. Accuracy and time-cost comparisons on DApps traffic classification. The
metrics of time-cost includes feature extraction time (FET), classifier training time
(CTT), data testing time (DTT)

Method FFP APPS RF+LT DF+D DF+L FS-net CQNet

Accuracy 0.9122 0.8437 0.8977 0.6502 0.7849 0.9611 0.9837

One epoch CTT – – – 122.65 124.73 137.06 94.58

FET 2230.65 1895.19 1589.49 119.91 113.31 12.52 258.21

CTT 352.05 114.52 203.1 3724.96 3668.14 4184.28 2894.59

DTT 8.19 9.54 8.77 10.33 10.28 12.81 32.89

Total time 2590.89 2019.25 1801.36 3855.2 3791.73 4209.61 3185.69

5.4 Performance Comparison

We use accuracy and time-cost as the performance metrics, which is defined
as the proportion of all DApps flows that are classified correctly. And the com-
parison results are shown in Table 2. We can make the following observations.

First, we can observe that CQNet outperforms the other methods, with the
highest accuracy (0.9837 for hard dataset, 0.9897 for easy dataset), indicating
that clustering-based metric learning is helpful to the task of DApps encrypted
traffic classification. The confusion matrices of CQNet are shown in Fig. 6. Most
of DApps can be accurately identified, while the classification accuracy of one

CQNet: A Clustering-Based Quadruplet Network for DApps Classification 531

(a) Hard dataset (b) Easy dataset

Fig. 6. Confusion Matrices of CQNet on hard dataset and easy datset.

DApp is lower than 0.8. To test the easy dataset similarity to all categories, we
keep the centers of clusters which belong to NL, so there is no value in a row.

Second, machine learning and deep learning have different emphases on time-
cost. The former requires manual extraction of more effective features, while the
latter automatically learns more effective features, thus eliminating the need for
many experts. The time-cost of our network is the lowest among all compared
to deep learning methods. Therefore, it proves that our method can improve the
overall efficiency of classification.

5.5 Ablation Studies

We evaluate the contribution of each of CQNet’s components. The baseline is
the quadruplet network with fixed loss and uses the original dataset to train
and test (denoted as base). The other settings are baseline with distance-based
quadruplet loss (denoted as base+d), baseline using the hard dataset (denoted
as base+h), baseline with all CQNet’s components (i.e., CQNet).

Table 3. Performances by different components

Accuracy base base+d base+h CQNet

Val Acc 0.9539 0.9691 0.9792 0.9837

Test Acc 0.9551 0.9714 0.9796 0.9842

Easy dataset Acc – – 0.9862 0.9897
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Lo
ss

Epoch

Fixed margin (train loss)

Fixed margin (valid loss)

Distance-based margin (train loss)

Distance-based margin (valid loss)

Fig. 7. Comparison results:
fixed margin and distance-based
margin.

The results are shown in Table 3. We can see that baseline performs the
worst, but it still achieved 95.39% accuracy. Compared with the base model,

532 Y. Wang et al.

the improvement of base+d indicates that the distance-based quadruplet loss
is beneficial for DApps traffic classification. From Fig. 7, the proposed loss is
smoother than the fixed margin loss. Besides, the improvement of base+h is more
prominent and the efficiency is also greatly improved because of the reduction
of training samples. As expected, CQNet achieves the best results.

To provide a more intuitive understanding of the cluster center, we visualize
with four sets as shown in Fig. 8. It can be seen that the samples relevant to each
anchor form a cluster around it and the radius of most categories are different,
which also confirm the main idea of CQNet. Since not all categories have samples
in the easy dataset, there is no sample around the few centers in Fig. 8(d).

(a) Training set (b) Validation set (c) Testing set (d) Easy set

Fig. 8. Visualization to show the performance of our CQNet on different sets by using
t-SNE. The center of each category is denoted as a black dot.

6 Conclusion

In this paper, we proposed CQNet, an approach to filter out easy samples based
on a clustering algorithm and classify DApps encrypted traffic through metric
learning. The easy dataset and hard dataset are split by FE-set algorithm, which
includes mini-batch KMeans algorithm, Kuhn-Munkres algorithm, etc. The hard
dataset and center set of clusters are sent to the quadruplet network, which can
leverage more restrictive relationships among samples. We validate the effective-
ness of CQNet on the real-world network traffic, including above 60 DApps. The
experimental results show that CQNet outperforms the state-of-the-art methods.
Besides, using the trained classifier to test the easy dataset and its accuracy is
higher than the testing set in the hard dataset.

Acknowledgements. This work is supported by The National Key Research and
Development Program of China (No.2020YFB1006100, No.2020YFE0200500 and
No.2018YFB1800200) and Key research and Development Program for Guangdong
Province under grant No. 2019B010137003.

References

1. Ethereum. https://www.ethereum.org/. Accessed 21 June 2021
2. DApps store 2021. https://www.stateofthedapps.com/. Accessed 21 June 2021

https://www.ethereum.org/
https://www.stateofthedapps.com/

CQNet: A Clustering-Based Quadruplet Network for DApps Classification 533

3. Cai, X., Zhang, X.C., Joshi, B., Johnson, R.: Touching from a distance: website
fingerprinting attacks and defenses. In: Proceedings of the ACM Conference on
Computer and Communications Security, CCS, pp. 605–616 (2012)

4. Conti, M., Mancini, L.V., Spolaor, R., Verde, N.V.: Analyzing android encrypted
network traffic to identify user actions. IEEE Trans. Inf. Forensics Secur. 11(1),
114–125 (2016)

5. Feghhi, S., Leith, D.J.: A web traffic analysis attack using only timing information.
IEEE Trans. Inf. Forensics Secur. 11(8), 1747–1759 (2016)

6. Grolman, E., et al.: Transfer learning for user action identication in mobile apps
via encrypted trafc analysis. IEEE Intell. Syst. 33(2), 40–53 (2018)

7. Hayes, J., Danezis, G.: k-fingerprinting: a robust scalable website fingerprinting
technique. In: 25th USENIX Security Symposium, pp. 1187–1203 (2016)

8. Korczynski, M., Duda, A.: Markov chain fingerprinting to classify encrypted traffic.
In: INFOCOM, pp. 781–789 (2014)

9. Li, R., Xiao, X., Ni, S., Zheng, H.: Byte segment neural network for network traffic
classification. In: International Symposium on Quality of Service, pp. 1–10 (2018)

10. Liu, C., He, L., Xiong, G., Cao, Z., Li, Z.: FS-Net: a flow sequence network for
encrypted traffic classification. In: INFOCOM, pp. 1171–1179 (2019)

11. Liu, H., Wang, Z., Wang, Y.: Semi-supervised encrypted traffic classification using
composite features set. J. Netw. 7(8), 1195–1200 (2012)

12. Liu, J., Fu, Y., Ming, J., Ren, Y., Sun, L., Xiong, H.: Effective and real-time in-app
activity analysis in encrypted internet traffic streams. In: International Conference
on Knowledge Discovery and Data Mining, pp. 335–344 (2017)

13. Panchenko, A., et al.: Website fingerprinting at internet scale. In: 23rd Annual
Network and Distributed System Security Symposium, NDSS (2016)

14. Rezaei, S., Liu, X.: Deep learning for encrypted traffic classification: an overview.
IEEE Commun. Mag. 57(5), 76–81 (2019)

15. Rimmer, V., Preuveneers, D., Juarez, M., van Goethem, T., Joosen, W.: Auto-
mated website fingerprinting through deep learning. In: 25th Annual Network and
Distributed System Security Symposium, NDSS (2018)

16. Schroff, F., Kalenichenko, D., Philbin, J.: Facenet: a unified embedding for face
recognition and clustering. In: IEEE Conference on Computer Vision and Pattern
Recognition, CVPR, pp. 815–823 (2015)

17. Shen, M., Wei, M., Zhu, L., Wang, M.: Classification of encrypted traffic with
second-order markov chains and application attribute bigrams. IEEE Trans. Inf.
Forensics Secur. 12(8), 1830–1843 (2017)

18. Shen, M., Zhang, J., Zhu, L., Xu, K., Du, X., Liu, Y.: Encrypted traffic classification
of decentralized applications on Ethereum using feature fusion. In: Proceedings of
the International Symposium on Quality of Service, IWQoS, pp. 18:1–18:10 (2019)

19. Shi, H., Li, H., Zhang, D., Cheng, C., Cao, X.: An efficient feature generation
approach based on deep learning and feature selection techniques for traffic classi-
fication. Comput. Netw. 132, 81–98 (2018)

20. Sirinam, P., Imani, M., Juarez, M., Wright, M.: Deep fingerprinting: undermining
website fingerprinting defenses with deep learning. In: CCS, pp. 1928–1943 (2018)

21. Taylor, V.F., Spolaor, R., Conti, M., Martinovic, I.: Appscanner: automatic finger-
printing of smartphone apps from encrypted network traffic. In: IEEE European
Symposium on Security and Privacy, EuroS&P, pp. 439–454 (2016)

22. Taylor, V.F., Spolaor, R., Conti, M., Martinovic, I.: Robust smartphone app iden-
tification via encrypted network traffic analysis. IEEE Trans. Inf. Forensics Secur.
13(1), 63–78 (2017)

534 Y. Wang et al.

23. Wang, W., Zhu, M., Zeng, X., Ye, X., Sheng, Y.: Malware traffic classification using
convolutional neural network for representation learning. In: 2017 International
Conference on Information Networking, ICOIN, pp. 712–717 (2017)

24. Wang, Yu., Li, Z., Gou, G., Xiong, G., Wang, C., Li, Z.: Identifying DApps and
user behaviors on Ethereum via encrypted traffic. In: Park, N., Sun, K., Foresti,
S., Butler, K., Saxena, N. (eds.) SecureComm 2020. LNICST, vol. 336, pp. 62–83.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-63095-9 4

25. Wen, Y., Zhang, K., Li, Z., Qiao, Y.: A discriminative feature learning approach
for deep face recognition. In: Computer Vision - ECCV, pp. 499–515 (2016)

26. Zhou, X., Demetriou, S., He, D., Naveed, M.: Identity, location, disease and more:
inferring your secrets from android public resources. In: CCS, pp. 1017–1028 (2013)

https://doi.org/10.1007/978-3-030-63095-9_4

SPOT: A Framework for Selection of
Prototypes Using Optimal Transport

Karthik S. Gurumoorthy1(B), Pratik Jawanpuria2, and Bamdev Mishra2

1 India Machine Learning, Amazon, Bangalore, India
gurumoor@amazon.com

2 Microsoft, Hyderabad, India
{pratik.jawanpuria,bamdevm}@microsoft.com

Abstract. In this work, we develop an optimal transport (OT) based
framework to select informative prototypical examples that best repre-
sent a given target dataset. Summarizing a given target dataset via rep-
resentative examples is an important problem in several machine learn-
ing applications where human understanding of the learning models and
underlying data distribution is essential for decision making. We model
the prototype selection problem as learning a sparse (empirical) prob-
ability distribution having the minimum OT distance from the target
distribution. The learned probability measure supported on the chosen
prototypes directly corresponds to their importance in representing the
target data. We show that our objective function enjoys a key property
of submodularity and propose an efficient greedy method that is both
computationally fast and possess deterministic approximation guaran-
tees. Empirical results on several real world benchmarks illustrate the
efficacy of our approach.

Keywords: Targeted prototype selection · Data subset selection ·
Optimal transport · Submodularity · Parallelizable Greedy method

1 Introduction

Extracting informative and influential samples that best represent the underlying
data-distribution is a fundamental problem in machine learning [2,31,33,53,55].
As sizes of datasets have grown, summarizing a dataset with a collection of rep-
resentative samples from it is of increasing importance to data scientists and
domain-specialists [3]. Prototypical samples offer interpretative value in every
sphere of humans decision making where machine learning models have become
integral such as healthcare [5], information technology [26], and entertainment
[42], to name a few. In addition, extracting such compact synopses play a piv-
otal tool in depicting the scope of a dataset, in detecting outliers [30], and for
compressing and manipulating data distributions [43]. Going across domains to

K. S. Gurumoorthy, P. Jawanpuria and B. Mishra—Equal contribution.

c© Springer Nature Switzerland AG 2021
Y. Dong et al. (Eds.): ECML PKDD 2021, LNAI 12978, pp. 535–551, 2021.
https://doi.org/10.1007/978-3-030-86514-6_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86514-6_33&domain=pdf
https://doi.org/10.1007/978-3-030-86514-6_33

536 K. S. Gurumoorthy et al.

identify representative examples from a source set that explains a different tar-
get set have recently been applied in model agnostic Positive-Unlabeled (PU)
learning [13]. Existing works [52] have also studied the generalization properties
of machine learning models trained on a prototypical subset of a large dataset.

Works such as [2,8,52,54] consider selecting representative elements (hence-
forth also referred to as prototypes) in the supervised setting, i.e., the selection
algorithm has access to the label information of the data points. Recently [22,30]
have also explored the problem of prototype selection in the unsupervised setting,
in which the selection algorithm has access only to the feature representation
of the data points. They view the given dataset Y and a candidate prototype
set P (subset of a source dataset X) as empirical distributions q and p, respec-
tively. The prototype selection problem, therefore, is modeled as searching for
a distribution p (corresponding to a set P ⊂ X of data points, typically with a
small cardinality) that is a good approximation of the distribution q. For exam-
ple, [22,30] employ the maximum mean discrepancy (MMD) distance [21] to
measure the similarity between the two distributions.

It is well-known that the MMD induces the “flat” geometry of reproducing
kernel Hilbert space (RKHS) on the space of probability distributions, as it mea-
sures the distance between the mean embeddings of distributions in the RKHS
of a universal kernel [21,47]). The individuality of data points is also lost while
computing distance between mean embeddings in the MMD setting. The opti-
mal transport (OT) framework, on the other hand, provides a natural metric for
comparing probability distributions while respecting the underlying geometry
of the data [39,51]. Over the last few years, OT distances (also known as the
Wasserstein distances) have found widespread use in several machine learning
applications such as image retrieval [44], shape interpolation [48], domain adap-
tation [6,7,28,37], supervised learning [18,27], and generative model training
[1], among others. The transport plan, learned while computing the OT distance
between the source and target distributions, is the joint distribution between the
source and the target distributions. Compared to the MMD, the OT distances
enjoy several advantages such as being faithful to the ground metric (geometry
over the space of probability distributions) and identifying correspondences at
the fine grained level of individual data points via the transport plan.

In this paper, we focus on the unsupervised prototype selection problem and
view it from the perspective of the optimal transport theory. To this end, we pro-
pose a novel framework for Selection of Prototypes using the Optimal Transport
theory or the SPOT framework for searching a subset P from a source dataset
X (i.e., P ⊂ X) that best represents a target set Y . We employ the Wasserstein
distance to estimate the closeness between the distribution representing a can-
didate set P and set Y . Unlike the typical OT setting, the source distribution
(representing P) is unknown in SPOT and needs to be learned along with the
transport plan. The prototype selection problem is modeled as learning an empir-
ical source distribution p (representing set X) that has the minimal Wasserstein
distance with the empirical target distribution (representing set Y). Addition-
ally, we constrain p to have a small support set (which represents P ⊂ X).

Prototype Selection Using Optimal Transport 537

The learned distribution p is also indicative of the relative importance of the
prototypes in P in representing Y . Our main contributions are as follows.

– We propose a novel prototype selection framework, SPOT, based on the OT
theory.

– We prove that the objective function of the proposed optimization problem
in SPOT is submodular, which leads to a tight approximation guarantee of(
1 − e−1

)
using greedy approximation algorithms [38]. The computations in

the proposed greedy algorithm can be implemented efficiently.
– We explain the popular k-medoids clustering [43] formulation as a special

case of SPOT formulation (when the source and the target datasets are the
same). We are not aware of any prior work that describes such a connection
though the relation between Wasserstein distance minimization and k-means
is known [4,11].

– Our empirical results show that the proposed algorithm outperforms existing
baselines on several real-world datasets. The optimal transport framework
allows our approach to seamlessly work in settings where the source (X) and
the target (Y) datasets are from different domains.

The outline of the paper is as follows. We provide a brief review of the optimal
transport setting, the prototype selection setting, and key definitions in the
submodular optimization literature in Sect. 2. The proposed SPOT framework
and algorithms are presented in Sect. 3. We discuss how SPOT relates to existing
works in Sect. 4. The empirical results are presented in Sect. 5. We conclude the
paper in Sect. 6. The proofs and additional results on datasets are available in
our extended version [23].

2 Background

2.1 Optimal Transport (OT)

Let X:={xi}m
i=1 and Y :={yj}n

j=1 be i.i.d. samples from the source and the target
distributions p and q, respectively. In several applications, the true distributions
are generally unknown. Their empirical estimates exist and can be employed as
follows:

p:=
m∑

i=1

piδxi
, q:=

n∑

j=1

qjδyj
, (1)

where the probability associated with samples xi and yj are pi and qj , respec-
tively, and δ is the Dirac delta function. The vectors p and q lie on simplices
Δm and Δn, respectively, where Δk:={z ∈ R

k
+|

∑
i zi = 1}. The OT problem

[29] aims at finding a transport plan γ (with the minimal transporting effort) as
a solution to

min
γ∈Γ (p,q)

〈C, γ〉 , (2)

where Γ (p,q):={γ ∈ R
m×n
+ |γ1 = p; γ�1 = q} is the space of joint distribution

between the source and the target marginals. Here, C ∈ R
m×n
+ is the ground

538 K. S. Gurumoorthy et al.

metric computed as Cij = c(xi,yj) and the function c : X × Y → R+ : (x,y) →
c(x,y) represents the cost of transporting a unit mass from source x ∈ X to
target y ∈ Y.

The optimization problem (2) is a linear program. Recently, [10] proposed an
efficient solution for learning entropy regularized transport plan γ in (2) using
the Sinkhorn algorithm [32]. For a recent survey on OT, please refer to [39].

2.2 Prototype Selection

Selecting representative elements is often posed as identifying a subset P of size k
from a set of items X (e.g., data points, features, etc.). The quality of selection
is usually governed via a scoring function f(P), which encodes the desirable
properties of prototypical samples. For instance, in order to obtain a compact yet
informative subset P , the scoring function should discourage redundancy. Recent
works [22,30] have posed prototype selection within the submodular optimization
setting by maximizing a MMD based scoring function on the weights (w) of the
prototype elements:

l(w) = μT w − 1
2
wT Kw s.t. ‖w‖0 ≤ k. (3)

Here, ‖w‖0 is �0 norm of w representing the number of non-zero values, the
entries of the vector μ contains the mean of the inner product for every source
point with the target data points computed in the kernel embedding space, and
K is the Gram matrix of a universal kernel (e.g., Gaussian) corresponding to the
source instances. The locations of non-zero values in w, supp(w) = {i : wi >
0}, known as its support correspond to the element indices that are chosen as
prototypes, i.e. P = supp(w). While the MMD-Critic method in [30] enforces
that all non-zero entries in w equal to 1/k, the ProtoDash algorithm in [22]
imposes non-negativity constraints and learns w as part of the algorithm. Both
propose greedy algorithms that effectively evaluate the incremental benefit of
adding an element in the prototypical set P . In contrast to the MMD function
in (3), to the best of our knowledge, ours is the first work which leverages the
optimal transport (OT) framework to extract such compact representation. We
prove that the proposed objective function is submodular, which ensures tight
approximation guarantee using greedy approximate algorithms.

2.3 Submodularity

We briefly review the concept of submodular and weakly submodular functions,
which we later use to prove key theoretical results.

Definition 1 (Submodularity and Monotonicity). Consider any two sets
A ⊆ B ⊆ [m]. A set function f(·) is submodular if and only if for any i /∈ B,
f (A ∪ i) − f(A) ≥ f (B ∪ i) − f(B). The function is called monotone when
f(A) ≤ f(B).

Prototype Selection Using Optimal Transport 539

Submodularity implies diminishing returns where the incremental gain in adding
a new element i to a set A is at least as high as adding to its superset B [19].
Another characterization of submodularity is via the submodularity ratio [12,16]
defined as follows.

Definition 2 (Submodularity Ratio). Given two disjoint sets L and S, and
a set function f(·), the submodularity ratio of f(·) for the ordered pair (L, S) is
given by:

αL,S :=

∑

i∈S

[f (L ∪ {i}) − f(L)]

f (L ∪ S) − f(L)
. (4)

Submodularity ratio captures the increment in f(·) by adding the entire subset
S to L, compared to summed gain of adding its elements individually to L. It
is known that f(·) is submodular if and only if αL,S ≥ 1,∀L, S. In the case
where 0 ≤ ε ≤ αL,S < 1 for an independent constant ε, f(·) is called weakly
submodular [12].

We define submodularity ratio of a set P with respect to an integer s as
follows:

αP,s:= max
L,S:L∩S=∅,L⊆P,|S|≤s

αL,S . (5)

It should be emphasized that unlike the definition in [16, Equation 3], the above
Eq. (5) involves the max operator instead of the min. This specific form is later
used to produce approximation bounds for the proposed approach (presented
in Algorithm 1). Both (strongly) submodular and weakly submodular functions
enjoy provable performance bounds when the set elements are selected incre-
mentally and greedily [16,22,38].

3 SPOT Framework

3.1 SPOT Problem Formulation

Let X = {xi}m
i=1 be a set of m source points, Y = {yj}n

j=1 be a target set of n

data points, and C ∈ R
m×n
+ represents the ground metric. Our aim is to select

a small and weighted subset P ⊂ X of size k m that best describes Y . To
this end, we develop an optimal transport (OT) based framework for selection
of prototypes. Traditionally, OT is defined as a minimization problem over the
transport plan γ as in (2). In our setting, we pre-compute a similarity matrix
S ∈ R

m×n
+ from C, for instance, as Sij = β − Cij where β > ‖C‖∞. This

allows to equivalently represent the OT problem (2) as a maximization problem
with the objective function as 〈S, γ〉. Treating it as a maximization problem
enables to establish connection with submodularity and leverage standard greedy
algorithms for its optimization [38].

We pose the problem of selecting a prototypical set as learning a sparse sup-
port empirical source distribution w =

∑
xi∈P wiδxi

that has maximum close-
ness to the target distribution in terms of the optimal transport measure. Here,

540 K. S. Gurumoorthy et al.

the weight w ∈ Δm, where Δm:={z ∈ R
m
+ |

∑
i zi = 1}. Consequently, w denotes

the relative importance of the samples. Hence, the constraint |P | ≤ k for the
prototype set P translates to |supp(w)| ≤ k where supp(w) ⊆ P . We eval-
uate the suitability of a candidate prototype set P ⊂ X with an OT based
measure on sets. To elaborate, index the elements in X from 1 to m and let
[m]:={1, 2, . . . ,m} denote the first m natural numbers. Given any index set of
prototypes P ⊆ [m], define a set function f : 2[m] → R+ as:

f(P):= max
w:supp(w)⊆P

max
γ∈Γ (w,q)

〈S, γ〉 , (6)

where q ∈ Δn corresponds to the (given) weights of the target samples1 in the
empirical target distribution q as in (1). The learned transport plan γ in (6) is
a joint distribution between the elements in P and Y , which may be useful in
downstream applications requiring, e.g., barycentric mapping.

Our goal is to find that set P which maximizes f(·) subject to the cardinality
constraint. To this end, the proposed SPOT problem is

P ∗ = arg max
P⊆[m],|P |≤k

f(P), (7)

where f(P) is defined in (6). The entries of the optimal weight vector w∗ corre-
sponding to P ∗ in (7) indicate the importance of the prototypes in summarizing
set Y . The SPOT (7) and the standard OT (2) settings are different as: (a) the
source distribution w is learned as a part of the SPOT optimization problem for-
mulation and (b) the source distribution w is enforced to have a sparse support
of utmost size k so that the prototypes create a compact summary. In the next
section, we analyze the objective function in the SPOT optimization problem (7),
characterize it with a few desirable properties, and develop a computationally
efficient greedy approximation algorithm.

3.2 Equivalent Reduced Representations of SPOT Objective

Though the definition of f(·) in (6) involves maximization over two coupled
variables w and γ, it can be reduced to an equivalent optimization problem
involving only γ (by eliminating w altogether). To this end, let k = |P | and
denote SP a k ×n sub-matrix of S containing only those rows indexed by P . We
then have the following lemma:

Lemma 3. The set function f(·) in (6) can be equivalently defined as an opti-
mization problem only over the transport plan, i.e.,

f(P) = max
γ∈ΓP (q)

〈SP , γ〉 , (8)

where ΓP (q):={γ ∈ R
k×n
+ |γ�1 = q}. Let γ∗ be an optimal solution of (8). Then,

(w∗, γ∗) is an optimal solution of (6) where w∗ = γ∗1.
1 In the absence of domain knowledge, uniform weights q = 1/n can be a default

choice.

Prototype Selection Using Optimal Transport 541

A closer look into the set function in (8) reveals that the optimization for γ can
be done in parallel over the n target points, and its solution assumes a closed-
form expression. It is worth noting that the constraint γT 1 = q as well as the
objective 〈SP , γ〉 decouple over each column of γ. Hence, (8) can be solved across
the columns of variable γ independently, thereby allowing parallelism over the
target set. In other words,

f(P) =
n∑

j=1

max
γj∈R

k
+

〈
Sj

P , γj
〉

, s.t. 1T γj = qj ∀j, (9)

where Sj
P and γj denote the jth column vectors of the matrices SP and γ,

respectively. Furthermore, if ij denotes the location of the maximum value in
the vector Sj

P , then an optimal solution γ∗ can be easily seen to inherit an
extremely sparse structure with exactly one non-zero element in each column j
at the row location ij , i.e., γ∗

ij ,j = qj ,∀j and 0 everywhere. So (9) can be reduced
to

f(P) =
n∑

j=1

qj max
i∈P

Sij . (10)

The above observation makes the computation f(P) in (10) particularly suited
when using GPUs. Further, due to this specific solution structure in (10), deter-
mining the function value for any incremental set is an inexpensive operation as
shown below.

Lemma 4 (Fast incremental computation). Given any set P and its func-
tion value f(P), the value at the incremental selection f (P ∪ S) obtained by
adding s = |S| new elements to P , can be computed in O(sn).

Remark 5. By setting P = ∅ and f(∅) = 0, f(S) for any set S can be determined
efficiently as discussed in Lemma 4.

3.3 SPOT Optimization Algorithms

As obtaining the global optimum subset P ∗ for the problem (7) is NP com-
plete, we now present two approximation algorithms for SPOT: SPOTsimple
and SPOTgreedy.

SPOTsimple: A Fast Heuristic Algorithm. SPOTsimple is an extremely
fast heuristic that works as follows. For every source point xi, SPOTsimple
determines the indices of target points Ti = {j : Sij ≥ Sĩjfor all̃i �= i} that have
the highest similarity to xi compared to other source points. In other words, it
solves (10) with P = [m], i.e., no cardinality constraint, to determine the initial
transport plan γ where γij = qj if j ∈ Ti and 0 everywhere else. It then computes
the source weights as w = γ1 with each entry wi =

∑

j∈Ti

qj . The top-k source

points based on the weights w are chosen as the prototype set P . The final
transport plan γP is recomputed using (10) over P . The total computational
cost incurred by SPOTsimple for selecting k prototypes is O(mn).

542 K. S. Gurumoorthy et al.

Algorithm 1. SPOTgreedy
Input: sparsity level k or lower bound ε on increment in f(·), X, Y , s, and q.
Initialize P = ∅
while |P | ≤ k or increment in objective ≥ ε. do

Define vector β with entries βi = f (P ∪ {i}) − f(P), ∀i ∈ [m] \ P .
S = Set of indices of top s largest elements in β.
P = P ∪ S.

end while
γP = arg max

γ∈ΓP (q)

〈SP , γ〉; wP = γP1.

Return P , γP , wP .

SPOTgreedy: A Greedy and Incremental Prototype Selection Algo-
rithm. As we discuss later in our experiments (Sect. 5), though SPOTsimple
is computationally very efficient, its accuracy of prototype selection is sensitive
to the skewness of class instances in the target distribution. When the samples
from different classes are uniformly represented in the target set, SPOTsimple
is indeed able to select prototypes from the source set that are representative of
the target. However, when the target is skewed and the class distributions are no
longer uniform, SPOTsimple primarily chooses from the dominant class leading
to biased selection and poor performance (see Fig. 2(a)).

To this end, we present our method of choice SPOTgreedy, detailed in Algo-
rithm1, that leverages the following desirable properties of the function f(·)
in (10) to greedily and incrementally build the prototype set P . For choosing
k protototypes, SPOTgreedy costs O(mnk/s). As most operations in SPOT-
greedy involve basic matrix manipulations, the practical implementation cost of
SPOTgreedy is considerably low.

Lemma 6 (Submodularity). The set function f(·) defined in (10) is mono-
tone and submodular [36].

The submodularity of f(·) enables to provide provable approximation bounds
for greedy element selections in SPOTgreedy. The algorithm begins by setting
the current selection P = ∅. Without loss of generality, we assume f(∅) = 0
as f(·) is monotonic. In each iteration, it determines those s elements from the
remainder set [m]\P , denoted by S, that when individually added to P result in
maximum incremental gain. This can be implemented efficiently as discussed in
Lemma 4. Here s ≥ 1 is the user parameter that decides the number of elements
chosen in each iteration. The set S is then added to P . The algorithm proceeds
for �k

s � iterations to select k prototypes. As function f(·) in (8) is both mono-
tone and submodular, it has the characteristic of diminishing returns. Hence,
an alternative stopping criterion could be the minimum expected increment ε in
the function value at each iteration. The algorithm stops when the increment in
the function value is below the specified threshold ε.

Approximation Guarantee for SPOTgreedy. We note the following result
on the upper bound on the submodularity ratio (4). Let s = |S|. When f(·) is
monotone, then

Prototype Selection Using Optimal Transport 543

αL,S ≤

∑

i∈S

[f (L ∪ {i}) − f(L)]

max
i∈S

[f (L ∪ {i}) − f(L)]
≤ s (11)

and hence αP,s ≤ s. In particular, s = 1 implies αP,1 = 1, as for any L ⊆ P ,
αL,S = 1 when |S| = 1. Our next result provides the performance bound for the
proposed SPOTgreedy algorithm.

Theorem 7 (Performance bounds for SPOTgreedy). Let P be the final
set returned by the SPOTgreedy method described in Algorithm1. Let α = αP,s

be the submodularity ratio of the set P w.r.t. s. If P ∗ is the optimal set of k
elements that maximizes f(·) in the SPOT optimization problem (7), then

f(P) ≥ f (P ∗)
[
1 − e− 1

α

]
≥ f (P ∗)

[
1 − e− 1

s

]
. (12)

When s = 1 we recover the known approximation guarantee of
(
1 − e−1

)
[38].

3.4 k-Medoids as a Special Case of SPOT

Consider the specific setting where the source and the target datasets are the
same, i.e., X = Y . Let n = |X| and qj = 1/n having uniform weights on the
samples. Selecting a prototypical set P ⊂ X is in fact a data summarization
problem of choosing few representative exemplars from a given set of n data
points, and can be thought as an output of a clustering method where P contains
the cluster centers. A popular clustering method is the k-medoids algorithm that
ensures the cluster centers are exemplars chosen from actual data points [43].
As shown in [36], the objective function for the k-medoids problem is

g(P) =
1
n

n∑

j=1

max
z∈P

l (z,xj) ,

where l (xi,xj) = Sij defines the similarity between the respective data points.
Comparing it against (10) gives a surprising connection that the k-medoids algo-
rithm is a special case of learning an optimal transport plan with a sparse support
in the setting where the source and target distributions are the same. Though the
relation between OT and k-means is discussed in [4,11], we are not cognizant
of any prior works that explains k-medoids from the lens of optimal transport.
However, the notion of transport loses its relevance as there is no distinct tar-
get distribution to which the source points need to be transported. It should be
emphasized that the connection with k-medoids is only in the limited case where
the source and target distributions are the same. Hence, the popular algorithms
that solve the k-medoids problem [46] like PAM, CLARA, and CLARANS can-
not be applied in the general setting when the distributions are different.

544 K. S. Gurumoorthy et al.

4 Related Works and Discussion

As discussed earlier, recent works [22,30] view the unsupervised prototype selec-
tion problem as searching for a set P ⊂ X whose underlying distribution is simi-
lar to the one corresponding to the target dataset Y . However, instead of the true
source and target distributions, only samples from them are available. In such
a setting, ϕ-divergences [9] e.g., the total variation distance and KL-divergence,
among others require density estimation or space-partitioning/bias-correction
techniques [47], which can be computationally prohibitive in higher dimensions.
Moreover, they may be agnostic to the natural geometry of the ground metric.
The maximum mean discrepancy (MMD) metric (3) employed by [22,30], on the
other hand, can be computed efficiently but does not faithfully lift the ground
metric of the samples [17].

We propose an optimal transport (OT) based prototype selection approach.
OT framework respects the intrinsic geometry of the space of the distributions.
Moreover, there is an additional flexibility in the choice of the ground metric,
e.g., �1-norm distance, which need not be a (universal) kernel induced function
sans which the distribution approximation guarantees of MMD may no longer
be applicable [21]. Solving the classical OT problem (2) is known to be computa-
tionally more expensive than computing MMD. However, our setting differs from
the classical OT setup, as the source distribution is also learned in (6). As shown
in Lemmas 3 & 4, the joint learning of the source distribution and the optimal
transport plan has an equivalent but computationally efficient reformulation (8).

Using OT is also favorable from a theoretical standpoint. Though the MMD
function in [30] is proven to be submodular, it is only under restricted condi-
tions like the choice of kernel matrix and equal weighting of prototypes. The
work in [22] extends [30] by allowing for unequal weights and eliminating any
additional conditions on the kernel, but forgoes submodularity as the resultant
MMD objective (3) is only weakly submodular. In this backdrop, the SPOT
objective function (7) is submodular without requiring any further assumptions.
It is worth noting that submodularity leads to a tighter approximation guaran-
tee of

(
1 − e−1

)
using greedy approximation algorithms [38], whereas the best

greedy based approximation for weak submodular functions (submodularity ratio
of α < 1) is only (1 − e−α) [16]. A better theoretical approximation of the OT
based subset selection encourages the selection of better quality prototypes.

5 Experiments

We evaluate the generalization performance and computational efficiency of our
algorithms against state-of-the-art on several real-world datasets. The codes are
available at https://pratikjawanpuria.com. The following methods are compared.

– MMD-Critic [30]: it uses a maximum mean discrepancy (MMD) based scor-
ing function. All the samples are weighted equally in the scoring function.

– ProtoDash [22]: it uses a weighted MMD based scoring function. The learned
weights indicate the importance of the samples.

https://pratikjawanpuria.com

Prototype Selection Using Optimal Transport 545

Fig. 1. Performance of different prototype selection algorithms. The standard deviation
for every k is represented as a lighter shaded band around the mean curve corresponding
to each method. [Top row] all the classes have uniform representation in the target set.
[Bottom row] the challenging skewed setting where a randomly chosen class represents
50% of the target set (while the remaining classes together uniformly represent the
rest).

– SPOTsimple: our fast heuristic algorithm described in Sect. 3.3.
– SPOTgreedy: our greedy and incremental algorithm (Algorithm1).

Following [2,22,30], we validate of the quality of the representative sam-
ples selected by different prototype selection algorithms via the performance of
the corresponding nearest prototype classifier. Let X and Y represent source
and target datasets containing different class distributions and let P ⊆ X be
a candidate representative set of the target Y . The quality of P is evaluated
by classifying the target set instances with 1-nearest neighbour (1-NN) classifier
parameterized by the elements in P . The class information of the samples in P
is made available during this evaluation stage. Such classifiers can achieve better
generalization performance than the standard 1-NN classifier due to reduction
of noise overfitting [8] and have been found useful for large scale classification
problems [50,54].

5.1 Prototype Selection Within Same Domain

We consider the following benchmark datasets.

– ImageNet [45]: we use the popular subset corresponding to ILSVRC 2012–
2017 competition. The images have 2048 dimensional deep features [24].

546 K. S. Gurumoorthy et al.

Fig. 2. (a) Comparisons of different algorithms in representing targets with varying
skew percentage of a MNIST digit; (b) Performance of our SPOTgreedy algorithm
with varying subset selection size s on the ImageNet dataset; (c) Comparison of the
objective value (7) obtained by the proposed algorithms SPOTgreedy and SPOTsimple
for various values of k. SPOTgreedy consistently obtains a better approximation.

– MNIST [34] is a handwritten digit dataset consisting of greyscale images of
digits {0, . . . , 9}. The images are of 28 × 28 pixels.

– USPS dataset [25] consists of handwritten greyscale images of {0, . . . , 9}
digits represented as 16 × 16 pixels.

– Letter dataset [15] consists of images of twenty-six capital letters of the
English alphabets. Each letter is represented as a 16 dimensional feature
vector.

– Flickr [49] is the Yahoo/Flickr Creative Commons multi-label dataset con-
sisting of descriptive tags of various real-world outdoor/indoor images.

Results on the Letter and Flickr datasets are discussed in the extended ver-
sion [23].

Experimental Setup. In the first set of experiments, all the classes are equally
represented in the target set. In second set of experiments, the target sets are
skewed towards a randomly chosen class, whose instances (digit/letter) form z%
of the target set and the instances from the other classes uniformly constitute
the remaining (100 − z)%. For a given dataset, the source set is same for all the
experiments and uniformly represents all the classes. Results are averaged over
ten randomized runs. More details on the experimental set up are given in the
extended version [23].

Results. Figure 1 (top row) shows the results of the first set of experiments
on MNIST, USPS, and ImageNet. We plot the test set accuracy for a range of
top-k prototypes selected. We observe that the proposed SPOTgreedy outper-
forms ProtoDash and MMD-Critic over the whole range of k. Figure 1 (bottom
row) shows the results when samples of a (randomly chosen) class constitutes
50% of the target set. SPOTgreedy again dominates in this challenging setting.
We observe that in several instances, SPOTgreedy opens up a significant perfor-
mance gap even with only a few selected prototypes. The average running time
on CPU of algorithms on the ImageNet dataset are: 55.0 s (SPOTgreedy), 0.06 s
(SPOTsimple), 911.4 s (ProtoDash), and 710.5 s (MMD-Critic). We observe that

Prototype Selection Using Optimal Transport 547

Fig. 3. (a) Prototypes selected by SPOTgreedy for the dataset containing one of the
ten MNIST digits (column-wise); (b) Criticisms chosen by SPOTgreedy for the dataset
containing one of the ten MNIST digits (column-wise); (c) Example images representing
the ten classes in the four domains of the Office-Caltech dataset [20].

Table 1. Accuracy obtained on the Office-Caltech dataset.

Task MMD-Critic MMD-Critic+OT ProtoDash ProtoDash+OT SPOTsimple SPOTgreedy

A → C 73.98 78.16 70.23 72.28 82.62 83.60

A → D 75.16 72.61 77.71 71.97 80.25 82.80

A → W 51.53 62.71 48.81 58.64 62.37 75.59

C → A 83.71 86.17 83.82 87.25 71.92 90.03

C → D 70.06 75.16 71.34 70.70 75.80 89.17

C → W 49.83 54.92 46.44 53.56 70.85 82.03

D → A 82.85 85.21 83.39 83.82 91.00 90.89

D → C 78.25 78.34 75.40 79.41 85.38 86.27

D → W 80.00 84.41 85.08 86.10 75.59 92.20

W → A 71.60 78.56 68.38 74.71 87.03 84.99

W → C 67.20 75.76 65.86 74.60 74.06 83.12

W → D 92.36 96.18 88.54 89.81 86.62 94.90

Average 73.04 77.35 72.08 75.24 78.36 86.30

both our algorithms, SPOTgreedy and SPOTsimple, are much faster than both
ProtoDash and MMD-Critic.

Figure 2(a) shows that SPOTgreedy achieves the best performance on differ-
ent skewed versions of the MNIST dataset (with k = 200). Interestingly, in cases
where the target distribution is either uniform or heavily skewed, our heuristic
non-incremental algorithm SPOTsimple can select prototypes that match the
target distribution well. However, in the harder setting when skewness of class
instances in the target dataset varies from 20%to 80%, SPOTsimple predomi-
nantly selects the skewed class leading to a poor performance.

In Fig. 2(b), we plot the performance of SPOTgreedy for different choices of
s (which specifies the number of elements chosen simultaneously in each iter-
ation). We consider the setting where the target has 50% skew of one of the
ImageNet digits. Increasing s proportionally decreases the computational time
as the number of iterations

⌈
k
s

⌉
steadily decreases with s. However, choosing few

elements simultaneously generally leads to better target representation. We note
that between s = 1 and s = 10, the degradation in quality is only marginal even
when we choose as few as 110 prototypes and the performance gap continuously

548 K. S. Gurumoorthy et al.

narrows with more prototype selection. However, the time taken by SPOTgreedy
with s = 10 is 5.7 s, which is almost the expected 10x speedup compared to
SPOTgreedy with s = 1 which takes 55.0 s. In this setting, we also compare
the qualitative performance of the proposed algorithms in solving Problem (7).
Figure 2(c) shows the objective value obtained after every selected prototype on
ImageNet. SPOTgreedy consistently obtains a better objective than SPOTsim-
ple, showing the benefit of the greedy and incremental selection approach.

Identifying Criticisms for MNIST. We further make use of the prototypes
selected by SPOTgreedy to identify criticisms. These are data points belonging
to the region of input space not well explained by prototypes and are farthest
away from them. We use a witness function similar to [30, Section 3.2]. The
columns of Fig. 3(b) visualizes the few chosen criticisms, one for each of the 10
datasets containing samples of the respective MNIST digits. It is evident that the
selected data points are indeed outliers for the corresponding digit class. Since
the criticisms are those points that are maximally dissimilar from the prototypes,
it is also a reflection on how well the prototypes of SPOTgreedy represent the
underlying class as seen in Fig. 3(a), where in each column we plot the selected
prototypes for a dataset comprising one of the ten digits.

5.2 Prototype Selection from Different Domains

Section 5.1 focused on settings where the source and the target datasets had sim-
ilar/dissimilar class distributions. We next consider a setting where the source
and target datasets additionally differ in feature distribution, e.g., due to covari-
ate shift [41].

Figure 2(c) shows examples from the classes of the Office-Caltech dataset
[20], which has images from four domains: Amazon (online website), Caltech
(image dataset), DSLR (images from a DSLR camera), and Webcam (images
from a webcam). Images from the same class vary across the four domains due
to several factors such as different background, lighting conditions, etc. The
number of data points in each domain is: 958 (A: Amazon), 1123 (C: Caltech),
157 (D: DSLR), and 295 (W: Webcam). The number of instances per class per
domain ranges from 8 to 151. DeCAF6 features [14] of size 4096 are used for all
the images. We design the experiment similar to Sect. 5.1 by considering each
domain, in turn, as the source or the target. There are twelve different tasks
where task A → W implies that Amazon and Webcam are the source and the
target domains, respectively. The total number of selected prototypes is 20.

Results. Table 1 reports the accuracy obtained on every task. We observe that
our SPOTgreedy significantly outperforms MMD-Critic and ProtoDash. This is
because SPOTgreedy learns both the prototypes as well as the transport plan
between the prototypes and the target set. The transport plan allows the pro-
totypes to be transported to the target domain via the barycentric mapping,
a characteristic of the optimal transport framework. SPOTgreedy is also much
better than SPOTsimple due to its superior incremental nature of prototype

Prototype Selection Using Optimal Transport 549

selection. We also empower the non-OT based baselines for the domain adap-
tation setting as follows. After selecting the prototypes via a baseline, we learn
an OT plan between the selected prototypes and the target data points by solv-
ing the OT problem (2). The distribution of the prototypes is taken to be the
normalized weights obtained by the baseline. This ensures that the prototypes
selected by MMD-Critic+OT, and ProtoDash+OT are also transported to the
target domain. Though we observe marked improvements in the performance of
MMD-Critic+OT and ProtoDash+OT, the proposed SPOTgreedy and SPOT-
simple still outperform them.

6 Conclusion

We have looked at the prototype selection problem from the viewpoint of opti-
mal transport. In particular, we show that the problem is equivalent to learning
a sparse source distribution w, whose probability values wi specify the rele-
vance of the corresponding prototype in representing the given target set. After
establishing connections with submodularity, we proposed the SPOTgreedy algo-
rithm that employs incremental greedy selection of prototypes and comes with
(i) deterministic theoretical guarantees, (ii) simple implementation with updates
that are amenable to parallelization, and (iii) excellent performance on different
benchmarks.

Future Works: A few interesting generalizations and research directions are as
follows.

– Our k-prototype selection problem (7) may be viewed as learning a �0-norm
regularized (fixed-support) Wasserstein barycenter of a single distribution.
Extending it to learning sparse Waserstein barycenter of multiple distribu-
tions may be useful in applications like model compression, noise removal,
etc.

– With the Gromov-Wasserstein (GW) distance [35,40], the OT distance has
been extended to settings where the source and the target distributions do
not share the same feature and metric space. Extending SPOT with the GW-
distances is useful when the source and the target domains share similar
concepts/categories/classes but are defined over different feature spaces.

References

1. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks.
In: ICML (2017)

2. Bien, J., Tibshirani, R.: Prototype selection for interpretable classification. Ann.
Appl. Stat. 5(4), 2403–2424 (2011)

3. Bien, J., Tibshirani, R.: Hierarchical clustering with prototypes via minimax link-
age. J. Am. Stat. Assoc. 106(495), 1075–1084 (2011)

4. Canas, G., Rosasco, L.: Learning probability measures with respect to optimal
transport metrics. In: NeurIPS (2012)

550 K. S. Gurumoorthy et al.

5. Caruana, R., Lou, Y., Gehrke, J., Koch, P., Sturm, M., Elhadad, N.: Intelligible
models for healthcare. In: SIGKDD (2015)

6. Courty, N., Flamary, R., Habrard, A., Rakotomamonjy, A.: Joint distribution opti-
mal transportation for domain adaptation. In: NeurIPS (2017)

7. Courty, N., Flamary, R., Tuia, D., Rakotomamonjy, A.: Optimal transport for
domain adaptation. TPAMI 39(9), 1853–1865 (2017)

8. Crammer, K., Gilad-Bachrach, R., Navot, A., Tishby, N.: Margin analysis of the
LVQ algorithm. In: NeurIPS (2002)

9. Csiszár, I.: A class of measures of informativity of observation channels. Period.
Math. Hung. 2(1), 191–213 (1972)

10. Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In:
NeurIPS (2013)

11. Cuturi, M., Doucet, A.: Fast computation of Wasserstein barycenters. In: ICML
(2014)

12. Das, A., Kempe, D.: Submodular meets spectral: greedy algorithms for subset
selection, sparse approximation and dictionary selection. In: ICML (2011)

13. Dhurandhar, A., Gurumoorthy, K.S.: Classifier invariant approach to learn from
positive-unlabeled data. In: IEEE ICDM (2020)

14. Donahue, J., et al.: DeCAF: a deep convolutional activation feature for generic
visual recognition. In: ICML (2014)

15. Dua, D., Graff, C.: UCI machine learning repository (2017)
16. Elenberg, E., Khanna, R., Dimakis, A.G., Negahban, S.: Restricted strong convex-

ity implies weak submodularity. Ann. Stat. 46, 3539–3568 (2018)
17. Feydy, J., Séjourné, T., Vialard, F.X., Amari, S., Trouvé, A., Peyré, G.: Interpolat-

ing between optimal transport and MMD using Sinkhorn divergences. In: AISTATS
(2018)

18. Frogner, C., Zhang, C., Mobahi, H., Araya-Polo, M., Poggio, T.: Learning with a
Wasserstein loss. In: NeurIPS (2015)

19. Fujishige, S.: Submodular Functions and Optimization. Elsevier (2005)
20. Gong, B., Shi, Y., Sha, F., Grauman, K.: Geodesic flow kernel for unsupervised

domain adaptation. In: CVPR (2012)
21. Gretton, A., Borgwardt, K.M., Rasch, M., Schölkopf, B., Smola, A.J.: A kernel

two-sample test. J. Mach. Learn. Res. 13(25), 723–773 (2012)
22. Gurumoorthy, K.S., Dhurandhar, A., Cecchi, G., Aggarwal, C.: Efficient data repre-

sentation by selecting prototypes with importance weights. In: IEEE ICDM (2019)
23. Gurumoorthy, K.S., Jawanpuria, P., Mishra, B.: SPOT: a framework for selec-

tion of prototypes using optimal transport. Technical report, arXiv preprint
arXiv:2103.10159 (2021)

24. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: CVPR (2016)

25. Hull, J.: A database for handwritten text recognition research. TPAMI 16(5), 550–
554 (1994)

26. Idé, T., Dhurandhar, A.: Supervised item response models for informative predic-
tion. Knowl. Inf. Syst. 51(1), 235–257 (2017)

27. Jawanpuria, P., Dev, S., Mishra, B.: Efficient robust optimal transport: formula-
tions and algorithms. Technical report, arXiv preprint arXiv:2010.11852 (2020)

28. Jawanpuria, P., Meghwanshi, M., Mishra, B.: Geometry-aware domain adaptation
for unsupervised alignment of word embeddings. In: ACL (2020)

29. Kantorovich, L.: On the translocation of masses. Doklady Acad. Sci. USSR 37,
199–201 (1942)

http://arxiv.org/abs/2103.10159
http://arxiv.org/abs/2010.11852

Prototype Selection Using Optimal Transport 551

30. Kim, B., Khanna, R., Koyejo, O.: Examples are not enough, learn to criticize!
criticism for interpretability. In: NeurIPS (2016)

31. Kim, B., Rudin, C., Shah, J.: The Bayesian case model: a generative approach for
case-based reasoning and prototype classification. In: NeurIPS (2014)

32. Knight, P.A.: The Sinkhorn-Knopp algorithm: convergence and applications. SIAM
J. Matrix Anal. Appl. 30(1), 261–275 (2008)

33. Koh, P.W., Liang, P.: Understanding black-box predictions via influence functions.
In: ICML (2017)

34. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

35. Mémoli, F.: Gromov-Wasserstein distances and the metric approach to object
matching. Found. Comput. Math. 11(4), 417–487 (2011)

36. Mirzasoleiman, B., Karbasi, A., Sarkar, R., Krause, A.: Distributed submodular
maximization. J. Mach. Learn. Res. 17(235), 1–44 (2016)

37. Nath, J.S., Jawanpuria, P.: Statistical optimal transport posed as learning kernel
mean embedding. In: NeurIPS (2020)

38. Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations for
maximizing submodular set functions. Math. Program. 14, 265–294 (1978)

39. Peyré, G., Cuturi, M.: Computational optimal transport. Found. Trends Mach.
Learn. 11(5–6), 355–607 (2019)

40. Peyré, G., Cuturi, M., Solomon, J.: Gromov-Wasserstein averaging of kernel and
distance matrices. In: ICML (2016)

41. Quionero-Candela, J., Sugiyama, M., Schwaighofer, A., Lawrence, N.: Dataset Shift
in Machine Learning. The MIT Press, Cambridge (2009)

42. Ribeiro, M., Singh, S., Guestrin, C.: Why should I trust you? Explaining the pre-
dictions of any classifier. In: SIGKDD (2016)

43. Rousseeuw, P.J., Kaufman, L.: Finding Groups in Data: An Introduction to Cluster
Analysis. Wiley, Hoboken (2009)

44. Rubner, Y., Tomasi, C., Guibas, L.J.: The earth mover’s distance as a metric for
image retrieval. IJCV 40(2), 99–121 (2000)

45. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J.
Comput. Vis. 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y

46. Schubert, E., Rousseeuw, P.J.: Faster k-Medoids clustering: improving the PAM,
CLARA, and CLARANS algorithms. In: International Conference on Similarity
Search and Applications (2019)

47. Smola, A., Gretton, A., Song, L., Schölkopf, B.: A Hilbert space embedding for
distributions. In: International Conference on Algorithmic Learning Theory (2007)

48. Solomon, J., et al.: Convolutional Wasserstein distances: efficient optimal trans-
portation on geometric domains. ACM Trans. Graph. 34(4), 66:1–66:11 (2015)

49. Thomee, B., et al.: YFCC100M: the new data in multimedia research. Commun.
ACM 59(2), 64–73 (2016)

50. Tibshirani, R., Hastie, T., Narasimhan, B., Chu, G.: Diagnosis of multiple cancer
types by shrunken centroids of gene expression. PNAS 99(10), 6567–6572 (2002)

51. Villani, C.: Optimal Transport: Old and New. Springer, Heidelberg (2009)
52. Wei, K., Iyer, R., Bilmes, J.: Submodularity in data subset selection and active

learning. In: ICML (2015)
53. Weiser, M.: Programmers use slices when debugging. Commun. ACM 25(7), 446–

452 (1982)
54. Wohlhart, P., Köstinger, M., Donoser, M., Roth, P., Bischof, H.: Optimizing 1-

nearest prototype classifiers. In: CVPR (2013)
55. Yeh, C.K., Kim, J., Yen, I.E.H., Ravikumar, P.K.: Representer point selection for

explaining deep neural networks. In: NeurIPS (2018)

https://doi.org/10.1007/s11263-015-0816-y

Author Index

Aakanksha 187
Abrate, Carlo 237
Akiti, Chandan 271
Alizadeh, Pegah 420
Allasia, Walter 171
Alpcan, Tansu 69
Angius, Alessio 237
Aramaki, Eiji 335
Axenie, Cristian 437

Bajer, Lukas 53
Bazgan, Cristina 486
Benavoli, Alessio 103
Bortoli, Stefano 437
Brabec, Jan 53
Brasche, Götz 437

Cai, Zekun 319
Cambria, Erik 367
Camtepe, Seyit 69
Cartlidge, John 204
Cazenave, Tristan 486
Chang, Hsuan-Ling 253
Chaoji, Vineet 187
Chen, Siyuan 470
Chiang, Yao-Yi 453
Chopin, Morgan 486
Cobb, Adam D. 351
Cohen, Andrew 135
Conejero, J. Alberto 384
Corani, Giorgio 103
Cozzini, Stefano 237
Cui, Mingxin 518

Dang, Chen 486
De Francisci Morales, Gianmarco 237
Dou, Yong 287
Du, Xin 470
Dubey, Abhishek 502

Elovici, Yuval 221
Escolano, Francisco 384

Fan, Zipei 319
Forman, George 403
Fornasiero, Marco 171
Foroni, Daniele 437
Fourure, Damien 3
Franz, Sebastian 37

Gandhi, Ankit 187
Gao, Zikai 287
Garcia-March, Miguel Angel 384
Gou, Gaopeng 518
Grossi, Margherita 437
Gurumoorthy, Karthik S. 535

Hassan, Mohamad Al Hajj 437
He, Jingzhu 19

Iadanza, Francesca 237

Javaid, Muhammad Usama 3
Jawanpuria, Pratik 535
Ji, Shaoxiong 367
Jiang, Lun 135
Jiang, Renhe 319

Kaveri, Sivaramakrishnan 187
Kiskin, Ivan 351
Kohout, Jan 53
Kopp, Martin 53

Labaca-Castro, Raphael 37
Laszka, Aron 502
Li, Xin 151
Li, Zhen 518
Liao, Jun 151
Lin, Ting-Wei 253
Liu, Chang 518
Liu, Li 151
Liu, Zhiyue 470
Lozano, Miguel Angel 384

Marttinen, Pekka 367
Mathew, Jose 85
Mathov, Yael 221

554 Author Index

Matsubara, Go 319
Mishra, Bamdev 535
Mizuseki, Hiroto 319
Moncalvo, Dario 171
Mukhopadhyay, Ayan 502
Murayama, Taichi 335

Negi, Meghana 85
Nehemya, Elior 221

Oliver, Nuria 384
Orts, Òscar Garibo i 384

Panisson, André 171
Pavanelli, Simone 237
Perotti, Alan 237
Pignataro, Stefano 237
Piñol, Eloy 384
Polotskaya, Kristina 384
Posocco, Nicolas 3
Prasse, Paul 53
Pugliese, Philip 502
Puma, Laura Li 171, 237

Rajtmajer, Sarah 271
Rebollo, Miguel 384
Ricci, Valeria 171
Roberts, Stephen J. 351
Rodosek, Gabi Dreo 37
Ronchiadin, Silvia 171, 237
Rubinstein, Benjamin I. P. 69

Sadghiani, Nima Salehi 135
Sathyanarayana, Jairaj 85
Scheffer, Tobias 53
Schreiber, Jens 118
Shabtai, Asaf 221
Shahabi, Cyrus 453
Shi, Rongye 437
Shi, Zijian 204
Shibasaki, Ryosuke 319
Sick, Bernhard 118
Sinka, Marianne 351
Song, Xuan 319
Sottovia, Paolo 437
Squicciarini, Anna 271
Starnini, Michele 171
Sun, Guoxin 69

Sun, Ruei-Yao 253
Sun, Wei 367

Tao, Zhuo 135
Theeuwes, Nikki 302
Tihon, Simon 3
Traversi, Emiliano 420
Tsai, Ming-Feng 253
Tsourakakis, Charalampos E. 171

Ugrinoska, Angela 171
Umar, Prasanna 271

van Houtum, Geert-Jan 302
Varetto, Marco 171
Vazirizade, Sayyed 502
Vijjali, Rutvik 85
Vogt, Stephan 118

Wakamiya, Shoko 335
Wang, Chuan-Ju 253
Wang, Jiahai 470
Wang, Kang 287
Wang, Liang 19
Wang, Yu 518
Wang, Zhaonan 319
Wen, Dong 287
Wieder, Alexander 437
Wilbur, Michael 502
Willis, Kathy 351
Wolfler Calvo, Roberto 420
Wu, Yanhong 19
Wuillemin, Pierre-Henri 486

Xia, Tianqi 319
Xiong, Gang 518

Yang, Chuang 319
Yeh, Chin-Chia Michael 19
Yue, Mingxuan 453

Zaffalon, Marco 103
Zamanipour, Maryam 171
Zhang, Wei 19
Zhang, Yingqian 302
Zhao, Yang 287
Zigrand, Louis 420

	Preface
	Organization
	Contents – Part IV
	Anomaly Detection and Malware
	Anomaly Detection: How to Artificially Increase Your F1-Score with a Biased Evaluation Protocol
	1 Introduction
	2 Related Work
	3 Issues When Using F1-Score and AVPR Metrics
	3.1 Formalism and Problem Statement
	3.2 Definition of the Metrics
	3.3 Evaluation Protocols: Theory vs Practice
	3.4 Metrics Sensitivity to the Contamination Rate of the Test Set
	3.5 How to Artificially Increase Your F1-Score and AVPR
	3.6 F1-Score Cannot Compare Datasets Difficulty

	4 Call for Action
	4.1 Use AUC
	4.2 Do Not Waste Anomalous Samples

	5 Conclusion
	References

	Mining Anomalies in Subspaces of High-Dimensional Time Series for Financial Transactional Data
	1 Introduction
	2 Related Work
	3 Definitions and Notation
	4 System Architecture
	4.1 Subspace Searching Module
	4.2 Discord Mining Module
	4.3 Discussion

	5 Evaluation
	5.1 Alternative Approaches
	5.2 Synthetic Data
	5.3 Real-World Transactional Data

	6 Conclusion
	References

	AIMED-RL: Exploring Adversarial Malware Examples with Reinforcement Learning
	1 Introduction
	2 Related Work
	2.1 Reinforcement Learning
	2.2 Further Approaches

	3 AIMED-RL
	3.1 Framework and Notation
	3.2 Experimental Setting
	3.3 Environment

	4 Experimental Results
	4.1 Diversity of Perturbations
	4.2 Evasion Rate

	5 Availability
	6 Conclusion
	References

	Learning Explainable Representations of Malware Behavior
	1 Introduction
	2 Related Work
	3 Problem Setting and Operating Environment
	3.1 Network Events
	3.2 Identification of Threats
	3.3 Data Collection and Quantitative Analysis

	4 Models
	4.1 Architectures
	4.2 Unsupervised Pre-training

	5 Experiments
	5.1 Hyperparameter Optimization
	5.2 Malware-Classification Performance
	5.3 Indicators of Compromise

	6 Conclusion
	References

	Strategic Mitigation Against Wireless Attacks on Autonomous Platoons
	1 Introduction
	1.1 Related Work

	2 Message Falsification Attacks Against Platoons
	2.1 Vehicular Platoon Control Policy
	2.2 Attack Model
	2.3 Attack Detection Algorithm

	3 Security Game-Based Mitigation Framework
	3.1 Numerical Example

	4 Simulation Setup
	5 Simulation Results and Discussion
	5.1 Realistic Driving Scenario

	6 Conclusion
	References

	DeFraudNet: An End-to-End Weak Supervision Framework to Detect Fraud in Online Food Delivery
	1 Introduction
	2 Related Work
	3 The Framework: DeFraudNet
	3.1 Problem Definition
	3.2 Fraud Detection Pipeline

	4 Data and Feature Processing
	4.1 Dataset
	4.2 Feature Engineering

	5 Label Generation
	5.1 Generating Noisy Labels Using LFs
	5.2 Snorkel Generative Model
	5.3 Class-Specific Autoencoders for Denoising

	6 Discriminator Models
	6.1 Multi Layer Perceptron
	6.2 LSTM Sequence Model

	7 Deployment and Serving Infrastructure
	8 Ablation Experiments
	8.1 Setup and Baseline
	8.2 Experiments

	9 Conclusion
	References

	Spatio-Temporal Data
	Time Series Forecasting with Gaussian Processes Needs Priors
	1 Introduction
	2 Gaussian Processes
	2.1 Kernel Compositions
	2.2 The Composition
	2.3 Training Strategy
	2.4 MAP Estimation
	2.5 Forecasting

	3 Experiments
	4 Dealing with Multiple Seasonalities
	5 Code and Replicability
	6 Conclusions
	References

	Task Embedding Temporal Convolution Networks for Transfer Learning Problems in Renewable Power Time Series Forecast
	1 Introduction
	2 Related Work
	3 Proposed Method
	3.1 Definition of MTL, TL, and Zero-Shot Learning
	3.2 Proposed Method

	4 Experimental Evaluation of the Task-Temporal Convolution Network
	4.1 GemanSolarFarm and EuropeWindFarm Dataset
	4.2 Evaluation Measures
	4.3 MTL Experiment
	4.4 Zero-Shot Learning Experiment
	4.5 Inductive TL Experiment

	5 Conclusion and Future Work
	References

	Generating Multi-type Temporal Sequences to Mitigate Class-Imbalanced Problem
	1 Introduction
	2 Related Work
	2.1 GAN for Sequence Data
	2.2 RL for GANs with Sequences of Discrete Tokens
	2.3 Gumbel-Softmax Distribution for GANs with Sequences of Discrete Tokens

	3 Methodology
	3.1 Definitions
	3.2 RL and Policy Improvement to Train GAN
	3.3 An Approximation with Gumbel-Softmax Distribution

	4 Data Experiments
	4.1 Synthetic Dataset
	4.2 Evaluation Metric
	4.3 Experiment Setup
	4.4 Experiment Results

	5 Conclusions
	References

	Recognizing Skeleton-Based Hand Gestures by a Spatio-Temporal Network
	1 Introduction
	2 Related Work
	2.1 Hand Pose and Gesture Representation
	2.2 Hand Gesture Recognition

	3 Problem Formulation
	3.1 Definition
	3.2 Embedding Representation for Skeletal Data

	4 Our Model
	4.1 Spatio-Temporal Feature Encoder
	4.2 Attention Scorer
	4.3 Network-Based Classifier

	5 Experiments
	5.1 Datasets and Preprocessing
	5.2 Experimental Set-Ups and Baselines
	5.3 Comparison Results on Publicly-Available Datasets
	5.4 Comparisons Results on TaiChi2021
	5.5 Ablation Study

	6 Conclusion
	References

	E-commerce and Finance
	Smurf-Based Anti-money Laundering in Time-Evolving Transaction Networks
	1 Introduction
	2 Related Work
	3 Dataset Description
	4 Extraction of Smurf-Like Motifs from Transaction Graph
	4.1 Proposed Pipeline
	4.2 Results

	5 Conclusion
	References

	Spatio-Temporal Multi-graph Networks for Demand Forecasting in Online Marketplaces
	1 Introduction
	2 Prior Work
	3 Proposed Method
	3.1 Problem Formulation
	3.2 Graph Construction
	3.3 Graph Neural Networks
	3.4 Sequential Model

	4 Experimental Results
	4.1 Implementation Details
	4.2 Comparison with Baseline
	4.3 Demand Forecasting for Multi-seller Products and Cold Start Offers

	5 Conclusion
	References

	The Limit Order Book Recreation Model (LOBRM): An Extended Analysis
	1 Introduction
	2 Background and Related Work
	2.1 The Limit Order Book (LOB)
	2.2 Generating Synthetic LOB Data

	3 Model Formulation
	3.1 Motivation
	3.2 Problem Description
	3.3 Formalized Workflow of LOBRM

	4 Experiment and Empirical Analysis
	4.1 Data Preprocessing
	4.2 Model Comparison
	4.3 Ablation Study
	4.4 Superiority of Sparse Encoding for TAQ
	4.5 Is the Model Well-Trained?

	5 Conclusion
	References

	Taking over the Stock Market: Adversarial Perturbations Against Algorithmic Traders
	1 Introduction
	2 Background
	2.1 Algorithmic Trading
	2.2 Adversarial Learning

	3 Problem Description
	3.1 Trading Setup
	3.2 Threat Model

	4 Proposed Attack
	5 Evaluation Setup
	5.1 Dataset
	5.2 Feature Extraction
	5.3 Models
	5.4 Evaluation

	6 White-Box Attack
	7 Black-Box Attack
	8 Mitigation
	9 Conclusions
	References

	Continuous-Action Reinforcement Learning for Portfolio Allocation of a Life Insurance Company
	1 Introduction
	2 Problem Definition
	2.1 Formalization
	2.2 Implementation Details
	2.3 Optimization Problem

	3 Solution
	3.1 Structural and Parametric Constraints

	4 Experimental Evaluation
	4.1 Three Assets Scenario.
	4.2 Six Assets Scenario

	5 Related Work
	6 Conclusions
	References

	XRR: Explainable Risk Ranking for Financial Reports
	1 Introduction
	2 Methodology
	2.1 Definitions and Problem Formulation
	2.2 Post-event Return Volatility
	2.3 Multilevel Explanation Structure
	2.4 Pairwise Deep Ranking

	3 Experiments
	3.1 Data Description
	3.2 Experimental Settings
	3.3 Pre-trained Word Embedding
	3.4 Compared Methods
	3.5 Experimental Results
	3.6 Fine-Grained Analysis
	3.7 Different Risk Measure Analysis

	4 Discussions on Explainability
	4.1 Financial Sentiment Terms Analysis
	4.2 Financial Sentiment Sentences Analysis

	5 Conclusion
	References

	Healthcare and Medical Applications (including Covid)
	Self-disclosure on Twitter During the COVID-19 Pandemic: A Network Perspective
	1 Introduction
	2 Dataset
	3 Self-disclosure Measurements
	3.1 Measurement Scale
	3.2 Manual Annotations
	3.3 Label Generation

	4 Analysis
	4.1 Self-disclosure Assortativity in Twitter Reply Networks
	4.2 Persistent Groups and Self-disclosure
	4.3 Characterizing Sensitive Disclosures in Temporally Persistent Social Connections

	5 Discussion
	6 Related Work
	7 Conclusion
	References

	COVID Edge-Net: Automated COVID-19 Lung Lesion Edge Detection in Chest CT Images
	1 Introduction
	2 Related Works
	2.1 COVID-19 Segmentation
	2.2 Edge Detection

	3 Methodology
	3.1 Task Definition
	3.2 Overview of COVID Edge-Net
	3.3 The Edge Detection Backbone
	3.4 Multi-scale Residual Dual Attention (MSRDA) Module
	3.5 Canny Operator Module
	3.6 Global Loss Function

	4 Experiments and Discussions
	4.1 Experimental Settings
	4.2 Comparison with State-of-the-Arts
	4.3 Ablation Study
	4.4 Additional Experiments

	5 Conclusions
	References

	Improving Ambulance Dispatching with Machine Learning and Simulation
	1 Introduction
	2 Related Work
	3 The Data Set: Historic Dispatch Decisions
	3.1 Feature Engineering

	4 Capturing the Dispatch Policy with a Decision Tree
	4.1 Performance Analysis of the Learned Decision Tree and Policy
	4.2 The Penalty-Based Closest-Idle Policy

	5 Current Policy as a Basis for Improvement
	5.1 Evaluating Potential Enhancements Using Simulation
	5.2 Performance of the Improved Policy

	6 Conclusion
	References

	Countrywide Origin-Destination Matrix Prediction and Its Application for COVID-19
	1 Introduction
	2 Related Work
	2.1 Crowd and Traffic Flow Prediction
	2.2 Mobility-Based COVID-19 Simulation

	3 Problem Definition
	4 OD Matrix Prediction Model
	4.1 Overview
	4.2 Origin-Destination Convolution (OD-Conv)
	4.3 Origin-Destination Convolutional Recurrent Unit (ODCRU)
	4.4 Dynamic Graph Constructor (DGC)

	5 OD Matrix Based Epidemic Simulation Model
	6 Experiment
	6.1 Data
	6.2 Setting
	6.3 Evaluation on OD Matrix Prediction
	6.4 Evaluation on COVID-19 Simulation

	7 Conclusion
	References

	Single Model for Influenza Forecasting of Multiple Countries by Multi-task Learning
	1 Introduction
	2 Datasets
	3 Methods for Finding Search Queries
	4 Building a Flu Forecasting Model for Multiple Countries
	4.1 Problem Formulation
	4.2 Model Structure
	4.3 Extension to Multi-task Model

	5 Experiments and Results
	5.1 Experimental Settings
	5.2 Comparative Models
	5.3 Results

	6 Discussions
	6.1 Multi-model Performance for Other Countries
	6.2 Comparison of Models Without and with Search Queries
	6.3 Analysis of the Methods to Find Search Queries

	7 Conclusions
	References

	Automatic Acoustic Mosquito Tagging with Bayesian Neural Networks
	1 Introduction
	2 Background
	2.1 Mosquito Control Efforts
	2.2 Acoustic Machine Learning

	3 Methods
	3.1 HumBug Pipeline
	3.2 Bayesian Neural Networks

	4 Model Configuration
	5 Results
	5.1 Validation Performance
	5.2 Automatically Labelling Field Data with Uncertainty Metrics

	6 Conclusion
	A Appendix
	References

	Multitask Recalibrated Aggregation Network for Medical Code Prediction
	1 Introduction
	2 Related Work
	3 Method
	3.1 Input Layer
	3.2 Bidirectional GRU Layer
	3.3 Recalibrated Aggregation Module
	3.4 Attention Classification Layers
	3.5 Multitask Training

	4 Experiments
	4.1 Datasets
	4.2 Settings
	4.3 Baselines
	4.4 Results
	4.5 Ablation Study
	4.6 A Detailed Analysis of the Properties of the RAM

	5 Conclusion
	References

	Open Data Science to Fight COVID-19: Winning the 500k XPRIZE Pandemic Response Challenge
	1 Introduction
	2 Related Work
	3 Data
	4 Predictors of COVID-19 Cases
	4.1 Notation
	4.2 SIR Epidemiological Model
	4.3 Baseline or Standard Predictor
	4.4 ValenciaIA4COVID (V4C) Predictor

	5 Prescriptor of Intervention Policies
	5.1 Modeling the NPI - COVID-19 Cases Space
	5.2 Prescriptors
	5.3 Intervention Policy Definition

	6 Experimental Results
	6.1 Predictor
	6.2 Speed and Resource Use
	6.3 Prescriptor

	7 Conclusions and Future Work
	References

	Mobility and Transportation
	Getting Your Package to the Right Place: Supervised Machine Learning for Geolocation
	1 Introduction
	2 Supervised Geolocation by Ranking
	2.1 Candidate Filtering and Generation
	2.2 Feature Vectors
	2.3 Base Classifiers and Implementation

	3 Experiments
	3.1 Datasets
	3.2 Loss vs. Business Objective
	3.3 How Does It Perform Against Baselines?
	3.4 How Is the Tail Affected by Model Capacity?
	3.5 Lesion Studies and RankNet Comparison

	4 Discussion
	4.1 Real-World Offline Evaluations
	4.2 Real-World Online Evaluations
	4.3 Limitations

	5 Related Work
	6 Conclusion and Future Work
	References

	Machine Learning Guided Optimization for Demand Responsive Transport Systems
	1 Introduction
	1.1 Context
	1.2 Motivation
	1.3 Contribution

	2 Related Work
	3 Machine Learning Guided Optimization
	4 MLGO Applied to DRT Systems
	4.1 Model and Notations
	4.2 Generation of Feasible Solutions
	4.3 Simulation Framework
	4.4 Surrogate Model
	4.5 Offline Optimization Framework

	5 Experiments
	5.1 Choice of a Machine Learning Model for the Optimization
	5.2 Computational Results
	5.3 Optimization Results

	6 Conclusion
	References

	OBELISC: Oscillator-Based Modelling and Control Using Efficient Neural Learning for Intelligent Road Traffic Signal Calculation
	1 Introduction
	2 Materials and Methods
	2.1 Oscillator-Based Modelling of Traffic Dynamics
	2.2 Robust Control of the Oscillator-Based Networked Dynamics
	2.3 Representation, Learning, and Dynamics in Neural Networks

	3 Experiments and Results
	4 Discussion
	5 Conclusions
	References

	VAMBC: A Variational Approach for Mobility Behavior Clustering
	1 Introduction
	2 Related Work
	3 Preprocessing and Problem Definition
	4 The VAMBCModel
	4.1 Decomposing Hidden Variables
	4.2 Training Objectives and Neural Layers
	4.3 Network Design
	4.4 Relationship to VAE and Gaussian-Mixture VAE

	5 Experiments
	5.1 Environment and Experiment Settings
	5.2 Quantitative Analysis
	5.3 Ablation Study
	5.4 The Training Progress of VAMBC

	6 Conclusion
	References

	Multi-agent Deep Reinforcement Learning with Spatio-Temporal Feature Fusion for Traffic Signal Control
	1 Introduction
	2 Related Works
	3 Problem Definition
	4 Method
	4.1 Spatio-Temporal Input Embedding
	4.2 Spatio-Temporal Feature Fusion
	4.3 Q-Value Prediction

	5 Experiment
	5.1 Datasets
	5.2 Baseline Methods
	5.3 Performance Metrics and Parameter Settings
	5.4 Comparison with Baseline Methods
	5.5 Effect of Spatio-Temporal Feature Fusion Components

	6 Conclusion
	References

	Monte Carlo Search Algorithms for Network Traffic Engineering
	1 Introduction
	2 Problem Formulation
	3 Monte Carlo Search on Routing Problem
	3.1 Monte Carlo Search
	3.2 Modeling with Monte Carlo Search
	3.3 Improvement

	4 Experimental Results
	4.1 Dataset
	4.2 Comparison of the Monte Carlo Algorithms
	4.3 Impact of the Metric Space
	4.4 Comparison
	4.5 Random Dense Graphs

	5 Conclusion
	References

	Energy and Emission Prediction for Mixed-Vehicle Transit Fleets Using Multi-task and Inductive Transfer Learning
	1 Introduction
	2 Model
	2.1 Predicting Energy Consumed and Emissions
	2.2 Preliminaries and Model Formulation

	3 Approach
	3.1 Mapping Vehicle Trajectories to Route Segments
	3.2 Generating Samples
	3.3 Learning

	4 Experiments and Results
	4.1 Hyperparameter Tuning and Baseline Models
	4.2 Multi-task Model Evaluation
	4.3 Inductive Transfer Learning Evaluation
	4.4 Discussion

	5 Conclusion
	References

	CQNet: A Clustering-Based Quadruplet Network for Decentralized Application Classification via Encrypted Traffic
	1 Introduction
	2 Related Work
	2.1 Web Application Classification
	2.2 Mobile Application Classification
	2.3 Decentralized Applications Classification

	3 Preliminaries
	3.1 DApps Background
	3.2 Problem Definition
	3.3 Limitation of Existing Methods

	4 CQNet
	4.1 FE-set (RQ1)
	4.2 The Proposed Quadruplet Network (RQ2)

	5 Performance Evaluation
	5.1 Dataset Collection
	5.2 Experiments Settings
	5.3 Hyperparameters of CQNet
	5.4 Performance Comparison
	5.5 Ablation Studies

	6 Conclusion
	References

	SPOT: A Framework for Selection of Prototypes Using Optimal Transport
	1 Introduction
	2 Background
	2.1 Optimal Transport (OT)
	2.2 Prototype Selection
	2.3 Submodularity

	3 SPOT Framework
	3.1 SPOT Problem Formulation
	3.2 Equivalent Reduced Representations of SPOT Objective
	3.3 SPOT Optimization Algorithms
	3.4 k-Medoids as a Special Case of SPOT

	4 Related Works and Discussion
	5 Experiments
	5.1 Prototype Selection Within Same Domain
	5.2 Prototype Selection from Different Domains

	6 Conclusion
	References

	Author Index

