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Abstract. This paper investigates a constrained formulation of neu-
ral networks where the output is a convex function of the input. We
show that the convexity constraints can be enforced on both fully con-
nected and convolutional layers, making them applicable to most archi-
tectures. The convexity constraints include restricting the weights (for
all but the first layer) to be non-negative and using a non-decreasing
convex activation function. Albeit simple, these constraints have pro-
found implications on the generalization abilities of the network. We
draw three valuable insights: (a) Input Output Convex Neural Net-
works (IOC-NNs) self regularize and significantly reduce the problem of
overfitting; (b) Although heavily constrained, they outperform the base
multi layer perceptrons and achieve similar performance as compared
to base convolutional architectures and (c) IOC-NNs show robustness
to noise in train labels. We demonstrate the efficacy of the proposed
idea using thorough experiments and ablation studies on six commonly
used image classification datasets with three different neural network
architectures. The appendix and codes for this paper are available at:
https://github.com/sarathsp1729/Convex-Networks.

1 Introduction

Deep Neural Networks use multiple layers to extract higher-level features from
the raw input progressively. The ability to automatically learn features at mul-
tiple levels of abstractions makes them a powerful machine learning system that
can learn complex relationships between input and output. Seminal work by
Zhang et al. [30] investigates the expressive power of neural networks on finite
sample sizes. They show that even when trained on completely random labeling
of the true data, neural networks achieve zero training error, increasing training
time and effort by only a constant factor. Such potential of brute force memo-
rization makes it challenging to explain the generalization ability of deep neural
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Fig. 1. Training of AllConv and IOC-AllConv on CIFAR-10 dataset. (a) Loss curve
while training with true labels. AllConv starts overfitting after few epochs. IOC-
AllConv does not exhibit overfitting, and the test loss nicely follows the training loss.
(b) Accuracy plots while training with randomized labels (labels were randomized
for all the training images). If sufficiently trained, even a simple network like MLP
achieves 100% training accuracy and gives around 10% test accuracy. IOC-MLP resists
any learning on the randomized data and gives 0% generalization gap. (c) and (d) Loss
and accuracy plots on CIFAR-10 data when trained with 50% labels randomized in the
training set.

networks. They further illustrate that the phenomena of neural network fitting
on random labeling of training data is largely unaffected by explicit regulariza-
tion (such as weight decay, dropout, and data augmentation). They suggest that
explicit regularization may improve generalization performance but is neither
necessary nor by itself sufficient for controlling generalization error. Moreover,
recent works show that generalization (and test) error in neural networks reduces
as we increase the number of parameters [22,23], which contradicts the tradi-
tional wisdom that overparameterization leads to overfitting. These observations
have given rise to a branch of research that focuses on explaining the neural net-
work’s generalization error rather than just looking at their test performance [24].

We propose a principled and reliable alternative that tries to affirmatively
resolve the concerns raised in [30]. More specifically, we investigate a novel con-
strained family of neural networks called Input Output Convex Neural Networks
(IOC-NNs), which learn a convex function between input and output. Convex-
ity in machine learning typically refers to convexity in terms of the parameters
w.r.t to the loss [3], which is not the case in our work. We use an IOC prefix to
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indicate the Input Output Convexity explicitly. Amos et al. [1] have previously
explored the idea of Input Output convexity; however, their experiments limit to
Partially Input Convex Neural Networks (PICNNs), where the output is convex
w.r.t some of the inputs. They deem fully convex networks unnecessary in their
studied setting of structured prediction, highly restricted on the allowable class
of models, highly limited, even failing to do simple identity mapping without
additional skip (pass-through) connections. Hence, they do not present even a
single experiment on fully convex networks.

We wake this sleeping giant up and thoroughly investigate fully convex net-
works (outputs are convex w.r.t to all the inputs) on the task of multi-class
classification. Each class in multi-class classification is represented as a convex
function, and the resulting decision boundaries are formed as an argmax of con-
vex functions. Being able to train IOC with NN-like capacity, we, for the first
time, discover the beautiful underlying properties, especially in terms of gen-
eralization abilities and robustness to label noise. We investigate IOC-NNs on
six commonly used image classification benchmarks and pose them as a pre-
ferred alternative over the non-convex architectures. Our experiments suggest
that IOC-NNs avoid fitting over the noisy part of the data, in contrast to the
typical neural network behavior. Previous work shows that [2] neural networks
tend to learn simpler hypotheses first. Our experiments show that IOC-NNs
tend to hold on to the simpler hypothesis even in the presence of noise, without
overfitting in most settings.

A motivating example is illustrated in Fig. 1, where we train an All Convo-
lutional network (AllConv) [28] and its convex counterpart IOC-AllConv on the
CIFAR-10 dataset. AllConv starts overfitting the train data after a few epochs
(Fig. 1(a)). In contrast, IOC-AllConv shows no signs of overfitting and flattens
at the end (the test loss values pleasantly follow the training curve). Such an
observation is consistent across all our experiments on IOC-NNs across differ-
ent datasets and architectures, suggesting that IOC-NNs have lesser reliance on
explicit regularization like early stopping. Fig. 1(b) presents the accuracy plots
for the randomized test where we train Multi-Layer Perceptron (MLP) and IOC-
MLP on a copy of the data where the true labels were replaced by random labels.
MLP achieves 100% accuracy on the train set and gives a random chance per-
formance on the test set (observations are coherent with [30]). IOC-MLP resists
any learning and gives random chance performance (10% accuracy) on both
train and test sets. As MLP achieves zero training error, the test error is the
same as generalization error, i.e., 90% (the performance of random guessing on
CIFAR10). In contrast, the IOC-MLP has a near 0% generalization error. We
further present experiment with 50% noisy labels Fig. 1(c). The neural network
training profile concurs with the observation of Krueger et al. [17], where the net-
work learns a simpler hypothesis first and then starts memorizing. On the other
hand, IOC-NN converges to the simpler hypothesis, showing strong resistance
to fit the noise labels.

Input Output Convexity shows a promising paradigm, as any feed-forward
network can be re-worked into its convex counterpart by choosing a non-
decreasing (and convex) activation function and restricting its weights to be
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non-negative (for all but the first layer). Our experiments suggest that activa-
tion functions that allow negative outputs (like leaky ReLU or ELU) are more
suited for the task as they help retain negative values flowing to subsequent lay-
ers in the network. We show that IOC-MLPs outperforms traditional MLPs in
terms of test accuracy on five of the six studied datasets and IOC-NNs almost
recover the performance of the base network in case of convolutional networks.
In almost all studied scenarios, IOC networks achieve multi-fold improvements
in terms of generalization error over unconstrained Neural Networks. Overall,
our work makes the following contributions:

– We bring to light the little known idea of Input Output Convexity in neural
networks. We propose a revised formulation to efficiently train IOC-NNs,
retaining adequate capacity (with changes like using ELU, increasing nodes
in the first layer, whitening transform at the input, etc.). To the best of our
knowledge, we for the first time explore a usable form of IOC-NNs, and shows
that they can be trained with NN like capacity.

– Through a set of intuitive experiments, we detail its internal functioning, espe-
cially in terms of its self regularization properties and decision boundaries.
We show that how sufficiently complex decision boundaries can be learned
using an argmax over a set of convex functions (where each class is repre-
sented by a single convex function). We further propose a framework to learn
the ensemble of IOC-NNs.

– With a comprehensive set of quantitative and qualitative experiments,
we demonstrate IOC-NN’s outstanding generalization abilities. IOC-MLPs
achieve near zero generalization error in all the studied datasets and a neg-
ative generalization error (test accuracy is higher than train accuracy) in a
couple of them, even at convergence. Such never seen behaviour opens up a
promising avenue for more future explorations.

– We explore the robustness of IOC-NNs to label noise and find that it strongly
resists fitting the random labels. Even while training, IOC-NNs show no signs
of fitting on noisy data and efficiently learns patterns from non noisy data.
Our findings ignites explorations towards tighter generalization bounds for
neural networks.

2 Related Work

Simple Convex Models: Our work relates to parameter estimation on models
that are guaranteed to be convex by its construction. For regression problems,
Magnani and Boyd [19] study the problem of fitting a convex piecewise linear
function to a given set of data points. For classification problems, this tradition-
ally translates to polyhedral classifiers. A polyhedral classifier can be described
as an intersection of a finite number of hyperplanes. There have been several
attempts to address the problem of learning polyhedral classifiers [15,20]. How-
ever, these algorithms require the number of hyperplanes as an input, which is a
major constraint. Furthermore, these classifiers do not give completely smooth
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boundaries (at the intersection of hyperplanes). As another major limitation,
these classifiers cannot model the boundaries in which each class is distributed
over the union of non-intersecting convex regions (e.g., XOR problem). The pro-
posed IOC-NN (even with a single hidden layer) supersedes this direction of
work.

Convex Neural Networks: Amos et al. [1] mentions the possibility of fully convex
networks, however, does not present any experiments with it. The focus of their
work is to achieve structured predictions using partially convex network (using
convexity w.r.t to some of the inputs). They propose a specific architecture
called FICNN which is fully convex and has fully connected layers with skip
connections. The skip connections are a must because their architecture cannot
even achieve identity mapping without them. In contrast, our work can take any
given architecture and derive its convex counterpart (we use the IOC suffix to
suggest model agnostic nature of our work). The work by Kent et al. [16] analyze
the links between polynomial functions and input convex neural networks to
understand the trade-offs between model expressiveness and ease of optimization.
Chen et al. [7,8] explore the use of input convex neural network in a variety of
control applications like voltage regulation. The literature on input convex neural
networks has been limited to niche tailored scenarios. Two key highlights of our
work are: (a) to use activations that allow the flow of negative values (like ELU,
leaky ReLU, etc.), which enables a richer representation (retaining fundamental
properties like identity mapping which are not achievable using ReLU) and (b) to
bring a more in-depth perspective on the functioning of convex networks and the
resulting decision boundaries. Consequently, we present IOC-NNs as a preferred
option over the base architectures, especially in terms of generalization abilities,
using experiments on mainstream image classification benchmarks.

Generalization in Deep Neural Nets: Conventional machine learning wisdom
says that overparameterization leads to poor generalization performance owing
to overfitting. Counter-intuitively, empirical evidence shows that neural net-
works give better generalization with an increased number of parameters even
without any explicit regularization [25]. Explaining how neural networks gener-
alize despite being overparameterized is an important question in deep learn-
ing [22,25].

Neyshabur et al. [23] study different complexity measures and capacity
bounds based on the number of parameters, VC dimension, Rademacher com-
plexity etc., and conclude that these bounds fail to explain the generaliza-
tion behavior of neural networks on overparameterization. Neyshabur et al. [24]
suggest that restricting the hypothesis class gives a generalization bound that
decreases with an increase in the number of parameters. Their experiments show
that restricting the spectral norm of the hidden layer leads to tighter general-
ization bounds.

The above discussion implies that a hypothetical neural network that can
fit any hypothesis will have a worse generalization than the practical neural
networks which span a restricted hypothesis class. Inspired by this idea, we
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propose a principled way of restricting the hypothesis class of neural networks (by
convexity constraints) that improves their generalization ability in practice. In
the previous efforts to train fully input output convex networks, they were shown
to have a limited capacity compared to its neural network counterpart [1,3],
making their generalization capabilities ineffective in practice. To our knowledge,
we for the first time present a method to formulate and efficiently train IOC-NNs
opening an avenue to explore their generalization ability.

3 Input Output Convex Networks

We first consider the case of an MLP with k hidden layers. The output of ith neu-
ron in the lth hidden layer will be denoted as h

(l)
i . For an input x = (x1, . . . , xd),

h
(l)
i is defined as:

h
(l)
i = φ(

∑

j

w
(l)
ij hl−1

j + b
(l)
i ), (1)

where, h
(0)
j = xj (j = 1 . . . d) and h

(k+1)
j = yj (jth output). The first hidden

layer represents an affine mapping of input and preserves the convexity (i.e. each
neuron in h(1) is convex function of input). The subsequent layers are a weighted
sum of neurons from the previous layer followed by an activation function. The
final output y is convex with respect to the input x by ensuring two conditions:
(a) w

(2:k+1)
ij ≥ 0 and (b) φ is convex and a non-decreasing function. The proof

follows from the operator properties [5] that the non-negative sum of convex
functions is convex and the composition f(g(x)) is convex if g is convex and f
is convex and non-decreasing.

A similar intuition follows for convolutional architectures as well, where each
neuron in the next layer is a weighted sum of the previous layer. Convexity can
be assured by restricting filter weights to be non-negative and using a convex and
non-decreasing activation function. Filter weights in the first convolutional layer
can take negative values, as they only represent an affine mapping of the input.
The maxpool operation also preserves convexity since point-wise maximum of
convex functions is convex [5]. Also, the skip connection does not violate Input
Output Convexity, since the input to each layer is still a non-negative weighted
sum of convex functions.

We use an ELU activation to allow negative values; this is a minor but a key
change from the previous efforts that rely on ReLU activation. For instance, with
non-negativity constraints on weights (w(2:k+1)

ij ≥ 0), ReLU activations restrict
the allowable use of hidden units that mirror the identity mapping. Previous
works rely on passthrough/skip connections to address [1] this concern. The use
of ELU enables identity mapping and allows us to use the convex counterparts
of existing networks without any architectural changes.

3.1 Convexity as Self Regularizer

We define self regularization as the property in which the network itself has
some functional constraints. Inducing convexity can be viewed as a self regu-
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Fig. 2. Decision boundaries of different networks trained for two class classification.
(a) Original data: one class shown by blue and the other orange. (b) Decision boundary
learnt using MLP. (c) Decision boundary learnt using IOC-MLP with single node in
the output layer. (d) Decision boundary learnt using IOC-MLP with two nodes in the
output layer (ground truth as one hot vectors) (Color figure online)

Fig. 3. (a) Using two simple 1-D functions we illustrate that argmax of two convex
functions can result into non-convex decision boundaries. (b) Two convex functions
whose argmax results into the decision boundaries shown in Fig. 2(d). The same plot
is shown from two different viewpoints.

larization technique. For example, consider a quadratic classifier in R
2 of the

form f(x1, x2) = w1x
2
1 + w2x

2
2 + w3x1x2 + w4x1 + w5x2 + w0. If we want the

function f to be convex, then it is required that the network imposes following
constraints on the parameters, w1 ≥ 0, w2 ≥ 0, −2

√
w1w2 ≤ w3 ≤ 2

√
w1w2,

which essentially means that we are restricting the hypothesis space.
Similar inferences can be drawn by taking the example of polyhedral clas-

sifiers. Polyhedral classifiers are a special class of Mixture of Experts (MoE)
network [13,26]. VC-dimension of a polyhedral classifier in d-dimension formed
by the intersection of m hyperplanes is upper bounded by 2(d+1)m log(3m) [29].
On the other hand, VC-dimension of a standard mixture of m binary experts
in d-dimension is O(m4d2) [14]. Thus, by imposing convexity, the VC-dimension
becomes linear with the data dimension d and m log(m) with the number of
experts. This is a huge reduction in the overall representation capacity com-
pared to the standard mixture of binary experts.

Furthermore, adding non-negativity constraints alone can lead to regulariza-
tion. For example, the VC dimension of a sign constrained linear classifier in
R

d reduces from d + 1 to d [6,18]. The proposed IOC-NN uses a combination of
sign constraints and restrictions on the family of activation functions for induc-
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Fig. 4. (a) Original Data. (b) Output of the gating network, each color represents pick-
ing a particular expert. (c) Decision boundaries of the individual IOC-MLPs. We mark
the correspondences between each expert and the segment for which it was selected.
Notice how the V-shape is partitioned and classified using two different IOC-MLPs.
(Color figure online)

ing convexity. The representation capacity of the resulting network reduces, and
therefore, regularization comes into effect. This effectively helps in improving
generalization and controlling overfitting, as clearly observed in our empirical
studies (Sect. 4.1).

3.2 IOC-NN Decision Boundaries

Consider a scenario of binary classification in 2D space as presented in Fig. 2(a).
We train a three-layer MLP with a single output and a sigmoid activation for
the last layer. The network comfortably learns to separate the two classes. The
learned boundaries by the MLP are shown in Fig. 2(b). We then train an IOC-
MLP with the same architecture. The learned boundary is shown in Fig. 2(c).
IOC-MLP learns a single convex function as output w.r.t the input and its
contour at the value of 0.5 define the decision boundary. The use of non-convex
activation like sigmoid in the last layer does not distort convexity of decision
boundary (Appendix A).

We further explore IOC-MLP with a variant architecture where the ground
truth is presented as a one-hot vector (allowing two outputs). The network learns
two convex functions f and g representing each class, and their argmax defines
the decision boundary. Thus, if g(x)−f(x) > 0, then x is assigned to class C1 and
C2 otherwise. Therefore, it can learn non-convex decision boundaries as shown
in Fig. 3. Please note that g − f is no more convex unless g′′ − f ′′ ≥ 0. In the
considered problem of binary classification in Fig. 2, using one-hot output allows
the network to learn non-convex boundaries (Fig. 2 (d)). The corresponding two
output functions (one for each class) are illustrated in Fig. 3 (b). We can observe
that both the individual functions are convex; however, their arrangement is
such that the argmax leads to a reasonably complex decision boundary.This
happens due to the fact that the sets S1 = {x | g(x) − f(x) > 0} and S2 =
{x | g(x) − f(x) ≤ 0} can both be non-convex (even though functions f(.) and
g(.) are convex).



746 S. Sivaprasad et al.

3.3 Ensemble of IOC-NN

We further explore the ensemble of IOC-NN for multi-class classification. We
explore two different ways to learn the ensembles:

1. Mixture of IOC-NN Experts: Training a mixture of IOC-NNs and an addi-
tional gating network [13]. The gating network can be non-convex and outputs
a scalar weight for each expert. The gating network and the multiple IOC-
NNs (experts) are trained in an Expectation-Maximization (EM) framework,
i.e., training the gating network and the experts iteratively.

2. Boosting + Gating: In this setup, each IOC-NN is trained individually. The
first model is trained on the whole data, and the consecutive models are
trained with exaggerated data on the samples on which the previous model
performs poorly. For bootstrapping, we use a simple re-weighting mechanism
as in [10]. A gating network is then trained over the ensemble of IOC-NNs.
The weights of the individual networks are frozen while training the gating
network.

We detail the idea of ensembles using a representative experiment for binary
classification on the data presented in Fig. 4(a). We train a mixture of p IOC-
MLPs with a gating network using the EM algorithm. The gating network is an
MLP with a single hidden layer, the output of which is a p dimensional vector.
Each of the IOC-MLP is a three-layer MLP with a single output. We keep a
single output to ensure that each IOC-MLP learns a convex decision boundary.
The output of the gating network is illustrated in Fig. 4(b). A particular IOC-
MLP was selected for each partition and led to five partitions. The decision
boundaries of individual IOC-MLPs are shown in Fig. 4(c). It is interesting to
note that the MoE of binary IOC-MLPs fractures the input space into sub-spaces
where a convex boundary is sufficient for classification.

4 Experiments

Dataset and Architectures: To show the significance of enhanced performance of
IOC-MLP over traditional NN, we train them on six different datasets: MNIST,
FMNIST, STL-10, SVHN, CIFAR-10, and CIFAR-100. We use an MLP with
three hidden layers and 800 nodes in each layer. We use batch normalization
between every layer, and it’s activation in all hidden layers. ReLU and ELU are
used as activations for NN and IOC respectively, and softmax is used in the last
layer. We use Adam optimizer with an initial learning rate of 0.0001 and use
validation accuracy for early stopping.

We perform experiments that involve two additional architectures to extend
the comparative study between IOC and NN on CIFAR-10 and CIFAR-100
datasets. We use a fully convolutional [28], and a densely connected architec-
ture [12]. We choose DenseNet with growth rate k = 12, for our experiments.
We term the convex counterparts as IOC-AllConv, IOC-DenseNet, respectively,
and compare against their base neural network counterparts [12,28]. In all com-
parative studies, we follow the same training and augmentation strategy to train
IOC-NNs, as used by the aforementioned neural networks.
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Training on Duplicate Free Data: The test sets of CIFAR-10 and CIFAR-100
datasets have 3.25% and 10% duplicate images, respectively [4]. Neural net-
works show higher performance on these datasets due to the bias created by
this duplicate data (neural networks have been shown to memorize the data).
CIFAIR-10 and CIFAIR-100 datasets are variants of CIFAR-10 and CIFAR-
100 respectively, where all the duplicate images in the test data are replaced
with new images. Barz et al. [4] observed that the performance of most neural
architectures drops when trained and tested on bias-free CIFAIR data. We train
IOC-NN and their neural network counterparts on CIFAIR-10 data with three
different architectures: a fully connected network (MLP), a fully convolutional
network (AllConv) [28] and a densely connected network (DenseNet) [12].

Training IOC Architectures: We tried four variations for weight constraints to
enforce convexity constraints: clipping negative weights to zero, taking absolute
of weights, exponentiation of negative weights and shifting the weights after
each iteration. We use exponentiation strategy in all experiments, as it gave
the best results. We exponentiate the negative weights after every update. The
IOC constrained optimization algorithm differs only by a single step from the
traditional algorithms (Appendix B).

To conserve convexity in the batch-normalization layer, we also constrain the
gamma scaler with exponentiation. However, in practice we found that the IOC
networks retains all desirable properties without constraining the gamma scalar.
We make few additional modifications to facilitate the training of IOC-NNs. Such
changes do not affect the performance of the base neural networks. We use ELU
as an activation function instead of ReLU in IOC-NNs. We apply the whitening
transformation to the input so that it is zero-centered, decorrelated, and spans
over positive and negative values equally. We also increase the number of nodes
in the first layer (the only layer where parameters can take negative values).
We use a slower schedule for learning rate decay than the base counterparts.
The IOC-NNs have a softmax layer at the last layer and are trained with cross-
entropy loss (same as neural networks).

Training Ensembles of Binary Experts: We divide CIFAR-10 dataset into 2
classes, namely: ‘Animal’ (CIFAR-10 labels: ‘Bird’, ‘Cat’, ‘Deer’, ‘Dog’, ‘Frog’
and ‘Horse’) and ‘Not Animal’. We train an ensemble of IOC-MLP, where each
expert is a three-layer MLP with one output (with sigmoid activation at the
output node). The gating network in the EM approach is a one layer MLP
which takes an image as input and predicts the weights by which the individual
expert predictions get averaged. We report test results of ensembles with each
additional expert. This experiment resembles the study shown in Fig. 4.

Training Boosted Ensembles: The lower training accuracy of IOC-NNs makes
them suitable for boosting (while the training accuracy saturates in non-convex
counterparts). For bootstrapping, we use a simple re-weighting mechanism as
in [10]. We train three experts for each experiment. The gating network is a reg-
ular neural network, which is a shallow version of the actual experts. We train
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Table 1. Table shows train accuracy, test accuracy and generalization gap for MLP
and IOC-MLP on six different datasets.

NN IOC-NN

Train Test Gen. gap Train Test Gen. gap

MNIST 99.34 99.16 0.19 98.77 99.25 −0.48

FMNIST 94.8 90.61 3.81 90.41 90.58 −0.02

STL-10 81 52.32 28.68 62.3 54.55 7.75

SVHN 91.76 86.19 5.57 81.18 86.37 −5.19

CIFAR-10 97.99 63.83 34.16 73.27 69.89 3.38

CIFAR-100 84.6 32.68 51.92 46.9 41.08 5.82

Table 2. Train accuracy, test accuracy and generalization gap of three neural archi-
tectures and their IOC counterparts

CIFAR-10 CIFAR-100

NN IOC-NN NN IOC-NN

Train Test Gen.
gap

Train Test Gen.
gap

Train Test Gen.
gap

Train Test Gen.
gap

MLP 99.17 63.83 35.34 73.27 69.89 3.3 84.6 32.68 51.9 46.9 41.08 5.8

AllConv 99.31 92.8 6.5 93.2 90.6 2.6 97.87 69.5 28.4 67.07 65.08 1.9

DenseNet 99.46 94.06 5.4 94.22 91.12 3.1 98.42 75.36 23.06 74.9 68.53 6.3

an MLP with only one hidden layer, a four-layer fully convolutional network,
and a DenseNet with two dense-blocks as the gate for the three respective archi-
tectures. We report the accuracy of the ensemble trained in this fashion as well
as the accuracy if we would have used an oracle instead of the gating network.

Partially Randomized Labeling: Here, we investigate IOC-NN’s behavior in the
presence of partial label noise. We do a comparative study between IOC and neu-
ral networks using All-Conv architecture, similar to the experiment performed
by [30]. We use CIFAR-10 dataset and make them noisy by systematically ran-
domizing the labels of a selected percentage of training data. We report the
performance of All-Conv, and it’s IOC counterpart on 20, 40, 60, 80 and 100%
noise in the train data. We report train and test scores at peak performance
(performance if we had used early stopping) and at convergence (if loss goes
below 0.001 or at 2000 epochs).

4.1 Results

IOC as a Preferred Alternative for Multi-Layer-Perceptrons: MLP is most basic
and earliest explored form of neural networks. We compare the train and test
scores of MLP and IOC-MLP in Table 1. With a sufficient number of parame-
ters, MLP (a basic NN architecture) perfectly fits the training data. However,
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it fails to generalize well on the test data owing to brute force memorization.
The results in Table 1 indicate that IOC-MLP gives a smaller generalization gap
(the difference between train and test accuracies) compared to MLP. The gener-
alization gap even goes to negative values on three of the datasets. MLP (being
poorly optimized for parameter utilization) is one of the architectures prone to
overfitting the most, and IOC constraints help retain test performance resisting
the tendency to overfit. Obtaining negative or almost zero generalization error
even at convergence is a never seen behaviour in deep networks and the results
clearly suggest the profound generalization abilities of Input Output Convexity,
especially when applied to fully connected networks.

Furthermore, having the IOC constraints significantly boosts the test accu-
racy on datasets where neural network gives a high generalization gap (Table 1).
This trend is clearly visible in Fig. 5(b). For the CIFAR-10 dataset, unconstrained
MLP gives 34.16% generalization gap, while IOC-NN brings down the general-
ization gap by more than ten folds and boosts the test performance by about 6%.
Even in scenarios where neural networks give a smaller generalization gap (like
MNIST and SVHN), IOC-NN marginally outperforms regular NN and gives an
advantage in generalization. Overall, the results in Table 1 highlight that IOC
constraints are extremely beneficial when training Multi Layer Perceptrons for
image classification, giving comprehensive advantages in terms of generalization
and test performance.

Better Generalization: We investigate the generalization capability of IOC-NN
on other architectures. The results of the base architectures and their convex
counterparts on CIFAR-10 and CIFAR-100 datasets are presented in Table 2.
IOC-NN outperforms base NN on MLP architecture and gives comparable test
accuracies for convolutional architectures. The train accuracies are saturated in
the base networks (reaching above 99% in most experiments). The lower train
accuracy in IOC-NNs suggests that there might still be room for improvement,
possibly through better design choices tailored for IOC-NNs. In Table 2, the dif-
ference in train and test accuracy across all the architectures (generalization
gap) demonstrates the better generalization ability of IOC-NNs. The general-
ization gap of base architectures is at least twofold more than IOC-NNs on
the CIFAR-100 dataset. For instance, the generalization error of IOC-AllConv
on CIFAR-100 is only 1.99%, in contrast to 28.4% in AllConv. The generaliza-
tion ability of IOC-NNs is further qualitatively reflected using the training and
validation loss profiles (e.g., Fig. 1(a)). We present a table showing the confi-
dence intervals of prediction across all three architectures with repeated runs in
Appendix C.

Table 5 shows the train and test performance of the three architectures on
CIFAR-10 dataset and the drop incurred when trained on CIFAIR-10. The drop
in test performance of IOC-NNs is smaller than the typical neural network. This
further strengthens the claim that IOC-NNs are not memorizing the training
data but learning a generic hypothesis.
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Table 3. Results for systematically randomized labels at peak and at convergence for
both IOC-NN and NN. The IOC constraints bring huge improvements in generalization
error and test accuracy at convergence.

NN IOC-NN

Peak Convergence Peak Convergence

Train Test Train Test Gen. gap Train Test Train Test Gen. gap

100 98.63 10.53 97.80 10.1 87.7 9.98 10.62 10.21 9.94 0.27

80 22.40 60.24 97.83 27.75 70.08 21.93 61.48 23.80 56.20 −32.4

60 38.52 75.80 97.80 46.71 51.09 37.90 75.91 39.31 71.75 −32.44

40 56.48 80.47 97.96 61.83 36.13 55.01 81.58 54.63 81.01 −26.38

20 72.8 85.72 98.73 76.31 22.42 69.92 85.85 70.22 83.61 −13.39

Table 4. Results comparing FICNN [1] with IOC-NN on CIFAR-10 using MLP archi-
tecture. First column shows base MLP results. Second column presents results with a
convex MLP using ReLU activation. Third and final columns show the accuracies of
FICNN and IOC-NN, respectively.

Base MLP Constrained MLP FICNN IOC-NN

Train 99.17 46.81 62.8 73.27

Test 63.83 27.36 53.07 69.89

Gen-gap 35.34 19.45 9.73 3.38

Comparison with FICNN: Table 4 shows the results of IOC-NN and FICNN [1]
on CIFAR-10 data. For comparison, we use a three layer MLP with 800 nodes in
each layer, for both IOC-NN and FICNN. FICNN uses a skip connection from
input layer to each of the intermittent layers. This enables each layer to learn
identity mapping inspite of non-negative constraint. The number of parameters
in FICNN model is almost twice compared to the base MLP and IOC mod-
els but still the test performance drops by more than 10%. The results clearly
shows that IOC-NN gives better test accuracy and lower generalization gap com-
pared to FICNN, while using the same number of parameters as the base MLP
architecture.

Robustness to Random Label Noise: Robustness of IOC-NNs on partial and fully
randomized labels (Fig. 1 (b, c, and d)) is one of its key properties. We further
investigate this property by systematically randomizing increasing portion of
labels. We report the results of neural networks and their convex counterparts
with percentage of label noise varying from 20% to 100% in Table 3. The train
performance of neural networks at convergence is near 100% across all noise
levels. It is interesting to note that IOC-NN gives a large negative generalization
gap, where the train accuracy is almost equal to the percentage of true labels in
the data. This observation shows that IOC-NNs significantly resist learning noise
in labels as compared to neural networks. Both neural network and it’s convex
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Table 5. Results on CIFAIR-10 dataset

NN IOC-NN

C-10 CIFAIR Gap C-10 CIFAIR Gap

MLP 63.6 63.08 0.52 69.89 69.51 0.38

AllConv 92.8 91.14 0.66 90.6 90.47 0.13

DenseNet 94.06 93.28 0.78 91.12 90.73 0.39

Fig. 5. (a) shows the test accuracy of IOC-MLP with increasing number of experts in
the binary classification setting. Average performance of normal MLP is shown in red
since it does not change with increase in number of experts. (b) The generalization gap
of MLP plotted against the improvement gained by the IOC-MLP for the six different
datasets (represented by every point on the plot). The performance gain with IOC
constraints increase with the increase in generalization gap of MLP.

counterpart learns the simple hypothesis first. While IOC-NN holds on to this,
in later epochs, the neural network starts brute force memorization of noisy
labels. The observations are coherent with findings in [17,27], demonstrating
neural network’s heavy reliance on early stopping. IOC-AllConv outperforms
test accuracy of AllConv + early stopping with a much-coveted generalization
behavior. It is clear from this experiment that IOC-NN performs better in the
presence of random label noise in the data in terms of test accuracy both at
peak and convergence.

Leverage IOC Properties to Train Ensembles: We train binary MoE on the
modified two-class setting of CIFAR-10 as described in Sect. 4. The result is
shown in Fig. 5 (a). Traditional neural network gives a test accuracy of 89.63%
with a generalization gap of 10%. Gated MoE of NNs does not improve the test
performance as we increase the number of experts. In contrast, the performance
of ensemble of IOC-NNs goes up with the addition of each expert and moves
closer to the performance of neural networks. It is interesting to note that even in
the higher dimensional space (like CIFAR-10 images), the intuitions derived from
Fig. 4 holds. We also note that gate fractures the space into p partitions (where
p is the number of experts). Moreover, in the binary case for a single expert, the
generalization gap is almost zero. This can be attributed to the convex hull like
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Table 6. Result for single expert, gated MoE and with oracle on CIFAR-10 for three
architectures

Single expert Gate Oracle

MLP 69.89 71.8 85.47

All-Conv 90.6 92.83 96.3

DenseNet 91.12 93.25 97.19

(a) MLP (b) AllConv (c) DenseNet

Fig. 6. These diagrams show expected sample accuracy as a function of confidence [9].
The blue bar shows the confidence of the bin and the orange bar shows the percentage
correctness of prediction in that bin. If the model is perfectly calibrated, the bars align
to form identity function. Any deviation from a perfect diagonal is a miscalibration.
(Color figure online)

smooth decision boundary that the network predicts in the binary setting with
a single output.

The results with the boosted ensembles of IOC-NNs are presented in Table 6.
The boosted ensemble improves the test accuracies of IOC-NNs, matching or
outperforming the base architectures. However, this performance gain comes at
the cost of increased generalization error (still lower than the base architectures).
In the boosted ensemble, the performance significantly improves if the gating
network is replaced by an oracle. This observation suggests that there is a scope
of improvement in model selection ability, possibly by using a better gating
architecture.

Confidence Calibration of IOC-NNs: In a classification setting, given an input,
the neural network predicts probability-like scores towards each class. The class
with the maximum score is considered the predicted output, and the correspond-
ing score to be the confidence. The confidence and accuracy being correlated is a
desirable property, especially in high-risk applications like self-driving cars, med-
ical diagnoses, etc. However, many modern multi-class classification networks are
poorly calibrated, i.e., the probability values that they associate with the class
labels they predict overestimate the likelihoods of those class labels being cor-
rect in the real world [11]. Recent works have explored methods to improve the
calibration of neural networks [11,21].

We observe that adding IOC constraints improve calibration error on the
base NN architecture. We present the reliability diagrams [9] (presenting accu-
racy as a function of confidence) of three neural architectures and their convex
counterparts in Fig. 6. The sum of the difference between the blue bars and the



The Curious Case of Convex Neural Networks 753

orange bars represents the Expected Calibration Error. IOC constraints show
improved calibration in all three architectures (with notable improvements in
the case of MLP and AllConv). Better calibration further strengthens the case
for IOC-NNs from the application perspective.

5 Conclusions

We present a subclass of neural networks, where the output is a convex func-
tion of the input. We show that with minimal constraints, existing neural net-
works can be adopted to this subclass called Input Output Convex Neural Net-
works. With a set of carefully chosen experiments, we unveil that IOC-NNs show
outstanding generalization ability and robustness to label noise while retaining
adequate capacity. We show that in scenarios where the neural network gives
a large generalization gap, IOC-NN can give better test performance. An alter-
nate interpretation of our work can be self regularization (regularization through
functional constraints). IOC-NN puts to rest the concerns around brute force
memorization of deep neural networks and opens a promising horizon for the
community to explore. We show that in the case of Multi-Layer-Perceptrons,
IOC constraints improve accuracy, generalization, calibration, and robustness to
noise, making an ideal proposition from a deployment perspective. The improved
generalization, calibration, and robustness to noise are also observed in convo-
lutional architectures while retaining the accuracy. In future work, we plan to
investigate the use of IOC-NNs for recurrent architectures. Furthermore, we plan
to explore the interpretability aspects of IOC-NNs and study the effect of con-
vexity constraints on the generalization bounds.
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