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Abstract. Anomaly Detection (AD) is used in many real-world appli-
cations such as cybersecurity, banking, and national intelligence. Though
many AD algorithms have been proposed in the literature, their effec-
tiveness in practical real-world problems are rather limited. It is mainly
because most of them: (i) examine anomalies globally w.r.t. the entire
data, but some anomalies exhibit suspicious characteristics w.r.t. their
local neighbourhood (local context) only and they appear to be normal in
the global context; and (ii) assume that data features are all numeric, but
real-world data have numeric/quantitative and categorical/qualitative
features. In this paper, we propose a simple robust solution to address
the above-mentioned issues. The main idea is to partition the data space
and build local models in different regions rather than building a global
model for the entire data space. To cover sufficient local context around
a test data instance, multiple local models from different partitions (an
ensemble of local models) are used. We used classical decision trees that
can handle numeric and categorical features well as local models. Our
results show that an Ensemble of Local Decision Trees (ELDT) produces
better and more consistent detection accuracies compared to popular
state-of-the-art AD methods, particularly in datasets with mixed types
of features.

Keywords: Anomaly detection · Mixed data · LOF · IForest ·
Ensemble anomaly detection · Decision trees

1 Introduction

Anomaly Detection (AD) is a machine learning task of identifying anomalous
data instances automatically using algorithms. Anomalies (also refer to as out-
liers) are data instances that are significantly different from most of the other
data causing suspicions that they are generated from a different mechanism
from the one that is normal or expected. AD has many applications such as
intrusion detection in computer networks, fraud detection in banking, detect-
ing illegal activities (e.g., drug trafficking, money laundering) in national intel-
ligence/security. In the literature, AD problems have been solved using three
learning approaches [8,12]: (i) Supervised learning: A classification model
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is learned using training instances from both normal and anomalous classes
to make predictions for test data; (ii) Unsupervised learning: Given data
instances (which may have anomalies) are ranked directly based on some outlier
scores, i.e., no training involved; and (iii) Semi-supervised learning: A pro-
file of normal/expected behaviour is learned from labelled training samples of
normal data only, and test data are ranked based on how well they comply with
the learned profile of normal data.

Regardless of the learning approaches used, existing AD methods have some
limitations/issues that restrict their wide applicability in practice. Supervised
methods have the following major issues [12]: (i) it might be very expensive or
even impossible to obtain labelled training anomalous samples in many real-
world applications; (ii) even if possible, they are infinitesimally rare resulting in
the class imbalanced problem; and (iii) a few known anomalies are not enough
to generalise characteristics of all possible anomalous patterns because anoma-
lies can be anywhere in the feature space. Though techniques like minority class
(anomalies) oversampling, majority class (normal) under-sampling, and algo-
rithmic adjustments [18] are used to alleviate the above-mentioned issues, their
effectiveness in practice are limited. It is because they assume that unseen/future
anomalies are generated from the same distribution as previously seen/observed
anomalies. Often, it is not the case in practice. New anomalies can be very
different from previously seen anomalies.

Un/semi-supervised approaches do not require labelled training anomalous
samples. Unsupervised approaches do not require training samples at all. Assum-
ing anomalies are few and different, they use distance/density based scores to
rank given data (which may have anomalies) directly. They may perform poorly
when the assumption does not hold, i.e., when there are far too many anoma-
lies [8,12]. Semi-supervised approaches do not make such assumption. Because a
vast majority of observed data are normal, normal training data can be obtained
easily. Thus, we focus on semi-supervised AD approach in this paper.

Most existing un/semi-supervised AD methods assume that data have
numeric features. However, in many real-world applications, data have both
numeric (e.g., age, height) and categorical (e.g., gender, nationality) features.
The common practice is to convert categorical features into numeric features
using technique like one-hot encoding [15]. Each categorical label (e.g., Aus-
tralian for nationality) is converted into a binary feature with the value of 1 (if
the nationality is Australian) or 0 (otherwise) and treated as a numeric feature.
A categorical feature with n possible values is converted into n binary numeric
features, out of which only one has the value of 1 for each instance. Because
of this, each original categorical feature and original numeric feature contribute
differently to AD models, which can degrade the performances of AD methods.
There are methods proposed for categorical data only [26]. Numeric features
can be converted into categorical features through discretisation [15]. Most AD
methods developed for categorical data have high computational complexities
limiting their use in large real-world datasets.
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Most existing AD methods examine data instances globally, i.e., w.r.t. the
entire dataset. They can detect global anomalies that exhibit anomalous charac-
teristics in the entire dataset. However, they cannot detect local anomalies that
appear to be normal when examined globally but exhibit anomalous character-
istics w.r.t. their local neighbourhood (i.e., in the local context). For example,
in Fig. 1(a), a4 and a5 have significantly lower density than normal cluster C1

in their neighbourhood but have the same density as many instances in normal
cluster C2. Most existing methods fail to detect them as anomalies. Real-world
data have complex structures and instances may exhibit characteristics that look
normal in the global perspective but suspicious in their local contexts. There are
some methods that examine anomalies w.r.t. their localities (e.g., [5,11]), but
they are limited to numeric data only.

To summarise, most existing AD methods do not work well in practical appli-
cations due to the following three main issues:

• Lack of sufficient examples of known anomalies: It is not possible to
have a good representative sample of known anomalies to generalise charac-
teristics of all possible anomalies.

• Global view of anomalies: Data often exhibit suspicious characteristics
w.r.t. their neighbourhood (in local context) that can appear to be normal in
the global context.

• Limitations to handle mixed types of data features: Most real-world
applications have numeric and categorical features, but most existing methods
can not handle mixed types of features well.

In this paper, we present a simple idea to address the above-mentioned issues
and introduce a new semi-supervised AD method. Instead of using one global
model, we propose to partition the data space into many regions and build an
AD model in each region using data falling in the region only, i.e., many local
AD models are built. To make prediction for a test instance, the AD model
learned on the region where it falls is used. Instead of just relying on a local
region from one partitioning of the space, we propose to create multiple parti-
tions of the data space and use ensemble of multiple local models learned on
local regions from each partition. It exploits the benefits of ensemble learning
to consider sufficient locality around the test instance. Though there are not
many AD models that can work well with mixed data, there are classifiers such
as traditional Decision Tree (DT) [22] that can handle numeric and categorical
features directly. We used DTs in local regions for AD without using labelled
anomalies by adding synthetic data. Our results show that an Ensemble of Local
Decision Trees (ELDT) produces better and more consistent detection results
compared to popular state-of-the-art AD methods, particularly in datasets with
mixed types of features.

2 Related Work

In the semi-supervised approach, a model is learned from a training set D of N
instances belonging to the normal class only and evaluated on a test set Q, which
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is a mixture of normal and anomalous data. Let x be a data instance represented
as an M -dimensional vector 〈x1, x2, · · · , xM 〉, where each component represents
its value of a feature that can be either numeric xi ∈ R (R is a real domain) or
categorical xi ∈ {vi1 , vi2 , · · · , viw} (where vij is a label out of w possible labels
for feature i). Let F = {A1, A2, · · · , AM} be a set of data features, also called
as attributes of data.

In this section, we review prior work related to this paper that includes AD
methods for numeric and categorical data, and ensemble approaches for AD.

2.1 Methods for Numeric Data

Because anomalies are few and different, they are expected to have feature values
that are significantly different from most data and lie in low density regions. Most
of them use distance/density-based anomaly scores to rank data according to
their degrees of outlying behaviour, e.g., Nearest Neighbours (NNs) or Support
Vectors (SVs) based methods.

In the NN-based methods, the anomaly score of x ∈ Q is estimated based on
the distances to its kNNs in D, where k is a user defined neighbourhood parame-
ter. Local Outlier Factor (LOF) [11] and kth NN distance [6] are the most widely
used NNs-based methods. Being different from normal instances, anomalies are
expected to have larger distances to their kNNs than normal instances. They
require to compute distances of x with all instances in D, which can be com-
putationally expensive when D is large. Though the nearest neighbour search
can be speed up by using indexing schemes such as k-d tree [7], their effective-
ness reduces as the number of dimension increases and become useless in high
dimensional problems [19]. Sugiyama and Borgwardt (2013) [25] showed that the
nearest neighbour search in a small subset D ⊂ D (|D| = ψ � N) is enough.
They proposed a simple, but very fast, anomaly detector called Sp where the
anomaly score of x is its distance to the nearest neighbor (1NN) in D. It has
been shown that Sp with ψ as small as 25 produces competitive results to LOF
but runs several orders of magnitude faster [25].

The SV-based methods define the boundary around normal (expected) data
and identify a set of data instances lying in the boundary called Support Vectors
(SVs). They compute the pairwise similarities of data using a kernel function.
Gaussian kernel that uses Euclidean distance is a popular choice. In the testing
phase, the anomaly score of x ∈ Q is estimated based on its kernel similarities
with the SVs. One-Class Support Vector Machine (OCSVM) [23] and Support
Vector Data Description (SVDD) [27] are widely used methods in this class. The
training process is computationally expensive in the case of large D because of
the pairwise similarity calculations.

2.2 Methods for Categorical Data

Despite the widespread prevalence of categorical/qualitative data in real-world
applications, AD in categorical data has not received much attention in the
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research community [26]. The common practice is to convert categorical fea-
tures into numeric features and use methods designed for numeric data. There
are some methods proposed in the literature specifically for categorical data
based on frequencies of categorical labels, information theory and data compres-
sion/encoding [26]. They are computationally expensive to run in large datasets
and do not perform better than using methods for numeric data by converting
categorical data into numeric data [4].

He et al. (2005) [17] proposed a method for categorical data based on fre-
quent patterns. The intuition is that an instance is more likely to be an anomaly
if it has a few or none of the frequent patterns. Akoglu et al. (2012) [2] pro-
posed a pattern-based compression technique called COMPREX. The intuition
is that the higher the cost of encoding x, the more likely it is to be an anomaly.
Aryal et al. (2016) [4] revisited the Simple Probabilistic AD (SPAD) where
multi-dimensional probability is estimated as the product of one-dimensional
probability and show that it works quite well compared to more complex state-
of-the-art methods, such as LOF, One-Class SVM, in datasets with categorical
only and mixed types of features. It uses the frequencies of categorical label in
each feature individually assuming features are independent to each other. Most
of these methods for categorical datasets except SPAD have high time and/or
space complexities limiting their use in small and low-dimensional datasets only.
SPAD is simple and arguably the fastest AD method.

2.3 Ensemble Approaches

To solve a given task, the ensemble methods build multiple models by using an
algorithm on different subsets of given data (data sampling or feature sampling)
or using different parameter settings of the algorithm [13]. The final decision of
the ensemble is an aggregation of decisions by its individual models. The main
idea is that models are different and they make different errors so that they
compensate each other’s weaknesses and results in better overall performance
than any individual model. Ensemble learning is widely studied for classification
problems and various frameworks have been proposed that can be used with
different base classifiers [9,10,28]. However, the use of ensemble learning to solve
the AD problem is rather limited [1]. Ensemble based AD methods build multiple
models using subsamples of data and/or subsets of features, e.g., Lazarevic and
Kumar (2005) [20] and Zimek et al. (2013) [29] used LOF using random subsets of
features (i.e., subspaces) and data (i.e., subsamples), respectively. AD techniques
such as iForest [21] and usfAD [3] used a collection of random trees to partition
the data space using small subsamples of data until the instances are isolated.
Each tree is using a small subset of features. The main idea of these methods
is that anomalies are expected to isolate early in the trees and lie in leaves
with low heights. They run very fast as they do not require pairwise distance
calculations. All these ensemble-based methods assume that data have numeric
features only. Most of them are not applicable to data with categorical only or
mixed features. Also, many of them build multiple global models, they can not
detect local anomalies.
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3 Our Proposal: An Ensemble of Local Decision Trees

To address the three limitations of existing AD methods in practical real-world
applications discussed in Sect. 1, we develop a new ensemble learning framework
for anomaly detection based on the of idea of Feating [28]. First, we explain
Feating for classification as used by Ting et al. (2011) [28] (Subsect. 3.1) and
then discuss how we can adapt it for anomaly detection (Subsect. 3.2).

3.1 Feating for Classification

Feature-Subspace Aggregating (Feating) [28] is an ensemble framework
developed for classification that uses an ensemble of local models. It is a fea-
ture bagging approach, ensemble learning using subsets of features of fixed size
m < M (i.e., using m-dimensional subspaces). In each subspace S ⊂ F with
|S| = m, rather than building a global model trained on the entire training set,
it first partitions the subspace using a tree structure called “Level Tree” (LT).
At each node of the tree, the space is partitioned using one of the m features in
S. Each feature in S is used only once in the tree, resulting in the maximum tree
height of m. LTs can handle both numeric and categorical features. For numeric
feature, the space is divided into two regions by the cut-point selected in the
same manner as in ordinary decision tree [22] based on information gain. For
categorical feature with w possible values, the space is partition into w regions,
one for each categorical label. Further partitioning of a node stops when the node
is either pure (i.e., has instances belonging to the same class), there are less than
minPts data instances or reaches the maximum height of m. In each impure leaf
node with more than minPts samples, a classifier is learned from the training
samples falling in the node only, i.e., a Local Model (LM) is built. For rest of
the other leaves (with less than minPts instances or pure), class probabilities
are recorded based on the training samples they have. In the testing phase, a
test instance is traversed from the root to a leaf in each LT. If a LM was built
in the leaf node, the class probabilities are the predicted probabilities of the
LM. Otherwise, the recorded class probabilities are used. The final prediction is
based on the aggregated class probabilities from multiple LTs. The enumerated
version of Feating builds

(
M
m

)
LTs, which has a large space complexity making

it infeasible in problems with large M (high-dimensional applications). To over-
come this issue, Ting et al. (2011) introduced a randomised version, where only
t � (

M
m

)
random subspaces of size m are used. It significantly improves the time

and space requirements without any significant compromise in accuracy.

3.2 Feating for Anomaly Detection

We propose the following adjustments to use Feating in semi-supervised AD,
where there are no labelled anomalies. LT building process uses class information
but in this case we do not have labelled anomalies. We are given D which is a set
of normal data only. To build each LT, we propose to consider the given data D
as “+ve” class and the same number of synthetic points are added as “-ve” class
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(a) Example dataset (b) Local Regions

Fig. 1. An example of dataset and definition of local regions. (a) C1 and C2 are clusters
of normal data, whereas a1, · · · , a5 are anomalies. (b) Note only half of the normal data
(red points) are used in the training process as “+ve” class samples. Blue points, which
are uniformly generated synthetic points, are “-ve” class samples. R1, R2, R3, and R4

are local regions created by a Level Tree. Note that local classifiers are built in regions
R1 and R4 only. (Color figure online)

Fig. 2. An example of a Level Tree in 3-dimensional subspace S = {A1, A2, A3}. Note
that A1 is a categorical feature with three possible values (a1, b1, c1), and A2 and A3

are numeric features.

as done by Shi and Horvath (2006) [24] to use Random Forest in unsupervised
problems. The values of synthetic points in each feature are selected uniformly at
random from the range of possible values, i.e., for a numeric feature, values are
selected uniformly randomly between the possible range defined by instances in
D, and for a categorical feature, values are selected randomly from the possible
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values. With the samples from “+ve” and “-ve” classes, a LT can be built exactly
in the same way as for the classification task. An example of space partition into
local region is shown in Fig. 1(b). Note that we add new “-ve” class samples for
each LT. It is possible to have two LTs using the same subset of m features if
t >

(
M
m

)
, but the two LTs will be different because of the new set of “-ve” class

samples.

Algorithm 1: Feating(D, A, m, t) - Build a set of Level Trees
Input : D - Given data, A - the set of given features, m - the maximum level

of a level tree. t - number of trees to build
Output: E - a collection of Level Trees

1 N = |D| (#training samples);
2 M ← |A| (#features);
3 minPts = �log2(N)� + 1;
4 m = �log2(M)� + 1;
5 E ← ∅;
6 for i = 1 to t do
7 // get a set of m attributes from A
8 L ← randomSetOfAttributes(A,m);
9 Ds ← addSyntheticPoints(D);

10 E ← E
⋃

BuildLevelTree(Ds, L, 0);

11 end
12 return E;

Once the space is partitioned into regions, the idea is to build a classifier to
separate “+ve” class (given training data, which are normal) from “-ve” class
(synthetic data). Anomalies are expected to have low probabilities of belonging
to “+ve” class (normal data). Local classifier is built in each leaf with more
than minPts samples from the “+ve” class and current class probabilities are
recorded in other leaves. To ensure balanced class distribution to build a classifier
in a local region, we first remove all “-ve” class samples (synthetic points) and
then add the same amount of new synthetic points (“-ve” class) as the “+ve”
class samples in the region. The synthetic points are sampled uniformly at ran-
dom from the range of possible values in the region. With the same amount of
“+ve” class and “-ve” class (newly added) samples, local classifier is built. We
use Decision Tree (DT) [22] that can handle numeric and categorical features
directly as local classifier. An example of a Level Tree in 3-dimensional subspace
is provided in Fig. 2 and the procedures to build LTs and local DTs are provided
in Algorithms 1, 2 and 3. In the testing phase the anomaly score of a test instance
x is estimated as the aggregated P (+ve|x) over t local models. Anomalies are
expected to have low aggregated score than normal data. We call the proposed
method as “Ensemble of Local Decision Trees (ELDT)”.
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Algorithm 2: BuildLevelTree(Ds, L, j) - Build a single Level Tree recur-
sively
Input : Ds - Data with synthetic points to build a tree, L - Attribute list, j -

Current tree level
Output: node - Level Tree node

1 // Check if we have enough positive samples

2 if |D+
s | < minPts then

3 return As a leaf with P+ =
|D+

s |
N

and P− = 1.0 − P+;
4 end
5 // Check if we have a pure node with all -ve class samples

6 if |D−
s | = |Ds| then

7 return As a leaf with P+ = 0.0 and P− = 1.0;
8 end
9 // Check if we have a pure node with all +ve class samples

10 if |D+
s | = |Ds| then

11 // Build a local DT in the node.

12 return BuildLocalDecisionTree(Ds);

13 end
14 if j = m then // m is the maximum level of the Level Tree

15 // Build a local DT in the node.

16 return BuildLocalDecisionTree(Ds);

17 end
18 // retrieve the next attribute from L based on current level, j
19 a ← nextAttribute(L, j);
20 // Construct a node with attribute a
21 if a is a numeric attribute then
22 // cut-point selection based on information gain

23 node.splitpoint ← findSplitPoint(a, Dt);
24 D1 ← filter(Dt, a > node.splitpoint);
25 D2 ← filter(Dt, a ≤ node.splitpoint);
26 node.branch(1) ← BuildLevelTree(D1, L, j + 1);
27 node.branch(2) ← BuildLevelTree(D2, L, j + 1);

28 else
29 // split according to categorical values

30 let {v1, . . . , vw} be possible values of a;
31 for i = 1 to w do
32 Di ← filter(Dt, a == vi);
33 node.branch(i) ← BuildLevelTree(Di, L, j + 1);

34 end

35 end
36 return node;
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Algorithm 3: BuildLocalDecisionTree(Ds) - Build a local Decision Tree
Input : Ds - Training set
Output: node - Level Tree node

1 RemoveOldSyntheticPoints(Ds);
2 DS ← addSyntheticPoints(Ds);
3 // Learn a Decision Tree

4 node.localModel ← BuildDecisionTree(DS);
5 return node;

The ensemble of local DT based on the idea of Feating addresses the three
limitations of existing AD approaches in practical problems discussed in Sect. 1.
It does not require labelled anomalies. It examines anomalies with respect to
their local context or locality defined by multiple local regions. This is useful
to detect local anomalies. Using DT that can handle categorical and/or mixed
features directly at the local regions, it works well with categorical and mixed
data.

4 Experimental Results

In this section, we present the results of our experiments conducted to evaluate
the performance of ELDT. The three parameters of ELDT were set as default
to: minPts = �log2(|D|)� + 1, (note that D is the training normal data); m =
�log2(|F |)� + 1 (note that F is the set of features of D), and t = 100. We
compared the performance of ELDT with Bagging using DT (Bag.DT) [9] and
Random Forest (RF) [10], where each model in the ensemble is a global DT for
the entire data space. They also used D as “+ve” class and the same amount of
synthetic points as “-ve” class as did in building level trees in ELDT. Each tree
in the ensemble has different “-ve” class samples to ensure diversity between
trees. We considered the following three state-of-the-art AD methods as main
baselines:

1. iForest [21]: It is an ensemble-based AD method. It uses a collection of t
random trees, where each tree Ti is constructed from a small random sub-
sample of data Di ⊂ D, |Di| = ψ (=256 by default). The idea is to isolate
each instance in Di. Anomalies are expected to have shorter average path
lengths over the collection of random trees. It produces good results and runs
significantly fast. It works only with numeric features, so categorical features
are converted into numeric features using one-hot encoding. It is unable to
detect local anomalies [5].

2. LOF [11]: It is the most widely used AD method based on kNN (k = �√N�
by default) search. It compares the density of a test instance with the average
densities of its kNNs. It examines anomalies w.r.t. to their locality defined
by the kNNs. It is a local model-based existing AD method. It is also mainly
for numeric data, categorical features have to be first converted into numeric
features. It is computationally very expensive when D is large.
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3. SPAD [4]: It is a simple probabilistic AD method, where multi-dimensional
probability is estimated as the product of one-dimensional probabilities
assuming features are independent. It works with discrete or categorical data.
Numerical features are converted into categorical features through equal-
width discretisation [15] with the number of bins b (=�log2(N)� + 1 by
default). Despite its simplicity, it has been shown to perform better than
more complex methods such as LOF, One-Class SVM and iForest [4].

We used 10 benchmark datasets with categorical only, mixed (categorical and
numeric) and numeric only features. The characteristics of datasets used in terms
of data size, dimensionality (numeric and categorical) and proportion of anoma-
lies are provided in Table 1. Most of these datasets are from the UCI Machine
Learning Repository [14]1. All methods are implemented in JAVA using the
WEKA platform [16]. We used Area Under the Receiver Operating Character-
istic (ROC) Curve (AUC) as the performance evaluation metric. We conducted
10 trials of different train (D) and test (Q) sets and presented the average AUC
over 10 runs.

Table 1. Characteristics of data sets. #Inst: data size, #Feat: num. of features,
#NFeat: num. of numeric features, #CFeat: num. of categorical feaures, anomaly%:
percentage of anomalies

Name #Inst #Feat #NFeat #CFeat anomaly%

Census 299285 40 7 33 6.0

Covertype 287128 12 10 2 1.0

Kddcup99 64759 41 34 7 6.5

U2r 60821 41 34 7 0.5

Mnist 20444 96 96 0 3.5

Annthyroid 7200 21 6 15 7.5

Chess 4580 6 0 6 0.5

Mushroom 4429 22 0 22 5.0

Hypothyroid 3772 29 7 22 7.5

Spambase 2964 57 57 0 6.0

The average AUC results of contending methods are provided in Table 2. The
results show that ELDT produced best results overall with the average AUC of
0.918 and average rank of 2.0 over 10 datasets used. It had the best AUC in
four out of 10 datasets followed by Bag.DT in three datasets, RF and SPAD in
two datasets each, and iFoest and LOF in only one dataset each. The closest
contender in terms of consistent performance across datasets is SPAD the average
AUC of 0.864 and the average rank of 3.3. Though Bag.DT produced the best
results in three datasets, it performed worst in the other four datasets, whereas
1 http://archive.ics.uci.edu/ml.

http://archive.ics.uci.edu/ml
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ELDT was ranked second in three datasets, third in two datasets and forth in the
remaining one dataset. This results show that ELDT produced more consistent
results across different datasets with numeric only, categorical only and mixed
attributes and those with local and global anomalies. Among the three baselines,
SPAD has the best overall performance. These results are consistent with those
claimed by the authors in [4].

The runtime results in the five largest datasets with more than 10,000
instances are presented in Table 3. These results show that ELDT ran slower
than all contender except LOF, but it had the runtimes in the same order of
magnitudes with them. It was at last one order of magnitude faster than LOF,
two orders of magnitude faster in the largest dataset.

Table 2. Average AUC over 10 runs. The best performance in each dataset is high-
lighted on bold.

Dataset ELDT Bag.DT RF iForest LOF SPAD

Census 0.713 0.561 0.57 0.589 0.491 0.684

Covertype 0.995 0.974 0.984 0.945 0.992 0.966

Kddcup99 0.993 0.504 0.636 0.998 0.896 0.998

U2r 0.988 0.515 0.576 0.978 0.931 0.988

Mnist 0.815 0.691 0.771 0.841 0.880 0.824

Annthyroid 0.921 0.975 0.802 0.771 0.612 0.705

Chess 0.998 0.997 1.000 0.889 0.968 0.995

Mushroom 0.999 1.000 1.000 0.791 0.996 0.977

Hypothyroid 0.953 0.977 0.894 0.694 0.607 0.723

Spambase 0.808 0.549 0.718 0.805 0.659 0.781

Avg. AUC 0.918 0.774 0.795 0.830 0.803 0.864

Avg. Rank 2.0 3.9 3.4 3.8 4.3 3.3

Table 3. Average runtime (in seconds) over 10 runs in the five largest datasets with
more than 10,000 instances.

Dataset Ft.DT Bag.DT RF iForest LOF SPAD

Census 420 346 119 180 58,140 180

Covertype 1,621 1,572 187 39 10,429 150

Kddcup99 39 88 20 6 1,424 7

U2r 32 79 20 4 1,431 8

Mnist 84 282 19 2 160 6
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4.1 Sensitivity of Parameters

In this section, we present the results of experiments conducted to assess the
sensitivity of the three parameters, m (the size of subspaces that determines
the maximum height of Level Trees), minPts (minimum points required at leaf
nodes to build local AD models) and t (ensemble size), in the performance of
ELDT. We varied one parameter at a time setting the other two parameters
to default values. For this experiments, we used two datasets - Annthyroid and
Mnist. The results are presented in Figs. 3 and 4. The results show that the
performance of ELDT can be improved by setting m and minPts properly.
In terms of t, higher the better. In both cases, performance improved when t
was increased and started to flatten. Increasing t also increases time and space
complexities linearly. Therefore, there has to be a trade-off between performance
and complexities.
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Fig. 3. Annthyroid: Effect of parameter in ELDT
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Fig. 4. Mnist: Effect of parameter in ELDT

5 Conclusions and Future Work

In this paper, we presented a simple idea to address the three main limitations of
existing Anomaly Detection (AD) methods in practical applications: (i) lack of
sufficient examples of known anomalies; (ii) unable to detect local anomalies; and
(iii) inability to handle mixed attributes well. Instead of using one global model,
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we propose to partition the data space into many regions and build an AD model
in each region using data falling in the region only, i.e., many local AD models
are built. To make prediction for a test instance, the AD model learned on the
region where it falls is used. Instead of just relying on a local region from one
partitioning of the space, we proposed to create multiple partitions of the data
space and use ensemble of multiple local models learned on local regions from
each partition. It exploits the benefits of ensemble learning to consider sufficient
locality around the test instance. We used the idea of Feating to partition the
data space. Though there are not many AD models that can work well with
mixed data, there are classifiers such as traditional Decision Tree (DT) that can
handle numeric and categorical features directly. We used DTs in local regions
for AD without using labelled anomalies by adding synthetic data. We presented
a new AD method called Ensemble of Local Decision Trees (ELDT). Our results
show that ELDT produces better and more consistent detection results compared
to popular state-of-the-art AD methods, particularly in datasets with mixed
types of features.

Our results suggest that ensemble of local AD models produces better results
than using a single global model. AD algorithms that can handle categorical and
numeric features directly without any conversion produce better results than
using methods designed for only type of features, which require all features to
be converted into the supported type. AD problems can be converted into clas-
sification problems by adding uniformly distributed synthetic points and classi-
fication algorithms can be used. Our results indicate that it is a very promising
line of research to investigate further to develop a flexible and robust AD frame-
work for practical use. It can lead to a general ensemble learning framework for
AD, where different space partitioning techniques can be used to define local
regions and any classifier or AD algorithm can be used in local regions. In this
paper, we presented one simple variant of it. In future, we would like to focus
on: (i) using other classifiers (e.g., Naive Bayes, KNN, SVM, Neural Networks,
etc.) and AD methods (e.g., LOF, SPAD, One-Class SVM, etc.) as local models;
and (ii) investigating different implementations of space partitioning: using trees
(e.g., Feating), grids, nearest neighbours, etc.
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