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Abstract. Goals provide a high-level abstraction of an agent’s objec-
tives and guide its behavior in complex environments. As agents become
more intelligent, it is necessary to ensure that the agent’s goals are
aligned with the goals of the agent designers to avoid unexpected or
unwanted agent behavior. In this work, we propose using Goal Net, a
goal-oriented agent modelling methodology, as a way for agent design-
ers to incorporate their prior knowledge regarding the subgoals an agent
needs to achieve in order to accomplish an overall goal. This knowledge
is used to guide the agent’s learning process to train it to achieve goals
in dynamic environments where its goal may change between episodes.
We propose a model that integrates a Goal Net model and hierarchical
reinforcement learning. A high-level goal selection policy selects goals
according to a given Goal Net model and a low-level action selection
policy selects actions based on the selected goal, both of which use deep
neural networks to enable learning in complex, high-dimensional environ-
ments. The experiments demonstrate that our method is more sample
efficient and can obtain higher average rewards than other related meth-
ods that incorporate prior human knowledge in similar ways.

Keywords: Deep reinforcement learning - Hierarchical reinforcement
learning - Goal modelling

1 Introduction

Deep reinforcement learning (DRL) has enabled agents to achieve human-level,
and in some cases superhuman-level, results in complex, high-dimensional envi-
ronments. In many applications, agents are required to achieve multiple goals in
complex environments. However, many DRL methods are limited in that they
can only complete one task or goal. Kaelbling [13] proposed a method to train
reinforcement learning agents to learn to achieve a wide variety of goals. This
work forms the basis of recent goal-conditioned and multi-goal reinforcement
learning methods that make use of deep neural networks [23].

As agents become more intelligent, it is necessary to ensure that the agent’s
goals are aligned with the goals of the agent designers, which has been referred
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to as the agent alignment problem [16]. Although many recent deep learning
methods reduce the amount of prior knowledge given to models to improve per-
formance, the inclusion of such knowledge may improve agent alignment by pro-
viding more context to the agent. One way to leverage prior human knowledge
in RL would be to model goals so that they can be understood and specified
by agent developers and designers, regardless of their technical knowledge. Goal
models, which originate from Goal-Oriented Requirements Engineering (GORE),
can provide a way for agent designers to express the high-level behavior that
they desire from their agents. GORE focuses on goals as a way to define sys-
tem objectives and to communicate the rationale behind system requirements
to stakeholders of varying technical knowledge [31]. In GORE, goal models
have been used in agent design to support formal representation and reason-
ing with goals [4,33]. Goal models define goals and capture the relationships
between them, such as AND/OR relationships between subgoals that conjunc-
tively /disjunctively achieve a high-level goal.

In this work, we propose a hierarchical reinforcement learning (HRL) model
that incorporates an agent designer’s prior knowledge about an agent’s overall
goal within a Goal Net model. Goal Net is an agent modelling methodology that
uses goal modelling to define agent behavior [27]. Unlike other goal models that
only specify the decomposition of goals into subgoals, Goal Net allows agent
designers to specify the sequential relationships between goals to allow agents to
reason about goals at run time, which makes it a suitable choice for our work. Our
model consists of a high-level goal selection policy that provides goals to a low-
level action selection policy, as shown in Fig. 1. Given a high-level goal, an agent
may select subgoals to achieve the goal which in turn affects the agent’s actions.
A Goal Net model is used to provide valid goal selection options to the high-
level policy, and the low-level policy is a goal-conditioned policy that operates
in a goal-augmented state space which incorporates a symbolic goal space. We
propose an algorithm that trains a hierarchical Deep Q-Network (h-DQN) [15]
combined with a Goal Net model. Then, we evaluate our model against other
related methods in which Goal Net could be incorporated, namely deep abstract
Q-networks (DAQN) [25] and reward machines (RM) [12]. The results suggest
that our method is more sample efficient and can achieve higher average rewards
in environments with randomized goal locations.

2 Background

Reinforcement Learning (RL) aims to train an agent to act optimally within
an environment [28]. This problem is typically formulated as a Markov decision
process (MDP), which is defined as a tuple M = (S, A, P,r,v), where S is a
set of states, A is a set of actions, P(s’|s,a) is a transition probability function,
r(s,a,s’) is a reward function, and ~ is a discount factor. At a time step ¢, an
agent observes a state s; € S and takes an action a; € A. After the action is
executed, the agent observes a new state s; 1 and receives rewards 741 according
to the reward function. The goal of the agent is to learn a policy 7 : S — A that
maximizes the rewards the agent obtains while interacting with the environment.
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Fig. 1. An overview of the proposed model. The goal selection and action selection, in
this work, are trained through reinforcement learning.

Many RL algorithms make use of value functions in order to learn the optimal
policy. The Q-value function measures the expected future discounted rewards
an agent can obtain by taking an action in a given state, and is defined as:

T

Qs,a) = E[Y_4'ris1]s0 = 5,a0 = a]. (1)

t=0

Deep Q-Networks (DQN) use deep neural networks to estimate the Q-value func-
tion [20]. DQN uses an experience replay buffer [18] that stores tuples containing
information such as the states and actions the agent experiences while interacting
with the environment. Experience tuples are sampled from the replay buffer to
train the network, which enables data reuse and stabilizes the learning process.

Hierarchical Reinforcement Learning (HRL) involves training an agent
to use multiple levels of policies where higher level policies may invoke or direct
lower level policies to achieve subgoals. The options framework is a commonly
used HRL formalism in which a high-level policy may use a temporally extended
option, or macro-action, instead of a primitive action [29]. The framework makes
use of the semi-Markov decision process (SMDP) that generalizes MDPs to the
settings where actions may take a varying number of timesteps [24]. An option is
a tuple (Z,, 7, Bo) where Z, C S is an initiation set describing in which states the
option can be invoked, 7, : S — A is an intra~option policy, and 5, : S — [0, 1]
is a termination function indicating when the option ends.

Goal-Conditioned Reinforcement Learning trains agents to learn a
value function parametrized by the agent’s goal g, which generalizes learning
experience in achieving one goal to other goals [13]. Universal Value Function
Approximators (UVFAs) make use of function approximators such as deep neu-
ral networks to enable generalization to new goals unseen at training time [26].
Hindsight Experience Replay (HER) [2] improves sample efficiency by adding
relabelled experience tuples to the replay buffer. The relabelling process replaces
the agent’s original goal with the goal the agent actually reaches. Such works
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Fig. 2. An example Goal Net for an agent trying to reach an end goal.

have given rise to multi-goal RL [23], which trains agents to achieve a wide
variety of goals.

Goal Net is a graphical model that defines agents’ goals, subgoals, and
the relationships between those goals [27]. Agent development using Goal Net
involves the co-operation of agent designers who may be domain experts that
can define high-level behavior and logic of an agent, and agent developers who
have the development skills to implement the functions required by the agent.
A Goal Net consists of goals and actions, which are represented graphically by
circles and rectangles, respectively. Actions represent the transitions between
goals and define any tasks that need to be completed in order to reach a goal.
Goals can be composite, meaning that they can be decomposed into more goals,
or atomic. Composite and atomic goals are represented as red and green circles,
respectively. An example Goal Net is shown in Fig. 2, which shows a Goal Net
for an agent attempting to reach an end goal by either obtaining a green key
and opening a green door, or by using a yellow key to open a yellow door. We
denote the set of goals within a Goal Net as G,.;. Each Goal Net contains a
root composite goal that indicates the overall goal to be achieved, a start goal,
and an end goal. Arcs connect goals and actions together, indicating valid paths
the agent may take to achieve the overall goal. At run time, the agent begins
in the start goal, and uses goal selection algorithms to determine which goal to
pursue and action selection algorithms to decide how goals should be achieved.
The agent transitions to the next goal if it successfully achieves it.

Goal Net can also represent and define concurrent goal pursuit. A concur-
rency relation between goals represents a partially ordered goal achievement
requirement where all goals in the concurrency relationship must be achieved.
Concurrent goal paths will synchronize at a goal or action, which represents the
point at which all paths must reach before transitioning to the next goal. Graph-
ically, concurrent goals are represented using diamond-shaped arcs. Figure 3
shows an example Goal Net that contains a concurrent goal relation where the
agent must reach both a yellow and blue subgoal before navigating to the final
goal state, but the order in which the subgoals are reached does not matter.
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3 Deep Reinforcement Learning with Goal Net

In this work, we utilize Goal Nets as models to define high-level agent behavior,
which may be provided by agent designers. We consider the case where the goal
and action selection within a Goal Net model are learned using reinforcement
learning. This may be desirable when the environment is complex, or to reduce
the workload of developers so that the goal and action selection algorithms do
not need to be hand-engineered. We treat this setting as a hierarchical reinforce-
ment learning problem with two policy levels: a high-level goal selection policy
and a low-level action selection policy. Our hierarchical structure is based on
the options framework, as well as h-DQN which trains two DQNs: a low-level
controller and a high-level meta-controller [15].

In addition to the Goal Net model, we require agent designers and developers
to create a goal space G that consists of symbolic attributes related to the goals
and subgoals of the agent. For example, in a goal reaching task where an agent
needs to reach a given position in a coordinate space, an agent designer may
define the goal space as the agent’s current coordinates. We will refer to goals
within the Goal Net model as gner € Grer to differentiate between points in the
goal space g € G and the Goal Net goals. Referring back to Fig.1, a Goal Net
goal gner is passed to the goal selection policy and is used to select a target goal
Jhet, and then this is converted to goal space G. Similar to other related methods
such as DAQN and QRM, this conversion is performed by a labelling function
F : S — G, which we assume to be given by agent developers. The goal space
allows us to take advantage of goal-conditioning and HER by augmenting the
state space, inducing a state space S;, = S x G. The low-level policy operates in
this goal-augmented state space and is therefore defined as m, : S;, — A. The
low-level policy selects actions using a goal-conditioned DQN that is trained to
estimate the optimal Q-value function:

Qlo(S10:a,9) =1i + Z P(8lo]510, @, 9) max Q1 (810:a",9), (2)
SEUESlO



276 J. Leung et al.

where g € G is a subgoal to achieve and r; € {0,1} is an intrinsic reward of 1 if
the low-level policy reaches a given subgoal and 0 otherwise.

We denote the high-level goal selection policy as mj;, which operates in the
state space Sp; = S X Gper and can be defined as mp; : Sp; — Grer. The goal
selection policy selects the next Goal Net goal to target and does not need to
select goals directly in goal space. A goal achievement function 8y : Sp; — G is
used to generate the terminal conditions within goal space. This helps increase
the training speed of the goal selection policy since invalid and unused goals in
the goal space are pruned. The goal selection policy operates within a SMDP,
and its associated DQN is trained to estimate the optimal Q-value function:

Q;kn (Shi7 gnet) = Z P(S/hi7 T|5h’iv gnet) [RT + ,YT rqax Q;kn (S;Li’ g;zet)L (3)

ShisT It
where sp; € Spi, 7 is the number of timesteps taken by the low-level policy
to complete the subgoal, and R, = Z;O ~tri11. The extrinsic rewards from
the environment obtained while running the low-level policy are passed to the
high-level policy.

Algorithm 1 shows the overall training procedure for our model. Line 6 is
the start of the goal selection loop, and in lines 7-8 the next Goal Net goal for
the agent to achieve is selected and converted to goal space. In lines 11-12, the
action selection policy is used to select actions based on the target goal. Both
the goal and action selection use e-greedy style exploration strategies based on
the exploration strategy used in h-DQN. Such strategies select a random action
with probability €, and select the action with the maximum Q-value otherwise.
A common strategy to enable sufficient exploration is to initialize ¢ with a high
value and to decay it, typically linearly, over the course of the training process.
However, in complex, temporally extended problems, it is difficult to pick a decay
rate that ensures that the agent adequately explores the environment. Therefore,
we take advantage of the Goal Net model to determine the exploration rates for
the action and goal selection policies. The exploration rate of the action selection
policy scales according to the success rate of achieving the selected Goal Net goal:

€lo = _(Emax - emm)(successN (gnetv g;et)) + €maz, (4)

where €4, and €,,;, are hyperparameters defining the maximum and minimum
values of €, respectively, and successy (gnet, ghe:) 1S the average success rate
of achieving goal g/, starting from g,.: over the past N attempts at achieving
the goal. The exploration rate for goal selection follows a standard e-greedy
strategy, but instead of randomly selecting a goal with probability ep;, we weigh
the probability of selecting particular goals based on the success rate of achieving
them. The formula for determining the probability of selecting a goal is:

1 — successy (Gnets Gret) + P
)
95.,€Gx ., 1 — successy (Gnets 9et) + P

p(gnetag%et) = Z (5)
where p < 1 is a small number that ensures that all goals have a chance to
be selected and to prevent any division by 0, and G}, is the set of goals that

net
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Algorithm 1: h-DQN Training with Goal Net

Input: Goal Net Model

Initialize DQNs Qio, Qni

Initialize experience replay buffers Rio, Rh:
for i = 0 to num_episodes do

gnet < initial Goal Net goal

S, Shi, Slo, § <— environment reset

for j = 0 to max_steps do

Gnet — SelectGoal(sp;)
Grarget < By (S, Gnet)
Ttotal < 0, steps « 0
for kK = j to max_steps do
a «— SelectAction(sio, gtarget)
s',g',r,done — ExecuteAction(a)
Ttotal <~ Ttotal + T
gnet — GNetReached(s', ¢', gnet)
doneio < (gnet != gnet) or done
if g':,et == g':zet then

‘ T 1
else

‘ ri «— 0
Add <Sl0, a, Jtarget, (S,, g’), T4, donelo> to Rio
Update Qo using Rio
st0 — (559)
steps < steps +1
if done;, then

‘ break

end
Add relabelled experience tuples to R, replacing giarget With q
Add (shi, gnets (8", gnet); Ttotal, done, steps) to R
Update Qpi using Rp;:
sni < (8", gnet)
if done then
‘ break

end

can be selected from g.; as defined by the Goal Net model. By using this goal
exploration strategy, we attempt to ensure that the agent learns to achieve all
goals by focusing on goals that the agent cannot reach consistently.

During training, it is likely that the action selection policy inadvertently

achieves a different goal than the goal proposed by the goal selection policy. For
example, an agent using the Goal Net in Fig.2 may obtain the yellow key even
though it tried to obtain the green key. Line 14 checks which Goal Net goal
the agent has reached by comparing ¢’ with 54(s, g,,.,) across all possible Goal
Net goals reachable from ¢,.;. An intrinsic reward is provided to the low-level
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policy if it reaches the proposed goal, and the loop breaks if the low-level policy
transitions to a new Goal Net goal. In line 28, we add experience tuples to the
high-level replay buffer using the Goal Net goal actually reached by the agent
rather than the one proposed by the high-level policy.

To handle concurrent goals, Algorithm 1 uses a list of goal paths in the
Goal Net model containing the goals the agent has currently reached. Then the
available goals that can be selected consists of all possible goal selection options
across all goal paths.

4 Experiments

In the experiments', we make use of the Minigrid environment [6], Miniworld
environment [5], and AI2-THOR [14]. Some example images of the environments
used are shown in Fig. 4. More details about each environment are provided in
the following subsections. The extrinsic reward function used in our experiments
is based on the default reward function provided by Minigrid, defined as:

R= 1—0.9(M), (6)

nmaz

where ngteps is the number of steps taken by the agent to reach the goal, and
Numaz 1S the maximum episode length. We use this reward function as it integrates
both the agent’s success rate and steps taken to reach the goal.

The goal of the experiments is to compare our method with other related
methods in which a Goal Net model could be incorporated and to highlight
problems that they have. We compare 4 different models: the proposed model,
a variant of our model where the low-level policy operates on the state space
without goal-augmentation, a model based on DAQN, and a model based on
Q-learning for Reward Machines (QRM). We will refer to these models as GNet,
GNet without GA, DAQN, and QRM respectively. GNet without GA will be
used to compare whether using a goal-augmented state space for the low-level
policy provides any benefits. We use DAQN and QRM as comparisons as both
methods provide ways for agent designers to provide knowledge to an agent so
that they can achieve temporally extended goals in a similar manner as our
proposed method. DAQN is a HRL method where the high-level policy operates
in an abstract state space defined by an agent designer and may invoke a low-
level policy that is trained to reach a specific abstract state. The high-level
policy in the DAQN model uses a tabular Q-learning algorithm that selects goals
according to the provided Goal Net model. To make comparisons fairer, we also
provide the valid goal selection choices based on the Goal Net model to the high-
level policy. Additionally, we use goal-conditioning on the low-level DAQN policy
by providing the Cartesian coordinates of the target goal and use HER to relabel
experience tuples using the coordinate reached by the agent. QRM provides a
comparison to a flat, non-goal-conditioned model capable of training an agent

! Code awailable at: https://github.com/jleungl/goal_modelling_rl.
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Fig. 4. Sample images of the experimental environments. Positions of objects, subgoals,
and the agent are randomized each episode.

to complete temporally extended tasks by having agent designers define a finite
state machine that represents the reward function. The reward machines used
in our experiments are based on the Goal Net models used in each experiment,
where in most cases each goal acts as a reward machine state that provides the
agent with a reward of 1. The transitions between reward machine states are
determined by the goal spaces and 3, used in each experiment.

We attempt to use similar neural network architectures for all models. The
low-level DQNs of the hierarchical models and the QRM model use convolutional
layers that take the environment state as input. In GNet, the goal state and
target goal are concatenated with the output of the convolutional layers and
then passed through a set of linear layers. Only the target goal is used in GNet
without GA. In DAQN and QRM, we pass one-hot encodings to the network to
differentiate between multiple policies as opposed to the multi-headed or separate
networks used in the respective works. We use Double DQN [11] for all models,
as was done in both original DAQN and QRM works.

4.1 Two Keys

The first experimental environment, which we will refer to as the “two keys”
environment, was created using Minigrid. In this environment, shown in Fig. 4a,
the agent must reach the green goal coordinate. To do this, the agent needs to
learn to acquire either the yellow or green key, then open the corresponding door
to reach the goal room located in the bottom right quadrant. This environment
tests the agent’s ability to choose the key and door that lead it to the goal the
fastest. Every episode, the agent and the keys are positioned randomly outside of
the goal room, and the goal’s position within the goal room is also randomized. In
addition, the positions of the two doors may be randomly swapped. The actions
available to the agent include moving forward, turning left or right, picking up a
key, and opening a door. The Goal Net model used in this experiment is shown
in Fig. 2. The goal space consists of the x and y coordinates of the agent’s target
goal, followed by a set of propositional symbolic features indicating whether
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the agent has the yellow or green key, and whether the yellow and green doors
are opened or closed. We use a symbolic state space provided by the Minigrid
environment, which is a 3 x 13 x 13 grid that contains information about the
object type, color, and status at each grid coordinate.

We train each agent for 50000 episodes, except for QRM which needed more
training to converge, with a maximum episode length of 300 steps. We perform
100 evaluation episodes every 100 training episodes where the agent takes the
greedy action at each time step. This process is repeated 5 times using the same
set of random seeds across all models, and the means and standard deviations of
the average rewards obtained are reported. The results are shown in Fig. ba, and
the rewards per frame are shown in Fig. 5b to illustrate the difference in sample
efficiency between QRM and the other methods.

GNet is able to learn from the transitions within the goal-augmented state
space and relate it to the target goals used in training a goal-conditioned DQN
for the low-level policy. Since the state space used in GNet without GA does not
directly include the goal space, the agent needs to learn the associations between
the target goal and the state space itself, and thus is slightly less sample efficient.
It should be noted that the goal space in this experiment contains information
that is readily available within the state space given to the agent. This showcases
the potential of providing an agent with a simplified representation of the state
space alongside the full state space to improve learning efficiency.

DAQN converges to a lower average reward value because the abstract goal
space does not provide enough information to the high-level policy about which
key it should obtain. This problem was discussed by Gopalan et al. [10] and
is demonstrated by this experiment. The agent cannot differentiate between
obtaining the yellow of green key because both options lead the agent to the
goal in the same number of steps with respect to the high-level policy. In order
for DAQN to find a better policy, a goal space containing more information
about the state space would be required. In contrast, the GNet models use the
full state space at both policy levels and thus are more robust to the goal space
design, imposing fewer restrictions on agent designers.

QRM can learn a policy that converges to higher rewards than DAQN, how-
ever it takes much longer to learn since it does not use HER. Whereas QRM
only uses the goal space to determine reward machine state transitions, GNet
allows the agent to actively select its next goal, which allows the use of HER. As
QRM does not use a hierarchy, it is not clear how a goal selection mechanism
would be incorporated into the method to allow for the use of goal-conditioning
and HER. As described by Icarte et al. [12], QRM can share learning experience
between RM state Q-value functions by using the RM to determine whether any
RM state transitions have occurred when the agent interacts with the environ-
ment. However, this does not aid the agent in this environment because each
RM state corresponds to separate sets of environment states. For example, if the
agent opens the yellow door and then reaches the goal, this experience cannot
be transferred to the case where the agent opens the green door and reaches the
goal because the environment state is different in both cases.
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Fig. 5. Average rewards obtained across all runs of the experiments.

4.2 3D Four Rooms with Subgoals

In this experiment, we modify an implementation of a 3D version of the four
rooms environment provided by Miniworld [5]. The goal of the agent is to visit
a blue and yellow subgoal before reaching the green goal, whose positions are
all randomized at each episode. The order in which the agent visits the subgoals
does not matter, and so this environment tests the agent’s ability to handle
partially ordered subgoals in a high-dimensional 3D environment with much
randomness. If the agent reaches the final goal before reaching both subgoals,
the agent receives a reward of 0. The agent views the environment in a first
person perspective and receives RGB images as state observations, as shown in
Fig. 4b. We provide the agent with the previous 4 frames to help the agent handle
partial observability, making the size of the agent’s observation 4 x 3 x 60 x 80.
An overhead view of the environment is shown in Fig. 4c. The Goal Net model
used for this experiment is shown in Fig. 3, however the equivalent RM contains
an extra state that represents the agent having reached both subgoals. The
agent can turn left or right by a random amount between 10° and 30° and move
forward.

The goal space used in this experiment consists of the x and z positions
of the goal, subgoals, and the agent, as well as whether the agent has reached
the blue and yellow subgoals. To make comparisons fairer, we provide the goal,
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subgoal, and agent coordinates as additional state information to GNet without
GA, DAQN, QRM. We use a deeper neural network for this experiment based
on the one used by Espeholt et al., which uses residual connections [9]. We
perform our evaluation similarly to the previous experiment where we run 100
evaluation episodes after every 100 training episodes and repeat the training
process 5 times. We use a maximum episode length of 300 steps and use an € of
0.05 during evaluation episodes. The results are shown in Fig. 5c.

Both GNet and GNet without GA perform similarly, with a bit more insta-
bility in GNet without GA. Since we provided the agent coordinates, subgoal,
and goal locations to all methods, the only difference between GNet and GNet
without GA is the inclusion of the subgoal completion statuses within the goal-
augmented state space. However, as will be shown in the next experiment, this
small difference can have a larger impact on the agent’s performance in some
environments. As in the two keys environment, DAQN performs worse because
the high-level policy cannot determine whether visiting the yellow or blue sub-
goal first is better. Exploration in this experiment is easier than the two keys
environment, as there are only three movement actions, making QRM learn
quicker than in the previous experiment.

4.3 Kitchen Navigation and Interaction

In this experiment we use AI2-THOR, a 3D home environment created in the
Unity game engine [14]. AI2-THOR provides various rooms where agents can
interact with various objects. For this experiment, we use the 30 different kitchen
environments provided by AI2-THOR and train the agent to first close the fridge
door, and then turn off the light switch. An example of one of the kitchens is
shown in Fig.4d. The actions available to the agent are turning left and right,
moving forward, closing an object, and toggling off an object. The episode ends
when the agent turns off the light, with a reward of 0 being given if it turns off
the light before closing the fridge door. This experiment tests the agent’s use
of the goal space to learn to navigate and complete tasks in high-dimensional
environments that vary greatly between episodes. Since the sequence of subgoals
is always the same in this experiment, the high-level policies of the hierarchical
models do not need to be trained, which allows the low-level policy to be isolated
and analyzed. The neural network architecture is similar to the previous exper-
iment, using a deeper model with residual connections. The state observations
given to the agent consists of the last four 100 x 100 RGB-depth images. The goal
space consists of the agent’s position, as well as the position of the fridge and
light switch. Similar to the previous experiment, we give the x and z positions
of the agent, fridge, and light switch to all models as extra state information to
make comparisons fairer. Each episode, the agent is positioned randomly in one
of the 30 kitchens and runs for a maximum of 200 steps. We perform evaluation
every 50 episodes where we run the agent once through each kitchen using greedy
actions. This process is repeated 5 times with different random seeds, and the
results are shown in Fig. 5d.
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As in the previous experiment, the only difference between GNet and GNet
without GA is the subgoal completion statuses within the augmented state space.
In the 3D four rooms environment, each action the agent took affected the x
and z positions of the agent. However, this environment contains actions to close
objects and toggle objects off, which do not have any effect if the agent is not near
any object where these actions are applicable. This problem was demonstrated
in the first experiment, where GNet without GA had to learn to associate the
target goal with the state space. By using a goal-augmented state space, we
provide a generalized way for agent designers to guide agents. DAQN performs
similarly to the GNet models because when only considering the low-level policy,
the methods are similar. Thus, a key benefit of our proposed method is the use
of the full state space in the high-level policy.

5 Related Work

There have been proposed methods to incorporate prior knowledge in a RL agent.
A closely related method is the hierarchy of abstract machines (HAM) [22],
where partial policies can be defined using a hierarchy of finite state machines.
Reward Machines also use finite state machines, but instead of directly defining
an agent’s behavior, they are used to define reward functions that may represent
complex, temporally extended tasks [12]. Andreas et al. proposed a method to
include agent designers’ prior knowledge using policy sketches that are used to
train an agent to complete tasks via subtask sequences [1]. However, a dataset of
policy sketches is assumed to be available whereas our proposed method assumes
a labelling function is defined. Additionally, policy sketches impose a specific
ordering of subgoals whereas a Goal Net model also enables the definition of
partially ordered subgoals. Roderick et al. proposed DAQN [25], which extends
abstract MDPs [10] by combining tabular RL and DRL. Lyu et al. also propose
a HRL method that combines tabular RL and DRL and uses symbolic planning
to incorporate prior human knowledge [19]. Our method, however, uses HER to
improve sample efficiency and can handle environments where goals may change
between episodes. Icarte et al. use Linear Temporal Logic (LTL) formulae to
describe tasks and decompose them into subtasks [30]. Our method uses Goal
Net to provide a representation of an agent’s objectives that is understandable
to stakeholders who may have little technical knowledge, however a combination
of LTL and Goal Net could be explored in the future. Zhang et al. propose a
method where agents learn to plan in a human-defined attribute space, which
is similar to the goal space of our method, and use count-based exploration to
train agents in a task agnostic manner [34]. Unlike their method, our proposed
method augments the state space using the goal space, making our method less
reliant on how an agent designer defines the goal space.

Hierarchical reinforcement learning has roots in works such as the options
framework [29], MAXQ value function decomposition [8], and Feudal Net-
works [7]. Many recent works in HRL incorporate deep neural networks. Bacon et
al. extended the options framework by training agents to learn the intra-option
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and option termination functions in an end-to-end manner [3]. Vezhnevets et al.
extend Feudal Networks to use deep neural networks and propose a model where
a manager and worker are learned in parallel, and the manager learns to pro-
duce goals that represent a desired direction in a learned latent goal space [32].
Levy et al. proposed a method for training a hierarchical agent with potentially
many levels of goal-conditioned policies [17]. Nachum et al. improved the sam-
ple efficiency of HRL methods using off-policy RL for the high-level policy by
correcting transitions in the replay buffer with new goals according to the cur-
rent low-level policy [21]. We note that our method is not necessarily orthogonal
to other HRL methods and could potentially be integrated such that an agent
designer proposes high-level subgoals via a Goal Net model and the agent learns
to further decompose the subgoals through its own hierarchy.

6 Discussion and Conclusion

We proposed a goal-oriented model and algorithm which use agent designers’
prior knowledge to train a hierarchical RL agent. We used Goal Net to accomplish
this as goals provide an abstraction of agent behavior that is understandable by
agent designers with diverse levels of technical knowledge. We compared our
method to two related methods, DAQN and QRM, which make use of similar
levels of prior knowledge. We demonstrated that the proposed method can make
better use of the information provided to it by the agent designers and learn more
quickly in various environments. We also showed that the agent is more robust
to the goal space design because we augment the state space of the original
MDP rather than reduce it. If the goal space is missing information that may
help the agent achieve its goal more efficiently, the agent can still learn because
it is not necessarily dependent on the goal space. If an agent designer provides
redundant information to the agent, it can still leverage the goal space to learn
more efficiently. However, information needed by the agent that is not contained
in the state space should be included in the goal space.

A future direction may investigate methods of learning goal spaces to allow
agents to have a better understanding of its goals. This may help apply our
method to domains outside navigation and goal-reaching tasks, such as dialogue
systems. Another direction could involve improving goal selection to handle par-
tially observable environments where the subgoal locations may not be known to
the agent. In such environments, the agent may need to change its goal based on
new information. An investigation on the use of the proposed method to promote
safe Al could be a future direction, as Goal Net can help create agents whose
policies are controllable and interpretable. Incorporating other goal types, such
as maintenance or avoidance goals, may help in this regard.
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