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Abstract. In many real-world tasks, a team of learning agents must
ensure that their optimized policies collectively satisfy required peak
and average constraints, while acting in a decentralized manner. In this
paper, we consider the problem of multi-agent reinforcement learning for
a constrained, partially observable Markov decision process – where the
agents need to maximize a global reward function subject to both peak
and average constraints. We propose a novel algorithm, CMIX, to enable
centralized training and decentralized execution (CTDE) under those
constraints. In particular, CMIX amends the reward function to take
peak constraint violations into account and then transforms the resulting
problem under average constraints to a max-min optimization problem.
We leverage the value function factorization method to develop a CTDE
algorithm for solving the max-min optimization problem, and two gap
loss functions are proposed to eliminate the bias of learned solutions.
We evaluate our CMIX algorithm on a blocker game with travel cost
and a large-scale vehicular network routing problem. The results show
that CMIX outperforms existing algorithms including IQL, VDN, and
QMIX, in that it optimizes the global reward objective while satisfying
both peak and average constraints. To the best of our knowledge, this
is the first proposal of a CTDE learning algorithm subject to both peak
and average constraints.
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1 Introduction

Multi-agent reinforcement learning (MARL) has shown great promise in many
cooperative tasks such as intelligent transportation system [2,16], network opti-
mization [28], and robot swarms [13]. Existing MARL algorithms – e.g., IQL [27],
VDN [26], and QMIX [24] – often leverage centralized training with decentral-
ized execution (CTDE). However, in many real-world decision making problems,
a team of distributed learning agents must also ensure that their optimized poli-
cies collectively satisfy required instantaneous peak constraints [3] and long-term
average constraints [10]. For instance, optimizing a vehicular network must meet
the requirements of both peak network performance (e.g., the maximum latency
constraint [25]) and average network performance (the average transmission rate
[15] or average latency [1] constraint). We note that since the exact action space
satisfying these constraints cannot be determined prior to training, new CTDE
algorithms are needed to simultaneously address both peak and average con-
straints.

In this paper, we propose a new MARL algorithm with CTDE, called CMIX,
for maximizing the discounted cumulative reward subject to both peak and aver-
age constraints. We note that while the problem of constrained reinforcement
learning (RL) has been studied under either peak constraints [3,9,11,12] or aver-
age constraints [4,6,10,22], most of the existing algorithms tackle only one type
of the two constraints – but not both – and focus on single-agent tasks with
centralized execution. To the best of our knowledge, there are no MARL learn-
ing algorithms that can address both peak and average constraints especially in
the realm of CTDE algorithms for multiple agents. In contrast, CMIX is able to
optimize distributed agents’ policies under both peak and average constraints,
while leveraging value function factorization to allow distributed executions.

More precisely, CMIX casts a Markov decision process (MDP) under both
peak and average constraints into an equivalent max-min optimization problem.
First, by setting a lower bound on the MDP’s objective value, we can replace the
objective with a new average constraint. Second, we introduce a penalty into the
reward functions of the average constraints so that the peak constraints can be
absorbed into the set of average constraints. These allow us to obtain a multi-
objective constrained problem with only average constraints, whose solution can
be solved through an equivalent max-min optimization problem. Finally, a search
algorithm is designed to find an appropriate lower bound, such that an optimal
solution of the original constrained problem can be obtained by solving the max-
min optimization problem.

We further leverage value function factorization and propose a CTDE algo-
rithm to solve the max-min optimization problem, thus providing a solution to
the MDP under both peak and average constraints. To this end, individual agent
networks are used to estimate the per-agent action-values with respect to each
average constraint and conditioned on only local observations, while a neural
mixing module consisting of multiple mixing networks combines the outputs of
the agent networks to produce an estimate of the joint action-values with respect
to the average constraints. Two structures of the mixing module are developed,
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i.e., a module with mixing networks having independent parameters (CMIX-M)
and a module with all mixing networks sharing the same parameters (CMIX-S).
The neural parameters can be updated through an end-to-end method similar
to QMIX [24]. However, directly applying the TD-error loss function is likely
resulting in a biased solution due to the fact that CMIX solves the original max-
min optimization problem approximately in a CTDE paradigm. To address the
issue, we propose two gap loss functions for CMIX-M and CMIX-S, respectively,
to minimize the gap between the original max-min optimization problem and
the approximated one solved by CMIX. The neural parameters are updated by
minimizing a linear combination of TD-error loss and gap loss. To the best of
our knowledge, this is the first MARL algorithm that enables CTDE under both
peak and average constraints.

We conduct extensive evaluations on a blocker game with travel cost and
on a large-scale vehicular network routing problem. Evaluation results compares
CMIX with state-of-the-art CTDE learning algorithms – including IQL [27],
VDN [26], and QMIX [24] – as well as algorithms for constrained MDP such as
C-IQL, which is implemented by extending IQL in a similar way to CMIX. The
results show that CMIX outperforms state-of-the-art CTDE learning algorithms
in the sense that it can optimize the global objective while satisfying both peak
and average constraints. Further evaluations validate that gap loss improves the
objective value of CMIX while enabling CMIX to comply with both peak and
average constraints.

2 Background

A cooperative multi-agent sequential decision-making task in a stochastic,
partially observable environment can be modeled as a decentralized partially
observable Markov decision process (Dec-POMDP) [21], denoted by a tuple
G = 〈S,N , {Ai}i∈N , P, r, {Zi}i∈N , γ〉. s ∈ S denotes the global state of the
environment. At each time step t, each agent i ∈ N ≡ {1, . . . , N} gets a
local observation zi ∈ Zi and chooses a local action ai ∈ Ai, forming a joint
action a ∈ A ≡ ΠN

i=1Ai. Then the environment evolves transforms from
the current state to a new state according to the state transition function
P (s′|s,a) : S × A × S → [0, 1] and returns a global reward r(s,a) to the agents.
Given a joint policy π := (πi)i∈N , the joint action-value function at time step
t is defined as Qπ (st,at) := Eπ [Rt|st,at], where Rt =

∑∞
τ=0 γτrt+τ is the

discounted cumulative reward. The goal is to find an optimal policy π∗ which
results in the optimal value function Q∗ = maxπ Qπ (st,at).

2.1 QMIX

CTDE paradigm [23] is promising in solving the optimization problems of Dec-
POMDP. During training, the learning algorithm of CTDE trains agents cen-
trally and gets access to the global state s. During execution, each agent i can
only make decisions according to its local observation zi. There have recently
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been many MARL algorithms proposed in the CTDE paradigm, among which
value-decomposition methods attract much attention recently.

QMIX [23,24] is one of the representative MARL algorithms belonging to
value-decomposition methods, which factorizes joint action-value function Qtot

into a combination of local action-value functions. QMIX combines the per-agent
action-value function via a state-dependent, differentiable monotonic function:
Qtot(s,a) = f(Q1(zi, a1), . . . , QN (zN , aN ); s),where ∂f

∂Qi
≥ 0,∀i ∈ N . Since the

mixer f(·) is a monotonic function to per-agent action-value input, we can max-
imize the joint action value by maximizing per-agent action values locally.

QMIX is trained much like deep Q-network (DQN) [19]. A buffer replay
mechanism and a TD-error loss function are taken for training agents. Particu-
larly, for a mini-batch of B samples (sb,ab, rb, s

′
b) (b = 1, . . . , B), QMIX learns

parameters θ by minimizing LTD−error = 1
B

∑B
b=1(Qtot(sb,ab; θ) − yb)2, where

yb = rb + γ maxa′ Qtot(s′
b,a

′; θ−) is the target value of the b-th sample and θ−

denotes the parameters of a target network which are periodically copied from
θ. The monotonic mixing function f is parameterized as a feed-forward network,
whose non-negative weights are generated by hypernetworks [14] with the global
state as input.

2.2 Constrained Reinforcement Learning

Constrained reinforcement learning tries to find a policy π∗ to maximize the
global discounted cumulative reward subject to some constraints such as peak
constraints [3,9,11,12] and average constraints [4,6,10,22]. Formally, the objec-
tive function of these constrained problems is maxπ Eπ [

∑∞
t=0 γtr(st,at)]. With-

out loss of generality, we assume that there exist J peak constraints and K
average constraints. Peak constraints limit instantaneous returns, which can be
formulated as cj(st,at) ≥ 0, ∀t, j = 1, . . . , J . While average constraints focus
on long-term limitations, which can be stated as Eπ [

∑∞
t=0 γtrk(st,at)] ≥ 0, k =

1, . . . ,K. r,{cj}J
j=1, and {rk}K

k=1 are unknown functions, but their returned val-
ues can be acquired at each time step.

Existing researchers usually develop constrained RL algorithms for dealing
with the two kinds of constraints separately. For the problems with only peak
constraints, many approaches [3,9] choose to introduce a penalty into the original
reward function, which has been validated to be effective.

There are also some researches focusing on the problems with only aver-
age constraints. [10] converts the optimization problem with average constraints
to the multi-objective constrained problem by adding a lower bound δ to the
objective function. The multi-objective constrained problem aims to find a fea-
sible policy while satisfying the original average constraints as well as the new
average constraint on the objective function. Such a constraint satisfaction prob-
lem can be solved through a max-min optimization problem which maximizes
the minimum margin of average constraints.1 Therefore, with an appropriate δ-

1 The margin of an average constraint represents the left hand of the average con-
straint.
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search algorithm, we can approximate the optimal solution that maximizes the
discounted cumulative reward under the original average constraints.

However, most of the constrained RL algorithms are for single-agent settings,
and the algorithms considering both peak and average constraints are missing
especially in the paradigm of MARL.

3 Problem Formulation

In this paper, we consider the problem of the Dec-POMDP under both peak and
average constraints. The problem can be formulated as

max
π

Eπ

[ ∞∑

t=0

γtr(st,at)

]

(1)

s.t. cj(st,at) ≥ 0, ∀t, j = 1, . . . , J (2)

Eπ

[ ∞∑

t=0

γtrk(st,at)

]

≥ 0, k = 1, . . . ,K (3)

Next, we need to find an optimal joint policy π∗ which optimizes the discounted
cumulative reward in Eq.(1) and satisfies both peak constraints on instantaneous
returns in Eq.(2) and average constraints on long-term returns in Eq.(3).

4 CMIX

We propose CMIX to solve the Dec-POMDP problem under both peak and
average constraints. First, we convert the original MDP to a multi-objective
constrained problem, whose solution can be obtained by solving an equivalent
max-min optimization problem. Second, we leverage value function factorization
to develop a CTDE algorithm for solving the max-min optimization problem
approximately. We further analyze the gap between the original max-min opti-
mization problem and the approximated one solved by CMIX and propose two
gap loss functions to eliminate the bias of learned solutions.

4.1 Multi-objective Constrained Problem

The constrained Dec-POMDP problem can be converted into a multi-objective
constrained problem by setting a lower bound δ for the objective function [10].
The bounded objective function becomes a new average constraint, which is
equivalent to

Eπ

[ ∞∑

t=0

γt(r(st,at) − δ(1 − γ))

]

≥ 0. (4)

Then, we obtain a multi-objective constrained problem which aims to find a
feasible policy while satisfying the peak constraints of Eq. (2) as well as the
average constraints of Eq. (3) and Eq. (4).
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Consider that peak and average constraints have very different forms. So
directly dealing with the two kinds of constraints together is much challeng-
ing. To address the issue, we design that the peak constraints of Eq. (2) can
be absorbed into the average constraints of Eq. (3) and Eq. (4) by import-
ing a penalty to reward functions. In particular, we define a penalty function
as p(st,at) =

∑J
j=1 minλj≥0 λjcj(st,at). When computing rewards, a penalty

p(st,at) will be added to the global reward r and the rewards for average con-
straints {rk}K

k=1. The penalty p(st,at) equals zero when all the peak constraints
are satisfied; otherwise, a large minus value will be added to the computed reward
values.

Now, we obtain a multi-objective constrained problem with only average
constraints, i.e.,

Find π

s.t. Eπ

[ ∞∑

t=0

γt(r(st,at) − δ(1 − γ) + p(st,at))

]

≥ 0,

Eπ

[ ∞∑

t=0

γt(rk(st,at) + p(st,at))

]

≥ 0, k = 1, . . . ,K

Since a violation of any peak constraints will result in very small rewards, the
above problem with only average constraints is equivalent to the multi-objective
constrained problem with both peak and average constraints. Also note that the
penalty p(st,at) can not be realized directly but there exists a large body of
literature on reward engineering for the penalty design [8,9]. In practice, we use
a simple approximator to p(st,at) as p̂(st,at) = −C

∑J
j=1 1cj(st,at)<0, where C

is a positive constant bounding the variance of global reward function r and the
reward functions for average constraints {rk}K

k=1, and 1cj(st,at)<0 equals 1 when
cj(st,at) < 0 otherwise 0. We can find that the approximator equals zero when
all the peak constraints are satisfied and a large minus value otherwise, which is
similar to the original penalty p(st,at).

The above multi-objective constrained problem can be solved through an
equivalent max-min optimization problem, noted as a zero-sum Markov-Bandit
game in [10]. Particularly, the max-min optimization problem focuses on finding
a feasible policy to maximize the minimum margin of the average constraints. It
is easy to find that if the original multi-objective constrained problem is feasi-
ble, the policy, that maximizes the minimum margin of the average constraints,
should be a feasible solution to the original problem. We define action-value
functions for representing the margins of the average constraints. Formally, let
o indicates the index of average constraints. Then, we define

if o = 0 : Q(s, a, o) = Eπ

[ ∞∑
t=0

γt(r(st, at) − δ(1 − γ) + p(st, at))

]
, and

for o = 1, . . . , K : Q(s, a, o) := Q(s, a, k) = Eπ

[ ∞∑
t=0

γt (
rk(st, at) + p(st, at)

)]
.
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The Bellman equation of the max-min optimization problem is given as follows

Q(s,a, o) = r(s,a, o) + γ · Eπ (s′) [Q(s′,π(s′), o)] ,
π(s) = arg max

π (s)

min
o∈O

Eπ (s) [Q(s,π(s), o)] , (5)

where r(s,a, o) := r(st,at) − δ(1 − γ) + p(st,at) for o = 0 and r(s,a, o) :=
r(s,a, k) = rk(st,at) + p(st,at) for o = k = 1, · · · ,K. Note that π(s) is a
distribution over the joint action space and can be obtained by solving a max-
min optimization problem. By solving Eq. (5), we can maximize the minimum
margin of the average constraints and find the feasible policy for the original
multi-objective constrained problem.

This max-min optimization problem aims to provide a feasible solution
to the multi-objective constrained problem for a given δ. It is easy to prove
that if δ equals the optimal objective value of the original constrained Dec-
POMDP problem, the obtained feasible solution is also an optimal solution to
the original constrained Dec-POMDP problem. To find the optimal δ, we can set
δ = E [r(s,a)] /(1 − γ) in the max-min optimization problem learning process.
In this way, the learning algorithm can learn the optimal δ and the correspond-
ing policy π∗ self-adaptively. In our proposed algorithm, we take an adaptive
δ-search algorithm by setting δt = ε · δt−1 + (1 − ε) · r(st,at)/(1 − γ) at each
time step, where ε ∈ [0, 1] is an adjustable parameter.

4.2 CMIX Architecture

To efficiently solve the constrained Dec-POMDP problem, we propose a neural
architecture called CMIX by extending the original QMIX.

When applying QMIX in solving the Bellman equation in Eq.(5), we need to
solve a max-min problem

π∗(s) = arg max
π (s)

min
o∈O

Eπ (s)[Qtot(s,π(s), o)], (6)

where O = {0, 1, . . . ,K} is the set of constraints and Qtot(s,π(s), o) is the
joint action value calculated by the monotonic function fo: Qtot(s,π(s), o) =
fo(Qo

1, Q
o
2, ..., Q

o
N ). So, there are total of 1 + K mixing functions. For brevity,

we omit the notations of each agent’s local observations and actions, and let Qo
i

denote the i-th agent’s action-value function with respect to the o-th average
constraint.

Recall that each agent takes actions independently in the original QMIX. So
naturally we need to make each agent solve a local max-min problem for taking
an action. Formally, the local max-min problem of agent i can be stated as

π̂i(zi) = arg max
πi(zi)

min
o∈O

Eπi(zi)[Q
o
i ]. (7)

It is easy to prove that by solving Eq.(7) we optimize a similar but not same
problem to Eq.(6). We define function g as

g(x1, x2, . . . , xn) := min
o∈O

fo(x1, x2, . . . , xn).
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Fig. 1. (a) The mixing network structure of CMIX-M. (b) The mixing network struc-
ture of CMIX-S. (c) The overall CMIX architecture. (d) The agent network structure.

Since {fo} are monotonic functions, g is also monotonic. Then the actual max-
min problem solved by Eq.(7) is

π̂(s) = arg max
π (s)

Eπ (s)[g(min
o∈O

Qo
1, . . . ,min

o∈O
Qo

N )]. (8)

According to Eq. (8), we propose a CMIX architecture with two kinds of
mixing module structures. In particular, we propose CMIX-M, the CMIX archi-
tecture with multiple mixing networks. That is to say, the mixing functions fo

(∀o ∈ O) have independent parameters. Besides, we propose CMIX-S, the CMIX
architecture with a single mixing network. The mixing functions in CMIX-S share
parameters, i.e., fo = f (∀o ∈ O). Figure 1 shows the overall CMIX architecture
with the two kinds of mixing module structures. Agent network i adopts DQN
[18] and stores Qo

i (∀o ∈ O). Each agent takes local state zt
i as input and outputs

the corresponding Q values Qo
i (s

t
i, a

t
i) (∀o ∈ O) after taking a local action at

i.
The mixing network module combines the outputs of the agents monotonically,
producing the values of Qo

tot(∀o ∈ O). To guarantee the monotonicity, hypernet-
works with absolute activation functions in output layers are used to generate
the weights of mixing networks fo, which follows [24]2.

4.3 Gap Loss Function

Given the CMIX architecture, the neural parameters θ can be learned in an
end-to-end fashion. For a transition (s,a, r, {rk}k=1,...,K , s′), the TD-error loss
can be computed by

LTD−error =
∑

o

(Qtot(s,a, o; θ) − yo)2, (9)

where yo = r(s,a, o) + γ ·Eπ̂ (s′) [Q(s′, π̂(s′), o; θ−)] is the target value and π̂(s′)
can be obtained with Eq.(7).

However, applying the TD-error loss function may be likely to result in a
biased solution. As analyzed previously, the problem solved by CMIX is actually

2 For brevity, we do not show the hypernetwork part of the mixing module in Fig. 1.
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the max-min problem of Eq. (8). Since {fo} are monotonic functions, and g is
also monotonic. We can get

min
o∈O

fo(Qo
1, . . . , Q

o
N ) ≥ min

o∈O
g(Qo

1, . . . , Q
o
N ) ≥ g(min

o∈O
Qo

1, . . . ,min
o∈O

Qo
N ), ∀π(s)

(10)
The left hand of Eq. (10) is the true objective function to be maximized in Eq. (6)
while the right hand is the objective function we actually maximized in CMIX.
We can see that CMIX may lead to a biased solution π̂(s) to the original global
max-min problem of Eq. (6) due to the gap in objective functions.

To address the issue, we design two loss functions for CMIX-M and CMIX-S,
respectively.

Loss Function for CMIX-M: To eliminate the bias caused by the gap between
true objective function mino∈O fo(Qo

1, . . . , Q
o
N ) and the one actually used in

CMIX-M g(mino∈O Qo
1, . . . ,mino∈O Qo

N ), we propose a loss function called gap
loss Lgap to minimize the gap, i.e.,

Lgap =
(

min
o∈O

fo(Qo
1, . . . , Q

o
N ) − g(min

o∈O
Qo

1, . . . ,min
o∈O

Qo
N )

)2

. (11)

In the training phase, we combine the TD-error loss of Eq. (9) with the gap loss
to update parameters. The final loss is computed by

Lfinal = LTD−error + βLgap, (12)

where β is a coefficient for adjusting the weight of the gap loss.

Loss Function for CMIX-S: In CMIX-S we assume that all the mixing
functions fo share parameters, i.e., g = fo = f (∀o ∈ O). Then the original
max-min problem becomes arg maxπ (s) mino∈O Eπ (s)[f(Qo

1, . . . , Q
o
N )], and the

actual max-min problem solved by CMIX is π̂(s) = arg maxπ (s) E[f(mino∈O Qo
1,

. . . ,mino∈O Qo
N )]. According to the above equations, we design the gap loss Lgap

for CMIX-S as

Lgap =
(

min
o∈O

f(Qo
1, . . . , Q

o
N ) − f(min

o∈O
Qo

1, . . . ,min
o∈O

Qo
N )

)2

. (13)

The final loss can be computed in the way same as Eq. (12).
Note that the gap loss functions in Eq.(11) and (13) are fully differentiable

and can be easily optimized by existing gradient descent methods.

4.4 CMIX Algorithm

In Algorithm 1, we outline the pseudocode of CMIX. In the beginning, we ini-
tialize the neural parameters of θ and θ−, and the replay buffer D. From line
2 to line 16, we train the agents for a number of epochmax epochs, and each
epoch contains a total of stepmax update steps. The state will be initialized
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Algorithm 1: CMIX Algorithm
1: Initialize parameters θ, target θ− = θ, and the replay buffer D = ∅
2: for epoch = 1, · · · , epochmax do
3: Initialize state s0

4: for t = 0, · · · , stepmax do
5: Collect observations {zt

i}i∈N for all agents
6: for each agent i do
7: π̂i(z

t
i ) = arg max

πi∈Πi

min
o∈O

E[Qi(z
t
i , πi(z

t
i), o)]

8: at
i =

{
sample(π̂i(z

t
i)) with prob. 1 − ε

randint(1, |Ai|) with prob. ε

9: end for
10: Execute the joint action at and store the transition

(st, at, r, {rt
k}k=1,...,K , st+1) in D

11: Sample a mini-batch B from D
12: Compute Lfinal of Eq. (12) for each sample in B
13: Update θ by minimizing the average loss of Lfinal with respect to B
14: Update target θ− = θ periodically
15: end for
16: end for

at the beginning of each epoch (line 3). In line 5, the agents’ local observa-
tions are collected. From line 6 to line 9, each agent takes an action through an
ε−greedy method. In line 10, the joint action at is executed, and the transition
(st,at, r, {rt

k}k=1,...,K , st+1) is stored in the buffer D. In line 11, a mini-batch B
of samples are selected from D randomly. Then, the loss Lfinal of Eq. (12) is
computed with respect to each sample in line 12. In line 13, the computed loss
guides the update of θ. Finally, the target θ− will be updated from θ after a
specified interval.

5 Experiments

We evaluate CMIX on two different tasks: a blocker game with travel cost and
a cooperative routing optimization task in large-scale vehicular networks. In our
numerical results, CMIX is compared with the state-of-the-art CTDE learning
algorithms, including IQL [27], VDN [26], and QMIX [23]. Since these algorithms
do not consider constraints during training, we also compare performance with
C-IQL where each agent independently optimizes the global objective with the
consideration of peak and average constraints. C-IQL is implemented by extend-
ing IQL in a way similar to CMIX.

5.1 Blocker Game with Travel Cost

We consider a non-trivial blocker game with travel cost, which is an extension of
the blocker game in [29]. The agents should cooperate to reach the bottom row
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Fig. 2. Blocker game with travel cost.

Fig. 3. Convergence results over training epoch in the blocker game of Fig. 2. Each
curve with shadow shows the mean values and the variants of the observed metric. The
average cost no larger than 0.3 represents that the average constraint is fulfilled.

of the map as quickly as possible, while the blockers move left or right to block
the agents. Each cell on the map is assigned a cost, and an agent will take the
cost when it moves into the cell. We also place some traps on the map, which
the agents are not allowed to move into.

Figure 2 shows the blocker game with travel cost in our evaluation. In the
game, it costs -1 reward per time-step before the agents reach the destination,
and an extra small reward will be returned to the agents when they are get-
ting closer to the bottom. The agents try to minimize the winning step, i.e., the
movement steps needed by the agents for reaching the bottom, subject to a peak
constraint and an average constraint. The agents should not move into traps (i.e.,
peak constraint). Besides, the average cost taken by these agents in one game
should be bounded. The upper bound of average cost is set to 0.3 in our evalua-
tion. With the optimal strategy labeled by green arrows, the agents can win the
game in 5 steps, satisfying both peak and average constraints. The blocker game
is challenging for the agents in the sense of cooperation with only decentral-
ized policy and local observations, and the peak and average constraints make
the task even more difficult to complete. The convergence results of different
algorithms in the blocker game with travel cost are presented in Fig. 3.

Winning Step: Figure 3 (a) shows the convergence results of winning step. We
can see that the winning step decreases with the increment of the epoch. QMIX
gets the smallest winning step finally without considering constraints. CMIX-
M, CMIX-S, and IQL get similar performance on winning step and outperform
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VDN and C-IQL which either have larger variance or take more training epochs
to converge. We note that CMIX-M and CMIX-S optimize winning step under
peak and average constraints, while IQL does not consider constraints.

Peak Violation: Figure 3 (b) shows the convergence results of peak violation,
i.e., the number of violated peak constraints in each epoch. We can see that
CMIX-M, CMIX-S, and C-IQL get results very close to zero after convergence.
That is to say, the peak constraint is mostly satisfied by CMIX-M, CMIX-S,
and C-IQL. However, the other algorithms, i.e., QMIX, IQL, and VDN, receive
significant peak violations due to the ignorance of peak constraints.

Average Cost: Figure 3 (c) shows the convergence results of average cost, i.e.,
the average cost with respect to each agent and each step. We can see only CMIX-
M satisfies the average cost after convergence, while CMIX-S and C-IQL violate
the average constraints slightly. Note that compared with CMIX-M, CMIX-S
using a single mixing network has a relatively limited representation ability.

5.2 Vehicular Network Routing Optimization

Fig. 4. The cooperative routing optimization problem in a vehicular network.

We apply the MARL algorithms in a cooperative routing optimization problem
in vehicular networks shown in Fig. 4. In the scenario with three cells, each vehi-
cle can establish a V2I (Vehicle-to-Infrastructure) link with the base station in
the local cell or V2V (Vehicle-to-Vehicle) links with neighboring vehicles. These
V2I and V2V links have different transmission data rates and link latencies. We
attach an RL agent on each vehicle and consider downlink data transmission,
i.e., data needs to be delivered from base stations to destination vehicles. For
a destination vehicle, its downlink data can be delivered through i) the path of
the direct V2I link, or ii) the path consisting of a V2V link with a neighboring
vehicle (i.e., a relay) and a V2I link between the relay and the corresponding
base station. The routing decision, that an agent on the vehicle needs to make,
is choosing a proper path for downlink data transmission according to local
observations of the candidate relays. All the vehicles need to be coordinated
to maximize the total transmission rate with the consideration of proportional
fairness, while satisfying some peak and average latency constraints. Particu-
larly, the path latency of each vehicle should not exceed a threshold, i.e., peak
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Fig. 5. Convergence results over training step in the vehicular routing problem. The
average latency no larger than 60 represents that the average constraint is fulfilled.

constraints, and the average path latency of all the vehicles in the network is
bounded by a soft upper bound.

In our evaluation, we consider a vehicular network with three cells (also three
base stations) with tens of randomly generated vehicles (30–60 vehicles). Link
latencies and link transmission rates are also set randomly.

Besides the baselines in the blocker game, we also consider three other base-
lines. i) Only-V2I: Downlink data is delivered to each vehicle through the directly
connected V2I link. ii) Data-greedy: Each vehicle chooses the path with the
largest data rate. iii) DCRA [15]: An iterative vehicular routing optimization
algorithm that can improve the transmission rate with the consideration of pro-
portional fairness.

Global Utility: Figure 5 (a) shows the convergence of global utility. We can
see that QMIX and VDN outperform others because they do not consider con-
straints. Then, both CMIX-S and CMIX-M outperform Only-V2I significantly,
and CMIX-S provides even larger global utility than Data-greedy, which validates
the effectiveness of CMIX. Note that both IQL and C-IQL suffer performance
degradation since it is difficult to learn a consistent strategy for the agents with-
out a mixing architecture. Also, note that CMIX-S shows a better performance
than CMIX-M. This is because CMIX-M having more parameters is more chal-
lenging to converge than CMIX-S in such a large-scale and complicated task.

Peak Violation: Figure 5 (b) shows the convergence of peak violation. Note
that, the curves of C-IQL, CMIX-M, and CMIX-S are overlapped. We can see
the three algorithms can fulfill the peak constraint after convergence. Note that
Only-V2I using the one-hop path of the directly connected V2I link still violates
the peak constraint sometimes.

Average Latency: Figure 5 (c) shows the convergence of average latency. We
can see only CMIX-M and CMIX-S satisfy the average constraint. The other
baselines do not meet the average constraint.

5.3 Gap Loss Coefficient

We evaluate the performance of CMIX under different settings of the gap loss
coefficient weight β in the blocker game with travel cost. β = 0 means not using
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Fig. 6. Convergence results of CMIX with different coefficient β over training epoch in
the blocker game of Fig. 2. The average cost bound is set to 0.3.

Fig. 7. Convergence results of CMIX with different coefficient β over training step in
the vehicular routing problem. The average latency bound is set to 60.

the gap loss function. Figure 6 shows the convergence result over training epoch.
We find that the CMIX algorithm converges more stably and to a better result
when β is large enough, which illustrates the positive effect of gap loss in bias
elimination. Moreover, the results indicate that gap loss plays a more important
role in the CMIX-M algorithm.

We also evaluate the effect of β in the vehicular network routing optimization
task. Figure 7 shows the convergence result over training step. We can find that
CMIX-S with gap loss gives better results, which illustrates the effectiveness of
gap loss for CMIX in large-scale tasks. Also, note that CMIX-M performances
worse with larger β since CMIX-M has more parameters and the gap loss possibly
makes it more difficult to converge in large-scale tasks.

6 Related Work

Reinforcement Learning Under Peak or Average Constraints. There are
lots of approaches [3,4,6,9–12,22] focusing on RL under either peak or average
constraints. However, most of the constrained RL algorithms tackle only one
type of the two constraints – but not both – and focus on single-agent setting.

Multi-agent Reinforcement Learning Under Constraints. Existing
MARL algorithms are often developed in the paradigm of CTDE, i.e., centralized
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training with decentralized execution. Independent learning algorithms like IQL
[27] treat other agents as part of the environment, which usually do not converge
well. Another kind of approaches called centralized learning [7,13] learn a fully
centralized state-action value function and then use it to guide the optimization
of policies for decentralized agents. However, centralized learning suffers bad
scalability due to combinatorial complexity, especially in large-scale cooperative
tasks. Recently, another paradigm lying between independent learning and cen-
tralized learning has attracted much attention. A typical method called QMIX
[24] as well as its extensions [17,23,29] combines the Q-values of agents through
a mixing module, which can coordinate agents efficiently and result in good scal-
ability. MARL under constraints has already attracted some attentions [5,20].
However, to the best of our knowledge, there are no MARL learning algorithms
that can address both peak and average constraints especially in the realm of
CTDE algorithms.

7 Conclusion

In this paper, we propose the CMIX algorithm for Dec-POMDP problem under
both peak and average constraints. To this end, the original problem is con-
verted into a multi-objective constrained problem, which can be solved through
an equivalent max-min optimization problem. We leverage the value function
factorization to develop a novel neural architecture in the CTDE paradigm for
solving the max-min optimization problem approximately. We further analyze
the gap between the original max-min optimization problem and the approxi-
mated ones solved by CMIX and propose two gap loss functions to eliminate
the bias of learned solutions. Evaluations on a blocker game with travel cost
and a large-scale vehicular network routing problem validate the effectiveness of
CMIX. We note that the proposed CMIX approach can be integrated with other
algorithms using value function factorization, e.g., [17,29], which will be left to
our future work.
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