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Preface

This edition of the European Conference on Machine Learning and Principles and
Practice of Knowledge Discovery in Databases (ECML PKDD 2021) has still been
affected by the COVID-19 pandemic. Unfortunately it had to be held online and we
could only meet each other virtually. However, the experience gained in the previous
edition joined to the knowledge collected from other virtual conferences allowed us to
provide an attractive and engaging agenda.

ECML PKDD is an annual conference that provides an international forum for the
latest research in all areas related to machine learning and knowledge discovery in
databases, including innovative applications. It is the leading European machine
learning and data mining conference and builds upon a very successful series of
ECML PKDD conferences. Scheduled to take place in Bilbao, Spain, ECML PKDD
2021 was held fully virtually, during September 13–17, 2021. The conference attracted
over 1000 participants from all over the world. More generally, the conference received
substantial attention from industry through sponsorship, participation, and also the
industry track.

The main conference program consisted of presentations of 210 accepted conference
papers, 40 papers accepted in the journal track and 4 keynote talks: Jie Tang (Tsinghua
University), Susan Athey (Stanford University), Joaquin Quiñonero Candela (Face-
book), and Marta Kwiatkowska (University of Oxford). In addition, there were 22
workshops, 8 tutorials, 2 combined workshop-tutorials, the PhD forum, and the dis-
covery challenge. Papers presented during the three main conference days were
organized in three different tracks:

– Research Track: research or methodology papers from all areas in machine learning,
knowledge discovery, and data mining.

– Applied Data Science Track: papers on novel applications of machine learning, data
mining, and knowledge discovery to solve real-world use cases, thereby bridging
the gap between practice and current theory.

– Journal Track: papers that were published in special issues of the Springer journals
Machine Learning and Data Mining and Knowledge Discovery.

We received a similar number of submissions to last year with 685 and 220 sub-
missions for the Research and Applied Data Science Tracks respectively. We accepted
146 (21%) and 64 (29%) of these. In addition, there were 40 papers from the Journal
Track. All in all, the high-quality submissions allowed us to put together an excep-
tionally rich and exciting program.

The Awards Committee selected research papers that were considered to be of
exceptional quality and worthy of special recognition:

– Best (Student) Machine Learning Paper Award: Reparameterized Sampling for
Generative Adversarial Networks, by Yifei Wang, Yisen Wang, Jiansheng Yang
and Zhouchen Lin.



– First Runner-up (Student) Machine Learning Paper Award: “Continual Learning
with Dual Regularizations”, by Xuejun Han and Yuhong Guo.

– Best Applied Data Science Paper Award: “Open Data Science to fight COVID-19:
Winning the 500k XPRIZE Pandemic Response Challenge”, by Miguel Angel
Lozano, Oscar Garibo, Eloy Piñol, Miguel Rebollo, Kristina Polotskaya, Miguel
Angel Garcia-March, J. Alberto Conejero, Francisco Escolano and Nuria Oliver.

– Best Student Data Mining Paper Award: “Conditional Neural Relational Inference
for Interacting Systems”, by Joao Candido Ramos, Lionel Blondé, Stéphane
Armand and Alexandros Kalousis.

– Test of Time Award for highest-impact paper from ECML PKDD 2011: “Influence
and Passivity in Social Media”, by Daniel M. Romero, Wojciech Galuba, Sitaram
Asur and Bernardo A. Huberman.

We would like to wholeheartedly thank all participants, authors, Program Com-
mittee members, area chairs, session chairs, volunteers, co-organizers, and organizers
of workshops and tutorials for their contributions that helped make ECML PKDD 2021
a great success. We would also like to thank the ECML PKDD Steering Committee and
all sponsors.

September 2021 Jose A. Lozano
Nuria Oliver

Fernando Pérez-Cruz
Stefan Kramer

Jesse Read
Yuxiao Dong

Nicolas Kourtellis
Barbara Hammer
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WuDao: Pretrain the World

Jie Tang

Tsinghua University, Beijing, China

Abstract. Large-scale pretrained model on web texts have substantially
advanced the state of the art in various AI tasks, such as natural language
understanding and text generation, and image processing, multimodal modeling.
The downstream task performances have also constantly increased in the past
few years. In this talk, I will first go through three families: augoregressive
models (e.g., GPT), autoencoding models (e.g., BERT), and encoder-decoder
models. Then, I will introduce China’s first homegrown super-scale intelligent
model system, with the goal of building an ultra-large-scale cognitive-oriented
pretraining model to focus on essential problems in general artificial intelligence
from a cognitive perspective. In particular, as an example, I will elaborate a
novel pretraining framework GLM (General Language Model) to address this
challenge. GLM has three major benefits: (1) it performs well on classification,
unconditional generation, and conditional generation tasks with one single
pretrained model; (2) it outperforms BERT-like models on classification due to
improved pretrain-finetune consistency; (3) it naturally handles variable-length
blank filling which is crucial for many downstream tasks. Empirically, GLM
substantially outperforms BERT on the SuperGLUE natural language under-
standing benchmark with the same amount of pre-training data.

Bio: Jie Tang is a Professor and the Associate Chair of the Department of Computer
Science at Tsinghua University. He is a Fellow of the IEEE. His interests include
artificial intelligence, data mining, social networks, and machine learning. He served as
General Co-Chair of WWW’23, and PC Co-Chair of WWW’21, CIKM’16,
WSDM’15, and EiC of IEEE T. on Big Data and AI Open J. He leads the project
AMiner.org, an AI-enabled research network analysis system, which has attracted more
than 20 million users from 220 countries/regions in the world. He was honored with the
SIGKDD Test-of-Time Award, the UK Royal Society-Newton Advanced Fellowship
Award, NSFC for Distinguished Young Scholar, and KDD’18 Service Award.



The Value of Data for Personalization

Susan Athey

Stanford Graduate School of Business, Stanford, California

Abstract. This talk will present methods for assessing the economic value of
data in specific contexts, and will analyze the value of different types of data in
the context of several empirical applications.

Bio: Susan Athey is the Economics of Technology Professor at Stanford Graduate
School of Business. She received her bachelor’s degree from Duke University and her
PhD from Stanford, and she holds an honorary doctorate from Duke University. She
previously taught at the economics departments at MIT, Stanford and Harvard. She is
an elected member of the National Academy of Science, and is the recipient of the John
Bates Clark Medal, awarded by the American Economics Association to the economist
under 40 who has made the greatest contributions to thought and knowledge. Her
current research focuses on the economics of digitization, marketplace design, and the
intersection of econometrics and machine learning. She has worked on several appli-
cation areas, including timber auctions, internet search, online advertising, the news
media, and the application of digital technology to social impact applications. As one
of the first “tech economists,” she served as consulting chief economist for Microsoft
Corporation for six years, and now serves on the boards of Expedia, Lending Club,
Rover, Turo, and Ripple, as well as non-profit Innovations for Poverty Action. She also
serves as a long-term advisor to the British Columbia Ministry of Forests, helping
architect and implement their auction-based pricing system. She is the founding
director of the Golub Capital Social Impact Lab at Stanford GSB, and associate director
of the Stanford Institute for Human-Centered Artificial Intelligence.



AI Fairness in Practice

Joaquin Quiñonero Candela

Facebook

Abstract. In this talk I will share learnings from my journey from deploying ML
at Facebook scale to understanding questions of fairness in AI. I will use
examples to illustrate how there is not a single definition of AI fairness, but
several ones that are in contradiction and that correspond to different moral
interpretations of fairness. AI fairness is a process, and it’s not primarily an AI
issue. It therefore requires a multidisciplinary approach.

Bio: Joaquin Quiñonero Candela leads the technical strategy for Responsible AI at
Facebook, including areas like fairness and inclusiveness, robustness, privacy, trans-
parency and accountability. As part of this focus, he serves on the Board of Directors
of the Partnership on AI, an organization interested in the societal consequences of
artificial intelligence, and is a member of the Spanish Government’s Advisory Board
on Artificial Intelligence. Before this he built the AML (Applied Machine Learning)
team at Facebook, driving product impact at scale through applied research in machine
learning, language understanding, computer vision, computational photography, aug-
mented reality and other AI disciplines. AML also built the unified AI platform that
powers all production applications of AI across the family of Facebook products. Prior
to Facebook, Joaquin built and taught a new machine learning course at the University
of Cambridge, worked at Microsoft Research, and conducted postdoctoral research at
three institutions in Germany, including the Max Planck Institute for Biological
Cybernetics. He received his PhD from the Technical University of Denmark.



Safety and Robustness for Deep Learning
with Provable Guarantees

Marta Kwiatkowska

University of Oxford, Oxford, England

Abstract. Computing systems are becoming ever more complex, with decisions
increasingly often based on deep learning components. A wide variety of
applications are being developed, many of them safety-critical, such as
self-driving cars and medical diagnosis. Since deep learning is unstable with
respect to adversarial perturbations, there is a need for rigorous software
development methodologies that encompass machine learning components. This
lecture will describe progress with developing automated verification and testing
techniques for deep neural networks to ensure safety and robustness of their
decisions with respect to input perturbations. The techniques exploit Lipschitz
continuity of the networks and aim to approximate, for a given set of inputs, the
reachable set of network outputs in terms of lower and upper bounds, in anytime
manner, with provable guarantees. We develop novel algorithms based on
feature-guided search, games, global optimisation and Bayesian methods, and
evaluate them on state-of-the-art networks. The lecture will conclude with an
overview of the challenges in this field.

Bio: Marta Kwiatkowska is Professor of Computing Systems and Fellow of Trinity
College, University of Oxford. She is known for fundamental contributions to the
theory and practice of model checking for probabilistic systems, focusing on automated
techniques for verification and synthesis from quantitative specifications. She led the
development of the PRISM model checker (www.prismmodelchecker.org), the leading
software tool in the area and winner of the HVC Award 2016. Probabilistic model
checking has been adopted in diverse fields, including distributed computing, wireless
networks, security, robotics, healthcare, systems biology, DNA computing and nan-
otechnology, with genuine flaws found and corrected in real-world protocols. Kwiat-
kowska is the first female winner of the Royal Society Milner Award, winner of the
BCS Lovelace Medal and was awarded an honorary doctorate from KTH Royal
Institute of Technology in Stockholm. She won two ERC Advanced Grants, VERI-
WARE and FUN2MODEL, and is a coinvestigator of the EPSRC Programme Grant on
Mobile Autonomy. Kwiatkowska is a Fellow of the Royal Society, Fellow of ACM,
EATCS and BCS, and Member of Academia Europea.

www.prismmodelchecker.org
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Abstract. We study a variant of the multi-armed bandit problem in
which a learner faces every day one of B many bandit instances, and
call it a routine bandit. More specifically, at each period h ∈ �1, H�,
the same bandit bh

� is considered during T > 1 consecutive time steps,
but the identity bh

� is unknown to the learner. We assume all rewards
distribution are Gaussian standard. Such a situation typically occurs in
recommender systems when a learner may repeatedly serve the same user
whose identity is unknown due to privacy issues. By combining bandit-
identification tests with a KLUCB type strategy, we introduce the KLUCB

for Routine Bandits (KLUCB-RB) algorithm. While independently running
KLUCB algorithm at each period leads to a cumulative expected regret
of Ω(H log T ) after H many periods when T → ∞, KLUCB-RB benefits
from previous periods by aggregating observations from similar identified
bandits, which yields a non-trivial scaling of Ω(log T ). This is achieved
without knowing which bandit instance is being faced by KLUCB-RB on
this period, nor knowing a priori the number of possible bandit instances.
We provide numerical illustration that confirm the benefit of KLUCB-RB

while using less information about the problem compared with existing
strategies for similar problems.

Keywords: Multi-armed bandits · Transfer learning · KL-UCB

1 Introduction

The stochastic multi-armed bandit [5,17,19,23], is a popular framework to model
a decision-making problem where a learning agent (learner) must repeatedly
choose between several real-valued unknown sources of random observations
(arms) to sample from in order to maximize the cumulative values (rewards)
generated by these choices in expectation. This framework is commonly applied
to recommender systems where arms correspond to items (e.g., ads, prod-
ucts) that can be recommended and rewards correspond to the success of the
c© Springer Nature Switzerland AG 2021
N. Oliver et al. (Eds.): ECML PKDD 2021, LNAI 12975, pp. 3–18, 2021.
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recommendation (e.g., click, buy). An optimal strategy to choose actions would
be to always play an arm with highest expected reward. Since the distribution of
rewards and in particular their mean are unknown, in practice a learner needs to
trade off exploiting arms that have shown good rewards until now with explor-
ing arms to acquire information about the reward distributions. The stochastic
multi-armed bandit framework has been well-studied in the literature and opti-
mal algorithms have been proposed [7,14–16,24].

When a recommender system is deployed on multiple users, one does not
typically assume that the best recommendation is the same for all users. The
naive strategy in this situation is to consider each user as being a different bandit
instance and learning from scratch for each user. When users can be recognized
(e.g., characterized by features), this information can be leveraged to speed up
the learning process by sharing observations across users. The resulting setting is
known as contextual bandit [18,20]. In this paper, we tackle the case where users
cannot be or do not want to be identified (e.g., for privacy reasons), but where we
assume that there exists a (unknown) finite set of possible user profiles (bandit
instances), such that information may be shared between the current user and
some previously encountered users.

Outline and Contributions. To this end, we introduce the routine bandit prob-
lem (Sect. 2), together with lower bounds on the achievable cumulative regret
that adapt the bound from [17] to the routine setting. We then extend the KLUCB
[10] algorithm, known to be optimal under the classical stochastic bandit set-
ting, into a new strategy called KLUCB-RB (Sect. 3) that leverages the information
obtained on previously encountered bandits. We provide a theoretical analysis
of KLUCB-RB (Sect. 4) and investigate the performance of the algorithm using
extensive numerical experiments (Sect. 5). These results highlight the empiri-
cal conditions required so that past information can be efficiently leveraged to
speed up the learning process. The main contributions of this work are 1) the
newly proposed routine bandit setting, 2) the KLUCB-RB algorithm that solves
this problem with asymptotically optimal regret minimization guarantees, and
3) an empirical illustration of the conditions for past information to be beneficial
to the learning agent.

2 The Routine Bandit Setting

A routine bandit problem is specified by a time horizon T � 1 and a finite set
of distributions ν = (νb)b∈B with means (μa,b)a∈A,b∈B, where A is a finite set of
arms and B is a finite set of bandit configurations. Each b ∈ B can be seen as a
classical multi-armed bandit problem defined by νb = (νa,b)a∈A. At each period
h � 1 and for all time steps t ∈ �1, T �, the learner deals with a bandit bh

� ∈ B
and chooses an arm ah

t ∈ A, based only on the past. The learner then receives
and observes a reward Xh

t ∼ νah
t ,bh

�
. The goal of the learner is to maximize the

expected sum of rewards received over time (up to some unknown number of
periods H � 1). The distributions are unknown, which makes the problem non-
trivial. The optimal strategy therefore consists in playing repeatedly on each
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period h, an optimal arm ah
� ∈ argmaxa∈A μa,bh

�
, which has mean μh

� = μah
� ,bh

�
.

The goal of the learner is equivalent to minimizing the cumulative regret with
respect to an optimal strategy:

R(ν,H, T ) = Eν

[
H∑

h=1

T∑
t=1

(
μh

� − Xh
t

)]
. (1)

Related Works. One of the closest setting to routine bandits is the sequen-
tial transfer scenario [12], where the cardinality |B| and quantities H and T
are known ahead of time, and the instances in B are either known perfectly
or estimated with known confidence. Routine bandits also bear similarity with
clustering bandits [11], a contextual bandit setting [18] where contexts can be
clustered into finite (unknown) clusters. While both settings are recurring ban-
dit problems, routine bandits assume no information on users (including their
number) but users are recurring for several iterations of interaction, while clus-
tering bandits assume that each user is seen only once, but is characterized by
features such that they can be associated with previously seen users. Finally,
latent bandits [21] consider the less structured situation when the learner faces
a possibly different user at every time.

Assumptions and Working Conditions. The configuration ν, the set of bandits
B, and the sequence of bandits (bh

�)h�1 are unknown (in particular |B| and the
identity of user bh

� are unknown to the learner at time t). The learner only
knows that ν ∈ D, where D is a given set of bandit configurations. In order to
leverage information from the bandit instances encountered, we should consider
that bandits reoccur. We denote by βh

b =
∑h

h′=1 I{bh′
� =b}/h the frequency of

bandit b ∈ B at period h � 1 and assume βH
b > 0. The next two assumptions

respectively allow for two bandit instances b and b′ to be distinguishable from
their means when b �= b′ and show consistency in their optimal strategy when
b = b′.

Assumption 1 (Separation). Let us consider γν := min
b�=b′

min
a∈A

{|μa,b − μa,b′ | , 1}.
We assume γν > 0.

Assumption 2 (Unique optimal arm). Each bandit b ∈ B has a unique optimal
arm a�

b .

Assumption 2 is standard. Finally, we consider normally-distributed rewards.
Although most of our analysis (e.g., concentration) would extend to exponential
families of dimension 1, Assumption 3 increases readability of the statements.

Assumption 3 (Gaussian arms). The set D is the set of bandit configurations
such that for all bandit b ∈ B, for all arm a ∈ A, νa,b is a one-dimensional
Gaussian distribution with mean μa,b ∈ R and variance σ2 = 1.

For ν ∈ D, we define for an arm a ∈ A and a bandit b ∈ B their gap
Δa,b = μ�

b − μa,b and their total number of pulls over H periods Na,b(H,T ) =∑H
h=1

∑T
t=1 I{ah

t =a,bh
�=b}. An arm is optimal for a bandit if their gap is equal
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to zero and sub-optimal if it is positive. Thanks to the chain rule, the regret
rewrites as

R(ν,H, T ) =
∑
b∈B

∑
a�=a�

b

Eν [Na,b(H,T )] Δa,b. (2)

Remark 1 (Fixed horizon time). We assume the time horizon T to be the same
for all periods h ∈ �1,H� out of clarity of exposure of the results and simplified
definition of consistency (Definition 1). Considering a different time Th for each
h would indeed require a substantial rewriting of the statements (e.g. think of
the regret lower bound), which we believe hinders readability and comparison
to classical bandits.

We conclude this section by adapting for completeness the known lower bound
on the regret [2,13,17] for consistent strategies to the routine bandit setting. We
defer the proof to Appendix A [6].

Definition 1 (Consistent strategy). A strategy is H-consistent on D if for
all configuration ν ∈ D, for all bandit b ∈ B, for all sub-optimal arm a �= ab

�, for
all α > 0,

lim
T→∞

Eν

[
Na,b(H,T )
Nb(H,T )α

]
= 0,

where Nb(H,T ) = βH
b HT is the number of time steps the learner has dealt with

bandit b.

Proposition 1 (Lower bounds on the regret). Let us consider a consistent
strategy. Then, for all configuration ν ∈ D, it must be that

lim inf
T→∞

R(ν,H, T )
log(T )

� c�
ν :=

∑
b∈B

∑
a�=a�

b

Δa,b

KL(μa,b|μ�
b)

,

where KL(μ|μ′) = (μ′ − μ)2/2σ2 denotes the Kullback-Leibler divergence between
one-dimensionalGaussian distributions withmeansμ, μ′ ∈ R and varianceσ2 = 1.

This lower bound differs (it is larger) from structured lower bound that can
exclude some set of arms, as in [2,21] using prior knowledge on B, which here
is not available. On the other hand, we remark that the right hand side of the
bound does not depend on H, which suggests that one at least asymptotically,
one can learn from the recurring bandits. In the classical bandit setting, lower
bounds on the regret [17] have inspired the design of the well-known KLUCB [10]
algorithm. In the next section, we build on this optimal strategy to propose a
variant for the routine bandit.

3 The KLUCB-RB Strategy

Given the current period h, the general idea of this optimistic strategy con-
sists in aggregating observations acquired in previous periods 1 . . . h − 1 where
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bandit instances are tested to be the same as the current bandit bh
� . To achieve

this, KLUCB-RB relies both on concentration of observations gathered in previous
periods and the consistency of the allocation strategy between different periods.

Notations. The number of pulls, the sum of the rewards and the empirical
mean of the rewards from the arm a in period h � 1 at time t � 1, are
respectively denoted by Nh

a (t) =
∑t

s=1 I{ah
s =a}, Sh

a (t) =
∑t

s=1 I{ah
s =a}Xh

s and
μ̂h

a(t) = Sh
a (t)/Nh

a (t) if Nh
a (t) > 0, 0 otherwise.

Strategy. For each period h � 1 we compute an empirical best arm for bandit bh
�

as the arm with maximum number of pulls in this period: ah
� ∈ argmax

a∈A
Nh

a (T ).1

Similarly, in the current period h � 1, for each time step t ∈ �1, T �, we consider
an arm with maximum number of pulls: ah

t ∈ argmax
a∈A

Nh
a (t) (arbitrarily chosen).

At each period h ∈ �2,H� each arm is pulled once. Then at each time step
t � |A|+1, in order to possibly identify the current bandit bh

� with some bandits
bk
� from a previous period k ∈ �1, h−1�, we introduce for all arm a ∈ A, the test

statistics

Zk,h
a (t) = ∞ · I{ah

t �=ak
�} +

∣
∣
∣μ̂h

a(t) − μ̂k
a(T )

∣
∣
∣ − d

(

Nh
a (t), δh(t)

)

− d
(

Nk
a (T ), δh(t)

)

, (3)

where the deviation for n � 1 pulls with probability 1 − δ, for δ > 0, and
probability δh(t) are, respectively,

d (n, δ) =

√
2

(
1 +

1

n

)
log

(√
n + 1

/
δ
)

n
δh(t) =

1

4 |A| × 1

h − 1
× 1

t(t + 1)
.

The algorithm finally computes the test

Tk,h(t) := max
a∈A

Zk,h
a (t) � 0. (4)

After t rounds in current period h, the previous bandit bk
� is suspected of being

the same as bh
� if the test Tk,h(t) is true. From Eq. 3, we note that this requires

the current mostly played arm to be the same as the arm that was mostly played
in period k, which happens if there is consistency in the allocation strategy for
both periods under Assumption 2. We then define aggregated numbers of pulls and
averaged means: For all arm a ∈ A, for all period h � 1, for all time step t � 1,

N
h

a(t) := Nh
a (t) +

h−1∑
k=1

I{Tk,h(t)}Nk
a (T ), K

h

t :=
h−1∑
k=1

I{Tk,h(t)},

S
h

a(t) := Sh
a (t) +

h−1∑
k=1

I{Tk,h(t)}Sk
a(T ), μh

a(t) = S
h

a(t)/N
h

a(t).

and follow a KLUCB strategy by defining the index of arm a ∈ A in period h � 1
at time step t � 1 as

uh
a(t) = min

{
Uh

a (t), U
h

a(t)
}

, (5)

1 Ties are broken arbitrarily.
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where

Uh
a (t) := μ̂h

a(t) +

√
2f(t)
Nh

a (t)
, (6)

U
h

a(t) := μh
a(t) +

√√√√√2f
(
K

h

t T + t
)

N
h

a(t)
, (7)

with the function f being chosen, following [7] for classical bandits, as

f(x) := log (x) + 3 log log (max {e, x}) ,∀x � 1.

One recognizes that Eq. 6 corresponds to the typical KLUCB upper bound for
Gaussian distributions. The resulting KLUCB-RB strategy is summarized in Algo-
rithm1.

Algorithm 1. KLUCB-RB
Initialization (period h = 1): follow a KLUCB strategy for bandit b1�.
for period h � 2 do

Pull each arm once
for time step t ∈ �|A| , T − 1� do

Compute for each previous period k ∈ �1, h − 1� the test Tk,h(t) :=
max
a∈A

Zk,h
a (t) � 0

Aggregate data from periods with positive test and compute for each arm a ∈ A
the index uh

a(t) according to equations (5)-(6)-(7).
Pull an arm with maximum index ah

t+1 ∈ argmaxa∈A uh
a(t)

end for
end for

Theoretical Guarantees. The next result shows that the number of sub-optimal
pulls done by KLUCB-RB is upper-bounded in a near-optimal way.

Theorem 1 (Upper bounds). Let us consider a routine bandit problem spec-
ified by a set of Gaussian distributions ν ∈ D and a number of periods H � 1.
Then under KLUCB-RB strategy, for all 0 < ε < εν , for all bandit b ∈ B, for all
sub-optimal arm a �= a�

b ,

Eν [Na,b(H, T )] � f(βH
b HT )

KL(μa,b + ε| μ�
b)

+
H∑

h=1

I{bh
�=b}

[
τh

ν + 4 |A|
(

1

ε2
+ 1

) (
5 +

8h f (hT )

T KL(μa,b + ε| μ�
b)

)]
,

where, for all period h � 2, τh
ν := 2ϕ

(
8 |A|

[
ε−2

ν + 65γ−2
ν log

(
128 |A| (4h)1/3

γ−2
ν

)])
, ϕ : x � 1 �→ x log(x), εν = min

b∈B
min
a�=a�

b

Δa,b/2 and γν = min
b�=b′

min
a∈A

{|μa,b − μa,b′ | , 1}.
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This implies that the dependency on the time horizon T in these upper bounds
is asymptotically optimal with regard to the lower bound on the regret given
in Proposition 1. From Eq. 2, by considering the case when the time horizon T
tends to infinity, we deduce that KLUCB-RB achieves asymptotic optimality.

Corollary 1 (Asymptotic optimality). With the same notations and under
the assumptions as in Theorem 1, KLUCB-RB achieves

lim sup
T→∞

R(ν,H, T )
log(T )

� c�
ν ,

where c�
ν is defined as in Proposition 1.

For comparison, let us remark that under the strategy that runs a separate
KLUCB type strategy for each period, the regret normalized by log(T ) asymptot-
ically scales as H

∑
b∈B βH

b

∑
a�=a�

b
Δa,b/KL(μa,b|μ�

b). KLUCB-RB strategy then
performs better than this naive strategy by a factor of the order of H/ |B|. Also,
up to our knowledge, this result is the first showing provably asymptotic optimal
regret guarantee in a setting when an agent attempts at transferring information
from past to current bandits without contextual information. In the related but
different settings considered in [11,12,21], only logarithmic regret was shown,
however asymptotic optimality was not proved for the considered strategies.
Also, let us remind that |B| does not need to be known ahead of time by the
KLUCB-RB algorithm.

4 Sketch of Proof

This section contains a sketch of proof for Theorem 1. We refer to Appendix B [6]
for more insights and detailed derivations. The first preoccupation is to ensure
that KLUCB-RB is a consistent strategy. This is achieved by showing that
KLUCB-RB aggregates observations that indeed come from the same bandits with
high probability. In other words, we want to control the number of previously
encountered bandits falsely identified as similar to the current one.

Definition 2 (False positive). At period h � 2 and step t � 1, a previous
period k ∈ �1, h − 1� is called a false positive if the test Tk,h(t) is true while
previous bandit bk

� differs from current bandit bh
� .

Combining the triangle inequality and time-uniform Gaussian concentration
inequalities (see e.g., [1]), we prove necessary condition for having Zk,h

a (t) � 0
for some arm a ∈ A at current period h and time step t, while having bk

� �= bh
� .

Lemma 1 (Condition for false positives). If there exists a false positive at
period h � 2 and time step t > |A|, then with probability 1 − 1/t(t + 1), it must
be that

min
k∈�1,h−1�:bk

� �=bh
�

min
a∈A

∣∣μa,bh
�

− μa,bk
�

∣∣ � 4 d
(

t

|A| , δ
h(t)

)
.
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The proof of this key result is provided in Appendix B.1 [6]. It relies on time-
uniform concentration inequalities. We now introduce a few quantities.

Let us first consider at period h � 2 the time step

thν := max
{

t � |A| : γν � 4 d
(

t

|A| , δ
h(t)

)}
+ 1, (8)

beyond which there is no false positives with high probability. We define for all
a �= ah

� , for all 0 < ε < εν := minb∈B mina�=a�
b
{Δa,b, 1} /2 the subsets of times

when there is a false positive

T h
a :=

{
t � thν : ah

t+1 = a and Kh
+(t) �= Kh

� (t)
}

T h :=
⋃

a�=ah
�

T h
a , (9)

where we introduced for convenience the sets Kh
+ :=

{
k ∈ �1, h − 1� : Tk,h(t)

is true} and Kh
� (t) :=

{
k ∈ �1, h − 1� : bk

� = bh
� and ah

t = ak
�

}
. We also consider

the times when the mean of the current pulled arm is poorly estimated or the
best arm ah

� is below its mean (either for the current period or by aggregation)
and define

Ch
a,ε :=

{
t � 1 : ah

t+1 = a and
(∣∣μ̂h

a(t) − μh
a

∣∣ > ε or uh
ah

�
(t) = Uh

ah
�
(t) < μh

�

)}
Ch

ε :=
⋃

a�=ah
�

Ch
a,ε (10)

Ch
a,ε := T h

a ∪
{

t � thν : t /∈ T h, ah
t+1 = a and

(∣
∣
∣μh

a(t) − μh
a

∣
∣
∣ > ε or uh

ah
�
(t) = U

h
ah

�
(t) < μh

�

)}

Ch

ε :=
⋃

a�=ah
�

Ch

a,ε. (11)

The size of these (bad events) sets can be controlled by resorting to concentration
arguments. The next lemma borrows elements of proof from [8] for the estimation
of the mean of current pulled arm and [7] for the effectiveness of the upper
confidence bounds on the empirical means of optimal arms. We adapt these
arguments to the routine-bandit setup, and provide additional details in the
appendix.

Lemma 2 (Bounded subsets of times). For all period h � 2, for all arm
a ∈ A, for all 0 < ε < εν ,

Eν

[∣∣T h
∣∣] � 1 Eν

[∣∣Ch
a,ε

∣∣] � 4ε−2 + 2 Eν

[∣∣∣Ch

a,ε

∣∣∣] � 4ε−2 + 3.

By definition of the index (Eq. 7), we have

∀t > |A| , Nh
a (t)KL

(
μ̂h

a(t)
∣∣Uh

a (t)
)

= f(t)
N

h

a(t)KL
(
μh

a(t)
∣∣∣Uh

a(t)
)

= f
(
K

h

t T + t
)

.

We then provide logarithmic upper bounds on the aggregated number of pulls
N

h

a(t) to deduce the consistency of KLUCB-RB strategy. The following non-trivial
result combines standard techniques with the key mechanism of the algorithm.
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Lemma 3 (Consistency). Under KLUCB-RB strategy for all period h � 2, for
all 0 < ε < εν , for all sub-optimal arm a �= ah

� , for all t > |A| such that ah
t+1 = a,

if t /∈ Ch
a,ε, Nh

a (t) � f(t)

KL
(
μh

a + ε
∣
∣ μh

�

) , if t � thν and t /∈ Ch
a,ε, N

h
a(t) �

f
(
Kh

t T + t
)

KL
(
μh

a + ε
∣
∣ μh

�

) ,

where Kh
t := min

{
K

h

t , βh−1
bh

�
(h − 1)

}
. In particular this implies

∀t � 1,∀a �= ah
� , Nh

a (t) � f(t)
KL(μh

a + ε|μh
�)

+
∣∣Ch

a,ε

∣∣+ Nh
a (|A| + 1) ,

where Nh
a (|A| + 1) � 2 and Eν

[∣∣Ch
a,ε

∣∣] � 4ε−2 + 2.

Thanks to Eq. 5 that involves the minimum of the aggregated index U
h

a(t) on
past episodes and (not aggregated) indexes Uh

a (t) for the current epoch, the proof
proceeds by considering the appropriate sets of time, namely t /∈ Ch

a,ε or t /∈ Ch

a,ε

depending on the situation. In particular, we get for the considered a that the
maximum index uh

a(t) is either greater than uh
ah

�
(t) = Uh

ah
�
(t) or uh

ah
�
(t) = U

h

ah
�
(t),

which in turns enable to have a control either on Nh
a (t) or N

h

a(t). In order to
obtain the last statement, it essentially remains to consider the maximum time
t′ ∈ �|A| + 1; t� such that ah

t′+1 = a and t′ /∈ Ch
a,ε.

In order to be asymptotically optimal (in the sense of Corollary 1), the second
preoccupation is to ensure with high probability that we aggregate all of the
observations coming from current bandit bh

� when computing the indexes. From
the definition of T h (Eq. 9) and Lemma 2, this amounts to ensure that the
current most pulled arm and the most pulled arms of previous periods are the
optimal arms of the corresponding periods with high probability. By using the
consistency of KLUCB-RB, we prove necessary conditions for the most pulled arms
being different from the optimal ones.

Lemma 4 (Most pulled arms). For all period h � 2, for all 0 < ε < εν , for
all t � thν such that t /∈ T h and ah

t �= ah
� ,

t +
∣
∣
∣Kh

� (t)
∣
∣
∣ T

2
−

(

f(t) +
∣
∣
∣Kh

� (t)
∣
∣
∣ f(T )

) ∑

a �=ah
�

1

KL
(
μh

a + ε
∣
∣ μh

�

) −
(

1 +
∣
∣
∣Kh

� (t)
∣
∣
∣

)

|A| �
∑

k∈Kh
� (t)∪{h}

∣
∣
∣Ck

ε

∣
∣
∣ .

Let us remind that Kh
� (t), defined after Lemma 1, counts the previous phases

before h facing the same bandit as the current one, and for which the most-
played arm until then agree. Then, by combining Lemma 3 and Lemma 4 we
obtain randomized upper bounds on the number of pulls of sub-optimal arms.

Proposition 2 (Randomized upper bounds). Under KLUCB-RB strategy, for
all bandit b ∈ B, for all sub-optimal arm a �= a�

b , for all 0 < ε < εν ,

Na,b(H, T ) �
f(βH

b HT )

KL
(
μa,b + ε

∣
∣ μ�

b

)

+
H∑

h=1

I{bh
�=b}

[

T h
ν,ε + 4

∣
∣
∣Ch

ε

∣
∣
∣ +

∣
∣
∣Ch

ε

∣
∣
∣ +

f (hT )

KL
(
μa,b + ε

∣
∣ μ�

b

)

h∑

k=1

8
∣
∣Ck

ε

∣
∣

T
+ I{T∈T k}

]

,
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where Th
ν,ε := max

{
t � thν :

t

4
−
∑

a�=ah
�

f (t)
KL(μh

a + ε|μh
�)

� |A|
}

+1 for h � 2, with

thν defined in Eq. (8).

We prove Theorem 1 by averaging the randomized upper bounds from Proposi-
tion 2.

5 Numerical Experiments

We now perform experiments to illustrate the performance of the proposed
KLUCB-RB under different empirical conditions. We compare KLUCB-RB with a
baseline strategy which consists in using a KLUCB that restarts from scratch at
every new period, that is the default strategy when no information (features) is
provided to share information across periods. We also include a comparison with
the sequential transfer algorithm tUCB [12] which constitutes interesting baseline
to compare with, since it transfers the knowledge of past periods to minimize
the regret in a very similar context. Through the periods h ∈ �1,H�, tUCB incre-
mentally estimates the mean vectors by the Robust Tensor Power method [3,4],
then yielding a deviation of rate O(1/

√
h) over the empirical means. Thus, it

needs to know in advance the total number of instances |B|. Besides the RTP
method requires the mean vectors to be linearly independent mutually, which
forces the number of arms |A| to be larger than |B|, while KLUCB-RB can tackle
this kind of distributions. The next comparisons between KLUCB-RB and tUCB
will mainly illustrate the ability of the former to make large profits from the very
first periods, while the later needs to get a sufficiently high confidence over the
models estimates before beginning to use knowledge from the previous periods.

All experiments are repeated 100 times. Sequence (bh)1�h�H is chosen ran-
domly each time. All the different strategies are compared based on their cumu-
lative regret (Eq. 1). Additional experiments are provided in Appendix C [6].

5.1 More Arms Than Bandits: A Beneficial Case

We first investigate how Assumption 1 can be relaxed in practice. Indeed
KLUCB-RB is designed such that only data from previous periods k < h for which
the most pulled arm āk

� is the same as the current most pulled arm āh
t may be

aggregated. Consequently, let us define γ�
ν := min

b�=b′
min
a∈A�

|μa,b−μa,b′ | with A� being

the set of arms optimal on at least one instance b ∈ B. Assuming that KLUCB-RB
converges to the optimal action in a given period, it is natural in practice to
relax Assumption 1 from γν > 0 to γ�

ν > 0. Let us consider a routine two-bandit
setting B = {b1, b2} with actions A such that

b1 : (μ1,b1 , μ2,b1) = (
Δ

2
,−Δ

2
) and ∀a � 3, μa,b1 = μ (12)

b2 : (μ1,b2 , μ2,b2) = (
Δ

2
− γ,−Δ

2
+ γ) and ∀a � 3, μa,b2 = μ, (13)
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with μ = −Δ
2 , and γ = 0.85Δ, and where Δ = 10

√
log(HT )

T is set to accomodate
the convergence of KLUCB in the experiment. Note that Assumption 1 is not
satisfied anymore since γν = 0, but that γ�

ν = γ. Figure 1 shows the average
cumulative regret with one standard deviation after H = 500 periods of T = 103

rounds on settings where |A�| = 2 and |A| � 2.

Fig. 1. Cumulative regret of KLUCB, KLUCB-RB and tUCB along H = 500 periods of
T = 103 rounds, for different action sets.

We observe that KLUCB-RB can largely benefit from relying on previous peri-
ods when the number of arms exceeds the number of optimal arms, which nat-
urally happens when |A| > |B|. This can also happen for |A| � |B| if several
bandits b ∈ B share the same optimal arm. Besides, Fig. 2 shows a remake of the

same experiment, that is Δ = 10
√

log(H×103)
103 , where the number of rounds per

period is decreased from 103 to T = 100. We can see that KLUCB-RB still yields
good satisfying performances, although T is not large enough to enable a sure
identification at each period of the current instance.

Fig. 2. Cumulative regret of KLUCB, KLUCB-RB and tUCB along H = 500 periods of
T = 100 rounds, for different action sets.
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5.2 Increasing the Number of Bandit Instances

We now consider experiments where we switch among |B| = 5 four-armed ban-
dits. This highlights the kind of settings which may cause more difficulties to
KLUCB-RB in distinguishing the different instances: the lesser is the number of
arms |A| compared to the number of bandits |B|, the harder it should be for
KLUCB-RB to distinguish efficiently the different instances, in particular when
the separation gaps are tight. Let us precise that tUCB cannot be tested on such
settings, where the number of models |B| exceeds the number of arms |A|, since it
requires that the mean vectors (μa,b)a∈A for all b in B to be linearly independent.

Generating specific settings is far more complicated here than in cases where
|B| = 2 because of the intrinsic dependency between regret gaps (Δa,b)a∈A,b∈B
and separation gaps (|μa,b −μa,b′ |)a∈A,b �=b′ . Thus, distributions of bandits ν ∈ D
used in the next experiments are generated randomly so that some conditions
are satisfied (see Eq. 14, 15). Recall that ν : (νb1 , . . . , νb|B|) is the set of ban-
dit configurations in the bandit set B. We consider two different distributions
ν(1) and ν(2), resulting in associated sets of bandits B1 and B2, satisfying the
condition C(ν) in order to ensure the convergence of algorithms at each period:

C(ν) : ∀b ∈ B, 8

√
log(HT )

T
� min

a�=a�
b

Δa,b � 12

√
log(HT )

T
. (14)

Let γ(α) := α
√

log(HT )
T . We generate two sets of bandits B1 and B2 such as to

ensure that ν(1) and ν(2) satisfy

γ(12) � γ�
ν(1) � γ(16) γ(4) � γ�

ν(2) � γ(8). (15)

Figure 7 (Appendix C.3 [6]) shows the bandit instances in the two generated
bandit sets.

All experiments are conducted under the fair frequency β = 1/|B|. More
precisely, once a period h � 1 ends, bh+1

� is sampled uniformly in B and inde-
pendently of the past sequence (bk

�)1�k�h. Figure 3 shows the average cumulative
regret with one standard deviation after H = 100 periods of T = 5000 rounds
for the two settings.

We observe that the performance of KLUCB-RB is tied to the smallest sub-
optimal gap for all bandit instances. Figure 3a highlights that KLUCB-RB out-
performs KLUCB if the minimal sub-optimal gap of each bandit is less than the
characteristic smaller separation gap γ�

ν . This supports the observation from
Sect. 5.1 that separation on optimal arms is sufficient. When arms are easier to
separate than bandits, one might as well restart a classical KLUCB from scratch
on each period (Fig. 3b). Note that situations where 0 < γν 	 min

b∈B
min
a�=a�

b

Δa,b

may not result in a catastrophic loss in learning performances if the arms in A�

are close enough not to distort estimates computed on aggregated samples of
from false positive models (see Appendix C [6]).
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Fig. 3. Cumulative regret of KLUCB and KLUCB-RB along H = 100 periods of T = 5000
rounds over three generated settings of |B| = 5 bandit instances with |A| = 4 arms per
instance.

5.3 Critical Settings

We saw previously that settings where bandit instances are difficult to distin-
guish may yield poor performance (see Sect. 5.2, Fig. 3b). Indeed, to determine if
two estimated bandit models might result from the same bandit, both KLUCB-RB
and tUCB rely on a compatibility over each arm, i.e. the intersection of con-
fidence intervals. Therefore, it is generally harder to distinguish rollouts from
many different distributions (that is the cardinal of |B| is high) when |A| is low
and differences between arms are tight. To illustrate that, we consider an experi-
ment on the setting described in Fig. 8 (Appendix C.3 [6]), composed of 4-armed
bandits. We recall that tUCB requires in particular |A| � |B|. Thus we choose
a set |B| of cardinal 4 in order to include a comparison of our algorithm with
tUCB.

Fig. 4. Cumulative regret of KLUCB, KLUCB-RB and tUCB along H = 500 period for
different numbers of rounds.
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Here we have |A�| = {0, 1, 3} and γ�
ν := min

b�=b′
min
a∈A�

|μa,b−μa,b′ | = 0.15, while the

minimal regret gaps of each instances are (min
a�=a�

b

Δa,b)b∈B = (0.74, 0.80, 0.81, 0.89).

Consequently, finding the optimal arm at each period independently is here far
less difficult than separating the different instances. Such a setting is clearly
unfavorable for KLUCB-RB and we expect KLUCB to perform better.

Figure 4a and Fig. 4b the cumulative regret for the three strategies, along H =
500 periods of T = 100 and T = 500 rounds respectively. As expected, KLUCB
outperforms KLUCB-RB under this critical setting. On the other hand tUCB seems
more robust and displays a cumulative regret trend that would be improving
compared with KLUCB in the long run. One should still recall that tUCB requires
knowing the cardinality of |B|, while KLUCB-RB does not.

We may notice (Fig. 4a) that if the number of rounds T is sufficiently small,
that is KLUCB does not have enough time to converge for each bandit, then
KLUCB-RB does not perform significantly worse than KLUCB for the first peri-
ods. Then, as T rises (Fig. 4b), KLUCB begins to converge while KLUCB-RB still
aggregate samples from confusing instances, which yields an explosion of the
cumulative regret curve. We then expect for such setting that KLUCB will need
far more longer periods (T → ∞) to reach a regime in which it will discard all
false positive rollouts and takes advantage over KLUCB. On the contrary, tUCB
takes advantage of the knowledge of |B| and then waits to have enough confidence
over the mean vectors of the 4 models to exploit them.

6 Conclusion

In this paper we introduced the new routine bandits framework, for which we
provided lower bounds on the regret (Proposition 1). This setting applies well
to problems where, for example, customers anonymously return to interact with
a system. These dynamics are known to be of interest to the community, as
evidenced by the existing literature [11,12,21]. Routine bandits complement well
these existing settings.

We then proposed the KLUCB-RB strategy (Algorithm 1) to tackle the routine
bandit setting by building on the seminal KLUCB algorithm for classical ban-
dits. We proved upper bounds on the number of sub-optimal plays by KLUCB-RB
(Theorem 1), which were used to prove asymptotic upper bounds on the regret
(Corollary 1). This result shows the asymptotic optimality of the strategy and
thanks to the proof technique that we considered, which is of independent inter-
est, we further obtained finite-time regret guarantees with explicit quantities.
We indeed believe the proof technique may be useful to handle other structured
setups beyond routine bandits.

We finally provided extensive numerical experiments to highlight the sit-
uations where KLUCB-RB can efficiently leverage information from previously
encountered bandit instances to improve over a classical KLUCB. More impor-
tantly, we highlighted the cost to pay for re-using observations from previous
periods, and showed that easy tasks may be better tackled independently. This
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is akin to an agent that would behave badly by relying on a wrong inductive
bias. Fortunately, there are many situations where one can leverage knowledge
from bandit instances faced in the past. This would notably be the case if the
agent has to select products to recommend from a large set (A) and it turns out
that there exists a much smaller set of products (A�) that is preferred by users
(Sect. 5.1).

Our results notably show that transferring information from previously
encountered bandits can be highly beneficial (e.g., see Fig. 1 and 3a). However,
the lack of prior knowledge about previous instances (including the cardinal-
ity of the set of instances) introduces many challenges in transfer learning. For
example, attempting to leverage knowledge from previous instances could result
in negative transfer if bandits cannot be distinguished properly (e.g., see Fig. 4).

Therefore, reducing the cost incurred for separating bandit instances should
constitute a relevant angle to tackle as future work. Another natural line of other
future work could investigate extensions of KLUCB-RB to the recurring occurrence
of other bandit instances, e.g., linear bandits, contextual bandits, and others.
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Abstract. Online learning algorithms often have the issue of exhibit-
ing poor performance during the initial stages of the optimization pro-
cedure, which in practical applications might dissuade potential users
from deploying such solutions. In this paper, we study a novel setting,
namely conservative online convex optimization, in which we are opti-
mizing a sequence of convex loss functions under the constraint that we
have to perform at least as well as a known default strategy through-
out the entire learning process, a.k.a. conservativeness constraint. To
address this problem we design a meta-algorithm, namely Conservative
Projection (CP), that converts any no-regret algorithm for online convex
optimization into one that, at the same time, satisfies the conservative-
ness constraint and maintains the same regret order. Finally, we run an
extensive experimental campaign, comparing and analyzing the perfor-
mance of our meta-algorithm with that of state-of-the-art algorithms.

Keyword: Online learning

1 Introduction

In the classic Empirical Risk Minimization (ERM) framework [38], the objective
is to solve a stochastic optimization problem by minimizing the empirical loss
function over a given set of training examples drawn from the unknown distribu-
tion. However, using the ERM approach in production exposes the learner to the
issue of concept drift [37], i.e., the risk that the distribution producing a train-
ing dataset may differ from the one observed during the operational life of the
model. A solution to this issue is offered by techniques deriving from the Online
Convex Optimization (OCO) field [32], which aim at minimizing a sequence of
convex loss functions w.r.t. to the best-fixed strategy in hindsight. Nonetheless,
even if they ensure convergence to the optimal solution, OCO techniques noto-
riously have poor empirical performance during the early stages of the learning
process [29], which might dissuade potential users from deploying such solutions.
To model this issue, we define a novel Conservative Online Convex Optimization
(COCO) framework in which the learner has to perform online asymptotically
as well as the best-fixed decision in hindsight while satisfying a conservativeness
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constraint, i.e., during the operational life of the system it has to perform no
worse than a given fixed strategy. Furthermore, we propose the Conservative
Projection (CP) algorithm, a newly-designed Online learning meta-algorithm,
applicable to any OCO algorithms, that exploits the strengths of both ERM
and OCO solutions.

Learning an optimal strategy while satisfying a conservativeness constraint
during the exploration phase is of paramount importance in multiple domains. For
instance, an intuitive example can be found in automatic spam filters [6]. Gener-
ally, companies optimize offline models on historical data, e.g., past e-mails, until
such classifiers perform satisfactorily given the collected dataset. When deploying
this product, the company would like to maintain at least the above-mentioned
performance while continually optimizing the model, integrating newly collected
data, and possibly adapting to data distribution changes. Another field that ben-
efits from being conservative is the financial field, e.g., the asset management sec-
tor [7]. In this context, the goal of portfolio managers is to beat a specific market
index (a weighted average of a set of stocks), i.e., to perform better than the chosen
index and, concurrently, maximize the collected wealth.

The idea of learning while guaranteeing the performance of a fixed and known
policy has also been studied in the fields of Reinforcement Learning (RL) [13]
and Multi-Armed Bandits (MAB) [40]. To the best of our knowledge, no work
explicitly tackles the problem of conservativeness in the OCO framework as
defined in this paper. To solve this problem, we extend the techniques from the
OCO literature, and propose a meta-algorithm, namely CP, which extends any
Online learning algorithm to satisfy the requirements of the COCO framework.
Thanks to the use of a pseudo-loss and a projection in a so-called conserva-
tive ball, the proposed CP algorithm provides anytime guarantees w.r.t. a fixed
default strategy. Specifically, the contributions of this work are:

– the definition of the novel COCO framework, where the objective is to obtain
sub-linear regret while performing better than the default strategy during the
entire learning process;

– the CP algorithm, which provides a solution to the above-mentioned problem
for any OCO algorithm. Furthermore, we provide theoretical evidence that
CP performs at least as well as the default strategy and that its regret is of
the same order as that of the original OCO algorithm considered;

– an in-depth empirical evaluation of the CP algorithm in terms of regret and
conservativeness on both simulated and real-world problems, comparing it
with state-of-the-art algorithms from the OCO literature.

2 Background

Problems closely related to those of conservativeness have been commonly
addressed by safe RL techniques. In [15], the authors provide a comprehen-
sive overview of the different definitions of safety in RL. The most common
assumption is to have access to a safe policy, and the goal is to improve that
policy monotonically throughout the learning process. The seminal paper for
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this setting in [18], which proposes a conservative policy iteration algorithm
with monotonic improvement guarantees for mixtures of greedy policies. This
approach is generalized to stationary and stochastic policies in [28,31]. Build-
ing on the former, in [25–27] the authors have designed monotonically improving
policy gradient algorithms for Gaussian, Lipschitz, and, recently, smoothing poli-
cies. This setting differs substantially from ours as the underlying environment
is assumed to be stochastic.

In the bandit setting, the authors of [23] analyzed the same problem, charac-
terizing the Pareto regret frontier in the stochastic case, i.e., a surface determined
by the admissible regret bounds for each arm. Following these seminal works, the
interest of the MAB community in conservative exploration has grown in recent
years, starting with the work presented in [40], where the authors modified the
well-known UCB algorithm [2,3] to guarantee the safety constraint. Later, the
idea was applied to contextual linear bandits in [19] and later improved in [14],
as wells as to GPUCB, as presented in [34,35]. We inherit the concept of safety
as conservatism from these works on stochastic bandit feedback and apply it to
the context of adversarial full-information feedback.

In the Expert Learning literature, a work similar to ours is [30]. In this
work, the authors design a strategy, named (A,B)-prod, that provides regret
guarantees w.r.t. the regret of two generic strategies A, and B. However, their
conservativeness definition is not comparable to ours, since it does not hold
anytime. The question of bounding the regret not only to the best action but
also to other strategies is addressed in [17,21], in which the authors proved,
for the full information setting, that there exists an algorithm that guarantees a
regret of O(

√
T ), with a specific constant for each expert. In particular, the main

focus of the paper is to characterise the admissible vectors {rk}k∈K guaranteeing
a regret Rk

T ≤ rk w.r.t. each expert k. Even if these works cover a more general
theoretical framework than ours, i.e., multi-objective regret minimization, the
algorithms therein do not guarantee that their loss is strictly smaller than that
of a given expert, and, therefore, their results cannot be compared with ours.

3 Problem Formulation

Let us build on the standard Online Convex Optimization framework [32] in
which a learning agent, at each round t, has to select a parameter θt ∈ Θ,
representing a strategy, where Θ ⊂ R

d is a closed and convex set of a finite d
dimensional Euclidean space. At each round t, the agent receives a loss ft(θt)
where ft : Θ → [εl, εu] is a convex and differentiable function, where εl, εu

are the minimum and maximum value of the function ft(·), respectively, and
0 ≤ εl < εu. The objective of the learning agent U is to minimize the regret
RT (U) over a given time horizon T ∈ N, i.e., the difference between the loss
suffered by the algorithm U and the one suffered from the best fixed decision in
hindsight, formally defined as:

RT (U) := LT − L̄T ,
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where LT :=
T∑

t=1
ft(θt) and L̄T :=

T∑

t=1
ft(θ̄) are the loss accumulated by the

running algorithm U and the smallest loss obtainable by a clairvoyant selection

of the parameters, i.e., θ̄ := arg inf
θ∈Θ

T∑

t=1
ft(θ), respectively.

In the COCO setting, we are interested in those algorithms U for which the
regret RT (U) is bounded by a sub-linear function of the time horizon T , and,
at the same time, perform throughout the optimization at least as well as an
established default parameter θ̃ ∈ Θ, selected at the beginning of the learning
process. While the former requirement represents the so-called no-regret property
of an algorithm [9], the latter one is formally defined as follows:

Definition 1. An online algorithm U is said to be conservative if it satisfies the
following conservativeness constraint for each t ∈ [T ]:

Lt ≤ (1 + α)L̃t, (1)

where α > 0 is the conservativeness level required by the problem, and L̃t :=
t∑

k=1

fk(θ̃) is the cumulative loss of the default parameter θ̃ over t rounds.1,2

From now on, we will refer to the quantity Zt(U) := (1+α)L̃t −Lt as the budget
of the algorithm U, i.e., the advantage in terms of loss accumulated by U over
time w.r.t. the one provided by a constant choice of the default parameter θ̃.
We also assume that there exists μ > εl s.t. L̃t ≥ μt, which imply that the fixed
strategy θ̃ is sub-optimal.

We remark that, in this work, we require the constraint in Eq. (1) to be
satisfied at each round t ∈ [T ]. Indeed, any Online learning algorithm U pro-
viding a regret of Rt(U) ≤ ξ

√
t is guaranteed to satisfy the above constraint

for t >
(

ξ
αμ

)2

, instead we require that it holds for each t ∈ [T ].3 Therefore,
satisfying the condition imposed by our constraint requires the design of ad-hoc
algorithms. Conversely, the design of algorithms which have a higher grade of
conservativeness, i.e., α ≤ 0 is not a viable option due to the following:

Theorem 1. In the OCO setting, there is no algorithm U which obtains Lt ≤ L̃t,
unless θt = θ̃ for all t ∈ [T ].

Proof. Let k be the first round in which the algorithm U plays θk �= θ̃. If the
loss function is fk(x) := fk(θ̃) + ||θ̃ − x||2, then, by the convexity of the space
Θ, we can find c ∈ (0, 1) and z ∈ Θ s.t. θk = cθ̃ + (1 − c)z. This implies that
fk(θk) = fk(θ̃) + (1 − c)||θ̃ − z||2 > fk(θ̃), showing that Lt > L̃t.

1 The conservativeness constraint in Eq. (1) is expressed in terms of losses, as com-
monly done in the OCO framework. Its reformulation in terms of rewards, as com-
monly done in the RL and MAB fields, is straightforward.

2 We denote with [T ] the set {1, . . . , T}.
3 This comes from the fact that Lt − L̃t ≤ Rt(U) and ξ

√
t ≤ αμt holds for t >

(
ξ

αμ

)2

.
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In other words, it is impossible to guarantee that an algorithm does strictly
better than or equal to a given default parameter θ̃ over the entire time horizon
T , unless one always plays the default parameter.

4 The Conservative Projection Algorithm

We begin this section by characterizing a set of parameters in the parameter
space Θ which guarantees that their choice implies the conservativeness of an
algorithm at round t. Then, we select a specific parameter from this set, thus
defining the CP algorithm, and, subsequently, we show it is conservative and it
has sub-linear bounds for the regret.

4.1 The Conservative Ball

Let us define the following:

Definition 2. A conservative ball B(θ̃, rt) ∈ R
d is a d-dimensional ball centered

in θ̃ with radius:

rt :=

⎡

⎣1−
(

Lt−1− (1 + α)L̃t−1− αεl

DG
+ 1

)+
⎤

⎦D, (2)

where D := sup
x,y∈Θ

||x−y||2 is a bound on the diameter of the parameter space Θ,

G := sup
x∈Θ

||∇ft(x)||2 is the upper bound on the norm of the gradient of the loss

ft(·), || · ||2 denotes the L2 norm of a vector, and (a)+ denotes the maximum
between the quantity a and zero.

From now on, we refer to this ball as the conservative ball since this choice of
rt implies that playing any of the parameters θ ∈ B(θ̃, rt) at round t guarantees
that the accrued budget Zt(U) does not become negative. Formally:

Theorem 2. Let B(θ̃, rt) be the conservative ball defined in Eq. (2) and assume
that Eq. (1) is satisfied at round t − 1. Then, each parameter θ ∈ B(θ̃, rt) ∩ Θ
satisfies Eq. (1) at round t.

Proof. Given θ ∈ B(θ̃, rt) ∩ Θ we have:

ft(θ) − (1 + α)ft(θ̃) ≤ 〈∇ft(θ), θ − θ̃〉 − αft(θ̃) ≤ Grt − αεl, (3)

where the first inequality is given by the convexity of ft(·), and the second
inequality is given by the Cauchy-Schwarz inequality and by the fact that θ ∈
B(θ̃, rt) implies ||θ̃ − θ||2 ≤ rt. Let us consider two cases: rt < D, and rt = D.

Case rt < D: In this case, the value of the radius is rt = (1+α)L̃t−1−Lt−1+αεl
G .

By substituting it in Eq. (3), we conclude that:

ft(θ) − (1 + α)ft(θ̃t) ≤ (1 + α)L̃t−1 + Lt−1. (4)
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zt−1

θ̃

Θ

B(θ̃, rt)

ztθt

Fig. 1. Visual representation of CP. In green the conservative ball B(θ̃, rt), and in
red the parameter set Θ. The CP algorithm selects the parameter θt for round t by
projecting the parameter zt, selected by A, on the conservative ball. (Color figure
online)

Case rt = D: From the fact that rt ≥ 0 and using Eq. (2), we obtain that:

Lt−1 − (1 + α)L̃t−1 − αεl

GD
+ 1 ≤ 0 (5)

GD − αεl ≤ (1 + α)L̃t−1 + Lt−1. (6)

Combining the above result with the inequality in Eq. (3), provides the same
result presented in Eq. (4).

The proof is concluded by rearranging the terms of Eq. (4).

Notice that the projection of a generic parameter zt on the ball B(θ̃, rt) can
be computed analytically and efficiently. Indeed, the projection operation on the
conservative ball satisfies the following:

θt = ΠB(θ̃,rt)
(zt) = βtθ̃ + (1 − βt)zt, (7)

where

βt =

{
1 − rt

||zt−θ̃||2 zt /∈ B(θ̃, rt)

0 zt ∈ B(θ̃, rt)
. (8)

In what follows, we choose zt as the parameter provided by a generic OCO
algorithm at round t.

4.2 Description of the CP Algorithm

Theorem 2 provides a way to choose a sequence of parameters over time, for
which the conservativeness constraint is satisfied. The CP algorithm uses this
result by choosing, at each round t, the parameter θt in the ball B(θ̃, rt) as close
as possible to the prediction zt provided by the OCO algorithm fed using the
pseudo-loss function gt−1(zt−1) := (1 − βt−1)ft−1(zt−1), i.e., it selects a convex
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Algorithm 1. CP
Require: Online learning algorithm A, conservativeness level α > 0, default parame-

ter θ̃ ∈ Θ
1: Set L̃0 ← 0, L0 ← 0, and β0 ← 1
2: for t ∈ [T ] do
3: Get point zt from A applied to loss gt−1(zt−1)
4: Compute rt as in Eq. 2
5: Select θt = ΠB(θ̃,rt)

(zt)
6: Suffer loss ft(θt)
7: Observe ft(zt) and ft(θ̃)
8: Set gt(zt) ← (1 − βt)ft(zt)
9: end for

combination of the default parameter θ̃ and zt. The intuition behind this choice
is that we want to choose θt as close as possible to the no-regret prediction zt of
the OCO algorithm, that is guaranteed to have sub-linear regret. Furthermore,
we show that this algorithm increases the radius rt over time, and therefore,
in finite-time, the conservative ball includes the parameter zt, allowing CP to
have a sub-linear regret. Finally, we remark that the CP algorithm is designed
so that the more the default parameter θ̃ is distant from the optimal one, the
more the value of the radius rt increases, which, in its turn, decreases the cost
of guaranteeing conservativeness.

The pseudo-code of the CP algorithm is presented in Algorithm 1, and its
visual representation is depicted in Fig. 1. The algorithm requires as input a
generic Online learning algorithm A, which selects the parameter zt to play
at each round t, a conservativeness level α > 0, and the default parameter
θ̃ ∈ Θ. At first, we set the initial value of the cumulative losses L0 = 0, that
of the default parameter L̃0 = 0 (Line 1), and we set the parameter β0 = 1.
Afterwards, at each round t, zt is chosen by the algorithm A by considering
the pseudo-loss gt(x) (Line 3). Thanks to a projection operation (Line 5), which
projects zt into the conservative ball B(θ̃, rt), the resulting parameter θt satisfies
the conservativeness constraint in Eq. (1). Finally, the algorithm suffers the loss
ft(θt), and observes ft(zt) and ft(θ̃), i.e., the loss of the algorithm A and the
default parameter θ̃, respectively (Lines 7–8).

Notice that, from a computational point of view, the CP algorithm has a
small computational overhead w.r.t. the original Online learning algorithm A,
i.e., an overhead proportional to d, due to the additional projection on the
conservative ball and the evaluation of the losses ft(θt), and ft(θ̃).

4.3 Analysis of the CP Algorithm

In this section, we prove that CP has the desired conservativeness property and
maintains the sub-linear regret of the subroutine algorithm A. Since the CP
algorithm selects a parameter θt inside the conservative ball B(θ̃, rt), a straight-
forward corollary of Theorem 2 guarantees that the conservativeness constraint
is satisfied. Formally:
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Corollary 3. The CP algorithm applied to a generic Online learning algorithm
A is conservative.

Once we established the conservativeness of our approach, we need to prove
that the CP algorithm has sub-linear regret. Intuitively, we need to show that
the radius rt grows over time, and eventually includes the entire space Θ, so that
from a specific round we are allowed to follow the no-regret choice zt. Formally,
we show the following:

Theorem 3. Consider any OCO algorithm A which guarantees a regret of
RT (A) ≤ ξ

√
T . The CP algorithm using A as subroutine has the following regret

bound:
RT (CP ) ≤ ξ

√
T + τDG, (9)

for any T > τ , where:

τ :=
2αμ(DG + αμ) + ξ

(√
ξ2 + 4αμ(DG + αμ) + ξ

)

2α2μ2
. (10)

Proof. Using the convexity of the loss functions on the regret and the definition
of θt in Eq. (7), we have:

LT − L̃T ≤
T∑

t=1

[βtft(θ̃) + (1 − βt)ft(zt) − ft(θ̃)]

=
T∑

t=1

(1 − βt)[ft(zt) − ft(θ̃)] (11)

≤ sup
θ∈Θ

(
T∑

t=1

(1 − βt)[ft(zt) − ft(θ)]

)

≤ ξ
√

T . (12)

This shows that the CP algorithm has sub-linear regret w.r.t. an algorithm
that always chooses the default parameter θ̃ over the entire time horizon T .

Combining Eq. (8) and (2), we have:

βt ≤ 1 − rt

||zt − θ̃||2
≤ 1 +

Lt−1 − (1 + α)L̃t−1 − αεl

DG
(13)

≤ 1 +
ξ
√

t − (t − 1)μα

DG
, (14)

where we used the bound in Eq. (12), the fact that the space Θ has radius D,
and that θ̃ is not a no-regret strategy, and, hence, there exists a μ > εl > 0
s.t. L̃t−1 > μ(t − 1).

On the other hand, we assumed that A is a no-regret strategy and, therefore,
the regret of the algorithm A is sub-linear, this means that there exists a round
τ > 0 s.t. Eq. (14) is negative, and, consequently, for t > τ , defined in Eq. (10)



Conservative Online Convex Optimization 27

we have βt = 0. The value of τ is provided by the solution of the following
equation 1 + ξ

√
τ−τμα
DG = 0.

What we showed above also proves that the CP algorithm for t > τ eventually
plays the same parameter as A since for all t > τ the pseudo-losses gt(·) and the
true losses ft(·) coincide. Indeed, the regret of the CP algorithm can be written
as:

RT (CP ) ≤
τ∑

t=1

[
βtft(θ̃) + (1 − βt)ft(zt) − ft(θ̄)

]
+

T∑

t=τ+1

(ft(zt) − ft(θ̄)) (15)

≤
τ∑

t=1

βt

[
ft(θ̃) − ft(zt)

]
+

T∑

t=1

[ft(zt) − ft(θ̄)] (16)

≤
τ∑

t=1

βt〈∇ft(θ̃), θ̃ − zt〉 +
T∑

t=1

[ft(zt) − ft(θ̄)] (17)

≤ τDG + ξ
√

T , (18)

where the inequality in Eq. (15) uses the convexity of ft(·). Equation (16) comes
from the extension of the time horizon from {τ, . . . , T} to {1, . . . , T}. Equa-
tion (17) follows from the convexity of ft(·) and the inequality in Eq. (18) follows
from the Cauchy-Schwarz inequality on the first term while the second term is
the regret of the used no-regret algorithm A.

A regret of order O(
√

T ) is tight in general OCO problems [1], but there
exists specific settings in which a O(log T ) regret can be achieved, e.g., in the
case of H-strongly convex losses or in the case of exp-concave losses [16]. In
such settings, the CP algorithm guarantees O(log T ) regret together with the
conservative constraint, formally:

Theorem 4. Consider any OCO algorithm A which guarantees a regret of
RT (A) ≤ ρ log(T ). The CP algorithm using A as subroutine has the following
regret bound:

RT (CP ) ≤ ρ log(T ) + τDG, (19)

for any T > τ , where:

τ :=
αe2μ(DG + αμ) + 2ρ

(√
αe2μ(DG + αμ) + ρ2 + ρ

)

e2α2μ2
. (20)

Proof. The proof is similar to that of Theorem 4, we only report the steps that
are significantly different from it. From Eq. (12), which holds also in this setting,
we obtain:

LT − L̃T ≤ ρ log(T ). (21)

This shows that the regret w.r.t. an algorithm which always chooses the default
parameter θ̃ is of the order O(log(T )). Following the same steps used to derive
Eq. (14), we have that βt ≤ 1 + ρ log(t)−tμα

DG . Therefore, βt is zero after τ rounds,
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where τ is defined in Eq. (20).4 Finally, using the same argument used to derive
Eq. (18), we obtain the bound present in the theorem.

Notice that for Theorem 3 and 4 we have that τ ∝ 1/μ, meaning that for
default parameters θ̃ with smaller accrued losses w.r.t. the optimum θ̄ (and
hence smaller μ), the CP algorithm is required to wait longer to play the action
prescribed by the no-regret strategy A. Moreover, the bound shows a dependence
τ ∝ 1/α, meaning that a tighter conservative constraint makes the problem more
challenging for the CP algorithm.5

5 Experiments

This section provides the experimental study of the proposed algorithm for the
COCO setting, where we use OGD [41] as subroutine. We evaluate the perfor-
mance of the CP-OGD in three settings: a synthetically generated regression
problem, and two real-world classification scenarios. We compare our perfor-
mances to OGD [41], the non-conservative version of the proposed algorithm,
AdaGrad [12], a state-of-the-art algorithm of online optimization which has the-
oretical guarantees on the regret, the Conservative Switching (CS) algorithm,
a naive conservative baseline, and the Constrained Reward Doubling Guess
(CRDG). CS is a budget-first algorithm we designed. This algorithm plays the
fixed default action until enough budget has been accrued, then it plays the
no regret strategy. We described it and provide its theoretical properties in
Appendix B.1. As for CP, in CS we consider OGD as subroutine and, thus, will
refer to it as CS-OGD. CRDG is a conservative baseline obtained by combining
the Reward Doubling Guess algorithm [33], originally designed for unconstrained
online optimization setting, with the Constraint Set Reduction procedure pre-
sented in [10]. We provide the its detailed pseudo-code and a discussion on its
theoretical properties in Appendix B.2.

For CP-OGD, CS-OGD, and OGD we initialize the learning rate ηt = K√
t
,

where K = D
G

√
2

is chosen to minimize the theoretical regret bound of OGD,
while for AdaGrad we initialize the parameter αt = 1√

t
, as prescribed in [20].

For the CRDG algorithm we set ε = μα/2 to guarantee the conservativeness
constraint in Definition 1 with level α (as CP-ODG and CS-ODG do). We eval-
uate the algorithms in terms of regret Rt(U), and budget Zt(U). The code to run
the experiments is available at: https://github.com/martinobdl/safe OCO.

5.1 Synthetic Regression Dataset

We analyze a synthetic online linear regression environment, where the agent is
presented with a vector xt ∼ U([0, 1]d) ⊂ R

d, i.e., a d dimensional vector drawn
4 The derivation of τ is provided in Lemma 4, reported in Appendix A for space

reasons.
5 In Appendix D.3 we performed experiments to explore the relationship between the

conservativeness and performance of the CP algorithm.

https://github.com/martinobdl/safe_OCO
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Fig. 2. Results on the synthetically generated regression dataset: (a) regret RT (U); (b)
magnification of the budget Zt(U) over the first 103 samples. θ̃ has been chosen so that
D̃ = 0.5.

uniformly from [0, 1]d, and the target value is generated as yt = 〈xt, θ̄〉 + γt,
where θ̄ ∈ Θ = [−1, 1]d is the unknown optimal parameter, and γt is a noise term
that we considered i.i.d. with zero mean. Each algorithm provides a prediction
ŷt = 〈xt, θt〉, where θt is the chosen parameter for round t, and suffers a loss
ft(θt) := (〈xt, θt − θ̄〉 − γt)2.

We set d = 40, γt from a truncated Gaussian distribution N (0, 0.152) with
values in [−1, 1], T = 104, and we fix θ̄ := [0, . . . , 0]. The conservativeness
level is set to α = 0.01. In this setting, the bound on the gradient is G =
2(

√
2d + 1)

√
d, the minimum and maximum loss are εl = 0 and εu =

√
2d +

1, respectively, and the bound on the diameter of the decision space is D =√
2d. We ran the experiment 30 times and averaged the results. The confidence

intervals on the mean, represented in the figures as semi-transparent areas, are
the 95% confidence intervals computed by statistical bootstrap. Multiple default
parameters θ̃ have been considered in this setting so that D̃ := ||θ̃ − θ̄||2 ∈
{0.5, 1, . . . , 3, 3.5}.

Results. Figure 2 shows the results for experiments where the default parameter
has a distance from the optimum of D̃ = 0.5. Figure 2a shows that all the algo-
rithms, but CRDG, on average converge to the optimal solution since the regret
RT (U) is asymptotically approaching a constant value. In particular, AdaGrad
and CP-OGD perform comparably in terms of regret, OGD has slightly worse
performance, and CRDG and CS-OGD provide a regret more than 3 times larger
than the other algorithms over the analyzed time horizon T . The magnification
of the budget Zt(U) over the first 1, 000 rounds, provided in Fig. 2b, shows that
OGD and AdaGrad have a negative budget during the first ≈900 and ≈300
rounds, respectively, while CP-OGD, CS-OGD, and CRDG guarantee the con-
servativeness constraint at each round, i.e., they have Zt(U) > 0, for all t ∈ [T ].
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Fig. 3. Regret RT (U) at the end of the time horizon T as the distance from the optimum
D̃ varies for the synthetic dataset.

These results suggest that the proposed CP-OGD is the only algorithm, among
the tested ones, capable of maintaining a small regret while, at the same time,
being conservative.

Figure 3 presents the behaviour of the regret RT (U) as the distance D̃
between the optimum and the default parameter varies. For values of the dis-
tance D̃ < 2.5, i.e., default parameters which are close to the optimum one,
CP-OGD provides a smaller regret than that of all the other algorithms on aver-
age. Instead, if D̃ ≥ 3, the fact that it is constrained to maintain a positive
budget penalizes CP-OGD in terms of regret. In such a situation, OGD and
AdaGrad provide a smaller regret than CP-OGD. This suggests that the pro-
posed approach might provide a large regret if the default parameter θ̃ is far
from the optimum one θ̄.

5.2 Online Classification: The IMDB Dataset

The second set of experiments has been run on the IMDB dataset [24], consisting
of 50, 000 reviews of movies and labels classifying the reviews as positive or
negative. Data has been preprocessed as done by [20]. The general setup for the
online logistic regression model is as follows: the algorithm processes a single
feature vector xt ∈ {0, 1}d with d = 104, predicts the probability of belonging to
the positive class as ŷt ∈ [0, 1] as ŷt = σ(〈xt, θt〉), where θt ∈ Θ = [−2, 2]d and
suffers a loss given by the binary cross entropy defined as ft(θt) = −[yt log(ŷt)+
(1−yt) log(1− ŷt)], where yt ∈ {0, 1} is the true sample class.6 In this setting the
gradient is bounded by G =

√
d, the diameter by D = 2

√
d and we set α = 0.01.

To bound the maximum and minimum loss needed by the CS algorithm, we
clipped the loss between εl = 1e−4 and εu = 10. The default parameter θ̃ has been
6 σ(x) := 1/(1 + exp(−x)) is the sigmoid function.
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Fig. 4. Results for the IMDB movie dataset: (a) regret, (b) budget for the first 2.5×105

samples.

generated by training a batch logistic regression using 1, 000 samples at random
from the dataset. Notice that the IMDB dataset is known to be a challenging
setting for OGD [20] due to the sparse nature of its input, setting for which an
adaptive step size algorithm, like AdaGrad, generally performs better in terms
of regret than the single-pass ones. We could not run the CRDG algorithm on
the IMDB dataset since its computational requirements in this setting were too
demanding due to the large number of features.

Results. Figure 4a shows the regret Rt(U) for the analyzed algorithms. Both
CP-OGD and CS-OGD outperform AdaGrad and OGD in terms of regret. This
happens because AdaGrad and OGD surpass the performance of the default
parameter only after many rounds. In fact, this specific setting is challenging
for OGD [20], while CP-OGD and CS-OGD exploit successfully the information
provided by θ̃. The results suggest that conservative algorithms might also out-
perform their non-conservative counterparts in some specific challenging opti-
mization problems. Furthermore, Fig. 4b shows that, even in this setting, the
budget of the OGD and AdaGrad algorithms is negative for the first ≈100, 000
and ≈200, 000 rounds, respectively, while the budget of the CP-OGD and CS-
OGD is positive for all t ∈ [T ], which is in line with the theoretical analysis we
provided before.

5.3 Online Classification: The SpamBase Dataset

The SpamBase dataset is taken from the UCI repository and contains 4, 601
emails labeled as spam or ham [11]. The dataset has been normalized so that the
input vector xt ∈ [0, 1]d, with d = 57. The safe parameter θ̃ has been generated
by training a batch logistic regression on 100 samples chosen at random from
the dataset. The values for the parameters not explicitly defined in this section
are the same as those used in the IMDB experiment.
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Fig. 5. Results for the SpamBase dataset: (a) regret, (b) budget for the first 4 × 104

samples.

Results. Figure 5a shows the regret suffered by the algorithms on the SpamBase
dataset. Even in this case, CP-OGD outperforms all the others, and, by looking
at Fig. 5b, we see that also in this experiment the budget of OGD and AdaGrad
is negative for ≈10, 000 and ≈30, 000 rounds, respectively. Finally, the CRDG
algorithm satisfies the budget constrain during the entire learning time horizon
but accumulates a large regret over the time horizon.

6 Conclusions

The focus of this paper is to solve the problem of conservative optimization in an
online setting with adversarial environments, in which we require an algorithm
to provide sub-linear regret while performing at least as well as a given fixed
strategy. To solve this problem, we proposed the CP algorithm, showed that it
satisfies the conservativeness constraint, and proved that it maintains the same
regret order the OCO algorithm it uses as a subroutine. Furthermore, we ran
an extensive experimental campaign on synthetic and real-wolrd data, showing
that the CP algorithm is competitive in terms of regret with OGD, AdaGrad,
CS, and CRDG while also behaving conservatively.

An interesting direction is whether the assumption that the default strategy
θ̃ is fixed can be relaxed to include specific classes of time-varying strategies.
Another line of research that might be promising is the use of the definition
of the conservative ball to design algorithms also for the unconstrained online
optimization setting.



Conservative Online Convex Optimization 33

References

1. Abernethy, J., Bartlett, P.L., Rakhlin, A., Tewari, A.: Optimal strategies and min-
imax lower bounds for online convex games. University of California, Berkeley,
United States of America, Technical report (2008)

2. Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multiarmed
bandit problem. Mach. Learn. 47(2–3), 235–256 (2002)

3. Auer, P., Ortner, R.: UCB revisited: improved regret bounds for the stochastic
multi-armed bandit problem. Period. Math. Hung. 61(1–2), 55–65 (2010)

4. Azuma, K.: Weighted sums of certain dependent random variables. Tohoku Math.
J. Second Ser. 19(3), 357–367 (1967)

5. Besson, L., Kaufmann, E.: What doubling tricks can and can’t do for multi-armed
bandits. arXiv preprint arXiv:1803.06971 (2018)

6. Blanzieri, E., Bryl, A.: A survey of learning-based techniques of email spam filter-
ing. Artif. Intell. Rev. 29(1), 63–92 (2008)

7. Browne, S.: Beating a moving target: optimal portfolio strategies for outperforming
a stochastic benchmark. In: Handbook of the Fundamentals of Financial Decision
Making: Part II, pp. 711–730. World Scientific (2013)

8. Cesa-Bianchi, N., Conconi, A., Gentile, C.: On the generalization ability of on-line
learning algorithms. IEEE Trans. Inform. Theory 50(9), 2050–2057 (2004)

9. Cesa-Bianchi, N., Lugosi, G.: Prediction, Learning, and Games. Cambridge Uni-
versity Press, Cambridge (2006)

10. Cutkosky, A., Orabona, F.: Black-box reductions for parameter-free online learning
in banach spaces. In: Conference On Learning Theory (COLT), pp. 1493–1529.
PMLR (2018)

11. Dua, D., Graff, C.: UCI machine learning repository (2017). http://archive.ics.uci.
edu/ml

12. Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning
and stochastic optimization. J. Mach. Learn. Res. 12(7) (2011)

13. Garcelon, E., Ghavamzadeh, M., Lazaric, A., Pirotta, M.: Conservative exploration
in reinforcement learning. In: International Conference on Artificial Intelligence
and Statistics (AISTATS), pp. 1431–1441 (2020)

14. Garcelon, E., Ghavamzadeh, M., Lazaric, A., Pirotta, M.: Improved algorithms
for conservative exploration in bandits. In: Conference on Artificial Intelligence
(AAAI), pp. 3962–3969 (2020)

15. Garcıa, J., Fernández, F.: A comprehensive survey on safe reinforcement learning.
J. Mach. Learn. Res. 16(1), 1437–1480 (2015)

16. Hazan, E., Agarwal, A., Kale, S.: Logarithmic regret algorithms for online convex
optimization. Mach. Learn. 69(2–3), 169–192 (2007)

17. Hutter, M., Poland, J.: Adaptive online prediction by following the perturbed
leader. J. Mach. Learn. Res. 6(Apr), 639–660 (2005)

18. Kakade, S., Langford, J.: Approximately optimal approximate reinforcement learn-
ing. In: International Conference on Machine Learning (ICML), vol. 2, pp. 267–274
(2002)

19. Kazerouni, A., Ghavamzadeh, M., Yadkori, Y.A., Van Roy, B.: Conservative con-
textual linear bandits. In: Neural Information Processing Systems (NeurIPS), pp.
3910–3919 (2017)

20. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

http://arxiv.org/abs/1803.06971
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://arxiv.org/abs/1412.6980


34 M. Bernasconi de Luca et al.

21. Koolen, W.M.: The pareto regret frontier. In: Neural Information Processing Sys-
tems (NeurIPS), pp. 863–871 (2013)

22. Lacoste, A., Luccioni, A., Schmidt, V., Dandres, T.: Quantifying the carbon emis-
sions of machine learning. arXiv preprint arXiv:1910.09700 (2019)

23. Lattimore, T.: The pareto regret frontier for bandits. In: Neural Information Pro-
cessing Systems (NeurIPS), pp. 208–216 (2015)

24. Maas, A., Daly, R.E., Pham, P.T., Huang, D., Ng, A.Y., Potts, C.: Learning word
vectors for sentiment analysis. In: Annual Meeting of the Association for Compu-
tational Linguistics: Human Language Technologies, pp. 142–150 (2011)

25. Papini, M., Pirotta, M., Restelli, M.: Adaptive batch size for safe policy gradients.
In: Neural Information Processing Systems (NeurIPS), pp. 3591–3600 (2017)

26. Papini, M., Pirotta, M., Restelli, M.: Smoothing policies and safe policy gradients.
arXiv preprint arXiv:1905.03231 (2019)

27. Pirotta, M., Restelli, M., Bascetta, L.: Policy gradient in Lipschitz Markov decision
processes. Mach. Learn. 100(2–3), 255–283 (2015)

28. Pirotta, M., Restelli, M., Pecorino, A., Calandriello, D.: Safe policy iteration. In:
International Conference on Machine Learning (ICML), pp. 307–315 (2013)

29. Reddi, S.J., Kale, S., Kumar, S.: On the convergence of Adam and beyond. arXiv
preprint arXiv:1904.09237 (2019)

30. Sani, A., Neu, G., Lazaric, A.: Exploiting easy data in online optimization. In:
Neural Information Processing Systems (NeurIPS) (2014)

31. Schulman, J., Levine, S., Abbeel, P., Jordan, M.I., Moritz, P.: Trust region policy
optimization. In: International Conference on Machine Learning (ICML), pp. 1889–
1897 (2015)

32. Shalev-Shwartz, S., et al.: Online learning and online convex optimization. Found.
Trends Mach. Learn. 4(2), 107–194 (2011)

33. Streeter, M., McMahan, H.B.: No-regret algorithms for unconstrained online con-
vex optimization. arXiv preprint arXiv:1211.2260 (2012)

34. Sui, Y., Burdick, J., Yue, Y., et al.: Stagewise safe Bayesian optimization with
gaussian processes. In: International Conference on Machine Learning (ICML),
pp. 4781–4789. PMLR (2018)

35. Sui, Y., Gotovos, A., Burdick, J., Krause, A.: Safe exploration for optimization with
gaussian processes. In: International Conference on Machine Learning (ICML), pp.
997–1005. PMLR (2015)

36. Tange, O.: GNU parallel 2018. Lulu. com (2018)
37. Tsymbal, A.: The problem of concept drift: definitions and related work. Comput.

Sci. Dept. Trinity Coll. Dublin 106(2), 58 (2004)
38. Vapnik, V.: Principles of risk minimization for learning theory. In: Neural Infor-

mation Processing Systems (NeurIPS), pp. 831–838 (1992)
39. Vittori, E., de Luca, M.B., Trovò, F., Restelli, M.: Dealing with transaction costs

in portfolio optimization: online gradient descent with momentum. In: ACM Inter-
national Conference on AI in Finance (ICAIF), pp. 1–8 (2020)

40. Wu, Y., Shariff, R., Lattimore, T., Szepesvári, C.: Conservative bandits. In: Inter-
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Abstract. Contextual Bandits find important use cases in various
real-life scenarios such as online advertising, recommendation systems,
healthcare, etc. However, most of the algorithms use flat feature vectors
to represent context whereas, in the real world, there is a varying number
of objects and relations among them to model in the context. For exam-
ple, in a music recommendation system, the user context contains what
music they listen to, which artists create this music, the artist albums,
etc. Adding richer relational context representations also introduces a
much larger context space making exploration-exploitation harder. To
improve the efficiency of exploration-exploitation knowledge about the
context can be infused to guide the exploration-exploitation strategy.
Relational context representations allow a natural way for humans to
specify knowledge owing to their descriptive nature. We propose an adap-
tation of Knowledge Infused Policy Gradients to the Contextual Bandit
setting and a novel Knowledge Infused Policy Gradients Upper Confi-
dence Bound algorithm and perform an experimental analysis of a simu-
lated music recommendation dataset and various real-life datasets where
expert knowledge can drastically reduce the total regret and where it
cannot.

1 Introduction

Contextual Bandits (CB) are an extension of the classical Multi-Armed-Bandits
(MAB) setting where the arm choice depends also on a specific context [1]. As an
example, in a music recommendation system, the choice of song recommendation
(the arm choice) depends on the user context (user preferences concerning genre,
artists, etc.). In the real world, the context is often multi-relational but most CB
algorithms do not model multi-relational context and instead use flat feature vec-
tors that contain attribute-value pairs [2]. While relational modeling allows us to
enrich user context, it further complicates the exploration-exploitation problem
due to the introduction of a much larger context space. Initially, when much of
the space of context-arm configurations are unexplored, aggressive exploitation
may yield sub-optimal total regret. Hence, a principled exploration-exploitation
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strategy that encodes high uncertainty initially that tapers off with more infor-
mation is required to effectively achieve near-optimal total regret. The Upper-
Confidence-Bound (UCB) algorithm uses an additional term to model initial
uncertainty that tapers off during each arm pull [3]. However, though the UCB
provides a reasonable generalized heuristic, the exploration strategy can further
be improved with more information about the reward distribution, for example,
if it is known that the expected reward follows a Gaussian distribution. This
is what Thompson Sampling does - incorporates a prior distribution over the
expected rewards for each arm and updates a Bayesian posterior [4]. If external
knowledge is available the posterior can be reshaped with knowledge infusion [5].
An example of this knowledge for the IMDB dataset described in Sect. 7 can be
seen in Fig. 1 and the detailed formulation for the knowledge used is described
in Sect. 4. A couple of issues arise with posterior reshaping: a) The choice of
reshaping function is difficult to determine in a principled manner, and b) The
form of the prior and posterior is usually chosen to exploit a likelihood-conjugate
before analytically compute posterior estimates as sampling is typically ineffi-
cient. Similarly, the choice of reshaping function needs to either be amenable
to efficient sampling for exploration or analytically computed. Thus, we observe
that we can instead directly optimize for the optimal arm choice through policy
gradient methods [6]. Using a Bayesian formulation for optimization of policy in
functional space, we can see that the knowledge infused reshape function can be
automatically learned by an adaption of the Knowledge Infused Policy Gradi-
ents (KIPG) algorithm for the Reinforcement Learning (RL) setting to the CB
setting [7], which takes as input a state and knowledge, and outputs an action.

Fig. 1. Example of expert knowledge in the IMDB dataset. This says that if a director
directed a movie in which an actor acted, there is a chance that the actor worked under
the director.

The CB setting presents a unique challenge for knowledge infusion. Since
arm pulling happens in an online fashion, the human knowledge about the user
is uncertain until the human observes some arm choices. First, we adapt the
KIPG algorithm from the RL to the CB setting and then we improve upon it
to make it less aggressive in its knowledge infusion strategy when the human is
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still uncertain about the user’s preferences. For this reason, we develop a UCB
style uncertainty measure that considers the initial uncertainty as the human
gathers more information about the user context, before providing knowledge.
Thus, we develop a Knowledge Infused Policy Gradient Upper Confidence Bound
(KIPGUCB) algorithm to incorporate human uncertainty in providing knowl-
edge in the knowledge infusion strategy. Our methodological contributions are
as follows:

– We adapt KIPG for the RL setting to the CB setting to reduce the total
regret with high-quality knowledge.

– We develop a novel relational CB algorithm KIPGUCB that reduces regret
through knowledge infusion with both high-quality and noisy knowledge using
exploration.

– Theoretically, we observe that KIPG is fundamentally a gradient ascent
method and derive a regret bound that depends on the knowledge. We also
derive a confidence bound for when the knowledge is noisy.

– Empirically, through experiments on various real-life datasets, we perform
analysis of settings where KIPGUCB achieves a drastic reduction in total
regret. We compare KIPGUCB to KIPG without a confidence bound and
compare against the Relational Boosted Bandits algorithm (RB2) [8], a state-
of-the-art contextual bandit algorithm for relational domains.

2 Problem Setting

We consider the problem setting of Bernoulli Contextual Bandits with relational
features. Formally, at each step k, when an arm i ∈ [N ] := {1, 2, ..., N} is
pulled from among N arms, the reward rk(i) ∈ {0, 1} is Bernoulli. Also, pulling
an arm i depends on a relational context ck(i). Since πk(i), which represents
the probability of choosing arm i given context ck(i), is expected to be high if
P (rk(i) = 1|c(i)) is high, we directly maximize the total reward over K arm
choices,

∑K
k=1 πk(i)rk(i). Here πk(i) = σ(Ψk(i)), and σ is the sigmoid function.

Ψk(i) is a relational function that includes the relational context ck(i).

3 Knowledge Infused Policy Gradients

In this section, we develop the formulation for the KIPG adaptation to the CB
setting. We first describe policy gradients for CB, extend it to functional spaces
and then use Bayes rule to derive the KIPG formulation. In next section, we
show the connection of KIPG to Thompson Sampling with posterior reshaping
and the Exponential Weight for Exploration and Exploitation (Exp3) algorithm
[9], which is also derived from a gradient ascent procedure (mirror ascent) that
can be seen as an instance of KIPG.
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Policy Gradients for Contextual Bandits with Flat Feature Vectors.
In policy gradient methods the probability of picking an arm i given context
c(i), is parameterized as π(i) = σ(θ(i)T c(i)). We want to maximize the expected
reward over K arm pulls

∑K
k=1 πk(i)rk(i). We update the parameters for arm i,

at each k + 1, using gradient ascent as θk+1(i) = θk(i) + η∇θk(i)(
∑

k πk(i)rk(i)).
Here we note that the gradient ∇θk(i)πk(i) = πk(i)∇θk(i) log(πk(i)) and thus we
optimize:

θk+1(i) = θk(i) + η(
∑

k

πk(i)∇θk(i) log(πk(i))rk(i))

Policy Gradients for Contextual Bandits in Functional Space. In func-
tional space the θ(i)T c(i) is replaced by a function Ψ(i) i.e. π(i) = σ(Ψ(i)), where
Ψ(i) is a relational function that includes context c(i). Thus, the policy gradient
update becomes

Ψk(i) = Ψk(i) + η(
∑

k

πk(i)∇Ψk(i) log(πk(i))rk(i)).

Here, Ψk(i) at each iteration of policy gradients is grown stage wise. We start
with a Ψ0(i) and update ΨK(i) = Ψ0(i) +

∑K
k=1 ηδk(i), where each δk(i) fits a

function to πk(i)∇Ψk(i) log(πk(i))rk(i) [10]. In our experiments this function is a
TILDE regression tree [11]. However, we derive a Bayesian formulation for πk(i)
for knowledge infusion. Thus, After pulling an arm i at step k, and observing
rewards rk(i), and context ck(i), using Bayes rule we can write

P (Ψk(i)|rk(i)) =
P (rk(i)|Ψk(i))P (Ψk(i))

∫
Ψk(i)

P (rk(i)|Ψk(i))P (Ψk(i))
.

Using the sigmoid function we can set P (rk(i)|Ψk(i)) = σ(Ψk(i)) = eΨk(i)

(1+eΨk(i))

and use the Bayesian posterior to obtain a prior informed policy as

πk(i) =
σ(Ψk(i))P (Ψk(i))

∫
Ψk(i)

σ(Ψk(i))P (Ψk(i))
.

To optimize using policy gradients, again we note that ∇Ψk(i)(πk(i)) =
πk(i)∇Ψk(i) log(πk(i)) If we use a form for P (Ψk(i)), for which the normaliza-
tion doesn’t depend on Ψk(i) such as a Laplace or a Gaussian distribution, we
can take the log on both sides without loss of generality to derive the gradient
∇Ψk(i) log(πk(i)):

log(πk(i)) ∝ log(σ(Ψk(i))) + log(P (Ψk(i))),

taking the gradient gives us

(Ik(i) − σ(Ψk(i))) + ∇Ψk(i) log(P (Ψk(i))),

where Ik(i) is the indicator function representing if arm i was chosen at step k.
Now we can employ functional gradient ascent by fitting a weak learner (such as a
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TILDE tree for relational context, or linear function for propositional context) to
the gradient πk(i)∇Ψk(i) log(πk(i)). Note here that log(P (Ψk(i))) will determine
the nature of knowledge infused into the policy gradient learning setup at each
k. We call this approach Knowledge Infused Policy Gradients (KIPG).

4 Formulation of Knowledge Infusion

At each k, the prior over functions Ψk(i) for each arm P (Ψk(i)) determines
the knowledge infusion process. We now show the formulation for infusing arm
preferences as knowledge as we use this in our experiments. Depending on the
problem needs, the user may pick their choice of P (Ψk(i)) to be any distribution.
Since our knowledge is given as weighted preferences over arm choices, we will
cover two intuitive ways to formulate the knowledge and derive the formulation
we use in our experiments.

P (Ψk(i)) = Normal(μ,Σ): Given a context included in Ψk(i), if we want to
prefer the arm choice i, we can specify this knowledge using a two step proce-
dure. First we set Ψk(i)knowledge = α, where α ≥ 1. Then we set P (Ψk(i)) =
Normal(μ = Ψk(i)knowledge − σ(Ψk(i)), Σ = I). Similarly if the arm choice i
is not preferred, Ψk(i)knowledge = −α. Here α controls how quickly knowledge
infusion takes place.

P (Ψk(i)) = Laplace(x, b): Specifying α is a tricky thing to do for a human and
we would like them to able to just simply specify preference over arm choice
given a context instead, if they are an expert. To model an expert

– First we set Ψk(i)knowledge = LUB{α}, where LUB{α} stands for the least
upper bound from among a set of α ∈ {α}. The interpretation is that α has
to be at least that high to qualify as expert knowledge. We set LUB{α} =
K · max πk(i)∇Ψk(i) log(πk(i))rk(i) = K · 1 · K = K2 as the maximum value
of πk(i) = 1 and the maximum value of ∇Ψk(i) log(πk(i)) · rk(i) is 1 · K

as the maximum value of
∑K

k=1 rk(i) = K. Thus we set Ψk(i)knowledge =
LUB{α} = K2. The interpretation is the human has to be at least as sure
as the correction required to the error in arm choice i.e. the max gradient to
qualify as an expert. Therefore to prefer arm i, α = K2 and if arm i is not
preferred, α = −K2.

– Next, we replace the Normal(μ,Σ) distribution with the Laplace(x =
|Ψk(i)knowledge − Ψk|, b = 1) distribution. Thus, we obtain that
∇Ψk(i) log(P (Ψk(i)) = sign(Ψk(i)knowledge − σ(Ψk(i))) = ±1. If the expert
prefers the arm i, δk(i) = δk(i) + 1 and if the expert does not prefer the arm
i, δk(i) = δk(i) − 1. This is very intuitive as it means that the Ψk(i), repre-
senting chance of arm i being pulled is simply increased or decreased by an
additive factor depending on expert’s preference, thus preventing the need to
carefully specify α.

– With this insight, it suffices for the human expert to specify knowledge as a
tuple

knowledge : (ck(i),prefer(i) = {0,1}),
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Algorithm 1. Knowledge Infused Policy Gradients - KIPG
1: Initialize Ψ0(i) = 0 ∀ arms i
2: for k ← 1 to K do
3: set πk(i) = σ(Ψk−1(i))
4: Draw arm i∗ = arg maxi i ∼ πk(i) � observe reward rk(i∗) and context ck(i∗)
5: Compute ∇Ψk(i∗) log(πk(i∗)) as � ± Depending on preference

(Ik(i∗) − πk(i∗) ± 1)

6: Compute gradient as πk(i∗)∇Ψk(i∗) log(πk(i∗))(rk(i∗) + 1) � add 1 smoothing
7: Fit δk(i∗) to gradient using TILDE tree
8: Set Ψk(i∗) = Ψk−1(i

∗) + ηδk(i∗)

9: return πK(i)

which simply means that at step k, given the context ck(i), arm i is either
preferred (prefer(i) = 1)) or not preferred (prefer(i) = 0). This is much
more natural and easy for the expert human to specify. Note that if the human
had a reason to specify α quantifying how quickly they want the knowledge
infusion to take place depending on how sure they are (expert level), we can
use the Normal or Laplace distribution form to specify without the use of
LUB{α}. Algorithm 1 shows the pseudocode for KIPG with expert knowledge
infusion. Also, we add 1 to rk(i) so that the gradient doesn’t vanish when
r(i) = 0.

Example of Knowledge in the IMDB Dataset Using the Lapla-
cian Formulation. At a step k, we can define knowledge over the actors
set A = x{actor1, actor2, actor3, ..} with respect to a directors set D =
{director1, director2, ..} and a movies set M = {movie1,movie2, ..} as,

(directed(D,M) ∧ actedIn(A,M),prefer(workedUnder(A,D)) = 1).

This means that The set of actors A, worked under the set of directors D, in
the movies in the set M. In this example, (directed(D,M) ∧ actedIn(A,M) is
the context c(i), i is the arm label workedUnder.

Connection with Previous Work on Relational Preferences. Odom et
al. [12] have previously specified relational preference knowledge in supervised
learning and imitation learning settings. Using their approach, at step k, the
knowledge would be incorporated by an additive term to the gradient term
(Ik(i) − σ(Ψk(i))). This term is nk(i)t − nk(i)f , where nk(i)t is the number of
knowledge sources that prefer arm i and nk(i)f is the number of knowledge
sources that do not prefer arm i, at step k. We prove in Theorem 1 that the app-
roach of Odom et al. [12] is a specific instance of KIPG with multiple knowledge
sources. For our experiments, we specify only a single source of knowledge at all
steps k.
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Theorem 1. At step k, For S multiple knowledge sources, that either pre-
fer or don’t prefer arm i, k1, k2, ..kS, assuming independence, let P (Ψk(i)) =
∏S

s=1 Laplace(|Ψk(i) − Ψk(i)ks|, b = 1). Here Ψk(i)ks = Ψk(i)knowledge ∀s ∈ S.
Then we have ∇Ψk

log(πk(i)) = nk(i)t − nk(i)f .

Proof. We know that with assuming a Laplace(x, b) distribution and setting
Ψk(i)ks = Ψk(i)knowledge = LUB{α} ∀s ∈ S, we get ∇Ψk(i) log(P (Ψk(i))) =
∑S

s=1 sign(LUB{α} − σ(Ψk(i))). We know also that sign(LUB{α} − σ(Ψk(i))) =
±1 depending on if the expert prefers the arm i or not. Thus we
get,

∑S
s=1 sign(LUB{α} − σ(Ψk(i))) = nk(i)t − nk(i)f .

Connection with Thompson Sampling. We now formalize the connection
between Thompson Sampling with posterior reshaping and KIPG. For arm
i ∈ [N ], at every step of arm pulling k ∈ [K], a reward rk(i) and a context
ck(i) is emitted. In Thompson Sampling, the posterior P (Θk(i)|rk(i), ck(i)) for
parameter Θk(i) representing P (rk(i)|ck(i)) is updated at each step k as

P (rk(i)|Θk(i), ck(i)) Pr(Θk(i)|ck(i))
∫

Θk(i)
P (rk(i)|Θk(i), ck(i)) Pr(Θk(i)|ck(i))

.

Finally, the optimal arm choice corresponds to the arm that has the max
among the sampled Θk(i) ∼ P (Θk(i)|rk(i), ck(i)) for each arm i. The poste-
rior P (Θk(i)|rk(i), ck(i)), can be reshaped for example by using P (Θk(i) =
F(Θk(i)|rk(i), ck(i)). The reshaping changes the sufficient statistics such as
mean, variance, etc. This F can be informed by some knowledge of the domain.
We encounter a couple of issues with Posterior Reshaping for knowledge infusion.
First, that the choice of F is difficult to determine in a principled manner. Sec-
ond, the choice of F must be determined such that it is amenable to sampling
for exploration. Sampling itself is very inefficient for problems of appreciable
size. Thus, we observe that we can instead directly optimize for the optimal
arm choice through policy gradient methods. Using a Bayesian formulation for
optimization of policy in functional space, we can see that the reshaped poste-
rior after K iterations of arm pulling (where K is sufficiently high), corresponds
to learning an optimal function Ψ(i) since Ψ(i) is high if F(Θk(i)|rk(i), ck(i)),
representing P (r(i) = 1|c(i)), is high.

Connection with Exp3. Exp3 maximizes the total expected reward over K
arm pulls f =

∑K
k=1 πk(i)rk(i). Using the proximal definition of gradient descent

and deriving the mirror descent objective after each arm pull, we have

πk(i) = arg max
π(i)

((γ · π(i) · ∇πk−1(i)(f)) + D(πk−1(i), π(i))).

where γ is the learning rate. Choosing D(π(i), πk−1(i)) = Φ(πk−1(i))−(Φ(π(i))+
∇Φ(πk−1(i))(πk−1(i) − π(i))), where Φ is a convex function, we get

∇Φ(πk(i)) = ∇Φ(πk(i)) + γ · ∇πk−1(i)(f).
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Since π is a probability we need to choose a convex Φ such that it works with
probability measures. So we will choose Φ(π) =

∑
i π(i) log π(i) to be negative

entropy and we have

log(πk(i)) = log(πk−1(i)) + γ · ∇πk−1(i)(f).

Setting πk−1(i) = σ(Ψk(i)), we get,

log(πk(i)) ∝ log(σ(Ψk(i))) + log(eγ·∇πk−1(i)(f)),

where log P (Ψk(i)) = log(eγ·∇πk−1(i)(f)). Thus we see that Exp3 can be seen as
a case of applying a specific prior probability in KIPG.

5 Regret Bound for KIPG

We now derive a bound for the total regret after K steps of KIPG to under-
stand the convergence of KIPG towards the optimal arm choice. Since KIPG
is fundamentally a gradient ascent approach, we can use analysis similar to
the regret analysis for online gradient ascent to derive the regret bound [13].
Using a2 − (a − b)2 = 2ab − b2 and letting a = (Ψk(i) − Ψ∗(i)) and b =
∇Ψ(i)k

∑K
k=1 πk(i)rk(i), We know that for a sequence over K gradient ascent

iterations, {Ψk(i)|k ∈ [K]}, we have

(Ψk(i) − Ψ∗(i))2 ≤ (Ψk−1(i) − Ψ∗(i))2 − 2γ(πk(i)rk(i) − π∗(i)r(i∗)) + γ2L

where L ≥ ∇Ψk(i)

∑K
k=1 πk(i)rk(i) is an upper bound on the gradient (Lipschitz

constant) and γ is the learning rate. Using a telescoping sum over K iterations
we have

(ΨK(i) − Ψ∗(i))2 ≤ (Ψ0(i) − Ψ∗(i))2 − 2
K∑

k=1

(γ(πk(i)rk(i) − π∗(i)r(i∗))) +
K∑

k=1

γ2L

and therefore

K∑

k=1

(γ(πk(i)rk(i) − π∗(i)r(i∗))) ≤ maxΨk(i)(Ψk(i) − Ψ∗(i))2 + L2
∑K

k=1 γ2

2
∑K

k=1 γ
.

Solving for γ by setting ∇γ(R.H.S) = 0, we finally have our total regret bound
over K steps as:

K∑

k=1

(γ(πk(i)rk(i) − π∗(i)r(i∗))) ≤ maxΨk(i)(Ψk(i) − Ψ∗(i))2L√
K

.

This regret bound has a very intuitive form. It shows that the regret is bounded
by how far off the learned Ψ(i) from the true Ψ∗(i) for each arm i. Thus we expect
that in the experiments, with quality knowledge infusion this gap is drastically
reduced over K steps to result in a low total regret.
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6 KIPG-Upper Confidence Bound

So far we have developed KIPG for the Bandit Setting and derived a regret
bound. Since KIPG estimates π(i) after each arm pull, we can sample from π(i)
and choose the max like in Thompson Sampling. However, since the arm to pull
is being learned online, the uncertainty in the arm choice even with knowledge
needs to be modeled. The human providing knowledge needs to observe a few
user-arm pulls to gradually improve their confidence in the knowledge provided.
As the data is not available offline to study by the human, it is unlikely that
the knowledge provided is perfect initially. Thus, we now derive a confidence
bound to quantify the uncertainty in the arm choice. At step k, let the arm
choice be denoted by i∗. First we notice that Z = |πk(i∗) − π∗(i∗)|, is binomial
distributed at step k. Also, πk(i∗) is binomial distributed. However, for both we
will use a Gaussian approximation and note that for this Gaussian, μ(Z) = 0
and σ(Z) ≤ E[(πk(i∗)−π∗(i∗))2], thus making this a sub-Gaussian [14,15]. Using
Markov’s inequality we have [16]:

P (Z > ε) ≤ e−kε
E[kZ] =⇒ P (ekZ > ekε) ≤ E[ekZ ] · e−kε

where ekZ is the moment-generating-function for Z. We know that ekZ is convex
and thus ekZ ≤ γ(ekb) + (1 − γ)eka for Z ∈ [a, b] and γ ∈ [0, 1]. Thus we obtain
Z ≤ γb + (1 − γ)a, which gives us γ ≥ Z−a

b−a , therefore we know

ekZ ≤ −aekb + beka

b − a
+

Z(ekb − eka)
b − a

.

Taking expectation on both sides we get E[ekZ ] ≤ −aekb+beka

b−a . Let eg(k) =
−aekb+beka

b−a , we get g(k) = ka+log(b−aek(b−a))− log(b−a). Using Taylor series

expansion for g(k) upto the second order term as g(0) + ∇(g(k))k + ∇2(g(k))k2

2 ,
we get

∇2(g(k)) =
ab(b − a)2(−ek(b−a))

(aek(b−a) − b)2
.

We note that aet(b−a) ≥ a =⇒ aet(b−a) − b ≥ a − b =⇒ (aet(b−a) − b)−2 ≤
(b − a)−2. We know −ek(b−a) ≤ −1, therefore we obtain

∇2(g(k)) ≤ −ab(b − a)2

(b − a)2
= −ab ≤ (b − a)2

4
=⇒ g(k) ≤ (b − a)2

4
k2

2
.

We know that E[ekZ ] ≤ eg(k) =⇒ E[ekZ ] ≤ e
k2(b−a)2

8 . Once again from the
Markov inequality, we have

P (Z > ε) ≤ e−kε
E[kZ] =⇒ P (|πk(i∗) − π∗(i∗)| > ε) ≤ e−kε+

k2(b−a)2

8 .

Using k = 4ε
(b−a)2 , by solving for the minimum of e−kε+

k2(b−a)2

8 we get P (|πk(i∗)−
π∗(i∗)| > ε) ≤ e

−2ε2

(b−a)2 . As 0 ≤ (b − a) ≤ 1, we have P (|πk(i∗) − π∗(i∗)| > ε) ≤
e−2ε2 and, after K time steps,
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P (|πK(i∗) − π∗(i∗)| > ε) ≤ e−2Kε2 .

Solving for ε we get, ε ≤ − log(P (|πK(i∗)−π∗(i∗)|>ε))
2K . Thus, we draw the next

optimal arm choice i at k + 1 as follows:

arg max
i

{

i ∼ πk+1(i) = σ(Ψk(i) +
− log(P (Z > ε))

2k
)
}

,

where Z = |πk(i∗)−π∗(i∗)|. This confidence bound also has an intuitive form as
it is reasonable that the expectation E(I(|πk(i∗)−π∗(i∗)| > ε)) gets closer to the
truth (less probable) as more arms are pulled, where I is the indicator function.
Since we never actually know π∗(i∗), we set to the current best arm choice. We
expect that knowledge infusion will allow the error between the current best arm
choice and π∗(i∗) to get smaller. As P is usually initially set high and decayed
as k increases causing log(P ) to increase, we achieve this effect by simply using
− log(|πk(i∗) − π∗(i∗)|). Algorithm 2 shows how a simple modification to the
pseudocode in Algorithm 1 can incorporate the bound derived.

Algorithm 2. KIPG Upper Confidence Bound - KIPGUCB
1: Initialize Ψ0(i) = 0 ∀ arms i
2: for k ← 1 to K do
3: set πk(i) = σ(Ψk−1(i))
4: Draw arm i∗ = arg maxi i ∼ πk(i) � observe reward rk(i∗) and context ck(i∗)
5: Set π∗(i∗) = I(πk(i∗) = i∗)
6: Compute ∇Ψk(i∗) log(πk(i∗)) as � ± Depending on preference

(
Ik(i∗) − πk(i∗) ± 1 − log(|πk(i∗) − π∗(i∗)|)

2k

)

7: Compute gradient as πk(i∗)∇Ψk(i∗) log(πk(i∗))(rk(i∗) + 1) � add 1 smoothing
8: Fit δk(i∗) to gradient using TILDE tree
9: Set Ψk(i∗) = Ψk−1(i

∗) + ηδk(i∗)

10: return πK(i)

7 Experiments

The knowledge used in our experiments comes from domain experts, an example
of which is seen in Sect. 4. We aim to answer the following questions:

1. How effective is the knowledge for bandit arm selection?
2. How effective is the UCB exploration strategy for bandit arm selection?
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Fig. 2. Illustration of the Entity-Relationship Schema diagram for the Music Recom-
mendation system being simulated (b) and a particular instantiation (a). Users listen
to songs by artists. M Users can listen to N Songs, N Songs can be written by 1 Artist
and Artists and Songs can be popular among Users.

7.1 Simulated Domains

Simulation Model: We perform experiments on a simulated music recommenda-
tion dataset. The dataset simulates songs, artists, users, and albums where there
are the following user behaviors:

– Behavior A: The users are fans of one of the artists in the dataset.
– Behavior B: The users follow the most popular song.
– Behavior C: They follow the most popular artist.

We will denote the set of behaviors by Behaviors. Figure 2(b) shows an illustra-
tion for the Schema for the simulation model depicting that M users can listen
to N songs and N songs can be sung by N artists, etc. Artists and Songs have
attributes “Popular” denoting if a particular artist or a song is popular among
users.

Context Induction: Once the simulation model is used to generate different users
based on a predefined behavior ∈ Behaviors. We need now to generate different
possible user contexts from this dataset. Since the whole dataset is not available
to us offline, we construct a dataset by 50 random arm choices to induce con-
texts. The contexts will be represented using predicate logic clauses: antecedent
(∧ preconditions representing possible user context) =⇒ consequent (user
song choice). For this, an inductive bias needs to be provided to induce sensi-
ble clauses. Such an inductive bias is included as background knowledge to the
induction program. We use the method in Hayes et al. [17] to automatically
construct the inductive bias from the schema in Fig. 2(b). The clauses induced
are kept if they satisfy minimum information criteria i.e. if they discriminate
at least one user from another in their song choice, in the dataset. The clauses
induced using the provided inductive bias and are as follows:
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– sungBy(B, C) ∧ ¬ popular(C) =⇒ listens(A, B). This context says User A
listens to song B if song B is sungBy artist C. Also, C is not a popular artist,
which describes behavior A.

– sungBy(B, C) ∧ popular(C) =⇒ listens(A, B). This context says User A
listens to song B if song B is sungBy a popular artist C, which describes
behavior C.

– listened(C, B) =⇒ listens(A, B). This context says user A listens to song B
if user C listened to B, which describes behavior B.

We use satisfiability of these clause antecedents as features for TILDE regression
tree stumps. Figure 3 shows an example, where sigmoid of the regression values
represents arm choice probability π(i).

Fig. 3. Example of a TILDE regression tree stump for song choice. The tree depicts
that if if song B is sungBy artist C and also, C is not a popular artist, User A listens
to B with probability σ(0.806). Else, User A listens to B with probability σ(−0.796).

Results. We compare the RB2 algorithm with KIPG and KIPGUCB. For each
type of user, at time step k, a recommendation is provided depending on the
algorithm used. The regret drawn from comparison to the ground truth (GT)
recommendation is recorded. The regret equation for an algorithm A is:

RA =
K∑

k=1

(rGT − πk(i∗)Ark(i∗)),

where i∗ is the optimal arm drawn from arg max over π(i) samples at step k
(See Algorithm 1, 2 - line 4). rGT is the reward if the ground truth optimal arm
is drawn at k.

Perfect Knowledge: The human providing knowledge may have some previous
knowledge about a user in the system. In this case, it is expected that the
knowledge is pretty good from the start. In this setting, we expect the regret
is ordered as RKIPG < RKIPGUCB < RRB2 for most k = 1 to K.We expected
this trend since RB2 uses no knowledge and KIPGUCB moves slower towards
knowledge initially. Given that the knowledge is perfect, we expect KIPG to
perform the best. We set K = 500. Figure 4 (top row) shows that the experiments
corroborate this.
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(a) Behavior A (b) Behavior B (c) Behavior C

(d) Behavior A (e) Behavior B (f) Behavior C

(g) Behavior A (h) Behavior B (i) Behavior C

Fig. 4. Comparison of RRB2, RKIPG, RKIPGUCB for the perfect (top), nearly perfect
(middle), and noisy (bottom) knowledge settings.

Noisy Knowledge: In this setting the human again observes some user arm inter-
actions to improve the knowledge that they provide. In this case however, the
humans observation skills are less sharp. We simulate this scenario by using
noisy knowledge for k = 1 to 50, where perfect knowledge is provided 60% of the
time instead of 80%. Here, we expect that for most k = 1toK, where K = 500,
RKIPGUCB < RKIPG < RRB2. We expect this as a perfection rate of 60%
means that the tempering of Knowledge Infusion by KIPGUCB initially leads
to better total regret for KIPGUCB. Figure 4 (bottom row) shows this result.

7.2 Real-World Datasets

We also evaluate the algorithms in the following real-world datasets:

– The Movie Lens dataset with relations such as user age, movietype, movie
rating, etc., where the arm label is the genre of a movie. The dataset has
166486 relational instances [18].
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– The Drug-Drug Interaction (DDI) dataset with relations such as Enzyme,
Transporter, EnzymeInducer, etc., where the arm label is the interaction
between two drugs. The dataset has 1774 relational instances [19].

– The ICML Co-author dataset with relations such as affiliation, research inter-
ests, location, etc., where the arm label represents whether two persons
worked together on a paper. The dataset has 1395 relational instances [20].

– The IMDB dataset with relations such as Gender, Genre, Movie, Director,
etc., where the arm label is WorkUnder, i.e., if an actor works under a director.
The dataset has 938 relational instances [21].

– The Never Ending Language Learner (NELL) data set with relations such as
players, sports, league information, etc., where the arm label represents which
specific sport does a particular team plays. The dataset has 7824 relational
instances [22] (Fig. 5).

Fig. 5. Performance plots computed using total regret of RB2, KIPG, and KIPGUCB
for the datasets for k = 1 to K. We see that KIPG and KIPG-UCB perform signifi-
cantly better with expert knowledge in Movie Lens and IMDB compared to others. This
is because it is relatively easier for an expert to provide knowledge in these domains.
On the contrary, in the NELL-Sports, because of noisy knowledge, initially, the per-
formance of KIPGUCB dips compared to RB2, but it increased thereafter.

We used 10 boosted trees for all the experiments and results are averaged over
5 runs. It is seen that while the total regret remains high for all the datasets over
several steps of learning, both the expert knowledge and the exploration strategy
using the UCB method are effective in increasing performance. The performance
increase is more pronounced in the Movie Lens and IMDB datasets as the expert
knowledge are relatively easier to provide for human experts. For the DDI dataset
and the ICML Co-authors dataset, it is not straightforward to specify which
drugs might interact or which authors may work together in a diverse academic
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setting. Since the knowledge comes from an expert and systematically targets
faster convergence to the optimal distribution, knowledge infusion is expected
to perform better. If the knowledge were noisy, the error accumulation over time
may have lead to sub-optimal results. In the NELL-sports dataset, it can be
seen that RB2 initially outperforms both KIPG and KIPGUCB. Policy gradient
algorithms that have been studied under the contextual bandits setting were
sometimes unstable [23]. In our approach, the knowledge infusion leads to the
policy gradients being more stable, as seen from the curves.

8 Conclusion and Future Work

In this study, we develop a novel algorithm KIPGUCB to perform knowledge
infusion in CB settings. We show that the regret bound depends on the knowl-
edge and hence the total regret can be reduced if the right knowledge is available.
Furthermore, we develop a confidence bound to account for initial uncertainty
in provided knowledge in online settings. Though we have developed a gen-
eral framework for knowledge infusion, we have yet to explore knowledge forms
beyond preference knowledge. Furthermore, the knowledge may depend on latent
behaviors that cannot be modeled such as a bias by an actor towards a particu-
lar director. Also, the actor’s bias towards directors may keep changing as more
data is seen. This type of non-stationarity and partial observability in context
will be interesting to model. Also, if knowledge is noisy and fails to lower total
regret, identifying the right descriptive question to ask the human to elicit new
knowledge is an interesting future direction. Relational descriptions make tack-
ling this issue plausible. Finally, it will be interesting to mathematically evaluate
when the knowledge should be incorporated at all. We aim to tackle these issues
in future work.
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Abstract. The Multi-armed Bandit (MAB) framework has been
applied successfully in many application fields. In the last years, the
use of active approaches to tackle the nonstationary MAB setting, i.e.,
algorithms capable of detecting changes in the environment and re-
configuring automatically to the change, has been widening the areas
of application of MAB techniques. However, such approaches have the
drawback of not reusing information in those settings where the same
environment conditions recur over time. This paper presents a framework
to integrate past information in the abruptly changing nonstationary set-
ting, which allows the active MAB approaches to recover from changes
quickly. The proposed framework is based on well-known break-point
prediction methods to correctly identify the instant the environment
changed in the past, and on the definition of recurring concepts specif-
ically for the MAB setting to reuse information from recurring MAB
states, when necessary. We show that this framework does not change
the order of the regret suffered by the active approaches commonly used
in the bandit field. Finally, we provide an extensive experimental anal-
ysis on both synthetic and real-world data, showing the improvement
provided by our framework.

Keywords: Multi-armed bandit · Non-stationary MAB · Break-point
prediction · Recurring concepts

1 Introduction

The stochastic Multi-Armed Bandit (MAB) setting has been widely used in
real-world applications in sequential decision-making problems, e.g., for clini-
cal trials [4], network routing [17], dynamic pricing [21], and internet advertis-
ing [16]. In the stochastic MAB framework, a learner selects an option – com-
monly referred to as arm – among a given finite set and observes a corresponding
stochastic reward. The learning goal is to maximize the rewards collected dur-
ing the entire learning process. The success of this framework is mainly due to
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its strong theoretical properties [7], which, in practice, turns into very effective
results.

Over the past few years, researchers have targeted new strategies to increase
the flexibility of the MAB framework, thus foresee new applications to more
complex scenarios. One of the most interesting extensions of MAB techniques
consists of handling scenarios where the distribution of rewards varies over time.
This is a relatively common situation in real-world dynamic pricing [21] and
online advertising problems [13], where the distributions of reward for each
arm can be considered stationary only over short time intervals as they might
evolve due to changes of the competitors’ strategies or abrupt modification of
the user behaviour. While the most general situation where reward distributions
are allowed to arbitrarily change over time is not tractable by this framework,
it is possible to design efficient and theoretically grounded learning algorithms
under some mild assumption on change type and regularity.

One of the most studied settings, which commonly occurs in practical appli-
cations, is that of the so called abruptly changing MAB environments, where
each arm reward expected value is a piece-wise constant function of time and is
allowed to change a finite number of times. MAB algorithms operating in this
setting follow two mainstream approaches to cope with nonstationarity: pas-
sive [9,22], and active [8,14]. Passive methods use only the most recent rewards
to define the next arm to be selected. Thus, they progressively discard rewards
gathered in the far past as soon as new samples are collected. Conversely, active
MAB algorithms incorporate detection procedures to spot the change and adapt
the decision policy only when necessary. This approaches, from now on addressed
as Change Detection MABs (CD-MABs), couple a stationary MAB procedure
with a Change Detection Test (CDT) [5], as for instance in [14]. Even if from
a theoretical point of view the two approaches have similar guarantees, it has
been shown that the active approaches are performing generally better when
their empirical performances are tested [14].

In the CD-MAB framework, a CDT is used to monitor the distribution of
rewards, and as soon as this gathers enough empirical evidence to state that a
change has occurred, it triggers a detection and restarts from scratch the classical
MAB procedure. In practice, a change detected on a specific arm triggers a
reset of both the statistics of the CDT and the corresponding arm. The major
limitation of this approach is that it discards the information gathered in the past
by MAB, while this could be potentially used in two situations. On the one hand,
samples gathered between the occurrence and the detection of the change can be
used to reconfigure the MAB over the specific arm and avoid a complete restart
from scratch. On the other hand, when the process presents some regularity over
time, e.g., seasonal effects, it would be ideal to identify when the arm goes back
in a state that was already encountered and use the information learned about
that distribution to have a fast recover after the detection.

In this paper, we present the Break-point and Recurrent MAB (BR-MAB),
which extends generic CD-MABs to reuse data collected before the detection and
replaces the MAB cold restart with a better initialization. Most remarkably, our
neat approach still makes theoretical analysis amenable in these non-stationary
settings. In particular, our novel contributions are:
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– we propose a technique based on break-point prediction [11], to reuse the most
informative samples for the current distribution gathered before the change
has been detected;

– we propose a technique to identify the so-called recurrent phases in the MAB
setting, to handle cases in which seasonality effect are present;

– we integrate these techniques in a single framework, called BR-MAB, which
allow their application to a generic CD-MAB;

– we show that, BR-MAB applied to CUSUM-UCB maintains the theoretical
guarantees of the original active non-stationary MAB;

– we provide extensive empirical analysis to show the improvement provided
by BR-MAB, when applied to a CD-MAB, comparing its performance with
the state-of-the-art techniques for non-stationary MAB settings.

2 Related Works

The algorithms designed to tackle non-stationary MAB problems with a limited
number of changes are divided into passive and active approaches.

From the passive approaches, we mention the D-UCB algorithm [9], which
deals with nonstationarity by giving less importance to rewards collected in the
near past by weighting them by a discount factor. Conversely, the SW-UCB
algorithm [9] fixes a window size and feeds a UCB-like algorithm only with the
most recently collected samples. They provide guarantees on the upper-bound for
the pseudo-regret of order O(

√
NBN log N) and O(

√
NBN log N), respectively,

where N is the time horizon of the learning process, and BN is the number
of changes present in the environment up to time N . Another well-analyzed
passive method is the SW-TS [22], which applies the sliding window approach
to the Bayesian Thompson Sampling algorithm. It provides a bound on the
pseudo-regret of O(

√
N log N), if the number of changes is constant w.r.t. N .

We want to remark that, in general, the passive approach does not allow for
incorporating information coming from past data since their intrinsic strategy
consists of systematically discarding them. Therefore, they are not appealing
candidates for the approach proposed here.

For what concerns the active approaches, i.e., those algorithms using a CDT
to actively detect changes in the expected values of the arms’ reward distri-
butions, the bandit literature offers a wide range of techniques [6,8,14,15].
More specifically, the CUSUM-UCB method [14] uses the CUSUM CDT to
detect changes and a UCB-like approach as MAB strategy. This method pro-
vides theoretical upper bound for its regret of order O(

√
NBN log(N/BN )).

The Monitored-UCB [8] is a UCB-like policy with random exploration which
uses a windowed CDT to provide a regret bound of O(

√
NBN log(N)). The

GLR-klUCB [6] uses a KL-UCB algorithm in combination with a Generalized
Likelihood Ratio (GLR) test as a change detection algorithm to get a regret of
O(

√
NBN log(N)). Notably, the approach we propose here can be applied to

any of the aforementioned active approach.
Finally, other well known and efficient methods are Adapt-EvE [10], an

actively adaptive policy that uses UCB1-Tuned as a sub-algorithm and employs
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the Page-Hinkley test [12] to detect decreases in the mean of the optimal arm.
Whenever a change-point is detected, a meta-bandit transient phase starts,
whose goal is to choose between two options: reset the sub-algorithm or not.
Instead, the BOCD-TS [15] uses Thompson Sampling with a Bayesian Change
Point Detection algorithm. The upper-bound for these methods is unknown,
hence they are accounted as heuristic algorithms.

Garivier et al. [9] showed that the problem of abruptly changing MAB has
a lower bound for the expected pseudo-regret of order Ω(

√
N). We recall that,

in settings in which the optimal arm expected value can change without any
restriction, only trivial upper bounds for the dynamic pseudo-regret RN (U) are
known [2]. Conversely, if stricter assumptions holds, e.g., the occurrence of global
changes, better guarantees can be derived.

3 Problem Formulation

We model our problem as a stochastic abruptly changing MAB setting, similar
to what has been defined in [9], in which the arms reward distributions are
constant during sequences of rounds, and they change at specific rounds unknown
to the learner. Formally, at each round n over a finite time horizon N , the
learner selects an arm ai(n) among a finite set of K arms A := {a1, . . . , aK}
and observes a realization of the reward xi(n),n from the chosen arm ai(n). The
rewards for each arm ai are modeled by a sequence of independent random
variables Xi,n from a distribution whose parameters are unknown to the learner.
As customary in the MAB literature, here we consider Bernoulli distributed
rewards, i.e., Xi,n ∼ Be(μi,n), where μi,n is the expected value of the reward
for arm ai at round n.1 During the learning process, we denote as breakpoints
those rounds in which the expected reward of at least one arm ai changes.
Formally, a break-point b ∈ {1, . . . , N} is a round in which for at least an arm
ai we have E[Xi,b−1] �= E[Xi,b]. In the analysed setting, we have a set of BN

breakpoints B := {b1, . . . , bBN
} that occur before round N (for sake of notation

we define b0 = 1), and whose location is unknown to the learner. The breakpoints
determine a set of phases {F1, . . . ,FBN

}, where each phase Fφ is a sequence of
rounds between two consecutive breakpoints:

Fφ = {n ∈ {1, . . . , N} | bφ−1 ≤ n < bφ} . (1)

With abuse of notation, we denote with μi,φ := E[Xi,n], with n ∈ Fφ, the
expected value of the reward of the arm ai during the phase Fφ. Figure 1 illus-
trates an example of a specific setting with two arms a1 and a2 in which three
phases F1, F2, and F3 occurs over the time horizon. Note that, differently from
the classical MAB setting, a single optimal arm over the entire time horizon
might not exist. Indeed, during each phase Fφ we define a∗

φ := arg maxi μi,φ the
arm having the largest expected reward μ∗

φ := maxi μi,φ. A policy U is a function

1 The extension to other finite support distributions is straightforward and the theo-
retical results here provided are still valid.
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Fig. 1. Example of a nonstationary setting.

U(h) = ai(n) that chooses the arm ai(n) to play at round n according to history
h, defined as the sequence of past plays and obtained rewards.

Our goal is to design a policy U that minimizes the loss w.r.t. the optimal
decision in terms of reward. This loss, namely the dynamic pseudo-regret, is:

RN (U) := E

[
N∑

n=1

μ∗
n − μi(n),n

]

, (2)

where μ∗
n := maxi∈{1,...K} μi,n is the optimal expected reward at round n.

In this work, we are interested in reusing the information coming from the
situation in which an arm ai has a value of the expected reward that recurs
over the different phases. This models the possibility that an arm behaviour is
recurring over time due to seasonality effects. Formally:

Definition 1. A recurrent phase on arm ai occurs when there exist two phases
Fφ,Fφ′ , with φ �= φ′, s.t. μi,φ = μi,φ′ , i.e., when the arm over the two phases
has the same expected reward.2

The rationale behind the above definition is that the information gathered from
an arm are valid in the future, no matter how the other arms’ rewards are
changing, and, thus, they can be reused as long as the arm has the same reward
distribution. In Fig. 1, two recurrent phases are present, i.e., as F1 and F3, since
the arm a1 has μ1,1 = μ1,3. Notice that, if a concept recurs during phase F2, one
might reuse the samples collected during phase F1 to speed up learning.

Finally, it is common in the CD-MAB literature to require two assump-
tions [8,14]. At first, we require a minimum magnitude for the change s.t. it is
possible to detect it:

Assumption 1. ∃ ε ∈ (0, 1], known to the learner, such that for each arm ai

whose expected reward changes between consecutive phases φ and φ+1, we have:

|μi,φ − μi,φ+1| ≥ ε. (3)
2 Since we are considering Bernoulli reward, having the same expected value also

implies to have the same distribution. This definition can be easily generalized
to handle other distributions, requiring that the distribution repeats over different
phases.
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The second assumption prevents two consecutive breakpoints from being too
close in terms of rounds:

Assumption 2. There exist a number M , known to the learner, such that:

min
φ∈{1,...,BN}

(bφ − bφ−1) ≥ KM. (4)

With reference to Fig. 1, the two assumptions are stating that the two break-
points b1, and b2 must be such that (b2−b1) > KM , and that |μ0,φ−μ0,φ+1| > ε,
and |μ1,φ − μ1,φ| > ε for each φ ∈ {1, 2}. These two assumptions are natural in
MAB algorithms adopting CDT as tools to detect changes, e.g., [8,14,15] since
they state that the changes are detectable by the CDT in a limited amount
of rounds (Assumption 1) and allow to set the CDT at the beginning of the
learning process and after each change is detected (Assumption 2). Therefore,
the knowledge of ε and M is customary when designing algorithms following
the active framework and allows them to outperform passive ones in terms of
empirical performance significantly.

4 The BR-MAB Algorithm

In what follows, we present the BR-MAB algorithm, which can be seen as a
generalization of the CD-MAB framework presented in [14] that learns from
historical information after each detected change. The BR-MAB algorithm builds
upon the definition of a concept Ci as follows:

Definition 2. A concept Ci = {x1, . . . , xC} is a set of rewards collected over
time for the arm ai, which are deemed to belong to the same phase.

This definition is used in BR-MAB to store information about past phases and
identify recurrent phases. In this case, we refer to recurrent concepts.

The pseudo-code of the BR-MAB algorithm is presented in Algorithm 1, and
takes as input any nonstationary active CD-MAB policy (namely both a change-
detection test to be used on each arm and an arm-selection policy), a break-point
prediction procedure B, and a test E to evaluate when two concepts can be
conveniently aggregated. At first, the algorithm initializes all the parameters for
the selected CD-MAB and, for each arm ai, the set of tracked recurrent concepts
Ci, the actual concept being observed Cnow

i , and a binary variable cfi to check
if a concept had been used in the past for that arm (Line 1). Then, at each
round n ∈ {1, . . . , N}, the algorithm selects an arm ai(n) accordingly to the
CD-MAB policy (Line 3), uses the reward to update the CD-MAB (Line 4), and
updates the concept currently in use Cnow

i(n) for the selected arm ai(n), i.e., adds
the currently collected reward xi(n),n to the set Cnow

i(n) (Line 5). Subsequently, the
CDT of the CD-MAB is being executed and when this detects a change in the
currently selected arm ai(n), the break-point procedure B, detailed in Sect. 4.1,
is activated to estimate the break-point r (Line 7). As a result, the rewards
collected during rounds {r, . . . , n} corresponding to the arm ai(n) are used to
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update the information of the arm ai(n) in the CD-MAB (Line 8). Moreover,
the algorithm removes the rewards selected by the break-point procedure from
the current concept Cnow

i(n) , adds the current concept Cnow
i(n) to the set of available

concepts Ci (Line 10), and resets it using the reward of arm ai(n) collected after
the break-point (Line 11). Finally, BR-MAB sets cfi = 0, to state that the arm
ai is eligible of using one of the concept in Ci(n) if it is recurring (Line 12). After
the change detection phase occurred, the algorithm tries to detect if a concept
in Ci(n) is recurrent. More specifically, if no concept has been already used for
the arm ai(n) (cfi(n) = 0), for each concept C present in Ci(n), it checks if it can
be considered equivalent to the current concept Cnow

i(n) using the test E (Line 16),
detailed in Sect. 4.2. If the test E passes, the current concept Cnow

i(n) is updated
with the rewards contained into the concept C (Line 18), and C is removed from
Ci(n) (Line 10). Finally, the CD-MAB procedure is updated using the reward
present in the recurrent concept C.

4.1 Break-Point Prediction Procedure

In this section, we present the break-point prediction procedure B that identifies
the position of the break-point after the CDT provides a detection. This problem
is commonly addressed in the statistical literature by the change-point formula-
tion [11]. These tests perform a retrospective and offline analysis over a sequence
of observations that presumably contains a change and determine whether there
is enough statistical evidence to confirm the sequence contains a change and case
its location. Change-point formulation has also been extended to detect changes
in streaming data from a Bernoulli [19] or arbitrary [18] distributions. In this
case, the change-point formulation provides change-detection capabilities, and
the break-point estimate is automatically provided after each detection.

The CUSUM test [5] is a popular option for the CDT used for monitoring
the stream of rewards in the CD-MAB is the CUSUM test. In this case, the
test already provide after each detection a break-point estimate. Let t′ be the
time when a change has been detected on the arm ai (or possibly t′ = 0),
and let {xi,t(1), . . . xi,t(M)} be the sequence of last M rewards collected from
arm ai from the current phase at rounds {t(1), . . . , t(M)}. The CUSUM test
uses such rewards to estimate the expected values of the reward of ai, namely
m̂i :=

∑M
h=1

xi,t(h)

M . When monitoring the next rounds h ∈ {t′ + M + 1, . . .}, the
CUSUM test computes the following statistics to detect an increase/decrease in
the expected reward μi,φ:

g+i,h =

{
max{0, g+i,h−1 + xi,h − m̂i − ε} if i(h) = i

g+i,h−1 otherwise
, (5)

g−
i,h =

{
max{0, g−

i,h−1 + m̂i − xi,h − ε} if i(h) = i

g+i,h−1 otherwise
, (6)

where the quantities has been initialized as g+i,t′+M = 0 and g−
i,t′+M = 0, and ε is

defined in Assumption 1. Changes are detected as soon as one of these statistics
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Algorithm 1. BR-MAB
Require: non-stationary algorithm CD-MAB, break-point prediction procedure B,

recurrent concept equivalence test E
1: Ci ← ∅, Cnow

i ← ∅, cfi ← 0 ∀i ∈ {1, . . . , K}
2: for n ∈ {1, . . . , N} do
3: Play ai(n) according to CD-MAB
4: Collect reward xi(n),n and update the CD-MAB accordingly
5: Update the concept Cnow

i(n) ← Cnow
i(n) ∪ {xi(n),n}

6: if a change has been detected by the CD-MAB then � change detection
7: Run B to identify the change round r � break-point prediction
8: Update arm ai(n) in the CD-MAB using rewards from rounds {r, . . . , n}
9: Remove rewards collected from ai(n) from rounds {r, . . . , n} from Cnow

i(n)

10: Ci(n) ← Ci(n) ∪ {Cnow
i(n) }

11: Initialize Cnow
i(n) with the rewards of arm ai(n) collected at rounds {r, . . . , n}

12: cfi(n) ← 0
13: end if
14: if cfi(n) = 0 then
15: for C ∈ Ci(n) do
16: if E(C, Cnow

i(n) ) then � recurrent concept test
17: cfi(n) ← 1
18: Cnow

i(n) ← C ∪ Cnow
i(n) � concept merge

19: Ci(n) ← Ci(n) \ C
20: Update arm ai(n) in the CD-MAB using the rewards in C
21: end if
22: end for
23: end if
24: end for

exceed a suitable threshold. Let us assume that this occurs at time t′′, the round
corresponding to the break-point is then identified as:

r = arg min
h∈{t′,...,t′′}

g+i,h, or r = arg min
h∈{t′,...,t′′}

g−
i,h, (7)

depending on whether the detection comes from monitoring g+i,h or g−
i,h, respec-

tively. If there are multiple values attaining the minimum in Eq. (7), we set r
as the most recent value. Once the break-point prediction occurred, we initialize
the CUSUM as described above and reset the two statistics g+i,h and g−

i,h before
restarting monitoring.

4.2 Recurrent Concepts Equivalence Test

After a change has been detected, we need to assess whether the currently
expected reward of an arm ai, represented in the concept Cnow

i , corresponds
to any of the previously encountered phases using the concepts stored in Ci.
Inspired by [1], we solve this problem by an equivalence test E(·, ·) that consists
in a Two One Sided Test (TOST) [20]. More specifically, let Cnow

i be the current
concept associated to the arm ai, and let C be any concept from the collection of
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previously seen concepts C ∈ Ci. The TOST determines whether there is enough
statistical evidence to claim that the expected rewards in the two concepts Cnow

i

and C differ less than a given threshold.
The TOST formulates the following statistical tests over the expected values

μ′ and μ′′ of the rewards in Cnow
i and C, respectively:

Test 1 H0 : μ′ − μ′′ ≤ −d vs. H1 : μ′ − μ′′ > −d, (8)
Test 2 H0 : μ′ − μ′′ ≥ d vs. H1 : μ′ − μ′′ < d, (9)

where d > 0 is the equivalence bound, indicating a difference between rewards
that is deemed as negligible when identifying recurrent phases. When the TOST
rejects both the null hypothesis, we argue that there is enough statistical evidence
that the difference |μ′ − μ′′| lies within (−d, d) Therefore, the test E(Cnow

i , C)
asserts that the two concept are recurrent, and they are merged into a single
concept in the BR-MAB algorithm.

In particular, it uses two two-sample z-test to compare proportions, formally
it requires to compute the following test statistics:

z−d =
(μ̂′ − μ̂′′) + d

√
μ̂′(1 − μ̂′)

n′ +
μ̂′′(1 − μ̂′′)

n′′

, and zd =
(μ̂′ − μ̂′′) − d

√
μ̂′(1 − μ̂′)

n′ +
μ̂′′(1 − μ̂′′)

n′′

,

(10)
where μ̂′ and μ̂′′ are the empirical means of the reward stored in the concepts
Cnow

i and C, respectively, and n′ := |Cnow
i | and n′′ := |C| are their cardinality. In

this test, we fix a significance level αz, and we reject both null hypothesis when
the test statistic z−d is above the 1 − αz quantiles of a normal distribution and
zd is below the αz quantiles of a normal distribution.

Even though representing in each concept C the set of rewards is not very
efficient in terms of memory requirements, in our case, a much more compact
representation is possible. In fact, in the case of Bernoulli rewards, the TOST
requires only the mean of the rewards collected in the concept C and the concept
cardinality, which can be updated incrementally and stored in just two values.

4.3 Regret Analysis for Generic CD-MABs

At first we consider the CD-MAB setup, where there is no break-point prediction
nor the recurrent concept identification. Assume to have a stationary stochas-
tic MAB policy P ensuring an upper bound on the expected pseudo-regret of
C1(log N)+C2 over a time horizon of N for the stochastic stationary MAB prob-
lem (being C1, C2 ∈ R

+ suitable constants), and a CDT procedure D ensuring
an expected detection delay of E[D] and an expected number of false positive of
E[F ]. We prove the following:

Theorem 3. The expected pseudo-regret of a CD-MAB algorithm, where the
arm selection is performed using P with probability 1−α and randomly selecting
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an arm with probability α and that uses D on a generic abruptly changing MAB
setting, is upper bounded by:

RN (CD-MAB) ≤ (1 + BN + E[F ])KM + (BN + E[F ])
(

C1 log
N

BN
+ C2

)

+
KBNE [D]

α
+ αN, (11)

where we assume that the CDT requires M samples for each arm to be initialized.

Proof. Due to space limitations, the proof is deferred to Appendix A.

The contribution to the regret in the right-hand side of Eq. (11) is composed
by the following components (from left to right): i) the samples required for
the initialization of the CDT at the beginning of the learning procedure and
each time a change is detected, ii) the regret of the stationary MAB procedure
repeated every time a change is detected, iii) the loss due to the detection delay,
and iv) the loss due to random sampling performed over the time horizon N .

This result generalizes that in [14], in which the authors provide an upper
bound to the expected pseudo-regret of the same order for an algorithm using
as stationary MAB procedure the UCB1 algorithm [3]. In the same work,
the authors also present theoretical results for the specific choice of UCB1 as
stationary MAB and CUSUM as CDT and provide a bound of the order of
O(

√
BNN log N

BN
), when the values of the threshold of the CUSUM h and the

exploration parameter α are adequately set. Notably, Theorem 3 provides the
same order of pseudo-regret of the CUSUM-UCB when substituting in Eq. (11)
the guarantees provided by CUSUM and those of UCB1.

4.4 Regret Analysis for the Break-Point Prediction Procedure

Here, we analyse the theoretical guarantees provided by a specific instance of
the BR-MAB algorithm, using CUSUM-UCB as CD-MAB procedure and using
a generic break-point prediction procedure B. Indeed, updating CUSUM-UCB
after each detection, exploiting a bounded number of reward values recovered
by the break-point prediction procedure B, allow us to provide theoretical guar-
antees on the performance of BR-MAB. We show that:

Theorem 4. Consider the BR-MAB algorithm with the CUSUM-UCB as CD-
MAB procedure and a break-point procedure B, s.t. number of rewards selected
by this procedure are less than ξ

4 log Nt. Using such an algorithm on the abruptly
changing MAB setting provides an upper bounded on the pseudo-regret of:

RN (U) ≤ O
(√

NBN log N/BN

)
, (12)

where ξ is the parameter used in the UCB bound for the CUSUM-UCB algorithm,
Nt :=

∑
i Ni,t is the number of samples collected from the instant a change has

been detected.
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Proof. Due to space limitations, the proof is deferred to Appendix A.

We remark that any break-point procedure B can be adapted to satisfy the
constraint in 4, by using max{r, t − ξ

4 log Nt}, where r is the round at which B
predicted the break-point and t is the current time instant. Notice that the limi-
tation in terms of samples is required to avoid that the estimated expected value
for an arm, used in the CUSUM-UCB to take decisions, is biased significantly
by the presence of samples coming from the previous phase.

5 Experiments

In what follows, we conduct experiments to evaluate the empirical improvement
provided by the proposed BR-MAB approach on generic CD-MAB algorithms. At
first, we present a toy example to show the effect of using the BR-MAB approach
on a CD-MAB algorithm. After that, we evaluate the proposed algorithm on
synthetically generated data, and a real-world problem of online ads selection.

In the experiments, we evaluated two flavours of our BR-MAB algorithm
applied to the CUSUM-UCB algorithm: the former exploiting only the break-
point prediction procedure B, denoted from now on with BR-CUSUM-UCB(B,/),
and the latter using both the break-point prediction procedure B and the recur-
rent concept equivalence test E , denoted by BR-CUSUM-UCB(B,E). This allows
us to separately evaluate the improvements provided solely by the break-point
prediction in BR-MAB. We compare our method against: i) the UCB1 algo-
rithm [3], an algorithm designed for stationary stochastic bandits, ii) D-UCB
and iii) SW-UCB [9], which are algorithms for non-stationary MAB adopting the
passive approach to deal with changes in the environment, iv) CUSUM-UCB [14],
the version of the CD-MAB algorithm without using our framework. We set the
parameters required by each one of the tested algorithms as suggested by the
corresponding papers. A summary of the parameters is provided by Table 2 pro-
vided in Appendix C. We evaluate the different algorithms in terms of empirical
pseudo-regret Rn(U) over the time horizon. The experiments have been repeated
for 200 independent simulations. The code used for the experiments is available
at https://github.com/gerlaxrex/BR-MAB.

5.1 Toy Example

The aim of this experiment is to compare the behaviour over time of the upper
confidence bounds of the CUSUM-UCB algorithm, BR-CUSUM-UCB(B,/), and
BR-CUSUM-UCB(B,E). In this experiment, we model K = 2 arms over a time
horizon of N = 105 with BN = 4 break-points. We tested the three algorithms
on an abruptly changing scenario where the expected rewards μi,φ varies over
time as depicted in Fig. 2a.

In Figs. 2b, 2c, and 2d we provide the estimated expected value (solid line)
and the confidence bounds (shaded areas) used for the arm selection by the
CUSUM-UCB, BR-CUSUM-UCB(B,/), and BR-CUSUM-UCB(B,E) algorithm,

https://github.com/gerlaxrex/BR-MAB
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Fig. 2. Toy example: (a) expected rewards for the arms, upper confidence bounds for
(b) CUSUM-UCB, (c) BR-CUSUM-UCB(B,/), (d) BR-CUSUM-UCB(B,E).

respectively. The sole introduction of the B procedure improves the estimate
of the mean value at the beginning of the phases, since the mean values are
initialized using the samples collected before the detection of the change. This is
evident at times n = 20, 000 and n = 40, 000 where the CUSUM-UCB algorithm
features downward spikes, while ours take advantage of the samples collected
before the detection to reinitialize the empirical expected value of the reward
and reduce the variance in reward’ estimates.

Comparing Figs. 2b and 2d in the interval 60, 000 ≤ t ≤ 100, 000 of, we
observe that the test E to identify recurrent concepts makes the upper con-
fidence bounds tighter, especially those corresponding to the optimal arm in
each phase. This means that the amount of exploratory pulls required by BR-
CUSUM-UCB(B,E) to identify the optimal arm are greatly reduced, which also
reduces the regret suffered.

Moreover, the management of recurring concepts also mitigate the impact
of false positive detection. This is evident in Figs. 2d and 2d, when two false
positive detections occurring at t ≈ 7, 000 and t ≈ 12, 000 (small spikes in the
figure on the orange arm statistics). While the BR-CUSUM-UCB(B,/) algo-
rithm recovers slowly from these false detections, the BR-CUSUM-UCB(B,E)
algorithm experiences only a slight spike in the mean, while the upper confi-
dence bounds continues to decrease monotonically. This suggests that the reuse
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Fig. 3. Synthetic setting: (a) reward expected value, (b) empirical pseudo-regret over
the learning process. The shaded areas represent the 95% confidence intervals for the
mean.

of information provided by recurrent concept is also useful to recover promptly
to a false positive detection of the CDT adopted in the CD-MAB.

5.2 Synthetic Setting

The first experiment was carried out in a setting with K = 5 arms, on a time
horizon of N = 105 rounds, with BN = 9 break-points, evenly distributed over
time. The expected reward of the arms over time is depicted in Fig. 3a.

Results. Figure 3b shows the empirical pseudo-regret Rn(U) over time of the
different algorithms. In this specific setting, the two passive approaches D-UCB
and SW-UCB are those providing the worst performances, since the value of the
regret gets larger than 3, 500 after t ≈ 30, 000. UCB1, which in principle should
not be able to adapt after changes, is performing better than passive approaches.
This is due to the fact that the arm originally optimal in the first phase F1 is also
optimal in the phases F3, F5, F7, and F9, therefore, the information gathered in
the past are helping in the selection performed by UCB1. Conversely, in the even
index phases, where a different arm is optimal, the UCB1 algorithm experience
an almost linear increase of the regret, due to the fact that it focus on the arm
optimal in the initial phase, overall providing evidence that it is not suited for
such a scenario. After t = 25, 000 rounds the CUSUM-UCB keeps its regret
below all the above-mentioned algorithms, showing the superiority of the active
approaches. Even using this approach, we have that the increase of the regret
is accentuated as soon as a change occurred. This effect is mitigated by BR-
CUSUM-UCB(B,/) thanks to the samples recovered by the B procedure. Indeed,
on average BR-CUSUM-UCB(B,/) is performing better than CUSUM-UCB but
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Table 1. Regret RN (U) at the end of the time horizon N .

Algorithm Synthetic Setting Yahoo! Setting

UCB1 3, 193 ± 17 908 ± 5

D-UCB 17, 758 ± 8 1, 653 ± 1

SW-UCB 9, 307 ± 15 1, 599 ± 1

CUSUM-UCB 2, 719 ± 84 831 ± 35

BR-CUSUM-UCB(B,/) 2, 619 ± 80 805 ± 34

BR-CUSUM-UCB(B, E) 2,273 ± 61 682 ± 21

no statistical evidence for its superior performance is provided, even at the end
of the learning period (the shaded areas are overlapping). Conversely, the BR-
CUSUM-UCB(B, E) is getting a significant advantage in terms of pseudo-regret,
by exploiting the fact that all the even phases are recurrent, as well as all the
odd ones. The proposed approach is able to incrementally gain advantage over
the other algorithms as the number of recurring phases increases.

The regret at the end of the time horizon N is presented in Table 1, second col-
umn. Even if there is no significance that the BR-CUSUM-UCB(B,/) algorithm
performs better than CUSUM-UCB, on average it decreases the pseudo-regret
of ≈4% in the synthetic setting. Instead, the BR-CUSUM-UCB(B, E) provides
a significant improvement of ≈15% over CUSUM-UCB. This suggests that the
information provided by previous phases, in a setting where the environment
presents recurrent phases multiple times, might provide a large improvement to
nonstationary MAB algorithms.

5.3 Yahoo! Setting

The second experiment used a dataset of click percentage of online articles, more
specifically the ones corresponding to the first day (T = 90, 000) of the Yahoo!
Dataset [23]. In this setting the use of a CDT-MAB approach is appropriate
since the user behaviour is known to vary over time, and the recommender
system wants to maximize the visualization of the most interesting article at
each time over the day. We selected K = 5 article at random from the available
ones, and a phase Fφ is defined computing their average click-through rate each
5, 000 seconds and keeping the arms expected reward constant over this period.

Results. The results corresponding to the empirical pseudo-regret are presented
in Fig. 4. Also in this scenario, the two passive approaches, D-UCB and SW-
UCB, are providing the worst performance, with a regret at the end of the time
horizon of almost twice the value of the other considered algorithms. UCB1 is
performing worse than CUSUM-UCB, which means that in this specific setting,
the active approach is a valid solution to tackle this problem. The adoption
of the break-point prediction procedure B used by BR-CUSUM-UCB(B,/) is
not achieving a significant improvement, even when looking at Table 1, third
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Fig. 4. Yahoo! setting: (a) reward expected value, (b) empirical pseudo-regret over the
learning process. The shaded areas are the 95% confidence intervals.

column, where we have a slightly smaller regret a the end of the time horizon of
≈2.5% on average. Conversely, when adopting also a technique to integrate the
samples coming from recurrent concepts, we have a significant improvement in
terms of regret for t > 40, 000 w.r.t. the one of CUSUM-UCB, which leads to a
improvement of ≈15% at the end of the time horizon. This strengthens the idea
that the presented BR-MAB framework outperforms standard active techniques.

6 Conclusion and Future Works

We propose BR-MAB, a general framework extending CD-MAB algorithms to
better handle non-stationary MAB setting. The rationale behind BR-MAB con-
sists in gathering, after having detected a change, all the possible information
that is consistent with the current state of the arm. More specifically, BR-MAB
adopts a break-point prediction technique to recover rewards acquired in between
the detection and the unknown change-time instant, and a procedure to identify
recurrent phases of the arm. Our analysis demonstrates that including informa-
tion collected by the break-point prediction procedure preserves the guarantees
on the pseudo-regret in the CUSUM-UCB case. Moreover, experiments indicate
that identifying recurrent concepts is beneficial in terms of accumulated regret,
also thanks to a better recovery after false positive detections. Ongoing work con-
cerns a further investigation to achieve tighter theoretical guarantees on specific
settings, like the case of changes affecting all the arms simultaneously.
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22. Trovò, F., Paladino, S., Restelli, M., Gatti, N.: Sliding-window Thompson Sampling
for non-stationary settings. J. Artif. Intell. Res. 68, 311–364 (2020)

23. Yahoo!: R6b - Yahoo! front page today module user click log dataset, version 2.0
(2011)

http://arxiv.org/abs/1902.01575
https://hal.archives-ouvertes.fr/hal-00113668/file/MetaEve.pdf
https://hal.archives-ouvertes.fr/hal-00113668/file/MetaEve.pdf


High-Probability Kernel Alignment
Regret Bounds for Online Kernel

Selection

Shizhong Liao and Junfan Li(B)

College of Intelligence and Computing, Tianjin University, Tianjin 300350, China
{szliao,junfli}@tju.edu.cn

Abstract. In this paper, we study data-dependent regret bounds for
online kernel selection in the regime online classification with the hinge
loss. Existing work only achieves O(‖f‖2

Hκ
T α), 1

2
≤ α < 1 regret bounds,

where κ ∈ K, a preset candidate set. The worst-case regret bounds can
not reveal kernel selection improves the performance of single kernel lean-
ing in some benign environment. We develop two adaptive online kernel
selection algorithms and obtain the first high-probability regret bound
depending on A(IT , κ), a variant of kernel alignment. If there is a ker-
nel in the candidate set matching the data well, then our algorithms can
improve the learning performance significantly and reduce the time com-
plexity. Our results also justify using kernel alignment as a criterion for
evaluating kernel function. The first algorithm has a O(T/K) per-round
time complexity and enjoys a O(‖f‖2

Hi∗
√

KA(IT , κi∗)) high-probability

regret bound. The second algorithm enjoys a Õ(β−1
√

TA(IT , κi∗)) per-

round time complexity and achieves a Õ(‖f‖2
Hi∗ K

1
2 β

1
2 T

1
4 A(IT , κi∗)

1
4 )

high-probability regret bound, where β ≥ 1 is a balancing factor and
κi∗ ∈ K is the kernel with minimal A(IT , κ).

Keywords: Model selection · Online learning · Kernel method

1 Introduction

Model selection aims at choosing inductive bias that matches learning tasks,
and thus is central to the learning performance of algorithms. For online kernel
learning, one of the model selection problems is how to choose a suitable RKHS
(or kernel function), in which the data are represented with a low complexity.
A simple representation of the data makes algorithms enjoy superior learning
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performance. This problem is also termed as online kernel selection, related to
the more general online model selection [7,16]. An adversary sends a learner a
sequence of examples {(xt, yt)}T

t=1. The learner chooses a sequence of kernels
{κIt

}T
t=1 from a preset kernel space K, and a sequence of hypotheses {ft}T

t=1. At
each round t, the loss is �(ft(xt), yt). The learner should be competitive with the
unknown optimal RKHS, Hi∗ . We use the regret to measure the performance,

RegT (Hi∗) :=
T∑

t=1

�(ft(xt), yt) − min
f∈Hi∗

T∑

t=1

�(f(xt), yt). (1)

κi∗ ∈ K is the optimal kernel for the data and induces Hi∗ . To this end, a
stronger guarantee is to adapt to any Hκ, κ ∈ K up to a small cost.

To achieve a sub-linear regret bound with respect to (w.r.t) any Hκ, the main
challenge is the high time complexity. The per-round time complexity of evaluat-
ing kernel functions and making prediction would be O(KT ), if we do not limit
the model size, where K is the number of base kernels. Most of existing online ker-
nel selection researches focus on achieving a O(‖f‖2Hκ

Tα), α < 1 regret bound,
and keeping a constant per-round time complexity. One of approaches embeds
implicit RKHSs to relatively low-dimensional random feature spaces [13,17,19],
in which the time complexity of evaluating kernel functions and prediction is lin-
ear with D, the number of random features. The algorithm proposed in [13] has
a O(‖f‖2Hκ

K
1
3 T

2
3 ) expected regret bound and suffers a O(D) time complexity.

Similarly, an algorithm with a O(‖f‖2Hκ

√
T ) regret bound and a O(KD) time

complexity was proposed in [19]. The other approach maintains a fixed budget
with size B [24]. An algorithm with a O(B ln T ) regularized regret bound (or
a Õ(‖f‖2ĤT

2
3 + BT

1
3 ) standard regret bound by setting λ to the optimal value

O(T− 1
3 ) in [24]) and a O(B + KB2/T ) time complexity was proposed, where Ĥ

is a surrogate hypothesis space.
However, the O(‖f‖2Hκ

Tα) regret bound is pessimistic in the sense that (i) it
can not distinguish the convergence rate w.r.t. T when choosing different kernel;
(ii) it can not reveal kernel selection improves the learning performance in some
benign environment. Recalling that the cumulative losses of algorithms are upper
bounded by minf∈Hκ

∑T
t=1 �(f(xt), yt)+O(‖f‖2Hκ

Tα). If the minimal cumulative
losses in Hκ are small, then the regret bound is the dominated term and is hard
to compare among different base kernels. To resolve the two issues, we should
require regret bounds adapting to the data complexity in each RKHS. Thus a
fundamental problem of online kernel selection is how to provide data-dependent
regret bounds. It would be easy to solve the problem without considering the
computational constraints. Our question is whether it is possible to achieve the
two goals simultaneously. In this paper, we answer the question affirmatively.

We define a variant of kernel alignment, denoted by A(IT , κ), for measuring
the complexity of data represented in Hκ, which reveals the matching between
the label matrix and kernel matrix. Different kernel embeds the instances into
different RKHS, and thus induces different data complexity. A good kernel should
be the one that represents data simply. We establish two computationally effi-
cient algorithms achieving high-probability kernel alignment regret bounds. The
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first algorithm achieves a O(‖f‖2Hi∗

√
KA(IT , κi∗)) regret and suffers a O(T/K)

per-round time complexity. The second algorithm enjoys a favorable regret-
performance trade-off, which can provide a Õ(‖f‖2Hi∗ K

1
2 β

1
2 T

1
4 A(IT , κi∗)

1
4 )

regret bound and suffer a Õ(β−1
√

TA(IT , κi∗)) time complexity, where β ≥ 1
is a balancing factor. The algorithms are based on the adaptive and optimistic
online mirror descent framework and two novel model evaluation strategies. We
also reveal a new result: if there is a good kernel in the candidate set, then online
kernel selection can improve the learning performance and computational effi-
ciency significantly relative to online kernel learning using a bad kernel. Numer-
ical experiments on benchmark datasets are conducted to verify our theoretical
results.

1.1 Related Work

Yang et al. [22] proposed the first online kernel selection algorithm, OKS, for
alleviating the high time complexity of offline kernel selection and multi-kernel
learning. For online kernel selection, OKS can provide a O(‖f‖2Hκ

√
KT ) regret

bound and suffers a O(T ) per-round time complexity. Foster et al. [6] studied
online model selection in Banach space, and proposed a multi-scale expert advice
algorithm which achieves regret bounds scaling with the loss range of individual
hypothesis space. The multi-scale algorithm can achieve data-dependent regret
bounds, only if there are computationally efficient sub-algorithms. A related but
different work is online multi-kernel learning [11,19], where algorithms make a
prediction ft(xt) by a convex combination of K base predictions {ft,i(xt)}K

i=1.
Existing algorithms can also not achieve data-dependent regret bounds.

Another related research is achieving data-dependent regret bounds for
online kernel learning. If the loss function satisfies specifical curvature prop-
erty [2,10,23], such as the square loss and the logistic loss, then there exist
computationally efficient online kernel learning algorithms that achieve regret
bound depending on the smallest cumulative losses [23], or the effective dimen-
sion [2,10]. However, the hinge loss does not enjoy the curvature property. Thus
achieving data-dependent regret bounds is more difficult. Our algorithms can be
applied to online kernel learning so long as K only contains a single kernel.

2 Problem Setting

Let IT = {(xt, yt)}t∈[T ] be a sequence of examples, where xt ∈ R
d is an

instance, yt ∈ {−1, 1} and [T ] = {1, . . . , T}. Let κ(·, ·) : R
d × R

d → R be
a positive semidefinite kernel function, and K = {κ1, . . . , κK}. Assuming that
κi(x,x) ∈ [1,Di] for all i ∈ [K] and D = maxi Di. Let Hi = {f |f : Rd → R}
be the RKHS associated with κi, such that (i) 〈f, κi(x, ·)〉Hi

= f(x); (ii)
Hi = span(κi(xt, ·) : t ∈ [T ]). We define 〈·, ·〉Hi

as the inner product in Hi, which
induces the norm ‖f‖Hi

=
√〈f, f〉Hi

. Let �(f(x), y) = max{0, 1−yf(x)} be the
hinge loss, and Dψt,i

(·, ·) : Hi × Hi → R be the Bregman divergence induced by
a strongly convex regularizer ψt,i(·) : Hi → R.
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For a sequence IT , if an oracle gives the optimal kernel κi∗ ∈ K, then we
can learn a sequence of hypotheses in Hi∗ . Lacking such prior, the learner hopes
to develop a kernel selection algorithm and generate a sequence of hypotheses
{ft}T

t=1, which is competitive to that generated by the same algorithm running
in Hi∗ . The regret of the algorithm w.r.t. Hi, i ∈ [K] is defined by (1), where we
replace Hi∗ with Hi. A general goal is to keep RegT (Hi) = O(Poly(‖f∗

i ‖Hi
)Tα),

α < 1. Thus the average loss of the algorithm converges to that of the optimal
hypothesis in Hi∗ . The worst-case optimal regret bound is obtained at α = 1

2 .
If the minimal cumulative losses in all RKHSs are smaller than O(

√
T ), then

such a worst-case regret bound is unsatisfactory, since it can not reveal kernel
selection improves the learning performance. Hence, it is necessary to establish
some kind of regret bound adapting to the complexity of data represented in
RKHS. The representation of (xt, yt) in Hi is (φi(xt), yt), where φi is the fea-
ture mapping induced by κi. We can use the variance of the examples in Hi,
i.e.,

∑T
t=1 ‖ytφi(xt, ·) − μT,i‖2Hi

, where μT,i = 1
T

∑T
τ=1 yτφi(xτ ), to measure the

data complexity [9]. Next, we present a formal definition.

Definition 1 (Alignment). For any sequence of examples IT and kernel func-
tion κi, the alignment is defined as follows

A(IT , κi) :=
T∑

t=1

κi(xt,xt) − 1
T

Y�
T Kκi

YT .

The alignment is an extension of kernel polarization [1], a classical kernel selec-
tion criterion. If Kκi

is the ideal kernel matrix YT Y�
T , then A(IT , κi) = 0. Thus

the alignment can be a criterion for evaluating the goodness of kernel function
κi on IT . Model selection aims at adapting to Hi∗ induced by κi∗ , the unknown
optimal kernel. A natural question is that does there exist some computation-
ally efficient algorithm that achieves high-probability regret bounds depending
on A(IT , κi∗)? Our main contribution is to answer this question affirmatively.

3 A Nearly Optimal High-Probability Regret Bound

We first show a simple algorithm achieving the kernel alignment regret bound
without considering the computational complexity.

3.1 Warm-Up

At a high level, our approach is based on the adaptive and optimistic online
mirror descent framework (AO2MD) [4,18]. We explain AO2MD in a fixed RKHS
Hi. Let Hi = {f ∈ Hi : ‖f‖Hi

≤ U,U ≥ D}. At any round t, let ft,i, f
′
t−1,i ∈ Hi

and ∇t,i := ∇ft,i
�(ft,i(xt), yt). AO2MD running in Hi is defined as follows,

ft,i = arg min
f∈Hi

{〈f, ∇̄t,i〉 + Dψt,i
(f, f ′

t−1,i)
}

, (2)

f ′
t,i = arg min

f∈Hi

{〈f,∇t,i〉 + Dψt,i
(f, f ′

t−1,i)
}

, (3)
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where {f ′
t,i}T−1

t=0 is a sequence of auxiliary hypotheses. The solutions of (2) and
(3) are shown in supplementary material. The main idea of AO2MD is to select
an optimistic estimator of ∇t,i, denoted by ∇̄t,i, and execute the first mirror
updating (2). After obtaining ft,i, we output the prediction ŷt = sign(ft,i(xt)).
When receiving the label yt, we observe the true gradient ∇t,i and execute the
second mirror updating (3). If the data evolves slowly, then it is possible to
find a good estimator ∇̄t,i. The final regret bound depends on the cumulative
difference

∑T
t=1 ‖∇t,i − ∇̄t,i‖2Hi

, where we define ∇̄1,i = 0.
A simple approach for obtaining a regret bound depending on the alignment

is to reduce online kernel selection to a problem of prediction with expert advice.
Let E(K) be an algorithm for prediction with expert advice. We can instantiate
an AO2MD algorithm in each Hi, i ∈ [K], and then aggregate the K algorithms
with E(K). The following theorem shows the data-dependent regret bound.

Theorem 1. Let ∇̄t,i = ∇ri(t),i where ri(t) = maxτ{τ < t : yτfτ,i(xt) < 1} and
E(K) be some algorithm for expert advice. There exists an online kernel selection
algorithm such that, for all κi ∈ K, with probability at least 1 − δ,

RegT (Hi) = O

(√
LT (f∗

i ) ln K ln
ln(2T )

δ
+ (‖f∗

i ‖2Hi
+ 1)

√
A(IT , κi)

)
.

where LT (f∗
i ) = minf∈Hi

∑T
t=1 �(f(xt), yt) ≤ A(IT , κi). The per-round time

complexity of the algorithm is O(TK).

To construct the algorithm, we just let E(K) be the weighted majority algo-
rithm [3] that enjoys a high-probability small-loss regret bound (We give a proof
in supplementary material). The algorithm description is presented in supple-
mentary material due to the space limit. The O(TK) per-round time complexity
comes from the unbounded number of support vectors and running K AO2MD
algorithms. For a large number of base kernels, the time complexity is prohibitive.
Thus such a simple algorithm is not practical. Next, we develop a more efficient
algorithm enjoying a O(T/K) per-round time complexity.

3.2 A More Efficient Algorithm

The simple algorithm in Theorem 1 evaluates all of the base kernels at each
round. Thus the time complexity is linear with K. To resolve this issue, an intu-
itive approach is to reduce online kernel selection to a K-armed bandit problem
[22]. However, such an approach induces two new technique challenges, i.e.,

(i) If ∇̄t,i = ∇ri(t),i, then we can not obtain a regret bound depending on∑T
t=1 ‖∇t,i − ∇̄t,i‖2Hi

, which has been proved in [21].
(ii) The true gradient ∇t,i can not be observed unless κi is selected. If we use an

importance-weighted estimator, such as ∇t,i/pt,i, then the second moment
is linear with maxt∈[T ]

1
pt,i

, which could be much large.



72 S. Liao and J. Li

To solve the first challenge, we choose the optimistic estimator ∇̄t,i := μt−1,i,

where μt−1,i =
∑t−1

τ=1
−yτ

t−1 κi(xτ , ·), t ≥ 2. However, computing μt−1,i requires to
store all of the received examples. To avoid this issue, we use the “Reservoir
Sampling (RS)” technique [8,20] to construct an unbiased estimator of μt−1,i,
denoted by μ̃t−1,i. Let V be a fixed budget, which we call “Reservoir”. At the
beginning of round t, let μ̃t−1,i = − 1

|V |
∑

(x,y)∈V yκi(x, ·) and μ̃0,i = 0. Thus
we define the optimistic estimator ∇̄t,i := μ̃t−1,i. The RS technique constructs
V as follows. At the end of round t, (xt, yt) is added into V with probability
min{1, M

t }, where M > 1 is the maximal size of V . If |V | = M and we are to
add the current example, then an old example should be removed uniformly.
Note that we just need to maintain a single V , since ∇̄t,i, i = 1, . . . , K can be
computed by the same examples.

To solve the second challenge, assuming that we can pay additional compu-
tational cost for obtaining more information. In this way, we define a K-armed
bandit problem with an additional observation. Next we propose a new decou-
pling exploration-exploitation scheme for obtaining more information. Let ΔK−1

be a (K − 1)-dimensional probability simplex. At each round t,

– Exploitation: select a kernel κIt
, It ∼ pt ∈ ΔK−1,

– Exploration: uniformly select a kernel κJt
∈ K.

Such an exploration procedure makes κJt
independent of κIt

. Based on the
exploration procedure, we construct the following variance-reduced estimator,

∇̃t,i =
∇t,i − ∇̄t,i

P[i = Jt]
Ii=Jt

+ ∇̄t,i, ∀i ∈ [K].

In this way, the second moment of ∇̃t,i is linear with 1/P[i = Jt] = K. A more
intuitive estimator should incorporate the information of κIt

. However, we aban-
don the gradient information ∇t,It

for the goal of keeping a O(T/K) per-round
time complexity. AO2MD is as follows,

ft,i = arg min
f∈Hi

{〈f, ∇̄t,i〉 + Dψt,i
(f, f ′

t−1,i)}, (4)

f ′
t,i = arg min

f∈Hi

{〈f, ∇̃t,i〉 + Dψt,i
(f, f ′

t−1,i)}. (5)

Let ψt,i(f) = 1
2λt,i

‖f‖2Hi
. Then the projection of any g ∈ Hi onto Hi is defined

by f = min{1, 1
‖g‖Hi

U}g.
Let M(K) be some algorithm for a K-armed bandit problem, which outputs

pt at the beginning of round t. We first select a kernel κIt
, It ∼ pt, and compute

ft,It
using the first mirror updating (4). After that, we output the prediction

ŷt = sign(ft(xt)), where ft = ft,It
. Then we explore another kernel κJt

for
obtaining the gradient information ∇t,Jt

. The final step is to update pt. To this
end, we define some criterion for evaluating each base kernel. Since |ft,i(xt)| =
|〈ft,i, κi(xt, ·)〉| ≤ U

√
D, we have �(ft,i(xt), yt) ≤ 1+U

√
D. Let ct,i = �(ft,i(xt),yt)

1+U
√

D
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be the criterion. The denominator scales the criterion to [0, 1]. At the end of
round t, we send ct = (ct,1IIt=1, . . . , ct,KIIt=K) to M(K).

We name this approach B(AO)2KS (Bandit with Additional Observations for
Adaptive Online Kernel Selection) and present the pseudo-code in Algorithm1.

Algorithm 1. B(AO)2KS
Input: λi, i = 1, . . . , K, D, U , M .
Initialization: ∀κi ∈ K, f ′

0,i = 0, V = ∅.
1: for t = 1, 2, . . . , T do
2: Select a kernel κIt ∼ pt (pt is output by M(K)),
3: Compute ∇̄t,It = −1

|V |
∑

(x,y)∈V yκIt(x, ·),
4: Update ft,It according to (4) and output prediction ŷt = sign(ft,It(xt)),
5: Sample a kernel κJt ∈ K uniformly,
6: for κi ∈ K do
7: if κi = κJt then
8: Compute ∇̄t,Jt = −1

|V |
∑

(x,y)∈V yκJt(x, ·),
9: Update ft,Jt according to (4) and compute ∇t,Jt ,

10: end if
11: Compute estimator ∇̃t,i = K(∇t,i − ∇̄t,i) · Ii=Jt + ∇̄t,i,
12: Update f ′

t,i according to (5),
13: end for
14: Compute ct,It = 1

1+U
√

D
max{0, 1 − ytft,It(xt)},

15: Send ct = (ct,1IIt=1, . . . , ct,KIIt=K) to M(K),
16: Sample a Bernoulli random variable δt ∼ Ber(1, M/t),
17: if δt = 1 and t > M , then sample (xjt , yjt) ∈ V and V = V ∪(xt, yt)\(xjt , yjt),
18: if δt = 1 and t ≤ M , then V = V ∪ (xt, yt),
19: end for

3.3 Regret Bound

We first establish an important technique lemma about the reservoir estimator.

Lemma 1. Let T > M . For all i = 1, . . . , K, with probability at least 1 − δ,

T∑

t=1

‖μ̃t,i − μt,i‖2Hi
≤ A(IT , κi)

M
ln

T

M
+

8Di

3
ln

K

δ
+

√
8DiA(IT , κi) ln T ln K

δ

M
.

Lemma 1 is an extension of the statistic guarantee of reservoir sampling
estimator in [8], where the expected unbiasedness of μ̃t,i was proved. Next we
present a sufficient condition for obtaining the data-dependent regret bound,
which gives a strong constraint on the bandit algorithm M(K).

Assumption 1. Let ct ∈ [0, 1]K be any loss vector. For any K-armed adversar-
ial bandit problem, with probability at least 1 − δ, the regret of M(K) satisfies

T∑

t=1

ct,It
− min

i∈[K]

T∑

t=1

ct,i = Õ
(√

KCT,∗
)

, CT,∗ = min
i∈[K]

T∑

t=1

ct,i.



74 S. Liao and J. Li

Assumption 1 requires M(K) achieving a high-probability small-loss bound.
There are some superior bandit algorithms satisfying Assumption 1, such as
GREEN-IX [15] and the online mirror descent based algorithm proposed in [12].

The following theorem gives the high-probability regret bound induced by
the hypothesis sequence {ft,i}T

t=1 ⊆ Hi, i = 1, . . . , K.

Theorem 2. Let ψt,i(f) = 1
λi

‖f‖2Hi
and δ ∈ (0, 1). For all base kernel κi ∈ K

and any f ∈ Hi, with probability at least 1 − 4δ, the regret of the hypothesis
sequence {ft,i}T

t=1 induced by B(AO)2KS satisfies

LT (f1:T,i) − LT (f) ≤ ‖f‖2Hi

2λi
+ 11λi

√
DiKgi(T,M)A(IT , κi) ln

3
4

K

δ

+ 20λiK
2UDi ln

K

δ
+ 13K

√
DiU ln

K

δ
+ 7U

√
Kgi(T,M)A(IT , κi) ln

3
4

K

δ
,

where LT (f1:T,i) =
∑

t �(ft,i(xt), yt), LT (f) =
∑

t �(f(xt), yt) and gi(T,M) =
M+Di ln

T
M

M . Let λi = (22
√

DiKgi(T,M)A(IT , κi))− 1
2 . The regret is

LT (f1:T,i) − LT (f) = Õ

(
(‖f‖2Hi

+ U)
√

KA(IT , κi) ln
3
4

K

δ

)
.

Combining Assumption 1 and Theorem 2, we obtain the regret induced by the
hypothesis sequence {ft}T

t=1 w.r.t. any f ∈ Hi, i = 1, . . . , K.

Theorem 3. Under the condition of Assumption 1 and Theorem 2, for all κi ∈
K, with probability at least 1 − 5δ, the regret of B(AO)2KS w.r.t. Hi satisfies

RegT (Hi) = Õ

(√
LT (f∗

i )K + (‖f∗
i ‖2Hi

+ U)
√

KA(IT , κi) ln
3
4

K

δ

)
,

where f∗
i = arg minf∈Hi

LT (f), and LT (f∗
i ) ≤ A(IT , κi).

Compared with Theorem 1, the regret of B(AO)2KS only increases by a fac-
tor of order O(

√
K), which is nearly optimal. If we just consider online kernel

learning using some non-optimal kernel κi, then B(AO)2KS obtains a regret
bound of order O(‖f∗

i ‖2Hi

√A(IT , κi)). Let κi∗ be the optimal kernel. After exe-
cuting online kernel selection, B(AO)2KS achieves a O(‖f∗

i∗‖2Hi∗

√
KA(IT , κi∗))

regret. If κi∗ matches well with IT , i.e., A(IT , κi∗) is small, then B(AO)2KS
improves the learning performance significantly relative to online kernel learn-
ing using κi. Existing O(‖f∗

i ‖2Hi
Tα) regret bounds may not reveal that ker-

nel selection improves the learning performance, since we can not distinguish
O(‖f∗

i ‖2Hi
Tα) from O(‖f∗

i∗‖2Hi∗ Tα). Besides, our result also reveals that the
information-theoretic cost induced by executing online kernel selection rather
than executing online kernel learning using κi∗ is of order Õ(

√
LT (f∗

i )K), which
could be very small.
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3.4 Time Complexity Analysis

The computational cost of B(AO)2KS is dominated by computing ∇t,i and the
projection operation. Let Si be the set of support vectors used to construct
{ft,i}T

t=1. The time complexity of computing ∇t,i depends on |Si|. The sup-
port vectors in Si comes from (i) reservoir updating, and (ii) the second mirror
updating (5). After round T − 1, the updating times of reservoir is of order
O(M log T ), which is proved by Lemma 7 in supplementary material. At any
round t, (xt, yt) is added into Si via the second mirror updating only if κi = κJt

.
Let Si,1 = {(xt, yt) ∈ Si : κi = κJt

}. Since P[i = Jt] = 1/K, it is easy to prove
that |Si,1| = O(T/K) with a high probability. The projection operation can be
executed incrementally, which only induces a O(M) time complexity. The incre-
mental computation procedure is presented in supplementary material. Thus the
per-round time complexity of B(AO)2KS is O(T/K).

Remark 1. For online classification with the hinge loss, OKS [22] achieves a
O(‖f∗

i ‖2Hi

√
KT ) expected regret bound and suffers a O(T ) per-round time com-

plexity. Recently, ISKA [24] provides a Õ(‖f∗
i ‖2ĤT

2
3 + BT

1
3 ) expected regret

bound, where Ĥ = ∪K
i=1Hi, and enjoys a O(B + KB2/T ) per-round time com-

plexity. The online multi-kernel learning algorithm, Raker [19], uses random
feature technique to approximate kernel function, which enjoys a O(‖f∗

i ‖2Hi

√
T )

regret bound and suffers a O(KD) per-round time complexity where D is the
number of random features. Raker can provide a O(

√
T ) regret bound only if

D = Ω(T ), which yields a O(KT ) per-round time complexity. The same weak-
ness of the above three algorithms is that the O(‖f∗

i ‖2Hi
Tα), 1

2 ≤ α < 1 regret
bound is worse than O(‖f∗

i ‖2Hi

√
KA(IT , κi)) in the case of A(IT , κi) = o(T/K).

In the next section, we will propose another algorithm, which relates the time
complexity with the alignment and could further reduce the time complexity.

4 Regret-Performance Trade-Off

The computational cost of B(AO)2KS comes from the unbounded number of
support vectors. Although many effective approaches have been proposed to
solve this issue, such as budgeted online kernel leaning [5,25], Nyström method
[2] and random feature technique [14]. However, existing approaches can not
provide regret bounds relying on the alignment. To resolve the two issues, we will
propose a novel budgeted AO2MD for online kernel learning. The keys include
(i) how to select the optimistic estimator, and (ii) how to maintain the budget,
especially construct an adaptive example adding strategy.

To solve the first challenge, we still use the reservoir sampling technique to
construct the optimistic estimator ∇̄t,i := μ̃t−1,i. The key is the second challenge.
Let Si be the budget constructing the hypothesis sequence {ft,i}T

t=1. We propose
an adaptive sampling strategy. At the beginning of round t, we still execute the
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first mirror updating (4) for obtaining ft,i. If ytft,i(xt) < 1, then we observe the
gradient ∇t,i and define a Bernoulli random variable bt,i satisfying

P[bt,i = 1] =
‖∇t,i − ∇̄t,i‖Hi

Zt,i
, Zt,i = βi

(‖∇t,i − ∇̄t,i‖Hi
+ ‖∇̄t,i‖Hi

)
,

where Zt,i is a normalizing constant, and βi ≥ 1 is a balancing factor used
to balance the regret and time complexity. If bt,i = 1, then we add the current
example into the budget, i.e. Si = Si∪{(xt, yt)}. Otherwise, Si keeps unchanged.

Different from B(AO)2KS, we reduce online kernel selection to a problem
of prediction with expert advice. Let E(K) be the algorithm for expert advice
in Theorem 1. Although evaluating all of the base kernels increases the time
complexity by K times, the affection can be counteracted by tuning the balancing
factor. At the beginning of round t, we first select κIt

, It ∼ pt and output
ŷt = sign(ft(xt)), where ft = ft,It

. Then we explore all of the unselected kernels.
Similarly, we update ft,j and compute the gradient ∇t,j . To update the auxiliary
hypothesis, we define the variance-reduced gradient estimator ∇̃t,i as follows

∇̃t,i = ∇t,iIytft,i(xt)≥1 +
[∇t,i − ∇̄t,i

P[bt,i = 1]
Ibt,i=1 + ∇̄t,i

]
Iytft,i(xt)<1,∀i = 1, . . . , K.

To update the probability distribution pt, let ct,i = max{0,1−ytft,i(xt)}
1+U

√
D

. At the
end of round t, we send ct = (ct,1, . . . , ct,K) to E(K).

We name this approach EA2OKS (Expert Advice for Adaptive Online Kernel
Selection) and present the pseudo-code in Algorithm2.

Algorithm 2. EA2OKS
Input: λi, βi, i = 1, . . . , K, D, U , M .
Initialization: ∀κi ∈ K, f ′

0,i = 0, Si = ∅, V = ∅.
1: for t = 1, 2, . . . , T do
2: Select a kernel κIt ∼ pt (pt is output by E(K)),
3: Compute ∇̄t,It = −1

|V |
∑

(x,y)∈V yκIt(x, ·),
4: Update ft,It according to (4), and output prediction ŷt = sign(ft,It(xt)),
5: for κi ∈ K do
6: if κi �= κIt , then update ft,i according to (4),
7: if ytft,i(xt) < 1 then
8: Compute P[bt,i = 1] = ‖∇t,i − ∇̄t,i‖Hi/Zt,i,
9: Sample bt,i ∼ Ber(P[bt,i = 1], 1),

10: if bt,i = 1, then Si = Si ∪ (xt, yt),

11: Compute ∇̃t,i =
∇t,iIbt,i=1

P[bt,i=1]
+

(
1 − Ibt,i=1

P[bt,i=1]

)
∇̄t,i,

12: Updating f ′
t,i according to (5),

13: Compute ct,i = 1

1+U
√

D
max{0, 1 − ytft,i(xt)},

14: end if
15: end for
16: Send ct = (ct,1, . . . , ct,K) to E(K),
17: Update Reservoir V (line 16-18 in Algorithm 1),
18: end for
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4.1 Regret Bound

Theorem 4 gives an upper bound on the number of support vectors in each Si,
which implies the per-round time complexity of EA2OKS.

Theorem 4. For all i = 1, . . . , K, with probability at least 1 − 2δ, EA2OKS
guarantees that the number of support vectors in Si satisfies

|Si| ≤ 4M ln
T

M

√
ln

K

δ
+

4
3

ln
K

δ
+

10
βi

√
M + Di ln T

M

M
TA(IT , κi) ln

3
4

(
K

δ

)
.

The time complexity of EA2OKS depends on the alignment A(IT , κi) imply-
ing that selecting different kernel function not only has an impact on the learning
performance of online kernel learning algorithms, but also the time complexity.
More discussions are shown in Remark 2. Next we present the high-probability
regret bound induced by the hypothesis sequence {ft,i}T

t=1, i = 1, . . . , K.

Theorem 5. Let ψt,i(f) = 1
λi

‖f‖2Hi
, βi ≥ 1 and δ ∈ (0, 1). For all base kernel

κi ∈ K and any f ∈ Hi, with probability at least 1−4δ, the regret of the hypothesis
sequence {ft,i}T

t=1 induced by EA2OKS satisfies

LT (f1:T,i) − LT (f) ≤ ‖f‖2Hi

2λi
+ 18λiβi

√
Digi(M,T )TA(IT , κi) ln

K

δ
+

(6λiβ
2
i + 7Uβi)Dθ

i ln
K

δ
+ 9(2λiβ

3
2
i + Uβ

1
2
i )D

θ
2
i gi(M,T )

1
4 T

1
4 A(IT , κi)

1
4 ln

3
4

K

δ
,

where gi(T,M) = (M + Di ln T
M )/M and θ ∈ {1/2, 2}. Let βi <

√
TA(IT , κi)

and λi = (36βi

√
Tgi(M,T )A(IT , κi))− 1

2 . The regret is thus of order

LT (f1:T,i) − LT (f) = Õ

(
(‖f‖2Hi

+ U)
√

βiT
1
4 A(IT , κi)

1
4 ln

3
4

K

δ

)
.

Now we can show the final high-probability regret bound.

Theorem 6. Let E(K) be the algorithm in Theorem 1. Under the condition of
Theorem 5, for all base kernel κi ∈ K, with probability at least 1 − 5δ, the regret
of EA2OKS w.r.t. Hi satisfies

RegT (Hi) = Õ

(√
LT (f∗

i ) ln
K

δ
+ (‖f∗

i ‖2Hi
+ U)

√
βiT

1
4 A(IT , κi)

1
4 ln

3
4

K

δ

)
.

The per-round time complexity is of order Õ
(∑K

i=1 β−1
i

√
TA(IT , κi)

)
.

Remark 2 (regret-performance trade-off). Theorem 6 reveals that the per-round
time complexity depends on 1/βi, and the regret only depends on

√
βi. Thus βi

balances the regret and time complexity. If βi = Kε, ε ≥ 0, a universal value,
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then the time complexity is Õ
(
K−ε

∑K
i=1

√
TA(IT , κi)

)
, while the regret only

increases by a factor of K
ε
2 . For ε ≥ 2, EA2OKS is more efficient than B(AO)2KS,

but also suffers larger regret. A better approach of setting βi is to incorporate
the information of A(IT , κi). A more interesting result is shown in Corollary 1.

Corollary 1. Let the optimal kernel κi∗ = argmini∈[K]A(IT , κi), and the bal-
ance factor βi satisfy the following condition

βi

√
A(IT , κi∗) = Kβ

√
A(IT , κi), β ≥ 1, i = 1, . . . , K.

The regret of EA2OKS satisfies, with probability at least 1 − 5δ,

RegT (Hi) =

⎧
⎪⎨

⎪⎩

Õ
(√

LT (f∗
i∗)K ln K

δ + (‖f∗
i∗‖2Hi∗ + U)β

1
2
KT

1
4 A(IT , κi∗)

1
4

)
i = i∗

Õ

(√
LT (f∗

i )K ln K
δ + (‖f∗

i ‖2Hi
+ U)β

1
2
KT

1
4

A(IT ,κi)
1
2

A(IT ,κi∗ )
1
4

)
i �= i∗

where βK = Kβ. The per-round time complexity is of order O( 1
β

√
TA(IT , κi∗)).

For kernel selection, it is unnecessary to compare with all of the base kernels.
Any algorithm just needs to be competitive with the case in which we know
the optimal kernel κi∗ in advance. Thus, we allow the algorithm to achieve a
worse regret bound w.r.t. the non-optimal RKHS Hi, i �= i∗. The significance
of Corollary 1 is that EA2OKS can keep the same regret bound w.r.t. Hi∗ , and
reduce the per-round time complexity to O(β−1

√
TA(IT , κi∗)).

We analyze the time complexity. According to Theorem 4, the exact time
complexity of EA2OKS is of order O

(∑K
i=1 |Si|

)
. Let M = O(ln T ). Then the

time complexity of EA2OKS is the one claimed In Remark 2 or the comments
after Corollary 1. We omit the time complexity of projection operation, since it
can be executed incrementally in O(M) time.

4.2 Budgeted EA2OKS

Inspired by Corollary 1, we can set a same threshold for all Si, i.e., |Si| ≤ B.
At the end of round t − 1, if |Si| = B, then we reset Si = ∅ and f ′

t−1,i = 0.
We name the algorithm BEA2OKS (Budgeted EA2OKS). Due to BEA2OKS is
much similar with EA2OKS and the space limit, the algorithm description is
presented in supplementary material. Combining Theorem 4 and Corollary 1,
we further obtain Corollary 2.

Corollary 2. Let κi∗ = argmini∈[K]A(IT , κi). If B satisfies the condition

B = 4M ln
T

M

√
ln

K

δ
+

4
3

ln
K

δ
+

10
βi∗

√
gi∗(M,T )TA(IT , κi∗) ln

3
4

(
K

δ

)
,

and βi∗ = K, then with probability at least 1 − 5δ, Si∗ will not restart, and

RegT (Hi∗) = Õ

(√
LT (f∗

i∗)K ln
K

δ
+ (‖f∗

i∗‖2Hi∗ + U)K
1
2 T

1
4 A(IT , κi∗)

1
4

)
.
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The per-round time complexity of BEA2OKS is of order O(
√

TA(IT , κi∗)).

According to Corollary 2 and 1, we claim that BEA2OKS and EA2OKS (let
β = 1) are equivalent in the sense that they enjoy the same regret bound w.r.t.
Hi∗ and the same per-round time complexity. The superiority of BEA2OKS is
that it only needs to tune B, while EA2OKS needs to tune βi, i = 1, . . . , K.

5 Experiments

In this section, we conduct experiments to verify our theoretical results.

5.1 Experimental Setting

We only verify B(AO)2KS, EA2OKS and BEA2OKS, but do not run the algo-
rithm in Theorem 1, since the O(KT ) time complexity is prohibitive. For
B(AO)2KS, let M(K) be GREEN-IX [15]. For EA2OKS and BEA2OKS, let
E(K) be the exponentially weighted average algorithm (chapter 4.2 in [3]) whose
learning rate (Corollary 2.4 in [3]) is tuned by doubling trick. We use four binary
classification datasets downloaded from LIBSVM website1, including w7a (Num:
24692, Fea: 300), w8a (Num: 49749, Fea: 300), a9a (Num: 48842, Fea: 123) and
ijcnn1 (Num: 141691, Fea: 22). Let K = {σi}K

i=1 contain K Gaussian kernels,
where κi(u,v) = exp(−‖u − v‖2/(2σ2

i )). We implement all algorithms with R
on a Windows machine with 2.5 GHz Core i7 CPU, execute each experiment 10
times with random permutation of all datasets and average all of the results2.

We will execute three experiments. For all experiments, let M = �ln T �
and U = 20. D = 1 for Gaussian kernel. The first experiment aims at veri-
fying the influence of K on B(AO)2KS. We choose 3 groups of K, denoted by
K12 = {2−2:0.5:3.5}, K8 = {2−1:0.5:2.5} and K4 = {2−1:1:2}, and name the corre-
sponding algorithm B(AO)2KS-12, B(AO)2KS-8 and B(AO)2KS-4. According to
Theorem 2, the optimal learning rate λi should be Õ(1/

√
KA(IT , κi)). However,

B(AO)2KS is not parameter-free. In this paper, we set λi = 1/
√

KA(IT , κi∗)
for all i ∈ [K], and set A(IT , κi∗) =

√
T which is an optimistic estimator.

The second experiment aims at proving the advantage of the data-dependent
regret bounds and time complexity. The baseline algorithms include two online
kernel selection algorithms: OKS [22] and ISKA [24], and two online kernel learn-
ing algorithms: Forgetron-σ [5] and BOGD-σ [25]. For Forgetron-σ and BOGD-σ,
we set σ to the best value in hindsight. The other hyper-parameters are set to
the recommended value in original papers. For EA2OKS and BEA2OKS, we
set βi = K

3
2 . Although the optimal B is unknown for BEA2OKS, a feasible

approach is to set a slightly large value, which ensures Si∗ will not restart and
Corollary 2 holds on. We select K = {2−2:1:3}. For fair comparison, we set the
stepsize of gradient descent (or λi in this paper) to 5/

√
T for all algorithms.

1 https://www.csie.ntu.edu.tw/%7Ecjlin/libsvmtools/datasets/.
2 The codes are available at https://github.com/JunfLi-TJU/KARegret-OKS.

https://www.csie.ntu.edu.tw/%7Ecjlin/libsvmtools/datasets/
https://github.com/JunfLi-TJU/KARegret-OKS
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The third experiment shows the influence of the balancing factor βi and
budget B on EA2OKS and BEA2OKS, and compares the two algorithms further.
We adopt the same K and λi used in the second experiment.

5.2 Experimental Results

Table 1 shows the results of the first experiment. Overall, the experimental results
coincide with our theoretical analyses (Theorem 3). If K12, K8 and K4 contain
the same optimal kernel, then the smaller K is, the better learning performance
and the longer running time is. The result of B(AO)2KS-12 on a9a does not
satisfy the rule. The reason is that K12 contains many kernels performing badly
on a9a which leads to a large number of support vectors.

Table 1. The influence of K on B(AO)2KS

Algorithm w8a a9a

Mistake (%) Time (s) Mistake (%) Time (s)

B(AO)2KS-4 2.15 ± 0.09 444.88 ± 23.81 12.72 ± 0.08 320.55 ± 5.63

B(AO)2KS-8 2.53 ± 0.04 271.27 ± 13.57 15.39 ± 0.12 216.96 ± 4.53

B(AO)2KS-12 2.79 ± 0.03 245.85 ± 8.49 17.47 ± 0.18 226.98 ± 6.05

Table 2 reports the results of the second experiment. In the second column, B
is the budget size and |Si∗ | = mini |Si| in EA2OKS. Note that we use the kernel
with minimal |Si| as a proxy for the optimal kernel κi∗ . B(AO)2KS enjoys the
best learning performance, but also suffers a slightly larger time complexity. OKS
has the longest running time on all datasets. For BOGD-σ and Forgetron-σ, we
select the best σ in hindsight for constructing strong baseline algorithms, which
is unprocurable in practice. Note that BEA2OKS enjoys the same prediction
performance with EA2OKS, and has lower running time, since we set B ≈ |Si∗ |
in EA2OKS. Overall, BEA2OKS provides the best regret-time complexity trade-
off except for the ijcnn1 dataset on which ISKA performs better.

Table 3 shows the results of the third experiment. #rs is the average restart
times of Si∗ in BEA2OKS, or the average |Si∗ | in EA2OKS. For a same β,
BEA2OKS keeps the same prediction accuracy with EA2OKS, and improves the
efficiency significantly. The reason is that #rs is 0. Thus BEA2OKS just needs
a small budget to keep the regret w.r.t. Hi∗ achieved by EA2OKS. In this case,
there is no sense to increase B. For a same B, the smaller β is, the better learning
performance and the longer running time is. The experimental results coincide
with Corollary 2.
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Table 2. Performance comparison among different online kernel selection algorithms

Algorithm B-|Si∗ | w7a B-|Si∗ | w8a

Mistake (%) Time (s) Mistake (%) Time (s)

BOGD-σ 500 2.75 ± 0.03 44.66 800 3.26 ± 0.34 143.31

Forgetron-σ 500 5.29 ± 0.07 34.90 800 4.74 ± 0.06 119.92

OKS – 2.55 ± 0.16 201.26 – 2.38 ± 0.10 753.08

ISKA 250 4.72 ± 2.20 53.73 400 3.16 ± 0.24 181.27

B(AO)2KS – 2.56 ± 0.06 100.57 – 2.48 ± 0.07 364.27

EA2OKS 127 3.12 ± 0.04 112.21 201 3.03 ± 0.02 394.78

BEA2OKS 200 3.17 ± 0.08 40.74 400 3.02 ± 0.02 116.56

Algorithm B-|Si∗ | a9a B-|Si∗ | jicnn1

Mistake (%) Time (s) Mistake (%) Time (s)

BOGD-σ 1500 17.85 ± 0.06 114.31 3500 9.57 ± 0.00 149.93

Forgetron-σ 1700 24.38 ± 0.16 170.34 3500 13.04 ± 0.08 164.99

OKS – 18.71 ± 0.22 715.39 – 8.90 ± 0.12 477.14

ISKA 1400 16.95 ± 0.05 296.29 1500 8.48 ± 0.05 135.79

B(AO)2KS – 15.16 ± 0.11 308.75 – 7.58 ± 0.17 391.48

EA2OKS 1062 17.88 ± 0.23 267.68 1025 8.75 ± 0.11 227.43

BEA2OKS 1200 17.83 ± 0.16 167.12 1500 8.79 ± 0.16 188.20

Table 3. Parameter influence on EA2OKS and BEA2OKS on w8a dataset

Algorithm Mistake (%) Time (s) #rs Mistake (%) Time (s) #rs

EA2OKS β = K β = K2

2.99 ± 0.02 1060.17 ± 26.0 343 3.35 ± 0.15 215.28 ± 6.15 140

BEA2OKS β = K, B = 400 β = K2, B = 400

2.99 ± 0.02 132.33 ± 2.28 0 3.43 ± 0.19 123.92 ± 5.96 0

BEA2OKS β = K, B = 600 β = K2, B = 600

3.00 ± 0.03 174.77 ± 2.20 0 3.43 ± 0.22 144.39 ± 7.68 0

6 Conclusion

In this paper, we develop several computationally efficient online kernel selection
algorithms, which achieve the first kernel alignment regret bound improving
previous worst-case regret bounds. Theoretical analyses reveal that if there is
a good kernel in the candidate set, then our algorithms can not only improve
the learning performance relative to single kernel learning, but also suffer a low
time complexity. Experimental results verify the effectiveness and efficiency of
our algorithms. An important question is whether it is possible to achieve the
O(‖f‖2Hi∗

√A(IT , κi∗)) regret bound with a O(A(IT , κi∗)) time complexity.
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Abstract. Off-policy ensemble reinforcement learning (RL) methods
have demonstrated impressive results across a range of RL benchmark
tasks. Recent works suggest that directly imitating experts’ policies in a
supervised manner before or during the course of training enables faster
policy improvement for an RL agent. Motivated by these recent insights,
we propose Periodic Intra-Ensemble Knowledge Distillation (PIEKD).
PIEKD is a learning framework that uses an ensemble of policies to act
in the environment while periodically sharing knowledge amongst poli-
cies in the ensemble through knowledge distillation. Our experiments
demonstrate that PIEKD improves upon a state-of-the-art RL method
in sample efficiency on several challenging MuJoCo benchmark tasks.
Additionally, we perform ablation studies to better understand PIEKD.

Keywords: Ensemble learning · Reinforcement learning · Distillation

1 Introduction

In reinforcement learning (RL), the goal is to train a policy to interact with an
environment, such that this policy yields the maximal expected return. While
typical RL methods merely train a single parameterized policy, ensemble meth-
ods that share experiences amongst several function approximators [24,25] have
been able to achieve superior performance in the context of reinforcement learn-
ing (RL). Unlike typical RL methods, Osband et al. [25] train an ensemble of
neural network (NN) policies with distinct initial weights (i.e. parameters of
NNs) simultaneously, by sharing experiences amongst the policies. These shared
experiences are collected by first randomly selecting a policy from the ensemble
to perform an episode. This episode of experiences is added to a shared expe-
rience replay buffer [20] used to train all members of the ensemble. Learning
from shared experience allows for more efficient policy learning, since randomly
initialized policies result in extensive exploration in the environment. Though
reinforcement learning from shared experiences has shown considerable improve-
ment over single-policy RL methods, other lines of work [13] show that directly
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Fig. 1. An overview of Periodic Intra-Ensemble Knowledge Distillation. We select a
policy from the ensemble to act in the environment, and use this experience to update
all policies. Periodically, we distill the best-performing policy to the rest of the ensem-
ble.

imitating an expert’s experiences in a supervised manner can accelerate rein-
forcement learning.

Motivated by these results that demonstrate that direct imitation can acceler-
ate RL, we propose Periodic Intra-Ensemble Knowledge Distillation (PIEKD),
a framework that not only trains an ensemble of policies via common experi-
ences but also shares the knowledge of the best-performing policy amongst the
ensemble. Previous works on ensemble RL have shown that randomly initial-
ized policies can result in adequate behavioral diversity [24]. Thus PIEKD first
begins by initializing each policy in the ensemble with different weights to per-
form extensive exploration in the environment. As the behaviors of these policies
are diverse in nature, at any given time during the course of training, one policy
is naturally superior to the other policies. This policy is then used to improve the
quality of the other policies in the ensemble, without having to improve solely
through experience. To use the best policy to improve other policies, PIEKD
employs knowledge distillation [14], which is effective at transferring knowledge
between neural networks. By using knowledge distillation, we can encourage poli-
cies in the ensemble to act in a manner similar to the best policy, enabling them
to rapidly improve and continue optimizing for the optimal policy from better
starting points. Prior work [26] has shown that we can successfully distill several
specialized policies into a single multitask policy, demonstrating that distillation
can successfully augment behaviors into a policy without destroying existing
knowledge. These results suggest that in PIEKD, despite the use of distillation
between policies, their inherent knowledge is still preserved, improving individual
policies without destroying the diversity amongst policies. An abstract overview
of PIEKD is depicted in Fig. 1.

This paper’s primary contribution is Periodic Intra-Ensemble Knowledge Dis-
tillation (PIEKD), a simple yet effective framework for off-policy RL that jointly
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trains an ensemble of policies while periodically performing knowledge sharing.
We demonstrate empirically that PIEKD can improve the state-of-the-art soft-
actor critic (SAC) [12] on a suite of challenging MuJoCo tasks, exhibiting supe-
rior sample efficiency. We further validate the effectiveness of distillation for
knowledge sharing by comparing against other forms of sharing knowledge.

The remainder of this paper is organized as follows. Section 2 discusses related
work in ensemble RL and knowledge distillation. Section 3 provides a brief
overview of the reinforcement learning formulation. Section 4 describes PIEKD.
Section 5 presents our experimental findings. Lastly, Sect. 6 summarizes our con-
tributions and outlines potential avenues for future work.

2 Related Work

The works that are most related to PIEKD [24,25] train multiple policies via
shared experience for the same task through RL, where the shared experiences
are collected by all policies in the ensemble and stored in a common buffer, as
our method does. Differing from those works [24,25], we additionally periodically
perform knowledge distillation between policies of the ensemble. Other related
methods aggregate multiple policies to select actions [10,32]. Abel et al. [1]
sequentially train a series of policies, boosting the learning performance by using
the errors of a prior policy. However, rather than performing decision aggregation
or sequentially-boosted training, we focus on improving the performance of each
individual policy via knowledge sharing amongst jointly trained policies.

Rusu et al. [26] train a single neural network to perform multiple tasks by
transferring multiple pretrained policies to a single network through distillation.
Hester et al. [13] and Nair et al. [22] accelerate RL agents’ training progress
through human experts’ guidance. Rather than experts’ policies, Nagabandi et
al. [21], Levine and Koltun [19], and Zhang et al. [33] leverage model-based con-
trollers’ behaviors, facilitating training for RL agents. Additionally, Oh et al. [23]
train RL agents to imitate past successful self-experiences or policies. Orthogo-
nal to the aforementioned works, PIEKD periodically exploits the current best
policy within the ensemble, and shares its knowledge amongst the ensemble.

In other machine learning areas, Zhang et al. [34] train multiple models that
mutually imitate each other’s outputs on classification tasks. Our distillation
procedure is not mutual, but flows in a single direction, from a superior teacher
policy to other student policies in the ensemble. Subsequent work by Lan et
al. [18] trains an ensemble of models to imitate a stronger teacher model that
aggregates all of the ensemble models’ predictions. Our method contrasts from
the above methods by periodically electing the teacher for distillation to other
ensemble members. We maintain separation between ensemble members rather
than aggregate them into a single policy.

Teh et al. [31] and Ghosh et al. [9] distill multiple task-specific policies to
a central multi-task policy and constrain the mutual divergence between each
task-specific policy and the central one. Galashov et al. [7] learn a task-specific
policy while bounding the divergence between this task-specific policy and some
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generic policy that can perform basic task-agnostic behaviors. Czarnecki et al. [4]
gradually transfer the knowledge of a simple policy to a complex policy during
the course of joint training. Our work differs from the aforementioned works
in several aspects. First, our method periodically elects a teacher policy for
sharing knowledge rather than constraining the mutual policy divergence [7,9,
31]. Second, our method does not rely on training heterogeneous policies (e.g., a
simple policy and a complex policy [4]), which makes our method more generally
applicable. Finally, as opposed to Teh et al. [31] and Ghosh et al. [9], we consider
single-task settings rather than multi-task settings.

Population-based methods similarly employ multiple policies in separate
copies of the environment to find the optimal policy. Evolutionary Algorithms
(EA) [8,17,27] randomly perturb the parameters of policies in the population,
eliminate underperforming policies by evaluating the policies’ performances in
the environment, and produce new generations of policies from the remaining
policies. Unlike EA, our method does not involve on separate copies of the
environment or eliminating existing policies from the population. Instead, our
method focuses on continuously improving the existing policies. In addition to
EA, other work [16] done concurrently to ours adds a regularization term that
forces each agent to imitate the best agent’s policy when performing policy
updates at each step. Differing from PIEKD, they train multiple agents in sepa-
rate copies of the environment in parallel. Without relying on multiple copies of
the environment, our method is more applicable in cases of costly environment
interaction or costly setup of multiple environments (e.g., robot learning in the
real world).

3 Background

In this section we describe the general framework of RL. RL formalizes a sequen-
tial decision-making task as a Markov decision process (MDP) [30]. An MDP
consists of a state space S, a set of actions A, a (potentially stochastic) transi-
tion function T : S × A → S, a reward function R : S × A → R, and a discount
factor γ ∈ [0, 1]. An RL agent performs episodes of a task where the agent starts
in a random initial state s0, sampled from the initial state distribution ρs0 , and
performs actions, which transitions the agent to new states for which the agent
receives rewards. More generally, at timestep t, an agent in state st performs an
action at, receives a reward rt, and transitions to a new state st+1, according to
the transition function T . The discount factor γ is used to indicate the agent’s
preference for short-term rewards over long-term rewards.

An RL agent performs actions according to its policy, a probability distribu-
tion πφ : S×A �→ [0, 1], where φ denotes the parameters of the policy, which may
be the parameters of a neural network. RL methods iteratively update φ via roll-
outs of experience τ = {(st, at, rt, st+1)}T−1

t=0 , seeking within the parameter space
Φ the optimal φ∗ that maximizes the expected return Es∼ρs0

[ ∑T−1
t=0 γtrt|s0 = s

]

at each t within an episode.
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4 Method

In this section, we formally present the technical details of our method, Peri-
odic Intra-Ensemble Knowledge Distillation (PIEKD). We start by providing an
overview of PIEKD and then describe its components in detail.

4.1 Overview

PIEKD maintains an ensemble of policies that collect different experiences on
the same task, and then periodically shares knowledge amongst the policies in
the ensemble. PIEKD is separated into three phases: ensemble initialization,
joint training, and intra-ensemble knowledge distillation. First, the ensemble
initialization phase randomly initializes an ensemble of policies with different
parameters to achieve behavioral diversity. In the joint training stage, a policy
randomly selected from the ensemble executes an episode in the environment and
its experience is then stored in a shared experience replay buffer that is used
to train each policy. In the last stage, we perform intra-ensemble knowledge

Algorithm 1. Periodic Intra-Ensemble Knowledge Distillation for Off-policy
Actor Critic
Require: an environment E , an off-policy actor-critic method ω, an ensemble size K,

a parameter space Φ, a set of parameterized policies and critics {πφk}K−1
k=0 and

{Qθk}K−1
k=0 , recent episodic performance statistics {Rk}K−1

k=0 , an episode length T ,
a distillation interval I, an experience buffer D

1:
2: i. Ensemble initialization
3: φk ∼ Uniform(Φ), ∀k ∈ [0, K)
4: D ← {}
5: Rk ← {}, ∀k ∈ [0, K)
6: tacc ← 0
7: while not converged do
8: ii. Joint training
9: ke ∼ Uniform([0, K)) � Policy selection

10: τ ← Rollout(E , πφke
)

11: D ← D ∪ τ
12: UpdatePolicy(πφk , D, ω), ∀k ∈ [0, K)
13: UpdateCritic(Qθk , D, ω), ∀k ∈ [0, K)
14: UpdateStat(Rke , τ) � Update statistics
15: tacc ← tacc + T
16: iii. Intra-Ensemble Knowledge Distillation
17: if tacc ≥ I then
18: kt ← argmaxk Rk � Teacher election
19: DistillPolicy(φk, φkt , D), ∀k ∈ [0, K) (Eq. 1)
20: DistillCritic(θk, θkt , D), ∀k ∈ [0, K) (Eq. 2)
21: tacc ← 0
22: end if
23: end while
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Fig. 2. An overview of the three phases of periodic intra-ensemble knowledge distilla-
tion: ensemble initialization, joint training, and intra-ensemble knowledge distillation.

distillation, where we elect a teacher policy from the ensemble used to guide
the other policies towards better behaviors. To this end, we distill [14] the best-
performing policy to the others. Algorithm 1 and Fig. 2 summarize our method.
In this paper, we apply PIEKD to the state-of-the-art off-policy RL algorithm,
soft actor-critic (SAC) [11].

4.2 Ensemble Initialization

In the ensemble initialization phase, we randomly initialize K policies in the
ensemble. Each policy is instantiated with a model parameterized by φk, where k
denotes the policy’s index in the ensemble. φk is initialized by sampling from the
uniform distribution over parameter space Φ which contains all possible values
of φk: φk ∼ Uniform(Φ). Despite the simplicity of uniform distributions used for
initialization, Osband et al. [24] show that uniformly random initialization can
provide adequate behavioral diversity. In this paper, we represent each φk,∀k ∈
[0,K) as a neural network (NN), though other parametric models can be used.

Since SAC learns both a policy and a critic function that values states or
state-action pairs from past experiences stored in a replay buffer [20], we create
a shared replay buffer for all policies in the ensemble and randomly initialize an
NN critic function Qθk

for each policy πφk
. θk denotes the NN’s weights for the

critic Qθk
.

4.3 Joint Training

Each joint training phase consists of I timesteps. For each episode, we select
a policy in the ensemble to act in the environment (hereinafter, we refer this
process as “policy selection”) The policy selection strategy is a way of selecting
a policy πφke

from the ensemble to perform an episode τ in the environment. This
episode τ is stored in a shared experience replay buffer D, and the policy’s recent
episodic performance statistic Rke

is updated according to the return achieved
in τ , where Rke

is the average episodic return in the most recent M episodes.
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The episodic performance statistics {Rk}K
k=0 and D will later be used in the

intra-ensemble distillation phase (Sect. 4.4). In this paper, we adopt a simple
uniform random policy selection strategy: ke ∼ Uniform([0,K)). To perform RL
updates on the agent’s policy,

After selecting a policy πφke
which performs an episode τ , we store this τ

in D (line 11). Then, we can sample data from D and update all policies and
critics using SAC (line 12–13). Since off-policy RL methods like SAC do not
require that τ is necessarily generated by the policy that is being updated, they
enable our policies to learn from the trajectories generated by other policies of
the ensemble. The details of the update routine for the policy and the critic are
taken from the original SAC paper [12].

4.4 Intra-ensemble Knowledge Distillation

The intra-ensemble knowledge distillation phase consists of two stages: teacher
election and knowledge distillation. The teacher election stage (line 18) selects a
policy from the ensemble to serve as the teacher for other policies. In our exper-
iments, we use the natural selection criteria of the selecting the best-performing
teacher. Specifically, we select the policy that has the highest average recent
episodic performance recorded in the joint training phase (Sect. 4.3), namely
kt = arg maxkRk, where kt is the index of the teacher. Rather than use a pol-
icy’s most recent episodic performance, we use its average return over its previous
M episodes, to minimize the noise in our estimate of the policy’s performance.

Next, the elected teacher guides the other policies in the ensemble towards
better policies (line 19–20). This is done through knowledge distillation [14],
which has been shown to be effective at guiding a neural network to behave
similarly to another. To distill from the teacher to the students (i.e., the other
policies in the ensemble), the teacher samples experiences from the buffer D and
instructs each student to match the teacher’s outputs on these samples. After
distillation, the students acquire the teacher’s knowledge, enabling them to cor-
rect their low-rewarding behaviors and reinforce their high-rewarding behaviors,
without forgetting their previously learned behaviors [26,31]. Specifically, the
policy distillation process is formalized as updating each φk in the direction of

∇φk
Es∼D

[
DKL(πφkt

(.|s)||πφk
(.|s))

]
, (1)

where Kullback–Leibler (KL) divergence (DKL) is a principled way to measure
the similarity between two probability distributions (i.e., policies). Several prior
works [28,29] employed KL-divergence to quantify the difference between two
policies. Note that when applying PIEKD to SAC, we must additionally distill
the critic function from the teacher to the students. To do so, we train the stu-
dents’ critic functions to match the teacher’s critic function, where each student’s
critic is updated by the gradients

∇θk
E(s,a)∼D

[
(Qθkt

(s, a) − Qθk
(s, a))2

]
, (2)



94 Z.-W. Hong et al.

where θk and θkt
denote parameters of critic functions. Qθkt

and Qθk
denote the

critic function corresponding to the teacher’s policy and the student’s policy,
respectively.

5 Experiments

Our experiments are designed to answer the following questions: (1) Can PIEKD
improve upon the data efficiency of state-of-the-art RL? (2) Is knowledge dis-
tillation effective at sharing knowledge? (3) Is it necessary to choose the best-
performing agent to be the teacher? Next, we show our experimental findings
for each of the aforementioned questions, and discuss their implications.

5.1 Experimental Setup

Implementation. Our goal is to demonstrate how PIEKD improves the sample
efficiency of an RL algorithm. Since soft actor-critic (SAC) [12] exhibits state-of-
the-art performance across several continuous control tasks, we build on top of
the ChainerRL implementation of SAC [6]. We directly use the hyperparameters
for SAC from the original paper [12] in all of our experiments1. Unless stated
otherwise, the hyperparameters used for PIEKD (Algorithm 1) are I = 5000,
and K = 3. The value of I is tuned via grid search over [1000, 2000, · · · , 10000].
We tried different ensemble size configurations (K ∈ {2, 3, 5}) and decided on
K = 3, though all ensemble sizes had similar performance. For the remainder of
our experiments, we term PIEKD applied to SAC as SAC-PIEKD.

Benchmarks. We use OpenAI Gym [2]’s MuJoCo benchmark tasks, as used in
the original SAC [12] paper. We choose most of the tasks selected in the original
paper [12] to evaluate the performance of our method. The description for each
task can be found in the source code for OpenAI Gym [2].

Evaluation. We adapt the evaluation approach from the original SAC paper [12].
We train each agent for 1 million timesteps, and run 20 evaluation episodes after
every 10000 timesteps (i.e., number of interactions with the environment), where
the performance is the mean of these 20 evaluation episodes. We repeat this entire
process across 5 different runs, each with different random seeds. We plot the
mean value and confidence interval of episodic return at each stage of training.
The mean value and confidence interval are depicted by the solid line and shaded
area, respectively. The confidence interval is estimated by the bootstrap method.
At each evaluation point, we report the highest mean episodic return amongst
the agents in the ensemble. In some curves, we additionally report the lowest
mean episodic return amongst the agents in the ensemble.

1 https://github.com/pfnet-research/piekd.

https://github.com/pfnet-research/piekd
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5.2 Effectiveness of PIEKD

In order to evaluate the effectiveness of intra-ensemble knowledge distillation,
we compare SAC-PIEKD, against two baselines: Vanilla-SAC and Ensemble-
SAC. Vanilla-SAC denotes the original SAC; Ensemble-SAC is the analogous
variant of Osband et al. [24]’s method for ensemble Q-learning, except on SAC.
At its core, Osband’s method involves an ensemble of policies that act with
the environment and generate experiences. These experiences are then used to
train the entire ensemble using an off-policy RL algorithm, such as Q-learning
or off-policy actor-critic methods. Thus, our Ensemble-SAC baseline denotes
the training of an ensemble of policies through SAC while sharing knowledge
amongst the ensemble in a shared replay buffer. Effectively, Ensemble-SAC is
SAC-PIEKD without the intra-ensemble knowledge distillation phase. For both
Ensemble-SAC and SAC-PIEKD we set the ensemble size K to be 3.

Our results are shown in Fig. 3. Note that we also plot the worst evaluation
in the ensemble at each evaluation phase to provide insight into the general
performance of the ensemble. In all tasks, we outperform all baselines, includ-
ing Vanilla-SAC and Ensemble-SAC, in terms of sample efficiency. Visually we
can see that throughout training, we have consistently better performance at
similar amounts of experience, indicating that our method can achieve higher
performance with the same number of experiences relative to our baselines.

SAC-PIEKD usually reaches the best baseline’s convergent performance in
half of the environment interactions. We even find that in the majority of tasks,
our worst evaluation in the ensemble outperforms the baseline methods. This
demonstrates that all policies of the ensemble are significantly improving, and
our method’s superior performance is not simply a consequence of selecting
the best agent in the ensemble. In particular, SAC-PIEKD ’s superiority over
Ensemble-SAC highlights the effectiveness of supplementing shared experiences
(Ensemble-SAC ) with knowledge distillation. In summary, Fig. 3 demonstrates
the effectiveness of PIEKD on enhancing the data efficiency of RL algorithms.

5.3 Effectiveness of Knowledge Distillation for Knowledge Sharing

In this section, we investigate the advantage of using knowledge distillation
for knowledge sharing. We consider two alternative approaches towards shar-
ing knowledge, other than distillation. First, we consider sharing knowledge by
simply providing agents with additional policy updates (in lieu of distillation
updates) using the shared experiences. We also consider directly copying the
neural network as opposed to performing distillation. Below, we compare these
two approaches against knowledge distillation.

Section 5.2 has shown that Ensemble-SAC, which updates all agents’ policies
through shared experiences fails to learn as efficiently as SAC-PIEKD. However,
SAC-PIEKD uses additional gradient updates during the knowledge distilla-
tion phase, whereas Ensemble-SAC only performs joint training, and lacks an
additional knowledge distillation phase. It is unclear whether additional policy
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Fig. 3. Performance evaluation of PIEKD. SAC-PIEKD represents the implemen-
tation of our method upon SAC; Vanilla-SAC stands for the original SAC; Ensemble-
SAC is an analogous variant of Osband et al. [24]’s method on Vanilla-SAC (effectively
SAC-PIEKD without intra-ensemble knowledge distillation). See Sect. 5.2 for details.
Notice that in most domains, SAC-PIEKD can reach the convergent performance of
the baselines in less than half the training time.

updates in lieu of knowledge distillation can achieve the same effects. To inves-
tigate this, we compare SAC-PIEKD with Vanilla-SAC (extra) and Ensemble-
SAC (extra), which respectively correspond to Vanilla-SAC and Ensemble-SAC
(see Sect. 5.2) that are trained with extra policy update steps with the same
number of updates and minibatch sizes that SAC-PIEKD performs. A policy
update here refers to a training step that updates the policy and value func-
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tion [12], if required, by RL algorithms. Figure 4 compares the performance of
our baselines to SAC-PIEKD. We see that SAC-PIEKD reaches higher perfor-
mance more rapidly than the baselines. This observation shows that knowledge
distillation is more effective than policy updates for knowledge sharing.

Fig. 4. Comparison between knowledge distillation and extra policy updates.
Vanilla-SAC (extra) and Ensemble-SAC (extra) stand for Vanilla-SAC and Ensemble-
SAC variants that use extra policy updates, respectively (see Sect. 5.3 and Sect. 3 for
details).

We additionally study whether the naive method of directly copying parame-
ters from the best-performing agent can also be an effective way to share knowl-
edge between neural networks. We compare a variant of our method, which we
denote as SAC-PIEKD (hardcopy), against SAC-PIEKD. In SAC-PIEKD (hard-
copy), rather than perform intra-ensemble knowledge distillation, we simply copy
the parameters of the teacher policy and critic into the student policies and crit-
ics. Figure 5 depicts the performance of this variant. We see that SAC-PIEKD
(hardcopy) performs worse than both Ensemble-SAC and SAC-PIEKD. Thus, it
is clear that knowledge distillation is superior to naively copying the best agent’s
parameters. In fact, it can be counterproductive to explicitly copy parameters,
as Ensemble-SAC outperforms copying without any knowledge sharing. This
experiment suggests that knowledge sharing in PIEKD does not damage ensem-
ble diversity significantly, since the extreme case of directly copying the teacher’s
parameters significantly hinders performance, perhaps reducing to training a sin-
gle policy as in Vanilla-SAC.
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Fig. 5. Comparison between knowledge distillation and copying parameters.
SAC-PIEKD (hardcopy) stands for the variant of our method which directly copies the
neural network parameters of the best agent to the others.

5.4 Effectiveness of Selecting the Best-Performing Agent as the
Teacher

During teacher election, we opted for the natural strategy of selecting the best-
performing agent. However, in order to investigate its importance, we compared
the performance of SAC-PIEKD when we select the best policy to be the teacher
as opposed to selecting a random policy to be the teacher. This is depicted in
Fig. 6, where SAC-PIEKD (random teacher) denotes the selection of a random
policy to be the teacher and the standard SAC-PIEKD refers to the selection of
the highest-performing policy to be the teacher. We see that using the highest-
performing teacher for distillation appears to be slightly better than selecting
a random teacher, though not significantly. Interestingly, we see that using a
random teacher performs better than Ensemble-SAC. This result suggests that
selecting the best teacher is not necessarily of high importance, as a random
teacher yields benefits. While this warrants further investigation, perhaps the
diverse knowledge is being shared through distillation, which may elicit the
success we see in SAC-PIEKD (random teacher). Another possibility is that
by bringing policies closer together, the off-policy error [5] stemming from RL
updates on a shared replay buffer is reduced, improving performance. However,
we can conclude that selecting the highest-performing teacher, while somewhat
beneficial, is nonessential, and we leave the investigation of these open questions
for future work.
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Fig. 6. Comparison between the selecting the best-performing teacher vs. a
random teacher. SAC-PIEKD (random teacher) refers to the variant of our SAC-
PIEKD where a randomly chosen teacher is used for knowledge distillation. This figure
demonstrates that it can be more effective to select the best-performing agent as the
teacher.

5.5 Ablation Study on Ensemble Size

In this subsection, we study the influence of the ensemble size K. We test our
method with three ensemble sizes K = 2, K = 3, and K = 5. Figure 7 shows
the performance of these configurations. We find that SAC-PIEKD performs
approximately the same across all three ensemble sizes. Even with an ensemble
size of 2, we see better performance than Ensemble-SAC (as K = 2 is on-par with
K = 3, which outperforms Ensemble-SAC, as shown before). Thus, our method
can reap benefits even from small ensembles, and is not extremely sensitive to
the ensemble size.

5.6 Ablation Study on Distillation Interval

In this subsection, we investigate the distillation interval (I). We plot the perfor-
mance of different configurations of I in Fig. 8. We can see that SAC-PIEKD (I
= 1000) only achieves better performance than Ensemble-SAC in 1 of 4 tasks,
suggesting that an interval that is too short may hinder the performance of
PIEKD. Also, we can observe that SAC-PIEKD (I = 100000) is more sample
inefficient. This observation suggests that I affects the learning speed.
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Fig. 7. Performance comparison under different ensemble sizes. Three different
ensemble configurations with 2, 3, and 5 agents lead to similar performance. This result
shows that PIEKD does not require a large ensemble size.

Fig. 8. Performance comparison under different distillation intervals I. This
figure shows that a short interval can degrade performance while a long interval can
impair sample efficiency.
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6 Conclusion

In this paper, we introduce Periodic Intra-Ensemble Knowledge Distillation
(PIEKD), a method that jointly trains an ensemble of RL agents while contin-
ually sharing information via knowledge distillation. Our experimental results
demonstrate that PIEKD improves the performance and data efficiency of a
state-of-the-art RL method on several challenging MuJoCo tasks. Also, we show
that knowledge distillation is more effective than the other approaches for knowl-
edge sharing. We found that selecting the best-performing agent to serve as the
teacher can be somewhat beneficial for improving performance. Finally, our abla-
tion study showed that a large ensemble is not needed for improving performance.

PIEKD opens up several avenues for future work. First, encouraging diversity
within the ensemble may lead to more efficient exploration [3,15]. Additionally,
while we used a simple uniform policy selection strategy, a more efficient policy
selection strategy may further accelerate learning. Lastly, while our ensemble
members used identical architectures, PIEKD may benefit from using heteroge-
neous ensembles. For example, different networks may have different architec-
tures that are conducive to learning different skills, which can then be distilled
within the ensemble.
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Abstract. This paper is concerned with robust learning to simulate
(RL2S), a new problem of reinforcement learning (RL) that focuses on
learning a high-fidelity environment model (i.e., simulator) for serving
diverse downstream tasks. Different from the environment learning in
model-based RL, where the learned dynamics model is only appropriate
to provide simulated data for the specific policy, the goal of RL2S is to
build a simulator that is of high fidelity when interacting with various
policies. Thus the robustness (i.e., the ability to provide accurate sim-
ulations to various policies) of the simulator over diverse corner cases
(policies) is the key challenge to address. Via formulating the policy-
environment as a dual Markov decision process, we transform RL2S as a
novel robust imitation learning problem and propose efficient algorithms
to solve it. Experiments on continuous control scenarios demonstrate
that the RL2S enabled methods outperform the others on learning high-
fidelity simulators for evaluating, ranking and training various policies.

Keywords: Simulator · Imitation learning · Robust learning

1 Introduction

Due to the powerful function approximation and representation learning prop-
erties, deep reinforcement learning (DRL) has achieved remarkable success in
domains where the environment is a known simulator, such as Go [26] and Atari
games [12]. However, such success highly relies on the online training paradigm
where the agents must interact with the environment to collect massive data, and
thus are still limited to simulated games where the interactions are of low cost.
In many high-stakes real-world tasks like autonomous driving, online education
and healthcare, directly training a policy in an online manner is always expen-
sive and impractical. To overcome this problem, building high-fidelity simulators,
where various agents with different policies can evaluate their performance and
improve their policies without any real-world sampling cost, becomes a promising
solution.
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Recently, great efforts have been devoted to building high-fidelity simulators.
Existing work on simulator building can be roughly categorized into two groups:
rule-based and learning-based methods. In rule-based methods, complex physical
models or hand-craft rules are used to build high-fidelity simulators. For example,
Zhang et al. [34] designed a scalable vehicle simulator based on car-following
models in traffic signal control. And Zhao et al. [35] used the information in
an offline dataset to decide the dynamics of the simulator for recommender
system tasks. On the other hand, learning-based methods, by leveraging machine
learning to model from real-world transitions, tend to be more potential given
sufficient data. For instance, Zheng et al. [36] imitated the behaviors of social
vehicles and gained better performance than the existing rule-based simulator.
And Shi et al. [25] formulated the interaction between customers and an online
retail platform as a multi-agent system, which enables to learn the behavior of
customers and the platform simultaneously to get a simulated retail platform
for training the policy of personalized recommendation.

A good simulator provides high-quality interactions with multiple policies
for evaluation and improvement, which requires the simulator to be sufficiently
robust to provide high-fidelity simulation for various policies, including various
corner cases. Specifically, in our paper, corner cases refer to the policies in which
we need more data to optimize the simulator for stable simulation. To realize
robustness which is a big challenge in simulator building, we must consider cor-
ner cases. However, to our knowledge, existing methods fail to solve the corner
cases [25,36]. For rule-based methods, limited rules are impossible to cover var-
ious corner cases in complex environments. On the other hand, learning-based
simulators are prone to provide inaccurate simulations in data areas with low
frequency.

Based on these considerations, we propose RL2S (Robust Learning to Simu-
late) to build a high-fidelity and robust simulator that can provide stable sim-
ulations to various policies, including the corner cases. The general framework
of RL2S is illustrated in Fig. 1. By formulating the simulator learning as a dual
Markov decision process (DMDP), RL2S utilizes imitation learning algorithms
to learn the simulator based on the data sampled from the real environment.
In order to learn a robust simulator to handle possible corner cases, RL2S opti-
mizes a Conditional Value at Risk (CVaR) objective [28] to make sure the learned
simulator can serve the simulations of various policies.

In a nutshell, the main contributions of this paper are threefold.

– To the best of our knowledge, this paper is the first work that explicitly
introduces the robustness objective in simulator building.

– To achieve robustness and fidelity simultaneously, we formulate the problem
of simulator learning as a DMDP for the first time and propose a simple yet
effective method named RL2S to solve it.

– Demonstrated by the experiments on several continuous control benchmarks,
our proposed RL2S yields better worst-case performance among a set of test
policies without sacrificing the average performance over all tasks compared
to the existing methods.
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2 Related Work

Our work considers simulator building. Beyond that, three important RL topics
are highly related, i.e., model-based RL, offline policy evaluation and robust RL.

Fig. 1. RL2S framework and experiment settings.

2.1 Simulator Building

There is a rich literature on how to build a good simulator to support RL
or decision-making tasks, ranging from widely used rule-based methods to the
recent learning-based methods.

Most simulators can be easily built from existing rules. For instance, based
on car-following model which can decide the speed of each vehicle based on the
information like leading vehicles and traffic signal, Zhang et al. [34] built the
CityFlow simulator and Zhou et al. [37] built SMARTS simulator to facilitate
the research of reinforcement learning on traffic signal control and autonomous
driving. However, the rules used to build the simulator are impossible to fully
recover the dynamics of the real environment, especially in complex scenes like
autonomous driving and healthcare. Therefore, the learned policy in these simu-
lators may fail in the real environment because of the incomplete or even incor-
rect rules.

Recently, in order to build high-fidelity simulators, learning-based methods
have been paid more attention. Xu et al. [31] utilized generative adversarial imi-
tation learning (GAIL) [4] to build the physical model in MuJoCo. Zheng et
al. [36] considered the vehicle in real traffic conditions as an agent and applied
GAIL to recover the agent’s policies. To avoid the physical costs of online exper-
iments of recommending policy, Shi et al. [25] modeled the interaction in the
online retail platform as a multi-agent system and used multi-agent adversar-
ial imitation learning to learn the behavior of customers and the behavior of
the online retail platform at the same time. Considering the unobserved latent
variables lying behind the data, Shang et al. [24] introduced a hidden policy to
model these hidden elements. However, a simulator learned by these methods
cannot promise stable performance across different policies without taking cor-
ner cases into account. Therefore, it is still impractical to apply such a simulator
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in high-stakes scenes. In this paper, RL2S designs a novel training paradigm to
consider corner cases and realizes the robustness.

2.2 Model-Based Reinforcement Learning

Model-based reinforcement learning (MBRL) learns a dynamics model which
serves as an environment with data sampled from the real world. And the
dynamics model is leveraged to generate simulated data which will be used for
agent learning along with real data. To learn the dynamics model, researchers
adopt various function approximators and objectives. For function approxima-
tion, time-varying linear models [7] are effective shallow models, while pure neu-
ral networks [14] or Gaussian processes with neural networks [1] are the main-
stream choices for model learning in deep RL. For objective design, effective
solutions include multi-step L2-norm [10], log-likelihood [1], adversarial loss [30],
etc.

Although both MBRL and our RL2S require learning the dynamics model,
there are mainly two differences between MBRL and RL2S in dynamics model
learning. On the one hand, MBRL is usually online and its final goal is to opti-
mize the policy while RL2S is offline and its goal is to build a robust simulator.
On the other hand, the learned dynamics model in MBRL is only appropriate to
provide simulated data for the current policy to learn. By contrast, RL2S is com-
mitted to building a robust simulator that can provide guaranteed simulation to
types of policies, including various corner cases.

2.3 Offline Policy Evaluation

Offline policy evaluation, which aims at evaluating the performance of the given
policy based on a pre-collected offline dataset, is a special case of off-policy policy
evaluation. Current work on offline policy evaluation can be roughly divided
into the Direct Method (DM), Importance Sampling (IS) and Hybrid Method
(HM). DM directly learns the dynamic model and then uses it to estimate the
performance of the given policy [17]. IS computes the importance weights to
correct the mismatch between the given policy and the behavior policy which
generates the offline datasets [13]. And HM is a combination of DM and IS [29].

Although RL2S is related to the DM in offline policy evaluation, RL2S focuses
on building a robust simulator that can serve various downstream tasks with
guaranteed performance instead of evaluating the performance of a particular
policy.

2.4 Robust Reinforcement Learning

Current work on robust reinforcement learning focuses on optimizing the worst
case of the algorithms, which can be roughly divided into two classes, policy-
based methods and environment-based methods. Policy-based methods apply
the idea of adversarial attack and introduce an adversarial policy to minimize
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the cumulative rewards that the original policy can get. In detail, Pinto et al. [19]
formulated the problem as a two-player Markov zero-sum game, while Zhang et
al. [33] proposed state-adversarial MDP which used the adversarial policy to add
noise to the state for minimizing the original policy’s performance. In all, these
algorithms realize the target of optimizing the worst case via a learnable adver-
sarial policy. Different from policy-based methods, environment-based methods
choose the environment in which the policy leads to the worst performance and
optimize the policy in the chosen environment. Nilim et al. [16] and Rajeswaran
et al. [21] optimized the worst performance among a pre-defined finite set of
environments, while Lin et al. [9] sought the worst environment in a distribution
through adversarial learning. Considering that the environment-based methods
fit well in our setting, we adopt environment-based methods in RL2S. Specifi-
cally, since only finite pre-defined environments are accessible, we take CVaR as
the objective, which is also applied in [21], to realize robustness in RL2S.

3 Preliminaries

3.1 Markov Decision Process

An RL task can be formulated as a Markov decision process (MDP), represented
as a tuple M = 〈S,A, p, p0, r, γ〉. S = {s} is the space of the environment state.
A = {a} is the action space of the agent. p(s′|s, a) : S × A �→ Ω(S) is the
dynamics model, also called the state transition probability of the environment
and Ω(S) is the set of distributions over S. p0 : S �→ R is the distribution of the
initial state s0. r(s, a) : S × A �→ R is the reward function. And γ ∈ [0, 1] is the
discounted factor for future rewards.

When the agent interacts with the environment with a policy π, the occu-
pancy measure ρp,π(s, a) is defined as the unnormalized cumulative discounted
probability of occurrence of the state-action pair (s, a) under policy π and tran-
sition p:

ρp,π(s, a) =
∞∑

t=0

γtP (st = s, at = s|p, π)

= π(a|s)
∞∑

t=0

γtP (st = s|p, π) = π(a|s)ρp,π(s).

(1)

As such, the agent interacts with the environment to optimize its policy for
maximizing the policy value function V , defined as the expectation of cumulative
discounted reward, with environment transition p as

max
π

V (p, π) = E(s,a)∼ρp,π(s,a)[r(s, a)] =
∑

(s,a)

ρp,π(s, a)r(s, a). (2)
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Fig. 2. Dual Markov decision process (DMDP) regards the original environment as the
agent while the original agent as the new environment. State and action in DMDP are
defined as (s, a) and s′ in the original MDP respectively.

3.2 Dual Markov Decision Process

Dual Markov decision process (DMDP) is first introduced by Zhang et al. [32],
which provides a new perspective on the environment and the agent in the
opposite way. Specifically, we can regard the original environment as an agent
while the original agent as the new environment. Thus we construct a DMDP
ME based on the original MDP MA by letting state sE

t as the state-action pair
〈sA

t , aA
t 〉 and action aE as the next state sA

t+1. In such a way, learning a policy
in ME is equal to learning a dynamics model in MA. The formal definition of
DMDP is provided in Definition 1 and an overview of the DMDP is given in
Fig. 2.

Definition 1 (Dual Markov Decision Process). For any MDP-policy pair
〈MA, πA〉, where MA = 〈SA,AA, pA, pA

0 , rA, γA〉, a pair 〈ME , πE〉, where
ME = 〈SE ,AE , pE , pE

0 , rE , γE〉 is called DMDP-policy pair if it satisfies:

– SE = SA × AA = {〈sA, aA〉|sA ∈ SA, aA ∈ AA}, a state in ME corresponds
to a state-action pair in MA;

– AE = SA = {sA|sA ∈ SA}, an action in ME corresponds to a state in MA;

– pE(sE
i , aE

k , sE
j ) = pE(〈sA

i , aA
i 〉, sA

k , 〈sA
j , aA

j 〉) =

{
πA(aA

j |sA
k ) sA

k = sA
j

0 sA
k �= sA

j

, the

transition in ME depends on the policy in MA;
– rE(sE

i , aE) = rE(〈sA
i , aA

i 〉, sA) = rA(sA
i , aA

i , sA) = rA(sA
i , aA

i ), the rewards in
ME are the same as in MA;

– γE = γA, the discounted factors are the same;
– pE

0 (sE) = pE
0 (〈sA, aA〉) = pA

0 (sA)πA(aA|sA), the initial state distribution in
ME depends on the initial state distribution and the action distribution in
MA;

– πE(aE |sE) = πE(sA
i′ |〈sA

i , aA〉) = pA(sA
i , aA, sA

i′ ), a policy in ME corresponds
to the dynamics in MA.

3.3 Imitation Learning

Imitation learning (IL) [5] studies the task of Learning from Demonstrations
(LfD), which aims to learn a policy from expert demonstrations that typi-
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cally consists of the expert trajectories interacted with the environment with-
out reward signals. Methods of imitation learning can be generally divided into
three classes: behavior cloning (BC), inverse reinforcement learning (IRL) and
generative adversarial imitation learning (GAIL). General IL objective tries to
minimize the distance between the actions taken by the learned policy π and
expert policy πE via

min
π

Es∼ρp,π(s)[‖π(·|s) − πE(·|s)‖]. (3)

However, it is always difficult to optimize Eq. (3) since only the expert trajec-
tories are accessible instead of the expert policy itself. Thus, behavior cloning
(BC) [20] provides a straightforward method by maximizing the likelihood of
expert trajectories via

min
π

E(s,a)∼ρp,πE (s,a)[− log π(a|s)], (4)

which suffers from the covariate shift problem when sampling trajectories [22].
Another intriguing IL method is inverse reinforcement learning (IRL) [15],

which tries to recover the reward function in the environment based on expert
demonstrations. IRL normally suffers from a high complexity for its bi-level
optimization (outer loop for reward learning, and inner loop for policy training).

Inspired by IRL, generative adversarial imitation learning (GAIL) [4] shows
that the objective of MaxEntIRL [38] is a dual problem of occupancy measure
matching, thus can be solved through generative models such as GAN [2]. GAIL
builds a surrogate reward function by learning a parameterized discriminator D
to classify the experience data from expert πE and the imitating policy πθ, while
learning the imitating policy πθ is guided by the reward computed by Dψ via
policy gradient methods like TRPO [23].

In this paper, we apply GAIL to learn the simulator in the RL2S training
part as shown in Fig. 1 for its high effectiveness and scalability with good the-
oretical guarantee but no compounding error concern. Specifically, we consider
the Wasserstein distance version of GAIL, as presented in [8], which alleviates
the instability of GAIL training by minimizing the Wasserstein distance between
the occupancy measure of state-action pairs collected by π and πE instead of
the Jensen-Shannon divergence. The overall objective is written as

min
θ

max
ψ

E(s,a)∼ρp,πE (s,a)[Dψ(s, a)] − E(s,a)∼ρp,πθ (s,a)[Dψ(s, a)]. (5)

4 Robust Learning to Simulate

In this section, we give a detailed introduction of our robust learning to simulate
(RL2S) framework. As shown in Fig. 1, we sample sets of policies from a policy
distribution P(π) in the beginning and use them to interact with the real envi-
ronment for data collection. Specifically, we assume the reward function r(s, a)
is well defined and known. This can be easily achieved since reward function is
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commonly defined by humans in various scenarios. Then the goal collapses into
learning the state transition of the environment p∗ via building a high-fidelity
dynamics model pφ parameterized by φ. Since we have formulated a DMDP
which regards the transition pφ as the dual policy and the policy πθ as the
dynamics, we are able to solve the problem with imitation learning algorithms,
based on the pre-collected data. Section 4.2 presents the process described above
comprehensively when the sample space of P(π) only contains one policy. To
realize the robustness, we propose a novel framework named RL2S and apply
CVaR as the objective function, which is introduced in Sect. 4.3 in detail.

4.1 Problem Definition

In our task, we seek to recover the real environment as a simulator that can
accurately simulate the interactions between the environment and various poli-
cies.

Consider a policy distribution as P(π). When interacting a dynamics p, The-
orem 2 of [27] shows the one-to-one correspondence between π and ρp,π. Thus
for each policy π ∼ P(π), its interactions with the real environment p∗ can be
measured by the occupancy ρp∗,π with a set of sampled trajectories as

τp∗,π = {[s0, a0, s1, a1, . . . , sT ]} = {(s, a, s′) ∼ π}, (6)

where T is the episode length. As such, the dataset of interaction experiences
generated by the policy in P(π) with the real environment p∗ can be denoted as

τp∗,P = {(s, a, s′) ∼ π}π∼P(π). (7)

In our paper, we define the corner cases as the worst ε-percentile policies in
P(π) under the metric of value difference (VD) which measures the absolute
difference of the policy’s value when interacting with the real environment p∗

and the simulator pφ. The definition of the value difference is

VD(p∗, pφ, π) = |V (p∗, π) − V (pφ, π)|
= |E(s,a,s′)∼ρ∗ [r(s, a)] − E(s,a,s′)∼ρφ

[r(s, a)]|, (8)

where ρφ(s, a, s′) and ρ∗(s, a, s′) stands for the policy’s occupancy measure in
pφ and p∗, respectively. Then the set of corner cases Πc is

Πc = {π|π ∼ P(π),VD(p∗, pφ, π) ≥ δε}, (9)

where δε is the threshold for the ε-percentile corner cases: P(VD(p∗, pφ, π) ≥
δε) = ε. Upon such a definition, we wish to build a robust simulator pφ from
τp∗,P . By robust, we mean that the learned pφ can provide stable simulation
for various policies in P(π), including corner cases in Πc. To explicitly seek a
robust simulator, we optimize for the CVaR objective which aims at minimizing
the expectation of VD for the worst ε-percentile of policies in P(π) (i.e., policies
in Πc) and the definition of CVaR is
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min
φ

∫

π

I(π ∈ Πc)VD(p∗, pφ, π)P(π)dπ, (10)

where I(·) is the indicator function.

4.2 Single Behavior Policy Setting

Let us begin with a single policy πθ. Under the perspective of DMDP, we can
regard πθ as a dual environment. Then, there is an expert dual policy p∗ sampling
a set of experience data τp∗,πθ via interacting with the dual environment πθ.
Hence, it is natural to perform imitation learning from such a demonstration
dataset τp∗,πθ to obtain an imitating policy pφ.

Specifically, in this paper, we choose GAIL due to its high flexibility and low
compounding error [31]. Formally, the generator, discriminator and the environ-
ment are denoted as pφ(s′|s, a), Dψ(s, a, s′), πθ((s′, a′)|s′). The min-max opti-
mization objective can be written as

min
φ

max
ψ

E(s,a,s′)∼(πθ,p∗)[Dψ(s, a, s′)] − E(s,a,s′)∼(πθ,pφ)[Dψ(s, a, s′)]. (11)

4.3 Robust Policy Setting

Making high-quality simulations under a single behavior policy is simple. How-
ever, providing stable simulation to various policies is non-trivial, which is the
ultimate goal of RL2S. Suppose that we aim to provide stable simulation to
policies in P(π), including corner cases. After that, we assume a set of collected
experience datasets τp∗,P . Similar to the single policy setting, we can apply
GAIL for modeling the dynamics as

min
φ

Eπ∼P(π)

[
max
ψπ

E(s,a,s′)∼(π,p∗)[Dψπ
(s, a, s′)] − E(s,a,s′)∼(π,pφ)[Dψπ

(s, a, s′)]
]
,

(12)
where Dψπ

stands for the discriminator corresponding to each dual environment
π ∼ P(π). However, Eq. (12) can hurt the learning of pφ for the following reasons.

1) Dψπ1
and Dψπ2

may output totally different values for the same transition
(s, a, s′) due to the difference of π1 and π2, which can make the training of
pφ unstable.

2) The data for individual policy π is not sufficient to train a good discriminator.

Considering that the discriminator only cares about the fidelity of the transition
(s, a, s′), i.e., the transition to s′ conditioned on (s, a), which is only related to
an environment (simulator) instead of any policy, we can just build one discrim-
inator for the overall occupancy as

min
φ

max
ψ

Eπ∼P(π)

[
E(s,a,s′)∼(π,p∗)[Dψ(s, a, s′)] − E(s,a,s′)∼(π,pφ)[Dψ(s, a, s′)]

]
.

(13)
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In practice, given a finite set of policies Π = {πm} sampled from P(π), then
the expectation over P(π) in Eq. (13) becomes the empirical mean over Π as

min
φ

max
ψ

|Π|∑

m=1

{
E(s,a,s′)∼πm,p∗ [Dψ(s, a, s′)] − E(s,a,s′)∼πm,pφ

[Dψ(s, a, s′)]
}

,

(14)
where the normalization term 1/|Π| is omitted for simplicity.

Although the simulator learned by Eq. (13) has the best performance in
expectation, it can still have extremely poor performance in some corner cases
without considering the variability in performance for different policies from the
distribution P(π). Thus such a learning objective still cannot provide stable
simulation for various policies in P(π). To this end, RL2S optimizes the CVaR
objective and focuses on minimizing VD on the worst ε-percentile policies (i.e.,
Πc defined in Eq. (9)), via

min
φ

max
ψ

∫

π

I(π ∈ Πc)
[
E(s,a,s′)∼(π,p∗)[Dψ(s, a, s′)]

− E(s,a,s′)∼(π,pφ)[Dψ(s, a, s′)]
]
P(π)dπ.

(15)

In practice, RL2S tests the performance of the policies every K steps to update
Πc.

When optimizing Eq. (15), we only use the worst ε-percentile dual environ-
ments to train pφ, so the lower bound of the performance of the learned simulator
in P(π) can be improved and pφ can provide stable simulation to a broader range
of policies in P(π). Moreover, the training procedure of RL2S focuses more on
the mispredicted transitions so that the corner cases can be alleviated.

5 Experiments

5.1 Experimental Protocol

Current work on simulator building compares the statistics in simulation and
real world [36] or uses the learned simulator to support the policies’ training [25]
to present the performance of the learned simulator. In our experiments, we
apply both paradigms to show the efficacy of RL2S. Specifically, we conduct
three experiments: policy value difference evaluation, policy ranking and policy
improvement.

– For the tasks of policy value difference evaluation [31] and policy ranking [18],
we aim at evaluating the reward under the occupancy measure (i.e., V (pφ, π))
where policy value difference evaluation cares about the absolute difference
between the V (p∗, π) and V (pφ, π) while policy ranking focuses on the relative
order of the policies in terms of their values.

– For the task of policy improvement, we fine-tune the policies in P(π) through
simulation data sampled from pφ.
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In our experiments, following the previous work [21], we sample two finite
sets of policies, i.e., Π and Π ′, from P(π) for training and test, respectively. For
Hopper, Walker2d and HalfCheetah, |Π| and |Π ′| are set to 17 and 8. For Ant,
|Π| and |Π ′| are set to 32 and 141. For each policy, we sample 1000 transitions.

In the implementation, we adopt spectral norm [11] in realizing the Lipschitz
constraint of discriminator Dψ in RL2S. And we normalize the state based on
mean and variance computed on the collected dataset τp∗,Π .

Policy Value Difference Evaluation. At the beginning of the training stage,
each sampled policy π ∈ Π interacts with the real environment p∗ to collect a
set of transitions {(s, a, s′)}π. Thus the overall real data of state transitions is
B = ∪π∈Π{(s, a, s′)}π. With B as the training data, RL2S optimizes a simulator
pφ via Eq. (15).

In this task, we compute the VD as defined in Eq. (8) for policies in P(π). Dif-
ferent from the setting in Xu et al. [31], which only focuses on learning a simulator
for a particular policy, RL2S aims at achieving robustness through optimizing
the worst cases in P(π). Thus, to take the robustness and worse-case performance
into consideration, we define maximum value difference (MVD). Moreover, we
define average value difference (AVD) to test whether RL2S degrades the average
performance. The definitions of AVD and MVD are written as

AVD(p∗, pφ,P) = Eπ∼P [VD(p∗, pφ, π)] � 1
|F |

∑

π∈F

VD(p∗, pφ, π),

MVD(p∗, pφ,P) = max
π∼P

VD(p∗, pφ, π) � max
π∈F

VD(p∗, pφ, π),
(16)

where F is a finite set of policies sampled from P(π). Since the target of RL2S is
to build a robust simulator that can provide stable simulation to various policies
in P(π), especially to unseen policies, we depict the curves of AVD and MVD on
the test policy set Π ′ during training to explore the robustness of pφ on unseen
policies.

Policy Ranking. For policy ranking, we use the learned pφ to rank the policies
in Π ′. Suppose A is list of V (pφ, π) for π ∈ Π ′ in descending order, B is the
corresponding V (p∗, π) normalized to [0,1] and C is obtained by sorting B in
descending order. We apply Kendall rank correlation coefficient (τ) and nor-
malized discounted cumulative gain (nDCG), which are well-recognized ranking
performance metrics. The definition of Kendall rank correlation coefficient is

τ =
1

|Π ′| × (|Π ′| − 1)

∑

i�=j

sgn(A[i] − A[j]) × sgn(B[i] − B[j]), (17)

1 Considering Ant has an especially larger state and action dimension than other
environments, we sample more policies for training and test.
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where sgn(x) indicates the sign of x. For nDCG, we take the normalized perfor-
mance as the relevance of each policy, which is defined as

nDCG@k =
k∑

i=1

2B[i] − 1
log2(i + 1)

/ k∑

i=1

2C[i] − 1
log2(i + 1)

. (18)

Policy Improvement. To present the performance of the learned simulator
pφ, we fine-tune the policies in Π ′ based on pφ. In detail, policy π ∈ Π ′ inter-
acts with pφ to collect data and uses them to improve itself for limited iter-
ations based on SAC [3]. We measure the performance improvement Iφ,π as
I(pφ, π) = (C1

π − C0
π)/C0

π where C1
π is the π’s performance after fine-tuning and

C0
π is the original performance. To measure the robustness and indicate whether

RL2S harms the performance in expectation, we introduce two metrics for pol-
icy improvement, i.e., minimum performance improvement (MPI) and average
performance improvement (API), as

MPI = min
π∼P

I(pφ, π) � min
π∈Π′

I(pφ, π),

API = Eπ∼P [I(pφ, π)] � 1
|Π ′|

∑

π∈Π′
I(pφ, π).

(19)

5.2 Studied Environments and Baselines

Following the previous work [31], we compare the results of RL2S against the
baseline methods on simple-to-complex continuous control benchmarking envi-
ronments, including Hopper, Walker2d, HalfCheetah and Ant from MuJoCo.

In this paper, we focus on learning-based methods, thus the rule-based meth-
ods are not included for comparison. Since almost all of the existing learning-
based methods apply imitation learning to learn the simulator where GAIL is
utilized in [24,25,31,36] and BC is adopted in most MBRL methods [1,6], we
take GAIL and BC as baselines. Furthermore, considering that imitation learning
is an important module in RL2S, we want to explore the effect of the robust-
ness objective on different methods of imitation learning, so we take RL2S-BC,
which replaces the GAIL in RL2S with BC, as the baseline method. Moreover,
although some experiments in our paper are similar to offline policy evaluation,
RL2S focuses on building a robust simulator that can serve various downstream
tasks instead of evaluating the performance of the given policy. So the methods
in offline policy evaluation are not included in our experiments.

5.3 Performance on Policy Value Difference Evaluation

The learning curves of each method on four environments are presented in Fig. 3,
from which we have the following observations.

1) RL2S achieves the best performance in four environments on MVD, which
validates the robustness and effectiveness of RL2S on corner cases.



116 W. Zhang et al.

Fig. 3. Learning curves of RL2S on MVD and AVD over four environments. The x-axis
is the number of training epochs, and the y-axis is the performance on MVD or AVD.

2) RL2S yields a larger improvement over GAIL in complex environments
(HalfCheetah and Ant) than that in simple environments (Hopper and
Walker2d), suggesting that robustness objective has better performance in
complex environments.

3) Although the objective function of RL2S only aims at optimizing the lower
bound of the performance in the distribution, we find that RL2S achieves
the best performance on AVD in all environments, which illustrates that our
robustness objective can improve the robustness of the learned simulator with-
out harming the average performance. The reason would be that optimizing
the matching of occupancy measure on corner cases in GAIL could further
improve the matching on the overall occupancy measure.

4) BC-based methods (i.e., RL2S-BC, BC) have much low (or even diverged)
performance in all environments except the simplest Hopper. And RL2S-BC
may not achieve better performance than BC, which can be attributed to the
large compounding error of BC as claimed in Lemma 3 and Theorem 3 of a
theoretic analysis from Xu et al. [31].

5.4 Performance on Policy Ranking

In this task, we use the learned simulator to rank the policies in the test policy
set Π ′. Due to the low computational cost of this task, we expand the size of
Π ′ to 20 for all the environments to make the results more reasonable. In policy
ranking, a higher value of nDCG or τ stands for better performance. Table 1
reports nDCG@1, nDCG@3, nDCG@5, nDCG@10 and τ , from which we can
get the following observations.

1) The simulator learned by RL2S consistently achieves the best performance in
terms of τ and nDCG over all environments, suggesting that RL2S not only
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Table 1. Results of policy ranking.

Env Metric RL2S GAIL RL2S-BC BC

Hopper τ 0.3474 −0.1895 −0.2842 −0.0632

nDCG@1 0.9464 0.0177 0.0177 0.5868

nDCG@3 0.8326 0.2448 0.1507 0.3816

nDCG@5 0.6843 0.3971 0.2310 0.4501

nDCG@10 0.7326 0.5111 0.3515 0.5130

Walker τ 0.2316 −0.0737 −0.5474 0.0632

nDCG@1 0.7954 0.6591 0.6184 0.6672

nDCG@3 0.9069 0.7311 0.5614 0.5497

nDCG@5 0.8988 0.7474 0.5971 0.6357

nDCG@10 0.8859 0.7622 0.7030 0.7348

HalfCheetah τ 0.8737 0.8211 0.4947 0.6000

nDCG@1 1.0000 0.9878 0.6191 0.9878

nDCG@3 0.9691 0.9385 0.7839 0.9652

nDCG@5 0.9922 0.9667 0.8013 0.9430

nDCG@10 0.9944 0.9882 0.8690 0.9190

Ant τ 0.8000 0.6211 0.2632 0.4105

nDCG@1 1.0000 0.8601 0.6650 1.0000

nDCG@3 1.0000 0.9186 0.6888 0.9106

nDCG@5 0.9872 0.9609 0.6988 0.9587

nDCG@10 0.9943 0.9358 0.8093 0.9174

brings robustness to the fidelity of the learned simulator, but also provides a
good policy selection solution (via ranking).

2) Although BC-based methods are inherently unsuitable for VD, they may have
good performance in policy ranking as the ranking task cares more about the
relative superiority instead of the absolute value difference.

5.5 Performance on Policy Improvement

In order to show the effectiveness of the learned simulator on improving a given
policy, we use the learned simulator to fine-tune the policies in the test policy set
Π ′. We show the performance improvement of RL2S on Hopper and HalfCheetah
in Fig. 4. And in Table 2, the results of the MPI and API achieved by different
simulators learned via individual methods are listed, from which we can obtain
the following observations.

1) RL2S consistently achieves the best performance on both MPI and API, which
shows that RL2S can get an effective and robust simulator for policy improve-
ment.
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Table 2. Performance improvement after fine-tuning the policy with the learned sim-
ulator.

Env Metric RL2S GAIL RL2S-BC BC

Hopper MPI 0.0293 0.0039 0.0124 0.0090

API 2.9400 0.9758 0.9587 0.9235

Walker MPI 0.0067 0.0065 0.0032 −0.0045

API 0.2306 0.1458 0.2178 0.1915

HalfCheetah MPI 0.0143 0.0058 0.0129 0.0099

API 0.0717 0.0529 0.0598 0.0630

Ant MPI −0.021 −0.027 −0.0232 −0.0352

API 0.0379 0.0325 0.0295 0.0308

Fig. 4. Improvement w.r.t. original
value.

Fig. 5. Analysis on ε.

2) BC-based methods have good performance because of the alleviation of the
compounding error due to short rollout length [6] while utilizing pφ to collect
data.

3) RL2S-BC gets better performance than BC in terms of MPI over all envi-
ronments, suggesting that our robustness objective can empower BC with
robustness in policy improvement. However, when improving the robustness,
RL2S-BC may deteriorate the performance of BC in terms of API.

4) In Ant, the most complex environment studied in our experiments, all meth-
ods obtain negative MPI, which means it is still challenging to improve the
performance of corner case policies based on the learned simulator.

5.6 Analysis on Hyperparameter ε

Here, we analyze the influence of the hyperparameter ε on the robustness of the
learned simulator pφ. In Hopper and HalfCheetah, the results of different ε on
policy value difference are shown in Fig. 5. We can see that too small or big
ε can lead to poor performance, while other values stably achieve satisfactory
performance. As a result, we set ε to 0.25.



Learning to Build High-Fidelity and Robust Environment Models 119

6 Conclusion

In this paper, we propose RL2S to learn a robust simulator (i.e., environment
model), which to the best of our knowledge is the first work to handle corner
case simulation in simulator building. To achieve robustness, we utilize a special
training procedure that only samples the worst ε-percentile data to train the
environment model. Results of extensive experiments demonstrate the poten-
tial of RL2S achieving superior performance in robustness without harming the
average performance, compared to the widely used baselines. Moreover, the sim-
ulator learned by RL2S can also improve the performance of policy training,
which sheds some light on further research of model-based reinforcement learn-
ing. For future work, we plan to investigate RL2S solutions in discrete-state
environments or the continuous-state ones with saltation transitions. We will
also investigate more sophisticated methods under the problem of RL2S.
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Abstract. Ensemble and auxiliary tasks are both well known to improve
the performance of machine learning models when data is limited. How-
ever, the interaction between these two methods is not well studied,
particularly in the context of deep reinforcement learning. In this paper,
we study the effects of ensemble and auxiliary tasks when combined
with the deep Q-learning algorithm. We perform a case study on ATARI
games under limited data constraint. Moreover, we derive a refined bias-
variance-covariance decomposition to analyze the different ways of learn-
ing ensembles and using auxiliary tasks, and use the analysis to help
provide some understanding of the case study. Our code is open source
and available at https://github.com/NUS-LID/RENAULT.
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1 Introduction

Ensemble learning is a powerful technique to improve the performance of machine
learning models on a diverse set of problems. In reinforcement learning (RL),
ensembles are mostly used to stabilize learning and reduce variability [1,5,17],
and in few cases, to enable exploration [4,22]. Orthogonal to the utilization
of ensembles, auxiliary tasks also enjoy widespread use in RL to aid learning
[13,15,18,20].

The interplay between these two methods has been studied within a limited
capacity in the context of simple neural networks [29] and decision trees [27]. In
reinforcement learning, this interaction – to the best of our knowledge – has not
been studied at all.

Our principal aim in this work is to study ensembles and auxiliary tasks
in the context of deep Q-learning algorithm. Specifically, we apply ensemble
learning on the well-established Rainbow agent [9,10], and additionally augment
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it with auxiliary tasks. We study the problem theoretically through the use of
bias-variance-covariance analysis and by performing an empirical case study on a
popular reinforcement learning benchmark, ATARI games, under the constraint
of low number of interactions [14]. ATARI games offer a suite of diverse problems,
improving the generality of the results, and data scarcity makes the effect of
ensembles more pronounced. Moreover, under the constraint of low data, it is
naturally preferable to trade-off the extra computational requirement of using
an ensemble for the performance gain that it provides.

We derive a more refined analysis of the bias-variance-covariance decom-
position for ensembles. The usual analysis assumes that each member of the
ensemble is trained on a different dataset. Instead, we focus our analysis on a
single dataset, used with multiple instantiations of a randomized learning algo-
rithm. This is commonly how ensembles are actually used in practice; in fact, the
multiple datasets that are used for training members of the ensemble are often
constructed from a single dataset through the use of randomization. Additionally,
we introduce some new “weak” auxiliary tasks that provide small improvements,
based on model learning and learning properties of objects and events. We show
how ensembles can be used for combining multiple “weak” auxiliary tasks to
provide stronger improvements.

Our case study and analysis shows that,

– Independent training of ensemble members works well. Joint training of the
entire ensemble reduces Q-learning error but, surprisingly did not perform as
well as an independently trained ensemble.

– The new auxiliary tasks are “weakly” helpful. Combining them together using
an ensemble can provide a significant performance boost. We observe reduc-
tion in variance and covariance with the use of auxiliary tasks in the ensemble.

– Despite their benefits, using all auxiliary tasks on each predictor in ensemble
may results in poorer performance. Analysis indicates that this could cause
higher bias and covariance due to loss of diversity.

It is interesting to note that our ensemble, despite its simplicity, achieves
better performance on 13 out of 26 games compared to recent previous works.
Moreover, our ensemble with auxiliary tasks achieves significantly better human
mean and median normalized performance; 1.6× and 1.55× better than data-
efficient Rainbow [9], respectively.

2 Related Works

Reinforcement Learning and Auxiliary Tasks. Rainbow DQN [10] com-
bines multiple important advances in DQN [21] such as learning value distribu-
tion [3] and prioritizing experience [23] to improve performance. Other works
try to augment RL by devising useful auxiliary tasks. [13] proposed auxiliary
tasks in the form of reward prediction as a classification of positive, negative, or
neutral reward. [13] also proposed to predict changing pixels for the downsam-
pled image. Recently, [18] proposed the use of contrastive loss to learn better
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representation. Other auxiliary tasks have been explored as well, such as depth
prediction [20] and terminal prediction [15]. These auxiliary tasks are less gen-
eral; they require domain with 3D inputs and problem with episodic nature,
respectively. Although much research has been done with auxiliary tasks in RL,
to the best of our knowledge, none of them investigated the use of auxiliary tasks
in the context of ensemble RL.

Ensemble in Reinforcement Learning. Ensemble methods have been
explored in RL for various purposes [1,5,17,22]. [1] investigated the effect of
ensemble in RL, especially pertaining to the reduction of target approximation
error. In the model-based RL, [5] used ensemble to reduce modelling errors, and
[17] accelerated policy learning by generating experiences through ensemble of
dynamic models. In the context of policy gradients, [7] utilized ensemble value
function as a critique to reduce function approximation error. [22] proposed the
use of ensemble for exploration by training an ensemble based on bootstrap
with random initialization and randomly sampled policy from the ensemble. [4]
extended the idea and replaced the policy sampling with UCB. Finally, [19] pro-
posed to combine ensemble bootstrap with random initialization [22], weighted
Bellman backup, and UCB [4]. While they also studied the ensemble in the sim-
ilar context, they did not attempt to explain the gain afforded by the ensemble,
nor did they studied the effect of combining ensemble with auxiliary tasks.

3 Background

3.1 Markov Decision Process and RL

A sequential decision problem is often modeled as a Markov Decision Process
(MDP). An MDP is defined with a 5-tuple < S,A, R, T, γ > where S and A

denote the set of states and actions, R and T represent the reward and transition
functions, and γ ∈ [0, 1) is a discount factor of the MDP. Reinforcement Learning
aims to find an optimal solution of a decision problem of unknown MDP. One
of the well known model-free RL algorithms is Deep Q Learning (DQN) [21],
which learns a state-action (s,a) value function Q(s, a; θ) with neural networks
parameterized by θ. The Q-function is used to select action when interacting
with environment; of which the experience is accumulated in the replay buffer
D for learning. We refer the reader to Appendix A for more details about MDP
and RL.

3.2 Rainbow Agent

The Rainbow agent [10] extends the DQN by introducing various advances in
reinforcement learning. It uses Double-DQN [26] to minimize the overestimation
error. Instead of sampling uniformly from the replay buffer D, it assigns priority
to each instance based on the temporal difference (TD) error [23]. Its architec-
ture decomposes advantage function from value function Q(s, a) = V (s)+A(s, a)
and learn them in an end-to-end manner [28]. Moreover, categorical value distri-
bution is learned in place of the expected state-action value function [3]. Thus,
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the loss function is given as follows. We denote the scalar-valued Q-function
corresponding to the the distributional Q-function as Q̂ for simplicity.

L(θ) = E
[
DKL[gs,a,r,s′ ||Q(s, a; θ)]

]
(1)

gs,a,r,s′ = ΦQ(s′,â′;θ′)

(
r + γS

)
(2)

â′ = arg max
a′

Q̂(s′, a′; θ) (3)

where ΦQ(s′,â′;θ′) denotes a distributional projection [3] based on categorical
atom probabilities given by Q(s′, â′; θ′) for support S. Q returns a column vector
Softmax output with |S| rows instead of a scalar value and S is a column vector
support of the categorical distribution. The scalar-valued Q function is computed
by Q̂(s, a) = ST Q(s, a). We refer the reader to the original paper [3] for a detailed
explanation.

Multi-step returns is also employed to achieve faster convergence [24]. To
aid exploration, NoisyNets [6] is utilized; it works by perturbing the parameter
space of the Q-function by injecting learnable Gaussian noise.

Recently, [9] proposes a set of hyperparameters for Rainbow that works well
on ATARI games under 100K interactions [14].

4 Rainbow Ensemble

Several forms of ensemble agents have been proposed in the literature [1,19,22]
with different variations of complexities. For ease of analysis, we propose to
use a simple ensemble similar to Ensemble DQN [1]. The original Ensemble
DQN was not combined with the recent advances in DQN such as distributional
value function [3], prioritized experience replay [23], and NoisyNets [6]. Here, we
describe our ensemble, that we call REN (Rainbow ENsemble), which combines
a simple ensemble approach with modern DQN advances in Rainbow.

REN is based on the following simple ensemble estimator:

Q(M)
ens (s, a) =

M∑

m=1

1
M

Qm(s, a; θm) (4)

where θm is the parameter for the m-th Q function. It outputs a distributional
estimate of the Q-function. The scalar-valued ensemble Q-function is given by
Q̂

(M)
ens (s, a) = ST Q

(M)
ens (s, a). We use this Q-function as our policy by taking the

action that maximizes this state-action function,

a = arg max
a

Q̂(M)
ens (s, a) (5)

The ensemble distributional Q-function is used to compute the TD target gs,a,r,s′

following Eq. 2, thus allowing reduction in the target approximation error (TAE)
due to averaging [1]. The agent learns the estimator by optimizing the following
loss,

L(θm) = EDm

[
DKL[gs,a,r,s′ ||Q(s, a; θm)]

]
(6)
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where m is the index of the member of the ensemble and Dm is the dataset
(buffer) for the m-th member. The loss is computed for each member m and
optimized independently.

Rainbow uses prioritized experience replay which assigns priority to each
transition. This allows for important transitions – transitions with higher error
– to be sampled more frequently. Since REN consists of multiple members, we
adopt the use of multiple prioritized experience replay for each member; i.e.,
for each member m, we have a prioritized replay Dm with priority updated
following the loss L(θm). This allows each member to individually adjust their
priority based on their individual errors, thus potentially enabling the ensemble
to perform better.

Finally, NoisyNets is used for exploration in Rainbow. It takes the form of
stochastic layers in the Q-function; each stochastic layer samples its parameters
from a distribution of parameters modeled as a learnable Gaussian distribution.
In our case, we have M Q-functions, with each containing the stochastic layers
of NoisyNets.

5 Auxiliary Tasks for Ensemble RL

Auxiliary tasks have often been shown to improve performance in learning prob-
lems. However, the combination of auxiliary tasks and ensembles has not been
extensively studied, particularly in the context of reinforcement learning.

We use the following framework, where each member of the ensemble can be
trained together with a different set of auxiliary tasks, for combining ensembles
with auxiliary tasks. Let Tm = {tm,1, ..., tm,Nm

} be the set of auxiliary tasks for
member m, we seek to optimize the following loss,

LA(θm) = L(θm) + E

[ Nm∑

n=1

αm,nLtm,n
(θm)

]
(7)

where αm,n is the strength parameter and Ltm,n
(θm) is the auxiliary task’s spe-

cific loss for task tm,n. Each task may additionally includes a set of parameters
that will be optimized jointly with the parameters of the member.

Some questions immediately arise. Should every auxiliary tasks be used with
every member of the ensemble? The other extreme would be using a single
distinct auxiliary task with each member of the ensemble. If each auxiliary task
is weak in the sense of only providing a small improvement, can they be combined
in the ensemble to provide much stronger improvements? We examine some of
these questions in our analysis and case study.

The framework can be viewed as the generalization of MTLE [29] and MTFor-
est [27], where each member of the ensemble is trained with the auxiliary task
of predicting the value of a distinct component of the input vector. An instan-
tiation of this framework with REN as the ensemble is denoted as RENAULT
(Rainbow ENsemble with AUxiLiary Tasks).

We propose to use model learning (i.e., learning transition function and
reward function) and learning to predict properties related to objects and events
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as our auxiliary tasks. Model learning has already been used in model-based RL
[14], whereas predicting properties related to objects and events appears to be
quite natural – rewards and hence the returns are often associated with events
in the environment.

We only consider tasks that can easily be integrated with the ensemble. Some
methods such as CURL [18] requires substantial changes to the base algorithm
such as requiring momentum target network and data augmentation input, mak-
ing their use in RENAULT difficult.

5.1 Network Architecture

Before delving into each auxiliary task, we will describe our network architecture
in detail. Our network consists of two main components: a feature/latent state
extraction function h(s) = z and a latent Q function q(z). The feature function h
is a two layer convolution neural networks. Due to the use of dueling architecture,
q(z) = 1

|A|
∑|A|

a=1 adv(z, a) + v(z), where |A| is the action space of the problem,
adv is a latent advantage function, and v is a latent value function. Both adv and
v are two layer fully-connected networks with ReLU as a first layer activation
function. We use adv1 (v1) to denote the first layer of the adv (v) function.

5.2 Model Learning as Auxiliary Tasks

Our first auxiliary tasks are based on model learning. Model learning is widely
used in the context of model-based RL; but here we are using them as auxiliary
tasks for DQN. They are easy to use with DQN; each task operates independently
and requires no additional changes to the base algorithm. The detail on each
model learning task is provided below.

Latent State Transition. We learn a deterministic latent transition function
which maps a latent state z = h(s) and action a to its next latent state through
a parameterized function T (z′|z, a; θ). Given the actual next state s′, we seek to
minimize the loss between the predicted latent state z′ and h(s′). We use smooth
L1 loss [11] as our objective function.

Inverse Dynamic. Inverse dynamic [2] is a function that learns to predict the
action that causes a transition from a certain state s to another state s′. Given
z = h(s) and z′ = h(s′), we seek to learn a parameterized function T−1(â|z, z′; θ)
by minimizing the loss of predicted action â with the real action a via cross
entropy loss.

Reward Function. Let w1 = adv1(z, ·) and w2 = v1(z) be hidden representa-
tions corresponding to the output of the first layer of latent advantage function
and latent value function for a latent state z = h(s). Given an action a, and let
w = [w1, w2] be the concatenation of hidden representations w1 and w2, we seek
to learn a reward function r(w, a; θ) by minimizing the distributional histogram
loss [12] with the real reward r(s, a). The use of reward function as an auxil-
iary prediction is not new [13]. However, we specify the task as a distributional
prediction instead of classification, generalizing their formulation.
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5.3 Object and Event Based Auxiliary Tasks

Our second set of auxiliary tasks aim to learn features that are useful for object
and event based prediction. We propose two novel auxiliary tasks: change of
moment and total change of intensity, to encourage learning features related to
objects and events, respectively. The proposed tasks are simple, self-contained,
and fairly general when objects and events are present, making them ideal for
RENAULT. The detail of these two tasks are given as follows.

Change of Moment. We adopt the concept of moment in physics; a way
to account for the distribution of physical quantities based on the product of
distance and the quantities. In our case, we use pixels in place of the physical
quantities. Thus, the moment corresponds to the distribution of the pixels, which
roughly characterizes the distribution of the objects in the screen. For a given
image state s ∈ R

C×W×H with channel C, width W , and height H, the moment
is computed by μ(s) = 1

C

∑C
c

∑W,H
x,y d(x, y) × sc,x,y where d is a distance func-

tion to some reference point. We use coordinate (0, 0) as a reference point and
euclidean distance as a distance function. We learn a function that captures the
change of moment between a state s and its corresponding next state s′ given
an action a: δμ(z, a; θ) ≈ μ(s′)−μ(s), where z = h(s) is the latent state of s. For
stability, we normalize the change of moment by a squared total distance given
by d. The function is optimized with smooth L1 loss.

Total Change of Intensity. An event is often characterized by the change
of total pixel intensity. For example, objects disappearing due to destruction
results in the loss of total pixel intensity, spawning of enemies increases the total
pixel intensity, and an explosion triggers dramatic total change of intensity. As
such, learning total change of intensity can be a sufficiently strong signal to
learn to associate rewards with events. Similar idea regarding learning changes
of pixels intensity has been explored by [13], however, they propose to predict
changes of intensity in the downsampled image patches using architecture similar
to autoencoder. In contrast, we opt for a simpler objective of predicting the total
change of intensity instead.

Given an image state s and its corresponding next state s′ given an action a,
we denote the channel-mean of the state as ŝ and the next state as ŝ′. In addition,
we denote the latent state of a state s as z = h(s). We seek to learn a total change
of intensity function δi(z, a; θ) ≈ ||ŝ− ŝ′||2. Since the value is bounded, we adopt
the Histogram distributional loss similar to our reward function prediction.

6 Theoretical Analysis

In this section, we perform analysis to help understand the possible gains afforded
by REN and RENAULT. We analyze the generalization error through bias-
variance-covariance decomposition. Such an analysis is obviously inadequate for
reinforcement learning, but we use it to potentially uncover good ways to use
ensembles. We then run experiments to see which of the methods actually help
for the case study.
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We seek to decompose the generalization error of ensembles into bias, vari-
ance, and covariance in the form similar to one proposed by [25]. Our analysis
differ in that our decomposition focuses on ensembles learned through the use of
a single dataset with a randomized learning algorithm. In contrast, their decom-
position assumes that each member is trained on a different dataset.

We begin with the case of a single estimator. For the purpose of analysis, we
assume our targets are generated by a fixed target function corresponding to the
optimal Q-function f∗(x), possibly corrupted by noise, and that our inputs are
generated by a fixed policy. We want to learn a function f(x; θ) to approximate
the unknown target function by using a set of N training samples {(xi, yi)}N

i=1.
For convenience, we denote zN = {zi}N

i=1 to be a realization of a random set
ZN = {Zi}N

i=1, where zi = (xi, yi) and Zi = (Xi, Yi). The parameter θ of f(x; θ)
is learnt by a randomized algorithm A(r, zN ), where r is a random number
drawn independently from a random set R. We will use f(x; r, zN ) to refer to
this parameterized function.

Given a separate test vector Z0 = (X0, Y0), the generalization error of the
function f is GE(f) = EZN ,R[EZ0 [(Y0 − f(X0;R, ZN ))2]]. Let

Var(f |X0) = E

[(
f(X0;R, ZN ) − E[f(X0;R, ZN )]

)2]

Bias(f |X0) = E[f(X0;R, ZN )] − f∗(X0)

where E denotes the expectation ER,ZN , and let σ2 = EX0,Y0 [(f
∗(X0)−Y0)2] be

an irreducible error.

Theorem 1 (Generalization error of random algorithm). The general-
ization error of the estimator f can be decomposed as follows.

GE(f) = EX0 [Var(f |X0) + Bias(f |X0)2] + σ2. (8)

All proofs are provided in Appendix C.
Now, we will consider the case of ensemble estimators. Let there be M estima-

tors {fm}M
m=1; each estimator fm is trained using algorithm A with an individual

random number r(m). Note that r(m) is a realization of R(m). Given an input x,
the output of the ensemble is:

f (M)
ens (x) =

1
M

M∑

m=1

f(x; r(m), zN ) (9)

Following Eq. 8, the generalization error is given by

GE(f (M)
ens ) = EX0 [Var(f (M)

ens |X0) + Bias(f (M)
ens |X0)2] + σ2. (10)

Let

Cov(fm, fm′ |X0) =E

[(
f(X0;R(m), ZN ) − E[f(X0;R(m), ZN )]

)

(
f(X0;R(m′), ZN ) − E[f(X0;R(m′), ZN )]

)]
.



130 M. R. Maulana and W. S. Lee

Bias(X0) =
1
M

M∑

m=1

Bias(fm|X0)

Var(X0) =
1
M

M∑

m=1

Var(fm|X0)

Cov(X0) =
1

M(M − 1)

∑

m

∑

m′ �=m

Cov(fm, fm′ |X0).

Theorem 2 (Generalization error of ensemble with random algo-
rithm). The generalization error of the ensemble estimator f

(M)
ens can be decom-

posed as:

GE(f (M)
ens ) = EX0

[
Bias(X0)2 +

1
M

Var(X0) +
(
1 − 1

M

)
Cov(X0)

]
+ σ2 (11)

Theorem 1 and 2 follow the proof from [8] and [25], respectively. Although
the results look similar, there are subtle differences in terms of the assumption
with respect to the availability of multiple datasets and the use of randomness.

By analysing, the relationship between Var(X0) and Cov(X0), we obtain the
following results about REN.

Theorem 3. Var(X0) ≤ Cov(X0). Hence, if ensemble estimator f
(M)
ens consists

of M identical estimators f that differ only in the random numbers used, then
GE(f (M)

ens ) ≤ GE(f).

This result states that ensembles with the members trained the same way
cannot hurt performance. The equal case can happen, e.g. when algorithm A
performs convex optimization, it will converge to the same minima regardless of
random number used, resulting in all members of the ensemble being the same.
In contrast, non-convex optimization algorithms such as SGD converges to a
minima that depends on the randomness, thus will likely result in lower error due
to reduction in the covariance term. Hence, REN will achieve at least the same
performance as Rainbow, and possibly better, under the idealized assumptions.

Instead of training each member of the ensemble f(x; r(m), zN ) separately,
training the entire ensemble f

(M)
ens (x) directly on the training set would result in

lower training set error and possibly better generalization. We experiment with
this as well in the case study.

For a single network, auxiliary tasks usually reduce the variance as they
provide additional information that help constrain the network. However, this
may come at the cost of additional bias as the network needs to optimize for
multiple objectives. To further understand the effects of auxiliary losses, we
decompose the ensemble squared bias.
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Proposition 1. The Bias(X0)2 of ensemble estimator f
(M)
ens can be decomposed

as follows (X0 is omitted for readability),

1
M2

[ M∑

m

Bias(fm)2 +
∑

m

∑

m′ �=m

Cob(fm, f ′
m)

]
(12)

where Cob(fm, f ′
m|X0) = Bias(fm|X0)Bias(fm′ |X0) denote the product of bias;

we refer to this as co-bias.

This result suggests that lower ensemble generalization error can be obtained
by increasing the number of negative co-bias by having a diverse set of positively
and negatively biased members. This is more likely to be achieved in RENAULT
if each member is assigned a unique set of auxiliary tasks. In contrast, assigning
the same set of auxiliary tasks to each member results in Bias(X0) = Bias(f |X0)
because ∀mBias(fm|X0) = Bias(f |X0).

Proposition 2. Let f̄m,Z = ER(m) [fm|ZN ] be a conditional expectation of fm

over random number R(m) conditioned on ZN . If the estimators are trained
independently, then, Cov(fm, f ′

m) = EZN [(f̄m,ZN − E[fm])(f̄m′,ZN − E[fm′ ])].

This result suggests that RENAULT may also reduce covariance if appro-
priate auxiliary tasks are assigned to each member. Otherwise, if all members
are of the same model f , then Cov(fm, f ′

m) = EZN [(f̄ZN − E[f ])2] which is the
variance of the averaged estimator.

Limitations. Our analysis assumes a fixed target; this is not available in RL.
Instead, we have an estimate of the target (optimal Q value) based on TD
return. The dataset in RL is also generated by a non-stationary policy, thus
the distribution of the dataset keeps on changing during learning. Additionally,
exploration also plays an important role in the learning of Q-function. Thus, it is
important to note that our analysis will only provide partial insights regarding
the methods; it serves to suggest possible ways to improve the algorithms, but
the suggestions may not always help.

7 Experiments

In this section, we perform a set of experiments on REN and RENAULT. We
compare them to prior methods. We examine whether joint training is better
than independent training. We examine whether the auxiliary tasks help the
ensembles and how to best use the auxiliary tasks. Before delving into each
experiment, we will explain the problem domain of our case study, our architec-
ture and hyperparameters, and our methods in detail.

Problem Domain. We evaluate REN and RENAULT on a suite of Atari games
from Atari Learning Environment (ALE) benchmark. We follow the evaluation
procedure of [14]; particularly, we limit the environment interaction to 100K
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interactions (400K frames with action repeated 4 frames) and evaluate on a sub-
set of 26 games. We measure the raw performance score and human-normalized
score, calculated as 100 × (Method score − Random score)/(Human score −
Random score).

Architecture and Hyperparameters. We follow the data-efficient Rainbow
(DE-Rainbow) architecture and hyperparameters proposed by [9] and made no
change to them. REN introduces a hyperparameter M which controls the num-
ber of members of the ensemble. RENAULT introduces task and member specific
hyperparameters αm,n that control the strength of each auxiliary task. Addition-
ally, each auxiliary task adopts different architecture; we give their description
in Appendix E.1.

In our preliminary experiment, we found that M < 5 degrades performance
and higher M does not increase performance significantly while requiring more
resources. Thus we fix M = 5 throughout the experiment.

Our Methods. REN has two variants; one that is canonical according to our
description in Sect. 4, and one that optimizes all members jointly, which we refer
to as REN-J. RENAULT also has two variants based on how we distribute the
auxiliary tasks. The first variant, which we simply refer to as RENAULT, follows
the suggestion of the preceding section to distribute the auxiliary tasks. As the
number of auxiliary tasks equals to the number of members, we simply assign
one unique task for each member. In contrast, the second variant assigns all
tasks to each member, thus we call this variant RENAULT-all. For simplicity,
RENAULT uses αm,n = 1 for all member m and task n. For RENAULT-all, we
set αm,n = 1

Nm
, where Nm = 5 is the number of auxiliary tasks for member m.

This is to ensure that the auxiliary tasks do not overwhelm the main task.
Further experimental details can be found in Appendix E.

7.1 Comparison to Prior Works

We compare the performance of REN and RENAULT to SimPLe [14], data-
efficient Rainbow (DE-Rainbow) [9], and Overtrained Rainbow (OT-Rainbow)
[16]. Two other recent works, CURL [18] and SUNRISE [19] use game-dependent
hyperparameters instead of using the same hyperparameters for all games, mak-
ing their results not directly comparable to ours. The results are given in Table 1.
We report the mean of three independent runs for our methods. We take the
highest reported scores for SimPLe and human baselines, as they are reported
differently in prior work [16,26].

REN improves the performance of its baseline, data-efficient Rainbow on 20
out of 26 games and achieves better performance on 13 games. It also improves
the mean and median human normalized performance 1.45× and 1.26×, respec-
tively. RENAULT further enhances the performance of REN, gaining 1.6× and
1.55× mean and median human normalized performance improvements. Addi-
tionally, it won on 21 games when compared to data-efficient Rainbow and
exceeds REN’s performance on 17 games.
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Table 1. Performance on ATARI games on 100K interactions. Human Mean and
Human Median indicate the mean and the median of the human-normalized score.
The last two rows show the number of games won against DE-Rainbow and REN,
respectively.

SimPLe OT-Rnbw DE-Rnbw REN RNLT REN-J RNLT-all

alien 405.2 824.7 739.9 828.7 883.7 800.3 890.0

amidar 88.0 82.8 188.6 195.4 224.4 120.2 137.2

assault 369.3 351.9 431.2 608.5 651.4 504.0 524.9

asterix 1089.5 628.5 470.8 578.3 631.7 645.0 520.0

bank heist 8.2 182.1 51.0 63.3 125.0 64.7 92.3

battle zone 5184.4 4060.6 10124.6 17500.0 14233.3 12666.7 9000.0

boxing 9.1 2.5 0.2 10.9 5.1 5.2 4.9

breakout 12.7 9.8 1.9 3.7 3.4 2.7 3.0

chopper command 1246.9 1033.3 861.8 713.3 896.7 980.0 563.3

crazy climber 39827.8 21327.8 16185.3 16523.3 39460.0 23613.3 22123.3

demon attack 169.5 711.8 508.0 759.3 693.0 665.5 822.7

freeway 20.3 25.0 27.9 28.9 29.3 24.5 29.4

frostbite 254.7 231.6 866.8 2507.7 1210.3 2284.7 1167.0

gopher 771.0 778.0 349.5 246.7 542.7 521.3 323.3

hero 1295.1 6458.8 6857.0 3817.2 6568.8 6499.3 7260.5

jamesbond 125.3 112.3 301.6 518.3 628.3 276.7 420.0

kangaroo 323.1 605.4 779.3 753.3 540.0 893.3 840.0

krull 4539.9 3277.9 2851.5 3105.1 2831.3 2667.2 3827.0

kung fu master 17257.2 5722.2 14346.1 12576.7 15703.3 9616.7 13423.3

ms pacman 762.8 941.9 1204.1 1496.0 2002.7 1240.7 1705.0

pong 5.2 1.3 −19.3 −16.8 −12.0 −18.7 −10.8

private eye 58.3 100.0 97.8 66.7 66.7 −35.2 100.0

qbert 559.8 509.3 1152.9 1428.3 583.3 2416.7 1014.2

road runner 5169.4 2696.7 9600.0 11446.7 13280.0 5676.7 7550.0

seaquest 370.9 286.9 354.1 622.7 671.3 555.3 387.3

up n down 2152.6 2847.6 2877.4 3568.0 4235.7 3388.0 3459.0

Human Mean 36.45% 26.41% 28.54% 41.36% 45.64% 30.78% 38.32%

Human Median 9.85% 20.37% 16.14% 20.41% 25.08% 21.97% 23.42%

vs DE-Rnbw 10 (-3) 12 (-1) - 20 (+7) 21 (+8) 18 (+5) 19 (+6)

vs REN 8 (-5) 10 (-3) 6 (-7) - 17 (+4) 8 (-5) 13 (0)

7.2 Bias-Variance-Covariance Measurements

To gain additional insights into our methods, we perform an empirical analy-
sis by measuring their bias, variance, and covariance. Measuring bias requires
the optimal Q-function which is unknown in RL. We measure the approxima-
tion to ensemble bias B̂ias(θ) based on TD return in place of the real bias. We

denote the ensemble bias based on this approximation as B̂ias. The detail of the
measurements is given in Appendix D.
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Table 2. Measurement of bias approximation, variance, covariance, irreducible error
σ2, and an approximation of generalization error (̂GE) of all methods. For Rainbow,
̂Bias, Var, and Cov denotes the estimator bias, variance, and covariance, respectively.

̂Bias
2

Var Cov σ2
̂GE

REN 0.08 1.09 0.99 1.02 2.28

RENAULT 0.08 0.82 0.66 0.63 1.58

RENAULT-all 0.09 0.81 0.71 0.74 1.72

REN-J 0.07 1.07 0.51 0.52 1.41

Rainbow 0.08 0.84 – 0.70 1.81

The result of the measurements is given in Table 2.
We can see from Table 2 that Cov < Var in REN as expected from Propo-

sition 2. If the datasets used in the ensembles had been independent as well,
we would have Cov = 0, so the effects of independent randomization is more
limited. RENAULT reduced the variance of REN as expected from the use of
auxiliary tasks and running different tasks on different members of the ensemble
appears to further reduce the covariance of RENAULT.

Comparison of REN and Rainbow also shows that our bias-variance-
covariance measurements are not adequate for perfectly understanding the per-
formance of the different algorithms. In particular, the generalization error of
Rainbow is smaller than REN but REN had better performance. It is possible
that the bias estimate using TD return is not a good proxy for the real bias; the
TD return may be arbitrarily far from the optimal Q. Another possible reason
could be that RL is much more than generalization error, which does not capture
other aspects of RL such as exploration.

7.3 On Independent Training of Ensemble

Jointly optimizing all members of the ensemble would give better training error
and possibly better generalization error. We compare the performance of REN
with its variant, REN-J, that directly optimize the following loss:

L(θens) = E
[
DKL[gs,a,r,s′ ||Q(M)

ens (s, a; θens)]
]

(13)

where θens = {θm}M
m=1. Since REN-J is essentially one single big neural network,

it uses a single prioritized experience replay D which is updated based on L(θens).
Table 2 shows that REN-J indeed generalized better than REN. In particular,

joint optimization substantially reduced Cov. However, REN surprisingly gives
better overall performance compared REN-J. REN improves upon REN-J on
18 out of 26 games. It also improves the mean human normalized performance
1.34×, although with a slight reduction of median performance of 0.93×. When
compared to data-efficient Rainbow, REN gains on two more games than REN-J.

Contrary to expectation, in this case study, it is preferable to train an ensem-
ble by optimizing each member independently, rather than treating the ensemble
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as a single monolithic neural network and optimize all members jointly to reduce
its generalization error.

7.4 The Importance of Auxiliary Tasks
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Fig. 1. Human normalized mean score (Left) and the number of games won (Right)
of each member of the ensemble with (NS) latent next state prediction, (ID) inverse
dynamic, (RF) reward function, (CI) total change of intensity, (CM) change of moment.
As a reference, the performance of data-efficient Rainbow is indicated by a dotted line.

Table 1 shows that RENAULT improves REN on all counts. It wins on 17 games,
gained 1.1× and 1.23× human mean and median normalized performance, as well
as increasing the win count against Rainbow to 21 games. This demonstrates the
significant benefit of augmenting ensembles with auxiliary tasks, at least in this
case study. Moreover, this is achieved without any tuning to the auxiliary task
hyperparameter αm,n; we simply set it to 1 for all member m and task n. We
also simply distribute the auxiliary tasks as such that each member is augmented
with one unique task. Careful tuning of the hyperparameter and task distribution
may yield even better performance improvements.

To understand the role of each auxiliary task, we analyze each of their con-
tribution. Figure 1 shows the contribution of each member of the ensemble that
is endowed with a particular auxiliary task. It is interesting to see that although
each task is weakly helpful (only offers modest performance improvement), they
offer significant performance boost when combined with ensembles. The best per-
forming auxiliary tasks in terms of games won are reward function, total change
of intensity (CI), and change of moment (CM) prediction. This demonstrate the
usefulness of our novel auxiliary tasks; we discuss this more in Appendix F.1.

In the opposite extreme, inverse dynamic (ID) seems to be less useful among
the auxiliary tasks. Surprisingly, retraining RENAULT without ID reduces its
performance substantially (see Appendix F.2). This suggests that ensemble
improvements are not merely from individual gain, but also from diversity,
through improved co-bias and covariance.

7.5 On Distributing the Auxiliary Tasks

Our theoretical result suggests that distributing the auxiliary tasks may be better
than assigning all tasks on each member of the ensemble. To confirm this, we
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compare RENAULT with its variant which assigns all auxiliary tasks to each
member, RENAULT-all.

Table 1 shows that RENAULT-all performs worse than RENAULT, achiev-
ing lower mean and median human normalized score; this is in line with our
expectation. While it may also be the case that suboptimal hyperparameters
plays some roles in causing the performance degradation, this comparison is fair
as we also did not perform tuning for RENAULT.

Finally, RENAULT-all has larger ensemble bias and covariance compared to
RENAULT in Table 2. The larger ensemble bias could be because each network
now has to optimize for more objectives. Propositions 1 and 2 also suggest that
RENAULT could be benefiting from reduced co-bias and covariance. The reduc-
tion could potentially be due to each member being less correlated when trained
on the same dataset compared to RENAULT-all.

8 Conclusions

In this work, we study ensembles and auxiliary tasks in the context of deep Q-
learning. We proposed a simple agent that creates an ensemble of Q-functions
based on Rainbow, and additionally augments it with auxiliary tasks. We provide
theoretical analysis and an experimental case study. Our methods improve sig-
nificantly upon data-efficient Rainbow. We show that, although each auxiliary
task only improves performance slightly, they significantly boost performance
when combined using an ensemble.

Our study focuses on the interaction between ensembles, auxiliary tasks, and
DQN on learning. However, RL is a multi-faceted problem with many important
components including exploration. Future work includes studying their inter-
action with exploration, which may provide important insights and answers to
some of the questions which eludes our understanding in this work.
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Abstract. Multi-agent imitation learning aims to train multiple agents
to perform tasks from demonstrations by learning a mapping between
observations and actions, which is essential for understanding physical,
social, and team-play systems. However, most existing works on modeling
multi-agent interactions typically assume that agents make independent
decisions based on their observations, ignoring the complex dependence
among agents. In this paper, we propose to use copula, a powerful statis-
tical tool for capturing dependence among random variables, to explicitly
model the correlation and coordination in multi-agent systems. Our pro-
posed model is able to separately learn marginals that capture the local
behavioral patterns of each individual agent, as well as a copula function
that solely and fully captures the dependence structure among agents.
Extensive experiments on synthetic and real-world datasets show that
our model outperforms state-of-the-art baselines across various scenarios
in the action prediction task, and is able to generate new trajectories
close to expert demonstrations.

Keywords: Multi-agent systems · Imitation learning · Copulas

1 Introduction

Recent years have witnessed great success of reinforcement learning (RL) for
single-agent sequential decision making tasks. As many real-world applications
(e.g., multi-player games [6,27] and traffic light control [7]) involve the participa-
tion of multiple agents, multi-agent reinforcement learning (MARL) has gained
more and more attention. However, a key limitation of RL and MARL is the
difficulty of designing suitable reward functions for complex tasks with implicit
goals (e.g., dialogue systems) [10,22,26,30]. Indeed, hand-tuning reward func-
tions to induce desired behaviors becomes especially challenging in multi-agent
systems, since different agents may have completely different goals and state-
action representations [35].

Imitation learning [11,24] provides an alternative approach to directly pro-
gramming agents by taking advantage of expert demonstrations on how a task
should be solved. Although appealing, most prior works on multi-agent imitation
learning typically assume agents make independent decisions after observing a
c© Springer Nature Switzerland AG 2021
N. Oliver et al. (Eds.): ECML PKDD 2021, LNAI 12975, pp. 139–156, 2021.
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(a) Same copula but different marginals (b) Same marginals but different copulas

Fig. 1. In each subfigure, the left part visualizes the joint policy π(a1, a2|s) on the joint
action space [−3, 3]2 and the right part shows the corresponding marginal policies (e.g.,
π1(a1|s) =

∫
a2

π(a1, a2|s)da2) as well as the copula c(F1(a1|s), F2(a2|s)) on the unit

cube. Here Fi is the cumulative distribution function of the marginal πi(ai|s) and
ui := Fi(ai|s) is the uniformly distributed random variable obtained by probability
integral transform with Fi. More details and definitions can be found in Sect. 3.1.

state (i.e., mean-field factorization of the joint policy) [16,30,35,36], ignoring the
potentially complex dependencies that exist among agents. Recently, [33] and [19]
proposed to implement correlated policies with opponent modeling, which incurs
unnecessary modeling cost and redundancy, while still lacking coordination dur-
ing execution.

Compared to the single-agent setting, one major and fundamental challenge
in multi-agent learning is how to model the dependence among multiple agents
in an effective and scalable way. Inspired by probability theory and statisti-
cal dependence modeling, in this work, we propose to use copulas [14,21,29]
to model multi-agent behavioral patterns. Copulas are powerful statistical tools
to describe the dependence among random variables, which have been widely
used in quantitative finance for risk measurement and portfolio optimization [5].
Using a copulas-based multi-agent policy enables us to separately learn marginals
that capture the local behavioral patterns of each individual agent and a cop-
ula function that only and fully captures the dependence structure among the
agents. Such a factorization is capable of modeling arbitrarily complex joint
policy and leads to interpretable, efficient and scalable multi-agent imitation
learning. As a motivating example (see Fig. 1), suppose there are two agents,
each with one-dimensional action space. In Fig. 1a, although two joint policies
are quite different, they actually share the same copula (dependence structure)
and one marginal. Our proposed copula-based policy is capable of capturing such
information and more importantly, we may leverage such information to develop
efficient algorithms for such transfer learning scenarios. For example, when we
want to model team-play in a soccer game and one player is replaced by his/her
substitute while the dependence among different roles are basically the same
regardless of players, we can immediately obtain a new joint policy by switch-
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ing in the new player’s marginal while keeping the copula and other marginals
unchanged. On the other hand, as shown in Fig. 1b, two different joint poli-
cies may share the same marginals while having different copulas, which implies
that the mean-field policy in previous works (only modeling marginal policies
and making independent decisions) cannot differentiate these two scenarios to
achieve coordination correctly.

Towards this end, in this paper, we propose a copula-based multi-agent imita-
tion learning algorithm, which is interpretable, efficient and scalable for modeling
complex multi-agent interactions. Extensive experimental results on synthetic
and real-world datasets show that our proposed method outperforms state-of-
the-art multi-agent imitation learning methods in various scenarios and generates
multi-agent trajectories close to expert demonstrations.

2 Preliminaries

We consider the problem of multi-agent imitation learning under the framework
of Markov games [18], which generalize Markov Decision Processes to multi-
agent settings, where N agents are interacting with each other. Specifically, in a
Markov game, S is the common state space, Ai is the action space for agent i ∈
{1, . . . , N}, η ∈ P(S) is the initial state distribution and P : S×A1×. . .×AN →
P(S) is the state transition distribution of the environment that the agents are
interacting with. Here P(S) denotes the set of probability distributions over
state space S. Suppose at time t, agents observe s[t] ∈ S and take actions
a[t] :=

(
a1[t], . . . , aN [t]

) ∈ A1×. . .×AN , the agents will observe state s[t+1] ∈ S
at time t + 1 with probability P

(
s[t + 1] | s[t], a1[t], . . . , aN [t]

)
. In this process,

the agents select the joint action a[t] by sampling from a stochastic joint policy
π : S → P(A1 × . . . × AN ). In the following, we will use subscript −i to denote
all agents except for agent i. For example, (ai,a−i) represents the actions of all
agents; πi(ai|s) and πi(ai|s,a−i) represent the marginal and conditional policy of
agent i induced by the joint policy π(a|s) (through marginalization and Bayes’
rule, respectively).

Suppose we have access to a set of demonstrations D = {τ j}M
j=1 provided by

some expert policy πE(a|s), where each expert trajectory τ j = {(sj [t],aj [t])}T
t=1

is collected by the following sampling process:

s1 ∼ η(s),a[t] ∼ πE
(
a|s[t]), s[t + 1] ∼ P

(
s|s[t],a[t]

)
, for t ≥ 1.

The goal is to learn a parametric joint policy πθ to approximate the expert
policy πE such that we can do downstream inferences (e.g., action prediction
and trajectory generation). The learning problem is off-line as we cannot ask
for additional interactions with the expert policy or the environment during
training, and the reward is also unknown.

3 Modeling Multi-agent Interaction with Copulas

Many modeling methods for multi-agent learning tasks employ a simplifying
mean-field assumption that the agents make independent action choices after
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observing a state [2,30,35], which means the joint policy can be factorized as
follows:

π(a1, . . . , aN |s) =
N∏

i=1

πi(ai|s). (1)

Such a mean-field assumption essentially allows for independent construction
of each agent’s policy. For example, multi-agent behavior cloning by maximum
likelihood estimation is now equivalent to performing N single-agent behavior
cloning tasks:

max
π

E(s,a)∼ρπ E
[log π(a|s)] =

N∑

i=1

max
πi

E(s,ai)∼ρπ E
,i[log πi(ai|s)], (2)

where the occupancy measure ρπ : S × A1 × . . . × AN → R denotes the state
action distribution encountered when navigating the environment using the joint
policy π [25,32] and ρπ ,i is the corresponding marginal occupancy measure.

However, when the expert agents are making correlated action choices (e.g.,
due to joint plan and communication in a soccer game), such a simplifying model-
ing choice is not able to capture the rich dependency structure and coordination
among agent actions. To address this issue, recent works [19,33] propose to use
a different factorization of the joint policy such that the dependency among N
agents can be preserved:

π(ai,a−i|s) = πi(ai|s,a−i)π−i(a−i|s), for i ≥ 1. (3)

Although such a factorization is general and captures the dependency among
multi-agent interactions, several issues still remain. First, the modeling cost is
increased significantly, because now we need to learn N different and compli-
cated opponent policies π−i(a−i|s) as well as N different marginal conditional
policies πi(ai|s,a−i), each with a deep neural network. It should be noted that
there are many redundancies in such a modeling choice. Specifically, suppose
there are N agents and N > 3, for agent 1 and N , we need to learn oppo-
nent policies π−1(a2, . . . , aN |s) and π−N (a1, . . . , aN−1|s) respectively. These are
potentially high dimensional and might require flexible function approximations.
However, the dependency structure among agent 2 to agent N − 1 are modeled
in both π−1 and π−N , which incurs unnecessary modeling cost. Second, when
executing the policy, each agent i makes decisions through its marginal policy
πi(ai|s) = Eπ−i(a−i|s)(ai|s,a−i) by first sampling a−i from its opponent policy
π−i then sampling its action ai from πi(·|s,a−i). Since each agent is performing
such decision process independently, coordination among agents are still impos-
sible due to sampling randomness. Moreover, a set of independently learned con-
ditional distributions are not necessarily consistent with each other (i.e., induced
by the same joint policy) [35].

In this work, to address above challenges, we draw inspiration from probabil-
ity theory and propose to use copulas, a statistical tool for describing the depen-
dency structure between random variables, to model the complicated multi-agent
interactions in a scalable and efficient way.
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3.1 Copulas

When the components of a multivariate random variable x = (x1, . . . , xN ) are
jointly independent, the density of x can be written as:

p(x) =
N∏

i=1

p(xi). (4)

When the components are not independent, this equality does not hold any more
as the dependencies among x1, . . . , xN can not be captured by the marginals
p(xi). However, the differences can be corrected by multiplying the right hand
side of Eq. (4) with a function that only and fully describes the dependency.
Such a function is called a copula [21], a multivariate distribution function on
the unit hyper-cube with uniform marginals.

Intuitively, consider a random variable xi with continuous cumulative distri-
bution function Fi. Applying probability integral transform gives us a random
variable ui = Fi(xi), which has standard uniform distribution. Thus one can
use this property to separate the information in marginals from the dependency
structures among x1, . . . , xN by first projecting each marginal onto one axis of
the hyper-cube and then capture the pure dependency with a distribution on
the unit hyper-cube.

Formally, a copula is the joint distribution of random variables u1, . . . , uN ,
each of which is marginally uniformly distributed on the interval [0, 1]. Further-
more, we introduce the following theorem that provides the theoretical founda-
tions of copulas:

Theorem 1 (Sklar’s Theorem [28]). Suppose the multivariate random vari-
able (x1, . . . , xN ) has marginal cumulative distribution functions F1, . . . , FN

and joint cumulative distribution function F , then there exists a unique copula
C : [0, 1]N → [0, 1] such that:

F (x1, . . . , xN ) = C
(
F1(x1), . . . , FN (xN )

)
. (5)

When the multivariate distribution has a joint density f and marginal densities
f1, . . . , fN , we have:

f(x1, . . . , xN ) =
N∏

i=1

fi(xi) · c
(
F1(x1), . . . , FN (xN )

)
, (6)

where c is the probability density function of the copula. The converse is also
true. Given a copula C and marginals Fi(xi), then C

(
F1(x1), . . . , FN (xN )

)
=

F (x1, . . . , xN ) is a N -dimensional cumulative distribution function with
marginal distributions Fi(xi).

Theorem 1 states that every multivariate cumulative distribution function
F (x1, . . . , xN ) can be expressed in terms of its marginals Fi(xi) and a copula
C

(
F1(x1), . . . , FN (xN )

)
. Comparing Eq. (4) with Eq. (6), we can see that a cop-

ula function encoding correlations between random variables can be used to
correct the mean-field approximation for arbitrarily complex distribution.
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3.2 Multi-agent Imitation Learning with Copulas

A central question in multi-agent imitation learning is how to model the depen-
dency structure among agent decisions properly. As discussed above, the frame-
work of copulas provides a mechanism to decouple the marginal policies (indi-
vidual behavioral patterns) from the dependency left in the joint policy after
removing the information in marginals. In this work, we advocate copula-based
policy for multi-agent learning because copulas offer unique and desirable prop-
erties in multi-agent scenarios. For example, suppose we want to model the
interactions among players in a soccer game. By using copulas, we will obtain
marginal policies for each individual player as well as dependencies among differ-
ent roles (e.g., forwards and midfielders). Such a multi-agent learning framework
has the following advantages:

– Interpretable. The learned copula density can be easily visualized to intu-
itively analyze the correlation among agent actions.

– Scalable. When the marginal policy of agents changes but the dependency
among different agents remain the same (e.g., in a soccer game, one player
is replaced by his/her substitute, but the dependence among different roles
are basically the same regardless of players), we can obtain a new joint policy
efficiently by switching in the new agent’s marginal while keeping the copula
and other marginals unchanged.

– Succinct. The copula-based factorization of the joint policy avoids the redun-
dancy in previous opponent modeling approaches [19,33] by separately learn-
ing marginals and a copula.

Learning. We first discuss how to learn a copula-based policy from a set of
expert demonstrations. Under the framework of Markov games and copulas, we
factorize the parametric joint policy as:

π(a1, . . . , aN |s;θ) =
N∏

i=1

πi(ai|s; θi) · c(F1(a1|s; θ1), . . . , FN (aN |s; θN )|s; θc

)
, (7)

where πi(ai|s; θi) is the marginal policy of agent i with parameters θi and Fi is the
corresponding cumulative distribution function; the function c (parameterized
by θc) is the density of the copula on the transformed actions ui = Fi(ai|s; θi)
obtained by processing original actions with probability integral transform.

The training algorithm of our proposed method is presented as Algorithm1.
Given a set of expert demonstrations D, our goal is to learn marginal actions
of agents and their copula function. Our approach consists of two steps.1 We
first learn marginal action distributions of each agent given their current state
(lines 1–6). This is achieved by training MLPmarginal that takes as input a
state s and output the parameters of marginal action distributions of N agents

1 An alternate approach is to combine the two steps together and use end-to-end
training, but this does not perform well in practice because the copula term is
unlikely to converge before marginals are well-trained.



Multi-agent Imitation Learning with Copulas 145

Algorithm 1: Training procedure
Input: The number of trajectories M , the length of trajectory T , the number

of agents N , demonstrations D = {τ i}M
i=1, where each trajectory

τ i = {(si[t], ai[t])}T
t=1

Output: Marginal action distribution MLP MLPmarginal, state-dependent
copula MLP MLPcopula or state-independent copula density c(·)

// Learning marginals

1 while MLPmarginal not converge do
2 for each state-action pair (s, (a1, · · · , aN )) do
3 Calculate the conditional marginal action distributions for all agents:

{fj(·|s)}N
j=1 ← MLPmarginal(s);

4 for agent j = 1, · · · , N do
5 Calculate the likelihood of the observed action aj : fj(aj |s);
6 Maximize fj(aj |s) by optimizing MLPmarginal using SGD;

// Learning copula

7 while MLPcopula or c(·) not converge do
8 for each state-action pair (s, (a1, · · · , aN )) do
9 {fj(·|s)}N

j=1 ← MLPmarginal(s);
10 for agent j = 1, · · · , N do
11 Fj(·|s) ← the CDF of fj(·|s);
12 Transform aj to uniformly distributed value: uj ← Fj(aj |s);
13 Obtain u = (u1, · · · , uN ) ∈ [0, 1]N ;
14 if copula is set as state-dependent then
15 Calculate the copula density c(·|s) ← MLPcopula(s);
16 Calculate the likelihood of u: c(u|s);
17 Optimize MLPcopula by maximizing log c(u|s) using SGD;

18 else
19 Calculate the likelihood of u: c(u);
20 Optimize parameters of c(·) using maximum likelihood or

non-parametric methods;

21 return MLPmarginal, MLPcopula or c(·)

given the input state (line 3).2 In our implementation, we use mixture of Gaus-
sians to realize each marginal policy πi(ai|s; θi) such that we can model complex
multi-modal marginals while having a tractable form of the marginal cumula-
tive distribution functions. Therefore, the output of MLPmarginal consists of
the means, covariance, and weights of components for the N agents’ Gaussian
mixtures. We then calculate the likelihood of each observed action aj based on
agent j’s marginal action distribution (line 5), and maximize the likelihood by
optimizing the parameters of MLPmarginal (line 6).

2 Here we assume that each agent is aware of the whole system state. But our model
can be easily generalized to the case where agents are only aware of partial system
state by feeding the corresponding state to their MLPs.
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Algorithm 2: Inference procedure
Input: Marginal action distribution MLP MLPmarginal, state-dependent

copula MLP MLPcopula or state-independent copula density c(·),
current state s

Output: Predicted action â
// Sample from copula

1 if copula is set as state-dependent then
2 Calculate (parameters of) state-dependent copula density

c(·|s) ← MLPcopula(s);
3 Sample a copula value u = (u1, · · · , uN ) from c(·|s);
4 else
5 Sample a copula value u = (u1, · · · , uN ) from c(·);

// Transform copula value to action space

6 Calculate (parameters of) the conditional marginal action distributions for all

agents: {fj(·|s)}N
j=1 ← MLPmarginal(s);

7 for agent j = 1, · · · , N do
8 Fj(·|s) ← CDF of fj(·|s);
9 âj ← F−1

j (uj |s);
10 â ← (â1, · · · , âj);
11 return â

After learning marginals, we fix the parameters of marginal MLPs and start
learning the copula (lines 7–20). We first process the original demonstrations
using probability integral transform and obtain a set of new demonstrations
with uniform marginals (lines 8–13). Then we learn the density of copula (lines
14–20). Notice that the copula can be implemented as either state-dependent
(lines 14–17) or state-independent (lines 18–20): For state-dependent copula, we
use MLPcopula to take as input the current state s and outputs the parameters
of copula density c(·|s) (line 15). Then we calculate the likelihood of copula value
u (line 16) and maximize the likelihood by updating MLPcopula (line 17). For
state-independent copula, we directly calculate the likelihood of copula value u
under c(·) (line 19) and learn parameters of c(·) by maximizing the likelihood of
copula value (line 20).

The copula density (c(·) or c(·|s)) can be implemented using parametric meth-
ods such as Gaussian or mixture of Gaussians. It is worth noticing that if copula
is state-independent, it can also be implemented using non-parametric methods
such as kernel density estimation [8,23]. In this way, we no longer learn param-
eters of copula by maximizing likelihood as in lines 19–20, but simply store all
copula values u for density estimation and sampling in inference stage. We will
visualize the learned copula in experiments.

Inference. In inference stage, the goal is to predict the joint actions of all agents
given their current state s. The inference algorithm is presented as Algorithm2,
where we first sample a copula value u = (u1, · · · , uN ) from the learned copula,
either state-dependent or state-independent (lines 1–5), then apply inverse prob-
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Algorithm 3: Generation procedure
Input: Inference module (Algorithm 2), initial state s[0], required length L,

environment E
Output: Generated trajectory τ̂

1 for l = 0, · · · , L do
2 Feed state s[l] to the inference module and get the predicted action â[l];
3 Execute â[l] in environment E and get a new state s[l + 1];

4 τ̂ = {(s[l], â[l])}L
l=0;

5 return τ̂ ;

ability transform to transform them to the original action space: âj = F−1
j (uj |s)

(lines 7–10). Note that an analytical form of the inverse cumulative distribution
function may not always be available. In our implementation, we use binary
search to approximately solve this problem since Fj is a strictly increasing func-
tion, which is shown to be highly efficient in practice. In addition, we can also
sample multiple i.i.d. copula values from c(·|s) or c(·) (line 3 or 5), transform
them into the original action space, and take their average as the predicted
action. This strategy is shown to be able to improve the accuracy of action
prediction (in terms of MSE loss), but requires more running time as a trade-off.

Generation. The generation algorithm is presented as Algorithm 3. To generate
new trajectories, we repeatedly predict agent actions given the current state
(line 2), then execute the generated action and obtain an updated state from
the environment (line 3).

Complexity Analysis. The computational complexity of the training and the
inference algorithms is analyzed as follows. The complexity of each round in
Algorithm 1 is O(MTN), where M is the number of trajectories in the training
set, T is the length of each trajectory, and N is the number of agents. The
complexity of Algorithm2 is O(N). The training and the inference algorithms
scales linearly with the size of input dataset.

4 Related Work

The key problem in multi-agent imitation learning is how to model the depen-
dence structure among multiple agents. [16] learn a latent coordination model
for players in a cooperative game, where different players occupy different roles.
However, there are many other multi-agent scenarios where agents do not coop-
erate for a same goal or they do not have specific roles (e.g., self-driving). [4]
adopt parameter sharing trick to extend generative adversarial imitation learning
to handle multi-agent problems, but it does not model the interaction of agents.
Interaction Network [3] learns a physical simulation of objects with binary rela-
tions, and CommNet [31] learns dynamic communication among agents. But
they fail to characterize the dependence among agent actions explicitly.
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Fig. 2. Experimental environments: PhySim, Driving, and RoboCup.

Researchers also propose to infer multi-agent relationship using graph tech-
niques or attention mechanism. For example, [15] propose to use graph neural
networks (GNN) to infer the type of relationship among agents. [12] introduces
attention mechanism into multi-agent predictive modeling. [17] combine genera-
tive models and attention mechanism to capture behavior generating process of
multi-agent systems. These works address the problem of reasoning relationship
among agents rather than capturing their dependence when agents are making
decisions.

Another line of related work is deep generative models in multi-agent sys-
tems. For example, [36] propose a hierarchical framework with programmatically
produced weak labels to generate realistic multi-agent trajectories of basketball
game. [34] use GNN and variational recurrent neural networks (VRNN) to design
a permutation equivariant multi-agent trajectory generation model for sports
games. [13] combine conditional variational autoencoder (CVAE) and long-short
term memory networks (LSTM) to generate behavior of basketball players. Most
of the existing works focus on agent behavior forecasting but provide limited
information regarding the dependence among agent behaviors.

5 Experiments

5.1 Experimental Setup

Datasets. We evaluate our method in three settings. PhySim is a synthetic
physical environment where 5 particles are connected by springs. Driving is a
synthetic driving environment where one vehicle follows another along a single
lane. RoboCup is collected from an international scientific robot competition
where two robot teams (including 22 robots) compete against each other. Exper-
imental environments are shown in Fig. 2. The detailed dataset description is
provided in AppendixA.

Baselines. We compare our method with the following baselines: LR is a logistic
regression model that predicts actions of agents using all of their states. SocialL-
STM [1] predicts agent trajectory using RNNs with a social pooling layer in the
hidden state of nearby agents. IN [3] predicts agent states and their interactions
using deep neural networks. CommNet [31] simulates the inter-agent commu-
nication by broadcasting the hidden states of all agents and then predicts their
actions. VAIN [12] uses neural networks with attention mechanism for multi-
agents modeling. NRI [15] designs a graph neural network based model to learn
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Table 1. Root mean squared error (RMSE) between predicted actions and ground-
truth actions for all methods.

Methods PhySim Driving RoboCup

LR 0.064 ± 0.002 0.335 ± 0.007 0.478 ± 0.009

SocialLSTM 0.186 ± 0.032 0.283 ± 0.024 0.335 ± 0.051

IN 0.087 ± 0.013 0.247 ± 0.033 0.320 ± 0.024

CommNet 0.089 ± 0.007 0.258 ± 0.028 0.311 ± 0.042

VAIN 0.082 ± 0.010 0.242 ± 0.031 0.315 ± 0.028

NRI 0.055 ± 0.011 0.296 ± 0.018 0.401 ± 0.042

Copula 0.037 ± 0.005 0.158 ± 0.019 0.221 ± 0.024

Table 2. Negative log-likelihood (NLL) of test trajectories evaluated by different types
of copula. Uniform copula assumes no dependence among agent actions. KDE copula
uses kernel density estimation to model the copula, which is state-independent. Gaus-
sian mixtures copula uses Gaussian mixture model to characterize the copula, which
is state-dependent.

Copula type PhySim Driving RoboCup

Uniform 8.994 ± 0.001 −0.571 ± 0.024 3.243 ± 0.049

KDE 1.256 ± 0.006 −0.916 ± 0.017 0.068 ± 0.052

Gaussian mixture 2.893 ± 0.012 −0.621 ± 0.028 3.124 ± 0.061

the interaction type among multiple agents. Since most of the baselines are used
for predicting future states given historical state, we change the implementation
of their objective functions and use them to predict the current action of agents
given historical states. Each experiment is repeated 3 times, and we report the
mean and standard deviation. Hyper-parameter settings of baselines as well as
our method are presented in AppendixB.

5.2 Results

We compare our method with baselines in the task of action prediction. The
results of root mean squared error (RMSE) between predicted actions and
ground-truth actions are presented in Table 1. The number of Gaussian mix-
ture components in our method is set to 2 for all datasets. The results demon-
strate that all methods performs the best on PhySim dataset, since agents in
PhySim follow simple physical rules and the relationships among them are linear
thus easy to infer. However, the interactions of agents in Driving and RoboCup
datasets are more complicated, which causes LR and NRI to underperform other
baselines. The performance of IN, CommNet, and VAIN are similar, which is in
accordance with the result reported in [12]. Our method is shown to outper-
form all baselines significantly on all three datasets, which demonstrates that
explicitly characterizing dependence of agent actions could greatly improve the
performance of multi-agent behavior modeling.
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Table 3. Negative log-likelihood (NLL) of new test trajectories in which the action
distribution of one agent is changed. We evaluate the new test trajectories based on
whether to use the old marginal action distributions or copula, which results in four
combinations.

Combinations PhySim Driving RoboCup

Old marginals + old copula 10.231 ± 0.562 15.184 ± 1.527 4.278 ± 0.452

Old marginals + new copula 8.775 ± 0.497 13.662 ± 0.945 4.121 ± 0.658

New marginals + old copula 1.301 ± 0.016 0.447 ± 0.085 0.114 ± 0.020

New marginals + new copula 1.259 ± 0.065 −0.953 ± 0.024 0.077 ± 0.044

To investigate the efficacy of copula, we implement three types of copula func-
tion: Uniform copula means we do not model dependence among agent actions.
KDE copula uses kernel density estimation to model the copula function, which
is state-independent. Gaussian mixtures copula uses Gaussian mixture model
to characterize the copula function, of which the parameters are output by an
MLP taking as input the current state. We train the three models on train-
ing trajectories, then calculate negative log-likelihood (NLL) of test trajecto-
ries using the three trained models. A lower NLL score means that the model
assigns high likelihood to given trajectories, showing that it is better at charac-
terizing the dataset. The NLL scores of the three models on the three datasets
are reported in Table 2. The performance of KDE copula and Gaussian copula
both surpasses uniform copula, which demonstrates that modeling dependence
among agent actions is essential for improving model expressiveness. However,
Gaussian copula performs worse than KDE copula, because Gaussian copula is
state-dependent thus increases the risk of overfitting. Notice that the perfor-
mance gap between KDE and Gaussian copula is less on PhySim, since PhySim
dataset is much larger so the Gaussian copula can be trained more effectively.

5.3 Generalization of Copula

One benefit of copulas is that copula captures the pure dependence among
agents, regardless of their own marginal action distributions. To demonstrate
the generalization capabilities of copulas, we design the following experiment.
We first train our model on the original dataset, and learn marginal action dis-
tributions and copula function (which is called old marginals and old copula).
Then we substitute one of the agents with a new agent and use the simulator
to generate a new set of trajectories. Specifically, this is achieved by doubling
the action value of one agent (for example, this can be seen as substituting an
existing particle with a lighter one in PhySim). We retrain our model on new tra-
jectories and learn new marginals and new copula. We evaluate the likelihood of
new trajectories based on whether to use the old marginals or old copula, which,
accordingly, results in four combinations. The NLL scores of four combinations
are presented in Table 3. It is clear, by comparing the first and the last row,
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that “new marginals + new copula” significantly outperform “old marginals +
old copula”, since new marginals and new copula are trained on new trajectories
and therefore characterize the new joint distribution exactly. To see the influence
of marginals and copula more clearly, we further compare the results in row 2
and 3, where we use new copula or new marginals separately. It is clear that the
model performance does not drop significantly if we use the old copula and new
marginals (by comparing row 3 and 4), which demonstrates that the copula func-
tion basically stays the same even if marginals are changed. The result supports
our claim that the learned copula is generalizable in the case where marginal
action distributions of agents change but the internal inter-agent relationship
stays the same.

5.4 Copula Visualization

Fig. 3. (a) Trajectories of 10 players (except the goal-
keeper) of the left team in one RoboCup game; (b)
Copula density between x-axis of L2 and x-axis of
another player (L3 ∼ L11).

Another benefit of copulas is
that it is able to intuitively
demonstrate the correlation
among agent actions. We
choose the RoboCup dataset
to visualize the learned cop-
ula. As shown in Fig. 3a, we
first randomly select a game
(the 6th game) between
cyrus2017 and helios2017 and
draw trajectories of 10 play-
ers in the left team (L2 ∼
L11, except the goalkeeper).
It is clear that the 10 play-
ers fulfill specific roles: L2
∼ L4 are defenders, L5 ∼
L8 are midfielders, and L9
∼ L11 are forwards. Then
we plot the copula density
between the x-axis (the hor-
izontal direction) of L2 and the x-axis of L3 ∼ L11, respectively, as shown in
Fig. 3b. These figures illustrate linear correlation between their moving direc-
tion along x-axis, that is, when L2 moves forward other players are also likely to
move forward. However, the correlation strength differs with respect to different
players: L2 exhibits high correlation with L3 and L4, but low correlation with
L9 ∼ L11. This is because L2 ∼ L4 are all defenders so they collaborate more
closely with each other, but L9 ∼ L11 are forwards thus far from L2 in the field.

5.5 Trajectory Generation

The learned copula can also be used to generate new trajectories. We visualize
the result of trajectory generation on RobuCup dataset. As shown in Fig. 4, the
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dotted lines denote the ground-truth trajectories of the 10 player in an attack
from midfield to the penalty area. The trajectories generated by our copula model
(Fig. 4b) are quite similar to the demonstration as they exhibit high consistency.
It is clear that midfielders and forwards (No. 5 ∼ No. 11) are basically moving
to the same direction, and they all make a left turn on their way to penalty
area. However, the generated trajectories by independent modeling show little
correlation since the players are all making independent decisions.

Fig. 4. Generated trajectories (solid lines) on
RoboCup using independent modeling or copula.
Dotted lines are ground-truth trajectories.

We also present the result
of trajectory generation on
Driving dataset. We ran-
domly select 10 original tra-
jectories and 10 trajectories
generated by our method,
and visualize the result in
Fig. 5. The x-axis is times-
tamp and y-axis is the loca-
tion (coordinate) of two cars.
Our learned policy is shown to
be able to maintain the dis-
tance between two cars.

(a) Original trajectories (b) Generated trajectories

Fig. 5. Original and generated trajectories on Driving dataset. The x-axis is timestamp
and y-axis is the location (1D coordinate) of two cars.

6 Conclusion and Future Work

In this paper, we propose a copula-based multi-agent imitation learning algo-
rithm that is interpretable, efficient and scalable to model complex multi-agent
interactions. Sklar’s theorem allows us to separately learn marginal policies that
capture the local behavioral patterns of each individual agent and a copula func-
tion that only and fully captures the dependence structure among the agents.
Compared to previous multi-agent imitation learning methods based on inde-
pendent policies (mean-field factorization of the joint policy) or opponent mod-
eling, our method is capable of modeling complex dependence among agents and
achieving coordination without any modeling redundancy.
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We point out two directions of future work. First, the copula function is
generalizable only if the dependence structure of agents (i.e., their role assign-
ment) is unchanged. Therefore, it is interesting to study how to efficiently apply
the learned copula to the scenario with evolving dependence structure. Another
practical question is that whether our proposed method can be extended to the
setting of decentralized execution, since the step of copula sampling (line 3 or
5 in Algorithm 2) is shared by all agents. A straightforward solution is to set
a fixed sequence of random seeds for all agents in advance, so that the copula
samples obtained by all agents are the same at each timestamp, but how to
design a more robust and elegant mechanism is still a promising direction.
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Appendix

A Dataset Details

PhySim is collected from a physical simulation environment where 5 particles
move in a unit 2D box. The state is locations of all particles and the action is
their acceleration (there is no need to include their velocities in state because
accelerations are completely determined by particle locations). We add Gaussian
noise to the observed values of actions. Particles may be pairwise connected by
springs, which can be represented as a binary adjacency matrix A ∈ {0, 1}N×N .
The elasticity between two particles scales linearly with their distance. At each
timestamp, we randomly sample an adjacency matrix from {A1,A2} to connect
all particles, where A1 and A2 are set as complimentary (i.e. A1 +A2 + I = 1)
to ensure that they are as different as possible. Therefore, the marginal action
distribution of each particle given a system state is Gaussian mixtures with two
components. Here the coordination signal for particles can be seen as the hidden
variable determining which set of springs (A1 or A2) is used at current time.
We generate 10, 000 training trajectories, 2, 000 validation trajectories, and 2, 000
test trajectories for experiments, where the length of each trajectory is 500.

Driving is generated by CARLA3 [9], an open-source simulator for
autonomous driving research that provides realistic urban environments for
training and validation of autonomous driving systems. To generate the driv-
ing data, we design a car following scenario, where a leader car and a follower
car drive in the same lane. We make the leader car alternatively accelerate to
a speed upper bound and slow down to stopping. The leader car does not care
about the follower and drives following its own policy. The follower car tries to
follow closely the leader car while keeping a safe distance. Here the state is the
locations and velocities of the two cars, and the action is their accelerations.
We generate 1, 009 trajectories in total, and split the whole data into training,
3 https://carla.org/.

https://carla.org/
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validation, and test set with ratio of 6 : 2 : 2. The average length of trajectories
is 85.5 in Driving dataset.

RoboCup [20] is collected from an international scientific robot football
competition in which teams of multiple robots compete against each other. The
original dataset contains all pairings of 10 teams with 25 repetitions of each
game (1, 125 games in total). The state of a game (locations and velocities of 22
robots) is recorded every 100 ms, resulting in a trajectory of length 6, 000 for
each game (10 min). We select the 25 games between two teams, cyrus2017 and
helios2017, as the data used in this paper. The state is locations of 10 robots
(except the goalkeeper) in the left team, and the action is their velocities. The
dataset is split into training, validation, and test set with ratio of 6 : 2 : 2.

B Implementation Details

For our proposed method, to learn the marginal action distribution of each agent
(i.e. Gaussian mixtures), we use an MLP with one hidden layer to take as input a
state and output the centers of their Gaussian mixtures. To prevent overfitting,
the variance of these Gaussian mixtures is parameterized by a free variable for
each particle, and the weights of mixtures are set as uniform. Each dimension of
states and actions in the original datasets are normalized to range [−1, 1]. For
PhySim, the number of particles are set to 5. Learning rate is set to 0.01, and
the weight of L2 regularizer is set to 10−5. For Driving, learning rate is 0.005
and L2 regularizer weight is 10−5. For RoboCup, learning rate is 0.001 and L2
regularizer weight is 10−6.

For LR, we use the default implementation in Python sklearn package. For
SocialLSTM [1], the dimension of input is set as the dimension of states in each
dataset. The spatial pooling size is 32, and we use an 8 × 8 sum pooling window
size without overlaps. The hidden state dimension in LSTM is 128. The learning
rate is 0.001. For IN [3], all MLPs are with one hidden layer of 32 units. The
learning rate is 0.005. For CommNet [31], all MLPs are with one hidden layer
of 32 units. The dimension of hidden states is set to 64, and the number of
communication round is set to 2. The learning rate is 0.001. For VAIN [12],
the encoder and decoder functions are implemented as a fully connected neural
network with one hidden layer of 32 units. The dimension of hidden states is 64,
and the dimension of attention vectors is 10. The learning rate is 0.0005. For
NRI [15], we use an MLP encoder and an MLP decoder, with one hidden layer
of 32 units. The learning rate is 0.001.
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Abstract. In many real-world tasks, a team of learning agents must
ensure that their optimized policies collectively satisfy required peak
and average constraints, while acting in a decentralized manner. In this
paper, we consider the problem of multi-agent reinforcement learning for
a constrained, partially observable Markov decision process – where the
agents need to maximize a global reward function subject to both peak
and average constraints. We propose a novel algorithm, CMIX, to enable
centralized training and decentralized execution (CTDE) under those
constraints. In particular, CMIX amends the reward function to take
peak constraint violations into account and then transforms the resulting
problem under average constraints to a max-min optimization problem.
We leverage the value function factorization method to develop a CTDE
algorithm for solving the max-min optimization problem, and two gap
loss functions are proposed to eliminate the bias of learned solutions.
We evaluate our CMIX algorithm on a blocker game with travel cost
and a large-scale vehicular network routing problem. The results show
that CMIX outperforms existing algorithms including IQL, VDN, and
QMIX, in that it optimizes the global reward objective while satisfying
both peak and average constraints. To the best of our knowledge, this
is the first proposal of a CTDE learning algorithm subject to both peak
and average constraints.
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1 Introduction

Multi-agent reinforcement learning (MARL) has shown great promise in many
cooperative tasks such as intelligent transportation system [2,16], network opti-
mization [28], and robot swarms [13]. Existing MARL algorithms – e.g., IQL [27],
VDN [26], and QMIX [24] – often leverage centralized training with decentral-
ized execution (CTDE). However, in many real-world decision making problems,
a team of distributed learning agents must also ensure that their optimized poli-
cies collectively satisfy required instantaneous peak constraints [3] and long-term
average constraints [10]. For instance, optimizing a vehicular network must meet
the requirements of both peak network performance (e.g., the maximum latency
constraint [25]) and average network performance (the average transmission rate
[15] or average latency [1] constraint). We note that since the exact action space
satisfying these constraints cannot be determined prior to training, new CTDE
algorithms are needed to simultaneously address both peak and average con-
straints.

In this paper, we propose a new MARL algorithm with CTDE, called CMIX,
for maximizing the discounted cumulative reward subject to both peak and aver-
age constraints. We note that while the problem of constrained reinforcement
learning (RL) has been studied under either peak constraints [3,9,11,12] or aver-
age constraints [4,6,10,22], most of the existing algorithms tackle only one type
of the two constraints – but not both – and focus on single-agent tasks with
centralized execution. To the best of our knowledge, there are no MARL learn-
ing algorithms that can address both peak and average constraints especially in
the realm of CTDE algorithms for multiple agents. In contrast, CMIX is able to
optimize distributed agents’ policies under both peak and average constraints,
while leveraging value function factorization to allow distributed executions.

More precisely, CMIX casts a Markov decision process (MDP) under both
peak and average constraints into an equivalent max-min optimization problem.
First, by setting a lower bound on the MDP’s objective value, we can replace the
objective with a new average constraint. Second, we introduce a penalty into the
reward functions of the average constraints so that the peak constraints can be
absorbed into the set of average constraints. These allow us to obtain a multi-
objective constrained problem with only average constraints, whose solution can
be solved through an equivalent max-min optimization problem. Finally, a search
algorithm is designed to find an appropriate lower bound, such that an optimal
solution of the original constrained problem can be obtained by solving the max-
min optimization problem.

We further leverage value function factorization and propose a CTDE algo-
rithm to solve the max-min optimization problem, thus providing a solution to
the MDP under both peak and average constraints. To this end, individual agent
networks are used to estimate the per-agent action-values with respect to each
average constraint and conditioned on only local observations, while a neural
mixing module consisting of multiple mixing networks combines the outputs of
the agent networks to produce an estimate of the joint action-values with respect
to the average constraints. Two structures of the mixing module are developed,



CMIX: Deep MARL with Peak and Average Constraints 159

i.e., a module with mixing networks having independent parameters (CMIX-M)
and a module with all mixing networks sharing the same parameters (CMIX-S).
The neural parameters can be updated through an end-to-end method similar
to QMIX [24]. However, directly applying the TD-error loss function is likely
resulting in a biased solution due to the fact that CMIX solves the original max-
min optimization problem approximately in a CTDE paradigm. To address the
issue, we propose two gap loss functions for CMIX-M and CMIX-S, respectively,
to minimize the gap between the original max-min optimization problem and
the approximated one solved by CMIX. The neural parameters are updated by
minimizing a linear combination of TD-error loss and gap loss. To the best of
our knowledge, this is the first MARL algorithm that enables CTDE under both
peak and average constraints.

We conduct extensive evaluations on a blocker game with travel cost and
on a large-scale vehicular network routing problem. Evaluation results compares
CMIX with state-of-the-art CTDE learning algorithms – including IQL [27],
VDN [26], and QMIX [24] – as well as algorithms for constrained MDP such as
C-IQL, which is implemented by extending IQL in a similar way to CMIX. The
results show that CMIX outperforms state-of-the-art CTDE learning algorithms
in the sense that it can optimize the global objective while satisfying both peak
and average constraints. Further evaluations validate that gap loss improves the
objective value of CMIX while enabling CMIX to comply with both peak and
average constraints.

2 Background

A cooperative multi-agent sequential decision-making task in a stochastic,
partially observable environment can be modeled as a decentralized partially
observable Markov decision process (Dec-POMDP) [21], denoted by a tuple
G = 〈S,N , {Ai}i∈N , P, r, {Zi}i∈N , γ〉. s ∈ S denotes the global state of the
environment. At each time step t, each agent i ∈ N ≡ {1, . . . , N} gets a
local observation zi ∈ Zi and chooses a local action ai ∈ Ai, forming a joint
action a ∈ A ≡ ΠN

i=1Ai. Then the environment evolves transforms from
the current state to a new state according to the state transition function
P (s′|s,a) : S × A × S → [0, 1] and returns a global reward r(s,a) to the agents.
Given a joint policy π := (πi)i∈N , the joint action-value function at time step
t is defined as Qπ (st,at) := Eπ [Rt|st,at], where Rt =

∑∞
τ=0 γτrt+τ is the

discounted cumulative reward. The goal is to find an optimal policy π∗ which
results in the optimal value function Q∗ = maxπ Qπ (st,at).

2.1 QMIX

CTDE paradigm [23] is promising in solving the optimization problems of Dec-
POMDP. During training, the learning algorithm of CTDE trains agents cen-
trally and gets access to the global state s. During execution, each agent i can
only make decisions according to its local observation zi. There have recently
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been many MARL algorithms proposed in the CTDE paradigm, among which
value-decomposition methods attract much attention recently.

QMIX [23,24] is one of the representative MARL algorithms belonging to
value-decomposition methods, which factorizes joint action-value function Qtot

into a combination of local action-value functions. QMIX combines the per-agent
action-value function via a state-dependent, differentiable monotonic function:
Qtot(s,a) = f(Q1(zi, a1), . . . , QN (zN , aN ); s),where ∂f

∂Qi
≥ 0,∀i ∈ N . Since the

mixer f(·) is a monotonic function to per-agent action-value input, we can max-
imize the joint action value by maximizing per-agent action values locally.

QMIX is trained much like deep Q-network (DQN) [19]. A buffer replay
mechanism and a TD-error loss function are taken for training agents. Particu-
larly, for a mini-batch of B samples (sb,ab, rb, s

′
b) (b = 1, . . . , B), QMIX learns

parameters θ by minimizing LTD−error = 1
B

∑B
b=1(Qtot(sb,ab; θ) − yb)2, where

yb = rb + γ maxa′ Qtot(s′
b,a

′; θ−) is the target value of the b-th sample and θ−

denotes the parameters of a target network which are periodically copied from
θ. The monotonic mixing function f is parameterized as a feed-forward network,
whose non-negative weights are generated by hypernetworks [14] with the global
state as input.

2.2 Constrained Reinforcement Learning

Constrained reinforcement learning tries to find a policy π∗ to maximize the
global discounted cumulative reward subject to some constraints such as peak
constraints [3,9,11,12] and average constraints [4,6,10,22]. Formally, the objec-
tive function of these constrained problems is maxπ Eπ [

∑∞
t=0 γtr(st,at)]. With-

out loss of generality, we assume that there exist J peak constraints and K
average constraints. Peak constraints limit instantaneous returns, which can be
formulated as cj(st,at) ≥ 0, ∀t, j = 1, . . . , J . While average constraints focus
on long-term limitations, which can be stated as Eπ [

∑∞
t=0 γtrk(st,at)] ≥ 0, k =

1, . . . ,K. r,{cj}J
j=1, and {rk}K

k=1 are unknown functions, but their returned val-
ues can be acquired at each time step.

Existing researchers usually develop constrained RL algorithms for dealing
with the two kinds of constraints separately. For the problems with only peak
constraints, many approaches [3,9] choose to introduce a penalty into the original
reward function, which has been validated to be effective.

There are also some researches focusing on the problems with only aver-
age constraints. [10] converts the optimization problem with average constraints
to the multi-objective constrained problem by adding a lower bound δ to the
objective function. The multi-objective constrained problem aims to find a fea-
sible policy while satisfying the original average constraints as well as the new
average constraint on the objective function. Such a constraint satisfaction prob-
lem can be solved through a max-min optimization problem which maximizes
the minimum margin of average constraints.1 Therefore, with an appropriate δ-

1 The margin of an average constraint represents the left hand of the average con-
straint.



CMIX: Deep MARL with Peak and Average Constraints 161

search algorithm, we can approximate the optimal solution that maximizes the
discounted cumulative reward under the original average constraints.

However, most of the constrained RL algorithms are for single-agent settings,
and the algorithms considering both peak and average constraints are missing
especially in the paradigm of MARL.

3 Problem Formulation

In this paper, we consider the problem of the Dec-POMDP under both peak and
average constraints. The problem can be formulated as

max
π

Eπ

[ ∞∑

t=0

γtr(st,at)

]

(1)

s.t. cj(st,at) ≥ 0, ∀t, j = 1, . . . , J (2)

Eπ

[ ∞∑

t=0

γtrk(st,at)

]

≥ 0, k = 1, . . . ,K (3)

Next, we need to find an optimal joint policy π∗ which optimizes the discounted
cumulative reward in Eq.(1) and satisfies both peak constraints on instantaneous
returns in Eq.(2) and average constraints on long-term returns in Eq.(3).

4 CMIX

We propose CMIX to solve the Dec-POMDP problem under both peak and
average constraints. First, we convert the original MDP to a multi-objective
constrained problem, whose solution can be obtained by solving an equivalent
max-min optimization problem. Second, we leverage value function factorization
to develop a CTDE algorithm for solving the max-min optimization problem
approximately. We further analyze the gap between the original max-min opti-
mization problem and the approximated one solved by CMIX and propose two
gap loss functions to eliminate the bias of learned solutions.

4.1 Multi-objective Constrained Problem

The constrained Dec-POMDP problem can be converted into a multi-objective
constrained problem by setting a lower bound δ for the objective function [10].
The bounded objective function becomes a new average constraint, which is
equivalent to

Eπ

[ ∞∑

t=0

γt(r(st,at) − δ(1 − γ))

]

≥ 0. (4)

Then, we obtain a multi-objective constrained problem which aims to find a
feasible policy while satisfying the peak constraints of Eq. (2) as well as the
average constraints of Eq. (3) and Eq. (4).
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Consider that peak and average constraints have very different forms. So
directly dealing with the two kinds of constraints together is much challeng-
ing. To address the issue, we design that the peak constraints of Eq. (2) can
be absorbed into the average constraints of Eq. (3) and Eq. (4) by import-
ing a penalty to reward functions. In particular, we define a penalty function
as p(st,at) =

∑J
j=1 minλj≥0 λjcj(st,at). When computing rewards, a penalty

p(st,at) will be added to the global reward r and the rewards for average con-
straints {rk}K

k=1. The penalty p(st,at) equals zero when all the peak constraints
are satisfied; otherwise, a large minus value will be added to the computed reward
values.

Now, we obtain a multi-objective constrained problem with only average
constraints, i.e.,

Find π

s.t. Eπ

[ ∞∑

t=0

γt(r(st,at) − δ(1 − γ) + p(st,at))

]

≥ 0,

Eπ

[ ∞∑

t=0

γt(rk(st,at) + p(st,at))

]

≥ 0, k = 1, . . . ,K

Since a violation of any peak constraints will result in very small rewards, the
above problem with only average constraints is equivalent to the multi-objective
constrained problem with both peak and average constraints. Also note that the
penalty p(st,at) can not be realized directly but there exists a large body of
literature on reward engineering for the penalty design [8,9]. In practice, we use
a simple approximator to p(st,at) as p̂(st,at) = −C

∑J
j=1 1cj(st,at)<0, where C

is a positive constant bounding the variance of global reward function r and the
reward functions for average constraints {rk}K

k=1, and 1cj(st,at)<0 equals 1 when
cj(st,at) < 0 otherwise 0. We can find that the approximator equals zero when
all the peak constraints are satisfied and a large minus value otherwise, which is
similar to the original penalty p(st,at).

The above multi-objective constrained problem can be solved through an
equivalent max-min optimization problem, noted as a zero-sum Markov-Bandit
game in [10]. Particularly, the max-min optimization problem focuses on finding
a feasible policy to maximize the minimum margin of the average constraints. It
is easy to find that if the original multi-objective constrained problem is feasi-
ble, the policy, that maximizes the minimum margin of the average constraints,
should be a feasible solution to the original problem. We define action-value
functions for representing the margins of the average constraints. Formally, let
o indicates the index of average constraints. Then, we define

if o = 0 : Q(s, a, o) = Eπ

[ ∞∑
t=0

γt(r(st, at) − δ(1 − γ) + p(st, at))

]
, and

for o = 1, . . . , K : Q(s, a, o) := Q(s, a, k) = Eπ

[ ∞∑
t=0

γt (
rk(st, at) + p(st, at)

)]
.
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The Bellman equation of the max-min optimization problem is given as follows

Q(s,a, o) = r(s,a, o) + γ · Eπ (s′) [Q(s′,π(s′), o)] ,
π(s) = arg max

π (s)

min
o∈O

Eπ (s) [Q(s,π(s), o)] , (5)

where r(s,a, o) := r(st,at) − δ(1 − γ) + p(st,at) for o = 0 and r(s,a, o) :=
r(s,a, k) = rk(st,at) + p(st,at) for o = k = 1, · · · ,K. Note that π(s) is a
distribution over the joint action space and can be obtained by solving a max-
min optimization problem. By solving Eq. (5), we can maximize the minimum
margin of the average constraints and find the feasible policy for the original
multi-objective constrained problem.

This max-min optimization problem aims to provide a feasible solution
to the multi-objective constrained problem for a given δ. It is easy to prove
that if δ equals the optimal objective value of the original constrained Dec-
POMDP problem, the obtained feasible solution is also an optimal solution to
the original constrained Dec-POMDP problem. To find the optimal δ, we can set
δ = E [r(s,a)] /(1 − γ) in the max-min optimization problem learning process.
In this way, the learning algorithm can learn the optimal δ and the correspond-
ing policy π∗ self-adaptively. In our proposed algorithm, we take an adaptive
δ-search algorithm by setting δt = ε · δt−1 + (1 − ε) · r(st,at)/(1 − γ) at each
time step, where ε ∈ [0, 1] is an adjustable parameter.

4.2 CMIX Architecture

To efficiently solve the constrained Dec-POMDP problem, we propose a neural
architecture called CMIX by extending the original QMIX.

When applying QMIX in solving the Bellman equation in Eq.(5), we need to
solve a max-min problem

π∗(s) = arg max
π (s)

min
o∈O

Eπ (s)[Qtot(s,π(s), o)], (6)

where O = {0, 1, . . . ,K} is the set of constraints and Qtot(s,π(s), o) is the
joint action value calculated by the monotonic function fo: Qtot(s,π(s), o) =
fo(Qo

1, Q
o
2, ..., Q

o
N ). So, there are total of 1 + K mixing functions. For brevity,

we omit the notations of each agent’s local observations and actions, and let Qo
i

denote the i-th agent’s action-value function with respect to the o-th average
constraint.

Recall that each agent takes actions independently in the original QMIX. So
naturally we need to make each agent solve a local max-min problem for taking
an action. Formally, the local max-min problem of agent i can be stated as

π̂i(zi) = arg max
πi(zi)

min
o∈O

Eπi(zi)[Q
o
i ]. (7)

It is easy to prove that by solving Eq.(7) we optimize a similar but not same
problem to Eq.(6). We define function g as

g(x1, x2, . . . , xn) := min
o∈O

fo(x1, x2, . . . , xn).



164 C. Liu et al.

Fig. 1. (a) The mixing network structure of CMIX-M. (b) The mixing network struc-
ture of CMIX-S. (c) The overall CMIX architecture. (d) The agent network structure.

Since {fo} are monotonic functions, g is also monotonic. Then the actual max-
min problem solved by Eq.(7) is

π̂(s) = arg max
π (s)

Eπ (s)[g(min
o∈O

Qo
1, . . . ,min

o∈O
Qo

N )]. (8)

According to Eq. (8), we propose a CMIX architecture with two kinds of
mixing module structures. In particular, we propose CMIX-M, the CMIX archi-
tecture with multiple mixing networks. That is to say, the mixing functions fo

(∀o ∈ O) have independent parameters. Besides, we propose CMIX-S, the CMIX
architecture with a single mixing network. The mixing functions in CMIX-S share
parameters, i.e., fo = f (∀o ∈ O). Figure 1 shows the overall CMIX architecture
with the two kinds of mixing module structures. Agent network i adopts DQN
[18] and stores Qo

i (∀o ∈ O). Each agent takes local state zt
i as input and outputs

the corresponding Q values Qo
i (s

t
i, a

t
i) (∀o ∈ O) after taking a local action at

i.
The mixing network module combines the outputs of the agents monotonically,
producing the values of Qo

tot(∀o ∈ O). To guarantee the monotonicity, hypernet-
works with absolute activation functions in output layers are used to generate
the weights of mixing networks fo, which follows [24]2.

4.3 Gap Loss Function

Given the CMIX architecture, the neural parameters θ can be learned in an
end-to-end fashion. For a transition (s,a, r, {rk}k=1,...,K , s′), the TD-error loss
can be computed by

LTD−error =
∑

o

(Qtot(s,a, o; θ) − yo)2, (9)

where yo = r(s,a, o) + γ ·Eπ̂ (s′) [Q(s′, π̂(s′), o; θ−)] is the target value and π̂(s′)
can be obtained with Eq.(7).

However, applying the TD-error loss function may be likely to result in a
biased solution. As analyzed previously, the problem solved by CMIX is actually

2 For brevity, we do not show the hypernetwork part of the mixing module in Fig. 1.
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the max-min problem of Eq. (8). Since {fo} are monotonic functions, and g is
also monotonic. We can get

min
o∈O

fo(Qo
1, . . . , Q

o
N ) ≥ min

o∈O
g(Qo

1, . . . , Q
o
N ) ≥ g(min

o∈O
Qo

1, . . . ,min
o∈O

Qo
N ), ∀π(s)

(10)
The left hand of Eq. (10) is the true objective function to be maximized in Eq. (6)
while the right hand is the objective function we actually maximized in CMIX.
We can see that CMIX may lead to a biased solution π̂(s) to the original global
max-min problem of Eq. (6) due to the gap in objective functions.

To address the issue, we design two loss functions for CMIX-M and CMIX-S,
respectively.

Loss Function for CMIX-M: To eliminate the bias caused by the gap between
true objective function mino∈O fo(Qo

1, . . . , Q
o
N ) and the one actually used in

CMIX-M g(mino∈O Qo
1, . . . ,mino∈O Qo

N ), we propose a loss function called gap
loss Lgap to minimize the gap, i.e.,

Lgap =
(

min
o∈O

fo(Qo
1, . . . , Q

o
N ) − g(min

o∈O
Qo

1, . . . ,min
o∈O

Qo
N )

)2

. (11)

In the training phase, we combine the TD-error loss of Eq. (9) with the gap loss
to update parameters. The final loss is computed by

Lfinal = LTD−error + βLgap, (12)

where β is a coefficient for adjusting the weight of the gap loss.

Loss Function for CMIX-S: In CMIX-S we assume that all the mixing
functions fo share parameters, i.e., g = fo = f (∀o ∈ O). Then the original
max-min problem becomes arg maxπ (s) mino∈O Eπ (s)[f(Qo

1, . . . , Q
o
N )], and the

actual max-min problem solved by CMIX is π̂(s) = arg maxπ (s) E[f(mino∈O Qo
1,

. . . ,mino∈O Qo
N )]. According to the above equations, we design the gap loss Lgap

for CMIX-S as

Lgap =
(

min
o∈O

f(Qo
1, . . . , Q

o
N ) − f(min

o∈O
Qo

1, . . . ,min
o∈O

Qo
N )

)2

. (13)

The final loss can be computed in the way same as Eq. (12).
Note that the gap loss functions in Eq.(11) and (13) are fully differentiable

and can be easily optimized by existing gradient descent methods.

4.4 CMIX Algorithm

In Algorithm 1, we outline the pseudocode of CMIX. In the beginning, we ini-
tialize the neural parameters of θ and θ−, and the replay buffer D. From line
2 to line 16, we train the agents for a number of epochmax epochs, and each
epoch contains a total of stepmax update steps. The state will be initialized
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Algorithm 1: CMIX Algorithm
1: Initialize parameters θ, target θ− = θ, and the replay buffer D = ∅
2: for epoch = 1, · · · , epochmax do
3: Initialize state s0

4: for t = 0, · · · , stepmax do
5: Collect observations {zt

i}i∈N for all agents
6: for each agent i do
7: π̂i(z

t
i ) = arg max

πi∈Πi

min
o∈O

E[Qi(z
t
i , πi(z

t
i), o)]

8: at
i =

{
sample(π̂i(z

t
i)) with prob. 1 − ε

randint(1, |Ai|) with prob. ε

9: end for
10: Execute the joint action at and store the transition

(st, at, r, {rt
k}k=1,...,K , st+1) in D

11: Sample a mini-batch B from D
12: Compute Lfinal of Eq. (12) for each sample in B
13: Update θ by minimizing the average loss of Lfinal with respect to B
14: Update target θ− = θ periodically
15: end for
16: end for

at the beginning of each epoch (line 3). In line 5, the agents’ local observa-
tions are collected. From line 6 to line 9, each agent takes an action through an
ε−greedy method. In line 10, the joint action at is executed, and the transition
(st,at, r, {rt

k}k=1,...,K , st+1) is stored in the buffer D. In line 11, a mini-batch B
of samples are selected from D randomly. Then, the loss Lfinal of Eq. (12) is
computed with respect to each sample in line 12. In line 13, the computed loss
guides the update of θ. Finally, the target θ− will be updated from θ after a
specified interval.

5 Experiments

We evaluate CMIX on two different tasks: a blocker game with travel cost and
a cooperative routing optimization task in large-scale vehicular networks. In our
numerical results, CMIX is compared with the state-of-the-art CTDE learning
algorithms, including IQL [27], VDN [26], and QMIX [23]. Since these algorithms
do not consider constraints during training, we also compare performance with
C-IQL where each agent independently optimizes the global objective with the
consideration of peak and average constraints. C-IQL is implemented by extend-
ing IQL in a way similar to CMIX.

5.1 Blocker Game with Travel Cost

We consider a non-trivial blocker game with travel cost, which is an extension of
the blocker game in [29]. The agents should cooperate to reach the bottom row
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Fig. 2. Blocker game with travel cost.

Fig. 3. Convergence results over training epoch in the blocker game of Fig. 2. Each
curve with shadow shows the mean values and the variants of the observed metric. The
average cost no larger than 0.3 represents that the average constraint is fulfilled.

of the map as quickly as possible, while the blockers move left or right to block
the agents. Each cell on the map is assigned a cost, and an agent will take the
cost when it moves into the cell. We also place some traps on the map, which
the agents are not allowed to move into.

Figure 2 shows the blocker game with travel cost in our evaluation. In the
game, it costs -1 reward per time-step before the agents reach the destination,
and an extra small reward will be returned to the agents when they are get-
ting closer to the bottom. The agents try to minimize the winning step, i.e., the
movement steps needed by the agents for reaching the bottom, subject to a peak
constraint and an average constraint. The agents should not move into traps (i.e.,
peak constraint). Besides, the average cost taken by these agents in one game
should be bounded. The upper bound of average cost is set to 0.3 in our evalua-
tion. With the optimal strategy labeled by green arrows, the agents can win the
game in 5 steps, satisfying both peak and average constraints. The blocker game
is challenging for the agents in the sense of cooperation with only decentral-
ized policy and local observations, and the peak and average constraints make
the task even more difficult to complete. The convergence results of different
algorithms in the blocker game with travel cost are presented in Fig. 3.

Winning Step: Figure 3 (a) shows the convergence results of winning step. We
can see that the winning step decreases with the increment of the epoch. QMIX
gets the smallest winning step finally without considering constraints. CMIX-
M, CMIX-S, and IQL get similar performance on winning step and outperform



168 C. Liu et al.

VDN and C-IQL which either have larger variance or take more training epochs
to converge. We note that CMIX-M and CMIX-S optimize winning step under
peak and average constraints, while IQL does not consider constraints.

Peak Violation: Figure 3 (b) shows the convergence results of peak violation,
i.e., the number of violated peak constraints in each epoch. We can see that
CMIX-M, CMIX-S, and C-IQL get results very close to zero after convergence.
That is to say, the peak constraint is mostly satisfied by CMIX-M, CMIX-S,
and C-IQL. However, the other algorithms, i.e., QMIX, IQL, and VDN, receive
significant peak violations due to the ignorance of peak constraints.

Average Cost: Figure 3 (c) shows the convergence results of average cost, i.e.,
the average cost with respect to each agent and each step. We can see only CMIX-
M satisfies the average cost after convergence, while CMIX-S and C-IQL violate
the average constraints slightly. Note that compared with CMIX-M, CMIX-S
using a single mixing network has a relatively limited representation ability.

5.2 Vehicular Network Routing Optimization

Fig. 4. The cooperative routing optimization problem in a vehicular network.

We apply the MARL algorithms in a cooperative routing optimization problem
in vehicular networks shown in Fig. 4. In the scenario with three cells, each vehi-
cle can establish a V2I (Vehicle-to-Infrastructure) link with the base station in
the local cell or V2V (Vehicle-to-Vehicle) links with neighboring vehicles. These
V2I and V2V links have different transmission data rates and link latencies. We
attach an RL agent on each vehicle and consider downlink data transmission,
i.e., data needs to be delivered from base stations to destination vehicles. For
a destination vehicle, its downlink data can be delivered through i) the path of
the direct V2I link, or ii) the path consisting of a V2V link with a neighboring
vehicle (i.e., a relay) and a V2I link between the relay and the corresponding
base station. The routing decision, that an agent on the vehicle needs to make,
is choosing a proper path for downlink data transmission according to local
observations of the candidate relays. All the vehicles need to be coordinated
to maximize the total transmission rate with the consideration of proportional
fairness, while satisfying some peak and average latency constraints. Particu-
larly, the path latency of each vehicle should not exceed a threshold, i.e., peak
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Fig. 5. Convergence results over training step in the vehicular routing problem. The
average latency no larger than 60 represents that the average constraint is fulfilled.

constraints, and the average path latency of all the vehicles in the network is
bounded by a soft upper bound.

In our evaluation, we consider a vehicular network with three cells (also three
base stations) with tens of randomly generated vehicles (30–60 vehicles). Link
latencies and link transmission rates are also set randomly.

Besides the baselines in the blocker game, we also consider three other base-
lines. i) Only-V2I: Downlink data is delivered to each vehicle through the directly
connected V2I link. ii) Data-greedy: Each vehicle chooses the path with the
largest data rate. iii) DCRA [15]: An iterative vehicular routing optimization
algorithm that can improve the transmission rate with the consideration of pro-
portional fairness.

Global Utility: Figure 5 (a) shows the convergence of global utility. We can
see that QMIX and VDN outperform others because they do not consider con-
straints. Then, both CMIX-S and CMIX-M outperform Only-V2I significantly,
and CMIX-S provides even larger global utility than Data-greedy, which validates
the effectiveness of CMIX. Note that both IQL and C-IQL suffer performance
degradation since it is difficult to learn a consistent strategy for the agents with-
out a mixing architecture. Also, note that CMIX-S shows a better performance
than CMIX-M. This is because CMIX-M having more parameters is more chal-
lenging to converge than CMIX-S in such a large-scale and complicated task.

Peak Violation: Figure 5 (b) shows the convergence of peak violation. Note
that, the curves of C-IQL, CMIX-M, and CMIX-S are overlapped. We can see
the three algorithms can fulfill the peak constraint after convergence. Note that
Only-V2I using the one-hop path of the directly connected V2I link still violates
the peak constraint sometimes.

Average Latency: Figure 5 (c) shows the convergence of average latency. We
can see only CMIX-M and CMIX-S satisfy the average constraint. The other
baselines do not meet the average constraint.

5.3 Gap Loss Coefficient

We evaluate the performance of CMIX under different settings of the gap loss
coefficient weight β in the blocker game with travel cost. β = 0 means not using
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Fig. 6. Convergence results of CMIX with different coefficient β over training epoch in
the blocker game of Fig. 2. The average cost bound is set to 0.3.

Fig. 7. Convergence results of CMIX with different coefficient β over training step in
the vehicular routing problem. The average latency bound is set to 60.

the gap loss function. Figure 6 shows the convergence result over training epoch.
We find that the CMIX algorithm converges more stably and to a better result
when β is large enough, which illustrates the positive effect of gap loss in bias
elimination. Moreover, the results indicate that gap loss plays a more important
role in the CMIX-M algorithm.

We also evaluate the effect of β in the vehicular network routing optimization
task. Figure 7 shows the convergence result over training step. We can find that
CMIX-S with gap loss gives better results, which illustrates the effectiveness of
gap loss for CMIX in large-scale tasks. Also, note that CMIX-M performances
worse with larger β since CMIX-M has more parameters and the gap loss possibly
makes it more difficult to converge in large-scale tasks.

6 Related Work

Reinforcement Learning Under Peak or Average Constraints. There are
lots of approaches [3,4,6,9–12,22] focusing on RL under either peak or average
constraints. However, most of the constrained RL algorithms tackle only one
type of the two constraints – but not both – and focus on single-agent setting.

Multi-agent Reinforcement Learning Under Constraints. Existing
MARL algorithms are often developed in the paradigm of CTDE, i.e., centralized
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training with decentralized execution. Independent learning algorithms like IQL
[27] treat other agents as part of the environment, which usually do not converge
well. Another kind of approaches called centralized learning [7,13] learn a fully
centralized state-action value function and then use it to guide the optimization
of policies for decentralized agents. However, centralized learning suffers bad
scalability due to combinatorial complexity, especially in large-scale cooperative
tasks. Recently, another paradigm lying between independent learning and cen-
tralized learning has attracted much attention. A typical method called QMIX
[24] as well as its extensions [17,23,29] combines the Q-values of agents through
a mixing module, which can coordinate agents efficiently and result in good scal-
ability. MARL under constraints has already attracted some attentions [5,20].
However, to the best of our knowledge, there are no MARL learning algorithms
that can address both peak and average constraints especially in the realm of
CTDE algorithms.

7 Conclusion

In this paper, we propose the CMIX algorithm for Dec-POMDP problem under
both peak and average constraints. To this end, the original problem is con-
verted into a multi-objective constrained problem, which can be solved through
an equivalent max-min optimization problem. We leverage the value function
factorization to develop a novel neural architecture in the CTDE paradigm for
solving the max-min optimization problem approximately. We further analyze
the gap between the original max-min optimization problem and the approxi-
mated ones solved by CMIX and propose two gap loss functions to eliminate
the bias of learned solutions. Evaluations on a blocker game with travel cost
and a large-scale vehicular network routing problem validate the effectiveness of
CMIX. We note that the proposed CMIX approach can be integrated with other
algorithms using value function factorization, e.g., [17,29], which will be left to
our future work.
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Abstract. Offline Reinforcement Learning (RL) aims at learning effec-
tive policies by leveraging previously collected datasets without further
exploration in environments. Model-based algorithms, which first learn
a dynamics model using the offline dataset and then conservatively learn
a policy under the model, have demonstrated great potential in offline
RL. Previous model-based algorithms typically penalize the rewards with
the uncertainty of the dynamics model, which, however, is not necessar-
ily consistent with the model error. Inspired by the lower bound on the
return in the real dynamics, in this paper we present a model-based alter-
native called DROP for offline RL. In particular, DROP estimates the
density ratio between model-rollouts distribution and offline data dis-
tribution via the DICE framework [45], and then regularizes the model-
predicted rewards with the ratio for pessimistic policy learning. Extensive
experiments show our DROP can achieve comparable or better perfor-
mance compared to baselines on widely studied offline RL benchmarks.

Keywords: Offline Reinforcement Learning · Model-based
Reinforcement Learning · Occupancy measure

1 Introduction

Reinforcement learning (RL) has achieved great success in various simulated
domains, such as Go [33] and video games [11]. However, these promising results
mostly rely on numerous online trial-and-error learning. Unfortunately, such
an online learning manner is typically costly, even dangerous, and thus cannot
be directly applied to complex real-world problems, such as recommender sys-
tems [2]. Instead, in real-world applications, there usually exist large and diverse
datasets that are previously collected by one or multiple logging policies. These
scenarios motivate the study of offline RL [21], also known as batch RL [20],
which provides a promising alternative for widespread use of RL. At a colloquial
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level, offline RL algorithms aim to learn highly rewarding policies by leveraging
the static offline datasets without further interactions with environments.

Although it seems to be promising, offline RL faces enormous challenges.
Previous works have observed that directly utilizing existing off-policy RL algo-
rithms (e.g., DDPG [22]) in an offline setting without online data collection
performs poorly [7]. These failures are mainly caused by evaluating the tar-
get Q-function on out-of-training-distribution state-actions in the bootstrapping
process [18]. Such distribution shift issue may introduce errors when updating
the Q-function, making policy optimization unstable and potentially diverging.

In literature, many efforts have been devoted to mitigating the state-action
distribution shift challenge in offline RL. One fruitful line of prior offline RL
works consists of model-free algorithms [1,7,14,18,19,26,28,32,40], which con-
strain the learned policy to be close to the data collecting policy or incorporate
conservatism into the Q-function training. However, such model-free algorithms
can only learn on the states in the offline dataset, making it overly conservative
to learn an effective policy. Therefore, it is necessary to leave the offline data
support for better policy optimization. To that end, model-based counterparts
have been studied to offer such a possibility by using a dynamics model.

However, directly applying model-based techniques to offline settings also suf-
fers from the state-action distribution shift between model learning and model
using. Therefore previous model-based offline RL algorithms [16,42] learn a pes-
simistic model by penalizing the model predicted rewards according to the esti-
mated model uncertainty and then interact with the model to sample transitions
for policy training. Due to the capability of sampling states that are not con-
tained in the offline dataset, model-based algorithms have shown to generalize
better. However, the existing model-based offline RL methods rely on heuristic
uncertainty quantification techniques, and there is no guarantee that the esti-
mated uncertainty is in proportion to the groundtruth model prediction error.

Based on this consideration, in this paper we present density ratio regularized
offline policy learning (DROP), a simple yet effective model-based algorithm for
offline RL. DROP directly builds upon a theoretical lower bound of the return in
the real dynamics, providing a sound theoretical guarantee for our algorithm. To
be more specific, DROP leverages the GradientDICE technique [45] to estimate
the density ratio between the model rollout distribution and the offline data
distribution, and then regularizes the model predicted rewards according to the
density ratio. As an intuitive example, the reward will be severely penalized if
the state-action pair is much more likely to be sampled by the model than in
the offline dataset, in which case the penalization could be viewed as inducing a
conservative estimate of the value for out-of-support state-action pairs. We show
through extensive experiments that our proposed DROP can achieve comparable
or better performance compared with prior model-free and model-based offline
RL methods on the offline RL benchmark D4RL [6].

2 Preliminary

We first introduce the notations used throughout the paper, and briefly discuss
the problem setup of offline RL and the basic idea of model-based RL.
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2.1 Markov Decision Processes

A Markov decision process (MDP) is defined by the tuple M = (S,A, T, r, γ, μ0),
where S and A are the state and action spaces, respectively. μ0(s) denotes the
initial state distribution, and γ ∈ (0, 1) is the discount factor. T (s′ | s, a) is
the transition density of state s′ given action a made under state s, and the
reward function is denoted as r(s, a). In (online) reinforcement learning, an agent
interacts with the MDP, which is also called its environment, and aims to learn
a policy π(a|s) to maximize the expectation of the return (the sum of discounted
rewards) with the collected transitions (s, a, s′, r):

max
π

J (π,M) := Es0∼μ0,at∼π(·|st),st+1∼T (·|st,at)

[ ∞∑
t=0

γtr(st, at)

]
. (1)

For a policy π, we define its discounted state visitation distribution on the real
dynamics as μπ

T (s) := (1 − γ)
∑∞

t=0 γtPπ
T,t(s), where Pπ

T,t(s) is the probability of
visiting state s at time t. Similarly, we also define the normalized occupancy mea-
sure [12] of policy π on dynamics T : ρπ

T (s, a) := (1 − γ) · π(a | s)
∑∞

t=0 γtPπ
T,t(s),

and then we have ρπ
T (s, a) = π(a|s)μπ

T (s). Using this definition, we can equiva-
lently express the RL objective as follows:

J (π,M) = Eρπ
T (s,a)[r(s, a)] =

∫
ρπ

T (s, a)r(s, a) dsda. (2)

2.2 Offline RL

In offline RL (also known as batch RL [20]), the agent cannot interact with the
environment to collect additional transitions. Instead, the agent is provided with
a static dataset of transitions Db = {(si, ai, s

′
i, ri)}N

i=1, which is collected by one
or a mixture of behavior policies, also called logging policies, denoted by πb. In
this case, the state-action pairs in dataset Db can be viewed as sampling from
the distribution ρπb

T . Typically, we do not assume the behavior policy is known in
the formulation of offline RL, but we can approximate it via imitation learning
over the dataset Db if needed. The goal of offline RL is still to search a policy
that maximizes the objective function J (π,M) in Eq. 1 or 2.

2.3 Model-Based RL

In practice, the groundtruth state transition T is unknown and model-based
RL methods learn a dynamics model T̂ to mimic the real one via maximum
likelihood estimation, using the data Db collected in the real environment. If
the reward function r is unknown, a reward function r̂ can also be learned in
the dynamics model. Similarly, we define ρπ

T̂
(s, a) to represent the discounted

occupancy measure visited by π under the model T̂ . Once the model is learned,
we can construct a model MDP M̂ = (S,A, T̂ , r̂, γ, μ0). Then subsequently, any
off-the-shelf model-free algorithms can be used to interact with the model MDP
to find the optimal policy: π∗ = arg maxπ J (π,M̂). Besides, one can also use
planning algorithms [4,27] in the model to derive a high-performance agent.



Model-Based Offline Policy Optimization 177

3 A Lower Bound of the True Expected Return

As discussed above, model-based offline RL methods aim to optimize J (π,M)
by optimizing J (π,M̂) instead. However, it is not guaranteed that the policy
optimized under the model MDP M̂ can achieve good performance in the real
environment M due to the potential model bias. Unfortunately, the model bias is
inevitable due to the state-action distribution shift between the offline data and
the model rollout trajectories, and in the offline settings this phenomenon is more
severe since the error can not be corrected by collecting new data. Therefore, it
is important to control the trade-off between the potential gain in performance
by leaving the offline data support and the consequent increased model bias.

To overcome this challenge, previous works like MOPO [42] construct a lower
bound of the true expected return J (π,M) in the following form:

J (π,M) ≥ J (π,M̂) − C. (3)

Once the lower bound is constructed, one can naturally design algorithms to
optimize the RL objective by maximizing the lower bound. Following the theo-
retical analysis in previous works, we first present the following lemma.

Lemma 1. ([23], Lemma 4.3; [42], Lemma 4.1; [31], Lemma E.1) Let two
MDPs M and M̂ share the same reward function r(s, a), but have two dif-
ferent dynamics transition functions T (·|s, a) and T̂ (·|s, a), respectively. Define
Gπ

T̂
(s, a) := Es′∼T̂ (·|s,a)[V

π
T (s′)] − Es′∼T (·|s,a)[V π

T (s′)]. For any policy π, we have

J (π,M̂) − J (π,M) = κ · E(s,a)∼ρπ
T̂
[Gπ

T̂
(s, a)], (4)

where κ = γ(1 − γ)−1.

MOPO then further bounds the value discrepancy Gπ
T̂
(s, a) by integral proba-

bility metric (IPM) [24]. According to the definition of IPM, let F be a collection
of functions from S to R, under the assumption that V π

T ∈ F , we have

Gπ
T̂ (s, a) ≤ sup

f∈F

∣
∣
∣Es′∼T̂ (·|s,a)[f(s′)] − Es′∼T (·|s,a)[f(s′)]

∣
∣
∣ =: dF (T̂ (·|s, a), T (·|s, a)), (5)

where dF is the IPM defined by the function class F . By choosing different F ,
IPM reduces to many well-known distance metrics between probability distri-
butions, such as Wasserstein distance [37] and maximum mean discrepancy [9].
Now it becomes the following lower bound

J (π,M) ≥ Es′∼T̂ (·|s,a)[r(s, a) − κ · dF (T̂ (·|s, a), T (·|s, a))]. (6)

According to this lower bound, MOPO estimates the uncertainty u(s, a) in model
prediction and then reshapes the reward by r̃(s, a) = r̂(s, a)−ηu(s, a). However,
there exists a neglected gap between the practical algorithm (estimated uncer-
tainty u(s, a)) and the theoretical result (real model prediction error dF ). To
bridge this gap, we now present the main theoretical result in our paper.
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Theorem 1. Let two MDPs M and M̂ share the same reward function
r(s, a), but with different dynamics transition T (·|s, a) and T̂ (·|s, a), respectively.
Assume there exists a function collection F1 = {f : S×A → R | ‖f‖∞ ≤ α} such
that Gπ

T̂
(s, a) ∈ F1 and F2 = {f : S → R | ‖f‖∞ ≤ β} such that V π

T (s) ∈ F2,
we have that

J (π,M) ≥ J (π,M̂)− κα√
2

√
DKL(ρπ

T̂
‖ρπb

T )− κβ√
2
E(s,a)∼ρ

πb
T

[√
DKL(T‖T̂ )

]
. (7)

Proof. According to Lemma 1, we have

J (π,M̂) − J (π,M)
=κ · E(s,a)∼ρπ

T̂
[Gπ

T̂
(s, a)]

=κ · E(s,a)∼ρπ
T̂
[Gπ

T̂
(s, a)] − κ · E(s,a)∼ρ

πb
T

[Gπ
T̂
(s, a)] + κ · E(s,a)∼ρ

πb
T

[Gπ
T̂
(s, a)]

≤κ · sup
f∈F1

∣∣∣E(s,a)∼ρ
πb
T

[f(s, a)] − E(s,a)∼ρπ
T̂
[f(s, a)]

∣∣∣
+κ · E(s,a)∼ρ

πb
T

[
sup
g∈F2

∣∣∣Es′∼T̂ (·|s,a)[g(s′)] − Es′∼T (·|s,a)[g(s′)]
∣∣∣]

=κα · dTV(ρπb

T , ρπ
T̂
) + κβ · E(s,a)∼ρ

πb
T

[dTV(T̂ (·|s, a), T (·|s, a))],

(8)

where the last inequality holds due to the IPM form of total variation distance.
To be more specific, when using the witness function class F = {f : ‖f‖∞ ≤ 1},
IPM dF (P,Q) reduces to the total variation dTV(P,Q) where P and Q are two
probability distributions. Then by applying Pinsker’s inequality, we have

J (π,M̂) − J (π,M) ≤ κα√
2

√
DKL(ρπ

T̂
‖ρπb

T ) +
κβ√

2
E(s,a)∼ρ

πb
T

[√
DKL(T‖T̂ )

]
,

(9)
which completes the proof.

�	
Theorem 1 gives a lower bound of the true expected return in the true envi-

ronment. In this bound, the last term corresponds to the model training error on
offline data which is sampled from ρπb

T , since training the model via maximum
likelihood is an empirical approximation of minimizing the Kullback–Leibler
divergence between the model and the true environment. To optimize the first
term and third term in this lower bound, we are supposed to train a dynamics
model on offline data and then optimize a policy on the model, which forms
the naive version of model-based offline RL algorithm. Then the key is how to
optimize the second term, which corresponds to the KL divergence between the
model rollout data distribution and the offline data distribution. It is intuitively
reasonable since this state-action distribution shift problem will lead to large bias
in model predicted rollouts and result in a poor policy. Therefore, a principled
technique to minimize this distribution shift problem is needed.
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Fig. 1. Illustration of our DROP framework, which uses the distribution ratio cor-
rection (DICE) framework to penalize the rewards predicted by the model ensemble.

4 Method

In this section, we give a detailed introduction of our DROP method, which
is able to optimize the lower bound in Theorem1. The overall framework is
illustrated in Fig. 1, and the detailed training procedure is shown in Algorithm1.

4.1 Overall Framework

The primary contribution of DROP is a principled way to minimize the KL
divergence between the offline data distribution ρπb

T and the model rollout data
distribution ρπ

T̂
. By the definition of KL divergence, the second term can be

written as (for clarity, the constant coefficient is neglected):

DKL(ρπ
T̂
‖ρπb

T ) = E(s,a)∼ρπ
T̂

[
log(ρπ

T̂
(s, a)/ρπb

T (s, a))
]
. (10)

If we can obtain the real occupancy measure ratio τ∗(s, a) = ρπ
T̂
(s, a)/ρπb

T (s, a),
we can use the negative log-ratio − log τ∗(s, a) as an additional reward when
training the policy. In this way, the second term of the lower bound in Theorem
1 can be optimized.

Then it comes to the question of how to obtain the occupancy measure
ratio. One direct way to estimate this ratio is constructing a binary classifi-
cation problem where the model rollout data from ρπ

T̂
(s, a) is labeled positive

and the offline data in ρπb

T (s, a) is labeled negative [43]. In practice, however, the
amount of model rollout data and the offline data is not balanced since in model-
based methods we hope to use the model to generate much more data to help
improve the policy when offline data is limited. This imbalanced classification
problem may cause the learning process to be biased [17], which could lead to
poor estimation. To sidestep the above obstacle, we will turn to the DICE (DIs-
tribution Correction Estimation) framework to estimate the ratio by exploiting
the Markov property of the environments.
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Algorithm 1. DROP Algorithmic Framework
Require: Offline dataset Db, rollout horizon h, reward penalty coefficient η.
1: Learn ensemble dynamics models {T̂ i

θ}B
i=1 : S × A �→ Π(S) using Db(s).

2: Randomly initialize πφ, empty buffer Dm.
3: for G epochs do
4: sample a state s0 ∼ Db.
5: for j = 0, 1, . . . , h − 1 do
6: sample an action aj ∼ π(sj).
7: randomly choose a model T̂ k from {T̂θ}B

i=1 and sample sj+1, rj ∼ T̂ k(sj , aj).
8: uj = τk(sj , aj). � Use corresponding DICE net to estimate the ratio
9: r̃j ← r̂j − η · log uj . � Penalize reward with the calculated ratio

10: add sample (sj , aj , sj+1, r̃j) to buffer Dm.
11: end for
12: Train πφ several times using SAC with mini-batches sampled from Db ∪ Dm.
13: Train the DICE networks {τ, f, ν} using Db, {T̂θ}B

i=1 and πφ.
14: end for

By incorporating the ratio estimation and policy regularization into an effec-
tive model-based method MBPO [13], we obtain our algorithm DROP. To be
more specific, DROP first uses the offline data Db to train an ensemble of dynam-
ics models {T̂θ}B

i=1 parameterized by θ, where B is the ensemble size. Given a
state-action pair (s, a), the model ensemble can predict the reward r̂ and next
state ŝ′. The dynamics model ensemble will be fixed after sufficient training.
Then a policy πφ parameterized by φ collects samples {(s, a, ŝ′, r̂)} by interact-
ing with the dynamics models. To alleviate the distribution shift problem, we
use DICE networks to predict the distribution density ratio u = τ(s, a) and
then penalize the predicted reward with the ratio r̃ = r̂ − η · log u according to
Eq. (10) where η is the coefficient to control the degree of penalty. The modified
samples {(s, a, ŝ′, r̃)} are added into the model buffer Dm. Then the policy πφ is
trained using data from both Db and Dm. After several iterations of policy opti-
mization, we update the DICE networks using data constructed by the offline
data, dynamics models and the current policy since the ratio ρπ

T̂
(s, a)/ρπb

T (s, a)
is related to these three parts. Below we elaborate on several modeling details
of model learning, policy optimization and density ratio estimation.

Dynamics Model Learning. We use a bootstrapped ensemble of probabilistic
dynamics models {T̂θ(s′|s, a)}B

i=1 to capture both epistemic and aleatoric uncer-
tainty [4]. Each individual dynamics model is a probabilistic neural network
which outputs a Gaussian distribution with diagonal covariance conditioned on
the state sn and the action an: T̂ i

θ(sn+1 | sn, an) = N (μi
θ(sn, an), Σi

θ(sn, an))
where μ and Σ are the mean and covariance, respectively. Each model is trained
using the offline data buffer Db with a negative log-likelihood loss:

Li
T̂
(θ) =

N∑
n=1

[
μi

θ (sn, an) − sn+1

]�
Σi

θ

−1
(sn, an)

[
μi

θ (sn, an) − sn+1

]
+ log detΣi

θ (sn, an) .

(11)
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Policy Optimization. Following previous works [4,13], we randomly choose
a state from offline data Db and use the current policy πφ to perform h-step
rollouts on the model ensemble. In detail, at each step, a probabilistic model
from the ensemble is selected at random to predict the reward and the next
state. The policy is trained on both offline data and model generated data using
soft actor-critic (SAC) [10] by minimizing the expected KL-divergence: Lπ(φ) =
Es[DKL(πφ(·|s) ‖ exp(Q(st, ·) − V (s))].

4.2 Ratio Estimation via DICE

In an off-policy evaluation where we want to estimate the performance of a target
policy using data generated by a behavioral policy, one promising solution is to
re-weight the reward by the occupancy measure density ratio. Recently several
works have proposed to estimate this ratio such as DualDICE [25], GenDICE [44]
and GradientDICE [45]. In this paper, we adapt the GradientDICE architecture
to estimate the density ratio in Eq. (10). We will briefly introduce the general
framework and refer the readers to [45] for more detail. To begin with, the
occupancy measure satisfies the following equation:

ρπ
T̂
(s′, a′) = (1 − γ)μ0(s′)π(a′|s′) + γ

∫
ρπ

T̂
(s, a)T̂ (s′|s, a)π(a′|s′) dsda, (12)

where μ0 is the initial state distribution. Then using ρπD

T (s, a)τ(s, a) to replace
ρπ

T̂
(s, a) and minimizing some divergence between the LHS and RHS of Eq. 12

over the function τ with an additional constraint can finally estimate the ratio
τ∗(s, a). Denoting δ(s′, a′) = γ

∫
ρπD

T (s, a)τ(s, a)T̂ (s′|s, a)π(a′|s′) dsda + (1 −
γ)μ0(s′)π(a′|s′) − ρπD

T (s′, a′)τ(s′, a′), we have the following objective function

L(τ) =
1
2
Eρ

πD
T

[( δ(s, a)
ρπD

T (s, a)

)2]
+

λ

2
(Eρ

πD
T

[τ(s, a)] − 1)2 , (13)

where λ > 0 is a constant coefficient. By further applying Fenchel conjugate [29]
and the interchangeability principle as in [44], optimizing the final objective of
GradientDICE is a minimax problem as

min
τ

max
f,ν

LDICE(τ, ν, f)

= (1 − γ)Es∼μ0,a∼π(·|s)[f(s, a)] + γE(s,a)∼ρ
πD
T ,s′∼T̂ (·|s,a),a′∼π(·|s′)[τ(s, a)f(s′, a′)]

− E(s,a)∼ρ
πD
T

[τ(s, a)f(s, a) +
1
2
f(s, a)2] + λ(E(s,a)∼ρ

πD
T

[ντ(s, a) − ν] − 1
2
ν2) ,

where we have τ : S × A → R, f : S × A → R and ν ∈ R. In practical
implementation, we use feed-forward neural networks to model the function f
and τ . Moreover, since we use an ensemble of models and the ratio is related
to one specific model, we need to construct a separate DICE network for each
dynamics model. Finally, we could use the offline states to approximate the initial
state distribution μ0(s) since the simulated rollouts are generated starting from
some state in Db.
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5 Experiment

Through our experiments, we aim to answer the following questions: i) How
does DROP perform compared to prior model-free and model-based offline RL
algorithms? ii) How does the quality of uncertainty quantification used in DROP
compare against prior offline model-based methods?

5.1 Comparative Evaluation

Compared Methods. We compare DROP with several representative base-
lines. Firstly, BC (behavior cloning) and SAC-off, directly learning a policy using
offline data by supervised learning and soft actor-critic algorithm, serves as basic
baselines. For model-free baselines, we compare to BEAR [18], BRAC-v [40],
AWR [28] and CQL [19], which are all effective offline RL methods (as discussed
in Sect. 6) with CQL achieving SoTA results. For model-based baselines, MBPO
[13] and MOPO [42] are taken into comparison. By comparing to MBPO, the
effectiveness of reward penalty can be investigated while the comparison with
MOPO helps reveal the potential of density ratio as the reward penalty. Note
that we don’t compare to MOReL [16] to avoid unfair comparison since there are
other different factors (e.g.policy training algorithm and known reward assump-
tion) besides the reward penalty form. We leave incorporating our density ratio
regularization into MOReL framework for future work.

Offline Datasets. All the compared methods are evaluated over 12 offline
datasets provided in a large-scale open-source benchmark D4RL [6]. The 12
datasets have different experimental settings with three Gym-MuJoCo tasks
(Hopper, Walker2d, and Halfcheetah), and four types of offline datasets. More
specifically, the four types of dataset are defined as follows:

(1) The “random” dataset consists of data generated by executing a randomly
initialized SAC policy for 1M steps.

(2) The “medium” dataset is generated by executing a suboptimal SAC policy
(achieves “medium” level that depends on specific environment) for 1M
steps.

(3) The “medium-replay” dataset collects all the samples observed in the replay
buffer during the process of training a SAC policy to “medium” level.

(4) The “medium-expert” dataset mixes equal amount of samples generated by
executing an “expert” level and a “medium” level SAC policies.

Implementation Details. We implement DROP using TensorFlow1. We train
the GraidientDICE networks with fixed learning rate 1e − 4 and mini-batch
size of 256. The hyperparameter λ in DICE objective is searched in range of
[0.1, 1.0], and the reward penalty coefficient is searched in {0.1, 0.5, 1.0, 2.0, 5.0}.
We pretrain the DICE net with offline dataset and initialized SAC policy for

1 Experiment code can be found at https://github.com/cmciris/DROP.

https://github.com/cmciris/DROP
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Table 1. Evaluation results on D4RL benchmark. The values reported are nor-
malized scores roughly to the range between 0 and 100, which are calculated with
normalized score = 100 × score−random score

expert score−random score
according to [6]. Results of model-

free offline methods and BC are taken from the original paper of D4RL [6]. MOPO
and DROP are evaluated over six random seeds. We bold the best, and underline the
second results across all methods.

Dataset Env. DROP MOPO MBPO BC SAC-off BEAR BRAC-v AWR CQL

random hopp. 18.2 11.2 4.5 9.8 11.3 11.4 12.2 10.2 10.8

medium hopp. 52.1 26.3 4.9 29.0 0.8 52.1 31.1 35.9 58.0

med-replay hopp. 88.2 78.6 49.8 11.8 3.5 33.7 0.6 28.4 48.6

med-expert hopp. 54.7 33.9 56.0 111.9 1.6 96.3 0.8 27.1 98.7

random walk. 9.2 12.1 8.6 1.6 4.1 7.3 1.9 1.5 7.0

medium walk. 73.4 11.9 12.7 6.6 0.9 59.1 81.1 17.4 79.2

med-replay walk. 39.2 39.0 22.2 11.3 1.9 19.2 0.9 15.5 26.7

med-expert walk. 65.3 59.2 7.6 6.4 −0.1 40.1 81.6 53.8 111.0

random halfch. 38.0 33.8 30.7 2.1 30.5 25.1 31.2 2.5 35.4

medium halfch. 50.2 42.3 28.3 36.1 −4.3 41.7 46.3 37.4 44.4

med-replay halfch. 58.6 54.4 47.3 38.4 −2.4 38.6 47.7 40.3 46.2

med-expert halfch. 65.7 64.2 9.7 35.8 1.8 53.4 41.9 52.7 62.4

adequate steps in the beginning of training. Since log function has extremely
negative value when the input is near 0, we clip the ratio into [σ1, σ2], and we
search σ1 from {0.01, 0.1} and search σ2 from {10, 20, 50}. Besides, we find that
other monotonically increasing functions such as tanh(·) can also be used to
replace log(·) in practice. The model rollout length h used in DROP is set the
same as in MOPO for fair comparison.

Results. The comparative results are presented in Table 1. From the compari-
son we observe that: (i) Our proposed DROP algorithm outperforms the SoTA
results in 7 out of the 12 dataset settings, and achieves comparable results (the
second best) in other 2 out of 5 dataset. Especially in the halfcheetah environ-
ment, DROP shows its superior performance. This verifies the effectiveness of
DROP. (ii) DROP performs better than the model-based baseline MOPO in 11
out of the 12, which demonstrates the strength of using density ratio as the
reward penalty. (iii) Compared to the SoTA model-free baseline CQL, DROP
outperforms it in 8 out of 12 datasets, although it achieves extremely high score
in some settings like hopper medium-expert and walker2d medium-expert. By
comparison, DROP achieves relatively stable performance across all the set-
tings with hyperparameters searched in a small range while the performance of
model-free offline baselines is closely related to the careful tuning in the specific
environment and dataset type as mentioned in [40].

5.2 Empirical Analysis

To answer the question ii), we empirically analyze the behaviour of reward
penalty used in the two model-based offline methods DROP and MOPO [42]. By
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Fig. 2. Visualization of correlation between groundtruth model error and different
reward penalty forms. In each Fig. 10000 state-action tuples randomly sampled from the
offline dataset are plotted. The top row shows the results of MOPO while the bottom
row shows the results of DROP and columns from left to right are the environments
of hopper, walker2d, and halfcheetah.

rolling out trajectories on the dynamics model, the agent is allowed to explore
around the support of offline data and thus is able to seek possible improve-
ments to behavioral policies without any further interaction with real environ-
ment. In this way, how to control the trade-off between informative exploration
around the support of offline data and avoiding going far away from the support
without exploiting the model deficiency becomes a key problem in model-based
offline RL algorithms. MOPO solves this problem by estimating the model uncer-
tainty as the maximum standard deviation of the learned models in the ensem-
ble uMOPO(s, a) = maxi ||Σi

φ(s, a)||F, i ∈ {1, 2, . . . , B} and then penalizing the
predicted rewards with the uncertainty. However, this uncertainty quantifica-
tion used in MOPO is not guaranteed to consistently reflect the error between
T̂ (·|s, a) and T (·|s, a). Differently, instead of using heuristic uncertainty quan-
tification, DROP uses the density ratio uDROP(s, a) =

ρπ
T̂

(s,a)

ρ
πb
T (s,a)

as reward penalty
in a principled manner.

To better compare the behavior of different reward penalty forms, we visu-
alize the correlation between the groundtruth model error and the two reward
penalty where the model error is computed as ||T̂ (s, a) − T (s, a)||2, as shown
in Fig. 2. We present the comparative results in all three environments, hopper,
walker2d, and halfcheetah, on medium dataset, while the results of the other
dataset types are similar. We normalize the reward penalty and model errors
to [0, 1] interval, and thus scattered points should lie along the diagonal line
y = x in an ideal situation. As shown in Fig. 2, the scattered points in the fig-
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(a) MOPO behaves conservatively. (b) DROP behaves optimistically.

Fig. 3. Visualization of offline data support and different penalized reward. Black lines
show the distribution of offline data. We randomly choose 500 state-action pairs from
model rollouts, and plot them with colors range form yellow to red according to the
reward penalty. Points with high reward penalty are drawn in red while points with
low reward penalty are drawn in yellow. (Color figure online)

ures of MOPO tend to be located at the left top of the figures, which indicates
that the uncertainty quantification strategy in MOPO is overly conservative. In
contrast, in the figures of DROP the scattered points are closer to the diagonal
lines compared to MOPO, which means the reward penalty in DROP is less
conservative. This may be the reason why DROP performs better than MOPO
on D4RL benchmark since MOPO can not effectively utilize the data with low
true model error.

To verify the above findings, we further visualize model rollout samples with
computed reward penalty and the offline samples with corresponding data sup-
port in halfcheetah medium. To be more specific, we embed offline state-action
pairs into a 2-dimensional space with the Uniform Manifold Approximation and
Projection (UMAP) technique, and then project the model rollout samples using
the same mapping. The visualization is shown in Fig. 3. The black lines repre-
sent the distribution of offline samples, which is estimated by Kernel Density
Estimation (KDE). Thus it can briefly indicates the offline data support on the
2-dimensional space. Again we find that MOPO is quite conservative in assigning
the reward penalty. For example, the penalty for the data in the minor mode at
the right bottom is quite large. In contrast, DROP is able to give appropriate
reward penalty.

6 Related Work

Offline RL [21], also known as batch RL [20], studies the problem of how to train
an RL agent only using static offline dataset without any further interactions
with the true environment. It means no exploration is allowed and the agent
should focus on making full exploitation of existing knowledge. This property
makes offline RL technique naturally suitable for practical application scenarios
requiring high exploration cost, like healthcare [8,38,41], recommender systems
[3,5,34,35], dialogue systems [14,15,46] and autonomous driving [30]. On the
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algorithmic front, offline RL methods can be broadly categorized into two groups
as described below.

6.1 Model-Free Offline RL

Model-free offline RL algorithms are mostly designed in the principle of keep-
ing the learned policy to stay close to the data collecting policy with explicit
[7,14,18,26,40] or implicit [28,32] constraints. According to the specific imple-
mentation, model-free offline RL methods can be further grouped into two cate-
gories. The first type is Q-value based methods. For example, BCQ [7] optimizes
over a subset of actions generated by a trained generative model instead of
optimizing over all actions, and thus are less susceptible to over-estimation of Q-
values. BEAR [18] employs maximum mean discrepancy (MMD) [9] constraint
to make the policy stay close to the behavior policy approximated by a genera-
tive model, which guides the target policy to choose those actions that lie in the
support of offline distribution. CQL [19] adds regularization in the original Bell-
man error objective to penalize the Q value of out-of-distribution data, which
enables a conservative value function. BRAC [40] penalizes the value function
with policy (BRAC-p) or value (BRAC-v) regularization by discrepancy mea-
sure (e.g., MMD or KL-divergence) between the learned policy and the behaviour
policy. On the other hand, imitation learning based methods like MARWIL [39]
and AWR [28] directly train a policy with a reweighted imitation objective. The
reweighting coefficient advantage value is estimated by regression and thus the
value overestimation due to the Bellman update will not occur.

6.2 Model-Based Offline RL

Model-free offline RL methods can only train the policy with offline data, which
may limit the ability to learn a better policy. In contrast, by introducing a
dynamics model, model-based offline RL algorithms [16,36,42], is able to pro-
vide pseudo exploration around the offline data support for the agent, and thus
has potential to learn a better policy with sub-optimal offline dataset. Typically,
previous model-based methods rely on uncertainty quantification. MOReL [16]
constructs a pessimistic MDP and employs discrepancy of the model prediction
over the ensemble as uncertainty to penalize the rewards. A concurrent work
MOPO [42] uses maximum learned variance over the ensemble as the uncer-
tainty and performs a similar reward shaping. MOOSE [36] trains a dynamics
model as well as a VAE, and uses the reconstruction error as the uncertainty.
Similarly, the estimated uncertainty is then used to penalize the policy training.
In contrast, our proposed DROP do not rely on the uncertainty quantification.
Instead, DROP estimates the density ratio and uses the ratio as the reward
penalty to tackle the distribution shift problem.

7 Conclusion

In this paper, we propose a simple yet effective model-based method called
DROP for offline reinforcement learning. DROP adds a penalty on rewards to
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discourage the policy from visiting out-of-distribution state-action tuples like
previous work MOPO [42], but uses a novel reward penalty, i.e., the density
ratio between the model generated data distribution and the offline data distri-
bution. This form of reward penalty is directly inspired by the lower bound of
the true expected return derived in this paper, and thus has strong theoretical
guarantee for policy improvement compared to heuristic uncertainty. We validate
the performance of our proposed DROP in widely used benchmark D4RL, and
the results show DROP achieves promising performance. One major limitation
of DROP is the higher computational complexity introduced by the DICE net-
work training. For future work, we plan to investigate more accurate and quick
density ratio estimation strategy to boost the performance and computational
efficiency of DROP. Also, incorporating some model-free techniques into DROP
may be a promising way to improve performance in some specific datasets, such
as walker2d medium-expert.
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Abstract. Embodied AI, learning through interaction with a physical
environment, typically requires large amounts of interaction with the
environment in order to learn how to solve new tasks. Training can be
done in parallel, using simulated environments. However, once deployed
in e.g., a real-world setting, it is not yet clear how an agent can quickly
adapt its knowledge to solve new tasks.

In this paper, we propose a novel Hierarchical Reinforcement Learn-
ing (HRL) method that allows an agent, when confronted with a novel
task, to switch between exploiting prior knowledge through temporally
extended actions, and environment exploration. We solve this trade-off
by utilizing the disagreement between action distributions of selected
previously acquired policies. Selection of relevant prior tasks is done by
measuring the cosine similarity of their attached natural language goals
in a pre-trained word-embedding.

We analyze the resulting temporal abstractions, and we experimen-
tally demonstrate the effectiveness of them in different environments.
We show that our method is capable of solving new tasks using only a
fraction of the environment interactions required when learning the task
from scratch.

Keywords: Hierarchical Reinforcement Learning · Task adaptation

1 Introduction

Humans acquire a wide range of different skills over a lifetime. We are capable of
solving complex new problems by quickly adapting, and combining these skills.
For example, when learning how to ride a motorbike, balancing skills learned
from riding a bicycle might be re-utilized.

But how do we know which skills can be useful when confronted with a new
task? We could use trial-and-error learning, and test which of our prior skills
works best in a new situation. This approach is commonly used in Hierarchical
Reinforcement Learning (HRL) approaches [2,19].

However, when able to communicate, language is a much more efficient instru-
ment to communicate how different skills can be transferred, in order to solve
c© Springer Nature Switzerland AG 2021
N. Oliver et al. (Eds.): ECML PKDD 2021, LNAI 12975, pp. 190–205, 2021.
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new tasks. For example, one could say to someone who is learning how to ride
a motorbike that: riding a motorbike is just like riding a bicycle. Or, in order
to find a new object, one typically can explain how to find it in terms of the
relation with other objects we already are able to localize: e.g., the microwave
is on top of the fridge.

Embodied AI is a sub-field of AI interested in acquiring intelligent behavior
through physical interaction with the environment. Various tasks have been pro-
posed [1] such as PointGoal (navigating to specific points in the environment),
ObjectGoal (navigating to an instance of an object category), and AreaGoal
(navigating to a specific type of room).

Deep Reinforcement Learning (DRL) methods [16,18,27,28] have been pro-
posed to utilize high-dimensional visual sensor data in order to tackle these
problems. The most successful attempts utilize intermediate models capable of
building internal (semantic) maps in order to perform efficient exploration [5,10].

However, these approaches typically start training from scratch, and offer no
solution on how to efficiently extend the capabilities of an agent over its lifetime
[23]. This is especially an important problem in real-world embodied systems
(e.g., a collaborative robot). In this setting, an agent typically has no access
to large amounts of compute, and needs to come up with new solutions in a
reasonable timeframe.

In order to work towards real-world embodied systems, capable of quickly
adapting their knowledge to novel tasks, inspired by the way humans learn
through communication, we introduce a novel HRL [24] method. Our method
formulates an answer to two important questions: a) which prior skills are use-
ful when learning how to solve a new task? b) how can we solve the trade-off
between utilizing prior knowledge, and acquiring new skills by exploring the
environment?

We answer these questions by utilizing pre-trained word-embeddings to select
source tasks based on their goal descriptions in natural language. We utilize the
disagreement between prior policy action distributions in order to decide when
to exploit the priors, and when to explore novel paths.

Our answers to these two questions allow an agent to use prior knowledge
efficiently as temporally extended actions.

2 Preliminaries

We consider a goal-conditional Reinforcement Learning (RL) setting, and model
the problem as a Semi-Markov Decision Process (SMDP), defined by the tuple
〈S,A,P, r, γ〉. In each episode the agent is tasked with reaching a goal gt ∈ G.
On each time step t the environment produces a state st ∈ S according to an
to the agent unknown transition function P(st+1|st, at). The agent consists of a
two-level hierarchy [24]. The top level samples an option ωi ∼ π(st, gt) from its
policy-over-options. Only options for which the current state is part of the option
its initiation set st ∈ Iwi

are considered. The policy-over-options either invokes a
single primitive action at (point option), or follows a temporally extended action
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through the intra-option policy of the option πωi
(st), which produces a sequence

of primitive actions until the termination condition β(st) of the active option is
triggered. After utilizing a primitive action, the agent receives a reward scalar
rt(st, gt, at, st+1).

The goal of the RL problem consists of maximizing the sum of rewards,
discounted by a factor γ ∈ [0, 1]:

E
π,P

[ ∞∑
t=0

γtrt (st, gt, at, st+1)

]
(1)

In order to maximize this return, we opted to use Sample Efficient Actor-
Critic with Experience Replay (ACER) [25] as it utilizes recent variance reduc-
tion techniques, parallel training, and off-policy updates using an experience
replay buffer. More specifically we choose ACER because of the following prop-
erties:

– Focus on sample efficiency through the usage of an experience replay buffer,
which allows usage of environment experiences multiple times.

– Off-policy updates through importance sampling allows for our adaptation
method to utilize actions sampled from a different distribution (the prior
policies).

– The policy directly outputs a distribution over actions which we can compare
with other policies.

In ACER on each training iteration there is an on-policy update after taking
n rollout steps. Afterwards there are also one or multiple off-policy updates by
taking samples from a replay buffer.

We make use of a word-embedding in order to transform the goal object gt,
described using a word in natural language, to a continuous numerical vector
zt ∈ R

d [4]. Essential is that d is much smaller than the size of the entire
vocabulary.

3 Disagreement Options

Our method is concerned with utilizing prior knowledge as temporally extended
actions (options) in order to increase the sample efficiency, the required interac-
tions with the environment, when learning new tasks.

The approach can be divided into two distinct sub-systems, which each
address an important question. The task similarity system (Sect. 3.1) is con-
cerned with selecting useful prior knowledge which will be best suited in order
to solve the novel task. For example: would a bicycle riding skill be more useful
than a car driving skill when learning how to ride a motorbike? Once we have
selected which priors we would like to use, the task adaptation phase (Sect. 3.2)
is initiated in order to train a new policy by intelligently reasoning when to
utilize prior knowledge as temporally extended actions, and when to explore the
environment. The agent assumes the presence of a set of prior policies, we discuss
some possibilities on how to acquire such priors in Sect. 3.3.

The pseudocode of the entire approach is presented in Algorithm 1.
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Algorithm 1. Disagreement Options
M(·): Pre-trained word-embedding
B: disagreement score buffer with max size α
π(st, gt): new policy under training

1: while agent rollout in progress do
2: Observe state st and goal gt

3: x ∼ U(0, 1)
4: if x < H(π(st, gt)) − 0.1 then
5: Find 2 closest prior policies (πz1, πz2) according to:

zi = argmaxzi(cos(M(gt), M(zi))
6: Calculate disagreement score:

d1 = DKL(πz1(st, z1)||πz2(st, z2))
d2 = DKL(πz2(st, z2)||πz1(st, z1))
d = min(d1, d2)

7: Add disagreement score to buffer B
8: if

∑α
i Bi/α > β then

9: x ∼ U(0, 1)
10: if x < 0.5 then
11: Perform action at ∼ πz1(st, z1)
12: else
13: Perform action at ∼ πz2(st, z2)
14: end if
15: end if
16: else
17: Perform action at ∼ π(st, gt)
18: end if
19: store 〈st, at, st+1, gt, rt+1〉 in ACER experience replay buffer
20: end while
21: Perform ACER on-policy update
22: Perform n ACER off-policy updates

3.1 Task Similarity: How to Select Relevant Priors?

The agent is provided with a library of different prior policies {πg1 , ..., πgi
},

all capable of reliably performing one or multiple different tasks {g1, ..., gi}. In
order to decide which prior policies are useful as prior knowledge when learning
a new task, we make use of natural language. Our reasoning is that when goal
descriptions are close in language space, they are potentially also close in policy
space [8,14].

More specifically, we use a pre-trained word-embedding from [13]. This
embedding was pre-trained on a set of tasks which are not tailored to our set-
ting, utilizing the OntoNotes 5 [26] dataset. Our embedding is trained [15] by
taking as input a large corpus of texts, and outputs a vector space R

300. Words
that appear in similar contexts, are trained to also be close to each other in the
resulting vector space.
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When confronted with a new goal gt, we calculate the cosine similarity of the
resulting vector, after being processed through the word-embedding M(x) with
all labels {z0, ..., zi} attached to the available prior policies {πz0 , ..., πzi

}:

zi = argmaxzi
(cos(M(gt),M(zi)) (2)

We select the two policies whose labels are closest to the new goal in the
word-embedding space as prior knowledge. Our method requires at least two
policies in order to calculate a disagreement between their action distributions
in the next phase. We use the minimum of two prior policies in the rest of
this paper, as prior knowledge is often expensive to acquire. However, it’s a
straightforward extension to adapt our method to use more priors. The cosine
similarity between goal objects used in our experiments is pictured in Fig. 1. For
example, in an ObjectGoal task, when asked to navigate to a new goal object
shower, policies attached to goals such as bathtub and toilet are most similar
in the word-embedding space, and will be selected (if available) as most potent
source tasks.

Fig. 1. Similarity scores of different goals in the word-embedding space. These scores
are used in order to decide what prior knowledge to use.
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3.2 Task Adaptation: How Should We Use the Prior Knowledge?

Once we have selected the prior policies which we expect might be most useful,
we can utilize these priors in order to solve the novel task. We treat the selected
prior policies as options [24]. Thus, the agent now needs to decide when to use
its primitive actions in order to explore, and when to follow the option policies
in order to quickly reach new parts of the state-space.

This is a delicate balance, because when the agent would only follow the
temporally extended actions greedily, it would not be capable of learning any-
thing new. So, ideally, the agent should be capable of assessing when it should
greedily follow the priors, and when it should explore. For example, when we are
trying to locate a toothbrush object in a house, a temporally extended action
that would take the agent to the bathroom is a useful prior. However, once we
have entered the bathroom, the agent should explore it, in order to extend its
capabilities.

Note that if the agent had access to a sensor that knows in which room the
agent resides, this sensor could be used to steer the termination of the active
option. Unfortunately, such a sensor is not trivially available, and we propose
an alternative scheme based on disagreement between priors, to steer option
termination.

In order to decide when to use prior knowledge, we utilize the action distri-
butions of the selected prior policies. Given a state st these prior policies output
different action distributions. We reason that when these distributions align,
measured by the KL divergence between them, it is useful to greedily follow
these policies as a temporally extended action. We call this score the disagree-
ment score.

DKL(πz1(st)||πz2(st)) =
∑

a

πz1(a|st) log
πz1(a|st)
πz2(a|st)

(3)

Because the KL divergence is not symmetric, we calculate the disagreement
score as follows:

d = min [DKL(πz1(st)||πz2(st)),DKL(πz2(st)||πz1(st))] (4)

By using the minimum we slightly favor utilizing the prior knowledge, which
experimentally yielded the best results.

When the two prior policies diverge on what the action of the agent should
be, we terminate the temporally extended action and let the agent explore by
itself. For example, two policies which pursue a towel and a toothbrush object,
will have similar action distributions up until they reach the bathroom. Upon
entering the bathroom the action distributions diverge, because their implicit
high-level navigation target changed from reaching the bathroom to reaching
the individual objects.

Because the action distributions of the prior policies can be noisy, we utilize
a moving average of the disagreement scores B acquired over the last α steps.
On each training step, we compare this moving average against a threshold β



196 M. Hutsebaut-Buysse et al.

in order to decide when to use our prior knowledge, and when to terminate the
temporally extended action:

at =

{
πz1(st), if

∑α
i Bi/α > β

π(st), otherwise
(5)

When the prior policies are in agreement, we randomly sample the recom-
mended best action from one of the prior policies. As their divergence is small,
they will output similar actions, so it does not matter which one to sample from.
We take this action in the environment, and use it to update the new policy. In
contrast, if there is disagreement, the agent uses the new policy to explore, by
sampling an action from it.

While the disagreement window α and the disagreement threshold β are
hyperparameters, which potentially are subject to an expensive search in order
to get optimal values, we experimentally demonstrate that approximate optimal
values can be found easily.

Because ACER has an experience replay buffer, and utilizes off-policy train-
ing, after a few iterations, prior knowledge will have found its way into the buffer,
and thus also into the new policy. In order to gradually reduce the dependency
on the priors, we only rely on the priors when the entropy of the action dis-
tribution of the new policy for the current observed state H(π(st, gt)) is still
high. We assume this distribution entropy lowers as the new policy learns the
new task. This is a realistic assumption in a deterministic environment in which
an optimal policy will converge to assigning almost all probability to a single
action given a state. The entropy measurement is used to gradually reduce the
probability of invoking the temporally extended actions:

I(st) = P (x ∼ U(0, 1) < H(π(st))) − 0.1 (6)

We correct this probability with a small factor −0.1 in order to encourage
exploration early on in training. Increasing this factor will reduce the usage of
the priors.

3.3 Prior Policy Acquisition

We assume prior policies are provided a priori to the agent. A lot of differ-
ent options are available to acquire such source policies. One could use any RL
algorithm to train a policy. We especially envision RL methods that maximize
entropy to be potent methods to acquire diverse prior policies. For example, VIC
[9] tries to maximize the amount of different states the agent can reach by max-
imizing the mutual information between the set of skills and their termination
states.

We also deem it possible to use an imitation learning approach [12,21] to
bootstrap the agent, utilizing policies compiled from (human) expert demon-
strations.
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4 Experiments

We empirically show the effectiveness of our method in two different settings: a
simple 3D gridworld and the photo-realistic Habitat simulator.

(a) MiniWorld (b) Habitat

Fig. 2. Example ego-centric RGB states used in our experiments.

4.1 3D MiniWorld

The setting of our first set of experiments consists of a visually basic 3D world.
In this environment we simulate a domestic apartment setting with three fixed
different designated rooms: a bedroom, a kitchen and a bathroom. Each room
has a visually distinct theme, and has multiple objects in it. The objects are
represented using differently colored cubes in fixed positions. These three rooms
are connected by a corridor. The agent always starts in a random position in
this corridor. This setting is implemented as a custom level in the MiniWorld
[6] environment.

In each episode the agent is tasked with finding an object in this environ-
ment. The state-space consists only of the ego-centric RGB render (e.g., Fig. 2a).
Additionally, the agent observes a densely defined reward signal, which consists
of the decrease of distance between the agent and the goal object. We also penal-
ize the agent for slacking by subtracting a negative reward of −0.01 for each step
taken. A positive reward of 10 is rewarded upon reaching a minimum distance
to the goal object. The agent is allowed a maximum of 500 steps to reach the
goal.

Room Sensor. In order to validate our hypothesis that prior knowledge can
be useful to navigate the agent to the room with the goal object in it, we first
equip the agent with a room sensor. This sensor informs the agent when it is
positioned in the corridor, and thus should follow the prior policies greedily,
in order to navigate to the room containing the goal object. We selected prior
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Fig. 3. Average success rate of our disagreement agent (green) and our disagreement
agent with a room sensor (orange) during training in the MiniWorld environments. We
compare with learning the task from scratch (blue). Results are averaged over 10 runs
and utilized window size α = 10 and disagreement threshold β = 0.1. (Color figure
online)

policies which were trained on goal objects that are in the same room as the
new goal object. Once inside the correct room, the agent knows not to follow
the prior anymore, but to explore by itself.

When utilizing this room sensor with prior policies capable of navigating
to the shower and toilet goal objects, our results show that the agent almost
instantly (50k training steps) is capable of adapting to reliably reach the new
bathtub goal (Fig. 3a). Similarly, the agent is capable of quickly learning to navi-
gate to the nightstand goal object using prior policies capable of reaching the bed
and wardrobe (Fig. 3b). We plot an example trajectory followed during training
in Fig. 4. In this trajectory the usage of prior knowledge that led the agent to
the correct room is plotted in green, while the exploratory part of the trajectory
is plotted in blue.
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Fig. 4. Example trajectory of our disagreement agent followed during training. In the
green part of the trajectory the agent follows the prior, in the blue part the agent
explores the environment. In this case, the agent has access to a room sensor and only
explores in the room of the goal object. (Color figure online)

Fig. 5. Example trajectories of our disagreement agent using different disagreement
windows in the MiniWorld environment. Parts of the trajectory marked in green uti-
lized the prior knowledge, in blue parts the agent explored. In this setting larger dis-
agreement windows lead to more stable utilization of the prior knowledge. (Color figure
online)
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Fig. 6. Ablation study of the disagreement threshold in the MiniWorld environment
(new goal: bathtub, priors: shower, toilet). A value of 0 never utilizes the prior knowl-
edge, while a value of 1 does not explore the environment (when the action distribution
entropy is still high at the beginning of training). Results are averaged over 10 runs.

Fig. 7. Average success rate of our disagreement agent in the MiniWorld environment
on the bathtub task. We compare different disagreement window sizes. Longer dis-
agreement windows lead to more stable utilization of the temporally extended actions.
Results are averaged over 10 runs.
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Fig. 8. An example trajectory of the agent in a scan of our office floor. The red star
is the new goal, while the prior goals are marked with a yellow circle. (Color figure
online)

Disagreement Options. However, a room sensor is not something an
autonomous agent typically has access to. In the second set of experiments we
wanted to validate whether the disagreement options provide a similar efficient
usage of prior knowledge without such a sensor.

As plotted in Fig. 3, the agent is capable of efficiently utilizing the prior
knowledge when using the disagreement scheme (α = 10, β = 0.1), starting with
a success rate averaging 60–80%, and quickly getting an average success rate of
nearly 100%.

We also did an ablation study of our hyperparameters in this setting. In Fig. 6,
we demonstrate the impact of the disagreement threshold β. When setting the
value too high, the agent does not explore enough, while a too low β value will
only limitedly benefit the task adaptation.

Figure 7 presents the impact of the disagreement window size α. In this set-
ting, larger window sizes (α > 3) are more efficient, as smaller window sizes lead
to noisy trajectories, while a larger window size allows the agent to exploit the
prior knowledge more systematically (Fig. 5).

4.2 Photorealistic Simulator

For our second set of experiments, we use the Habitat photo-realistic simulator
[22] and a 3D scan of our office floor (Fig. 8). This environment is considerably
more challenging than the MiniWorld environment, both structurally and visu-
ally. We use the same reward setting as in our MiniWorld experiments. Similar
to the MiniWorld environment, the agent only has access to a visual RGB ego-
centric observation of the current state. In this setting the agent starts in a
completely random position, and is allowed to take 500 actions in order to reach
a new goal in a fixed position (the main table in the office canteen). In order
to master this novel task, the agent has access to two prior policies which are
capable of navigating to two other goals within the canteen.
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Fig. 9. Results of the disagreement agent (window size α = 10, disagreement threshold
β = 0.1) in the photorealistic Habitat simulator (green) compared to learning the task
from scratch. Results are averaged over 10 runs. (Color figure online)

The results from using our disagreement options within this environment can
be found in Fig. 9. While this task is considerably harder in terms of structure
than the MiniWorld tasks, the agent is capable of utilizing the prior knowledge in
order to reach a nearly perfect average success rate on the novel task considerably
faster (150k training steps vs 250k training steps), than if the agent would have
to start from scratch.

5 Towards Real-World Task Adaptation

Because our method only relies on goals formulated in natural language and
egocentric visual observations, we can also potentially use our method in a real-
world setting. In this setting we let the agent solve different tasks in simulation,
and through sim2real techniques, utilize them in the real world. When confronted
with a new task in the real world, the agent could use the prior knowledge
gathered in simulation to solve the novel task considerably faster in the real
world.

It is often not possible to define a dense reward signal in the real world.
The use of prior knowledge allows our agent to efficiently reach states closer to
the goal object, and thus increases the chance of the agent obtaining positive
learning signals. This allows us to believe that it might be possible to learn only
from sparse reward signals, which are more obtainable in real-world scenarios.

6 Related Work

Transfer learning has been utilized successfully in supervised learning tasks. In
this setting, multiple levels of low-level learned features can often be re-used in
order to speed up learning novel tasks.
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A lot of research has been conducted on how prior knowledge can be utilized
in RL as well. As learned lower level features in RL are often task specific, it
is generally difficult to simply re-use them. Instead, prior knowledge has been
utilized in RL as auxiliary reward signals, policy distillation, inter-task map-
ping and as temporally extended actions. An example algorithm using natural
language as an auxiliary reward can be found in [3]. [20] proposes to use natu-
ral language as an intermediate channel to facilitate transfer between different
domains. LamBERT [17] has a multi-modal visual and language representation
which proved to be beneficial for transfer to novel tasks.

Word embeddings have been used in RL as an action-space reduction tech-
nique [8], and we examined the usefulness of word embeddings for task adapta-
tion in prior work [14].

Some of the research which is closest to ours includes the Deep Q-learning
from Demonstration (DQfD) architecture [11], which learns both from demon-
strations and trial-and-error learning by introducing an additional replay buffer.

[7] proposed a probabilistic distribution over prior policies (the policy library)
based on the expected performance gain of utilizing the prior policy.

7 Discussion

Our task-adaptation method is supported by the assumption that goals that
are close in language-space should also be close in policy-space. However, this
might not always be the case. If the agent selects prior goals which are physically
located nowhere near the new goal, but in different locations, our method will
not hinder progress as the priors will always disagree, and thus the agent will
not use the priors. If however the wrong priors do agree on the next action, the
agent will be steered in the wrong direction, and learning will be slower. In these
settings the disagreement threshold could be lowered.

In our experiments we utilized a deterministic environment. If the environ-
ment is completely stochastic (e.g., all objects are randomly placed in random
rooms) our method would not be able to utilize prior knowledge. However, if
objects are placed in random positions, but always in the same rooms, our adap-
tation method would still be capable of adapting, and could even benefit from
the learned ability of the priors to explore a certain room.

8 Conclusion

In this paper, we presented a novel method to transfer prior knowledge from prior
tasks to a new task through temporally extended actions. We do this by selecting
prior knowledge based on cosine similarity in a prior word-embedding space. In
order to decide when to utilize our prior knowledge, and when to explore our
environment, we rely on the disagreement between action distributions of the
selected priors.

We demonstrate the effectiveness of our method in a visually simple 3D
MiniWorld and a photorealistic simulator. We also hint at how our method might
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be used in the real world to expand the capabilities of a real-world embodied
agent.

As future work, we would like to address the management and scaling of prior
and novel policies. We also would like to examine how additional abstractions
can be discovered using our disagreement method, potentially in a multi-level
hierarchical system.

Acknowledgements. This research received funding from the Flemish Government
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Abstract. This paper presents a deep Inverse Reinforcement Learn-
ing (IRL) framework that can learn an a priori unknown number of
nonlinear reward functions from unlabeled experts’ demonstrations. For
this purpose, we employ the tools from Dirichlet processes and propose
an adaptive approach to simultaneously account for both complex and
unknown number of reward functions. Using the conditional maximum
entropy principle, we model the experts’ multi-intention behaviors as
a mixture of latent intention distributions and derive two algorithms to
estimate the parameters of the deep reward network along with the num-
ber of experts’ intentions from unlabeled demonstrations. The proposed
algorithms are evaluated on three benchmarks, two of which have been
specifically extended in this study for multi-intention IRL, and compared
with well-known baselines. We demonstrate through several experiments
the advantages of our algorithms over the existing approaches and the
benefits of online inferring, rather than fixing beforehand, the number of
expert’s intentions.

Keywords: Inverse reinforcement learning · Multiple intentions ·
Deep learning

1 Introduction

The task of learning from demonstrations (LfD) lies in the heart of many artificial
intelligence applications [29,38]. By observing the expert’s behavior, an agent
learns a mapping between world states and actions. This so-called policy enables
the agent to select and perform an action, given the current world state. Despite
the fact that this policy can be directly learned from expert’s behaviors, infer-
ring the reward function underlying the policy is generally considered the most
succinct, robust, and transferable methodology for the LfD task [1]. Inferring the
reward function, which is the objective of Inverse Reinforcement Learning (IRL),
is often very challenging in real-world scenarios. The demonstrations come from
multiple experts who can have different intentions, and their behaviors are conse-
quently not well modeled with a single reward function. Therefore, in this study,
we research and extend the concept of mixture of conditional maximum entropy
models and propose a deep IRL framework to infer an a priori unknown number
of reward functions from experts’ demonstrations without intention labels.
c© Springer Nature Switzerland AG 2021
N. Oliver et al. (Eds.): ECML PKDD 2021, LNAI 12975, pp. 206–221, 2021.
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Standard IRL can be described as the problem of extracting a reward func-
tion, which is consistent with the observed behaviors [34]. Obtaining the exact
reward function is an ill-posed problem, since many different reward functions
can explain the same observed behaviors [26,40]. Ziebart et al. [40] tackled this
ambiguity by employing the principle of maximum entropy [16]. The principle
states that the probability distribution, which best represents the current state
of knowledge, is the one with the largest entropy [16]. Therefore, Ziebart et
al. [40] chose the distribution with maximal information entropy to model the
experts’ behaviors. The maximum entropy IRL has been widely employed in var-
ious applications [17,35]. However, this method suffers from a strong assumption
that the experts have one single intention in all demonstrations. In this study,
we explore the principle of the mixture of maximum entropy models [31] that
inherits the advantages of maximum entropy principle, while at the same time
is capable of modeling multi-intention behaviors.

In many real-world applications, the demonstrations are often collected from
multiple experts whose intentions are potentially different from each other [2,3,5,
10]. This leads to multiple reward functions, which is in direct contradiction with
the single reward assumption in traditional IRL. To address this problem, Babes
et al. [5] proposed a clustering-IRL scheme where the class of each demonstration
is jointly learned via the respective reward function. Despite the recovery of
multiple reward functions, the number of clusters in this method is assumed to
be known a priori. To overcome this assumption, Choi et al. [10] presented a
non-parametric Bayesian approach using the Dirichlet Process Mixture (DPM)
to infer an unknown number of reward functions from unlabeled demonstrations.
However, the proposed method is formulated based on the assumption that the
reward functions are formed by a linear combination of a set of world state
features. In our work, we do not make this assumption on linearity and model
the reward functions using deep neural networks.

DPM is a stochastic process in the Bayesian non-parametric framework that
deals with mixture models with a countably infinite number of mixture com-
ponents [25]. In general, full Bayesian inference in DPM models is not feasible,
and instead, approximate methods like Monte-Carlo Markov chain (MCMC)
[4,20] and variational inference [8] are employed. When deep neural networks
are involved in DPM (e.g. deep nonlinear reward functions in IRL), approxi-
mates methods may not be able to scale with high dimensional parameter spaces.
MCMC sampling methods are shown to be slow in convergence [8,30] and vari-
ational inference algorithms suffer from restrictions in the distribution family
of the observable data, as well as various truncation assumptions for the vari-
ational distribution to yield a finite dimensional representation [12,24]. These
limitations apparently make approximate Bayesian inference methods inapplica-
ble for DPM models with deep neural networks. Apart from that, the algorithms
for maximum likelihood estimations like standard EM are no longer tractable
when dealing with DPM models. The main reason is that the number of mix-
ture components exponentially grows with non-zero probabilities, and after some
iterations, the Expectation-step would be no longer available in a closed-form.
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However, inspired by two variants of EM algorithms that cope with infeasible
Expectation-step [9,37], we propose two solutions in which the Expectation-step
is either estimated numerically with sampling (based on Monte Carlo EM [37])
or computed analytically and then replaced with a sample from it (based on
stochastic EM [9]).

This study’s main contribution is to develop an IRL framework where one can
benefit from the strength of 1) maximum entropy principle, 2) deep nonlinear
reward functions, and 3) account for an unknown number of experts’ intentions.
To the best of our knowledge, we are the first to present an approach that can
combine all these three capabilities.

In our proposed framework, the experts’ behavioral distribution is modeled
as a mixture of conditional maximum entropy models. The reward functions
are parameterized as a deep reward network, consisting of two parts: 1) a base
reward model, and 2) an adaptively growing set of intention-specific reward mod-
els. The base reward model takes as input the state features and outputs a set
of reward features shared in all intention-specific reward models. The intention-
specific reward models take the reward features and output the rewards for the
respective expert’s intention. A novel adaptive approach, based on the concept
of the Chinese Restaurant Process (CRP), is proposed to infer the number of
experts’ intentions from unlabeled demonstrations. To train the framework, we
propose and compare two novel EM algorithms. One is based on stochastic EM
and the other on Monte Carlo EM. In Sect. 3, this problem of multi-intention
IRL is defined, following our two novel EM algorithms in Sect. 4. The results are
evaluated on three available simulated benchmarks, two of which are extended
in this paper for multi-intention IRL, and compared with two baselines [5,10].
These experimental results are reported in Sect. 5 and Sect. 6 is devoted to con-
clusions. The source code to reproduce the experiments is publicly available1.

2 Related Works

In the past decades, a number of studies have addressed the problem of
multi-intention IRL. A comparison of various methods for multi-intention IRL,
together with our approach, is depicted in Table 1.

In an early work, Dimitrakakis and Rothkopf [11] formulated the problem
of learning from unlabeled demonstrations as a multi-task learning problem. By
generalizing the Bayesian IRL approach of Ramachandran and Amir [33], they
assumed that each observed trajectory is responsible for one specific reward
function, all of which shares a common prior. The same approach has also been
employed by Noothigattu et al. [28], who assumed that each expert’s reward
function is a random permutation of one sharing reward function. Babes et al.
[5] took a different approach and addressed the problem as a clustering task with
IRL. They proposed an EM approach that clusters the observed trajectories by
inferring the rewards function for each cluster. Using maximum likelihood, they
estimated the reward parameters for each cluster.
1 https://github.com/tue-mps/damiirl.

https://github.com/tue-mps/damiirl
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The main limitation in EM clustering approach is that the number of clusters
has to be specified as an input parameter [5,27]. To overcome this assumption,
Choi and Kim [10] employed a non-parametric Bayesian approach via the DPM
model. Using MCMC sampler, they were able to infer an unknown number of
reward functions, which are linear combinations of state features. Other authors
have also employed the same methodology in the literature [2,23,32].

All above methods are developed on the basis of model-based reinforcement
learning (RL), in which the model of the environment is assumed to be known.
In the past few years, a couple of approximate, model-free methods have been
developed for IRL with multiple reward functions [14,15,21,22]. Such methods
aimed to solve large-scale problems by approximating the Bellman optimality
equation with model-free RL.

In this study, we constrain ourselves to model-based RL and propose a multi-
intention IRL approach to infer an unknown number of experts’ intentions and
corresponding nonlinear reward functions from unlabeled demonstrations.

Table 1. Comparison of proposed models for multi-intention IRL.

Models Type Features

Model
based

Model
free

Unlabeled
demonstrations

Unknown #
intentions

Non-linear
reward fun.

Dimitrakakis and Rothkopf [11] � �
Babes et al. [5] � �
Nguyen et al. [27] � �
Choi and Kim [10] � � �
Rajasekaran et al. [32] � � �
Li et al. [21] � � �
Hausman et al. [14] � � �
Lin and Zhang [22] � �
Hsiao et al. [15] � � �
Ours � � � �

3 Problem Definition

In this section, the problem of multi-intention IRL is defined. To facilitate the
flow, we first formalize the multi-intention RL problem. For both problems, we
follow the conventional modelling of the environment as a Markov Decision Pro-
cess (MDP). A finite state MDP in a multi-intention RL problem is a tuple
(S,A, T, γ, b0, R1, R2, ..., RK) where S is the state space, A is the action space,
T : S × A × S → [0, 1] is the transition probability function, γ ∈ [0, 1) is the
discount factor, b0(s) is the probability of staring in state s, and Rk : S → R is
the kth reward function with K to be the total number of intentions. A policy
is a mapping function πk : S → A ∀k ∈ {1, 2, ...,K}. The value of policy πk
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with respect to the kth reward function is the expected discounted reward for
following the policy and is defined as V π

Rk
= E[

∑
t γtRk(st)|b0]. The optimal

policy (π∗
k) for the kth reward function is the policy that maximizes the value

function for all states and satisfies the respective Bellman optimality equation
[36].

In multi-intention IRL, the context of this study, a finite-state MDP\R is a
tuple (S,A, T, γ, b0, τττ1, τττ2, ..., τττM ) where τττm is the mth demonstration and M
is the total number of demonstrations. In this work, it is assumed that there
is a total of K intentions, each of which corresponds to one reward function,
so that τττm with length Tτ is generated from the optimal policy (π∗

k) of the
kth reward function. It is further assumed that the demonstrations are without
intention labels, i.e. they are unlabeled. Therefore, the goal is to infer the number
of intentions K and the respective reward function of each intention. In the next
section, we model the experts’ behaviors as a mixture of conditional maximum
entropy models, parameterize the reward functions via deep neural networks, and
propose a novel approach to infer an unknown number of experts’ intentions from
unlabeled demonstrations.

4 Approach

In the proposed framework for multi-intention IRL, the experts’ behavioral dis-
tribution is modeled as a mixture of conditional maximum entropy models. The
Mixture of conditional maximum entropy models is a generalization of standard
maximum entropy formulation for cases where the data distributions arise from a
mixture of simpler underlying latent distributions [31]. According to this princi-
pal, a mixture of conditional maximum entropy models is a promising candidate
to justify the multi-intention behaviors of the experts. The experts’ behaviors
with the kth intention is defined via a conditional maximum entropy distribution:

p(τττ |ηk = 1, Ψ) = exp(Rk(τττ , Ψk))/Zk, (1)

where ηηη = {η1, η2, ..., ηK |∀ηk ∈ {0, 1},
∑K

k=1 ηk = 1} is the latent intention
vector, Rk(τττ , Ψk) =

∑
s∈τττ Rk(s, Ψk) is the reward of the trajectory with respect

to the kth reward function with Rk(s, Ψk) as the state reward value, and Zk is
the kth partition function.

We define the kth reward function as: Rk(s, Ψk) = RΨk
(fffs), where RΨk

is a
deep neural network with finite set of parameters Ψk = {Θ0, Θk} which consists
of a base reward model RΘ0 and an intention-specific reward model RΘk

(See
Fig. 1). The base reward model with finite set of parameters Θ0 takes the state
feature vector fffs and outputs the state reward feature vector rrrs: rrrs = RΘ0(fffs).
The state reward feature vector rrrs that is produced by the base reward model is
input to all intention-specific reward models. The kth intention-specific reward
model with finite set of parameters Θk, takes the state reward feature vector
rrrs and outputs the state reward value: Rk(s, Ψk) = RΘk

(rrrs). Therefore the
total set of reward parameters is Ψ = {Θ0, Θ1, ..., ΘK}. The reward of the tra-
jectory τττ with respect to the kth reward function can be further obtained as:
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Fig. 1. Schematics of deep reward network.

Rk(τττ , Ψk) = μμμ(τττ)ᵀRRRΨk
(τττ), where μμμ(τττ) is the expected State Visitation Frequency

(SVF) vector for trajectory τττ and RRRΨk
(τττ) = {RΨk

(fffs)|∀s ∈ S} is the vector of
reward values of all states with respect to the kth reward function.

In order to infer the number of intentions K, we propose an adaptive
approach in which the number of intentions adaptively changes whenever a
trajectory is visited/re-visited. For this purpose, at each iteration we first
assume to have M −1 demonstrated trajectories {τττ1, τττ2, ..., τττm−1, τττm+1, ..., τττM}
that are already assigned to K intentions with known latent intention vectors
HHH−m = {ηηη1, ηηη2, ..., ηηηm−1, ηηηm+1, ..., ηηηM}. Then, we visit/re-visit a demonstrated
trajectory τττm and the task is to obtain the latent intention vector ηηηm, which
can be assigned to a new intention K + 1, and update the reward parameters
Ψ . As emphasized before, our work aims to develop a method in which K, the
number of intentions, is a priori unknown and can, in theory, be arbitrarily large.
Now we define the predictive distribution for the trajectory τττm as a mixture of
conditional maximum entropy models:

p(τττm|HHH−m, Ψ) =
K+1∑

k=1

p(τττm|ηm
k = 1, Ψ)p(ηm

k = 1|HHH−m) (2)

where p(ηm
k = 1|HHH−m) is the prior intention assignment for trajectory τττm, given

all other latent intention vectors. In the case of K intentions, we define a multi-
nomial prior distribution over all latent intention vectors HHH = {HHH−m, ηηηm}:

p(HHH|φφφ) =
K∏

k=1

φMk

k (3)

where Mk is the number of trajectories with intention k and φφφ is the vec-
tor of mixing coefficients φφφ = {φ1, φ2, ...φK} with Dirichlet prior distribution
p(φφφ) = Dir(α/K), where α is the concentration parameter. As K → ∞ the
main problematic parameters are the mixing coefficients. Marginalizing out the
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mixing coefficients and separating the latent intention vector for mth trajectory
yield (see Sect. 1 of supplementary materials for full derivation [6]):

p(ηm
k = 1|HHH−m) =

M−m
k

M − 1 + α

p(ηm
K+1 = 1|HHH−m) =

α

M − 1 + α

(4)

where M−m
k is the number of trajectories assigned to intention k excluding the

mth trajectory, p(ηm
k = 1|HHH−m) is the prior probability of assigning the new

trajectory m to intention k ∈ {1, 2, ...,K}, and p(ηm
K+1 = 1|HHH−m) is the prior

probability of assigning the new trajectory m to intention K +1. Equation (4) is
known as the CRP representation for DPM [25]. Considering the exchangeability
property [13], the following optimization problem is defined:

max
Ψ

Lm(Ψ) = log
K+1∑

k=1

p(τττm|ηm
k = 1, Ψ)p(ηm

k = 1|HHH−m) ∀m ∈ {1, 2, ...,M}

(5)

The parameters Ψ can be estimated via Expectation Maximization (EM) [7].
Differentiating Lm(Ψ) with respect to ψ ∈ Ψ yields the following E-step and
M-step (see Sect. 2 of supplementary materials for full derivation):

E-Step. Evaluation of the posterior distribution over the latent intention vector
∀k ∈ {1, 2, ...,K}:

γm
k =

M−m
k

∏Tτ −1
t=0 πk(at|st)

α
∏Tτ −1

t=0 πK+1(at|st) +
∑K

k̂=1 M−m
k

∏Tτ −1
t=0 πk̂(at|st)

(6)

and for k = K + 1:

γm
k =

α
∏Tτ −1

t=0 πk(at|st)

α
∏Tτ −1

t=0 πK+1(at|st) +
∑K

k̂=1 M−m
k

∏Tτ −1
t=0 πk̂(at|st)

(7)

where we have defined γm
k = p(ηm

k = 1|τττm,HHH−m, Ψ).

M-Step update of the parameter value ψ ∈ Ψ with gradient of:

∇ψL(Ψ) =
K+1∑

k=1

γm
k (μμμ(τττm) − Ep(τττ |ηk=1,Ψ)[μμμ(τττ)])ᵀ dRRRΨk

(τττ)
dψ

(8)

where Ep(τττ |ηk=1,Ψ)[μμμ(τττ)] is the expected SVF vector under the parameterized
reward function RΨk

[40].
When K approaches infinity, the EM algorithm is no longer tractable since

the number of mixture components exponentially grows with non-zero probabil-
ities. As a result, after some iterations, the E-step would be no longer available
in a closed-form. We propose two solutions for estimation of the reward param-
eters which are inspired by stochastic and Monte Carlo EM algorithms. Both
proposed solutions are deeply evaluated and compared with in Sect. 5.
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Algorithm 1: Adaptive multi-intention IRL based on stochastic EM

Initialize K, Θ0, Θ1, Θ2, ..., ΘK , M1, M2, ..., MK ;
while iteration < MaxIter do

Solve for π1, π2, ..., πK ;
for m = 1 to M do

Initialize ΘK+1 and solve for πK+1;
E-step Obtain γm

k ∀k ∈ {1, 2, ..., K, K + 1};
S-step Sample ηm

k ∼ γm
k ;

if ηm
K+1 = 1 then
K = K + 1;

end
Remove Ku unoccupied intentions: K = K − Ku;
Update M1, M2, ..., MK ;
M-step Update ψ ∈ {Θ0, Θ1, Θ2, ..., ΘK} by (8);

end

end

4.1 First Solution with Stochastic Expectation Maximization

Stochastic EM, introduces a stochastic step (S-step) after the E-step that repre-
sents the full expectation with a single sample [9]. Alg. 1 presents the summary
of the first solution to multi-intention IRL via stochastic EM algorithm when
the number of intentions is no longer known.

Given (6) and (7), first the posterior distribution over the latent intention
vector ηηηm for trajectory τττm ∈ {τττ1, τττ2, ..., τττM} is obtained. Then, the full expec-
tation is estimated with a sample ηηηm from the posterior distribution. Finally,
the reward parameters are updated via (8).

4.2 Second Solution with Monte Carlo Expectation Maximization

The Monte Carlo EM algorithm is a modification of the EM algorithm where the
expectation in the E-step is computed numerically via Monte Carlo simulations
[37]. As indicated, Algorithm 1 relies on the full posterior distribution which
can be time-consuming. Therefore, another solution for multi-intention IRL is
presented in which the E-step is performed through Metropolis-Hastings sampler
(see Algorithm 2 for the summary).

First, a new intention assignment for mth trajectory, ηηη∗m, is sampled from the
prior distribution of (4), then ηηηm = ηηη∗m is set with the acceptance probability
of min{1, p(τττm|ηηη∗m,Ψ)

p(τττm|ηηηm,Ψ) } where (see Sect. 3 of supplementary materials for full
derivation):

p(τττm|η∗m
k∗ = 1, Ψ)

p(τττm|ηm
k = 1, Ψ)

=
∏Tτ

t=1 πk∗(am
t |sm

t )
∏Tτ

t=1 πk(am
t |sm

t )
(9)

with k ∈ {1, 2, ...,K} and k∗ ∈ {1, 2, ...,K,K + 1}.
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Algorithm 2: Adaptive multi-intention IRL based on Monte Carlo EM

Initialize K, Θ0, Θ1, Θ2, ..., ΘK , M1, M2, ..., MK ;
while iteration < MaxIter do

Solve for π1, π2, ..., πK ;
for m = 1 to M do

Obtain p(ηηηm|HHH−m, α);
Sample ηηη∗m ∼ p(ηηηm|HHH−m, α);
if η∗m

K+1 = 1 then
Initialize ΘK+1 and solve for πK+1;

end

E-step Assign ηηη∗m → ηηηm by probability of min{1, p(τττm|ηηη∗m,Ψ)
p(τττm|ηηηm,Ψ)

};

if ηm
K+1 = 1 then
K = K + 1;

end
Remove Ku unoccupied intentions: K = K − Ku;
Update M1, M2, ..., MK ;
M-step Update ψ ∈ {Θ0, Θ1, Θ2, ..., ΘK} by (8);

end

end

5 Experimental Results

In this section, we evaluate the performance of our proposed methods through
several experiments with three goals: 1) to show the advantages of our methods
in comparison with the baselines in environments with both linear and non-linear
rewards, 2) to demonstrate the advantages of adaptively inferring the number of
intentions rather than predefining a fixed number, and 3) to depict the strengths
and weaknesses of our proposed algorithms with respect to each other.

5.1 Benchmarks

In order to deeply compare the performances of various models, the experiments
are conducted on three different environments: GridWorld, Multi-intention
ObjectWorld, and Multi-intention BinaryWorld. Variants of all three environ-
ments have been widely employed in IRL literature [19,39].

GridWorld [10] is a 8 × 8 environment with 64 states and four actions per
state with 20% probability of moving randomly. The grids are partitioned into
non-overlapping regions of size 2 × 2, and the feature function is defined by a
binary indicator function for each region. Three reward functions are generated
with linear combinations of state features and reward weights which are sampled
to have a non-zero value with the probability of 0.2. The main idea behind
using this environment is to compare all the models in aspects other than their
capability of handling linear/non-linear reward functions.

Multi-intention ObjectWorld (M-ObjectWorld) is our extension of Object-
World [19] for multi-intention IRL. ObjectWorld is a 32 × 32 grid of states with
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five actions per state with a 30% chance of moving in a different random direc-
tion. The objects with two different inner and outer colors are randomly placed,
and the binary state features are obtained based on the Euclidean distance to
the nearest object with a specific inner or outer color. Unlike ObjectWorld, M-
ObjectWorld has six different reward functions, each of which corresponds to
one intention. The intentions are defined for each cell based on three rules: 1)
within 3 cells of outer color one and within 2 cells of outer color two, 2) Just
within 3 cells of outer color one, and 3) everywhere else (see Table 2). Due to
the large number of irrelevant features and the nonlinearity of the reward rules,
the environment is challenging for methods that learn linear reward functions.
Figure 2 (top three) shows a 8× 8 zoom-in of M-ObjectWorld with three reward
functions and respective optimal policies.

Multi-intention BinaryWorld (M-BinaryWorld) is our extension of Binary-
World [39] for multi-intention IRL. Similarly, BinaryWorld has 32 × 32 states,
five actions per state with a 30% chance of moving in a different random direc-
tion. But every state is randomly occupied with one of the two-color objects. The
feature vector for each state consequently consists of a binary vector, encoding
the color of each object in 3 × 3 neighborhood. Similar to M-ObjectWorld, six
different intentions can be defined for each cell of M-BinaryWorld based on three
rules: 1) four neighboring cells have color one, 2) five neighboring cells have color
one, and 3) everything else (see Table 2). Since in M-BinaryWorld the reward
depends on a higher representation for the basic features, the environment is
arguably more challenging than the previous ones. Therefore, most of the exper-
iments are carried in this environment. Figure 2 (bottom three) shows a 8 × 8
zoom-in of M-BinaryWorld with three different reward functions and policies.

In order to assess the generalizability of the models, the experiments are also
conducted on transferred environments. In transferred environments, the learned
reward functions are re-evaluated on new randomized environments.

Fig. 2. 8 × 8 zoom-ins of M-ObjectWorld
(top three) and M-BinaryWorld (bottom
three) with three reward functions.

Table 2. Reward values in M-Object-
World and M-BinaryWorld

Intention Reward rule

1 2 3

A +5 −10 0

B −10 0 +5

C 0 +5 −10

D −10 +5 0

E +5 0 −10

F 0 −10 +5
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5.2 Models

In this study, we compare our methods with existing approaches that can han-
dle IRL with multiple intentions and constrain the experiments to model-based
methods. The following models are evaluated on the benchmarks:

– EM-MLIRL(K), proposed by Babes et al. [5]. This method requires the num-
ber of experts’ intentions K to be known. To research the influence on setting
K for this method, we use K ∈ {2, 3, 4}.

– DPM-BIRL, a non-parametric multi-intention IRL method proposed by Choi
and Kim [10].

– SEM-MIIRL, our proposed solution based on stochastic EM.
– MCEM-MIIRL, our proposed solution based on Monte Carlo EM.
– KEM-MIIRL, a simplified variant of our approach where the concentration

parameter is zero and the number of intentions are fixed to K ∈ {2, 5}.

5.3 Metric

Following the same convention used in [10], the imitation performance is eval-
uated by the average of expected value difference (EVD). The EVD measures
the performance difference between the expert’s optimal policy and the opti-
mal policy induced by the learned reward function. For m ∈ {1, 2, ...,M},
EVD = |V π̃m

R̃m −V πm

R̃m |, where π̃m and R̃m are the true policy and reward function
for mth demonstration, respectively, and πm is the predicted policy under the
predicted reward function demonstration. In all experiments, a lower average-
EVD corresponds to better imitation performance.

5.4 Implementations Details

In our experiments, we employed a fully connected neural network with five hid-
den layers of dimension 256 and a rectified linear unit for the base reward model,
and a set of linear functions represents the intention-specific reward models. The
reward network is trained for 200 epochs using Adam [18] with a fixed learn-
ing rate of 0.001. For easing the reproducibility of our work, the source code is
shared with the community at https://github.com/tue-mps/damiirl.

5.5 Results

Each experiment is repeated for 6 times with different random environments, and
the results are shown in the form of means (lines) and standard errors (shadings).
The demonstration length for GridWorld is fixed to 40 time-steps and for both
M-ObjectWorld and M-BinaryWorld is 8 time-steps.

Figure 3 and Fig. 4 show the imitation performances of our SEM-MIIRL and
MCEM-MIIRL in comparison with two baselines, EM-MLIRL(K) and DPM-
BIRL, for varying number of demonstrations per reward function in origi-
nal and transferred environments, respectively. Each expert is assigned to one

https://github.com/tue-mps/damiirl
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Fig. 3. Imitation performance in comparison with the baselines. Lower average-EVD
is better.

Fig. 4. Imitation performance in comparison with the baselines in transferred envi-
ronments. Lower average-EVD is better.

Fig. 5. Effects of overestimating/underestimating vs inferring the number of reward
functions in original (left) and transferred (right) M-BinaryWorlds. Lower average-EVD
is better
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Fig. 6. Effects of α on Average-EVD (left) and number of predicted intentions (right).
Lower average-EVD is better

out of three reward functions (intentions A, B, and C in M-ObjectWorld and
M-BinaryWorld) and the concentration parameter is set to one. The results
show clearly that our methods achieve significant lower average-EVD errors
when compared to existing methods, especially in nonlinear environments of
M-ObjectWorld and M-BinaryWorld, with SEM-MIIRL slightly outperforming
MCEM-MIIRL.

Fig. 7. Execution time (right) and Convergence (left). Lower average-EVD is better.

To address the importance of inferring the number of intentions, we have com-
pared the performances of our SEM-MIIRL and MCEM-MIIRL with two simpli-
fied variants, 2EM-MIIRL and 5EM-MIIRL, where the concentration parameter
is set to zero and the number of intentions is fixed and equal to 2 and 5, respec-
tively. Figure 5 shows the results of these comparisons for a varying number of
true reward functions from one to six (from intention: {A} to {A, B, C, D, E,
F}) in both original and transferred M-BinaryWorld. The number of demon-
strations is fixed to 16 per reward function and α = 1 for both SEM-MIIRL
and MCEM-MIIRL. As depicted, overestimation and underestimation of the
number of reward functions, as happens frequently in both 2EM-MIIRL and
5EM-MIIRL, deteriorate the imitation performance. This while the adaptability
in SEM-MIIRL and MCEM-MIIRL yields to less sensitivity with changes in the
number of true reward functions.
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Further experiments are conducted to deeply assess and compare MCEM-
MIIRL and SEM-MIIRL. Figure 6 depicts the effects of the concentration param-
eter on both Average-EVD and number of predicted intentions. The number of
demonstrations is fixed to 16 per reward function and intentions are {A, B, C}.
As shown, the best value for the concentration parameter is between 0.5 to 1,
with lower values leading to higher Average-EVD and lower number of predicted
intentions, while higher values result in higher Average-EVD and higher num-
ber of predicted intentions for both MCEM-MIIRL and SEM-MIIRL. The final
experiment is devoted to the convergence behavior of MCEM-MIIRL and SEM-
MIIRL. The number of demonstrations is again fixed to 16 per reward function,
intentions are {A, B, C} and the concentration parameter is set to 1. As shown
in Fig. 7 (left image), the per-iteration execution time of MCEM-MIIRL is lower
than SEM-MIIRL. The main reason is that SEM-MIIRL evaluates the posterior
distribution over all latent intentions. However, this extra operation guaran-
tees faster converges of SEM-MIIRL, making it overall the more efficient than
MCEM-MIIRL as can be seen in Fig. 7 (right image).

6 Conclusions

We proposed an inverse reinforcement learning framework to recover com-
plex reward functions by observing experts whose behaviors originate from an
unknown number of intentions. We presented two algorithms that are able to
consistently recover multiple, highly nonlinear reward functions and whose ben-
efits were pointed out through a set of experiments. For this, we extended two
complex benchmarks for multi-intention IRL in which our algorithms distinctly
outperformed the baselines. We also demonstrated the importance of inferring
rather than underestimating or overestimating the number of experts’ intentions

Having shown the benefits of our approach in inferring the unknown number
of experts’ intention from a collection of demonstrations via model-based RL,
we aim to extend the same approach in model-free environments by employing
approximate RL methods.
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Abstract. Meta-learning, transfer learning and multi-task learning have
recently laid a path towards more generally applicable reinforcement
learning agents that are not limited to a single task. However, most exist-
ing approaches implicitly assume a uniform similarity between tasks. We
argue that this assumption is limiting in settings where the relationship
between tasks is unknown a-priori. In this work, we propose a general
approach to automatically cluster together similar tasks during training.
Our method, inspired by the expectation-maximization algorithm, suc-
ceeds at finding clusters of related tasks and uses these to improve sample
complexity. We achieve this by designing an agent with multiple policies.
In the expectation step, we evaluate the performance of the policies on
all tasks and assign each task to the best performing policy. In the maxi-
mization step, each policy trains by sampling tasks from its assigned set.
This method is intuitive, simple to implement and orthogonal to other
multi-task learning algorithms. We show the generality of our approach
by evaluating on simple discrete and continuous control tasks, as well as
complex bipedal walker tasks and Atari games. Results show improve-
ments in sample complexity as well as a more general applicability when
compared to other approaches.

1 Introduction

Imagine we are given an arbitrary set of tasks. We know that dissimilarities
and/or contradicting objectives can exist. However, in most settings we can
only guess these relationships and how they might affect joint training. Many
recent works rely on such human guesses and (implicitly or explicitly) limit the
generality of their approaches. This can lead to impressive results, either by
explicitly modeling the relationships between tasks as in transfer learning [42],
or by meta learning implicit relations [15]. However, in some cases an incorrect
similarity assumption can slow training [19]. With this paper we provide an easy,
straightforward approach to avoid human assumptions on task similarities.
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Fig. 1. Left: An agent (smiley) should reach one of 12 goals (stars) in a grid world.
Learning to reach a goal in the top right corner helps it to learn about the other goals
in that corner. However, learning to reach the green stars (bottom left corner) at the
same time gives conflicting objectives, hindering training. Right: When all tasks are
very similar, treating them as independent is disadvantageous. Task clustering allows
us to perform well in both cases. (Color figure online)

An obvious solution is to train a separate policy for each task. However, this
might require a large amount of experience to learn the desired behaviors. There-
fore, it is desirable to have a single agent and share knowledge between tasks.
This is generally known as multi-task learning, a field which has received a large
amount of interest in both the supervised learning and reinforcement learning
(RL) community [41]. If tasks are sufficiently similar, a policy that is trained
on one task provides a good starting point for another task, and experience
from each task will help training in the other tasks. This is known as positive
transfer [19]. However, if the tasks are sufficiently dissimilar, negative transfer
occurs and reusing a pre-trained policy is disadvantageous. Here using experi-
ence from the other tasks might slow training or even prevent convergence to a
good policy. Most previous approaches to multi-task learning do not account for
problems caused by negative transfer directly and either accept its occurrence
or limit their experiments to sufficiently similar tasks. We present a hybrid app-
roach that is helpful in a setting where the task set contains clusters of related
tasks, amongst which transfer is helpful. To illustrate the intuition we provide
a conceptualized example in Fig. 1 on the left. Note however that our approach
goes beyond this conceptual ideal and can be beneficial even if the clustering is
not perceivable by humans a-priori.

Our approach iteratively evaluates a set of policies on all tasks, assigns tasks
to policies based on their respective performance and trains policies on their
assigned tasks. This leads to policies naturally specializing to clusters of related
tasks, yielding an interpretable decomposition of the full task set. Moreover,
we show that our approach can improve the learning speed and final reward in
multi-task RL settings. To summarize our contributions:

– We propose a general approach inspired by Expectation-Maximization (EM)
that can find clusters of related tasks in an unsupervised manner.

– We provide an evaluation on a diverse set of multi-task RL problems that
shows the improved sample complexity and reduction in negative transfer.

– We show the importance of meaningful clustering and the sensitivity to the
assumed number of clusters in an ablation study.
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2 Related Work

Expectation-Maximization (EM) has previously been used in RL to directly learn
a policy. By reformulating RL as an inference problem with a latent variable, it
is possible to use EM to find the maximum likelihood solution, corresponding to
the optimal policy. We direct the reader to the survey on the topic by Deisenroth
et al. [9]. Our approach is different: We use an EM-inspired approach to cluster
tasks in a multi-task setting and rely on recent RL algorithms to learn the tasks.

In supervised learning, the idea of subdividing tasks into related clusters
was proposed by Thrun and O’Sullivan [34]. They use a distance metric based
on generalization accuracy to cluster tasks. Another popular idea related to our
approach that emerged from supervised learning is the use of a mixture of experts
[16]. Here, multiple sub-networks are trained together with an input dependent
gating network. Jordan and Jacobs [18] also proposed an EM algorithm to learn
the mixture of experts. While those approaches have been extended to the control
setting [4,17,26,33], they rely on an explicit supervision signal. It is not clear
how such an approach would work in an RL setting. A variety of other methods
have been proposed in the supervised learning literature. For brevity we direct
the reader to the survey by Zhang et al. [41], which provides a good overview of
the topic. In contrast, we focus on RL, where no labeled data set exists.

In RL, task clustering has in the past received attention in works on transfer
learning. Carroll and Seppi [5] proposed to cluster tasks based on a distance
function. They propose distances based on Q-values, reward functions, optimal
policies or transfer performance. They propose to use the clustering to guide
transfer. Similarly, Mahmud et al. [25] propose a method for clustering Markov
Decision Processes (MDPs) for source task selection. They design a cost function
for their chosen transfer method and derive an algorithm to find a clustering that
minimizes this cost function. Our approach differs from both in that we do not
assume knowledge of the underlying MDPs and corresponding optimal policies.
Furthermore, the general nature of our approach allows it to scale to complex
tasks, where comparing properties of the full underlying MDPs is not feasible.
Wilson et al. [38] developed a hierarchical Bayesian approach for multi-task RL.
Their approach uses a Dirichlet process to cluster the distributions from which
they sample full MDPs in the hope that the sampled MDP aligns with the task
at hand. They then solve the sampled MDP and use the resulting policy to
gather data from the environment and refine the posterior distributions for a
next iteration. While their method is therefore limited to simple MDPs, our
approach can be combined with function approximation and therefore has the
potential to scale to MDPs with large or infinite state spaces which cannot be
solved in closed form. Lazaric and Ghavamzadeh [20] use a hierarchical Bayesian
approach to infer the parameters of a linear value function and utilize EM to
infer a policy. However, as this approach requires the value function to be a
linear function of some state representation, this approach is also difficult to
scale to larger problems which we look at. Li et al. [22] note that believe states
in partially observable MDPs can be grouped according to the decision they
require. Their model infers the parameters of the corresponding decision state
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MDP. Their approach scales quadratically with the number of decision states
and at least linearly with the number of collected transitions, making it as well
difficult to apply to complex tasks.

More recent related research on multi-task RL can be split into two cate-
gories: Works that focus on very similar tasks with small differences in dynamics
and reward, and works that focus on very dissimilar tasks. In the first setting,
approaches have been proposed that condition the policy on task characteristics
identified during execution. Lee et al. [21] use model-based RL and a learned
embedding over the local dynamics as additional input to their model. Yang et
al. [39] train two policies, one that behaves in a way that allows the easy identifi-
cation of the environment dynamics and another policy that uses an embedding
over the transitions generated by the first as additional input. Zintgraf et al. [43]
train an embedding over the dynamics that accounts for uncertainty over the
current task during execution and condition their policy on it. Our approach is
more general than these methods as our assumption on task similarity is weaker.
In the second group of papers, the set of tasks is more diverse. Most approaches
here are searching for a way to reuse representations from one task in the others.
Riemer et al. [30] present an approach to learn hierarchical options, and use it
to train an agent on 21 Atari tasks. They use the common NatureDQN network
[27] with separate final layers for option selection policies, as well as separate
output layers for each task to account for the different action spaces. Eramo
et al. [11] show how a shared representation can speed up training. They then
use a network strucuture with separate heads for each task, but shared hidden
layers. Our multi-head baseline is based on these works. Bräm et al. [2] propose
a method that addresses negative transfer between multiple tasks by learning an
attention mechanism over multiple sub-networks, similar to a mixture of experts.
However, as all tasks yield experience for one overarching network, their app-
roach still suffers from interference between tasks. We limit this interference by
completely separating policies. Wang et al. [36] address the problem of open-
ended learning in RL by iteratively generating new environments. Similar to
us, they use policy rankings as a measure of difference between tasks. However,
they use this ranking as a measure of novelty to find new tasks, addressing a
very different problem. Hessel et al. [14] present PopArt for multi-task deep
RL. They address the issue that different tasks may have significantly different
reward scales. Sharma et al. [31] look into active learning for multi-task RL on
Atari tasks. They show that uniformly sampling new tasks is suboptimal and
propose different sampling techniques. Yu et al. [40] propose Gradient Surgery, a
way of projecting the gradients from different tasks to avoid interference. These
last three approaches are orthogonal to our work and can be combined with
EM-clustering. We see this as an interesting direction for future work.

Quality-Diversity (QD) algorithms [7,29] in genetic algorithms research aim
to find a diverse set of good solutions for a given problem. One proposed benefit
of QD is that it can overcome local optima by using the solutions as “stepping
stones” towards a global optimum. Relatedly in RL, Eysenbach et al. [12] and
Achiam et al. [1] also first identify diverse skills and then use the learned skills
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to solve a given task. While we do not explicitly encourage diversity in our
approach, our approach is related in that our training leads to multiple good
performing, distinct policies trained on distinct tasks. This can lead to a policy
trained on one task becoming the best on a task that it was not trained on,
similar to the “stepping stones” in QD. However, in our work this is more a
side-effect than the proposed functionality.

3 Background and Notation

In RL [32] tasks are specified by a Markov Decision Process (MDP), defined
as tuple (S,A, P,R, γ), with state space S, action space A, transition function
P (·|s, a), reward function R(s, a) and decay factor γ. As we are interested in
reusing policies for different tasks, we require a shared state-space S and action-
space A across tasks. Note however that this requirement can be omitted by
allowing for task specific layers. Following prior work, we do allow for a task
specific final layer in our Atari experiments to account for the different action
spaces. In all other experiments however, tasks only differ in their transition
function and reward function. We therefore describe a task as τ = (Pτ , Rτ ) and
refer to the set of given tasks as T . For each task τ ∈ T we aim to maximize the
discounted return Gτ =

∑t=L
t=0 γtrτ

t , where rτ
t ∼ Rτ (st, at) is the reward at time

step t and L is the episode length. Given a set of policies Π = {π1, ..., πn}, we
denote the return obtained by policy πi on task τ as Gτ (πi).

4 Clustered Multi-task Learning

Before we introduce our proposed clustering approach, we first want to briefly
discuss the straight forward, yet often disregarded limitation that exists when
learning multiple task with a single policy.

Proposition 1. The optimal policy of a jointly learned task set T = {τ1, τ2}
can be arbitrarily far from the optimal policy on task τ1.

To see this, consider task τ2 given as τ2 = (Pτ1 ,−2 ·Rτ1). Optimizing a policy
π to maximizing the joint objective Gτ1(π) + Gτ2(π) is equivalent to optimizing
π to minimize Gτ1(π) as for any policy π we have Gτ1(π) + Gτ2(π) = −Gτ1(π).

On the other hand, as the growing body of literature on meta-, transfer- and
multi-task learning suggests, we can expect a gain through positive transfer if
we train a single policy πi on a subset of related tasks Tk ⊂ T .

We incorporate these insights into our algorithm by modeling the task set
T as a union of K disjoint task clusters T1, . . . , TK , i.e., T =

⋃K
k=1 Tk with

Ti ∩ Tj = ∅ for i �= j. Tasks within a cluster allow for positive transfer while
we do not assume any relationship between tasks of different clusters. Tasks
in different clusters may therefore even have conflicting objectives. Note that
the assignment of tasks to clusters is not given to us and therefore needs to
be inferred by the algorithm. Note also that this formulation only relies on
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minimalistic assumptions. That is, we do not assume a shared transition function
or a shared reward structure. Neither do we assume the underlying MDP to be
finite and/or solvable in closed form. Our approach is therefore applicable to a
much broader range of settings than many sophisticated models with stronger
assumptions. As generality is one of our main objectives, we see the minimalistic
nature of the model as a strength rather than a weakness.

Algorithm 1: Task-Clustering
Initialize N policies (π1, . . . , πN )
Initialize N buffers (D1, . . . ,DN )
while not converged do

� E-Step

T̃i ← ∅ for i ∈ {1, . . . , n}
for τ ∈ T do

k ← arg maxi Gτ (πi)
T̃k ← T̃k ∪ τ

T̃i ← T where T̃i = ∅
� M-Step
for πi ∈ {π1, ..., πn} do

t ← 0
while t < TM do

τ ∼ T̃i

Run πi on τ for L steps,
store transitions in Di

Update πi from Di

t ← t + L

Given this problem formulation,
we note that it reflects a clustering
problem, in which we have to assign
each task τ ∈ T to one of the clus-
ters Tk, k ∈ {1, . . . , K}. At the same
time, we want to train a set of policies
Π = {π1, ..., πn} to solve the given
tasks. Put differently, we wish to infer
a latent variable (cluster assignment
of the tasks) while optimizing our
model parameters (set of policies).

An EM [10] inspired algorithm
allows us to do just that. On a high
level, in the expectation step (E-step)
we assign each of the tasks τ ∈ T
to a policy πi, representing an esti-
mated cluster T̃i. We then train the
policies in the maximization step (M-
step) on the tasks they got assigned,
specializing the policies to their clus-
ters. These steps are alternatingly
repeated—one benefiting from the
improvement of the other in the pre-
ceding step—until convergence. Given this general framework we are left with
filling in the details. Specifically, how to assign tasks to which policies (E-step)
and how to allocate training time from policies to assigned tasks (M-step).

For the assignment in the E-step we want the resulting clusters to represent
clusters with positive transfer. Given that policy πi is trained on a set of tasks T̃i

in a preceding M-step, we can base our assignment of tasks to πi on the perfor-
mance of πi: Tasks on which πi performs well likely benefited from the preceding
training and therefore should be assigned to the cluster of πi. Specifically, we
can evaluate each policy πi ∈ {π1, . . . , πn} on all tasks τ ∈ T to get an estimate
of Gτ (πi) and base the assignment on this performance evaluation. To get to an
implementable algorithm we state two additional desiderata for our assignment:
(1) We do not want to constrain cluster sizes in any way as clusters can be of
unknown, non-uniform sizes. (2) We do not want to constrain the diversity of
the tasks. This implies that the assignment has to be independent of the reward
scales of the tasks, which in turn limits us to assignments based on the relative
performances of the policies π1, ..., πn. We found a greedy assignment—assigning
each task to the policy that performs best—to work well. That is, a task τk is
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assigned to the policy π = arg maxπi
Gτk(πi). A soft assignment based on the full

ranking of policies might be worth exploring in future work. Given the greedy
assignment, our method can also be seen as related to k-means [24], a special
case of EM.

In the M-step, we take advantage of the fact that clusters reflect positive
transfer, i.e., training on some of the assigned tasks should improve performance
on the whole cluster. We can therefore randomly sample a task from the assigned
tasks and train on it for one episode before sampling the next task. Overall we
train each policy for a fixed number of updates TM in each M-step with TM

independent of the cluster size. This independence allows us to save environment
interactions as larger clusters benefit from positive transfer and do not need
training time proportional to the number of assigned tasks.

Note that the greedy assignment (and more generally any assignment fulfill-
ing desiderata 1 above) comes with a caveat: Some policies might not be assigned
any tasks. In this case we sample the tasks to train these policies from all tasks
τ ∈ T , which can be seen as a random exploration of possible task clusters.
This also ensures that, early on in training, every policy gets a similar amount
of initial experience. For reference, we provide a pseudo code of our approach in
Algorithm 1. Note that we start by performing an E-Step, i.e., the first assign-
ment is based on the performance of the randomly initialized policies.

4.1 Convergence Analysis

We now show that both, the E- and M-step yield a monotonic improvement.
Thereby, our algorithm improves the objective monotonically in every iteration.

We denote our overall objective function that we aim to maximize as
o(Π, T̃ ) =

∑
πi∈Π

∑
τj∈T̃i

Gτ (πi), as a function of our policy set Π =
{π1, . . . , πn} and their corresponding task assignments T̃ = {T̃1, . . . , T̃n}. In
the E-step, we evaluate all policies on all tasks to determine the returns Gτ (πi).
Using the greedy assignment strategy, we assign each task to the policy that
achieves the respective highest return arg maxi Gτ (πi) and obtain a new assign-
ment set T̃ ′. It is easy to see that this assignment step can only improve the
objective, as

o(Π, T̃ ′) =
∑

τ∈T
max
πi∈Π

Gτ (πi) ≥
∑

τ∈T

∑

πi∈Π

1[τ∈T̃i]
Gτ (πi) = o(Π, T̃ )

for any previous assignments T̃ , since the indicator function 1[τ∈T̃i]
will only

indicate one cluster.1 Note that this derivation relies on a deterministic evalua-
tion of policies, i.e. deterministic task environments. For stochastic environments
we can take the average over multiple evaluations, trading off the computational
overhead with the accuracy of the evaluation. In our experiments we found that a
relatively small number of evaluations is sufficient for the algorithm to converge.

1 Note that assigning all tasks to a cluster that did not get any tasks assigned is only
done for exploration. In the evaluation of our objective these clusters remain empty.
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During the M-step the assignments are fixed, and every policy πi is trained
on its assigned tasks τ ∈ T̃i by sampling from them uniformly. We derive the
case for shared transition dynamics Pτ = P ∀τ ∈ T here and extend it to the
case of tasks with distinct transition dynamics in Appendix A.2

The value of policy πi on task τ can be defined recursively as

V πi
τ (s) = Ea∼πi

[Rτ (s, a) + γEs′∼P (·|s,a)[V πi
τ (s′)]]

such that V πi
τ (s0) = Gτ (πi) for the starting state s0. We further note that the

expected value V πi

M (s) = Eτ∼T̃i
[V πi

τ (s)] is in itself a value function over an MDP
M defined by the expected reward with

V πi

M(s) = Ea∼πi
[Eτ∼T̃i

[Rτ (s, a)] + γEs′∼P (·|s,a)[Eτ∼T̃i
[V πi

τ (s′)]]]

= Ea∼πi
[Eτ∼T̃i

[Rτ (s, a)] + γEs′∼P (·|s,a)[V
πi

M(s′)]]

Policy iteration on M will yield an improved policy π′
i with V

π′
i

M(s) ≥ V πi

M(s) ∀s ∈
S. More generally, any off-policy RL algorithm that samples uniformly over
collected (s, r, a, s′) transition tuples will implicitly optimize M. Note that
V πi

M(s0) = Eτ∼T̃i
[Gτ (πi)] = 1

|T̃i|
∑

τ∈T̃i
Gτ (πi) for uniformly sampled tasks. Any

improvement in V πi

M therefore directly translates into an improvement in our
overall objective. While we focus on off-policy RL in this paper, we conjecture
that a similar optimisation can be done on-policy.

5 Experiments

As a proof of concept we start the evaluation of our approach on two discrete
tasks. The first environment consists of a chain of discrete states in which the
agent can either move to the left or to the right. The goal of the agent is placed
either on the left end or the right end of the chain. This gives rise to two task
clusters, where tasks within a cluster differ in the frequency with which the
agent is rewarded on its way to the goal. The second environment reflects the
2-dimensional grid-world presented in Fig. 1. Actions correspond to the cardinal
directions in which the agent can move and the 12 tasks in the task set T are
defined by their respective goal. We refer an interested reader to Appendix B.1
for a detailed description (See footnote 2).

We train policies with tabular Q-learning [37] and compare our approach to
two baselines: In the first we train a single policy on all tasks. We refer to this as
SP (Single Policy). In the other we train a separate policy per task and evaluate
each policy on the task it was trained on. This is referred to as PPT (Policy per
Task). Our approach is referred to as EM (Expectation-Maximization).

The results and task assignment over the course of training are shown in
Fig. 2 and Fig. 3. Looking at the assignments, we see that in both environments
our approach converges to the natural clustering, leading to a higher reward
2 The Appendix and implementations of all our experiments can be found at https://

github.com/JohannesAck/EMTaskClustering.

https://github.com/JohannesAck/EMTaskClustering
https://github.com/JohannesAck/EMTaskClustering


230 J. Ackermann et al.

Fig. 2. Left: Mean reward and 95% confidence interval (shaded area) from 10 trials
when training on the chain environment. Right: Task assignment (dots) and task
specific reward (color) over the course of training the two policies in our approach.
Each plot shows one of the policies/estimated clusters. The assignments converge to
the natural clustering reflected by the goal location.

Fig. 3. Left: Mean reward and 95% confidence interval (shaded area) from 10 trials
when training on the grid-world environment depicted in Fig. 1. Right: Task assign-
ment (dots) and task specific reward (color) over the course of training for the n = 4
policies (estimated clusters) in our approach. The assignment naturally clusters the
tasks of each corner together.

after finding these assignments. Both our EM-approach and PPT converge to
an optimal reward in the chain environment, and a close to optimal reward in
the corner-grid-world. However, PPT requires a significantly higher amount of
environment steps to reach this performance, as it does not share information
between tasks and therefore has to do exploration for each task separately. SP
fails to achieve a high reward due to the different tasks providing contradicting
objectives.
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Fig. 4. Left: Mean reward and 95% confidence interval (shaded area) from 10 trials
when training on the pendulum environment. The curves are smoothed by a rolling
average to dampen the noise of the random starting positions. For [40] we used 12
trials out of which 3 failed to converge and were excluded. Right: Task assignment
(dots) and task specific reward (color) from a sample run. Two policies focus on long
and short, while the others focus on medium lengths.

5.1 Pendulum

Next we consider a simple continuous control environment where tasks differ in
their dynamics. We use the pendulum gym task [3], in which a torque has to
be applied to a pendulum to keep it upright. Here the environment is the same
in all tasks, except for the length of the pendulum, which is varied in the range
{0.7, 0.8, ..., 1.3}, giving a total of 7 tasks. Note that there is no obvious cluster
structure here and the experiment therefore serves as an edge-case to test the
applicability of our approach.

We use Twin Delayed Deep Deterministic Policy Gradient (TD3) [13] with
hyperparameters optimized as discussed in Appendix B.2. By default, we use
n = 4 policies and did not tune this hyperparameter. This was done to give a
fair comparison to baseline approaches which do not have this extra degree of
freedom. For application purposes the number of clusters can be treated as a
hyperparameter and included in the hyperparameter optimization. We compare
against SP, PPT, gradient surgery [40] and a multi-head network structure simi-
lar to the approach used by Eramo et al. [11]. Each policy in our approach uses a
separate replay buffer. The multi-head network has a separate replay-buffer and
a separate input and output layer per task. Surgery uses a separate replay-buffer
and output layer per task. We adjust the network size of the multi-head baseline,
surgery and SP to avoid an advantage of our method due to a higher parameter
count, see Appendix B.2 for details. The results are shown in Fig. 4.

We observe that EM, PPT, multi-head and surgery all achieve a similar final
performance, with EM and surgery achieving a high reward earlier than PPT
or multi-head. The multi-head approach requires signficantly more experience
to converge than even PPT in this setup. We believe this is due to the inherent
interference of learning signals in the shared layers. Our approach manages to
avoid this interference, as does surgery. SP is unable to achieve a high reward as
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Fig. 5. Evaluation of the BipedalWalker experiments. The shaded areas show the 95%
confidence interval on the mean task reward. Left: Track and field task set; 6 tasks
with varying objectives. Results reflect 20 trials of each approach. Right: Task set
with varying leg lengths and obstacles; 9 tasks with the same reward function. Results
reflect 10 trials of each approach.

it cannot specialize to the tasks. In contrast to the surgery baseline, our approach
can give further insights by producing intuitive cluster assignments, see Fig. 4.

5.2 Bipedal Walker

As a more complex continuous control environment we focus on BipedalWalker
from the OpenAI Gym [3], which has previously been used in multi-task and
generalization literature [28,35,36]. It consists of a bipedal robot in a two-
dimensional world, where the default task is to move to the right with a high
velocity. The action space consists of continuous torques for the hip and knee
joints of the legs and the state space consists of joint angles and velocities, as
well as hull angle and velocity and 10 lidar distance measurements. Examples
are shown in Fig. 1 on the right.

To test our approach, we designed 6 tasks inspired by track and field sports:
Jumping up at the starting position, jumping forward as far as possible, a short,
medium and long run and a hurdle run. As a second experiment, we create a set of
9 tasks by varying the leg length of the robot as well as the number of obstacles
in its way. This task set is inspired by task sets in previous work [28]. Note
that we keep the objective—move forward as fast as possible—constant here.
We again use TD3 and tune the hyperparameters of the multi-head baseline
and our approach (with n = 4 fixed) with grid-search. Experiment details and
hyperparameters are given in Appendix B.3.

The results in Fig. 5 (left) on the track and field tasks show a significant
advantage in using our approach over multi-head TD3, surgery or SP and a better
initial performance than PPT, with similar final performance. SP fails to learn a
successful policy altogether due to the conflicting reward functions. In contrast,
the results in Fig. 5 (right) from the second task set show that SP can learn a
policy that is close to optimal on all tasks here. The multi-head, surgery and
PPT approaches suffer in this setup as each head/policy only gets the experience
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Fig. 6. The results of our experiments on a subset of the Atari Learning Environment
games. The reward is averaged across 3 trials and the shaded region shows the standard
deviation of the mean.

from its task and therefore needs more time to converge. Our approach can
take advantage of the similarity of the tasks, converging significantly quicker.
We note that the experiments presented here reflect two distinct cases: One in
which it is advantageous to separate learning, reflected by PPT outperforming
SP, and one where it is better to share experience between tasks, reflected by SP
outperforming PPT. Our approach, unlike surgery or multi-head, demonstrates
general applicability as it is the only one performing competitively in both. We
provide an insight into the assignment of tasks to policies in Appendix C.1.

5.3 Atari

To test the performance of our approach on a more diverse set of tasks, we eval-
uate on a subset of the Arcade Learning Environment (ALE) tasks [23]. Our
choice of tasks is similar to those used by [30], but we exclude tasks containing
significant partial-observability. This is done to reduce the computational bur-
den as those tasks usually require significantly more training data. We built our
approach on top of the Implicit Quantile Network (IQN) implementation in the
Dopamine framework [6,8]. We chose IQN due to its sample efficiency and the
availability of an easily modifiable implementation. As the different ALE games
have different discrete action spaces, we use a separate final layer and a sepa-
rate replay buffer for each game in all approaches. We use the hyperparameters
recommended by [6], except for a smaller replay buffer size to reduce memory
requirements. As in the Bipedal Walker experiments we fix the number of poli-
cies in our approach without tuning to n = 4. We choose the size of the network
such that each approach has the same number of total tunable parameters. We
provide the details in Appendix B.4.
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Fig. 7. Ablations for different number of policies n. Shaded areas show the 95% confi-
dence interval of the mean reward from 10 trials each. Left: Corner-grid-world tasks.
Right: Pendulum tasks, learning curves smoothed.

The results are given in Fig. 6. The multi-head approach is unable to learn
any useful policy here due to negative transfer between tasks. This is in line
with experiments in other research [14] and is due to the large variety of the
tasks. On the other hand, both our EM-approach and PPT are able to achieve
significantly higher reward. However, our approach does not perform better than
PPT. Note that we can only expect a better performance than PPT if there are
clusters of tasks that benefit from positive transfer. The diverse set of Atari
games seems to violate this assumption. While we cannot benefit from positive
transfer, our approach avoids the negative interference impacting the multi-head
approach, even with just 4 clusters. Task assignments in our approach are given
in Appendix C.2.

5.4 Ablations

To gain additional insight into our approach, we perform two ablation studies
on the discrete corner-grid-world environment and the pendulum environment.

First, we investigate the performance of our approach for different numbers
of policies n. The results in Fig. 7 show that using too few policies can lead
to a worse performance, as the clusters cannot distinguish the contradicting
objectives. On the other hand, using more policies than necessary increases the
number of environment interactions required to achieve a good performance in
the pendulum task, but does not significantly affect the final performance.

As a second ablation, we are interested in the effectiveness of the clustering.
It might be possible that simply having fewer tasks per policy is giving our
approach an advantage compared to SP or multi-head TD3. We therefore provide
an ablation in which task-policy assignments are determined randomly at the
start nd kept constant during the training. Results from this experiment can be
seen in Fig. 8, with additional results in Appendix D. The results show that using
random clusters performs significantly worse than using the learned clusters. This
highlights the importance of clustering tasks meaningfully.
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Fig. 8. Comparison of our approach against randomly assigning tasks to policies at the
start of training. Shaded areas show the 95% confidence interval of the mean reward.
Left: Corner-grid-world tasks, 10 trials each. Right: Pendulum tasks, 10 trials each,
learning curves smoothed.

6 Conclusion

We present an approach for multi-task reinforcement learning (RL) inspired by
Expectation-Maximization (EM) that automatically clusters tasks into related
subsets. Our approach uses a set of policies and alternatingly evaluates the poli-
cies on all tasks, assigning each task to the best performing policy and then
trains the policies on their assigned tasks. While the repeated evaluation of poli-
cies adds a small computational overhead, it provides an effective way to mitigate
negative transfer. Our algorithm is straightforward and can easily be combined
with a variety of state-of-the-art RL algorithms. We evaluate the effectiveness
of our approach on a diverse set of environments. Specifically, we test its per-
formance on sets of simple discrete tasks, simple continuous control tasks, two
complex continuous control task sets and a set of Arcade Learning Environment
tasks. We show that our approach is able to identify clusters of related tasks and
use this structure to achieve a competitive or superior performance to evaluated
baselines, while additionally providing insights through the learned clusters. We
further provide an ablation over the number of policies in our approach and a
second ablation that highlights the need to cluster tasks meaningfully.

Our approach offers many possibilities for future extensions. An adaption to
on-policy learning and combination with orthogonal approaches could improve
the applicability further. Another interesting direction would be hierarchical
clustering. This could prove helpful for complicated tasks like the Atari games.
It would also be interesting to see how our approach can be applied to multi-task
learning in a supervised setting. Further, different assignment strategies with soft
assignments could be investigated. Overall, we see our work as a good stepping
stone for future work on structured multi-task learning.
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Abstract. Besides accuracy, the model size of convolutional neural net-
works (CNN) models is another important factor considering limited
hardware resources in practical applications. For example, employing
deep neural networks on mobile systems requires the design of accu-
rate yet fast CNN for low latency in classification and object detec-
tion. To fulfill the need, we aim at obtaining CNN models with both
high testing accuracy and small size to address resource constraints in
many embedded devices. In particular, this paper focuses on proposing
a generic reinforcement learning-based model compression approach in a
two-stage compression pipeline: pruning and quantization. The first stage
of compression, i.e., pruning, is achieved via exploiting deep reinforce-
ment learning (DRL) to co-learn the accuracy and the FLOPs updated
after layer-wise channel pruning and element-wise variational pruning via
information dropout. The second stage, i.e., quantization, is achieved via
a similar DRL approach but focuses on obtaining the optimal bits repre-
sentation for individual layers. We further conduct experimental results
on CIFAR-10 and ImageNet datasets. For the CIFAR-10 dataset, the
proposed method can reduce the size of VGGNet by 9× from 20.04 MB
to 2.2 MB with a slight accuracy increase. For the ImageNet dataset, the
proposed method can reduce the size of VGG-16 by 33× from 138 MB
to 4.14 MB with no accuracy loss.

Keywords: Compression · Computer vision · Deep reinforcement
learning

1 Introduction

CNN has shown advantages in producing highly accurate classification in vari-
ous computer vision tasks evidenced by the development of numerous techniques,
e.g., VGG [26], ResNet [9], DenseNet [15], and numerous automatic neural archi-
tecture search approaches [29,33]. Albeit promising, the complex structure and
large number of weights in these neural networks often lead to explosive com-
putation complexity. Real world tasks often aim at obtaining high accuracy
under limited computational resources. This motivates a series of works towards
c© Springer Nature Switzerland AG 2021
N. Oliver et al. (Eds.): ECML PKDD 2021, LNAI 12975, pp. 238–254, 2021.
https://doi.org/10.1007/978-3-030-86486-6_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86486-6_15&domain=pdf
http://orcid.org/0000-0001-8926-1941
http://orcid.org/0000-0002-9350-6646
http://orcid.org/0000-0003-3383-0185
https://doi.org/10.1007/978-3-030-86486-6_15


Deep Model Compression via Two-Stage Deep Reinforcement Learning 239

a light-weight architecture design and better speed-up ratio-accuracy trade-off,
including Xception [5], MobileNet/MobileNet-V2 [13], ShuffleNet [34], and Con-
denseNet [14], where group and deep convolutions are crucial.

In addition to the development of the aforementioned efficient CNN models
for fast inference, many results have been reported on the compression of large
scale models, e.g., reducing the size of large-scale CNN models with little or no
impact on their accuracies. Examples of the developed methods include low-rank
approximation [7,20], network quantization [23,30], knowledge distillation [12],
and weight pruning [8,11,16,21,36], which focus on identifying unimportant
channels that can be pruned. However, one key limitation in these methods is
the lack of automatic learning of the pruning policies or quantization strategies
for reduced models.

Instead of identifying insignificant channels and then conducting compres-
sion during training, another potential approach is to use reinforcement learning
(RL) based policies to determine the compression policy automatically. There
are limited results on RL based model compression [10,31]. In particular, [10,31]
proposed a deep deterministic policy gradient (DDPG) approach that uses rein-
forcement learning to efficiently sample the designed space for the improvement
of model compression quality. While DDPG can provide good performance in
some cases, it often suffers from performance volatility with respect to the hyper-
parameter setup and other tuning methods. Besides, these RL-based methods
don’t directly deal with leveraging the sparse features of CNN, i.e., pruning the
small weight connections.

Recently, RL based search strategies have been developed to formulate neural
architecture search. For example, [35,37] considered the generation of a neural
architecture via considering agent’s action space as the search space in order
to model neural architecture search as a RL problem. Different RL approaches
were developed to emphasize different representations of the agent’s policies
along with the optimization methods. In particular, [37] used a recurrent neu-
ral network based policy to sequentially sample a string that in turn encodes
the neural architecture. Both REINFORCE policy gradient algorithm [28] and
Proximal Policy Optimization (PPO) [25] were used to train the network. Dif-
ferently, [3] used Q-learning to train a policy that sequentially chooses the type
of each layer and its corresponding hyper-parameters. Note that [35,37] focuses
on generating CNN models with efficient architectures, while not on the com-
pression of large scale CNN models.

In this paper, we propose to develop a novel two-stage DRL framework for
deep model compression. In particular, the proposed framework integrates layer-
wise pruning rate learning based on testing accuracy and FLOPs, element-wise
variational pruning, and per-layer bits representation learning. In the pruning
stage, we first conduct channel pruning that will prune the input channel dimen-
sion (i.e., C dimension) with minimized accumulated error in feature maps with
the obtained per-layer pruning rate. Then fine-tuning with element-wise pruning
via information dropout is conducted to prune the weights in the kernel (i.e.,
from H and W dimensions).
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Briefly, this paper has three main contributions:

1. We propose a novel DRL algorithm that can obtain stabilized policy and
address Q-value overestimation in DDPG by introducing four improvements:
(1) computational constrained PPO: Instead of collecting T timesteps of
action advantages in each of M parallel actors and updating the gradient
in each iteration based on MT action advantages in one iteration of the typi-
cal PPO, we propose to collect Q-values in each tilmestep of M parallel actors
and update the gradient each timestep based on the M sampled Q-values;
(2) PPO-Clip Objective: We propose to modify the expected return of the
policy by clipping subject to policy change penalization. (3) smoothed policy
update: Our algorithm first enables multiple agents to collect one minibatch
of Q-values based on the prior policy and updates the policy while penalizing
policy change. The target networks are then updated by slowly tracking the
learned policy network and critic network; and (4) target policy regulariza-
tion: We propose to smooth Q-functions along regularized actions via adding
noise to the target action. The four improvements altogether can substan-
tially improve performance of DRL to yield more stabilized layer-wise prune
ratio and bit representations for deep compression, hence outperforming the
traditional DDPG. We experimentally show the volatility of DDPG-based
compression method in order to backup some common failure mode of policy
exploitation in DDPG-based method as shown in Fig. 2.

2. Pruning: We propose a new ppo with variational pruning compression struc-
ture with element-wise variational pruning that can prune three dimensions
of CNN. We further learn the Pareto front of a set of models with two-
dimensional outputs, namely, model size and accuracy, such that at least one
output is better than, or at least as good as, all other models by constrain-
ing the actions. More compressed models can be obtained with little or no
accuracy loss.

3. Quantization: We propose a new quantization method that uses the same
DRL-supported compression structure, where the optimal bit allocation strat-
egy (layer-wise bits representation) is obtained in each iteration via learning
the updated accuracy. Fine-tuning is further executed after each rollout.

2 A Deep Reinforcement Learning Compression
Framework

In this section, we focus on presenting the proposed new generic reinforcement
learning based model compression approach in a two-stage compression pipeline:
pruning and quantization. Figure 1 shows the overall structure. The two-stage
compression pipeline includes pruning and quantization. Adopting the pipeline
can achieve a typical model compression rate between 4× and 33×. Investigating
the Pareto front of candidate compression models shows little or no accuracy loss.
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Fig. 1. The proposed deep reinforcement learning compression framework.

Fig. 2. Comparison of RL-based pruning methods, e.g., ppo (modified) and ddpg,
for MobileNet-v1 and MobileNet-v2 on ILSVRC-2012 for 6 runs.

2.1 State

In both pruning and quantization, in order to discriminate each layer in the
neural network, we use a 8-dimension vector space to model a continuous state
space:

st = [NLr, N,C,H,W,Stride, At
H ,FLOPs], (1)

where NLr is the index of the layer, N and C are the dimension of, respectively,
output channels and input channels, H is the kernel height, W is the kernel
width, Stride is the number of pixels shifts over the input matrix, At

H is the
maximum pruning rate in pruning (respectively, the maximum and minimum
bits representation in quantization) with respect to layer t, and FLOPs is the
number of floating point operations in each layer.

2.2 Action

In pruning, determining the compression policy is challenging because the prun-
ing rate of each layer in CNN is related in an unknown way to the accuracy of
the post-compression model. Since our goal is to simultaneously prune the C, H,
and W dimensions. As the dimension of channels increases or the network goes
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deeper, the computation complexity increases exponentially. Instead of search-
ing over a discrete space, a continuous reinforcement learning control strategy
is needed to get a more stabilized scalar continuous action space, which can be
represented as at = {prt|prt ∈ [prh, prl]}, where prl and prh are the lowest and
highest and pruning rates, respectively. The compression rate in each layer is
taken as a replacement of high-dimensional discrete masks at each weight of the
kernels. Similarly, in quantization, the action is also modeled in a scalar contin-
uous action space, which can be represented as at = {bt|bt ∈ N

+}, where bt is
the number of bits representation in layer t.

2.3 Reward

To evaluate the performance of the proposed two-stage compression pipeline, we
propose to construct two reward structures, labeled r1 and r2. r1 is a synthetic
reward system as the normalization of current accuracy and FLOPs. r2 is an
accuracy-concentrated reward system. In pruning, the reward for each layer can
be chosen from rt ∈ {r1, r2}. In quantization, we use r2 as our selected reward
structure. In particular, r1 = 1 − FLOPst−FLOPslow

FLOPshigh−FLOPslow
+ pac and r2 = pac,

where pac is the current accuracy, FLOPshigh and FLOPslow are the highest
and lowest FLOPs in observation.

2.4 The Proposed DRL Compression Structure

In the proposed model compression method, we learn the Pareto front of a set
of models with two-dimensional outputs (model size and accuracy) such that at
least one output is better than (or at least as good as) all other outputs. We
adopt a popular asynchronous actor critic [22] RL framework to compress a pre-
trained network in each layer sequentially. At time step t, we denote the observed
state by st, which corresponds to the per-layer features. The action set is denoted
by A of size 1. An action, at ∈ A, is drawn from a policy function distribution:
at ∼ μ(st|θμ) + Nt ∈ R

1, referred to as an actor, where θμ is the current policy
network parameter and the noise Nt ∈ N (0, ε). The actor receives the state st,
and outputs an action at. After this layer is compressed with pruning rate or
bits representation at, the environment then returns a reward rt according to
the reward function structure r1 or r2. The updated state st+1 at next time step
t + 1 is observed by a known state transition function st+1 = f(st; at), governed
by the next layer. In this way, we can observe a random minibatch of transitions
consisting of a sequence of tuples B = {(st; at; rt; st+1)}. In typical PPO, the

surrogate objective is represented by Êt[
πθμ

(a|st)

πθμ−
(a|st)

Ât], where the expectation

Êt[·] is the empirical average over a finite batch of samples and θμ−
is the prior

policy network parameter. If we compute the action advantage Ât in each layer,
T -step time difference rewards are needed, which is computationally intensive.
In resource constrained PPO, we propose to replace the action advantages by
Q-functions given by Q(st, at) = E[

∑t+T
i=t γi−tri|st, at], referred to as critic.
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The policy network parameterized by θμ and the value function parameter-
ized by θQ are then jointly modeled by two neural networks. Let a = μ(si|θμ),
we can learn θQ via Q-function regression, namely, Eq. (2), and learn θμ over the
tuples B with PPO-Clip objective stochastic policy gradient, namely, Eq. (3) as

θQ = arg min
θ

1
|B|

∑

(si,ai,ri,si+1)∈B

(yi − Q(si, ai|θ))2, (2)

θμ = arg max
θ

Ê
(si,ai,··· )∈B

min

{
πθ(a|si)

πθμ−
(a|si)

Q(si, a|θQ),

clip(
πθ(a|si)

πθμ−
(a|si)

, 1 − c, 1 + c) × Q(si, a|θQ)

}

, (3)

where c is the probability ratio of the clipping. A pseudocode of DRL compression
structure is shown in Algorithm 1.

Algorithm 1: The proposed DRL compression structure in pruning.
Data: Randomly initialize critic network Q(s, a|θQ) and actor μ(s|θµ) with

weights θQ and θµ. Initialize target network Q′ and μ′ with weights
θQ′ ← θQ, θµ′ ← θµ, the learning rate of the target network ρ, At

H , and
empty replay buffer D

Result: Weights θQ and θµ.
1 initialization;
2 while Episode < M do
3 Initialize a random process N for action exploration;
4 Receive initial observation state s1;
5 M ← M + 1;
6 for t = 1, · · · , T do
7 Select action at = clip(μ(st|θµ) + Nt, A

t
H) according to the current

policy and exploration noise;
8 Execute at;
9 Store (st, at, rt, st+1) in replay buffer D;

10 for t = 1, · · · do
11 Sample a random minibatch of B trajectories from D;

12 Set yt = rt + γQ(st+1, μ(st+1)|θQ′
);

13 Update the policy by maximizing the “surrogate” objective via
stochastic gradient ascent with Adam in Eq. 3;

14 Pruning the C dimension of t-th layer with pruning rate at;
15 Executing the element-wise variational pruning in Algorithm 2;
16 Update the critic by minimizing the combinatorial loss via

stochastic gradient descent in Eq. 2;

17 Update the target networks via θQ′ ← ρθQ′
+ (1 − ρ)θQ,

θµ′ ← ρθµ′
+ (1 − ρ)θµ;

18 end

19 end

20 end
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3 Pruning

In this section, we present two schemes to compress CNN with little or no loss in
accuracy by employing reinforcement learning to co-learn the layer-wise pruning
rate and the element-wise variational pruning via information dropout. Similar
to the aforementioned a3c framework, the layer-wise pruning rate is computed by
the actor. After obtaining pruning rate at, layer st is pruned by a typical channel
pruning method [11], whose detail will be given below, to select the most repre-
sentative channels and reduce the accumulated error of feature maps. In other
words, after we get the pruning rate, channel pruning can be used to determine
which specific channels are less important or we can simply prune based on
the weight magnitude. In each iteration, the CNN layer is further compressed
by variational pruning. In particular, we start by learning the connectivity via
normal network training. Then, we prune the small-weight connections: all con-
nections with weights that create a representation of the data that is minimal
sufficient for the task of reconstruction are remained. Finally, we retrain the
network to learn the final weights for the remaining sparse connections.

In pruning, β is a vector whose dimension matches the 4D tensor with shape
N ×C ×W ×H in each layer. We also define βi, the i-th entry of β, as a binary
mask for each weight in the kernel. Figure 3 shows the pruning flow in our two
schemes. In DRL compression framework, the scalar mask of the j-th weight wj

with mask βj is set to zero if the weights are pruned based on LASSO regression,
discussed in subsection. If pruned, these weights are moved to s̄j , defined as a
set of pruned weights. Otherwise, if the weights are pruned based on information
dropout, discussed in subsection, the scalar mask of the j-th weight wj with mask
βj will be moved to s̄j with probability paθ

(ξ(j)). The weights that play more
important role in reducing the classification error are less likely to be pruned.

Fig. 3. Comparison of the pruning on two aforementioned schemes, i.e., channel prun-
ing and variational pruning via information dropout.

3.1 Pruning from C Dimension: Channel Pruning

The C-dimension channel pruning can be formulated as:

arg min
β,W

1
2N

∥
∥
∥
∥
∥
Y −

C∑

i=1

βXiW
T
i

∥
∥
∥
∥
∥

2

F

+ λ ‖β‖1 (4)

subject to ‖β‖0 ≤ pr × C

‖Wi‖F = 1,∀i,
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where pr is the pruning rate, Xi and Y are the input volume and the output
volume in each layer, Wi is the weights, β is the coefficient vector of length C
for channel selection, and λ is a positive weight to be selected by users. Then we
assign βi ← βi ‖Wi‖F and Wi ← Wi

‖Wi‖F
.

3.2 Pruning from H and W Dimensions: Variational Pruning

In information dropout, we propose a solution to: (1) efficiently approximate
posterior inference of the latent variable z given an observed value x based
on parameter θ, where z is a representation of x and defined as some (possibly
nondeterministic) function of x that has some desirable properties in some coding
tasks y and (2) efficiently approximate marginal inference of the variable x to
allow for various inference tasks where a prior over x is required.

Without loss of generality, let us consider Bayesian analysis of some dataset
D =

{
(x(i),y(i))

}N

i=1
consisting of N i.i.d samples of some discrete variable x.

We assume that the data are generated by some random process, involving an
unobserved continuous random variable z. Bayesian inference in such a scenario
consists of (1) updating some initial belief over parameters z in the form of a
prior distribution pθ�(z), and (2) a belief update over these parameters in the
form of (an approximation to) the posterior distribution pθ(z|x) after observing
data x. In variational inference [17], inference is considered as an optimization
problem where we optimize the parameters θ of some parameterized model pθ(z)
such that pθ(z) is a close approximation of pθ(z|x) as measured by the KL
divergence DKL(pθ(z|x)|pθ(z)). The divergence between pθ(z|x) and the true
posterior is minimized by minimizing the negative variational lower bound L(θ)
of the marginal likelihood of the data, namely,

L(θ, θ�;x(i)) = −
∑

(x(i),y(i))∈D
Epθ(z|x(i))[log p(y(i)|z)]

+ αDKL(pθ(z|x(i))|p�
θ(z)). (5)

As shown in [18], the neural network weight parameters θ are less likely to
overfit the training data if adding input noise during training. We propose to
represent z by computing a deterministic map of activations f(x), and then
multiply the result in an element-wise manner by a random noise ξ, drawn from
a parametric distribution pa with the variance that depends on the input data
x, as

z = (x ◦ ξ)θ,
ξi,j ∼ paθ

(x)(ξi,j), (6)

where ◦ denotes the element product operation of two vectors. A choice for
the distribution paθ(x)(ξi,j) is the log-normal distribution log(paθ(x)(ξi,j)) =
N (0, a2

θ(x)) [2] that makes the normally fixed dropout rates pa adaptive to the
input data, namely,
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log(paθ(x)(ξi,j)) ∼ N (z; 0, a2
θ(x)I),

log(pθ�) ∼ N (z;μ, σ2I), (7)

where aθ(x) is an unspecified function of x. The resulting estimator becomes

L(θ;x(i)) ∼ 1
N

N∑

j=1

[− log p(y(i)|z(i,j))]

+ α[
1

2σ2
(a2

θ(x
(i)) + μ2) − log

a2
θ(x

(i))
σ

− 1
2
], (8)

where z(i,j) ∼ (x(i) ◦ ξ(i,j))θ and ξ(i,j) ∼ paθ
(ξ) = log N (0, a2

θ(x)). This loss
can be optimized using stochastic gradient descent. A pseudocode of this varia-
tional pruning is shown in Algorithm 2 and an illustrative experiment is given
in Subsect. 5.4.

Algorithm 2: Variational pruning.
Data: Pruned model parameters at this iteration θ, the number of

fine-tuning iterations Z, learning rate γ and decay of learning rate
τ .

Result: Further compressed and tuned model parameters θ.
1 for Z iterations do
2 Randomly choose a mini-batch of samples from the training set;

3 Compute gradient of L(θ;x(i)) by ∂L(θ;x(i))
∂θ , where L(θ;x(i)) is

computed by Eq. (8);

4 Update θ using θ ← θ − γ ∂L(θ;x(i))
∂θ ;

5 γ ← τγ

6 end

4 Quantization

In the proposed DRL-based quantization-aware training, the RL agent auto-
matically searches for the optimal bit allocation representation strategy for each
layer. The modeling of quantization state, action, and rewards are defined in
Sect. 2. The DRL structure is the same as the one for pruning in Subect. 2.4.
In the fine-tuning step of the quantized CNN, we apply Straight-Through Esti-
mator (STE) [4]. The idea of this estimator of the expected gradient through
stochastic neurons is simply to back-propagate through the hard threshold func-
tion, e.g., sigmoidal non-linearity function [32]. The gradient is 1 if the argument
is positive and 0 otherwise.

5 Experiments

5.1 Settings

In all experiments, the MNIST and CIFAR-10 dataset are both divided by 50000
samples for training, 5000 samples for validation, and 5000 samples for evalua-
tion. The ILSVRC-12 dataset is divided by 1281167 samples for training, 10000
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samples for validation, and 50000 samples for evaluation. We adopt a neural
network policy with one hidden layer of size 64 and one fully-connected layer
using sigmoid as the activation function. We use the proximal policy optimiza-
tion clipping algorithm with c = 0.2 as the optimizer. The critic also has one
hidden layer of size 64. The discounting factor is selected as γ = 0.99. The learn-
ing rate of the actor and the critic is set as 1 × 10−3. In CIFAR-10, the per
GPU batch size for training is 128 and the batch size for evaluation is 100. In
ILSVRC-12, the per GPU batch size for training is 64 and the batch size for
evaluation is 100. The fine tuning steps for each layer are selected as 2000 in
the quantization. The parameters are optimized using the SGD with momentum
algorithm [27]. For MNIST and CIFAR-10, the initial learning rate is set as 0.1
for LeNet, ResNet, and VGGNet. For ILSVRC-12, the initial learning rate is set
as 1 and divided by 10 at rollouts 30, 60, 80, and 90. The decay of learning rate
is set to 0.99. All experiments were performed using TensorFlow, allowing for
automatic differentiation through the gradient updates [1], on 8 NVIDIA Tesla
K80 GPUs.

5.2 MNIST and CIFAR-10

Table 1. Results on MNIST and CIFAR-10 dataset.

LeNet Error (%) Para Pruned para. (%) FLOPs (%)

LeNet-5 (DropPruning) 0.73 60K 87.0 –
LeNet-5 0.34 5.94K 90.1 16.4
CIFAR-10 Error (%) Para Pruned Para. (%) FLOPs (%)
VGGNet(Baseline) 6.54 20.04M 0 100
VGGNet 6.33 2.20M 89.0 48.7
VGGNet 6.20 2.29M 88.6 49.1
ResNet-152 (Baseline) 5.37 1.70M 0 100
ResNet-152 5.19 1.30M 23.5 71.2
ResNet-152 5.33 1.02M 40.0 55.1

The MNIST [6] and
CIFAR-10 dataset [19]
consists of images with
a 32 × 32 resolution.
Table 1 shows the per-
formance of the pro-
posed method. It can
be observed that the
proposed method can
not only reduce model
size but also improve
the accuracy (i.e., red-
uce error rate). In MNIST, comparing with the most recent DropPruning
method, our method for LeNet obtains 10× model compression with a slightly
accuracy increase (0.68%). In CIFAR-10, comparing with the baseline model,
our method for the VGGNet achieves 9× model compression with a slightly
accuracy increase (0.34%). In addition, we compare our algorithm with the com-
monly adopted weight magnitude channel selection strategy and channel pruning
strategy to demonstrate the importance of variational pruning. Please refer to
the Subsect. 5.3 for more details.
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5.3 ImageNet

Table 2. Results on ImageNet dataset for ResNet-18 and ResNet-50 with different
speed-ups.

Model Top-1/Top-5
error (%)

Pruned
para. (%)

FLOPs (%) Speed-up ×

Pruning Pruning +
Quantization

ResNet-18 (Baseline) 29.36/10.02 0 100 1

ResNet-18 30.29/10.43 30.2 71.4 11.4

ResNet-18 30.65/11.93 51.0 44.2 16.0

ResNet-18 33.40/13.37 76.7 29.5 28.2

ResNet-50 (Baseline) 24.87/6.95 0 100 1

ResNet-50 23.42/6.93 31.2 66.7 12.0

ResNet-50 24.21/7.65 52.1 47.6 16.0

ResNet-50 28.73/8.37 75.3 27.0 29.6

To evaluate the effect of different pruning rates At
H , we select 30%, 50%, and 70%

for ResNet-18 and ResNet-50 and then evaluate the model pruning on ImageNet
ILSVRC-2012 dataset [24]. Experimental results are shown in Table 2 while the
per-layer weight bits policy for the quantization is shown in Fig. 4. From Table 2,
it can be seen that the error increases as the pruning rate increases. However, our
pruned ResNet-50 with 30% pruning rate outperforms the pre-trained baseline
model in the top-1 accuracy and our pruned ResNet-50 with 30% and 50%
pruning rate outperforms the pre-trained baseline model in the top-1 accuracy.
In Fig. 4, the 8-bit uniform quantization strategy is shown in blue bar, and the
ppo with variational pruning policy is shown in red bar. The DRL-supported
policy generates a more compressed model with a faster inference speed. By
observing the DRL-supported policy, the 3× 3 layer is more important than the
1 × 1 layers because the 1 × 1 layers are represented by less bits naturally.

Fig. 4. ResNet-18 and ResNet-50 with different bit allocation strategies.
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Table 3. MobileNet-v1 and MobileNet-v2 on
ILSVRC-12.

Model FLOPs (%) Δacc (%)

MobileNet-v1 (Baseline) 100 0
MobileNet-v1 (ppo + Channel Pruning) 50 −0.2
MobileNet-v1 (ppo + Channel Pruning) 40 −1.1
MobileNet-v1 (ppo + Variational Pruning) 47 +0.1
MobileNet-v1 (ppo + Variational Pruning) 40 −0.8
MobileNet-v1 (ddpg) [10] 50 −0.4
MobileNet-v1 (ddpg) [10] 40 −1.7
0.75 MobileNet-v1 (Uniform) [13] 56 −2.5
0.75 MobileNet-v1 (Uniform) [13] 41 −3.7
Model/Pruning FLOPs (%) Δacc(%)
MobileNet-v2 (Baseline) 100 0
MobileNet-v2 (ppo + Variational Pruning) 21 −2.4
MobileNet-v2 (ppo + Variational Pruning) 59 −1.0
MobileNet-v2 (ppo + Variational Pruning) 70 −0.8
MobileNet-v2 (ddpg) [10] 30 −3.1
MobileNet-v2 (ddpg) [10] 60 −2.1
MobileNet-v2 (ddpg) [10] 70 −1.0
0.75 MobileNet-v2 (Uniform) [13] 70 −2.0
Model/Quantization Model size Δacc(%)
MobileNet-v2 (ppo + Variational Pruning) 0.95M −2.9
MobileNet-v2 (ppo + Variational Pruning) 0.89M −3.2
MobileNet-v2 (ppo + Variational Pruning) 0.81M −3.6
MobileNet-v2 (HAQ) [30] 0.95M −3.3
MobileNet-v2 (Deep Compression) [8] 0.96M −11.9

To show the importance
of our DRL-supported com-
pression structure with vari-
ational pruning, we com-
pare RL with channel prun-
ing and RL with variational
pruning. Table 3 shows that
ppo with channel pruning
can find the optimal layer-
wise pruning rates while ppo
with variational pruning can
further decrease the test-
ing error of the compressed
model. Another observation
is with the same compres-
sion scope, e.g., 50% FLOPs,
our model’s accuracy out-
performs ddpg based algo-
rithms. A comparison of the
reward r1 for AMC [10]
(DDPG-based pruning) and
our proposed method (PPO-
based pruning) is also shown
in Fig. 2 for At

H = 50% in 6
runs. A typical failure mode
of ddpg training is the Q-
value overestimation, which
leads to a lower reward in r1.
We also report the results for ILSVRC-12 on MobileNet-v2 on Table 3. Although
for 70% FLOPs, our model’s performance is competitive to the ddpg approach,
we achieve lower accuracy decrease on smaller models such as 30% and 60%
FLOPs.

We further examine the results when applying both pruning and quantiza-
tion on ILSVRC-12. We use the VGG-16 model with 138 million parameters
as the reference model. Table 4 shows that VGG-16 can be compressed to 3.0%
of its original size (i.e., 33× speed-up) when weights in the convolution layers
are represented with 8 bits, and fully-connected layers with 5 bits. Again, the
compressed model outperforms the baseline model in both the top-1 and top-5
errors.
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Table 4. Comparison with another non-RL two-stage compression method (VGG-16
on ILSVRC-12).

Model (MobileNet-v1) Layer Parameters Pruned
para. (%)

Weight bits Speed-up ×

Pruning +
Quantization

Pruning +
Quantization

ppo + Variational Pruning conv1 1/conv1 2 2K/37K 42/89 8/8 2.5/10.2

conv2 1/conv2 2 74K/148K 72/69 8/8 7.0/6.8

conv3 1/conv3 2/conv3 3 295K/590K/590K 50/76/58 8/8/8 4.6/10.3/5.9

conv4 1/conv4 2/conv4 3 1M/2M/2M 68/88/76 8/8/8 7.6/9.1/7.2

conv5 1/conv5 2/conv5 3 1M/2M/2M 70/76/69 8/8/8 7.1/8.5/7.1

fc 6/fc 7/fc 8 103M/17M/4M 96/96/77 5/5/5 62.5/66.7/14.1

Total 138M 93.1 5 33×
Deep compression [8] conv1 1/conv1 2 2K/37K 42/78 5/5 2.5/10.2

conv2 1/conv2 2 74K/148K 66/64 5/5 6.9/6.8

conv3 1/conv3 2/conv3 3 295K/590K/590K 47/76/58 5/5/5 4.5/10.2/5.9

conv4 1/conv4 2/conv4 3 1M/2M/2M 68/73/66 5/5/5 7.6/9.2/7.1

conv5 1/conv5 2/conv5 3 1M/2M/2M 65/71/64 5/5/5 7.0/8.6/6.8

fc 6/fc 7/fc 8 103M/17M/4M 96/96/77 5/5/5 62.5/66.7/14.0

Total 138M 92.5 5 31×

5.4 Variational Pruning via Information Dropout

The goal of this illustrative experiment is to validate the approach in subsec-
tion 3.2 and show that our regularized loss function L(θ;x(i)) shown in Equa-
tion (8) can automatically adapt to the data and can better exploit architec-
tures for further compression. The random noise ξ is drawn from a distribution
paθ(x)(ξ) with a unit mean u = 1 and a variance aθ(x) that depends on the input
data x. The variance aθ(x) is parameterized by θ. To determine the best alloca-
tion of parameter θ to minimize the KL-divergence term DKL(pθ(z|x)|pθ�(z)),
we still need to have a prior distribution pθ�(z). The prior distribution is identi-
cal to the expected distribution of the activation function f(x), which represents
how much data x lets flow to the next layer. For a network that is implemented
using the softplus activation function, a log-normal distribution is a good fit for
the prior distribution (Achille and Soatto 2018). After we fix this prior distribu-
tion as log(pθ�(z)) ∼ N (0, 1), the loss can be computed using stochastic gradient
descent to back-propagate the gradient through the sampling of z to obtain the
optimized parameter θ. Even if log(pθ�(z)) ∼ N (0, 1), the actual value of u is
not necessarily equal to 1 during the runtime. Hence, the mean u and the vari-
ance aθ(x) of the random noise ξ can be computed via solving the following two
equations

E(ξ) = eu+
a2

θ(x)
2 , (9)

D(ξ) = (ea2
θ(x) − 1)ea2

θ(x)+2u, (10)

where E(ξ) is the mean of sampled ξ and D(ξ) is the variance of sampled ξ. We
add a constraint, aθ(x) ≤ 0.8, to avoid a large noise variance. Figure 5d shown the
probability density function (PDF) of the noise parameter by experiment, which
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matches a log-normal distribution. The result shows that we optimize the param-
eters θ of the parameterized model pθ�(z) such that pθ�(z) is a close approxima-
tion of pθ(z|x) as measured by the KL divergence DKL(pθ(z|x)|pθ�(z)). After the
noise distribution is known, the distribution of pθ(z|x) in Equation (5) can be
obtained. In order to show how much information from images that information
dropout is transmitting to the second layer, Fig. 5b shows the latent variable z
while Fig. 5c shows the weights. As shown in Fig. 5b, the network lets through
the input data (Fig. 5a).

Fig. 5. An illustrative information dropout experiment. (a) shows the input data x.
(b) shows the plot of the latent variable z at a choice of parameter θ at each spatial
location in the third information dropout layer of LeNet trained on MNIST with α = 1.
The resulting representation z is robust to nuisances, and provides good performance.
(c) shows the weights. (d) shows the PDF of the noise parameter ξ.

5.5 Single Layer Acceleration Performance

In order to further show the importance of variational pruning after obtaining
the optimized pruning rate based on the ppo algorithm, we test a simple 4-
layer convolutional neural network, including 2 convolution (conv) layers and
2 fully connected (fc) layers, for image classification on the CIFAR-10 dataset.
We evaluate single layer acceleration performance using the proposed ppo with
variational pruning algorithm in Sect. 3 and compare it with the channel pruning
strategy. A third typical weight magnitude pruning method is also tested for
further comparison, i.e., pruning channels based on the weights’ magnitude (ppo
+ Weight Magnitude Pruning).

Figure 6 shows the performance comparison measured by the error increase
after a certain layer is pruned. By analyzing this figure, we can observe that
our method (ppo + Variational Pruning) earns the best performance in all
layers. Since, ppo + Channel Pruning applies a LASSO regression based channel
selection to minimize the reconstruction error, it achieves a better performance
than the weight magnitude method. Furthermore, the proposed policy considers
the fully-connected layers more important than the convolutional layers because
the error increase for fully-connected layers is typically larger under the same
compression rate.
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Fig. 6. Single layer error increase under different compression rates. To verify the
importance of variational pruning, we considered two baselines: (1) ppo + Channel
Pruning, and (2) ppo + Weight Magnitude Pruning.

5.6 Time Complexity

A single convolutional layer with N kernels requires evaluating a total number of
NC of the 2D kernels W c

n ∗ zc : F =
{
W c

n ∈ R
d×d|n = 1, · · · , N ; c = 1, · · · , C

}
.

Note that there are N kernels F = {W c
n|n = 1, · · · , N} operations on each input

channel zc with cost O(NCd2HW ). The variational pruning via information
dropout involves computing a total number of NC ′ of the 2D kernels W c

n∗zc with
cost O(NC ′d2HW ), indicating that efficiency inference requires that C ′ 
 C. In
subsection 3.2, we consider ameliorating the inference efficiency by information
dropout. In the kernels sc = {sc

m|m = 1, · · · ,M}, the cost can be reduced to
O(NC ′d2HW ).

6 Conclusion

Using hand-crafted features to get compressed models requires domain experts
to explore a large design space and the trade-off among model size, speed-up,
and accuracy, which is often suboptimal and time-consuming. This paper pro-
posed a deep model compression method that uses reinforcement learning to
automatically search the action space, improve the model compression quality,
and use the FLOPs obtained from fine-tuning with information dropout pruning
for the further adjustment of the policy to balance the trade-off among model
size, speed-up, and accuracy. Experimental results were conducted on CIFAR-
10 and ImageNet to achieve 4× - 33× model compression with limited or no
accuracy loss, proving the effectiveness of the proposed method.
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Abstract. A World Model is a generative model used to simulate an
environment. World Models have proven capable of learning spatial and
temporal representations of Reinforcement Learning environments. In
some cases, a World Model offers an agent the opportunity to learn
entirely inside of its own dream environment. In this work we explore
improving the generalization capabilities from dream environments to
real environments (Dream2Real). We present a general approach to
improve a controller’s ability to transfer from a neural network dream
environment to reality at little additional cost. These improvements are
gained by drawing on inspiration from Domain Randomization, where
the basic idea is to randomize as much of a simulator as possible without
fundamentally changing the task at hand. Generally, Domain Random-
ization assumes access to a pre-built simulator with configurable param-
eters but oftentimes this is not available. By training the World Model
using dropout, the dream environment is capable of creating a nearly
infinite number of different dream environments. Previous use cases of
dropout either do not use dropout at inference time or averages the pre-
dictions generated by multiple sampled masks (Monte-Carlo Dropout).
Dropout’s Dream Land leverages each unique mask to create a diverse set
of dream environments. Our experimental results show that Dropout’s
Dream Land is an effective technique to bridge the reality gap between
dream environments and reality. Furthermore, we additionally perform
an extensive set of ablation studies (The code is available at https://
github.com/zacwellmer/DropoutsDreamLand).

1 Introduction

Reinforcement learning [30] (RL) has experienced a flurry of success in recent
years, from learning to play Atari [20] to achieving grandmaster-level perfor-
mance in StarCraft II [32]. However, in all these examples, the target environ-
ment is a simulator that can be directly trained in. Reinforcement learning is
often not a practical solution without a simulator of the environment.

Sometimes the target environment is expensive, dangerous, or even impos-
sible to interact with. In these cases, the agent is trained in a simulated source
environment. Approaches that train an agent in a simulated environment with
c© Springer Nature Switzerland AG 2021
N. Oliver et al. (Eds.): ECML PKDD 2021, LNAI 12975, pp. 255–270, 2021.
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the hopes of generalization to the target environment experience a common
problem referred to as the reality gap [13]. One approach to bridge the real-
ity gap is Domain Randomization [31]. The basic idea is that an agent which
can perform well in an ensemble of simulations will also generalize to the real
environment [2,21,24,31]. The ensemble of simulations is generally created by
randomizing as much of the simulator as possible without fundamentally chang-
ing the task at hand. Unfortunately, this approach is only applicable when a
simulator is provided and the simulator is configurable.

A recently growing field, World Models [9], focuses on the side of this problem
when the simulation does not exist. World Models offer a general framework for
optimizing controllers directly in learned simulated environments. The learned
dynamics model can be viewed as the agent’s dream environment. This is an
interesting area because access to a learned dynamics model removes the need
for an agent to train in the target environment. Some related approaches [10,
11,15,19,25,29] focus on an adjacent problem which allows the controller to
continually interact with the target environment.

Despite the recent improvements [10,11,15,16,25] of World Models, little has
been done to address the issue that World Models are susceptible to the reality
gap. The learned dream environment can be viewed as the source domain and
the true environment as the target domain. Whenever there are discrepancies
between the source and target domains the reality gap can cause problems. Even
though World Models suffer from the reality gap, none of the Domain Random-
ization approaches are directly applicable because the dream environment does
not have easily configurable parameters.

In this work we present Dropout’s Dream Land (DDL), a simple approach to
bridge the reality gap from learned dream environments to reality (Dream2Real).
Dropout’s Dream Land was inspired by the first principles of domain random-
ization, namely, train a controller on a large set of different simulators which
all adhere to the fundamental task of the target environment. We are able to
generate a nearly infinite number of different simulators via the insight that
dropout [27] can be understood as learning an ensemble of neural networks [3].

Our empirical results demonstrate that Dropout’s Dream Land is an effective
technique to cross the Dream2Real gap and offers improvements over baseline
approaches [9,16]. Furthermore, we perform an extensive set of ablation studies
which indicate the source of generalization improvements, requirements for the
method to work, and when the method is most useful.

2 Related Works

2.1 Dropout

Dropout [27] was introduced as a regularization technique for feedforward and
convolutional neural networks. In its most general form, each unit is dropped
with a probability p during the training process. During training weights are
scaled by 1

1−p . Weight scaling ensures that for any hidden unit the expected
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output is the same as the actual output at test time [27]. Recurrent neural
networks (RNNs) initially had issues benefiting from dropout. Zaremba et al. [35]
suggests not to apply dropout to the hidden state units of the RNN cell. Gal et
al. [7] shortly after show that the mask can also be applied to the hidden state
units, but the mask must be fixed across the sequence during training.

In this work, we follow the dropout approach from [7] when training the
RNN. More formally, for each sequence, the Boolean masks mxi, mxf , mxw,
mxo, mhi, mhf , mhw, and mho are sampled, then used in the following LSTM
update:

it = Wxi(xt � mxi) + Whi(ht−1 � mhi) + bi, (1)
ft = Wxf (xt � mxf ) + Whf (ht−1 � mhf ) + bf , (2)
wt = Wxw(xt � mxw) + Whw(ht−1 � mhw) + bw, (3)
ot = Wxo(xt � mxo) + Who(ht−1 � mho) + bo, (4)
ct = σ(it) � tanh(wt) + σ(ft) � ct−1, (5)
ht = σ(ot) � tanh(ct), (6)

where xt, ht, and ct are the input, hidden state, and cell state, respectively, Wxi,
Wxf , Wxw, Wxo ∈ R

d×r Whi, Whf , Whw, Who ∈ R
d×d are the LSTM weight

matrices, and bi, bf , bw, bo ∈ R
d are the LSTM biases. The masks are fixed

for the entire sequence, but may differ between sequences in the mini-batch.
Monte-Carlo (MC) Dropout [6] runs multiple forward passes with indepen-

dently sampled masks. In related works [14], Monte-Carlo (MC) Dropout [6] has
been used to approximate the mean and variance of output predictions from an
ensemble. We emphasize that Dropout’s Dream Land does not use MC Dropout.
Details are in Sect. 3.2.

2.2 Domain Randomization

The goal of Domain Randomization [24,31] is to create many different versions
of the dynamics model with the hope that a policy generalizing to all versions
of the dynamics model will do well on the true environment. Figure 1 illustrates
many simulated environments (êj) overlapping with the actual environment (e∗).
Simulated environments are often far cheaper to operate in than the actual envi-
ronment. Hence, it is desirable to be able to perform the majority of interactions
in the simulated environments.

Randomization has been applied on observations (e.g., lighting, textures)
to perform robotic grasping [31] and collision avoidance of drones [24]. Ran-
domization has also proven useful when applied to the underlying dynamics of
simulators [23]. Often, both the observations and simulation dynamics are ran-
domized [1].

Domain randomization generally uses some pre-existing simulator which then
injects randomness into specific aspects of the simulator (e.g., color textures,
friction coefficients). Each of the simulated environments in Fig. 1 can be thought
of as a noisy sample of the pre-existing simulator. To the best of our knowledge,
Domain Randomization has yet to be applied to entirely learned simulators.
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Algorithm 1 . World Models: Training in
dreams.
1: Initialize parameters of V , M , and C
2: Collect N trajectories o, d, and a from e∗

3: Optimize V on observations o
4: Generate embeddings z for o with V
5: Optimize M on z and d
6: Generate dream environment ê from M
7: for iteration=1, 2, . . . do
8: Optimize C via interactions with ê

Fig. 1. e∗ is the actual environ-
ment, and êj ’s are randomized vari-
ants of the simulated environment.

2.3 World Models

The world model [9] has three modules trained separately: (i) vision module (V );
(ii) dynamics module (M); and (iii) controller (C). A high-level view is shown
in Algorithm 1. The vision module (V ) is a variational autoencoder (VAE) [17],
which maps an image observation (o) to a lower-dimensional representation z ∈
R

n.
The dynamics model (M) is a mixture density network recurrent neural net-

work (MDN-RNN) [8,9]. The MDN-RNN models the dynamics of the environ-
ment, so modifying the parameters changes the dynamics of the learned simu-
lated environment. It is implemented as an LSTM followed by a fully-connected
layer outputting parameters for a Gaussian mixture model with k components.
Each feature has k different π parameters for the logits of multinomial distribu-
tion, and (μ, σ) parameters for the k components in the Gaussian mixture. At
each timestep, the MDN-RNN takes in the state z and action a as inputs and
predicts π,μ, σ. To draw a sample from the MDN-RNN, we first sample the
multinomial distribution parameterized by π, which indexes which of the k nor-
mal distributions in the Gaussian mixture to sample from. This is then repeated
for each of the n features. Depending on the experiments, Ha and Schmidhu-
ber [9] also include an auxiliary head to the LSTM which predicts whether the
episode terminates (d).

The controller (C) is responsible for deciding what actions to take. It takes
features produced by the encoder V and dynamics model M as input (not the
raw observations). The simple controller is a single-layer model which uses an
evolutionary algorithm (CMA-ES [12]) to find its parameters. Depending on the
problem setting, the controller (C) can either be optimized directly on the target
environment (e∗) or on the dream environment (ê). This paper is focused on the
case of optimizing exclusively in the dream environment.
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3 Dropout’s Dream Land

In this work we introduce Dropout’s Dream Land (DDL). Dropout’s Dream Land
is the first work to offer a strategy to bridge the reality gap between learned
neural network dynamics models and reality. Traditional Domain Randomiza-
tion generates many different dynamics models by randomizing configurable
parameters of a given simulation. This approach does not apply to neural net-
work dynamics models because they generally do not have configurable param-
eters (such as textures and friction coefficients). In Dropout’s Dream Land, the
controller can interact with billions1 of dream environments, whereas previous
works [9,16] only use one dream environment. A naive way to go about this
would be to train a population of neural network world models. However, this
would be computationally expensive.

To keep the computational cost low, we go about this by applying dropout
to the dynamics model in order to form different dynamics models. Crucially,
dropout is applied at both training and inference of the dynamics model M .
Each unique dropout mask applied to M can be viewed as a different envi-
ronment. Similar to the spirit of Domain Randomization, an agent is expected
to perform well in the real environment if it can perform well in a variety of
simulated environments.

3.1 Learning the Dream Environment

The Dropout’s Dream Land environments are built around the dynamics model
M . The controller interactions during training are described by Fig. 2, in which
r̂, d̂, and ẑ are generated entirely by M . In this work, M is an LSTM where
x = [z�,a�]� from Eqs. (1)–(4). The LSTM is followed by multiple heads for
predictions of the latent state (ẑ), reward (r̂) and termination (d̂). The reward
and termination heads are simple fully-connected layers. Latent state prediction
is done with a MDN-RNN [8,9], but this could be replaced by any other neural
network that supports dropout (e.g., GameGAN [16]).

Loss Function. The dynamics model M jointly optimizes all three heads. The
loss of a single transition is defined as:

LM = Lz + αrLr + αdLd. (7)

Here, Lz = −∑n
i=1 log(

∑k
j=1 π̂i,jN (zi|μ̂i,j , σ̂

2
i,j)) is a mixture density loss for

the latent state predictions, where n is the size of the latent feature vector
z, π̂i,j is the jth component’s probability for the ith feature, μ̂i,j , σ̂i,j are the
corresponding mean and standard deviation. Lr = (r − r̂)2 is the square loss
on rewards, where r and r̂ are the true and estimated rewards, respectively.
Ld = −d log(d̂) − (1 − d) log(1 − d̂) is the cross-entropy loss for termination

1 In practice we are bounded by the total number of steps instead of every possible
environment.
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Fig. 2. Interactions with the dream envi-
ronment. A dropout mask is sampled at
every step yielding a new M j .

Fig. 3. Interactions with the real
environment. The controller being
optimized only interacts with the
real environment during the final
testing phase.

prediction, where d and d̂ are the true and estimated probabilities of the episode
ending, respectively. Constants αd and αr in (7) are for trading off importance
of the termination and reward objectives. The loss (LM ) is aggregated over each
sequence and averaged across the mini-batch.

Training Dynamics Model M with Dropout. At training time of M (Algo-
rithm 1, Line 5), we apply dropout [7] to the LSTM to simulate different random
environments. For each input and hidden unit, we first sample a Boolean indica-
tor with probability ptrain. If the indicator is 1, the corresponding input/hidden
unit is masked. Masks mxi, mxf , mxw, mxo, mhi, mhf , mhw, and mho are sam-
pled independently (Esq. (1)–(4)). When training the RNN, each mini-batch con-
tains multiple sequences. Each sequence uses an independently sampled dropout
mask. We fix the dropout mask for the entire sequence as this was previously
found to be critically important [7].

Training the RNN with many different dropout masks is critical in order to
generate multiple different dynamics models. At the core of Domain Random-
ization is the requirement that the randomizations do not fundamentally change
the task. This constraint is violated if we do not train the RNN with dropout but
apply dropout at inference (explored further empirically in Sect. 4.3). After opti-
mizing the dynamics model M , we can use it to construct dream environments
(Sect. 3.2) for controller training (Sect. 3.3).

In this work, we never sample masks to apply to the action (a). We do not
zero out the action because in some environments this could imply the agent
taking an action (e.g., moving to the left). This design choice could be changed
depending on the environment, for example, when a zero’d action corresponds
to a no-op or a sticky action.

3.2 Interacting with Dropout’s Dream Land

Interactions with the dream environment (Algorithm 1, Line 8) can be charac-
terized as training time for the controller (C) and inference time of the dynamics
model (M). An episode begins by generating the initial latent state vector ẑ by



Dropout’s Dream Land: Generalization from Learned Simulators to Reality 261

either sampling from a standard normal distribution or sampling from the start-
ing points of the observed trajectories used to train M [9]. The hidden cell (c)
and state (h) vectors are initialized with zeros.

The controller (C) decides the action to take based on ẑ and h. In Fig. 2,
the controller also observes r̂ and d̂, but these are exclusively used for the opti-
mization process of the controller. The controller then performs an action a on
a dream environment.

A new dropout mask is sampled (with probability pinfer) and applied to M .
We refer to the masked dynamics model as M j and the corresponding Dropout’s
Dream Land environment as êj . The current latent state ẑ and action a are con-
catenated, and passed to M j to perform a forward pass. The episode terminates
based on a sample from a Bernoulli distribution parameterized by d̂. The dream
environment then outputs the latent state, LSTM’s hidden state, reward, and
whether the episode terminates.

It is crucial to apply dropout at inference time (of the dynamics model M)
in order to create different versions of the dream environment for the controller
C. Our experiments (Sects. 4.2 and 4.3) consider an extensive set of ablation
studies as to how and when dropout should be applied.

Dropout’s Dream Land Is Not Monte-Carlo Dropout. The only work we
are aware of that applies dropout at inference time is Monte-Carlo Dropout [7].
In Sect. 4.1 we include a Monte-Carlo Dropout World Model baseline because
DDL can easily be misinterpreted as an application of Monte-Carlo Dropout.
This baseline passes the expected hidden (h̃t) and cell (c̃t) state to the next
time-step, in which the expectation is over dropout masks from Eqs. (1)–(4).
In practice we follow a similar approach to previous work [7] and approximate
the expectation by performing multiple forward passes (each forward pass sam-
ples a new dropout mask), and averages the results. At each step, the expected
Mixture Model parameters (π̃, μ̃, σ̃), reward (r̃), and termination (d̃) are used.
Maximizing expected returns from the Monte-Carlo Dropout World Model is
equivalent to maximizing expected returns on a single dream environment, the
average dynamics model. On the other hand, the purpose of DDL’s approach
to dropout is to generate many different versions of the dynamics model. More
explicitly, the controller is trained to maximize expected returns across many
different dynamics models in the ensemble, as opposed to maximizing expected
returns on the ensemble average.

Dropout has also traditionally been used as a model regularizer. Dropout as
a model regularizer is only applied at training time but not at inference time.
In this work, this approach would regularize the dynamics model M . The usual
trade-off is lower test loss at the cost of higher training loss [7,27]. However,
DDL’s ultimate goal is not to lower test loss of the World Model (M). The
ultimate goal is providing dream environments to a controller so that the optimal
policy in Dropout’s Dream Land also maximizes expected returns in the target
environment (e∗).
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3.3 Training the Controller

Training with CMA-ES. We follow the same controller optimization pro-
cedure as was done in World Models [9] and GameGAN [16] on their Doom-
TakeCover experiments. We train the controller with CMA-ES [12]. At every
generation CMA-ES [12] spawns a population (of size Npop) of agents. Each
agent in the population reports their mean returns on a set of Ntrials episodes
generated in the dream environments. As controllers in the population do not
share a dream environment, the probability of controllers interacting with the
same sequence of dropout masks is vanishingly small. Let Nmax ep len be the
maximum number of steps in an episode. In a single CMA-ES iteration, the
population as a whole can interact with Npop × Ntrials × Nmax ep len different
environments. In our experiments, Npop = 64, Ntrials = 16, and Nmax ep len is
1000 for CarRacing and 2100 for DoomTakeCover. This potentially results in
> 1, 000, 000 different environments at each generation.

Dream Leader Board. After every fixed number of generations (25 in our
experiments), the best controller in the population (which received the high-
est average returns across its respective Ntrials episodes) is selected for evalua-
tion [9,16]. This controller is evaluated for another Npop ×Ntrials episodes in the
Dropout’s Dream Land environments. The controller’s mean across Npop×Ntrials

trials is logged to the Dream Leader Board. After 2000 generations, the controller
at the top of the Dream Leader Board is evaluated in the real environment.

Interacting with the Real Environment. In Fig. 3 we illustrate the con-
troller’s interaction with the real target environment (e∗). Interactions with e∗ do
not apply dropout to the input or hidden units of M . The controller only inter-
acts with the target environment during testing. These interactions are never
used to modify parameters of the controller. At test time r, d, and o are gen-
erated by e∗, and z is the embedding of o from the VAE (V ). The only use of
M when interacting with the target environment is producing h as a feature for
the controller.

4 Experiments

Broadly speaking, our experiments are focused on either evaluating the dynamics
model (M) or the controller (C). Architecture details of V , M , and C are in
the Appendix. Experiments are performed on the DoomTakeCover-v0 [22] and
CarRacing-v0 [18] environments from OpenAI Gym [4]. These have also been
used in related works [9,16]. Even though both baseline target environments are
simulators we still consider this “reality” because we do not leverage knowledge
about the simulator mechanics to learn the source environment (M).

Quality of the dynamics model is evaluated against a training and testing
set of trajectories (described below). Quality of the controller is measured by
returns in the target environments. For all experiments the controller is trained
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exclusively in the dream environment (Sect. 3.2) for 2,000 generations. The con-
troller only interacts with the target environments for testing (Sect. 3.3). The
target environment is never used to update parameters of the controller. Means
and standard deviations of returns achieved by the best controller (Sect. 3.3) in
the target environment are reported based on 100 trials for CarRacing and 1000
trials for DoomTakeCover.2

DoomTakeCover Environment. DoomTakeCover is a control task in which
the goal is to dodge fireballs for as long as possible. The controller receives a
reward of +1 for every step it is alive. The maximum number of frames is limited
to 2100.

For all tasks on this environment, we collect a training set of 10, 000 trajec-
tories and a test set of 100 trajectories. A trajectory is a sequence of state (z),
action (a), reward (r), and termination (d) tuples. Both datasets are generated
according to a random policy. Following the same convention as World Mod-
els [9], on the DoomTakeCover environment we concatenate z, h, and c as input
to the controller. In (7), we set αd = 1 and αr = 0 because the Doom reward
function is determined entirely based on whether the controller lives or dies.

CarRacing Environment. CarRacing is a continuous control task to learn
from pixels. The race track is split up into “tiles”. The goal is to make it all the
way around the track (i.e., crossing every tile). We terminate an episode when
all tiles are crossed or when the number of steps exceeds 1,000. Let Ntiles be the
total number of tiles. The simulator [18] defines the reward rt at each timestep
as 100

Ntiles
− 0.1 if a new tile is crossed, and −0.1 otherwise. The number of tiles

is not explicitly set by the simulator. We generated 10,000 tracks and observed
that the number of tiles in the track appears to follow a normal distribution with
mean 289. To simplify the reward function, we fix Ntiles to 289 in the randomly
generated tracks, and call the modified environment CarRacingFixedN.

For all tasks on this environment, the training set contains 5, 000 trajectories
and the test set contains 100 trajectories. Both datasets are collected by following
an expert policy with probability 0.9, and a random policy with probability
0.1. The expert policy was trained directly on the CarRacing environment and
received an average return of 885 ± 63 across 100 trials. In comparison, the
performance of the random policy is −53 ± 41. This is similar to the setup in
GameGAN [16] on the Pacman environment which also used an expert policy.
For this environment, we set αd = αr = 1 in (7).

4.1 Comparison with Baselines

Dropout’s Dream Land (DDL) is compared against World Models (WM), Monte-
Carlo Dropout World Models (MCD-WM), and a uniform random policy on the
CarRacing and DoomTakeCover environments. The Monte-Carlo Dropout World
Models baseline uses ptrain = 0.05, pinfer = 0.1, and 10 samples. On the Doom

2 100 trials are used for the baselines GameGAN and Action-LSTM.
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Table 1. Returns from baseline meth-
ods and DDL (ptrain = 0.05 and
pinfer = 0.1) on the DoomTakeCover
environment.

DoomTakeCover

random policy 210± 108

GameGAN 765± 482

Action-LSTM 280± 104

WM 849± 499

MCD-WM 798± 464

DDL 933± 552

Table 2. Returns from baseline methods
and DDL (ptrain = 0.05 and pinfer = 0.1)
on the CarRacingFixedN and the original
CarRacing environments.

CarRacingFixedN CarRacing

random policy −50± 38 −53± 41

WM 399± 135 388± 157

MCD-WM −56± 31 −53± 32

DDL 625± 289 610± 267

environment, we also compare with GameGAN [16] and Action-LSTM [5]3. All
controllers are trained entirely in dream environments.

Results on the target environments are in Tables 1 and 2. The CarRacing
results appear different from those found in World Models [9] because we are not
performing the same experiment. In this paper, we train the controller entirely
in the dream environment and only interact with the target environment during
testing. In World Models [9], the controller was trained directly in the CarRacing
environment.

In Tables 1 and 2, we observe that DDL offers performance improvements
over all the baseline approaches in the target environments. We suspect this is
because the WM dream environments were easier for the controller to exploit
errors between the simulator and reality. Forcing the controller to succeed in
many different dropout environments makes it difficult to exploit discrepancies
between the dream environment and reality. This leads us to the conclusion that
forcing the controller to succeed in many different dropout environments is an
effective technique to cross the Dream2Real gap.

The DoomTakeCover returns in the target environment as reported by the
temperature-regulated variant4 in [9] are higher than the returns we obtain from
DDL, which does not use temperature. However, we emphasize that adjusting
temperature is only useful for a limited set of dynamics models. For exam-
ple, it would not be straightforward to apply temperature to any dynamics
model which does not produce a probability density function (e.g., GameGAN);
whereas the DDL approach of generating many different dynamics models is use-
ful to any learned neural network dynamics model. Moreover, even though the
temperature-regulated variant increases uncertainty of the dream environment,
it is still only capable of creating one dream environment.

4.2 Inference Dropout and Dream2Real Generalization

In this experiment, we study the effects of dropout on the World Model. First, we
evaluate the relationship between dropout and World Model accuracies. Second,
3 Results on GameGAN and Action-LSTM returns are from [16].
4 We were unable to reproduce the temperature results in [9].
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Table 3. RNN’s loss with and without dropout (ptrain = 0.05 and pinfer = 0) during
training.

DoomTakeCover CarRacingFixedN

Training loss Test loss Training loss Test loss

Without dropout 0.89 0.91 2.36 3.10

With dropout 0.93 0.91 3.19 3.57

we evaluate the relationship between dropout and generalization from the World
Model to the target environment. Model loss is measured by the loss in (7) on
the test sets. Returns in the target environment are reported based on the best
controller (Sect. 3.3) trained with varying levels of inference dropout. The same
training and test sets described at the beginning of Sect. 4 are used.

Standard use cases of dropout generally observe a larger training loss but
lower test loss relative to the same model trained without dropout [6,27]. In
Table 3, we do not observe any immediate performance improvements of the
World Model trained with dropout (ptrain = 0.05 and pinfer = 0). In fact, we
observe worse results on the test set. The poor performance of both DDL RNNs
(Table 3) indicates a clear conclusion about the results from Tables 1 and 2. The
improved performance of DDL relative to World Models comes from forcing the
controller to operate in many different environments and not from a single more
accurate dynamics model M .

Next we take a World Model trained with dropout and evaluate the model
loss on a test set across varying levels of inference dropout (pinfer). As expected,
in Fig. 4 we observe that as the inference dropout rate is increased the model
loss increases. In Fig. 5 we observe that increasing the inference dropout rate
improves generalization to the target environment. We believe that the boost in
returns on the target environments comes from an increase in capacity to distort
the dynamics model. Figures 4 and 5 suggest that we can sacrifice accuracy of
the dream environments to better cross the Dream2Real gap between dream
and target environments. However, this should only be useful up to the point
where the task at hand is fundamentally changed. Figure 5 suggests this point is
somewhere between 0.1 and 0.2 for pinfer, though we suspect in practice this will
be highly dependent on network architecture and the environment.

In Fig. 5 we observe relatively weak returns on the real CarRacingFixedN
environment when the inference dropout rate is zero. Recall from Table 3 that
the dropout variant has a much higher test loss than the non-dropout variant
on CarRacingFixedN. This means that when pinfer = 0, the single environment
DDL is able to create is relatively inaccurate. It is easier for the controller to
exploit any discrepancies between the dream environment and target environ-
ment because only a single dream environment exists. However, as we increase
the inference dropout rate it becomes harder for the controller to exploit the
dynamics model, suggesting that DDL is especially useful when it is difficult to
learn an accurate World Model.
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(a) DoomTakeCover. (b) CarRacingFixedN.

Fig. 4. Loss of DDL dynamics model (ptrain = 0.05) at different inference dropout
rates.

(a) DoomTakeCover. (b) CarRacingFixedN.

Fig. 5. DDL (ptrain = 0.05) returns at different inference dropout rates in the target
environments.

4.3 When Should Dropout Masks Be Randomized During
Controller Training?

In this ablation study we evaluate when the dropout mask should be randomized
during training of C. We consider two possible approaches of when to randomize
the masks. The first case only randomizes the mask at the beginning of an
episode (episode randomization). The second case samples a new dropout mask
at every step (step randomization). We also consider if it is effective to only apply
dropout at inference time but not during M training (i.e., pinfer > 0, ptrain = 0).

As can be seen in Table 4, randomizing the mask at each step offers better
returns on both target environments. Better returns in the target environment
when applying step randomization comes from the fact that the controller is
exposed to a much larger number (> 1000×) of dream environments. We also
observe that applying step randomization without training the dynamics model
with dropout yields a weak policy on the target environment. This is due to the
randomization fundamentally changing the task. Training the dynamics model
with dropout ensures that at inference time the masked model (M j) is mean-
ingful.
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Table 4. Returns of the controller with different frequencies to randomize the dropout
mask.

DoomTakeCover CarRacingFixedN

episode randomization (ptrain = 0.05,
pinfer = 0.1)

786 ± 469 601 ± 197

step randomization (ptrain = 0.05,
pinfer = 0.1)

933± 552 625± 289

step randomization (ptrain = 0,
pinfer = 0.1)

339 ± 90 −43 ± 52

4.4 Comparison to Standard Regularization Methods

In this experiment we compare Dropout’s Dream Land with standard regular-
ization methods. First, we consider applying the standard use case of dropout
(0 < ptrain < 1 and pinfer = 0). Second, we consider a noisy variant of M when
training C. The Noisy World Model uses exactly the same parameters for M
as the baseline World Model. When training the controller, a small amount of
Gaussian noise is added to z at every step.

In Table 5, we observe that DDL is better at generalizing from the dream
environment to the target environment than the standard regularization meth-
ods. Dropout World Models can be viewed as a regularizer on M . Noisy World
Models can be viewed as a regularizer on the controller C. The strong returns
on the target environment by DDL suggest that it is better at crossing the
Dream2Real gap than standard regularization techniques.

Table 5. Returns from World Models, Dropout World Models (ptrain = 0.05 and
pinfer = 0.0), Noisy World Models, and DDL (ptrain = 0.05 and pinfer = 0.1) on the
CarRacingFixedN and the original CarRacing environments.

CarRacingFixedN CarRacing

World Models 399 ± 135 388 ± 157

Dropout World Models −36 ± 19 −36 ± 20

Noisy (N (0, 1)) World Models 147 ± 121 180 ± 132

Noisy (N (0, 10−2)) World Models 455 ± 171 442 ± 171

Dropout’s Dream Land 625± 289 610± 267

4.5 Comparison to Explicit Ensemble Methods

In this experiment we compare Dropout’s Dream Land with two other
approaches for randomizing the dynamics of the dream environment. We consider
using an explicit ensemble of a population of dynamics models. Each environ-
ment in the population was trained on the same set of trajectories described at
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the beginning of Sect. 4 with a different initialization and different mini-batches.
With the population of World Models we train a controller with Step Random-
ization and a controller with Episode Randomization. Note that the training
cost of dynamics models and RAM requirements at inference time scale linearly
with the population size. Due to the large computational cost we consider a
population size of 2.

In Table 6, we observe that neither Population World Models (PWM) Step
Randomization or Episode Randomization substantially close the Dream2Real
gap. Episode Randomization does not dramatically improve results because the
controller is forced to understand the hidden state (h) representation of every M
in the population. Step Randomization performs even worse than Episode Ran-
domization because on top of the previously stated limitations, each dynamics
model in the population is also forced to be compatible with the hidden state
(h) representation of all other dynamics models in the population. DDL does
not suffer from any of the previously stated issues and is also computationally
cheaper because only one M must be trained as opposed to an entire population.

Table 6. Returns from World Models, PWM Episode Randomization, PWM Step
Randomization, and DDL (ptrain = 0.05 and pinfer = 0.1) on the CarRacingFixedN
and the original CarRacing environments.

CarRacingFixedN CarRacing

World Models 399 ± 135 388 ± 157

PWM Episode Randomization 398 ± 126 402 ± 142

PWM Step Randomization −78 ± 14 −77 ± 13

Dropout’s Dream Land 625± 289 610± 267

5 Conclusion

Dropout’s Dream Land introduces a novel technique to improve controller gen-
eralization from dream environments to reality. This is accomplished by taking
inspiration from Domain Randomization and training the controller on a large
set of different simulators. A large set of different simulators are generated at
little cost by the insight that dropout can be used to generate an ensemble of
neural networks. To the best of our knowledge this is the first work to bridge the
reality gap between learned simulators and reality. Previous work from Domain
Randomization [31] is not applicable to learned simulators because they often
do not have easily configurable parameters. Future direction for this work could
be modifying the dynamics model parameters in a targeted manner [28,33,34].
This simple approach to generating different versions of a model could also be
useful in committee-based methods [25,26].
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Abstract. Goals provide a high-level abstraction of an agent’s objec-
tives and guide its behavior in complex environments. As agents become
more intelligent, it is necessary to ensure that the agent’s goals are
aligned with the goals of the agent designers to avoid unexpected or
unwanted agent behavior. In this work, we propose using Goal Net, a
goal-oriented agent modelling methodology, as a way for agent design-
ers to incorporate their prior knowledge regarding the subgoals an agent
needs to achieve in order to accomplish an overall goal. This knowledge
is used to guide the agent’s learning process to train it to achieve goals
in dynamic environments where its goal may change between episodes.
We propose a model that integrates a Goal Net model and hierarchical
reinforcement learning. A high-level goal selection policy selects goals
according to a given Goal Net model and a low-level action selection
policy selects actions based on the selected goal, both of which use deep
neural networks to enable learning in complex, high-dimensional environ-
ments. The experiments demonstrate that our method is more sample
efficient and can obtain higher average rewards than other related meth-
ods that incorporate prior human knowledge in similar ways.

Keywords: Deep reinforcement learning · Hierarchical reinforcement
learning · Goal modelling

1 Introduction

Deep reinforcement learning (DRL) has enabled agents to achieve human-level,
and in some cases superhuman-level, results in complex, high-dimensional envi-
ronments. In many applications, agents are required to achieve multiple goals in
complex environments. However, many DRL methods are limited in that they
can only complete one task or goal. Kaelbling [13] proposed a method to train
reinforcement learning agents to learn to achieve a wide variety of goals. This
work forms the basis of recent goal-conditioned and multi-goal reinforcement
learning methods that make use of deep neural networks [23].

As agents become more intelligent, it is necessary to ensure that the agent’s
goals are aligned with the goals of the agent designers, which has been referred
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to as the agent alignment problem [16]. Although many recent deep learning
methods reduce the amount of prior knowledge given to models to improve per-
formance, the inclusion of such knowledge may improve agent alignment by pro-
viding more context to the agent. One way to leverage prior human knowledge
in RL would be to model goals so that they can be understood and specified
by agent developers and designers, regardless of their technical knowledge. Goal
models, which originate from Goal-Oriented Requirements Engineering (GORE),
can provide a way for agent designers to express the high-level behavior that
they desire from their agents. GORE focuses on goals as a way to define sys-
tem objectives and to communicate the rationale behind system requirements
to stakeholders of varying technical knowledge [31]. In GORE, goal models
have been used in agent design to support formal representation and reason-
ing with goals [4,33]. Goal models define goals and capture the relationships
between them, such as AND/OR relationships between subgoals that conjunc-
tively/disjunctively achieve a high-level goal.

In this work, we propose a hierarchical reinforcement learning (HRL) model
that incorporates an agent designer’s prior knowledge about an agent’s overall
goal within a Goal Net model. Goal Net is an agent modelling methodology that
uses goal modelling to define agent behavior [27]. Unlike other goal models that
only specify the decomposition of goals into subgoals, Goal Net allows agent
designers to specify the sequential relationships between goals to allow agents to
reason about goals at run time, which makes it a suitable choice for our work. Our
model consists of a high-level goal selection policy that provides goals to a low-
level action selection policy, as shown in Fig. 1. Given a high-level goal, an agent
may select subgoals to achieve the goal which in turn affects the agent’s actions.
A Goal Net model is used to provide valid goal selection options to the high-
level policy, and the low-level policy is a goal-conditioned policy that operates
in a goal-augmented state space which incorporates a symbolic goal space. We
propose an algorithm that trains a hierarchical Deep Q-Network (h-DQN) [15]
combined with a Goal Net model. Then, we evaluate our model against other
related methods in which Goal Net could be incorporated, namely deep abstract
Q-networks (DAQN) [25] and reward machines (RM) [12]. The results suggest
that our method is more sample efficient and can achieve higher average rewards
in environments with randomized goal locations.

2 Background

Reinforcement Learning (RL) aims to train an agent to act optimally within
an environment [28]. This problem is typically formulated as a Markov decision
process (MDP), which is defined as a tuple M = 〈S,A,P, r, γ〉, where S is a
set of states, A is a set of actions, P(s′|s, a) is a transition probability function,
r(s, a, s′) is a reward function, and γ is a discount factor. At a time step t, an
agent observes a state st ∈ S and takes an action at ∈ A. After the action is
executed, the agent observes a new state st+1 and receives rewards rt+1 according
to the reward function. The goal of the agent is to learn a policy π : S → A that
maximizes the rewards the agent obtains while interacting with the environment.
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Fig. 1. An overview of the proposed model. The goal selection and action selection, in
this work, are trained through reinforcement learning.

Many RL algorithms make use of value functions in order to learn the optimal
policy. The Q-value function measures the expected future discounted rewards
an agent can obtain by taking an action in a given state, and is defined as:

Q(s, a) = E[
T∑

t=0

γtrt+1|s0 = s, a0 = a]. (1)

Deep Q-Networks (DQN) use deep neural networks to estimate the Q-value func-
tion [20]. DQN uses an experience replay buffer [18] that stores tuples containing
information such as the states and actions the agent experiences while interacting
with the environment. Experience tuples are sampled from the replay buffer to
train the network, which enables data reuse and stabilizes the learning process.

Hierarchical Reinforcement Learning (HRL) involves training an agent
to use multiple levels of policies where higher level policies may invoke or direct
lower level policies to achieve subgoals. The options framework is a commonly
used HRL formalism in which a high-level policy may use a temporally extended
option, or macro-action, instead of a primitive action [29]. The framework makes
use of the semi-Markov decision process (SMDP) that generalizes MDPs to the
settings where actions may take a varying number of timesteps [24]. An option is
a tuple 〈Io, πo, βo〉 where Io ⊆ S is an initiation set describing in which states the
option can be invoked, πo : S → A is an intra-option policy, and βo : S → [0, 1]
is a termination function indicating when the option ends.

Goal-Conditioned Reinforcement Learning trains agents to learn a
value function parametrized by the agent’s goal g, which generalizes learning
experience in achieving one goal to other goals [13]. Universal Value Function
Approximators (UVFAs) make use of function approximators such as deep neu-
ral networks to enable generalization to new goals unseen at training time [26].
Hindsight Experience Replay (HER) [2] improves sample efficiency by adding
relabelled experience tuples to the replay buffer. The relabelling process replaces
the agent’s original goal with the goal the agent actually reaches. Such works
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Fig. 2. An example Goal Net for an agent trying to reach an end goal.

have given rise to multi-goal RL [23], which trains agents to achieve a wide
variety of goals.

Goal Net is a graphical model that defines agents’ goals, subgoals, and
the relationships between those goals [27]. Agent development using Goal Net
involves the co-operation of agent designers who may be domain experts that
can define high-level behavior and logic of an agent, and agent developers who
have the development skills to implement the functions required by the agent.
A Goal Net consists of goals and actions, which are represented graphically by
circles and rectangles, respectively. Actions represent the transitions between
goals and define any tasks that need to be completed in order to reach a goal.
Goals can be composite, meaning that they can be decomposed into more goals,
or atomic. Composite and atomic goals are represented as red and green circles,
respectively. An example Goal Net is shown in Fig. 2, which shows a Goal Net
for an agent attempting to reach an end goal by either obtaining a green key
and opening a green door, or by using a yellow key to open a yellow door. We
denote the set of goals within a Goal Net as Gnet. Each Goal Net contains a
root composite goal that indicates the overall goal to be achieved, a start goal,
and an end goal. Arcs connect goals and actions together, indicating valid paths
the agent may take to achieve the overall goal. At run time, the agent begins
in the start goal, and uses goal selection algorithms to determine which goal to
pursue and action selection algorithms to decide how goals should be achieved.
The agent transitions to the next goal if it successfully achieves it.

Goal Net can also represent and define concurrent goal pursuit. A concur-
rency relation between goals represents a partially ordered goal achievement
requirement where all goals in the concurrency relationship must be achieved.
Concurrent goal paths will synchronize at a goal or action, which represents the
point at which all paths must reach before transitioning to the next goal. Graph-
ically, concurrent goals are represented using diamond-shaped arcs. Figure 3
shows an example Goal Net that contains a concurrent goal relation where the
agent must reach both a yellow and blue subgoal before navigating to the final
goal state, but the order in which the subgoals are reached does not matter.
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Fig. 3. Concurrent goal pursuit represented by diamond-shaped arcs, indicating that
the agent must complete both subgoals before reaching the final goal.

3 Deep Reinforcement Learning with Goal Net

In this work, we utilize Goal Nets as models to define high-level agent behavior,
which may be provided by agent designers. We consider the case where the goal
and action selection within a Goal Net model are learned using reinforcement
learning. This may be desirable when the environment is complex, or to reduce
the workload of developers so that the goal and action selection algorithms do
not need to be hand-engineered. We treat this setting as a hierarchical reinforce-
ment learning problem with two policy levels: a high-level goal selection policy
and a low-level action selection policy. Our hierarchical structure is based on
the options framework, as well as h-DQN which trains two DQNs: a low-level
controller and a high-level meta-controller [15].

In addition to the Goal Net model, we require agent designers and developers
to create a goal space G that consists of symbolic attributes related to the goals
and subgoals of the agent. For example, in a goal reaching task where an agent
needs to reach a given position in a coordinate space, an agent designer may
define the goal space as the agent’s current coordinates. We will refer to goals
within the Goal Net model as gnet ∈ Gnet to differentiate between points in the
goal space g ∈ G and the Goal Net goals. Referring back to Fig. 1, a Goal Net
goal gnet is passed to the goal selection policy and is used to select a target goal
g′

net, and then this is converted to goal space G. Similar to other related methods
such as DAQN and QRM, this conversion is performed by a labelling function
F : S → G, which we assume to be given by agent developers. The goal space
allows us to take advantage of goal-conditioning and HER by augmenting the
state space, inducing a state space Slo = S × G. The low-level policy operates in
this goal-augmented state space and is therefore defined as πlo : Slo → A. The
low-level policy selects actions using a goal-conditioned DQN that is trained to
estimate the optimal Q-value function:

Q∗
lo(slo, a, g) = ri + γ

∑

s′
lo∈Slo

P(s′
lo|slo, a, g)max

a′
Q∗

lo(s
′
lo, a

′, g), (2)
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where g ∈ G is a subgoal to achieve and ri ∈ {0, 1} is an intrinsic reward of 1 if
the low-level policy reaches a given subgoal and 0 otherwise.

We denote the high-level goal selection policy as πhi, which operates in the
state space Shi = S × Gnet and can be defined as πhi : Shi → Gnet. The goal
selection policy selects the next Goal Net goal to target and does not need to
select goals directly in goal space. A goal achievement function βg : Shi → G is
used to generate the terminal conditions within goal space. This helps increase
the training speed of the goal selection policy since invalid and unused goals in
the goal space are pruned. The goal selection policy operates within a SMDP,
and its associated DQN is trained to estimate the optimal Q-value function:

Q∗
hi(shi, gnet) =

∑

s′
hi,τ

P(s′
hi, τ |shi, gnet)[Rτ + γτ max

g′
net

Q∗
hi(s

′
hi, g

′
net)], (3)

where shi ∈ Shi, τ is the number of timesteps taken by the low-level policy
to complete the subgoal, and Rτ =

∑τ
t=0 γtrt+1. The extrinsic rewards from

the environment obtained while running the low-level policy are passed to the
high-level policy.

Algorithm 1 shows the overall training procedure for our model. Line 6 is
the start of the goal selection loop, and in lines 7–8 the next Goal Net goal for
the agent to achieve is selected and converted to goal space. In lines 11–12, the
action selection policy is used to select actions based on the target goal. Both
the goal and action selection use ε-greedy style exploration strategies based on
the exploration strategy used in h-DQN. Such strategies select a random action
with probability ε, and select the action with the maximum Q-value otherwise.
A common strategy to enable sufficient exploration is to initialize ε with a high
value and to decay it, typically linearly, over the course of the training process.
However, in complex, temporally extended problems, it is difficult to pick a decay
rate that ensures that the agent adequately explores the environment. Therefore,
we take advantage of the Goal Net model to determine the exploration rates for
the action and goal selection policies. The exploration rate of the action selection
policy scales according to the success rate of achieving the selected Goal Net goal:

εlo = −(εmax − εmin)(successN (gnet, g
′
net)) + εmax, (4)

where εmax and εmin are hyperparameters defining the maximum and minimum
values of εlo, respectively, and successN (gnet, g

′
net) is the average success rate

of achieving goal g′
net starting from gnet over the past N attempts at achieving

the goal. The exploration rate for goal selection follows a standard ε-greedy
strategy, but instead of randomly selecting a goal with probability εhi, we weigh
the probability of selecting particular goals based on the success rate of achieving
them. The formula for determining the probability of selecting a goal is:

p(gnet, g
′
net) =

1 − successN (gnet, g
′
net) + ρ∑

g∗
net∈G∗

net
1 − successN (gnet, g∗

net) + ρ
, (5)

where ρ < 1 is a small number that ensures that all goals have a chance to
be selected and to prevent any division by 0, and G∗

net is the set of goals that



Goal Modelling for Deep Reinforcement Learning Agents 277

Algorithm 1: h-DQN Training with Goal Net
Input: Goal Net Model

1 Initialize DQNs Qlo, Qhi

2 Initialize experience replay buffers Rlo, Rhi

3 for i = 0 to num episodes do
4 gnet ← initial Goal Net goal
5 s, shi, slo, g ← environment reset
6 for j = 0 to max steps do
7 g′

net ← SelectGoal(shi)
8 gtarget ← βg(s, g

′
net)

9 rtotal ← 0, steps ← 0
10 for k = j to max steps do
11 a ← SelectAction(slo, gtarget)
12 s′, g′, r, done ← ExecuteAction(a)
13 rtotal ← rtotal + r
14 g∗

net ← GNetReached(s′, g′, gnet)
15 donelo ← (g∗

net != gnet) or done

16 if g∗
net == g′

net then
17 ri ← 1
18 else
19 ri ← 0
20 Add 〈slo, a, gtarget, (s

′, g′), ri, donelo〉 to Rlo

21 Update Qlo using Rlo

22 slo ← (s′, g′)
23 steps ← steps + 1
24 if donelo then
25 break

26 end
27 Add relabelled experience tuples to Rlo, replacing gtarget with g′

28 Add 〈shi, g∗
net, (s

′, g∗
net), rtotal, done, steps〉 to Rhi

29 Update Qhi using Rhi

30 shi ← (s′, g∗
net)

31 if done then
32 break

33 end

34 end

can be selected from gnet as defined by the Goal Net model. By using this goal
exploration strategy, we attempt to ensure that the agent learns to achieve all
goals by focusing on goals that the agent cannot reach consistently.

During training, it is likely that the action selection policy inadvertently
achieves a different goal than the goal proposed by the goal selection policy. For
example, an agent using the Goal Net in Fig. 2 may obtain the yellow key even
though it tried to obtain the green key. Line 14 checks which Goal Net goal
the agent has reached by comparing g′ with βg(s, g′

net) across all possible Goal
Net goals reachable from gnet. An intrinsic reward is provided to the low-level
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policy if it reaches the proposed goal, and the loop breaks if the low-level policy
transitions to a new Goal Net goal. In line 28, we add experience tuples to the
high-level replay buffer using the Goal Net goal actually reached by the agent
rather than the one proposed by the high-level policy.

To handle concurrent goals, Algorithm 1 uses a list of goal paths in the
Goal Net model containing the goals the agent has currently reached. Then the
available goals that can be selected consists of all possible goal selection options
across all goal paths.

4 Experiments

In the experiments1, we make use of the Minigrid environment [6], Miniworld
environment [5], and AI2-THOR [14]. Some example images of the environments
used are shown in Fig. 4. More details about each environment are provided in
the following subsections. The extrinsic reward function used in our experiments
is based on the default reward function provided by Minigrid, defined as:

R = 1 − 0.9
(nsteps

nmax

)
, (6)

where nsteps is the number of steps taken by the agent to reach the goal, and
nmax is the maximum episode length. We use this reward function as it integrates
both the agent’s success rate and steps taken to reach the goal.

The goal of the experiments is to compare our method with other related
methods in which a Goal Net model could be incorporated and to highlight
problems that they have. We compare 4 different models: the proposed model,
a variant of our model where the low-level policy operates on the state space
without goal-augmentation, a model based on DAQN, and a model based on
Q-learning for Reward Machines (QRM). We will refer to these models as GNet,
GNet without GA, DAQN, and QRM respectively. GNet without GA will be
used to compare whether using a goal-augmented state space for the low-level
policy provides any benefits. We use DAQN and QRM as comparisons as both
methods provide ways for agent designers to provide knowledge to an agent so
that they can achieve temporally extended goals in a similar manner as our
proposed method. DAQN is a HRL method where the high-level policy operates
in an abstract state space defined by an agent designer and may invoke a low-
level policy that is trained to reach a specific abstract state. The high-level
policy in the DAQN model uses a tabular Q-learning algorithm that selects goals
according to the provided Goal Net model. To make comparisons fairer, we also
provide the valid goal selection choices based on the Goal Net model to the high-
level policy. Additionally, we use goal-conditioning on the low-level DAQN policy
by providing the Cartesian coordinates of the target goal and use HER to relabel
experience tuples using the coordinate reached by the agent. QRM provides a
comparison to a flat, non-goal-conditioned model capable of training an agent

1 Code available at: https://github.com/jleung1/goal modelling rl.

https://github.com/jleung1/goal_modelling_rl
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(a) Two keys environ-
ment.

(b) 3D four rooms en-
vironment.

(c) Top view of the
3D four rooms envi-
ronment.

(d) An example
kitchen from AI2-
THOR.

Fig. 4. Sample images of the experimental environments. Positions of objects, subgoals,
and the agent are randomized each episode.

to complete temporally extended tasks by having agent designers define a finite
state machine that represents the reward function. The reward machines used
in our experiments are based on the Goal Net models used in each experiment,
where in most cases each goal acts as a reward machine state that provides the
agent with a reward of 1. The transitions between reward machine states are
determined by the goal spaces and βg used in each experiment.

We attempt to use similar neural network architectures for all models. The
low-level DQNs of the hierarchical models and the QRM model use convolutional
layers that take the environment state as input. In GNet, the goal state and
target goal are concatenated with the output of the convolutional layers and
then passed through a set of linear layers. Only the target goal is used in GNet
without GA. In DAQN and QRM, we pass one-hot encodings to the network to
differentiate between multiple policies as opposed to the multi-headed or separate
networks used in the respective works. We use Double DQN [11] for all models,
as was done in both original DAQN and QRM works.

4.1 Two Keys

The first experimental environment, which we will refer to as the “two keys”
environment, was created using Minigrid. In this environment, shown in Fig. 4a,
the agent must reach the green goal coordinate. To do this, the agent needs to
learn to acquire either the yellow or green key, then open the corresponding door
to reach the goal room located in the bottom right quadrant. This environment
tests the agent’s ability to choose the key and door that lead it to the goal the
fastest. Every episode, the agent and the keys are positioned randomly outside of
the goal room, and the goal’s position within the goal room is also randomized. In
addition, the positions of the two doors may be randomly swapped. The actions
available to the agent include moving forward, turning left or right, picking up a
key, and opening a door. The Goal Net model used in this experiment is shown
in Fig. 2. The goal space consists of the x and y coordinates of the agent’s target
goal, followed by a set of propositional symbolic features indicating whether
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the agent has the yellow or green key, and whether the yellow and green doors
are opened or closed. We use a symbolic state space provided by the Minigrid
environment, which is a 3 × 13 × 13 grid that contains information about the
object type, color, and status at each grid coordinate.

We train each agent for 50000 episodes, except for QRM which needed more
training to converge, with a maximum episode length of 300 steps. We perform
100 evaluation episodes every 100 training episodes where the agent takes the
greedy action at each time step. This process is repeated 5 times using the same
set of random seeds across all models, and the means and standard deviations of
the average rewards obtained are reported. The results are shown in Fig. 5a, and
the rewards per frame are shown in Fig. 5b to illustrate the difference in sample
efficiency between QRM and the other methods.

GNet is able to learn from the transitions within the goal-augmented state
space and relate it to the target goals used in training a goal-conditioned DQN
for the low-level policy. Since the state space used in GNet without GA does not
directly include the goal space, the agent needs to learn the associations between
the target goal and the state space itself, and thus is slightly less sample efficient.
It should be noted that the goal space in this experiment contains information
that is readily available within the state space given to the agent. This showcases
the potential of providing an agent with a simplified representation of the state
space alongside the full state space to improve learning efficiency.

DAQN converges to a lower average reward value because the abstract goal
space does not provide enough information to the high-level policy about which
key it should obtain. This problem was discussed by Gopalan et al. [10] and
is demonstrated by this experiment. The agent cannot differentiate between
obtaining the yellow of green key because both options lead the agent to the
goal in the same number of steps with respect to the high-level policy. In order
for DAQN to find a better policy, a goal space containing more information
about the state space would be required. In contrast, the GNet models use the
full state space at both policy levels and thus are more robust to the goal space
design, imposing fewer restrictions on agent designers.

QRM can learn a policy that converges to higher rewards than DAQN, how-
ever it takes much longer to learn since it does not use HER. Whereas QRM
only uses the goal space to determine reward machine state transitions, GNet
allows the agent to actively select its next goal, which allows the use of HER. As
QRM does not use a hierarchy, it is not clear how a goal selection mechanism
would be incorporated into the method to allow for the use of goal-conditioning
and HER. As described by Icarte et al. [12], QRM can share learning experience
between RM state Q-value functions by using the RM to determine whether any
RM state transitions have occurred when the agent interacts with the environ-
ment. However, this does not aid the agent in this environment because each
RM state corresponds to separate sets of environment states. For example, if the
agent opens the yellow door and then reaches the goal, this experience cannot
be transferred to the case where the agent opens the green door and reaches the
goal because the environment state is different in both cases.
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Fig. 5. Average rewards obtained across all runs of the experiments.

4.2 3D Four Rooms with Subgoals

In this experiment, we modify an implementation of a 3D version of the four
rooms environment provided by Miniworld [5]. The goal of the agent is to visit
a blue and yellow subgoal before reaching the green goal, whose positions are
all randomized at each episode. The order in which the agent visits the subgoals
does not matter, and so this environment tests the agent’s ability to handle
partially ordered subgoals in a high-dimensional 3D environment with much
randomness. If the agent reaches the final goal before reaching both subgoals,
the agent receives a reward of 0. The agent views the environment in a first
person perspective and receives RGB images as state observations, as shown in
Fig. 4b. We provide the agent with the previous 4 frames to help the agent handle
partial observability, making the size of the agent’s observation 4 × 3 × 60 × 80.
An overhead view of the environment is shown in Fig. 4c. The Goal Net model
used for this experiment is shown in Fig. 3, however the equivalent RM contains
an extra state that represents the agent having reached both subgoals. The
agent can turn left or right by a random amount between 10◦ and 30◦ and move
forward.

The goal space used in this experiment consists of the x and z positions
of the goal, subgoals, and the agent, as well as whether the agent has reached
the blue and yellow subgoals. To make comparisons fairer, we provide the goal,
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subgoal, and agent coordinates as additional state information to GNet without
GA, DAQN, QRM. We use a deeper neural network for this experiment based
on the one used by Espeholt et al., which uses residual connections [9]. We
perform our evaluation similarly to the previous experiment where we run 100
evaluation episodes after every 100 training episodes and repeat the training
process 5 times. We use a maximum episode length of 300 steps and use an ε of
0.05 during evaluation episodes. The results are shown in Fig. 5c.

Both GNet and GNet without GA perform similarly, with a bit more insta-
bility in GNet without GA. Since we provided the agent coordinates, subgoal,
and goal locations to all methods, the only difference between GNet and GNet
without GA is the inclusion of the subgoal completion statuses within the goal-
augmented state space. However, as will be shown in the next experiment, this
small difference can have a larger impact on the agent’s performance in some
environments. As in the two keys environment, DAQN performs worse because
the high-level policy cannot determine whether visiting the yellow or blue sub-
goal first is better. Exploration in this experiment is easier than the two keys
environment, as there are only three movement actions, making QRM learn
quicker than in the previous experiment.

4.3 Kitchen Navigation and Interaction

In this experiment we use AI2-THOR, a 3D home environment created in the
Unity game engine [14]. AI2-THOR provides various rooms where agents can
interact with various objects. For this experiment, we use the 30 different kitchen
environments provided by AI2-THOR and train the agent to first close the fridge
door, and then turn off the light switch. An example of one of the kitchens is
shown in Fig. 4d. The actions available to the agent are turning left and right,
moving forward, closing an object, and toggling off an object. The episode ends
when the agent turns off the light, with a reward of 0 being given if it turns off
the light before closing the fridge door. This experiment tests the agent’s use
of the goal space to learn to navigate and complete tasks in high-dimensional
environments that vary greatly between episodes. Since the sequence of subgoals
is always the same in this experiment, the high-level policies of the hierarchical
models do not need to be trained, which allows the low-level policy to be isolated
and analyzed. The neural network architecture is similar to the previous exper-
iment, using a deeper model with residual connections. The state observations
given to the agent consists of the last four 100×100 RGB-depth images. The goal
space consists of the agent’s position, as well as the position of the fridge and
light switch. Similar to the previous experiment, we give the x and z positions
of the agent, fridge, and light switch to all models as extra state information to
make comparisons fairer. Each episode, the agent is positioned randomly in one
of the 30 kitchens and runs for a maximum of 200 steps. We perform evaluation
every 50 episodes where we run the agent once through each kitchen using greedy
actions. This process is repeated 5 times with different random seeds, and the
results are shown in Fig. 5d.
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As in the previous experiment, the only difference between GNet and GNet
without GA is the subgoal completion statuses within the augmented state space.
In the 3D four rooms environment, each action the agent took affected the x
and z positions of the agent. However, this environment contains actions to close
objects and toggle objects off, which do not have any effect if the agent is not near
any object where these actions are applicable. This problem was demonstrated
in the first experiment, where GNet without GA had to learn to associate the
target goal with the state space. By using a goal-augmented state space, we
provide a generalized way for agent designers to guide agents. DAQN performs
similarly to the GNet models because when only considering the low-level policy,
the methods are similar. Thus, a key benefit of our proposed method is the use
of the full state space in the high-level policy.

5 Related Work

There have been proposed methods to incorporate prior knowledge in a RL agent.
A closely related method is the hierarchy of abstract machines (HAM) [22],
where partial policies can be defined using a hierarchy of finite state machines.
Reward Machines also use finite state machines, but instead of directly defining
an agent’s behavior, they are used to define reward functions that may represent
complex, temporally extended tasks [12]. Andreas et al. proposed a method to
include agent designers’ prior knowledge using policy sketches that are used to
train an agent to complete tasks via subtask sequences [1]. However, a dataset of
policy sketches is assumed to be available whereas our proposed method assumes
a labelling function is defined. Additionally, policy sketches impose a specific
ordering of subgoals whereas a Goal Net model also enables the definition of
partially ordered subgoals. Roderick et al. proposed DAQN [25], which extends
abstract MDPs [10] by combining tabular RL and DRL. Lyu et al. also propose
a HRL method that combines tabular RL and DRL and uses symbolic planning
to incorporate prior human knowledge [19]. Our method, however, uses HER to
improve sample efficiency and can handle environments where goals may change
between episodes. Icarte et al. use Linear Temporal Logic (LTL) formulae to
describe tasks and decompose them into subtasks [30]. Our method uses Goal
Net to provide a representation of an agent’s objectives that is understandable
to stakeholders who may have little technical knowledge, however a combination
of LTL and Goal Net could be explored in the future. Zhang et al. propose a
method where agents learn to plan in a human-defined attribute space, which
is similar to the goal space of our method, and use count-based exploration to
train agents in a task agnostic manner [34]. Unlike their method, our proposed
method augments the state space using the goal space, making our method less
reliant on how an agent designer defines the goal space.

Hierarchical reinforcement learning has roots in works such as the options
framework [29], MAXQ value function decomposition [8], and Feudal Net-
works [7]. Many recent works in HRL incorporate deep neural networks. Bacon et
al. extended the options framework by training agents to learn the intra-option
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and option termination functions in an end-to-end manner [3]. Vezhnevets et al.
extend Feudal Networks to use deep neural networks and propose a model where
a manager and worker are learned in parallel, and the manager learns to pro-
duce goals that represent a desired direction in a learned latent goal space [32].
Levy et al. proposed a method for training a hierarchical agent with potentially
many levels of goal-conditioned policies [17]. Nachum et al. improved the sam-
ple efficiency of HRL methods using off-policy RL for the high-level policy by
correcting transitions in the replay buffer with new goals according to the cur-
rent low-level policy [21]. We note that our method is not necessarily orthogonal
to other HRL methods and could potentially be integrated such that an agent
designer proposes high-level subgoals via a Goal Net model and the agent learns
to further decompose the subgoals through its own hierarchy.

6 Discussion and Conclusion

We proposed a goal-oriented model and algorithm which use agent designers’
prior knowledge to train a hierarchical RL agent. We used Goal Net to accomplish
this as goals provide an abstraction of agent behavior that is understandable by
agent designers with diverse levels of technical knowledge. We compared our
method to two related methods, DAQN and QRM, which make use of similar
levels of prior knowledge. We demonstrated that the proposed method can make
better use of the information provided to it by the agent designers and learn more
quickly in various environments. We also showed that the agent is more robust
to the goal space design because we augment the state space of the original
MDP rather than reduce it. If the goal space is missing information that may
help the agent achieve its goal more efficiently, the agent can still learn because
it is not necessarily dependent on the goal space. If an agent designer provides
redundant information to the agent, it can still leverage the goal space to learn
more efficiently. However, information needed by the agent that is not contained
in the state space should be included in the goal space.

A future direction may investigate methods of learning goal spaces to allow
agents to have a better understanding of its goals. This may help apply our
method to domains outside navigation and goal-reaching tasks, such as dialogue
systems. Another direction could involve improving goal selection to handle par-
tially observable environments where the subgoal locations may not be known to
the agent. In such environments, the agent may need to change its goal based on
new information. An investigation on the use of the proposed method to promote
safe AI could be a future direction, as Goal Net can help create agents whose
policies are controllable and interpretable. Incorporating other goal types, such
as maintenance or avoidance goals, may help in this regard.
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Abstract. Temporal Point Processes (TPPs) are useful for modeling
event sequences which do not occur at regular time intervals. For exam-
ple, TPPs can be used to model the occurrence of earthquakes, social
media activity, financial transactions, etc. Owing to their flexible nature
and applicability in several real-world scenarios, TPPs have gained wide
attention from the research community. In literature, TPPs have mostly
been used to predict the occurrence of the next event (time) with limited
focus on the type/category of the event, termed as the marker. Further,
limited focus has been given to model the inter-dependency of the event
time and marker information for more accurate predictions. To this effect,
this research proposes a novel Deviation-based Marked Temporal Point
Process (DMTPP) algorithm focused on predicting the marker corre-
sponding to the next event. Specifically, the deviation between the esti-
mated and actual occurrence of the event is modeled for predicting the
event marker. The DMTPP model is explicitly useful in scenarios where
the marker information is not known immediately with the event occur-
rence, but is instead obtained after some time. DMTPP utilizes a Recur-
rent Neural Network (RNN) as its backbone for encoding the historical
sequence pattern, and models the dependence between the marker and
event time prediction. Experiments have been performed on three pub-
licly available datasets for different tasks, where the proposed DMTPP
model demonstrates state-of-the-art performance. For example, an accu-
racy of 91.76% is obtained on the MIMIC-II dataset, demonstrating an
improvement of over 6% from the state-of-the-art model.

Keywords: Temporal point processes · Marker prediction · Recurrent
neural network

1 Introduction

The developments in technology and fast-paced lifestyle have resulted in the
generation of large amount of temporal data containing events spanned across
irregular time intervals. For example, activity on social media such as uploading
images, post reacts, interactions with other users; utilizing public transportation
c© Springer Nature Switzerland AG 2021
N. Oliver et al. (Eds.): ECML PKDD 2021, LNAI 12975, pp. 289–304, 2021.
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Fig. 1. Event marker prediction has wide-spread applicability in various real-world sce-
narios. The proposed Deviation-based Marked Temporal Point Process model focuses
on predicting the marker of an event in real-time, while modeling the inter-dependence
between the expected event time and the actual event time.

such as cabs, taxis, or buses; financial activity such as buying/selling stocks,
online purchases; and dining out at restaurants or reviewing eating joints. Cou-
pled with the advent of Machine Learning and the day-to-day usage of different
deployed applications, developing algorithms for automated event prediction has
garnered substantial research attention. Traditionally, event prediction referred
to determining when the next event would happen. With several recent real-
world applications, research has also focused on predicting the type of the event
referred to as the marker corresponding to an event. Figure 1 presents sam-
ple real-world applications requiring event type prediction (often in real-time).
Figure 1(a) presents a sample scenario where banks could utilize algorithms to
identify whether the current transaction (event) was fraudulent or not (marker),
and Fig. 1(b) presents another scenario where hospitals could identify the dura-
tion or severity (marker) of a patient’s visit (event) based on their historical
information. Event marker prediction thus has wide applicability in real-world
scenarios across different domains, demanding dedicated attention.

Initial research on event prediction [21,27] utilized statistical techniques [2],
followed by modeling the sequences as time series [12]. While earlier research
focused primarily on events spaced evenly in time, as discussed previously, most
of the above mentioned activities are uneven or irregular in terms of the inter-
event time. The uneven characteristic of event sequences makes it appropriate
to model them as Temporal Point Processes (TPP) [10,18], often defined by
an intensity function modeling the inter-event duration. Generally, historical
sequences are modeled to predict the occurrence of the next event, and a cat-
egorical value associated with it, referred to as the event marker. While event
time prediction has been well studied in the past few years, limited attention
has been given to the task of marker prediction. To this effect, this research pro-
poses a novel Deviation-based Marked Temporal Point Process (DMTPP) model
for predicting the event marker. The proposed model is specifically applicable
in scenarios where the event marker is not available immediately after the event
occurrence, but is instead computed/obtained after some time. For example,
a fraudulent transaction (marker) might be reported after some time of the
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transaction (event) by the concerned person (Fig. 1(a)), the severity of an ill-
ness (marker) is not known upon the immediate admission of a patient (event)
into a hospital (Fig. 1(b)), and the impact of an online advertisement (event) on
the subsequent sales (marker) is known after some time. By utilizing the real-
time event occurrence, the DMTPP model presents high applicability in such
scenarios, where the marker prediction is also performed in real-time.

The proposed DMTPP model focuses on explicitly modeling the inter-
dependence between the marker prediction and the variation observed in the
expected behavior. This enables the model to capture anomalous behavior with
respect to the event occurrence in real-time, while utilizing the representation
from the historical event sequence. Therefore, the contributions of this research
are:

– A novel Deviation-based Marked Temporal Point Process (DMTPP) model
has been proposed for marker prediction in real-time. The DMTPP algorithm
models the dependence of the marker on the expected and actual time occur-
rence of the next event. To the best of our knowledge, this is the first-of-a-kind
model operating at real time, which explicitly models the dependence of the
marker on the deviation in the expected and actual event time.

– The DMTPP model utilizes a Recurrent Neural Network (RNN) as its back-
bone architecture. The RNN learns an embedding based on the past sequence
of events and markers, while modeling the intensity function of the TPP as
a non-linear function. The choice of RNN as the backbone architecture pro-
vides more flexibility during sequence modeling, and also prevents learning
of user-specific models/representations. Thus enabling the proposed DMTPP
model to be useful in real-world scenarios of unseen test users as well.

– The proposed model has been evaluated on three marker prediction tasks:
(i) retweet prediction on the Retweet dataset [28], (ii) illness type prediction
on the MIMIC-II dataset [16], and (iii) badge prediction on the StackOver-
flow dataset [4]. Comparison has been performed with recent state-of-the-art
methods, where the proposed model demonstrates improved performance.
For example, it achieves a classification accuracy of 91.76% on the challeng-
ing MIMIC-II dataset. The improved performance promotes the utility of the
proposed model for real-time marker prediction tasks.

2 Related Work

This section analyzes the related concepts and research in the area of marked
temporal point process. Marked temporal point processes build upon the tradi-
tional temporal point processes by associating a marker with the occurrence of
each event. Here, marker can refer to the category of the event or some addi-
tional information of the event that is mostly categorical in nature. Research
in marked temporal point processes has focused on the next event and marker
prediction based on the sequence of historical events which is measured by an
intensity function. The intensity function measures the number of events that
can be expected in a specific time interval.
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The traditional methods in temporal point processes like Poisson [11], Self-
exciting [6], and Self-correcting [9] processes estimate the conditional intensity
function by making parametric assumptions. Such assumptions limit the flexi-
bility of the model, thus making it challenging to apply in different real-world
scenarios. The more recent models which utilize deep learning algorithms train
the models by maximizing the log-likelihood of the desired loss function. One of
the seminal algorithms at the intersection of marked temporal point processes
and deep learning is the Recurrent Marked Temporal Point Processes (RMTPP)
model [3], which uses a neural network to predict both next event time and
event marker independently using a Recurrent Neural Network (RNN). Follow-
ing this, Wang et al. [22] proposed an RNN network to build a marker-specific
intensity function that considers the inter-dependency between the marker and
time of the next event. Beyond RNNs, in 2018, Decoupled Learning for Factorial
Marked Temporal Point Processes [23] was proposed, where a decoupling app-
roach is presented for learning the factorial marked temporal point process, in
which each event is represented by multiple markers. Recently, Türkmen et al.
[20] leveraged both Hawkes processes and RNN to capture local and global tem-
poral relationships. Shchur et al. [19] proposed a novel approach of using neural
density estimation to estimate the conditional density instead of modeling the
conditional intensity function. Further, in 2020, Transformer Hawkes Process
(THP) [29] and Self-Attentive Hawkes Process (SAHP) [26] addressed the prob-
lem of long-term dependencies by using a self-attention mechanism to capture
short-term and long-term dependencies in the past sequence of the event.

As demonstrated above, the field of marked temporal point processes has
recently garnered substantial attention. TPPs have shown applicability in sev-
eral real-time applications, and are successful in capturing the influence of past
historical sequence information for the prediction of the next event time and
marker. However, in most of the existing literature (Fig. 2(a)–(b)), the event
time and marker are assumed to be independent, which might not be true in
real-time applications where the event time and marker are inter-dependent. For
example, as shown in Fig. 1(a), in scenarios of fraudulent transaction detection, a
given transaction is required to be classified as fraudulent or not. In this scenario,
unusual occurrence (time) of the actual event as compared to the predicted time
by the learned model can help in identifying a fraudulent transaction. Similarly,
in other domain applications such as predicting visits to the Intensive Care Unit
(ICU) (Fig. 1(b)), illness severity prediction can be dependent on the deviation
between the next predicted event time and the actual event time. Similar trend
can be observed in the scenario of online advertisements, where variation between
the actual and expected time of posting can often result in variation of the next
marker type (impact of advertisement measured by subsequent sales).

Based on the above intuition, this research proposes utilizing the deviation in
the predicted event time and actual event time for predicting the event marker.
A novel Deviation-based Marked Temporal Point Process (DMTPP) model is
proposed, which incorporates the inter-dependence between the event time and
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Fig. 2. Existing literature in TPP based modeling has focused mostly on (a) predicting
the next event time (t6), or (b) predicting the next event and marker information (t6, y6)
independently. (c) The proposed DMTPP based model learns the dependence of the
marker information on the time prediction.

marker (Fig. 2(c)) by considering the real-time event occurrence information for
predicting the next event marker.

3 Proposed Algorithm

Figure 3 presents a diagrammatic overview of the proposed Deviation-based
Marked Temporal Point Process (DMTPP) model. The proposed model takes
the historical sequence of time and marker, and predicts the marker for the next
event. Further, the model also utilizes the actual time of the next event for
predicting the corresponding marker. The proposed model thus demonstrates
high applicability in scenarios where the marker is computed/derived after some
time as opposed to being simultaneously available with the event occurrence. As
shown in Fig. 3, a RNN based architecture is used for modeling the relationship
between the lists of past event times and markers, which learns a non-linear
hidden representation based on the past sequence. The next event time and
marker are predicted by utilizing the hidden representation. The time deviation
measures the variation between the predicted event time and actual event time,
which is passed to a dense layer along with the RNN hidden representation to
predict the next event marker. The following subsections elaborate upon the
mathematical problem formulation, preliminaries for the proposed model, and
the in-depth explanation of the DMTPP model, followed by the implementation
details.

3.1 Problem Definition

The problem setting involves a sequence of events denoted by their time of occur-
rence and corresponding markers. Mathematically, each sequence is represented
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Fig. 3. Diagrammatic representation of the proposed DMTPP model. A sequence of
past events ((tj , yj), j ∈ (1, n)) is provided as input to the RNN model, which outputs
the learned embedding for the sequence, which is then used for predicting the next
event time (tn+1). The deviation between the expected and the actual time event is
calculated, followed by the combination of the embedding and the deviation for marker
prediction (yn+1).

by S = {(t1, y1), (t2, y2), ..., (tn, yn)}, where n refers to the total sequence
length. Here, (tj , yj) refers to the jth event represented by the time of the event
(tj) and the corresponding marker (yj). By default, the events are ordered in
time, such that tj+1 ≥ tj . Given the sequence of last n events, often the task is
to predict the next event time tn+1 and the corresponding marker yn+1. In refer-
ence to Fig. 1(a), the event refers to a transaction, event time refers to the time
of the transaction, and event marker refers to whether the transaction (event)
was fraudulent or not.

3.2 Preliminaries

Temporal Point Process (TPP): A temporal point process is a stochastic
process that models a sequence of discrete events occurring in a continuous-
time interval [1]. Typically, a TPP is modeled by using a conditional intensity
function, which measures the number of events that can be expected in a specific
time interval, given the historical sequence of event information. Mathematically,
the intensity function of a TPP is defined as the probability an event will occur
in [t, t + dt] time interval given the event history ht till time t:

λ∗(t)dt = λ(t | ht) = P (event in [t, t + dt] | ht) (1)

where, dt refers to a small window of time, and P (.) refers to the probability
function. As derived by Du et al. [3], the conditional density function (f(t|ht))
of an event occurring at time t can thus be specified as:

f(t|ht) = λ∗(t) exp
( −

∫ t

tn

λ∗(τ)dτ
)

(2)

where, tn refers to the last event and τ corresponds to a very small value tending
to zero. The conditional intensity function has been modelled using different
parametric forms in the past. Some of the well known methods are:

– Poisson process [11]: Events are assumed to be independent of their history,
such that λ(t|ht) = λ(t).
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– Hawkes Process [6]: In the Hawkes process, the conditional intensity function
constitutes a time decay kernel to take into consideration the events history.
The intensity function is assumed to be a linear function (γ(.)) of the history
along with the base intensity value (γ0) and a weight parameter (α) as:

λ∗(t) = γ0 + α
∑

tj<t

γ (t, tj) (3)

As demonstrated above, the traditional temporal point process based techniques
model the conditional intensity function by assuming that the data follows some
parametric form, which can often be estimated using maximum likelihood esti-
mation (MLE). The above assumption constraints the expressive power of the
conditional intensity function, since the true form of the intensity function is
unknown in real-time scenarios. This limitation often renders the above tech-
niques unusable in several real-world applications having complex intensity func-
tions.

Marked Temporal Point Process: A natural extension of the TPP based
techniques is the inclusion of a marker information along with each event. In
such scenarios, the model is expected to predict the next event time and corre-
sponding marker, while having access to the history of past events. Therefore,
the conditional intensity function for a marked temporal point process can be
formulated as follows:

λ∗((tj , yj)
)

= λ
(
(tj , yj) | ht

)
(4)

where, tj and yj refer to the event time and event marker, respectively.
λ∗((tj , yj)

)
can take multiple forms, however, for mathematical simplicity it is

mostly assumed that the event time and marker are conditionally independent
given the event history i.e. λ∗((tj , yj)) = λ∗(tj)λ∗(yj). The above assumption
assumes independent marker and time occurrence, which often limits the model
performance in scenarios where the event time and marker are interdependent.

3.3 Proposed Deviation-Based Marked Temporal Point Process

In the proposed Deviation-based Marked Temporal Point Process (DMTPP)
model, the objective is to predict the next event marker given the history of the
past events. The proposed DMTPP model addresses the discussed limitations by
utilizing a universal approximator for learning the conditional intensity function,
and by explicitly modeling the relationship between the event time and event
marker. This is achieved by utilizing a Recurrent Neural Network (RNN) as
the backbone model, and by incorporating the deviation between the actual
event time and the predicted event time for marker prediction. Since RNNs are
characterized by the property of being a universal approximator, they can thus
be applied to model complex intensity functions, and the deviation component
can be used to model the relationship between the event occurrence and the
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marker category. In literature, one of the seminal works involving the usage of
RNNs for marked temporal point processes was presented by Du et al. [3]. The
proposed model extends the current body of literature by modeling the inter-
dependence of the marker on the event time as well.

Figure 3 presents the diagrammatic representation of the proposed technique.
The model takes as input the past time sequence and marker sequence. It utilizes
an RNN as the backbone architecture and learns an embedding based on the past
events, followed by the prediction of the next event time. The deviation between
the predicted time and the actual time of the event is then concatenated with
the previously learned embedding for predicting the marker corresponding to
the next event. The RNN is thus used to model the intensity function for the
given sequences of events.

Mathematically, the last n events are passed as one sequence to the model
(S =

(
(tj , yj)

n
j=1

)
). For processing, instead of the absolute time stamps, the

sequence of the inter-event duration is provided to the algorithm for learning a
model invariant to the absolute time. For the time sequence tj , tj−1, the inter-
event duration is calculated as dj = tj − tj−1. The inter-event duration sequence
is calculated for all consecutive events in the sequence S and is provided to the
model (d1, d2, ..., dn) along with the previous marker sequence (y1, y2, ..., yn).
The marker information is converted into a sparse one-hot encoding for better
representation, followed by learning a feature vector using an embedding layer:

yem
j = W�

emyj + bem (5)

where, Wem is the weight matrix for the embedding layer and bem is the bias
vector. Thus, the input sequence consisting of the historical inter-event duration
(dj) and the past marker sequence (yem

j ) are provided as input to the RNN for
learning an embedding capturing the relation between the event sequence and
marker. The RNN utilizes the past historical representation (hj−1) along with
the other inputs and returns the updated hidden representation as follows:

hj = ReLU(Wyyem
j + Wddj + Whhj−1 + bh) (6)

where Wy, Wd, Wh and bh denote the marker weight matrix, time dura-
tion weight matrix, RNN’s representation (history) weight matrix, and the bias
weight vector, respectively. Based on the hidden representation hj , the next
inter-event time duration and marker can be calculated as follows:

p (dj+1 | hj) = ft (dj+1 | hj) ; p (yj+1 | hj) = fy (yj+1 | hj , δj+1) (7)

where δj+1 is the deviation for the (j + 1)th event which corresponds to the
difference between the predicted time and the actual time:

δj+1 = tj+1 − ta (8)

where ta and tj+1 is the actual and predicted time of the (j + 1)th event, respec-
tively. Therefore, the proposed DMTPP model utilizes the learned embedding
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from the past sequence for predicting the event time, and also incorporates the
deviation between the actual and expected time for marker prediction. Mathe-
matically, for the time prediction, the conditional intensity function is calculated
whereas for the marker prediction, the conditional distribution of the marker on
hidden representation and deviation of time is calculated. Similar to Du et al.
[3], the conditional intensity function for time prediction can be represented as:

λ∗(t) = exp
(
wh�

hj + β (t − tj) + b
)

(9)

where wh is a weight vector, while β and b are scalar values. The above equation
ensures that the conditional intensity is dependent upon the inter-dependence
of the past marker and time sequence obtained via the hidden representation
from the RNN (first term), the influence of the current time (second term), and
an offset base intensity value (third term). Given the above conditional intensity
function, the conditional density function for TPPs (Eq. 2) can thus be updated.
Therefore, the likelihood of the next event occurring at tj+1 given the history
hj can be given as:

ft (tj+1 | hj) = λ (tj+1 | hj) exp

(

−
∫ tj+1

tj

λ(tj | hj)dt

)

(10)

The above equation is utilized for predicting the next event time, given the
learned hidden representation from an RNN. Given the expected (predicted)
and actual time occurrence, the corresponding marker can be predicted using
the hidden representation hj and the time deviation δj+1, by using the Softmax
function on the conditional probability as:

fy (yj+1 = k | hj , δj+1) =
exp (Wk[hj |δj+1] + byk)∑K
i=1 exp (Wi[hj |δj+1] + byi )

(11)

where [hj |δj+1] represents the concatenation of the embedding obtained via the
RNN and the computed time deviation. Given a K class problem for marker
prediction, Wi refers to the weight vector for the ith marker, and k refers to
the correct marker for the next event. The inclusion of the deviation parameter
enables the model to learn the inter-dependence between the user behavior (for
event occurrence) and the marker. This is especially useful in scenarios where
the marker is not known at real-time, but is instead computed after some time
of the event occurrence. For example, earthquake intensity or influence of a
retweet/advertisement. In such scenarios, the deviation from the expected time
of the event can often impact the outcome of the event (marker). By modeling
the time deviation, the proposed DMTPP model is thus able to capture the
corresponding variations in the marker in real-time. The model is trained by
maximizing the joint log-likelihood of the event prediction and marker prediction
loss functions as follows:

L ({S}) =
n∑

i=1

Si
n−1∑

j=r−1

⎛

⎜
⎝λ1 log fy

(
yi
j+1 | [hi

j , δj+1]
)

︸ ︷︷ ︸
Marker Prediction

+λ2 log ft
(
tij+1 | hi

j

)

︸ ︷︷ ︸
Time Prediction

⎞

⎟
⎠ (12)
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Table 1. Details of the datasets used in this research demonstrating variability in
terms of size, number of marks, number of events, and average sequence length.

Dataset No. of Markers No. of Events Avg. Seq. Length

MIMIC-II [16] 75 2419 4

StackOverflow [4] 22 480414 72

Retweet [28] 3 2M 209

where, r refers to the first event that is being predicted for sequence i (Si). n
refers to the number of sequences in the training set S, Si

n refers to the number
of events in sequence Si. λ1 and λ2 refer to the weight given to each component.

3.4 Implementation Details

The proposed DMTPP model has been implemented in the Pytorch environment
[17] with a NVIDIA Quadro RTX6000 GPU. As demonstrated in Fig. 3, the
DMTPP model consists of an initial embedding layer for the marker sequence,
a RNN model, and modules for predicting the event time and marker. The
embedding layer is of dimension 10, while the RNN model consists of a single
layer Long Short-Term Memory module [8]. A 32 dimension representation is
obtained via the RNN model, which is provided to a dense-layer for predicting
the time, followed by another dense-layer for marker prediction. Dropout [7] has
also been applied as a regularizer after the RNN layer. The weight parameters in
Eq. 12 are initialized as follows: λ1 = 0.15 and λ2 = 0.05. The model is trained
using the Adam optimizer [13] for 100 epochs with 1024 batch-size.

4 Experiments and Protocols

In order to evaluate the effectiveness of the proposed Deviation-based Marked
Temporal Point Process model, experiments have been performed on three
datasets corresponding to different tasks. Table 1 presents the dataset statistics
demonstrating high variability across different parameters. Details regarding the
datasets and protocols are as follows:

(i) Disease Type Prediction on the MIMIC II Dataset [16]: The MIMIC
II dataset is a subset of the Electrical Medical Records Dataset which contains
a collection of clinical visit records of Intensive Care Unit (ICU) patients over
a period of seven years. Each event contains the time when a patient visits the
ICU along with their type of disease (75 disease types). For this dataset, marker
prediction corresponds to predicting the disease type. Similar to the existing
protocol [29], 90% of the data has been used for training the model, while the
remaining 10% corresponds to the test set.

(ii) Badge Prediction on the StackOverflow Dataset [4]: StackOverflow1

is a popular question answering website where users are awarded with different
1 https://archive.org/details/stackexchange.

https://archive.org/details/stackexchange
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Table 2. Marker prediction accuracy (%) on the MIMIC-II and StackOverflow
datasets. Comparisons have been performed with the state-of-the-art algorithms.
Owing to the same protocol, results have directly been taken from Zuo et al. [29].

Model MIMIC-II StackOverflow

Recurrent Marked Temporal Point Process [3] 81.2 45.9

Neural Hawkes Process [15] 83.2 46.3

Time Series Event Sequence [24] 83.0 46.2

Transformer Hawkes Process [29] 85.3 47.0

Deviation-based Marked TPP 91.76 55.42

badges (Guru, Great Answer, Stellar Question, etc.) for enhancing user engage-
ment and popularity. The StackOverflow dataset contains sequence of badges
(marker) received by a user along with the time when the badge is given. A sim-
ilar protocol and pre-processing is followed as the existing manuscript [3]. The
processed dataset contains 6,633 users and 480,414 events with total 22 badges.
90% of the data is used for training, and the remaining 10% is the test set.

(iii) Retweet Prediction on the Retweet Dataset [28]: The Retweet dataset
is formed through the Seismic dataset2. A stream of retweets is available in which
each event is a retweet with the time and number of followers of the user (who
has retweeted). Markers are divided into three classes based on the number of
followers (degree) of each user: (i) a normal user having degree lower than the
median, (ii) an influencer having degree higher than or equal to the median and
lower than 95 percentile, and (iii) a celebrity having degree higher than or equal
to 95 percentile. Similar to the existing protocol [5], we randomly sample 10,000
streams of retweets and apply five-fold cross validation for experiments.

Consistent with the existing research, the following metrics have been used
across different datasets:

– Classification Accuracy/Micro-F1: Micro-F1 measures the F1-score of
the aggregated contributions of all classes. It is also defined as the overall
accuracy which is the ratio of correctly classified samples out of all samples.

– Macro-F1: For a multi-class classification problem, Macro-Averaged F1-
score or Macro-F1 score is defined as the average of F1-scores of each class.

5 Results and Analysis

Tables 2–3 present the performance of the proposed Deviation-based Marked
Temporal Point Process model and other comparative techniques. Figures 4–5
present the analysis performed on the DMTPP based model. The following para-
graphs elaborate the results and analysis of the proposed model:

2 http://snap.stanford.edu/seismic/.

http://snap.stanford.edu/seismic/
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Table 3. Marker prediction performance on the Retweet Dataset for predicting the
type of retweet. Owing to the same protocol, comparative results have directly been
taken from the published manuscript [5].

Model Micro-F1 Macro-F1

Noise-Contrastive Estimation Poisson (NCE-P) 0.52 0.28

Noise-Contrastive Estimation Gaussian (NCE-G) 0.49 0.30

MTPP with Discriminative Loss Function (DIS) 0.49 0.29

Maximum Likelihood Estimation (MLE) 0.50 0.29

Monte Carlo Maximum Likelihood Estimation (MCMLE) 0.49 0.28

INITIATOR [5] 0.57 0.35

Deviation-based Marked TPP 0.58 0.45

Comparison with State-of-the-Art Algorithms: Table 2 presents the
performance on the MIMIC-II and StackOverflow datasets. It can be observed
that the proposed technique achieves improved performance as compared to the
state-of-the-art algorithm (Transformer Hawkes Process [29]). Due to the same
protocol, results have directly been taken from the published manuscript. Specif-
ically, on the MIMIC-II dataset, an improvement of at least 6% is observed from
the existing results reported by the Transformer Hawkes Process. Further, com-
parison has also been made with the Recurrent Marked Temporal Point Process
model (which forms the base for the proposed technique), where an improvement
of over 10% is obtained. A similar improvement is observed on the StackOverflow
dataset as well, wherein, the proposed technique achieves 55.42%, resulting in
an improvement of over 8% from the current best results (Transformer Hawkes
Process [29]). Further, Table 3 presents the performance obtained on the Retweet
dataset, wherein results are reported using the standard Micro F-1 and Macro
F-1 metrics. Due to the same protocol, results have directly been taken from the
published manuscript [5]. From Table 3 it is observed that the proposed model’s
performance on both metrics is higher than the state-of-the-art model: the INI-
TIATOR algorithm. Specifically, the proposed model achieves a Micro-F1 and
Macro-F1 value of 0.58 and 0.45, respectively. Since the Retweet dataset is char-
acterized by heavy class imbalance in the testing set, the above metrics provide a
better understanding of the model performance as compared to traditional clas-
sification accuracy. We have also performed the Chi-Squared Statistic Test of
Independence [14] on the Retweet dataset to evaluate the statistical association
between the results obtained by the proposed model and the state-of-the-art INI-
TIATOR model. A p−value of less than 0.01 is obtained between the Micro-F1
scores, which provides us with sufficient evidence to conclude that the models
are disassociated. We believe that the explicit modeling of the dependence of
the marker prediction on the time prediction enables the model to learn better
features, thus resulting in improved marker prediction performance.
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(a) Actual Labels (b) Predicted Labels (c) Score Distribution

Fig. 4. (a–b) Bar graphs demonstrating the distribution for the (a) ground-truth and
(b) predicted marker labels. Distribution of the top four classes from the MIMIC-II
dataset has been plotted. The predicted distribution follows a similar pattern as the
ground-truth distribution, thus suggesting that the DMTPP model is able to capture
the marker spread well. (c) Score distribution obtained from the DMTPP model on the
test events of the MIMIC-II dataset. For each sample the actual (correct) class score
and the other (incorrect) class scores obtained via the model have been plotted. For
almost all samples, a clear distinction is seen between the correct and incorrect class
scores.

Analysis of the proposed Deviation-based Marked TPP Model:
Fig. 4(a–b) presents the marker distribution of the (a) ground-truth labels and
the (b) labels predicted by the DMTPP model on the MIMIC-II dataset. A
similar distribution is observed across the two graphs, thus suggesting that the
proposed model is able to learn and simulate the varying occurrence of differ-
ent marker types. Further, Fig. 4(c) presents the score distribution for differ-
ent samples of the MIMIC-II dataset, where clear distinction can be observed
between the scores of the correct class versus the scores of the incorrect class. A
large number of incorrect class scores fall below the range of 0.1 which demon-
strates the discriminative nature of the learned classifier. Experiments have also
been performed to analyze the different components and hyper-parameters of the
Deviation-based Marked TPP model. Discussions regarding different aspects are
as follows:

(i) Effect of Sequence Length: Experiments have been performed on the
MIMIC-II dataset for understanding the effect of the input sequence length on
the model’s performance. The sequence length determines the relevance of the
length of the user’s history for predicting the next marker. We observe that
on higher sequence length the model’s performance decreases. Specifically, the
model achieves 72.3% and 86.1% with a sequence length of 5 and 4, respectively,
while achieving 91.76% with sequence length 3. Reducing the length further to
2 results in an accuracy of 88.2%, thus demonstrating a slight drop, while still
achieving improved results from the state-of-the-art technique.

(ii) Effect of Weight Hyper-parameters: Experiments have also been per-
formed to understand the effect of the weight hyper-parameters (λ1 and λ2 in
Eq. 12). Specifically, the MIMIC-II dataset has been used to see the impact of
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Fig. 5. Sample simulation demonstrating the effect of the deviation parameter for pre-
dicting the marker (class). Two sequences are presented where an alpha value (α) was
added to the deviation, followed by marker prediction. Variation in the class prediction
suggests dependency on the deviation parameter.

varying weights of time loss and marker loss on the model’s performance. As
mentioned earlier, best performance of 91.76% is achieved with the following
combination: (λ1 = 0.05 and λ2 = 0.15). A drop in performance is observed
upon varying the value of λ1 or λ2, respectively. For example, a classification
accuracy of 90.73% is obtained with the weight pairs (0.05, 1), (0.05, 2), and
(0.01, 1). The slight drop in performance suggests the model’s robustness to
variations in the hyper-parameter selection.

(iii) Performance on Time Prediction: While the aim of the DMTPP model
is to perform accurate marker prediction, analysis has also been performed on
the MIMIC-II dataset to understand its performance for time prediction. The
proposed model obtains a Root Mean Squared Error (RMSE) value of 0.89 for
time prediction, which is the second best in comparison to the state-of-the-art
performance of 0.82 obtained by the Transformer Hawked Process [29]. Further,
the proposed model performs better as compared to the other reported results,
specifically, Recurrent Marked Temporal Point Process [3]: 6.12, Neural Hawkes
Process [15]: 6.13, Time Series Event Sequence [24]: 4.70, Self-Attentive Hawkes
Process [25]: 3.89. The accurate time prediction further supports the high marker
prediction performance of the proposed model.

(iv) Effect of Deviation: Experiments have also been performed to understand
the effect of the deviation parameter, and whether it contributes to the marker
prediction or not. A simulation was performed on the MIMIC-II dataset, where,
a small value (α) was added to the deviation obtained after the time prediction.
The updated or perturbed deviation value was then provided with the learned
embedding for predicting the corresponding marker. Figure 5 presents the out-
put obtained on two sample sequences. In both the cases, the predicted marker
was updated when the deviation was changed by an α value. Similar behavior
was observed across different sequences as well. The simulation suggests that
the DMTPP based model is able to learn the inter-dependence between the
user behavior (event occurrence) and the corresponding marker, and updates its
prediction based on the variability between the expected and actual event time.
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6 Conclusion and Discussion

In various real-world scenarios, the marker information is not immediately known
after the occurrence of an event. For example, the impact of an advertisement
retweet on increased sales or online traffic generation, intensity of an earthquake,
or identifying fraudulent transactions. In such scenarios, the marker information
(advertisement impact, earthquake intensity, and fraud event) is known after
some time of the event occurrence. It is our hypothesis that in such scenarios,
the variation between the expected and actual event occurrence also impacts
the corresponding marker. Therefore, in this research, a novel Deviation based
Marked Temporal Point Process (DMTPP) model is proposed. The proposed
model focuses on learning the dependency between the event time and marker
information for predicting accurate markers. The DMTPP model builds upon
the existing literature in the field of Marked Temporal Point Processes which
has focused majorly on predicting the next event time and corresponding marker
information without explicitly modeling the relationship between the two. The
efficacy of the proposed model has been demonstrated on three different tasks
and datasets (Table 2 and Table 3), where it achieves state-of-the-art perfor-
mance. Further analysis on the model demonstrates its high performance for
time prediction and impact of the deviation component as well. We believe that
the research performed in this paper can act as a stepping stone to further
explore the possibilities that Temporal Point Processes hold in terms of high
accuracy of event type prediction and not just event time prediction. One of the
key highlights of the DMTPP model is the requirement of real-time event occur-
rence (time) for marker prediction, which can further be improved in future
algorithms. As part of future work, the proposed DMTPP model can also be
extended to incorporate additional meta-information during training which can
further boost the marker prediction performance.
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Abstract. This work investigates the problem of learning temporal
interaction networks. A temporal interaction network consists of a series
of chronological interactions between users and items. Previous methods
tackle this problem by using different variants of recurrent neural net-
works to model interaction sequences, which fail to consider the struc-
tural information of temporal interaction networks and inevitably lead
to sub-optimal results. To this end, we propose a novel Deep Structural
Point Process termed as DSPP for learning temporal interaction net-
works. DSPP simultaneously incorporates the topological structure and
long-range dependency structure into the intensity function to enhance
model expressiveness. To be specific, by using the topological structure
as a strong prior, we first design a topological fusion encoder to obtain
node embeddings. An attentive shift encoder is then developed to learn
the long-range dependency structure between users and items in con-
tinuous time. The proposed two modules enable our model to capture
the user-item correlation and dynamic influence in temporal interaction
networks. DSPP is evaluated on three real-world datasets for both tasks
of item prediction and time prediction. Extensive experiments demon-
strate that our model achieves consistent and significant improvements
over state-of-the-art baselines.

Keywords: Temporal interaction networks · Temporal point process ·
Graph neural networks

1 Introduction

Temporal interaction networks are useful resources to reflect the relationships
between users and items over time, which have been successfully applied in many
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real-world domains such as electronic commerce [3], online education [18] and
social media [12]. A temporal interaction network naturally keeps a graph data
structure with temporal characteristics, where each edge represents a user-item
interaction marked with a concrete timestamp.

Representation learning on temporal interaction networks has gradually
become a hot topic in the research of machine learning [24]. A key challenge
of modeling temporal interaction networks is how to capture the evolution of
user interests and item features effectively. Because users may interact with var-
ious items sequentially and their interests may shift in a period of time. Similarly,
item features are also ever-changing and largely influenced by user behaviours.
Recent works have been proposed to tackle this challenge by generating the
dynamic embeddings of users and items [7,16,17,21]. Although these methods
achieve promising results to some extent, they still suffer from the following two
significant problems.

1) Topological structure missing. Most previous methods regard learning
temporal interaction networks as a coarse-grained sequential prediction problem
and ignore the topological structure information. In fact, instead of only treat-
ing a temporal interaction network as multiple interaction sequences, we can
discover user similarity and item similarity from the view of the topological
structure. Nevertheless, due to the bipartite nature of temporal interaction net-
works, each node is not the same type as its adjacent nodes, so that we have
to develop a flexible method to capture such a meaningful topology. 2) Long-
range dependency structure missing. Most current methods are built upon
the variants of recurrent neural networks (RNNs) to learn interaction sequences.
Hence, they typically pay more attention to short-term effects and miss the
dependency structure in long-range historical information [8,25]. But learning
the long-range dependency structure in temporal interaction networks is also
critical, since it can better model the long-standing user preference and intrinsic
item properties.

In this paper, we propose the Deep Structural Point Process termed as
DSPP to solve above problems. Following the framework of Temporal Point
Process (TPP) [29], we devise a novel intensity function which combines the
topological structure and the long-range dependency structure to capture the
dynamic influence between users and items. Specifically, we first design a topo-
logical fusion encoder (TFE) to learn the topological structure. TFE includes a
two-steps layer to encourage each node to aggregate homogeneous node features.
To overcome the long-range dependency issue, we then develop an attentive shift
encoder (ASE) to recognize the complex dependency between each historical
interaction and the new-coming interaction. Finally, we incorporate the learned
embeddings from TFE and ASE into our intensity function to make time predic-
tion and item prediction. The main contributions of our work are summarized
as follows:

– We propose the novel DSPP to learn temporal interaction networks within
the TPP paradigm, with the goal of solving two above structural missing
problems simultaneously.
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– DSPP includes the well-designed TFE and ASE modules. TFE utilizes the
topological structure to generate steady embeddings, and ASE exploits the
long-range dependency structure to learn dynamic embeddings. Furthermore,
these two types of embeddings can be seamlessly incorporated into our inten-
sity function to achieve future prediction.

– Extensive experiments are conducted on three public standard datasets.
Empirical results show that the proposed method achieves consistent and
significant improvements over state-of-the-art baselines1.

2 Related Work

Previous studies for learning temporal interaction networks can be roughly
divided into the following three branches: random walk based method, RNN
based methods and TPP based method.

– Random walk based method. Nguyen et al. propose CTDNE [21] which mod-
els user and item dynamic embeddings by the random walk heuristics with
temporal constraints. CTDNE first samples some time increasing interaction
sequences, and then learns context node embeddings via the skip-gram algo-
rithm [20]. However, it ignores the useful time information of the sampled
sequences, e.g., a user clicks an item frequently may indicate that the user
pays more attention to this item at the moment.

– RNN based methods. LSTM [11], RRN [27], LatentCross [2] and Time-
LSTM [30] are pioneering works in this branch. For example, RRN provides a
unified framework for combining the static matrix factorization features with
the dynamic embeddings based on LSTM. Moreover, it provides a behavioral
trajectory layer to project user and item embeddings over time. LatentCross
is an extension of the architecture of GRU [5], which incorporates multiple
types of context information. Time-LSTM develops the time gates for LSTM
for modeling the interaction time information. Furthermore, JODIE [16] and
DGCF [17] are the state-of-the-art methods for learning temporal interaction
networks via the coupled variants of RNNs. JODIE defines two-steps embed-
ding update operation and an embedding projection function to predict the
target item embedding for each user directly. DGCF extends JODIE by con-
sidering the 1-hop neighboring information of temporal interaction networks.

– TPP based method. DeepCoevolve [7] is a promising work that applies TPPs
to learn temporal interaction networks. It uses a multi-dimensional intensity
function to capture the dynamic influence between users and items. How-
ever, DeepCoevolve maintains the same embeddings of user and item until it
involves a new interaction, which is not consistent with real-world facts [16].
Furthermore, it uses a linear intensity function to describe the dynamic influ-
ence, leading to the limited model expressiveness.

1 The source code is available from https://github.com/cjx96/DSPP.

https://github.com/cjx96/DSPP
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3 Background

3.1 Temporal Interaction Network

A series chronological interactions can be represented as a temporal interaction
network. Formally, a temporal interaction network on the time window [0, T ) can
be described as G(T ) = (U ,V, E), where U , V and E denote the user set, item set
and interaction set, respectively. Each element (ui, vj , t) ∈ E is an interaction,
describing that the user ui ∈ U conducts an action with the item vj ∈ V at the
concrete timestamp t.

3.2 Temporal Point Process

TPPs are one of branches of stochastic processes for modeling the observed
random discrete events, e.g. user-item interactions over time. Using conditional
intensity function λ(t) is a convenient way to describe TPPs. Given a interaction
sequence that only has time information T := {ti}ni=1 and an infinitesimal time
interval dt, where ti ∈ R

+ and 0 < t1 < t2... < tn, λ(t)dt is the conditional
probability of happening an interaction in the infinitesimal interval [t, t + dt)
based on T . It can be also interpreted heuristically in the following way:

λ(t)dt := P{an interaction occurs in [t, t + dt)|T } = E[N([t, t + dt))|T ],

where N([t, t+dt)) is used to count the number of interactions happened in the

time interval [t, t + dt). A general assumption made here is that there is either
zero or one interaction happened in this infinitesimal interval, i.e., N([t, t +
dt)) ∈ {0, 1}. Furthermore, given a future timestamp t+ > tn and T , we can
formulate the conditional probability of no interactions happened during [tn, t+)

as S(t+) = exp (−
∫ t+

tn
λ(t)dt). Therefore, the conditional probability density of

the next interaction happened at the future timestamp t+ can be defined as:
f(t+) = S(t+)λ(t+), which means that no interaction happens in time interval
[tn, t+) and an interaction happens in infinitesimal interval [t+, t+ + dt).

Multivariate Hawkes Process (MHP) is one of the most important TPPs for
modeling interaction sequences [9]. We denote Sui

(T ) = (V,Hui
) as an interac-

tion sequence of user ui on the time window [0, T ], where Hui
is the interaction

sequence of user ui. The h-th interaction of Hui
is denoted as (vh, th), which

describes that the user ui ∈ U has interacted with the item vh ∈ V at th ≤ T .
The intensity function of an arbitrary item vj in Sui

(T ) is defined as:

λvj (t) = μvj +
∑

th<t
α(vj ,vh)κ(t − th),

where μvj
(a.k.a base intensity) is a positive parameter which is independent

of the interaction sequence Sui
(T ), α(vj ,vh) is also a positive parameter that

estimates the influence between item pair (vj , vh) and the κ(t−th) is a triggering
kernel function. The intensity function explicit models dynamic influence among
interaction sequence. However, most existing approaches ignore to model the
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Fig. 1. A simple overview of DSPP. “TFE”, “ASE”, “Intensity” mean topological
fusion encoder, attentive shift encoder and intensity function, respectively. Gm−1 and
Gm are two network snapshots. Noticeably, Gm−1 ∈ Gm. (ui, vj , tp), (ui, vj , tq) denote
two interactions, where tp ∈ [d × (m − 1), d × m) and tq ∈ [d × m, d × (m + 1)). Sui(tp)
and Sui(tq) are two interaction sequences.

topological structure between a series of interaction sequences. To fill this gap,
DSPP includes a novel TFE module which provides a strong structure prior to
enhance model expressiveness.

4 Proposed Model

4.1 Overview

For a temporal interaction network G(T ) = (U ,V, E), the adjacency matrix would
change over time, because the emerge of a new interaction would introduce a new
edge in the temporal interaction network, causing the huge occupation of mem-
ory. To sidestep this problem, we exploit an ordered snapshot sequence {Gm}M−1

m=0

with the same time interval d = T
M to simulate the temporal interaction net-

work G(T ). Each snapshot Gm equals to G(d × m), and M is a hype-parameter
to control the number of snapshot.

Figure 1 shows the overview of our model. In DSPP, the TFE module aims
to learn steady embeddings which represent the stable intentions of users and
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items in the corresponding time period [d × m, d × (m + 1)) from Gm. Here we
denote the steady embeddings of an arbitrary user ui and an item vj as um

i and
vm
j , respectively. The second module ASE aims to learn dynamic embeddings

of users and items for describing their dynamic intentions at timestamp t.

4.2 Embedding Layer

The embedding layer is used to initialize node embeddings (all users and items)
and time embedding. It consists of two parts: the node embedding layer and the
time embedding layer.

Node Embedding Layer. The node embedding layer aims to embed users
and items into a low-dimensional vector space. Formally, given a user ui or an
item vj , we can obtain its D-dimensional representation (ui ∈ R

D or vj ∈ R
D)

from an initialization embedding matrix with a simple lookup operation, where
D denotes the dimension number of embeddings.

Time Embedding Layer. Position embedding [13,22] is widely used to recog-
nize the ordered information of sequences. However, the continuous time infor-
mation of interaction sequence cannot be well reflected by the discrete position
embedding. Therefore, we design a time embedding layer that encodes the dis-
crete ordered information and continuous time information simultaneously. Con-
cretely, given a future timestamp t+ ≥ t, user ui and the h-th interaction (vh, th)
of its interaction sequence Sui

(t) (detailed in Sect. 3.2), the h-th interaction time
embedding pth(t+) of future timestamp t+ can be formulated as follows:

[
pth(t+)

]
j

=

⎧
⎨

⎩
cos(ωj(t

+ − th) + h/10000
j−1
D ), if j is odd,

sin(ωj(t
+ − th) + h/10000

j
D ), if j is even,

where [pth(t+)]j is the j-th element of the given vector pth(t+), and ωj is a
parameter to scale the time interval t+ − th in the j-th dimension.

4.3 Topological Fusion Encoder

In this section, we propose a novel topological fusion encoder (TFE) to learn the
topological structure. The existing graph encoders [6,23] learn node embeddings
by aggregating the features of neighboring nodes directly. However, in temporal
interaction networks, it would easily lead to improper feature aggregations due
to the fact that the user neighbors are items. In this paper, we introduce a
topological aggregation layer (TAL) into TFE to alleviate this issue.

Topological Aggregation Layer. Different with homogeneous graphs, the
distance between a user (item) and other users (items) is always an even num-
ber in temporal interaction network, e.g. 2, 4 and 6. This fact indicates that our
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encoder should aggregate homogeneous information through the even-number-
hop. Based on this topological structure, we design a novel topological aggrega-
tion layer (TAL) as shown in Fig. 2. Concretely, given an interaction (ui, vj , t), we
firstly compute its corresponding snapshot identifier m = � t

d�, where �·� denotes
the floor function and d is the time interval of ordered snapshot sequence. Then,
to generate the user representation uk

i in the k-th TAL, we calculate its inter-
mediate representation v̂k

c as follows:

v̂k
c = δ

(
Ŵ k

u MEAN
(
{uk−1

q : uq ∈ Nm(vc)}
))

, where vc ∈ Nm(ui), (1)

where δ is the ReLU activity function, Ŵ k
u is a parameter matrix, and Nm(vc)

denotes the set of 1-hop neighbors (user-type) of item vc in Gm. Therefore, v̂k
c

can be consider as a user-type representation since it only aggregates the user-
type features. After obtaining the intermediate representation v̂k

c , we leverage
the attention mechanism [25] to learn different weights among the neighboring
intermediate representations for user ui. The final embedding uk

i can be formu-
lated as:

ec = δ
(
(W

k
uu

k−1
i )�v̂k

c

)
, where vc ∈ Nm(ui),

αc =
exp (ec)∑

vq∈Nm(ui)
exp (eq)

,

uk
i = δ

( ∑
vc∈Nm(ui)

αcv̂
k
c

)
,

uk
i = W k

u

[
uk

i

∣∣uk−1
i

]
,

(2)

where the W
k

u and W k
u are parameter matrices, (·)� is the transpose operation

and [·|·] is concatenation operation. Analogously, we can employ the same learn-
ing procedure to update vk−1

j . In TFE, we stack K TALs and denote the final
outputs of uK

i and vK
j as our steady embeddings um

i and vm
j for user ui and

item vj in Gm, respectively.

Temporal Fusion Layer. The proposed TAL can effectively deal with a single
network snapshot, but it cannot capture the structural variations across the
ordered snapshot sequence {G0,G1, ...,GM−1}. To mitigate this problem, after
obtaining user and item embeddings (e.g. um

i and vm
j ) for each discrete snapshot

Gm, we introduce a temporal fusion layer to encode these dynamical changes in
the ordered snapshot sequence:

um
i = fu(um−1

i ,um
i ), vm

j = fv(v
m−1
j , vm

j ), (3)

where fu and fv are temporal modeling functions. There are many alternative
methods that can be used for concrete implementations. In our model, we choose
two separate GRUs [5] to model fu and fv, respectively.

4.4 Attentive Shift Encoder

In this section, we develop an attentive shift encoder (ASE) for temporal interac-
tion networks for capturing the long-range dependency structure. Previous works
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Fig. 2. Illustration of topological aggregation layer (TAL). Blue and yellow color nodes
denote users and items, respectively. Nodes with two colors denote the intermediate
representations, and gray lines denote that users have interacted with items. The sub-
graphs (a) and (b) show the learning procedures of uk−1

i in k-th TAL. The green dotted
lines (Eq. (1)) and orange dotted lines (Eq. (2)) describe how to derive the embedding
uk

i by considering the topological structure of temporal interaction network. (Color
figure online)

employ different RNN variants which tend to forget the long history information,
leading to the problem of long-range dependency structure missing. In contrast,
our ASE module can explicitly learn the dependencies between each historical
interaction and the new-coming interaction via the attention mechanism.

Attentive Interaction Layer. Considering a new-coming interaction (ui, vj , t)
that user ui has an interaction with item vj at the timestamp t, we can use it to
generate the dynamic embeddings of users and items and compute the correlation
among historical interactions in Sui

(t). The concrete implementation is given as:

eh =
(
WQ[ui|(vj + p

t
|Hui

|(t))]
)�

WK [ui|(vh + pth(t))], where (vh, th) ∈ Sui(t)

αh =
exp (eh)∑

(vc,tc)∈Sui
(t) exp (ec)

,

ot =δ
( ∑

(vh,th)∈Sui
(t)

αhWV vh)
,

(4)

where |Hui
| is the number of interaction sequence Sui

(t), and ot is the new-
coming interaction feature. WQ,WK and WV are the query, key and value param-
eter matrices, respectively. Afterwards, we generate the embeddings of user ui

and item vj at timestamp t via the following operations:

ui(t) = gu(ui,o
t), vj(t) = gv(vj ,o

t), (5)

where gu and gv are embedding generation functions. In our model, we also use
two separate GRUs for their implementations.
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Temporal Shift Layer. Intuitively, the embeddings of user and item should be
changed over time. For example, electronic products will gradually reduce their
prices over time, and users may have different intentions when they returned to
the E-commerce platform again. Hence, maintaining the same embeddings in a
period cannot reflect the reality for the future prediction [2]. In our work, we
devise a temporal shift layer to achieve dynamic embeddings over time. Specifi-
cally, after obtaining the embeddings of user ui and item vj at timestamp t, i.e.,
ui(t) and vj(t) in Eq. (5), their dynamic embeddings at future timestamp t+ ≥ t
can be calculated as follows:

ui(t
+) = (1 + Δwui) ∗ ui(t), vj(t

+) =
(
1 + Δwvj

)
∗ vj(t), (6)

where Δ= t+−t is the shift time interval, ∗ is the element-wise product, wui
and

wvj
are corresponding learnable shift vectors of user ui and item vj , respectively.

We assume that the user or item embedding can shift in continuous space with
its own trajectory, so each user or item has a specific shift vector.

4.5 Model Training

To explicitly capture dynamic influence between users and items, we devise
a novel intensity function which is generated via the steady embeddings and
dynamic embeddings.

Intensity Function. We model all possible interactions for all users with items
via a multi-dimensional intensity function, where each user-item pair holds one
dimension. Formally, based on the learned user and item embeddings, the inten-
sity function of user-item pair (ui, vj) is defined as follows:

λ(ui,vj)(t) = σ
(
(u

� t
d

�
i )� v

� t
d

�
j︸ ︷︷ ︸

base intensity
(TFE)

+ (ui(t))
� vj(t)︸ ︷︷ ︸

dynamic change
(ASE)

)
,

(7)

where � t
d� denotes the corresponding network snapshot identifier and σ is the

softplus function for ensuring that the intensity function is positive and smooth.
Our intensity function is similar with MHP (detailed in Sect. 3.2): 1) The former
term (u� t

d �
i )� v

� t
d �

j is provided by TFE, which uses the topological structure of
temporal interaction network as a strong prior to generate the base intensity. 2)
The latter term (ui(t))� vj(t) is obtained by ASE, which describes the dynamic
changes for this user-item pair.

Objective Function. Based on the proposed intensity function, we can train
our model by maximizing the log-likelihood of these happened interactions dur-
ing time window [0, T ):

L =
∑

(ui,vj ,t)∈G(T )

log(λ(ui,vj)(t)) −
∫ T

0

λ(t)dt,

︸ ︷︷ ︸
non-happened interactions

(8)
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Algorithm 1. The training procedure of DSPP.
Input: The training temporal interaction network G(Ttr), the ordered snapshot

sequence {G0, G1, ..., GM−1}, the time interval d, the user set U , the item set V,
sampling number N .

1: Initialize model parameters.
2: while not convergence do
3: Enumerate a batch of consecutive interactions from G(Ttr) as B.
4: ∇ ← 0 \\ Happened interactions.
5: Λ ← 0 \\ Non-happened interactions.
6: for each interaction (ui, vj , t) ∈ B do
7: m ← � t

d
� \\ Calculate the snapshot identifier.

8: Calculate steady embedding um
i and vm

j via TFE based on Gm.
9: Calculate dynamic embedding ui(t) and vj(t) by ASE.

10: ∇ ← ∇ + log(λ(ui,vj)(t))

11: if ui has next interaction at future timestamp t+ with item vc then
12: ∇ ← ∇ + log(λ(ui,vc)(t

+))
13: Uniformly sample a timestamp set ts = {tsk}N

k=1 ← Uniform(t, t+, N).
14: Sample the negative item set Υ \\ Negative sampling.
15: for k ∈ {2, ..., N} do
16: Λ ← Λ + (tsk − tsk−1)λ(tsk) \\ Monte Carlo estimation.
17: end for
18: end if
19: end for
20: L ← ∇ − Λ
21: Update the model parameters by Adam optimizer.
22: end while

λ(t) =
∑

ui∈U

∑
vj∈V

λ(ui,vj)(t). (9)

Maximizing the likelihood function L can be interpreted intuitively in the follow-
ing way: 1) The first term ensures that all happened interactions probabilities
are maximized. 2) The second term penalizes the sum of the log-probabilities
of infinite non-happened interactions, because the probability of no interaction
happens during [t, t + dt) is 1 − λ(t)dt, and its log form is −λ(t)dt [19].

Prediction Tasks. Beneficial from TPP framework, DSPP can naturally tackle
the following two tasks:

– Item prediction: Given user ui and a future time t+, what is the item that
this user will interact at time t+? To answer this question, we rank all items
and recommend the one that has the maximum intensity:

argmaxvj

λ(ui,vj)(t
+)

∑
vc∈V λ(ui,vc)(t

+)
, (10)

– Time prediction: Given the user ui, item vj and timestamp tn, how long will
this user interact with this item again after timestamp tn? To answer this
question, we estimate the following time expectation:
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Δ =

∫ ∞

tn

(t − tn)f(ui,vj)(t)dt, (11)

where f(ui,vj)(t) = S(ui,vj)(t)λ(ui,vj)(t) is the conditional density (details in
Sect. 3.2) and Δ is the expectation interaction time.

4.6 Model Analysis

Differences with Sequential Recommendation. Sequential recommenda-
tion methods [4,10,13,28] also focus on modeling sequential user preferences.
Compared with them, DSPP has the following fundamental differences:

– In the task level, DSPP concentrates on modeling the dynamic evolution of
users and items in continuous time. DSPP can not only predict the next
item, but also explicitly estimates the time expectation of a given user-item
interaction. In contrast, sequential recommendation aims to model interaction
sequences in the discrete manner. Thus, most of them ignore the timestamp
information and cannot model the time distribution.

– In the model level, DSPP simultaneously captures the topological structure
and the long-range dependency structure via our TFE and ASE modules, but
sequential recommendation methods usually ignore the topology information
in temporal interaction networks.

Time Complexity. To accelerate the training process of DSPP, we adopt t-
batch algorithm [16] to organize data for paralleling training. Moreover, we apply
Monte Carlo Algorithm [1] with the negative sampling trick [7] to estimate our
objective function Eq. (8). Hence, the main operations of DSPP fall into the
proposed TFE and ASE modules. The computational complexity of TFE is
O(K|E|D), and the ASE is O(HBD), where K is the number of TAL, B is
the batch size, and H is a hype-parameter to control the maximum length of
historical interactions. In general, our model keeps an efficient training speed.
Empirically, in the same running environment, JODIE [16], DGCF [17] and
DSPP would cost about 5.1 min, 17.7 min, and 8.15 min per epoch on the
Reddit dataset, respectively. The pseudo code of the training procedure is shown
in Algorithm 1.

Table 1. Statistics of three datasets.

Datasets |U| |V| Interactions Action repetition

Reddit 10,000 1,000 672,447 79%

Wikipedia 8,227 1,000 157,474 61%

Last.FM 1,000 1,000 1,293,103 8.6%
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5 Experiments

5.1 Datasets

To make a fair comparison, we evaluate DSPP on three pre-processed benchmark
datasets [16], i.e., Reddit2, Wikipedia3 and Last.FM4. The concrete statistics of
users, items, interactions and action repetition are listed in Table 1. Noticeably,
these datasets are largely different in terms of action repetition rate, which can
verify whether DSPP is able to capture the dynamic influence in various action
repetition scenarios accurately.

5.2 Experiment Setting

Data Preprocessing: As used in JODIE [16] and DGCF [17], for each dataset,
we first sort all interactions by chronological order. Then, we use the first 80%
interactions to train, the next 10% interactions to valid, and the remaining 10%
interactions for the test. In contrast with JODIE and DGCF, we generate a
snapshot sequence {Gm}M−1

m=0 . In our setting, the validation snapshots cover the
training data, and the test snapshots also contain all training and validation
data.

Evaluation Metrics: To evaluate our model performance, for each interaction,
we first generate corresponding user and item steady and dynamic embeddings.
Then, we rank all items by Eq. (10) and predict the future time by Eq. (11).
Afterward, we evaluate the item prediction task with the following metrics: Mean
Reciprocal Rank (MRR) and Recall@10. higher values for both metrics are bet-
ter. For the time prediction task, we use Root Mean Square Error (RMSE) to
measure model performance, and a lower value for RMSE is preferred.

Baselines: We compare DSPP with the following baselines.

– Random walk model: CTDNE [21].
– Recurrent network models: LSTM [11], RRN [27], LatentCross [2], Time-

LSTM [30], JODIE [16] and DGCF [17].
– Temporal point process model: DeepCoevolve [7].

Implementation Details: In our experiments, we use the official implemen-
tations5 of DeepCoevolve. Except from it, we directly report the experimental
results in the original papers [16,17]. DSPP follows the same hyper-parameter
setting with baselines: the embedding dimension D is fixed as 128, the batch
size B is fixed as 128, the learning rate is fixed as 0.001, the model weight decay
is fixed as 0.00001, the sampling number for Monte Carlo estimate is fixed as
64, the number of negative sampling is fixed as 10, the number of TAL K is
2 http://snap.stanford.edu/jodie/reddit.csv.
3 http://snap.stanford.edu/jodie/wikipedia.csv.
4 http://snap.stanford.edu/jodie/lastfm.csv.
5 https://hanjun-dai.github.io/supp/torch coevolve.tar.gz.

http://snap.stanford.edu/jodie/reddit.csv
http://snap.stanford.edu/jodie/wikipedia.csv
http://snap.stanford.edu/jodie/lastfm.csv
https://hanjun-dai.github.io/supp/torch_coevolve.tar.gz
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Table 2. Performance (%) comparison of item prediction.

Model Last.FM Wikipedia Reddit

Recall@10 MRR Recall@10 MRR Recall@10 MRR

CTDNE 1.0 1.0 5.6 3.5 25.7 16.5

LSTM 12.7 8.1 45.9 33.2 57.3 36.7

Time-LSTM 14.6 8.8 35.3 25.1 60.1 39.8

RRN 19.9 9.3 62.8 53.0 75.1 60.5

LatentCross 22.7 14.8 48.1 42.4 58.8 42.1

DeepCoevolve 33.6 21.3 60.6 48.5 78.7 65.4

JODIE 38.7 23.9 82.1 74.6 85.1 72.4

DGCF 45.6 32.1 85.2 78.6 85.6 72.6

DSPP 47.1 34.3 90.5 82.1 86.7 74.5

fixed as 2, the Attention is stacked 8 layers, the GRUs are 1 layer, the number of
snapshots M is selected from {128, 256, 512, 1024} and the maximum length of
interaction sequence H is chosen from {20, 40, 60, 80}. The Adam [14] optimizer
is used to update all model parameters.

5.3 Item Prediction

For item prediction, Table 2 shows the comparison results on the three datasets
according to Recall@10 and MRR. From the experimental results, we have the
following observations:

– DSPP consistently yields the best performances on all datasets for both met-
rics. Compared with state-of-the-art baselines, the most obvious effects are
that DSPP achieves the 6.8% improvement in terms of MRR on Last.FM,
the 6.2% improvement in terms of Recall@10 on Wikipedia and the 2.6%
improvement in terms of MRR on Reddit. It reveals that incorporating the
topological structure and long-range dependency structure can bring good
robustness in different action repetition scenarios.

– DSPP outperforms DeepCoevolve significantly. This phenomenon demon-
strates that DSPP has a more powerful intensity function that can better
capture the dynamic influence between users and items.

– DSPP and DGCF are superior to other baselines on Last.FM, which indicates
that it is critical to model the topological structure information for learning
temporal interaction networks.
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Table 3. Performance (hour2) comparison of time prediction.

Model Last.FM Wikipedia Reddit

DeepCoevolve 9.62 10.94 11.07

DSPP 7.78 8.71 9.06

Table 4. Performance (%) comparison of different model variants.

Model Recall@10 MRR

DSPP 47.1 34.3

Remove TFE 40.2 25.3

Replace TAL with GCN 44.5 32.4

Replace TAL with GAT 45.2 32.7

5.4 Time Prediction

Table 3 shows the prediction performances of DeepCoevolve and DSPP. From it,
we can observe that DSPP achieves more accurately time prediction. Specifically,
our model achieves the 19.1% improvement on Last.FM, the 20.3% improve-
ment on Wikipedia and the 18.1% improvement on Reddit. We suppose that
the improvements owe to the following reasons: 1) DeepCoevolve uses a linear
intensity function to model dynamic influence over time, which would reduce
the model flexibility of intensity function. 2) DeepCoevolve remains the same
user and item embeddings until it involves a new-coming interaction, so it limits
model expressiveness. In contrast, our intensity function can learn the nonlin-
ear dynamic influence, since the ASE module can provide time-aware dynamic
embeddings.

5.5 Discussion of Model Variants

To investigate the effectiveness of our model components, we implement several
variants of DSPP and conduct the experiment on Last.FM dataset for the task
of item prediction. The experimental results are reported in Table 4. According
to it, we can draw the following conclusions:

– Remove TFE. To verify whether our proposed TFE module is useful to
enhance the expressiveness of the intensity function, we first remove it and
only remain the second term of Eq. (7) as our intensity function. Then, we
directly predict the item that is most likely to interact with each user via
Eq. (10). As shown in the results, both metrics Recall@10 and MRR sharply
drop 14.6% and 26.2%, respectively. It demonstrates that modeling the topo-
logical structure of temporal interaction networks can provide a powerful
structural prior for enhancing the expressiveness of intensity function.
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– Remove TFE. This variant can be also viewed as a non-graph based model,
since it does not exploit the topological structure, and the remaining temporal
attention shift encoder only provides the long-range dependency structure to
model intensity function. Compared with DeepCoevolve, this variant yields
19.6% and 18.7% improvements on Recall@10 and MRR respectively. This
observation shows that our proposed temporal attention shift encoder can
further enhance the intensity function.

– Replace TAL with GCN/GAT. To verify whether our proposed TAL is supe-
rior to other graph encoders for capturing the topological structure of tem-
poral interaction networks. We replace TAL by GCN [15] and GAT [26]. For
the GCN variant, both Recall@10 and MRR drop 5.8%. For GAT variant,
Recall@10 and MRR drop 4.0% and 4.6%, respectively. So, We suppose that
our proposed TAL can better capture the information of the same type entity.

6 Conclusion

In this paper, we present the deep structural point process for learning temporal
interaction networks. Our model includes two proposed modules, i.e., topological
fusion encoder and attentive shift encoder to learn the topological structure and
the long-range dependency structure in temporal interaction networks, respec-
tively. On top of that, a novel intensity function, which combines the learned
steady and dynamic embeddings, is introduced to enhance the model expres-
siveness. Empirically, we demonstrate the superior performance of our model on
various datasets for both tasks of item prediction and time prediction.
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Abstract. This paper targets at predicting public transport in-out crowd
flows of different regions together with transit flows between them in a
city. The main challenge is the complex dynamic spatial correlation of
crowd flows of different regions and origin-destination (OD) paths. Dif-
ferent from road traffic flows whose spatial correlations mainly depend on
geographical distance, public transport crowd flows significantly relate to
the region’s functionality and connectivity in the public transport network.
Furthermore, influenced by commuters’ time-varying travel patterns, the
spatial correlations change over time. Though there exist many works
focusing on either predicting in-out flows or OD transit flows of differ-
ent regions separately, they ignore the intimate connection between the
two tasks, and hence lose efficacy. To solve these limitations in the litera-
ture, we propose a Graph spAtio dynamIc Network (GAIN) to describe the
dynamic non-geographical spatial correlation structures of crowd flows,
and achieve holistic prediction for in-out flows of each region together with
OD transit flow matrix between different regions. In particular, for spatial
correlations, we construct a dynamic graph convolutional network for the
in-out flow prediction. Its graph structures are dynamically learned from
the prediction of OD transit flow matrix, whose spatial correlations are fur-
ther captured via a multi-head graph attention network. For temporal cor-
relations, we leverage three blocks of gated recurrent units, which capture
minute-level, daily-level and weekly-level temporal correlations of crowd
flows separately. Experiments on real-world datasets are used to demon-
strate the efficacy and efficiency of GAIN.

Keywords: Crowd flows prediction · Origin-destination matrix ·
Dynamic spatial correlation · Public transport system · Graph
attention network
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1 Introduction

The public transport system is the backbone for human mobility in urban areas.
Accurate prediction of public transport flow is greatly important to both system
operators and passengers. It allows operators to conduct better train operation
planning, detect potential abnormal traffic flows and render fast remedial strate-
gies. It also provides real-time traffic information to passengers for better travel
planning. Currently, the Automated Fare Collection System (AFC), widely used
in urban public transport network, provides a convenient way for passenger travel
data collection. The AFC data (aka smart card data) record passengers’ each
trip information, including the boarding and alighting time and corresponding
stations, and offer big support for crowd flow analysis. Generally, two types of
crowd flows are of interest. The first is the in-out flow of each region, which mea-
sures the number of passengers entering/leaving the region via public transport
systems for each time step. The second is the finer-grain transit flow from each
origin region to another destination region, i.e., Origin-Destination (OD) matrix
prediction. How to utilize AFC data to predict these two levels of crowd flows
has been raising researchers’ interest in data mining for intelligent transportation
system construction. There are several challenges involved.

The first and most critical is the complex spatial correlation of crowd flow
data. Unlike road traffic flows, where the spatial correlations for different regions
are based on the “first law of geography”, i.e., near things are more related than
distant things. However, for public transport systems, the spatial correlations
are not fully based on geographical distance, but also the connectivity structure
of the public transportation network and the region functionality. For example,
though two non-adjacent regions are far away from each other on the map, they
could be directly connected by a metro line or located in the same functional
regions, and consequently share highly correlated crowd flow patterns. As such,
traditional models trying to capture geographically neighboring spatial features
are not suitable.

Furthermore, the spatial correlations are time-dynamic. For example, in the
morning peak hour, the transport system carries hundreds of thousands of com-
muters from residential areas to the central business district (CBD), which leads
to a high correlation between outflows of residential districts and inflows of CBD.
This correlation dies down after the morning peak. In the evening, the outflows
of CBD become more related to inflows of commercial regions, since people go
for entertainment and leisure after work. At night, the outflows of commercial
regions begin to impact inflows of residential regions. However, most current
studies assume that spatial correlations are static, and hence lose the prediction
accuracy.

Last but foremost, predictions on the two granularities of crowd flows, i.e., in-
out flows and OD transit flows, have intimate connections with each other. The
sum of passenger flows from one region to others is the outflow of that region.
Likewise, destinations of OD transit flows determine the inflow of the correspond-
ing regions. Consequently, accurate prediction of outflows in one region can help
predict the transition flows from it to other regions more accurately, vice versa.
Consequently, the OD transit flow matrix and in-out flows of regions mutually
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influence each other and a holistic prediction model with consideration of their
connections is expected to have better prediction performance.

To address above issues, in this paper, we consider the connections between
in-out flows and OD transit flows of different regions, and develop a genuine
holistic framework for crowd flows prediction of the public transport system. In
particular, we treat each region as a node in the graph, and propose a dynamic
graph-based neural network framework to capture the dynamic spatial correla-
tions of crowd flows of different nodes. First, we formulate a multi-head graph
attention network (GAT) block for OD matrix prediction. The GAT model could
dynamically leverage features from spatial correlated regions using the attention
mechanism, and track the OD transit patterns of different regions accurately.
Consider different kinds of spatial correlations may co-exist simultaneously, we
apply the multi-head technique. In addition, the learned attention graphs of
GAT can be really good representations of spatial correlation structures of dif-
ferent regions. Hence we further use them as the dynamic input graphs of the
graph convolution network (GCN) block for in-out flow prediction of different
regions. Consequently, the graph structure of GCN is not required to be pre-
defined or dependent on any prior information, but is dynamically learned from
the prediction process of the OD transit flow matrix. In this way, the two tasks
are intimately interrelated with each other for joint training. Last, data from
urban railway transit systems of Hong Kong and Shenzhen validate our pro-
posed methodology. Extensive experiments and comparisons with state-of-the-
art methods demonstrate the out-performance of our proposed method.

2 Literature Review

2.1 In-Out Flow Prediction

Generally, crowd flows prediction is referred as in-out flow prediction of a region.
It has been extensively studied in many literature works, among which deep
learning-based methods are the current mainstream tools since they could effec-
tively model temporal and spatial correlations of crowd flows simultaneously.
Various network structures have been proposed and applied to solve different
problems.

For temporal correlation description with neural network models, recurrent
neural network (RNN) and its variants, e.g. long short-term memory (LSTM)
and gated recurrent unit (GRU) have been widely applied. For example, in [1],
LSTM units are built to model peak-hour and post-accident traffic state. In [2],
the authors extended the fully-connected LSTM to have convolutional structures
such that it can handle spatio-temporal data. In [3], a periodically shifted atten-
tion mechanism is introduced to handle the long-term periodic temporal shifting.
Different methods have demonstrated competitive performances in different data
sets.

For spatial correlation description, lines of study adopt convolutional neu-
ral network (CNN)-based structures to model nonlinear spatial characteristics
[4,5]. They learned traffic flows as heat map images and utilized convolutions
to capture spatial correlations. The typical applications include taxi trajectory
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prediction, bike rent/return prediction, etc., where geographically nearby regions
are important to help predict the target region. However, CNN is not suitable for
public transport crowd flows data where correlation structures of flows between
two regions are generally not only related to their geographical distance, but
also a lot of other factors, such as spatial structures of the transportation net-
work. Substantial research generalized the convolution operator to non-Euclidean
data [6]. Among them, Graph Convolutional Neural Network (GCN) is a signif-
icant stride [7,8]. GCN-based methods assume each region as a node in the
graph, and spatial correlations between different regions are denoted as edge
weights between nodes. GCN has been an appealing choice for public transport
flow forecasting, where the graph is defined based on station connectivity, geo-
graph attributes, contextual features (point-of-interest) [7], flow profile similarity,
etc. One limitation of these works is that the prediction performance is greatly
influenced by the pre-defined graph. Yet how to choose these various kinds of
graphs case-by-case is a practically difficult problem depending on the specific
application purpose. It’s also difficult to evaluate which kind of graph is bet-
ter, and some specific types of graphs are not suitable in general cases. There
are also some attempts using attention strategy [8]. However, they still rely on
pre-defined graph structures.

Last but foremost, all the above methods only predict the in-out flows of
different regions, yet ignore OD transit flows between different regions.

2.2 OD Transit Flow Matrix Prediction

OD matrix forecasting aims at predicting transit flows between different regions.
In [9], the authors proposed a contextualized spatial-temporal network, which
incorporated diverse contextual information to predict taxi OD demand. In [10],
the authors formulated the OD matrix together with other geographical features
as tensors and developed a multi-scale convolutional LSTM for predicting future
OD traffic demand. In [11], Multi-Perspective Graph Convolutional Networks
(MPGCN) with LSTM is proposed to extract temporal features for OD matrix
prediction. In [12], a matrix factorization-embedded graph CNN is proposed for
road OD matrix prediction.

Yet these methods only consider OD matrix prediction, without taking in-
out flow prediction into account. In [13], the authors first considered multi-task
learning of OD matrix and in-out flows together. It developed a grid-embedding
based multi-task learning framework to predict OD passenger demands, together
with in-out flows of each region. Yet the two tasks are merely added together
as one objective function without any information sharing. In [14], the authors
further proposed a better information fusion framework. It first designed two
separate CNN modules to extract features of OD matrix and in-out flows. Then
the two tasks’ features were concatenated together in a fusion module. However,
this simple concatenation does not consider task differences carefully and does
not design which features are shared and which ones should be task-specific.
In [15], an adversarial network is proposed for OD matrix and in-out flow pre-
diction. It adopts a shared-private framework which contains both private and
shared spatial-temporal encoders and decoders. A discriminative loss on task
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classification and an adversarial loss on shared feature extraction are incorpo-
rated to reduce information redundancy. However, these methods target at road
traffic flow prediction and assume neighboring regions are more correlated. Con-
sequently, they are not suitable for public transport flow prediction. And none
of them consider dynamic spatial correlations and hence have limited prediction
power. Last, these models define one region’s inflow (outflow) as directed sum
of OD transit flows over all the destination (origin) regions. This indicates only
OD trips completed in the same time step are considered for counting in-out
flows, and the learned model is forced to capture the concurrent spatial correla-
tions between in-out flow data and OD transit data. However, for trips in public
transport systems, they generally take longer time than one time step and simple
summation of OD transit flows cannot substitute in-out flows, leading the above
models to fail to give accurate prediction, as shown in our case studies later.

3 Problem Formulation

We first introduce some basic notations and define the public transport crowd
flows prediction problem formally.

Definition 1 (Region): We partition the city into N non-overlapping regions.
Each region denoted as g(n), n = 1, . . . , N, can have irregular figure and different
size, depending on geography of the public transport system. The whole grid map
is represented by MN .

This definition is a bit different from some previous studies [4], which assume
each region should be a rectangular, with in total of I × J grids based on lon-
gitude and latitude dimensions. This is because our analysis focuses on public
transport systems, whose spatial connectivity is not critically dependent on the
geographical distance between different regions. The city map could be parti-
tioned according to functionality of different regions, points of interest, volume
of crowd flows, etc. Furthermore, we need to remove certain regions without
public transport stations inside.

Definition 2 (Node): Given the map MN with partitioned regions, we define
the city graph with V = {v1, v2, . . . , vN} as the node set. Each node corresponds
to one region in g(n), n = 1, . . . , N .

Definition 3 (Inflow/Outflow): Let (τ, l) be spatial-temporal coordinates,
where τ denotes a timestamp and l denotes a location. Define P as a set of
trip data. Each trip is denoted by its origination information o = (τo, lo) and
destination information d = (τd, ld). Here τo and τd represent the trip starting
time and ending time respectively; lo and ld represent the origin and destination
location respectively. Given the corresponding city graph, the in-out flow of node
vn ∈ V , whose corresponding region in MN is g(n), is defined as yn

t ∈ R
2:

(yn
t )1 = |{(o, d) ∈ P : ld ∈ vn ∧ τd ∈ t}| , (1)

(yn
t )2 = |{(o, d) ∈ P : lo ∈ vn ∧ τo ∈ t}| , (2)
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where (yn
t )1 and (yn

t )2 represent the inflow and outflow of region g(n) respec-
tively. The symbol | · | denotes the cardinality of the set. With abuse of notation,
we further define yin

t = [(y1
t )1, . . . , (y

N
t )1]T ∈ R

N , yout
t = [(y1

t )2, . . . , (y
N
t )2]T ∈

R
N , and Yt = [yin

t ,yout
t ] ∈ R

N×2.

Definition 4 (OD transit flow matrix): Similarly, given data P, and grid map
MN in time step t with corresponding city graph with nodes V , the OD transit
flow matrix in time step t is defined as St ∈ R

N×N :

(St)mn = |{(o, d) ∈ P : lo ∈ vn ∧ ld ∈ vm ∧ τd ∈ t}| , (3)

where the corresponding regions of vn and vm in MN are g(n) and g(m), respec-
tively. (St)mn represents OD transit flow from node vn to node vm. Abusing
notation a bit, the mth row of OD transit flow matrix St is denoted as sm

t ,
which describes the OD transit flows from all other nodes to node m in time
step t.

Problem: Our goal is to provide a holistic prediction framework for the in-
out flows of each region and the OD transit flow matrix. Specifically, given the
city region nodes V = {v1, v2, . . . , vN}, current time step t, and historical data
Yt−s, . . . ,Yt, St−s, . . . ,St for s = 0, . . . , t−1, we propose a model to collectively
predict Yt+1 and St+1.

4 Methodology

The framework of the proposed Graph spAtio dynamIc Network (GAIN) is shown
in Fig. 1a. For spatial correlations, we use the multi-head GAT block for OD flow
prediction. Its learned dynamic attention network can effectively capture non-
adjacent spatial correlations of different regions, and hence can be fed into the
GCN block for in-out flow prediction. The two blocks cooperate with each other
and achieve joint prediction. For temporal correlations, we connect the above
spatial blocks to three blocks of GRU, which capture the minute-level, daily-
level and weekly-level correlations respectively. Last, the outputs of the three
blocks are fused together in the output layer for final prediction.

4.1 Spatial Correlation

We utilize graph networks to capture non-adjacent spatial correlations. Figure 1b
represents the structure of this block.

Spatial Correlation for OD Transit Flow Prediction. First, we propose
a GAT module to capture the spatial correlations of si

t. To be specific, we first
define a graph Gt = {V,E,At}, where each node vi is one region (as in Defini-
tion 2), E is the edge set, At is the adjacency matrix, and each weight represents
the pairwise spatial relationship between two regions. We perform the informa-
tion aggregation with the graph-based attention encoder to preserve high-order
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Fig. 1. (a) The structure of Graph spAtio dynamIc Network (GAIN); (b) Inner struc-
ture in Spatial Block.

region-wise crowd relations from a global perspective. Its general idea is to learn
which regions are able to attend in terms of their crowd flow patterns in a
dynamic way, i.e., how to aggregate both self-features and neighbor features for
prediction for different time steps dynamically. Yet unlike GCN which requires
to pre-define the adjacency matrix At, GAT only requires the prior connectivity
information E, i.e., whether there is an edge from vi to vj . As to the weight of
the edge, it can be automatically learned via attention mechanisms.

In particular, to enhance the expressive power of feature representations
during the graph-based aggregation process, we first perform linear transfor-
mation on the input feature si

t ∈ R
N of node vi with a shared parameterized

weight matrix W ∈ R
N×N , i.e., Wsi

t. Then we compute a pairwise attention
coefficient between vi and vj by concatenating the projected embeddings Wsi

t

and Wsj
t , and taking a dot product of them with a weight vector c, i.e.,

αij,t = cT
[
Wsi

t‖Wsj
t

]
, where ‖ is the concatenation operation. The activa-

tion function of LeakyReLU and the softmax are further applied to generate the
attention coefficient:

aij,t = softmaxj (LeakyReLU(αij,t)) =
exp (LeakyReLU(αij,t))∑

vk∈neigh(i) exp (LeakyReLU(αik,t))
,

(4)
where neigh(i) denotes the neighbour set of vi defined by E. In this paper, we
can suppose the graph is fully-connected without taking into account any prior
information about the connectivity property of different regions. Alternatively,
we can also use the connectivity structure of the public transport system, such as
the urban railway transit map, as a reasonable prior of the connectivity property.

In addition, to capture different types of spatial correlations and improve
the fitting ability of the self-attention, multi-head attention is employed in the
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mechanism, which uses the average of K parallel attention results as the updated
features:

s̃i
t = σ

⎛
⎝ 1

K

K∑
k=1

∑
vj∈neigh(i)

ak
ij,tW

ksj
t

⎞
⎠ , (5)

where ak
ij,t are normalized attention coefficients computed by the kth attention

mechanism. We denote the kth-head attention graph as Gk,t = {V,E,Ak
t }, and

the output from GAT that has captured the spatial correlations of St as S̃t, with
s̃i

t as its ith row.

Dynamic Spatial Correlation for Inflow/Outflow Prediction. To capture
dynamic and non-Euclidean spatial correlation structures, we design a dynamic
GCN module. GCN conducts convolution over a graph with an adjacency matrix
A where each element aij represents the spatial correlation between vi and vj .
The general idea of GCN is to learn node representations by exchanging infor-
mation among its correlated neighbours, and consequently extract the patterns
hidden in the graphs.

It is noted that the learned edge weights αk
ij,t from GAT can be regarded

as good representations of dynamical spatial correlation structures of different
regions. Thus we use Ak

t , k = 1, . . . , K as graph inputs of GCN for in-out flow
prediction. Specifically, we also employ the multi-head for the GCN block with
the kth-head adjacency matrix as (Ak

t )ij = αk
ij,t. As the OD transit flows evolve

over time, αk
ij,t also changes over time. Consequently, the dynamic correlation

structures of both Yt and St have been successfully described in the collaborative
model.

Furthermore, consider the correlation structure between inflows of regions
is different from that between outflows of regions, two GCNs are conducted for
inflow and outflow, respectively. Take inflow for example, the input node features
are yin

t , then the spectral convolutions on graph are defined as:

ỹin,k
t = gθ ∗Gk,t

yin
t = Uk

t gθ(Λk
t )UkT

t yin
t , (6)

where Dk
t ∈ R

N×N is the diagonal degree matrix with the ith diagonal element
as (Dk

t )ii =
∑

j(A
k
t )ij ; Lk

t = (Dk
t )−1

(
Dk

t − Ak
t

)
is the Laplacian matrix; Λk

t ∈
R

N×N and Uk
t are results of the eigenvalue decomposition of Lk

t = Uk
t Λk

t U
kT

t .
gθ(Λk

t ) is a function of the eigenvalues of Lk
t , and can be localized in space and

reduce learning complexity by a polynomial filter [6]. The GCN construction for
outflow data yout

t can be conducted in the same way, and get the output ỹout,k
t .

Then we fuse the results from these GCNs:

Ỹt = ReLU

(
K∑

k=1

ỹin,k
t Win,k +

K∑
k=1

ỹout,k
t Wout,k

)
, (7)

where Ỹt ∈ R
N×2 are outputs from the GCNs, and Win,k,Wout,k ∈ R

1×2 are
parameters to be learned.



Holistic Prediction for Public Transport Crowd Flows 329

4.2 Temporal Correlation

Now we talk about temporal correlation modeling for Yt and St. Training long-
term temporal information is a nontrivial task. To address this issue, we explicitly
model relative historical time steps by capturing the minute-level, daily-level
and weekly-level correlations separately [4]. For each time level, we construct
the GRU cells using Ỹt and S̃t as input.

Take daily-level feature extraction of Ỹt for example. After capturing spatial
correlation features in the GCN block, we first use a flatten layer to transform
Ỹt ∈ R

N×2 to a feature vector ỹt ∈ R
2N . The sequence to be inputted in GRU

is {ỹt+1−ld·d, ỹt+1−(ld−1)·d, ...ỹt+1−d}, where d is the number of time steps in
one day and ld is the considered maximum lag for daily-level feature extraction.
Then the GRU captures the temporal correlations of ỹt as:

zd
t = σ

(
Wd

z ỹt + Ud
zh

d
t−1 + bd

z

)
, (8)

rd
t = σ

(
Wd

r ỹt + Ud
rh

d
t−1 + bd

r

)
, (9)

h̃
d

t = tanh
(
Wd

hỹt + Ud
h

(
rd

t ◦ hd
t−1

)
+ bd

h

)
, (10)

hd
t = (1 − zt) ◦ hd

t + zt ◦ h̃
d

t−1. (11)

The output of the last layer GRU, denoted as hd
t+1 ≡ ŷd

t+1, represents the daily-
level temporal feature. And then we reshape it into Ŷd

t+1 ∈ R
N×2. Similarly, we

can input the minute-level sequence {ỹt+1−lm·, ỹt+1−(lm−1), ..., ỹt} where lm is
the considered maximum lag for minute-level feature extraction, and get Ŷm

t+1.
We input the weekly-level sequence {ỹt+1−lw·w, ỹt+1−(lw−1)·w, ..., ỹt+1−w} where
w equals the number of time steps in one week and lw is the maximum lag for
weekly-level feature extraction, and get Ŷw

t+1. Likewise, we can construct another
three GRU blocks to capture temporal relationship of St+1 and get the minute-
level, daily-level and weekly-level components Ŝm

t+1, Ŝ
d
t+1, Ŝ

w
t+1 respectively.

4.3 Fusion

Last, we combine results from the three GRUs together for final prediction by
parametric-matrix-based fusion with tanh hyperbolic function:

Ŷt+1 = tanh
(
W1

m ◦ Ŷm
t+1 + W1

d ◦ Ŷd
t+1 + W1

w ◦ Ŷw
t+1

)
, (12)

Ŝt+1 = tanh
(
W2

m ◦ Ŝm
t+1 + W2

d ◦ Ŝd
t+1 + W2

w ◦ Ŝw
t+1

)
, (13)

where ◦ is element-wise multiplication, and W1
m, W1

d, W
1
w, W2

m, W2
d, W

2
w are

parameters to be learned to represent impacts of different components.
The final loss function adopts mean squared error between the true flows and

the predicted ones:

L(θ) = λregion

∥∥∥Yt+1 − Ŷt+1

∥∥∥
2

+ λOD

∥∥∥St+1 − Ŝt+1

∥∥∥
2

, (14)
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where λregion and λOD are adjustable hyper-parameters, and θ indicates all
parameters in GAIN.

Remark 1. Note that from Definitions 3 and 4, the outflow of a region can be
computed by summing all the OD transit flows whose origin is that region. As
such, we may add a regularization term to penalize the difference between the
predicted ŷout

t+1 and Ŝt+11 where 1 ∈ R
N×1 is a vector with all components equal

to 1, i.e., λlim

∥∥∥ŷout
t+1 − Ŝt+11

∥∥∥
2

in (14) with adjustable hyper-parameter λlim.

5 Experiments and Results

5.1 Experimental Settings

Data. In our experiment, we consider two large-scale real-world datasets for
performance evaluation, which contain smart card data from the corresponding
AFC systems as follows.

– Hong Kong Dataset (HK): The dataset contains passengers’ railway trip
records in HK from Jan 1st 2017 to Feb 28th 2017. We use the first 52 days
for training, and the remaining 7 days for testing. We split the whole city
into 40 × 60 regions, N = 92 of which have at least one station. The length
of each time step is set as 10 min.

– Shenzhen Dataset (SZ): The dataset contains passengers’ railway trip
records in SZ from Dec 1st 2015 to Dec 30st 2015. The previous 23 days
are used for training, and the rest 7 days are for testing. We split the whole
city into 10 × 10 regions, N = 36 of which have at least one station. The
length of each time step is set as 10 min.

Evaluation Metric. Two metrics are used for performance evaluation: Rooted
Mean Squared Error (RMSE) and Mean Absolute Error (MAE).

Baselines. We compared GAIN with the following state-of-the-art methods.
The parameters for all the methods are well tuned with the best performance
reported. It is noted that for GEML and MDL, they also aim at joint prediction
of in-out flows and OD transit flows.

– AR: We build AR models for the inflow and outflow of each region, and
transit flow of each OD path separately. Each model’s lag order is tuned by
Akaike information criterion (AIC).

– ARIMA: We build ARIMA models for the inflow and outflow of each region,
and transit flow of each OD path separately. Each model’s lag order is tuned
by Akaike information criterion (AIC).

– GRU: All crowd flows, including in-out flows of each region and transit flows
of all the OD paths, are stacked together as a matrix with rows as time step
(the size of which equals look-back window K = 6) and columns as different
crowd flow variables. The matrix is inputted into GRU for prediction.
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– CNN: In-out flows of all the regions in each time step are viewed as two
images inputted into CNN. The temporal information is modeled as features
and we set look-back window K as 6.

– ConvLSTM [6]: In-out flows of all the regions are mapped into city grids.
The LSTM structure is comprised with 2 ConvLSTM layers and 1 convolu-
tional layer, and the look-back time window is set to 6.

– DeepST [4]: In-out flows of all the regions are mapped into city grids. 6
convolution layers are used, and the sequence lag length is set as 6, 3, 1 for
modules of temporal closeness, period and trend dependencies, respectively.

– ST-ResNet [5]: Three residual units are stacked, and each is with two com-
binations of “ReLU+Convolution”.

– ASTGCN [8]: Two ST blocks are stacked, and the look-back time window is
set to 6. Inflow and outflow are fed in as features, and predicted respectively.

– GEML [13]: One layer GCN and Periodic-skip LSTM are conducted, with
the length of the skipped time steps set as the number of time steps in one
day.

– MDL [14]: All crowd flows are mapped into city grids. Three residual units
and two convolution layers are stacked for OD transit flow network and in-out
flow network, respectively.

Experiment Settings. For GAIN, tanh activation function is used. Min-Max
normalization is used to standardize data into range [−1, 1]. In the evaluation,
we apply inverse Min-Max transformation obtained on the training set to recover
flow values. For temporal correlation, we set lm = 6, ld = 3 and lw = 1. For the
spatial block, we set K = 3 (the number of attention heads in GAT) and L = 1
(the number of GCN layers). The order of polynomials of the Laplacian is set as
1. The batch size is set to 10. 80% of the training samples are selected for training
each model and the remaining are in validation set for parameter tuning. We use
Adam as our optimizer and the epoch is set as 100. We also use early-stopping
to avoid overfitting in all experiments, with patience set to be 20, and we reduce
learning rate when a metric has stopped improving, with patience set to be 5
and factor be 0.1.

5.2 In-Out Flow Prediction

We first compare GAIN with baseline methods for in-out flow prediction. As
shown in Table 1, GAIN achieves the best results among all approaches for both
inflow and outflow prediction of the two datasets.

As for AR, ARIMA, and GRU, they perform poorly as they do not consider
the spatial correlations into the model. CNN performs bad as it simply models
the spatial information as features. Furthermore, the performance of ConvLSTM
is quite unsatisfactory. One possible reason is that the temporal pattern in our
data is not very complex. Yet LSTM is over complicated and tends to overfit
the data a lot, leading to an even worse performance than AR, ARIMA and
GRU. Two spatio-temporal deep-learning based models, i.e., DeepST and ST-
ResNet, still perform worse than GAIN. This is because their spatial correlation
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Table 1. In-out flow prediction of different methods.

Method HK SZ

Inflow Outflow Inflow Outflow

RMSE MAE RMSE MAE RMSE MAE RMSE MAE

AR 108.25 64.37 78.48 47.84 109.82 60.48 81.44 44.35

ARIMA 106.27 63.01 77.27 47.27 107.72 60.00 80.73 44.32

GRU 90.44 51.42 68.60 39.71 80.22 49.75 73.30 43.11

CNN 110.09 61.14 77.86 45.59 95.12 56.55 83.02 49.80

ConvLSTM 129.43 74.33 121.17 79.56 144.76 86.50 147.32 85.44

DeepST 94.31 54.87 74.54 45.17 94.11 56.22 90.67 55.28

ST-Resnet 82.27 48.98 64.73 40.24 83.31 52.60 76.20 48.33

ASTGCN 102.84 60.40 98.27 56.78 112.10 66.00 97.05 56.98

GEML 110.09 65.53 111.44 71.08 99.95 61.60 108.33 68.66

MDL 92.97 55.01 88.57 50.46 79.15 51.48 65.89 43.04

GAIN 81.81 45.86 58.48 36.00 68.68 42.00 61.35 37.01

Fig. 2. Inflow and outflow results for 24 Dec. 2015 of SZ dataset: (a) Region 21 (Daxin,
Taoyuan, Yuehaimen, Shenzhen University); (b) Region 14 (Honglang North, Xingdong,
Liuxiandong).

is based on geographical distance, which works for road traffic prediction, such
as for taxi or bicycles. However, they are not good at public transport crowd flow
prediction. ASTGCN performs even worse than ST-ResNet. One reason is that
its spatial correlation highly depends on the pre-defined network graph, which
is not helpful for prediction.

As to the two joint prediction models, GEML and MDL, they perform worse
than GAIN. For GEML, it is because its network structure mainly targets at OD
flows. Yet the in-out flows are less conscientiously calculated by simply weighted
sum of features of OD flows, and hence have lower prediction accuracy. For
MDL, it is because it assumes geographically close regions are more correlated,
and thus is not suitable for public transport flow prediction.
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Table 2. OD flow prediction results of different methods.

Method HK SZ

ARIMA GRU GEML MDL GAIN ARIMA GRU GEML MDL GAIN

RMSE 4.71 5.03 6.04 4.63 4.83 7.81 6.83 8.76 6.86 6.78

MAE 1.86 1.87 1.95 2.26 1.80 3.71 3.36 4.18 3.80 3.33

Fig. 3. The OD transit flow prediction from Region 73 (Quarry Bay) to Region 48
(Kowloon Bay) in HK dataset.

To better demonstrate the prediction performance, we randomly select one
day and plot the prediction results of GAIN and MDL (the best baseline in SZ
dataset) against the ground truth inflow and outflow. Figure 2 shows that GAIN
is closer to the ground truth than MDL for most time steps. Especially, for peak
hours with extreme high crowd flows, GAIN performs much better than MDL,
as shown in the framed time windows in Fig. 2. In some time steps with sudden
crowd flow changes, however, both methods could not predict well. One possible
reason is that we ignore some external features like weather, due to lack of data.

5.3 OD Transit Flow Prediction

Now we evaluate the performance of OD transit flow matrix prediction of GAIN.
Here we select some representative baselines: GEML and MDL which two are
targeted at OD flow prediction, ARIMA and GRU which are basic models and
can be easily applied into OD flow prediction. As to other works in the liter-
ature, their original papers aim at in-out flow prediction and cannot be easily
extended for OD matrix prediction, so we do not compare with them. The results
are shown in Table 2. Clearly, GAIN has overall the best performance. Though
MDL outperforms GAIN a bit for HK dataset in terms of RMSE, their differences
are insignificant, and GAIN even performs better in terms of MAE. Furthermore,
GAIN also overwhelmingly outperforms MDL for in-out flow prediction. Combin-
ing results of Table 1, we can conclude the joint prediction framework of GAIN
is more efficient than GEML and MDL. As to ARIMA, surprisingly it performs
well for HK dataset, but generally ARIMA performs much worse than others for
SZ dataset and for in-out flows. Figure 3 shows the ground truth and the pre-
diction results of GAIN for one selected OD path in one week. We can see that
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the predicted curve can capture the various passenger flow patterns in different
days accurately.

5.4 Sensitivity Analysis

To better evaluate the connection between in-out flow prediction and OD tran-
sit flow matrix prediction, we conduct parametric analysis for GAIN by tuning
the hyper-parameters λregion and λOD in the loss function. The ratio of λregion

and λOD adjusts the importance weight of in-out flows and OD transit flows. If
λregion = 0 or λOD = 0, then the model only predicts in-out flows, or the OD tran-
sit flow matrix, respectively. This means our dual-task prediction model changes
to single-task model. Table 3 shows the prediction results under different com-
binations of λregion and λOD on SZ dataset. Clearly, the joint prediction model
performs better than the single-task model. It verifies that the OD matrix and
in-out flows of regions mutually influence each other and a holistic prediction
model with consideration of their intimate connections tends to increase pre-
diction performance. Furthermore, when λOD/λregion increases, the prediction
performance of both tasks improves. This means if we adjust more importance
weights on OD transit flow prediction, its prediction accuracy becomes better and
also results in better in-out flow prediction. This further demonstrates these two
tasks mutually influence each other. In contrast, when λregion/λOD increases, the
prediction performance of in-out flows improves insignificantly, while OD matrix
prediction becomes much worse. As the ratio increases more, both tasks perform
worse. This indicates the bottleneck of the multi-task prediction is OD matrix
prediction, whose worse performance also deteriorates prediction of in-out flows.

We also evaluate the effect of attention head number on the performance.
The number of heads represents how many different spatial correlations are cap-
tured in GAT. Figure 4a and b show when head number is 3 or 4, both RMSE
and MAE achieve the lowest equivalently for in-out flow prediction. When head
number is 3, both RMSE and MAE achieve the lowest for OD transit flow pre-
diction. This indicates there may be three kinds of spatial correlations between
different regions. We guess they represent the correlations between inflows of
regions, correlations between outflows of regions, and interactive correlations
between inflows and outflows of regions. This further demonstrates GAIN can
extract dynamic and complex spatial features adaptively. As more than 3 heads
are included, the model complexity increases and tends to be over-fitting. Last,
Fig. 4c and d show the effect of batch size. Smallest batch size achieves the best
generalization performance. This is because large batch size leads the model to
make large gradient updates and consequently reach local minimum, while small
batch size is noisy, offering more randomness and lower generation error.
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Table 3. The impact of hyperparameter ratio for GAIN on SZ dataset.

Hyperparameter Inflow Outflow Transition

λregion λOD RMSE MAE RMSE MAE RMSE MAE

1 10 68.68 42.00 61.35 37.01 6.78 3.33

1 5 73.29 43.37 62.18 37.24 6.98 3.44

1 1 74.40 44.09 63. 65 37.91 7.41 3.62

0 1 \ \ \ \ 8.13 3.80

1 0 85.94 52.98 78.60 48.36 \ \
5 1 73.18 44.66 63.58 38.31 7.96 3.66

10 1 74.05 45.09 65.34 39.32 8.16 3.71

Fig. 4. Effect of parameter settings on SZ dataset: (a) RMSE and (b) MAE on different
numbers of attention head; (c) RMSE and (d) MAE on different batch sizes.

6 Conclusions

This work proposes a holistic prediction framework for in-out flows and OD tran-
sit flow matrix for public transport network based on graph neural networks. It
uses dynamic GCNs for in-out flow prediction. The graph structures are dynam-
ically learned from the prediction process of OD transit flow matrix, where a
multi-head GAT model is used to capture spatial correlations. The above spatial
blocks are further inputted into three GRU blocks for minute-level, daily-level
and weekly-level temporal correlation description separately. Experiments on two
real-world datasets show that our model outperforms several state-of-the-arts.
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Abstract. Many applications generate data streams where online anal-
ysis needs are essential. In this context, pattern mining is a complex task
because it requires access to all data observations. To overcome this prob-
lem, the state-of-the-art methods maintain a data sample or a compact
data structure retaining only recent information on the main patterns.
This paper addresses online pattern discovery in data streams based on
pattern sampling techniques. Benefiting from reservoir sampling, we pro-
pose a generic algorithm, named ResPat, that uses a limited memory
space and that integrates a wide spectrum of temporal biases simulating
landmark window, sliding window or exponential damped window. For
these three window models, we provide fast damping optimizations and
we study their temporal complexity. Experiments show that the perfor-
mance of ResPat algorithms is particularly good. Finally, we illustrate
the interest of our approach with online outlier detection in data streams.

1 Introduction

Many applications generate data streams, especially with the rise of network sen-
sors [2] and the Internet of Things [8]. Beyond their operational utility, the anal-
ysis of these data streams raise strategic issue in mobile data stream mining [25],
online transaction analysis [18] and so on. In most cases, it is not possible to con-
sider storing these data to perform an off-line analysis because of their volume.
In addition, the usefulness of certain analyzes like early outlier detection nec-
essarily relies on online processing. Unfortunately, knowledge discovery in data
streams remains a challenging task due to the continuous arrival of data observa-
tions that must be processed in a short time (time constraint) despite a limited
memory space (space constraint) [19,24]. This problem is particularly exacer-
bated for pattern mining whose combinatorial complexity is costly by nature
[11,16]. It aims to maintain a collection of interesting patterns extracted from
the data stream while respecting these constraints. For this purpose, a first strat-
egy consists in maintaining a compact data structure containing the information
on the pattern occurrences appearing in each data observation [15,21,22,26]. In
addition to being expensive to update, the size of this structure is not limited
and sometimes requires significant memory space. A second strategy is to main-
tain a data sample representative of the data stream. It is then possible to mine
the interesting patterns from this sample [1,4,23]. However, the expensive cost
c© Springer Nature Switzerland AG 2021
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of this mining step prevents it from being repeated at the arrival of each data
observation and then, from having an up-to-date collection of patterns.

This paper revisits the pattern discovery in data streams at the light of pat-
tern sampling [3,5]. Frequent pattern sampling consists in drawing patterns at
random proportionally to their frequency. In our context, the principle is to
maintain a sample of k patterns representative of the data stream. For exam-
ple, a pattern twice as frequent will be twice as likely to be picked. To the best
of our knowledge, no method exists to sample patterns in data streams. For
this purpose, the key idea is to benefit from reservoir sampling. This family
of randomized algorithms picks a random sample of k items from a population
of unknown size in a single pass over the items [10,20,27]. Unfortunately, the
existing reservoir sampling methods are not suitable to deal with two challenges:
output space and temporal bias. First, existing reservoir sampling methods are
designed to perform input space sampling (i.e., from data observations) and not
output space sampling (i.e., from patterns covering the data observations). Of
course, it is not possible to enumerate the exponential number of patterns con-
tained in each data observation to build the population to be sampled. Second,
there are reservoir sampling methods that take into account a static distribution
on the population [10]. To the best of our knowledge, existing reservoir sampling
methods do not incorporate a temporal bias to favor the most recent observa-
tions. However, the damping of the oldest data observations is important for
pattern mining in data streams [17].

This paper provides the first pattern sampling method in data streams using
reservoir sampling. The general principle is to generate a key for each occurrence
of patterns and to keep in the reservoir the k occurrences with the largest keys.
More specifically, our contributions are as follows:

– We present a generic algorithm ResPat that performs exponential random
jumps in the output space so as not to compute a key for each occurrence and
that updates the value of the keys of the reservoir to integrate several win-
dow models. We also propose fast damping optimized algorithms (ResPatno,
ResPatwin and ResPatexp) for three window models that avoid having to
explicitly modify the keys of the reservoir.

– We demonstrate that the proposed ResPat algorithm family based on reser-
voir sampling is exact and that it requires a memory space linear with the
sample size k. Interestingly, our theoretical study proves its efficiency by com-
puting the complexity of the number of insertions in the reservoir.

– We evaluate the effectiveness of our algorithm family by performing experi-
ments on UCI benchmarks and synthetic data. This experimental study shows
the important contribution of the exponential jump and fast damping opti-
mizations. A use case also illustrates the interest of pattern sampling to detect
outliers in data streams. In particular, our online and one-pass method redis-
covers the outliers of an off-line method with a good accuracy.

The outline of this paper is as follows. Section 2 reviews some related work
about pattern mining in data streams and pattern sampling methods. Section 3
introduces basic definitions and the formal problem statement. We present our
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reservoir pattern sampling algorithms for data streams in Sect. 4. We evaluate
our approach in Sect. 5 and conclude in Sect. 6.

2 Related Work

Data mining over data streams is a daunting task [19,24], especially pattern
mining [11,16]. Most of the existing methods aim to extract all the frequent
patterns and more rarely, are limited to the top-k frequent patterns [28] or other
measure like max-frequency [6]. Itemsets is the most popular pattern language
and only few works are interested in particular forms like maximal patterns [18]
or closed patterns [7,22]. Several static window models [17] are implemented to
consider (i) the entire stream from a certain time (landmark window) [7,21,28],
(ii) only the data observations inside a window (sliding window) [7,22,26] or (iii)
the entire data stream by weighting the observations to favor the most recent
ones (damped window) [15,23]. Clearly this latter is the more complex model
and it is also the least dealt with in the literature. The majority of methods
relies on a tree-like data structure in order to efficiently store and manipulate
the current mined patterns [15,21,22,26]. This structure is updated according
to the data stream to maintain a collection taking into account the considered
window. Statistical techniques such as the Chernoff bound [28] are often used
to estimate the frequency of the patterns in order to safely remove the less
promising ones. Most of these techniques compute approximated collection of
patterns contrary to our proposal, which guarantees an exact sampling: whatever
the window model, the mined sample is equivalent to what would be mined if
all the data observations were stored in memory.

Rather than incrementally maintaining the collection of interesting patterns,
another approach consists in incrementally maintaining a data sample repre-
sentative of the data stream benefiting from reservoir sampling [10,20,27]. The
idea is then to extract the collection of patterns from this data sample by simu-
lating different window models (e.g., sliding window [4], exponential bias [1] or
tilted window [23]). Unfortunately, this approach makes it necessary to repeat
the pattern discovery after each modification of the data sample, which is very
costly (both for the frequent pattern mining and for the pattern sampling). For
this reason, it would be more advantageous to directly sample the output space
(i.e., pattern space) instead of the input space (i.e., data space). To the best of
our knowledge, there are methods for sequential data [9] but not for sampling
patterns in a data stream. First, stochastic methods [3] require evaluating the
measure m on the entire data for selecting the next state of the random walk.
This evaluation is impossible in a data stream because we do not have all the data
observations. Second, multi-step random procedures [5,9] have the advantage of
not directly evaluating the measure. They consist in drawing a data observation
proportionally to the utility sum of patterns that it contains and then, in draw-
ing a pattern from these patterns proportionally to its utility. Unfortunately, the
essential normalization constant for drawing the transaction will only be known
at the end of the stream. In short, all the pattern sampling methods require a
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full-access to data incompatible with the notion of data stream where not all the
data observations can be stored. Thus, this work proposes to extend reservoir
sampling methods dedicated to the input space so that they effectively deal with
the output space with a time bias.

3 Preliminaries

Data Stream and Patterns. This paper exclusively addresses itemset language.
Given a set of literals I, a data stream is a sequence of transactions with times-
tamps: D = 〈(t1, d1), . . . , (tn, dn)〉 such that dj ⊆ I for j ∈ [1..n] and tj < tj+1

for j ∈ [1..n − 1]. Without loss of generality, we consider that t1 = 0. The item-
set language LI = 2I is the set of all patterns (or itemsets). The cover of a
pattern ϕ in a data stream D, denoted by D[ϕ], is the set of data observations
containing ϕ: D[ϕ] = {(t, d) ∈ D : ϕ ⊆ d}. For instance, Table 1 provides a
data stream with 6 data observations described by 5 items I = {A,B,C,D,E}.
ABD is the transaction of the first data observation containing 8 itemsets:
2d0 = {∅, A,B,D,AB,AD,BD,ABD}. Of course, a data stream evolves over
the time with the addition of new data observations (e.g., a transaction will
likely be added at timestamp 6).

Table 1. A running example with three damping functions

T
im

e

Data stream D
Time. Items

0 A B D
1 A B C D
2 A C E
3 A B C
4 C D E
5 C D E

Damping function ω

ωno ω2
win ω0.3

exp

1 0 0.223
1 0 0.301
1 0 0.406
1 1 0.549
1 1 0.741
1 1 1.000

Interestingness Measure. A damping function ω : �+ → [0, 1] is a decreasing
function that assigns a lower weight to the oldest data observations such that
ω(0) = 1. This damping function enables us to consider the different existing
window models [17]: (i) Landmark window: A landmark window ωno considers
all the data observations equally since a landmark point (as t1 without loss of
generality): ωno : t 	→ 1 (ii) Sliding window: The (time-stamp based) sliding
window ωT

win considers only the most recent data observations [12]. Formally,
ωT
win : t 	→ 1 if t ≤ T and 0 otherwise, where T > 0 is the window time size. (iii)

Exponential damped window: A popular damped window is the exponential
bias [1] defined as ωα

exp : t 	→ e−αt where α is the damping factor. For instance,
Table 1 illustrates this three damping functions. It is easy to see that the damping
functions ω2

win and ω0.3
exp gives a larger weight to the most recent observations.

This is suitable for applications where people are interested only in the most
recent information of the data streams. For this purpose, we weight the support
with the damping function:
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Definition 1 (Damping support). Given a damping function ω, the damped
support of a pattern ϕ in D = 〈(t1, d1), . . . , (tn, dn)〉 is defined as below:

suppω(ϕ, D) =

∑
(t,d)∈D[ϕ] ω(tn − t)

∑
(t,d)∈D ω(tn − t)

Obviously, the damping function ωno leads to the traditional support. For
instance, suppωno(AB,D) = 3/6 and suppωno(CDE,D) = 2/6 meaning that AB
occurs more frequently than CDE. On the latest data observations, the situation
is reversed: suppω2

win
(AB,D) = 1/3 (or suppω0.3

exp
(AB,D) = 1.073/3.220) is lower

than suppω2
win

(CDE,D) = 2/3 (or suppω0.3
exp

(CDE,D) = 1.741/3.220).

Problem Statement. Let Ω be a population and f : Ω → [0, 1] be a measure, the
notation x ∼ f(Ω) means that the element x is drawn randomly from Ω with a
probability distribution π(x) = f(x)/Z where Z is a normalizing constant.

Given a data stream D = 〈(t1, d1), . . . , (tn, dn)〉, a language LI and a damp-
ing function ω, we aim at selecting k patterns ϕ1, . . . , ϕk in LI where the
probability of each pattern ϕi to be selected is determined by its relative weight
suppω(ϕi,D): ϕi ∼ suppω(LI ,D) for i ∈ {1, . . . , k}.

As mentioned in the introduction, a method for processing data streams
must comply with two constraints: (i) Space constraint: In most cases, it is
not possible to store all the observations in the data stream D. Therefore, the
sampling method has to be done in a single pass to avoid disk storage and the
space complexity has to be independent of the number of observations n. (ii)
Time constraint: Each observation must be processed in a short time to avoid
the accumulation of continuously arriving data, which would violate the above
space constraint. Next sections address this problem using reservoir sampling.

4 Reservoir Algorithms for Pattern Sampling

4.1 Challenges and Key Ideas

First, we reformulate our pattern sampling problem as an occurrence sam-
pling problem. Drawing a pattern according to the weighted support suppω

is equivalent to drawing an occurrence according to the damping function ω:
ϕ ∼ suppω(LI ,D) ⇔ ϕ ∼ ω(L(D)) where the multi-set L(D) =

⋃
(t,d)∈D 2d

gathers all the occurrences of patterns from D:

L(D) = { ϕ0
1, ϕ

1
1, . . .︸ ︷︷ ︸

2d1 with ω(tn−t1)

, ϕ0
2, ϕ

1
2, . . .︸ ︷︷ ︸

2d2 with ω(tn−t2)

, . . . , ϕ0
n, ϕ1

n, . . .
︸ ︷︷ ︸

2dn with ω(tn−tn)

}

and each occurrence ϕi
j ⊆ dj has a weight ω(ϕi

j) = ω(tn − tj). Interestingly, this
reformulation of the problem makes it possible to directly reuse reservoir sam-
pling algorithms from the literature where the occurrences form the population
to be sampled. More precisely, this family of algorithms selects a sample (often
without replacement) of a population having an unknown size in a single pass.
Some algorithms having the best complexity rely on a central result that we also
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use in the rest of this paper. Given two keys key1 = u1
1/ω1 and key2 = u2

1/ω2

where ωi > 0 and ui is uniformly drawn from [0, 1], we have:

P (key1 ≤ key2) =
ω2

ω1 + ω2
(1)

Based on this observation, [10] demonstrates that assigning each occurrence in
L(D) a key ui

1/ωi where ui is a random number and then, selecting the k patterns
with the largest keys is equivalent to sampling k occurrences without replacement
from L(D) proportionally to ω. Besides, as the number of occurrences is very
large (i.e., |L(D)|  k), a sampling method without replacement is equivalent
to a sampling method with replacement. Consequently, this paper benefits from
some principles of the sampling algorithm without replacement proposed by [10].

The context of pattern sampling raises two challenges with respect to the use
of reservoir sampling. The first challenge is to address the output space L(D)
rather than the input space D. We could naively apply a reservoir sampling
method by enumerating the output space (i.e., all the occurrences for each data
observation). For the itemset language, this approach would lead to an exponen-
tial complexity 2|d| for processing a data observation d, which the time constraint
prevents. Inserting step in Sect. 4.2 shows how to avoid the enumeration of the
output space by directly selecting the occurrence to insert into the sample. The
second challenge is to take into account the damping function ω in the main-
tenance of the sample. In Eq. 1, the weights are static, while in our context,
they are dynamic. At the insertion time tins, all occurrences have 1 as weight
– by definition of the damping function ω, we have ω(tins − tins) = ω(0) = 1.
When new observations arrive, the weight of the patterns in the sample decreases
except for the landmark window. Whatever the damping function, Damping step
in the next subsection shows how to integrate this modification relying on Eq. 1.
Finally, Sect. 4.3 proposes fast damping optimizations for ωT

win and ωα
exp.

4.2 Generic Algorithm: ResPat

Overview. This section presents our generic algorithm to address the two above
challenges. Algorithm 1 takes a data stream D, a damping function ω and a
sample size k as inputs and returns a sample S containing k patterns randomly
drawn in LI proportionally to the damped support in D. Its general principle is
to process each observation one by one. The inserting step (lines 7 to 11) inserts
some occurrences of the jth observation without enumerating all the output
space. The damping step (lines 5 and 6) modifies the keys of the occurrences
contained in the sample to integrate the damping function ω.

Before detailing the two main steps, it is important to note that the reservoir
S is a set of triples 〈key, ϕ, t〉 meaning that the occurrence ϕ was inserted at
time t with the key key. The function MinKey (lines 13–17) returns the smallest
key of the sample if the sample contains k occurrences and 0 otherwise. The
function UpdateSample (lines 18–23) inserts an occurrence into the sample
and removes the occurrence with the smallest key (if necessary for maintaining
|S| ≤ k). Note that the first k occurrences at the beginning of the stream are
automatically added into the sample due to the smallest key that equals to zero
(lines 20–21).
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Algorithm 1. ResPat: Pattern sampling in data streams with damping
Require: A data stream D, a damping function ω and a number of patterns k
Ensure: A sample S containing k patterns randomly drawn in LI proportionally to

the damped support in D
1: S := ∅
2: jump := 0
3: for j ∈ 〈1, . . . , n〉 do
4: i := 0

// Damping step
5: if j ≥ 2 then
6: Update the key of each element 〈key, ϕ, t〉 ∈ S with keyω(tj−1−t)/ω(tj−t)

// Inserting step
7: while i + jump < |2dj | do
8: i := i + jump
9: UpdateSample(S, k, unif(MinKey(S, k), 1), L(dj)

i, tj)
10: jump := �log(unif(0, 1))/ log(MinKey(S,k))	 + 1

11: jump := (i + jump) − |2dj |
12: return the sample S
13: function MinKey(S, k) // Return the minimum key in S
14: if |S| < k then
15: return 0
16: else
17: return min〈key,ϕ,t〉∈S key

18: procedure UpdateSample(S, k, key, ϕ, t) // Add the pattern ϕ in S
19: e := 〈key, ϕ, t〉
20: if |S| < k then
21: Add the pattern e in S
22: else
23: Replace the pattern with the minimum key in S by the pattern e

Inserting Step. A naive algorithm could draw a uniform number between 0
and 1, saying u, for each occurrence and it could insert this occurrence when
u1/ω = u exceeds the smallest key m (because the weight of each occurrence
is 1). Instead of enumerating one by one all the occurrences, it is enough to
calculate how many occurrences, saying jump, should be drawn before having
the one that will be inserted in the reservoir [20]. Intuitively, to insert a pattern
in the reservoir, it is sufficient to calculate the weight ω so that the key u1/ω is
larger than the smallest key in the reservoir, saying m. As each occurrence has
a weight of 1, this weight ω simply corresponds to the number of occurrences
skipped and the equation to solve is m ≤ u1/jump. This intuition is formalized
by the below property:

Property 1 (Exponential random jump [20]). Given the smallest key m, the
number of occurrences to jump before reaching the occurrence to be inserted in
the sample is given by the random variable Xm:

Xm =

⌊
log unif(0, 1)

log m

⌋

+ 1
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Property 1 is the first key ingredient of the inserting step at line 10 of Algo-
rithm 1. Let us assume in our running example provided by Table 1 that after
having processed the first two transactions, the smallest key of the reservoir is
m = 0.8. If we draw u = 0.1, then we get jump =

⌊
log 0.1
log 0.8

⌋
+ 1 = 11 and the

11th occurrence of ACDE is inserted into the reservoir by replacing the occur-
rence having the smallest key m. With this technique, there is 1 single draw
instead of 11 with a naive enumeration. We will measure this significant gain
both theoretically (in Sect. 4.4) and practically (in Sect. 5).

For the random jump to be really useful, we must access the jump-th occur-
rence without listing all the previous ones. For this purpose, we introduce the
notion of index operator. Given a data observation (t, d) ∈ D, an index operator
is a bijection mapping each number i ∈ [0..|2d| − 1] to a pattern ϕ ∈ 2d:

Definition 2 (Itemset index operator). Given a transaction d =
{I0, . . . , I|d|−1} and an index number i ∈ [0..2|d| − 1], we consider its value
b|d|−1 . . . b1b0 in binary system and then, the itemset X returned by L(d)i con-
tains all items Ij where bj = 1: Ij ∈ X ⇔ bj = 1.

This index operator is the second key ingredient used at line 9 of Algorithm 1
for selecting directly the right occurrence to insert in the sample without enumer-
ating all the patterns and applying a filter. For instance, L(ACDE)11 is ACE
because the decimal value (11)10 has (1011)2 as binary value. This operator is
efficient because its complexity is linear with the number of items in d.

Damping Step. All patterns are inserted into the reservoir with 1 as initial weight
but after, their weight must be decreased to take into account the damping
function ω. In other words, at every time tj , a pattern inserted at tins must have
a key u1/ω(tj−tins). For this purpose, the key of each pattern is raised to the
power ω(tj−1−tins)

ω(tj−tins)
at each iteration j. The below property formalizes this idea:

Property 2 (Key damping). Given a pattern ϕ inserted at time tins with a key
key considering a damping function ω, we have for any tj ≥ tins:

key
ω(tins−tins)

ω(tins+1−tins))

ω(tins+1−tins)
ω(tins+2−tins)

...
ω(tj−1−tins)

ω(tj−tins)

= key1/ω(tj−tins)

Due to lack of space, the proofs are omitted. This property follows
from the fact that the left hand-side of the equality can be rewrit-

ten as key
∏j

i=ins+1
ω(ti−1−tins)

ω(ti−tins) and the simplification of the exponent gives
key1/ω(tj−tins). Assume that ACE was inserted with the initial key key = 0.9
at time 2. Of course, this key will not be modified with the damping function
ωno. For the function ω2

win, it decreases to 0 with the sixth observation (5, CDE)
because keyω2

win(4−2)/ω2
win(5−2) = key1/0 is equal to 0 (by convention). Finally,

with the function ω0.3
exp, this weight is 0.9ω0.3

exp(2−2)/ω0.3
exp(3−2) = 0.867 at time 3,

0.867ω0.3
exp(3−2)/ω0.3

exp(4−2) = 0.825 at time 4 and 0.825ω0.3
exp(4−2)/ω0.3

exp(5−2) = 0.772
at time 5 that also corresponds to 0.91/ω0.3

exp(5−2) = 0.772 as desired.
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It is clear that the damping step decreases all the keys (except for ωno) and
therefore, the smallest key m in the sample. Therefore, the stronger the damping,
the smaller the size of the jumps at the inserting step (see Property 1). Conse-
quently, our approach is less efficient with the damping functions focusing on the
latest data observations. Furthermore, the computational cost of decreasing the
keys is an important defect of this damping step because this operation is done
for each element in S at every iteration tj . Fortunately, it is sometimes possible
to skip this step for some damping functions as shown in the next section.

4.3 Fast Damping Algorithms: ResPatno, ResPatwin and ResPatexp

This section improves the generic algorithm ResPat by emulating the key damp-
ing without explicitly updating the key of each element contained in the reservoir.
Of course, the damping step is useless for ωno as the key value is not modified
(indeed, keyωno(tj−1−t)/ωno(tj−t) = key1/1 = key). Consequently, lines 5 and 6
can be safely removed leading to the algorithm denoted by ResPatno. But, we
show below that it is also possible to remove these lines for ωT

win and ωα
exp by

adapting the functions MinKey and UpdateSample.

Sliding Window. Ideally, the patterns that are too old (i.e., |t − tins| > T ) should
be removed from the sample S at each damping step. Our key idea is to count
them as being missing from S even if we do not take them out. Consequently,
the number of patterns contained in the sample takes into account the too old
patterns (see lines 2 and 8 of Algorithm 2). In practice, this number is maintained
at each modification of S (lines 9 and 11) (with a circular array storing the
number of insertions for the last T times). In particular, if the pattern in S
with the minimum key (line 11) is too old, then this pattern is removed and
the pattern with the next minimum key is considered. For instance, assume that
ACE was inserted at time 2 with the initial key key = 0.9 and it remains in
the reservoir S until the end of time 4. At the beginning of time 5, the function
MinKey will return 0 whatever the value of the smallest key in S because ACE
is expired (due to 5 − 2 ≥ 3). The insertion of a new pattern will refill the
reservoir with the correct number of unexpired patterns. Later, by taking care
of timestamps, when the smallest key will be that of an expired itemset (here,
ACE with 0.9), this element will be removed from S and the next smallest key
will be considered.

Exponential Damping. Whatever the insertion time of the key, we can observe
that the damping function ωα

exp raises the key to the same power (because ωα
exp

is a memory-less bias function [1]). The below property formalizes this intuition:

Property 3 (Exponential key damping). Given a pattern ϕ inserted at time tins

with a key key and an exponent α, we have for any tj ≥ tins:

key1/ exp(α×tins)
exp(α×tj)

= key1/ωα
exp(tj−tins)
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Algorithm 2. ResPatwin: ResPat with sliding window fast damping
1: function MinKey-Win(S, k, t) // Return the minimum key in S
2: if |{〈key, ϕ, u〉 ∈ S : |t − u| ≤ T}| < k then
3: return 0
4: else
5: return min〈key,ϕ,u〉∈S s.t. |t−u|≤T key

6: procedure UpdateSample-Win(S, k, key, ϕ, t) // Add the pattern ϕ in S
7: e := 〈key, ϕ, t〉
8: if |{〈key, ϕ, u〉 ∈ S : |t − u| ≤ T}| < k then
9: Add the pattern e in S

10: else
11: Replace the pattern with the minimum key in S by the pattern e

This property follows from the fact that the two exponents can be rewritten
as a single one exp(α×tj)

exp(α×tins)
= 1/ exp(−α × (tj − tins)). Property 3 means that

the insertion time tins is useless for damping the key (if the initial insertion
weight takes it into account). For instance, let us take again the example of the
itemset ACE inserted at time 2 with the initial key key = 0.9. Benefiting from
the exponential key damping for ω0.3

exp, this itemset is inserted with the weight
key1/ exp(0.3×2) = 0.944 and its damped key at time 5 is 0.944exp(0.3×5) = 0.772
(that equals to 0.91/ω0.3

exp(5−2) = 0.9exp(−0.3(5−2)) as desired). More generally,
ResPatexp benefits from this damping strategy (see Algorithm 3). At line 7,
we insert a new pattern at time tins with a weight greater than 1 so that the
weight of the patterns already within the reservoir do not change. Then, when
we consult the minimum key at line 5, we correct all the weights with the same
power using Property 3.

Algorithm 3. ResPatexp: ResPat with exponential fast damping
1: function MinKey-Exp(S, k, t) // Return the minimum key in S
2: if |S| < k then
3: return 0
4: else
5: return min〈key,ϕ,t〉∈S keyexp(α×t)

6: procedure UpdateSample-Exp(S, k, key, ϕ, t) // Add the pattern ϕ in S
7: e := 〈key1/ exp(α×t), ϕ, t〉
8: if |S| < k then
9: Add the pattern e in S

10: else
11: Replace the pattern with the minimum key in S by the pattern e

4.4 Theoretical Analysis

This section studies the ResPat algorithm family. First, the following property
proves that these algorithms return a sample with the expected characteristics:
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Property 4 (Correctness). Considering that |L(D)|  k, the generic algorithm
ResPat and its fast damping variants (ResPatno, ResPatwin and ResPatexp)
are correct: Given a data stream D, a language LI and a damping function ω,
each algorithm returns k patterns ϕ1, . . . , ϕk such that ϕi ∼ suppω(LI ,D).

This non-trivial property relies on [10] by proving that the temporal bias is
correctly maintained thanks to the different key raising properties.

We now analyze the complexity of the algorithm family ResPat. First, the
space complexity of the different algorithms is linear with the sample size k.
To the best of our knowledge, our proposal has the smallest space complexity
for frequent pattern sampling and it is the first one-pass algorithm for frequent
pattern sampling. Second, considering the time complexity, it is clear that the
efficiency of fast damping algorithms depends essentially on the number of inser-
tions (especially with the optimized versions without damping step). Of course,
the lower this number, the more efficient the approach.

Property 5 (Number of insertions). Given a data stream D, a language LI and
a sample size k, the expected number of insertions into the reservoir is (after
the filling phase): (i) O(k · log

(
|L(D)|

k

)
) for the landmark window ωno (see [10]),

(ii) O(k/T · n) for the sliding window ωT
win (T � n) and (iii) O(k · α · n) for the

damped window ωα
exp

Unlike other pattern methods in data streams [7,22,26], the weaker the damp-
ing is, the more efficient the approach is. In particular, for the sliding window,
the larger the window T , the lower the number of insertions. For the exponential
damping, the lower the exponent α, the lower the number of insertions.

5 Experimental Evaluation

This experimental study investigates the performance of our reservoir sampling
approach in Sect. 5.1 and it shows its interest for outlier detection in Sect. 5.2. We
use 12 benchmark datasets coming from the UCI Machine Learning repository
and the FIMI repository, and 3 large synthetic datasets coming from [21]. Note
that the condition |L(D)|  k is satisfied by these large datasets: |L(D)|  k.
The methods are implemented with the Java language1. All experiments are
performed on a 2.5 GHz Xeon processor with the Linux operating system and 2
GB of RAM memory. Each of the reported measurements is the mean of 10 runs
where the transactions were swapped.

5.1 Global and Longitudinal Performance Study

The first experiment assesses the overall efficiency by measuring its total execu-
tion time. For this purpose, Table 2 compares the ResPat algorithm family with
two state-of-the-art algorithms: the two step random procedure 2-Step [5] and
1 The source code is available: https://github.com/asoulet/ResPat.

https://github.com/asoulet/ResPat
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Table 2. Running time in seconds for sampling 100k patterns

Dataset No damping ωno Sliding window ω1000
win Exp. damping ω0.003

exp

2-Step A-Res ResPatno A-Res ResPat ResPatwin A-Res ResPat ResPatexp

abalone 0.079 0.8 0.8 75.9 81.1 2.1 79.5 84.4 2.9

chess 0.220 – 10.5 – 102.1 28.4 – 83.7 14.3

cmc 0.080 0.8 0.7 25.2 26.2 1.0 27.7 28.6 1.5

connect 0.725 – 14.3 – 2433.0 746.9 – 1569.5 20.0

crx 0.121 4.0 2.0 18.1 13.9 2.1 20.6 16.1 2.5

hypo 0.132 61.2 3.5 146.5 73.1 8.0 170.5 71.2 6.0

mushroom 0.201 – 5.6 – 218.3 30.8 – 184.9 14.3

retail ∗ 6.669 – 115.9 – 2260.2 1025.6 – 1651.1 116.8

sick 0.153 851.8 4.4 938.4 71.7 10.4 964.2 65.1 7.3

T10I4D100K ∗ 0.730 – 7.6 – 1948.3 334.0 – 2104.5 83.3

T10I4D1000K ∗ oom – 5.2 – 17835.9 1615.2 – 19624.4 73.1

T15I6D1000K ∗ oom – 9.1 – 19395.0 3367.6 – 19387.3 18.2

T30I20D1000K ∗ oom – 6474.0 – – 21229.8 – 29903.9 7008.3

vehicle 0.124 22.9 3.0 46.7 18.2 3.2 51.8 21.2 3.7

waveform 0.165 955.6 4.6 1104.3 131.0 17.6 1144.6 114.6 9.8

oom: out of memory/–: out of time (≥ 10h)/∗: variable size transactions

the baseline A-Res [10] that corresponds to ResPat without the exponential
random jump (see Property 1). We consider the execution times for a sample
size k =100,000 and three damping functions: no damping ωno, a sliding window
ω1000
win and an exponential damping ω0.003

exp . First, we observe that our ResPat
algorithm family manages to process large datasets with 1000K transactions,
while the two step random procedure 2-Step does not have enough memory
(denoted by oom in Table 2). Of course, in return, our reservoir sampling app-
roach is slower than 2-Step. Second, it is clear that the fast damping algorithms
ResPatno, ResPatwin and ResPatexp outperform the baseline A-Res and the
generic algorithm ResPat. Indeed, as soon as the number of items per transac-
tion is large, the exponential random jump becomes mandatory to maintain a
reasonable processing time explaining timeouts for A-Res (denoted by -). Besides,
the cost of the generic damping step is really prohibitive when the sample size
is large because of the high number of key decreases for ResPat. It is more effi-
cient to simulate these key decreases as for the sliding window (see ResPatwin

column) as well for the exponential damping (see ResPatexp column). Finally,
Fig. 1 plots the execution times of ResPatno, ResPatwin and ResPatexp for
the 6 largest datasets with respect to the sample size k. Unfortunately, our app-
roach struggles for datasets containing very long transactions (here, retail and
T30I20D1000K) regardless of the sample size k. Indeed, for very long transactions,
the random jump is no longer enough to curb the combinatorial explosion of
the occurrence space. In contrast, for the other four datasets, the asymptotically
linear behavior is visible in accordance with Property 5.

This second experiment assesses the longitudinal efficiency of our algorithm
by measuring the execution time that is required for processing each trans-
action. Figure 2 plots the execution time per transaction for a sample size
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Fig. 1. Running time in seconds (y-axis) with respect to the sample size (x-axis)
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Fig. 2. Longitudinal performance of reservoir sampling algorithms

k = 100, 000 and four algorithms: A-Res/ResPatno for ωno, ResPatwin for ω1000
win

and ResPatexp for ω0.003
exp . We consider two datasets mushroom and T15I6D1000K

that respectively represent the datasets with fixed size transactions and the
datasets with variable size transactions (denoted by ∗ in Table 2). First, we see
again the strong impact of the exponential random jump that drastically reduces
the execution time per transaction once the first transactions have been com-
pleted (magenta dots are above the others). Second, for mushroom, the execution
time decreases steadily when there is no damping ωno. For ω1000

win , a disturbance is
observed once the sliding window moves (after 1000) with values varying between
a few milliseconds and several tens of milliseconds. For the exponential damping
ω0.003
exp , the execution time per transaction stabilizes around a few milliseconds.

Third, for T15I6D1000K, the situation is less visible because the execution time
for each transaction depends strongly on its size. Because of the logarithmic
scale and high dot density, one might imagine that the execution time increases,
which is not true on average.

5.2 Use Case: One-Pass Frequent Pattern Outlier Detection

This section illustrates the interest of our sampling technique to detect outliers
by performing a single pass on the data (as it is necessarily the case in a stream).
We aim to rediscover the K outliers that we would have obtained with a multi-
pass FPOF method. More precisely, the frequent pattern outlier factor of a
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transaction d ∈ D is defined as: FPOF (d,D) =
∑

ϕ⊆d supp(ϕ,D)

maxd′∈D
∑

ϕ⊆d′ supp(ϕ,D) . The
lower this score is, the more likely to be an outlier the transaction is. Therefore,
our goal is to detect the K transactions minimizing this score. We benefit from
the formula proposed in [14] to approximate the FPOF from a sample of patterns
S (drawn from D with respect to the support):

lim
|S|=∞

|{ϕ ∈ S : ϕ ⊆ d}|
maxd′∈D |{ϕ ∈ S : ϕ ⊆ d′}|
︸ ︷︷ ︸

FPOF (d,S)

= FPOF (d, D)

Basically, the idea is to maintain a sample of frequent patterns S with our
reservoir sampling approach. At the same time, we apply this formula using the
current sample to estimate the FPOF of each transaction. The K transactions
minimizing the FPOF are kept throughout the pass on the dataset. At the end,
the remaining transactions are considered to be the K outliers. Of course, the
sample computed on the first transactions is not very representative of the entire
dataset (i.e., far from the final sample) and it is possible to miss true outliers.
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Fig. 3. Accuracy comparison between 2-Step (left) and ResPat (right)

Figure 3 plots the average accuracy of a multi-pass FPOF (2-Step) and a
one-pass FPOF (ResPatno) with the sample size k for retrieving the top-K
outliers in all the datasets having a fixed size transaction except connect. Inter-
estingly, we observe that our approach approximatively retrieves in a data stream
the outliers that would be obtained by storing all the data observations (using
2-Step). As expected, the accuracy of the two approaches increases rapidly with
the sample size k. The gain of ResPat is very strong between 10 and 1,000 but,
much lower between 1000 and 1,000,000. The higher the number of outliers K,
the more accurate the approach. On the one hand, the imprecision of the sam-
pling only has an impact around the Kth outlier. On the other hand, a high K
makes it possible to build a more representative sample from the first K trans-
actions (which are all considered as outliers at the beginning of the pass). The
latter explains why our approach is slightly less stable and less accurate than a
non-streaming context with 2-Step.
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6 Conclusion

This paper presents the first frequent pattern sampling approach in data streams
based on reservoir sampling. The strength of our generic algorithm is do deal
with any damping function while having a space complexity only linear with
the sample size. We have also shown how to optimize this algorithm for three
damping functions usuallly considered in the state-of-the-art. Surprisingly, our
theoretical analysis proves that these algorithms work best when the damping is
low. Of course, they turn out to be slower than the two-step random procedure,
but they require a limited memory space essential to process data streams or
to process datasets that do not fit in memory. Finally, a use case illustrates
the practical interest of an online pattern sample to detect outliers in one pass.
Of course, this simple outlier detection method could be improved by keeping
more transactions as candidate outliers and by using a bound to get statistical
guarantees on rejected transactions as done in [14]. We would like to extend our
approach to other languages and other interestingness measures. In both cases,
the challenge lies in extending the index operator for mapping each value to a
specific occurrence within a data observation. Finally, it would be interesting to
consider a dynamic damping function for learning with drift detection [13].
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on data preprocessing for data stream mining: current status and future directions.
Neurocomputing 239, 39–57 (2017)

25. ur Rehman, M.H., Liew, C.S., Wah, T.Y., Khan, M.K.: Towards next-generation
heterogeneous mobile data stream mining applications: opportunities, challenges,
and future research directions. J. Netw. Comput. Appl. 79, 1–24 (2017)

26. Tanbeer, S.K., Ahmed, C.F., Jeong, B.S., Lee, Y.K.: Sliding window-based frequent
pattern mining over data streams. Inf. Sci. 179(22), 3843–3865 (2009)

27. Vitter, J.S.: Random sampling with a reservoir. ACM Trans. Math. Softw. (TOMS)
11(1), 37–57 (1985)

28. Wong, R.C.W., Fu, A.W.C.: Mining top-k frequent itemsets from data streams.
Data Min. Knowl. Disc. 13(2), 193–217 (2006)

https://doi.org/10.1007/978-3-540-28645-5_29
https://doi.org/10.1007/978-3-319-31750-2_16
https://doi.org/10.1007/978-0-387-47534-9_4
https://doi.org/10.1007/978-0-387-47534-9_4


Discovering Proper Neighbors to Improve
Session-Based Recommendation

Lin Liu , Li Wang(B) , and Tao Lian

Data Science College, Taiyuan University of Technology,
Jinzhong 030600, Shanxi, China

wangli@tyut.edu.cn

Abstract. Session-based recommendation shows increasing importance
in E-commerce, news and multimedia applications. Its main challenge is
to predict next item just using a short anonymous behavior sequence.
Some works introduce other close similar sessions as complementary to
help recommendation. But users’ online behaviors are diverse and very
similar sessions are always rare, so the information provided by such sim-
ilar sessions is limited. In fact, if we observe the data at the high level of
coarse granularity, we will find that they may present certain regularity
of content and patterns. The selection of close neighborhood sessions at
tag level can solve the problem of data sparsity and improve the quality
of recommendation. Therefore, we propose a novel model CoKnow that is
a collaborative knowledge-aware session-based recommendation model.
In this model, we establish a tag-based neighbor selection mechanism.
Specifically, CoKnow contains two modules: Current session modeling
with item tag(Cu-tag) and Neighbor session modeling with item tag (Ne-
tag). In Cu-tag, we construct an item graph and a tag graph based on
current session, and use graph neural networks to learn the representa-
tions of items and tags. In Ne-tag, a memory matrix is used to store the
representations of neighborhood sessions with tag information, and then
we integrate these representations according to their similarity with cur-
rent session to get the output. Finally, the outputs of these two modules
are combined to obtain the final representation of session for recom-
mendation. Extensive experiments on real-world datasets show that our
proposed model outperforms other state-of-the-art methods consistently.

Keywords: Neighborhood sessions · Tag sequence graph · Memory
network · Graph neural network · Session-based recommendation

1 Introduction

Session-based recommendation has become more and more popular in the field
of recommendation systems, which aims to predict the next behavior based on
anonymous user’s behavior sequence in a short time. At the beginning of the
research, item-to-item recommendations [1] are mainly used for this task. Since
this method ignores the sequential information that plays a necessary role in the
c© Springer Nature Switzerland AG 2021
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session-based recommendation, Markov chain-based methods follow to predict
the user’s next behavior based on the previous one [2]. But this kind of method
only models local sequential behavior, and when we try to include all sequences
of the user, the state space will quickly become unmanageable.

With the development of deep learning, recurrent neural networks which are
good at processing sequential data, gradually become active in session-based
recommendation [3–5]. Hidasi et al. [3] apply Gated Recurrent Units (GRUs) to
model behavior sequences. Li et al. [4] combines attention mechanism with RNN,
while capturing the sequential behavior characteristics and user’s main purpose.
Although RNN-based methods can capture the sequential dependencies among
behaviors in a session, it is difficult to model complex transition patterns in a
session. To solve this problem, researchers begin to use graph neural networks
for session-based recommendation. Wu et al. [6] use graph neural networks to
model session sequences to capture complex transition mode between behaviors.
On this basis, Liu et al. [7] introduce category-level information to enhance the
expressive ability of the session. In addition, memory networks [8] have also been
used in recommendation tasks to store the information of neighborhood sessions.
Wang et al. [9] propose CSRM which applies memory network to store the rep-
resentations of neighborhood sessions. However, this method only models from
item level, the sparseness of neighbor information leads to biases in predictions.

Figure 1 shows an example of three sessions. On the one hand, if we analyze
the sequence from the item level, we can find that the three sessions contain five,
four and five completely different items respectively. The unique ID of each item
makes the session sequence more confusing and complicated, which makes it dif-
ficult for us to dig out the user’s real preferences. From the tag level, it can be
found that these three sessions actually correspond to two, three and two types
of items respectively, which greatly simplifies our judgment of user’s preferences.
On the other hand, looking at the three session sequences at the tag level, we
can observe that each user has the most clicks on the phone. In other words, the
behavior patterns of these three users are very similar. Therefore, we can refer to
the first two sessions to find the real intent of the current session(session 3) when
predicting the next action of current session. Combined with the information of
neighborhood sessions with item tags, we can determine that the current user
may want to buy a mobile phone. All brands and models may be selected by
this user, rather than just limited to the products that appeared in neighbor-
hood sessions. This approach alleviates the sparsity of neighbor information to
a certain extent.

In this paper, we propose a model that improves session-based recommenda-
tion performance by discovering proper neighbors, namely CoKnow. We create
Cu-tag module and Ne-tag module combined with tag information to model the
current session and neighbor session respectively. The main contributions of our
work can be summarized as follows:

(1) We establish a tag-aware neighborhood session selection mechanism to assist
us in session-based recommendation. This method effectively reduces the
sparsity of neighbor information.
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(2) The expression of our current session is to integrate the information of the
neighborhood session. Both the current session and neighborhood sessions
are modeled in consideration of both the item level and the tag level, and the
graph neural networks are used to capture complex transfer relationships.

(3) Extensive experiments conducted on real-world datasets indicate that
CoKnow evidently outperforms the state-of-art methods.

Fig. 1. An example of session sequences.

2 Related Work

2.1 Collaborative Filtering-Based Methods

Collaborative filtering-based recommendation is to discover user’s preferences
through the mining of user’s historical behavior data and group users based on
different preferences to recommend items with similar tastes. And it is mainly
based on the following assumption: users with similar choices tend to have similar
preferences. Recommendation based on collaborative filtering contains memory-
based collaborative filtering and model-based collaborative filtering.

Memory-based collaborative filtering aims to find similar users or items by
using a specific similarity function to generate recommendations. Such algo-
rithms include user-based recommendations and item-based recommendations.
User-based collaborative filtering calculates the similarity between users by ana-
lyzing their behaviors, and then recommendation items that similar users like.
Jin et al. [10] present an optimization algorithm to automatically compute the
weights for different items based on their ratings from training users. Item-based
collaborative filtering method calculates the similarity between items, and rec-
ommends items that are more similar to the items the user likes. Sarwar et al. [1]
analyze different item-based recommendation methods and different techniques
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of similarity calculation. Model-based collaborative filtering is to train a model
with the help of technology such as machine learning, and then predict the target
user’s score for the item. Wu et al. [11] generalize collaborative filtering models
by integrating a user-specific bias into an auto-encoder. He et al. [12] propose
to leverage a multi-layer perceptron to learn the user-item interaction function.
Wang et al. [9] propose CSRM to model collaborative filtering in session-based
recommendation, using GRU to model the current session, and combining the
collaborative information of neighborhood sessions to achieve gratifying results
in session-based recommendation. However, the neighbor selection method based
on item similarity adopted in this method obtains sparse neighbor information.
Therefore, the sparsity of neighbor selection is still a challenge.

2.2 Graph Neural Networks-Based Methods

At present, graph neural networks [13] are widely used because of their strong
ability to simulate relationships between different objects. Wu et al. [6] first
construct each historical session sequence as a directed graph and use Grated
Neural Networks to capture the complex transition mode among behaviors,
which achieves better performance than RNN-based methods. Similarly, Xu et
al. [14] use a multi-layer self-attention network to capture the global dependen-
cies between items in a session. Qiu et al. [15] utilize graph neural networks to
explore the inherent item transition patterns in a session, which is more than
plain chronological order. Wang et al. [16] propose a multi-relational graph neu-
ral network model which models sessions using other types of user behavior
beyond clicks. Liu et al. [7] introduce category-level representations and utilize
graph neural networks to receive information at item level and category level. In
a word, graph neural networks are good at modeling complex transfer relation-
ships, but the above methods only simulate the behavior of the current session. In
many cases, the information provided by the current session is far from enough.

2.3 Memory Network-Based Methods

Recently, memory networks for recommendation systems have received much
attention because they achieve some good performance. Chen et al. [17] propose
a memory-augmented neural network (MANN) integrated with the insights of
collaborative filtering for recommendation. Huang et al. [18] propose a knowl-
edge enhanced sequential recommendation method which integrates the RNN-
based networks with Key-Value Memory Network (KV-MN). CSRM [9] utilizes
memory networks to save the information of neighborhood sessions. These meth-
ods(such as CSRM) have improved recommendation performance through col-
laborative information. But it still has inherent limitations in dealing with the
sparsity of neighbor information. Therefore, we try to use more coarse-grained
tag information to make up for this defect.
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Fig. 2. The framework of CoKnow.

3 The Proposed Method: CoKnow

In this article, we propose CoKnow, which is a method to discover suitable neigh-
bors with the help of tag information to improve session-based recommendation.
The model framework is shown in Fig. 2. Specifically, the model contains two
modules: Cu-tag and Ne-tag, modeling the current session and neighbor sessions
respectively. In this section, we introduce these two modules in detail.

3.1 Problem Definition

Session-based recommendation aims to predict the next item that user will
interact with, only based on user’s anonymous interactive sequence. Here, we
give some notations related to the task of session-based recommendations. Let
V = {v1, v2, ..., vM} denote the set of all unique items involved in all ses-
sions, C = {c1, c2, ..., cN} denote the set of item tag, where M and N repre-
sent the number of items and tags in the dataset respectively, and each item
vi ∈ V corresponds to a tag ck ∈ C. We define the session set in a dataset as
X = {X1,X2, ...,XQ}, where Q is the number of session sequences. And each
session sequence Xi consists of two sequences: item sequence Sm

i = [v1, v2, ..., vn]
and tag sequence Sc

i = [c1, c2, ..., cn]. The goal of session-based recommendation
is to calculate the recommendation probability ŷi of each candidate item, and
get a list of probability ŷ = {ŷ1, ŷ2, ..., ŷM}.

3.2 Current Session Modeling with Item Tag (Cu-tag)

To model the current session, we jointly model from the item level and the tag
level to get the representation of the current session, shown as Fig. 3. And the
modeling of these two levels uses graph neural network for the same processing,
so here is a unified description.

Learning the Embedding of Nodes in the Graph. Each item sequence
Sm
i = [v1, v2, ..., vn] and its corresponding tag sequence Sc

i = [c1, c2, ..., cn] can
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Fig. 3. The framework of the Cu-tag module.

be regarded as graph structure data, and they can be constructed as directed
graphs. Here, we use Gm = (νm, εm) to represent the directed graph constructed
by the item sequence, each node refers to an item vi ∈ V . And Gc = (νc, εc)
represents the directed graph constructed by the tag sequence, each node refers to
a tag ci ∈ C. For example, the item sequence is Sm

i = [v1, v2, v3, v4, v3, v5] and the
corresponding tag sequence is Sc

i = [c1, c2, c1, c3, c1, c4]. The constructed directed
graph and connection matrix are Fig. 4(a), Fig. 4(b) and Fig. 4(c), Fig. 4(d). It
should be noted that due to the repeated occurrence of a certain item or tag in
an sequence, we assign a normalized weight to each edge, which is calculated as
the occurrence of the edge divided by the outdegree of that edge’s start node.

After constructing the direct graph and connection matrix, we obtain latent
vectors of nodes via graph neural networks. At first, we embed every node into a
united embedding space. The vector xi denotes the latent vector of node learned
via graph neural networks. The update functions are given as follows:

pt = Concat(Ai
In([xt−1

1 , ..., xt−1
n ]�HIn+bIn), Ai

Out([x
t−1
1 , ..., xt−1

n ]�HOut+bOut))
(1)

zt = σ(Wzp
t + Uzx

t−1
i ) (2)

rt = σ(Wrp
t + Urx

t−1
i ) (3)

˜xt
i = tanh(Wop

t + Uo(rt � xt−1
i )) (4)

xt
i = (1 − zt) � xt−1

i + zt � ˜xt
i (5)

where Wz, Wr, Wo ∈ R
2d×d , Uz, Ur, Uo ∈ R

d×d, HIn, HOut ∈ R
d×d are

learnable parameters. bIn, bOut ∈ R
d are the bias vectors. Ai

In, Ai
Out ∈ R

1×n are
the corresponding rows in the matrices AIn and AOut. σ(·) denotes the sigmoid
function and � represents element-wise multiplication. zt, rt are update gate
and reset gate respectively, which decide what information to be preserved and
discarded. When we update nodes in item graph and tag graph in this way, the
obtained item and tag representations are expressed as ei and fi.
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Fig. 4. Examples of item graph, tag graph and their connection matrices.

Current Session Embedding with Tag Information. The representation
of the current session embedding consists of local representation and global rep-
resentation. In our model, we suppose that the last interacting item plays a key
role, so we use the representation of the last interacting item with tag informa-
tion as local representation of the current session, i.e. slocal = [en; fn].

For global representation, considering the importance of each item in the
session sequence is different, so we combine the attention mechanism to get a
global representation of the session:

αi = r�σ(W1[en; fn] + W2[ei; fi] + c) (6)

sglobal =
n

∑

i=1

αi[ei; fi] (7)

where r ∈ R
d and W1, W2 ∈ R

d×2d are learnable parameters.
Finally, we compute the current session embedding scurrenti by taking lin-

ear transformation over the concatenation of the local embedding and global
embedding:

scurrenti = W3[slocal; sglobal] (8)

where W3 ∈ R
d×4d is weight matrix.

3.3 Neighbor Session Modeling with Item Tag (Ne-tag)

The Cu-tag module only utilizes the information contained in the current ses-
sion, which ignores the collaborative information in the neighborhood sessions
that can supplement the expression of the current session. To address this omis-
sion, we design a neighbor session modeling method with tag participation. The
Ne-tag module combines tag information to select neighborhood sessions that
have the most similar behavior pattern to the current session and use them as
auxiliary information of the current session, so as to better judge the user pref-
erence of the current session.

After using the Cu-tag module to obtain the representations of m last ses-
sions, they are stored in the memory matrix M . Then we calculate the similarity
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between the global embedding sglobal of the current session and each session mi

stored in the memory matrix M :

sim(sglobal,mi) =
sglobal · mi

||sglobal|| × ||mi|| ∀mi ∈ M (9)

According to similarity values, we can get the k largest similarity values
[sim1, sim2, ..., simk−1, simk] and the corresponding k representations of neigh-
borhood sessions [m1,m2, ...,mk−1,mk]. Since each neighborhood session con-
tributes differently to the representation of current session, we utilize the soft-
max function to process the k similarity values, and more similar sessions will get
greater weight. Finally, the ultimate neighborhood session embedding is obtained
by integrating the information of k neighborhood sessions:

wi =
exp(βsimi)

∑

j=1 exp(βsimj)
(10)

sneighbori =
k

∑

i=1

wimi (11)

where β denotes the strength parameter.

3.4 Prediction Layer

Here, we apply a fusion gating mechanism to selectively combine the information
of the current session and the neighborhood sessions to obtain the ultimate
expression of the current session. The fusion gate gi is given by:

gi = σ(Wlslocal + Wgsglobal + Wos
neighbor
i ) (12)

Therefore, we can calculate the representation of the current session combined
with the collaborative information of the neighborhood sessions:

si = gis
current
i + (1 − gi)s

neighbor
i (13)

Then, we compute the recommendation probability ŷ by softmax function
for each candidate item vi ∈ V . The addition of tag information and neighbor
information is beneficial to improve the score of candidate items that belong to
same or similar tags as the items in the current session. The calculation of the
recommendation probability is as follows:

ŷ = softmax(s�
i [ei; fi]) (14)

We use cross-entropy loss as our loss function, which can be written as follows:

L(ŷ) = −
M
∑

i=1

yilog(ŷi) + (1 − yi)log(1 − ŷi) + λ ‖ θ ‖2 (15)

where y is the one-hot encoding vector of the ground truth item, θ is the set of
all learnable parameters.

Algorithm 1 elaborates the construction process of Cu-tag and Ne-tag in our
proposed CoKnow.
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Algorithm 1. CoKnow
Input: session sequence Xi, which contains item sequence Sm

i , tag sequence Sc
i ;

connection matrix Am, Ac

Output: the probability list ŷ = {ŷ1, ŷ2, ..., ŷM}
1: Construct Cu-tag module:
2: for Sm

i , Sc
i ∈ Xi do

3: use (Sm
i , Am) and (Sc

i , A
c) to construct item graph and tag graph

4: obtain the representation of nodes eti and f t
i in the item graph and tag graph

respectively using GNN based on Eq.(1)-(5)
5: concatenate en and fn to obtain the local embedding slocal
6: obtain global embedding sglobal based on attention mechanism(Eq. (6)-(8))
7: combine slocal with sglobal to obtain the current session embedding scurrent

i

8: store scurrent
i in the outer memory matrix M

9: return
10: Construct Ne-tag module:
11: for mi ∈ M do
12: calculate the similarity between sglobal and mi

13: obtain the neighborhood session embedding sneighbor
i based on Eq.(9)-(11)

14: return
15: combine scurrent

i with sneighbor
i to obtain the ultimate current session embedding

si (Eq.(12)-(13))
16: compute the probability ŷ based on Eq.(14)

4 Experiments

4.1 Research Questions

In this section, we will answer the following research questions:

(RQ1) How is the performance of CoKnow compared with other state-of-the-art
methods?

(RQ2) How does CoKnow perform on sessions with different lengths?
(RQ3) Does the existence of each module in CoKnow has some significance?
(RQ4) Will the prediction performance of CoKnow be influenced when the

number of neighborhood sessions is different?

4.2 Datasets

We evaluate the proposed model on the following two real e-commerce datasets:

• Cosmetics1: This is a user behavior record of a medium cosmetics online
store in October and November 2019. It is a public dataset published on
kaggle competition platform. Each record contains attribute information, such
as session id, item id, item category and timestamp. It is worth mentioning
that we are first to try to perform a session-based recommendation task on
this dataset.

1 https://www.kaggle.com/mkechinov/ecommerce-events-history-in-cosmetics-shop.

https://www.kaggle.com/mkechinov/ecommerce-events-history-in-cosmetics-shop
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• UserBehavior2: A Taobao user behavior dataset provided by Alimama. It
contains a series of purchase behavior records of users during November 25
to December 03, 2017. Each record contains attribute information, such as
userID, itemID, item category and timestamp. The userID is directly used as
session id.

Table 1. Statistics of datasets used in the experiments.

Statistics Cosmetics UserBehavior

2019-Oct 2019-Nov

# of training sessions 33087 20127 2816

# of test sessions 6322 4765 706

# of items 22063 16175 14641

# of categories 103 98 1403

Average length 6.9938 9.1128 18.6063

In this paper, we filter out all session sequences with a length shorter than 2
or longer than 50 items [5] and items appearing less than 5 times. In addition,
similar to [19], we use the data augmentation method to generate sequences and
corresponding labels by splitting the input session. Then, a session sequence
of length n is divided into n − 1 sub-session sequences. For an input item
sequence Sm

i = [v1, v2, ..., vn], we generate the sequences and corresponding
labels ([v1], v2), ([v1, v2], v3), . . .. . ., ([v1, v2, ..., vn−1], vn) for training and testing
on all datasets, where [v1, v2, ..., vn−1] is the generated sequence and vn is the
label of the sequence, i.e. the next interactive item. Similarly, the same processing
is performed for the tag sequence. The data statistics are shown in Table 1.

4.3 Baselines

To evaluate the prediction performance, we compare CoKnow with the following
representative baselines:

• Pop: Pop always recommends the most popular items in the training set. It
is a simple method that still performs well in some scenarios.

• Item-KNN [1]: A baseline method based on the cosine similarity to recom-
mend items that are most similar to the candidate item within the session.

• FPMC [20]: This is a method that combines Markov chain model and matrix
factorization for the next-basket recommendation. Here, we ignore user latent
representations to make it suitable for session-based recommendation.

• GRU4Rec-topK [21]: Based on deep learning, this method uses RNN to
model the user’s interaction sequence. And it improved GRU4Rec with a
top-K based ranking loss.

2 https://tianchi.aliyun.com/dataset/dataDetail?dataId=649&userId=1.

https://tianchi.aliyun.com/dataset/dataDetail?dataId=649&userId=1
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• NARM [4]: This model combines the attention mechanism with RNN, while
capturing sequential behavior characteristics and main purpose of users.

• STAMP [22]: STAMP not only considers the general interest from long-
term historical behavior, but also considers the user’s last click to mine the
immediate interest

• NEXTITNET [23]: It is a CNN-based generative model. In this model, a
stack of dilated convolutional layers is applied to increase the receptive field
when modeling long-range sequences.

• SR-GNN [6]: A recently proposed algorithm for session-based recommen-
dation applying graph neural network. It constructs the item sequence as a
directed graph, and combines attention mechanism to obtain the embedding
of each session sequence.

• CSRM [9]: This is the model most relevant to our model. It utilizes GRU
to model the current session at the item level, and applies an outer memory
module to model neighborhood sessions.

• CaSe4SR [7]: It is a deep learning model that utilizes graph neural network
to model item sequence and category sequence respectively. The difference
from the model in this paper is that it only models the current session and
does not consider collaborative information.

4.4 Evaluation Metrics and Experimental Setup

Evaluation Metrics. We use the most commonly used metrics Recall@20 and
MRR@20 for session-based recommendation to evaluate model performance.
Recall@20 is the proportion of ground-truth items appearing in the top-20 posi-
tions of the recommendation list. It does not consider the rank of the item that
user actually clicked. MRR@20 is the average of the inverse of the ground-truth
item ranking. If the rank of an item is greater than 20, the value is set to 0. This
indicator takes the position of the item in the recommendation list into account,
and is usually important in some order-sensitive tasks.

Experimental Setup. During training, we randomly initialize all parameters
with a Gaussian distribution with a mean of 0 and a standard deviation of 0.1.
The dimension of the embedding vector is set to d = 100. The mini-batch Adam
optimizer is exerted to optimize these parameters, where the initial learning
rate is set to 0.001. In addition, the training batch size is set to 512 and the
L2 penalty is 105. We vary the number of neighborhood sessions from [128, 256,
512] to study the effects of Ne-tag.

4.5 Results and Analysis

Comparison with Baseline Methods (RQ1). To demonstrate the perfor-
mance of the proposed model, we compare CoKnow with other state-of-art
session-based recommendation methods and the results can be seen in Table 2. It
shows that CoKnow consistently achieves the best performance in terms of both
Recall@20 and MRR@20 on two datasets. Overall, the recommendation perfor-
mance of all methods on UserBehavior is low. This may because the time interval
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Table 2. The performance comparison of CoKnow with other baseline methods over
two datasets.

Method Cosmetics UserBehavior

2019-Oct 2019-Nov

Recall@20 MRR@20 Recall@20 MRR@20 Recall@20 MRR@20

Pop 0.0420 0.0104 0.0470 0.0109 0.0148 0.0038

Item-KNN 0.1519 0.0601 0.1657 0.0659 0.0428 0.0143

FPMC 0.2422 0.1877 0.2092 0.1623 0.0711 0.0478

GRU4Rec-topK 0.4007 0.2447 0.4048 0.2210 0.0855 0.0318

NARM 0.4103 0.2271 0.4149 0.2141 0.0806 0.0328

STAMP 0.3738 0.1967 0.4148 0.2294 0.0621 0.0240

NEXTITNET 0.3303 0.1741 0.3488 0.1639 0.0353 0.0164

SR-GNN 0.3325 0.1655 0.3377 0.1610 0.0481 0.0181

CSRM 0.4515 0.2530 0.4367 0.2283 0.0906 0.0431

CaSe4SR 0.4396 0.2556 0.4551 0.2585 0.1865 0.0880

CoKnow(ours) 0.4558 0.2669 0.4669 0.2694 0.1989 0.1094

in the sessions on this dataset is longer than other datasets, and as can be seen
from Table 1, there are more item categories in this dataset, which means that the
user’s behavior is more complicated, making it harder to judge user’s real inten-
tions. Our model has been greatly improved compared to other models, which
also confirms the ability of CoKnow to handle complex behavior sequences. In
conventional methods, Item-KNN achieves some improvement over Pop which
only considers the popularity of the items, which shows that considering the
similarity of items in the session can improve the accuracy rate. The biggest
difference among FPMC and the above two models is that it models user’s his-
torical behavior records. Experimental results show the contribution of sequential
information to recommendation performance. Furthermore, deep learning-based
methods generally outperform the conventional algorithms. GRU4Rec-topK and
NARM use recurrent units to capture the general interests of users and have
achieved more prominent prediction results, which indicates the effectiveness
of RNN in sequence modeling. STAMP also obtains better results by combining
general interests with current interests(the last-clicked item), which indicates the
importance of the last click. In comparison, the prediction performance of NEX-
TITNET based on CNN is still slightly worse, indicating that CNN is still not
as capable of capturing sequential information as RNN on our dataset. CSRM
receives higher recommendation performance than SR-GNN, reflecting the role
of neighborhood sessions. Looking at these baseline methods, CaSe4SR is the
best recommendation method, which fully shows the effectiveness of category
information for session-based recommendation.

Analysis on Sessions with Different Lengths (RQ2). In addition to veri-
fying the prediction ability of our model on all sessions, we also group sessions in
the datasets according to the length to verify the validity of our model. Specif-
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Table 3. The performance of different methods on sessions with different lengths.

Method Cosmetics UserBehavior

2019-Oct 2019-Nov

Recall@20 MRR@20 Recall@20 MRR@20 Recall@20 MRR@20

Short GRU4Rec-topK 0.4898 0.3518 0.5066 0.2879 – –

NARM 0.6207 0.4826 0.5788 0.3832 – –

STAMP 0.5462 0.4149 0.3859 0.2400 – –

NEXTITNET 0.4653 0.3272 0.4673 0.2819 – - -

SR-GNN 0.5396 0.3919 0.5110 0.3333 – –

CSRM 0.5962 0.4294 0.5685 0.3789 – –

CaSe4SR 0.6356 0.5049 0.5916 0.4274 – –

CoKnow(ours) 0.6223 0.5161 0.6022 0.4239 – –

Medium GRU4Rec-topK 0.3481 0.1491 0.3835 0.1753 0.1576 0.0733

NARM 0.4012 0.2092 0.4342 0.2305 0.2342 0.1179

STAMP 0.2889 0.1412 0.3422 0.1797 0.1171 0.0501

NEXTITNET 0.2462 0.1175 0.2658 0.1229 0.0563 0.0363

SR-GNN 0.3599 0.1813 0.3917 0.2017 0.1136 0.0455

CSRM 0.3978 0.2091 0.4215 0.2246 0.2036 0.0815

CaSe4SR 0.4130 0.2360 0.4438 0.2475 0.2827 0.1309

CoKnow(ours) 0.4192 0.2677 0.4441 0.2874 0.3092 0.1476

Long GRU4Rec-topK 0.3155 0.1412 0.3268 0.1584 0.0826 0.0293

NARM 0.2425 0.0948 0.2802 0.1182 0.0467 0.0190

STAMP 0.2694 0.1134 0.2939 0.1331 0.0479 0.0173

NEXTITNET 0.2233 0.0864 0.2420 0.0966 0.0251 0.0125

SR-GNN 0.2341 0.0946 0.2525 0.1033 0.0682 0.0255

CSRM 0.3085 0.1358 0.3297 0.1545 0.0846 0.0364

CaSe4SR 0.3503 0.1897 0.3707 0.2045 0.1742 0.0769

CoKnow(ours) 0.3666 0.2133 0.3788 0.2268 0.1815 0.0932

ically, we divide each dataset into three groups based on the average length of
sessions in datasets in Table 1, that is, the length is less than or equal to 5, the
length is less than or equal to 15 and the length is greater than 15. We named
these three groups “Short”, “Medium” and “Long” respectively. It is worth not-
ing that because the number of sessions in the “Short” group of UserBehavior
is too small, we have not conducted experiments on this group of UserBehavior
here.

It is obvious that as the length of session increases, the performance on all two
datasets in terms of Recall@20 and MRR@20 decreases to varying degrees. This
may be because as the length of the session increases, the number of items that
users click on out of curiosity or accident will increase, resulting in an increase in
irrelevant items in the session sequence, which is not conducive to the extraction
of user preferences. Compared with other groups, the prediction performance of
all models on short sessions is much better than other groups. In “Short” group,
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NARM achieves the best performance among RNN-based baseline methods on
all datasets, but as the length of the session increasing, its performance drops
quickly. This may explain that RNN has difficulty coping with long sessions. SR-
GNN and CSRM have also achieved good recommendations on the two datasets.
This shows the role of graph neural networks and neighborhood information in
capturing user preferences. The performance of CaSe4SR is more prominent.

According to the results, we can observe that our model performs best on
different groups of all datasets, which fully proves that the information of tag and
neighbors is an effective complement to the capture of user’s intention in long
and short sessions. Although the result on CaSe4SR in short sessions slightly
exceeds CoKnow, this may be because the model cannot accurately capture
user’s preferences due to too little behavior, and the joining of neighborhood
sessions has misled the current session.

Impact of Different Modules (RQ3). In order to illustrate more clearly
the validity of each party of our model, we compare CoKnow with its three
variants: (1) CoKnowcu: CoKnow without the Ne-tag module and only graph
neural networks are used to model the current session. It is actually CaSe4SR.
(2) CoKnowne: CoKnow without the Cu-tag module which only uses the Ne-tag
module to model neighborhood sessions. (3) CoKnowitem: CoKnow only con-
structs a model at item level, that is, it removes the tag information.

It can be seen from Table 4 that the prediction result of CoKnow combing
two modules is the best. CoKnowcu outperforms CoKnowne, which indicates
that a session’s own information is more important than collaborative informa-
tion of the neighborhood sessions. Besides, the prediction effect of CoKnowitem

is slightly worse than CoKnow, which shows that the tag information can sup-
plement the information of the session to a certain degree, so as to capture
user’s real intention more accurately. Especially on the more complicated User-
Behavior, the prediction performance of our proposed model CoKnow has been
greatly improved compared to CoKnowitem. This fully indicates that tag infor-
mation can simplify the sequence with various behaviors, which is beneficial to
the capture of user’s intentions.

Influence of the Number of Neighbors k (RQ4). The number of neigh-
borhood sessions also has a certain effect on the prediction performance of the
model. Therefore, we compare the performance of the models when the num-

Table 4. Performance comparison of different variants of CoKnow.

Method Cosmetics UserBehavior

2019-Oct 2019-Nov

Recall@20 MRR@20 Recall@20 MRR@20 Recall@20 MRR@20

CoKnowcu 0.4396 0.2556 0.4551 0.2585 0.1865 0.0880

CoKnowne 0.3385 0.1812 0.3252 0.1624 0.0656 0.0217

CoKnowitem 0.4543 0.2666 0.4655 0.2688 0.1209 0.0754

CoKnow(ours) 0.4558 0.2669 0.4669 0.2694 0.1989 0.1094
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Table 5. Performance comparison of CoKnow with different number of neighborhood
sessions k.

Method Cosmetics UserBehavior

2019-Oct 2019-Nov

Recall@20 MRR@20 Recall@20 MRR@20 Recall@20 MRR@20

k = 128 0.4558 0.2669 0.4669 0.2694 0.1989 0.1094

k = 256 0.4499 0.2706 0.4658 0.2714 0.1949 0.1085

k = 512 0.4506 0.2655 0.4665 0.2722 0.1940 0.1059

ber of neighbors takes different values. It can be seen from Table 5 that not all
datasets are consistent with the concept that the prediction effect increases with
the number of neighborhood sessions. On 2019-Nov, it is true that as the number
of neighbors k increases, the values of the MRR@20 metrics are increasing. Other
datasets don’t exactly follow this pattern. For example, the value of Recall@20
on 2019-Oct is the best when k = 128. This may be because an increase in the
number of neighbor sessions may bring more irrelevant information to interfere
with the expression of the current session for some datasets. Considering the
results of all datasets comprehensively, our model CoKnow can achieve the opti-
mal results when k = 128. Therefore, in this paper, the number of neighbors is
set to 128.

5 Conclusion

In this paper, we propose a method that utilizes tag information to discover
proper neighbors to improve session-based recommendation. We establish Cu-
tag module and Ne-tag module. The former uses graph neural networks to model
the item sequence and tag sequence of the current session, and the latter utilizes
memory network to store information of neighborhood sessions to supplement
the current session. These two modules are combined via a fusion gating mecha-
nism to achieve better recommendations. Extensive experiments verify that the
information of tags and neighbors play a good role in the expression of current
session.

The limitation of this work is that we can only consider a limited number of
neighborhood sessions, which may miss some more similar neighborhood sessions
and affect prediction performance. In future work, we will explore solutions to
this problem.
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Abstract. We propose a continuous-time Markov-switching generalized
autoregressive conditional heteroskedasticity (COMS-GARCH) process
for handling irregularly spaced time series with multiple volatility states.
We employ a Gibbs sampler in the Bayesian framework to estimate the
COMS-GARCH model parameters, the latent state path and volatilities.
To improve the computational efficiency and robustness of the identified
state path and estimated volatilities, we propose a multi-path sampling
scheme and incorporate the Bernoulli noise injection in the computa-
tional procedure. We provide theoretical justifications for the improved
stability and robustness with the Bernoulli noise injection through the
concept of ensemble learning and the low sensitivity of the objective func-
tion to external perturbation in the time series. The experiment results
demonstrate that our proposed COMS-GARCH process and computa-
tional procedure are able to predict volatility regimes and volatilities in
a time series with satisfactory accuracy.

Keywords: Bernoulli noise injection · Ensemble learning · Gibbs
sampler · Irregularly (unevenly) spaced time series · Maximum a
posterior (MAP) · Stability and robustness

1 Introduction

1.1 Motivation and Problem

Heteroskedasticity is a common issue in time series (TS) data. The general-
ized autoregressive conditional heteroskedasticity (GARCH) model is a popu-
lar discrete-time TS model that accommodates heteroskeasticity and estimates
the underlying stochastic volatility. When there is variation in the presence of
regime changes in the volatility dynamics, the Markov-switching GARCH (MS-
GARCH) model can be employed and when collected TS data are irregularly
spaced in time, continuous-time GARCH (CO-GARCH) can be applied.

In practice, TS data may exhibit heteroskedasticity and multiple regimes and
are collected in irregularly spaced timepoints or on a near-continuous time scale.
For example, heart rate variability TS are typically recorded on a millisecond
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scale and can have multiple volatility regimes corresponding to different activities
or stress levels. Seismic waves TS, used for studying the earth’s interior structure
and predicting earthquakes, consist of wave types of different magnitudes and
are recorded on a millisecond scale. Financial data are often irregularly spaced in
time due to weekend and holiday effects and known to exhibit different volatility
states, such as changing behavior drastically from steadily trending to extremely
volatile after a major event or news.

To the best of our knowledge, there does not exist a MS-GARCH model for
irregularly spaced TS nor a CO-GARCH model to handle multiple states. To fill
the methodological gap and respond to the practical needs to handle irregularly-
spaced and multi-state TS data, we propose a new COMS-GARCH process to
analyze such data and develop a robust and efficient computational procedure
to identify multiple states and estimate volatilities.

1.2 Related Work

The GARCH process has been extensively studied [13,25,26,28,32]. [27] derives
the conditions under which the discretized-time GARCH model converges in
distribution to a bivariate non-degenerate diffusion process as the length of the
discrete-time intervals goes to zero. The fact that the limiting process consist-
ing of two independent Brownian motions (that drives the underlying volatil-
ity process and the accumulated TS, respectively) contradicts the GARCH
model’s intuition that large volatilities are the feedback of large innovations.
[10] applies different parameterizations as a function of the discrete-time inter-
val to GARCH(1, 1) and obtained both degenerate and non-degenerate diffusion
limits. [31] further shows the asymptotic non-equivalence between the GARCH
model and the continuous-time bivariate diffusion limit except for the degener-
ate case. [18] proposes a COntinuous-time GARCH (CO-GARCH) model that
replaces the Brownian motions by a single Lévy process and incorporates the
feedback mechanism by modeling the squared innovation as the quadratic varia-
tion of the Lévy process. For the inference of the CO-GARCH process, there exist
quasi-likelihood [7], method of moments (MoM) [18], pseudo-likelihood [20,21]
approaches, and Markov chain Monte Carlo (MCMC) procedures [24].

Volatility predictions by GARCH-type models may fail to capture the true
variation in the presence of regime changes in the volatility dynamics [3,19,23].
The MS-GARCH model [14] solves this issue by employing a hidden discrete
Markov chain to assign a state to each timepoint. For the inference in the
MS-GARCH model, regular likelihood-based approaches require summing over
exponentially many possible paths and can be computationally unfeasible. Sev-
eral alternatives exist to deal with the problem. The collapsing procedures
[11,14,16,17] use simplified versions of the MS-GARCH model and incorporate
recombination mechanisms of the state space. [15] proposes a new MS-GARCH
model that is analytically tractable and allows the derivation of stationarity con-
dition and the process properties. [2] employs a Markov Chain Expectation Max-
imization approach. [5] proposes a Bayesian MCMC method but it can be slow
in convergence. Recent methods focus on the efficient sampling of state paths.
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[12] introduces a Viterbi-based technique to sample state paths; [4] proposes a
particle MCMC algorithm; [6] uses a multi-point sampler in combination with
the forward filtering backward sampling technique. Both the likelihood-based
and MCMC estimations have been implemented in software (e.g., R package
MSGARCH [1]).

For multi-state irregularly-spaced TS, simple and model-free approaches such
as the realized volatility can be used to estimate the historical volatility, but
they cannot systematically identify different volatility states. In addition, it is
not always meaningful to aggregate measures across timepoints to calculate the
realized volatilities. Though the existing MS-GARCH model can also be used
to identify different volatility regimens, it cannot analyze irregularly spaced TS.
This methodological gap motives our work.

1.3 Our Contribution

We propose a COMS-GARCH process, employing the Lévy process to model
volatility in each state and the continuous-time hidden Markov chain to model
state switching. The estimate volatilities via the COMS-GARCH process are
expected to be more robust than those obtained via the realized volatility, largely
due to the computational procedure we design specifically for the state path and
volatility estimation. Furthermore, the COMS-GARCH process can be used to
forecast volatilities and states. Other contributions are listed below.

– We propose a Bayesian Gibbs sampler to obtain inference of the COMS-
GARCH parameters and maximum a posterior (MAP) estimation for state
path and volatilities.

– We develop a computational procedure with a multi-path sampling scheme
and the Bernoulli noise injection (NI) to accelerate the optimization and
improve the robustness of the predicted state path and volatilities.

– We provide theoretical justifications for the Bernoulli NI from the perspectives
of ensemble learning of the state path and lowered sensitivity of the objective
function to small random external perturbation in the TS.

– We run experiments in both simulated and real TS data to demonstrate the
application of the COMS-GARCH procedures and the computational proce-
dure and to show satisfactory accuracy in predicting states and volatilities.

2 COMS-GARCH Process

We develop the COMS-GARCH process to handle multiple states, extend-
ing the CO-GARCH(1,1) process [18,20]. To the best of our knowledge, CO-
GARCH(1, 1) is the only Lévy-process driven CO-GARCH model that has ana-
lytical solutions for the model parameters from the stochastic differential equa-
tions and is inference-capable in the context of pseudo-likelihood. [9] theoretically
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analyzes the CO-GARCH(p, q) model driven by the Lévy process for general p
and q values, but unable to obtain inferences for the model parameters.

Let Gt for t ∈ (0, T ) denote the observed TS, L refer to the innovation
that is modeled by a Lévy process, st be the state {st} and σ2

t is the under-
lying volatility process at time t. Our proposed COMS-GARCH process on
(G, σ2, S) = ({Gt}, {σ2

t }, {st}) is the solution to the following set of stochas-
tic differential equations

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dGt = Yt = σtdLt(st) (1)
dσ2

t = α(st)dt − β(st)σ2
t−dt + λ(st)σ2

t−d[L,L]t (2)
Pr(st = j|st− = k) = ηjkdt + o(dt) for j �= k (3)
Pr(st = k|st− = k) = 1 − ∑

j �=k ηjkdt + o(dt). (4)

t− stands for t − dt and (σ2
t−, st−) refers to the volatility and associated state

at time t−. α, β, and λ in Eq. (2) quantify how much the change in time (dt),
the volatility at time t−, and the innovation at time t− affects the volatility,
respectively. The increment of the Lévy process dLt(st) in Eq. (1) is assumed
standardized with mean 0 and variance 1, and [L,L]t− in Eq. (2) is its quadratic
variation process. Equations (3) and (4) represent the hidden continuous-time
Markov chain with ν discrete states and transition parameters η = {ηjk} that
model the regime switching in the TS for j, k ∈ {1, · · · , ν} (note that ηjk in Eqs.
(7) and (8) is not a probability, and the parameter space for ηjk is (0,∞) instead
of ∈ (0, 1)).

Next, we define a family of discrete-time processes that approximates the
above continuous-time process (G, σ2, S), following the methodological frame-
work in [20]. There are a couple of reasons for obtaining a discretized process.
First, real-life observed TS data are often recorded in discrete-time, whether
irregularly spaced or regardless of how fine the time scale is. Second, the
discretization allows us to take advantage of the well-developed inferential
approaches for discrete-time GARCH processes. We will show the discretized
process converges to the COMS-GARCH process.

The discretization is defined over a finite time interval [0, T ] for T > 0. Let
0 = t0 < t1 < · · · < ti < · · · < tn = T be a deterministic sequence that divides
[0, T ] into n sub-intervals of lengths Δti = ti − ti−1 for integers i = 1, . . . , n.
Let G0 = 0 and εi be a first-jump approximation of the Lévy process [20]. A
discretized COMS-GARCH process (Gn, σ2

n, sn) = ({Gi}, {σ2
i }, {si}) satisfies

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Gi − Gi−1 = Yi = σi−1(Δti)1/2εi, (5)
σ2

i = α(si)Δti +
(
σ2

i−1 + λ(si)Y 2
i

)
exp (−β(si)Δti) , (6)

Pr(si = j|si−1 = k) = 1 − exp(−ηjkΔti) for j �= k, (7)
Pr(si = k|si−1 = k) =

∑
j �=k exp(−ηjkΔti). (8)
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Equations (5) and (6) model the “CO” component in a similar manner to [20]
and Eqs. (7) and (8) model the “MS” part of the COMS-GARCH process. Since
Yi is obtained by differencing the observed Gi, it is also observed. To ensure the
positivity of Eq. (6), we require α(k) and λ(k) to be non-negative for all states
k=1, . . . , ν. To reflect the general belief that dependence between two quantities
at two timepoints diminishes as the time gap increases, we also impose positivity
on β(k) for all states. As n → ∞, Δti → 0 and the discretized COMS-GARCH
process in Eqs. (5) to (8) converges in probability to the COMS-GARCH process
defined in Eqs. (1) to (4), as stated in Lemma 1.

Lemma 1 (Convergence of discretized COMS-GARCH process). Let (G, σ2, s)
be the COMS-GARCH process on time interval [0, T ], and (Gn, σ2

n, sn) be its
discretized process. As n → ∞, Δti → 0 for i = 1, . . . , n and (Gn, σ2

n, sn)
converges in probability to (G, σ2, s) in that the Skorokhod distance DS((Gn, σ2

n,
Sn), (G, σ2, s))

p→ 0 as n → ∞.

The converges in probability in Lemma 1 also implies the convergence of (Gn, σ2
n,

sn) in distribution to (G, σ2, s). Lemma 1 is an extension of the theorem on the
convergence of a discretized CO-GARCH process [20]. The added complexity in
COMS-GARCH, that is, multiple states and state-dependent GARCH parame-
ters, has no material impact on the discretization of the process and the underly-
ing conditions that leads to the convergence. Therefore, the theoretical result of
the convergence of the discretized CO-GARCH process can be directly extended
to the discretized COMS-GARCH process. In fact, the CO-GARCH model can
be regarded as a special case of the COMS-GARCH process when the number
of states ν is 1. Therefore, the inferential approaches and theoretical results for
COMS-GARCH in the next section also apply to CO-GARCH.

3 Inference for COMS-GARCH Process

The parameters in the COMS-GARCH process include Θ = {α(k), β(k), λ(k)}
∀k = 1, . . . , ν and transition parameters η. In addition, we are also interested
in learning the latent state si and volatility σ2

i for i = 1, . . . , n so to better
understand an observed TS and to aid prediction of future states and volatilities.
We propose a Bayesian Gibbs sampler coupled with the pseudo-likelihood that
is defined as follows.

f(Yi|Y1, . . . , Yi−1, s1, . . . , si) = N(0, ρ2
i ), where (9)

ρ2
i =

(
σ2

i−1− α(si)

β(si) − λ(si)

)(
exp((β(si)−λ(si))Δti)−1

β(si) − λ(si)

)
+

α(si)Δti

β(si) − λ(si)
(10)

≈ σ2
i−1Δti

= α(si−1)Δti−1Δti + Δti

(
σ2

i−2 + λ(si−1)Y
2

i−1

)
e−β(si−1)Δti−1). (11)
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Equation (11) is obtained by taking the first-order Taylor expansion of Eq. (10)
around Δti = 0 and substituting σ2

i−1 in Eq. (6). Equations (9) to (11) suggest
that

E(Y 2
i |Y1, . . . , Yi−1, s1, . . . , si)=V(Yi|Y1, . . . , Yi−1, s1, . . . , si)=ρ2

i ≈σ2
i−1Δti. (12)

3.1 Gibbs Sampler for Bayesian Inference on Model Parameters

Since we are interested in obtaining inferences for Θ and η given the pseudo-
likelihood and predicting states and volatilities, methods that rely on integrating
out the latent states, such as the EM and MC-EM algorithms (we provide their
steps in the expanded paper for interested readers), do not work well. In con-
trast, the Bayesian framework provides a more convenient and straightforward
approach to reach the inferential goal. Below we propose a Gibbs sampler to
obtain Bayesian inferences for the COMS-GARCH process.

Define Δt = (Δt1, . . . , Δtn),Y = (Y1, . . . , Yn), S = (s1, . . . , Sn), and S is the
set of all possible state paths. Denote the priors for Θ and η by π(Θ,η) and
assume π(Θ,η)=π(Θ)π(η). The conditional posterior distributions of Θ,η, and
the states are respectively

f(Θ|η,Y,Δt, S)∝π(Θ)L(Θ,η|Y, S)=π(Θ)
∏n

i=1 ρ−1
i exp

(−Y 2
i /(2ρ2i )

)
, (13)

f(η1k, . . . , ηνk|Θ,Y,Δt, S) = f(η1k, . . . , ηνk|S,Δt) for k = 1, . . . , ν,

∝π(η1k, . . . , ηνk)
n−1∏

si+1=k
si=k

⎛

⎝2−ν+
∑

j �=ν

e−ηjkΔti+1

⎞

⎠
∏

j �=k

n−1∏

si+1=j
si=k

(1−e−ηjkΔti+1), (14)

f(si|S−i, Θ,η,Y,Δt) ∝ ξsi,si−1ξsi+1,si

∏n
t=i ρ−1

t exp
(−Y 2

t /(2ρ2t )
)
, (15)

where
∑ν

j=1 ηjk = 1 in Eq. (14), and

ξsi,si−1 =

⎧
⎨

⎩

2 − ν +
∑

k �=si−1
exp(−ηk,si−1Δti) when si = si−1

1 − exp(−ηsi,si−1Δti) when si �= si−1

;

similarly for ξsi+1,si
. When there are two states (ν = 2), Eqs. (14) and (15) can

be simplified to

f(η21|S,Y ,Δt) ∝π(η21)
∏n−1

si+1=1
si=1

e−η21Δti
∏n−1

si+1=2
si=1

(1 − e−η21Δti+1) (16)

f(η12|S,Y ,Δt) ∝π(η12)
∏n−1

si+1=2
si=2

e−η12Δti
∏n−1

si+1=1
si=2

(1 − e−η12Δti+1) (17)

f(si|S−i, Θ,η,,Δt) ∝ξ2−si
1,si−1

ξsi−1
2,si−1

ξ
2−si+1
1,si

ξ
si+1−1
2,si

∏n
t=i ρ−1

t exp
(
− Y 2

t

2ρ2
t

)
, (18)

where ξ1,si−1 =e−η21Δti if si−1=1, and 1 − e−η21Δti if si−1=2; ξ1,si
=e−η21Δti+1

if si = 1, and 1 − e−η21Δti+1 if si = 2.
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The Gibbs sampler draws samples on Θ,η and si for i = 1, . . . , n alternatively
from Eqs. (13), (14), and (15). Upon convergence, after burning and thinning,
we will have multiple, say M , sets of posterior samples of Θ,η, based on which
their posterior inferences can be obtained. We will also have M sets of samples
on state si and can calculate the posterior volatility σ2

i at each timepoint via Eq.
(6). Connecting the states across the n times points from each set of the state
posterior samples leads to a state path. Due to the large sample space (totally
νn possible paths), it is difficult to identify the MAP estimate for the state path
out of the M paths with acceptable accuracy unless M >> νn and a significant
portion of paths have close-to-0 posterior probabilities with a few paths having
significantly higher probabilities compared to the rest. To solve this issue, we
design a new computational algorithm (reSAVE) as detailed next.

3.2 Estimation for State Path and Volatility

To deal with the computational challenge in obtaining the MAP estimates for
state path via the Gibbs sampler in Sect. 3.1, we propose an inferentially Robust
and computationally Efficient iterative procedure for State path And Volatility
Estimation (reSAVE). The steps of the procedure are listed in Algorithm 1.

The inferential robustness for the MAP estimates from the reSAVE procedure
is brought by the Bernoulli NI implemented in each iteration of the procedure,
leading to both ensemble learning and improved stability of the object function
from which the MAP estimates are obtained (Sect. 3.4). The computational
efficiency of the reSAVE can be attributed to a couple of factors: the Bernoulli
NI that generates a sub-TS (smaller data size) in each iteration, of sampling
of a small set of state m to calculate MAP estimates for the state path, and
the employment of a maximization-maximization scheme to obtain the MAP
estimates of the parameters Θ and η and for the state path in each iteration.

The number of iterations N in the procedure can be prespecified or deter-
mined using a convergence criterion, such as the l1 distances on the MAP esti-
mates (e.g., {|η̂(l+1) − η̂(l)|, |Θ̂(l+1) − Θ̂(l), |S(l+1) −S(l)|}) or the objective func-
tions between two consecutive iterations. If the criterion reaches a prespecified
threshold, the procedure stops. Regarding the number of sampled state paths
m > 1, m too small will not lead to stable MAP estimates; m too large would
increase the computational costs. In the experiments presented in Sect. 4, we
used m = 6, which seems good enough. The ensemble size b refers to the num-
ber of observations following a given timepoint i that are used to update the
conditional posterior distribution of si (Proposition 1). The specification of b is
mainly for computational efficiency consideration and is optional.
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Algorithm 1: The reSAVE Optimization Procedure

input : data (Y, Δt), initial values Θ(0), η(0), S(0) =
(
s
(0)
1 , . . . , s

(0)
n

)
, # of

iterations N , # of sampled state paths m, ensemble size b
output: MAP estimates ŜMAP, σ̂2

MAP =(σ̂2
1 , . . . , σ̂2

n), Θ̂MAP, η̂MAP.
1 for l = 1 to N do

2 Apply Bernoulli NI in Alg. 2 to obtain a sub-TS (Ỹ(l), Δt̃(l)) of length ñ(l).

Denote by T (l) the set of the original timepoints retained in the sub-TS;

3 Calculate Θ̂
(l)
MAP = arg max

Θ
f(Θ|S(l−1), Ỹ(l), Δt̃(l)) and

η̂
(l)
MAP = arg max

η
f(η|S(l−1), Ỹ(l), Δt̃(l));

4 for j = 1 to m do
5 for i = 2 to n − 1 do

6 sample s
(j)
i for i∈T (l) given Θ

(l)

MAP, η
(l)

MAPỸ
(l), Δt̃(l), S

∗(l−1)
−i per Eq.

(15);

7 end

8 Let S̃(j) =
(
s
(j)
1 , s

(j)
2 , . . . , s

(j)

ñ(l)

)
.

9 end

10 Let S̃ =
(
S̃(1), . . . , S̃(m)

)
, S̃(l) =arg max

S∈S̃
f(S|Θ(l)

MAP, η
(l)
MAP, Ỹ(l), Δt̃(l)), and

S(l) = {s̃
(l)
i }i∈T (l)

⋃
{s̃

(l−1)
i }i/∈T (l) ;

11 end
12 Calculate MAP estimate for volatility {σ2

i }i=1,...,n given

SMAP =S(N), Θ̂MAP =Θ̂
(N)
MAP, η̂MAP = η̂

(N)
MAP via Eq. (6).

The MAP estimates of Θ and η can be obtained either through direct
optimization of their respective conditional posterior distributions or via MC
approaches using samples from the conditional posterior distributions. The esti-
mate of the state path in each iteration is defined as the path, out of the sampled
m paths, that maximizes the conditional posterior distribution of S, which is pro-
portional to

∏n
i=1 ρ−1

i exp(−y2
i /(2ρ2i ))ηi,i−1 [5], given the latest MAP estimates

of Θ and η. Though the Bernoulli NI is designed more for achieving ensemble
learning and improving the stability of the objective functions for the state path
optimization (see Sect. 3.4), we expect its usage also makes the inference for Θ
and η more robust, especially if ν is relatively large.

3.3 Bernoulli Noise Injection

A key step in Algorithm 1 is generating sub-TS via Bernoulli NI. The rationale
for sub-TS when estimating the state path and volatilities is that the estimation
can be sensitive to the TS data for the COMS-GARCH process. The Bernoulli
NI can create an ensemble of sub-TS’ of considerable diversity among the ensem-
ble members across iterations to reduce the sensitivity, to reduce the inference
sensitivity. Algorithm 2 lists the steps of the Bernoulli NI. It outputs a sub-TS
{G̃,Δt̃}, which is then fed to Algorithm 1; only the states S̃ at the retained time-
points are updated in each iteration, and the states of the dropped timepoints
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are kept at the values from the previous iteration, saving costs computationally.
For the choice of Bernoulli rate p, a k-fold cross-validation (CV) procedure can
be used, the detail of which are provided in the expanded paper.

Algorithm 2: Bernoulli Noise Injection
input : Original TS G; Bernoulli NI rate p.
output: sub-TS (Ỹ, Δt̃, ñ).

1 Draw ei from Bern(1−p) for i=2, . . . , n−1. Set e0 =e1 =en =1;

2 Let G̃ = {G : G · e �= 0}, where e = {ei}n
i=0, ñ =

∑n
i=1 ei;

3 Obtain Ỹ={Ỹ1, . . . , Ỹñ}=diff(G̃);

4 Set Δt̃=Δt. For 0≤ i ≤n−1, let

{
Δt̃i+1=Δi+Δt̃i+1 and Δi=0 if ei =0

Δt̃i+1 ←Δt̃i+1 if ei = 1
;

Δt̃ = {Δt̃ : Δt̃ �= 0}.

Claim 1. The differenced Ỹ in a sub-TS after Bernoulli NI is a summation of
a sequence of differenced Y with the dropped observations in the original TS.

Claim 1 is a simple but interesting fact. For example, if Gi+1 gets dropped
from the sequence of . . . , Gi, Gi+1, Gi+2, . . ., then Ỹi′ = Gi+2 − Gi = (Gi+2 −
Gi+1) + (Gi+1 − Gi) = Yi+2 + Yi+1; say r observations are dropped between Gi

and Gi+r+1, then Ỹi′ = Gi+r+1−Gi = (Gi+r+1−Gi+r)+(Gi+r −Gi+r−1)+· · ·+
(Gi+1−Gi) = Yi+r+1+· · ·+Yi+1. This fact is used in the proof of Proposition 2 in
Sect. 3.4. Since the NI rate p is usually small and the timepoints are dropped from
the original TS randomly, with the fine time scale on which the TS is collected,
the COMS-GARCH process can “digests” these “missing” timepoints effortlessly,
without needing an ad-hoc approach to handle these dropped timepoints. The
full conditional distributions of Θ,η, and states {si} given the sub-TS in each
iteration are given in Eqs. (13) and (15) by replacing the original TS (Y,Δt)
with the sub-TS (Ỹ,Δt̃).

The Bernoulli NI for COMS-GARCH is inspired by the dropout technique for
regularizing neural networks (NNs) [30], which injects Bernoulli noises to input
and hidden nodes during training, leading to model regularization. The Bernoulli
NI we propose here is different procedurally in that it is applied to the observed
data and drops random timepoints in the original TS in each iteration, rather
than generating sub-models; in other words, the COMS-GARCH model remains
as is during training. The benefits of the Bernoulli NI here include reduced
computational cost, its connection with ensemble learning and inferential stabil-
ity and robustness. The Bernoulli NI also bears some similarity to bagging [8], a
well-known ensemble learning algorithm, but differs from bagging in two aspects.
First, the Bernoulli NI leads to a random sub-TS (without replacement) of the
original TS in each iteration of Algorithm 1 whereas bagging often generates a
bootstrapped sample set with replacement that is of the same size as the training
data. Second, bagging often generates multiple sets of samples, trains a model
on each set in parallel, and then ensembles them into a meta-model, whereas
the ensemble learning brought by the Bernoulli NI to the MAP estimation for
COMS-GARCH is implicit, iterative, and realized sequentially.
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3.4 Theoretical Analysis on Inferential Benefits of Bernoulli NI

In this section, we investigate theoretically the reasons behind the inferential
benefits (improved efficiency and robustness in the MAP estimates of state path
and volatilities) of the Bernoulli NI in two aspects.

First, we show, through the iterative Algorithm 1, that the Bernoulli NI leads
to sequential and implicit ensemble learning of the parameters and states for the
COMS-GARCH model. The formal results are given in Proposition 1.

Proposition 1 (ensemble learning of state path). Let Yj−1 = (Y1, . . . , Yj−1),
S1 = (s1, . . . , si = k1, . . . , sj) and S2 = (s1, . . . , si = k2, . . . , sj) ∀k1 �= k2 ∈
{1, . . . , ν}, i≤n−b. Assume that for ∀ ε > 0, ∃b ∈ N+ such that

∣
∣
∣
∣
∣

∏n
j=i f(Yj |Yj−1,S1)

∏n
j=i f(Yj |Yj−1,S2)

−
∏i+b

j=i f(Yj |Yj−1,S1)
∏i+b

j=i f(Yj |Yj−1,S2)

∣
∣
∣
∣
∣
< ε. (19)

There exist Cb−1
k−1 ways to yield a set of b observations from a sequence of k ∈

[b, n− i] consecutive observations. Denote the ensemble of the resultant Cb−1
k−1

sub-TS’ by Ỹ. Given a Bernoulli NI rate p, the conditional posterior distribution
of si given the ensemble Ỹ is

∑n−i
k=b

(
pk−b(1 − p)b−1

∑
Ỹ∈Ỹ f(s̃i|S̃−i, Θ,η, Ỹ)

)
. (20)

The proof of Proposition 1 is straightforward. Equation (6) implies that the con-
ditional distribution of Yj depends only on its variance since its mean is fixed
at 0. Equation (9) suggests that the impact of state si on σ2

j−1 (and thus ρ2j )
decreases as i departs from j given the recursive formula on σ2. Taken together,
it implies that the state at time ti has minimal effect on the distribution of Yj

at a future timepoint tj once the distance tj − ti surpasses a certain thresh-
old, which we use b to denote. Mathematically, it means the ratio between∏n

j=i+b+1 f(Yj |Yj−1,S1) and
∏n

j=i+b+1 f(Yj |Yj−1,S2) is arbitrarily close
to 1, or

∏i+b
j=i f(Yj |Yj−1,S1)

∏i+b
j=i f(Yj |Yj−1,S2)

∣
∣
∣
∣
∣

∏n
j=i+b+1 f(Yj |Yj−1,S1)

∏n
j=i+b+1 f(Yj |Yj−1,S2)

−1

∣
∣
∣
∣
∣
< ε

for any ε > 0, leading to Eq. (19). k given b and p follows a negative binomial
distribution, leading directly to Eq. (20).

Taken together with Eq. (15), Eq. (19) implies the posterior distribution of
si can be almost surely determined by the b observations in TS Y that imme-
diately follow ti; that is, f(si|S−i, Θ,η,Y) = f(si|S−i, Θ,η, Yi, Yi+1, . . . , Yi+b).
This narrow focus on just b observations is undesirable especially when b is small
because the inference about the state path can become unstable and highly sen-
sitive to even insignificant fluctuation in the TS. The Bernoulli NI helps mitigate
this concern by diversifying the set of the b observations. After the Bernoulli NI,
the posterior probability of si is a weighted average of the posterior distributions
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over multiple sets of b observations with different compositions across iterations,
as suggested by Eq. (20), leading to more robust state estimation.

Figure 1 provides a visual illustration of the ensemble effect achieved through
the Bernoulli NI. The dashed line in each plot corresponds to the right y-axis
that presents the size of an ensemble. The solid lines correspond to the left
y-axis, representing the weights assigned to ensembles of different sizes. When
there is no Bernoulli NI (p = 0 and k = b), the ensemble is of size 1 (the first
point on the dashed line in each plot). For p > 0, we have more than one way
of generating the set of b observations; and the actual ensemble size depends on
p and k. In brief, for a fixed b, as k increases, the size of the ensemble set Ỹ,
Cb−1

k−1, increases dramatically (the dashed line within each plot), implying more
sub-TS’ are involved to obtain the posterior distribution of si. In addition, the
ensemble set also increases dramatically with b for a fixed k − b value (the trend
of the dashed lines across the 3 plots). The separated lines for different p suggest
that ensembles of different sizes are not weighted equally toward the conditional
posterior distribution of si: the larger an ensemble, the smaller the weight it
carries, especially for small p. Figure 1 implies that p as small as O(0.01) can
create an ensemble of sub-TS’ of enough diversity among the ensemble members
to bring more robustness to the inference. A large p leads to a larger ensem-
ble, but also a higher computational cost which could overshadow the improved
diversity. In addition, a large p may drop too many timepoints and lead to too
much fluctuation in the sub-TS’ from iteration to iteration, resulting in possibly
large bias or large variance in the estimation.
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Fig. 1. Size of ensemble Ỹ (right y-axis) and weights w(k; p, b) assigned to ensembles
of different sizes (left y-axis) for different p and b

Second, we establish that the Bernoulli NI also improves the stability of the
objective function from which the MAP estimation is obtained, in the presence of
random external perturbation in the TS. With a more stable objective function,
the MAP estimates of (Θ,η, S,σ2) are also expected to be more stable. The
formal result is presented in Proposition 2 (the proof is in the expanded paper).

Proposition 2 (improved stability of objective function). Let Y ′
i = Yi + zi,

with zi ∼ N(0, ε2) independently for i = 1, . . . , n, be an externally perturbed
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observation to the original observation Yi from TS Y; and Y ′
i comprises the

perturbed TS Y′. Let Ỹ and Ỹ′ denote a sub-TS of Y and Y′, respectively, after
implementing the Bernoulli NI in an iteration of Algorithm 1. The difference in
the objection function (negative log-likelihood function or negative log-posterior
distributions of (Θ,η), S and σ2) given Ỹ′ vs. that given Ỹ after the Bernoulli
NI is on average smaller than the difference obtained without the Bernoulli NI.

4 Experiments

We run 4 experiments to demonstrate the applications of the COMS-GARCH
process and the reSAVE algorithm. Experiment 1 shows the improved robustness
of the MAP estimates of volatilities brought by the Bernoulli NI in the reSAVE
procedure in a one-state COMS-GARCH process. Experiment 2 demonstrates
the inferential robustness and computational efficiency of the reSAVE procedure
in a two-state COMS-GARCH process and to compare with the MSGARCH(1,1)
process. Experiments 3 and 4 apply the COMS-GARCH process and the reSAVE
procedure to a real exchange rate TS (https://www.histdata.com) and a real
blood volume amplitude (BVA) TS (https://archive.ics.uci.edu/ml/datasets/
PPG-DaLiA) – to identify multiple states and estimate volatility.

4.1 Experiment Setting
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Fig. 2. Observed TS Y

In experiment 1, the TS data Y is simulated from a
single-state CO-GARCH model and has 500 time-
points. The time gap Δt between two consecutive
observations is characterized by a Poisson process
with rate ζ, i.e., E(Δt) = ζ−1. We examined 4 ζ
values (2.5, 5, 10, 20). In experiment 2, the sim-
ulated TS Y from the COMS-GARCH process
has 2 states and 1, 000 timepoints. The transi-
tions among the states between two adjacent time-
points are modeled by a hidden Markov process
transition parameters. We examined 2 set of β:
η12 = η21 = 0.1 and 0.25 (η11 = η22 = 0.9 and
0.75). A similar Poisson process as in experiment 1
was used to simulate the TS data in the two states
at ζ = 10, 40, respectively. In experiment 3, to
keep the data at a manageable size, we took every
90-th observation and performed a log transforma-
tion on the exchange rate TS between US dollar
and Canadian dollar. The final TS G contains 1501
times points over half a year. In experiment 4, we extracted the measurements
from the photoplethysmograph of the blood volume pulse (64 Hz; i.e., 64 times
per second) by taking the valley and peak pulse values in each cycle and scaling
them by 0.01. We then took the first 1, 000 measurements from a random patient

https://www.histdata.com
https://archive.ics.uci.edu/ml/datasets/PPG-DaLiA
https://archive.ics.uci.edu/ml/datasets/PPG-DaLiA
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as the input Y. The TS’ in experiments 3 and 4 have multiple regimens and the
timepoints are irregularly spaced.

In all 4 experiments, we imposed non-informative priors on Θ = (α, β, λ),
set b = 20 and m = 6 for multiple path sampling. We examined a range
of the Bernoulli NI rates in in experiments 1 and 2 and set p at 0.02 in
experiments 3 and 4. The convergence of the reSAVE procedure was exam-
ined by visual inspection of the trace plots of the MAP estimates for (Θ,η)
and log(Θ,η,σ2, S|Y,Δt). MS-GARCH(1, 1) in experiment 2 was implemented
using R package MSGARCH. Since the MS-GARCH model assumes evenly-space
TS data, we first applied linear interpolation to each simulated TS to obtain the
equally spaced TS data before fitting the model.

4.2 Results

Due to space limitation, we present selected main results; more results can
be found in the expanded paper. Figure 3 presents examples on the estimated
volatilities and states (a randomly chosen repeat out of 50 is shown in experi-
ments 1 and 2). The main observations are as follows. In Figs. 3(a), (c) to (f)),
the estimates of volatilities and states almost completely overlap with their true
values at all timepoints, suggesting high accuracy in the estimation. The results
in experiment 2 further suggest that when there is no external perturbation in
the TS, the Bernoulli NI does not negatively impact the volatility and state esti-
mation but improves the accuracy in the estimation when there is, implying that
the Bernoulli NI is an “intelligent” technique, only doing its tricks when needed
and is silent otherwise. By contract, MS-GARCH tend to over-estimate volatil-
ities and there are more mis-predicted states (Fig. 3(b)). In experiments 3 and
4 (Fig. 3(g) and (h)), the estimated states and volatilities via COMS-GARCH
and the reSAVE procedure reflect the two expected states in each case: a change
in the state somewhere between September and October in experiment 3, and
different BVA states corresponding to different physical conditions or emotional
episodes of subjects in experiment 4.

Figure 4 summarizes the relative %|bias| of the estimated volatilities (l1-
distance scaled by the true volatility) and the state mis-prediction rate, both
averaged across the time points in each TS and across the 50 repeats in exper-
iments 1 and 2. Figure 4(a) suggests the volatility estimation can be sensitive
to even mild fluctuation in the TS data as the bias with externally perturbed
TS (crosses at p=0) is larger than that at no external perturbation (circles at
p = 0). Bernoulli NI helps bring the bias down at all the examined ζ values but
there is not much of a difference across p. In Fig. 4(b) to 4(e), the accuracy of
the state identification and volatility estimation is significantly improved with
a proper Bernoulli NI rate p than without NI. The smallest mis-prediction rate
(8%–17%) and volatility estimation bias (12%–25%) are achieved around p at
0.01–0.02 in most scenarios; and further increasing p does not seem to improve
the prediction accuracy. In addition, how much the Bernoulli NI helps in reduc-
ing the prediction bias relates to ζ, η, and Θ.
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(g) Experiment 3: exchange rate (h) Experiment 4: BVA TS

Fig. 3. Estimated volatilities and states via COMS-GARCH. Experiment 1 has only
one state so there is no state path estimation; (b) shows the results from MS-GARCH,
a comparison method to COMS-GARCH
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Fig. 4. Volatility estimation bias and state mis-prediction rate in Experiments 1 and 2
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Fig. 5. Trace plots of state
mis-prediction rate (top) and
|relative bias| of estimated
volatility (bottom) in a single
TS repetition in Experiment 2

Figure 5 presents some trace plots from the
iterative reSAVE procedure in experiment 2. The
setting (m = 6, p = 0.02) converges with the least
iterations, followed by (m = 6, p = 0). The set-
ting (m = 1, p = 0) needs the most iterations to
converge. This observation suggests both Bernoulli
NI and the multiple path sampling scheme (m =
6) can accelerate the convergence of the reSAVE
procedure in estimating the state path and volatil-
ities.

In the expanded paper, we also present the
biases and root mean squared errors for the MAP
estimates of Θ and η. The estimates for α(k) and
β(k) are generally accurate but there is noticeable
estimation bias for η and λ(k) in some simulation
scenarios. The relatively large bias for η can be
at least partially attributed to the low transition
probabilities between different states, leading to
data sparsity in estimating η. Estimation bias of
Θ is rather a common problem and exists in the
GARCH, CO-GARCH, and MS-GARCH estima-
tion, rather than something unique to the Gibbs
sampler or the reSAVE procedure we propose for
the COMS-GARCH process. [7] suggests that the
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MLEs for the parameters from the GARCH model are biased; the estimation
bias for the GARCH parameters for both the quasi-MLE and the constrained
M-estimators (more robust) can be as large as 20% [22] and as large as 30% for
the parameters of the CO-GARCH process [20].

5 Discussion

We propose the COMS-GARCH process for handling irregularly spaced TS data
with multiple volatility states. We also introduce the reSAVE procedure with the
Bernoulli NI for obtaining the MAP estimates for model parameters, state path,
and volatilities. The computational efficiency and inferential robustness of the
reSAVE procedure are established and illustrated theoretically or empirically.
Foresting is often of major interest in TS analysis as they provide insights into
future trends and are useful for decision making (e.g., developing option trad-
ing strategies in financial markets, predicting earthquakes). We present in the
expanded paper an algorithm for the hth-step-ahead prediction of future volatil-
ities and states through a trained COMS-GARCH process.

We conjecture that the reSAVE procedure is applicable not only to the
COMS-GARCH and CO-GARCH processes but also to other solvable CO-*-
GARCH processes. For example, it will make an interesting future topic to
develop the COMS-Exponential-GARCH and COMS-Integrated-GARCH pro-
cesses and examine the performance of the reSAVE procedure in these settings.
We also expect that the reSAVE procedure can be used in the COMS-ARMA
process for trend estimation, yielding some types of weighted l2 regularization
on the ARMA parameters. More work is needed to prove conjectures formally.

Regarding when to use the COMS-GARCH process, TS’ that are of high-
frequency or irregularly spaced are potential candidates (the “CO” component);
we may plot the TS and visually examine whether there is any sign for multi-
ple states (the “MS” component) or there may exist domain or prior knowledge
suggesting state multiplicity (e.g., experiments 3 and 4 in Sect. 4). For a more
quantitative approach, one may fit the candidate models (e.g., COGARCH vs.
COMS-GARCH, MS-GARCH and COMS-GARCH, ν1 vs ν2 states in COMS-
GARCH) to the TS in the Bayesian framework, and compare the deviance infor-
mation criterion (DIC) [29], a Bayesian measure of model fit and choose the
model with the smaller (or) smallest DIC.

Finally, as discussed briefly in the experiments, there lacks in-depth theoret-
ical investigation on the asymptotic properties of the MLE and MAP estimation
for the MS-GARCH and CO-GARCH processes, and the estimation bias for
*-GARCH parameters is well documented. We will look into the asymptotic
properties of the COMS-GARCH process as n → ∞ and T → ∞ and develop
more accurate inferential procedures for COMS-GARCH in the future.
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Abstract. Graph embedding, aiming to learn low-dimensional repre-
sentations of nodes while preserving valuable structure information, has
played a key role in graph analysis and inference. However, most exist-
ing methods deal with static homogeneous topologies, while graphs in
real-world scenarios are gradually generated with different-typed tempo-
ral events, containing abundant semantics and dynamics. Limited work
has been done for embedding dynamic heterogeneous graphs since it is
very challenging to model the complete formation process of heteroge-
neous events. In this paper, we propose a novel Heterogeneous Hawkes
Process based dynamic Graph Embedding (HPGE) to handle this prob-
lem. HPGE effectively integrates the Hawkes process into graph embed-
ding to capture the excitation of various historical events on the current
type-wise events. Specifically, HPGE first designs a heterogeneous condi-
tional intensity to model the base rate and temporal influence caused by
heterogeneous historical events. Then the heterogeneous evolved atten-
tion mechanism is designed to determine the fine-grained excitation to
different-typed current events. Besides, we deploy the temporal impor-
tance sampling strategy to sample representative events for efficient exci-
tation propagation. Experimental results demonstrate that HPGE con-
sistently outperforms the state-of-the-art alternatives.

Keywords: Dynamic heterogeneous graph · Graph embedding ·
Heterogeneous Hawkes process · Heterogeneous evolved attention
mechanism

1 Introduction

Graphs, such as social networks, e-commerce platforms and academic graphs,
occur naturally in various real-world applications. Recently, graph embedding,
whose goal is to encode high-dimensional non-Euclidean structures into low-
dimensional vector space [2,10], has shown great popularity in tackling graph
analytic problems such as node classification and link predictions.
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Fig. 1. Toy examples of static and dynamic heterogeneous graphs.

Most existing graph embedding methods focus on modeling static homoge-
neous graphs, where both edges and nodes are of the same type and never change
over time. However, in the real world, complex systems are commonly associated
with multiple temporal interactions between different-typed nodes, forming the
so-called dynamic heterogeneous graphs. Taking Fig. 1(b) as an example, there
are two types of interactions (“co-operation” and “attendance”) between two
types of nodes (authors and venues) and each interaction is marked with a con-
tinuous timestamp to describe when it happened, compared to the static one in
Fig. 1(a). Dynamic heterogeneous graphs indeed describe richer semantics and
dynamics besides structural information, indicating the multiple evolutions of
node representations, compared to static homogeneous graphs.

Paying attention to the abundant semantics, there have been several hetero-
geneous graph embedding methods [5,12,27,34], taking into account both types
of nodes and edges when learning representations. While earlier approaches [5,6]
employ shallow skip-gram models on heterogeneous sequences generated by
meta-paths [24], recent studies [7,12,27,34] apply deeper graph neural networks
(GNNs) which usually gather information from heterogeneous neighborhoods
to enhance node representations. On the other line, to capture the temporal
evolution of dynamic graphs, it is general to split the whole graph into several
snapshots and generate representations by inputting all snapshot-based embed-
dings into sequential models like Long-Short Term Memory (LSTM) and Gated
Recurrent Units (GRU) [8,19,22]. Recently, aware of the fact that historical
events (i.e., temporal edges) consistently influence and excite the generation of
current interactions, recent researchers [17,29,36] attempt to introduce tempo-
ral point process, especially Hawkes process, into graph embedding to model the
formation process of dynamic graphs.

However, limited work has been done for embedding dynamic heterogeneous
graphs. The semantics and dynamics introduce two essential challenges:

First, how to model the continuous dynamics of heterogeneous interactions?
Although several works attempt to describe the formation process as sequen-
tial heterogeneous snapshots [1,18,32], the heterogeneous dynamics can only be
reflected via the number of snapshots, while different-typed edges are indeed
continuously generated over time. For instance, as shown in Fig. 1(a), heteroge-
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neous events like “co-operation” and “attendance” are continuously generated
over time and historical connections can excite current events. A näıve idea is
to integrate Hawkes process into graph embedding, inspired by [17,29,36]. How-
ever, these methods deal with homogeneous events and cannot directly introduce
into heterogeneous graphs.

Second, how to model the complex influence of different semantics? While
different semantics indicate different views of information, they usually impact
current various interactions in different patterns. While existing methods only
model the difference of semantics [27,32], they neglect that the influence to
different-typed current or future events could be very different. For example,
in Fig. 1(b), the co-operation between A1 and A5 at T3 could be excited more
from historical co-operation events of A4 and A5, rather than the attendance
between A4 and V3. Meanwhile, the attendance between A1 and V3 at time t4
would be affected more from the historical attendance events of A4. In a word,
different-typed historical events would excite different-typed current events in
different patterns.

Motivated by these challenges, we propose the Heterogeneous Hawkes
Process for Dynamic Heterogeneous Graph Embedding (HPGE). To handle
the continuous dynamics, we treat heterogeneous interactions as multiple tem-
poral events, which gradually occur over time, and introduce Hawkes process into
heterogeneous graph embedding by designing a heterogeneous conditional inten-
sity to model the excitation of historical heterogeneous events to current events.
To handle the complex influence of semantics, we further design the heteroge-
neous evolved attention mechanism which considers both the intra-typed tem-
poral importance of historical events but also the inter-typed temporal impacts
from multiple historical events to current type-wise events. Moreover, as current
events are influenced more by past important interactions, we adopt the tempo-
ral importance sampling strategy to select representative events from historical
candidates, balancing their importance and recency. The contributions of this
work are summarized as follows.

– We introduce Hawkes process into dynamic heterogeneous graph embedding,
which can preserve both semantics and dynamics by learning the formation
process of all heterogeneous temporal events. Although few works [17,36]
attempt to model the formation process of graphs, they pay no attention to
types of either historical or current events.

– Our proposed approach HPGE not only integrates complex evolved excitation
of events but also enables efficient extraction of representative past events.
To these ends, we respectively design the heterogeneous evolved attention
mechanism and the temporal importance sampling strategy.

– We study the effectiveness and efficiency of HPGE empirically on three public
datasets and the experimental results of node classification and temporal link
prediction demonstrate that HPGE consistently outperforms the state-of-the-
art alternatives.
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2 Related Work

We discuss the related work on two lines, namely, static graph embedding and
dynamic graph embedding, taking both homogeneous and heterogeneous meth-
ods into consideration.

Static Graph Embedding. This line of methods are to embed non-Euclidean
structures into low-dimensional vector space. Earlier methods [9,23] input ran-
dom walk-based contextual sequences into skip-gram framework to preserve rel-
evance of connected nodes. Recently, graph neural networks (GNNs) [11,16,25]
have attached much attention for their ability to integrate neighborhood influ-
ence via message passing. However, they neglect the types of either edges or
nodes, and thus fail to model the abundant semantics in real-world graphs.
Focus on dealing with heterogeneity, previous Metapath2Vec [5] and HIN2Vec
[6] associate nodes by their local proximity through heterogeneous sequences,
while current works focus on heterogeneous GNNs [7,35] to better exploit struc-
tures and semantics over the whole graph. In these methods, various hetero-
geneous attention mechanisms are designed to enhance traditional information
aggregation [3,7,12,27,34]. More detailed discussions are summarized in [2,26].
However, all the above methods cannot deal with dynamic heterogeneous graphs
because of overlooking evolution within interactions.

Dynamic Graph Embedding. On another line, there is significant research
interest in dynamic graph embedding (also called temporal network embedding)
during the past decade. CTDNE [21] considers dynamics as temporal bias and
deploy temporal random walks to learn nodes. TGAT [30] designs a temporal
encoder to project continuous timestamps as temporal vectors. Aware of the
dynamic evolution of graphs, recent works prefer to split a graph into several
snapshots and integrate deep auto-encoders [8] or recurrent neural networks
[20,22] to learn the evolving embeddings. Focusing on handle both dynamics
and semantics, dynamic heterogeneous graph embedding has also been explored
to some extent [12,13,31,32]. Nevertheless, the performance of these methods
is often limited as the timestamps of interactions in a snapshot are removed,
whereas the formation process of graphs remains unknown. Recently, temporal
point processes, most notably the Hawkes process, have become popular for their
ability to simulate the formation history [17,36]. However, they are designed for
homogeneous graphs while the heterogeneity introduces essential challenges to
learn and inference.

3 Preliminaries

In this section, we introduce the definition of dynamic heterogeneous graphs,
the problem of dynamic heterogeneous graph embedding as well as the general
Hawkes process framework.

Definition 1 Dynamic Heterogeneous Graph. A dynamic heterogeneous
graph is G = (V, E , T ,O,R) where V denotes the set of nodes, E denotes the
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temporal edges (i.e., events), T denotes the set of timestamps, O and R respec-
tively denote node and edge types. In addition, there are two corresponding type
mapping functions including φ : V → O and ψ : E → R. Notice that, each event
is a quad e = (vi, vj , t, r) where vi and vj are source and target nodes, t ∈ T is
the continuous timestamp and r ∈ R is the event type.

For instance, the academic graph in Fig. 1(b) consists of two types of nodes
(i.e., authors and venues), two types of events (i.e., “co-operation” and “atten-
dance”) as well as the continuous timestamps t1, t2, t3, t4 and t5 of these hetero-
geneous events, naturally forming a dynamic heterogeneous graphs. Obviously,
heterogeneous events gradually happen and excite future interactions over time,
expressing abundant semantics and dynamics, compared to static graphs.

Definition 2 Dynamic Heterogeneous Graph Embedding. Given a
dynamic heterogeneous graph G, the goal of dynamic heterogeneous graph embed-
ding is to learn a representation function H to project such a high-dimensional
non-Euclidean structures into low-dimensional vector space, namely, H(G) →
H, H ∈ R|V|×d where |V| and d are the size and dimension of nodes, d � |V|.
Meanwhile, both the dynamics and semantics besides structural information
should be preserved as well.

Definition 3 Hawkes process. Hawkes process is a typical temporal point pro-
cess with the assumption that historical events can influence the occurrence of the
current event. Given historical events {eh|th < t} before current time t, a con-
ditional intensity function is defined to characterizes the arrival rate of current
event e, namely,

λ(e) = μ(e) +
∑

eh:th<t

κ(t − th), (1)

where μ(e) is the base intensity (i.e., spontaneous arrival rate) of current event
e, κ(·) is a time decay effect of historical events on the current e.

Obviously, the temporal excitation is well modeled and there are several
works [17,36] attempt to embed dynamic graphs with Hawkes process. Never-
theless, these methods cannot handle the heterogeneity. In this paper, we focus
on introducing Hawkes process into dynamic heterogeneous graph embedding, to
learn the complete temporal formation process of heterogeneous events, keeping
both semantics and dynamics.

4 The Proposed HPGE Model

In this section, we propose our model called HPGE. We begin with an overview,
before zooming into the details.
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Fig. 2. The overall architecture of HPGE. (a) Heterogeneous conditional intensity func-
tion to model the heterogeneous temporal influence of A1, A3 or V1, (b) Heterogeneous
evolved attention to measure the relevance and evolution from historical neighbors to
current type-wise event, consisting of intra- and inter-typed temporal attention, (c)
Temporal importance sampling of heterogeneous events where q denotes the sampling
probability and the nodes in white are unsampled, in comparison to a näıve cut-off
strategy.

4.1 Overview

There are three main components of HPGE, namely, the heterogeneous condi-
tional intensity function to learn the semantics and dynamics within the for-
mation process of heterogeneous temporal events, the heterogeneous evolved
attention mechanism to measure the importance and evolution from historic
neighborhoods to current type-wise event, and the temporal importance sam-
pling to handle the efficient extraction of representative events. First, as shown
in Fig. 2(a), given the respective temporal heterogeneous neighbors of A1, A3,
and V1, HPGE evaluates the affinity between each node and its neighbors with
a type-wise influence measure. Subsequently, hinged on a heterogeneous con-
ditional intensity function, it accumulates the influence from historical hetero-
geneous neighbors, which characterizes the arrival rate at present. Second, an
attentive manner is designed in 2(b) to capture both the temporal importance of
same-typed neighborhoods (intra-att) and the evolution from historical types to
the current type (inter-att). Third, as the graph evolves, in Fig. 2(c), the number
of events gradually grows. For effective and efficient HPGE, we adopt a Tempo-
ral Importance Sampling (TIS) strategy to extract representative neighbors in
both temporal and structural dimensions, instead of using the full neighborhood
which is inefficient, or the traditional cut-off strategy based on recency only.

4.2 Heterogeneous Conditional Intensity Modeling

On a dynamic heterogeneous graph, various kinds of interactions are constantly
being established over time, which can be regarded as a series of observed hetero-
geneous events. Intuitively, the current events are influenced by past events, and
the heterogeneity of events implies different strengths of influence. For instance,
attendance in a conference at present is influenced by different historical views,
including the past attendance view and author collaboration view. Therefore,
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given current event e = (vi, vj , t, r), we introduce the general heterogeneous
conditional intensity function as follows:

λ̃(e) = μr(vi, vj)︸ ︷︷ ︸
base rate

+ γ1
∑

r′∈R
∑

p∈Ni,r′,<t
α(p, e)z(vp, vj)κi(t − tp)

︸ ︷︷ ︸
neighborhood influence on source vi

+ γ2
∑

r′′∈R
∑

q∈Nj,r′′,<t
α(q, e)z(vq, vi)κj(t − tq)

︸ ︷︷ ︸
neighborhood influence on target vj

, (2)

where γ1 and γ2 are the balance parameters. This conditional intensity function
consists of three major parts, including the type-wise base rate, the heteroge-
neous neighborhood on source node vi and on target node vj . At first, given vi

and vj as well as event type r, the base rate μr(vi, vj) is defined as:

μr(vi, vj) = −σ(f(hiWφ(vi) − hjWφ(vj))Wr + br), (3)

where hi ∈ R
d and hj ∈ R

d are the embedding of vi and vj , d is the dimension
of node embedding, Wφ(·) ∈ R

d×d denotes the type-φ(·) projection matrix, f(·)
denotes the element-level non-negative operation to measure the symmetrical
similarity of vi and vj , and we adopt self Hadamard product in this paper,
namely f(X) = X �X, Wr and br are the projection and bias of type-r events,
σ(·) is the non-linear activate function. In the base rate evaluation, both the
types of nodes and edges are taken into consideration.

Besides, historical neighbors can continuously excite the occurrence of the
current event. Taking the neighborhood influence on source node as an exam-
ple, given its historical neighborhoods {Ni,r′,<t|r′ ∈ R} the excitation is indeed
associated with three aspects, (1) the time span to the current time, (2) the rel-
evant historical neighbors to target node vj and (3) the importance of historical
neighbors to source node vi. As the time decay to different nodes are differ-
ent, we design κi(Δt)as exp(−δi(Δt)), where deltai is the learnable personalized
parameter and the influence become exponentially weak over time. The relevance
between historical neighbors and target nodes are related to their types as well,
namely,

z(vp, vj) = −‖hpWφ(p) − hjWφ(j)‖22, (4)

where ‖ · ‖22 denotes the Euclidean distance measure, and the negative symbol
indicates that closer nodes could affect greater. To measure the importance to
source node, attention mechanisms [7,12,27] have shown powerful performance
on static heterogeneous graphs. However, when dealing with the heterogeneous
formation process, the complex temporal influence between different semantics
remains an essential challenge. To handle the second challenge, we design the
heterogeneous evolved attention mechanism in Sect. 4.3.
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4.3 Heterogeneous Evolved Attention Mechanism

As mentioned in Sect. 1, the excitation of historical interactions not only asso-
ciate with types of historical events but also depend on types of current events.
Thus, the importance to current event α(p, e) is defined as

α(p, e) = ξ(vp, tp|r′, vi, t)β(r|r′, vi, t), (5)

where r′ and r respectively denote the type of historical and current event,
tp and t are the corresponding timestamps, ξ(vp, tp|r′, vi, t) is the intra-type
heterogeneous temporal attention, calculated by

ξ(vp, tp|r′, vi, t) = softmax(σ(κi(t − tp)[hiWφ(vi) ⊕ hjWφ(vj)]Wξ)), (6)

where Wξ ∈ R
2d×1 denotes the attention projection matrix need to

learn, ⊕ denotes the concatenation operation, softmax(x) is in the form of
exp(x)/

∑
x′ exp(x′). Both the heterogeneity and time decay are taken into con-

sideration. Furthermore, we design the inter-typed β(r|r′, vi, t) to model the
relevance from historical types to current types, namely

β(r|r′, vi, t) = softmax(tanh(g̃iWr)wr)T, (7)

where Wr ∈ R
d|R|×dm and wr ∈ R

dm×1 are the projection matrices need to
learn, dm is the length of latent dimension and we set dm = 0.5d here. g̃i is the
concatenation of historical excitation, namely g̃i = [g̃i,1 ⊕ g̃i,2 ⊕· · ·⊕ g̃i,|R|], and
the sub-excitation from type-r′ neighbors is calculated by

g̃i,r′ = σ
([∑

p ξ(vp, tp|r′, vi, t)hpWφ(vp)κi(t − tp)
]
Wβ,r′ + bβ,r′

)
, (8)

where Wβ,r′ ∈ R
d×d and bβ,r′ are the projection matrix and bias need to learn.

It is naturally a intra-typed attention based temporal excitation aggregation.

4.4 Temporal Importance Sampling

As more events are accumulated over time, it becomes expensive to materialize
the heterogeneous conditional intensity function. For efficiency, existing Hawkes
process on homogeneous graphs cut off events happened far away in the past,
and only focus on the most recent events. However, the cut-off point is often
arbitrary and difficult to set. Furthermore, the recency-only strategy risks in
omitting structurally important neighbors that have frequent interactions over
time. As illustrated in Fig. 2(b), A5 would be cut off based on recency only, but
it is desirable to retain A5 for modeling due to its frequent interaction with A1.

To efficiently extract representative candidates with both recency and struc-
tural importance, inspired by importance sampling [4,14], we propose the strat-
egy of Temporal Importance Sampling (TIS). TIS considers both temporal and
structural information to extract representation neighbors. Weighed by the exci-
tation rate and the time decay function, we design the sampler of TIS as follows,

q(vp|vi, r
′, t) =

κi(t − tp)Ni(vp)∑
vp′ ∈Ni,r′,<t

κi(t − t′p)Ni(v′
p)

, (9)
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where q(vp|vi, r
′, t) denotes the sampling probability, depending on the impor-

tance of node vh relating to event type r′, times of historical occurrence Ni(vp)
as well as time t. Thus, the estimator of the sampled neighbor influence is given
by

z(v̂p, vj) =
1
n

· z(v̂p, vj)
q(v̂p|vi, r′, t)

, v̂p ∼ q(vp|vi, r
′, t) (10)

where n is the sample size, v̂p denotes a sampled historical neighbor. Thus, both
temporal and structural importance of the neighbors can be retained for influ-
ence modeling. In particular, the estimator ensures the expectation of weighted
sampled excitation is equal to propagate all historical influences.

4.5 Optimization Objective

By modeling the temporal heterogeneous event formation with heterogeneous
Hawkes process, the current neighbor formation events can be inferred from the
heterogeneous conditional intensity. Given all the historical neighborhoods Ni,<t

of vi and Nj,<t of vj before time t, the probability of forming type-r connection
between vi and vj at time t can be inferred as

p(ei,j,r|Ni,t,Nj,t) =
λ(ei,j,r)

∑
r′∈R

(∑
j′∈N r′

i,t
λ(ei,j′,r′) +

∑
i′∈N r′

j,t
λ(ei′,j,r′)

) , (11)

where λ(ei,j,r) = exp( ˜λ(ei,j,r)) denotes the positive intensity. As directed like-
lihood optimization would suffer from the heavily computational complexity of
p(ei,j,r|Ni,t,Nj,t), we consider Eq. (11) as the softmax normalization of λ̃(ei,j,r),
and adopt negative sampling to accelerate learning, thus, the loss of the current
event e is defined as follows,

Lhp(e) = −
∑

e∈E
log σ(λ̃(e))−

∑

k

Ej′ log σ(−λ̃(ej′))−
∑

k

Ei′ log σ(−λ̃(ei′)), (12)

where ei′ and ej′ are the abbreviations of ei′,j,r,t and ei,j′,r,t, k is the size of
negative samples, and Lhp = 1

|E|
∑

e∈E Lhp(e).
Besides, focusing on the downstream tasks like node classification and tem-

poral link prediction, we design the unified loss function as follows:

L = Lhp + ω1Ltask + ω2Ω(Θ), (13)

where Ω(Θ) is the l2-norm regularization of learnt parameters, Ltask is the
loss of specific tasks. For node classification and temporal link prediction, we
input node embedding or the concatenation of embedding pair into a Multi-
Layer Perception to extract the distribution of classifications or the probability
of connections, and then evaluate the cross-entropy loss values, i.e., Ltask. ω1

and ω2 are the weights. We adopt Adam optimizer [15] to minimize the loss
function for each mini-batch.
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Table 1. Statistics of the three public datasets.

Datasets Node types #Nodes Event types #Events Time span

Aminer Author (A) 23,037 A-A 71,121 16 years

Conference (C) 22 A-C 52,399

DBLP Author (A) 34,766 A-A 133,684 10 years

Venue (V) 20 A-V 98,262

Yelp User (U) 494,524 BrU 1,145,070 60 quarters

Business (B) 13,507 BtU 226,728

5 Experiments

In this section, we conduct extensive experiments on three public real-world
dynamic heterogeneous graphs to demonstrate the effectiveness of HPGE.

5.1 Experimental Settings

Datasets. The three real-world datasets are the academic Aminer and DBLP
graphs and the Yelp business graph. The details are introduced as follows and
the statistics are listed in Table 1. (1) Aminer1. This is a benchmark biblio-
graphic graph, which consists of two types of nodes, namely, authors (A) and
conferences (C), as well as two types of temporal events, namely “co-operation”
(A-A) and “attendance” (A-C). Notice that each author is labeled by one of
the five research domains including data mining, database, medical informat-
ics, theory, and visualization. (2) DBLP2. This is another bibliographic graph,
which also consists of two types of temporal events between authors (A) and
venues (V), namely, A-A and A-V. We follow previous work [27] to extract 20
venues in four areas, namely, database, data mining, machine learning, informa-
tion retrieval. The authors are labeled by the research area they focus on. (3)
Yelp3. This is a business review dataset, containing timestamped user reviews
and tips on businesses. There are two types of nodes, users (U) and businesses
(B), and four types of temporal events including “reviewed” (UrB), “tipped”
(UtB), “reviewed by” (BrU) and “tipped by” (BtU). We extract interactions of
three categories of businesses, including “Fast Food”, “Sushi” and “American
(New) Food”, to construct the dynamic graph. Each business is labeled with its
most related category.

Baselines. We compare the proposed HPGE with three groups of graph
embedding models, namely, heterogeneous graph embedding (Metapath2vec [5],
HEP [35], HAN [27] and HGT [12]), dynamic graph embedding (CTDNE [21],

1 Available at Aminer website.
2 Available at DBLP website.
3 Available at Yelp website.

https://www.aminer.cn/topic_paper_author
https://dblp.uni-trier.de/db/
https://www.yelp.com/dataset
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EvolveGCN [22], and M2DNE [17]), and dynamic heterogeneous graph embed-
ding (DHNE [33], DyHNE [28], and DyHATR [31]).

– Metapath2vec [5] and HEP [35]: They are two heterogeneous graph embed-
ding models, where the former learns node embedding with sequences gener-
ated by a meta-path, and the latter propagates embedding information among
different-typed interactions.

– HAN [27] and HGT: They are two attentive heterogeneous GNNs, where the
former designs a hierarchical attention considering both node- and semantic-
levels while the latter takes into account both the types of nodes and edges
to design a heterogeneous mutual attention.

– CTDNE [21], EvolveGCN [22] and M2DNE [17]: They are three typical
dynamic homogeneous graph embedding approaches. CTDNE is a skip-gram
model based on temporal random walks; EvolveGCN learns the evolution
among snapshots by integrating with RNNs to sequentially update convolu-
tional parameters; and M2DNE introduces Hawkes process into modeling the
formation process of dynamic graphs where neighbor influence of both source
and target nodes are simultaneously extracted.

– DHNE [33], DyHNE [28] and DyHATR [31]: These are three represen-
tative temporal heterogeneous graph embedding models. DHNE performs
metapath-based random walk between historical snapshots and the current
snapshot and design a dynamic heterogeneous skip-gram model to capture
representations of nodes; DyHNE splits graphs into several snapshots and
employs eigenvalue perturbation to derive the updated embeddings between
different snapshots; DyHATR uses hierarchical attention to learn heteroge-
neous information and incorporates RNNs with temporal attention to capture
evolutionary patterns between different snapshots.

Parameter Settings. For all methods, we set the embedding dimension d =
128, batch size as 1024, learning rate as 0.001, regularization weight ω2 = 0.01 (if
any), and negative sampling size as k = 5 (if any). These values give robust per-
formance and are consistent with guidelines from the literature. For HAN, HGT,
M2DNE, DyHATR and our HPGE, we respectively limit the size of neighboring
candidates to 5, 5 and 10 on the three datasets, using TIS for our method, recency
cut-off for M2DNE and random sampling for others. For dynamic homogeneous
baselines, we treat events as homogeneous. For Metapath2Vec and DHNE, we
sample sequences via A-A, A-A and B-U-B on the three datasets, respectively.
The other parameters of all baselines follow their original papers. For our HPGE,
we set γ1 = 0.5 and γ2 = 0.5, ω1 = 1. In addition, the max iteration is set as
500, 500 and 50 on the three datasets.

5.2 Effectiveness Analysis

Node Classification. This task is to predict the research area of authors on
Aminer and DBLP and the category of businesses on Yelp. The train/test ratio
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Table 2. Performance evaluation (with standard deviation) on node classification. The
best performance is bolded and the second best is underlined.

Dataset Aminer DBLP Yelp

Metric Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

M2V 0.824(0.029) 0.853(0.032) 0.874(0.024) 0.885(0.029) 0.537(0.023) 0.642(0.017)

HEP 0.949(0.016) 0.952(0.013) 0.903(0.022) 0.913(0.018) 0.622(0.012) 0.694(0.009)

HAN 0.967(0.008) 0.970(0.009) 0.912(0.014) 0.914(0.007) 0.621(0.019) 0.691(0.025)

HGT 0.963(0.007) 0.971(0.011) 0.920(0.002) 0.927(0.001) 0.633(0.026) 0.705(0.022)

CTDNE 0.897(0.038) 0.895(0.025) 0.872(0.001) 0.892(0.005) 0.512(0.011) 0.639(0.011)

E.GCN 0.952(0.020) 0.955(0.018) 0.887(0.009) 0.881(0.010) 0.611(0.009) 0.687(0.008)

M2DNE 0.969(0.015) 0.972(0.018) 0.891(0.022) 0.909(0.027) 0.619(0.003) 0.693(0.005)

DHNE 0.901(0.010) 0.913(0.009) 0.888(0.007) 0.909(0.008) 0.578(0.001) 0.665(0.001)

DyHNE 0.970(0.008) 0.978(0.007) 0.922(0.003) 0.922(0.004) 0.622(0.011) 0.721(0.015)

DyHATR 0.973(0.002) 0.969(0.003) 0.933(0.011) 0.935(0.010) 0.627(0.008) 0.717(0.007)

HPGE 0.988(0.002) 0.984(0.003) 0.951(0.005) 0.952(0.004) 0.649(0.010) 0.731(0.012)

is set to 80%/20%. We run all methods five times and evaluate the average
Micro-F1 and Macro-F1 scores.

As shown in Table 2, our proposed HPGE consistently outperforms all base-
lines on the three datasets. We make the following observations. (1) Compared
with heterogeneous graph embedding approaches (Metapath2vec, HEP, HAN
and HGT), HPGE is able to model the temporal dynamics of heterogeneous
events. Similarly, compared to dynamic graph embedding approaches (CTDNE,
EvolveGCN and M2DNE), HPGE benefits from integrating the abundant seman-
tic information within heterogeneous events. Not surprisingly, the performance
gains of HPGE are larger relative to these baselines. (2) Compared with the
best competitor DyHATR, which considers both the temporal and heteroge-
neous information, our HPGE can still achieve substantial improvements. The
stable improvements demonstrate that modeling the formation process of DHGs
can embed evolving nodes better than just paying attention to the evolution
between snapshots. (3) Compared with Aminer and DBLP, our model improves
more on Yelp. The potential reason is that Yelp is a larger dataset, such that
our temporal importance sampling strategy can benefit more.

Temporal Link Prediction. This task is to predict the type-r interaction at
time t. Given all temporal heterogeneous events before time t and two nodes vi

and vj . We treat all events at time t as the positive link, and randomly sam-
ple 2 negative instances for both vi and vj as the negative links. Subsequently,
we test all baselines and our HPGE five times and report the average perfor-
mance of Accuracy, F1 score, and ROC-AUC in Table 3. Obviously, HPGE still
achieves the best performance on all datasets. Besides the observations on node
classification, HPGE evaluates node proximity based on event types and contin-
uously propagates the influence of types via the temporal point process, while
traditional type-wise projections can only model the heterogeneity rather than
the interactivity. In addition, HAN, HEP, HGT, DyHNE, DyHATR and our
HPGE always performs better than CTDNE, EvolveGCN and M2DNE. This
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Table 3. Performance evaluation on temporal link prediction. The best performance
is bolded and the second best is underlined.

Dataset Aminer Yelp DBLP

Metric ACC F1 AUC ACC F1 AUC ACC F1 AUC

M2V 0.806 0.359 0.759 0.790 0.419 0.702 0.798 0.375 0.656

HEP 0.921 0.814 0.944 0.853 0.566 0.829 0.910 0.753 0.934

HAN 0.923 0.811 0.955 0.855 0.591 0.833 0.903 0.751 0.940

HGT 0.938 0.822 0.963 0.859 0.588 0.833 0.899 0.761 0.941

CTDNE 0.824 0.382 0.763 0.806 0.342 0.635 0.713 0.345 0.653

E.GCN 0.904 0.767 0.922 0.822 0.526 0.785 0.853 0.714 0.905

M2DNE 0.929 0.790 0.951 0.854 0.547 0.818 0.896 0.734 0.939

DHNE 0.875 0.634 0.827 0.831 0.504 0.717 0.821 0.668 0.808

DyHNE 0.928 0.838 0.959 0.861 0.592 0.831 0.909 0.767 0.940

DyHATR 0.941 0.832 0.966 0.870 0.598 0.843 0.914 0.773 0.936

HPGE 0.953 0.835 0.976 0.873 0.603 0.850 0.938 0.793 0.957
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Fig. 3. Effect of hierarchical attention mechanism on node classification.

phenomenon indicates that integrating semantics into link formation can ben-
efit temporal link prediction more, compared with simply preserving evolving
structures.

5.3 Model Analysis

Effect of Heterogeneous Evolved Attention Mechanism. We further dis-
cuss the effect of heterogeneous evolved attention mechanism by comparing with
three model variants including no attention (no-att), intra-type temporal atten-
tion (intra-att) and inter-type temporal attention (inter-att), as well as HPGE
(all-att). The results for the node classification task are shown in Fig. 3. We
observe the following. (1) Simultaneously modeling both intra- and inter-type
temporal attention achieves the most improvements, while the no-attention vari-
ant performs the worst on all datasets. (2) Compared with the intra-attention
variant, HPGE has the ability to evaluate the importance of influence of different
types of historical events to current type of interactions. Meanwhile, HPGE can
filter the neighborhoods via intra-typed attention, compared with the inter-typed
variant. These observations demonstrate the effectiveness of our heterogeneous
evolved attention mechanism.
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Fig. 4. Efficacy of TIS and the ability of evolution modeling.

Efficacy of Temporal Importance Sampling. The other key design is our
temporal importance sampling (TIS), which considers both structural impor-
tance and time decay. We analyze the effectiveness of TIS by comparing with
the often used random sampling and recency-based cut-off, as well as the effi-
ciency of TIS under the effective sample size. (1) Comparison of sampling strate-
gies. Figure 4(a) reports the Micro-F1 scores of different sampling strategies for
the node classification task. Notice that the sample size is set as 5, 5 and 10
for all strategies on the three datasets, respectively. Among the three sampling
strategies, it is clear that our TIS strategy performs the best, especially on the
larger datasets DBLP and Yelp. The results are intuitive since the cut-off strat-
egy ignores structurally important neighbors, while the random sampling, which
performs the worst, pays no attention to either structure or dynamics. (2) Effec-
tive sample size. Effective sample size plays an important role in sampling to
achieve the balance between effectiveness and efficiency. As shown in Fig. 4(b),
we increase the sample size from 5 to 25 and showcase both the Micro-F1 score
(solid lines) and time cost (dotted lines). A larger sample size gradually increases
Micro-F1, which converges quickly around 5 or 10. Here 5 or 10 is the effective
samples size, which is much smaller than the full neighborhoods. In particular,
when using a larger sample size (e.g., 25 or even the full size), the time cost
becomes unbearable.

Ability of Modeling Evolution. As the dynamics of graphs are in the form of
timestamps, we “coarsen” the timestamps by considering time spans of varying
size. In Fig. 4(c), on the Aminer dataset, we vary the size of time span from every
1 year (i.e., finest time units) to 16 year (i.e., the entire graph consists of a single
time span of 16 years, which effectively become a static graph), and showcase
the performance on temporal link prediction. The performance of HPGE consis-
tently degrades with the increasing size of time span, indicating that modeling
evolving dynamics with finer granularity (i.e., smaller time span) lead to better
performance. Notice that when the time span is 16, the graph becomes a static
graph and our HPGE also degrades to a static model. Overall, the results further
illustrate the effectiveness of HPGE in handling evolution.
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6 Conclusion

In this paper, we propose the HPGE model which introduces Hawkes process to
handle the challenging dynamic heterogeneous graph embedding problem. Focus-
ing on modeling the formation process of temporal heterogeneous events, we
respectively design the heterogeneous conditional intensity function to capture
the excitation from historical multiple events, the heterogeneous evolved atten-
tion mechanism to learn fine-grained representations considering both intra- and
inter-typed temporal influences. HPGE hinges on a novel temporal importance
sampling strategy, to enable efficient extraction of representative events. Exper-
imental results on three public datasets demonstrate that HPGE outperforms
the alternatives on fundamental graph tasks.
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Abstract. Deep neural networks such as Convolutional Neural Net-
works (CNNs) have been successfully applied to a wide variety of tasks,
including time series forecasting. In this paper, we propose a novel app-
roach for online deep CNN selection using saliency maps in the task of
time series forecasting. We start with an arbitrarily set of different CNN
forecasters with various architectures. Then, we outline a gradient-based
technique for generating saliency maps with a coherent design to make
it able to specialize the CNN forecasters across different regions in the
input time series using a performance-based ranking. In this framework,
the selection of the adequate model is performed in an online fashion and
the computation of saliency maps responsible for the model selection is
achieved adaptively following drift detection in the time series. In addi-
tion, the saliency maps can be exploited to provide suitable explanations
for the reason behind selecting a specific model at a certain time interval
or instant. An extensive empirical study on various real-world datasets
demonstrates that our method achieves excellent or on par results in com-
parison to the state-of-the-art approaches as well as several baselines.

Keywords: Deep neural networks · Time series forecasting · Model
selection · Grad-CAM · Explainability

1 Introduction

Both the complex and time-evolving nature of time series make forecasting one
of the most challenging tasks in time series analysis [26].
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Several machine learning methods have been proposed to solve this task
either by dealing with the data as ordered sequences of observations in an online
or a streaming manner, or by using time series embeddings which map a set of
target observations to a k-dimensional feature space corresponding to the k past
lagged values of the observation [8,26]. In particular, Artificial Neural Networks
(ANNs) have been widely applied to solve the forecasting task [24,28]. Nowa-
days, deep ANNs (DNNs) have shown some improvements over previous shallow
ANN architectures [24]. In fact, DNNs have shown the ability to automatically
learn new, complex and enriched feature representation from input data [29],
thus achieving good performance in solving a wide variety of task. Recurrent-
based NNs such as Long Short-Term Memory Networks (LSTMs), as well as
Convolutional Neural Networks (CNNs), have been widely used as state-of-the-
art NN methods in the context of forecasting [13,24]. Many improvements over
these network architectures have been proposed in literature, ranging from opti-
mizing the architecture structure to combining these networks together in one
single forecasting task [13,19,20]. However, it is generally accepted that none
of the proposed machine learning forecasting methods is universally valid for
every application, and even within the same application, models have varying
relative performance over time [9,22,25,26]. Hence, different forecasting mod-
els have different areas of expertise and a varying relative performance [8,9,22].
Therefore, adequate and adaptive model selection in real-time is required to
cope with the time evolving nature of time series and the fact that models have
certain expected level of expertise in predicting a given sequence in the time
series. While some works focused on online single model selection, others have
been based on the assumption that no single model is expert the whole time and
suggested to combine several single models in an ensemble framework by adap-
tively combining single models into one [8,9,25,26]. Given a set of candidate
models for performing a well-defined forecasting task, different tactics ranging
from statistical estimations to applying meta-learning to learning the adequate
selection strategy have been suggested. The approaches for single model selec-
tion can be divided into three main families. The first family of methods is based
on approximating a posterior over the expected error of the different candidates
using parametric [6] or non-parametric estimation methods [2]. These methods
are not practical in the context of forecasting since continuous composite densi-
ties for the error function of the target and estimated time series values have to
be approximated. The results depends largely on the quality of approximation.
The second family consists of using empirical estimation of the unseen error of
a given model using a independent validation/calibration dataset. Models with
lowest estimated error are selected subsequently [23]. These methods are quite
ineffective in practice since the estimated empirical error is usually lower than
the true error. The third family is based on the meta-learning paradigm, where
the selection of the adequate method is decided by another machine learning
model which learns from previous selection realizations characterized by a set of
devised meta features [8,26].
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Meta-learning can also be used for model selection by specializing the set
of candidate models over different parts of the input so that each part gets
assigned to one expert model based on comparison of predicted candidate model
performances [8,9]. These parts are called Region of Competence (RoC) of
a model [22]. The RoCs of one model are either stored individually or clustered
and cluster centres are stored. At test time, the distance of the current input
(i.e. in our case time series input sequence) to the RoCs or the RoCs cluster
centres are computed, selecting the model with the lowest distance to perform
the prediction. Generally, the computation of the RoCs is done by considering
a static division of the time series into equally sized intervals. One way is to
consider each time series observation t and its corresponding k lagged values as
one interval and sliding the time window by one time step, whereas another way
is to split the training or validation set into equally sized intervals [22].

Generally, the selection is performed in a static manner [25], i.e. the decision
is made once at a time in favour of one model and this model is used subsequently
to forecast all the required values at test time. The selection can also be updated
continuously (i.e. blindly at each time instant or periodically) [8,9]. However,
this is usually expensive in terms of time and resources [26], especially when
the candidate models include DNNs. Few works in the literature performed the
selection of single or ensemble models in an informed manner following drift
detection of the relative performance of candidate models [25,26].

Candidate models in model selection can be the result of considering different
parameter settings of the same model or by training different models belonging
to different families of models. In the former case, the first family of model selec-
tion methods is widely used [2,6], while in the latter, a wide variety of selection
approaches have been proposed [8,23,26]. However, the search for optimal net-
work architectures for a given application is still an open research question [15].
This is even more challenging in the case of forecasting, where the decision for
the adequate architecture have to be made in real-time. Due to their high train-
ing run-time and general resource consumption it is usually impractical to search
for the adequate architecture at test time at each time instant or even in a peri-
odic manner. Therefore, we focus in this work on approaching this problem by
considering different candidate models of DNNs from different architectures (i.e.
based on CNNs combined with other NNs models) and we perform the selection
of the adequate architecture in real-time in an adaptive informed manner using
concept drift detection in the time series.

We start by computing the RoCs of candidate CNNs using saliency maps.
Saliency maps are usually used to establish a relationship between the output and
the input of a neural net given fixed weights. They are widely used in the context
of computer vision with CNNs to create a class-specific heatmap based on a
particular input image and a chosen class of interest [32]. These maps are used for
visualizing the regions of input that are “important” for prediction by the model
and for understanding a model’s prediction [27]. We suggest not only to transfer
the class-activation maps from the context of classification to forecasting, but
also to establish a mapping between the input time series and the performance
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so that dynamic RoCs are computed for each single CNN. Opposingly to the
aforementioned approaches, the RoCs are considered as dynamic since their size
is automatically decided and changed over time by the saliency map depending
on the input time series sequence and the CNN performance. The RoCs are
computed using a time-sliding window over a validation set. At test time, we
produce forecasts step by step. At each time step, the distance between the
recent observed window of time series observations (i.e. lagged values used to
compute the forecast) and the pre-computed RoCs is determined. The model
corresponding to the RoC with the lowest distance is selected to perform the
forecasting. Additionally, the pre-computed RoCs are adaptively updated in case
a concept drift is detected in the time series by sliding the validation set to take
into account the probable presence of new concepts in the data when computing
RoCs. The saliency maps can also be exploited to provide explanations for the
reason behind selection one particular model for a given sequence of input data.

We further conduct comprehensive empirical analysis to validate our frame-
work using 102 real-world time series datasets from various domains. The
obtained results demonstrate that our method achieves excellent results in com-
parison to the SoA approaches for DNN selection as well as several baselines for
time series forecasting. We note that all the experiments are fully reproducible,
and both code and datasets are publicly available1.

The main contributions of this paper are thus summarized as follows.

– We present a novel method for online CNNs selection for time series forecast-
ing by computing RoCs for a set of candidate CNN-based models using an
adaption of saliency maps.

– We update the RoCs in an informed manner following concept drift detection
in the time series data.

– We exploit the saliency maps to provide suitable explanations for the reason
behind selecting a specific model at a certain time instant or interval.

– We provide a comparative empirical study with state-of-the-art methods, and
discuss their implications in terms of predictive performance and scalability.

2 Literature Review

Over the recent years, deep learning methods have been successfully applied
in a wide variety of real-world learning tasks, including time series forecast-
ing [10,19,20]. Currently, Recurrent Neural Networks (RNNs), and particularly
Long-Short Term Memory (LSTM) nets, are considered to be the state-of-the-art
in time series forecasting [7,19,20]. Thanks to their design based on recurrent
connections, these networks have the ability to learn from the entire history of
previous time series values. Another alternative for the use of DNNs in the fore-
casting task is to employ a Convolutional Neural Network (CNN) with multiple
layers of dilated convolutions [31]. The layered structure of CNNs enables them
to work well on noisy series, by removing the noise within each subsequent layer

1 https://github.com/MatthiasJakobs/os-pgsm/tree/ecml2021.

https://github.com/MatthiasJakobs/os-pgsm/tree/ecml2021
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and extracting only the meaningful patterns, performing thus similarly to neural
networks which use wavelet transform on input time series [7]. This also allows
for the receptive field of the network to expand exponentially, hereby making the
network, similarly to RNNs, access a wide range of historical data. Some works
have focused on improving CNN based architectures by combining CNN and
LSTM in one single model to take advantage of the ability of LSTMs to cope
with long temporal correlations [19,20]. In [21], the authors propose an undeci-
mated convolutional network for time series forecasting using the undecimated
wavelet transform. An autoregressive weighting schema for forecasting financial
time series is presented in [5] where the weights are learnt through a CNN. How-
ever, convolutional architectures in literature are much more commonly applied
to time series classification problems compared to forecasting [7,11].

The aforementioned works have focused on searching the most suitable net-
work architecture for a well-defined application. At test time, the architecture
and the learned weights are kept fixed and used to produce forecasts. However, to
cope with the time-evolving nature of time series data, the forecasting schema has
to be designed in a dynamic adaptive manner [25,26]. Since the same model can’t
be guaranteed to hold the same performance over time [8,9,22,25,26], online
adequate model selection is required. This is usually hard to achieve with DNNs
in general since the architecture tuning and the re-training of such models are
intensively time consuming operations [7,20]. We suggest to mitigate this prob-
lem by training different CNN-based models with various architectures offline
and decide for the online selection of the adequate network at each time instant
at test time. The selection is achieved using a computation of the so-called RoCs
using saliency maps (i.e. known also as attribution heat-maps) [32].

Saliency maps (in the form of class activation maps (CAMs)) were originally
designed for computer vision classification tasks to visualize which part of an
image is of high relevance to the network to make its decision [27,32]. They are
considered tools for better understanding a models behaviour, e.g. by providing
insight into model failure modes [32]. Many saliency map generation methods
are post-hoc methods, in the sense that they are applied to an already-trained
model. CAM uses the feature maps produced by the last convolutional layer of
a CNN. This is motivated by the fact that the last convolution layer is expected
to contain both high-level semantic and detailed spatial information [27]. More
recently, CAMs have been applied in the context of time series classification to
explain which features and which joint contribution of all the features during
which time interval are responsible for a given time series class [3]. However,
to the best of our knowledge, ours is the first work to apply saliency maps for
online CNN-based model selection for time series forecasting. The generation of
these maps is performed in an informed adaptive fashion. In addition, they are
exploited to provide explanation for particular timely model selection.

3 Methodology

This section introduces our method and its main stages. In a first stage, we train
different candidate CNN-based models with various architectures offline. The
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second stage consists of determining the RoCs for these models using sliding
windows over a validation set. The RoCs are computed using a modified version
of saliency maps, in the sense that instead of using these maps as class activation
maps (CAM), we employ them to establish a relation between a relative “good”
performance of a given candidate CNN and a particular pattern within the input
time-sliding window sequences. We base our method on a gradient-based tech-
nique for generating saliency maps called Grad-CAM [27]. We call our modified
version in the following “Performance Gradient-based Saliency Map (PGSM)”.
In the third stage, in order to produce a forecast at a given time instant tf , the
distance of the current input time sequence (i.e. time series observations from
tf−k to tf−1, f > k) to the computed RoCs of each model is measured. The
model corresponding to RoC with the lowest distance is selected to forecast the
time series value at tf . A concept drift detection mechanism in the time series
is employed at test time (i.e. during forecasting). Once a drift is detected, an
alarm is triggered to update the validation set by taking into account the new
observed time series values and to subsequently update the RoCs. The PGSMs
can be used to provide suitable explanations for the reason behind selecting a
specific model at a certain time interval or instant. Practical examples of expla-
nations are shown with details in Sect. 4. Our framework is denoted in the rest of
the paper, OS-PGSM: Online CNN-based models Selection using Performance
Gradient-based Saliency Maps.

3.1 Preliminaries

A time series X is a temporal sequence of values, where Xt = {x1, x2, · · · , xt}
is a sequence of X until time t and xi is the value of X at time i. Denote
with PCNN = {C0, C1, · · · , CN−1} the pool of trained CNN-based models. Let
x̂ = (x̂C0 , x̂C2 , · · · , x̂CN−1) be the vector of forecast values of X at time instant
t + f, f ≥ 1 (i.e. xt+f ) by each of the models in PCNN . The goal of the dynamic
online selection is to identify which x̂Cj should be used to produce this forecast.

We divide the time series Xt into Xtrain
ω = {x1, x2, · · · , xt−ω} and Xval

ω =
{xt−ω+1, xt−ω+2, · · · , xt}, with ω a provided window size. Xtrain

ω is used for
training the models in PCNN and Xval

ω is used to compute the RoCs using the
PGSMs, since to measure models performance both true and predicted values
of the time series are required. The RoCs for each model Cj , j ∈ {0, · · · , N − 1}
are obtained by performing time-sliding window operations of size nω, nω < ω
over Xval

ω either by one step or by z steps.

3.2 Candidate CNN Architectures

The candidate models are CNN-based models that share more less the same
basic types of layers. The common basic structure consists of sequence of 1D-
convolutional layers with different filter and kernel sizes, followed by a batch
normalization layer, in some cases a LSTM layer and an output layer of one
neuron. The different architectures are obtained by varying the number of the
convolutional layers and their corresponding parameters (i.e. the size of filters



410 A. Saadallah et al.

and kernels) and in some cases adding or removing another neural network type
to the last convolutional layer, like a LSTM layer. To obtain further architectures
variations, the number of units in the LSTM are also varied.

3.3 Online Model Selection

Performance Gradient-Based Saliency Maps. The PGSMs are inspired
from the class activation saliency maps, more specifically, Grad-CAM [27]. This
method has been proven to successfully pass commonly used sanity checks, which
are devised to check whether the saliency map is truly providing insights into
what the model is doing or not [1]. However, instead of using these maps to
derive the importance of certain features for a given class, we use them to map
the performance of a given forecasting model to a specific time interval. The per-
formance of each model Cj , j ∈ {0, · · · , N −1} is evaluated using an error-related
measure, namely the Mean Squared Error, εi

j on Xval,i
nω

: the ith time interval win-
dow of Xval

ω of size nω. Our goal is to estimate the importance of each value in
Xval,i

nω
to the measured error εi

j of Cj . This can be interpreted similarly to Grad-
CAM exploiting the spatial information that is preserved through convolutional
layers, in order to understand which parts of an input image are important for a
classification decision. However, we are focused here on the temporal information
explaining certain behaviour/performance of Cj . To do so, the last layer which
has produced the last feature maps fmaps is considered. For each activation unit
u at each generic feature map A, an importance weight wε associated with εi

j ,
is obtained. This is done by computing the gradient of the εi

j with respect to A.
Subsequently, a global average over all the units in A is computed:

wε =
1
U

∑

u

∂εi
j

∂Au
(1)

where U is the total number of units in A. We use wε to compute a weighted
combination between all the feature maps for a given measured value of the error
εi
j . Since we are mainly interested in highlighting temporal features contributing

most to εi
j a ReLU is used to remove all the negative contributions by:

Li
j = ReLU(

∑

fmaps

wεA) (2)

Li
j ∈ R

U is used to find the regions in Xval,i
nω

that have mainly contributed to εi
j

of the network Cj . Note that the candidates are designed such that U < nω.

RoCs Computation. Our goal is to determine the region of competences of
each model on Xval

ω . However, one single evaluation of the models on Xval
ω obvi-

ously lead to just one best model. Therefore, we need to split Xval
ω into equally

sized time intervals of size nω, so that different evaluations of the candidate
models are performed and different rankings are derived. To increase this num-
ber of evaluations, the intervals of size nω can be obtained using a time-sliding
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window approach over Xval
ω where the sliding operations are performed each

z-steps. The lower z, the higher the number of evaluations is. If z is set to 1, the
sliding window approach is performed in a step-wise manner. After evaluating
the models on each of the Xval,i

nω
, the RoC of the model with the lowest error is

computed using Li
j of the PGSMs, where j the index of the candidate model Cj

satisfying: Cj = argminz∈{1,··· ,N}ε
i
z.

To obtain one continuous region RoC Rj within the time series sequence
Xval,i

nω
, a smoothing operation is applied to Li

j . This is achieved by normaliz-
ing Li

j values between 0 and 1 and applying a threshold τ = 0.5 to filter out
smaller values (i.e. these values are set to 0). Further smoothing using a moving-
average of size 3, is applied where each point is compared to the previous and
the subsequent value. Whenever Rj of model Cj is computed, it is added to a
corresponding RoCj buffer which includes all collected RoCs for the model Cj

(i.e. since Cj can be the best performing model on different Xval,i
nω

).

Online Forecasting. For forecasting the value of X at t + f (assume f = 1
for simplicity), the candidate CNNs are devised such that they use the same
k-lagged values of the time series as input, pk

t = {xt−k+1, · · · , xt}, (t ≥ k). To
perform the selection, the distance of the input pattern pk

t to the RoCs for each
model in PCNN is measured. The RoCs of a given model Cj , j ∈ {0, · · · , N − 1}
are already collected in RoCj = {Rj

1, R
j
2, · · · , Rj

Mj }, where M j is the total
number of regions of competence that have been determined by the PGSMs.
Since the length of each RoC can be different from k (i.e. length of pk

t ), Dynamic
Time Wrapping (DTW) [4] is used to measure the similarity between pk

t and
each Rj

z, z ∈ {1, · · ·, M j} within each RoCj , j ∈ {0, · · ·, N − 1}. The model Cb

satisfying:
Cb = argmin

j∈{0, ···, N−1};
z∈{1, ···, Mj}

DTW (Rj
z, p

k
t ) (3)

is selected to forecast t + 1.

RoCs Update. As explained above, the ROCs are computed offline using
the validation set Xval

ω . However, due to the dynamic behaviour of time series,
streaming upcoming values can be subject to significant changes, more specifi-
cally to concept drifts [12]. As a result, the ROCs have to be updated to take
into account the possible presence of new patterns after the occurrence of such
drifts and also to gain knowledge of which models are more adequate to handle
these patterns if they ever reoccur again (i.e. note that the already computed
RoCs are preserved and enriched with the new ones). Once a drift is detected,
an alarm is triggered to update of the ROCs by sliding Xval

ω to include the new
recent observations. The detection of concept drifts is performed by monitoring
the deviation Δmtf

in the mean of the time series [26]: Δmtf
= E(Xtf

) − μ,
with μ = E(Xt), t ≤ tf , the initial computed mean of X up to time t, a drift
is assumed to take place at tf if the true mean of Δmtf

diverges in a signifi-
cant way from 0. We propose to detect the validity of this using the well-known
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Parameters: size of the validation set: ω; size of time windows within the
validation set: nω; CNNs Pool: PCNN .

1: Models Training and RoCs Computation:
2: Train each Cj ∈ PCNN , j ∈ {0, · · · , N − 1} on Xtrain

ω .
3: Initialize RoC buffers RoCj for each Cj , j ∈ {0, · · · , N − 1}
4: for each Xval,i

nω
∈ Xval

ω do
5: Determine the best performing Cj .
6: Compute the corresponding Rj

i using PGSMs (i.e. Li
j Eq. 2)

7: Add Rj
i to the corresponding buffer RoCj

8: end for
9: Online Forecasting: Forecasting next Nf values :

10: predict xt+1 by the model Cb selected using Eq. 3
11: for j ∈ {2, · · · , Nf} do
12: if an alarm is triggered (concept drift detected) then
13: Update Xval

ω = {xt−ω+j , xt−ω+2, · · · , xt+j−1}
14: Recompute and add new RoCs (steps: 4–7)
15: end if
16: predict xt+j by the model Cb selected using Eq. 3
17: end for

Algorithm 1: OS-PGSM

Hoeffding-Bound [16], which states that after W independent observations of a
real-value random variable with range r, its true mean has not diverged if the
sample mean is contained within ±ξm:

ξm =

√
r2 ln(1/δ)

2W
(4)

with a probability of 1−δ (a user-defined hyperparameter). Once |Δmtf
| exceeds

ξm, an alarm is triggered and the reference mean μ is reset by setting t = tf .
This checking procedure is continuously applied online at forecasting time. All
the steps of OS-PGSM are summarized in Algorithm 1.

4 Experiments

We present the experiments carried out to validate OS-PGSM and to answer
these research questions: Q1: How does OS-PGSM perform compared to the
state-of-the-art (SoA) and existing online model selection methods for time series
forecasting?; Q2: What is the advantage of reducing the step size z for sliding
the window of size nω over Xval

ω on the performance of OS-PGSM? Q3: What is
the advantage of updating the RoCs in an informed fashion (i.e. following drift
detection)?; Q4: How scalable is OS-PGSM in terms of computational resources
compared to the most competitive online model selection methods? and what is
the computational advantage of the drift-aware adaption of the models’ RoCs?;
Q5: How can OS-PGSM be exploited to provide suitable explanations for the
reason behind selecting a specific model at a certain time interval or instant?
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4.1 Experimental Setup

The methods used in the experiments were evaluated using the root mean
squared error (RMSE). The used time series was split using 50% for training
(Xtrain

ω ), and 25% for validation (Xval
ω ) and 25% for testing. We use 102 real-

world time series. A full list of the used datasets, together with a description, is
given in the code repository2.

4.2 OS-PGSM Setup and Baselines

We construct a pool PCNN of CNN-based candidate models using different
parameter settings (e.g. number of filters varies in {32, 64, 128}, kernel size varies
in {1, 3}), like explained in Sect. 3.2. By combining these different parameters
and adding/removing LSTM layer, 12 different CNNs with various architectures
are created. OS-PGSM has also a number hyper-parameters that are summa-
rized in Table 1. In our experiments, k is set equal to nω and the RoCs (after
computation and smoothing) result in even smaller size than k. However, this
is not problematic since we are interested in extracting distinctive patterns that
are responsible for good performance of a given candidate. The difference in
lengths of the RoC and the input sequence (k) are handled by the DTW mea-
sure. We compare OS-PGSM against the following approaches which include
SoA methods for forecasting and model selection methods devised in the con-
text of forecasting. Some of them operate in an online fashion. First, we compare
against ARIMA and Exponential Smoothing (ETS) [18]. Next, we add the two
best performing candidate models, denoted as CNN and CNN-LSTM [24].
Additionally, a simple LSTM is added for comparison [14]. KNN-RoC [22]
which computes static RoCs using complete intervals of the validation set as
input and the rank of the individual candidates on each interval as labels for a
KNN classifier, using DTW distance and K = 3, is also used for comparison.
At test time, the KNN predicts which candidate should be selected. Next, we

Table 1. Hyperparameters of OS-PGSM and their values for the experiments.

Parameter Description Value

k Number of lagged values (size of the
input to CNNs pk

t )
5

ω Size of validation set 25% of the dataset length

nω Size of time windows within the
validation set

5

z Number of time steps with which
time windows

1

Within the validation set are slided

δ Hoeffding-Bound parameter 0.05

2 https://github.com/MatthiasJakobs/os-pgsm/tree/ecml2021.

https://github.com/MatthiasJakobs/os-pgsm/tree/ecml2021
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also compare ourselves against a simple validation procedure where the CNNs
are evaluated offline and the best model is selected to forecast all the upcoming
data points [23]. ADE [8,9] was recently developed for online dynamic ensem-
ble of forecasters construction. However, instead of selecting many models, we
select the best performing model using the same principle. A Random Forest is
used for estimating each candidate error and select the best model based on the
lowest predicted error at test time. As Stacking, we denote a method where a
meta-learner (Random Forest) is trained to predict which model to select using
a set of meta-features consisting of input time sequence statistical characteris-
tics and performance-based features [30]. Finally, we compare ourselves against
Adaptive Mixture [17], which consists of some experts (Shallow CNNs) and
a gating network. The gating network acts as a selector by performing a sin-
gle output stochastic switch to select a given expert with the estimated switch
probability.

We also compare OS-PGSM with some variants of itself. Note that OS-PGSM
uses the Hoeffding-based drift detection mechanism to update the RoCs.

OS-PGSM-Int: Same as our method, but the time windows of size nω are
slided with step size z = nω.

OS-PGSM-Euc: Instead of using DTW as similarity measure, we use
Euclidean distance. However, values in the RoC corresponding to 0 are not
taken into consideration in the k-lagged values sequence (pk

t ).
OS-PGSM-Int-Euc: It is a combination of OS-PGSM-Int and OS-PGSM-

Euc.
OS-PGSM-St: Same as our method, but the RoCs are not updated using the

drift detection mechanism. The RoCs are computed and stored offline, only
the selection takes place online.

OS-PGSM-Per: Same as our method, but the RoCs are update periodically
in a blind manner (i.e. without taking into account the occurrence of concept
drifts) with periodicity each upcoming 10% data points.

4.3 Results

Table 2 presents the average ranks and their deviation for all methods. For the
paired comparison, we compare our method OS-PGSM against each of the other
methods. We counted wins and losses for each dataset using the RMSE scores.
We use the non-parametric Wilcoxon Signed Rank test to compute significant
wins and losses, which are presented in parenthesis (significance level 0.05).

In the results in Table 2, OS-PGSM outperforms the baseline methods
in terms of wins/loses in pairwise comparison. The online model selection
approaches, e.g., KNN-RoC, ADE-Single and Adaptive Mixture, show inferior
performance compared to OS-PGSM. ARIMA, ETS, LSTM, and CNN, SoA
methods for forecasting, are considerably worse in average rank compared to
OS-PGSM. CNN-LSTM shows slightly better performance, but is still worse
than OS-PGSM. The most competitive SoA approach to OS-PGSM is ADE-
Single. Nevertheless, it has a higher average rank and a lower performance than
all the variants of our method. These results address the research question Q1.
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Table 2. Comparison of OS-PGSM to different SoA for 102 time series. The rank
column presents the average rank and its standard deviation across different time
series. A rank of 1 means the model was the best performing on all time series

ARIMA ETS LSTM CNN CNN-LSTM Valid KNN-RoC ADE-single

Losses 7(6) 5(4) 17(8) 18(6) 23(6) 20(12) 22(16) 30(19)

Wins 95(93) 97(96) 17(8)85(83 84(80) 79(71) 82(72) 80(73) 72(61)

Avg. Rank 12.90 13.04 9.97 9.00 7.30 7.84 7.41 4.28

± 4.35 4.26 3.60 3.60 3.59 4.18 3.95 2.90

Stacking Adapt. Mixture OS-PGSMInt Euc Int-Euc St Per OS-PGSM

Losses 11(10) 17(8) 40(7) 35(10) 33(9) 49(10) 45(7) –

Wins 91(80) 85(84) 62(54) 66(56) 69(66) 53(44) 57(46)

Avg. Rank 12.11 10.93 3.62 3.86 3.95 2.93 3.09 2.78

± 4.12 5.78 2.80 3.10 3.13 2.62 3.05 2.63

Comparing OS-PGSM to different variants of our method, we see a clear
advantage in using all the choices in our method. First, the DTW distance is
better in sketching the similarities between the input sequences and the RoCs,
especially when both have different lengths as explained above. This explains
why the variants using Euclidean distance have worse performance. In addition,
by setting z = 1, higher number of windows of size nω are created and as a
result, a higher number of RoCs are computed (See Sect. 3.3). This contributes
to creating richer information about RoCs of different candidates, compared to
setting z = nω in OS-PGSM-Int and OS-PGSM-Int-Euc. Finally, OS-PGSM-St
is even better then OS-PGSM-Per, which shows that unnecessary updates are
not always beneficial. Opposingly, OS-PGSM which relies on informed adaption
of the RoCs using concept drift detection is better than OS-PGSM-Per and OS-
PGSM-St. This can be explained by the fact that the update of the RoCs is only
beneficial for datasets where concept drifts can be detected and more probably
taking into account these new appearing concepts is helpful for the selection of
models since a knowledge of which models are more adequate to handle these
patterns if they ever reoccur again is gained and the old sets of RoCs are enriched.
Figure 1 show an illustrative example of the RoCs of C7 before and after drift
detection. New patterns are added as new RoCs to the old RoCs of C7. This
answers research questions Q2–Q3.

In the next experiment, we compare the runtime of OS-PGSM and its vari-
ants against the most competitive SoA method, ADE-Single, in Table 3. The
reported runtime for OS-PGSM and OS-PGSM-Per takes into account the com-
putation of the new RoCs. ADE-Single [9] relies on periodic update of the meta-
learning strategy behind the selection (same periodicity as OS-PGSM-Per). All
the reported runtimes concern only the online predictions and any operation com-
puted offline is not taken into account. The results demonstrate that OS-PGSM
and its variants have lower average runtime than ADE-Single. OS-PGSM-Int is
faster than OS-PGSM-St since fewer evaluation windows of size nω are created
and as a result, a lower number of RoCs is generated for distance comparisons.
OS-PGSM has lower runtime than OS-PGSM-Per. This is due to using drift
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Fig. 1. RoCs for the candidate model C7 before and after drift detection.

detection to update the RoCs only when necessary. This results in faster predic-
tions and less computational requirements. The high deviation of the runtime of
OS-PGSM is due to the different numbers of drifts per time series. This answers
question Q4.

Table 3. Empirical runtime comparison between different methods in Seconds.

Method ADE-single OS-PGSM OS-PGSMSt OS-PGSMInt OS-PGSMPer

Avg. runtime 167.87 8.42 2.33 0.90 154.11

± 56.40 18.30 4.80 1.65 204.22

Fig. 2. Comparison of the current input pattern to the closest RoC (C11). (Color figure
online)

Last but not least, we provide some insights how OS-PGSM can be used
to provide suitable explanations for the reason behind model selection. Figure 2
shows a comparison between the current input time series pattern pk

t (left part in
black) with the RoC of the selected model to perform the forecast. A clear sim-
ilarity between both patterns can be observed which justifies the choice of this
model since it has been proven to show some degree of competence in forecasting
using similar patterns as input. This is further validated when also comparing
between the true time series value (ground truth, green) and the predicted value
(red). While these two values differ slightly, an evaluation of all the candidates in
this point showed that our selected model C11 has the smallest error. A more gen-
eral overview over the RoCs for AbnormalHeartbeat dataset is shown in Fig. 3.
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Fig. 3. Visualization of RoCs for AbnormalHeartbeat data using OS-PGSM.

Fig. 4. A visualization of model selection one the AbnormalHeartbeat dataset.

Some models have quite similar RoCs (patterns). For example, C0 appears to
be expert in increasing linear trend patterns, or in peaks followed by a slight
plateau, while C7 is the best in dealing with sharp peaks. As it can be seen with
the varied amount of transparency of lines of the RoCs, many identical RoCs
are collected for each models, confirming thus the assumption that certain mod-
els are experts on specific input regions of the time series. Some models do not
have any RoC. This can be explained by the fact that they never get selected
in the validation process or their PGSMs are too small to form a pattern that
it is why they get filtered out in the smoothing procedure. This also leads to
better explainability in the sense of sparseness, since not every model is forced
to contribute to the forecasting. Hence, models that are poorly designed or not
well-trained, get ignored during the selection. Practitioners of our method can
then use this insight to focus their attention on improving certain, poorly per-
forming models, or remove the unused models entirely to save runtime. Another
visualization aspect of the forecasting is shown in Fig. 4. We focus for visualiza-
tion clarity on the two models (C8 and C0). We highlight regions where they
are selected by OS-PGSM. Notice that preceding every decision where C0 is cho-
sen, the time series exhibits a peak, which corresponds to the model’s RoCs in
Fig. 3. The same conclusion can be drawn for C8, which is picked after valley-
shaped parts. While the two models are not picked for all peaks and valleys, our
method clearly aligns certain time series regions with specific models. All the
shown aspects address clearly research question Q5.

4.4 Discussion and Future Work

The empirical results indicate that OS-PGSM has performance advantages com-
pared to popular forecasting methods and the most recent SoA approaches for
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online forecasting models selection. We show that our method, using PGSMs for
adaptively computing RoCs of different CNN-based forecasters, is able to gain
excellent and reliable empirical performance in our setting. The informed update
of the RoCs following concept drift detection makes our method in addition to
better predictive performance, computationally cheaper than the most compet-
itive SoA, namely ADE-single. OS-PGSM can also successfully be used for pro-
viding useful explanations behind model selection which can be used to optimize
further our framework. As future work, we plan to investigate the impact of
varying some parameters in our setting, more specifically nω and k. More can-
didate models can also be considered. The selection can be made in favour of
top-M best performing models, so that an adaptive dynamic ensemble can be
created. In addition, the possible resulting big number of RoCs can be optimized
further using a clustering inside each RoCj for each model, and only clusters
representatives are considered for distance computation to select the best model.

5 Concluding Remarks

This paper introduces OS-PGSM: a novel, practically useful online CNN-based
models selection using saliency maps framework for time series forecasting. OS-
PGSM uses gradient-based saliency maps to derive Region of Competences RoCs
of a set of candidate models. These RoCs are updated in an informed-manner
using concept drift detection in the time series. An exhaustive empirical eval-
uation, including 102 real-world datasets and multiple comparison algorithms
showed the advantages of OS-PGSM in terms of performance and scalability.
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Abstract. We introduce QuantTree Exponentially Weighted Moving
Average (QT-EWMA), a novel change-detection algorithm for multivari-
ate datastreams that can operate in a nonparametric and online manner.
QT-EWMA can be configured to yield a target Average Run Length
(ARL0), thus controlling the expected time before a false alarm. Control
over false alarms has many practical implications and is rarely guar-
anteed by online change-detection algorithms that can monitor multi-
variate datastreams whose distribution is unknown. Our experiments,
performed on synthetic and real-world datasets, demonstrate that QT-
EWMA controls the ARL0 and the false alarm rate better than state-of-
the-art methods operating in similar conditions, achieving comparable
detection delays.

Keywords: Online change detection · Nonparametric monitoring ·
Multivariate datastreams · Histograms · False alarms

1 Introduction

Detecting changes in datastreams is a frequently encountered problem in indus-
trial [13] and traffic monitoring [12], security [31], cryptographic attacks [9],
and finance [29], to name a few examples. Change detection is also relevant in
machine learning, where changes are also known as concept drifts, and classi-
fiers have to be adapted as the data-generating process changes [10]. In many of
these applications, datastreams have to be processed online, i.e., while acquiring
observations, and this condition poses crucial, sometimes conflicting, challenges
from both algorithmic and technological standpoints. On the one hand, online
change-detection algorithms have to analyze virtually unlimited datastreams,
while storing a limited amount of data and performing a fixed number of oper-
ations per incoming sample. On the other hand, to detect even subtle changes,
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online change-detection algorithms are requested to perform a sequential analy-
sis, leveraging at time t all the data samples observed until t, in contrast with
one-shot detectors, which perform independent tests over batches of data.

This paper addresses the crucial problem of controlling false alarms in online
change detection, which is particularly important in industrial monitoring and
unsupervised drift detection, where each detected change possibly triggers a
costly intervention or supervision. Operating at controlled false alarm rates
enables allocating the right amount of resources for the supervision, as well
as identifying issues in the monitored process when there are more detections
than expected. Unfortunately, most online change-detection algorithms that can
monitor multivariate datastreams, especially nonparametric ones, fail to control
false alarms effectively.

Most change-detection algorithms feature two main ingredients: i) a statistic
with a known response to data following the initial distribution φ0, and ii) a
decision rule to analyze the values of the statistic and report changes. In online
monitoring, the statistic Tt considers all the data acquired until time t, and the
decision rule typically compares the statistic Tt against a threshold h, which is
defined to control false alarms. In offline tests and one-shot detectors analyzing
a fixed amount of data, the threshold h is set as a specific quantile of T and
computed analytically [23], or by bootstrap [3]. In online monitoring, setting
thresholds becomes more complicated, as one typically wants to control the
Average Run Length (ARL0), i.e., the average time before raising a false alarm [2].
Controlling the ARL0 requires defining a sequence of thresholds {ht}t where each
threshold ht is set as a specific quantile of the statistic Tt conditioned on the
fact that the algorithm has not detected any change before t. In both offline and
online monitoring, tests based on nonparametric statistics are preferable because
their thresholds {ht}t can be set without any information about φ0.

In this paper, we propose QT-EWMA, a novel online change-detection algo-
rithm for multivariate datastreams combining a QuantTree histogram (QT) [3]
as a general and flexible model for φ0, with an online statistic based on the
Exponentially Weighted Moving Average (EWMA) [28]. In particular, we define
a novel EWMA statistic to monitor the proportion of incoming samples falling
in each bin of the histogram, and use this to define an efficient and practical
online change-detection algorithm. The theoretical background of QuantTree
guarantees that this test statistic does not depend on φ0 nor the data dimen-
sion [3]. Thus we derive an efficient Monte Carlo scheme to compute thresholds
controlling ARL0. By design, these thresholds guarantee a constant false alarm
probability over time and, consequently, a fixed false alarm rate at each time
instant. Thus, QT-EWMA controls both the ARL0 and the false alarm rate.
Our main contributions are:

– We develop QT-EWMA, an online change-detection algorithm for multivari-
ate datastreams based on a novel statistic that monitors the bin probabilities
of a QuantTree histogram (Sect. 4.1).

– We design an efficient Monte Carlo scheme to compute thresholds controlling
the ARL0 in QT-EWMA, as in [29]. Thanks to the theoretical properties of
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QuantTree, our thresholds control both the ARL0 and the probability of false
alarms at a given time, for any distribution φ0 (Sect. 4.2).

– We propose two simple yet theoretically sound procedures to extend a
generic one-shot detector to monitor datastreams while controlling the ARL0

(Sect. 5), which we employ as baselines in our experiments.

Our experiments performed on both simulated and real-world datastreams show
that QT-EWMA controls the ARL0 better than the baselines, and Scan-B [22],
a competing algorithm based on a Maximum Mean Discrepancy (MMD) statis-
tic. Our results also show that QT-EWMA maintains the expected false alarm
rate, which Scan-B does not guarantee. Moreover, in the considered real-world
datasets, QT-EWMA achieves detection delays on par with online and nonpara-
metric tests implementing powerful statistics based on kernels, which cannot
control false alarms. QT-EWMA implementation and thresholds are available
for download at https://github.com/diegocarrera89/quantTree.

The rest of the paper is organized as follows: in Sect. 2 we illustrate the liter-
ature of online change detection algorithms for multivariate datastreams, while
in Sect. 3 we provide a formal definition of the online change-detection problem.
In Sect. 4 we introduce our proposed solution, together with our procedure to
compute the thresholds controlling ARL0. In Sect. 5 we illustrate how to extend
one-shot change detectors to monitor datastream controlling the ARL0, and dis-
cuss the theoretical guarantees and limitations of these approaches. Section 6
analyzes the computational complexity of QT-EWMA compared to alternative
methods and our experiments in Sect. 7 demonstrate the effectiveness of QT-
EWMA on both simulated and real-world datastreams.

2 Related Work

Most change-detection algorithms in the literature are designed to monitor uni-
variate datastreams [13,28,29]. The vast majority of these methods cannot be
extended to monitor multivariate datastreams, especially those leveraging non-
parametric statistics based on ranks [29]. Change detection in multivariate datas-
treams has often been addressed in multi-stream (multi-channel) settings, i.e., by
separately analyzing each input component [8,25,32]. However, the hypotheses
underpinning the multi-stream monitoring setting are fundamentally different
from those of our multivariate datastream change-detection problem. In particu-
lar, [8,25,32] assume the components of the data points are generated by separate
random variables rather than a single multivariate random vector. Moreover, in
multi-stream settings, changes typically affect the distribution of a subset of
these random variables [32], while, in multivariate settings, more general kinds
of distribution changes are admissible [5]. In particular, changes affecting the
correlation between components or subtle changes involving the whole vector
can be hard to detect by separately analyzing the components.

The first change-detection algorithms for multivariate datastreams assume
parametric hypotheses: a remarkable example [33] leverages the Hotelling test
statistic [15] to perform online monitoring while controlling the ARL0. A pop-
ular semi-parametric approach consists of reducing the data dimensionality by

https://github.com/diegocarrera89/quantTree
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monitoring the log-likelihood of the observations with respect to a density model
fitted on a training set. The most common models for the initial distribution φ0

are Gaussian [12], and Gaussian mixture models [1,17]. The main limitation of
these solutions is the implicit assumption that φ0 can be approximated well by
a probability distribution from a known family, which is not guaranteed in gen-
eral. Other approaches reduce the dimensionality of the data by PCA [18,27],
or by a strangeness measure [14,26]. After reducing the dimensionality, online
change detection boils down to monitoring a univariate datastream, for instance
by Martingale-based permutation tests [14]. However, none of these methods can
be configured before deployment to operate at a target ARL0.

Kernel methods based on Maximum Mean Discrepancy (MMD) have been
introduced for nonparametric one-shot change detection [11]. Recently, the MMD
statistic has been employed for online change detection [16,22], following a
sliding-window approach to compare the new observations to a training set.
Among these methods, Scan-B [22] is the only where ARL0 can be set for an
unknown distribution φ0. However, the thresholds for this method are defined
by analyzing the asymptotic behavior of the ARL0 when the threshold tends to
infinity [22]. As we show in our experiments, this approach does not guarantee
an accurate control of the ARL0 and the false alarm rate. NEWMA [16] also
employs a sliding-window monitoring scheme and analyzes the relation between
two EWMA statistics with different forgetting factors based on MMD to detect
changes online. Unfortunately, thresholds controlling the ARL0 can only be set
when φ0 is known [16], which limits the applicability of this solution.

A very general nonparametric approach consists of modeling φ0 by a his-
togram [4], as in QuantTree [3], an algorithm to construct histograms over the
input domain that are adaptively defined over the distribution φ0 of a training
set. A one-shot change-detection method is presented in [3], leveraging a nonpara-
metric statistic to test whether a single batch of data follows φ0. This test cannot
be directly used for online change detection. As we show in Sect. 5, QuantTree
and other one-shot detectors can be extended to online change detection control-
ling false alarms, but these solutions have substantial limitations in maintaining
the ARL0 and in terms of detection power. Another change-detection algorithm
based on histograms is presented in [19], and can operate online controlling the
ARL0, but has been tested only on univariate datastreams. An extension to mul-
tivariate data is infeasible since the number of bins scales exponentially with the
data dimension. Moreover, this algorithm requires to know the analytical expres-
sion of φ0, or an accurate approximation, which would require a large training
set to be estimated when the data dimension is high [19].

The proposed QT-EWMA overcomes all these limitations, being an online
change-detection algorithm controlling the ARL0 in any practical condition,
without requiring to know φ0.

3 Problem Formulation

We address the online change-detection problem in a virtually unlimited mul-
tivariate datastream x1, x2 . . . ∈ R

d. We assume that, as long as there are no
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changes, all the data samples are i.i.d. realizations of a random variable having
unknown distribution φ0. We define the change point τ as the unknown time
instant when a change φ0 → φ1 takes place:

xt ∼
{

φ0 if t < τ

φ1 if t ≥ τ
. (1)

We assume that both φ0 and φ1 �= φ0 are unknown, and that a training set TR
containing N realizations of φ0 is provided.

Online change-detection algorithms assess, for each new incoming sample xt,
whether the sequence {x1, . . . xt} contains a change point. Typically, a statistic
Tt is computed at each incoming xt, then a decision rule is applied. Usually, the
rule consists in controlling whether Tt > ht for an appropriate threshold ht, and
the detection time t∗ is defined as the first time index when this happens:

t∗ = min{t : Tt > ht}. (2)

The detection time t∗ is the first time instant when there is enough statistical
evidence to claim that the datastream {x1, . . . xt} contains a change point.

A fundamental issue in change detection is to define a sequence of thresholds
{ht}t to control false alarms. We measure false alarms by the Average Run
Length [2], defined as ARL0 = E[t∗], where the expectation is taken assuming
that the whole datastream is drawn from φ0. Thus, the ARL0 is the average
time before a false alarm. Ideally, the ARL0 of an online change-detection method
should be set a priori, similarly to Type I error probability in hypothesis testing.

4 Proposed Solution

Here we introduce our novel algorithm QT-EWMA (Sect. 4.1) and describe the
procedure to define its thresholds controlling the ARL0 (Sect. 4.2).

4.1 QuantTree Exponentially Weighted Moving Average

The QT-EWMA algorithm (Algorithm 1) leverages a novel online statistic Tt

defined over a QuantTree histogram, which is constructed from the training
set TR and K target probabilities {πj}K

j=1 (line 2). The QuantTree algorithm
returns a histogram defined by K bins {Sj}K

j=1, where each Sj ⊂ R
d is set to

contain πjN training samples. Further details on QuantTree – including how to
define {(Sj , πj)}K

j=1 when TR cannot be exactly split to match target probabili-
ties – can be found in [3].

The QT-EWMA statistic Tt monitors the proportion of samples in the datas-
tream that fall in each bin Sj . In particular, for each xt we define K binary
statistics {yj,t}j as the indicator functions of each bin Sj , namely

yj,t = 1(xt ∈ Sj), j ∈ {1, . . . , K} (3)
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Algorithm 1: QT-EWMA
input : datastream x1, x2, . . ., target {πj}K

j=1, thresholds {ht}t, TR
output : detection flag ChangeDetected, detection time t∗

1 ChangeDetected ← False, t∗ ← ∞;

2 estimate QT histogram {(Sj , πj)}K
j=1 from TR and define {π̂j}K

j=1 as in (4);
3 Zj,0 ← π̂j ∀j = 1, . . . , K;
4 for t = 1, . . . do
5 yj,t ← 1(xt ∈ Sj);
6 Zj,t ← (1 − λ)Zj,t−1 + λyj,t, j = 1 . . . , K;

7 Tt ← ∑K
j=1(Zj,t − π̂j)

2/π̂j ;

8 if Tt > ht then
9 ChangeDetected ← True, t∗ ← t;

10 break;

11 end

12 end
13 return ChangeDetected, t∗

to track in which bin the input sample xt falls. It is possible to show that, when
xt ∼ φ0 and TR ∼ φ0 then:

E[yj,t] ≈ π̂j :=
Nπj

N + 1
, j < K and E[yK,t] ≈ π̂K :=

NπK + 1
N + 1

. (4)

We evaluate these statistics yj,t for each incoming sample xt (line 5), and then
we compute the EWMA statistic [28] Zj,t, j ∈ {1, . . . , K} (line 6), to monitor
the proportion of data that falls in each bin Sj :

Zj,t = (1 − λ)Zj,t−1 + λyj,t where Zj,0 = π̂j . (5)

Since, under φ0, the expected value E[Zj,t] ≈ π̂j for j = 1, . . . , K, we define the
QT-EWMA change-detection statistic as follows:

Tt =
K∑

j=1

(Zj,t − π̂j)2

π̂j
. (6)

Similarly to the Pearson statistic [20], Tt measures the overall difference between
the proportion of points in each bin Sj , represented by Zj,t, and their approx-
imated expected values π̂j under φ0. This difference naturally increases as a
consequence of a change φ0 → φ1 that modifies the probability of some bin Sj .
The QT-EWMA statistic is computed at each incoming sample (line 7) and then
compared against the corresponding threshold ht to detect changes (line 9).

The QT-EWMA algorithm inherits from QuantTree the fundamental prop-
erty [3] that the distribution of the statistics (5) and (6) – like any other statistic
entirely defined over QuantTree bins – does not depend on φ0, so the thresholds
{ht}t can be defined a priori to guarantee the ARL0 on any datastream.
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4.2 Computing Thresholds Controlling the ARL0

The sequence of thresholds {ht}t has to be properly defined to guarantee a
given ARL0. According to the definition in Sect. 3, the ARL0 = E[t∗], where
the expected value is computed assuming that the whole datastream is drawn
from φ0. Following Margavio et al. [24], we adopt the relevant design choice of
setting the thresholds {ht}t to guarantee a constant false alarm probability α at
each time instant t. When this property is satisfied, the detection time t∗ is a
Geometric random variable [24] with parameter α and expected value

ARL0 = E[t∗] =
1
α

. (7)

However, defining a set of thresholds {ht}t that guarantee a constant false alarm
probability α in online monitoring is not straightforward. As noted in [24], the
thresholds must satisfy the following equation:

P(Tt > ht | Tk ≤ hk ∀k < t) = α ∀t ≥ 1. (8)

Since it is infeasible to exactly compute the conditional probabilities in (8), we
resort to Monte Carlo simulations as in [29]. An important consequence of our
design choice is that QuantTree properties [3] ensure that the thresholds for Tt

do not depend on φ0 nor on the data dimension d. Thus, we can conveniently
generate 1-dimensional Gaussian streams and perform Monte Carlo simulations
to compute the thresholds {ht}t very efficiently.

In particular, we generate 1,000,000 training sets of N = 4096 normal real-
izations xt ∼ N (0, 1). For each TR we construct a QuantTree histogram and
then generate 5000 samples from N (0, 1) that we use to compute the statistics
{Tt}5000t=1 as in (6). Then, we define the threshold h1 yielding the target ARL0 as
the empirical (1 − α)-quantile of T1 values, bearing in mind that α = 1/ARL0.
Similarly, all the thresholds ht are computed as the (1 − α)-quantiles of the
values Tt, but when t > 1 we compute the empirical quantiles only considering
those sequences whose statistic has never exceeded any of the previous thresh-
olds h1, . . . , ht−1, namely having Tk ≤ hk ,∀k < t. Thresholds {ht}t computed
in this way guarantee (8) to hold, so the target ARL0 is preserved.

We compute all the thresholds {ht}5000t=1 and then fit a polynomial to these
values, as suggested in [29]. This allows both to estimate ht for t > 5000 and to
improve the estimates {ht}5000t=1 by leveraging correlation among thresholds. In
particular, we estimate a polynomial in powers of 1/t that returns ht for a given
t. In our experiments we employ the following target ARL0 values: 500, 1000,
2000, 5000, but we also compute and provide in the supplementary material the
polynomial expressions of the thresholds for higher ARL0 values (10000, 20000),
which can be very useful to control false alarms in high-throughput applications.

An important consequence of setting a constant false alarm probability in (8)
is that, being t∗ a Geometric random variable with parameter α, the probability
of having a false alarm before t by the geometric sum:

P(t∗ ≤ t) =
t∑

k=1

α(1 − α)k−1 = α · 1 − (1 − α)t

α
= 1 − (1 − α)t, (9)
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where the probability P is computed under φ0. This fact has relevant practical
implications: since false alarms are controlled by (9), any substantial increase
in their occurrence might indicate a drift in the data-generating process, which
requires to update the change-detection algorithm. Other strategies based on
asymptotic approximations cannot guarantee (9), as shown in our experiments.

5 Datastream Monitoring by One-Shot Detectors

In this section we present how to adapt one-shot change-detection algorithms
to monitor datstreams by controlling ARL0. We focus on both algorithms that
operate batch-wise (Sect. 5.1), and element-wise (Sect. 5.2).

5.1 Monitoring Datastreams by Batch-Wise Detectors

Several change-detection algorithms operates dividing the datastream x1, x2, . . .
in non-overlapping batches of ν samples:

Wt = [x(t−1)ν+1, . . . , xtν ], (10)

and computing a batch-wise test statistic T ν(·) over each Wt. This test statistic
is typically defined upon a model fit over TR. For example, QuantTree [3] builds
a histogram, while SPLL [17] fits a Gaussian Mixture φ̂0 to approximate φ0.
One-shot algorithms detect a change as soon as T ν(Wt) > hν , and the threshold
hν is set to control the probability of false alarm over each individual batch.

The very same monitoring scheme can be adopted to monitor datastreams
at a controlled ARL0, as long as the threshold hν is accordingly modified. This
result is based on the following proposition

Proposition 1. Let the threshold hν be such that

P(T ν(W ) > hν) = α, (11)

where W is a batch of ν samples drawn from φ0. Then, the monitoring scheme
T ν(W ) > hν yields ARL0 ≥ ν/α.

Proof. Reported in the supplementary material due to space limitations.

Proposition 1 implies that, when we set α = ν/ARL0, our online change-
detection algorithm is conservative, since its ARL0 can be greater than the target.
In some cases, however, we can provide guarantees that α = ν/ARL0, to exactly
control the ARL0, as shown in the following proposition.

Proposition 2. Let the threshold hν be such that

P(T ν(W ) > hν | TR) = α, (12)

where W is a batch of ν samples drawn from φ0. Then, the monitoring scheme
T ν(W ) > hν yields ARL0 = ν/α.
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Proof. Reported in the supplementary material due to space limitations.

We use the above propositions to adapt two relevant examples of batch-wise
change-detection algorithm to monitor datastreams controlling ARL0: Quant-
Tree (QT) [3] and Semi-Parametric Log-Likelihood (SPLL) [17]. The theoretical
property of QuantTree allows setting hν to guarantee (11) for any α regard-
less the data generating distribution φ0. Thanks to Proposition 1, this can be
extended to provide a lower bound on ARL0 by instead setting the threshold hν

as to guarantee that P(T ν(W ) > hν) = ν/ARL0.
In the batch-wise SPLL detector, we compute the thresholds to guarantee the

false positive rate using bootstrap over the training set TR since the distribution
of the statistic depends on φ0. In this case, we are under the hypothesis of
Proposition 2, since the false positive probability is conditioned on the training
set realization. Therefore, by adopting the same monitoring scheme and setting
hν to guarantee P(T ν(W ) > hν |TR) = ν/ARL0 we can obtain the target ARL0.
These two different guarantees will become very apparent in the experiments.

5.2 Monitoring Datastreams by Element-Wise Detectors

As we remarked in Sect. 2, a popular approach to perform online monitoring in
multivariate datastreams consists in reducing the dimensionality of the data, so
that it is possible to monitor a 1-dimensional datastream using online change-
detection algorithms designed for univariate data. Here we consider a dimension-
ality reduction method based on SPLL. In particular, we fit a Gaussian Mixture
Model (GMM) φ̂0 on TR. Then, we reduce the dimensionality of each incom-
ing sample xt by computing − log(φ̂0(xt)), building a new, univariate sequence.
Finally, we monitor this sequence using a nonparametric online CPM [29] lever-
aging the Lepage test statistic [21]. Remarkably, the resulting algorithm, which
we call SPLL-CPM, operates at the target ARL0 thanks to the CPM, whose
thresholds have been computed for this purpose.

6 Computational Complexity

Here we analyze the computational complexity and memory requirements of
QT-EWMA, Scan-B [22] (presented in Sect. 2), and of the modified one-shot
detectors QuantTree [3], SPLL [17] and SPLL-CPM discussed in Sect. 5. The
results of this analysis are summarized in Table 1.

QT-EWMA and QuantTree: Both algorithms are extremely efficient from
both computational and memory points of view. Both place the incoming sam-
ple xt in the corresponding bin of the QuantTree histogram, resulting in O(K)
operations [3], where K is the number of bins. Then, QT-EWMA computes the
test statistics (3), (5), (6) and these operations have a constant cost that falls
within O(K). The QuantTree algorithm computes the Pearson statistic at the
end of each batch, and this does not increase the order of computational complex-
ity either, resulting in O(K) operations as in QT-EWMA. In terms of memory
requirements, QT-EWMA updates the statistics Zj,t (5) at each new sample
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Table 1. Computational complexity for each update of the statistic and memory
requirement of QT-EWMA compared to the other considered methods. In our experi-
ments we set K = 32 for QT-EWMA and QT [3], w = 1000 for SPLL-CPM as in [29],
and B = 100, n = 5 for Scan-B [22].

Algorithm QT-EWMA QT [3] SPLL [17] SPLL-CPM Scan-B[22]

Complexity O(K) O(K) O(md) O(md + w log w) O(nBd)

Memory K K 1 w (n + 1)Bd

xt, which requires storing only the K values Zj,t−1, j = 1, . . . , K. Similarly, the
Pearson statistic in QuantTree requires storing the proportions of points from
the batch falling in each of the K bins, thus K values. Hence, both algorithms
have the same, constant, memory requirement of K values.

SPLL and SPLL-CPM. Both these tests need to compute the log-likelihood
of each sample with respect to each of the m components of a GMM φ̂0 fit on
TR. This results in O(md) operations per sample [17]. In case of batch-wise
monitoring (SPLL), averaging the log-likelihood over the batch, falls within the
O(md) operations per sample, since it can be computed incrementally. Hence,
only 1 value has to be stored. The SPLL-CPM algorithm instead leverages the
CPM framework [29] to monitor the log-likelihood of each new observation xt

with respect to φ̂0. The Lepage statistic [21] used in the CPM requires sorting
the entire sequence of log-likelihood values, which results in additional O(t log t)
operations. In this case, all the t values of the sequence have to be analyzed
and stored, thus computational complexity and memory requirement steadily
increase over time. Since this is not appropriate for online monitoring, [29] quan-
tizes and stores old observations in a histogram, operating over a window of most
recent w samples. Thus, both operations and memory requirements relate to w.

Scan-B. The Scan-B algorithm [22] operates in a sliding-window fashion, with a
fixed window size B and a fixed number n of reference windows from the training
set. At each time step t, this algorithm requires to update n Gram matrices by
computing O(B) times the MMD statistic, resulting in O(nBd) operations [16].
The Scan-B algorithm need to store n reference windows of B samples each
from the training set, on top of the current window, yielding (n + 1)Bd values
in memory [16] for d−dimensional samples.

7 Experiments

Here we present the experimental evaluation of the proposed solution. Our aim
is to show that QT-EWMA controls the false alarms better than competing
methods while achieving lower or comparable detection delays. In QT-EWMA
and QT we set K = 32 and uniform target probabilities πj = 1/K, as in [3], since
uniform histograms have been shown to be very effective for change detection
purposes [4]. In both QT and SPLL we set ν = 32, as in [3], and we employ the
original configuration of the Scan-B algorithm [22].
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7.1 Considered Datasets

We generate synthetic datastreams in different dimension d ∈ {2, 4, 8, 16, 32}
by choosing an initial Gaussian distribution φ0 with random covariance matrix,
and as alternative distribution a random roto-translation of φ0 computed as
φ1 = φ0(Q·+v). The roto-translation parameters Q and v are computed using the
CCM framework [5] to guarantee a fixed symmetric Kullback-Leibler divergence
sKL(φ0, φ1) ∈ {0.5, 1, 1.5, 2, 2.5, 3}, which is useful to compare the detection
performance obtained in different dimensions [1].

We also test our change-detection method on seven traditional multivariate
classification datasets: Credit Card Fraud Detection (“credit”, d = 28) from [6],
Sensorless Drive Diagnosis (“sensorless”, d = 48), MiniBooNE particle identi-
fication (“particle”, d = 50), Physicochemical Properties of Protein Ternary
Structure (“protein”, d = 9), El Niño Southern Oscillation (“niño”, d = 5),
and two of the Forest Covertype datasets (“spruce” and “lodgepole”, d = 10)
from the UCI Machine Learning Repository [7]. As in [3], we standardize the
datasets and sum to each component of “sensorless”, “particle”, “spruce” and
“lodgepole” imperceptible Gaussian noise to avoid repeated values, which harm
the construction of QuantTree histograms. The distribution of these datasets
is typically considered stationary [18], so we randomly sample the datastreams
from the datasets and introduce changes by shifting the post-change samples
by a random vector drawn from a d-dimensional Gaussian scaled by the total
variance of the dataset, as in [3,18]. Here we report only the results on Gaussian
datastreams with d ∈ {4, 32} and the average results over these seven datasets
(which we indicate by “UCI+credit”), leaving results on Gaussian data with
d ∈ {2, 8, 16} and over each individual dataset in the supplementary material.

We also test our method on the recently published INSECTS dataset [30]
(d = 33), which describes the wing-beat frequency of different species of fly-
ing insects. This dataset is meant as a classification benchmark in datastreams
affected by concept drift, i.e., the data is acquired under different environmental
conditions affecting the insects’ behavior. The dataset contains six concepts refer-
ring to different distributions. We assemble data from different concepts to form
datastreams that include 30 realistic changes: we start sampling observations
from one concept (φ0) and switch to another (φ1) introducing a change.

7.2 Figures of Merit

Empirical ARL0. To assess whether QT-EWMA and the other considered
methods maintain the target ARL0, we compute the empirical ARL0 as the
average time before raising a false alarm. To this purpose, we run the consid-
ered methods on 5000 datastreams drawn from φ0, setting the target ARL0 ∈
{500, 1000, 2000, 5000}. In this experiment, we consider datastreams of length
L = 6 · ARL0 to have a detection in each datastream. Since, by construction,
the detection time t∗ of our method under φ0 is a Geometric random variable
with parameter α = 1/ARL0, (9) indicates that the probability of having a false
alarm before L is P(t∗ ≤ L) ≈ 0.9975.
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Fig. 1. Experimental results obtained on d-dimensional Gaussian datastreams (d ∈
{4, 32}). (a, c) show the empirical ARL0 of the considered methods, and the target
ARL0 ∈ {500, 1000, 2000, 5000} is maintained when the line is close to the dotted
diagonal. (b, d) show the average detection delay against the percentage of false alarms,
which should approach the dotted false alarm rates computed by (9).

Detection Delay. We evaluate the detection performance of QT-EWMA and
the other considered methods by their detection delay, i.e. ARL1 = E[t∗ − τ ],
where the expectation is taken assuming that a change point τ is present [2]. We
run the methods configured with target ARL0 ∈ {500, 1000, 2000, 5000} on 1000
datastreams of length 10000, each containing a change point at τ = 300. We
estimate the ARL1 as the average difference t∗ − τ , excluding false alarms.

False Alarm Rate. To assess whether the considered methods maintain the tar-
get false alarm probability, we compute the percentage of false alarms obtained
on the datastreams used to evaluate the detection delay, i.e., those in which
a detection occurs at some t∗ < τ . Also in this case, we set the the target
ARL0 ∈ {500, 1000, 2000, 5000}, which according to (9) yield a false alarm in
45%, 26%, 14% and 6% of the datastreams, respectively.

7.3 Results and Discussion

Empirical ARL0. The comparison of empirical and target ARL0 on simulated
Gaussian datastreams is reported in Fig. 1(a, c), which show that QT-EWMA
and SPLL-CPM control the ARL0 very accurately, regardless of the data dimen-
sion, while the empirical ARL0 of QT is higher than the target, as we expected
from Proposition 1. Figures 2(a, c) show that we obtain the same result on
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Fig. 2. Experimental results obtained on datastreams sampled from real-world datasets.
(a, c) show the empirical ARL0 of the considered methods respectively on the
UCI+credit and INSECTS datasets. The target ARL0 ∈ {500, 1000, 2000, 5000} is
maintained when the line is close to the dotted diagonal. (b, d) show the detection
delay against the percentage of false alarms achieved on the same datasets, which
should approach the dotted false alarm rates by (9).

datastreams sampled from the considered real-world dataset, confirming the non-
parametric nature of QuantTree. In contrast, SPLL and Scan-B cannot control
high target values of ARL0 (on both simulated and real-world datastreams), due
to detection thresholds inaccurately estimated. In particular, the SPLL statistic
strongly depends on φ0, so the thresholds have to be computed by bootstrap on a
relatively small training set, which might yield inaccurate estimates. Thresholds
for Scan-B are defined by an asymptotic approximation that strongly depends
on the sliding window size B [22]. In particular, this approximation is more accu-
rate for higher target ARL0 when B is large, which increases the computational
complexity and memory usage (Table 1). Thus, Scan-B with a fixed window size
B can only maintain low ARL0 values.

Detection Delay vs False Alarms. We plot the percentage of false alarms
against the average detection delay, setting different ARL0 values, to assess the
trade-off between these two quantities. Figures 1(b, d) show the performance
of the considered methods on simulated Gaussian datastreams (d ∈ {4, 32},
respectively) containing a change point at τ = 300 such that sKL(φ0, φ1) = 2.

In terms of detection delay, QT-EWMA is the best method when d = 4,
while SPLL outperforms all the others when d = 32, which is expected since its
parametric assumptions are met (φ0 is a Gaussian). All methods decrease their
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Fig. 3. Detection delay as a function of the change magnitude computed on simulated
Gaussian datastreams with dimension d ∈ {4, 32} containing a change point at τ = 300
with target ARL0 = 1000 (which is maintained by all methods, see Fig. 1(a, c)).

power as d increases, which is also expected due to detectability loss [1]. Scan- B
seems to be more robust to detectability loss, yielding lower detection delays
than QT-EWMA on Gaussian data when d increases, as shown in Figs. 1(b, d)
and in supplementary material. Statistics defined on histograms are known to be
less powerful than those based on MMD, as they perceive only changes affecting
bin probabilities (and are for instance totally blind to distribution changes inside
each bin). This effect can be mitigated by increasing the number of bins, thus
the computational complexity, which is reasonable when d increases (e.g., when
K = d = 32 there is on average a single split per dimension). However, in the
considered real-world datasets, QT-EWMA turns out to be more effective than
Scan-B in even larger dimensions, as shown in Figs. 2(b, d) and supplementary
material. On average, QT-EWMA is clearly the best method in terms of detec-
tion delay on the UCI+credit datasets, and achieves delays similar to Scan-B
on the INSECTS dataset. The fact that QT-EWMA consistently outperforms
QT on simulated and real-world data indicates that our sequential statistic is
more powerful than the original QuantTree statistic (designed for batch-wise
monitoring) when detecting changes online.

In terms of false alarm rate, QT-EWMA and SPLL-CPM approach the target
values computed by (9), while QT and SPLL have fewer and more false alarms,
respectively, as a consequence of their empirical ARL0, and this happens in all
the considered monitoring scenarios. The false alarms of Scan-B, instead, exhibit
a completely different behavior which also depends on the data distribution, due
to the fact that its thresholds do not yield a constant false alarm probability.

Detection Delay. Figure 3 shows the detection delays of the considered meth-
ods as a function of the change magnitude on Gaussian datastreams. To enable
a fair comparison, we configured all methods by setting the target ARL0 = 1000,
which all methods can maintain (see Figs. 1(a, c)). The best method on Gaussian
datastreams is SPLL, as can be expected since its parametric assumptions are
met. The best nonparametric method is QT-EWMA when d = 4, and Scan-B
when d = 32. As observed also in Fig. 1(b, d), Scan-B seems to be more robust
to detectability loss than QT-EWMA. As expected, all methods decrease their
detection delays when the change magnitude increases.
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8 Conclusions

We introduce QT-EWMA, a novel nonparametric online change-detection algo-
rithm for multivariate datastreams. Our monitoring scheme is computationally
light and can effectively maintain the target ARL0 and the expected false alarm
rates. Such accurate control over false alarms is very useful in practical applica-
tions. Our experiments on simulated and real-world data show that alternative
solutions do not provide such guarantees in nonparametric settings, and that
QT-EWMA turns out to be very effective in real-world datasets. Future work
concerns incremental monitoring schemes based on QuantTree, to start monitor-
ing with small training sets, and further investigation on how to set the optimal
number of bins in QuantTree histograms for online change detection.
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Abstract. Confidence intervals are a standard technique for analyzing
data. When applied to time series, confidence intervals are computed
for each time point separately. Alternatively, we can compute confidence
bands, where we are required to find the smallest area enveloping k time
series, where k is a user parameter. Confidence bands can be then used
to detect abnormal time series, not just individual observations within
the time series. We will show that despite being an NP-hard problem
it is possible to find optimal confidence band for some k. We do this by
considering a different problem: discovering regularized bands, where we
minimize the envelope area minus the number of included time series
weighted by a parameter α. Unlike normal confidence bands we can
solve the problem exactly by using a minimum cut. By varying α we
can obtain solutions for various k. If we have a constraint k for which
we cannot find appropriate α, we demonstrate a simple algorithm that
yields O(

√
n) approximation guarantee by connecting the problem to a

minimum k-union problem. This connection also implies that we can-

not approximate the problem better than O
(
n1/4

)
under some (mild)

assumptions. Finally, we consider a variant where instead of minimizing
the area we minimize the maximum width. Here, we demonstrate a sim-
ple 2-approximation algorithm and show that we cannot achieve better
approximation guarantee.

1 Introduction

Confidence intervals are a common tool to summarize the underlying distribu-
tion, and to indicate outlier behaviour. In this paper we will study the problem
of computing confidence intervals for time series.

Korpela et al. [11] proposed a notion for computing confidence intervals:
instead of computing point-wise confidence intervals, the authors propose com-
puting confidence bands. More formally, given n time series T , we are asked
to find k time series U ⊆ T that minimize the envelope area, that is, the sum∑

i (maxt∈U t(i)) − (mint∈U t(i)). The benefit, as argued by Korpela et al. [11],
of using confidence bands instead of point-wise confidence intervals is better
family-wise error control: if we were to use point-wise intervals we can only say
that a time series at some fixed point is an outlier and require a correction for
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multiple testing (such as Bonferroni correction) if we want to state with a certain
probability that the whole time series is normal.

In this paper we investigate the approximation algorithms for finding con-
fidence bands. While Korpela et al. [11] proved that finding the optimal con-
fidence band is an NP-hard problem, they did not provide any approximation
algorithms nor any inapproximability results.

We will first show that despite being an NP-hard problem, we can solve the
problem for some k. We do this by considering a different problem, where instead
of having a hard constraint we have an objective function that prefers selecting
time series as long as they do not increase the envelope area too much. The
objective depends on the parameter α, larger values of α allow more increase
in the envelope area. We will show that this problem can be solved exactly in
polynomial time and that each α correspond to a certain value of k. We will
show that there are at most n + 1 of such bands, and that we can discover all of
them in polynomial time by varying α.

Next, we provide a simple algorithm for approximating confidence bands by
connecting the problem to the weighted k-MinUnion problem. We will provide
a variant of an algorithm by Chlamtáč et al. [2] that yields

√
n+1 guarantee. We

also argue that—under certain conjecture—we cannot approximate the problem
better than O(

n1/4
)
.

Finally, we consider a variant of the problem where instead of minimizing
the envelope area, we minimize the width of the envelope, that is, we mini-
mize the maximum difference between the envelope boundaries. We show that
a simple algorithm can achieve 2-approximation. This approximation provides
interesting contrast to the inapproximability results when minimizing the enve-
lope area. Surprisingly this guarantee is tight: we will also show that the there
is no polynomial-time algorithm with smaller guarantee unless P = NP.

The remainder of the paper is organized as follows. We define the optimiza-
tion problems formally in Sect. 2. We solve the regularized band problem in
Sect. 3, approximate minimization of envelope area in Sect. 4, and approximate
minimization of envelope width in Sect. 5. Section 6 is devoted to the related
work. We present our experiments in Sect. 7 and conclude with discussion in
Sect. 8.

2 Preliminaries and Problem Definitions

Assume that we are given time series T with each time series f : D → R mapping
from domain D to a real number. We will often write n = |T | to be the number
of given time series, and m = |D| to mean the size of the domain.

Given a set of time series T , we define the upper and lower envelopes as

ub(T, i) = max
t∈T

t(i) and �b(T, i) = min
t∈T

t(i).

Our main goal is to find k time series that minimize the envelope area.
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Problem 1 (SumBand). Given a set of n time series T = (t1, . . . , tn), an integer
k ≤ n, and a time series x ∈ T find k time series U ⊆ T containing x minimizing

s1 (U) =
∑

i

ub(U, i) − �b(U, i) .

We will refer to U as confidence bands.
Note that the we also require that we must specify at least one sequence

x ∈ T that must be included in the input whereas the original definition of the
problem given by Korpela et al. [11] did not require specifying x. As we will
see later, this requirement simplifies the computational problem. On the other
hand, if we do not have x at hand, then we can either test every t ∈ T as x, or
we can use the mean or the median of T . We will use the latter option as it does
not increase the computational complexity and at the same time is a reasonable
assumption. Note that in this case most likely x /∈ T , so we define T ′ = T ∪{x},
increase k′ = k + 1, and solve SumBand for T ′ and k′ instead.

We can easily show that the area function s1 (·) is a submodular function for
all non-empty subsets, that is,

s1 (U ∪ {t}) − s1 (U) ≤ s1 (W ∪ {t}) − s1 (W ) ,

where U ⊇ W 	= ∅. In other words, adding t to a larger set U increases the cost
less than adding t to W .

We also consider a variant of SumBand where instead of minimizing the
area of the envelope, we will minimize the maximum width.

Problem 2 ( InfBand). Given a set of n time series T = (t1, . . . , tn), an integer
k ≤ n, and a time series x ∈ T , find k time series U ⊆ T containing x minimizing

s∞(U) = max
i

ub(U, i) − �b(U, i) .

We will show that we can 2-approximate InfBand and that the ratio is tight.
Finally, we consider a regularized version of SumBand, where instead of

requiring that the set has a minimum size k, we add a term −α|U | into the
objective function. In other words, we will favor larger sets as long as the area
s1 (U) does not increase too much.

Problem 3 (RegBand). Given a set of n time series T = (t1, . . . , tn), a number
α > 0, and a time series x ∈ T , find a subset U ⊆ T containing x minimizing

sreg(U ;α) = s1 (U) − α|U |.

In case of ties, use |U | as a tie-breaker, preferring larger values.

We refer to the solutions of RegBand as regularized bands. It turns out
that RegBand can be solved in polynomial time. Moreover, the solutions we
obtain from RegBand will be useful for approximating SumBand.
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3 Regularized Bands

In this section we will list useful properties of RegBand, show how can we solve
RegBand in polynomial time for a single α, and finally demonstrate how we
can discover all regularized bands by varying α.

3.1 Properties of Regularized Bands

Our first observation is that the output of RegBand also solves SumBand for
certain size constraints.

Proposition 1. Assume time series T and α > 0. Let U be a solution to
RegBand(α). Then U is also a solution for SumBand with k = |U |.

The proof of this proposition is trivial and is omitted.
Our next observation is that the solutions to RegBand form a chain.

Proposition 2. Assume time series T and 0 < α < β. Let V be a solution to
RegBand(T, α) and let U be a solution to RegBand(T, β). Then V ⊆ U .

Proof. Assume otherwise. Let W = V \ U . Due to the optimality of V ,

0 ≥ sreg(V ;α) − sreg(V ∩ U ;α) = s1 (V ) − s1 (V ∩ U) − α|W |.

Since s1 is a submodular function, we have

s1 (V ) − s1 (V ∩ U) = s1 (W ∪ (V ∩ U)) − s1 (V ∩ U) ≥ s1 (W ∪ U) − s1 (U) .

Combining these inequalities leads to

0 ≥ s1 (W ∪ U) − s1 (U) − α|W |
≥ s1 (W ∪ U) − s1 (U) − β|W |
= sreg(W ∪ U ;β) − sreg(U ;β) ,

which contradicts the optimality of U . �
This property is particularly useful as it allows clean visualization: the

envelopes resulting from different values of α will not intersect. Moreover, it
allows us to stored all regularized bands by simply storing, per each time series,
the index of the largest confidence band containing the time series.

Interestingly, this result does not hold for SumBand.

Example 1. Consider 4 constant time series t1 = 0, t2 = −1 and t3 = t4 = 2.
Set the seed time series x = t1. Then the solution for SumBand with k = 2 is
{t1, t2} and the solution SumBand with k = 3 is {t1, t3, t4}.
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3.2 Computing Regularized Band for a Single α

Our next step is to solve RegBand in polynomial time. Note that since s1 (·)
is submodular, then so is sreg(·). Minimizing submodular function is solvable in
polynomial-time [15]. Solving RegBand using a generic solver for minimizing
submodular functions is slow, so instead we will solve the problem by reducing it
to a minimum cut problem. In such a problem, we are given a weighted directed
graph G = (V,E,W ), two nodes, say θ, η ∈ V , and ask to partition V into X ∪Y
such that θ ∈ X and η ∈ Y minimizing the total weight of edges from X to Y .

In order to define G we need several definitions. Assume we are given n time
series T , a real number α and a seed time series x ∈ T . Let m be the size of
the domain. For i ∈ [m], we define pi = {tj(i) | j ∈ [n]} to be the set (with no
duplicates) sorted, smallest values first. In other words, pij is the jth smallest
distinct observed value in T at i. Let P be the collection of all pi.

We also define cij to be the number of time series at i smaller than or equal
to pij , that is, cij = |{� ∈ [n] | t�(i) ≤ pij}|. We also write ci0 = 0.

We are now ready to define our graph. We define a weighted directed graph
G = (V,E,W ) as follows. The nodes V have three sets A, B, and C. The set
A has |P | nodes, a node aij ∈ A corresponding to each entry pij ∈ P . The set
B = {bj} has n nodes, and the set C has two nodes, θ and η. Here, θ acts as a
source node and η acts as a terminal node.

The edges and the weights are as follows: For each aij ∈ A such that pij >
x(i), we add an edge (ai(j−1), aij) with the weight

w(ai(j−1), aij) = n − ci(j−1) +
m

α
(pi(j−1) − x(i)).

For each aij ∈ A such that pij < x(i), we add an edge (ai(j+1), aij) with the
weight

w(ai(j+1), aij) = cij +
m

α
(x(i) − pi(j+1)).

For each aij ∈ A such that pij = x(i), we add an edge (θ, aij) with the weight
∞. For each i ∈ [m] and � = |pi|, we add two edges (ai�, η) and (ai1, η) with the
weights

w(ai�, η) =
m

α
(pi� − x(i)) and w(ai1, η) =

m

α
(x(i) − pi1).

In addition, for each i ∈ [m], � ∈ [n], let j be such that pij = t�(i) and define
two edges (aij , b�) and (b�, aij) with the weights,

w(aij , b�) = 1 w(b�, aij) = ∞.

Our next proposition states the minimum cut of G also minimizes RegBand.

Proposition 3. Let X,Y be a (θ, η)-cut of G with the optimal cost. Define
f(i) = minj {pij | aij ∈ X} and g(i) = maxj {pij | aij ∈ X}.

Then the cost of the cut is equal to

nm − m|{j | bj ∈ X}| +
m

α

∑

i

g(i) − f(i).
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Moreover, if b� ∈ X, then g(i) ≤ b�(i) ≤ f(i), for all i.

Proof. The last claim follows immediately as otherwise there is a cross-edge with
infinite cost making the cut suboptimal.

Define u(i) = arg minj {pij | aij ∈ X} and v(i) = arg maxj {pij | aij ∈ X}
to be the indices yielding f and g. Define also

di = |{j | u(i) ≤ tj(i) ≤ v(i)}| = civ(i) − ci(u(i)−1)

to be the number of time series between u(i) and v(i) at i.
Note that aij ∈ X whenever u(i) ≤ j ≤ v(j) as otherwise we can move aij

to X and decrease the cost.
The cut consists of the cross-edges originating from aiv(i) and aiu(i), and

cross-edges between A and B. The cost of the former is equal to

∑

i

n − civ(i) + m
piv(i) − x(i)

α
+ ci(u(i)−1) + m

x(i) − piu(i)

α

= nm +
∑ m

α
(g(i) − f(i)) −

∑

i

di

while the cost of the latter is
∑

i

|{j | aij ∈ X, bj /∈ X}| =
∑

i

|{j | u(i) ≤ tj(i) ≤ v(i) ∈ X, bj /∈ X}|

=
∑

i

di − |{j | u(i) ≤ tj(i) ≤ v(i) ∈ X, bj ∈ X}|

=
∑

i

di − m|{j | bj ∈ X}|.

Combining the two equations proves the claim. �
Corollary 1. Let U ′ be the solution to RegBand(α). Let (X,Y ) be a minimum
(θ, η)-cut of G. Set U = {t� | b� ∈ X}. Then sreg(U ;α) = sreg(U ′;α).

Proof. Proposition 3 states that the cost of the minimum cut is nm+m
α sreg(U ;α).

Construct a cut (X ′, Y ′) from U ′ by setting X ′ to be the nodes from A and
B that correspond to the time series U ′. The proof of Proposition 3 now states
that the cut is equal to nm + m

α sreg(U ′;α).
The optimality of (X,Y ) proves the claim. �
We may encounter a pathological case, where we have multiple cuts with the

same optimal cost. RegBand requires that in such case we use largest solution.
This can be enforced by modifying the weights: first scale the weights so that
they are all multiples of nm + 1, then add 1 to the weight of each (θ, αij). The
cut with the modified graph yields the largest band with the optimal cost.

The constructed graph G has O(nm) nodes and O(nm) edges. Consequently,
we can compute the minimum cut in O(

(nm)2
)

time [13]. In practice, solving
minimum cut is much faster.
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3.3 Computing All Regularized Bands

Now that we have a method for solving RegBand(α) for a fixed α, we would
like to find solutions for all α. Note that Proposition 2 states that we can have
at most n + 1 different bands.

We can enumerate the bands with the divide-and-conquer approach given
in Algorithm 1. Here, we are given two, already discovered, regularized bands
U � V , and we try to find a middle band W with U � W � V . If W exists, we
recurse on both sides. To enumerate all bands, we start with EnumReg({x} , V ).

Algorithm 1: EnumReg(U, V ) finds all regularized bands between U
and V

1 γ ← s1 (V )−s1 (U)
|V |−|U| − Δ

n2 ;

2 W ← solution to RegBand(γ);
3 if U �= W then
4 report W ;
5 EnumReg(U, W ); EnumReg(W, V );

The following proposition proves the correctness of the algorithm: during
each split we will always find a new band if such exist.

Proposition 4. Assume time series T with n time series. Let {Ui} be all the
possible regularized confidence bands ordered using inclusion. Define

Δ = min {|t(i) − u(i)| | t, u ∈ T, i, t(i) 	= u(i)} .

Let i < j be two integers and define

γ =
s1 (Uj) − s1 (Ui)

|Uj | − |Ui| − Δ

n2
.

Let U� be the solution for RegBand(γ). Then i ≤ � < j. If j > i+1, then i < �,
otherwise � = i.

For simplicity, let us define f(x, y) = s1 (Uy)−s1 (Ux)
|Uy|−|Ux| .

In order to prove the result we need the following technical lemma.

Lemma 1. Assume time series T with n time series. Let {Ui} be all the possible
regularized confidence bands ordered using inclusion. Let α > 0. Let Ui be the
solution for RegBand(α). Then f(i − 1, i) ≤ α < f(i, i + 1).

Proof. Due to the optimality of Ui,

s1 (Ui) − α|Ui| = sreg(Ui;α) < s1 (Ui+1) − α|Ui+1|.
Solving for α gives us the right-hand side of the claim. Similarly,

s1 (Ui) − α|Ui| = sreg(Ui;α) ≤ s1 (Ui−1) − α|Ui−1|.
Solving for α gives us the left-hand side of the claim. �
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Proof (of Proposition 4). It is straightforward to see that Lemma 1 implies that
f(a, b) ≤ f(x, y) for a ≤ x and b ≤ y. Moreover, the equality holds only if x = a
and y = b, in other cases f(a, b) + Δ

n2 ≤ f(x, y).
If � ≥ j, then Lemma 1 states that f(i, j) ≤ f(�−1, �) ≤ γ, which contradicts

the definition of γ. Thus � < j.
Since f(i, j)−f(i−1, i) ≥ Δ

n2 , we have f(i−1, i) ≤ γ. If � < i, then Lemma 1
states that γ < f(i − 1, i), which is a contradiction. Thus, � ≥ i.

If j = i + 1, then immediately � = i.
Assume that j > i+1. Since f(i, j)−f(i, i+1) ≥ Δ

n2 , we have f(i, i+1) ≤ γ.
If � = i, then according to Lemma 1 γ < f(i, i + 1), which is a contradiction.
Thus, � > i. �

Lemma 1 reveals an illuminating property of regularized bands, namely each
band minimizes the ratio of additional envelope area and the number of new
time series.

Proposition 5. Let U be a regularized band. Define g(X) = s1 (X)−s1 (U)
|X|−|U | . Let

V � U be the adjacent regularized band. Then g(V ) = minX�U g(X).

Proof. Let O = arg minX�Ug(X), and set β = g(O). We will prove that g(V ) ≤
β. Let W = RegBand(β). Let α be the parameter for which U = RegBand(α).
Assume that α ≥ β. We can rewrite the equality β = g(O) as

0 = sreg(O;β) − sreg(U ;β) ≥ sreg(O;α) − sreg(U ;α) ,

which violates the optimality of U . Thus α < β. Proposition 2 states that U ⊆
W . Moreover, due to submodularity,

sreg(O ∪ W ;β) − sreg(W ;β) ≤ sreg(O ∪ U ;β) − sreg(U ;β) = 0,

which due to the optimality of W implies that O ⊆ W . Thus W 	= U and V ⊆ W .
Lemma 1, possibly applied multiple times, shows that g(V ) ≤ g(W ) ≤ β. �

Proposition 2 states that there are at most n + 1 bands. Queries done by
EnumReg yield the same band at most twice. Thus, EnumReg performs at
most O(n) queries, yielding computational complexity of O(

n3m2
)
. In practice,

EnumReg is faster: the number of bands is significantly smaller than n and the
minimum cut solver scales significantly better than O(

n2m2
)
. Moreover, we can

further improve the performance with the following observation: Proposition 2
states that when processing EnumReg(U, V ), the bands will be between U and
V . Hence, we can ignore the time series that are outside V , and we can safely
replace U with its envelope �b(U) and ub(U).1

4 Discovering Confidence Bands Minimizing s1

In this section, we will study SumBand. Korpela et al. [11] showed that the
problem is NP-hard. We will argue that we can approximate the problem and
establish a (likely) lower bound for the approximation guarantee.
1 We need to make sure that the envelope is always selected. This can be done by

connecting θ to the envelope with edges of infinite weight.
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Algorithm 2: FindSum(T, k, x), approximates SumBand

1 {Bi} ← EnumReg({x} , T );
2 j ← largest index for which |Bj | ≤ k;
3 if |Bj | ≤ k − √

n then W ← Bj+1 \ Bj else W ← T \ Bj ;
4 U ← Bj ;
5 greedily add k − |U | entries from W to U , minimizing s1 at each step;
6 return U ;

As a starting point, note that SumBand is an instance of k-MinUnion,
weighted minimum k-union problem. In k-MinUnion we are given n sets over a
universe with weighted points, and ask to select k sets minimizing the weighted
union. In our case, the universe is the set P described in Sect. 3, the weights
are the distances between adjacent points, and a set consists of all the points
between a time series and x.

The unweighted k-MinUnion problem has several approximation algorithms:
a simple algorithm achieving O(

√
n) guarantee by Chlamtáč et al. [2] and an

algorithm achieving lower approximation guarantee of O(
n1/4

)
by Chlamtáč et

al. [3]. We will use the former algorithm due to its simplicity and the fact that
it can be easily adopted to handle weights.

The pseudo-code for the algorithm is given in Algorithm2. The algorithm
first looks for the largest possible regularized band, say Bj , whose size at most
k. The remaining time series are then selected greedily from a set of candidates
W . The set W depends on how many additional time series is needed: if we need
at most

√
n additional time series, we set W to be the remaining time series

T \ Bj , otherwise we select the time series from the next regularized band, that
is, we set W = Bj+1 \ Bj .

Proposition 6. FindSum yields
√

n + 1 approximation guarantee.

Proof. Let O be the optimal solution for SumBand(k), and let r = s1 (O). Let
U be the output of FindSum. Assume that Bj 	= O, as otherwise we are done.
We split the proof in two cases.

First, assume that |Bj | ≤ k − √
n. Since s1 is submodular we have

s1 (O ∪ Bj) − s1 (Bj) ≤ s1 (O) − s1 ({x}) = r, leading to

s1 (Bj+1) − s1 (Bj)
|Bj+1| − |Bj | ≤ s1 (O ∪ Bj) − s1 (Bj)

|O ∪ Bj | − |Bj | ≤ r

k − |Bj | ≤ r√
n

,

where the first inequality is due to Proposition 5. Rearranging the terms gives
us

s1 (Bj+1) − s1 (Bj) ≤ r(|Bj+1| − |Bj |)√
n

≤ r
n√
n

= r
√

n.

Finally,

s1 (U) = s1 (Bj) + (s1 (U) − s1 (Bj))

≤ s1 (Bj) + (s1 (Bj+1) − s1 (Bj)) ≤ s1 (Bj) + r
√

n ≤ r(1 +
√

n),
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where the last inequality is implied by Proposition 1 and the fact that |Bj | ≤ k.
Assume that |Bj | > k − √

n, and let q = k − |Bj |. Note that q <
√

n. Let
c1, . . . , cq be the additional time series added to U . Write Ui = Bj ∪{c1, . . . , ci}.

Let c′
i be the closest time series to x outside Ui−1. Note that s1 ({x, c′

i}) −
s1 ({x}) = s1 ({x, c′

i}) ≤ r for i = 1, . . . , q as otherwise r has to be larger. In
addition, Proposition 1 and |Bj | ≤ k imply that s1 (Bj) ≤ r. Consequently,

s1 (Uq) = s1 (Bj) +
q∑

i=1

s1 (Ui) − s1 (Ui−1)

≤ s1 (Bj) +
q∑

i=1

s1 ({x, c′
i}) − s1 ({x}) ≤ (1 +

√
n)r,

where the first inequality is due to the submodularity of s1 . �
FindSum resembles greatly the algorithm given by Chlamtáč et al. [2] but

has few technical differences: we select Bj as our starting point whereas the
algorithm by Chlamtáč et al. [2] constructs the starting set by iteratively finding
and adding sets with the smallest average area, s1 (X) /|X|, that is, solving the
problem given in Proposition 5.2 Such sets can be found with a linear program.
Proposition 5 implies that both approaches result in the same set Bj but our
approach is faster.3 Moreover, this modification allows us to prove a tighter
approximation guarantee: the authors prove that their algorithm yields 2

√
n

guarantee whereas we show that we can achieve
√

n+1 guarantee. Additionally,
we select additional time series iteratively by selecting those time series that
result in the smallest increase of the current area, whereas the original algorithm
would simply select time series that are closest to {x}.

Chlamtáč et al. [3] argued that under some mild but technical conjecture
there is no polynomial-time algorithm that can approximate k-MinUnion better
than O(

n1/4
)
. Next we will show that we can reduce k-MinUnion to SumBand

while preserving approximation.

Proposition 7. If there is an f(n)-approximation polynomial-time algorithm
for SumBand, then there is an f(n + 1)-approximation polynomial-time algo-
rithm for k-MinUnion.

Proof. Assume that we are given an instance of k-MinUnion with n sets S =
(S1, . . . , Sn). Let D =

⋃
i Si be the union of all Si.

Define T containing n + 1 time series over the domain D. The first n time
series correspond to the sets Si, that is, given i ∈ D, we set tj(i) = 1 if i ∈ Sj ,
and 0 otherwise. The remaining single time series, named x, is set to be 0.

2 The original algorithm is described using set/graph terminology but we use our
terminology to describe the differences.

3 The computational complexity of the state-of-the-art linear program solver is
O(

(nm)2.37 log(nm/δ)
)
, where δ is the relative accuracy [4]. We may need to solve

O(n) such problems, leading to a total time of O(
n(nm)2.37 log(nm/δ)

)
.
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Assume that we have an algorithm estimating SumBand(T, x, k+1), and let
U be the output of this algorithm. Note that since x ∈ U , we have �b(U, i) = 0.

Let V be the subset of S corresponding to the non-zero time series in U . Let
C =

⋃
S∈V S be the union of sets in V. Since �b(U, i) = 0, and ub(U, i) = 1 if

and only if i ∈ C, we have s1 (U) = |C|. �
The above result implies that unless the conjecture suggested by Chlamtáč

et al. [3] is false, we cannot approximate SumBand better than O(
n1/4

)
. This

proposition holds even if we replace s1 (·) with an �p
p norm,

∑
i |t(i) − u(i)|p,

where 1 ≤ p < ∞, or any norm that reduces to hamming distance if t is a binary
sequence and u is 0. Interestingly, we will show in the next section that we can
achieve a tighter approximation if we use s∞.

5 Discovering Confidence Bands Minimizing s∞

In this section we consider the problem InfBand. Namely, we will show that a
straightforward algorithm 2-approximates the problem, and more interestingly
we show that the guarantee is tight.

The algorithm for InfBand(T, x, k) is simple: we select k time series that
are closest to x according to the norm ‖t(i) − x(i)‖∞ = maxi |t(i) − x(i)|. We
will refer to this algorithm as FindInf.

It turns out that this simple algorithm yields 2-approximation guarantee.

Proposition 8. FindInf yields 2-approximation for InfBand.

Proof. Let U be the optimal solution for InfBand. Let V be the result produced
by FindInf. Define c = maxt∈V ‖t − x‖∞. Then

c = max
t∈V

‖t − x‖∞ ≤ max
t∈U

‖u − x‖∞ ≤ s∞(U) ,

where the first inequality holds since V contains the closest time series and the
second inequality holds since x ∈ U .

Let i be the index such that s∞(V ) = ub(V, i) − �b(V, i). Then

s∞(V ) = ub(V, i) − �b(V, i) = (ub(V, i) − t(i)) + (t(i) − �b(V, i)) ≤ 2c.

Thus, s∞(V ) ≤ 2c ≤ 2s∞(U), proving the claim. �
While FindInf is trivial, surprisingly it achieves the best possible approxi-

mation guarantee for a polynomial-time algorithm.

Proposition 9. There is no polynomial-time algorithm for InfBand that yields
α < 2 approximation guarantee unless P = NP.

Proof. To prove the claim we will show that we can solve k-Clique in polynomial
time if we can α-approximate InfBand with α < 2. Since k-Clique is an NP-
complete problem, this is a contradiction unless P = NP.
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The goal of k-Clique is given a graph G = (V,E) with n nodes and m edges
to detect whether there is a k-clique, a fully connected subgraph with k nodes,
in G. We can safely assume that G has no nodes that are fully-connected.

Fix an order for nodes V = (v1, . . . , vn) and let F be all the edges that are
not in E, that is, F = {(vx, vy) | (vx, vy) /∈ E, x < y}.

Next, we will define an instance of InfBand. The set of time series T =
(t1, . . . , tn) ∪ {x} consists of n time series ti corresponding to the node vi, and a
single time series x which we will use a seed. We set the domain to be F . Each
time series ti maps an element of e = (vx, vy) ∈ F to an integer,

ti(e) = 1, if i = x, ti(e) = −1, if i = y, ti(e) = 0, otherwise.

We also set x = 0. First note that since ti(e) is an integer between −1 and 1,
the score s∞(U) is either 0, 1, or 2 for any U ⊆ T .

Since we do not have any fully-connected nodes in G, there is no non-zero ti
in T . Since x ∈ U for any solution of InfBand, then s∞(U) = 0 implies |U | = 1.

Let W ⊆ V be a subset of nodes, and let U be the corresponding time series.
We claim that s∞(U) = 1 if and only if W is a clique. To prove the claim,
first observe that if vi, vj ∈ W such that e = (vi, vj) ∈ F , then ti(e) = 1 and
tj(e) = −1, thus s∞(U) = 2. On the other hand, if W is a clique, then for every
ti, tj ∈ U and e ∈ F such that ti(e) 	= 0, we have tj(e) = 0 since otherwise
(vi, vj) /∈ E. Thus, s∞(U) = 1 if and only if W is a clique.

Let O be the solution for InfBand(T, k + 1, x). Note that s∞(O) = 1 if and
only if G has a k-clique, and s∞(O) = 2 otherwise.

Let S be the output of α-approximation algorithm. Since k > 1, we know
that s∞(O) is either 1 or 2. If s∞(O) = 2, then s∞(S) = 2. If s∞(O) = 1, then
s∞(S) ≤ αs∞(O) < 2 × 1. Thus, s∞(S) = 1. In summary, s∞(O) = s∞(S).

We have shown that s∞(S) = 1 if and only if G has a k-clique. This allows
us to detect k-clique in G in polynomial time proving our claim. �

6 Related Work

Confidence bands are envelopes for which confidence intervals of individ-
ual points hold simultaneously. Davison and Hinkley [5,12] proposed a non-
parametric approach for finding simultaneous confidence intervals. Here, time
series are ordered based on its maximum value, and α-confidence intervals are
obtained by removing α/2 portions from each tail. Note that unlike SumBand
and InfBand this definition is not symmetric: if we flip the sign of time series
we may get a different interval.

There is a strong parallel between finding regularized bands and finding dense
subgraphs. Proposition 5 states that the inner-most regularized band has the
smallest average envelope area, or alternatively it has the highest ratio of time
series per envelope area. A related graph-theoretical concept is a dense subgraph,
a subgraph H of a given subgraph G with the largest ratio |E(H)|/|V (H)|. The
method proposed by Goldberg [7] for finding dense subgraphs in polynomial
time is based on maximizing |E(H)| − α|V (H)| and selecting α to be as small
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as possible without having an empty solution. Moreover, Tatti [16] extended the
notion of dense subgraphs to density-friendly core decomposition, which essen-
tially consists of the subgraphs minimizing |E(H)| − α|V (H)| for various values
of α, the algorithm for finding the decomposition is similar to the algorithm for
enumerating all regularized bands. In addition, Tsourakakis [17] extended the
notion of dense subgraphs to triangle-density and hypergraphs, and also used
minimum cut to find the solutions. As pointed out in Sect. 4 is that we can view
time series as sets of points in P . In fact, the minimum cut used in Sect. 3 share
some similarities with the minimum cut proposed by Tsourakakis [17]. Finally,
the algorithm proposed by Korpela et al. [11] to find confidence bands resembles
the algorithm by Charikar [1] for approximating the densest subgraph: in the
former we delete the time series that reduce the envelope area the most while in
the latter we delete vertices that have the smallest degree.

We assume that we are given a seed time series x. If such series is not given
then we need to test every t ∈ T as a seed. If we consider a special case of
k = 2, then the problem of finding regularized band reduces to the closest
pair problem: find two time series with the smallest distance: a well-studied
problem in computational geometry. A classic approach by Dietzfelbinger et al.
[14], Khuller and Matias [6], Rabin [10] allows to solve the closest pair problem
in O(n) time but the analysis treats the size of the domain, m, as a constant;
otherwise, the computational complexity has an exponential factor in m and can
be only used for very small values of m. For large values of m, Indyk et al. [9]
proposed an algorithm for solving the closest pair problem minimizing s1 (·) in
O(

n2.687
)

time and minimizing s∞(·) in O(
n2.687 log Δ

)
time, where Δ is the

width of the envelope of the whole data.

7 Experimental Evaluation

In this section we describe our experimental evaluation.
We implemented EnumReg and FindSum using C++ and used a laptop

with Intel Core i5 (2.3 GHz) to conduct our experiments.4 As a baseline we used
the algorithm by Korpela et al. [11], which we will call Peel. We implemented
Peel also with C++, and modified it to make sure that the seed time series
x is always included. Finally, we implemented FindInf with Python. In all
algorithms we used the median as the seed time series.

Datasets: We used 4 real-world datasets as benchmark datasets. The first
dataset, Milan, consists of monthly averages of maximum daily temperatures
in Milan between the years 1763–2007.5 The second dataset, Power, consists of
hourly power consumption (variable global active power) of a single house-
hold over almost 4 years, a single time series representing a day.6 Our last 2

4 The code is available at https://version.helsinki.fi/DACS.
5 https://www.ncdc.noaa.gov/.
6 http://archive.ics.uci.edu/ml/datasets/Individual+household+electric+power+con

sumption.

https://version.helsinki.fi/DACS
https://www.ncdc.noaa.gov/
http://archive.ics.uci.edu/ml/datasets/Individual+household+electric+power+consumption
http://archive.ics.uci.edu/ml/datasets/Individual+household+electric+power+consumption
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Table 1. Basic characteristics of the datasets and performance measures of the algo-
rithms. Here, n stands for the number of time series, m stands for the domain size, |B1|
is the size of the smallest non-trivial regularized band, |B| is the number of regularized
bands, and time is the required time to execute EnumReg in seconds. The scores s1 for
the algorithms FindSum, FindInf, and Peel are normalized with the envelope area
of the whole data and multiplied by 100.

Dataset n m |B| |B| Time s1 for k = �0.9n� s1 for k = �0.95n�
Sum Peel Inf Sum Peel Inf

Milan 245 12 209 17 0.03 70.34 72.49 74.1 75.31 76.99 78.45

Power 1 417 24 1 102 56 3.68 70.94 72.83 77.06 78.89 81.17 82.31

ECG-normal 1 507 253 1 289 72 39.44 51.72 52 72.97 57.22 57.51 73.15

ECG-pvc 520 253 484 19 6.67 80.28 80.02 91.97 83.84 83.92 95.69

Table 2. Scores s∞ of discovered confidence bands. The scores are normalized with
the envelope width of the whole data and multiplied by 100.

Dataset s∞ for k = �0.9n� s∞ for k = �0.95n�
Sum Peel Inf Sum Peel Inf

Milan 72.54 79.78 67.35 78.04 79.78 73.95

Power 79.08 82.16 73.13 82.16 98.71 79.08

ECG-normal 64.78 64.78 54.81 65.64 64.78 57.39

ECG-pvc 93.24 93.24 66.41 93.24 93.24 81.9

datasets ECG-normal and ECG-pvc are heart beat data [8]. We used MLII
data of a single patient (id 106) from the MIT-BIH arrhythmia database,7 and
split the measurements into normal beats (ECG-normal) and abnormal beats
with premature ventricular contraction (ECG-pvc). Each time series represent
measurements between −300 ms and 400 ms around each beat. The sizes of the
datasets are given in Table 1.

Results: First let us consider EnumReg. From the results given Table 1 we see
that the number of distinct regularized bands |B| is low: about 4%–7% of n, the

0 50 100 150 200 250
−1

0

1

2 med. Sum
Inf

0 50 100 150 200 250
−2

0

2

Fig. 1. Envelopes for ECG-normal (left) and ECG-pvc (right) and k = �0.9n�.
7 https://physionet.org/content/mitdb/1.0.0/.

https://physionet.org/content/mitdb/1.0.0/
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number of time series. Having so few bands in practice reduces the computational
cost of EnumReg since the algorithm tests at most 2|B| values of α Interestingly,
the smallest non-trivial band B1 is typically large, containing about 70%–90%
of the time series. Note that Proposition 5 states that B1 has the smallest ratio
of s1 (B1) /|B1|. For our benchmark datasets, B1 is large suggesting that most
time series are equally far away from the median while the remaining the time
series exhibit outlier behaviour.

The algorithms are fast for our datasets: Table 1 show that EnumReg
requires at most 40 s. Additional steps required by FindSum are negligible, com-
pleting in less than a second. The baseline algorithm is also fast, requiring less
than a second to complete.

Let us now compare FindSum against Peel. We compared the obtained
areas by both algorithms with k = �0.9n� and k = �0.95n�. We see from
the results in Table 1, that FindSum performs slightly better than Peel. The
improvement in score is modest, 1%–2%. We conjecture that in practice Peel
is close to the optimal, so any improvements are subtle. Interestingly, enough
Peel performs better than FindSum for ECG-pvc and γ = 0.1. The reason for
this is that the inner band B1 contains more than 90% of the time series. In
such a case FindSum will reduce to a simple greedy method, starting from {x}.
Additional testing revealed that Peel outperforms FindSum when k ≤ |B1|
about 50%–90%, depending on the dataset, suggesting that whenever k ≤ |B1|
it is probably better to run both algorithms and select the better envelope.

Next let us compare FindInf against the other methods. The results in
Tables 1–2 show that FindInf yields inferior s1 scores but superior s∞ scores.
This is expected as FindInf optimizes s∞ while FindSum and Peel optimize
s1 . The differences are further highlighted in the envelopes for ECG datasets
shown in Fig. 1: FindInf yields larger envelopes but provides a tighter bound
under the peak (R wave).

8 Concluding Remarks

In this paper we consider the approximation algorithms for discovering con-
fidence bands. Namely, we proposed a practical algorithm that approximates
SumBand with a guarantee of O(

n1/2
)
. We also argued that the lower bound

for the guarantee is most likely O(
n1/4

)
. In addition, we showed that we can 2-

approximate InfBand, a variant of SumBand problem, with a simple algorithm
and that the guarantee is tight.

Our experiments showed that FindSum outperforms the original baseline
method for large values of k, that is, as long as k is larger than the smallest
regularized band. Our experiments suggest that this condition usually holds, if
we are interested, say in, 90%–95% confidence.

Interesting future line of work is to study the case for time series with multiple
modes, that is, a case where instead of a single seed time series, we are given a
set of time series, and we are asked to find confidence bands around each seed.
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Abstract. We address, in the context of time series, the problem of
learning a summary causal graph from observations through a model
with independent and additive noise. The main algorithm we propose is
a hybrid method that combines the well-known constraint-based frame-
work for causal graph discovery and the noise-based framework that
gained much attention in recent years. Our method is divided into two
steps. First, it uses a noise-based procedure to find the potential causes
of each time series. Then, it uses a constraint-based approach to prune all
unnecessary causes. A major contribution of this study is to extend the
standard causation entropy measure to time series to handle lags bigger
than one time step, and to rely on a lighter version of the faithfulness
hypothesis, namely the adjacency faithfulness. Experiments conducted
on both simulated and real-world time series show that our approach is
fast and robust wrt to different causal structures and yields good results
over all datasets, whereas previously proposed approaches tend to yield
good results on only few datasets.

Keywords: Causal graph discovery · Noise-based approach ·
Constraint-based approach · Time series

1 Introduction

Identifying causal structure from observational data is an important but also
challenging task in many applications. Most causal graph discovery algorithms
assume that causal relations can be described within causal graphs, where arrows
encode causal information. For time series, the true complete causal graph G =
(V,E) with V the set of vertices and E the set of edges, is called a full time causal
graph and represents a complete graph of the dynamic system, through infinite
vertices. In practice, inferring an infinite graph is unfeasible, so most algorithms
assume that causal relations are consistent throughout time, i.e. for two time
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Fig. 1. Different causal graphs that one can infer from two time series X1 and X2:
full time causal graph (a), window causal graph of size τ = 2 (b) and summary causal
graph (c).

series Xp and Xq, if Xp
t−i causes Xq

t , denoted Xp
t−i → Xq

t , then Xp
t−i−j → Xq

t−j

for all j. Under this assumption, and given the maximal lag τ between cause
and effect that can be present in the system, the full time causal graph can be
contracted to give a finite graph which we call window causal graph, with τ + 1
nodes for each time series [15]. However, sometimes, in practice, knowing only
the causes of a given time series without necessarily knowing the time delay
between the cause and the effect is all we need, so the true complete graph
of the system is compressed even more via the so-called summary graph which
represents causal relations between time series without referencing to lags [12].
Those notions are illustrated in Fig. 1. Algorithms that detect causal relations
can be classified according to the type of graph they look for.

Whatever the type of graph, the algorithms in question rely also on additional
assumptions. The Causal Markov Condition states that in a causal graph, each
node is independent of all other nodes given its parents, except its children [17].
The causal sufficiency states that there are no hidden common causes. One of the
best known approach for causal discovery methods is the constraint-based app-
roach that relies on conditional independencies and assume faithfulness, which
states that the joint distribution P over V is faithful to the true causal Directed
Acyclic Graph (DAG) G over V in the sense that every conditional independence
statement satisfied by P is entailed by G [17].

Our contribution is two-fold. We introduce a new measure of dependence
between two time series called the temporal causation entropy, which is an
extension of the standard causation entropy measure [18] to time series to han-
dle instantaneous relations and lags bigger than one. Based on it, we develop
an algorithm to infer a summary causal graph from observational time series
that is not limited to the Markov equivalent class even for instantaneous rela-
tions (which are common in practice due to the discretization of the time), that
assumes causal Markov condition and a weaker version of faithfulness described
in Sect. 3.1, and which is proved to be complete. The algorithm we propose is
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hybrid in the sense that it combines two different families of causal graph dis-
covery methods: the noise-based family to find the potential causes of each time
series and the constraint-based family to prune all unnecessary causes by looking
at possible confounders and therefore end-up with only genuine cause. Remark-
ably, this is to our knowledge the first algorithm hybrid between constraint-based
and noise-based methods for time series. Our evaluation, conducted on several
datasets, illustrates the efficacy and efficiency of our approach.

The remainder of the paper is organized as follows: Sect. 2 describes related
work. Section 3 then introduces the main causal discovery algorithm, called
NBCB for Noise-Based/Constraint-Based approach. It relies on weak assump-
tions that are reminded first, and on the temporal causation entropy that is also
introduced. The causal graph discovery algorithm we propose is illustrated and
evaluated on several datasets in Sect. 4. Finally, Sect. 5 concludes the paper.

2 State of the Art

Granger Causality is one of the oldest methods proposed to detect causal rela-
tions between time series. However, this approach is known to handle a restricted
version of causality that focuses on causal priorities as it assumes that the past
of a cause is necessary and sufficient for optimally forecasting its effect [5]. The
simplicity constitutes its advantage but also its limitations: for instance, it can-
not deal with instantaneous effects. More recently, [11] exploited deep learning to
learn causal relations between time series using an attention mechanism within
convolutional networks. It infers a potential set of causes by analysing the esti-
mated coefficients and then applies a validation step that is to some extent
comparable to conditional Granger causality. However, in our experiments, we
observe particularly bad results for TCDF.

Constraint-based approaches for time series are usually extended from causal
graph discovery algorithm for nontemporal data. The main idea is to eliminate
potential causes by finding conditional independencies in the data. The PC algo-
rithm [17] is known to be the representative of this family of methods in case of
i.i.d. data, which optimize the search of the smallest conditioning set needed to
achieve separation between each pair of nodes. PCMCI [15] is an extension of
PC for time series where a window causal graph is constructed, using temporal
priority constraint to reduce the search space of the causal structure. oCSE [18]
takes a different procedure compared to PC: instead of limiting as much as pos-
sible the size of its conditioning set, it conditions since the start on all potential
causes which constitute the past of all available nodes. However, it limits its
search for causal relations with a lag of one to find a summary graph. These
methods usually assume causal Markov condition and faithfulness. Moreover, in
general, graphs can only be recovered up to Markov equivalence1 classes. In the
context of time series, the notion of time can make such algorithms go beyond
the Markov equivalence class but only for lagged relations [15], i.e. instantaneous
relations are always limited to the Markov equivalence class.
1 Two DAGs are Markov equivalent if and only if they have the same skeleton and

the same v-structures [19].
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Lastly, noise-based methods assume that the causal system can be defined
by a set of equations that explain each variable by its direct causes and an
additional noise. Causal relations are in this case discovered using footprints
produced by the causal asymmetry in the data. For time series, the most well
known algorithms in this family are tsLiNGAM [7], which is an extension of
LiNGAM through autoregressive models, and TiMINo [12], which discovers a
causal relationship by looking at independence between the noise and the poten-
tial causes. However, self-causation is not discovered within TiMINo, and the
summary graph is assumed to be acyclic. These methods usually assume causal
Markov condition and causal minimality, which is a weaker assumption than
faithfulness. The main drawbacks are that such methods usually do not scale
well [4] and might need a large sample size to achieve good performance [8].

The method we propose, as an hybrid method, takes benefit of the two
approaches: it is not limited to a Markov equivalence class and provides a specific
graph, scales better and needs a smaller sample size.

3 Causal Graph Discovery Between Two Time Series

Let us consider d univariate time series X1, · · · ,Xd. Our goal is to find a sum-
mary causal graph between them, as represented in Fig. 1(c).

3.1 Assumptions

The faithfulness assumption is difficult to check in practice, and it has been
debated for a long time. It assumes that there are no accidental conditional
independence relations in the true distribution, that is, no conditional indepen-
dence relations unless entailed by the true causal structure. The faithfulness
assumption is mainly used in constraint-based methods, where it is used at two
different stages, skeleton construction and edge orientation. As such, it can be
decomposed into two assumptions, as proposed in [14], namely adjacency faith-
fulness and orientation faithfulness. As the orientation process we rely on dif-
fers from the one used in PC-like algorithms, we dispense here with the second
assumption and solely rely on adjacency faithfulness, which is defined as follows:

Definition 1 (Adjacency faithfulness [14]). For every Xp,Xq ∈ V , if Xp

and Xq are adjacent in G, then they are not conditionally independent given any
subset of V \{Xp,Xq}.

As shown in [14], the relaxation of the faithfulness assumption still leads to
provably correct skeletons.

Finally, the approach we propose discovers causal relations from time series
under the causal Markov condition, the causal minimality condition (needed in
the causal ordering, when using the noise-based method) and adjacency faithful-
ness (needed in the pruning step, when using the constraint-based method). We
also assume that time series satisfy a causal ordering, meaning that we assume
that the summary graph is acyclic. The inferred summary graph can however be
cyclic, as opposed to [12], with loops between at least 3 time series.
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3.2 Method

Our approach is a hybrid method which is decomposed into two parts. The
first part, a noise-based approach, is described in Algorithm1. It is based on
a Gaussian process to map the past of the time series to the present, and a
dependency measure between its input and its residuals to infer which time
series potentially causes the other. The second part, a constraint-based approach,
is described in Algorithm 2. It prunes the graph being constructed to remove
spurious causes by considering the set of potential parents. The two parts are
detailed below.

Causal Ordering. The first step relies on noise-based approaches, which were
initially introduced for i.i.d. data. However, they gained much attention in recent
years [1,6,9,10], and have also been extended for time series [12].

In this paper, we focus on Additive Noise Models (ANMs), which are defined
as follows:

Xq
t = f ([Par(Xq

t )t′ ]t−τ≤t′≤t) + ξq
t (1)

where f is a potentially nonlinear function, Par(Xq
t )t′ is the set of parents of

Xq
t at time-point t′, (ξq

t )q,t are jointly independent; futhermore, for each q, ξq
t

are identically distributed in t and the finite dimensional distributions for the
time series (Xq)1≤q≤d are absolutely continuous wrt a product measure. Note
that this model allows instantaneous relations. ANMs belong to the Identifiable
Functional Model Class (IFMOC) [13], even in case of non-faithful causal models,
for which conditional independence-based methods, as constraint-based, usually
fail [13].

Similarly to the bivariate case [6,10], the independence between the signal
and the residuals allows one to detect the most probable cause from a set of
variables through the following principle.

Principle 1 (Multivariate additive noise principle). Suppose we are given
a joint distribution P (X1, · · · ,Xd). If it satisfies an identifiable Additive Noise
Model such that {(Xp

t−j)1≤p�=q≤d,0≤j≤τ , (Xq
t−j)1≤j≤τ} → Xq, then it is likely

that {(Xp
t−j)1≤p �=q≤d,0≤j≤τ , (Xq

t−j)1≤j≤τ} precedes Xq in the causal order.

Similarly to [10], when considering a suitable regression estimator and a suit-
able dependency estimator, the true causal order will be inferred. If we consider
the fully connected graph given by this causal ordering (an edge between each
node and its parents), it leads to a graph that contains the real graph as all true
causal relations are in the inferred graph.

In practice, we first estimate for all q ∈ {1, . . . , d},

fq : {(Xp
t−j)1≤p�=q≤d,0≤j≤τ , (Xq

t−j)1≤j≤τ} �→ Xq
t

by a Gaussian Process and deduce the residuals

ξ̂q
t = Xq

t − f̂{(Xp
t−j)1≤p�=q≤d,0≤j≤τ , (Xq

t−j)1≤j≤τ}.
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Algorithm 1. NBCB Part I: noise-based approach to order causes
Result: G
X a d-dimensional time series, τ a window size;

G an empty graph with nodes {X1, . . . , Xd}; S = {1, . . . , d};
while length(S) > 1 do

for j ∈ S do

Learn f̂ j : {(Xp
t−j)p∈S,p�=q,0≤j≤τ , (Xq

t−j)1≤j≤τ} �→ Xj
t ;

Deduce ξ̂j
t and compute;

cj from Eq. (2)

Choose j∗ = argmin cj ;
S = S\j∗;
for s ∈ S do

Add Xs → Xj∗
in G;

The last place in the causal ordering (which belongs to the most probable effect
of all other time series) is given to the time series which yields the residuals
that are more independent to the other time series. The dependency between
the residuals and the input is estimated with

cq = C
(
{(Xp

t−j)1≤p�=q≤d,0≤j≤τ , (Xq
t−j)1≤j≤τ}, ξ̂q

t

)
, (2)

where C is a dependence measure2.
However, this method is not capable to detect independence between two

time series, and thus it is susceptible to treat indirect causes as direct causes. To
remove indirect causes or detect independencies, we complement this procedure
with a second step that prunes spurious relations from the graph. It necessitates
an exact estimation of the lag between two time series (through a maximum
window of size τ).

Since this procedure uses a regression function estimator, it is subject to the
curse of dimensionality when d is large compared to n. So we also consider a
pairwise version of the procedure which consists on estimating for each pair of
time series Xq,Xp two regression functions

fq : {(Xp
t−j)0≤j≤τ , (Xq

t−j)1≤j≤τ} �→ Xq
t ,

fp : {(Xq
t−j)0≤j≤τ , (Xp

t−j)1≤j≤τ} �→ Xp
t .

We then compare the dependency of the residuals of those two functions with
their inputs, and as before the potential cause is the one that is mapped by the
function that yields the higher dependency, i.e. we choose the causal direction
that yields the best bivariate ANM. While one cannot prove that the inferred
graph contains the real one, numerical experiments show good performances for
this method.
2 As motivated in [12], we use the partial correlation to measure the dependence, but

one can use our procedure with any measure.
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Fig. 2. Wrong causal relations potentially inferred in the first step of our algorithm.
Dashed lines represents wrong causal relations. On the left, we show a spurious cause,
whereas on the middle and on the right, we provide two indirect causes.

Pruning Using Temporal Causation Entropy. Knowing the list of potential
parents of each time series, as detected in the previous step, one way to prune
the causes that are not genuine is to conduct conditional independence tests
between time series. Indeed, suppose Xp is a potential cause of Xq but Xp and
Xq are conditionally independent, as illustrated in Fig. 2. Then, we can conclude
that Xp is not a cause of Xq.

In order to capture the dependencies (and conditional dependencies) between
two time series, one needs to take into account the lag between them, as the true
causal relations might not be instantaneous. Several studies have acknowledged
the importance of taking into account lags to measure (conditional) dependencies
between time series [5,18]. Causation entropy, introduced in [18], is an asymmet-
ric measure that detects the uncertainty reduction of the future states of Xq as
a result of knowing the past states of Xp given that the past of XR is already
known, where R is a subset of {1, · · · , d}. However, it only considers causation
with a lag of size one, whereas it can take any values in practice.

In addition to lags, a window-based representation may be necessary to fully
capture the dependencies between the two time series. So it may be convenient
to consider them together when assessing whether the time series are dependent
or not. We thus introduce the temporal causation entropy, that extends the
causation entropy to general lags and window representation of time series.

Definition 2 (Temporal causation entropy). We first define the optimal
lag γpq between time series Xp and Xq and (λpq, λqp) the optimal windows of
time series Xp regarding Xq and of time series Xq regarding Xp respectively as:

γpq, λpq, λqp = argmax
γ≥0,λ1,λ2

h(Xq
t:t+λ2

| Xq
t−1,X

p
t−γ−1))

− h(Xq
t:t+λ2

| Xp
t−γ−1:t−γ+λ1

,Xq
t−1),

where h denotes the entropy. The temporal causation entropy from time series
Xp to time series Xq conditioned on a set XR = {Xr1 , · · · ,XrK } is given by:

TCE(Xp → Xq | XR) = min
Γri

≥0, 1≤i≤K
h(Xq

t:t+λqp
| (Xri

t−Γpq|ri
)1≤i≤K , Xq

t−1, X
p
t−γpq−1))

− h(Xq
t:t+λqp

| (Xri
t−Γpq|ri

)1≤i≤K , Xp
t−γpq−1:t−γpq+λpq

, Xq
t−1),

where Γpq|r1 , · · · , Γpq|rK
are the lags between XR and Xq.
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Algorithm 2. NBCB part II: constraint-based approach for pruning
Result: G
X d-dimensional time series, α a significance threshold, G a causal graph;
n = 0;
while there exists Xq ∈ V such that card(Par(Xq, G)) ≥ n + 1 do

D = list();
for Xq ∈ V such that card(Par(Xq, G)) ≥ n + 1 do

for Xp ∈ Par(Xq, G), XR ⊂ Par(Xq, G) \ {Xp} with card(XR) = n do
yq,p,R = TCE(Xp; Xq | XR);

append(D, {Xq, Xp, XR}));

Sort D by increasing order of y;
while D is not empty do

{Xq, Xp, XR} = pop(D);

if Xp ∈ Par(Xq, G) and XR ⊂ Par(Xq, G) then
Compute z the p-value given by Eq. (3);
if z > α then

Remove edge Xp → Xq from G;

n=n+1;

First, the lag between Xp and Xq is detected by maximizing the dependency
between Xp and Xq. As we measure the amount of information brought by the
observations of one variable on the observations of another variable, taking the
maximum ensures that one does not miss any possible information contribut-
ing to relating the two time series. In a second step, we find the lags between
(Xp,Xq) and XR that minimize the conditional dependency between Xp and
Xq conditioned on XR. Taking the minimum ensures that we search for the lags
that break the maximal dependence. Following the temporal priority principle,
which states that causes precede their effects in time, we also ensure while find-
ing only nonnegative lags that Xp as well as the conditional variables should
precede in time Xq. If γ = 1 and λpq = λqp = 1, then the temporal causation
entropy is equivalent to causation entropy when the latter is conditioned on the
past.

In practice, the success of temporal causation entropy (and in fact, any
entropy-based approaches) depends crucially on reliable estimation of the rel-
evant entropies from data. This leads to two practical challenges. The first one
is based on the fact that entropies must be estimated from finite time series
data. To do so, we rely here on the k-NN estimator introduced in [3]. We denote
by εik/2 the distance from

(Xp
t−γpq :t−γpq+λpq

,Xq
t:t+λpq

, ((Xri

t−Γpq|ri
)1≤i≤K ,Xq

t−1,X
p
t−γpq

))
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to its k-th neighbor, n1,3
i , n2,3

i and n3
i the numbers of points with distance strictly

smaller than εik/2 in the subspace

(Xp
t−γpq :t−γpq+λpq

, ((Xri

t−Γpq|ri
)1≤i≤K ,Xq

t−1,X
p
t−γpq

)),

(Xq
t:t+λpq

, ((Xri

t−Γpq|ri
)1≤i≤K , ,Xq

t−1,X
p
t−γpq

))

and
((Xri

t−Γpq|ri
)1≤i≤K ,Xq

t−1,X
p
t−γpq

)

respectively, and nγr,p,γr,q
the number of observations. The estimate of the tem-

poral causation entropy is then given by:

̂TCE(Xp → Xq | XR) = ψ(k) +
1

nγr,p,γr,q

nγr,p,γr,q∑
i=1

ψ(n3
i ) − ψ(n1,3

i ) − ψ(n2,3
i )

where ψ denotes the digamma function. The second problem is the following: to
detect independence, we need a statistical test to check if the temporal causation
entropy is equal to zero. We rely here on a permutation test:

Definition 3 (Permutation test of TCE). Given Xp, Xq and XR, the p-
value associated to the permutation test of TCE is given by:

p =
1
B

B∑
b=1

1
̂TCE(b(Xp)→Xq|XR)≥ ̂TCE(Xp→Xq|XR)

, (3)

where b(Xp) is a permuted version of Xp, 1 denotes the indicator function and
B the maximum number of bootstrap sampling.

The method, detailed in Algorithm2, can be summarized as follows. Starting
with a fully directed graph (with one sided edges coming from a causal order-
ing), the first step consists in removing edges between nodes that are uncon-
ditionally independent: for each pair of nodes, a test of TCE is computed an
edge is removed if the dependency, measured by TCE, is not significant given a
threshold α. Once this is done, the algorithm checks, for the remaining oriented
edges, whether two time series are conditionally independent or not given a set
of parents of the arrow side node: in the first iteration the set of parents is of size
one and then it gradually increases until either the edge between Xp and Xq

is removed or all subsets of parents of Xq have been considered. Note that we
make use of the same strategy as the one used in PC-stable [2], which consists
in sorting time series according to their TCE scores and, when an independence
is detected, removing all other occurrences of the time series. This leads to an
order-independent procedure.

The following theorem states that the graph obtained by the above procedure
is the true one.

Theorem 4. Given the true ordering of the causal process, Algorithm2 is com-
plete.
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Proof. Similarly to PC, Algorithm 2 prunes all unnecessary edges by removing
edges that are conditionally independent given a subset S. Thanks to the causal
order, the possible subsets space is reduced. By removing all links that are con-
ditionally independent, by causal Markov condition, adjacency faithfulness and
causal sufficiency, we are left with links that are directly causal and which are
oriented wrt causal ordering.

Self Causes. Finally, given the graph G inferred with the above procedure, one
can verify for each node Xq in G if it is self causal by checking if there exists a
γ > 0 such that for all t, Xq

t � |= Xq
t−γ | Par(Xq) in G.

3.3 Complexity Analysis

Our proposed methods benefit from a smaller number of tests compared to
constraint-based methods that infer the full temporal graph. In the worst case,
the complexity of PC in a temporal graph is bounded by:

(d · τ)2(d · τ − 1)k−1

(k − 1)!

where k represents the maximal degree of any vertex and each operation consists
in conducting significance test to a conditional independence measure. Algo-
rithms more adapted to time series, such as PCMCI [15], use the notion of time
to reduce the number of tests. In those cases, the complexity would be divided
by 2 (if instantaneous relations are not taken into account). NBCB is inferring
a summary graph, which limits the number of decisions that need to be taken.
NBCB’s complexity in the worst case (when all relations are instantaneous) is
bounded by:

d2.f(n, d) +
d2(d − 1)k−1

(k − 1)!

where f(n, d) is the complexity of the user-specific regression method.

4 Experiments

To illustrate the behavior of our method, we test it on several artificial and real
datasets.

NBCB3 and its pairwise version denoted pwNBCB are fitting a Gaussian
Process with zero mean and squared exponential covariance function. The hyper-
parameters are automatically chosen by marginal likelihood optimization.

We compare NBCB with seven state-of-the-art methods: the constraint-based
methods PCMCI4 [15], where two variations of PCMCI are considered, varying

3 Python code available at https://github.com/kassaad/causal discovery for time
series.

4 Python code available at https://github.com/jakobrunge/tigramite.

https://github.com/kassaad/causal_discovery_for_time_series
https://github.com/kassaad/causal_discovery_for_time_series
https://github.com/jakobrunge/tigramite
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Table 1. Structures of simulated data.

Pair Pair-sc Fork V-structure Mediator Diamond

X1

X2

X1

X2

X1

X2

X3

X1

X2

X3

X1

X2

X3

X1

X2 X3

X4

the measure of independence between the mutual information for PCMCI-MI
and the linear partial correlation for PCMCI-PC, and oCSE5 [18]; the noise-
based methods TiMINo6 [12] with the linear time series model and VarLiNGAM7

[7] where the regularization parameter in the adaptive Lasso is selected using
BIC; the multivariate version of Granger Causality denoted GC8 [5] and the
Neural Network based method TCDF9 [11] with default hyperparameters as
introduced in the original paper. For all the methods, the best time lag is deter-
mined with the Akaike Information Criterion, the window size is set to τ = 5
and the significant threshold for hypothesis testing to α = 0.05.

In the different experimental settings, we compare the results wrt the F1-
score denoted F1 of the orientations in the graph obtained without considering
self causes, as it is treated differently depending on the methods.

4.1 Simulated Data

We first test our method on simulated data generated from five different causal
structures (pair, fork, V-structure, mediator, diamond) presented in Table 1. We
distinguish pairs when the time series are self caused (Pair-sc) or not (Pair).
For each benchmark, we generate randomly 10 data sets with 1000 observations.
The data generating process is the following: for all q, Xq

0 = 0 and for all t > 0,

Xq
t = aqq

t−1X
q
t−1 +

∑
(p,γ)

X
p
t−γ

∈P ar(X
q
t )

apq
t−γf(Xp

t−γ) + 0.1ξq
t ,

where γ ≥ 0, ajq
t are random coefficients chosen uniformly in U([−1;−0.1] ∪

[0.1; 1]) for all 1 ≤ j ≤ d, ξq
t ∼ N (0,

√
15) and f is a non linear function chosen

at random uniformly between absolute value, tanh, sine, cosine. Two scenarios

5 Python code available at https://github.com/kassaad/causal discovery for time
series.

6 R code available at http://web.math.ku.dk/∼peters/code.html.
7 Python code available at https://github.com/cdt15/lingam.
8 Matlab code available at https://github.com/SacklerCentre/MVGC1.
9 Python code available at https://github.com/M-Nauta/TCDF.

https://github.com/kassaad/causal_discovery_for_time_series
https://github.com/kassaad/causal_discovery_for_time_series
http://web.math.ku.dk/~peters/code.html
https://github.com/cdt15/lingam
https://github.com/SacklerCentre/MVGC1
https://github.com/M-Nauta/TCDF
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Table 2. Results obtained on the simulated data for the different structures with 1000
observations. We report the mean and the standard deviation of the F1 score. The best
results are in bold.

Pair Pair-sc V-struct Fork Mediator Diamond

NBCB 0.7 ± 0.46 0.7 ± 0.46 0.67 ± 0.28 0.67 ± 0.38 0.66 ± 0.32 0.71 ± 0.16

pwNBCB 0.7 ± 0.46 0.7 ± 0.46 0.75 ± 0.18 0.67 ± 0.38 0.7 ± 0.30 0.83 ± 0.12

PCMCI-PC 0.57 ± 0.47 0.6 ± 0.49 0.61 ± 0.33 0.53 ± 0.39 0.75 ± 0.24 0.63 ± 0.26

PCMCI-MI 0.9 ± 0.16 0.8 ± 0.4 0.67 ± 0.37 0.78 ± 0.17 0.84 ± 0.09 0.82 ± 0.16

oCSE 1.0 ± 0.0 1.0 ± 0.0 0.90 ± 0.16 0.8 ± 0.12 0.95 ± 0.08 0.88 ± 0.09

TiMINo 0.57 ± 0.49 0.5 ± 0.5 0.65 ± 0.37 0.52 ± 0.44 0.80 ± 0.19 0.60 ± 0.25

VarLiNGAM 0.54 ± 0.49 0.5 ± 0.5 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.03 ± 0.08

GC 0.67 ± 0.44 0.4 ± 0.49 0.37 ± 0.25 0.44 ± 0.38 0.83 ± 0.22 0.66 ± 0.26

TCDF 0.0 ± 0.0 0.1 ± 0.3 0.13 ± 0.26 0.26 ± 0.32 0.05 ± 0.15 0.16 ± 0.19

are considered: all the coefficients are random, or some coefficients are fixed to
not be faithful to the true causal graph. Results are summarized in Table 2 for
faithful data and in Table 3 for unfaithful data.

From Table 2, one can note that methods from the constraint-based family
consistently outperform all other methods. However, our proposed algorithm is
able to compete against pure constraint-based approaches. Specifically for the
fork structure, the pairwise version outperforms all other methods, and for the
others structures it performs better than most of the methods. When pwNBCB
outperforms NBCB, one can expect that a larger sample size would improve
the performance for NBCB, as the bivariate analysis is seen as a lower dimen-
sional proxy of the full regression model. Furthermore, the similarity of results
of our methods obtained by the F1 scores regarding to the structures illustrates
the stability of our method. VarLINGAM performs particularly bad, but all the
assumptions are violated in this design (Gaussian noise, non linearity). TCDF
has also bad performances, whereas Granger Causality is surprisingly good, par-
ticularly for Mediator.

In Table 3 we consider two unfaithful datasets. The first one is a mediator,
where a13 = −a12a23, without self cause, and all relations are instantaneous.
Following [20], the second dataset is a linear unfaithful diamond without self
causes, where we set the coefficient a34 = −a12a23/a13 and all relations are
instantaneous. From Table 3, we can see that PCMCI and oCSE perform poorly
for unfaithful data, as expected. VarLINGAM has still bad results, again due
to the simulation process. Our proposed algorithm comes out as one of the best
algorithms in terms of performance, and there is an improvement with the full
NBCB instead of its pairwise version.

Figure 3 provides an empirical illustration of the algorithmic complexity. We
compare NBCB to oCSE, PCMCI-MI and TiMINo on four structures (v-structure,
fork, mediator, diamond), sorted according to their number of nodes, their maxi-
mal out-degree and their maximal in-degree. The time is given in seconds. As one
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Fig. 3. Time computation (in second) for NBCB, oCSE and PCMCI-MI for four basic
causal structures (V-structure, Fork, Mediator, Diamond). We report the mean and
the standard deviation.

can note, NBCB is always faster than oCSE and PCMCI-MI, the difference being
more important when the structure to be inferred is more complex. TiMINo
is faster than NBCB, because the vector autoregressive model has been used
instead of Gaussian process (there were not available in the online package) and
the pruning in TiMINo relies on the noise-based approach, so less steps have to
be considered. This illustrates again the trade-off between constraint-based and
noise-based approaches.

4.2 Real Data

Three different real datasets are considered in this study. We detail the perfor-
mance of each method in the following paragraphs, but the results are summa-
rized in Table 4.

Temperature. This bivariate time series10 of length 168 is about indoor X in

and outdoor Xout measurements. We expect that there is the following causal
link: Xout → X in. VarLiNGAM wrongly infers no causal relation, Granger infers
a bidirected arrow and TiMINo remains undecided. PCMCI-PC, PCMCI-MI,
oCSE, NBCB and NBCBk correctly infer Xout → X in.

Diary. This dataset11 provides10 years (from 09/2008 to 12/2018) of monthly
prices for milk Xm, butter Xb and cheddar cheese Xc, so the three time series
are of length 124. We expect that the price of milk is a common cause of the
price of butter and the price of cheddar cheese: Xb ← Xm → Xc. VarLiNGAM
wrongly infers Xb as common cause of Xm and Xc, Granger wrongly infers
Xm ↔ Xb → Xc → Xm and TiMINo only infers one wrong causal relation
Xc → Xm. TCDF infers no causal relation. PCMCI-PC and PCMCI-MI wrongly
infer the causal chain Xc → Xm → Xb. oCSE, NBCB and pwNBCB correctly
infer the causal relations but also add a wrong causal Xc → Xb.
10 Data is available at https://webdav.tuebingen.mpg.de/cause-effect/.
11 Data is available at http://future.aae.wisc.edu.

https://webdav.tuebingen.mpg.de/cause-effect/
http://future.aae.wisc.edu
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Table 3. Results obtained on the unfaithful simulated data for the different structures
with 1000 observations. We report the mean and the standard deviation of the F1
score. The best results are in bold.

unfaith. Mediator unfaith. Diamond

NBCB 0.56 ± 0.26 0.5 ± 0.31

pwNBCB 0.46 ± 0.23 0.39 ± 0.22

PCMCI-PC 0.21 ± 0.21 0.19 ± 0.16

PCMCI-MI 0.05 ± 0.15 0.20 ± 0.22

oCSE 0.05 ± 0.15 0.08 ± 0.16

TiMINo 0.64 ± 0.08 0.49 ± 0.03

VarLiNGAM 0.0 ± 0.0 0.02 ± 0.06

GC 0.12 ± 0.27 0.14 ± 0.23

TCDF 0.4 ± 0.22 0.33 ± 0.17

Table 4. Results for real datasets. We report the mean and the standard deviation of
the F1 score.

Temperature Diary FMRI

NBCB 1 0.8 0.40 ± 0.21

pwNBCB 1 0.8 0.39 ± 0.21

PCMCI-PC 1 0.5 0.29 ± 0.19

PCMCI-MI 1 0.5 0.22 ± 0.18

oCSE 1 0.8 0.16 ± 0.20

TiMINo 0 0.0 0.32 ± 0.11

VarLiNGAM 0 0.0 0.49 ± 0.28

GC 0.66 0.33 0.24 ± 0.18

TCDF 0 0.0 0.07 ± 0.13

FMRI. The last real-world dataset benchmark is about FMRI12 (Functional
Magnetic Resonance Imaging) that contains BOLD (Blood-oxygen-level depen-
dent) datasets[16] for 28 different underlying brain networks. It measures the
neural activity of different regions of interest in the brain based on the change of
blood flow. There are 50 regions in total, each with its own associated time series.
Since not all existing methods can handle 50 time series, datasets with more
than 10 time series are excluded. In total we are left with 26 datasets containing
between 5 and 10 brain regions. NBCB and VarLINGAM clearly outperforms
other methods. All other methods are comparable, except TCDF which per-
forms very poorly. Interestingly, PCMCI-PC performs better than PCMCI-MI,

12 Original data is available at https://www.fmrib.ox.ac.uk/datasets/netsim/index.
html, a preprocessed version is available at https://github.com/M-Nauta/TCDF/
tree/master/data/fMRI.

https://www.fmrib.ox.ac.uk/datasets/netsim/index.html
https://www.fmrib.ox.ac.uk/datasets/netsim/index.html
https://github.com/M-Nauta/TCDF/tree/master/data/fMRI
https://github.com/M-Nauta/TCDF/tree/master/data/fMRI
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and VarLINGAM outperforms TiMINo which suggests the existence of linear
causal relations.

5 Conclusion

We have addressed in this study the problem of learning a summary causal graph
on time series without being restricted to the Markov equivalent class even in
the case of instantaneous relations. To do so, we followed a hybrid strategy.
First we used a noise-based method to find the causal ordering between the
time series under the assumption of additive noise models. Second, we used a
constraint-based method to prune unnecessary parents and therefore ending up
with an oriented causal graph. The second step heavily relies on a new temporal
causation entropy measure that generalizes the causation entropy by removing
the restriction of one time lag. Experiments conducted on different benchmark
datasets and involving previous state-of-the-art proposals showed that the algo-
rithm we have introduced outperforms previous proposals. In particular, we have
illustrated and compared the behavior of our algorithm robustness wrt to differ-
ent causal structures which yielded good results over all datasets, particularly
on real ones.

In the future, we would like to test the method on large datasets, increasing
both the number of time series d and the number of timepoints n. In particular,
it would be interesting to study the quality of estimation in the regime d  n.
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Alpes (ANR-19-P3IA-0003).
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maintenance schedules, optimize system performance or collect usage
statistics of individual machines. In this work, we focus on estimating
the power output of a Combined Heat and Power (CHP) machine of
a medium-sized company facility by analyzing the total facility power
consumption. We formulate the problem as a time-series classification
problem, where the class label represents the CHP power output. As the
facility is fully instrumented and sensor measurements from the CHP
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from the CHP sensor readings. However, sensor failures result in misla-
beled training data samples which are hard to detect and remove from the
dataset. Therefore, we propose a novel multi-task deep learning approach
that jointly trains a classifier and an autoencoder with a shared embed-
ding representation. The proposed approach targets to gradually correct
the mislabelled data samples during training in a self-supervised fashion,
without any prior assumption on the amount of label noise. We bench-
mark our approach on several time-series classification datasets and find
it to be comparable and sometimes better than state-of-the-art meth-
ods. On the real-world use-case of predicting the CHP power output, we
thoroughly evaluate the architectural design choices and show that the
final architecture considerably increases the robustness of the learning
process and consistently beats other recent state-of-the-art algorithms
in the presence of unstructured as well as structured label noise.

Keywords: Time-series · Deep learning · Label noise ·
Self-supervision · Non-intrusive load monitoring · Time-series
classification

Electronic supplementary material The online version of this chapter (https://
doi.org/10.1007/978-3-030-86486-6 29) contains supplementary material, which is
available to authorized users.

c© Springer Nature Switzerland AG 2021
N. Oliver et al. (Eds.): ECML PKDD 2021, LNAI 12975, pp. 469–484, 2021.
https://doi.org/10.1007/978-3-030-86486-6_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86486-6_29&domain=pdf
http://orcid.org/0000-0003-0476-5978
http://orcid.org/0000-0001-7130-5483
http://orcid.org/0000-0002-0935-5591
https://doi.org/10.1007/978-3-030-86486-6_29
https://doi.org/10.1007/978-3-030-86486-6_29
https://doi.org/10.1007/978-3-030-86486-6_29


470 A. Castellani et al.

1 Introduction

It is common to monitor multiple machines in complex industrial settings for
many diverse reasons, such as to detect undesired operational states, adjust
maintenance schedules or optimize system performance. In situations where the
installation of many sensors for individual devices is not feasible due to cost or
technical reasons, Non-Intrusive Load Monitoring (NILM) [18] is able to identify
the utilization of individual machines based on the analysis of cumulative elec-
trical load profiles. The problem of the generation of labelled training data sets
is a cornerstone of data-driven approaches to NILM. In this context, industry
relies mostly on manually annotated data [11] and less often the training labels
can be automatically generated from the sensors [13], which is often unreliable
because of sensor failure and human misinterpretation. Data cleaning techniques
are often hard to implement [42] which unavoidably leads to the presence of
wrongly annotated instances in automatically generated datasets i.e. label noise
[12]. Many machine learning methods, and in particular deep neural networks,
are able to overfit training data with noisy labels [48], thus it is challenging to
apply data-driven approaches successfully in complex industrial settings.

We consider a medium-sized company facility and target the problem of
estimating the electrical power output of a Combined Heat and Power (CHP)
machine by only analyzing the facility electrical power consumption. The elec-
trical power output of the CHP is sufficient to supply a substantial share of the
total electricity demand of the facility. Therefore, knowing the CHP’s electrical
power output is very helpful for distributing the electrical energy in the facility,
for example when scheduling the charging of electrical vehicles (EVs) or reduc-
ing total peak-load [28]. We propose a data-driven deep learning-based approach
to this problem, which is modelled as time-series classification challenge in the
presence of label noise, where the class label of each time series represents the
estimated CHP power output level. As the facility is fully instrumented, and sen-
sor measurements from the CHP are available, we generate the training labels
in an automated fashion from the CHP sensor readings. However, these sensors
fail from time to time which resulting wrong labels. To tackle this problem,
we propose a novel multi-task deep learning approach named Self-Re-Labeling
with Embedding Analysis (SREA), which targets the detection and re-labeling
of wrongly labeled instances in a self-supervised training fashion.

In the following, after a formal introduction to SREA, we empirically validate
it with several benchmarks data sets for time-series classification and compare
against state-of-the-art (SotA) algorithms. In order to evaluate the performance,
we create a training data set from clean sensor readings and we corrupt it by
introducing three types of artificial noise in a controlled fashion. After that, we
apply the proposed method to a real-world use-case including real sensor fail-
ures and show that those are properly detected and corrected by our algorithm.
Finally, we perform an extensive ablation study to investigate the sensitivity of
the SREA to its hyper-parameters.
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2 Related Work

Deep learning based techniques constitute a promising approach to solve the
NILM problem [30,34]. Since the requirement of large annotated data sets is
very challenging, the problem is often addressed as a semi-supervised learning
task [4,20,46], where only a part of the data is correctly labeled, and the other is
left without any label. Here we take a different stance to the problem of energy
disaggregation: we assume that labels for all data are given, but not all labels
are correct, as is often the case in complex sensor networks [12].

Learning noisy labels is an important topic in machine learning research
[16,38]. Several approaches are based on the fact that deep neural networks tend
to first learn clean data statistics during early stages of training [2,36,48]. Meth-
ods can be based on a loss function which is robust to label noise [40,50], or they
can introduce an explicit [5] or implicit [35] regularization term. Another adap-
tation of the loss function is achieved by using different bootstrapping methods
based on the predicted class labels [16,33,41]. Some other common approaches
are based on labeling samples with smaller loss as clean ones [1,15,23,27], and
fitting a two-component mixture model on the loss distribution, or using cross-
validation techniques [7] in order to separate clean and mislabeled samples.
Several existing methods [15,29,39] require knowledge about the percentage
of noisy samples, or estimate this quantity based on a given. The suitability
of these approaches is unclear for real-world applications. Since our proposed
method, SREA, targets the correction of mislabeled training samples based on
their embedding representation, we do not rely on specific assumptions on the
amount of label noise in advance. Our modeling approach is based on the obser-
vation that self-supervision has proven to provide an effective representation for
downstream tasks without requiring labels [17,19], this leading to an improve-
ment of performance in the main supervised task [22].

Most applications of models which deal with label noise come from the
domain of image data, where noise can be induced by e.g. crowd-working anno-
tations [16,25]. Some approaches consider label noise in other domains such as
human activity detection [3], sound event classification [10], or malware detection
[14]. An attempt to analyze the effect of noisy data on applications for real-world
data sets is made in [44], but the authors do not compare to the SotA. Up to the
authors knowledge, we are the first to report a detailed evaluation of time-series
classification in the presence of label noise, which is a crucial data characteristics
in the domain of NILM.

3 CHP Electrical Power Output Estimation

The CHP is a complex industrial machinery which burns natural gas in order
to produce heat and electrical power. It is controlled by an algorithm where
only some aspects are known, so its behavior is mostly unclear and not well
predictable. It is known that important control signals are the ambient outside
temperature Tamb, the internal water temperature Twater, the generated elec-
trical power output PCHP , and the total electricity demand of the facility Ptot.
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Fig. 1. Sensory data from the CHP and total electrical power. Upper: normal operation.
Lower: an example of PCHP sensor malfunction is highlighted in yellow.

Figure 1 shows examples of recorded data from the CHP as well as Ptot of the
facility. Tamb has a known strong influence as the CHP is off in the summer period
and more or less continuously on in winter and cold periods. In the transition
seasons (spring and fall), the CHP sometimes turns on (night of 25th Sept.),
sometimes just heats up its internal water (nights of 20st, 21st, and 23rd Sept.),
or exhibits a fast switching behavior (e.g. 20st, and 27th Oct.). Even though the
CHP usually turns on for a couple of hours (e.g. 25th Sept.) at rare instances it
just turns on for a very short time (e.g. 28th Oct.).

Due to the complicated operational pattern, it is already hard to make a
detector for the CHP operational state even with full access to the measurement
data. Additionally, the sensors measuring the CHP output power are prone to
failure which can be observed in the yellow highlighted area in the bottom side
of Fig. 1. During that 10-hour period, the CHP did produce electrical power,
even though the sensor reading does not indicate this. The total electrical power
drawn from the grid, Ptot, provides a much more stable measurement signal. The
signature of the CHP is clearly visible in the total power signal and we propose
to estimate PCHP from this signal, but many variables also affects the total load,
e.g. PV system, changing workloads, etc.

We focus on estimating the power output but where the estimate power value
should only be accurate within a certain range. Thus, the problem is formulated
as time-series classification instead of regression, where each class represents a
certain range of output values. The class labels are calculated directly from the
PCHP sensor measurement as the mean power output of a fixed-length slid-
ing window. Due to frequent sensor malfunctioning, as displayed in Fig. 1, the
resulting classification problem is subject to label noise.

4 Self-Re-Labeling with Embedding Analysis (SREA)

Architecture and Loss Function. In this work, column vectors are denoted
in bold (e.g. x). As described in Sect. 3, we treat the challenge to model time
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Fig. 2. SREA processing architecture (a) and the dynamics of the parameters α and
w during the training epochs (b).

series data as a classification problem to predict averaged characteristics of
the process using windowing techniques. Hence, we deal with a supervised
k -class classification problem setting with a dataset of n training examples
D = {(xi,yi), i = 1, ..., n} with yi ∈ {0, 1}k being the one-hot encoding label for
sample xi. Thereby, label noise is present, i.e. we expect that yi is wrong for
a substantial (and possibly skewed) amount of instances in the training set.

The overall processing architecture of the proposed approach is shown in
Fig. 2(a). The autoencoder (fae), represented by the encoder (e) and the decoder,
provides a strong surrogate supervisory signal for feature learning [22] that is not
affected by the label noise. Two additional components, a classifier network (fc)
and a constrained clustering module (fcc) are introduced, which independently
propose class labels as output. Each of the three processing pipelines share the
same embedding representation, created by the encoder, and each output module
is associated with one separate contribution to the total loss function.

For the autoencoder, a typical reconstruction loss is utilized:

Lae =
1
n

n∑

i=1

(x̂i − xi)
2
, (1)

where x̂i is the output of the autoencoder given the input xi.
Cross entropy is used as loss function for the classification network output,

Lc = − 1
n

n∑

i=1

yT
i · log(pc

i ), (2)

where pc
i are the k -class softmax probabilities produced by the model for the

training sample i, i.e. pc
i = softmax(fc(xi)).

For the constraint clustering loss, we first initialize the cluster center C ∈
R

d×k in the d -dimensional embedding space, with the k-means clustering of
the training samples. Then, inspired by the good results achieved in [47], we
constrain the embedding space to have small intra-class and large inter-class
distances, by iteratively adapting C. The resulting clustering loss is given by:

Lcc =
1
n

n∑

i=1

[
‖e(xi) − Cyi

‖22︸ ︷︷ ︸
intra-class

+ log
k∑

j=1

exp
(−‖e(xi) − Cj‖2

)

︸ ︷︷ ︸
inter-class

]
+ �reg. (3)
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The entropy regularization �reg = −∑k
i mini�=j log ‖Ci − Cj‖2 is aimed to create

well separated embedding for different classes [37].
The final total loss function is given by the sum of those contributions,

L = Lae + α (Lc + Lcc + Lρ) , (4)

where we introduced the dynamic parameter 0 ≤ α ≤ 1 which changes during
the training (explained below). We also add the regularization loss Lρ to prevent
the assignment of all labels to a single class, Lρ =

∑k
j=1 hj · log hj

pρ
j
, where

hj denotes the prior probability distribution for class j, which assume to be
uniformly distributed to 1/k. The term pρ

j is the mean softmax probability of
the model for class j across all samples in dataset which we approximate using
mini-batches as done in previous works [1].

Re-Labeling Strategy. We do not compute the total loss function in Eq. (4)
with the given (noisy) label yi. But, we estimate the true label for each data
sample y∗

i by taking the weighted average of the given training label yi, and the
pseudo-labels proposed by the classifier yc

i and the constraint clustering ycc
i .

In order to increase robustness of the labels proposed by the classifier (yc
i ),

we take for each data sample the exponentially averaged probabilities during the
last five training epochs, with the weighting factor τt ∼ e

t−5
2 :

yc
i =

∑

last 5 epochs t

τt [pc
i ]t. (5)

The label from constraint clustering (ycc
i ) is determined by the distances of

the samples to the cluster centers in the embedding space:

ycc
i = softminj

(‖e(xi) − Cj‖2
)

(6)

Then, the corrected label y∗
i (in one hot-encoding) is produced by selecting

the class corresponding to the maximum entry:

y∗
i = argmax

[
(1 − w)yi + w (yc

i + ycc
i )

]
(7)

where the dynamic weighting factor 0 ≤ w ≤ 1 is function of the training epoch
t and to be discussed below when explaining the training dynamics.

Training Dynamics. A key aspect of our proposed approach is to dynamically
change the loss function, as well as the label correction mechanism, during the
training. This is achieved by changing the parameters α (loss function) and w
(label correction mechanism) as depicted in Fig. 2(b). The training dynamics is
completely defined by the three hyper-parameters λinit, Δstart and Δend.

Initially, we start with α = 0 and w = 0, and only train the autoencoder from
epoch t = 0 to epoch t = λinit. At the training epoch t = λinit, α is ramped
up linearly until it reaches α = 1 in training epoch t = λstart = λinit + Δstart.
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Algorithm 1: SREA: Self-Re-Labeling with Embedding Analysis.
Require: Data {(xi,yi)}n, autoencoder fae, classifier fc, constraint clustering

fcc, hyper-parameters: λinit, Δstart, Δend.
1 Init hyper-parameter ramp-up functions wt and αt // see Fig. 2(b)
2 for training epoch t = 0 to tend do
3 Fetch mini-batch data {(xi,yi)}b at current epoch t
4 for i = 1 to b do
5 if t == λinit then
6 fcc ← k-means(e(xi)) // Initialize constraint clustering
7 end
8 x̂i = fae(xi) // Auto-encoder forward pass
9 yc

i ← Eq.(5) // Classifier forward pass
10 ycc

i ← Eq.(6) // Constraint clustering output
11 Adjust w ← wt, α ← αt // Label correction and loss parameters
12 y∗

i ← Eq.(7) // Re-labeling
13 L ← Eq.(4) // Evaluate loss function
14 Update fae, fc, fcc by SGD on L
15 end

16 end

The purpose of this first warm-up period is an unsupervised initialization of
the embedding space with slowly turning on the supervision of the given labels.
The dominant structure of the clean labels is learned, as neural networks tend
to learn the true labels, rather than overfit to the noisy ones, at early training
stages [2,48]. Then, we also increase w linearly from zero to one, between epochs
t = λstart to t = λstart + Δend = λend, thereby turning on the label correction
mechanism (re-labeling). After training epoch t = λend until the rest of the
training, we keep α = 1 and w = 1 which means we are fully self-supervised
where the given training labels do not enter directly anymore (fine-tuning). We
summarize the SREA and display the pseudo-code in Algorithm 1.

5 Experimental Setup

Label Noise. True labels are corrupted by a label transition matrix T [38],
where Tij is the probability of the label i being flipped into label j. For all the
experiments, we corrupt the labels with symmetric (unstructured) and asym-
metric (structured) noise with noise ratio ε ∈ [0, 1]. For symmetric noise, a true
label is randomly assigned to other labels with equal probability, i.e. Tii = 1 − ε
and Tij = ε

k−1 (i �= j), with k the number of classes. For asymmetric noise, a
true label is mislabelled by shifting it by one, i.e. Tii = 1− ε and T(j+1modk)j = ε
(i �= j). For the estimation of the CHP power, we also analyze another kind of
structured noise which we call flip noise, where a true label is only flipped to
zero, i.e. Tii = 1 − ε and Ti0 = ε. This mimics sensor failures, where a broken
sensor produces a constant output regardless of the real value. Note that learning
with structured noise is much harder than with unstructured noise [12].
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Network Architecture. Since SREA is model agnostic, we use CNNs in the
experiments, as these are currently the SotA deep learning network topology
for time-series classification [9,43]. The encoder and decoder have a symmetric
structure with 4 convolutional blocks. Each block is composed by a 1D-conv
layer followed by batch normalization [21], a ReLU activation and a dropout
layer with probability 0.2. The dimension of the shared embedding space is 32.
For the classifier we use a fully connected network with 128 hidden units and
#classes outputs. We use the Adam optimizer [26] with an initial learning rate
of 0.01 for 100 epochs. Such high value for the initial learning rate helps to
avoid overfitting of noisy data in the early stages of training [2,48]. We halve the
learning rate every 20% of training (20 epochs). In the experiments, we assume
to not have access to any clean data, thus it is not possible to use a validation set,
and the models are trained without early stopping. The SREA hyper-parameters
λinit = 0, Δstart = 25 and Δend = 30 are used if not specified otherwise. Further
implementation details are reported in the supplementary material [6], including
references to the availability of code and data sets.

Comparative Methods. In order to make a fair comparison, we use the same
neural network topology throughout all the experiments. A baseline method,
which does not take in accout any label noise correction criteria, is a CNN clas-
sifier [43] trained with cross-entropy loss function of Eq. (2), which we refer to
as CE. We compare to MixUp [49], which is a data augmentation technique that
exhibits strong robustness to label noise. In MixUp-BMM [1] a two-component
beta-mixture model is fitted to the loss distribution and training with bootstrap-
ping loss is implemented. SIGUA [15] implements stochastic gradient ascent on
likely mislabeled data, thereby trying to reduce the effect of noisy labels. Finally,
in Co-teaching [39] two networks are simultaneously trained which inform each
other about which training examples to keep. The algorithms SIGUA and Co-
teaching assume that the noise level ε is known. In our experiments, we use the
true value of ε for those approaches, in order to create an upper-bound of their
performance. All the hyper-parameters of the investigated algorithm are set to
their default and recommended values.

Implementation Details. For the problem of estimating CHP power output,
the raw data consists of 78 days of measurement with a sampling rate of 1
sample/minute. As preprocessing, we do a re-sampling to 6 samples/hour. The
CHP should have a minimal on-time of one hour, in order to avoid too rapid
switching which would damage the machine. However, during normal operation,
the CHP is controlled in a way that on- and off-time periods are around 4 to 8 h.
Due to these time-scales, we are interested in the power output on a scale of 6 h,
which means we use a sliding window with a size of 6 h (36 samples) and a stride
of 10 min (1 sample). Therefore, the preprocessing of the three input variables
Ptot, Twater, and Tamb lead to R

(36×3)-dimensional data samples. For generating
the labels, we use 5 power output levels, linearly spaced from 0 to PCHP,max, and
correspondingly to a five-dimensional one-hot encoded label vector yi ∈ R

5. For



Estimating the Electrical Power Output of Industrial Devices 477

every dataset investigated, we normalize the dataset to have zero mean and unit
standard deviation, and we randomly divide the total available data in train-set
and test-set with a ratio 80:20.

Evaluation Measures. To evaluate the performance, we report the averaged
F1-score on the test-set, where the well-known F1-scores are calculated for each
class separately and then averaged via arithmetic mean, F1 = 1

k

∑k
j=1 F1,j .

This formulation of the F1-score results in a larger penalization when the model
do not perform well in the minority class, in cases with class imbalance. Other
metrics, such as the accuracy, show qualitatively similar results and are therefore
not reported in this manuscript. In order to get performance statistics of the
methods, all the experiments have been repeated 10 times with different random
initialization. The non-parametric statistical Mann-Whitney U Test [32] is used
to compare the SREA against the SotA algorithms.

6 Results and Discussion

Benchmarks Datasets. We evaluate the proposed SREA on publicly available
time-series classification datasets from UCR repository [8]. We randomly choose
10 datasets with different size, length, number of classes and dimensions in order
to try to avoid bias in the data. A summary of the datasets is given in Table 1.

Table 1. UCR Single-variate and Multi-variate
dataset description.

Dataset Size Length #classes #dim

ArrowHead† 211 251 3 1

CBF 930 128 3 1

Epilepsy 275 206 4 3

FaceFour† 112 350 4 1

MelbourneP 3633 24 10 1

NATOPS 360 51 6 24

OSULeaf† 442 427 6 1

Plane 210 144 7 1

Symbols† 1020 398 6 1

Trace† 200 275 4 1

† results reported in the supplementary

material [6].

We show a representative
selection of all comparisons of
the results in Table 2. Without
any label noise, CE is expected
to provide very good results. We
observe that our SREA gives sim-
ilar or better F1 scores than
the CE method on 9 out of
10 datasets without label noise.
Considering all algorithms and
datasets, with symmetric noise we
achieve statistically significantly
better scores in 62, similar scores
in 105, and worse scores in 33
experiments out of a total of 200 experiments1. For the more challenging case of
asymmetric noise, the SREA-results are 86 times significantly better, 97 times
equal, and 17 times worse than SotA algorithms.

CHP Power Estimation. Table 3 shows the results of the estimation of the
CHP output power level. Without labels noise, the proposed approach has com-
parable performance to CE, with an average F1-score of 0.979. This implies that
1 Number of experiments: 10 datasets × 4 noise levels × 5 algorithms = 200. Each

experiment consists of 10 independent runs.
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Table 2. F1 test scores on UCR datasets. The best results per noise level are under-
lined. In parenthesis the results of a Mann–Whitney U test with α = 0.05 of SREA
against the other approaches: SREA F1 is significantly higher (+), lower (−) or not
significant (≈).

Dataset Noise % CE MixUp M-BMM SIGUA Co-teach SREA

CBF – 0 1.000 (+) 0.970 (+) 0.886 (+) 1.000 (+) 0.997 (+) 1.000

Symm 15 0.943 (+) 0.923 (+) 0.941 (+) 0.976 (+) 0.923 (+) 1.000

30 0.780 (+) 0.799 (+) 0.932 (+) 0.923 (+) 0.833 (+) 0.998

Asymm 10 0.973 (+) 0.956 (+) 0.920 (+) 0.989 (+) 0.963 (+) 1.000

20 0.905 (+) 0.897 (+) 0.949 (+) 0.980 (+) 0.900 (+) 1.000

Epilepsy – 0 0.974 (≈) 0.955 (+) 0.926 (+) 0.978 (≈) 0.971 (+) 0.973

Symm 15 0.890 (≈) 0.913 (≈) 0.899 (≈) 0.884 (≈) 0.861 (≈) 0.861

30 0.784 (−) 0.823 (−) 0.805 (−) 0.741 (≈) 0.744 (≈) 0.708

Asymm 10 0.919 (≈) 0.930 (≈) 0.847 (≈) 0.905 (≈) 0.919 (≈) 0.888

20 0.861 (≈) 0.894 (−) 0.891 (−) 0.826 (≈) 0.863 (≈) 0.825

Melbourne – 0 0.923 (≈) 0.879 (+) 0.773 (+) 0.918 (≈) 0.913 (≈) 0.911

Symm 15 0.869 (+) 0.870 (+) 0.856 (+) 0.883 (≈) 0.886 (≈) 0.883

30 0.826 (+) 0.858 (≈) 0.870 (≈) 0.855 (≈) 0.876 (−) 0.862

Asymm 10 0.898 (+) 0.877 (+) 0.860 (+) 0.899 (+) 0.897 (+) 0.911

20 0.865 (+) 0.861 (+) 0.851 (+) 0.858 (+) 0.893 (≈) 0.903

NATOPS – 0 0.858 (≈) 0.801 (≈) 0.711 (+) 0.848 (≈) 0.835 (≈) 0.866

Symm 15 0.779 (≈) 0.718 (+) 0.702 (+) 0.754 (≈) 0.761 (≈) 0.796

30 0.587 (≈) 0.580 (+) 0.602 (+) 0.593 (+) 0.673 (+) 0.670

Asymm 10 0.798 (+) 0.822 (≈) 0.756 (+) 0.764 (+) 0.790 (+) 0.829

20 0.703 (≈) 0.763 (≈) 0.762 (≈) 0.698 (≈) 0.733 (≈) 0.762

Plane – 0 0.995 (≈) 0.962 (+) 0.577 (+) 0.981 (+) 0.990 (≈) 0.998

Symm 15 0.930 (+) 0.953 (+) 0.873 (+) 0.971 (≈) 0.981 (≈) 0.983

30 0.887 (+) 0.902 (+) 0.943 (≈) 0.862 (+) 0.941 (≈) 0.944

Asymm 10 0.981 (≈) 0.986 (≈) 0.648 (+) 0.986 (≈) 0.990 (≈) 0.976

20 0.952 (≈) 0.923 (≈) 0.751 (+) 0.976 (≈) 0.990 (≈) 0.966

we successfully solve the CHP power estimating problem by analyzing the total
load with an error rate less than 2%. When the training labels are corrupted with
low level of symmetric label noise, ε ≤ 0.4, SREA consistently outperforms the
other algorithms. With higher level of symmetric noise we achieve a comparable
performance to the other algorithms. Under the presence of asymmetric label
noise, SREA shows a performance comparable to the other SotA algorithms.
Only for a highly unrealistic asymmetric noise level of 40%, the performance
is significantly worse than the SotA. This indicates that, during the warm-up
and relabelling phase, the network is not able to learn the true labels but also
learns the wrong labels induced by the structured noise. During the fine-tuning
phase, the feedback of the wrongly labeled instances is amplified and the wrong
labels a reinforced. For flip noise, which reflects sensors failures, SREA retains
a high performance and outperforms all other SotA algorithms up to noise lev-
els of 40%. For low noise levels up to 20%, SREA has similar performance to
Co-teaching, but without the need to know the amount of noise.
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Table 3. F1 test scores of the CHP power estimation. Same notation as Table 2.

Noise % CE MixUp M-BMM SIGUA Co-teach SREA

– 0 0.980 (≈) 0.957 (+) 0.882 (+) 0.979 (≈) 0.974 (≈) 0.979

Symmetric 15 0.931 (+) 0.934 (+) 0.903 (+) 0.954 (≈) 0.950 (≈) 0.960

30 0.856 (+) 0.910 (+) 0.897 (+) 0.912 (+) 0.920 (+) 0.938

45 0.763 (+) 0.883 (+) 0.895 (+) 0.867 (+) 0.886 (+) 0.918

60 0.661 (+) 0.761 (≈) 0.692 (+) 0.817 (≈) 0.839 (≈) 0.800

Asymmetric 10 0.954 (≈) 0.945 (+) 0.893 (+) 0.959 (≈) 0.964 (≈) 0.961

20 0.924 (+) 0.925 (+) 0.899 (+) 0.935 (≈) 0.938 (≈) 0.946

30 0.895 (≈) 0.909 (≈) 0.873 (+) 0.916 (≈) 0.923 (≈) 0.919

40 0.807 (−) 0.848 (−) 0.784 (−) 0.836 (−) 0.876 (−) 0.287

Flip 10 0.970 (≈) 0.950 (+) 0.860 (+) 0.965 (+) 0.973 (≈) 0.971

20 0.942 (+) 0.942 (+) 0.860 (+) 0.945 (+) 0.962 (≈) 0.963

30 0.908 (+) 0.919 (+) 0.880 (+) 0.923 (+) 0.792 (+) 0.956

40 0.868 (+) 0.791 (+) 0.696 (+) 0.779 (+) 0.623 (+) 0.945

Fig. 3. Confusion matrix of the corrected labels (left) and embedding space of the
train-set (right) of the CHP power estimation, corrupted with 30% flip noise.

In Fig. 3 (left) we show the label confusion matrix (with in-class percentage
in parentheses) of SREA for the resulting corrected labels for the case of 30% of
flip label noise. The corrected labels have 99% and 98% accuracy for the fully
off- (0) and on-state (4), respectively. The intermediate power values’ accuracies
are 90% for state 1, 86% for state 2 and 92% for state 3. As an example, a
visualization of the 32 dimensional embedding using the UMAP [31] dimension
reduction technique is shown in Fig. 3 for the cases of 30% flip noise. The clusters
representing the classes are very well separated, and we can see that the majority
of the noisy label samples have been corrected and assigned to their correct class.
Similar plots for other noise types as well as critical distance plots can be found
in the supplementary material [6].

Finally, we run SREA on a different real-world test-set which includes a
sensor failure, and the corresponding noisy label, as shown in Fig. 1. The method
was able to correctly re-label the period of the sensor failure.
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Fig. 4. SREA sensitivity to hyper-parameters Δstart (left), Δend (middle), λinit (right)
for the CHP data and symmetric noise.

Table 4. Ablation studies on loss function components of SREA.

Noise % Lc Lc + Lae Lc + Lcc Lc + Lae + Lcc

– 0 0.472 ± 0.060 0.504 ± 0.012 0.974 ± 0.003 0.980 ± 0.003

Symmetric 15 0.388 ± 0.027 0.429 ± 0.023 0.943 ± 0.004 0.957 ± 0.007

30 0.355 ± 0.038 0.366 ± 0.041 0.919 ± 0.006 0.930 ± 0.008

45 0.290 ± 0.014 0.318 ± 0.010 0.892 ± 0.009 0.902 ± 0.008

Asymmetric 10 0.400 ± 0.026 0.407 ± 0.012 0.949 ± 0.003 0.957 ± 0.003

20 0.348 ± 0.003 0.358 ± 0.003 0.930 ± 0.009 0.941 ± 0.009

30 0.342 ± 0.002 0.349 ± 0.004 0.901 ± 0.007 0.922 ± 0.010

Flip 10 0.460 ± 0.030 0.468 ± 0.030 0.961 ± 0.009 0.973 ± 0.006

20 0.415 ± 0.028 0.424 ± 0.037 0.951 ± 0.008 0.962 ± 0.005

30 0.405 ± 0.030 0.411 ± 0.040 0.943 ± 0.007 0.957 ± 0.003

6.1 Ablation Studies

Hyper-parameter Sensitivity. We investigate the effect of the hyper-
parameters of SREA on both, benchmarks and CHP datasets. The observed
trends were similar in all datasets, and therefore we only report the result for
the CHP dataset. The effect of the three hyper-parameters related to the training
dynamics (λinit, Δstart, and Δend) are reported in Fig. 4 for the cases of unstruc-
tured symmetric label noise (results for the other noise types can be found in
the supplementary material [6]). For the variation of Δstart and Δend there is a
clear pattern for every noise level as the performance increases with the values
of the hyper-parameters, and best performance is achieved by Δstart = 25 and
Δend = 30. This shows that both the warm-up and re-labeling periods should be
rather long and last about 55% of the training time, before fully self-supervised
training. The effect of λinit is not as clear, but it seems that either a random
initialization of the cluster centers (λinit close to zero) or an extended period of
unsupervised training of the autoencoder (λinit between 20 and 40) is beneficial.

Loss Function Components. We study what effect each of the major loss
function components of Eq. 4 has on the performance of SREA and report the
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Fig. 5. SREA sensitivity to the input variables for CHP data and asymmetric noise.

results in Table 4. It can be observed, that not including the constrained clus-
tering, i.e. using only Lc or Lc + Lae, gives rather poor performance for all
noise types and levels. This is explicitly observed as the performance decreases
again during training in the self-supervision phase without Lcc (not shown). This
seems understandable as the label correction method repeatedly bootstraps itself
by using only the labels provided by the classifier, without any anchor to pre-
serve the information from the training labels. This emphasizes the necessity of
constraining the data in the embedding space during self-supervision.

Input Variables. We investigate the influence of the selection of the input
variables on the estimation of the CHP power level. The results for all possible
combination of the input signals are reported in Fig. 5. Unsurprisingly, using
only the ambient temperature gives by far the worst results, while utilizing all
available inputs results in the highest scores. Without the inclusion of the Ptot,
we still achieve a F1-score above 0.96 with only using the Twater as input signal.

7 Conclusion and Future Work

In this work, we presented the problem of estimating the electrical power output
of a Combined Heat and Power (CHP) machine by analyzing the total elec-
trical power consumption of a medium size company facility. We presented an
approach to estimate the CHP power output by analyzing the total load, the
ambient temperature and the water temperature of the CHP, all of which are
known to be control variables of the CHP. The training dataset for the deep-
learning based approach was automatically derived from sensor measurements
of the CHP power output, and sensor failures create noisy samples in the gen-
erated class labels. The proposed Self-Re-Labeling with Embedding Analysis
(SREA) incorporates an autoencoder, a classifier and a constraint clustering
which all share and operate on a common low-dimensional embedding represen-
tation. During the network training, the loss function and the label correction
mechanism are adjusted in a way that a robust relabeling of noisy training labels
is possible. We compare SREA to five SotA label noise correction approaches
on ten time-series classification benchmarks and observe mostly comparable or
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better performance for various noise levels and types. We also observe superior
performance on the CHP use-case for a wide range of noise levels and all studied
noise types. We thoroughly analyzed the dependence of the proposed methods
on the (hyper-)parameters and architecture choices.

The proposed approach is straight-forward to realize without any (hyper-
)parameter tuning, as there are clear insights on how to set the parameters
and the method is not sensitive to details. It also has the strong benefit that
the amount of label noise need not be known or guessed. We used CNNs as
building blocks of the proposed algorithm, but since SREA is model agnostic,
it is possible to utilize other structures, such as recurrent neural networks [24]
or transformers [45], which would also utilize the time-structure of the problem.
The application of such dynamic models is left for future work.

Estimating the CHP output as shown in this work will be used in the future in
energy optimization scenarios to arrive at more reliable and robust EV charging
schedules. But, due to the robustness of the proposed method and the ability to
exchange the neural networks with arbitrary other machine learning modules,
we see a high potential for this architecture to be used for label noise correction
in other application domains. We also see a high potential for an application
in anomaly detection scenarios where sensor failures need to be detected. A
thorough evaluation in these application areas is left for future work.
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Abstract. The computational challenges arising from increasingly large
search spaces in hyperparameter optimization necessitate the use of per-
formance prediction methods. Previous works have shown that approx-
imated performances at various levels of fidelities can efficiently early
terminate sub-optimal model configurations. In this paper, we design
a Sequence-to-sequence learning curve forecasting method paired with
a novel objective formulation that takes into account earliness, multi-
horizon and multi-target aspects. This formulation explicitly optimizes
for forecasting shorter learning curves to distant horizons and regular-
izes the predictions with auxiliary forecasting of multiple targets like
gradient statistics that are additionally collected over time. Further-
more, via embedding meta-knowledge, the model exploits latent correla-
tions among source dataset representations and configuration trajectories
which generalizes to accurately forecasting partially observed learning
curves from unseen target datasets and configurations. We experimen-
tally validate the superiority of the method to learning curve forecast-
ing baselines and several ablations to the objective function formulation.
Additional experiments showcase accelerated hyperparameter optimiza-
tion culminating in near-optimal model performance.

Keywords: Neural forecasting · Learning curves · Hyperparameter
optimization · Sequence-to-sequence neural networks · Multi-task
learning

1 Introduction

Hyperparameter optimization is a vital process in machine learning workflows.
Practitioners commonly either rely on brute-force search over long grids, or via
treating the loss surface in a black-box optimization framework [15]. Even so,
given the configuration evaluation times, both of these methods fail to scale for
large search spaces [14]. This motivates the research problem of designing novel
methods to tackle this characteristic complexity and speeding up optimization.
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The prominent theme has been to exploit cheap-to-evaluate fidelities (or prox-
ies) to the actual validation metrics. The simplest example of it is of a Learn-
ing curve in iterative learning algorithms which can be considered an iterative
fidelity to the final performance of the hyperparameter configuration. Learning
curve forecasting methods speed up optimization by extrapolating the perfor-
mance metric from short runs to arrive at keep-or-kill decisions faster. Specific
works [2,6,10,13] that model this extrapolation as a fidelity have exploited the
partially observed time-series from validation metrics and hyperparameter con-
figuration features (batch size, learning rate etc.) to predict the asymptote (final
performance) or forecast multiple steps ahead till the asymptote. We provide an
overview of the related work in the accompanying Appendix 1.1

Considering neural network training, there can be several statistical proper-
ties for e.g. μ, σ for layeri associated with the weights that dynamically change
throughout training and can also be modeled as fidelities to the final perfor-
mance [16]. In this paper, we propose a Sequence-to-sequence learning model
that can model this inherent multivariate aspect present in a multi-task learning
problem setting. We propose to forecast these additional channels together with
the target validation accuracy for all timesteps till the asymptote. This leads
to an interesting multi-task problem formulation with a rich output space to be
modeled. Specifically, we formulate the main tasks to be the future points needed
to be forecasted for a target channel and in contrast, all other channel’s future
value predictions as auxiliary tasks. An additional aspect to the learning curve
forecasting problem relates to earliness in the prediction of the learning curve.
The intuition behind catering for earliness is that ideally we wish to extrapolate
performance of the underlying architecture from noting only a few timesteps of
its performance. On the other hand, predicting the asymptote value with input
of a longer length curve is comparatively trivial and not useful, since training
might have converged already. We model for this aspect in the training of the
forecasting network with task-specific weighting that incentivizes early forecast-
ing of the learning curve.

A related stream of works considers meta-learning for the purpose of sample-
efficiency when proceeding with hyperparameter optimization for new datasets
[7,8,12,17,18]. The intuition is to exploit past optimization runs to expedite
search for new datasets. Generally, the optimization runs are first gathered in
a meta-dataset; a dataset describing datasets. Besides containing multivariate
time series information from the iterative optimization of various architectures on
various datasets, the meta-dataset also contains descriptive statistics about the
underlying individual datasets, termed as meta-features. Common meta-features
include, the number of attributes, classes and the instances. Hence, a meta-
dataset can provide sufficient data enabling learning of a deep neural network
model like we propose above, and allow transfer learning possibilities consid-
ering forecasting of a new dataset’s partial learning curve. What is normally
referred to as the cold-start problem in the literature [9], can be hence tackled
for a new dataset by exploiting meta-features that capture dataset relations
and the underlying patterns relating different hyperparameter configuration

1 Appendix available via arXiv.
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performances across datasets [7,12]. In summary, our core contributions can
be listed as follows:

– We propose a novel Sequence-to-sequence learning curve forecasting method
that incorporates various additional dynamic gradient statistics in a multi-
task problem formulation.

– We design and optimize a novel corresponding multi-task loss function
inspired by the problem setting that enforces early forecasting and incor-
porates biased weighted regularization for target performance metric tasks in
contrast to counterpart weaker fidelity auxiliary tasks from various gradient
metrics.

– We demonstrate that the method can be meta-learned and exploit configu-
ration and meta features that generalize forecasting across hyperparameter
configurations and datasets.

– We also show that our method is capable of accelerating Hyperparameter
optimization when carrying out early stopping of sub-optimal configurations
when integrated with model-free and meta-learned baselines.

– A thorough ablation study grounded on rigorously validating the effect of
separate building components of the proposed method. Ultimately, proving
the method on whole is well-founded.

2 Problem Setting

We consider a set of datasets D ∈ R
P×S×F , where each of the P datasets is an

independent and identical set of S samples and F features upon which a super-
vised classification task is defined. The datasets can be differentiated based on
underlying data generating processes and different data modalities (tabular data,
images etc.), however, parallels can be drawn based on a set of meta-features
denoted as φ ∈ R

P×M . Further, we consider a set of hyperparameter configu-
rations Λ ∈ R

L×K , where each Λ1:L ∈ Λ is a hyperparameter configuration of
K hyperparameters2. Formally, we can define the meta-dataset X ∈ R

N×C×T

as a Cartesian product Λ × D, that is the result of training Neural networks 3

with L hyperparameter configurations Λ1:L on each of the P datasets. We can
describe X as the set of multivariate time-series of C metrics/channels (training
loss, gradient norms, validation loss, etc.) across T epochs with N = P × L. For
notation ease, we assume the last channel C represents a particular metric of
interest (target metric), which typically is the validation accuracy. To fix ideas,
the problem definition with respect to the main-task:

Given the observed metrics from the conditioning range [1 : τ ] of the n-th
experiment, denoted as Xn,:,1:τ ∈ R

C×τ using the slicing notation;
Given the hyperparameter configuration Λl ∈ R

K and the dataset meta-features
φp ∈ R

M of the n-th experiment;
Predict the value of the C-th metric (validation accuracy) at the final epoch
of the n-th experiment, i.e. estimate Xn,C,T .
2 Each of the [1 : K] hyperparameter is sampled from a domain of valid values.
3 In this work, we only consider Neural networks as the algorithm class.
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3 Multi-LCNet: Multivariate Multi-step Forecasting with
Meta-features

Our proposed model is dubbed Multi-LCNet. It is based on the encoder-decoder
framework with several auxiliary tasks of predicting multiple channels for multi-
step ahead. We let both the encoder and decoder networks be multi-layered
Gated Recurrent Unit Networks (GRUs) [5]. A basic premise of our modeling
objective is to exploit the configuration and meta-feature embeddings jointly
with the multivariate time-series channels. However, incorporating these embed-
dings is not straight-forward given the fact that the rest of the data has a natural
ordering with respect to time. In order to still exploit the embeddings denoted as
ξ ∈ R

Q×τ jointly with the rest of the sequence modeling, we resort to repeating
the embeddings on the time-axis to form additional Q channels that are concate-
nated with the rest of the multivariate time-series. The GRU encoder updates
the hidden state recursively in the conditioning range [1 : τ ]. We let all channels
share the same hidden-state parameters given existing correlations.

The last hidden-state from the encoding is generally referred to as the context
vector [1]. Most prior approaches linearly extrapolate for one-step ahead from
the context vector maximizing one-step likelihood. However, we can exploit the
context vector to initialize a decoder network for multi-step forecasting. By hav-
ing another decoder network, we can forecast for an arbitrarily long horizon
ahead H ∈ N. In addition to granting the model, the capacity to model across
a wide range of fidelities, this also has a regularization effect given the pattern
leading up to the asymptote can be covered in the modeling phase.

We simply initialize the decoder network’s initial hidden state by copying
the context from the encoder network, and feeding in the last timestep from the
conditioning range i.e. τ as its first input. The decoder network has the same
hidden dimensionality and number of layers as the encoder network, making this
trivially possible. However, we note the discrepancy of feeding in the ground
truth element at each timestep to the encoder whereas the decoder is trained in
an auto-regressive manner that is consuming its own generated output at each
successive timestep to compute the next hidden state and output. The output
at each timestep is a R

C+Q dimensional extrapolation from the hidden state
during decoding. During decoding, the model outputs Q < M +L static features
[Λ̂l ◦ φ̂p] on which a reconstruction loss is defined. We noted experimentally that
reconstructing static features during decoding lead to a regularization effect,
improving modeling accuracy than otherwise. Additionally, we incorporate the
attention mechanism [1] which allows the decoder to focus on the entirety of
encoder outputs instead of solely relying on the last encoder hidden state.

We refer to Appendix 2 for a more detailed description of modeling above.

3.1 Optimizing Multi-LCNet

We have formulated the problem with respect to the main-task and explained
how we can generate multivariate multi-step forecasts by modeling auxiliary
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tasks as well. Below, we formulate objective functions with respect to both. For
simplicity, let Multi-LCNet be f(Xn,:,1:τ , Λl, φp,H; θ) where arguments denote
availability and respective ranges and θ all learnable parameters.

Standard Objective. The standard approach is to train the model that pre-
dicts the target (C-th) metric at the final epoch T after observing τ observations
of the metrics. The corresponding objective:

arg min
θ

N∑

n=1

‖Xn,C,T − f(Xn,:,1:τ , Λl, φp, T ; θ)C‖ρ (1)

However, we could improve this objective further, as it does not use the remaining
targets c ∈ {1, ..., C − 1}, the observations after the index τ till T − 1 and lastly
does not give more importance to the first observations. Given the practical
importance associated with early decision-making regarding a hyperparameter
configuration, it is important to accurately estimate the target metric after only
a few epochs, otherwise convergence is already reached and curve plateaued.

An Early, Multivariate and Multi-step Forecasting Objective. To
address the aforementioned drawbacks, we can optimize Multi-LCNet’s parame-
ters using the objective listed below:

arg min
θ

N∑

n=1

C∑

c=1

τ∑

t=1

T∑

z=τ+1

wctz ‖ Xn,c,τ+z− (2)

f(Xn,:,1:τ , Λl, φp, T ; θ)c‖ρ

In contrast to Eq. (1), this incorporates several additional auxiliary tasks in a
weighted multi-task loss. The intuition is that these auxiliary tasks induce a
strong regularization effect on the main-task learning. Differentiation between
auxiliary and main-tasks is defined through task-specific weighting wctz ∈
(0, 1) ⊂ R

+4, 5. These task weights are hyperparameters in the objective function
formulation. Manual tuning of these weights is computationally infeasible given
the number of tasks could explode in the case of predicting for a decent sized
horizon in standard multivariate setting. Therefore, we propose a novel factor-
ization of the weights customized with respect to the sub-objectives relating to
inducing earliness, balancing multiple channels and their point forecasts ahead:

arg min
θ

N∑

n=1

C∑

c=1

τ∑

t=1

T∑

z=τ+1

αcβtγz ‖ Xn,c,τ+z− (3)

f(Xn,:,1:τ , Λl, φp, T ; θ)c‖ρ

Where αc, βt, γz ∈ (0, 1) ⊂ R
+ can be chosen with regard to the following

insights:
4 We also normalize all meta-data in (0, 1) unit interval.
5 We overload the notation, in this subsection w defines task-weight.
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i) Predicting the target metric (validation accuracy) is more important than
predicting other metrics i.e. αC > αc. On the other hand, αc > 0,∀c ∈
1, ..., C meaning we do not want to avoid predicting the other metrics since
correlated channels have a beneficial regularization effect. We emphasize that
such an objective formulation is a multi-task setting, where we have a target
task/metric (the validation accuracy) and a set of auxiliary tasks/metrics
(training loss, gradient norms, etc.).

ii) Correct forecasts with few observations τ � T are more important than esti-
mations close to the converged epoch τ ≈ T . Practically speaking, we should
be able to predict the performance of a poorly-performing hyperparameter
configuration Λl after as few epochs as possible. Therefore, the weights β1:τ

can be set as exponentially decaying, which incorporates stronger penaliza-
tion towards the errors made with small t values in the objective. Concretely,
βt=1 ≈ 1 and βτ ≈ 0.

iii) Predicting the metric values at the last epoch is more important than the
next immediate epoch after τ , in the desired case when τ � T . Therefore,
the forecasts indexed higher in the prediction range [τ + 1 : T ] and their
corresponding loss terms need to be penalized stronger. In that regard, the
horizon task weights γτ+1:T can be formulated with the decay rate inverted
and generated similarly from the exponential function. Concretely, γτ+1 ≈ 0
and γT ≈ 1.

We make the effort to elaborate more on the earliness aspect of the objective for-
mulation given its distinct and novel formulation. In order to model for earliness,
we generate what are normally called roll-outs after each input timestep observed
from the learning curves. All roll-outs are multivariate multi-step forecasts till
the asymptote of the curves. During training, we set τ = T − 1, to utilize the
full-extent of the curves and the model subsequently generates forecasts of dif-
ferent H length adjusted accordingly. Once all roll-outs are made, that is when
τ = T − 1 we can weight the errors based on the combined weighting scheme
motivated above.

Exponential Weighting. The exponential weighting is defined as follows:

β1:τ = exp
(−|j − center|

g

)
(4)

g = −
(

τ − 1
log(u)

)

Where, j defines the index of roll-out and center is the parameter defining center
location of the weighting function. g defines the decay. We fix center = 0, u is
then the fraction of window remaining at the very end, that is the weight for
last indexed roll-out. Setting the value for u ∈ (0, 1) ⊂ R

+ defines the entire set
of weights β1:τ . We can generate the weights γτ+1:T by defining another u value,
replacing τ with H and inverting the weights generated through Eq.(4).
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4 Experiments6

4.1 Datasets, Meta-Datasets and Evaluation Protocol

Meta-dataset. We use the dataset created in [21]. Each sample contains mul-
tivariate training logs of a configuration trained on a particular underlying clas-
sification dataset. All datasets used to evaluate the configurations came from
the AutoML benchmark [11], in total numbering to 35. The overall meta-level
distribution can be considered diverse in terms of underlying dataset charac-
teristics such as number of samples, features and classes. Exhaustive sets of
meta-features for each dataset are also available that besides these characteris-
tics note additional many such. We also shed light on the configuration space that
is used to sample valid hyperparameter configurations through in Appendix 3.
We note that all architectures are funnel-shaped feed-forward networks, defined
with respect to number of layers and initial units. A total of 2000 configurations
are sampled from this configuration space and trained/validated/tested on the
corresponding splits of each underlying dataset for a total of 52 epochs. The
resulting multivariate channels also include global and layer-wise gradient statis-
tics (max, mean, median, norm, standard deviation, and quartiles Q10, Q25,
Q75, Q90), learning rate, runtime and balanced accuracies, up-to a total 54 chan-
nels. This results into X,φp, Λl with shapes (N = 70000 × C = 54 × T = 52),
(P = 35 × M = 107) and (L = 2000 × K = 7) respectively. We label encoded,
normalized all channels besides validation accuracy between 0 and 1 and zero-
padded in case of missing values due to conditionally undefined layer-wise statis-
tics, hyperparameters or meta-features across these tensor and matrices.

Evaluation Protocol. The evaluation protocol is aligned to a realistic meta-
learning setting where prior meta-data across datasets is considered available and
the goal would be to warm start hyperparameter optimization for new datasets
as tackled in [8,17,18]. In light of this, we divide the meta-dataset into meta-
train, meta-validation and meta-test splits covering 25, 5 and 5 datasets each.
We highlight important characteristics of the validation and test split datasets in
Appendix 3. We refer the remaining 25 train split datasets and a more thorough
summary of data-set characteristics to [11,21]. We split the above noted tensor
and data matrices accordingly. We now proceed to define evaluation metrics
that shall quantify success from different lenses. Firstly, we rely on measuring the
mean-squared-error on the prediction of the last timestep (final performance) for
the target metric i.e. our main-task as formulated earlier in Sect. 2. In alignment
with previous works [2,13], we judge the predictions based on ≈ 20% of the
curve as input. Nevertheless, as motivated earlier, for the purpose of realistic
hyperparameter optimization it is necessary to quantify how early the predictions
match the ground-truth asymptotic performance of the curves as well. Therefore,
we also evaluate our results as the average error of all final-performance errors
till observing ≈ 20% of the curve as input. And for completion’s sake, we report
the average of all final-performance errors made till T − 1.

6 github.com/super-shayan/multi-lcnet; Baseline Implementation Details in Appendix.

https://github.com/super-shayan/multi-lcnet
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We also report simple Regret, the difference between optimal accuracy (pre-
computed from meta-test data) and one achieved over a set of trials [8,17,18].

4.2 Baselines

Learning Curve Baselines
Last Value [14] propagates the last observed value for H timesteps.

LCNet [13] is a Bayesian Neural network that estimates parameters and creates
weighted ensembles of increasing and saturating functions from power law or sig-
moidal family to model learning curves. As input, however the model only takes
into account configuration features by repeating these along the time-axis and
learns joint embeddings via hidden layers. Hence, straight-forward application
would prevent meta-learning where we wish to forecast accuracy across datasets.
In light of this, we propose an extension of this model with meta-features which
we refer to as LCNet(MF) where we simply concatenate the configuration and
meta-features before joint embeddings are learned as in the standard setting.

ν-SRM is the model from [2]. The modeling for learning curves is based on
training T −1 many feature engineered models, where each successive ν-Support
Vector Machine Regression (SVR) model takes an additional timestep of the
learning curve. All T − 1 many SVR models only predict for last timestep, the
validation accuracy at T . We train and validate the baseline SRM and its exten-
sion with multivariate channels SRM(M) and with multivariate channels plus
meta-features SRM(MM) on meta-train and meta-validation datasets.

LCRankNet [18] learns latent features for learning curves via stack of
non-linear Convolutional layers and architectural embeddings via Sequence-to-
sequence networks. It embeds Dataset IDs for modeling learning curves across
Datasets which are however generated randomly for modeling across datasets
and therefore we propose to embed meta-features instead. We focus on only the
ablation reported on learning L2-loss based pairwise rankings, which proved to
be better for early predictions across all datasets and makes learning comparable
to models in this paper. We remove the Sequence-to-sequence based embeddings
that might be more applicable to deeper network topologies as tackled originally
in that paper. Extension of LCRankNet with multivariate channels is termed
LCRankNet(M), and like before we also craft LCRankNet(MM).

Multivariate Multi-step Forecasting Baselines
TT-RNNs Tensor-train RNN is a sequence-to-sequence model [20]. The working
principle is to replace the first-order markovian dynamics abiding hidden states
in RNNs with a polynomial expansion computed over the last many hidden states.
Tensor decomposition is used for dimensionality reduction for this new state. We
train the baseline on all meta-train datasets but unlike above baselines, repeated
the static features including configuration and meta-features on the time-axis to
form additional channels for TT-RNN (MM).
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MCNN is a multivariate time-series forecasting baseline crafted through heuris-
tically searched parameter sharing between stacks of convolutional layers and
exponentially decaying weighted schemes that tackle scale changes in long-term
forecasting. We also designed another meta-feature based extension named

MCNN(MM) where we stack non-linear embedded meta and configuration
features directly with the latent convolutional features before feeding to the
stack of fully-connected layers predicting for multiple channels and time-steps
ahead.

Multi-Task LASSO induces shared sparsity among parameter vectors of mul-
tiple regularized linear regression models. In our setting, we can consider all
timesteps to be forecasted as separate tasks and instead of solving multiple lasso
models independently, feature selection is stabilized by shared sparsity induced
via block-regularization schemes.

Model-Free Hyperparameter Optimization Baselines
Random Search [3] samples hyperparameter configurations randomly from the
space of configurations defined in the meta-split.

Hyperband [14] is a bandit-based method that samples configurations ran-
domly and terminates sub-optimal configurations according to predefined down-
sampling rates at each round, only advancing better performing ones to be run
for more iterations. We report results for different downsampling rates in brack-
ets Table 2 with fixed max-iterations i.e. 52 from meta-data.

Meta Learning Hyperparameter Optimization Baselines For the pur-
pose of hyperparameter optimization, most work has focused on meta learned
Bayesian Optimization (BO). Hence, we benchmark and propose orthogonal
extensions to:

TAF from [19], given the same intuition of ours, transfers knowledge between
tasks in a meta-setting. Transferable Acquisition Function (TAF) incorporates
source and target relationships in the acquisition function during BO. The acqui-
sition function scores the next configuration based on expected improvement on
the target dataset and predicted improvement over the source datasets. We also
orthogonally integrate Multi-LCNet as a meta-learned forecasting model within
BO. The Gaussian Process (GP) surrogate updates its parameters sequentially
on early terminated estimations of Multi-LCNet instead of on final-performances
of configuration trained fully. We refer to the extension as TAF-MLCNet. Also,
early terminating only applies to meta-testing, source GPs remain unaltered.

MBO from [17] is the recent state-of-the-art baseline for Meta-learning in
Bayesian Optimization (MBO) that acquires next configurations efficiently in
a meta reinforcement learning setting and modeling the acquisition function
with a neural network. We also orthogonally integrate Multi-LCNet similar to
above crafting MBO-MLCNet.
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Table 1. Comparison against learning curve and multivariate forecasting baselines in
terms of MSE ·10−2 on validation accuracy scaled to [0–1]. Columnar least is boldfaced,
second-least is underlined.

Methods Segment Shuttle Sylvine Vehicle Volkert
τ = 9 A(9) A(51) τ = 9 A(9) A(51) τ = 9 A(9) A(51) τ = 9 A(9) A(51) τ = 9 A(9) A(51)

LCNet(MF) 1.83 3.57 2.98 32.24 27.1 35.44 3.28 2.38 3.25 2.29 5.39 3.21 2.69 3.03 5.34
SRM 0.95 2.04 0.46 2.02 4.45 1.09 0.42 1.08 0.22 0.4 0.83 0.19 0.24 0.38 0.1
SRM(M) 1.37 3.21 0.69 2.55 5.35 1.38 0.87 2.58 0.5 0.67 1.24 0.29 0.2 0.39 0.1
SRM(MM) 1.29 2.75 0.6 2.9 6.07 1.43 1.05 2.51 0.52 0.63 1.22 0.28 0.19 0.3 0.08
LCRankNet 1 1.7 0.4 1.24 2.67 0.63 0.27 0.79 0.16 0.58 1.39 0.3 0.6 1.83 0.36
LCRankNet(M) 1.34 2.81 0.63 1.86 3.94 0.96 0.76 2.32 0.48 0.55 1.28 0.29 0.21 0.56 0.13
LCRankNet(MM) 0.99 1.62 0.49 1.43 2.79 0.94 0.62 1.25 0.35 0.75 1.35 0.44 0.49 0.84 0.2
Last Value 1.51 3.57 0.76 2.76 6.15 1.61 0.69 1.72 0.35 0.73 1.6 0.35 0.31 0.78 0.17
TT-RNN 1.56 2.29 – 4.95 5.72 – 0.97 1.5 – 1.15 1.79 – 1.2 2.64 –
TT-RNN(MM) 5.63 4.62 – 10.08 11.47 – 5.12 4.99 – 7.84 7.06 – 5.15 2.86 –
MCNN(M) 7.25 7.04 7.1 5.05 5.28 5.18 2.42 2.5 2.46 7.51 7.26 7.31 9.54 9.14 9.25
MCNN(MM) 7.14 7.1 7.04 5.13 5.29 5.2 2.47 2.5 2.48 7.38 7.33 7.23 9.32 9.21 9.14
MTL-LASSO(M) 1.35 1.99 – 6.32 7.85 – 1.49 1.95 – 0.96 1.31 – 0.77 0.94 –
Multi-LCNet(M) 1.02 1.47 0.38 1.57 2.27 1.42 0.27 0.68 0.15 0.92 1.53 0.38 1.46 3.27 0.7
Multi-LCNet(MM) 1.07 2.09 0.5 2.68 3.9 1.43 0.61 1.38 0.32 0.4 0.75 0.21 0.32 0.94 0.2

Multi-LCNet Ablations
Multi-LCNet(M) does not embed meta-features. However, it uses configura-
tion features repeated and forecasted as channels.

Multi-LCNet(MM) embeds meta-features jointly with configuration features
and forms channels with these joint embeddings as noted earlier.

4.3 Forecasting Results

We report the comparison of our proposed Multi-LCNet with the learning curve
and multivariate forecasting baselines in Table 1. We ran all baselines described
earlier with 3 different seeds and report mean performances across standard
objective with τ = 9 and the aggregated metrics A(9),A(51) that quantify earli-
ness and dynamic performance throughout the curve length. A(9),A(51) denote
the Average of final-performance errors (main-task) made observing curves till
τ = 9 and τ = 51 respectively. A number of interesting observations can be
drawn from these results. Firstly, we can see that Multi-LCNet is able to out-
perform the baselines across multiple metrics on all datasets besides one. Most
interesting are the lifts on A(9) compared to other metrics, since it quantifies
performance with regard to earliness. We can credit the auxiliary supervision
provided to the model through multivariate multi-step forecasting as the basis
for these leads. This stands to reason, provided learning curve baselines already
rely on deep learning primitives such as feed-forward layers and convolutions in
LCNet and LCRankNet. Crucially, the baselines are all provided input of the
same dimensionality with their respective extensions.

Another set of observations can be derived from benchmarking the perfor-
mance of machine learning baselines to the naive last value forecasting baseline.
We can validate the finding from prior works about this baseline’s exception-
ally strong performance on learning curves, which have a natural tendency to
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plateau rather early. Nevertheless, we can see that majority of learned baselines
outperform it especially on the first two metrics that quantify earliness.

With regard to auxiliary supervision through multivariate multi-step fore-
casting baselines, we observe that MTL-LASSO and TT-RNN perform equally
well across datasets and metrics, but indeed are less generalizable than counter-
part learning curve baselines. We hypothesize that the reason for this sub-par
performance is due to the rather fixed dimensionality forecasts that prohibit
all multivariate forecasting baselines considered to exploit training on dynamic
length input curves. These baselines were initially proposed for long range input
as compared to extremely short learning curves where data cannot be gener-
ated through rolling windows and rather every curve needs to be partitioned
into a fixed conditioning and prediction range beforehand. This explains why
despite MCNN and LCRankNet being both convolutional neural networks, the
LCRankNet baseline and extensions can perform much better by modeling for
only 1 fixed window but exploiting the same curves multiple times with dynamic
conditioning history. This is also the reason why one joint model across all input
length for LCNet, SRM, MTL-LASSO, TT-RNN, MCNN is not possible and we
did hyperparameter tuning for validating their performance for only τ = 9 and
re-trained the baselines for all other τ = [2...51]. We also dropped the compar-
ison given scalability challenges with TT-RNN, MTL-LASSO for metric A(51)
as noted by ’–’ in Table 1. Except for these baselines, we tuned the hyperparame-
ters for all other models on the metric A(51). On the other hand, this highlights
yet another advantage of Multi-LCNet which can be trained on dynamic condi-
tioning history as well as exploit auxiliary regularization through multivariate
forecasting as it can generate dynamic length forecasts from any window of the
curve.

Additional observations can be made with regard to multivariate channels,
hyperparameter configuration features and lastly meta-features. SRM baseline
is unable to cater for both multivariate gradient statistics and meta-features, as
evident by higher errors made throughout the metrics and datasets by respec-
tive extensions. This could be because the model is considered rather shallow
and unable to learn non-linear feature interactions as the deep learning coun-
terpart methods are able to. In fact, we see that LCRankNet and Multi-LCNet
both benefit from additional multivariate information plus meta-features com-
paratively more so. On the other hand, we can observe that directly feeding all
static features as channels through repetition on time axis lead to downgrade
in modeling accuracy for both the TT-RNN and MCNN baselines. This is the
reason why for Multi-LCNet we explored another way to embed meta-features
to a more fine-grained representation explained earlier in the method section.

4.4 Accelerating Hyperperameter Optimization

In this section, our aim is to firstly formulate a predictive termination crite-
rion based on the predictions from Multi-LCNet. We follow the lead of [2,4,6],
and model a similar criteria that is essentially based on the heuristic that if
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at any given time the forecasted accuracy from a partially observed configu-
ration’s curve falls below a certain best observed accuracy in a given set of
configurations, then this configuration can be early terminated to save valuable
compute and time resources. Specifically, we adapt the criteria from [2] to a
meta-setting. To ground the termination decision in probabilistic terms, one
can model the forecast as a Gaussian perturbation around the original estimate
to safeguard against poor out-of-sample generalization. To fix ideas, we ran-
domly sample M � N configurations where m ∈ 1, ...,M and at each successive
epoch τ , we generate forecasts, X̂1:M,C,T for all M configurations. To model the
uncertainty associated with the forecasts we estimate the standard deviation
σ by leave-p-out cross-validation7. Specifically, we account for the uncertainty
by keeping dropout active and noting the σ among {(τ − p)...τ} forecasts of
X̂1:M,C,T . With the uncertainty, we can estimate the forecasts as a gaussian per-
turbation ŷ1:M,C,T = N (X̂1:M,C,T , σ). Finally, the probabilistic termination cri-
terion: p(ŷ1:M,C,T ≤ max(X1:M,C,1:τ )) = Φ(max(X1:M,C,1:τ ); ŷ1:M,C,T , σ), where
Φ(.;μ, σ) is the Cumulative distribution function (CDF) of the Normal distribu-
tion. For configuration m if probability p(ŷm,C,T ≤ max(X1:M,C,1:τ )) ≥ Δ does
not hold, we can early terminate it. Where, Δ balances the tradeoff between early
terminating configurations for more significant acceleration or on the other hand
the risk of observing higher regret. Additionally, for ensembling’s sake, one can
let the top-η confs to complete training. For our experiments we set Δ, p and η
via cross-validation on the validation datasets based on observing the regret. We
note that this criteria despite sharing characteristic similarities differs from the
one in [2], given the cross-dataset setting. This setting does not require any burn-
in period to observe learning curves completely for new datasets. As a downside
however, we track the maximum observed accuracy from [1..τ ] for all new con-
figurations instead of the accuracy at T from the burn-in period. Other notable
differences include a more robust estimation of uncertainty given dropout and
multi-horizon recursive forecasts and tuning of Δ, p and η on meta-validation.
We also refer to an example termination in Appendix 4.

4.5 Acceleration Results

This section reports the results on accelerating hyperparameter optimization
through early termination. For our first set of experiments we accelerate Random
Search (RS-MLCNet) given its simplicity and vast utility. We randomly sample
two sets of confs. i.e. M = 50 and M = 100 and report corresponding time(m)
and regret in Table 2. We report the average of 10 runs. We set δ = 0.99, η = 5
and p = 5 for both Multi-LCNet(RS-MLCNet) and SRM based early stopping
(RS-SRM). The regret is stated in terms of percentage classification accuracy.
We first note the comparison between RS and its counterpart acceleration with
Multi-LCNet. The results indicate huge gains with regard to time saved with
very little to no harm in regret. We also note that the standard deviation is on a
similar scale. Since initial random selection of 50 or 100 configurations from 2000

7 We overload notation σ to denote standard deviation, p in cross-validation.



Multi-task Learning Curve Forecasting Across Configurations and Datasets 497

is bound to affect the final regret, we keep these same for RS, and its acceleration
through Multi-LCNet & SRM across all runs.

We also compare these gains with SRM based early termination. In terms of
retrieving the optimal model among the initial trials, both RS accelerations lead
to similar regret given the same early stopping criteria. Our initial assumption
was that the difference in MSE would result in better acceleration performance,
but however in terms of regret computed for optimal configuration the gains in
forecasting accuracy did not transfer gracefully.

We also compare accelerated RS (RS-MLCNet) to Hyperband. Hyperband
also randomly samples configurations and uses the last value based extrapolation
to early terminate. However, Hyperband dynamically selects the configurations
to evaluate, which prohibits reporting results for 50 or 100 trials. To report a
fair comparison, we report results for Hyperband initialized with three different
downsampling rates. Among the two trial settings for RS-MLCNet and Hyper-
band variants, we can see that on Segment, Shuttle and Volkert we are able to
outperform Hyperband in terms of balance between regret and time taken.

Lastly, we benchmark the meta-learned approaches TAF and MBO. Firstly,
we note that both these baselines stand out due to consistent minimal possible
regret across both trial settings8. This is consistent with known superiority of
Bayesian optimization to RS. The efficacy of RL framework from MBO saves
even more time compared to BO based TAF. We observed that MBO can ask
to run the same configuration repeatedly, in contrast to TAF if it discovers the
optimal configuration early on. Hence, we count the regret and time taken for
only unique configurations among the 50 or 100 specified initially9 and can see
that the difference in time for the two initial trial sets remains similar for MBO.
We turn to report the results for Multi-LCNet integrated counterparts MBO-
MLCNet and TAF-MLCNet that enable early termination for both these meth-
ods. Given the drawback that TAF and MBO are both sequential approaches, we
modify the early stopping criteria to consider the values until current timestep
for only the single incumbent configuration. This puts the early stopping crite-
ria at a disadvantage, but nevertheless we observe a clear lift across all datasets
without loss in regret. Equally worth noting is the fact that early terminated
objectives do not generally interfere with acquisitions within the context of either
BO nor RL. This is important because one might worry that the sequential chain
of successive configuration acquisitions might be affected if the underlying GP
parameters are updated on the early stopped performance (objectives) for tar-
get dataset configurations instead of on their final performance. Nevertheless,
when provided with early stopped objectives, the number unique confs. did arise
for MBO-MLCNet@100 for Shuttle and Sylvine datasets notably. We hypothe-
size this is due to comparable fewer differences between configurations on these
datasets compared to other datasets as evident in lower standard deviation for
RS regret too. Still, with higher number of configurations, the times were less.

8 The results for MBO and TAF are not averaged across runs given the stationarity
of GP modeling and meta-data; based on personal correspondence with the authors.

9 Optimization is not terminated when regret is 0 to simulate real-world testing where
regret is unknown apriori.
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Table 2. Accelerated Hyperparameter Optimization results.

Methods Segment Shuttle Sylvine Vehicle Volkert
Time Regret Time Regret Time Regret Time Regret Time Regret

MBO@50 35.29 0.0 164.61 0.0 40.76 0.0 25.84 0.0 75.09 0.0
MBO@100 46.43 0.0 170.5 0.0 47.86 0.0 27.38 0.0 82.18 0.0
TAF@50 78.02 0.0 186.59 0.0 66.3 0.0 72.52 0.0 268.16 0.0
TAF@100 160.77 0.0 364.68 0.0 146.86 0.0 125.33 0.0 447.14 0.0
MBO-MLCNet@50 24.39 0.0 129.29 0.0 31.9 0.0 18 0.0 52.14 0.0
MBO-MLCNet@100 30.81 0.0 145.47 0.0 36.08 0.0 18.72 0.0 68.89 0.0
TAF-MLCNet@50 43.22 0.0 117.68 0.0 55.01 0.0 47.07 0.5319 169.24 0.0
TAF-MLCNet@100 93.97 0.0 200.75 0.0 110.45 0.0 84.24 0.0 322.75 0.0
Hyperband(2) 24.9± 3.2 4.3± 0.7 57.± 9.1 1.0± 0.5 38.1± 5.1 0.5± 0.4 26.6± 3.0 3.0± 3.1 62.6± 6.3 7.2± 3.2
Hyperband(2.5) 15.4± 2.0 4.4± 1.4 32.9± 3.4 1.2± 0.5 20.5± 1.8 0.7± 0.5 15.± 1.3 3.4± 2.2 37.6± 5.0 7.8± 4.3
Hyperband(3) 9.1± 0.9 5.6± 0.9 22.5± 5.5 1.5± 0.3 16.3± 3.4 0.6± 0.5 10.± 1.3 4.3± 1.5 21.8± 2.7 8.7± 3.3
RS@50 57.4± 4.4 5.6± 2.4 126.1± 11.6 0.5± 0.6 60.2± 7.1 1.1± 0.7 53.1± 5.8 6.3± 1.4 188.1± 24 8.2± 3.8
RS@ 100 135.5± 12.5 3.3± 0.7 298.6± 24.1 0.4± 0.2 146.4± 11.7 0.4± 0.4 131.± 7.7 5.0± 0.7 384.3± 14.9 5.3± 3.3
RS-SRM@50 8.0± 0.7 5.6± 2.4 25.7± 3.9 1.1± 0.7 9.± 1.3 1.5± 1.1 7.8± 1.0 6.7± 1.3 24.1± 1.1 8.9± 4.5
RS-SRM@100 13.2± 0.8 3.4± 0.9 38.6± 5.3 1.0± 0.6 16.2± 1.5 1.1± 0.9 13.2± 1.1 5.0± 0.7 43.3± 3.5 5.3± 3.3
RS-MLCNet@50 8.0± 0.7 5.7± 2.5 25.5± 4.0 1.1± 0.7 9.1± 1.1 1.5± 1.1 8.0± 1.3 6.7± 1.3 35.1± 3.1 8.5± 4.0
RS-MLCNet@100 13.± 0.7 3.4± 0.9 36.9± 3.9 1.1± 0.6 15.9± 2.0 1.2± 0.8 13.4± 1.2 5.0± 0.7 64.3± 3.7 5.3± 3.3

4.6 Ablation Study on the Meta-validation Set

The above objective function comprehensively captures the entirety of the multi-
task output space, with sub-objectives exploiting inherent characteristics of the
learning curve forecasting problem setting. However, there exist possibilities of
designing the objective functions in between the two extremities, as given by
Eq. (1) and Eq. (3). Specifically, if we consider either of the earliness, multi-
target or the multi-step outer loop as either present or discarded leads to 23 = 8
possibilities with respect to objective formulation. We can study if either of the
unstated 6 combinations, for example the standard function in Eq. (1) equipped
with earliness and associated hyperparameters β1:τ dictating the exponentially
decaying scheme for task weights models the main-task more accurately than the
objective in Eq. (3). Moreover, we can also study whether any of the associated
components in the input space, channels c ∈ {1, ..., C − 1}, the configuration
features Λl and the meta-features φp lead to improvement or on the contrary
decline in modeling accuracy with respect to the main-task. To fix ideas, we
term the changes to the objective function and removal of input configuration
or meta-features as ablations and refer to number of recurrent layers, number of
hidden units, number of fully connected layers and respective units, activation
functions, dropout, batch sizes, learning rate as standard hyperparameters to
the network that need to be tuned regardless the ablation. Additionally, we con-
sider the auxiliary task weights αc, βt, γz as conditional hyperparameters that
are only defined when the corresponding ablation is chosen. Attention is con-
sidered as additional conditional hyperparameter that is defined only for abla-
tions considering encoder-decoder modeling of the entire horizon. We tune the
hyperparameters of each ablation together with well-defined associated hyperpa-
rameter configurations, since one hyperparameter config. might not generalize
to another ablation.

For all ablations besides the proposed objective formulation and input space,
we introduce another model termed as Standard-Net. This model is characterized
as an encoder-only network with an output fully-connected-layer whose dimen-
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Fig. 1. In each cell we plot the ratio of StandardNet configurations selected to Multi-
LCNet configurations across different successive halving iterations in Hyperband. We
can observe that Hyperband increasingly selects Multi-LCNet configurations as succes-
sive halving continues and hence the ratio decreases

sionality corresponds to the dimensionality of the target space. The target space
can vary from a single point to forecast for the main channel (as in standard
objective) or all channels at the last horizon and lastly forecasting all channels
for the entire horizon. Interestingly, the Standard-Net cannot be trained with an
Earliness sub-objective when impeded by fixed dimensionality of output. Also,
conditional upon the ablation Standard-Net can incorporate all input channels,
meta-features and configuration features, but however cannot incorporate atten-
tion.

Including root-level binary valued hyperparameters that define presence or
absence of ablative sub-objectives and input features, hyperparameters condi-
tioned upon these ablations (α, β, γ) and standard network hyperparameters
leads to 14-dimensional hyperparameter configurations. Given this relatively
large search space, we rely on Hyperband [14], to conduct a thorough analysis in
order to better judge whether the proposed formulation of Multi-LCNet leads to
a gain in predictive accuracy over Standard-Net. The working principle behind
Hyperband also qualitatively expresses whether a particular configuration is iter-
atively selected consecutively in various levels of Successive Halving. We define
a large search space to randomly sample configurations from and observe that
configurations trained with the proposed objective formulation are given increas-
ingly higher budget, which testifies modeling accuracy of the proposed method
to be higher than counterpart ablations. We note for Hyperband that all ini-
tial search spaces and following number of successive halving rounds are defined
with respect to maximum number of iterations. By setting this to 1000 and
default downsampling rate (=3), we allow for the possibility of multiple rounds
and larger initial search spaces before these rounds. In these spaces ablations
outnumber the Multi-LCNet configurations by 8x, however, across all successive
halving iterations (y-axis of Fig. 1), the ratio converges to 0 (x-axis) showcasing
that Hyperband spends more budget on selected Multi-LCNet configurations.
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5 Conclusion

In this work, we propose a novel meta-learned forecasting model that models
validation accuracy and several additional gradient statistics in a weighted multi-
task loss. Empirical evaluation showed the model outperformed multiple forecast-
ing baselines and forecasts can be used to accelerate hyperparameter optimiza-
tion in the simple case of random search and also meta Bayesian optimization.
As future work, we shall extend the modeling in novel meta-learning directions.

Acknowledgements. This work is co-funded by the industry project “Data-driven
Mobility Services” of ISMLL and Volkswagen Financial Services; also through “IIP-
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Abstract. Lifelong learning models should be able to efficiently aggre-
gate knowledge over a long-term time horizon. Comprehensive studies
focused on incremental neural networks have shown that these mod-
els tend to struggle with remembering previously learned patterns. This
issue known as catastrophic forgetting has been widely studied and
addressed by several different approaches. At the same time, almost no
research has been conducted on online decision trees in the same setting.
In this work, we identify the problem by showing that streaming decision
trees (i.e., Hoeffding Trees) fail at providing reliable long-term learning in
class-incremental scenarios, which can be further generalized to learning
under temporal imbalance. By proposing a streaming class-conditional
attribute estimation, we attempt to solve this vital problem at its root,
which, ironically, lies in leaves. Through a detailed experimental study
we show that, in the given scenario, even a rough estimate based on
previous conditional statistics and current class priors can significantly
improve the performance of streaming decision trees, preventing them
from catastrophically forgetting earlier concepts, which do not appear
for a long time or even ever again.

Keywords: Lifelong learning · Continual learning · Catastrophic
forgetting · Data streams · Decision trees

1 Introduction

Modern machine learning calls for algorithms that are able not only to gener-
alize patterns from a provided data set but also to continually improve their
performance while accumulating knowledge from constantly arriving data [12].
Lifelong learning aims at developing models that will be capable of working on
constantly expanding problems over a long-time horizon [18]. Such learning mod-
els should keep utilizing new instances (i.e., like online learning), new classes (i.e.,
like class-incremental learning), or even new tasks (i.e., like multi-task learning).
Whenever new information becomes available it must be incorporated into the
lifelong learning model to expand its knowledge base and make it suitable for
predictive analytics over a new, more complex view on the analyzed problem [15].
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N. Oliver et al. (Eds.): ECML PKDD 2021, LNAI 12975, pp. 502–518, 2021.
https://doi.org/10.1007/978-3-030-86486-6_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86486-6_31&domain=pdf
https://doi.org/10.1007/978-3-030-86486-6_31


Streaming Decision Trees for Lifelong Learning 503

This requires a flexible model structure capable of continual storage of incremen-
tally arriving data. At the same time, adding a new class or task to the model
may cause an inherent bias towards this newly arrived distribution, leading to a
decline of performance over previously seen classes/tasks [22]. This phenomenon
is known as catastrophic forgetting and must be avoided at all costs, as robust
lifelong learning models should be capable of both accumulating new knowledge
and retaining the previous one [10]. Most of the research done in this domain
focuses on deep neural network architectures. However, lifelong learning has
many parallels with data stream mining domain, where other models (especially
decision trees and their ensemble versions) are highly effective and popular [12].
Therefore, adapting streaming decision trees is an attractive potential solution
to the considered issues, due to their advantages, such as lightweight structure
and interpretability.

Research Goal. To propose a lifelong learning version of streaming decision
trees that will be enhanced with a modified splitting mechanism offering robust-
ness to catastrophic forgetting, while maintaining all the advantages of this pop-
ular streaming classifier.

Motivation. Streaming decision trees are highly popular and effective algo-
rithms for learning from continuously arriving data. They offer a combination of
a lightweight model, adaptiveness, and interpretability while being able to han-
dle ever-growing streams of instances. Streaming decision trees have not been
investigated from the perspective of lifelong learning problems that impose the
need for not only integrating new knowledge into the model, but also retaining
the previously learned one. This calls for modifications of the streaming decision
tree induction algorithms that will make them robust to catastrophic forgetting
when creating new splits over newly appearing classes or tasks.

Overview. We offer a detailed analysis of Hoeffding Trees in the lifelong learning
set-up. We show that neither these trees, nor any streaming ensemble technique
using them, can retain useful knowledge over time. Their success in data stream
mining can be attributed to their ability to adapt to the newest information,
but no research so far has addressed the fact that they cannot memorize learned
concepts well over a long-term time horizon. We identify this a fundamental
problem can be found at leaves of the streaming decision trees, as they are not
able to maintain information about distributions of previously seen classes, and
propose a potential solution to the problem.

Main Contributions. This paper offers the following contributions to the life-
long learning domain.

– Streaming decision trees for lifelong learning. We propose the first app-
roach for using streaming decision trees for lifelong learning tasks, introducing
a modification of Hoeffding Tree that is capable of both incremental addition
of new knowledge, as well as retaining the previously learned concepts over a
long-term time horizon.
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– New splitting mechanism robust to catastrophic forgetting. We show
that splitting procedure for creating new leaves in Hoeffding Tree directly con-
tribute to the occurrence of catastrophic forgetting. To alleviate this prob-
lem, we enhance the streaming tree induction with the propagation of class-
conditional attribute estimators and utilization of the class priors during
entropy calculation and Bayesian classification.

– Decision tree ensembles for lifelong learning. We show that the pro-
posed modification of Hoeffding Tree can be used to create highly effective
ensembles robust to catastrophic forgetting, allowing us to introduce Incre-
mental Random Forest for lifelong learning.

– Detailed experimental study. We evaluate the robustness of the proposed
streaming decision trees through a detailed experimental study in the lifelong
learning setting. We evaluate not only the global and per-class accuracy over
time, but additionally the propagation of errors and model retention after
being exposed to multiple new classes.

2 Related Works

Data Streams. Learning from data stream focuses on developing algorithms
capable of batch-incremental or online processing of incoming instances [4]. Due
to the high velocity of data, time and memory constraints are important, as algo-
rithms should be lightweight and capable of fast decision-making [12]. The focus
is put on adaptation to the current state of the stream, as concept drift may
dynamically impact the properties of data [13]. Thus, streaming algorithms offer
high-speed and adaptive learners that provide powerful capabilities for learning
from new information [3]. At the same time, knowledge aggregation and retain-
ing mechanisms are not commonly investigated, making streaming algorithms
unsuitable for lifelong learning.

Catastrophic Forgetting. Lifelong learning focuses on preserving knowledge
learned over a long-term time horizon, mainly with the usage of deep neural
networks [18]. It has been observed that these models are biased toward the
newest class, while gradually dropping their performance on older classes, which
is known as catastrophic forgetting [21]. Several interesting solutions have been
proposed to make neural networks robust to this phenomenon, such as experience
replay [6], masking [14] or hypernetworks [16]. Despite the fact that not only
neural networks suffer from catastrophic forgetting, the research on avoiding its
occurrence in other learning models is still very limited.

3 Decision Trees and Lifelong Learning

Typical scenarios of lifelong learning and catastrophic forgetting involve cases in
which classes arrive subsequently one after another. This means that once a given
class was presented it may never appear again. Extensive works on using neural
networks in such scenarios showed that such settings lead to severe learning
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problems for them, as mentioned in Sect. 2. While very little attention has been
given to decision trees in similar scenarios, our preliminary studies of hybridizing
convolutional networks with tree-based classifiers for lifelong learning indicated
that streaming decision trees may struggle with exactly the same problems as
neural networks. In this section, we want to emphasize this issue and propose a
possible solution.

3.1 Forgetting in Streaming Decision Trees

Online decision trees have been proven to be excellent algorithms for learning
from stationary and non-stationary data streams [2]. However, a more in-depth
analysis of the conducted experimental research may reveal that algorithms like
Hoeffding Tree [5] and Adaptive Random Forest [7] have been evaluated mainly
in scenarios where incoming data per class is generally uniformly distributed
over time, which means that instances of different classes are reasonably mixed
with each other, without long delays between them [12]. Although researchers
usually take into consideration the dynamic imbalance of analyzed streams [11],
they still assume that instances of all classes appear rather frequently, even if
ratios between them are skewed. The class-incremental scenarios are edge cases
of extreme temporal imbalance, where the older classes do not appear ever again
and the newer ones completely dominate the learning process. Let us introduce
the main components of the state-of-the-art streaming decision trees and analyze
what consequences the given scenario has for them.

Entropy and Splits. The Hoeffding Tree model is built upon two fundamental
components used at leaves: (i) Hoeffding bound that determines when we should
split a node, and (ii) node statistics that are used for finding the best splits. The
former is defined as:

ε =

√
R2 ln(1/δ)

2n
, (1)

where R is a value range, equal to R = log C for information gain calculations
(C is the total number of classes), n is a number of examples seen at a node and
δ is a confidence parameter. If a difference between the best potential split and
the current state of the node is greater than ε, then there is a 1 − δ confidence
that the attribute introduces superior information gain and it should be used to
create a split. We can express it using the following condition:

ΔG(xi, sj) = E(xi, sj) − E0 > ε, (2)

where the best potential information gain ΔG(xi, sj) is equal to the difference
between the entropy after the best possible split E(xi, sj) on an attribute xi

using a split value sj , and before the split E0. Although the condition alone is
not directly related to the forgetting problem, the entropy values are, as we will
show in the next steps.
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The entropy for a given binary split sj on an attribute xi can be calculated
as:

E(xi, sj) =
C∑

k=1

−p(ck|xi ≤ sj) log(p(ck|xi ≤ sj)) − p(ck|xi > sj) log(ck|xi > sj)

(3)
which simply boils down to the entropy on the left (xi ≤ sj) from the split sj
and on the right (xi > sj). For the current entropy E0 at the node we simply
have:

E0 =
C∑

k=1

−p(ck) log(p(ck)). (4)

Based on the given formulas, in order to find the best potential splits over all
attributes and classes, we need to maintain two groups of estimators at leaves:
(i) class priors p(ck), and (ii) conditional class probabilities p(ck|xi). The former
estimations can be easily obtained by counting occurrences of each class:

p(ck) =
nk

n
, (5)

where nk is the number of instances of class k counted for a node and n is the
total number of examples received. For the latter values we use the fact that we
have discrete classes and apply the conditional probability formula:

p(ck|xi) =
p(xi|ck)p(ck)

p(x)
, (6)

where p(x) is the normalizing constant for all classes. The prior probability p(ck)
can be omitted here, as a part of the prior scaling, to alleviate the class imbalance
problems [11]. The required class-conditional attribute probabilities p(xi|ck) are
modeled using Gaussian estimators, which provide a quick and memory efficient
way of obtaining the required values [19]. We use triplets consisting of a count
nk,i, mean μk,i and variance σk,i for all pairs of classes ck and attributes xi.
By having those models we can easily apply Eq. 6 to obtain p(ck|xi ≤ sj) and
p(ck|xi > sj) = 1.0 − p(ck|xi ≤ sj). We end up with p(xi ≤ sj |ck), which can be
calculated using the cumulative distribution function for the standard normal
distribution Φk(sj). It can be expressed using the error function:

p(xi ≤ sj |ck) = Φk(sj) = 0.5(1 + erfk(sj/
√

2), (7)

where the value of the error function can be calculated using the stored triplets.
Finally, after finding the best possible split sj for an attribute xi that min-

imizes the entropy after a split (Eq. 3) and passing the Hoeffding bound test
(Eq. 2) we can split the node and estimate the total number of instances that
will go to the left and right child:

pl(ck) = p(ck)p(ck|xi ≤ sj) = 1 − pr(ck), (8)



Streaming Decision Trees for Lifelong Learning 507

where pl(ck) and pr(ck) are priors for the left and right child for the given class
ck, and xi is the selected split attribute.

By default, we omit the estimation of all p(ck|xi) after the split as it is a
non-trivial task, which most likely cannot be quickly solved in the current form
of the algorithm. This fact has a crucial impact on the streaming decision trees
in the class-incremental scenario as we will show in the subsequent paragraphs.

Classification at Leaves. After forwarding an incoming instance to a leaf in
the decision tree, it is classified using majority voting based on the class priors.
To improve the classification process the simple procedure is often combined
with a naive Bayes classifier [1], which can be easily applied using the already
stored estimators:

p(ck|x) =
p(x|ck)p(ck)

p(x)
, (9)

where x is the vector of input attributes and p(x|ck) is equal to:

p(x|ck) =
m∏
i=1

p(xi|ck), (10)

where m is the number of features. Each p(xi|ck) can be obtained using the
Gaussian density function.

Forgetting Scenario. After the introduction of the leaf components and
required calculations, let us now consider what will happen in the class-
incremental scenario after subsequent splits. In Fig. 1 we can see an example
of a sequence of 3 class batches. At the beginning, there are only instances of
the first class (C0) for which the algorithm accumulates values for the prior
count (Eq. 5) and conditional estimators (Eq. 6) only at the root, since there is
no need for a split.

C0

Priors: C0
Conds: C0

Priors: C0, C1
Conds: C1 (!)

Priors: C0, C1
Conds: C1 (!)

C1

Priors: C0, C1
Conds: C1 (!)

C2

Priors: C1,C2
Conds: C2 (!)

Priors: C1, C2
Conds: C2 (!) TIME 

Fig. 1. Catastrophic forgetting in streaming decision trees learning from a class-
incremental sequence.

Next, the second class (C1) starts arriving and at some point the Hoeffding
Tree algorithm finds a good split, which creates two additional nodes and dis-
tributes priors accordingly to Eq. 8. After this step, the child nodes have some
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smaller priors for C0 and C1, however, the conditional estimators have been reset
by default. Although we can assume that after the split some instances of class
C1 can still appear and rebuild the conditional estimators, there is no chance
that the same will happen for C0, which means that while its priors will be good
for now, its conditional estimators (Eq. 6) will remain equal to zero, resulting in
an inability of the naive Bayes classifier (Eq. 9) to recognize this class.

When the next class starts coming (C2) we can already observe a problem –
since there are no instances of C0, its p(c0|xi) is still equal to zero, which leads
to the situation in which the older class is completely ignored during the entropy
calculations when looking for a split (Eq. 3). Finally, once a new split is created,
there will be no prior for the class at the newest leaves, since based on Eq. 8
it has to be zeroed. This concludes the learning process for class C0 which has
been completely erased at the third level of the tree, and which may very likely
disappear from the model completely. Even worse is the fact that the same will
most likely happen to C1 and C2 as soon as new classes arrive.

Based on the analysis, we can conclude that in the class-incremental scenario,
catastrophic forgetting in streaming decision trees manifests itself in three ways:
(i) by excluding older classes from a meaningful contribution to the best split cri-
terion, (ii) by disabling the conditional classification, and finally (iii) by erasing
priors which leads to complete class forgetting at a given node.

3.2 Overcoming Catastrophic Forgetting

The observations from the previous section clearly indicate that the source of the
problem with forgetting can be found at leaves and their conditional estimators.
It is worth emphasizing that this issue practically does not exist in most of the
commonly used data stream benchmarks, which provide instances of different
classes for most of the time during the learning process. In such a case, the
estimators can always rebuild themselves after new instances arrive, preventing
them from forgetting most of the classes. The longer are gaps between subsequent
instances of one class, the higher is the chance that the class will be temporarily
or forever forgotten.

To make a step towards solving the introduced problem in Hoeffding Trees,
we propose using a rough class-conditional attribute estimation after the split
to prevent the model from forgetting older classes. The approach consists of two
modifications: (i) propagating class-conditional attribute estimators (needed for
Eq. 7) to children of a node being split, and (ii) keeping the class priors in the
entropy and naive Bayes calculations to calibrate the rough estimation.

Estimator Propagation. We can simply achieve the first step by copying the
Gaussian parameters of each class-conditional distribution pt−1(xi|ck) before
split at time step t to the left node with pt,l(xi|ck) and to the right one with
pt,r(xi|ck), which results in:

pt,l(xi|ck) = pt,r(xi|ck) = pt−1(xi|ck), (11)

for each class ck and attribute xi. This is obviously a very rough estimate,
however, since we assume simple Gaussian distributions, the error does not have
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to be critical and may provide more benefits than obstructions. Most likely,
providing any platform for an older class is more important than the risk of
making the estimation error. In addition, the estimate may still be fine-tuned
by instances that come to this node before the class batch ends.

Prior Scaling. By sticking to the prior probabilities p(ck) in the entropy calcu-
lations (Eq. 3) and Bayesian classification (Eq. 9), we attempt to somehow adjust
the rough estimate from the previous step. Since the split class priors are rel-
atively well-estimated, we can utilize them to softly scale the class-conditional
distributions to become more adequate to the state after the split. Although this
step does not change the shape of the distribution horizontally, it may increase
or decrease the influence of the distribution by scaling it vertically based on the
formula:

pt(xi|ck) = pt−1(xi|ck)pt(ck). (12)

Ensembles. Finally, the modified Hoeffding Tree can be simply used as a base
learner of the Incremental Random Forest, which is an Adaptive Random Forest
without change detectors and node replacement mechanisms. The only difference
between the standard forest and the ensemble using our modified tree is that
we have to keep statistics for all attributes at leaves, not only for those within a
random subspace, since we do not know which attributes will be needed at a lower
level. By combining the robustness of ensemble techniques with improvements of
the base learner we may potentially alleviate the catastrophic forgetting problem
even more.

4 Experimental Study

In the following experiments, we aim at proving that our proposed modifica-
tions of the Hoeffding Tree algorithm are capable of alleviating the catastrophic
forgetting in decision trees learning from class-incremental streams, allowing for
the application of these models in such scenarios. Our goal was to answer the
following research questions.

– RQ1: Does the proposed algorithm effectively address the problem of catas-
trophic forgetting in streaming decision trees?

– RQ2: Can the presented decision tree be utilized as a base learner of a random
forest? Does it further improve the classification performance?

– RQ3: Is it possible to solve the presented problem by using a different already
available ensemble technique?

In order to improve reproducibility of this work, all of the presented algo-
rithms and details of the evaluation have been made available in a public repos-
itory: github.com/lkorycki/lldt.

https://github.com/lkorycki/lldt
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4.1 Data

To evaluate the baseline and proposed models in the scenario of lifelong learning
and catastrophic forgetting, we used popular visual data sets commonly used for
the given task. The first three were used as simpler sequences consisting of 10
classes: MNIST, FASHION, SVHN. Next, we utilized 20 superclasses of the
CIFAR100 data set (CIFAR20), as well as we extracted two 20-class subsets
of the IMAGENET: IMAGENET20A and IMAGENET20B. All of the sets
were transformed into class-incremental sequences in which each batch contained
only one class and each class was presented to a classifier only once. All of the
evaluated models were processing the incoming batches in a streaming manner,
one instance after another.

The MNIST and FASHION data sets were transformed into a series of flat-
tened arrays (from raw images), which provided us with feature vectors of size
784. The rest of the used benchmarks were pre-processed using pre-trained fea-
ture extractors. For SVHN and CIFAR20 we used ResNeXt-29 with its cardinal-
ity equal to 8 and using widen factor equal to 4. We extracted the output of the
last 2D average pooling and processed it with an additional 1D average pooling,
which resulted in a feature vector consisting of 512 values. For the IMAGENET-
based sets we directly utilized the output of the last average pooling layer of the
ResNet18 model, which once again gave us 512-element vectors.

4.2 Algorithms

In our experiments, we compared the proposed single tree (HT+AE) with the
original streaming algorithm (HT) [5], as well as the incremental random forest
using our base learner (IRF+AE) with its baseline (IRF) to answer the first
two research questions. Next, we evaluated other ensemble techniques to check
whether it is possible that a solution to the introduced problem lies solely in a
different committee design (the last research question). We investigated drift-
sensitive Adaptive Random Forest (ARF) [7], online bagging without random
subspaces per node (BAG) [17], online random subspaces per tree (RSP) [8]
and the ensemble of 1-vs-all classifiers (OVA) [9].

All of the algorithms used Hoeffding Trees as base learners with confidence
set to δ = 0.01, bagging lambda equal to λ = 5, split step s = 0.1 (10% of a
difference between the maximum and minimum attribute value) and split wait
equal to w = 100 for all sets except for the slightly smaller IMAGENET-based
ones for which we set w = 10. All of the ensembles used n = 40 base learners.

4.3 Evaluation

Firstly, for all of the considered sequences, we measured hold-out accuracy
[20] per each class after each class batch and used it to calculate the average
accuracy per batch and the overall average for a whole sequence. Secondly, we
collected data for confusion matrices after each batch to generate the average
matrices which could help us illustrate the bias related to catastrophic forgetting.
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Finally, we measured the retention of the baseline and improved algorithms to
show how well the given models remember previously seen concepts.

4.4 Results

Analysis of the Average Predictive Accuracy. Table 1 presents the average
accuracy over all classes for all six used class–incremental benchmarks. This is
the bird’s eye view on the problem and the performance of the analyzed methods,
allowing us to assess the general differences among the algorithms. We can see
that the standard HT and IRF were significantly outperformed by the proposed
HT+AE and IRF+AE approaches. For HT the proposed propagation of class-
conditional attribute estimators and storing the class priors led to very significant
improvements on all data sets, which is especially visible on CIFAR20 (almost
0.3) and IMAGENET20A (0.2). Similar improvements can be observed for IRF,
especially for CIFAR20 where the modifications led to 0.28 improvement. The
SVHN benchmark shows the smallest improvements out of all six data sets,
which can be explained by the extractor potentially being very strongly fine-
tuned for this problem. Thus extracting well-separated class embeddings may
slightly alleviate the catastrophic forgetting on its own (although the proposed
modifications still help).

The Impact of Different Ensemble Architectures. To truly understand
the impact of catastrophic forgetting on HT and IRF, we decided to see if other
ensemble architectures may behave better in class-incremental lifelong learning
scenarios. Table 1 presents results for four other popular streaming ensemble
architectures. We can see that all of them performed poorly on every data set,
offering inferior predictive accuracy to the baseline IRF. This shows that the
choice of an ensemble architecture on its own does not offer improved robust-
ness to catastrophic forgetting. As a result, we have a good indication that our
modifications of the HT splitting procedure are the sole source of the achieved
impressive gains in accuracy. However, a more in-depth analysis of these models
will allow us to gain better insights into the nature of catastrophic forgetting in
streaming decision trees.

Table 1. The average accuracy on all class-incremental sequences.

Model MNIST FASHION SVHN CIFAR20 IMGN20A IMGN20B

HT 0.6283 0.5720 0.8845 0.3511 0.4589 0.5301

HT+AE 0.8398 0.7037 0.9510 0.6497 0.6530 0.6730

IRF 0.8662 0.7355 0.9334 0.4467 0.6890 0.7500

IRF+AE 0.9645 0.8698 0.9733 0.7298 0.7777 0.8121

ARF 0.2929 0.2929 0.2929 0.1799 0.2411 0.2849

OVA 0.3416 0.2929 0.5033 0.1805 0.3842 0.3847

BAG 0.7096 0.6446 0.9029 0.3737 0.5709 0.6635

RSP 0.6202 0.5898 0.9087 0.3734 0.6337 0.6995
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Fig. 2. The average class accuracy for the baseline tree-based models ( HT, IRF)
and the proposed ones ( HT+AE, IRF+AE) after each class batch.

Analysis of the Class-Batch Performance. Figure 2 depicts the average
accuracy after each class appearing incrementally. This allows us to visually
analyze the stability of the examined methods and their response to the increas-
ing model size (when more and more classes need to be stored and remem-
bered). We can see that both proposed HT+AE and IRF+AE offered signifi-
cantly improved stability over the baseline approaches, maintaining their supe-
rior predictive accuracy regardless of the number of classes. Additionally, we can
see that the baseline models tended to deteriorate faster when the number of
classes became higher (e.g., HT and IRF on MNIST and FASHION). At the
same time, the proposed modifications could accommodate all the classes from
the used benchmarks without destabilization of their performance. It is worth
noting that HT+AE was often capable of outperforming IRF. This is a very sur-
prising observation, as the modification of class-conditional estimators allows a
single decision tree to outperform a powerful ensemble classifier. This shows that
the proposed introduction of robustness to catastrophic forgetting into streaming
decision trees is a crucial improvement of their induction mechanisms.

Analysis of the Class-Based Performance. Figure 3 depicts the accuracy
per batch on selected classes. This allows us to understand how the appearance
of new classes affects the performance on previously seen ones. We can clearly
see that both HT and IRF were subject to catastrophic forgetting, very quickly
forgetting the old classes. While they were very good at learning the newest
concept, their performance degraded with every newly arriving class, showing
their capabilities of aggressively adapting to new knowledge, but not retain-
ing it over time. This was especially vivid for the first class for each data set
(C0), where it was completely forgotten (i.e., accuracy on it drops to zero) as
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Fig. 3. The average accuracy for selected classes of FASHION, CIFAR20 and IMA-
GENET20B for the baseline tree-based models ( HT, IRF) and the proposed ones
( HT+AE, IRF+AE) after subsequent class batches.

soon as 1–2 new classes appeared. The proposed propagation of class-conditional
attribute estimators and storing the class priors in HT+AE and IRF+AE led to
a much better retaining of knowledge extracted from old classes. In some cases
(e.g., CIFAR20 or IMAGENET20) we can see that the accuracy for old classes
remained almost identical through the entire duration of the lifelong learning
process. This is a highly sought-after property and attests to the effectiveness of
our proposed modifications.

Analysis of the Confusion Matrices. Figure 4 depicts the confusion matrices
averaged over all examined data sets (10 classes from each for the visualization
sake). Based on that we can directly compare how errors are distributed among
classes for HT vs. HT+AE and IRF vs. IRF+AE. We can see that the proposed
modifications in HT+AE and its ensemble version led to a much more balanced
lifelong learning procedure that both avoided the bias towards the newest class
(i.e., is robust to catastrophic forgetting) and the bias towards older classes
(i.e., offers capabilities for incorporating new information into the model in an
effective manner). These confusion matrices further confirm our observations
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Fig. 4. The average confusion matrices.

made in previous points of this discussion that our proposed modifications lead
to robust streaming decision tree induction for lifelong learning.

Analysis of the Retention of Information. Figure 5 depicts the average
retention of information about a class after +k new classes appeared. This helps
us analyze how each of examined models manages its knowledge base and how
flexible it is to add new information to it. An ideal model would perfectly retain
the performance on every previously seen class, regardless of how many new
classes it has seen since then. We can see that the baseline HT and IRF offered
very good performance on the newest class, but drastically dropped it after see-
ing as little as 2 new classes. This further enforces our hypothesis that standard
decision trees and their ensembles cannot avoid catastrophic forgetting and thus
cannot be directly used for lifelong learning. However, when we enhance HT with
the proposed propagation of class-conditional attribute estimators and storing
the class priors, we obtain a streaming decision tree that can learn new infor-
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Fig. 5. The average retention after +k class batches since the moment a class appeared
for: HT, HT+AE, IRF, IRF+AE
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Fig. 6. The average class accuracy for other baseline models ( OVA, BAG) and the
proposed ones ( HT+AE, IRF+AE) after each class batch.

mation almost as effectively as its standard counterpart, while offering excellent
robustness to catastrophic forgetting (RQ1 answered). Furthermore, we can
see that HT+AE can be utilized as a base learner for ensemble approaches,
leading to even further improvements in its accuracy and information retention
(RQ2 answered).
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Batch-Based Performance of the Ensemble Architectures. Figure 6
depicts the average accuracy after each class appearing incrementally for the
reference ensemble approaches. This confirms our observations from the ear-
lier point that the ensemble architecture itself does not have any impact on
the catastrophic forgetting occurrence. Reference methods use different ways of
data partitioning (subsets of instances, features, or classes), but none of them
allowed for better retention of old information. What is highly interesting is
that HT+AE (a single decision tree) could outperform any ensemble of trees
that do not use our proposed modifications. This shows the importance and
significant impact of propagation of class-conditional attribute estimators and
storing the class priors on the usefulness of streaming decision trees for lifelong
learning. Therefore, catastrophic forgetting can be avoided by using a robust
base learner, not changing the ensemble structure (RQ3 answered).

5 Summary

In this work, we identified and emphasized the issue of catastrophic forget-
ting that occurs when traditional streaming decision trees attempt to learn in
class-incremental lifelong learning scenarios. Through an in-depth analysis of the
Hoeffding Tree algorithm, we found out that the source of the algorithm’s weak-
ness comes from the lack of additional support for class-conditional attribute
estimators, which tend to forget older classes after splits. The issue critically
affects different aspects of tree-based learning, ranging from the procedure for
finding new splits to classification on leaves.

To solve the introduced problem, we proposed a rough estimation of the
conditional distributions after a split, based on distributions and priors aggre-
gated at a node before it is divided. Our extensive experimental study has shown
that this simple yet effective approach is capable of providing excellent improve-
ments for both single trees and incremental forests. As a result, we proved that
the proposed method turns the standard streaming trees into learners suitable
for lifelong learning scenarios.

In future works, we plan to find more precise estimators, which may need
to be supported by some local experience replay utilizing small buffers of either
input instances or prototypes.
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Abstract. In clinical deployment, the performance of a model trained
from one or more medical systems often deteriorates on another system
and such deterioration is especially evident among minority patients who
often have limited data. In this work, we present a multi-source adver-
sarial domain separation (MS-ADS) framework which unifies domain
adaptation and domain generalization. MS-ADS is designed to address
two types of discrepancies: covariate shift stemming from differences in
patient populations, and systematic bias on account of differences in data
collection procedures across medical systems. We evaluate MS-ADS for
early prediction of septic shock on three tasks. On a task of domain
adaptation across three medical systems, we show that by leveraging
data from multiple systems while accounting for both types of discrep-
ancies, MS-ADS improves the prediction performance across all three
systems; on a task of domain generalization to an unseen medical sys-
tem, we show that MS-ADS can perform better than or close to the gold
standard supervised models built for the system; last but not least, on
a task that involves both domain adaptation and domain generalization:
generalization to unseen racial groups across medical systems, MS-ADS
shows robust out-performance by addressing covariate shift across differ-
ent racial groups and systematic bias across medical systems simultane-
ously.

Keywords: Domain adaptation · Domain generalization · Cross-racial
transfer · Septic shock

1 Introduction

Machine learning is used increasingly in clinical care to improve diagnosis, treat-
ment policy, and healthcare efficiency. Because machine learning models learn
from historically collected data, electronic health records (EHRs), populations
that are under-represented in the training data are often vulnerable to harm by
incorrect predictions. For example, between the two medical systems involved
c© Springer Nature Switzerland AG 2021
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in this work, the percentages of White vs. African American are 71% vs. 22.5%
in Christiana Care whereas 91% vs. 3% in Mayo clinic. For certain diseases
like sepsis, different racial groups often exhibit distinct progression patterns
[35]. Therefore, a model that can leverage EHRs across multiple medical sys-
tems to improve prediction among minority racial groups is needed. However,
EHRs across medical systems can vary dramatically because different systems
serve different demographic populations and often employ different infrastruc-
ture, workflows and administrative policies [1]. For this work, we refer to the
discrepancies caused by the heterogeneous patient populations as covariate shift
and those caused by incompatible data collection procedures as systematic bias.

We propose a multi-source adversarial domain separation (MS-ADS) frame-
work which unifies domain adaptation and domain generalization. More specifi-
cally, MS-ADS separates the local representation of each domain from the global
latent representation across all domains to address systematic bias and leverages
multi-domain discriminator in conjunction with gradient reversal layer to address
the covariate shift across each pair of domains. More specifically, our MS-ADS
is built atop variational recurrent neural networks (VRNN) [5] due to VRNN’s
ability to handle variabilities in EHRs, such as missing data, and its ability to
capture complex conditional and temporal dependencies [26,39]; it is shown that
VRNN significantly outperforms commonly-used variations of RNN such as long
short-term memory (LSTM) on EHRs [16,39]. The effectiveness of MS-ADS is
compared against another strong VRNN-based domain adaptation framework
called VRADA [28] for early prediction of a challenging condition in hospitals,
septic shock. Sepsis is a life-threatening condition caused by a dysregulated body
response to infection [32]. Septic shock is the most severe complication of sepsis,
associated with high mortality rate and prolonged length of hospitalization [32].
Timing is critical for this condition as every hour delay in antibiotic treatment
leads to 8% increase in the chance of mortality. Early prediction of septic shock
is challenging due to vague symptoms and subtle body responses [19]. Also,
sepsis, like cancer, involves various disease etiologies that span a wide range of
syndromes, and different patient groups may show vastly different symptoms
[35].

To investigate the early prediction of septic shock, we leverage EHRs col-
lected from three large medical systems located in different parts of the US. The
effectiveness of MS-ADS is evaluated on three tasks involving domain adaptation
(DA), domain generalization (DG), or both. First, on a task of DA across three
medical systems, we compare MS-ADS against VRADA and a VRNN model
trained on all three domains and show that MS-ADS improves the prediction
performance across the three domains and outperforms all baselines. Further,
through visualization we show that MS-ADS indeed capture both covariate shift
and systematic bias. Second, on a task of DG to an unseen system, we evaluate
the performance of MS-ADSs trained with two medical systems on a third target
system. The results suggest that MS-ADS can perform as well as or better than
the gold standard: supervised model trained on the target domain. Finally, prob-
ably the most important, we evaluate MS-ADS on the task of generalization to
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an unseen racial group across medical systems. We demonstrate that by treating
each medical system and each racial group as a separate domain, our MS-ADS
is capable of addressing both covariate shifts across different racial groups and
systematic bias across medical systems. Our results suggest that MS-ADS sig-
nificantly improves generalization performance to African American population
in Mayo as compared to the other baselines. Our contributions are:

– By tackling two different types of discrepancies, MS-ADS can effectively lever-
age EHRs from multiple medical systems to improve prediction performance
on each system individually and also combined.

– Domain-invariant representations generated by MS-ADS are generalizable to
new domains such that they perform close to or better than the gold standard
supervised models trained on those systems.

– By unifying DA and DG, as far as we know, MS-ADS is the first framework
that shows great potential on generalization to unseen racial groups across
medical systems.

2 Methodology

Problem Description. We have K domains: {D1,D2, ...,DK} and a domain
contains n patient visits represented as X = {x1, ...,xn}. Each visit xi is a mul-
tivariate time-series that is composed of T i medical events and can be denoted
as xi = (xi

t)
T i

t=1 where xi
t ∈ R

D. Additionally, each visit has a visit-level outcome
label represented as Y = {y1, ..., yn} where yi ∈ {1, 0} indicates the outcome
of visit i: septic shock or non-septic shock. By combining X and Y for each
domain, we have: Dk = {xi

Dk
, yi

Dk
}nk

i=1, where nk is the number of visits in Dk;
Here we assume each {xi

Dk
, yi

Dk
}nk

i=1 is drawn from distribution pk(x, y) that is
different from {pj(x, y) : j �= k}. Our objective is to minimize the discrepancies
between these K domains in a common latent space by aligning their latent
representations: zD1 , ..., zDK

, so that to create a unified, generalizable classifier
C : z �→ y that predicts the outcome optimally in all K domains. To do so, we
adversarially learn

(
K
2

)
discriminators to minimize the distance between global

latent representations of each pair of domain zDi
and zDj

. We describe this
framework in detail in the following.

Multi-Source Adversarial Domain Separation (MS-ADS). Figure 1 illus-
trates MS-ADS architecture: it separates one globally-shared latent represen-
tation for all domains from domain-specific (local) information. This architec-
ture would allow global information to be purified so that the discrepancies
caused by systematic bias are addressed. MS-ADS employs VRNN as the base
model to process sequential input EHRs. VRNN has an encode-decoder structure
where its four internal operations interact with each other to capture dependen-
cies between latent random variables across time steps (please see [5] for more
details). MS-ADS ensures that the global latent representations are different
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from the local ones by maximizing a dissimilarity measure. Additionally, multi-
ple domain discriminators and a label predictor are employed to ensure domain-
invariant and class-discriminative projection. In the following, we briefly describe
the two steps for training the MS-ADS framework.

Fig. 1. Multi-Source Adversarial Domain Separation (MS-ADS) Framework

Step 1: Pre-train Source and Target VRNNs. Optimal local latent rep-
resentations zl

D1
, ..., zl

DK
are obtained by pre-training a local VRNN per each

domain separately. The VRNN’s loss objective (Ll
vrnn) optimizes the inference

(encoder) and the generative (decoder) processes to minimize the reconstruction
loss [5].

Step 2: Discriminative Adversarial Separation. As shown in Fig. 1, MS-
ADS is composed of the K pre-trained local VRNNs from step 1, and one global
VRNN that takes the concatenation of all K domains as input. The global
Encoder will generate global latent representations, and the global decoder recon-
structs the input for each domain. The set of discriminators align the global
latent representations between every two domains from Di and Dj . Finally, the
unified classifier learns to predict the outcome labels using all latent representa-
tions regardless of their source domain. Following formalizes each component’s
loss objective.

1. Global and Local VRNNs: The parameters of local VRNND1 ,..., VRNNDK

are initialized based on the K pre-trained VRNNs to generate local repre-
sentations: zl

D1
, ..., zl

DK
. The global VRNN also takes concatenation of all
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domain’s data as input and the global encoder generates zg
D1

, ..., zg
DK

. Fur-
ther, for optimizing reconstruction loss in each of the local and global VRNNs
we follow the original VRNN loss as follows:

Ll
vrnn(xD1 , ...,xDK

;Θl) =
K∑

i=1

Lvrnn(xDi
; θei

, θdi
) (1)

Lg
vrnn([xD1 , ...,xDK

];Θg) = Lvrnn([xD1 , ...,xDK
];Θg) (2)

where Θl =
K⋃

i=1

(θei
, θdi

) and Θg = (θg
e , θg

d) indicate the local and global

VRNN parameters, respectively.

The main novelty of MS-ADS is to separate local and global features by
maximizing the distance between them so that they extract system specific
features such as systematic bias. To do so, we add a dissimilarity measurement
between (zg

Di
, zl

Di
) for all Di, i ∈ {1, ...,K} for each sample, defined by a

Frobenius norm which measures the orthogonality between global and local
representation from each domain. Let us denote matrix Zg

Di
as global matrix

of Di where each row j of it is composed of zg
Di

for sample j in this domain.
Similarly, Zl

Di
indicates local matrix of Di. Therefore, the difference loss is

defined as:

Ldiff(xD1 , ...,xDK
;Θl, Θg) =

K∑

i=1

∥
∥
∥Zg

Di

�Zl
Di

∥
∥
∥

2

F
(3)

where ‖·‖2
F refers to the squared Frobenius norm where zero indicates orthog-

onal vectors. Finally, the overall separation loss is:

Lsep(xD1 , ...,xDK
;Θ) =Ll

vrnn(xD1 , ...,xDK
;Θl) + Lg

vrnn([xD1 , ...,xDK
];Θg)

+ αLdiff(xD1 , ...,xDK
;Θl, Θg).

(4)
2. Classifier: A simple fully connected neural network is used as a classifier

that consumes the global latent representations from the last time step T .
This network is optimized based on the binary cross-entropy loss (LB) for all
domains as:

Lclf(xD1 , ...,xDK
; θc, θ

g
e) =

K∑

i=1

LB(Cθc
(Eg(xDi

; θg
e)T ), yDi

) (5)

where θc indicates the classifier parameters.
3. Discriminator: To minimize the difference between source domains, we pro-

pose to build a domain discriminator for each pair of domains. Therefore, each
discriminator Di,j is a fully connected neural network that takes the last time
step from global representations zg

Di
and zg

Dj
as input to infer a domain label.
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This will result in
(
K
2

)
binary classifiers and the total discriminator loss would

become:

Ldisc(z
g
D1

, ..., zg
DK

; θdisc) =
(

K

2

)−1 K−1∑

i=1

K∑

j=i+1

LB(Di,j(z
g
Di

, zg
Dj

); θi,j
disc) (6)

where θi,j
disc indicates the parameters of discriminator Di,j . The discriminator’s

objective is to minimize this loss while the global VRNN tries to maximize
this loss. Therefore, the adversarial learning process captures the notion of
invariant latent representations between different domains. We have explored
multiple other discriminative adversarial learning designs for multi-source
problems such as a single discriminator with one vs. rest discrimination or
with accumulated gradients [33,38], but the results show that the pairwise
architecture performs the best.

Inspired by Ganin et al. [10] we use the gradient reversal layer (GRL) to effec-
tively combine and optimize all three loss components using backpropagation.
GRL can be represented as R(x) with different forward and backward propa-
gation behavior, where I is the identity matrix and λ is a constant (a specified
schedule during training can be used):

R(x) = x;
∂R
∂x

= −λI (7)

The GRL would handle the gradients from the discriminators that should be
optimized in the reverse order and the overall optimization becomes:

arg min
Θ,θc,θdisc

Lsep(xD1 , ...,xDK
;Θ) + Lclf(xD1 , ...,xDK

; θc, θ
g
e)+

Ldisc(R(zg
D1

), ...,R(zg
DK

); θdisc)
(8)

Equation 8 yields a multi-source domain adaptation framework that can sepa-
rate domain-specific features from the globally-shared latent representations and
adversarially learn an invariant representation between each pair of the source
domains. We hypothesize that MS-ADS will address both systematic bias and
covariate shift effectively in a multi-source learning environment and builds a
unified classifier that is robust across all source domains. We assess this hypoth-
esis through experimentation in the following sections.

3 Experimental Setup

Three EHR Datasets: 210,289 visits of adult patients (i.e. age > 18) admit-
ted to Christiana Care Health System (CCHS) in Newark, Delaware (07/2013-
12/2015); 106,844 adult patient visits from Mayo Clinic in Rochester, Minnesota
(07/2013-12/2015); and 53,423 ICU visits of patients admitted to Beth Israel
Deaconess Medical Center in Boston, Massachusetts (2001–2012), MIMIC-III
[15]. Note that the nature of MIMIC-III data is different from CCHS and Mayo.
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To be consistent among all datasets, we define our target population as suspected
of infection, identified by administration of any anti-infectives, or a positive PCR
test result. This definition and the following data pre-processing steps are deter-
mined by three leading clinicians with extensive experience on this subject.

Labeling: We adopt the agreement between International Classification of Dis-
eases, Ninth Revision (ICD-9) codes recorded in EHRs, and our expert-defined
rules based on the Third International Consensus Definitions for Sepsis and Sep-
tic Shock [32] to achieve the most reliable population across all datasets. Our
clinicians identify septic shock at event-level as having received vasopressor(s)
or persistent hypotension for more than 1 h (systolic blood pressure (SBP)<90;
or mean arterial pressure<65; or drop in SBP>40 in an 8-h window).

Sampling: Using the agreement criteria results in 2,963 positive cases in CCHS,
3,499 in Mayo, and 2,459 cases in MIMIC-III. To balance the number of positive
and negative cases, we perform a stratified random sampling by 1) maintaining
the same underlying age, gender, ethnicity, and length of stay distribution, and
2) having the same level of severity as positive samples. The severity of septic
shock visits is identified as the presence of different stages of sepsis in their visits:
infection, inflammation, and organ failure as defined by experts.

Aggregation: To align the sampling frequency across all datasets, we use a
30-min aggregation window to summarized all records into a single event and
missing if none. Our feature set includes 7 vital signs (e.g.: SBP, Temperature),
2 oxygen information (FIO2 and OxygenFlow), and 10 lab results (e.g.: WBC,
BUN). To handle the remaining missing values, we first use expert rules to carry
forward vital signs (for 8 h) and lab results (for 24 h), then we apply the mean
imputation along with the missing indicator. Our experiments show that this
strategy will help VRNN address such variabilities in data more efficiently.

Fig. 2. Septic shock early prediction task

Prediction Task: Figure 2 shows
our prediction task setup: using EHRs
in an observation window to predict
whether a patient is going to develop
septic shock n hours later; n varies
from 24 to 72 h denoted as predic-
tion window and observation window
is set to be capped at 48 h as sug-
gested by the leading physicians. All
the sequences are aligned by their end
time, which is the shock onset for pos-
itive visits and a truncated time point for non-shock visits. To prevent the poten-
tial bias in models, negative visits are truncated such that they have the same
distribution of length as positives. As the prediction window expands, the num-
ber of visits remaining in the observation window will drop. For a fair compari-
son, we sample the same number of positive/negative visits in all domains. This
results in 1,315 total visits from each domain for 24 h early prediction and 620
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Table 1. Multi-source DA performance (± std) evaluated on integration of ALL
domains and each domain separately for 24 h early prediction task.

Test
domain

Model Accuracy Precision Recall F1 Score AUC

ALL 1. VRNN(CCHS) 0.735(±0.012) 0.823(±0.019) 0.6(±0.048) 0.692(±0.026) 0.815(±0.014)

2. VRNN(Mayo) 0.741(±0.017) 0.753(±0.021) 0.718(±0.053) 0.734(±0.026) 0.81(±0.015)

3. VRNN(MIMIC) 0.732(±0.016) 0.677(±0.023) 0.894**(±0.037)0.769(±0.009) 0.814(±0.015)

4. VRNN(Separate)0.803‡(±0.012)0.817‡(±0.017) 0.781(±0.037) 0.797‡(±0.017) 0.864(±0.01)

5. VRNN(All) 0.795(±0.004) 0.791(±0.014) 0.801(±0.022) 0.796(±0.006) 0.882‡(±0.003)

6. Multi VRADA 0.78(±0.029) 0.778(±0.046) 0.766(±0.034) 0.771(±0.021) 0.855(±0.031)

7. MS-ADS 0.81**(±0.011) 0.828**(±0.018)0.782‡(±0.027) 0.804**(±0.014)0.893**(±0.009)

CCHS 1. VRNN(CCHS) 0.778(±0.008) 0.833(±0.022) 0.698(±0.034) 0.759(±0.014) 0.837(±0.012)

7. MS-ADS 0.777(±0.012) 0.791(±0.016) 0.75(±0.028) 0.77(±0.014) 0.862(±0.013)

Mayo 2. VRNN(Mayo) 0.731(±0.011) 0.732(±0.016) 0.729(±0.04) 0.73(±0.017) 0.795(±0.004)

7. MS-ADS 0.73(±0.022) 0.752(±0.034) 0.688(±0.046) 0.718(±0.028) 0.796(±0.02)

MIMIC 3. VRNN(MIMIC) 0.9(±0.018) 0.888(±0.014) 0.917(±0.038) 0.902(±0.02) 0.961(±0.014)

7. MS-ADS 0.921(±0.015) 0.935(±0.018) 0.907(±0.018) 0.921(±0.016) 0.974(±0.005)

· The best and the second best models are labeled with ** and ‡, respectively.

visits for 72 h. Therefore, as the number of samples decreases, it is more crucial
to integrate different domains to build more robust classifiers.

Parameters and Training: As illustrated in Eq. 8, there are three sets of
parameters: discriminator (θdisc), classifier (θc), and VRNN (Θ) parameters opti-
mized through a GRL for adversarial training using NAdam optimizer [34], with
learning rate αtotal = 8e−4. Then the classifier and VRNN models are optimized
in an additional step to compete against the gradients from the discriminator,
with learning rates: αc = 10e−4, αVRNN = 10e−4. In every epoch, the order of
optimization between the three optimizers is altered from the previous epoch to
prevent over-training of a specific network. All the models are implemented in
Tensorflow using mini-batch with batch size 32. The same experimental setup
is used for all the models with 160 epochs and early stopping. The VRNN’s
hidden size is set to 30 and the latent size is defined as 50. All the sequences
are zero-padded to have the same length and the zero-paddings are masked for
reconstruction loss calculation.

Evaluation Metrics: Our evaluation metrics include accuracy, recall, precision,
F1 score, and area under ROC curve (AUC) obtained from 2-fold cross-validation
in three independent runs. We mainly use F1 and AUC as the main metrics as
they offer a trade-off between precision, recall, and specificity.

4 Multi-Source DA Across the Three Medical Systems

By leveraging data from multiple medical systems while accounting for both
covariate shift and systematic bias across them, we expect MS-ADS would
improve the prediction performance across all three systems. Therefore, in this
task, the test set is composed of an equal number of visits from CCHS, Mayo,
and MIMIC. MS-ADS is compared against six baselines:
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Table 2. Multi-source DA performance evaluated for 24–72 h early prediction.

Model Accuracy Precision Recall F1 Score AUC

1. VRNN(CCHS) 0.674(±0.04) 0.734(±0.055) 0.559(±0.052) 0.63(±0.041) 0.728(±0.046)

2. VRNN(Mayo) 0.66(±0.031) 0.678(±0.037) 0.624(±0.075) 0.645(±0.044) 0.712(±0.032)

3. VRNN(MIMIC) 0.689(±0.014) 0.633(±0.015) 0.909**(±0.029) 0.745(±0.009) 0.759(±0.016)

4. VRNN(Separate) 0.755‡(±0.025) 0.775‡(±0.031) 0.719(±0.053) 0.742(±0.031) 0.804(±0.023)

5. VRNN(All) 0.749(±0.012) 0.757(±0.021) 0.743(±0.051) 0.747‡(±0.019) 0.835‡(±0.01)

6. 3-d VRADA 0.746(±0.021) 0.751(±0.034) 0.739(±0.043) 0.743(±0.022) 0.829(±0.024)

7. MS-ADS 0.771**(±0.016) 0.782**(±0.016) 0.75‡(±0.033) 0.765**(±0.02) 0.85**(±0.012)

· The best and the second best models are labeled with ** and ‡, respectively.

1. VRNN(CCHS): a VRNN trained on CCHS only.
2. VRNN(Mayo): a VRNN trained on Mayo only.
3. VRNN(MIMIC): a VRNN trained on MIMIC-III only.
4. VRNN(Separate): will use the individual VRNN trained above to predict the

corresponding test data.
5. VRNN(All): a VRNN trained on a combined data from CCHS, Mayo, MIMIC.
6. Multi VRADA [28]: a modified version of VRADA to address multi-source

DA by changing the domain classifier loss to categorical cross-entropy loss.

24H Early Prediction: Table 1 presents the DA results for 24 h early pre-
diction on the combined test data (ALL) first (top) and then on test data
in each system separately. The top row shows that 1) among the five non-
adaptive baselines (1–5), VRNN(All) outperforms all single-domain VRNNs and
VRNN(Separate). This result suggests that a more effective classifier can be
achieved by leveraging more training samples; 2) By comparing the two multi-
source DA models against VRNN(All), we show that VRADA is not able to
outperform VRNN(All) while MS-ADS performs robustly and achieves the best
performance on all measures except on recall. The highest recall is achieved by
VRNN(MIMIC) at a cost of low precision.

The bottom three rows in Table 1 show whether the performance of these
models differ across different medical systems (domains). Due to the space lim-
itation, for each domain, we only listed the performance of the corresponding
VRNN trained on the same domain compared with the best of the remaining
six models. Table 1 shows MS-ADS consistently to be the best model on CCHS
and MIMIC but for Mayo, VRNN (Mayo) has a higher F1 score and very close
AUC score to MS-ADS. Additionally, MIMIC data has extremely good results
while the performance on Mayo is the worst. Such results suggest that early
sepsis shock prediction is relatively trivial for MIMIC dataset probably because
MIMIC only includes ICU visits. Therefore, in the following, we mainly focus on
generalization to CCHS and Mayo only.

Varying 24–72H Early Prediction: Table 2 shows the average performance
by varying the prediction window from 24 to 72 h, with every 12 h interval.
For each prediction window, our test set has an equal number of visits from
each domain. Table 2 shows MS-ADS significantly outperforms all other baselines
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(a) Original space (b) Latent space (c) Local CCHS

(d) Local Mayo

(e) Local MIMIC (f) Global

Fig. 3. Visit-level t-SNE visualization of (a) Original vs. (b) Latent space of MS-ADS.
(c)–(e) show domain-specific representations while (f) illustrates the globally-shared
representation. Solid dots represent septic shock visits.

including VRADA and VRNN(All) for all metrics except recall. VRNN(MIMIC)
performs with the highest recall across all domains, but at the cost of very low
precision. Comparing VRNN(Separate) with MS-ADS shows a ∼3% improve-
ment for recall and ∼4.5% improvement for AUC across all three domains.
This result demonstrates that by integrating EHRs across medical systems, MS-
ADS can address insufficient labeled data problems and by adopting an effective
domain adaptation architecture, MS-ADS can address both systematic bias and
covariate shift across medical systems.

Visit-Level Visual Investigation. Figure 3 illustrates t-SNE visualization of
the original and latent representation of all visits for 24 h early prediction. In all
graphs, different colors represent different medical systems and solid and hollow
points represent shock and non-shock visits, respectively. Figure 3a illustrates
the original space and 3b shows that the latent space generated by MS-ADS can
separate the three local representations (c), (d), (e) (enlarged in Fig. 3c–3e) from
the global ones (f) (enlarged in Fig. 3f). Figure 3c–3e suggests that MS-ADS can
address systematic bias effectively while Fig. 3f shows that in the global space,
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Fig. 4. Event-level t-SNE visualization of Original (left) vs. Global Latent (right) rep-
resentation of MS-ADS on CCHS and Mayo. Red (CCHS) and Blue (Mayo) traces
show sepsis progression of two similar patients. (Color figure online)

Table 3. DG performance to unseen target domains for 24 h early prediction.

Source Unseen
target

Model Accuracy Precision Recall F1 Score AUC

MIMIC + Mayo CCHS VRNN 0.747(±0.02) 0.739‡(±0.041) ↑0.77(±0.028) 0.753(±0.011) 0.831(±0.015)

MIMIC + Mayo VRADA 0.763‡(±0.021)0.739(±0.043) ↑0.826(±0.048) ↑0.778(±0.013) ↑0.846‡(±0.017)

MIMIC + Mayo MS-ADS0.764(±0.017) 0.74(±0.027) ↑0.813‡(±0.023)↑0.774‡(±0.013)↑0.851(±0.008)

CCHS VRNN 0.778(±0.008) 0.833(±0.022) 0.698(±0.034) 0.759(±0.014) 0.837(±0.012)

CCHS + MIMICMayo VRNN 0.698(±0.014) 0.725‡(±0.036) 0.644(±0.066) 0.678‡(±0.028) 0.763‡(±0.018)

CCHS + MIMIC VRADA 0.678‡(±0.039)0.702(±0.035) 0.608(±0.072) 0.65(±0.055) 0.739(±0.039)

CCHS + MIMIC MS-ADS↑0.73(±0.012) ↑0.796(±0.025)0.62‡(±0.011) 0.697(±0.01) ↑0.8(±0.014)

Mayo VRNN 0.731(±0.011) 0.732(±0.016) 0.729(±0.04) 0.73(±0.017) 0.795(±0.004)

·In each block, the best performance is in bold; Models that outperform the gold standard (bottom) are labeled
with ↑.

samples from different domains are close together and mostly aligned and mixed.
This shows that MS-ADS can address covariate shift effectively as well.

Event-Level Visual Investigation. Further, we look at the original and global
latent space at the event level to validate if covariate shift is addressed by MS-
ADS along the temporal axis. We select two similar septic shock visits across
CCHS and Mayo such that both develop inflammation and multiple organ fail-
ure symptoms within the observation window. Figure 4 shows these two traces
(CCHS (red) and Mayo (blue)) in the original and global latent spaces. Despite
their similarity, their progression deviates in the original space while in the latent
representation their temporal progression is aligned. This further demonstrates
the effectiveness of MS-ADS in addressing covariate shift at a temporal level.

5 Domain Generalization to Unseen Medical System

In the second task, MS-ADS is trained on EHRs from two medical systems
and evaluated on an unseen target system: CCHS or Mayo. MS-ADS is com-
pared against two baselines: a VRNN trained on the combination of two source
domains and the original VRADA applied for DA across the two domains. Table 3



532 F. Khoshnevisan and M. Chi

Table 4. VRNN performance trained and tested on different racial groups across
medical systems for 24 h early prediction.

Train domain Test Domain Accuracy Precision Recall F1 Score AUC

CCHS(WA) CCHS(WA) 0.888(±0.014) 0.869(±0.025) 0.916(±0.017) 0.891(±0.013) 0.956(±0.008)

CCHS(AA) 0.885(±0.011) 0.874(±0.018) 0.9(±0.004) 0.887(±0.01) 0.946(±0.007)

Mayo(WA) Mayo(WA) 0.841(±0.038) 0.83(±0.043) 0.86(±0.039) 0.844(±0.036) 0.909(±0.03)

Mayo(AA) 0.809(±0.025) 0.821(±0.042) 0.813(±0.038) 0.816(±0.024) 0.847(±0.038)

CCHS(AA) Mayo(AA) 0.715(±0.031) 0.751(±0.031) 0.68(±0.061) 0.712(±0.038) 0.811(±0.037)

CCHS(WA+AA) Mayo(AA) 0.792(±0.032) 0.834(±0.048) 0.753(±0.054) 0.79(±0.034) 0.872(±0.021)

Table 5. Generalization performance to unseen African American (AA) patients in
Mayo using 2-domains and 3-domains.

Train domains Model Accuracy Precision Recall F1 Score AUC

CCHS(WA +

AA), Mayo(WA)

VRNN(All) 0.844(±0.031) 0.895(±0.012) 0.793(±0.075) 0.839(±0.04) 0.913(±0.01)

2-d VRADA 0.87(±0.025) 0.87(±0.034) 0.873(±0.063) 0.87(±0.029) 0.922(±0.021)

2-d MS-ADS 0.854(±0.017) 0.901(±0.033) 0.813(±0.068) 0.852(±0.026) 0.914(±0.012)

CCHS(WA),

CCHS(AA),

Mayo(WA)

3-d VRADA 0.847(±0.016) 0.861(±0.033) 0.847(±0.049) 0.852(±0.017) 0.917(±0.034)

3-d MS-ADS 0.87(±0.012) 0.876(±0.007) 0.876(±0.035) 0.875(±0.014) 0.947(±0.005)

· The best overall performance is in bold.

presents the generalization performance of all three models for 24 h early predic-
tion. Table 3 shows MS-ADS outperforms the two baselines for most metrics in
both target domains. Finally, we also compared them against the gold standard
supervised VRNN model trained on the target domain (last row in each section),
Table 3 shows that MS-ADS outperforms the supervised VRNN for AUC metric
in both target domains.

6 Unseen Racial Group Across Medical Systems

In this task, we focus on two racial groups: White American (WA) and African
American (AA). Table 4 compares the performance of models that are trained
and tested on different racial groups across medical systems. Table 4 shows that
while the model trained on CCHS(WA) performs equally well on CCHS(WA)
and CCHS(AA); the model trained on Mayo(WA) performs much better on
Mayo(WA) than Mayo(AA). This is probably because the percentages of WA
and AA are more balanced than those of Mayo: 71% vs. 22.5% in CCHS while
91% vs. 3% in Mayo. The last block in Table 4 shows transfer across medical
systems. The model trained on CCHS(AA) does not perform well on Mayo(AA)
probably due to systematic bias across medical systems while adding CCHS(WA)
to the training population can help predictions on Mayo(AA) probably because
of more training data. As a result, our training domain settings will involve WA
in Mayo and WA and AA in CCHS.

Table 5 compares the generalization performance on Mayo(AA) by using two
training domains: CCHS (WA+AA) and Mayo (WA) (upper) vs. three training
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domains: CCHS (WA), CCHS(AA), and Mayo (WA) (bottom). For the two-
domain generalization, MS-ADS is compared against the best non-DA baseline:
VRNN(All) and VRADA. Table 5 shows that both VRADA and MS-ADS out-
perform the VRNN(All) and VRADA achieves the best F1 and AUC. When we
conduct the same task by using three domains, the bottom block in Table 5 shows
that the performance of VRADA suffered while the performance of MS-ADS
improved. Indeed, Table 5 shows that the F1 and AUC of 3-domain MS-ADS on
Mayo(AA) are 0.875 and 0.947, catching up with the other three racial groups
across the two systems. We argue the effectiveness of 3-domain MS-ADS over
2-domain MS-ADS is probably because the former can leverage 1) Mayo(WA)
(same system different race), 2) CCHS(AA) (same race, different system), 3)
the DA mechanism learned from unifying AA and WA in CCHS (addressing
covariate shift within the same system), and 4) the DA learned from unifying
WA between CCHS and Mayo (addressing systematic bias in the same racial
group).

7 Related Work

Septic Shock Early Prediction: A variety of machine learning models have
been developed to predict septic shock several hours before the onset. Among tra-
ditional approaches, multivariate logistic regression and survival analysis models
have been proposed for early detection [14,31]. Moreover, sequential pattern min-
ing approaches have shown to be effective for early prediction of septic shock
while producing explainable patterns [12,17]. Recently, various deep learning-
based approaches have been proposed, especially variations of recurrent neural
networks such as LSTM, and they have shown promising power in predicting
septic shock several hours before the onset [22,40,41]. Despite the great power
of LSTM models, they are not designed to address the high missing rate in
EHR [18]. Variational recurrent neural network (VRNN) [5] is recently proposed
to model complex temporal and conditional dependencies in sequential data
and account for variabilities, like missing data, and has shown great promise
[4,26,39].

Multi-source Domain Adaptation: The majority of existing DA work either
addresses this problem by generating an invariant feature space for all pairs
of source-target distributions [27,43] or constructs the target distribution as a
weighted combination of source distributions [23,37]. For example, VRADA is
a VRNN-based DA that has been applied to EHRs from different groups of
patients and it has shown significant improvement in creating domain-invariant
representations using adversarial learning [28]. In this work, we further expanded
VRADA’s architecture to address multi-source DA problems and use it as a
baseline. These studies treat multiple medical systems as “source” domains to
improve the prediction performance in a specific “target” medical system. By
treating all domains equally, a group of DA studies aim at learning a unified
minimal risk model from multiple domains [6,8,30]. While the majority of such
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DA research is conducted in computer vision and text classification, a few stud-
ies have proposed DA approaches to integrate EHRs across multiple medical
systems and improve prediction in a target domain by addressing covariate shift
and feature mismatch [36,38]. All existing approaches have shown great power
in accounting for the covariate shift but not domain-specific characteristics or
systematic bias that should not be unified across domains. Our MS-ADS model
is capable of integrating multiple medical systems to build a robust unified model
that improves prediction across all systems while accounting for the covariate
shift and systematic bias simultaneously but differently.

Domain Generalization aims to learn a model from an arbitrary number of
source domains such that it can generalize to previously unseen target domains
[9,13,29]. One class of approaches proposes to learn domain-invariant repre-
sentations by minimizing domain mismatch across source domains, similar to
DA approaches [11,21,25]. For example, Motiian et al. propose a unified DA
and DG model exploiting Siamese architecture using a contrasting loss to mini-
mize the distance between samples from the same class but in different domains
[24]. Another type of DG method utilizes meta-learning techniques to synthesize
domain shift and directly learn and optimize for generalization task [3,7,20].
Despite the critical application of DG in clinical deployment, especially in pres-
ence of limited data, this problem is still under-explored.

Further, to close the gap between performances among different groups of
patients, previous studies have explored DA approaches to account for the covari-
ate shift between groups within a medical system [2,28]. For example, Zhang
et al. proposed a time-aware adversarial LSTM network to transfer knowledge
across different racial, age, and gender groups and improve prediction for minor-
ity groups [42]. As far as we know, this study is the first that investigates DG
to simultaneously address the covariate shift across different racial groups and
systematic bias across medical systems to generalize robustly and improve pre-
diction among minority groups.

8 Conclusion

In this work, we propose a multi-source adversarial domain separation (MS-
ADS) framework that unifies domain adaptation (DA) and domain generaliza-
tion (DG) by accounting for systematic bias across medical systems and covariate
shift among different patient groups to achieve a robust generalization. In spe-
cific, MS-ADS separates the global representation of each domain from the local
ones to address systematic bias and leverage a multi-domain discriminator with
Gradient Reversal Layer (GRL) to account for the covariate shift. We evaluate
MS-ADS in three tasks for septic shock early prediction using EHR from three
medical systems. First, on a task of DA across three medical systems, we show
that the effective adaptation under MS-ADS leads to performance improvement
in all three domains. Second, on a task of DG to an unseen medical system,
we demonstrate the generalization power brought by MS-ADS architecture by
comparing and showing its robustness against a gold standard supervised model
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on the target domain. Lastly, on a task of generalization to unseen racial groups
across the medical system, we show that unifying DA and DG MS-ADS can
significantly improve prediction among minority racial groups.
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Abstract. Deep multi-task learning attracts much attention in recent
years as it achieves good performance in many applications. Feature
learning is important to deep multi-task learning for sharing common
information among tasks. In this paper, we propose a Hierarchical Graph
Neural Network (HGNN) to learn augmented features for deep multi-task
learning. The HGNN consists of two-level graph neural networks. In the
low level, an intra-task graph neural network is responsible of learning a
powerful representation for each data point in a task by aggregating its
neighbors. Based on the learned representation, a task embedding can be
generated for each task in a similar way to max pooling. In the second
level, an inter-task graph neural network updates task embeddings of
all the tasks based on the attention mechanism to model task relations.
Then the task embedding of one task is used to augment the feature rep-
resentation of data points in this task. Moreover, for classification tasks,
an inter-class graph neural network is introduced to conduct similar oper-
ations on a finer granularity, i.e., the class level, to generate class embed-
dings for each class in all the tasks using class embeddings to augment
the feature representation. The proposed feature augmentation strategy
can be used in many deep multi-task learning models. Experiments on
real-world datasets show the significant performance improvement when
using this strategy.

Keywords: Multi-task learning · Feature learning · Graph neural
network

1 Introduction

Multi-task learning [8,38] aims to leverage useful information contained in
multiple learning tasks to improve their performance simultaneously. During
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past decades, many multi-task learning models have been proposed to iden-
tify the shared information which can take a form of the instance, feature, and
model, leading to three categories including instance-based multi-task learning
[5], feature-based multi-task learning [3,19,21,23,26,28,31,41], and model-based
multi-task learning [2,6,11–14,17,39,40].

At present, using the output of shared hidden layer as the representation
of hidden features shared by tasks is the mainstream approach in deep multi-
task learning, which has achieved good results in many problems. However, these
methods can not learn the task-specific feature representation of each task, which
limits the further improvement of the performance. At another extreme, some
works [9,26] use a neural network as a base model for each task in multi-task
learning. One advantage of this approach is that different tasks can learn their
own feature representation, however, a major problem is that the model parame-
ters of the entire multi-task learning model are linear with respect to the number
of tasks, making this approach not scalable to a large number of tasks in multi-
task learning.

In this paper, we study deep multi-task learning between the two extremes
and hope to learn task-specific feature representation to improve the learning
performance but without increasing the number of parameters as well as the
model complexity too much. To achieve that, we propose to use the task repre-
sentation, which is also called the task embedding, as a type of an augmented
feature representation to improve the expressiveness of the feature representa-
tion as well as the performance, since the task embedding contains the unique
characteristics of a task. To derive the task embedding of each task, the training
dataset of that task is used in terms of a graph where nodes represent data points
and edges denote the similarities between data points. Besides, the relationship
between tasks can also be represented in a graph. Inspired by this idea, in this
paper, we propose a Hierarchical Graph Neural Network (HGNN) to further
improve the performance of multi-task learning models by learning augmented
features. The HGNN consists of two-level graph neural networks. In the first
level, an intra-task graph neural network is to learn a powerful representation
for each data point in a task by aggregating its neighbored data points in this
task. Based on the representation learned in the first level, we can generate
the task embedding, which is a representation for this task, in a way similar
to max pooling. For classification tasks, we can generate the class embedding
for each class in this task based on max pooling. Based on task embeddings of
all the tasks generated in the first level, an inter-task graph neural network in
the second level updates all the task embeddings based on the attention mecha-
nism. For classification tasks, an inter-class graph neural network is introduced
in the second level to update all the class embeddings based on neighbored class
embeddings. Finally, each of the learned task embeddings as well as the class
embeddings for classification tasks is used to augment the feature representation
of all the data points in the corresponding task. The proposed HGNN can be
used in many multi-task learning models. We analyze the use of HGNN in terms
of both the training loss and generalization loss. Extensive experiments show
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the effectiveness of the proposed HGNN. Our contributions are summarized as
follows:

– We propose a Hierarchical Graph Neural Network (HGNN) to learn aug-
mented features for deep multi-task learning. The proposed feature augmen-
tation strategy can be used in many deep multi-task learning models for
regression and classification tasks.

– We provide some analyses for the proposed feature augmentation strategy,
which can help understand why the incorporation of the task embedding can
improve the performance.

– We conduct extensive experiments on four benckmark datasets to demon-
strate that HGNN can improve the performance of many deep multi-task
learning models.

2 Related Works

Liu [20] explores the problem of learning the relationship between multiple tasks
dynamically and formulate this problem as a message passing process over a
graph neural network. Meng [25] solves relative attribute learning via a message
passing scheme on a graph and the main idea is that relative attribute learning
naturally benefits from exploiting the dependency graph among different rel-
ative attributes of images. The multi-task attention network proposed in [21]
consists of a single shared network containing a global feature pool and a soft-
attention module for each task that allows to learn task-specific feature-level
attentions. Lu [24] presents a graph star net which utilizes the message-passing
and attention mechanisms for multiple prediction tasks, including node classi-
fication, graph classification, and link prediction. Though the aforementioned
works propose GNN or the attention mechanism for multi-task learning, none
of them use a hierarchical version of GNN as well as the attention mechanism
to learn augmented features for multi-task learning, which is the focus of this
paper.

Kim [15] proposes a hierarchical attention network for stock prediction which
can selectively aggregate information on different relation types and add the
information to each representation of the company for the stock market predic-
tion. However, after obtaining the additional information to each representation,
this work only uses the neighbored nodes to aggregate the information, which is
different from our work that aggregates all the nodes in the graph. Moreover, this
method adds the additional information to the original feature representation,
which is different from the concatenation method used in this paper. Ryu [30]
proposes a Hierarchical graph Attention-based Multi-Agent actor-critic (HAMA)
method, which employs a hierarchical graph neural network to effectively model
the inter-agent relationships in each group of agents and inter-group relationships
among groups, and additionally employ inter-agent and inter-group attentions to
adaptively extract state-dependent relationships among agents. However, similar
to [15], the HAMA method, a network stacking multiple Graph Attention Net-
works (GAT) [33] hierarchically, only processes local observations of each agent
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but not all the information in the graph. Different from these two methods, we
first use an intra-task graph neural network to generate a task embedding for
each task by using all the data in this task and then use the inter-task graph
neural network to update task embeddings of all the tasks based on the inter-
task structure. To the best of our knowledge, we are the first to use the feature
augmentation strategy in multi-task learning.

3 Hierarchical Graph Neural Network

In this section, we introduce the proposed architecture, the Hierarchical Graph
Neural Network (HGNN), for deep multi-task learning. Whilst the architecture
can be incorporated into any multi-task learning network, in the following sec-
tions we show how to build the HGNN upon a multi-task network.

Fig. 1. An illustration of the hierarchical graph neural network for multi-task learning,
where F is the hidden feature representation, ‘intra-task GNN’ is the first level GNN
to aggregate all the information contained in the data of a task to generate the task
embedding, ‘inter-task GNN’ and ‘inter-class GNN’ (for classification task) are the sec-
ond level GNN to update all the task embeddings and class embeddings by sharing
information among all the tasks and classes, and F′ is the augmented feature represen-
tation used to do prediction. F′ is the concatenated of the hidden feature representation
F and its corresponding task embedding and class embedding (for classification task).

3.1 Overview of the Architecture

The HGNN consists of two-level GNNs. The first-level GNN is an intra-task GNN
to aggregate all the information contained in the data of a task to generate a task
representation, which is called the task embedding. In the second level, based
on the generated task embeddings in the first level, an inter-task GNN is used
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to update all the task embeddings by sharing information among all the tasks.
Finally the task embeddings are used to augment the feature representation of
the data to improve the learning performance. For classification tasks, we can
learn augmented features in a fine granularity - the class level. That is, the intra-
task GNN is also used to aggregate all the information in a class of a task to
generate a class embedding. Then based on class embeddings in all the tasks,
an inter-class GNN is used to update them. Finally, both task embeddings and
class embeddings are used to augment the feature representation. The whole
architecture of HGNN is shown in Fig. 1.

3.2 The Model

Suppose that there are m multi-class classification tasks where each task has k
classes. The training dataset of the ith task consists of ni pairs of data samples
and corresponding labels, i.e., Di = {(xi

p, y
i
p)}ni

p=1 where yi
p ∈ {1, . . . , k}.

For xi
p, we first define its hidden representation as

ĥi
p = σs(Ŵsxi

p + b̂s), (1)

where σs(·) can be any activation function such as the ReLU function, and
Ŵs, b̂s are shared parameter among all the tasks. Equation (1) defines the shared
layer in a multi-task neural network.

For the intra-task GNN, we first construct an adjacency matrix Gi for the
ith task based on the hidden representation and label information. Specifically,
the (p, q)th entry in Gi, gipq, can be defined as

gipq =

{
exp{−‖ĥi

p − ĥi
q‖22} if yi

p = yi
q

− exp{−‖ĥi
p − ĥi

q‖22} otherwise
,

where ‖ · ‖2 denotes the �2 norm of a vector. Then the intra-task GNN can be
defined as

Hi = σh(Wi
hX

i + ĤiGi + bi
h1), (2)

where σh(·) can be any activation function such as the ReLU function, Xi =
(xi

1, . . . ,x
i
ni
), Ĥi = (ĥi

1, . . . , ĥ
i
ni
), 1 denotes a vector of all ones with an appro-

priate size, Wh and bh are the parameters in the GNN. Gi in Eq. (2) can make
similar data points in the same class have similar representations in Hi and
dissimilar data points from different classes have dissimilar representations. The
intra-task GNN can have two or more layers each of which is defined as in Eq.
(2).

Based on the intra-task GNN, the task embedding of the ith task is defined
as

eit = max
p

{hi
p},

where the max operation is conducted elementwisely, hi
p is the pth column in Hi.

So the task embedding is obtained via the max pooling on all the data points in



Deep Multi-task Augmented Feature Learning via HGNN 543

the ith task based on the hidden representation learned by the intra-task GNN.
Similarly, the class embedding of the rth class in ith task is defined as

ei,rc = max
p:yi

p=r
{hi

p},

which means that the class embedding of the rth class in the ith task is obtained
via the max pooling on all the data points in the rth class of the ith task based
on the intra-task GNN. We have tried other pooling methods such as the mean
pooling but the performance is inferior to the max pooling. One reason is that
the max pooling can bring some nonlinearity but the mean pooling is a linear
operation.

Then m task embeddings {eit}mi=1 for the m tasks can form a graph. The
inter-task GNN is responsible of learning for the graph constructed by task
embeddings {eit}mi=1 to generate new task embeddings {êit}mi=1 by exchanging
information among tasks. Here we use GAT as an implementation of the inter-
task GNN. In order to learn powerful task embeddings based on the inter-task
relation, each task embedding eit is first transformed by a weight matrix W.
Then we perform self-attention on the task embeddings. That is, an attentional
mechanism computes attention coefficients as

dij = a(Weit,Wejt ),

where the attentional mechanism a(·, ·) we use is the cosine function, which is
different from the original GAT. To normalize coefficients, we transform dij via
the softmax function as

αij = softmaxj(dij) =
exp(dij)∑
l exp(dil)

.

Attention values can be viewed as a measure of task relations between each
pair of tasks. Once obtained, the normalized attention coefficients are used as
combination coefficients to compute the updated task embeddings via a nonlinear
activation function σ as

êit = σ
( m∑

j=1

αijWejt
)
.

According to this equation, we can see that êit contains useful information from
embeddings of other tasks. In experiments, the inter-task GNN adopts two such
layers to generate the new task embeddings.

Similarly, the mk class embeddings {ei,rc } also can form a graph. We use
another inter-class GNN to generate new class embeddings {êi,rc } in a similar
way to the inter-task GNN.

The learned task embeddings and class embeddings can be used to aug-
ment the data feature representation to form a more expressive one as h̃i

p =
concat(ĥi

p, ê
i
t, ê

i,r
c ), where concat(·, ·, ·) denotes the concatenation operation.

Then data in such augmented representation can be fed into a deep multi-task
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learning model to predict class labels. To see that, the objective to be minimized
in our proposed learning framework for multi-task learning can be formulated as

L =
m∑
i=1

1
ni

ni∑
p=1

LC(f(concat(γ(xi
p), ê

i
t, ê

i,yi
p

c )), yi
p) + λr(Θ), (3)

where LC denotes the classification loss on the available labeled data, f(·)
denotes the learning function of a multi-task neural network starting from the
second layer, the function γ(·) denotes the function defined in Eq. (1) by omit-
ting the parameters, r(Θ) denotes a regularization function on Θ that includes
all the parameters of the model, and λ is a regularization parameter.

3.3 Testing Process

At the testing process, we do not know the true label, hence we cannot directly
concatenate the class embedding to the hidden representation. We use the fol-
lowing method to solve this problem. For each testing sample, we concatenate
the class embedding of each class c to its hidden representation as its new hid-
den representation and then compute the prediction probability that the testing
sample belongs to class c via the softmax function used in the multi-task neural
network. Finally we choose class c with the largest prediction probability as the
predicted label. In mathematics, we predict the class label of a testing sample
as

c∗ = argmax
r∈[k]

P(y = r|f(concat(γ(xi
∗), ê

i
t, ê

i,r
c ))), (4)

where [k] denotes a set of positive integers no larger than k and xi
∗ denotes

the test data point from the ith task. Note that in the prediction rule (4), the
concatenated class embedding êi,rc changes with r.

3.4 Extension to Regression Tasks

For the regression problems, there are only continuous labels and we cannot
define class embeddings. So we only use task embeddings as the augmented
feature representation. Furthermore, the adjacency matrix Gi for the ith task
is constructed differently from classification tasks. Specifically, the (p, q)th entry
in Gi, gipq, for a regression task is defined as

gipq = exp{−‖ĥi
p − ĥi

q‖22}.

Since there is no class embedding, we do not need the prediction rule as in Eq.
(4). The rest is identical to classification tasks.

3.5 Analysis

The proposed approach to augment the feature representation based on HGNN
is interesting and here we provide some analyses to give insights into this model.
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To understand why the incorporation of the task embedding can improve the
performance, we use single-task learning as an example to make an illustration,
which also works for multi-task learning. We denote the learning function with-
out the use of the task embedding as g(x) and that with the task embedding
as ĝ(concat(x, e)), where e denotes the task embedding. If those two learning
functions are within the same family such as the linear model or the neural net-
work, we can see that ĝ(concat(x, e)) can reduce to g(x) when all the parameters
related to e in ĝ(·) are set to 0, making the expressiveness of g(x) lower than that
of ĝ(concat(x, e)). Hence, given the same training dataset, the training loss of
ĝ(concat(x, e)) is usually lower than that of g(x). Of course, the model complex-
ity of ĝ(concat(x, e)) is larger than that of g(x). Based on generalization bounds
derived in single-task learning based on for example the Rademacher complexity
[4], the generalization loss is upper-bounded by the sum of the training loss and
the model complexity. So if the decrease of the training loss of ĝ(concat(x, e))
compared with g(x) is larger than the increasing of the model complexity in
ĝ(concat(x, e)), then ĝ(concat(x, e)) is likely to have a lower generalization loss
than g(x). Such analysis also holds for multi-task learning. In experiments, we
find that when the dimension of the task embedding is small, leading to a small
number of additional parameters incurred as well as a low model complexity, the
generalization performance is better than that with a larger dimension for the
task embedding, which verifies the above analysis.

The input space, which is a subset of a vector space, is denoted by X and
the output space is denoted by Y. Training samples {(xi,yi)ni=1} ∈ X × Y are
distributed according to some unknown distribution P . Let � : Rk × Y → R

+ be
the loss function, where k denotes the dimension of the label space. The learning
function is defined as f(x) = Wᵀx where the superscript ᵀ denotes the transpose
and W is abused to denote the parameter in this linear learner. The expected
loss is defined as L(W) = E[�(Wᵀx,y)]. The empirical loss is defined as L̂(W) =
1
n

∑n
i=1 �(Wᵀxi,yi). The data matrix X is defined as X = (x1, . . . ,xn) ∈ R

p×n

and the label matrix Y is defined as Y = (y1, . . . ,yn) ∈ R
k×n. e ∈ R

q×1 denotes
the task embedding and E = e1ᵀ ∈ R

q×n is the task embedding matrix for all the
training data, where 1 denotes a column vector of all ones with an appropriate
size.

Let us consider two models. The objective function of model 1 is formulated
as

Ŵ1 = argmin
W1

‖Y − Wᵀ
1X‖22 + λ‖W1‖22, (5)

and that of model 2 is

Ŵ2 = argmin
W2

‖Y − Wᵀ
2X̂‖22 + λ‖W2‖22, (6)

where W1 ∈ R
p×k, W2 ∈ R

(q+p)×k, x̂i = (xᵀ
i , e

ᵀ)ᵀ, X̂ = (x̂1, . . . , x̂n) =
(Xᵀ,Eᵀ)ᵀ ∈ R

(q+p)×n. So model 1 is a ridge regression model which can be
applied to both classification and regression tasks and model 2 is a variant of
model 1 with the task embedding incorporated. For training losses of those two
models, we have the following result, whose proof is in the appendix.
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Theorem 1. If X and E satisfy XᵀXEᵀE+EᵀEXᵀX+2λEᵀE+EᵀEEᵀE � 0
where M1 � M2 means that M1 −M2 is positive semidefinite, then the training
loss of model 2 with the task embedding is always lower than that of model 1
without the task embedding. That is, we have

‖Y − Ŵᵀ
1X‖22 ≥ ‖Y − Ŵᵀ

2X̂‖22. (7)

Remark 1. Theorem 1 implies that for a model, incorporating the task embed-
ding to augment the feature representation will incur a lower training loss than
that without the task embedding. From the perspective of the model capacity,
model 1 is a reduced version of model 2 by setting the task embedding to be zero
and hence mode 2 has a larger capacity than model 1, making model 2 possess a
large chance to have a lower training loss. The condition proposed in Theorem 1
is very easy to check and we can adjust λ to ensure the positive semidefiniteness
of the condition.

We also analyze the generalization bound of the two models. We first rewrite
problems (5) and (6) into equivalent formulations as

Ŵ1 = argmin
‖W1‖2≤W∗

‖Y − Wᵀ
1X‖22

Ŵ2 = argmin
‖W2‖2≤W∗

‖Y − Wᵀ
2X̂‖22.

For the above two problems, we have the following result, whose proof is in the
appendix.

Theorem 2. Suppose ‖xi‖ , ‖x̂i‖ ≤ X∗, the task embedding satisfies the con-
dition in Theorem 1. Then for any δ > 0, with probability at least 1 − δ, we
have

Ex,y(‖y − Ŵᵀ
1x‖2

2) ≤ 1

n

n∑

i=1

‖yi − Ŵᵀ
1xi‖2

2 + 4X∗β∗

√
1

n
+ 2X∗β∗

√
log(1/δ)

2n

Ex,y(‖y − Ŵᵀ
2 x̂‖2

2) ≤ 1

n

n∑

i=1

‖yi − Ŵᵀ
2 x̂i‖2

2 + 4X∗β∗

√
1

n
+ 2X∗β∗

√
log(1/δ)

2n
.

Remark 2. According to Theorem 2, the generalization upper-bound of model 2
with the use of the task embedding is lower than that without the task embedding
because of the lower training loss of model 2 which has been proved in Theorem
1. This may imply that there is a large chance that the expected loss of model
2 is lower than that of model 1, which can be verified in empirical studies.

4 Experiments

In this section, we conduct empirical studies to test the performance of the
proposed HGNN.
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4.1 Experimental Settings

We conduct experiments on several benchmark datasets, including ImageCLEF
[7], Office-Caltech-10 [10], Office-Home [34], and SARCOS [39].

The ImageCLEF dataset is the benchmark for Image-CLEF domain adap-
tation challenge which contains about 2,400 images from 12 common categories
shared by four tasks including Caltech-256 (C), ImageNet ILSVRC (I), Pascal
VOC 2012 (P), and Bing (B). There are 50 images in each category and 600
images in each task.

The Office-Caltech-10 dataset includes 10 common categories shared by
the Office-31 and Caltech-256 datasets. It contains four domains: Caltech (C)
that is sampled from Caltech-256 dataset, Amazon (A) that contains images
collected from the amazon website, Webcam (W) and DSLR (D) that are taken
by the web camera and DSLR camera under the office environment. In our
experiment, we regard each domain as a task.

The Office-Home dataset has 15,500 images across 65 classes in the office
and home settings from four domains with a large domain discrepancy: Artistic
images (Ar), Clip art (Cl), Product images (Pr), and Real-world images (Rw).
In our experiment, we regard each domain as a task.

The SARCOS dataset studies a multi-output problem of learning the inverse
dynamics of 7 SARCOS anthropomorphic robot arms, each of which corresponds
to a task, based on 21 features, including seven joint positions, seven joint veloc-
ities, and seven joint accelerations. By following [39], we treat each output as a
task and randomly sample 2000 data points from each output to construct the
dataset.

Since the proposed HGNN can be combined with many deep multi-task learn-
ing models as discussed before, we incorporate the HGNN into the Deep Multi-
Task Learning (DMTL) which shares the first several layers as the common hid-
den feature representation for all the tasks as did in [8,18,22,27,37], Deep Multi-
Task Representation Learning (DMTRL) [35], and Trace Norm Regularised Deep
Multi-Task Learning (TNRMTL) [36], respectively, to show the benefit of the
learned augmented features.

In experiments, we use the Tensorflow package [1] to implement all the models
and leverage the VGG-19 network [32] pretrained on the ImageNet dataset [29]
as the backbone of the feature extractor. After that, all the multi-task learning
models adopt a two-layer fully-connected architecture (#data_dim × 600 ×
#classes) and the ReLU activation function is used. The first layer is shared
by all tasks to learn a common representation corresponding to Eq. (1) and the
second layer is for task-specific outputs.

For optimization, we use the Adam method [16] with the learning rate varying
as η = 0.02

1+p , where p is the number of the iteration. By following GAT, the
dimension of task embeddings is set to 8, i.e., F ′

t = 8. Similarly, we also set the
dimension of class embeddings to 8, i.e., F ′

c = 8. The size of mini-batch is set to
32. Each experiment repeats for 5 times and we report the average performance
as well as the standard deviation.
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(a) (b)

(c)

Fig. 2. Performance of different models on different datasets when varying with the
training proportion: (a) ImageCLEF; (b) Office-Home; (c) Office-Caltech-10.

4.2 Experimental Results

Results on Classification Tasks. For classification tasks, the performance
measure is the classification accuracy. To investigate the effect of the size of the
training dataset on the performance, we vary the proportion of training data
from 50% to 70% at an interval of 10% and plot the average test accuracy of dif-
ferent methods in Figs. 2(a)–2(c). According to results reported in these figures,
we can see that the incorporation of the HGNN into baseline models improves
the classification accuracy of all baseline models especially when the training
proportion is small. As reported in Figs. 2(b) and 2(c), the incorporation of the
HGNN boosts the performance of all the baseline on the Office-Caltech-10 and
Office-Home datasets. For the DMTRL and TNRMTL models, the improvement
is significant with the use of the HGNN. Moreover, when using augmented fea-
tures learned by the HGNN, the standard deviation becomes smaller than the
corresponding baseline model without using the HGNN under every experimen-
tal setting, which implies that the HGNN can improve the stability of baseline
models to some extent.

Results on Regression Tasks. For regression tasks, we use the mean squared
error to measure the performance. The test errors on the SARCOS dataset
are shown in Fig. 3 where the training proportion varies from 50% to 70% at
an interval of 10%. As shown in Fig. 3, after using the HGNN, the test error
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of each baseline model has a significant decrease at each training proportion,
which demonstrate the effectiveness of augmented features learned in the HGNN
method.

Fig. 3. Performance of different models
on the SARCOS dataset.

Fig. 4. The ablation study on the
Office-Caltech-10 dataset.

4.3 Ablation Study

To study the effectiveness of task embeddings and class embeddings in the HGNN
model, we study two variants of HGNN, including HGNN(T) that only aug-
ments with the task embedding and HGNN(C) that only augments with the
class embedding. The comparison among baseline models, HGNN, variants of
HGNN on the Office-Caltech-10 dataset is shown in Fig. 4. According to the
results, we can see that the use of only the class embedding in HGNN(C) or
the task embedding in HGNN(T) can improve the performance over baseline
models, which shows that augmented features learned in two ways are effective.
HGNN(C) seems better than HGNN(T) in this experiment. One reason is that
class embeddings may contain more discriminative features for the classification
task. Figure 4 also indicates that using both task embeddings and class embed-
dings achieves the best performance, which again verifies the usefulness of the
HGNN.

4.4 Visualization

To dive deeper into the learned features, we plot in Figs. 5 and 6 the t-SNE
embeddings of the feature representations learned for the four tasks on the
Office-Caltech-10 dataset by TNRMTL and TNRMTL_HGNN, respectively, at
the training and testing processes. We observe that the data based on the repre-
sentation derived by the HGNN model are more separable among classes in each
task during either the training process or the testing process. This phenomenon
verifies the effectiveness of the augmented features learned in the HGNN to help
discriminate data points in different classes of all the tasks.
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Fig. 5. The feature visualization by the t-SNE method for the training data in the four
tasks on the Office-Caltech-10 dataset. Different markers and different colors are used
to denote different classes. (Best viewed in color.)

4.5 Sensitivity Analysis

We conduct the sensitivity analysis of the performance with respect to the dimen-
sion of task embedding (denoted by F ′

t ) and class embedding (denoted by F ′
c),

respectively, on the ImageCLEF dataset. The results are shown in Tables 1 and
2. According to the results, we can see that F ′

t = 8 and F ′
c = 8 are a good

choice in most cases, though in some case, a lower value (i.e., 4) performs better.
When the dimension is not so large (e.g., not large than 32), the performance
changes a little, making the choice of the dimension insensitive. However, when
using a larger dimension (e.g., 64), the classification accuracy drops significantly,
implying that the HGNN prefers a small dimension.

Fig. 6. The feature visualization by the t-SNE method for the testing data in the four
tasks on the Office-Caltech-10 dataset. Different markers and different colors are used
to denote different classes. (Best viewed in color.)
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Table 1. The classification accuracy (%) on ImageCLEF when varying F ′
t and fixing

F ′
c as 8.

F ′
t 4 8 16 32 64

DMTL_HGNN 81.22±1.27 82.03±1.98 81.18±1.43 80.41±0.88 79.89±0.65

DMTRL_HGNN 81.21±0.80 82.07±1.47 81.64±0.77 81.15±2.35 81.48±1.78

TNRMTL_HGNN 82.35±1.66 81.11±0.94 82.27±1.19 81.74±0.91 81.20±0.40

Table 2. The classification accuracy (%) on ImageCLEF when varying F ′
c and fixing

F ′
t as 8.

F ′
c 4 8 16 32 64

DMTL_HGNN 82.37±1.13 82.03±1.98 81.75±0.56 80.71±1.30 81.65±2.84

DMTRL_HGNN 81.73±1.39 82.07±1.47 80.40±1.57 81.94±2.03 80.74±2.16

TNRMTL_HGNN 80.07±3.36 81.11±0.94 80.64±1.11 80.17±0.98 80.47±0.80

5 Conclusion

In this paper, we propose a hierarchical graph neural network to learn augmented
features for deep multi-task learning. The proposed HGNN has two levels. In
the first level, the intra-task graph neural network is used to learn a powerful
representation for each data point in a task by aggregating information from its
neighbors in this task. Based on the learned representation, we can learn the
task embedding for each task as well as the class embedding if any. The inter-
task graph neural network as well inter-class graph neural network is used to
update each task embedding and each class embedding. Finally the learned task
embedding and class embedding can be used to augment the data representation.
Extensive experiments show the effectiveness of the proposed HGNN. In our
future work, we are interested in applying the HGNN to other multi-task learning
models.
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Abstract. Few-Shot Learning (FSL) algorithms have made substantial
progress in learning novel concepts with just a handful of labelled data.
To classify query instances from novel classes encountered at test-time,
they only require a support set composed of a few labelled samples. FSL
benchmarks commonly assume that those queries come from the same
distribution as instances in the support set. However, in a realistic set-
ting, data distribution is plausibly subject to change, a situation referred
to as Distribution Shift (DS). The present work addresses the new and
challenging problem of Few-Shot Learning under Support/Query Shift
(FSQS) i.e., when support and query instances are sampled from related
but different distributions. Our contributions are the following. First, we
release a testbed for FSQS, including datasets, relevant baselines and a
protocol for a rigorous and reproducible evaluation. Second, we observe
that well-established FSL algorithms unsurprisingly suffer from a con-
siderable drop in accuracy when facing FSQS, stressing the significance
of our study. Finally, we show that transductive algorithms can limit
the inopportune effect of DS. In particular, we study both the role of
Batch-Normalization and Optimal Transport (OT) in aligning distribu-
tions, bridging Unsupervised Domain Adaptation with FSL. This results
in a new method that efficiently combines OT with the celebrated Pro-
totypical Networks. We bring compelling experiments demonstrating the
advantage of our method. Our work opens an exciting line of research
by providing a testbed and strong baselines. Our code is available at
https://github.com/ebennequin/meta-domain-shift.
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1 Introduction

In the last few years, we have witnessed outstanding progress in supervised
deep learning [15]. As the abundance of labelled data during training is rarely
encountered in practice, ground-breaking works in Few-Shot Learning (FSL)
have emerged [12,28,31], particularly for image classification. This paradigm
relies on a straightforward setting. At test-time, given a set of not seen during
training and few (typically 1 to 5) labelled examples for each of those classes, the
task is to classify query samples among them. We usually call the set of labelled
samples the support set, and the set of query samples the query set. Well-adopted
FSL benchmarks [25,30,31] commonly sample the support and query sets from
the same distribution. We stress that this assumption does not hold in most
use cases. When deployed in the real-world, we expect an algorithm to infer on
data that may shift, resulting in an acquisition system that deteriorates, lighting
conditions that vary, or real world objects evolving [1].
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Fig. 1. Illustration of the FSQS problem with a 5-way 1-shot classification task sampled
from the miniImageNet dataset [31]. In (a), a standard FSL setting where support and
query sets are sampled from the same distribution. In (b), the same task but with
shot-noise and contrast perturbations from [16] applied on support and query sets
(respectively) that results in a support-query shift. In the latter case, a similarity
measure based on the Euclidean metric [28] may become inadequate.

The situation of Distribution Shift (DS) i.e., when training and testing distri-
butions differ, is ubiquitous and has dramatic effects on deep models [16], moti-
vating works in Unsupervised Domain Adaptation [22], Domain Generalization
[14] or Test-Time Adaptation [32]. However, the state of the art brings insuffi-
cient knowledge on few-shot learners’ behaviours when facing distribution shift.
Some pioneering works demonstrate that advanced FSL algorithms do not han-
dle cross-domain generalization better than more naive approaches [5]. Despite
its great practical interest, FSL under distribution shift between the support and
query sets is an under-investigated problem and attracts a very recent attention
[11]. We refer to it as Few-Shot Learning under Support/Query Shift (FSQS)
and provide an illustration in Fig. 1. It reflects a more realistic situation where
the algorithm is fed with a support set at the time of deployment and infers con-
tinuously on data subject to shift. The first solution is to re-acquire a support
set that follows the data’s evolution. Nevertheless, it implies human intervention
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to select and annotate data to update an already deployed model, reacting to
a potential drop in performances. The second solution consists in designing an
algorithm that is robust to the distribution shift encountered during inference.
This is the subject of the present work. Our contributions are:

1. FewShiftBed: a testbed for FSQS available at https://github.com/
ebennequin/meta-domain-shift. The testbed includes 3 challenging bench-
marks along with a protocol for fair and rigorous comparison across methods
as well as an implementation of relevant baselines, and an interface to facili-
tate the implementation of new methods.

2. We conduct extensive experimentation of a representative set of few-shot
algorithms. We empirically show that Transductive Batch-Normalization [3]
mitigates an important part of the inopportune effect of FSQS.

3. We bridge Unsupervised Domain Adaptation (UDA) with FSL to address
FSQS. We introduce Transported Prototypes, an efficient transductive algo-
rithm that couples Optimal Transport (OT) [23] with the celebrated Proto-
typical Networks [28]. The use of OT follows a long-standing history in UDA
for aligning representations between distributions [2,13]. Our experiments
demonstrate that OT shows a remarkable ability to perform this alignment
even with only a few samples to compare distributions and provide a simple
but strong baseline.

In Sect. 2 we provide a formal statement of FSQS, and we position this new
problem among existing learning paradigms. In Sect. 3, we present FewShiftBed.
We detail the datasets, the chosen baselines, and a protocol that guarantees a rig-
orous and reproducible evaluation. In Sect. 4, we present a method that couples
Optimal Transport with Prototypical Networks [28]. Finally, in Sect. 5, we conduct
an extensive evaluation of baselines and our proposed method using the testbed.

2 The Support-Query Shift Problem

2.1 Statement

Notations. We consider an input space X , a representation space Z ⊂ R
d (d > 0)

and a set of classes C. A representation is a learnable function from X to Z and
is noted ϕ(·; θ) with θ ∈ Θ for Θ a set of parameters. A dataset is a set Δ(C,D)
defined by a set of classes C and a set of domains D i.e., a domain D ∈ D is a set
of IID realizations from a distribution noted pD. For two domains D,D′ ∈ D, the
distribution shift is characterized by pD �= pD′ . For instance, if the data consists
of images of letters handwritten by several users, D can consist of samples from a
specific user. Referring to the well known UDA terminology of source/target [22],
we define a couple of source-target domains as a couple (Ds,Dt) with pDs

�= pDt
,

thus presenting a distribution shift. Additionally, given C ⊂ C and D ∈ D, the
restriction of a domain D to images with a label that belongs to C is noted DC .

Dataset Splits. We build a split of Δ(C,D), by splitting D (respectively C)
into Dtrain and Dtest (respectively Ctrain and Ctest) such that Dtrain ∩ Dtest = ∅

https://github.com/ebennequin/meta-domain-shift
https://github.com/ebennequin/meta-domain-shift
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Fig. 2. During meta-learning (Train-Time), each episode contains a support and a
query set sampled from different distributions (for instance, illustrated by noise and
contrasts as in Fig. 1(b)) from a set of training domains (Dtrain), reflecting a situation
that may potentially occurs at test-time. When deployed, the FSL algorithm using a
trained backbone is fed with a support set sampled from new classes. As the algorithm
is subject to infer continuously on data subject to shift (Test-Time), we evaluate the
algorithm on data with an unknown shift (Dtest). Importantly, both classes (Ctrain ∩
Ctest = ∅) and shifts (Dtrain ∩Dtest = ∅) are not seen during training, making the FSQS
a challenging problem of generalization.

and Dtrain ∪ Dtest = D (respectively Ctrain ∩ Ctest = ∅ and Ctrain ∪ Ctest = C).
This gives us a train/test split with the datasets Δtrain = Δ(Ctrain,Dtrain) and
Δtest = Δ(Ctest,Dtest). By extension, we build a validation set following the
same protocol.

Few-Shot Learning under Support-Query Shift (FSQS). Given:

– D′ ∈ {Dtrain,Dtest} and C′ ∈ {Ctrain,Ctest},
– a couple of source-target domains (Ds,Dt) from D′,
– a set of classes C ⊂ C′;
– a small labelled support set S = (xi, yi)i=1,...,|S| (named source support set)

such that for all i, yi ∈ C and xi ∈ Ds i.e., S ⊂ DC
s ;

– an unlabelled query set Q = (xi)i=1,...,|Q| (named target query set) such that
for all i, yi ∈ C and xi ∈ Dt i.e., Q ⊂ DC

t .

The task is to predict the labels of query set instances in C. When |C| = n
and the support set contains k labelled instances for each class, this is called
an n-way k-shot FSQS classification task. Note that this paradigm provides an
additional challenge compared to classical Few-shot classification tasks, since
at test time, the model is expected to generalize to both new classes and new
domains while support set and query set are sampled from different distributions.
This paradigm is illustrated in Fig. 2.

Episodic Training. We build an episode by sampling some classes C ⊂ Ctrain,
and a source and target domain Ds,Dt from Dtrain. We build a support set
S = (xi, yi)i=1...|S| of instances from source domain DC

s , and a query set
Q = (xi, yi)i=|S|+1,...,|S|+|Q| of instances from target domain DC

t , such that
∀i ∈ [1, |S| + |Q|], yi ∈ C. Using the labelled examples from S and unlabelled



558 E. Bennequin et al.

instances from Q, the model is expected to predict the labels of Q. The param-
eters of the model are then trained using a cross-entropy loss between the pre-
dicted labels and ground truth labels of the query set.

2.2 Positioning and Related Works

To highlight FSQS’s novelty, our discussion revolves around the problem of infer-
ring on a given Query Set provided with the knowledge of a Support Set. We
refer to this class of problems as SQ problems. Intrinsically, FSL falls into the
category of SQ problems. Interestingly, Unsupervised Domain Adaptation [22]
(UDA), defined as labelling a dataset sampled from a target domain based on
labelled data sampled from a source domain, is also a SQ problem. Indeed, in
this case, the source domain plays the role of support, while the target domain
plays the query’s role. Notably, an essential line of study in UDA leverages the
target data distribution for aligning source and target domains, reflecting the
importance of transduction in a context of adaptation [2,13] i.e., performing
prediction by considering all target samples together. Transductive algorithms
also have a special place in FSL [10,21,25] and show that leveraging a query
set as a whole brings a significant boost in performances. Nevertheless, UDA
and FSL exhibit fundamental differences. UDA addresses the problem of distri-
bution shift using important source data and target data (typically thousands
of instances) to align distributions. In contrast, FSL focuses on the difficulty of
learning from few samples. To this purpose, we frame UDA as both SQ problem
with large transductivity and Support/Query Shift, while Few-Shot Learning is
a SQ problem, eventually with small transductivity for transductive FSL. Thus,
FSQS combines both challenges: distribution shift and small transductivity. This
new perspective allows us to establish fruitful connections with related learning
paradigms, presented in Table 1, that we review in the following. A thorough
review is available in Appendix A1.

Adaptation. Unsupervised Domain Adaptation (UDA) requires a whole target
dataset for inference, limiting its applications. Recent pioneering works, referred
to as Test-Time Adaptation (TTA), adapt at test-time a model provided with a
batch of samples from the target distribution. The proposed methodologies are
test-time training by self-supervision [29], updating batch-normalization statis-
tics [27] or parameters [32], or meta-learning to condition predictions on the
whole batch of test samples for an Adaptative Risk Minimization (ARM) [33].
Inspired from the principle of invariant representations [2,13], the seminal work
[7] brings Optimal Transport (OT) [23] as an efficient framework for aligning
data distributions. OT has been recently applied in a context of transductive
FSL [17] and our proposal (TP) is to provide a simple and strong baseline fol-
lowing the principle of OT as it is applied in UDA. In this work, following [3],
we also study the role of Batch-Normalization for SQS, that points out the role
of transductivity. Our conviction was that the batch-normalization is the first
lever for aligning distributions [27,32].

1 https://arxiv.org/abs/2105.11804.

https://arxiv.org/abs/2105.11804
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Table 1. An overview of SQ problems. We divide SQ problems into two categories,
presence or not of Support-Query shift; No SQS vs SQS. We consider three classes
of transductivity: point-wise transductivity that is equivalent to inductive inference,
small transductivity when inference is performed at batch level (typically in [32,33]),
and large transductivity when inference is performed at dataset level (typically in
UDA). New classes (resp. new domains) describe if the model is evaluated at test-time
on novel classes (resp. novel domains). Note that we frame UDA as a fully test-time
algorithm. Notably, Cross-Domain FSL (CDFSL) [5] assumes that the support set and
query set are drawn from the same distribution, thus No SQS.

SQ problems Train-time Test-time

Support Query Support Query New New

Size Labels Size Labels Size Labels Transductivity classes domains

No SQS FSL [12,28] Few � Few � Few � Point-wise � ✗

TransFSL [21,25] Few � Few � Few � Small � ✗

CDFSL [5] Few � Few � Few � Point-wise � �
SQS UDA [22,24] Large � Large

TTA [27,29,32] Large � Small �
ARM [33] Large � Few � Small �
Ind FSQS Few � Few � Few � Point-wise � �
Trans FSQS Few � Few � Few � Small � �

Few-Shot Classification. We usually frame Few-Shot Classification methods [5]
as either metric-based methods [28,31], or optimization-based methods that
learn to fine-tune by adapting with few gradient steps [12]. A promising line
of study leverages transductivity (using the query set as unlabelled data while
inductive methods predict individually on each query sample). Transductive
Propagation Network [21] meta-learns label propagation from the support to
query set concurrently with the feature extractor. Transductive Fine-Tuning
[10] minimizes the prediction entropy of all query instances during fine-tuning.
Evaluating cross-domain generalization of FSL (FSCD), i.e., a distributional
shift between meta-training and meta-testing, attracts the attention of a few
recent works [5]. Zhao et al. propose a Domain-Adversarial Prototypical Net-
work [34] in order to both align source and target domains in the feature space
while maintaining discriminativeness between classes. Sahoo et al. combine Pro-
totypical Networks with adversarial domain adaptation at the task level [26].
Notably, Cross-Domain Few-Shot Learning [5] (CDFSL) addresses the distribu-
tional shift between meta-training and meta-testing assuming that the support
set and query set are drawn from the same distribution, not making it a SQ
problem with support-query shift. Concerning the novelty of FSQS, we acknowl-
edge the very recent contribution of Du et al. [11] which studies the role of
learnable normalization for domain generalization, in particular when support
and query sets are sampled from different domains. Note that our statement is
more ambitious: we evaluate algorithms on both source and target domains that
were unseen during training, while in their setting the source domain has already
been seen during training.

Benchmarks in Machine Learning. Releasing benchmark has always been
an important factor for progress in the Machine Learning field, the most
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outstanding example being ImageNet [9] for the Computer Vision commu-
nity. Recently, DomainBed [14] aims to settle Domain Generalization research
into a more rigorous process, where FewShiftBed takes inspiration from it.
Meta-Dataset [30] is an other example, this time specific to FSL.

3 FewShiftBed: A Pytorch Testbed for FSQS

3.1 Datasets

We designed three new image classification datasets adapted to the FSQS prob-
lem. These datasets have two specificities.

1. They are dividable into groups of images, assuming that each group corre-
sponds to a distinct domain. A key challenge is that each group must contain
enough images with a sufficient variety of class labels, so that it is possible
to sample FSQS episodes.

2. They are delivered with a train/val/test split (Δtrain,Δval,Δtest), along both
the class and the domain axis. This split is performed following the principles
detailed in Sect. 2. Therefore, these datasets provide true few-shot tasks at
test time, in the sense that the model will not have seen any instances of test
classes and domains during training. Note that since we split along two axes,
some data may be discarded (for instance images from a domain in Dtrain

with a label in Ctest). Therefore it is crucial to find a split that minimizes this
loss of data.

Meta-CIFAR100-Corrupted (MC100-C). CIFAR-100 [19] is a dataset of 60k
three-channel square images of size 32 × 32, evenly distributed in 100 classes.
Classes are evenly distributed in 20 superclasses. We use the same method used
to build CIFAR-10-C [16], which makes use of 19 image perturbations, each one
being applied with 5 different levels of intensity, to evaluate the robustness of a
model to domain shift. We modify their protocol to adapt it to the FSQS prob-
lem: (i) we split the classes with respect to the superclass structure, and assign
13 superclasses (65 classes) to the training set, 2 superclasses (10 classes) to the
validation set, and 5 superclasses (25 classes) to the testing set; (ii) we also split
image perturbations (acting as domains), following the split of [33]. We obtain
2,184k transformed images for training, 114k for validation and 330k for testing.
The detailed split is available in the documentation of our code repository.

miniImageNet-Corrupted (mIN-C). miniImageNet [31] is a popular benchmark
for few-shot image classification. It contains 60k images from 100 classes from
the ImageNet dataset. 64 classes are assigned to the training set, 16 to the
validation set and 20 to the test set. Like MC100-C, we build mIN-C using the
image perturbations proposed by [16] to simulate different domains. We use the
original split from [31] for classes, and use the same domain split as for MC100-
C. Although the original miniImageNet uses 84 × 84 images, we use 224 × 224
images. This allows us to re-use the perturbation parameters calibrated in [16]
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for ImageNet. Finally, we discard the 5 most time-consuming perturbations. We
obtain a total of 1.2M transformed images for training, 182k for validation and
228k for testing. The detailed split in the documentation of our code repository.

FEMNIST-FewShot (FEMNIST-FS). EMNIST [6] is a dataset of images of
handwritten digits and uppercase and lowercase characters. Federated-EMNIST
[4] is a version of EMNIST where images are sorted by writer (or user).
FEMNIST-FS consists in a split of the FEMNIST dataset adapted to few-shot
classification. We separate both users and classes between training, validation
and test sets. We build each group as the set of images written by one user. The
detailed split is available in the code. Note that in FEMNIST, many users pro-
vide several instances for each digits, but less than two instance for most letters.
Therefore it is hard to find enough samples from a user to build a support set or
a query set. As a result, our experiments are limited to classification tasks with
only one sample per class in both the support and query sets.

3.2 Algorithms

We implement in FewShiftBed two representative methods of the vast literature
of FSL, that are commonly considered as strong baselines: Prototypical Networks
(ProtoNet) [28] and Matching Networks (MatchingNet) [31]. Besides, for
transductive FSL, we also implement with Transductive Propagation Network
(TransPropNet) [21] and Transductive Fine-Tuning (FTNet) [10]. We also
implement our novel algorithm Transported Prototypes (TP) which is detailed in
Sect. 4. FewShiftBed is designed for favoring a straightforward implementation
of a new algorithm for FSQS. To add a new algorithm, we only need to implement
the set forward method of the class AbstractMetaLearner. We provide an
example with our implementation of the Prototypical Network [28] that only
requires few line of codes:

class ProtoNet(AbstractMetaLearner):
def set_forward(self, support_images, support_labels, query_images):

z_support, z_query = self.extract_features(support_images, query_images)
z_proto = self.get_prototypes(z_support, support_labels)
return - euclidean_dist(z_query, z_proto)

3.3 Protocol

To prevent the pitfall of misinterpreting a performance boost, we draw three
recommendations to isolate the causes of improvement rigorously.

– How important is episodic training? Despite its wide adoption in meta-
learning for FSL, in some situation episodic training does not perform better
than more naive approaches [5]. Therefore we recommend to report both the
result obtained using episodic training and standard ERM (see the documen-
tation of our code repository).
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Fig. 3. Overview of Transported Prototypes. (1) A support set and a query set are
fed to a trained backbone that embeds images into a feature space. (2) Due to
the shift between distributions, support and query instances are embedded in non-
overlapping areas. (3) We compute the Optimal Transport from support instances to
query instances to build the transported support set. Note that we represent the trans-
port plan only for one instance per class to preserve clarity in the schema. (4) Provided
with the transported support, we apply the Prototypical Network [28] i.e., L2 similarity
between transported support and query instances.

– How does the algorithm behave in the absence of Support-Query
Shift? In order to assess that an algorithm designed for distribution shift does
not provide degraded performance in an ordinary concept, and to provide a
top-performing baseline, we recommend reporting the model’s performance
when we do not observe, at test-time, a support-query shift. Note that it
is equivalent to evaluate the performance in cross-domain generalization, as
firstly described in [5].

– Is the algorithm transductive? The assumption of transductivity has
been responsible of several improvements in FSL [3,25] while it has been
demonstrated in [3] that MAML [12] benefits strongly from the Transductive
Batch-Normalization (TBN). Thus, we recommend specifying if the method is
transductive and adapting the choice of the batch-normalization accordingly
(Conventional Batch Normalization [18] and Transductive Batch Normaliza-
tion for inductive and transductive methods, respectively) since transductive
batch normalization brings a significant boost in performance [3].

4 Transported Prototypes: A Baseline for FSQS

4.1 Overall Idea

We present a novel method that brings UDA to FSQS. As aforementioned, FSQS
presents new challenges since we no longer assume that we sample the support
set and the query set from the same distribution. As a result, it is unlikely
that the support set and query sets share the same representation space region
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(non-overlap). In particular, the L2 distance, adopted in the celebrated Proto-
typical Network [28], may not be relevant for measuring similarity between query
and support instances, as presented in Fig. 1. To overcome this issue, we develop
a two-phase approach that combines Optimal Transport (Transportation Phase)
and the celebrated Prototypical Network (Prototype Phase). We give some back-
ground about Optimal Transport (OT) in Sect. 4.2 and the whole procedure is
presented in Algorithm 1.

4.2 Background

Definition. We provide some basics about Optimal Transport (OT). A thorough
presentation of OT is available at [23]. Let ps and pt be two distributions on X ,
we note Π(ps, pt) the set of joint probability with marginal ps and pt i.e., ∀π ∈
Π(ps, pt),∀x ∈ X , π(·, x) = ps, π(x, ·) = pt. The Optimal Transport, associated
to cost c, between ps and pt is defined as:

Wc(ps, pt) := min
π∈Π(ps,pt)

E(xs,xt)∼π [c(xs, xt)] (1)

with c(·, ·) any metric. We note π�(ps, pt) the joint distribution that achieves the
minimum in Eq. 1. It is named the transportation plan from ps to pt. When there
is no confusion, we simply note π�. For our applications, we will use as metric
the euclidean distance in the representation space obtained from a representation
ϕ(·; θ) i.e., cθ(xs, xt) := ||ϕ(xs; θ) − ϕ(xt; θ)||2.
Discrete OT. When ps and pt are only accessible through a finite set of samples,
respectively (xs,1, ..., xs,ns

) and (xt,1, ..., xt,nt
) we introduce the empirical distri-

butions p̂s :=
∑ns

i=1 ws,iδxs,i
, p̂t :=

∑nt

j=1 wt,jδxt,j
, where ws,i (wt,j) is the mass

probability put in sample xs,i (xt,j) i.e.,
∑ns

i=1 ws,i = 1 (
∑nt

j=1 wt,j = 1) and δx

is the Dirac distribution in x. The discrete version of the OT is derived by intro-
ducing the set of couplings Π(ps, pt) :=

{
π ∈ R

ns×nt ,π1ns
= ps,π

�1nt
= pt

}

where ps := (ws,1, · · · , ws,ns
), pt := (wt,1, · · · , w1,nt

), and 1ns
(respectively 1nt

)
is the unit vector with dim ns (respectively nt). The discrete transportation plan
π�

θ is then defined as:
π�

θ := argmin
π∈Π(ps,pt)

〈π,Cθ〉F (2)

where Cθ(i, j) := cθ(xs,i, xt,j) and 〈·, ·〉F is the Frobenius dot product. Note
that π�

θ depends on both ps and pt, and θ since Cθ depends on θ. In practice,
we use Entropic regularization [8] that makes OT easier to solve by promoting
smoother transportation plan with a computationally efficient algorithm, based
on Sinkhorn-Knopp’s scaling matrix approach (see the Appendix C).

4.3 Method

Transportation Phase. At each episode, we are provided with a source support
set S and a target query set Q. We note respectively S and Q their represen-
tations from a deep network ϕ(·; θ) i.e., zs ∈ S is defined as zs := ϕ(xs; θ) for
xs ∈ S, respectively zq ∈ Q is defined as zq := ϕ(xq; θ) for xq ∈ Q. As these two
sets are sampled from different distributions, S and Q are likely to lie in different
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Algorithm 1. Transported Prototypes. Blue lines highlight the OT’s contri-
bution in the computational graph of an episode compared to the standard
Prototypical Network [28].
Input: Support set S := (xs,i, ys,i)1≤i≤ns , query set Q := (xq,j , yq,j)1≤j≤nq , classes C,
backbone ϕθ.
Output: Loss L(θ) for a randomly sampled episode.

1: zs,i, zq,j ← ϕ(xs,i; θ), ϕ(xq,j ; θ), for i, j � Get representations.
2: Cθ(i, j) ← ||zs,i − zq,j ||2, for i, j � Cost-matrix.

3: π�
θ ← Solve Equation 2 � Transportation plan.

4: π̂�
θ (i, j) ← π�

θ (i, j)/
∑

j π�
θ (i, j), for i, j � Normalization.

5: Ŝ = (ẑs,i)i ← Given by Equation 3 � Get transported support set.

6: ĉk ← 1

|Ŝk|
∑

ẑs∈Ŝk
ẑs, for k ∈ C. � Get transported prototypes.

7: pθ(y|xq,j) ← From Equation 4, for j

8: Return: L(θ) := 1
nq

∑nq

j=1 − log pθ(yq,j |xq,j).

regions of the representation space. In order to adapt the source support set S
to the target domain, which is only represented by the target query set Q, we
follow [7] to compute Ŝ the barycenter mapping of S, that we refer to as the
transported support set, defined as follows:

Ŝ := π̂�
θQ (3)

where π�
θ is the transportation plan from S to Q and π̂�

θ :=
π�

θ(i, j)/
∑nt

j=1 π�
θ(i, j). The transported support set Ŝ is an estimation of labelled

examples in the target domain using labelled examples in the source domain.
The success relies on the fact that transportation conserves labels, i.e., a query
instance close to ẑs ∈ Ŝ should share the same label with xs, where ẑs is the
barycenter mapping of zs ∈ S. See step (3) of Fig. 3 for a visualization of the
transportation phase.

Prototype Phase. For each class k ∈ C, we compute the transported prototypes
ĉk := 1

|Ŝk|
∑

ẑs∈Ŝk
ẑs (where Ŝk is the transported support set with class k and

C are classes of current episode). We classify each query xq with representation
zq = ϕ(xq; θ) using its euclidean distance to each transported prototypes;

pθ(y = k|xq) :=
exp

(−||zq − ĉk||2)
∑

k′∈C exp (−||zq − ĉk′ ||2) (4)

Crucially, the standard Prototypical Networks [28] computes euclidean distance
to each prototypes while we compute the euclidean to each transported proto-
types, as presented in step (4) of Fig. 3. Note that our formulation involves the
query set in the computation of (ĉk)k∈C .

Genericity of OT. FewShiftBed implements OT as a stand-alone module that
can be easily plugged into any FSL algorithm. We report additional baselines in
Appendix B where other FSL algorithms are equipped with OT. This technical
choice reflects our insight that OT may be ubiquitous for addressing FSQS and
makes its usage in the testbed straightforward.
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Table 2. Top-1 accuracy of few-shot learning models in various datasets and numbers
of shots with 8 instances per class in the query set (except for FEMNIST-FS: 1 instance
per class in the query set), with 95% confidence intervals. The top half of the table is
a comparison between existing few-shot learning methods and Transported Prototypes
(TP). The bottom half is an ablation study of TP. OT denotes Optimal Transport,
TBN is Transductive Batch-Normalization, OT-TT refers to the setting where Optimal
Transport is applied at test time but not during episodic training, and ET means
episodic training i.e., w/o ET refers to the setting where training is performed through
standard Empirical Risk Minimization. TP w/o SQS reports model’s performance in
the absence of support-query shift. † flags if the method is transductive. For each
setting, the best accuracy among existing methods is shown in bold, as well as the
accuracy of an ablation if it improves TP.

Meta-CIFAR100-C miniImageNet-C FEMNIST-FS

1-shot 5-shot 1-shot 5-shot 1-shot

ProtoNet [28] 30.02 ± 0.40 42.77 ± 0.47 36.37 ± 0.50 47.58 ± 0.57 84.31 ± 0.73

MatchingNet [31] 30.71 ± 0.38 41.15 ± 0.45 35.26 ± 0.50 44.75 ± 0.55 84.25 ± 0.71

TransPropNet† [21] 34.15 ± 0.39 47.39 ± 0.42 24.10 ± 0.27 27.24 ± 0.33 86.42 ± 0.76

FTNet† [10] 28.91 ± 0.37 37.28 ± 0.40 39.02 ± 0.46 51.27 ± 0.45 86.13 ± 0.71

TP† (ours) 34.00 ± 0.46 49.71 ± 0.47 40.49 ± 0.54 59.85 ± 0.49 93.63 ± 0.63

TP w/o OT † 32.47 ± 0.41 48.00 ± 0.44 40.43 ± 0.49 53.71 ± 0.50 90.36 ± 0.58

TP w/o TBN † 33.74 ± 0.46 49.18 ± 0.49 37.32 ± 0.55 55.16 ± 0.54 92.31 ± 0.73

TP w. OT-TT † 32.81 ± 0.46 48.62 ± 0.48 44.77 ± 0.57 60.46 ± 0.49 94.92 ± 0.55

TP w/o ET † 35.94 ± 0.45 48.66 ± 0.46 42.46 ± 0.53 54.67 ± 0.48 94.22± 0.70

TP w/o SQS † 85.67 ± 0.26 88.52 ± 0.17 64.27 ± 0.39 75.22 ± 0.30 92.65 ± 0.69

5 Experiments

We compare the performance of baseline algorithms with Transported Prototypes
on various datasets and settings. We also offer an ablation study in order to
isolate the source to the success of Transported Prototypes. Extensive results are
detailed in Appendix B. Instructions to reproduce these results can be found in
the code’s documentation.

Setting and Details. We conduct experiments on all methods and datasets imple-
mented in FewShiftBed. We use a standard 4-layer convolutional network for
our experiments on Meta-CIFAR100-C and FEMNIST-FewShot, and a ResNet18
for our experiments on miniImageNet. Transductive methods are equipped with
a Transductive Batch-Normalization. All episodic training runs contain 40k
episodes, after which we retrieve model state with best validation accuracy. We
run each individual experiment on three different random seeds. All results pre-
sented in this paper are the average accuracies obtained with these random
seeds.

Analysis. The top half of Table 2 reveals that Transported Prototypes (TP)
outperform all baselines by a strong margin on all datasets and settings. Impor-
tantly, baselines perform poorly on FSQS, demonstrating they are not equipped
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to address this challenging problem, stressing our study’s significance. It is also
interesting to note that the performance of transductive approaches, which is
significantly better in a standard FSL setting [10,21], is here similar to induc-
tive methods (notably, TransPropNet [21] fails loudly without Transductive
Batch-Normalization showing that propagating label with non-overlapping sup-
port/query can have a dramatic impact, see Appendix B). Thus, FSQS deserves
a fresher look to be solved. Transported Prototypes mitigate a significant part
of the performance drop caused by support-query shift while benefiting from the
simplicity of combining a popular FSL method with a time-tested UDA method.
This gives us strong hopes for future works in this direction.

Ablation Study. Transported Prototypes (TP) combines three components: Opti-
mal Transport (OT), Transductive Batch-Normalization (TBN) and episode
training (ET). Which of these components are responsible for the observed gain?
Following recommendations from Sect. 3.3, we ablate those components in the
bottom half of Table 2. We observe that both OT and TBN individually improve
the performance of ProtoNet for FSQS, and that the best results are obtained
when the two of them are combined. Importantly, OT without TBN performs
better than TBN without OT (except for 1-shot mIN-C), demonstrating the
superiority of OT compared to TBN for aligning distributions in the few sam-
ples regime. Note that the use of TaskNorm [3] is beyond the scope of the paper2;
we encourage future work to dig into that direction and we refer the reader to
the very recent work [11]. We observe that there is no clear evidence that using
OT at train-time is better than simply applying it at test-time on a ProtoNet
trained without OT. Additionally, the value of Episodic Training (ET) compared
to standard Empirical Risk Minimization (ERM) is not obvious. For instance,
simply training with ERM and applying TP at test-time is better than adding
ET on 1-shot MC100-C, 1-shot mIN-C and FEMNIST-FS, making it an another
element to add to the study [20] who put into question the value of ET. Under-
standing why and when we should use ET or only OT at test-time is interesting
for future works. Additionally, we compare TP with MAP [17] which implements
an OT-based approach for transductive FSL. Their approach includes a power
transform to reduce the skew in the distribution, so for fair comparison we also
implemented it into Transported Prototypes for these experiments3. We also used
the OT module only at test-time and compared with two backbones, respectively
trained with ET and ERM. Interestingly, our experiments in Table 3 show that
MAP is able to handle SQS. Finally, in order to evaluate the performance drop
related to Support-Query Shift compared to a setting with support and query
instances sampled from the same distribution, we test Transported Prototypes
on few-shot classification tasks without SQS (TP w/o SQS in Table 2), making a
setup equivalent to CDFSL. Note that in both cases, the model is trained in an
episodic fashion on tasks presenting a Support-Query Shift. These results show
that SQS presents a significantly harder challenge than CDFSL, while there is
considerable room for improvements.

2 These normalizations are implemented in FewShiftBed for future works.
3 Therefore results in Table 3 differ from results in Table 2.
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Table 3. Top-1 accuracy with 8 instances per class in the query set when applying
Transported Prototypes and MAP on two different backbones: � is standard ERM (i.e.,
without Episodic Training) and † is ProtoNet [28]. Transported Prototypes performs
equally or better than MAP [17]. Here TP includes power transform in the feature
space.

Meta-CIFAR100-C miniImageNet-C FEMNIST-FS

1-shot 5-shot 1-shot 5-shot 1-shot

TP� 36.17 ± 0.47 50.45 ± 0.47 45.41 ± 0.54 57.82 ± 0.48 93.60 ± 0.68

MAP� 35.96 ± 0.44 49.55 ± 0.45 43.51 ± 0.47 56.10 ± 0.43 92.86 ± 0.67

TP† 32.13 ± 0.45 46.19 ± 0.47 45.77 ± 0.58 59.91 ± 0.48 94.92 ± 0.56

MAP† 32.38 ± 0.41 45.96 ± 0.43 43.81 ± 0.47 57.70 ± 0.43 87.15 ± 0.66

6 Conclusion

We release FewShiftBed, a testbed for the under-investigated and crucial prob-
lem of Few-Shot Learning when the support and query sets are sampled from
related but different distributions, named FSQS. FewShiftBed includes three
datasets, relevant baselines and a protocol for reproducible research. Inspired
from recent progress of Optimal Transport (OT) to address Unsupervised
Domain Adaptation, we propose a method that efficiently combines OT with the
celebrated Prototypical Network [28]. Following the protocol of FewShiftBed,
we bring compelling experiments demonstrating the advantage of our proposal
compared to transductive counterparts. We also isolate factors responsible for
improvements. Our findings suggest that Batch-Normalization is ubiquitous,
as described in related works [3,11], while episodic training, even if promis-
ing on paper, is questionable. As a lead for future works, FewShiftBed could
be improved by using different datasets to model different domains, instead of
using artificial transformations. Since we are talking about domain adaptation,
we also encourage the study of accuracy as a function of the size of the target
domain, i.e., the size of the query set. Moving beyond the transductive algo-
rithm, as well as understanding when meta-learning brings a clear advantage to
address FSQS remains an open and exciting problem. FewShiftBed brings the
first step towards its progress.
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Source Hypothesis Transfer for Zero-Shot
Domain Adaptation
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Abstract. Making predictions in target unseen domains without train-
ing samples is frequent in real-world applications, such as new products’
sales predictions. Zero-shot domain adaptation (ZSDA) has been stud-
ied to achieve this important but difficult task. An approach to ZSDA
is to use multiple source domain data and domain attributes. Several
recent domain adaptation studies have mentioned that source domain
data are not often available due to privacy, technical, and contractual
issues in practice. To address these issues, hypothesis transfer learning
(HTL) has been gaining attention since it does not require access to
source domain data. It has shown its effectiveness in supervised/unsu-
pervised domain adaptation; however current HTL methods cannot be
readily applied to ZSDA because we have no training data (even unla-
beled data) for target domains. To solve this problem, we propose an
HTL-based ZSDA method that connects multiple source hypotheses by
domain attributes. Through theoretical analysis, we derive the conver-
gence rate of the estimation error of our proposed method. Finally, we
numerically demonstrate the effectiveness of our proposed HTL-based
ZSDA method.

Keywords: Hypothesis transfer learning · Zero-shot domain
adaptation · Unseen domains · Domain adaptation

1 Introduction

In real-world applications, training data of our task of interest are not often
available. To name a few, sales prediction of new products, preference prediction
of new users, and energy consumption prediction of new sites are applications
in which labeled training data in a target domain does not exist. The task of
making predictions in unseen domains (e.g., new products) without any target
training data is known as zero-shot domain adaptation (ZSDA) [25,26]. To enable
ZSDA, these studies proposed an approach that uses multiple source data (i.e.,
training datasets obtained from multiple domains) and domain attributes (i.e.,
descriptions of domains). For sales prediction of food, domain attributes can be
colors, size, and nutritional components. Intuitively, the relation between sales of
existing products and domain attributes can be regarded as a clue of estimating
c© Springer Nature Switzerland AG 2021
N. Oliver et al. (Eds.): ECML PKDD 2021, LNAI 12975, pp. 570–586, 2021.
https://doi.org/10.1007/978-3-030-86486-6_35
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Table 1. Comparison of our method and related work. SHOT [16] does not require
source data but cannot be applied to unseen domains. In contrast, MDMT [25] can
handle unseen domains but requires source data. Our method addresses both issues.

Proposed method SHOT [16] MDMT [25]

HTL � � –

ZSDA � – �

sales of new products, since a combination of domain attributes of a new product
is new but each element already appears in existing products.

Another crucial issue that has emerged is that source domain data are not
always available due to legal, technical, and contractual constraints between data
owners and data customers [4]. It is common for decision-making rules to be only
available, e.g., learned prediction functions are accessible but not source domain
data. To handle this situation, hypothesis transfer learning (HTL) [14,16] is
promising because it does not require source data for training a new model.
Since HTL does not require access to source domain data, it secures private
information in the source domain data and saves memory and computation time
for training a new target model [16].

In the existing ZSDA methods, multiple source domain data are used for
training. This is not suitable for applications that are privacy sensitive and
require expensive computational resources to store source domain data. The
method proposed by Mansour et al. [17] allows us to train a target model from
multiple source hypotheses. However, the method requires training data obtained
from target domains. Thus, HTL-based ZSDA methods should enable to solve
sales prediction of new products while maintaining privacy and reducing storage
costs.

In this paper, we propose a ZSDA method that is based on HTL. The main
challenge is that we cannot use current HTL methods since target training data
are not available in ZSDA. To tackle this challenge, we introduce a new learn-
ing objective that connects hypotheses for existing domains through domain
attributes to train a prediction model for unseen domains. An advantage of our
method is that it can be easily implemented with Scikit-learn [20] in Python.
Through theoretical analysis, we derive the convergence rate of an estimation
error of our method. To the best of our knowledge, this is the first study to
present HTL for ZSDA (see also Table 1) and the convergence rate of an esti-
mation error in ZSDA. We then conducted numerical experiments to show that
our proposed method achieved comparable or sometimes superior performance
to a non-HTL method for ZSDA.

2 Related Work

Domain adaptation without target samples has been studied from several
aspects. For example, domain generalization (DG) [2,15] obtains predictions
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without any sample obtained from target domains. In DG, samples from multi-
ple source domains are assumed available. However, in some applications, it is
difficult to assume multiple source domains. To address this issue, zero-shot deep
domain adaptation [21] (ZDDA) has been proposed.

Compared with DG and ZDDA, our method requires domain attributes, sim-
ilarly to the methods in [25,26]. While the requirement might restrict applica-
tions of our method, there is a trade-off between having and not having domain
attributes. The use of domain attributes incurs annotation cost but enables us to
handle a response that depends on both input features and domain attributes.
However, the approach without domain attributes cannot handle such a case.
ZSDA is beneficial when discriminating domains from input features is difficult
or almost impossible.

While several studies have considered making predictions in unseen target
domains without any target training data, they relied on the availability of source
domain data. From the viewpoint of HTL, the method proposed by Mansour et
al. [17] can be regarded as a method from multiple source hypotheses but requires
target training data.

3 Problem Setting and Background

In this section, we explain our problem setting and background knowledge.

3.1 Problem Setting

Let a covariate x(t) ∈ R
d and its corresponding response y(t) ∈ R, where t

denotes the task index and d is a positive integer. Let us denote a set of seen
domain indices by TS = {1, . . . , TS}, where TS is the number of seen domains.
Similarly, let TU := {TS + 1, . . . , TS + TU} be a set of unseen target domain
indices, where TU denotes the number of unseen domains. As a signature of a
domain, we assume an m-dimensional vector a(t) ∈ R

m is available for each
domain and call a domain attributes (domain-attribute vector). Let us define a
set of attribute vectors for seen and unseen domain as

AS := {a(1), . . . ,a(TS)},

AU := {a(TS+1), . . . ,a(TS+TU)},

respectively.
Let h(t) : Rd → R be a source hypothesis for a domain t and hS :=

(h(1), . . . , h(TS))�. In this paper, we assume that the (learned) source hypotheses

̂hS := (̂h(1), . . . ,̂h(TS))�

are available. The source hypotheses ̂hS can be obtained by supervised learning
independently or by multi-task learning (MTL) [5] jointly from multiple source
domain data. Note that as long as the input-output constraint is satisfied, any
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class of model (e.g., linear model, tree model, and neural networks) can be used
with our method, while neural networks are assumed as a class of hypotheses
with SHOT [16].

Our goal is to obtain a prediction of a test sample x′ in an unseen target
domain t′ ∈ TU by using a(t′), AS, and ̂hS without source domain data.

3.2 Ordinary Supervised Learning

Ordinary supervised learning does not handle unseen domains, but we review
the method of standard supervised learning since it can be used for obtaining
source hypotheses hS.

Suppose that we have a set of labeled samples for a seen domain t, i.e., source
domain data:

D(t) :=
{

(x(t)
i , y

(t)
i )

}n(t)

i=1
,

where n(t) is the number of labeled samples on t. A simple approach to obtain
predictions in a seen domain is to train a predictor with the corresponding
labeled samples D(t). Specifically, for each t ∈ TS, a predictor h(t) is trained to
minimize the training error plus a regularization functional:

minimize
h(t)

1
n(t)

n(t)
∑

i=1

�
(

h(t)(x(t)
i ), y(t)

i

)

+ λW
(

h(t)
)

, (1)

where W is the regularization functional, λ ≥ 0 is the regularization parameter,
and � : R × R → R≥0 is the loss function such as the squared loss: �sq(y, y′) :=
(y−y′)2. With the learned source hypotheses ̂hS, we obtain a prediction for seen
domains. However, it is not possible to make a prediction in an unseen domain
because we only have ̂hS for seen domains.

3.3 ZSDA with Source Domain Data

An approach to make a prediction in unseen domains is to include attribute
vectors into the prediction model. We review one of the state-of-the-art ZSDA
methods on the basis of domain attributes [25], the usefulness of which was
also investigated, e.g., [10,23,26]. Let F : Rd × T → R be an attribute-aware
predictor. An example of F is a bilinear function defined as

F (x, t) = x�Wa(t),

where W ∈ R
d×m is the parameter matrix to be learned.

Suppose we have training data D := {D(t)}t∈TS and a set of seen attributes
AS. We then train F by labeled samples and attribute vectors for all seen
domains. That is, we solve the following optimization problem:

minimize
F

1
TS

∑

t∈TS

1
n(t)

n(t)
∑

i=1

�
(

F (x(t)
i , t), y(t)

i

)

+ ˜λ˜W (F ), (2)
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where ˜W is a regularization functional and ˜λ ≥ 0 is the regularization parameter.
After obtaining a learned predictor, denoted as ̂F , a prediction of a test sample
x′ in an unseen domain t′ can be obtained by ̂F (x′, t′).

Although this approach can make predictions for a sample on an unseen
domain, it requires access to a source training dataset D, which is not always
possible in practice [4].

4 Proposed Method

We explain how to make predictions in unseen domains by using multiple source
hypotheses ̂hS.

4.1 Model Collaboration

To obtain predictions in unseen domains, we make the learned predictors take
domain attributes into account. While it is difficult to design the predictors to
handle domain attributes after their parameters are fixed, our approach can
connect the learned predictors with domain attributes.

Our key idea is to make an implicit connection between the learned predictors
and another prediction model that can take domain attributes into account.
Instead of training the new prediction model, we compute the prediction of
input in an unseen domain at test time. That is, the computation time of our
method is zero until a test sample comes in. Fortunately, this does not cause
any problems with ZSDA because we do not know the information of unseen
domains in advance.

More specifically, let x′ be a test input and g : A → R be a prediction function
for x′. We refer to g as a fixed-input model because g is in charge of the prediction
of x′ only. We then connect g with ̂hS by minimizing the model collaboration
(MC) error defined as

̂RMC(g) :=
1
TS

TS
∑

t=1

�
(

g(a(t)),̂h(t)(x′)
)

. (3)

In practice, we add a regularization functional ˜W and solve the optimization
problem expressed as

minimize
g∈G

̂RMC(g) + ˜λ˜W (g),

where ˜λ is the regularization parameter and G is a function class, such as linear
models, tree models, and neural networks. Minimization of the MC error connects
g with ̂hS. From the perspective of generalization, ̂h(t) handles features while ĝ
handles domain attributes.

At a glance, this approach might seem heuristic, e.g., one may think the MC
error just connects hypotheses ̂hS and a new model g through a loss function.
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However, this is a theoretically justified method. In Sect. 5, we show that the
proposed method is theoretically valid.

After solving the above optimization problem, we obtained the learned fixed-
input model ĝ. The prediction of x′ in an unseen domain a(t′) is given by ĝ(a(t′)).
Since g is only in charge of x′, for another test input x′′, we retrain g to obtain
a prediction. However, as we explain in Sect. 4.3 and show through experimen-
tation, this computation in an inference phase can be efficiently done.

Our method can be regarded as transductive inference [3,24], where the task
is to estimate labels of test instances included in the training samples and aban-
don the ability of prediction for new test instances in the future. Transductive
inference is known as an easier task than inductive inference [3,24]. In this sense,
although our method is affected by the accuracy of learned predictors for seen
domains, the advantage of transductive inference might neutralize the effect of
using learned predictors.

Table 2 summarizes the required input to the proposed method and a (non-
HTL) ZSDA method [25], a method of multi-domain and multi-task learning,
called as MDMT. A notable difference is that our proposed method does not
require source training data D.

Table 2. Required input to each method. MDMT requires training data D from mul-
tiple source domains. Our method does not require using D and enables us to make
predictions by leveraging source hypotheses ̂hS.

Proposed method MDMT [25]

Training x′ ∈ R
d, AS D, AS

Inference a′ ∈ AU x′ ∈ R
d, a′ ∈ AU

Prediction model g : A → R F : Rd × A → R

Source hypotheses ̂hS –

4.2 Hyperparameter Tuning

To tune a hyperparameter such as the regularization parameter, we use domain-
wise dataset split. For example, if we have 100 domains, by 8:2 domain-wise split,
we use 80 domains for training data and 20 for test. Similarly to class-wise cross-
validation [22], we can use domain-wise cross-validation. In our implementation
with linear ridge regression, we can use a computationally efficient implementa-
tion of leave-one-domain-out cross-validation (LOOCV) to tune the regulariza-
tion parameter.

4.3 Implementation

General Implementation: An example of g is the linear model defined as
g(a(t)) = β�a(t), where β ∈ R

m is a parameter vector. For the linear model,
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def predict(x_test , h_S , a_S , a_U):

"""

@x_test: a test data point (1 times d)

@h_S: a list of seen predictors (T_S size)

@a_S: a matrix of domain attributes (T_S times m)

@a_U: a vector of domain - attributes for target (1 times m)

"""

yh_S = [h.predict(x_test) for h in h_S]

reg = Any_ScikitLearn_Regressor ()

reg.fit(a_S , yh_S)

return reg.predict(a_U)

Code 1. Example of Python implementation

if we use the squared loss and �2-regularizer, the optimization problem becomes
the linear ridge regression [8] and the solution can be obtained analytically.

A prediction in an unseen domain associated with the attribute vector a(t′)

can generally be obtained as follows. We first feed {a(t),̂h(t)(x′)}t∈TS
as training

data into a function of a regression method then obtain prediction by feeding
a(t′) into the trained model. Note that, in the above procedure, we can use any
regression method.

Our method can be implemented by a few lines of Python code with the
Scikit-learn [20] package. We show an example of Python implementation in
Code 1. As shown in this code, our method is model-independent. We can thus
use any method for both ̂h(t) and g.

Computationally-Efficient Implementation: An apparent drawback of our
method is the necessity of calculation for each test sample. Although we might
not need to handle millions of test samples in one second in practice, it is better
that the computation time of our method be short.

In this section, we explain a computationally-efficient implementation based
on the linear ridge regression with LOOCV [8]. For example, we can use the
RidgeCV in Scikit-learn as an implementation of the linear ridge regression
with LOOCV. In LOOCV, the eigendecomposition of AS = (a(1), . . . ,a(TS)) is
necessary but only once unless we add new seen domains or change the represen-
tation of domain attributes. That is, after eigendecomposition, the computation
time of prediction consists of several multiplications of vectors and matrices.

More specifically, the matrix multiplication of A�
S AS takes O(m2TS) time.

The eigendecomposition of A�
S AS takes O(m3) time. Once we obtain the

eignedecomposition, we can reuse the result for any test point as long as the
representation of domain attributes is fixed. If we can compute the eigendecom-
position of A�

S AS in advance, O(m3 + m2TS) does not matter in prediction.
Let O(H) be the computational complexity of computing prediction for an

in-service predictor, i.e., inference time. For example, H becomes d if we use
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the linear models as ̂h(t). Then, obtaining the outputs of all learned predictors
for a single test data point requires O(HTS) time. For each hyperparameter,
we can compute the score of LOOCV in O(T 2

S ) time. Let L be the number
of candidates of the regularization parameters. The total computation time of
the hyperparameter tuning and parameter estimation takes O(LT 2

S ). After we
determine the hyperparameter, we then compute the prediction in O(mTS) time.

5 Theoretical Analysis

Our ultimate goal is to obtain a prediction function that minimizes error to
the ground truth function. In contrast, the MC error measures the average loss
between a prediction function and learned hypotheses. In this sense, one may
think that MC error minimization is just a heuristic. However, it is not. In this
section, we investigate the estimation error for evaluating the difference between
a minimizer of the MC error and an optimal one that is as close as to the ground
truth function, and we elucidate the convergence rate of the estimation error
bound.

5.1 Notations and Assumptions

In this analysis, we assume a set of attribute vectors of size T is drawn indepen-
dently from the distribution with density η:

A = {a(t)}T
t=1 ∼ ηT (a).

This assumption would be natural as long as observations of new domains is
independent to past observations.

We then define the (expected) risk, i.e., the error over target domains as

RU(g) := Eη

[

�
(

g(a), f(a)
)]

.

Let us define two minimizers as

g∗ = argmin
g∈G

RU(g),

ĝ = argmin
g∈G

̂RMC(g),

where G is a function class. Note that unlike the standard setting, ̂RMC(g) is not
a sample approximation of RU(g).

In this section, we investigate the estimation error defined as

RU(ĝ) − RU(g∗).

More precisely, let us assume that |g(a) − f(a)| ≤ M for all g ∈ G and
a ∈ R

m, where f : A → R is the labeling function. For �, we consider the �p loss
defined as �p(y, y′) = |y −y′|p for p ≥ 1, which includes the squared loss if p = 2.
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Let us also assume that there exists a constant Ca > 0 such that ‖a‖ ≤ Ca for
all a ∈ R

m, i.e., the attribute vector is bounded.
Let G be the function class for prediction models. For example, the function

class of the linear model can be expressed as G = {w�a | w ∈ R
m; ‖w‖ ≤

Cw }. Let RT (G) := EA∼ηT

[

Eσ

[

supg∈G
1
T

∑T
t=1 σtg(a(t))

]]

be the Rademacher
complexity, where σ := (σ1, . . . , σT )�, with σis independent uniform random
variables taking values in {−1,+1}.

We then define the empirical risk as

̂RS(g) :=
1
TS

TS
∑

t=1

�
(

g(a(t)), f(a(t))
)

.

Additionally, let us define the empirical risk for hS as

ξMTL(hS) :=
1
TS

TS
∑

t=1

�
(

h(t)(x′), f(a(t))
)

.

5.2 Results

First, we have the following lemma:

Lemma 1. For any δ > 0, we have with probability at least 1 − δ, the following
inequality:

sup
g∈G

∣

∣RU(g) − ̂RMC(g)
∣

∣ ≤ ξMTL(̂hS) + 2pMp−1RTS(G) + Mp

√

ln(2/δ)
2TS

. (4)

Proof. From the triangle inequality, we have

�
(

g(a(t)), f(a(t))
)

≤ �
(

g(a(t)),̂h(t)(x′)
)

+ �
(

̂h(t)(x′), f(a(t))
)

for any ̂h(t) at x′. Thus,

̂RS(g) ≤ ̂RMC(g) + ξMTL(̂hS). (5)

Similarly,

̂RMC(g) ≤ ̂RS(g) + ξMTL(̂hS). (6)

Next, on the basis of the standard Rademacher complexity analysis (see, e.g.,
[19, Theorem 10.3]), for any δ > 0, we have with probability at least 1 − δ/2,
the following inequality for all g ∈ G:

RU(g) − ̂RS(g) ≤ 2pMp−1RTS(G) + Mp

√

ln(2/δ)
2TS

,

̂RS(g) − RU(g) ≤ 2pMp−1RTS(G) + Mp

√

ln(2/δ)
2TS

.
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From Eqs. (5) and (6), we thus have with probability at least 1 − δ/2, the
following inequality for all g ∈ G:

RU(g) − ̂RMC(g) ≤ ξMTL(̂hS) + 2pMp−1RTS(G) + Mp

√

ln(2/δ)
2TS

,

̂RMC(g) − RU(g) ≤ ξMTL(̂hS) + 2pMp−1RTS(G) + Mp

√

ln(2/δ)
2TS

,

which concludes the proof. �	

On the basis of Lemma 1, we have the following estimation error bound:

Theorem 2. For any δ > 0, we have with probability at least 1−δ, the following
inequality:

RU(ĝ) − RU(g∗) ≤ 2ξMTL(̂hS) + 4pMp−1RTS(G) + 2Mp

√

ln(2/δ)
2TS

(7)

Proof. By definition of ĝ, we have ̂RMC(ĝ) ≤ ̂RMC(g∗). We then derive the upper
bound of the estimation error:

RU(ĝ) − RU(g∗) ≤ RU(ĝ) − ̂RMC(ĝ) + ̂RMC(ĝ) − RU(g∗)

≤
(

sup
g∈G

RU(g) − ̂RMC(g)
)

+ ̂RMC(g∗) − RU(g∗)

≤ 2 sup
g∈G

∣

∣RU(ĝ) − ̂RMC(ĝ)
∣

∣.

Combining the above with Lemma 1, we obtain the theorem. �	

For RTS(G), the Rademacher complexity for various models are known to
be bounded [1,19]. To observe the effect of the Rademacher complexity, let us
assume the linear model as the function class:1

G = {w�a | w ∈ R
m; ‖w‖ ≤ Cw }.

From Theorem 2, we then have the following corollary:

Corollary 3. Assume that the linear model is used as G. For any δ > 0, we
have with probability at least 1 − δ, the following inequality:

RU(ĝ) − RU(g∗) ≤ 2ξMTL(̂hS) +
Ca,w ,δ√

TS

, (8)

where Ca,w ,δ := 4pMp−1CaCw + Mp
√

2 ln(2/δ).

1 The linear-in-parameter model and kernel model can be handled in a similar manner.
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Proof. Since the linear models are used for G, we can prove (see [19, Theorem
4.3] for details)

RTS(G) ≤ CaCw√
TS

.

Plugging the above equation into Eq. (7) and defining Ca,w ,δ := 4pMp−1CaCw +
Mp

√

2 ln(2/δ), we conclude the proof. �	

Corollary 3 shows that the second term on the right-hand side in Eq. (8)
decreases in Op(1/

√
TS), meaning that the term becomes small if the number of

seen domains TS is large.2 If we have accurate source hypotheses ̂hS, ξMTL(̂hS)
will be also small. Thus, minimizing ̂RMC leads to a smaller estimation error in
Eq. (8).

It should be noted that in a standard supervised learning setting, the esti-
mation error converges with Op(1/

√
N), where N is the number of training

samples. The convergence rate is known as optimal under certain mild condi-
tions in empirical risk minimization [18]. Since our analysis is also based on a
tool for empirical risk minimization, the connection indicates that Op(1/

√
TS)

convergence derived from our analysis is optimal under mild conditions.

Table 3. Statistics of datasets. T denotes number of domains.

Dataset n d m T

Synth (T ) 100T 10 20 T

Coffee 1,161 63 36 23

School 4,593 21 6 23

Book 7,282 64 77 169

Wine 32,906 751 8 75

Sushi 50,000 31 15 100

6 Experiments

We evaluated our proposed method on various synthetic and benchmark
datasets. We used a PC equipped with Intel Xeon Gold 6142 and NVIDIA
Quadro RTX 5000.

6.1 Datasets

Synthetic Datasets: We generated a synthetic dataset, called Synth (T ). By
varying the number of seen domains T , we confirmed the performance change
of ZSDA methods in terms of T . We generated Synth (T ) on the basis of the
following procedure:
2 Op denotes the order in probability.
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1. Prepare the Gaussian basis functions {φ�(x) = exp(−‖x − x�‖2)}b
�=1;

2. Create b-dimensional parameter vector, w(t) ∈ R
b, each element of which is

drawn from the standard normal distribution N (0, 12);
3. Make an m-dimensional attribute vector by a(t) = Qw(t), where Q =

(q1, . . . , qb) ∈ R
m×b and {qi ∈ R

m}b
i=1 is the set of m-dimensional orthonor-

mal vectors;
4. Generate feature vectors, each element of which is drawn from the uniform

distribution U(0, 1);
5. Observe the paired samples of size n(t) from y(t) = w(t)�φ(x) + 0.1ε, where

ε is drawn from the standard normal distribution.

We set d = 10, m = 20, b = 20, and n(t) = 100 (thus, n = 100T ).

Benchmark Datasets: We used the goodbooks-10k (Book), coffee quality (Cof-
fee), School [7], SUSHI preference [11] (Sushi), and wine reviews (Wine) datasets
as benchmark datasets.3 Table 3 summarizes the statistics of the datasets used
in our experiments.

The Coffee dataset consists of reviews of the coffee beans for several farms. We
used “Country of Origin”, “Certification Body”, and “Altitude” as features of
farms and “Species”, “Processing Method”, and “Variety” as domain attributes
of the coffee beans. The “Total Cup Points” was used as the score. We removed
coffee beans that received less than ten reviews.

The Book dataset is a collection of book ratings from readers. We used “Age”
and “Country“ as features of readers and the tags of books annotated by users
in the book-rating platform as domain attributes. We manually extracted book
tags that are likely to be relevant to rating.

The School dataset contains examination scores of 15,362 students from 139
schools. Similarly to Yang and Hospedales [25], we chose the school in which
each year group had more than 50 students. After preprocessing, we have 4,593
samples and 23 domains. We used the school gender (Mixed, Male, and Female)
and school denomination (Maintained, Church of England, and Roman Catholic)
as domain attributes.

In the Wine dataset, we had 32,906 wine reviews after preprocessing. We used
“Variety”, “Country”, and “Price” as features, and color and taste information
extracted from the description as domain attributes.

The SUSHI dataset consists of ratings of 100 types of sushi from 5,000 people.
We used the information of users as features and the information of sushi as
domain attributes.

6.2 Setting

We used the 8:2 domain-wise dataset split to create data for seen and unseen
domains. We left the data for unseen domains for evaluation of our method’s
3 Book: https://github.com/zygmuntz/goodbooks-10k. Coffee: https://github.com/

jldbc/coffee-quality-database. Sushi: http://www.kamishima.net/sushi/. Wine:
https://www.kaggle.com/zynicide/wine-reviews.

https://github.com/zygmuntz/goodbooks-10k
https://github.com/jldbc/coffee-quality-database
https://github.com/jldbc/coffee-quality-database
http://www.kamishima.net/sushi/
https://www.kaggle.com/zynicide/wine-reviews


582 T. Sakai

Table 4. Average and standard error of relative mRMSE (α/β) over 20 trials, where
α and β are mRMSEU of proposed and MDMT, respectively. When α/β was less than
1, our proposed method was more accurate than MDMT. Even though our method
does not use source domain data, its performance was often comparable or sometimes
superior to that of MDMT.

Dataset Ridge+MC LGBM+MC

vs vs

MDMT1 MDMT2 MDMT1 MDMT2

Synth (50) 1.01 ± 0.03 1.00 ± 0.04 1.00 ± 0.03 0.99 ± 0.04

Synth (100) 0.91 ± 0.02 0.96 ± 0.04 1.01 ± 0.02 1.07 ± 0.04

Coffee 0.06 ± 0.01 0.10 ± 0.00 0.06 ± 0.01 0.10 ± 0.01

School 0.51 ± 0.07 0.73 ± 0.03 0.49 ± 0.06 0.72 ± 0.03

Book 0.98 ± 0.00 0.92 ± 0.01 0.99 ± 0.00 0.92 ± 0.00

Wine 1.00 ± 0.01 0.96 ± 0.02 0.93 ± 0.01 0.89 ± 0.02

Sushi 0.98 ± 0.00 0.83 ± 0.01 0.98 ± 0.00 0.83 ± 0.01

performance. We further split the data for seen domains into 80% training and
20% test data.

For our proposed method, we used the linear ridge regression (Ridge) [8]
as the fixed-input predictor g. As the trained predictor for a seen domain ̂h(t),
we used two methods: Ridge and LightGBM [12]. The former is denoted as
Ridge+MC and the latter as LGBM+MC.

As a baseline, we used MDMT [25]. For the attribute-aware predictor F , we
used F (x, t) = φ(x)�Wa(t) + c, where W ∈ R

r×m, c ∈ R is the intercept and
φ : Rd → R

r is a feature transformation.
We prepared two architectures, i.e., MDMT1 and MDMT2. For MDMT1, φ

is the identity transformation and r = d, meaning that F is a bilinear function,
and W and c are the parameters to be learned. For MDMT2, φ is the two-
layer neural network consisting of a d × r linear layer, batch normalization [9],
and rectified linear unit (ReLU) activation [6]. We thus learn W , c, and φ in
MDMT2. For both MDMT1 and MDMT2, we used Adam optimizer [13] to solve
the optimization problem in Eq. (2). The number of epochs was set to 500.

6.3 Evaluation Measure

To evaluate the performance of our proposed method, we first defined the mean
of the root-mean-square error (mRMSE) over unseen domains:

mRMSEU :=
1

TU

∑

t∈TU

√

MSE(t),

where MSE(t) := (1/n(t))
∑n(t)

i=1 (y(t)
i − ŷ

(t)
i )2 and ŷ

(t)
i is the prediction of a test

sample x
(t)
i in t.
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To measure the performance of our proposed method, we used relative
mRMSE. Specifically, let α and β be the mRMSEU of our method and MDMT,
respectively. We reported α/β (smaller is better), the relative mRMSE. When
α/β was close to one, our method performed comparably with the baseline that
can access source domain data.

6.4 Results

Theory and Practice: We first show the mRMSEU of the proposed method as
a function of the number of seen domains TS on Synth (TS). In the theoretical
analysis discussed in Sect. 5, we proved that the generalization error in terms
of domains converges at the rate of O(1/

√
TS). This theoretical result indicates

that the expected error over unseen domains decreases with the number of seen
domains.

Figure 2 shows the mRMSEU of our method and the curve of 1/
√

TS plus
a constant.4 The results indicate that the mRMSEU of our method decreased
as the number of seen domains increased. Compared with the curve O(1/

√
TS),

the mRMSEU of our method behaved similarly, indicating that our theoretical
analysis can be a guideline on how many seen domains are necessary to obtain
a certain performance improvement.

Prediction Performance: Table 4 lists the average and standard errors of relative
mRMSE (α/β) over 20 trials, where α and β are the mRMSEU of the proposed
method and MDMT, respectively. For example, α is the mRMSEU of Ridge+MC
and β is that of MDMT1. When α/β was less than 1, our proposed method was
more accurate than MDMT. Table 4 shows that even though our method does
not use source domain data, its performance was often comparable or sometimes
superior to that of MDMT. We thus conclude that HTL for ZSDA is possible
with our method.

Computation Time: Since the training time of our method is zero (see Sect. 4),
we are thus interested in the inference time. Figure 1 shows the average inference
times (in microseconds). The inference time of our method was less than 1 ms
(i.e., 1000 µs) except for the Book dataset. Since the total number of domains
of the Book dataset is 169, which is slightly larger than the other datasets, the
computation time of our method took slightly longer. This is because the com-
putational complexity of our method depends on the number of seen domains,
as discussed in Sect. 4.3.

In summary, even if our method requires a certain amount of computation
time in an inference phase, it is computationally efficient.

4 The constant is calculated such that the value of the curve at TS = 200 is equivalent
to that of Ridge+MC.
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Fig. 1. Average computation time of Ridge+MC and LGBM+MC over 10 trials.

Fig. 2. Average and standard deviation of mRMSEU of Ridge+MC over 100 tri-
als. Curve O(1/

√
TS), derived from our theoretical analysis, is 1/

√
TS plus constant.

mRMSEU of our method decreased as TS increased and shape was similar to O(1/
√

TS).

7 Conclusions

We proposed a hypotheses transfer method for zero-shot domain adaptation
that can work with source hypotheses without accessing source domain data.
We argued that our method can be easily implemented with Scikit-learn in
Python. When linear models are used, we can make predictions very efficiently,
as confirmed from both computational complexity analysis and experiments. We
investigated the estimation error bound of our proposed method and revealed
that our method is theoretically valid. Finally, through numerical experiments,
we demonstrated the effectiveness of our proposed method.

Acknowledgments. We thank the anonymous reviewers for their helpful comments.
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Abstract. Federated Learning (FL) generates a single global model via
collaborating distributed clients without leaking data privacy. However,
the statistical heterogeneity of non-iid data across clients poses a funda-
mental challenge to the model personalization process of each client. Our
significant observation is that the newly downloaded global model from
the server may perform poorly on local clients, while it could become
better after adequate personalization steps. Inspired by this, we advo-
cate that the hard-won personalized model in each communication round
should be rationally exploited, while standard FL methods directly over-
write the previous personalized models. Specifically, we propose a novel
concept named “inHerited Private Model” (HPM) for each local client as
a temporal ensembling of its historical personalized models and exploit
it to supervise the personalization process in the next global round. We
explore various types of knowledge transfer to facilitate the personaliza-
tion process. We provide both theoretical analysis and abundant exper-
imental studies to verify the superiorities of our algorithm.

1 Introduction

Federated Learning (FL) [6,17,23] has been proposed as an efficient decentralized
training method under data privacy constraints. In FL, clients’ data are not
permitted to send out, and only models or parameters could be transmitted.
Usually, FL contains two fundamental stages: personalization and aggregation.
During personalization, a small subset of clients download the global model,
which is referred to as the “newly downloaded model”, and then personalize it on
their private data to obtain the “personalized model”; during aggregation, the
server receives the personalized models from these clients and aggregates them.
A global communication round contains these two stages, and amounts of rounds
will be taken until convergence. FL faces many challenges [12,17]. The statistical
heterogeneity caused by the non-iid data among clients could dispel the clients’
incentive to participate in FL, because the globally aggregated model may be
worse than the locally trained model [9,26]. Hence, it is necessary to design
effective personalization strategies in non-iid scenes.
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Upload Download
Server

Fig. 1. Motivation: the local performance degradation in the beginning of FedAvg. The
y-axis shows the local loss. We draw the curves of client A and B without overlapping
for better visualization. The local losses of θt+1 are higher than θ̂A

t and θ̂B
t .

As the most standard FL algorithm, FedAvg [17] aims to generate a single
global model, which is hard to capture heterogeneous local distributions simul-
taneously. An empirical observation in FedAvg is that the newly downloaded
global model could perform poorly on local data. As shown in Fig. 1, during the
personalization stage of the tth global round, two clients first finetune the global
model θt according to their own data distributions and obtain personalized mod-
els θ̂At , θ̂Bt respectively. During aggregation, the server collects the personalized
models and takes a direct parameter averaging as θt+1 ← (θ̂At + θ̂Bt )/2. At the
beginning of the next global round, the aggretated model θt+1 may perform
worse than the last personalized models correspondingly.

We apply FedAvg to several FL benchmarks, i.e., Cifar10-100-5, Cifar100-
100-20, and FeMnist. For each scene, we take several groups of hyper-parameters,
varying the local epoch E, the client selection ratio Q, and the learning rate η.
The details of benchmarks and hyper-parameters can be found in Sect. 4.1. The
performance measures could be found in Sect. 3.1. The observations are shown in
Fig. 2. In each personalization stage, we first record the local test accuracy of the
newly downloaded model (marked by “x”). Then, we personalize this model and
record the personalized model’s performance (marked by subsequent “+”). We
can observe that the local performances will improve during the personalization
(the solid segments), while the newly downloaded models’ performances could
be much worse than the last personalized model (the dotted segments). This
conforms to the motivation in Fig. 1.

A fundamental problem here is that the hard-won personalized models are
directly overwritten by the newly downloaded global model, and the clients have
to personalize the global model from scratch in a new round. On one hand, in the
tth round, only a fraction of clients St could be selected for personalization due
to stragglers in FL. The tth aggregation will take the average of personalized
models from St. In the (t+1)th round, another subset of clients will be selected.
If c ∈ St+1 but c /∈ St, it is manifest that the aggregated model from St may
perform worse on c due to the distribution shift. On the other hand, even we
could select all clients, such as in cross-silo FL scenes [6], the data heterogeneity



FedPHP: Federated Personalization with Inherited Private Models 589

1 5 10 15 20
Global Round

0.0

0.2

0.4

0.6

0.8

Lo
ca

lA
cc

ur
ac

y
E=2, Q=0.1
E=10, Q=0.1
E=2, Q=1.0

(a) Cifar10-100-5

301 305 310 315 320
Global Round

0.0

0.1

0.2

0.3

0.4

0.5

Lo
ca

lA
cc

ur
ac

y

E=2, Q=0.1
E=2, Q=0.5
E=2, Q=1.0

(b) Cifar100-100-20

51 55 60 65 70
Global Round

0.4

0.6

0.8

Lo
ca

lA
cc

ur
ac

y

η=0.004, Q=0.1
η = 0.002, Q=0.1
η = 0.004, Q=1.0

(c) FeMnist

Fig. 2. Observation: the local performance degradation in FedAvg on three FL bench-
marks. In each curve, marker “x” and “+” show the performances of the newly down-
loaded model and the personalized model, respectively. The performances will degrade
a lot once receiving the newly downloaded model and overwriting the last personalized
model (the dotted segments).

still induces the performance degradation as shown in Fig. 2 when Q = 1.0.
To solve this, we propose a novel concept named “inHerited Private Model”
(HPM) to keep the moving average of historical personalized models in each
client and utilize it to supervise the newly downloaded model in next round.
We denote our algorithm as “Federated Personalization with inHerited Private
models” (FedPHP) and briefly introduce it with three progressive explanations:
(1) HPM is a novel kind of private-shared models in FL; (2) it keeps and transfers
the historical valuable personalized knowledge to the newly downloaded global
model; (3) it takes advantage of temporal ensembling, leading to better and
stable personalization results. The illustration can be found in Fig. 3.

2 Related Works

Private-Shared Models for Federated Personalization. The major incen-
tive of clients to participate in FL is to obtain better models with limited data
or computation budget [9,16]. Simultaneously keeping private components on
local clients is a natural solution for effective personalization. FedPer [1] splits
models into base and personalization layers and only aggregates the transferable
base layers; FedL2G [14] keeps representation learning private to learn useful and
compact features for heterogeneous tasks; FedFu [25] fuses the features extracted
by the fixed global model into the local models as a feature-level rectification;
FLDA [19] directly combines a complete local private model and the global model
as a mixture-of-experts for per-user domain adaptation. Although the specific
problems solved by these methods are slightly different, they can all be regarded
as variants of private-shared models for FL, where only the shared components
participate in the aggregation procedure. These methods do not explicitly exploit
the knowledge transfer between shared and private models, which may be less
effective in some special FL cases. FedDML [20] also takes a similar architec-
ture as FLDA, while it additionally uses knowledge distillation [5] to share the
knowledge between private and shared models. However, the private model will
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not benefit a lot from the shared model via the distillation from an immature
teacher (i.e., the newly downloaded aggregated model). In contrast, we let each
client inherit the historical hard-won personalized models as the private model
(HPM), which are utilized to facilitate personalization in the subsequent stages.

Stable FL with Constraints. Heterogeneous data often leads to diverged
solutions during personalization, making global aggregation harder [27]. Vari-
ous constraints are proposed when personalizing the downloaded model. Fed-
Prox [12] limits the parameters of personalized models to stay close with the
global model via a proximal term; FedCurv [21] avoids catastrophic forgetting
via elastic weight consolidation; FedMMD [24] aims to mitigate the feature dis-
crepancy between local and global models. In FL with amounts of clients, only
selecting a subset of clients in each round is a solution to stragglers due to com-
munication delay or computation limitation. However, this introduces additional
randomness and slows the convergence. Similar to SGD, whose randomness is
mainly resulted from batch data sampling and can be mitigated with momen-
tum, updating global model with momentum can accelerate the convergence in
FL, e.g., Scaffold [7]. Although these methods can partly lead to stable updates
in FL, they do not take advantage of the hard-won personalized models and are
almost proposed for better aggregation. Different from them, we propose Fed-
PHP to enhance the personalization ability of local clients and aim to obtain
better personalization performances compared with these related FL methods.

3 Our Methods

Suppose we have K distributed clients, and each client has a local data distri-
bution Dk = Pk(x, y). The kth client has the optimization target:

min
θk

F k(θk) � E(xk,yk)∼Dk

[
�
(
f(xk; θk), yk

)]
, (1)

where f(·; θk) is the prediction function based on parameters θk, f(xk; ·) returns
the “logits” before softmax operation, and � (·, ·) is the loss function, e.g., the
softmax cross-entropy loss. Owing to lack of enough labeled data, individually
training could not generate well-performed models. Standard FL algorithms, e.g.,
FedAvg [17], collaborate local clients via: minθ

∑K
k=1 pkF k(θ), where pk is often

set as nk/
∑

k nk and nk is the number of samples on the kth client. This can
be solved by rounds of personalization and aggregation stages. We denote θk

t as
the model parameters of the kth client in tth global round. Without additional
declaration, we omit the superscript “k” and use θt to represent the global
parameters on the server.

During the personalization stage in tth round, a subset of clients St is
selected, and the selected clients download the global model, i.e., θk

t ← θt for
k ∈ St, and train this model with private data. Formally, for a data batch{
(xk

i , yk
i )

}B

i=1
, the empirical loss according to Eq. 1 is calculated as:

L (
θk

t

)
=

1
B

B∑

i=1

�
(
f(xk

i ; θk
t ), yk

i

)
, (2)
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Fig. 3. Illustration of the proposed FedPHP. Each client stores the hard-won person-
alized models via moving average, i.e., the “inHerited Private Model” (HPM). During
subsequent personalization stages, HPM could transfer the historical personalization
knowledge to the newly downloaded model.

where B is the batch size. Then θk
t can be personalized with deep learning opti-

mization methods, e.g., SGD with momentum. We denote as θ̂k
t the personalized

model. During aggregation, the server collects these personalized models and
takes a parameter averaging as: θt+1 ← ∑

k∈St

1
|St| θ̂

k
t . Iteratively, the global

model θt+1 will be sent to another subset of clients for next round of personal-
ization and aggregation. For the local clients, the received θk

t ← θt, θk
t+1 ← θt+1

are called as newly downloaded models. In FedAvg, we can observe that the per-
sonalized model θ̂k

t is directly overwritten by the θt+1, and the local client has
to personalize θt+1 from scratch.

3.1 Empirical Observation and Goal

In FedAvg, the newly downloaded global model may perform poorly on local
test data. We have a local test set {(xk

i , yk
i )}mk

i=1 with mk samples on the kth
client. Formally, we denote as

Acck (θ) � 1
mk

mk∑

i=1

I {
f(xk

i ; θ), yk
i

}
(3)

the local test accuracy of kth client, where I{·, ·} returns 1 if the prediction is
right and 0 otherwise. Empirically, a performance degradation appears at the
beginning of (t + 1)th personalization stage:

δk
t � Acck (θt+1) − Acck

(
θ̂k

t

)
< 0. (4)

That is, the previous personalized model could be better than the newly down-
loaded global model as illustrated and shown in Fig. 1 and Fig. 2.

Due to the performance degradation, each client has to personalize the newly
downloaded models from scratch, leading to slower convergence. Our goal is to
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Algorithm 1. FedPHP
HyperParameters (partial): Q: client selection ratio; T : maximum number of com-
munication rounds; E: number of local epochs; B: batch size
Return: θs,T+1: the final aggregated global model; {θk

p,T+1}K
k=1: the HPM for each

local client
ServerProcedure:

1: for global round t = 0, 1, 2, . . . , T do
2: St ← sample max(Q · K, 1) clients
3: for k ∈ St do
4: θ̂k

s,t ← ClientProcedure(k, θs,t)
5: end for
6: θs,t+1 ← ∑

k∈St

1
|St| θ̂

k
s,t

7: end for

ClientProcedure(k, θs,t):

1: θk
s,t ← θs,t

2: for local epoch e = 1, 2, . . . , E do

3: for each batch
{(

xk
i , yk

i

)}B

i=1
sampled from Dk do

4: Calculate loss as in Eq. 10
5: Update θk

s,t using, e.g., SGD with momentum
6: end for
7: end for
8: Denote the personalized model as θ̂k

s,t

9: θk
p,t+1 ← (1 − μk

t )θ̂
k
s,t + μk

t θk
p,t

10: Adjust μk
t as in Sect. 3.2

11: Return: θ̂k
s,t

accelerate the personalization in FL. Specifically, we record the local test accuracy
(Eq. 3) of the personalized model in each personalization stage and report the
mean accuracy averaged among selected clients, i.e., 1

|St|
∑|St|

k=1 Acck
(
θ̂k

t

)
, as

the personalization performance.

3.2 Inherited Private Models

Inspired by the empirical observation, we aim to preserve the previously hard-
won personalized model on each client as private models. Specifically, we divide
the whole model parameters into the global shared parameters θs and private
parameters for local clients {θk

p}K
k=1. Different from existing private-shared mod-

els for FL, we mainly exploit the private model for preservation of historical hard-
won personalized models, and name it as “inHerited Private Model” (HPM). In
contrast, the selected clients download the global model and directly overwrite
the hard-won personalized models in FedAvg.

Formally, at the beginning of the tth personalization stage, the clients down-
load the global shared model: θk

s,t ← θs,t and obtain the personalized model
θ̂k
s,t. The specific personalization process will be introduced later. At the end, we

update the HPM via:
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θk
p,t+1 ← (1 − μk

t )θ̂k
s,t + μk

t θk
p,t, (5)

which keeps a moving average of historical personalized models. μk
t ∈ [0, 1] is

the momentum term for the kth client. When μk
t = 0, the HPM only keeps the

current personalized model; when μk
t = 1, the HPM degenerates into an indepen-

dent private model. Because only a fraction of clients are selected in each round,
the update frequency and learning speed of local clients are slightly distinct.
Hence, the momentum should be client-specific and dynamically adjusted. We
assign a counter zk

t as the number of times that the kth client has been selected.
If k ∈ St, then zk

t = zk
t−1 + 1. Then we linearly set μk

t = μ ∗ zk
t /(Q ∗ T ), where

Q is the client selection ratio, T is the maximum number of global rounds, and
Q ∗ T denotes the expected times of being selected. μ is the macro momentum
that controls the change of μk

t , and we take μ = 0.9 in this paper by default.
Finally, we limit μk

t in a range of [0, 1]. We will verify several possible ways to
adjust μk

t in experimental studies, i.e., Sect. 4.3.

3.3 FedPHP

With the observation in Fig. 2 and Eq. 4, the HPM commonly perform better
than the newly downloaded model. Hence, we exploit the HPM to supervise the
personalization process of the newly downloaded model. As categorized in trans-
fer learning [18], what to transfer refers to the specific content of the knowledge,
which could be the outputs, features, or parameters. Hence, we explore several
specific forms of knowledge transfer. For a specific sample xk

i , we denote the out-
puts of θk

s,t and θk
p,t as gs,i and gp,i, respectively; and their intermediate features

as hs,i and hp,i, respectively. The outputs are “logits” without softmax, while
the intermediate features are d-dimension vectors extracted by an extractor. We
omit the index of k and t for simplification.

First, we could transfer the knowledge contained in the outputs. The knowl-
edge distillation [5] could be utilized to enhance the information transfer via:

Lkd

(
θk
s,t

)
= τ2 1

B

B∑

i=1

DKL (σ(gp,i/τ)||σ(gs,i/τ)) , (6)

where DKL refers to the KL-divergence, σ(·) is the softmax operation, and τ is
the temperature. Different from FedDML [20], we take an asymmetric distillation
way and view the HPM as the teacher. We can also transfer the knowledge
contained in the intermediate features. We can take a simple L2 regularization
or a maximum mean discrepancy (MMD) [3] to align the feature distributions:

Ll2

(
θk
s,t

)
=

1
2B

B∑

i=1

‖hs,i − hp,i‖22, (7)

Lmmd

(
θk
s,t

)
=

∥
∥
∥
∥
∥

1
B

B∑

i=1

Φ(hs,i) − 1
B

B∑

i=1

Φ(hp,i)

∥
∥
∥
∥
∥

2

H
, (8)
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where Φ(·) is a feature map induced by a specific kernel function, i.e., k(hi,hj) =
〈Φ(hi), Φ(hj)〉. We use multiple Gaussian kernels with different bandwidths as
in [15]. Finally, we can also transfer the knowledge directly from the parameters
as in [12,13]:

Lprox

(
θk
s,t

)
=

∥
∥θk

s,t − θk
p,t

∥
∥2

2
. (9)

With these types of knowledge transfer, and combined with Eq. 2, the total
personalization loss is denoted as:

Ltotal

(
θk
s,t

)
= (1 − λ)L (

θk
s,t

)
+ λLkt

(
θk
s,t

)
, (10)

where Lkt could be Lkd, Lmmd, Ll2, or Lprox.
We will investigate these types of knowledge transfer and the coefficient λ in

our experimental studies, i.e., Sect. 4.3. During the whole personalization stage,
we only utilize HPM to facilitate the learning process of θk

s,t and do not update
the HPM, which is efficient to implement. Once the personalization ends, we
update the HPM as in Eq. 5. The illustration of FedPHP is shown in Fig. 3, and
the complete pseudo-code of FedPHP is in Algorithm 1.

3.4 Discussion

A Novel Private-Shared Model in FL. Our proposed HPM can be viewed as
a novel way to keep private models on local clients, which is majorly motivated
by the empirical observation in Fig. 2. We take advantage of historical hard-
won personalized models in each client and fully exploit them in subsequent
personalization stages.

A Different Type of Regularization. As in previous FL studies [12,21,24],
restricting the personalized model not go far away from the newly downloaded
model is a natural solution to obtain stable FL. However, they are designed
to make the aggregation more stable without considering personalization. Our
proposed FedPHP takes a novel regularization way, utilizing the HPM to improve
the personalization.

Temporal Ensembling and Mean Teacher. The moving average in Eq. 5
is inherently one type of temporal ensembling [10]. Utilizing the model (1 −
μk

t )θ̂k
s,t + μk

t θk
p,t to supervise the learning process of θk

s,t+1 in next round works
similarly as the self-ensembling and mean teacher in [22], which could lead to
stable and better results.

3.5 Theoretical Analysis

We provide a macroscopic analysis of the failure in FedAvg and the advantages
of FedPHP. Similar to FedBoost [4], we utilize the Bregman Divergence BF as
the loss function and assume that F is strictly convex and BF is jointly convex.
The loss of the kth client is BF

(Dk||hk
)

= F (Dk)−F (hk)−〈∇F (hk),Dk − hk
〉
,

where hk is the learned estimator with a little abuse of notations. As shown in
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Fig. 4. Performance comparisons of the proposed FedPHP with previous FL methods.
FedPHP could obtain faster convergence and better personalization results.

FedBoost [4], FedAvg aims to minimize a uniform combination of local losses:
arg minh

∑K
k=1 pkBF

(Dk||h)
, and the optimal solution is h∗ = Dg, where Dg �

∑K
k=1 pkDk is the global distribution. Directly applying this solution to local

clients leads to a loss BF

(Dk||Dg

)
, which could be very large due to non-iid data.

This theoretically explains the major observation that the newly downloaded
model performs poorly on local clients.
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Fig. 5. Performance comparisons on various settings. The (a) and (b) take another base
model (i.e., TFCNN) for Cifar10-100-5 and Cifar100-100-20, respectively. The (c) takes
a cross-silo FL scene, i.e., Cifar100-20-5. The (d) takes the Shakespeare benchmark.
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With a combination of private and shared models: hk = (1−α)hs +αhk
p, the

local loss function on the kth client is:

BF

(Dk||hk
) ≤ (1 − α)BF

(Dk||hs

)
+ αBF

(Dk||hk
p

)
,

implying that the personalization error of local clients is bounded by two com-
ponents: the error of shared model with a shrinkage factor 1 − α, α ∈ [0, 1];
the error of private models. The updated HPM in the tth round is actually an
interpolation as: hk

p,t+1 = (1 − α)ĥk
s,t + αhk

p,t, with α = μk
t . We also have:

BF

(Dk||hk
p,t+1

) ≤ (1 − α)BF

(
Dk||ĥk

s,t

)
+ αBF

(Dk||hk
p,t

)
,

which bounds the personalization error via two components: BF

(
Dk||ĥk

s,t

)

denotes the error of after personalizing hk
s,t, which can be smaller than

BF

(Dk||hk
s,t

)
with appropriate fine-tuning; BF

(Dk||hk
p,t

)
denotes the error of

the tth HPM, which can be deduced similarly to the (t − 1)th round. To be
brief, the macroscopic theoretical analysis shows that HPM is a special kind of
private-shared model that can inherit the historical personalized models’ ability,
leading to smaller personalization errors.

Table 1. Statistical information of the investigated benchmarks.

K C Loc.C No.Tr No.Te K C Loc.C No.Tr No.Te

C10-100-5 100 10 5 400 100 C100-100-20 100 100 20 400 100

FeMnist 3550 62 62 181 45

C100-20-5 20 100 5 2k 500 Shakespeare 1129 81 81 2994 749

4 Experiments

4.1 Scenes and Basic Settings

We verify the superiorities of FedPHP on several non-iid scenes: Cifar10-100-
5, Cifar100-100-20, FeMnist. The Cifar10-100-5 is constructed via distribut-
ing the Cifar10 dataset [8] onto 100 clients according to labels, where each
client only could observe 5 classes, and each client owns 400/100 samples for
training/testing. Similarly, for Cifar100-100-20, it is constructed by distribut-
ing Cifar100 dataset [8] onto 100 clients, where each client only observes 20
classes. Such partitions can also be found in previous works [11,27]. FeMnist is
the benchmark recommended by LEAF [2], which is to classify the mixture of
digits and characters with data from 3550 writers. We resize the images in FeM-
nist into 28 × 28 ones. We list the detailed statistics in Table 1, which shows the
number of clients K, the number of total classes C, the number of seen classes
of each local client on average Loc.C, the number of local training samples for
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training/testing on average No.Tr/No.Te. For Cifar10-100-5 and Cifar100-100-
20, we take T = 1000 as the number of global rounds, E = 2 as the number of
local epochs, B = 64 as the batch size, Q = 0.1 as the client selection ratio. We
use VGG11 without BN in PyTorch1 as the base model. For FeMnist, we take
T = 1000, E = 10, B = 50, Q = 0.01, and utilize the model with two convolu-
tional layers and two fully-connected layers as in LEAF [2]. We use SGD with
momentum 0.9 as optimizer and a constant learning rate η = 0.03 for Cifar10-
100-5 and Cifar100-100-20, η = 4e−3 for FeMnist. We take the features fed into
the fully-connected layer as the intermediate features. For FedPHP, we use the
MMD regularization as in Eq. 8 with λ = 0.01 for Cifar10-100-5 and Cifar100-
100-20, and λ = 0.1 for FeMnist, as in Eq. 10. We only take the predictions from
the HPM, i.e., θk

p,t+1, to calculate the personalization accuracy. Our compari-
son methods can be divided into four categories: individual training (denoted
as NoFed) and FedAvg [17]; existing FL methods with private-shared models:
FedPer [1], FedL2G [14], FedFu [25], FLDA [19], and FedDML [20]; FL methods
with constraints: FedProx [12], FedMMD [24]; FL aggregation with momentum:
SCAFFOLD [7].
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Fig. 6. Comparisons of δkt (Eq. 4) with existing FL methods. FedPHP could omit the
local performance degradation with δkt being nearly zero.

4.2 Experimental Results

We record the personalized models’ local test accuracy as the personalization per-
formance as introduced in Sect. 3.1. The personalized accuracy curves are plotted
in Fig. 4. We can find that FedPHP can obtain the best performances. NoFed
obtains the worst performance due to few local data. FedPer [1] and FedLG [14]
also perform worse due to the possible feature mismatch between the downloaded
shared model and the private model. Compared with FedAvg [17], FedMMD [24]
leads to slightly faster convergence on Cifar100-100-20, while FLDA [19] could
obtain higher personalization performance when converged. Other methods per-
form similarly. We can find that our methods could surpass the compared meth-
ods with a large margin, which is exciting and inspiring.

1 https://pytorch.org/docs/stable/torchvision/models.html.

https://pytorch.org/docs/stable/torchvision/models.html
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To further verify the superiorities of our methods, we vary several settings.
First, we want to explore whether the improvement is related to the used net-
work. We apply the TFCNN (Tensorflow CNN)2 used in FedAvg [17] to Cifar10-
100-5 and Cifar100-100-20. Then, we vary the number of clients and construct a
cross-silo FL scene [6]. Specifically, we distribute the Cifar100 dataset [8] onto 20
clients with disjoint classes, i.e., with each client owning 5 classes. We denote this
scene as Cifar100-20-5. For this scene, we use VGG11 again as the base model
and select all clients in each round, i.e., Q = 1.0. We also investigate another
benchmark recommended by LEAF [2], i.e., Shakespeare. It is a next-character
prediction task and contains 1129 clients. We take the CharLSTM model used
in FedAvg [17], and set Q = 0.01, η = 1.47, E = 2, and B = 10. For this scene,
we only compare parts of previous methods due to computation limitation.

The results are shown in Fig. 5. From Fig. 5 (a) and (b), we can deduce that
our proposed FedPHP is robust to the base models. However, FedPHP could con-
verge slower on Cifar100-20-5 than most of the compared methods. This results
from two reasons. First, in this scene, each client owns 2000 training samples
with 400 samples for each class. It is enough for the compared FL methods to
train a well-performed model on local clients, e.g., even NoFed could perform
better at the beginning. Second, the models are updated quickly initially, and the
possibly induced high variance could make the models to be interpolated distinct
significantly. Hence, the averaged model may perform worse at the beginning.
However, FedPHP could still converge to a higher result as in Fig. 5 (c). Simi-
larly, on Shakespeare, each client can almost have 3000 training samples on each
local client. Also, these may be closely related to the specific FL task.

Then we compare the change of δk
t (Eq. 4) during the learning process on the

three benchmarks, which is shown in Fig. 6. Most of the compared methods will
experience the local performance degradation on these benchmarks, i.e., negative
δk
t . However, FedPHP could make δk

t nearly zero, which omits the degradation
when personalization.

4.3 Ablation Studies

As introduced in Sect. 3.3, the knowledge transfer from the HPM to the newly
downloaded model could have various types and could be applied with different
levels of forces with various λ. Hence, we first explore the comparisons of these
types of knowledge and the settings of λ ∈ {0.0, 0.001, 0.01, 0.1}. We compare
the performances on Cifar100-100-20 and FeMnist. The results are shown in
Fig. 7. To show the convergence speed, we report both the personalization per-
formance around the 200th round and the 1000th round, denoted as “Begin” and
“End”, respectively. The types of knowledge transfer, i.e., the “KD”, “MMD”,
“L2”, and “Prox”, are shown along with the x-axis. The y-axis shows the λ. For
better comparison, we also report the corresponding best accuracy of the com-
pared methods in Fig. 4, which is listed in the “[]”. On Cifar100-100-20, “MMD”
could effectively accelerate the convergence speed at the beginning, and these

2 https://www.tensorflow.org/tutorials/images/cnn.

https://www.tensorflow.org/tutorials/images/cnn
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Fig. 7. Ablation studies on the types of knowledge transfer and the coefficient λ
(Eq. 10). “Begin” means the average performance around the round t = 200; “End”
means the final converged performance, averaged across the last 10 rounds’ results.
The number in “[]” denotes the best performance of the compared methods in Fig. 4.

types of knowledge transfer perform nearly equally when converged. On FeM-
nist, the knowledge transfer does not impact the personalization significantly,
while the coefficient λ influences the results a lot. Anyway, these settings could
almost nearly obtain better results than the compared methods, which verifies
the superiorities of FedPHP again. Additionally, utilizing “MMD” to align fea-
ture distributions between the HPM and the newly downloaded model should
be prioritized for a novel FL non-iid scene.

Table 2. Comparisons on various ways of adjusting the momentum, i.e., μk
t in Eq. 5.

Begin End

Mu-A Mu-B Mu-C Mu-A Mu-B Mu-C

Cifar10-100-5 80.35 70.24 79.24 91.04 84.37 85.56

Cifar100-100-20 46.60 11.82 30.45 72.46 47.67 59.81

FeMnist 72.53 58.92 62.88 77.73 69.87 71.29

For the momentum in Eq. 5, we can take several settings. The first is the
client-specific dynamically adjusted way as introduced in Sect. 3.2. Second, we
could also take a global μ, i.e., setting μk

t = μ,∀t ∈ [1, T ], k ∈ St. We set μ = 0.9



600 X.-C. Li et al.

for comparison. Third, we take a dynamically adjusted way with all clients in St

share the same μk
t = μt = t/T . We denote these three settings as Mu-A, Mu-B,

and Mu-C, respectively. Then we utilize “MMD” as the knowledge transfer by
default and list the performances of these three adjusting ways in Table 2. We
can obviously find that the utilized client-specific adjusted way performs the
best. The global fixed momentum will degrade the performances a lot. Although
the dynamically adjusted way performs slightly better than the fixed one, it does
not take specific momentum for different local clients. Hence, we suggest taking
the Mu-A (Sect. 3.2) to obtain a client-specific dynamically adjusted momentum.
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Fig. 8. Comparisons of personalization accuracies with different inference methods on
local clients.

The final question that we want to explore is the inference method with the
HPM. For each client, we can only use the HPM to predict, i.e., the θk

p,t, which
is used in the above experiments by default. However, we could also use the
personalized model to make predictions, i.e., θ̂k

s,t. Also, we could ensemble their
predictions via an averaging of their returned probability vectors. We show these
performances as in Fig. 8. We can find that the performances of the personal-
ized models could not reach the performance of the HPM on Cifar10-100-5 and
Cifar100-100-20, while they could perform similarly on FeMnist. These result
from two reasons. First, Cifar10-100-5 and Cifar100-100-20 take a larger client
selection ratio Q = 0.1, where the HPM could be updated 100 times on average,
while FeMnist takes Q = 0.01 and the HPM is updated not so frequently. Hence,
the performance gap will be enlarged on Cifar10-100-5 and Cifar100-100-20. This
may also be related to the natural property of these benchmarks. Anyway, we
only take the predictions from the HPM in FedPHP.

5 Conclusion

Based on an empirical observation that the newly downloaded model in FedAvg
could perform poorly and the hard-won personalized models in previous rounds
are overwritten, we propose a novel concept named “inHerited Private Model”
(HPM) to keep the historical valuable personalization knowledge in FL. Specifi-
cally, we take a moving average of personalized models on each client and exploit
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them to supervise the newly-downloaded model in the next global round. Our
proposed FedPHP possesses the advantage of temporal ensembling, leading to
better and stable performances. We advocate our work’s main contribution is
the exploitation of historical hard-won personalized models on local clients. We
also explore various types of knowledge transfer and find that aligning feature
distributions via MMD performs better. Searching for other advanced techniques
to better exploit the hard-won personalized models are future works.
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Abstract. Most rumour detection models for social media are designed
for one specific language (mostly English). There are over 40 languages
on Twitter and most languages lack annotated resources to build rumour
detection models. In this paper we propose a zero-shot cross-lingual
transfer learning framework that can adapt a rumour detection model
trained for a source language to another target language. Our frame-
work utilises pretrained multilingual language models (e.g. multilingual
BERT) and a self-training loop to iteratively bootstrap the creation
of “silver labels” in the target language to adapt the model from the
source language to the target language. We evaluate our methodology on
English and Chinese rumour datasets and demonstrate that our model
substantially outperforms competitive benchmarks in both source and
target language rumour detection.

Keywords: Rumour detection · Cross-lingual transfer · Zero-shot

1 Introduction

Online social media platforms provide an alternative means for the general public
to access information. The ease of creating a social media account has the impli-
cation that rumours—stories or statements with unverified truth value [1]—can
be fabricated by users and spread quickly on the platform.

To combat misinformation on social media, one may rely on fact checking
websites such as snopes.com and emergent.info to dispel popular rumours.
Although manual evaluation is the most reliable way of identifying rumours, it
is time-consuming.

Automatic rumour detection is therefore desirable [14,36]. Content-based
methods focus on rumour detection using the textual content of messages
and user comments. Feature-based models exploit features other than text
content, such as author information and network propagation features, for
rumour detection. [19,20,22]. Most rumour detection models, however, are
built for English [29,30], and most annotated rumour datasets are also in
English [13,20,28].

Rumours can spread in different languages and across languages. Table 1
shows an example (untruthful) rumour about Bill Gates circulated on Twitter
c© Springer Nature Switzerland AG 2021
N. Oliver et al. (Eds.): ECML PKDD 2021, LNAI 12975, pp. 603–618, 2021.
https://doi.org/10.1007/978-3-030-86486-6_37
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Table 1. An illustration of a COVID-19 rumour being circulated in English, French
and Italian on Twitter.

Date Language Tweet

04-02-2020 English Bill Gates admits the vaccine will no doubt kill 700000
people. The virus so far has killed circa 300000 globally.
Can anyone explain to me why you would take a vaccine
that kills more people than the virus it’s desgined to
cure?

17-04-2020 French et si bill gates etait le seul manipulateur de ce virus.. il
veut moinsvde gens sur terre. veut vous vacciner et parle
de pandemie depuis des années c est quand meme fou
cette citation, non? #covid #BillGates

06-05-2020 Italian Bill Gates:”la cosa più urgente nel mondo ora è il vaccino
contro il Covid-19.” I bambini africani che hanno ricevuto
i vaccini di Bill Gates o sono morti o sono diventati
epilettici. I vaccini di Bill Gates sono più pericolosi di
qualsiasi coronavirus. #BillGates #Coronavirus

during the COVID-19 pandemic.1 The rumour is found not only in English but
also in Spanish and French.2

There are over 40 languages on Twitter3 and most languages lack annotated
resources for building rumour detection models. Although we have seen recent
successes with deep learning based approaches for rumour detection [4,15,18,19,
29,39] most systems are monolingual and require annotated data to train a new
model for a different language.

In this paper, we propose a zero-shot cross-lingual transfer learning frame-
work for building a rumour detection system without requiring annotated data
for a new language. Our system is cross-lingual in the sense that it can detect
rumours in two languages based on one model. Our framework first fine-tunes
a multilingual pretrained language model (e.g. multilingual BERT) for rumour
detection using annotated data for a source language (e.g. English), and then
uses it to classify rumours on another target language (zero-shot prediction) to
create “silver” rumour labels for the target language. We then use these sil-
ver labels to fine-tune the multilingual model further to adapt it to the target
language.

At its core, our framework is based on MultiFiT [8] which uses a multilin-
gual model (LASER; [2]) to perform zero-shot cross-lingual transfer from one
language to another. An important difference is that we additionally introduce a
self-training loop—which iteratively refines the quality of the silver labels—that

1 https://www.bbc.com/news/52847648.
2 The following article clarifies several rumours surrounding Bill Gates: https://www.

reuters.com/article/uk-factcheck-gates-idUSKBN2613CK.
3 https://semiocast.com/downloads/Semiocast Half of messages on Twitter are not

in English 20100224.pdf.

https://www.bbc.com/news/52847648
https://www.reuters.com/article/uk-factcheck-gates-idUSKBN2613CK
https://www.reuters.com/article/uk-factcheck-gates-idUSKBN2613CK
https://semiocast.com/downloads/Semiocast_Half_of_messages_on_Twitter_are_not_in_English_20100224.pdf
https://semiocast.com/downloads/Semiocast_Half_of_messages_on_Twitter_are_not_in_English_20100224.pdf
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can substantially improve rumour detection in the target language. Most inter-
estingly, we also found that if we include the original gold labels in the source
language in the self-training loop, detection performance in the source language
can also be improved, creating a rumour detection system that excels in both
source and target language detection.

To summarise, our contributions are: (1) we extend MultiFiT, a zero-shot
cross-lingual transfer learning framework by introducing a self-training loop to
build a cross-lingual model; and (2) we apply the proposed framework to the
task of rumour detection, and found that our model substantially outperforms
benchmark systems in both source and target language rumour detection.

2 Related Work

Rumour detection approaches can be divided into two major categories according
to the types of data used: text-based and non-text based. Text-based methods
focus on rumour detection using the textual content, which may include the orig-
inal source document/message and user comments/replies. [18] proposed a recur-
sive neural network model to detect rumours. Their model first clusters tweets
by topics and then performs rumour detection at the topic level. [29] introduced
linguistic features to represent writing styles and other features based on sensa-
tional headlines from Twitter and to detect misinformation. To detect rumours as
early as possible, [39] incorporated reinforcement learning to dynamically decide
how many responses are needed to classify a rumour. [30] explored the relation-
ship between a source tweet and its comments by transferring stance prediction
model to classify the veracity of a rumour. Non-text-based methods utilise fea-
tures such as user profiles or propagation patterns for rumour detection [15,19].
In this paper, we adopt the text-based approach to rumour detection.

Most studies on rumour detection focus on a specific social media platform or
language (typically English). Still there are a few exceptions that explore cross-
domain/multilingual rumour detection or related tasks. [31] proposed a set of 10
hand-crafted cross-lingual and cross-platform features for rumour detection by
capturing the similarity and agreement between online posts from different social
media platforms. [24] introduced a contrastive learning-based model for cross-
lingual stance detection using memory networks. Different to these studies, we
specifically focus on how to transfer learned knowledge from a source language
to a target language for automatic rumour detection.

Transfer learning has been successfully applied to many natural language
processing (NLP) tasks, where modern pretrained language models (e.g. BERT)
are fine-tuned with annotated data for down-stream tasks [7,16,38]. Multilingual
pretrained language models have also been explored. For example, BERT has a
multilingual version trained using 104 languages of Wikipedia,4 and [6] incor-
porate RoBERTa’s training procedure for pretraining a multilingual language
model that produces sentence embeddings for 100 languages. [25] found that
multilingual BERT is surprisingly good at zero-shot cross-lingual transfer, i.e. it
4 https://github.com/google-research/bert/blob/master/multilingual.md.

https://github.com/google-research/bert/blob/master/multilingual.md
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can be fine-tuned for a particular task in one language and used to make predic-
tions in another language without any further training. [8] proposed MultiFiT,
a zero-shot cross-lingual transfer framework that uses predicted labels from a
fine-tuned multilingual model to train a monolingual model on the same task in
a target language; their transfer learning objective is only to optimise the model
for the target language. Different from MultiFiT, our objective is to optimise
models for both the target and source languages.

Self-training [27] is an early semi-supervised learning approach that has been
explored for a variety of NLP tasks, such as neural machine translation [11],
semantic segmentation [40]. Self-training involves teacher and student models,
where the teacher model is trained with labelled data and then used to make
predictions on unlabelled data to create more training data for training a student
model. The process is repeated for several iterations with the student model
replacing the original teacher model at the end of each iteration, and through
iterative refinement of the predicted labels the student model improves over
time. We apply self-training in a novel way to fine-tune pre-trained multilingual
language models for cross-lingual rumour detection, and show that the student
model improves over time during the transfer.

3 Methodology

We are interested in the task of rumour detection, and particularly how to do
zero-shot cross-lingual transfer to build a multilingual rumour detection model.
That is, we assume we have labelled rumours in one language (source) where
we can build a supervised rumour detection model, and the goal is to transfer
the model to detect rumours in a second language (target) without any labelled
data in that second language. After transfer, it should have the ability to detect
rumours in both languages (hence a multilingual model). We first describe the
rumour classifier in Sect. 3.1, and return to detail the cross-lingual transfer learn-
ing framework in Sect. 3.2.

3.1 Rumour Classifier

We focus on binary rumour detection, and follow previous studies to use crowd
comments to classify whether a microblog post constitutes a rumour or not [18,
30,39].

Given an initial post si and its reactions ri,5 we feed them to a pre-
trained multilingual language model (we use multilingual BERT [7] and XML-
RoBERTa [6] in our experiments) as:6

[CLS] + si + [SEP ] + ri + [SEP ]
5 Reactions are replies and quotes. ri represents all reactions that can fit the maximum

sequence length (384) for the pretrained model, concatenated together as a long
string.

6 For XLM-RoBERTa, we have 2 [SEP ] symbols between si and ri, following
https://huggingface.co/transformers/model doc/xlmroberta.html#transformers.
XLMRobertaTokenizer.build inputs with special tokens.

https://huggingface.co/transformers/model_doc/xlmroberta.html#transformers.XLMRobertaTokenizer.build_inputs_with_special_tokens
https://huggingface.co/transformers/model_doc/xlmroberta.html#transformers.XLMRobertaTokenizer.build_inputs_with_special_tokens
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Fig. 1. Proposed cross-lingual transfer framework.

where [CLS] and [SEP ] are special symbols used for classification and separating
sequences [7].

We then take the contextual embedding of [CLS] (h[CLS]) and feed it to a
fully-connected layer to perform binary classification of the rumour.

yi = softmax
(
Wih[CLS] + bs

)

Given ground truth rumour labels, the model is fine-tuned with standard binary
cross-entropy loss. All parameters are updated except for the word embeddings
(rationale detailed in the following section).
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Fig. 2. Self-training loop.

3.2 Cross-Lingual Transfer

Our zero-shot cross-lingual transfer learning framework is based on MultiFiT [8].
MultiFiT works by first fine-tuning a multilingual model (e.g. LASER [2] is used
in the original paper) for a task in a source language, and then applying it (zero-
shot) to the same task in a target language to create silver labels. These silver
labels are then used to fine-tune a monolingual model in the target language.
MultiFiT is shown to substantially improve document classification compared to
zero-shot predictions by a series of multilingual models trained using only gold
labels in the source language.7

We present our zero-shot cross-lingual transfer learning framework in Fig. 1.
One key addition that we make is a self-training loop that iteratively refines the
quality of the adapted model. In the original MultiFiT framework, the teacher
model is a multilingual model, and the student model is a monolingual model in
the target language. As we are interested in multilingual rumour detection, the
student model is a multilingual model in our case, although in our experiments
(Sect. 4.3) we also present variations where the student model is a monolingual
model.

Figure 2 illustrates the self-training loop. The student model is initialised
using the teacher model (so both are multilingual models). Once the student is
trained, the teacher model in the next iteration will be replaced by the student
model.

To reduce noise in the silver labels, we introduce a filtering and balancing
procedure in the self-training loop. The procedure was originally introduced
to image classification and shown to improve performance [34]. With the fil-
tering procedure, instances with prediction confidence/probability lower than a
threshold p are filtered. The balancing procedure effectively drops some high

7 Silver labels refer to the predicted labels in the target language, while gold labels
refer to the real labels in the source language.
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confidence instances that pass the threshold to ensure that an equal number of
positive (rumour) and negative (non-rumour) instances.

Following [10], we perform adaptive pretraining on the teacher model before
fine-tuning it for the rumour detection task. That is, we take the off-the-shelf
pretrained multilingual model and further pretrain it using the masked language
model objective on data in our rumour detection/social media domain. In terms
of pretraining data we use both the unlabelled rumour detection data (“task
adaptive”) and externally crawled microblog posts (“domain adaptive”) in the
target language.

The degree of overlap in terms of vocabulary between the source and target
language varies depending on the language pair. If the overlap is low, after fine-
tuning the source language subword embeddings would have shifted while the
target language subword embeddings remained the same (due to no updates),
creating a synchronisation problem between the subword embeddings and inter-
mediate layers. We solve this issue by freezing the subword embeddings when
we first fine-tune the teacher model; subsequent fine-tuning in the self-training
loop, however, updates all parameters. We present ablation tests to demonstrate
the importance of doing this in Sect. 4.4.

Aiming for a model that performs well for both the target and source lan-
guages, we also introduce gold labels in the source language during self-training,
i.e. we train the student using both the silver labels in the target language and
the gold labels in the source language. This approach produces a well-balanced
rumour detection model that performs well in both source and target languages,
as we will see in Sect. 4.3.

4 Experiments and Results

We evaluated our cross-lingual transfer learning framework for rumour detection
using three English and Chinese datasets. We formulate the problem as a binary
classification task to distinguish rumours from non-rumours.

4.1 Datasets

Two English datasets Twitter15/16 [20] and PHEME [13], and one Chinese
dataset WEIBO [18] were used in our experiments. PHEME and WEIBO have
two class labels, rumour and non-rumour. For the Chinese WEIBO dataset,
rumours are defined as “a set of known rumours from the Sina community
management center (http://service.account.weibo.com), which reports various
misinformation” [18]. The original Twitter15/16 dataset [20] has four classes,
true rumour, false rumour, unverified rumour and non-rumour. We therefore
extract tweets with labels “false rumour” and “non-rumour” from Twitter15/16
to match the definition of rumours and non-rumours of WEIBO and use the
extracted data for experiments. Table 2 shows statistics of the experiment
datasets.

http://service.account.weibo.com
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Table 2. Rumour datasets.

T15/16 PHEME WEIBO

#initial posts 1,154 2,246 4,664

#all posts 182,535 29,387 3,805,656

#users 122,437 20,529 2,746,818

#rumours 575 1,123 2,313

#non-rumours 579 1,123 2,351

Avg. # of reactions 279 26 247

Max. # of reactions 3,145 289 2,313

Min. # of reactions 74 12 10

To ensure fair comparison of the performance across all models, for each
dataset we reserved 20% data as test and we split the rest in a ratio of 4:1
for training and validation partitions. The validation set was used for hyper-
parameter tuning and early-stopping. For the PHEME dataset, to be consistent
with the experiment set up in the literature, we followed the 5-fold split from [21].
For adaptive pretraining (Sect. 3.2), we used an external set of microblogs data
for English (1.6M posts; [28]) and Chinese (39K posts).8

4.2 Experiment Setup

We used multilingual BERT [7] and XLM-RoBERTa [6] for the multilingual
models, and implemented in PyTorch using the HuggingFace Libraries.9

For adaptive pretraining, we set batch size = 8. For the fine-tuning, we set
batch size = 16, maximum token length = 384, and dropout rate = 0.1. Training
epochs vary between 3–5 and learning rate in the range of {1e-5, 2e-5, 5e-5};
the best configuration is chosen based on the development data. We also tuned
the number of self-training iterations and p, the threshold for filtering silver
labels (Sect. 3.2), based on development.10 All experiments were conducted using
1 ×V100 GPU.

4.3 Results

For our results, we show cross-lingual transfer performance from English to Chi-
nese and vice versa. As we have two English datasets (T15/16 and PHEME) and
one Chinese dataset (WEIBO), we have four sets of results in total: T15/16→
WEIBO, PHEME→WEIBO, WEIBO→T15/16 and WEIBO→PHEME. We
evaluate rumour detection performance using accuracy, and present the

8 https://archive.ics.uci.edu/ml/datasets/microblogPCU.
9 https://github.com/huggingface.

10 For p we search in the range of 0.94–0.96.

https://archive.ics.uci.edu/ml/datasets/microblogPCU
https://github.com/huggingface
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Table 3. Rumour detection results (Accuracy (%)) for English to Chinese trans-
fer. Each result is an average over 3 runs, and subscript denotes standard deviation.
monoBERT is a Chinese BERT model in this case. Boldfont indicates optimal zero-shot
performance.

Model T15/16 → WEIBO PHEME → WEIBO

Source Target Source Target

Supervised

multiBERT+source 95.80.1 — 83.70.5 —

multiBERT+target — 93.90.2 — 93.90.2

multiBERT+both 94.80.1 93.00.3 82.10.8 95.20.2

XLMR+source 96.30.4 — 82.80.5 —

XLMR+target — 94.80.1 — 94.80.1

XLMR+both 95.50.1 92.20.2 85.81.9 95.40.1

[18]+source 83.50.7 — 80.80.4 —

[15]+source 85.40.4 — 64.51.0 —

[30]+source 87.20.9 — 86.71.5 —

[4]+source 96.30.7 — — —

Zero-shot

multiBERT — 64.32.1 — 65.91.1

XLMR — 64.71.1 — 68.11.0

MF [8] — 70.60.4 — 61.11.0

MF-monoBERT — 67.50.5 — 68.20.4

MF-monoBERT+ST — 81.30.1 — 79.00.2

MF-multiBERT+ST 61.30.4 78.63.9 66.31.5 72.61.9

MF-multiBERT+ST+GL 96.60.2 78.30.8 83.00.5 74.33.3

MF-XLMR+ST 57.61.0 81.20.1 62.11.3 77.40.3

MF-XLMR+ST+GL 96.20.1 80.20.2 85.30.7 77.20.8

English→Chinese results in Table 3 and Chinese→English in Table 4 respectively.
All performance is an average over 3 runs with different random seeds.

We include both supervised and zero-shot baselines in our experiments. For
the supervised benchmarks, we trained multilingual BERT and XLM-RoBERTa
using: (1) source labels; (2) target labels; and (3) both source and target labels.
The next set of supervised models are state-of-the-art monolingual rumour detec-
tion models: (1) [18] is a neural model that processes the initial post and crowd
comments with a 2-layer gated recurrent units; (2) [15] uses recurrent and con-
volutional networks to model user metadata (e.g. followers count) in the crowd
responses;11 (3) [30] uses BERT to encode comments (like our model) but it is
pre-trained with stance annotations; and (4) [4] uses bidirectional graph convolu-

11 Following the original paper, only a maximum of 100 users are included.
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Table 4. Rumour detection results (Accuracy (%)) for Chinese to English trans-
fer. Each result is an average over 3 runs, and subscript denotes standard deviation.
monoBERT is an English BERT model here.

Model WEIBO → T15/16 WEIBO → PHEME

Source Target Source Target

Supervised

multiBERT+source 93.90.1 — 93.90.2 —

multiBERT+target — 95.80.1 — 83.70.5

multiBERT+both 93.00.3 94.80.1 95.20.2 82.10.8

XLMR+source 94.80.1 — 94.80.1 —

XLMR+target — 96.30.4 — 82.80.5

XLMR+both 92.20.2 95.50.1 95.40.1 85.81.9

[18]+source 91.00.1 — 91.00.1 —

[15]+source 92.10.2 — 92.10.2 —

[4]+source 96.10.4 — 96.10.4 —

Zero-shot

multiBERT — 60.81.3 — 67.20.4

XLMR — 73.90.8 — 69.01.5

MF [8] — 73.41.4 — 64.12.0

MF-monoBERT — 64.70.1 — 70.70.7

MF-monoBERT+ST — 85.70.4 — 78.90.6

MF-multiBERT+ST 55.11.8 82.21.2 66.01.0 72.61.5

MF-multiBERT+ST+GL 97.00.1 80.91.5 95.80.5 73.40.4

MF-XLMR+ST 52.40.3 83.01.0 62.70.5 75.40.4

MF-XLMR+ST+GL 97.60.1 81.30.1 95.90.5 77.91.1

tional networks to model crowd responses in the propagation path. Note that we
only have English results (T15/16 and PHEME) for [30] as it uses stance anno-
tations from SemEval-2016 [23], and only T15/16 and WEIBO results for [4] as
PHEME does not have the propagation network structure. To get user metadata
for [15], we crawled user profiles via the Twitter API.12

For the zero-shot baselines, multilingual BERT and XLM-RoBERTa were
trained using the source labels and applied to the target language (zero-shot pre-
dictions); subword embeddings are frozen during fine-tuning for these zero-shot
models. We also include the original MultiFiT model [8], which uses LASER [2]
as the multilingual model (teacher) and a pretrained quasi-recurrent neural net-
work language model [5] as the monolingual model (student).13

12 https://developer.twitter.com/en/docs/twitter-api/v1.
13 The monolingual student model is pretrained using Wikipedia in the target language.

https://developer.twitter.com/en/docs/twitter-api/v1
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Table 5. Rumour detection results (F1 score (%)) for both the source and target
languages. “R” and “NR” denote the rumour and non-rumour classes respectively.

T15/16 → WEIBO PHEME → WEIBO WEIBO → T15/16 WEIBO → PHEME

Source Target Source Target Source Target Source Target

MF-multiBERT+ST+GL

R 96.6 79.1 84.2 75.5 96.9 83.3 94.3 75.2

NR 96.1 77.2 79.5 73.1 97.0 76.8 94.4 70.3

MF-XLMR+ST+GL

R 96.6 83.1 85.2 81.6 97.4 82.9 96.9 74.4

NR 95.6 76.1 85.7 74.5 96.8 81.1 95.0 81.4

We first look at the supervised results. XLM-RoBERTa (“XLMR”) is gener-
ally better (marginally) than multilingual BERT (“multiBERT”). In compari-
son, for the monolingual rumour detection models, [4] has the best performance
overall (which uses network structure in addition to crowd comments), although
XLM-RoBERTa and multilingual BERT are not far behind.

Next we look at the zero-shot results. Here we first focus on target perfor-
mance and baseline models. The zero-shot models (“multiBERT” and XLMR”)
outperform the MultiFiT baseline (“MF”) in 2–3 out of 4 cases, challeng-
ing the original findings in [8]. When we replace the teacher model with
multilingual BERT and the student model with monolingual BERT (“MF-
monoBERT”), we found mixed results compared to MultiFiT (“MF”): 2 cases
improve but the other 2 worsen. When we incorporate the self-training loop
(“MF-monoBERT+ST”), however, we see marked improvement in all cases—the
largest improvement is seen in WEIBO→T15/16 (Chinese to English, Table 4),
from 64.7% to 85.7%—demonstrating the benefits of iteratively refining the
transferred model. These results set a new state-of-the-art for zero-shot cross-
lingual transfer learning for our English and Chinese rumour detection datasets.
That said, there is still a significant gap (10+ accuracy points) compared to
supervised models, but as we see in Sect. 4.6 the gap diminishes quickly as we
introduce some ground truth labels in the target domain.

We now discuss the results when we use a multilingual model for the student
model, i.e. replacing it with either multilingual BERT (“MF-multiBERT+ST”)
or XLM-RoBERTa (“MF-XLMR+ST”), which turns it into a multilingual
rumour detection system (i.e. after fine-tuned it can detect rumours in both
source and target language). Similar to the supervised results, we see that the
latter (“MF-XLMR+ST”) is a generally better multilingual model. Compar-
ing our best multilingual student model (“MF-XLMR+ST”) to the monolingual
student model (“MF-monoBERT+ST”) we see only a small drop in the target
performance (about 1–4 accuracy points depending on domain), demonstrating
that the multilingual rumour detection system is competitive to the monolingual
detection system in the target language.
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For the source performance, we see a substantial drop (20–40 accuracy
points) after cross-lingual transfer (e.g. “XLMR+source” vs. “MF-XLMR+ST”),
implying there is catastrophic forgetting [9,12,32,35]—the phenomenon where
adapted neural models “forget” and perform poorly in the original domain/task.
When we incorporate gold labels in the source domain in the self-training loop
(“MF-multiBERT+ST+GL” or “MF-XLMR+ST+GL”), we found a surprising
observation: not only was catastrophic forgetting overcame, but the source per-
formance actually surpasses some supervised monolingual models, e.g. “MF-
multiBERT+ST+GL” and “MF-XLMR+ST+GL” outperform [4] in T15/16
(96.6% vs. 96.3%) and WEIBO (97.6% vs. 96.1%) respectively, creating a new
state-of-the-art for rumour detection in these two domains. One explanation is
that the transfer learning framework maybe functioning like a unique data aug-
mentation technique that creates additional data in a different language (unique
in the sense it works only for improving multilingual models). Note that incor-
porating the gold labels generally does not hurt the target performance – e.g.
comparing “MF-XLMR+ST” with “MF-XLMR+ST+GL” we see a marginal dip
in 2 cases, but in 2 other cases we see similar or improved performance—which
shows that this is an effective approach for building multilingual models.

We further examine class-specific performance of our best models. The F1

scores of rumour and non-rumour classes are presented in Table 5. For this binary
classification task with relatively balanced class distributions, not surprisingly we
observe that our models have reasonably good performance in both the rumour
and non-rumour classes; lowest F1 score is 70.3% of MF-multiBERT+ST+GL
(Chinese to English transfer) for non-rumours in PHEME. That said, perfor-
mance of the rumour class is generally better than that of the non-rumour class
in both the source and target languages (the only exception is Chinese to English
transfer on PHEME).

4.4 Adaptive Pretraining and Layer Freezing

To understand the impact of adaptive pretraining and layer freezing, we display
zero-shot multilingual BERT results (test set) in Table 6. We can see that there
are clear benefits for adaptive pretraining (top-3 vs. bottom-3 rows). For layer
freezing, we have 3 options: no freezing (“∅”), only freezing the subword embed-
dings (“*”) and freezing the first 3 layers (“**”). The second option (subword
embedding frozen) consistently produces the best results (irrespective of whether
adaptive pretraining is used), showing that this approach is effective in tackling
the synchronisation issue (Sect. 3.2) that arises when we fine-tune a multilingual
model on one language.
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Table 6. Influence of adaptive pretraining (“Ad. Pt.”) and layer freezing (“Frz.”) for
results (Accuracy (%)). “∅” denotes no freezing of any layers; “*” freezing the subword
embedding layer; and “**” freezing the first 3 layers.

Ad. Frz. T15/16→ PHEME→ WEIBO→ WEIBO→
Pt. WEIBO WEIBO T15/T16 PHEME

N ∅ 53.2 58.4 50.1 54.5

* 61.3 60.0 52.6 63.8

** 57.5 60.9 52.9 58.5

Y ∅ 56.6 61.8 50.9 61.6

* 64.3 65.9 60.8 67.2

** 60.3 63.8 55.0 61.8

Fig. 3. Accuracy over iteration during self-training.

4.5 Self-training

To measure the influence of the self-training loop, we present target performance
(test set) of our multilingual model (“MF-XLMR+ST+GL”) over different iter-
ations in the self-training loop in Fig. 3. We can see the performance improves
rapidly in the first few iterations, and gradually converges after 4–7 iterations.
These results reveal the importance of refining the model over multiple iterations
during cross-lingual transfer.

4.6 Semi-supervised Learning

Here we explore feeding a proportion of ground truth labels in the target domain
to our zero-shot model (“MF-XLMR+ST+GL”) and compare it to supervised
multilingual model (“XLMR+both”). We present T15/16→WEIBO results (test
set) in Table 7. We can see that the gap shrinks by more than half (12.0 to 5.9
accuracy difference) with just 20% ground truth target label. In general our



616 L. Tian et al.

Table 7. T15/16→WEIBO results (Accuracy(%)) as we incorporate more ground
truth target labels (“GT Label”).

% GT Label Supervised Zero-shot

0% — 80.2

20% 79.8 86.3

40% 83.3 89.2

60% 89.3 92.9

80% 91.0 93.5

100% 92.2 —

unsupervised cross-lingual approach is also about 20% more data efficient (e.g.
supervised accuracy@40% ≈unsupervised accuracy@20%). Interestingly, with
60% ground truth our model outperforms the fully supervised model.

5 Discussion and Conclusions

One criticism of the iterative self-training loop is that it suffers from poor initial
prediction which could lead to a vicious cycle that further degrades the student
model. The poor initial predictions concern appears to less of a problem in our
task, as the pure zero-shot models (i.e. without self-training) appear to do rea-
sonably well when transferred to a new language, indicating that the pretrained
multilingual models (e.g. XLMR) are sufficiently robust. By further injecting
the gold labels from the source domain during self-training, we hypothesise it
could also serve as a form of regularisation to prevent continuous degradation if
the initial predictions were poor. Also, although our proposed transfer learning
framework has only been applied to multilingual rumour detection, the architec-
ture of the framework is general and applicable to other tasks.

To conclude, we propose a zero-shot cross-lingual transfer learning framework
to build a multilingual rumour detection model using only labels from one lan-
guage. Our framework introduces: (1) a novel self-training loop that iteratively
refines the multilingual model; and (2) ground truth labels in the source lan-
guage during cross-lingual transfer. Our zero-shot multilingual model produces
strong rumour detection performance in both source and target language.
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Abstract. Continual learning (CL) has received a great amount
of attention in recent years and a multitude of continual learning
approaches arose. In this paper, we propose a continual learning approach
with dual regularizations to alleviate the well-known issue of catastrophic
forgetting in a challenging continual learning scenario – domain incre-
mental learning. We reserve a buffer of past examples, dubbed memory
set, to retain some information about previous tasks. The key idea is to
regularize the learned representation space as well as the model outputs
by utilizing the memory set based on interleaving the memory exam-
ples into the current training process. We verify our approach on four
CL dataset benchmarks. Our experimental results demonstrate that the
proposed approach is consistently superior to the compared methods on
all benchmarks, especially in the case of small buffer size.

Keywords: Continual learning · Representation regularization ·
Functional regularization

1 Introduction

Ideally, the intelligent system should be capable of coping with and adapting
to continually changing environments like humans. Unfortunately, most of exist-
ing machine learning algorithms are not provided with such ability. To address
this shortcoming, a problem setting known as continual learning [18] or lifelong
learning [22] came into being in recent years, prompting machine learners to
behave more like humans by fast acquiring new knowledge without forgetting
what has been learned in the past. In this setting, the learner is presented with
a sequence of similar or dissimilar tasks and the goal is to train a learner to work
well on all seen tasks.

Generally, continual learning can be split into three scenarios: task incremen-
tal learning, domain incremental learning and class incremental learning [7,24].
In task incremental learning, the task identities are always available and hence
it admits model architectures with task specific components such as a multi-
head output layer. In contrast, the task identities are unknown at test time in
incremental domain learning. Single-head networks are typically exploited for
c© Springer Nature Switzerland AG 2021
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this scenario and the output layer stays the same with exposure to new tasks.
Different from the above two scenarios, class incremental learning deals with the
circumstance where each task in the sequence only contains a subset of classes
and new classes progressively emerge with new tasks arriving. In the case that
the output spaces of sequential tasks can be treated as an identical setting, e.g.,
all binary tasks, class incremental learning has been viewed as a special case of
domain incremental learning, where the domain shifts between different tasks
are relatively substantial and the task identities are no long available.

The most critical issue in continual learning nevertheless is the catastrophic
forgetting [5,11] for previous learned tasks when the model is retrained for new
ones. To address this problem, many continual learning methods have been devel-
oped. Some methods overcome the forgetting problem by regularizing the model
parameters or outputs [1,2,8,9,26], which is known as regularization-based meth-
ods. Some methods resort to a memory set consisting of previous seen examples
to preserve certain knowledge about past tasks [3,4,10,13–15,17,19], which is
called memory-based methods. These methods typically keep a constant network
architecture during the overall learning phase. By contrast, model-based methods
propose to revise the network architecture by dynamically adding new neurons
for new tasks or revising some specific neurons for early tasks. However, such
kind of methods may result in a network with excessive size as the number of
tasks increases.

Among the exiting regularization-based and memory-based approaches, it is
worth noting that some regularization-based models such as [8] can completely
fail even on the simple Split MNIST dataset in the domain incremental learning
scenario, while many memory-based models can work extremely well in the task
incremental learning scenario but perform poorly in the domain incremental
learning setting. Some memory-based models such as [10] behave well in both
settings but are computational inefficient.

In this paper, we propose a novel continual learning approach for the domain
incremental learning setting, which can be viewed as a hybrid of regulariza-
tion and memory based methods and does not require much computational and
memory cost. The key idea is to regularize the model outputs as well as the
learned representation space by use of a set of past examples, known as memory
set. First, we interleave memory examples with current data throughout model
training to learn shared feature representations. On this basis, we enforce the
model outputs on both current and memory data to be close to previous ones
via knowledge distillation so as to preserve information about previous model
and thereby overcome forgetting. Meanwhile, feature selection is implemented
in the learned representation space to further minimize the domain discrepancy
of current and memory datasets. Finally, mixup of current and memory data
on the representation level is exploited to yield a beneficial effect on the gen-
eralization performance. We verify our approach on four dataset benchmarks –
Split MNIST, Permuted MNIST, Split CIFAR-10 and Split CIFAR-100 and the
proposed approach consistently outperforms the compared methods on all the
benchmarks. Notably, our approach is empirically much more effective when the
size of memory set is small.
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2 Related Work

Generally speaking, continual learning methods can be grouped into three cate-
gories: regularization-based methods, memory-based methods and model-based
methods. Our approach is a combination of regularization-based and memory-
based methods. We hence will briefly review prior work for these two categories.

Regularization-based Methods. To alleviate the issue of catastrophic forget-
ting, the regularization-based methods equip the loss function with a regu-
larization, either on weights or functions outputs, to protect the model from
unwanted changes. Elastic Weight Consolidation (EWC) [8] penalizes the param-
eter changes in terms of the importance of parameters for old tasks measured
by Fisher information matrix. In a similar way, Synaptic Intelligence (SI) [26]
proposed a regularization penalty but in an online manner and along the entire
training trajectory. Online EWC [20] is a modified variant of EWC by treating
all old tasks equivalently which are able to gracefully forget old tasks when the
model is out of capacity. Based on Online EWC, Riemmanian Walk (RWalk) [2]
further replaces the Euclidean distance between parameters by KL divergence,
i.e. distance in the Riemannian manifold. Memory Aware Synapses (MAS) [1]
measures the importance of parameters based on the sensitivity to model predic-
tions in an unsupervised and online setting. In addition to weight-regularization
approaches, there also exists a group of functional-regularization methods, such
as Learning without Forgetting (LwF) [9] which enforces the model outputs to
be close to the previous ones by use of knowledge distillation.

Memory-based Methods. The memory-based continual learning methods can be
divided into two types based on whether interleaving memory examples with
current data in the model training. Gradient Episodic Memory (GEM) [10]
does not absorb the memory set into the training data. Specifically, It incor-
porates the memory set into the objective as t − 1 inequality constraints where
t − 1 is the number of seen tasks, such that the loss on previous tasks can-
not increase. Averaged GEM (A-GEM) [3] is a simplified version of GEM by
combining t − 1 task-specific constraints into one constraint for all old tasks
together. In contrast, the manner that the memory data participates directly
in the model training is named as Experience Replay (ER) [15,19], which we
believe makes the best use of all data on hand. [4] gave a comprehensive study
for experience replay and evaluated a group of different memory selection strate-
gies. Based on ER, many CL techniques were put forward. Variational Continual
Learning (VCL) [12] extends online variational inference to deal with continual
learning tasks. Meta-Experience Replay (MER) [17] combines experience replay
with the optimization-based meta-learning. Dark Experience Replay (DER) [14]
encourages the model outputs to mimic the previous ones on memory exam-
ples by minimizing their KL divergence. Functional Regularization of Memorable
Past (FROMP) [13] regularizes the model outputs at a few memory examples
with a Gaussian process formulation of deep neural networks. Moreover, instead
of reserving a subset from previous datasets directly, Deep Generative Replay
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(DGR) [21] and Replay through Feedback (RtF) [23] train generative models on
old tasks and rehearsal pseudo-examples during new task training. However, it
is difficult to make them work well on complicated datasets.

In a nutshell, the proposed approach falls into the category of a hybrid of
regularization-based and memory-based CL methods, and is expected to inte-
grate strengths of both.

3 Methodology

3.1 Problem Formulation

Continual learning copes with a sequence of similar or dissimilar tasks and the
model is optimized on one task at a time without accessing to previous data
in general. The goal is to train a model that works well on all tasks, which
naturally involves a severe problem of catastrophic forgetting. In practice, a
small buffer is realizable to preserve some information about old tasks, which
is crucial to alleviate the forgetting problem. Formally, let the task index be
t ∈ {1, . . . , T}, with corresponding dataset Dt. In addition, we keep a memory set
M of size m consisting of examples from previous tasks, and allocate m/(t − 1)
memories to each of the t − 1 previous tasks. By default we assume m ≥ T .
Furthermore, to make the notation of memory set more explicitly, we denote the
memory set used during task t by Mt−1, which contains t−1 subsets, specifically,
Mt−1 =

⋃t−1
i=1 Mi

t−1.
When the task t arrives, the model fθ attempts to minimize the loss over

current data Dt. Out of sample efficiency, we also incorporate memory data
Mt−1 into the training dataset. Thus, the loss function is defined as follows,

LCE = E(x,y)∼Dt

⋃ Mt−1 l(fθ(x), y) (1)

where l is the classification loss function, in particular the cross-entropy loss.
It is worth noticing that the memory set is equally allocated to each seen

tasks, so as to ensure there is as few as one example for each previous task.
Notably, the joint training on current data and stored previous data falls into
the scope of experience repay [15,19], which was comprehensively explored by
[4] and demonstrated to be a very simple and strong CL baseline.

3.2 Proposed Approach

The key idea of the proposed approach is to regularize the model outputs as well
as the learned representation space by use of the memory set through knowledge
distillation and feature selection, respectively. Moreover, the representation reg-
ularization and the memory set usage are further strengthened by deploying a
manifold mixup component. In this section, we provide a progressive and com-
prehensible exposition of the proposed approach.
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Knowledge Distillation. The phenomenon of catastrophic forgetting usually
occurs when the model changes drastically after retraining for new tasks. For
this reason, preventing the model from dramatic drifts is one of coping strategies,
which was investigated in [8,26] by regularizing the model parameters. Besides, a
more straightforward and effective alternative is to directly regularize the model
outputs [9,13,14,16], since what ultimately matters is model predictions rather
than learned representations. To achieve this goal, it is effective to make the
outputs of new model to be close to the ones of previous model by means of
knowledge distillation.

We use fθt−1 to denote the prediction model the model after learning tasks
{1 . . . , t−1}. To preserve the knowledge about these previous tasks, a knowledge
distillation loss can be incorporated into the objective of the classification loss:

LKD = E(x,y)∼Dt

⋃ Mt−1 l(f
′
θ(x), f ′

θt−1
(x)) (2)

where l denotes the cross-entropy loss, f ′
θ(x) and f ′

θt−1
(x) are modified versions

of current and previous model predictions, respectively. Explicitly, let hθ(x) and
hθt−1(x) be pre-softmax outputs (i.e. logits) of of fθ(x) and fθt−1(x) on example
x, then

f ′
θ(x) = softmax(hθ(x)/T ) (3)

where T is a temperature parameter to adjust soft target distributions. Same
definition applies for f ′

θt−1
(x).

We empirically found that letting T = 2 is slightly better than just leaving
T = 1, therefore, we will use T = 2 during experiments in this paper, which
aligns with the choices of [6,9]. It is worth noting that, different from [9], we
adopted a memory set and encouraged the similar predictions of current and old
models not only on current data but also on memory examples. Moreover, [9]
pointed out the similar performance between the cross-entropy loss and other
reasonable loss functions for knowledge distillation, as long as trying to force the
outputs of previous model to stay steady.

Feature Selection via Sparse Regularization. The performance deteriora-
tion of old tasks arising from model retaining for new tasks is mainly caused by
the domain drifts between the new and old tasks. By interleaving the memory
data with current data in the training stage, the learned representation space
are to some extent shared across the current and previous tasks. Ideally, the
distribution gap between current and previous tasks is expected to be elimi-
nated in the shared representation space. However, such aspiration is strenuous
to realize especially when the memory set is small. Therefore, an elaborately
filtration among features in the representation space is worthy of consideration
to alleviate such issue. On this account, we incorporate a regularization on the
classifier to implicitly select features that behave similarly in both current and
previous tasks, so that in the selected feature space, the discrepancy between
the current and previous task domains is able to be further diminished.
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To begin with, let us rephrase the model parameters θ = [θG, θF ], where
θG and θF are parameters for the feature extractor G and the classifier F ,
respectively. The dimension of the feature space is d.

To realize feature selection, we first resort to a statistic – Pearson correlation
coefficient (PCC) – that measures the correlation between two variables such as
X and Y . The definition is as follows,

ρX,Y =
E[(X − μX)(Y − μY )]

σXσY

It is worth noticing that ρX,Y ∈ [−1, 1] with a value of 1 if X and Y are perfectly
correlated and −1 otherwise.

Here we aim to capture the correlation between features and the class labels
via PCC, which can reflect the prediction power of the corresponding features.
Specifically, we denote the PCC between the prediction of the classifier based
on the feature ψ of datapoint x and the label y for all pairs (x, y) from Dt

as ρDt
(Fψ(G(x)), y), where Fψ uses only the parameters related to feature ψ.

The larger the value of ρDt
(Fψ(G(x)), y), the greater the compatibility degree

of the prediction based on the feature ψ and the label. Similarly, let us denote
the PCC for all pairs in Mt−1 as ρMt−1(Fψ(G(x)), y). Ideally, we desire to
select features that are similarly predictive in both the current and memory
datasets. For this purpose, let us define the compatibility of the prediction based
on the feature ψ and the label in two datasets as the product ρDt

(Fψ(G(x)), y) ·
ρMt−1(Fψ(G(x)), y). while the incompatibility is

Δ(ψ) = 1 − ρDt
(Fψ(G(x)), y)ρMt−1(Fψ(G(x)), y) (4)

which represents the undesirableness of a specific feature ψ for bridging the
domain discrepancy in terms of the classification problem. It is straightforward
to see that Δ(ψ) ∈ [0, 2]. By using the incompatibility values of features as
weights for l1 norm regularization, we obtain the following sparse regularizer of
interest:

R(θ) =
d∑

ψ=1

Δ(ψ)|θF
ψ | (5)

which enforces stronger regularization on more incompatible features so as to
achieve the goal of selecting features that are more compatible across the current
and previous tasks.

Manifold Mixup Enhancement. We reserve a memory set to preserve some
knowledge about previous tasks, however, such memory set merely provides par-
tial information especially when the buffer size is small. In the selected repre-
sentation space via feature selection, we expect the domain discrepancy between
current and old tasks to be diminished. However, oscillations are inevitable when
predicting the examples from old tasks outside the memory set. Out of concern
for this issue, we recall a data augmentation technique – mixup [27], which is
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Algorithm 1. Training Protocol
Input: dataset Dt, memory set Mt−1, previous model θt−1, batch size b, number of
iterations num iter, learning rate τ
Output: model θ

1: Initialize θ ← θt−1

2: for iter = 1 : num iter do
3: BD ← random sample(D, b)
4: BM =

⋃t−1
i=1 BMi and BMi ← random sample(Mi

t−1,
b

t−1
)

5: Bmix = MixupG(BD, BM ) acc. to Eq. (6).
6: compute loss l acc. to Eq. (8)
7: update θ ← θ − τ∇θLθ

8: end for
9: return θ

to extend the training dataset with convex combinations of pairs of datapoints
and their corresponding labels and was shown to have a favourable effect on
generalization performance.

Different from vanilla mixup, we construct the mixup samples on a rep-
resentation level by linearly interpolating between current and memory data
representations, dubbed MixupG(Dt,Mt−1). Specifically,

(gmix, ymix) := MixupG((xD, yD), (xM , yM ))
gmix = λG(xD) + (1 − λ)G(xM )
ymix = λyD + (1 − λ)yM (6)

where (xD, yD) ∼ Dt, (xM , yM ) ∼ Mt−1, λ ∼ Beta(α0, α0) and G is the feature
extractor. We take α0 = 3 in the experiments. Notably, Eq. (6) can be viewed
as a simplified variant of manifold mixup [25], where the mixup is performed
in the hidden states at each layer of the network whereas ours is only in the
representation space right before the classifier.

The classification loss computed on such mixup samples is defined as follows,

LMM = E(xD,yD)∼Dt,(xM ,yM )∼Mt−1 l(F (gmix), ymix) (7)

where (gmix, ymix) is derived from Eq. (6) and F is the classifier of the proposed
model. By embracing mixup samples between the memory set and current task,
we expect smoother decision boundaries and benefits to classification perfor-
mance when the undesirable test oscillation occurs. By performing mixup in
the extracted feature space, we expect this mixup based classification loss can
work together with the feature selection regularization above to bridge domain
discrepancy and improve generalization performance.

Overall Learning Problem. By integrating the knowledge distillation based
classification loss in Eq. (2), the mixup based classification loss in Eq. (7), and the
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Table 1. The characteristics of datasets.

Datasets #Tasks #Classes/task #Training/task #Test/task

Split MNIST 5 2 12000 2000

Permuted MNIST 10 10 60000 10000

Split CIFAR-10 5 2 10000 2000

Split CIFAR-100 10 10 5000 1000

sparse regularization in Eq. (5) together, we obtain the following optimization
problem for the current task t:

min
θ

Lθ(Dt,Mt−1) = LCE + αLKD + βLMM + γR(θ) (8)

where α, β and γ are trade-off parameters. We solve it using a batch-wise gradient
descent algorithm, which is summarized in Algorithm 1. After training for task t,
the memory set Mt−1 can be updated to Mt through task-wise random sampling
before going to the next task.

4 Experiments

We conducted experiments on four benchmark continual learning datasets in the
domain incremental learning scenario. In this section, we report the experimental
setting and results.

4.1 Experimental Setting

Datasets. We used four benchmark continual learning datasets: Split MNIST,
Permuted MNIST, Split CIFAR-10, and Split CIFAR-100. Split MNIST [7] is
generated by splitting the source MNIST dataset into five binary-class subsets in
sequence (0/1, 2/3, 4/5, 6/7, 8/9). Permuted MNIST [7] is a variant of MNIST
dataset, by applying a certain random pixel-level permutations to the entire
MNIST dataset. We consider 10 tasks for this dataset. Split CIFAR-10 [16] is a
sequential split of CIFAR-10 with five binary classification tasks. Split CIFAR-
100 [16] has 10 ten-class classification tasks. The characteristics of all datasets
are summarized in Table 1.

Comparison Methods. We compared the proposed approach with nine com-
parison methods, two baselines and seven continual learning competitors: (1)
Joint is a baseline that jointly trains on the data of all tasks. It serves as the
upper bound for continual learning techniques. (2) Finetune is a baseline that
simply fine-tunes the model from previous tasks on the current task dataset.
(3) EWC is the regularization based continual learning method, Elastic Weight
Consolidation [8]. (4) SI is another regularization based method, Synaptic Intel-
ligence [26]. (5) LwF is a Learning without Forgetting method [9]. (6) GEM is
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Table 2. The average accuracy ± standard deviation (%) on test data of all tasks
across 5 runs with different random seeds. The result of joint training, i.e. the upper
bound, and the best accuracies of different buffer size are marked in bold. Note that
’5t/10t’ means after training 5/10 tasks.

Buffer Model MNIST CIFAR-10 CIFAR-100

S-MNIST P-MNIST S-CIFAR10 S-CIFAR100-5t S-CIFAR100-10t

Joint 98.59±0.15 97.90±0.09 90.67±0.22 51.30±0.42 43.80±0.83

Finetune 56.72±2.01 74.38±1.63 72.21±0.53 25.60±0.30 16.76±0.43

– EWC 57.04±1.46 86.60±1.62 72.12±1.23 25.41±0.48 16.79±0.25

SI 68.06±2.18 93.59±0.77 75.16±0.87 25.84±1.22 17.60±1.30

LwF 77.93±0.53 53.25±1.84 78.90±0.81 31.66±0.34 19.41±0.23

200 GEM 91.08±0.70 86.67±0.48 79.26±0.31 28.29±1.60 18.72±0.37

A-GEM 86.56±1.01 69.84±2.01 76.40±1.02 27.37±0.56 16.86±0.19

ER-Res 86.71±1.50 86.73±0.44 78.58±0.84 28.69±0.62 18.78±0.36

FROMP 71.75±1.31 76.71±0.75 75.20±1.12 24.42±1.09 12.35±2.37

Ours 94.37±0.35 93.11±0.43 84.62±0.28 34.34±0.59 21.15±0.41

500 GEM 94.67±0.32 92.89±0.86 81.83±0.61 32.04±0.77 20.88±0.31

A-GEM 89.53±1.12 83.06±1.78 77.38±1.70 28.33±0.38 17.20±0.27

ER-Res 90.91±0.98 91.30±0.41 81.79±0.48 31.9±0.58 20.24±0.34

FROMP 78.71±0.45 90.81±0.47 74.84±2.29 23.17±2.86 15.13±2.58

Ours 96.41±0.19 94.72±0.19 85.69±0.25 37.70±0.40 23.08±0.53

1000 GEM 95.72±0.81 94.36±0.25 84.66±0.44 35.46±0.82 23.05±0.16

A-GEM 95.31±1.48 88.34±0.41 79.12±0.47 28.21±0.39 17.37±0.27

ER-Res 95.09±0.22 93.00±0.11 83.77±0.37 34.06±0.54 22.23±0.23

FROMP 88.34±1.11 93.09±0.09 74.75±2.85 24.04±3.36 16.62±2.88

Ours 97.35±0.25 95.60±0.18 86.72±0.30 40.20±0.52 25.62±0.22

the Gradient Episodic Memory method [10]. (7) A-GEM is a lightweight vari-
ant of GEM, Averaged GEM (A-GEM) [3]. (8) ER-Reservoir is an Experience
Replay method based on reservoir sampling [4]. (9) FROMP is the Functional
Regularization of Memorable Past method from [13] .

Architecture and Hyperparameter Selection. As for model architectures,
we employ a single-head multi-layer perceptron with two hidden layers follow-
ing [7,23,24] for the MNIST datasets, and a CNN with 4 convolutional layers
and 2 dense layers with dropouts following [13,26] for CIFAR-10/100 datasets.
For fair comparison, all approaches share the same model architectures. The
hyperparameters are selected by a coarse grid search for all approaches and the
best results are reported. For the proposed approach, we recommend α = 2 and
β = 0.1 for three Split datasets. For Permuted MNIST, we have α = 1 and
β = 0.001. For all datasets, γ ∈ [10−4, 10−1]. Generally, the greater buffer size
results in smaller γ.
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Fig. 1. Split MNIST dataset with buffer size of 200. Left: The test accuracy of each
task after learning all tasks. Right: The evolution of average test accuracy of all seen
tasks as more tasks are learned. All results are obtained via 5 runs with different
random seeds.
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Fig. 2. Split CIFAR-10 dataset with buffer size of 200. Left: The test accuracy of
each task after learning all tasks. Right: The evolution of average test accuracy of all
seen tasks as more tasks are learned. All results are obtained via 5 runs with different
random seeds.

4.2 Experimental Results

We experimented with three different buffer sizes, {200, 500, 1000}, for all bench-
mark datasets. Each experiment for each approach is repeated 5 runs with differ-
ent random seeds. The random seeds work for the network initialization, train-
ing data shuffle and memories selection. The order of sequential tasks in Split
MNIST and Split CIFAR-10/100 datasets remain unchanged throughout the
experiments. For Permuted MNIST, once the random permutations for each
task are generated, the task order is fixed across all runs. The results in terms
of the average accuracies evaluated on test data of all tasks for the proposed
approach and comparison methods are reported in Table 2. It is worth noting
that our proposed approach achieves the best results compared to memory-
based competitors across all dataset benchmarks over different buffer sizes and
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Table 3. The average BWT ± standard deviation (%) across 5 runs with different
random seeds. The best BWT of different buffer size are marked in bold. Note that the
larger BWT means the better performance.

Buffer Model S-MNIST S-CIFAR-10

– EWC −53.24 ± 1.81 −27.67 ± 1.53

LwF −5.26 ± 1.73 −16.73 ± 1.20

200 GEM −9.49 ± 1.01 −18.71 ± 0.34

ER-Res −16.15 ± 1.86 −19.42 ± 1.12

FROMP −34.72 ± 1.06 −22.63 ± 1.01

Ours −2.29 ± 0.61 −8.08 ± 0.29

500 GEM −4.55 ± 0.43 −16.34 ± 0.71

ER-Res −10.86 ± 1.25 −15.25 ± 0.37

FROMP −24.68 ± 1.33 −22.65 ± 2.02

Ours −1.41 ± 0.39 −5.76 ± 0.37

significantly outperforms these competitors when the buffer size is small, like
200. The proposed approach also outperforms the regularization-based methods
in most cases except on the Permuted MNIST with buffer size 200, where the
accuracy of the proposed approach is approximately 0.48% lower than SI. In
the split datasets of either MNIST or CIFAR-10/100, EWC and SI perform
poorly. This usually happens to most of parameter-regularization models in the
domain incremental learning scenario. A memory set contrarily is favourable
in this scenario. However, some memory-based models still produce poor per-
formance when the buffer size is small, such as FROMP in most datasets and
A-GEM in the permuted MNIST dataset with buffer size of 200. By contrast,
our proposed approach demonstrate good performance across all datasets and
scenarios.

Figure 1 and Fig. 2 show the test accuracy results of the multiple tasks after
and during continue learning on Split MNIST and Split CIFAR-10, respectively,
when the buffer size is 200. Specifically, the figures on the left side of Fig. 1 and
Fig. 2 report the test accuracy of each learned task after finishing the training
on all tasks, while the figures on the right side report the evolution of average
test accuracy of all seen tasks as new task arrives. It is clear to observe that
after learning all tasks, the proposed approach still keep a competent memory
of previously learned tasks compared to other competitors, where EWC and
FROMP almost thoroughly forget task 1 and 3 of Split MNIST and also perform
pretty poorly on task 3 of Split CIFAR-10. In the figures of evolution of average
accuracy, the proposed approach maintain the best performance from task 3 of
both datasets, which demonstrates the outstanding ability of our approach to
overcome the catastrophic forgetting even with a small memory set.
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Table 4. The effectiveness of knowledge distillation (KD), feature selection (FS) and
manifold mixup (MM) on Split MNIST and Split CIFAR-10 datasets. CE represents
the cross-entropy loss (Eq. 1) over current and memory datasets. The average accuracy
± standard deviation (%) across 5 runs are reported.

S-MNIST Buffer Size

CE KD FS MM 200 500

� 88.71 ± 1.73 92.73 ± 0.51

� � 93.03 ± 0.41 95.70 ± 0.33

� � � 94.10 ± 0.35 96.27 ± 0.23

� � � � 94.37 ± 0.35 96.41 ± 0.19

S-CIFAR-10 Buffer Size

CE KD FS MM 200 500

� 76.05 ± 0.55 79.08 ± 0.53

� � 83.06 ± 0.59 84.91 ± 0.29

� � � 84.43 ± 0.28 85.44 ± 0.32

� � � � 84.62 ± 0.28 85.69 ± 0.25

Backward Transfer (BWT). In addition to test accuracy, another metric,
called Backward Transfer (BWT) [10], has been used to measure the influence
on previous tasks after learning the new task, which is defined as follows,

BWT =
1

T − 1

T−1∑

i=1

RT,i − Ri,i

where Ri,j is the classification accuracy of the model on test data of task j after
learning the training data from task i. The positive backward transfer means
the improvement of performance on some previous tasks after learning new ones,
whereas the negative backward transfer is known as forgetting. The larger BWT
value indicates the better ability of the model to overcome forgetting. When
two models have similar test accuracies, the one with larger BWT value would
be preferable. Here we report our BWT results on the Split MNIST and Split
CIFAR-10 datasets in Table 3. We can see that the proposed approach achieves
much larger BWT values compared to other models on both datasets, which
again validated its efficacy.

Discussion. Following the literature work that uses memory set, we assume
m ≥ T in this paper. What if the memory set is out of capacity with the increase
of the number of tasks? This m < T issue can be addressed by elaborately
selecting memory examples or exploiting mixup to generate examples that are
able to best stand for all past tasks.
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Fig. 3. Sensitivity to α, β and γ on Split MNIST dataset with the buffer size of 200.

4.3 Ablation Study

We further conducted an ablation study to verify the impact of each component
in our proposed approach on the Split MNIST and Split CIFAR-10 datasets with
the buffer size of 200 and 500. The results are presented in Table 4.

As demonstrated in [4], experience replay is a very simple and strong baseline,
which here is treated as base model represented by ’CE’ - the cross-entropy loss
on current and memory datasets (Eq. (1)). We empirically observed that the
experience replay with knowledge distillation (KD) is a much stronger method,
which is also simple and effective and can beat the majority of elaborate CL
techniques. Similar phenomenon was as well explored in [14]. As shown in Table 4,
by adding the term of knowledge distillation, the performance obtains remarkable
improvement. On the basis of knowledge distillation, we further implement the
feature selection (FS) in the representation space by equipping model with a
weighted l1 regularization, so that only shared features across current and old
tasks are utilized. Table 4 shows that by adding the feature regularization, the
results get further improved. Finally, the simplified manifold mixup (MM) of
current and memory data in the selected feature space is employed to further
improve the generalization performance which is also verified by the slight but
consistent improvement demonstrated in Table 4.

Hyperparameter Sensitivity Analysis. We also conducted experiments on
the Split MNIST dataset to evaluate the sensitivity of the proposed model to
hyperparameters α, β and γ. When evaluating one hyperparameter, the values of
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the other hyperparameters are fixed. The results with buffer size of 200 are pre-
sented in Fig. 3. The parameter α represents the weight of knowledge distillation
loss. The larger value of α means the greater degree of preserving previous knowl-
edge. We investigated different α values from the set of {0.01, 0.1, 1, 2, 3}. We can
see that with the increase of α value from 0.01, the performance increases due to
the increasing contribution of knowledge distillation. However, when α = 3 the
performance degrades while α = 2 yields the best result. This makes sense since
that if the model focuses too much on precious tasks, it will lose the ability to
adapt to a new task. Hence the value of α cannot be too large. The parameter β
represents the weight of the classification loss from the mixup data. From Fig. 3,
we can observe that a reasonable value range for β is [0.0001, 0.1] and the best
result is produced when β = 0.1. The parameter γ is the weight of the feature
selection regularization term. With buffer size as 200, the best result is achieved
at γ = 0.1 in Fig. 3. In general, a larger buffer size can result in a smaller suit-
able value of γ. This is due to the fact that with more previous samples from
the memory set involved in the training loss, they will contribute more to the
feature representation learning to naturally reduce the domain discrepancy.

5 Conclusions

In this paper, we proposed a simple but effective continual learning approach
with representational and functional regularizations for the domain incremental
learning scenario. To avoid catastrophic forgetting, we enforced the model pre-
dictions on both current and memory data to approach the previous ones by
means of knowledge distillation. Additionally, to alleviate the domain discrep-
ancy in the feature representation space between the old task domain and the
current task domain, we further resorted to feature selection so as to minimize the
domain gap in the selected representation space. Finally, mixup between current
and memory data representations are incorporated to improve the generaliza-
tion performance. We demonstrated the effectiveness of the proposed approach
through extensive experiments on four benchmark continual learning datasets.

Acknowledgments. This research was supported in part by the NSERC Discovery
Grant, the Canada Research Chairs Program, and the Canada CIFAR AI Chairs Pro-
gram.
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Abstract. Collaborative inference enables resource-constrained edge
devices to make inferences by uploading inputs (e.g., images) to a server
(i.e., cloud) where the heavy deep learning models run. While this setup
works cost-effectively for successful inferences, it severely underperforms
when the model faces input samples on which the model was not trained
(known as Out-of-Distribution (OOD) samples). If the edge devices
could, at least, detect that an input sample is an OOD, that could poten-
tially save communication and computation resources by not uploading
those inputs to the server for inference workload. In this paper, we pro-
pose a novel lightweight OOD detection approach that mines important
features from the shallow layers of a pretrained CNN model and detects
an input sample as ID (In-Distribution) or OOD based on a distance
function defined on the reduced feature space. Our technique (a) works
on pretrained models without any retraining of those models, and (b)
does not expose itself to any OOD dataset (all detection parameters are
obtained from the ID training dataset). To this end, we develop EAR-
LIN (EARLy OOD detection for Collaborative INference) that takes a
pretrained model and partitions the model at the OOD detection layer
and deploys the considerably small OOD part on an edge device and
the rest on the cloud. By experimenting using real datasets and a proto-
type implementation, we show that our technique achieves better results
than other approaches in terms of overall accuracy and cost when tested
against popular OOD datasets on top of popular deep learning models
pretrained on benchmark datasets.

Keywords: Out-of-distribution detection · Collaborative inference ·
Novelty detection · Neural network

1 Introduction

With the emergence of Artificial Intelligence (AI), applications and services using
deep learning models, especially Convolutional Neural Networks (CNN), for per-
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forming intelligent tasks, such as image classification, have become prevalent.
However, several issues have been observed in deployment of the deep learning
models for real-life application. First, since the models tend to be very large
in size (100’s of MB in many cases), they require higher computation, memory,
and storage to run, which makes it difficult to deploy them on end-user/edge
devices. Second, these models usually predict with high confidence, even for
those input samples that are supposed to be unknown to the models (called
out-of-distribution (OOD) samples) [18,20]. Since both in-distribution (ID) and
OOD input samples are likely to appear in real-life settings, OOD detection has
emerged as a challenging research problem.

The first issue, the deployment of deep learning models in end/edge devices,
has been studied well in the literature [9]. One solution is to run collabora-
tive inference, in which the end devices do not run the heavy model on-board,
instead offload the inference task by uploading the input to a nearby server (or to
the cloud in appropriate cases) and obtain the inference/prediction results from
there. Other recent works propose doing edge-cloud collaboration [5], model
compression [19] or model splitting [8] for faster inference. The second issue,
the OOD detection, has received much attention in the deep learning research
community [3,4,6,14,22]. We note several gaps in these research works, partic-
ularly their suitability of deployment in collaborative inference setup. Firstly, in
most of these works, the input data were detected as an OOD sample using the
outputs from the last [7,10,14,17] or penultimate [12] layer of the deep learn-
ing classifiers. We argue that detecting an input sample as OOD after these
many computations are done by the model is inefficient. Secondly, most of the
OOD detection approaches rely on full retraining the original classifier model to
enable the OOD detection [10,11,17], which is computationally very expensive.
Thirdly, in most of these works [12,14,17], several model hyperparameters for the
detection task need to be tuned based on a validation dataset of OOD samples.
The fitted model is then tested, thereby inducing bias towards those datasets.
Finally, some OOD detector requires computationally expensive pre-processing
of the input samples [12,14].

In this paper, we tackle the above two discussed issues jointly. We propose a
novel OOD detection approach, particularly for Convolutional Neural Networks
(CNN) models, that detects an input sample as OOD early into the network
pipeline, using the portion of the feature space obtained from the shallow layers
of the pretrained model. It is documented that early layers in CNN models usu-
ally pick up some salient features representing the overall input space whereas the
deeper layers progressively capture more discriminant features toward classifying
the input samples to the respective classes [16]. This, therefore, suggests that these
salient feature maps extracted from a designated early layer will be different for ID
and OOD samples. This is the principle observation based on which we attempt
to build our OOD detector model. However, the space spanned by the obtained
feature maps is in most of the cases too big to make any significant partitioning
between ID and OOD samples. Hence we compress the high dimensional feature
space by mining themost significant information out of the space. We apply a series
of “feature selection” operations on the extracted feature maps, namely indexed-
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pooling and max-pooling, to reduce the large feature space to a manageable size.
After the reduction, we construct a distance function defined on the reduced fea-
ture space so that the distance measure can differentiate ID and OOD samples.
For deployment in edge-cloud collaboration setup, we partition the model around
the selected layer to obtain a super-small OOD detection model and readily deploy
the lightweight model on an edge device. With that, the edge device can detect an
incoming input sample as OOD and if detected, does not upload the sample to the
server/cloud (thus saves communication and computation resources).

To this end, we develop EARLIN (EARLy OOD Detection for Collabora-
tive INference) based on the our proposed OOD detection technique. We eval-
uate EARLIN on a set of popular CNN models for image classification, namely
Densenet, ResNet34, ResNet44, and VGG16 models pretrained on benchmark
image datasets CIFAR-10 and CIFAR-100 [13]. We also compare our OOD detec-
tion algorithm with state-of-the-art other OOD detection techniques discussed
in the literature. Furthermore, we design and develop an OOD-aware collabora-
tive inference system and show that this setup results in faster and more precise
inference in edge devices. To the best of our knowledge, ours is the first work
to propose such OOD-aware collaborative inference framework. Furthermore, we
define a novel performance metric, the joint accuracy of a model combined with
its detector, to quantify the performance of the model and detector combination,
and formally characterize EARLIN’s performance and cost using that metric.

We summarize our contributions as follows:

– We propose a novel OOD detection approach called EARLIN that enables
detection of OOD samples early in the computation pipeline, with minimal
computation.

– Our technique does not require retraining the neural network classifier and
thus can be implemented as an external module on top of available pretrained
classifiers.

– We do not exploit samples from unknown set of OOD data for tuning hyper-
paramters, thereby reducing bias towards any subset of the unknown set of
OOD samples.

– We propose a novel OOD-aware edge-cloud collaborative setup based on our
proposed detector for precise and resource-efficient inference at edge devices,
along with characterizations of its performance and cost.

2 Related Work

Deep Learning based methods have been designed to achieved huge success in
recent years in recognition tasks but they have their limitations. The problem of
reporting high confidence for all input samples, even those outside the domain
of training data is inherent in the general construct of the popular deep learning
models. In order to deploy the deep learning models in real-life applications, this
issue should be mitigated. Hence in the recent years, a large number of research
works have been conducted towards this direction. In [6], confidence of the deep
learning classifiers in the form of output softmax probability for the predicted class
was used to differentiate between ID and OOD samples. Later, in [12,14], OOD
detection approaches were proposed that worked without making any change



638 S. T. Nimi et al.

Table 1. Comparison of approaches.

Baseline [6] ODIN [14] Mahalanobis [12] MALCOM [23] DeConf [7] EARLIN

Without Retraining? � � � � × �
Before Last layer? × × × � × �
Use One Layer Output? � � × × � �
Without OOD Exposed? � × × � � �
Without Input Preprocessing? � × × � × �

to the original trained deep learning models. We note several limitations in the
works. Firstly, samples are detected as OOD at the very last layer of the classifier,
thereby wasting computational resources on unnecessary computations done on
input samples, that is eventually going to be identified unsuitable for classifica-
tion. Secondly, the hyperparameters were tuned while being exposed to subset of
OOD samples that the approach was tested on, inducing bias towards those sam-
ples. Also, due to this exposure, it can not be guaranteed that the approach will be
as successful on any completely different set of OOD data. Thirdly, this approach
required computationally heavy preprocessing of the input samples for the app-
roach to work. The preprocessing involved two forward and one backward passes
over the classifier model, rendering the approach completely unsuitable for real-
time deployment. In the recent literature [7,10,17] also, OODs were not detected
on the top of readily available deep learning models that were pretrained with tra-
ditional cross entropy loss, instead retraining was required. A better approach was
proposed in [23], that did not require retraining the classifier. Although this app-
roach achieved good performance on OOD detection, we note that best reported
results were obtained when feature maps from the deeper layers were used.

3 Proposed OOD Detection Approach: EARLIN

Fig. 1. Framework of the training and inference using EARLIN.
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We propose an OOD detection approach, called EARLIN (EARLy OOD detec-
tion for Collaborative INference), that enables OOD detection from the shallow
layers of a neural network classifier, without requiring to retrain the classifier
and without exposure to any OOD sample during training. EARLIN infers a test
input sample to be ID or OOD as follows. It first feeds the input to the classifica-
tion CNN model and computes up to a designated shallow layer of the model and
extracts feature maps from that layer. The output of the intermediate layer is a
stack of 2D feature maps, out of which a small subset of them are selected. The
selected maps are ones that supposedly contain the most information entailed
by all of those maps. This process is called indexed-pooling the parameters of
which (i.e., the positions of 2D maps to be selected) are determined from the
training ID dataset during the training phase of the process. We then do max-
pooling for downsampling the feature space even further. With that, we obtain
a vector representation of the original input in some high dimensional feature
space. During training, we do this for a large number of samples drawn from the
training ID dataset, aggregate them in a single cluster, and find the centroid of
the ID space. Consequently, we define a distance function from the ID samples
to the centroid such that at a certain level of confidence, it can be asserted that
the sample is ID if the distance is less than a threshold. Since the threshold is
a measure of distance, its value is expected to be low for ID samples. During
inference, we use this obtained value of threshold to differentiate between ID and
OOD samples. The framework of our proposed ID detection approach is shown
in Fig. 1.

Feature Selection and Downsampling: Indexed-Pooling and Max-
Pooling: We at first select a subset of 2D feature maps from a designated
shallow intermediate layer of pretrained neural network classifier based on a
quantification of the amount of information each 2D feature map contains. We
denote the chosen layer by �. From this layer, we choose the most informative
N feature maps. We know from studies done previously that feature maps at
shallow layers of the classifier capture useful properties out of input images [16],
but the space spanned by the feature maps is too big to capture properties inher-
ent to the ID images out of this space. Hence we reduce the feature space by
selecting a subset of the features. Visual observation reveals that some of the
maps, the ones for which we obtain almost monochromatic plots, do not carry
significant observation about the input image. Whereas, there are some maps
that capture useful salient features from the image. We consider variance of a
2D feature map as the quantification of the amount of information contained in
the map.

Suppose at layer �, feature map, f ∈ R
C�×H�×W� is obtained. So we have a

total of C� 2D maps (also known as channels), each of which with a dimension of
H� ×W�. Our goal is to select N most informative 2D feature maps out of these
C� maps. For finding the most informative feature maps using this assumption,
we choose a subset of ID training data, Din. Using each data sample from Din,
we calculate feature map f , with shape C� × H� × W� from layer � and finally
obtain collection of feature maps, F , with shape |Din| × C� × H� × W� for Din.
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We define information contained in each feature map j, denoted as ψ(j), as
the summation of variance (aggregate variance) of 2D maps obtained from all
input sample in the training ID dataset (Din). This collectively measures how
important map j in layer � is with respect to the entire ID population. Formally,
we compute:

ψj =
∑

x∈Din

V ar(mM
� (x)[j]) (1)

where mM
� denotes layer � of model M with a tensor of size C� × H� × W� and

mM
� [j] denote j-th 2D map in that layer having the size of size H� × W�. Once

the ψ values are obtained from all C� maps, we find the order statistic of ψ values
(sort the values in the descending order) as such:

ψ(1) ≥ ψ(2) ≥ · · · ≥ ψ(N ) ≥ · · · ≥ ψ(C�)

We then find the indices of top N channels that have the largest aggregate
variance across the ID training dataset and populate a binary index vector γ to
denote whether a certain map from that layer � is selected or not. More precisely,

γj =

{
1, if ψj ≤ ψ(N )

0, otherwise.

Obviously,
∑C�

j=1 γj = N . Given this binary index-vector, γ, and the layer
output of mM

� (x) for an input sample x, the indexed-pooling operation takes
out only those feature maps (channels) as specified by the index-vector thus
effectively reduces the feature space dimension from C�×H�×W� to N ×H�×W�.
Consequently, we define the indexed-pooling operator as Γ1 : R

C�×H�×W� →
R

N×H�×W� as follows:

Γ1(x) = ‖C�
j=1m

M
� (x)[j] if γj = 1 (2)

where ‖ indicates concatenation.
We note that the feature space spanned by the chosen N feature maps from

layer � is still too large to capture useful information. Hence, we downsample the
space by (k, k) max-pooling. Max-pooling is an operation that is traditionally
done within the deep leaning model architectures for downsampling the feature
space, so that only the most relevant information out of a bunch of neighboring
values is retained. We follow the same practice for downsampling our feature
space. The max-pooling operator is denoted as Γ2 : RN×H�×W� → R

N× H�
k ×W�

k .
We usually use k = 4.

Let φ(x) be the vector representation for an input, x obtained from layer �,
constructed by applying two pooling operators on the extracted features maps,
indexed-pooling and max-pooling. Using the above two pooling operators Γ1 and
Γ2, therefore, the construction of φ(x), for an input x, can be written as:

φ(x; �, γ) = (Γ2 ◦ Γ1)(x) (3)
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Fig. 2. Effect of the proposed Feature Pooling strategy on differentiating between ID
and OOD (LSUN) in feature space of ResNet model, visualized in 2D using PCA. (a)
Original feature space and (b) Pooled feature space obtained for ID dataset CIFAR-
10, (c) Original feature space and (d) Pooled feature space obtained for ID dataset
CIFAR-100. The black dots represent the center of the feature space.

where ◦ means (f ◦ g)(x) = f(g(x)) [composite function]. We show in Fig. 2,
the segregation between ID and OOD samples obtained in feature space after
executing the above feature selection operations.

Feature Aggregation: We compute φ(x) for input all inputs x ∈ Din to
represent the entire ID space as φ(Din). We then find a set of aggregated infor-
mation for the entire ID space. For that, we at first find the aggregated cluster
centroid, denoted by c, of the feature space. The centroid is defined as follows:

c = MEAN(φ(x)) for x ∈ Din (4)

where MEAN computes the element-wise mean of the the collection of vectors
obtained from Din. The centroid, c, ultimately designates a center position of the
ID space around which all ID samples position themselves in a close proximity.
In that, the distance between the center and φ(x) for any ID sample x should
follow a low-variance distribution. This distance is denoted as κ(x), which is
defined as the Euclidean distance between φ(x) and c:

κ(x) = ‖φ(x) − c‖ (5)

We hypothesize that since the centroid is a pre-determined value calculated
using features of ID samples, distance, κ(x), will take smaller value for any an ID
sample than the distance obtained for an OOD sample. We observe from Fig. 2
that feature space φ(x), when visualized in 2D, validates our hypothesis. That
requires us to find a suitable a threshold value on this distance value based on
which ID and OOD sample can be separated out. This is what we do next.

We empirically find a threshold value, Θ, that detects ID samples with some
confidence p, such that p fraction of the ID training samples have κ(x) ≤ Θ.
That is:

p =

∑
x∈Din

[κ(x) ≤ Θ]
|Din| (6)

We usually set p = 0.95. This is actually the expected TPR (True Positive
Rate) of the OOD detector that we expect (the detector’s capability to detect
a true ID sample as ID). We note that, tuning the value of this hyperparameter
Θ does not require exposure to any a priori known OOD samples.
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OOD Detection During Inference: During inference, for an incoming input
sample x, we first pass the input into the model up to layer � and extract the
intermediate output from that layer. We then choose N best maps from that
intermediate output (specified by the binary index-vector γ). Then we do max-
pooling on that space to find φ(x). After that we find the distance of φ(x) from
the centroid, c, as κ(x) and compare this value with the predefined threshold Θ
for detecting if the sample is ID or OOD. Let D(x) denote the detector output
for input x, which can be obtained as:

D(x) =

{
1, if κ(x) ≤ Θ,

0, otherwise.
(7)

So the inference is very fast and since our chosen layer � is very shallow
(unlike [6,12,14] that detect OOD samples at the last layer), we can reject the
extraneous OOD samples, way before lots of unnecessary computations are done
on the sample, which would lead nowhere. Hence our ID detection approach
gives higher throughput during batch inference. Besides we do not retrain the
classifier model unlike [7]. Also, we detect using features collected from a single
layer only unlike [12,23], without preprocessing input samples unlike [7,12,14]
and without using OOD samples for validation unlike [12,14]. The comparison
of EARLIN with other approaches is summarized in Table 1.

4 Collaborative Inference Based on EARLIN

Based on our proposed

Fig. 3. Collaborative Inference Scheme.

OOD detection tech-
nique, we develop a
setup for collaborative
inference as a collabo-
ration between an edge
device and a server
(this server can be in
the cloud or can be a
nearby edge resources,
such as Cloudlet [21],
Mobile Edge Cloud
(MEC) [15], we gener-
ically refer to it as
“server”). Deep learn-
ing models usually have
large memory and stor-
age requirements, and hence are difficult to deploy in the constrained environ-
ment of the edge devices. Thus, edge devices make remote call to the server
devices for inference. If the incoming image is Out-of-Distribution, making such
call is useless since the model would not be able to classify the image. Hence,
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we both save resources and make more precise recognition by not allowing to
call when input image is OOD. Since our detection model, consisting of the first
few layers of the network architecture, is very lightweight, we deploy the detec-
tion pipeline in the edge device. Then, if the image is detected as ID, we send
the image to the server for classification. Otherwise, we report that the image
is OOD and hence not classifiable by the model. We thus save resource by not
sending the OOD images to the server. The schematic diagram of the framework
appears in Fig. 3. We note that we send the original image, instead of the inter-
mediate layer output to the server, when the sample is detected as ID. This is
because intermediate layer outputs from deep learning models at the shallower
layers are often significantly higher in dimension than the original images. With
that, we save considerable upload bandwidth. As the servers are usually high-
end machines, repeating the same computation up to layer � adds very nominal
overhead compared to the volume of data to be uploaded. Moreover, � is a very
shallow layer (below 10% from the input layer) as reported in Table 2. We also
note that all model parameters are estimated/trained in the cloud using base
model and the training datasets, and the resultant detector model is deployed
on the edge device.

Overall Accuracy of OOD Detector and Deep Learning Classifier: Tra-
ditionally the performance of deep learning classification models are reported in
terms of accuracy to establish how well they perform. Accuracy is defined as the
ratio or percentage of samples classified correctly by the model, given that every
sample comes from In-Distribution (ID). Let us denote x ∈ ID to indicate if an
input x truly belongs to ID and x ∈ OOD to denote if x truly belongs to OOD
(ideally, x ∈ OOD is logically equivalent to x /∈ ID). In terms of probability
expression, the Accuracy (written as acc in short) of a model, M, can be written
as:

accM =Δ P(M(x) = y(x) | x ∈ ID)

where M(x) represents the classification output of model M and y(x) represents
the true class label of input x, P(E) denotes probability of event E. On the
other hand, the performance of an OOD detector can be expressed in term of
two metrics: True Positive Rate (TPR) and True Negative rate (TNR). TPR is
the ratio of ID samples correctly classified as ID by the detector where TNR is
the ratio of the true OOD samples detected as OODs. Let D denote a detector
and D(x) denote a binary output of the detector to indicate that whether input
x is detected as ID or OOD (D(x) = 1 if detected as ID else 0). Consequently,
the TPR and TNR values of a detector, D, can be expressed as:

TPRD =Δ P(D(x) = 1 | x ∈ ID) (8)

TNRD =Δ P(D(x) = 0 | x ∈ OOD) (9)

While the capability of the classification model (M) and the OOD detector
model (D) can be expressed individually in terms of their respective performance
metrics (that is, model classification accuracy, TPR and TNR), it is interesting to
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(a) (b)

Fig. 4. (a) Histogram of κ(x) that differentiates between ID and OOD samples (drawn
from benchmark datasets) for Densenet pretrained on CIFAR-10. (b) CDF of κ(x)
that differentiates between ID and OOD samples with CIFAR-10 (C10) and CIFAR-
100 (C100) as ID and the TinyImageNet (TIN), LSUN and iSUN dataset as OOD.

note how these three terms play a role in measuring the accuracy of the model
and the detector combined. We refer to this as the joint accuracy or overall
accuracy. We define the Overall Accuracy as the success rate of assigning
correct class labels to test inputs. That is, for an ID sample, this corresponds to
assigning correct the class label to the input whereas, for an OOD sample, this
corresponds to detecting it as an OOD (OOD samples do not have any correct
class label other than being flagged as OOD). Let us use M ⊕ D to denote the
classification model and detector combined and we are interested to determine
the accuracy of M ⊕ D as a function of its constituents. We observe that in
addition to the above three metrics, the overall accuracy of the model and OOD
detector combined is dependent on what fraction of inputs are actually OOD as
opposed to ID as inputs are passed to the model. Let this ratio be denoted as ρ.
Formally,

ρ = P(x ∈ OOD) and 1 − ρ = P(x ∈ ID)

More specifically, given the accuracy of model M and the TPR and TNR
values of the associated OOD detector, D, the overall accuracy of M⊕D is given
by:

accM⊕D = accM × TPRD × (1 − ρ) + TNRD × ρ (10)

The proof of the above equation is based on the fact that a correct output
occurs when either of the two mutually exclusive events happen with respect
to an input sample: (a) the input sample truly belongs to ID, and the detector
also detects it as ID and the model correctly classifies it, (b) the input sample
belongs to OOD and the detector detects this as OOD (detail appears in the
supplementary document).
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Performance and Cost Characteristics of the Collaborative Setup:
As per Eq. (10), the overall accuracy depends on four quantities: accuracy of
the original model, TPR and TNR of the detector, and ρ (fraction of samples
being OOD in the inference workload). Without any detector in place (when
TPR becomes 1 and TNR is 0), the overall accuracy of the model accM⊕D =
accM × (1−ρ), sharply declines with ρ. With the detector combined, the overall
accuracy of the model, in fact, improves at a rate of TNR − accM × TPR with
respect to ρ (actually, the accuracy grows only when the slope is positive, that
is, TNR > accM × TPR). In Sect. 6, we demonstrate this.

In EARLIN, as shown in Fig. 3, we send inputs to the server only when
they are detected as ID by the lightweight OOD detector deployed at the edge.
Let TE be the time required for OOD detection at the edge, TC be the round-
trip communication delay between the edge and the server, and TS be the time
required for classifying the image at the server when sent. In that, when we
encounter a sample that is detected as OOD (when D(x) = 0), the time required
is only TE (no communication to the server nor processing at the server). On
the other hand, when an incoming sample is detected as ID (when D(x) = 1),
the inference latency becomes TE + TC + TS . So, the time required for inference
is closely associated with the ratio of OOD samples, ρ and the precision with
which the detector detects input samples as ID vs OOD. We can characterize the
cost, in terms of latency, involved with each inference using M ⊕ D as follows:

TM⊕D = TE + (TC + TS) (TPRD(1 − ρ) + (1 − TNRD)ρ) (11)

Similar to our performance indicator, Overall Accuracy, the cost characteris-
tics of the setup, TM⊕D, can also be approximated as a linear function of ρ (OOD
ratio). In general, the end-to-end inference latency declines as ρ grows as OOD
samples are intercepted by the OOD detector at edge thus reducing inference
latency and saving communication resources. In particular, the inference latency
declines at a rate of (TC + TS) × (FPRD − TPRD), where FPR = 1 − TNR
with respect to ρ. More detailed performance characterization can be found in
the supplementary section.

5 Experimental Evaluation of EARLIN

In this section, we show how our proposed OOD detector, EARLIN, performs on
standard pretrained models and benchmark datasets compared to the previously
proposed approaches for OOD detection.

Evaluation Metrics of OOD Detection: TNR and FPR at 95% TPR: This
is the rate of detecting an OOD sample as OOD. Hence, TNR = TN/(FP+TN),
where FP is the number of OOD samples detected as ID and TN is the number of
OOD samples detected as OOD. We report TNR values obtained when TPR =
TP/(FN + TP ), TP being the number of ID samples detected as ID, is as high
as 95%. And FPR is defined as (1-TNR).
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Table 2. Chosen Layer and Size of correspond-
ing OOD detection models in pretrained Models

Model # of Layers Chosen

Layer

Size of

Detector

Model n

KB)

Training

Dataset

ResNet 34 BN (5th) 112 CIFAR-10

ResNet 34 BN (2nd) 55 CIFAR-100

DenseNet 100 BN (10th) 256 CIFAR-10

DenseNet 100 BN (10th) 256 CIFAR-100

Detection Accuracy and Detection
Error: This depicts the overall
accuracy of detection and is calcu-
lated using formula 0.5× (TPR+
TNR), assuming that both ID
and OOD samples are equally
likely to be encountered by the
classifier during inference. And
Detection Error is (1-Detection
Accuracy).

AUROC: This evaluates area under the ROC curve.

Results: We conduct experiments on Densenet with 100 layers (growth rate =
12) and ResNet with 34 layers pretrained on CIFAR-10 and CIFAR-100 datasets.
Each of the ID datasets contains 50, 000 training images and 10, 000 test images.
Summary of the pretrained models used in terms of their total number of layers,
chosen layer � for OOD detection, size of detector model D, ID dataset on which
the model was trained and the classification accuracy of the corresponding model
are shown in Table 2.

In Table 3, we show the TNR (at 95% TPR) and Detection Accuracy of our
approach. We compare our results with those obtained using previously pro-
posed approaches, Baseline [6], ODIN [14] Mahalanobis Detector [12] and MAL-
COM [23] on benchmark datasets [1] TinyImagenet, LSUN and iSUN, popularly
used for testing OOD detection techniques. It is to be noted that, we did not
implement the earlier approaches (except Baseline), rather compare with the
results reported in [23] by using the same experimental setup. We see from the
results in Table 3 that EARLIN performs better than the previous approaches in
most of the cases. We report another set of results in Table 4, where we compare
performance of EARLIN against DeConf [7] on DenseNet model pretrained on
CIFAR-10 and CIFAR-100 datasets, in terms of metrics TNR at 95% TPR and
AUROC. We note that we did not obtain results in the experimental setting on
ResNet34 pretrained models in [7]. We see from the results in Table 4 also that
EARLIN performs better than the previous approaches in most of the cases. We
report yet another set of experimental results on VGG16 and ResNet44 models
pretrained on CIFAR-10 and CIFAR-100 in the supplementary file.



EARLIN 647

Table 3. OOD detection performance on different datasets and pretrained models.
Here MLCM stands for MALCOM [23], BASE for Baseline [6], ODIN for ODIN [14]
and MAHA for Mahalanobis [12]. bold indicates best result.

ID Dataset Model OOD TNR at 95% TPR Detection Accuracy AUROC
MLCM BASE ODIN MAHA EARLIN MLCM BASE ODIN MAHA EARLIN BASE ODIN MAHA MLCM EARLIN

CIFAR-10 Densenet TinyImagenet 95.50 81.20 87.59 93.61 97.50 95.33 88.10 92.34 94.38 96.25 94.10 97.69 98.29 99.06 99.14
LSUN 96.78 85.40 94.53 96.21 99.30 96.07 90.20 94.91 95.78 97.15 95.50 98.85 98.91 99.23 99.85
iSUN 95.59 83.30 91.81 93.21 97.60 95.41 89.15 93.82 94.17 96.30 94.80 98.40 97.98 99.04 99.37

CIFAR-10 Resnet34 TinyImagenet 98.10 71.60 70.39 97.53 93.92 96.92 83.30 85.80 96.55 94.46 91.00 91.88 99.43 99.56 97.54
LSUN 99.04 71.70 81.94 98.83 98.00 97.65 83.35 90.01 97.58 96.5 91.10 95.55 99.64 99.70 99.55
iSUN 98.25 71.90 77.89 97.64 95.19 96.94 83.45 88.4 96.66 95.09 91.00 94.26 99.47 99.59 98.74

CIFAR-100 Densenet TinyImagenet 87.12 47.90 53.88 80.37 92.60 91.65 61.45 81.32 88.40 93.80 71.60 89.16 93.64 97.21 98.04
LSUN 90.46 49.70 60.77 85.74 98.10 92.87 62.35 84.51 90.85 96.55 70.80 92.06 95.82 97.61 99.96
iSUN 88.29 47.30 54.85 81.78 94.00 92.04 61.15 82.51 89.30 94.50 69.60 90.29 94.81 97.34 98.61

CIFAR-100 Resnet34 TinyImagenet 92.88 31.00 64.48 91.76 95.40 94.10 58.00 85.77 93.56 95.20 67.10 93.06 98.28 98.54 98.55
LSUN 94.76 35.30 64.95 95.31 99.20 94.92 55.15 86.09 95.22 97.10 65.60 93.39 98.81 98.71 99.74
iSUN 92.36 36.70 63.03 91.98 97.10 93.81 55.85 85.33 93.76 96.05 65.60 92.76 98.27 98.24 99.22

Fig. 5. TNR at 95% TPR for different combinations of feature selection. (a) DenseNet
and (b) ResNet34 pretrained on CIFAR-10, (c) DenseNet and (d) ResNet34 pretrained
on CIFAR-100

Table 4. OOD detection performance of EAR-
LIN compared to DeConf [7]. bold indicates best
result.

ID Dataset Model OOD TNR at 95% TPR AUROC
DeConf [7] EARLIN DeConf [7] EARLIN

CIFAR-10 DenseNet TinyImagenet 95.80 97.50 99.10 99.14
LSUN 97.60 99.30 99.40 99.85
iSUN 97.50 97.60 99.40 99.37

CIFAR-100 DenseNet TinyImagenet 93.30 92.60 98.60 98.04
LSUN 93.80 98.10 98.70 99.96
iSUN 92.50 94.00 98.40 98.61

To demonstrate the clear
separation of ID and OOD sam-
ples based on the estimated dis-
tance, κ(x), in Fig. 4, we show
the density and the correspond-
ing CDF of κ(x) obtained from
various test ID and test OOD
datasets. We observe that ID
and OOD samples have separa-
ble distribution based on κ(x).

Ablation Studies: In order to detect samples as OOD as early as possible,
we explore top (shallowest) 10% layers of the pretrained models to find the
separation between ID and OOD samples and report the layer � that performed
the best. It is to be noted that we consider only the Batch Normalization (BN)
layers of the pretrained models as in these layers parameters sensitive to the ID
dataset are learned during training. We show in Fig. 6 how our end result, TNR
at 95% TPR varies for different choices of the shallow BN layers in ResNet34
and DenseNet models pretrained on CIFAR-10. In Table 2 we show our choice
of layers for the models we considered. We observe that in all cases, the chosen
layer is quite early in the network pipeline.

For finding the other hyperparameters, such as the number of maps N , cen-
troid c, and threshold Θ, for each pretrained model, 20% of the training ID sam-
ples were used as Din without using their corresponding classification labels. For
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each pretrained model, we set N to be half of the number of 2D feature maps
at layer �. The threshold, Θ, is set to 95% ID detection confidence. In Fig. 5, we
show the effect of selecting different number of feature maps (N ), other than
the default 50% (half). Figure 5 shows the TNR values at 95% TPR for different
datasets on different pretrained models, for different combinations of selecting
2D features: best 50%, best 25%, best 75%, worst 50% based on ψ (Eq. (1)) and
also all 100%. We see that in almost all cases, selecting worst 50% leads to the
worst TNR for all datasets (more noticeable for ResNet34 models). Selecting top
50% of the maps leads to either better or equivalent TNR, compared to selecting
top 25%, top 75% and all 100%. The choice of top 50% of the 2D feature maps
apparently produces the best results.
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Fig. 6. TNR at 95% TPR for different choice of shallow BN layers in DenseNet and
ResNet34 models pretrained on CIFAR-10. Random 1000 iSUN samples have been
used as validation OOD data. Our chosen layer is shown in red in each case.

6 Prototype Implementation and Results

Experimental Setup: We build a collaborative inference testbed where a
client program with our EARLIN OOD detector runs on an edge device and the
deep learning models are deployed on a server machine. Our client program runs
on a desktop computer with a moderate CPU-only configuration (Intel®Core™
i7-9750H@2.60 GHz CPU) and 32 GB RAM, a configuration similar to the edge
setup described in [2]). The server program, developed using Flask and Ten-
sorFlow framework in Python, is deployed at the Google Cloud and is powered
by Nvidia K80 GPU devices. For demonstrating the effectiveness of EARLIN,
we deploy two CNN models in the cloud: (a) DenseNet with 100 layers and
(b) ResNet with 34 layers (both are pretrained on CIFAR-100 with 70% classi-
fication accuracy). We deploy their corresponding OOD detection part on the
edge device. In all experiments, TinyImageNet dataset is used as OOD. We set
a threshold to have 95% prediction confidence on ID samples, the condition
we considered while reporting the results on EARLIN in Sect. 5. Hence all the
TPR, TNR, and Accuracy (detector accuracy) values match those reported in
Table 3. We note that the mean latency for computations done at the edge (TE)
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Fig. 7. Change in (a) Performance and (b) Cost vs Performance of Collaborative Setup
with ratio of OOD samples using models pretrained on CIFAR-100 dataset and Tiny-
Imagenet as OOD dataset.

is 32.8 ± 15 ms and at the server (TS), it is 47.8 ± 25 ms. The mean commu-
nication delay (TC) is 186.5 ± 52.12 ms. We observe that latency at both edge
and server is quite small. At the edge, we deploy a small portion of the model
hence the latency is low. On the other hand, the server runs models on GPU
resources so the inference time is small there. The communication delay to the
server, which accounts round-trip delay between the edge and the server and
all other request processing delays before hitting the inference model, seems to
the the heavy part of the latency. In our EARLIN-based setup, we improve this
latency by not sending to the server when not required and thus getting rid of
the communication delay.

Experimental Results: We show a set of aggregated results in Fig. 7. We
show the accuracy results for varying degree of OOD samples for EARLIN,
Baseline, and “no detector”. We observe that as the OOD ratio ρ rises, the
accuracy drops sharply if no OOD detector is applied. The overall accuracy of
Baseline also declines whereas the accuracy of EARLIN grows as the OOD ratio
grows. This is because EARLIN has considerably higher TNR value and higher
detection accuracy than the Baseline detector. It is to note that when ρ is close
to 0 (very few samples are OOD compared to ID), the accuracy of EARLIN is
slightly worse than that of when no detector is used. This is because EARLIN
detects, in the worst case, 5% ID samples as OODs (since TPR is 95%), which
contributes to reducing the overall accuracy.

Figure 7a shows the performance of EARLIN as we increase ρ. We observe
that, as we increase ρ, the overall accuracy increases and the inference latency
decreases. The decline in inference latency is due to the fact that as more OOD
inputs are fed, they are detected at the edge as OOD. The samples being detected
as ID are uploaded to the cloud accounting all three components of delay and
the number of those samples decline as ρ grows. We note that time required per
inference when model is not associated with any detector is equivalent to the case
when OOD samples are detected at the last layer of the model, as in both cases
input will be sent to the server for classification and OOD detection. In Fig. 7b,
we show the average time required per inference in this case. In Sect. 4, we showed
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that the overall accuracy of a model increases at a rate of TNR − accM × TPR
with the increase of ρ. Figure 7 shows how well that characterization fits with
the experimental results. As we can see, our obtained curve closely matches the
linear curve for the expected accuracy obtained based on our formulation. The
same is true for cost (latency). We see that inference latency decreases linearly
at a rate of (TC + TS) × (FPR − TPR), as expected.

7 Conclusion and Future Works

In this paper, we propose a novel edge-cloud collaborative inference system,
EARLIN, based on a proposed Out-of-Distribution (OOD) detection technique.
EARLIN enables the detection of OOD samples using feature maps obtained
from the shallow layers of the pretrained deep learning classifiers. We exploit the
advantage of early detection to design at OOD-aware edge-cloud collaborative
inference framework as we deploy the small foot-print detector part on an edge
device and the full model in the cloud. During inference, the edge detects if an
input sample is ID. If it is, the sample is sent to the cloud for classification.
Otherwise, the sample is reported as OOD and the edge starts processing the
next sample in the pipeline. In this way, we make the inference at the edge
faster and more precise. We characterize the performance and cost of the setup.
Experimental results on benchmark datasets show that EARLIN performs well
on OOD detection. Moreover, when deployed on a prototype implementation,
results obtained show that expected improvement in cost and performance is
achieved using proposed EARLIN-based setup. In future, we plan to investigate
more on building a context-aware adaptive OOD detection setup that takes
advantage of choosing from multiple candidate OOD detectors based on desired
cost-accuracy trade offs.
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Abstract. Estimating mutual information is an important statistics and
machine learning problem. To estimate the mutual information from data,

a common practice is preparing a set of paired samples {(xi, yi)}n
i=1

i.i.d.∼
p(x, y). However, in many situations, it is difficult to obtain a large num-
ber of data pairs. To address this problem, we propose the semi-supervised
Squared-loss Mutual Information (SMI) estimation method using a small
number of paired samples and the available unpaired ones. We first rep-
resent SMI through the density ratio function, where the expectation is
approximated by the samples from marginals and its assignment parame-
ters. The objective is formulated using the optimal transport problem and
quadratic programming. Then, we introduce the Least-Squares Mutual
Information with Sinkhorn (LSMI-Sinkhorn) algorithm for efficient
optimization. Through experiments, we first demonstrate that the pro-
posed method can estimate the SMI without a large number of paired
samples. Then, we show the effectiveness of the proposed LSMI-Sinkhorn
algorithm on various types of machine learning problems such as image
matching and photo album summarization. Code can be found at https://
github.com/csyanbin/LSMI-Sinkhorn.

Keywords: Mutual information estimation · Density ratio · Sinkhorn
algorithm · Optimal transport

1 Introduction

Mutual information (MI) represents the statistical independence between two
random variables [4], and it is widely used in various types of machine learning
applications including feature selection [20,21], dimensionality reduction [19],
and causal inference [23]. More recently, deep neural network (DNN) models have
started using MI as a regularizer for obtaining better representations from data
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such as infoVAE [26] and deep infoMax [9]. Another application is improving the
generative adversarial networks (GANs) [8]. For instance, Mutual Information
Neural Estimation (MINE) [1] was proposed to maximize or minimize the MI
in deep networks and alleviate the mode-dropping issues in GANS. In all these
examples, MI estimation is the core of all these applications.

In various MI estimation approaches, the probability density ratio function
is considered to be one of the most important components:

r(x,y) =
p(x,y)

p(x)p(y)
.

A straightforward method to estimate this ratio is the estimation of the
probability densities (i.e., p(x,y), p(x), and p(y)), followed by calculating their
ratio. However, directly estimating the probability density is difficult, thereby
making this two-step approach inefficient. To address the issue, Suzuki et al. [21]
proposed to directly estimate the density ratio by avoiding the density estimation
[20,21]. Nonetheless, the abovementioned methods requires a large number of
paired data when estimating the MI.

Under practical setting, we can only obtain a small number of paired samples.
For example, it requires a massive amount of human labor to obtain one-to-one
correspondences from one language to another. Thus, it prevents us to easily
measure the MI across languages. Hence, a research question arises:

Can we perform mutual information estimation using unpaired samples
and a small number of data pairs?

To answer the above question, in this paper, we propose a semi-supervised MI
estimation approach, particularly designed for the Squared-loss Mutual Informa-
tion (SMI) (a.k.a., χ2-divergence between p(x,y) and p(x)p(y)) [20]. We first
formulate the SMI estimation as the optimal transport problem with density-
ratio estimation. Then, we propose the Least-Squares Mutual Information with
Sinkhorn (LSMI-Sinkhorn) algorithm to optimize the problem. The algo-
rithm has the computational complexity of O(nxny); hence, it is computationally
efficient. Through experiments, we first demonstrate that the proposed method
can estimate the SMI without a large number of paired samples. Then, we visual-
ize the optimal transport matrix, which is an approximation of the joint density
p(x,y), for a better understanding of the proposed algorithm. Finally, for image
matching and photo album summarization, we show the effectiveness of the pro-
posed method.

The contributions of this paper can be summarized as follows:

– We proposed the semi-supervised Squared-loss Mutual Information (SMI)
estimation approach that does not require a large number of paired samples.

– We formulate mutual information estimation as a joint density-ratio fitting
and optimal transport problem, and propose an efficient LSMI-Sinkhorn
algorithm to optimize it with a monotonical decreasing guarantee.

– We experimentally demonstrate the effectiveness of the proposed LSMI-
Sinkhorn for MI estimation, and further show its broader applications to
the image matching and photo album summarization problems.
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2 Problem Formulation

In this section, we formulate the problem of Squared-loss Mutual Information
(SMI) estimation using a small number of paired samples and a large number of
unpaired samples.

Formally, let X ⊂ R
dx be the domain of random variable x and Y ⊂ R

dy be
the domain of another random variable y. Suppose we are given n independent
and identically distributed (i.i.d.) paired samples:

{(xi,yi)}n
i=1,

where the number of paired samples n is small. Apart from the paired samples,
we also have access to nx and ny i.i.d. samples from the marginal distributions:

{xi}n+nx
i=n+1

i.i.d.∼ p(x) and {yj}n+ny

j=n+1
i.i.d.∼ p(y),

where the number of unpaired samples nx and ny is much larger than that of
paired samples n (e.g., n = 10 and nx = ny = 1000). We also denote x′

i =
xi−n, i ∈ {n+1, n+2, . . . , n+nx} and y′

j = yj−n, j ∈ {n+1, n+2, . . . , n+ny},
respectively. Note that the input dimensions dx, dy and the number of samples
nx, ny may be different.

This paper aims to estimate the SMI [20] (a.k.a., χ2-divergence between
p(x,y) and p(x)p(y)) from {(xi,yi)}n

i=1 with the help of the extra unpaired
samples {xi}n+nx

i=n+1 and {yj}n+ny

j=n+1. Specifically, the SMI between random vari-
ables X and Y is defined as

SMI(X,Y )=
1
2

∫∫
(r(x,y)−1)2p(x)p(y)dxdy, (1)

where r(x,y) = p(x,y)
p(x)p(y) is the density-ratio function. SMI takes 0 if and only if

X and Y are independent (i.e., p(x,y) = p(x)p(y)), and takes a positive value
if they are not independent.

Naturally, if we know the estimation of the density-ratio function, then we
can approximate the SMI in Eq. 1 as

ŜMI(X,Y )=
1

2(n+nx)(n+ny)

n+nx∑
i=1

n+ny∑
j=1

(rα (xi,yj)−1)2 ,

where rα (x,y) is an estimation of the true density ratio function r(x,y) param-
eterized by α. More details are discussed in Sect. 3.1.

However, in many real applications, it is difficult or laborious to obtain suf-
ficient paired samples for density ratio estimation, which may result in high
variance and bias when computing the SMI. In this paper, the key idea is to
align the unpaired samples under this limited number of paired samples setting,
and propose an objective to incorporate both the paired samples and aligned
samples for a better SMI estimation.
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3 Methodology

In this section, we propose the SMI estimation algorithm with limited number
of paired samples and large number of unpaired samples.

3.1 Least-Squares Mutual Information with Sinkhorn Algorithm

We employ the following density-ratio model. It first samples two sets of basis
vectors {x̃i}b

i=1 and {ỹi}b
i=1 from {xi}n+nx

i=1 and {yj}n+ny

j=1 , then computes

rα (x,y) =
b∑

�=1

α�K(x̃�,x)L(ỹ�,y) = α�ϕ(x,y), (2)

where α ∈ R
b, K(· , ·) and L(· , ·) are kernel functions, ϕ(x,y) = k(x)◦l(y) with

k(x) = [K(x̃1,x), . . . ,K(x̃b,x)]� ∈ R
b, l(y) = [L(ỹ1,y), . . . , L(ỹb,y)]� ∈ R

b.
In this paper, we optimize α by minimizing the squared error loss between

the true density-ratio function r(x,y) and its parameterized model rα (x,y):

Loss =
1
2

∫∫ (
rα (x,y) − p(x,y)

p(x)p(y)

)2

p(x)p(y)dxdy

=
1
2

∫∫
rα (x,y)2p(x)p(y)dxdy −

∫∫
rα (x,y)p(x,y)dxdy + const. (3)

For the first term of Eq. (3), we can approximate it by using a large number
of unpaired samples as it only involves p(x), p(y). However, to approximate
the second term, paired samples from the joint distribution (i.e., p(x,y)) are
required. Since we only have a limited number of paired samples in our setting,
the approximation of the second term may have high bias and variance.

To deal with this issue, we leverage the abundant unpaired samples to help
the approximation of the second term. Since we have no access to the true
pair information for these unpaired samples, we propose a practical way to esti-
mate their pair information. Specifically, we introduce a matrix Π (πij ≥ 0,∑nx

i=1

∑ny

j=1 πi,j = 1) that can be regarded as a parameterized estimation of the
joint density function p(x,y). Then, we approximate the second term of Eq. (3)

∫∫
rα (x,y)p(x,y)dxdy ≈ β

n

n∑
i=1

rα (xi,yi)+(1−β)
nx∑
i=1

ny∑
j=1

πijrα (x′
i,y

′
j), (4)

where 0 ≤ β ≤ 1 is a parameter to balance the terms of paired and unpaired
samples. Ideally, if we can set πij = δ(x′

i,y
′
j)/n′ where δ(x′

i,y
′
j) is 1 for all paired

(x′
i, y′

j) and 0 otherwise, and n′ is the total number of pairs, then we can recover
the original empirical estimation (i.e., πij = p(x′

i,y
′
j) ideally).

Now, we can substitute Eq. (2) and Eq. (4) back into the squared error loss
function Eq. (3) to obtain the final loss function as

J(Π,α) =
1
2
α�Hα − α�hΠ,β ,
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Algorithm 1: LSMI-Sinkhorn Algorithm.
Initialize Π(0) and Π(1) such that ‖Π(1) − Π(0)‖F > η (η is the stopping
parameter), and α(0), set the regularization parameters ε and λ, the number of
maximum iterations T , and the iteration index t = 1.
while t ≤ T and ‖Π(t) − Π(t−1)‖F > η do

α(t+1) = argmin α J(Π(t), α).
Π(t+1) = argmin Π J(Π, α(t+1)).
t = t + 1.

return Π(t−1) and α(t−1).

where

H =
1

(n + nx)(n + ny)

n+nx∑
i=1

n+ny∑
j=1

ϕ(xi,yj)ϕ(xi,yj)�,

hΠ,β =
β

n

n∑
i=1

ϕ(xi,yi) + (1 − β)
nx∑
i=1

ny∑
j=1

πijϕ(x′
i,y

′
j).

Since we want to estimate the density-ratio function by minimizing Eq. (3), the
optimization problem is then given as

min
Π,α

J(Π,α)=
1
2
α�Hα − α�hΠ,β+εH(Π)+

λ

2
‖α‖22

s.t. Π1ny
= n−1

x 1nx
and Π�1nx

= n−1
y 1ny

. (5)

Here, we add several regularization terms. H(Π) =
∑nx

i=1

∑ny

j=1 πij(log πij −1) is
the negative entropic regularization to ensure Π non-negative, and ε > 0 is the
corresponding regularization parameter. ‖α‖22 is the regularization on α, and
λ ≥ 0 is the corresponding regularization parameter.

3.2 Optimization

The objective function J(Π,α) is not jointly convex. However, if we fix one vari-
able, it becomes a convex function for the other. Thus, we employ the alternating
optimization approach (see Algorithm1) on Π and α, respectively.

1) Optimizing Π Using the Sinkhorn Algorithm. When fixing α, the
term in our objective relating to Π is

nx∑
i=1

ny∑
j=1

πijα
�ϕ(x′

i,y
′
j) =

nx∑
i=1

ny∑
j=1

πij [Cα ]ij ,

where Cα = K�diag(α)L ∈ R
nx×ny , K = (k(x′

1),k(x′
2), . . . ,k(x′

nx
)) ∈ R

b×nx ,
and L = (l(y′

1), l(y
′
2), . . . , l(y

′
ny

)) ∈ R
b×ny . This formulation can be considered

as an optimal transport problem if we maximize it with respect to Π [5]. It is
worth noting that the rank of Cα is at most b 
 min(nx, ny) with b being a
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constant (e.g., b = 100), and the computational complexity of the cost matrix
Cα is O(nxny). The optimization problem with fixed α becomes

min
Π

−
nx∑
i=1

ny∑
j=1

πij(1 − β)[Cα ]ij + εH(Π)

s.t. Π1ny
= n−1

x 1nx
and Π�1nx

= n−1
y 1ny

, (6)

which can be efficiently solved using the Sinkhorn algorithm [5,17]1. When α is
fixed, problem (6) is convex with respect to Π.

2) Optimizing α. Next, when we fix Π, the optimization problem becomes

min
α

1
2
α�Hα − α�hΠ,β +

λ

2
‖α‖22 . (7)

Problem (7) is a quadratic programming and convex. It has an analytical solution

α̂ = (H + λIb)−1hΠ,β , (8)

where Ib ∈ R
b×b is an identity matrix. Note that the H matrix does not depend

on either Π or α, and it is a positive definite matrix.

Convergence Analysis. To optimize J(Π,α), we alternatively solve two con-
vex optimization problems. Thus, the following property holds true.

Proposition 1. Algorithm1 will monotonically decrease the objective function
J(Π,α) in each iteration.

Proof. We show that J(Π(t+1),α(t+1)) ≤ J(Π(t),α(t)). First, because α(t+1) =
argmin α J(Π(t),α) and α(t+1) is the globally optimum solution, we have

J(Π(t),α(t+1)) ≤ J(Π(t),α(t)).

Moreover, because Π(t+1) = argmin Π J(Π,α(t+1)) and Π(t+1) is the globally
optimum solution, we have

J(Π(t+1),α(t+1)) ≤ J(Π(t),α(t+1)).

Therefore,
J(Π(t+1),α(t+1)) ≤ J(Π(t),α(t)).

�

Model Selection. Algorithm 1 is dubbed as LSMI-Sinkhorn algorithm since
it utilizes Sinkhorn algorithm for LSMI estimation. It includes several tuning
parameters (i.e., λ and β) and determining the model parameters is critical to
obtain a good estimation of SMI. Accordingly, we use the cross-validation with
the hold-out set to select the model parameters.
1 In this paper, we use the log-stabilized Sinkhorn algorithm [16].
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First, the paired samples {(xi,yi)}n
i=1 are divided into two subsets Dtr and

Dte. Then, we train the density-ratio rα (x,y) using Dtr and the unpaired sam-
ples: {xi}n+nx

i=n+1 and {yj}n+ny

j=n+1. The hold-out error can be calculated by approx-
imating Eq. (3) using the hold-out samples Dte as

Ĵte =
1

2|Dte|2
∑

x,y∈Dte

rα̂ (x,y)2 − 1
|Dte|

∑
(x,y)∈Dte

rα̂ (x,y),

where |D| denotes the number of samples in the set D,
∑

x,y∈Dte
denotes the

summation over all possible combinations of x and y in Dte, and
∑

(x,y)∈Dte

denotes the summation over all pairs of (x,y) in Dte. We select the parameters
that lead to the smallest Ĵte.

3.3 Discussion

Relation to Least-Squares Object Matching (LSOM). In this section, we
show that the LSOM algorithm [22,24] can be considered as a special case of
the proposed framework. If Π is a permutation matrix and n′ = nx = ny,

Π = {0, 1}n′×n′
, Π1n′ = 1n′ , and Π�1n′ = 1n′ ,

where Π�Π = ΠΠ� = In′ . Then, the estimation of SMI using the permutation
matrix can be written as

ŜMI(X,Y ) =
β

2n

n∑
i=1

rα (xi,yi) +
1

2n′

n′∑
i=1

(1 − β)rα (x′
i,y

′
π(i)

) − 1
2
,

where π(i) is the permutation function. In order to calculate ŜMI(X,Y ), the
optimization problem is written as

min
Π,α

1
2
α�Hα − α�hΠ,β +

λ

2
‖α‖22

s.t. Π1n′ = 1n′ , Π�1n′ = 1n′ , Π ∈ {0, 1}n′×n′
.

To solve this problem, LSOM uses the Hungarian algorithm [10] instead
of the Sinkhorn algorithm [5] for optimizing Π. It is noteworthy that in the
original LSOM algorithm, the permutation matrix is introduced to permute the
Gram matrix (i.e., ΠLΠ�) and Π is also included within the H computation.
However, in our formulation, the permutation matrix depends only on hΠ,β .
This difference enables us to show a monotonic decrease for the loss function of
the proposed algorithm.

Since LSOM aims to seek the alignment, it is more suitable to find the exact
matching among samples when the exact matching exists. In contrast, the pro-
posed LSMI-Sinkhorn is reliable even when there is no exact matching. More-
over, LSOM assumes the same number of samples (i.e., nx = ny), while our
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LSMI-Sinkhorn does not have this constraint. For computational complexity,
the Hungarian algorithm requires O(n′3) while the Sinkhorn requires O(n′2).

Computational Complexity. First, the computational complexity of estimat-
ing Π is based on the computation of the cost matrix Cα and the Sinkhorn iter-
ations. The computational complexity of Cα is O(nxny) and that of Sinkhorn
algorithm is O(nxny). Therefore, the computational complexity of the Sinkhorn
iteration is O(nxny). Second, for the α computation, the complexity to compute
H is O((n + nx)2 + (n + ny)2) and that for hΠ,β is O(nxny). In addition, esti-
mating α has the complexity O(b3), which is negligible with a small constant
b. To conclude, the total computational complexity of the initialization needs
O((n + nx)2 + (n + ny)2) and the iterations requires O(nxny). In particular, for
small n and large nx = ny, the computational complexity is O(n2

x).
As a comparison, for another related algorithm, Gromove-Wasserstein [11,

14], the time complexity of computing the objective function is O(n4
x) for general

cases and O(n3
x) for some specific losses (e.g. L2 loss, Kullback-Leibler loss) [14].

4 Related Work

In this paper, we focus on the mutual information estimation problem. Moreover,
the proposed LSMI-Sinkhorn algorithm is related to Gromov-Wasserstein [11,14]
and kernelized sorting [6,15].

Mutual Information Estimation. To estimate the MI, a straightforward app-
roach is to estimate the probability density p(x,y) from the paired samples
{(xi,yi)}n

i=1, p(x) from {xi}n
i=1, and p(y) from {yi}n

i=1, respectively.
Because the estimation of the probability density is itself a difficult problem,

this straightforward approach does not work well. To handle this, a density-ratio
based approach can be promising [20,21]. More recently, deep learning based
mutual information estimation algorithms have been proposed [1,12]. However,
these approaches still require a large number of paired samples to estimate the
MI. Thus, in real world situations when we only have a limited number of paired
samples, existing approaches are not effective to obtain a reliable estimation.

Gromov-Wasserstein and Kernelized Sorting. Given two set of vectors in
different spaces, the Gromov-Wasserstein distance [11] can be used to find the
optimal alignment between them. This method considers the pairwise distance
between samples in the same set to build the distance matrix, then it finds a
matching by minimizing the difference between the pairwise distance matrices:

min
Π

nx∑
i=1

ny∑
j=1

nx∑
i′=1

ny∑
i′=1

πijπi′j′(D(xi,xi′) − D(yj ,yj′))2,

s.t. Π1ny
= a,Π�1nx

= b, πij ≥ 0,

where a ∈ Σnx
, b ∈ Σny

, and Σn = {p ∈ R
+
n ;

∑
i pi = 1} is the probability

simplex.
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Computing Gromov-Wasserstein distance requires solving the quadratic
assignment problem (QAP), and it is generally NP-hard for arbitrary inputs
[13,14]. In this work, we estimate the SMI by simultaneously solving the align-
ment and fitting the distribution ratio by efficiently leveraging the Sinkhorn
algorithm and properties of the squared-loss. Recently, semi-supervised Gromov-
Wasserstein-based Optimal transport has been proposed and applied to the het-
erogeneous domain adaptation problems [25]. However, their method cannot be
directly used to measure the independence between two sets of random variables.
In contrast, we can achieve this by the estimation of the density-ratio function.

Kernelized sorting methods [6,15] are highly related to Gromov-Wasserstein.
Specifically, the kernelized sorting determines a set of paired samples by max-
imizing the Hilbert-Schmidt independence criterion (HSIC) between samples.
Similar to LSOM [24], the kernelized sorting also has the assumption of the
same number of samples (i.e., {x′

i}n′
i=1 and {y′

i}n′
j=1). This assumption prohibits

both LSOM and kernelized sorting from being applied to a broader range of
applications, such as photo album summarization in Sect. 5.5. To the contrary,
since the proposed LSMI-Sinkhorn does not rely on this assumption, it can be
applied to more general scenarios when nx �= ny.

5 Experiments

In this section, we first estimate the SMI on both the synthetic data and bench-
mark datasets. Then, we apply our algorithm to real world applications, i.e.,
deep image matching and photo album summarization.

5.1 Setup

For the density-ratio model, we utilize the Gaussian kernels:

K(x,x′)=exp
(
−‖x−x′‖22

2σ2
x

)
, L(y,y′)=exp

(
−‖y−y′‖22

2σ2
y

)
,

where σx and σy denote the widths of the kernel that are set using the median
heuristic [18] as σx = 2−1/2median({‖xi −xj‖2}nx

i,j=1), σy = 2−1/2median({‖yi −
yj‖2}ny

i,j=1). We set the number of basis b = 200, ε = 0.3, the maximum number
of iterations T = 20, and the stopping parameter η = 10−9. β and λ are chosen
by cross-validation.

5.2 Convergence and Runtime

We first demonstrate the convergence of the loss function and the estimated
SMI value. Here, we generate synthetic data from y = 0.5x + N (0, 0.01) and
randomly choose n = 50 paired samples and nx = ny = 500 unpaired samples.
The convergence curve is shown in Fig. 1. The loss value and SMI value converge
quickly (<5 iterations), which is consistent with Proposition 1.
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Fig. 1. Convergence curves of the loss and SMI values.

Fig. 2. Runtime comparison of LSMI-Sinkhorn and Gromov-Wasserstein. A base-10
log scale is used for the Y axis.

Then, we perform a comparison between the runtimes of the proposed LSMI-
Sinkhorn and Gromov-Wasserstein for CPU and GPU implementations. The
data are sampled from two 2D random measures, where nx = ny ∈ {100, 200, . . . ,
9000, 10000} is the number of unpaired data and n = 100 is the number of paired
data (only for LSMI-Sinkhorn). For Gromov-Wasserstein, we use the CPU imple-
mentation from Python Optimal Transport toolbox [7] and the Pytorch GPU
implementation from [2]. We use the squared loss function and set the entropic
regularization ε to 0.005 according to the original code. For LSMI-Sinkhorn,
we implement the CPU and GPU versions using numpy and Pytorch, respec-
tively. For fair comparison, we use the log-stabilized Sinkhorn algorithm and the
same early stopping criteria and the same maximum iterations as in Gromov-
Wasserstein. As shown in Fig. 2, in comparison to the Gromov-Wasserstein,
LSMI-Sinkhorn is more than one order of magnitude faster for the CPU ver-
sion and several times faster for the GPU version. This is consistent with our
computational complexity analysis. Moreover, the GPU version of our algorithm
costs only 3.47 s to compute 10, 000 unpaired samples, indicating that it is suit-
able for large-scale applications.

5.3 SMI Estimation

For SMI estimation, we set up four baselines:
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Fig. 3. SMI estimation on synthetic data (nx = ny = 500).

Fig. 4. Visualization of the matrix Π.

– LSMI (full): 10, 000 paired samples are used for cross-validation and SMI
estimation. It is considered as the ground truth value.

– LSMI: Only n (usually small) paired samples are used for cross-validation
and SMI estimation.

– LSMI (opt): n paired samples are used for SMI estimation. However, we
use the optimal parameters from LSMI (full) here. This can be seen as the



666 Y. Liu et al.

Fig. 5. SMI estimation on synthetic data (nx = 1000, ny = 500).

upper bound of SMI estimation with limited number of paired data because
the optimal parameters are usually unavailable.

– Gromov-SMI’: The Gromov-Wasserstein distance is applied on unpaired
samples to find potential matching (n̂ = min(nx, ny)). Then, the n̂ matched
pairs and existing n paired samples are combined to perform cross-validation
and SMI estimation.

Synthetic Data. In this experiment, we manually generate four types of paired
samples: random normal, y = 0.5x+N (0, 0.01) (Linear), y = sin(x) (Nonlinear),
and y = PCA(x). We change the number of paired samples n ∈ {10, 20, . . . , 100}
while fixing nx = 500 and ny = 500 for Gromov-SMI and the proposed LSMI-
Sinkhorn, respectively. The model parameters λ and β are selected by cross-
validation using the paired examples with λ ∈ {0.1, 0.01, 0.001, 0.0001} and β ∈
{0.2, 0.4, 0.6, 0.8, 1.0}. The results are shown in Fig. 3. In the random case, the
data are nearly independent and our algorithm achieves a small SMI value. In
other cases, LSMI-Sinkhorn yields a better estimation of the SMI value and it
lies near the ground truth when n increases. In contrast, Gromov-SMI has a
small estimation value, which may be due to the incorrect potential matching.
We further show the heatmaps of the matrix Π in Fig. 4. For the random case,
Π distributes uniformly as expected. For all other cases, Π concentrate on the
diagonal, indicating good estimation for the unpaired samples.

To show the flexibility of the proposed LSMI-Sinkhorn algorithm, we set
nx = 1000, ny = 500 and fix all other settings. The results are shown in Fig. 5.
Similarly, LSMI-Sinkhorn achieves the best performance among all methods.
We also notice that Gromov-SMI achieves even worse estimation than nx = ny

case, which means it is not as stable as our algorithm to handle sophisticated
situations (nx �= ny).
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Fig. 6. SMI estimation on UCI datasets.

Fig. 7. Deep image matching.

UCI Datasets. We selected four benchmark datasets from the UCI machine
learning repository. For each dataset, we split the features into two sets as paired
samples. To ensure high dependence between these two subsets of features, we
utilized the same splitting strategy as [15] according to the correlation matrix.
The experimental setting is the same as the synthetic data experiment. We show
the SMI estimation results in Fig. 6. Similarly, LSMI-Sinkhorn obtains better
estimation values in all four datasets. Gromov-SMI tends to overestimate the
value by a large margin, while other baselines underestimate the value.

5.4 Deep Image Matching

Next, we consider an image matching task with deep convolution features. We use
two commonly-used image classification benchmarks: CIFAR10 and STL10 [3].
We extracted 64-dim features from the last layer (after pooling) of ResNet20
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(a) 16× 20 (b) “ECML PKDD”

Fig. 8. Photo album summarization on Flickr dataset. In (a), we fixed the corners with
blue, orange, green, and black images. In (b), we fixed the center of each character with
a different image. (Color figure online)

(a) 16× 20 (b) “ECML PKDD”

Fig. 9. Photo album summarization on CIFAR10 dataset. In (a), we fixed the corners
with automobile, airplane, dog, and horse images. In (b), we fixed the center of each
character with a different image.

pretrained on the training set of CIFAR10. The features are divided into two
32-dim parts denoted by {xi}N

i=1 and {yi}N
i=1. We shuffle the samples of y and

attempt to match x and y with limited pair samples (n ∈ {10, 20, . . . , 100}) and
unpaired samples (nx = ny = 500). Other settings are the same as the above
experiments.

To evaluate the matching performance, we used top-1 accuracy, top-2 accu-
racy (correct matching is achieved in the top-2 highest scores), and class accu-
racy (matched samples are in the same class). As shown in Fig. 7, LSMI-Sinkhorn
obtains high accuracy with only a few tens of supervised pairs. Additionally, the
high class matching performance implies that our algorithm can be applied to
further applications such as semi-supervised image classification.

5.5 Photo Album Summarization

Finally, we apply the proposed LSMI-Sinkhorn to the photo album summariza-
tion problem, where images are matched to a predefined structure according to
the Cartesian coordinate system.
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Color Feature. We first used 320 images from Flickr [15] and extracted the
RGB pixels as color feature. Figure 8 depicts the semi-supervised summarization
to the 16 × 20 grid with the corners of the grid fixed to blue, orange, green,
and black images. Similarly, we show the summarization results on an “ECML
PKDD” grid with the center of each character fixed. It can be seen that these
layouts show good color topology according to the fixed color images.

Semantic Feature. We then used CIFAR10 with the ResNet20 feature to illus-
trate the semantic album summarization. Figure 9 shows the layout of 1000
images into the same 16 × 20, and “ECML PKDD” grids. In Fig. 9a, we fixed
corners of the grid to automobile, airplane, dog, and horse images. In Fig. 9b, we
fixed the eight character centers. It can be seen that objects are aligned together
by their semantics rather than colors according to the fixed images.

Compared with previous summarization algorithms, LSMI-Sinkhorn has two
advantages. (1) The semi-supervised property enables interactive album sum-
marization, while kernelized sorting [6,15] and object matching [22] can not. (2)
We obtained a solution for general rectangular matching (both nx = ny and
nx �= ny), e.g., 320 images to a 16×20 grid, 1000 images to a 16×20 grid, while
most previous methods [15,22] relied on the Hungarian algorithm [10] to obtain
square matching (nx = ny) only.

6 Conclusion

In this paper, we proposed the Least-Square Mutual Information with Sinkhorn
(LSMI-Sinkhorn) algorithm to estimate the SMI from a limited number of paired
samples. To the best of our knowledge, this is the first semi-supervised SMI
estimation algorithm. Experiments on synthetic and real data show that the
proposed algorithm can successfully estimate SMI with a small number of paired
samples. Moreover, we demonstrated that the proposed algorithm can be used
for image matching and photo album summarization.
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Abstract. In this paper we explore contrastive learning for few-shot
classification, in which we propose to use it as an additional auxiliary
training objective acting as a data-dependent regularizer to promote
more general and transferable features. In particular, we present a novel
attention-based spatial contrastive objective to learn locally discrimina-
tive and class-agnostic features. As a result, our approach overcomes
some of the limitations of the cross-entropy loss, such as its excessive
discrimination towards seen classes, which reduces the transferability of
features to unseen classes. With extensive experiments, we show that
the proposed method outperforms state-of-the-art approaches, confirm-
ing the importance of learning good and transferable embeddings for
few-shot learning. Code: https://github.com/yassouali/SCL.

Keywords: Few-shot learning · Contrastive learning · Deep learning

1 Introduction

Few-shot learning [21] has emerged as an alternative to supervised learning to
simulate more realistic settings that mimic human capabilities, and in particular,
it consists of reproducing the learner’s ability to rapidly and efficiently adapt to
novel tasks. In this paper, we tackle the problem of few-shot image classification,
which aims to equip a learner with the ability to learn novel visual concepts and
recognize unseen classes with limited supervision.

A popular paradigm to solve this problem is meta-learning [25,41] consisting
of two disjoint stages, meta-training and meta-testing. During meta-training, the
goal is to acquire transferable knowledge from a set of tasks sampled from the
meta-training tasks so that the learner is equipped with the ability to adapt to
novel tasks quickly. This fast adaptability to unseen classes is evaluated at test
time by the average test accuracy over several meta-testing tasks.

Recently, a growing line of works [4,5,43] show that learning good repre-
sentations results in fast adaptability at test time, suggesting that feature reuse
[30] plays a more important role in few-shot classification than the meta-learning
Electronic supplementary material The online version of this chapter (https://
doi.org/10.1007/978-3-030-86486-6 41) contains supplementary material, which is
available to authorized users.
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Fig. 1. Spatial Contrastive Learning (SCL). To learn more locally class-independent
discriminative features, we propose to measure the similarity between a given pair of
samples using their spatial features as opposed to their global features. We first apply
an attention-based alignment, aligning each input with respect to the other. Then, we
measure the one-to-one spatial similarities and compute the Spatial Contrastive (SC)
loss.

aspect of existing algorithms. Such methods consider an extremely simple trans-
fer learning baseline, in which the model is first pre-trained using the standard
cross-entropy (CE) loss on the meta-training set. Then, at test time, a linear
classifier is trained on the meta-testing set on top of the pre-trained model.
The pre-trained model can either be fine-tuned [1,5] together with the classifier,
or fixed and used as a feature extractor [4,43]. While promising, we argue that
using the CE loss during the pre-training stage hinders the quality of the learned
representations since the model only acquires the necessary knowledge to solve
the classification task over seen classes at train time. As a result, the learned
visual features are excessively discriminative against the training classes, ren-
dering them sub-optimal for test time classification tasks constructed from an
arbitrary set of unseen and novel classes.

To alleviate these limitations, we propose to leverage contrastive representa-
tion learning [3,14,51] as an auxiliary objective, where instead of only mapping
the inputs to fixed targets, we also optimize the features, pulling together seman-
tically similar (i.e., positive) samples in the embedding space while pushing apart
dissimilar (i.e., negative) samples. By integrating the contrastive loss into the
learning objective, we give rise to discriminative representations between dissim-
ilar instances while maintaining an invariance towards visual similarities. Sub-
sequently, the learned representations are more transferable and capture more
prevalent patterns outside of the seen classes. Additionally, by combining both
losses, we leverage the stability of the CE loss and its effectiveness on small
datasets and small batch sizes, while taking benefit of the contrastive loss as a
data-dependent regularizer promoting more general-purpose embeddings.

Specifically, we propose a novel attention-based spatial contrastive loss (see
Fig. 1) as the auxiliary objective to further promote class-agnostic visual features
and avoid suppressing local discriminative patterns. It consists of measuring the
local similarity between the spatial features of a given pair of samples after an
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attention-based spatial alignment mechanism, instead of the global features (i.e.,
avg. pooled spatial features) used in the standard contrastive loss. We also adopt
the supervised formulation [19] of the contrastive loss to leverage the provided
label information when constructing the positive and negative samples.

However, directly optimizing the features and promoting the formation of
clusters of similar instances in the embedding space might result in extremely
disentangled representations. Such an outcome can be undesirable for few-shot
learning, where the testing tasks can be notably different from the tasks encoun-
tered during training, e.g., training on generic categories, and testing on fine-
grained sub-categories. To solve this, we propose contrastive distillation to reduce
the compactness of the features in the embedding space and provide additional
refinement of the representations.

Contributions. To summarize, our contributions are: (1) We explore con-
trastive learning as an auxiliary pre-training objective to learn more transferable
features. (2) We propose a novel Spatial Contrastive (SC) loss with an attention-
based alignment mechanism to spatially compare a pair of features, further pro-
moting class-independent discriminative patterns. (3) We employ contrastive
distillation to avoid excessive disentanglement of the learned embeddings and
improve the performances. (4) We demonstrate the effectiveness of the proposed
method with extensive experiments on standard and cross-domain few-shot clas-
sification benchmarks, achieving state-of-the-art performances. (5) We show the
universality of the proposed method by applying it to a standard metric learning
approach, resulting in a notable performance boost.

2 Related Work

Few-Shot Classification aims at learning to recognize unseen novel classes
with a few labeled example in each class. Meta-learning remains the most popular
paradigm to tackle this problem with two principal approaches: (1) optimization-
based, or learning to learn methods [8,22,31,39], that integrate the fine-tuning
process in the meta-training algorithm. (2) metric-based, or learning to com-
pare methods [6,37,40,47], that learn a common embedding space in which the
similarities between the data can help distinguish between different novel cate-
gories with a given distance metric. Most relevant to our work are the methods
that follow the standard transfer learning strategy [1,4,5,43], which despite their
apparent simplicity, yield state-of-the-art results on standard benchmarks.

Contrastive Learning acts directly on the low-dimensional representations
with contrastive losses [13], which measure the similarities of different samples in
the embedding space. Recently, contrastive learning based methods have emerged
as the state-of-the-art approaches for self-supervised representation learning. The
main difference between them is the way they construct and choose the posi-
tive samples. In this work, we differentiate between self-supervised contrastive
methods [3,14,15,27,42,51] that leverage data augmentations to construct the
positive pairs, and supervised contrastive methods [18,19,35,50] that leverage
the provided labels to sample the positive examples.
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Most relevant to our work are methods that try to build on the insights and
advances in contrastive learning, or more broadly self-supervised learning, to
improve the few-shot classification task. Such methods [6,9,11,23,38] integrates
various types of self-supervised training objective into different few-shot learning
frameworks in order to learn transferable features and improve the few-shot
classification performance.

3 Preliminaries

3.1 Problem Definition

Few-shot classification usually involves a meta-training set T and a meta-testing
set S with disjoint label spaces. The meta-training set discerns seen classes,
while the meta-testing set discerns novel and unseen classes. Each one of the
meta sets consists of a number of classification tasks where each task describes
a pair of training (i.e., support) and testing (i.e., query) sets with few examples,
i.e., T = {(Dtrain

t ,Dtest
t )}T

t=1 and S = {(Dtrain
q ,Dtest

q )}Q
q=1, with each dataset

containing pairs of images x and their ground-truth labels y.
The goal of few-shot classification is to learn a classifier fθ parametrized by

θ capable of exploiting the few training examples provided by the dataset Dtrain

to correctly predict the labels of the test examples from Dtest for a given task.
However, given the high dimensionality of the inputs and the limited number
of training examples, the classifier fθ suffers from high variance. As such, the
training and testing inputs are replaced with their corresponding features, which
are produced by an embedding model fφ parametrized by φ and then used as
inputs to the classifier fθ.

To this end, the objective of meta-training algorithms is to learn a good
embedding model fφ so that the average test error of the classifier fθ is min-
imized. This usually involves two stages: first, a meta-training stage inferring
the parameters φ of the embedding model using the meta-training set T , fol-
lowed by a meta-testing stage evaluating the embedding model’s performance
on meta-testing set S.

3.2 Transfer Learning Baseline

In this work, we consider the simple transfer learning baseline of [43], in which
the embedding model fφ is first pre-trained on the merged tasks from the meta-
training set using the CE loss. Then, the model is carried over to the meta-testing
stage and fixed during evaluation.

Concretely, we start by merging all the meta-training tasks Dtrain
t from T

into a single training set Dnew of seen classes:

Dnew = ∪{Dtrain
1 , . . . ,Dtrain

t , . . . ,Dtrain
T }. (1)

Then, during the meta-training stage, the embedding model fφ can be pre-
trained on the resulting set of seen classes using the standard CE loss LCE:

φ = arg min
φ

LCE(Dnew;φ). (2)
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Fig. 2. Analysis of the learned representations. (a) k-Nearest Neighbors Analysis. (b)
GradCAM results.

The pre-trained model fφ is then fixed (i.e., no fine-tuning is performed) and
leveraged as a feature extractor during the meta-testing stage. For a given task
(Dtrain

q ,Dtest
q ) sampled from S, a linear classifier fθ is first trained on top of

the extracted features to recognize the unseen classes using the training dataset
Dtrain

q :
θ = arg min

θ
LCE(Dtrain

q ; θ, φ) + R(θ), (3)

where R is a regularization term, and the parameters θ = {W,b} consist of
weight and bias terms, respectively. The predictor fθ can then be used on the
features of the test dataset Dtest

q to obtain the class predictions and evaluate fφ.

3.3 Analysis of the Learned Representations

Although the baseline of Sect. 3.2 delivers impressive results, we hypothesis that
the usage of the CE loss during the meta-training stage can hinder the perfor-
mances. Our intuition is that the learned representations lack general discrimi-
native visual features since the CE loss induces embeddings tailored for solving
the classification task over the seen classes. As a results, their transferability to
novel domains with unseen classes is reduced, and especially if the domain gap
between the training and testing stages is significant.

To empirically validate such a hypothesis, we conduct a k-nearest neighbor
search [17] on the learned embedding space. First, we train a model with the
CE loss on the meta-training set of mini -ImageNet [47] as in Eq. (2). Then, for
a given test image, we search for its neighbors from the meta-testing set. The
results are shown in Fig. 2. For a fast test-time adaptation of the predictor fθ,
the desired outcome is to have visually and semantically similar images adjacent
in the embedding space. However, we observe that the neighboring images are
semantically dissimilar. Using Grad-CAM [36], we notice that dominant discrim-
inative features acquired during training might not be useful for discriminating
between unseen classes at test time. In the case of mini -ImageNet, this obser-
vation is reinforced by the fact that the meta-training and meta-testing sets are
closely related, in which better transferability of the learned features in expected
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when compared to other benchmarks. We note that similar behavior was also
observed by [6] for metric-learning based approaches.

To further investigate this behavior, we conduct a spectral analysis of the
learned features. As shown in Fig. 3, we inspect the variance explained by a
varying number of principal components and notice that almost all of the vari-
ance can be captured with a limited number of components, indicating that the
CE loss only preserves the minimal amount of information required to solve the
classification task.

4 Methodology

4.1 Contrastive Learning

We explore contrastive learning as an auxiliary pre-training objective to learn
general-purpose visual embeddings capturing discriminative features usable out-
side of the meta-training set. It thus facilitate the test time recognition of unseen
classes. Specifically, given that in a few-shot classification setting we are provided
with the class labels, we examine the usage of the supervised formulation [19]
of the contrastive loss which leverages the label information to construct the
positive and negative samples.

Formally, let fφ be an embedding model mapping the inputs x to spatial
features zs ∈ R

HW×d, followed by an average pooling operation to obtain the
global features zg ∈ R

d, which are then mapped into a lower dimensional space
using a projection head p, i.e., f = p(zg) with f ∈ R

d′
, and let a global similarity

function simg be denoted as the cosine similarity between a pair of projected
global features fi and fj (i.e., dot product between the �2 normalized features).
First, we sample a batch of N pairs of images and labels from the merged
meta-training set Dnew and augment each example in the batch, resulting in 2N
data points. Then, the supervised contrastive loss [19], referred to as the Global
Contrastive (GC) loss, can be computed as follows:

LGC=
2N∑

i=1

1
2Nyi

− 1

2N∑

j=1

1i�=j · 1yi=yj
· �ij , (4)

where �ij = − log
exp(simg(fi, fj)/τ)

∑2N
k=1 1i�=k · exp(simg(fi, fk)/τ)

,

with 1cond ∈ {0, 1} as an indicator function evaluating to 1 iff cond is satisfied,
Nyi

as the total number of images with the same label yi, and τ as a scalar tem-
perature parameter. By using the GC loss of Eq. (4) as an additional pre-training
objective with the CE loss, we push the embedding model fφ to learn the visual
similarities between instances of the same class, instead of only maintaining the
useful features for the classification task over the seen classes, which results in
more useful and transferable embeddings.
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Fig. 3. Spectral analysis of the embedding
matrix. (a) Principal component analysis.
(b) Singular value decomposition.

Fig. 4. Attention-based spatial align-
ment mechanism.

4.2 Spatial Contrastive Learning

Although the GC loss is capable of producing good embeddings, using the global
features zg might suppress some local discriminative features present in the spa-
tial features zs that can be informative for down-stream tasks (e.g., suppressing
object specific features while overemphasizing the irrelevant background fea-
tures). As an alternative, we propose a novel Spatial Contrastive (SC) loss that
leverages the spatial features zs to compute the similarity between a given pair
of examples. However, to locally compare a pair of spatial features zsi and zsj
and compute the SC loss, we first need to define a mechanism to align them
spatially. To this end, we employ the attention mechanism [46] to compute the
spatial attention weights to align the features zsi with respect to zsj and vice-
versa. Then, we measure the one-to-one spatial similarity as illustrated in Fig. 4,
and finally, compute the SC loss.

Attention-based Spatial Alignment. Let hv, hq and hk denote the value,
query and key projection heads, taking as input the spatial features zs and
outputting the value v, query q and key k of d′-dimensional features, i.e.,
v,q,k ∈ R

HW×d′
. Given a pair of spatial features zsi and zsj of two instances i

and j, we want to compute the aligned values of i with respect to j, denoted as
vi|j . Such an alignment can be obtained using the key ki and the query qj to
compute the attention weights aij ∈ R

HW×HW , which can then be applied to
vi to obtain vi|j . Concretely, this can be computed as follows:

vi|j = aijvi where aij = softmax
(
qjk�

i√
d′

)
. (5)

Similarly, we compute vj|i aligning the value of j with respect to i using the key
kj and the query qi.

Spatial Similarity. Given a pair of values vi and vj , together with their two
aligned versions vi|j and vj|i computed using the attention mechanism detailed
above, and with vr

∗ denoting a feature vector at a spatial location r ∈ [1,HW ],
we first perform an �2 normalization step of the values vr

∗ at each spatial location
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r. Then, we compute the total spatial similarity sims(zsi , z
s
j) between a pair of

spatial features as follows:

sims(zsi , z
s
j) =

1
HW

HW∑

r=1

[
(vr

i )
�vr

j|i + (vr
j )

�vr
i|j

]
. (6)

Spatial Contrastive Learning. With the spatial similarity function sims

defined in Eq. (6), and similar to the GC loss in Eq. (4), the SC loss can be
computed as follows:

LSC=
2N∑

i=1

1
2Nyi

− 1

2N∑

j=1

1i�=j · 1yi=yj
· �ij , (7)

where �ij = − log
exp(sims(zsi , z

s
j)/τ ′)

∑2N
k=1 1i�=k · exp(sims(zsi , z

s
k)/τ ′)

,

with τ ′ as a scalar temperature parameter.

4.3 Pre-training Objective

Based on the contrastive objectives in Eq. (4) and Eq. (7), the pre-training
objective can take different forms. We mainly consider the case where the pre-
training objective LT is the summation of the CE and SC losses, with λCE and
λSC as scaling weights to control the contribution of each term:

LT = λCELCE + λSCLSC. (8)

However, we also explore other alternatives such as replacing LSC with LGC or
training with both LGC and LSC as auxiliary losses with their corresponding
weighting terms. Additionally, we also consider the self-supervised formulations
of the GC and SC losses, where the label information is discarded and the only
positives considered are the augmented versions of each example (i.e., yi = i
mod N). We refer to them as SS-GC and SS-SC (Self-Supervised Global and
Spatial Contrastive) losses respectively.

Using the total loss LT, the embedding model fφ can be trained together
with the projection head and the attention modules during the meta-training
stage. Specifically, let ψ represent the parameters of the projection head p and
the attention modules hv, hq and hk. The parameters are obtained as follows:

{φ, ψ} = arg min
{φ,ψ}

LT(Dnew; {φ, ψ}). (9)

After the pre-training stage, the parameters ψ are discarded, and the embedding
model fφ is then fixed and carried over from meta-training to meta-testing.
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4.4 Avoiding Excessive Disentanglement

Since the contrastive objectives encourage closely aligned embeddings of
instances of the same class while distributing all of the normalized features uni-
formly on the hypersphere [48], we have to consider a possible over-clustering
of the features of the same class. Such an outcome can be desired for closed-
set recognition, but in a few-shot setting, in which the discrepancy between the
meta-training and meta-testing domain might differ greatly from one case to the
other (e.g., training on coarse seen categories, and testing on fine-grained unseen
sub-categories), this might lead to sub-optimal performances. As such, to avoid
an excessive disentanglement of the learned features and to further improve the
generalization of the embedding model, we propose Contrastive Distillation (CD)
to reduce the compactness of the features in embeddings space.

Contrastive Distillation. Given a teacher model fφt
pre-trained with the

objective in Eq. (8), we transfer its knowledge to a student model fφs
using

the standard knowledge distillation [16] objective LKL (i.e., the Kullback-Leibler
(KL) divergence between the student’s predictions and the soft targets predicted
by the teacher), but with an additional contrastive distillation loss LCD. This
loss consists of maximizing the inner dot product between the �2 normalized
global features of the teacher zgt and that of the student zgs, which corresponds
to minimizing the squared Euclidean distance, formally:

LCD =
1
N

N∑

i=1

‖zgt
i − zgs

i ‖22. (10)

To summarize, the student’s parameters are learned as follows:

φs = arg min
φs

λCDLCD(Dnew;φs, φt) + λKLLKL(Dnew;φs, φt). (11)

This way, by only maximizing the similarity between the pairs of features without
using any negative samples, we relax the uniformity constraint of the contrastive
loss and reduce the disentanglement of the learned embeddings.

5 Experiments

For the experimental section, we base our implementation on the publicly avail-
able code of [43] and conduct experiments on ImageNet derivatives: mini -
ImageNet [47] and tiered -ImageNet [33], and CIFAR-100 derivatives: CIFAR-
CS [2] and FC100 [28]. Additionally, we present experiments on cross-domain
few-shot benchmarks introduced by [44]. We note that additional experimental
details and results are presented in the supplementary material.

5.1 Experimental Details

Architecture. For the embedding model fφ, we follow [43] and use a
ResNet-12 consisting of 4 residual blocks with Dropblock as a regularizer and
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Table 1. Comparison of the mean acc.
with different training objectives. “Aug.”
indicates the usage of SimCLR type aug-
mentations.

Loss function Aug. mini-ImageNet, 5-way CIFAR-CS, 5-way
1-shot 5-shot 1-shot 5-shot

CE 61.8 ± 0.7 79.7 ± 0.6 71.3 ± 0.9 86.1 ± 0.6
CE � 61.8 ± 0.8 78.6 ± 0.5 71.9 ± 0.9 86.3 ± 0.5
CE + SS-GC � 62.7 ± 0.7 81.0 ± 0.6 70.9 ± 0.9 84.5 ± 0.6
CE + SS-SC � 64.0 ± 0.8 81.5 ± 0.5 72.1 ± 0.8 86.2 ± 0.6
CE + SS-GC + SS-SC � 62.8 ± 0.8 81.1 ± 0.6 69.0 ± 0.9 85.0 ± 0.6
CE + GC � 65.0 ± 0.8 81.6 ± 0.5 74.0 ± 0.8 87.3 ± 0.6
CE + SC � 65.7 ± 0.8 82.5 ± 0.5 75.0 ± 0.9 87.4 ± 0.6
CE + GC + SC � 65.0 ± 0.8 81.3 ± 0.5 76.0 ± 0.7 87.5 ± 0.5

Table 2. Comparison of the mean acc.
with different evaluation setting.

Features used mini-ImageNet, 5-way CIFAR-CS, 5-way
1-shot 5-shot 1-shot 5-shot

Spatial 64.5 ± 0.8 82.1 ± 0.5 75.0 ± 0.9 87.1 ± 0.6
Global 65.7 ± 0.8 82.5 ± 0.5 75.0 ± 0.9 87.4 ± 0.6
Glo. & Spa. (Max) 65.6 ± 0.8 82.1 ± 0.5 74.2 ± 0.8 87.3 ± 0.5
Glo. & Spa. (Sum) 65.7 ± 0.8 83.1 ± 0.5 75.6 ± 0.9 87.6 ± 0.6

Table 3. Comparison of the mean acc.
distillation objectives.

Loss function mini-ImageNet, 5-way CIFAR-CS, 5-way
1-shot 5-shot 1-shot 5-shot

Teacher 65.7 ± 0.8 82.5 ± 0.5 75.0 ± 0.9 87.4 ± 0.6
KL 66.0 ± 0.8 82.5 ± 0.5 75.9 ± 0.9 87.4 ± 0.6
KL+CD 67.4 ± 0.8 82.7 ± 0.5 76.5 ± 0.9 87.6 ± 0.6

640-dimensional output features (i.e., d = 640). For the projection head and
the attention modules, we use an MLP with one hidden layer and a ReLU non-
linearity similar to SimCLR, outputting 80-dimensional features (i.e., d′ = 80).

Training Setup. For optimization, we use SGD with a momentum of 0.9, a
weight decay of 5×10−4, a learning rate of 5×10−2 and a batch size of 64. For the
loss functions, we set the temperature parameters τ and τ ′ to 0.1 and the scaling
weights λCE, λSC, and λGC to 1.0, except for CIFAR-FS where we set them to
0.5. For distillation, we set λCD to 10.0 and λKL to 1.0 and use a temperature
of 4.0 for the KL loss. For data augmentations, we use standard augmentations
for the first N instances, while the remaining N instances are generated using
SimCLR type augmentations, resulting in 2N augmented examples.

Evaluation Setup. During meta-testing, and given a pre-trained embedding
model fφ, we follow [43] and consider a linear classifier as the predictor fθ,
implemented in scikit-learn and trained on the �2 normalized features produced
by fφ. Specifically, we sample a number of C-way K-shot testing classification
tasks constructed from the unseen classes of the meta-testing set, with C as the
number of classes and K as the number of training examples per class. After
training fθ on the train set, the predictor is then applied to the features of the test
set to obtain the prediction and compute the accuracy. In our case, we evaluate
the model over 600 randomly sampled tasks and report the median accuracy
over 3 runs with 95% confidence intervals, where in each run, the accuracy is
the mean accuracy of the 600 sampled tasks.

5.2 Ablation Studies

Loss Functions. We evaluate the performances obtained with various loss func-
tions as detailed in Sect. 4.3. The results are shown in Table 1. We observe a
notable gain in performance when adopting auxiliary contrastive losses, be it
supervised or self-supervised, with better gains when using the supervised formu-
lation, highlighting the benefits of using the label information when constructing
the positives and negatives samples. More importantly, the SC loss outperforms
the standard GC loss, confirming the effectiveness of using the spatial features
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Table 4. Comparison with prior few-shot classification works. †results obtained by
training on both train and validation sets.

Method Backbone mini-ImageNet, 5-way tiered-ImageNet, 5-way CIFAR-FS, 5-way FC100, 5-way

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

MAML [8] 32-32-32-32 48.70 ± 1.84 63.11 ± 0.92 51.67 ± 1.81 70.30 ± 1.75 58.9 ± 1.9 71.5 ± 1.0 – –

Matching Networks [47] 64-64-64-64 43.56 ± 0.84 55.31 ± 0.73 – – – – – –

Prototypical Networks† [37] 64-64-64-64 49.42 ± 0.78 68.20 ± 0.66 53.31 ± 0.89 72.69 ± 0.74 55.5 ± 0.7 72.0 ± 0.6 35.3± 0.6 48.6 ± 0.6

Relation Networks [40] 64-96-128-256 50.44 ± 0.82 65.32 ± 0.70 54.48 ± 0.93 71.32 ± 0.78 55.0 ± 1.0 69.3 ± 0.8 – –

R2D2 [2] 96-192-384-512 51.20 ± 0.60 68.80 ± 0.10 - - 65.3 ± 0.2 79.4 ± 0.1 – –

SNAIL [24] ResNet-12 55.71 ± 0.99 68.88 ± 0.92 – – – – – –

TADAM [28] ResNet-12 58.50 ± 0.30 76.70 ± 0.30 – – – – 40.1 ± 0.4 56.1 ± 0.4

Shot-Free [32] ResNet-12 59.04 ± n/a 77.64 ± n/a 63.52 ± n/a 82.59 ± n/a 69.2 ± n/a 84.7 ± n/a – –

TEWAM [29] ResNet-12 60.07 ± n/a 75.90 ± n/a – – 70.4 ± n/a 81.3 ± n/a – –

Diversity w/ Coop. [7] ResNet-18 59.48 ± 0.65 75.62 ± 0.48 – – – – – –

Boosting [11] WRN-28-10 63.77 ± 0.45 80.70 ± 0.33 70.53 ± 0.51 84.98 ± 0.36 73.6 ± 0.3 86.0 ± 0.2 – –

Fine-tuning [5] WRN-28-10 57.73 ± 0.62 78.17 ± 0.49 66.58 ± 0.70 85.55 ± 0.48 – – – –

LEO-trainval† [34] WRN-28-10 61.76 ± 0.08 77.59 ± 0.12 66.33 ± 0.05 81.44 ± 0.09 – – – –

Prototypical Networks† [37] ResNet-12 – – – – 72.2 ± 0.7 83.5 ± 0.5 37.5 ± 0.6 52.5 ± 0.6

MetaOptNet [22] ResNet-12 62.64 ± 0.61 78.63 ± 0.46 65.99 ± 0.72 81.56 ± 0.53 72.6 ± 0.7 84.3 ± 0.5 41.1 ± 0.6 55.5 ± 0.6

RFS [43] ResNet-12 62.02 ± 0.63 79.64 ± 0.44 69.74 ± 0.72 84.41 ± 0.55 71.5 ± 0.8 86.0 ± 0.5 42.6 ± 0.7 59.1 ± 0.6

RFS-Distill [43] ResNet-12 64.82 ± 0.60 82.14 ± 0.43 71.52 ± 0.69 86.03 ± 0.49 73.9 ± 0.8 86.9 ± 0.5 44.6 ± 0.7 60.9 ± 0.6

Ours ResNet-12 65.69 ± 0.81 83.10 ± 0.52 71.48 ± 0.89 86.88 ± 0.53 75.6 ± 0.9 87.6 ± 0.6 44.4 ± 0.8 60.8 ± 0.8

Ours-Distill ResNet-12 67.40 ± 0.76 83.19 ± 0.54 71.98 ± 0.91 86.19 ± 0.59 76.5 ± 0.9 88.0 ± 0.6 44.8 ± 0.7 61.4 ± 0.7

Table 5. Comparison with prior works on cross-domain few-shot classification bench-
marks.

Method CUB, 5-way Cars, 5-way Places, 5-way Plantae, 5-way

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

MatchingNet [47] 35.89 ± 0.5 51.37 ± 0.7 30.77 ± 0.5 38.99 ± 0.6 49.86 ± 0.8 63.16 ± 0.8 32.70 ± 0.6 46.53 ± 0.6

MatchingNet w/ FT [44] 36.61 ± 0.6 55.23 ± 0.8 29.82 ± 0.4 41.24 ± 0.6 51.07 ± 0.7 64.55 ± 0.7 34.48 ± 0.5 41.69 ± 0.6

RelationNet [40] 42.44 ± 0.7 57.77 ± 0.7 29.11 ± 0.6 37.33 ± 0.7 48.64 ± 0.8 63.32 ± 0.8 33.17 ± 0.6 44.00 ± 0.6

RelationNet w/ FT [44] 44.07 ± 0.7 59.46 ± 0.7 28.63 ± 0.6 39.91 ± 0.7 50.68 ± 0.9 66.28 ± 0.7 33.14 ± 0.6 45.08 ± 0.6

GNN [10] 45.69 ± 0.7 62.25 ± 0.6 31.79 ± 0.5 44.28 ± 0.6 53.10 ± 0.8 70.84 ± 0.6 35.60 ± 0.5 52.53 ± 0.6

GNN w/ FT [44] 47.47 ± 0.6 66.98 ± 0.7 31.61 ± 0.5 44.90 ± 0.6 55.77 ± 0.8 73.94 ± 0.7 35.95 ± 0.5 53.85 ± 0.6

Ours 49.58 ± 0.7 67.64 ± 0.7 34.46 ± 0.6 52.22 ± 0.7 59.37 ± 0.7 76.46 ± 0.6 40.23 ± 0.6 59.38 ± 0.6

Ours-Distill 50.09 ± 0.7 68.81 ± 0.6 34.93 ± 0.6 51.72 ± 0.7 60.32 ± 0.8 76.51 ± 0.6 39.75 ± 0.8 59.91 ± 0.6

rather than the global features. Additionally, using both the SC and GC losses
does not result in distinct gains over the SC loss. Thus, for the rest of this section,
we adopt the SC as a sole auxiliary loss.

Distillation. To improve the generalization of the embedding model, we inves-
tigate the effect of knowledge distillation by training a new (i.e., student) model
using a pre-trained (i.e., teacher) network with various training objectives.
Table 3 shows a clear performance gain with the proposed CD objective as an
additional loss term, confirming the benefits of optimizing the learned features
and relaxing the compactness of the embedding space.

Evaluation. Instead of only training the linear classifier on top of the global
features during the meta-testing stage, we compare the performance when train-
ing over the global features, the spatial features, or both, where we train two
classifiers and aggregate their predictions. Table 2 shows the evaluation results.
Overall, using the global features to train the linear classifier offers slightly bet-
ter results than the spatial features. We suspect this might result from slight
overfitting of the classifier given that the spatial features increase the number of
parameters to be learned, which negatively impacts the performances. However,
when leveraging both the spatial and global features, we obtain better results
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confirming the usefulness of the spatial feature even during the meta-testing
stage.

5.3 Few-Shot Classification

Based on the ablation studies, we fix the training objective as SC+CE dur-
ing the meta-training stage and use both the spatial and global features during
the meta-testing stage with a sum aggregate, and compare our approach with
other popular few-shot classification methods. The results of 5-way classification
are summarized in Table 4 for ImageNet and CIFAR derivatives. Our method
outperforms previous works and achieves state-of-the-art performances across
different datasets and evaluation settings. This suggests that our attention-
based SCL approach coupled with the CE loss improves the transferability of
the learned embeddings without any meta-learning techniques, with additional
improvements using a contrastive distillation step. These results also show the
potential of integrating contrastive losses as auxiliary objectives for various few-
shot learning scenarios.

5.4 Cross-Domain Few-Shot Classification

To further affirm the improved transferability of the learned embedding with
our approach, we explore the effects of an increased domain difference between
the seen and unseen classes, i.e., the discrepancy between the meta-training and
meta-testing stages. Precisely, we follow the same procedure as [44] where we
first train on the whole mini -ImageNet dataset using the same setting as detailed
above. Then, we evaluate the embeddings model on four different domains: CUB
[49], Cars [20], Places [52], and Plantae [45]. We show the obtained results in
Table 5, and see a notable gain in performance using the proposed method, from
2% gain on CUB dataset, up to 7% gain on Cars dataset, indicating a clear
enhancement in terms of the generalization of the embedding model.

6 ProtoNet Experiments

To demonstrate the generality of the proposed approach and its applicability
in different settings, we provide additional metric-learning based experiments
in which we integrate the contrastive losses into the ProtoNet [37] framework.
ProtoNet is a distance-based learner trained in an episodic manner so that both
the meta-training and meta-testing stages have matching conditions. During
meta-training, for a C-way K-shot setting, we construct a meta-training set T =
{(Dtrain

t ,Dtest
t )}T

t=1 where each given task t depicts C randomly chosen classes
from the seen classes, with K images per class for the training (i.e., support)
set Dtrain

t , and M images per classes for the test (i.e., query) set Dtest
t . At each

training iteration, after sampling a given task from T , we first compute the
class prototypes for classification using the support set. Then, the embeddings
model is trained to minimize the CE loss where each query example is classified
based on the distances to the class prototypes. In order to add the contrastive
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Table 6. The obtained improvement when
adding the contrastive objectives as auxil-
iary losses. We show the mean acc. and 95%
confidence interval for 5-way 5-shot classi-
fication across ImagetNet derivatives.

Table 7. Comparison with prior
works on mini-ImageNet for 5-shot
5-way classification.

Method Image size Backbone Aux. Loss Acc. (%)

MAML 84× 84 Conv4-64 – 63.1
ProtoNet Conv4-64 – 68.2
RelationNet Conv4-64 – 65.3

ProtoNet [4] 84× 84 Conv4-64 – 64.2
224× 224 ResNet-18 – 73.7

ProtoNet [11] 84× 84 Conv4-64 – 70.0
Conv4-64 Rotation 71.7
Conv4-512 – 71.6
Conv4-512 Rotation 74.0
WRN-28-10 – 68.7
WRN-28-10 Rotation 72.1

ProtoNet [38] 224× 224 ResNet-18 – 75.2
Rotation 76.0
Jigsaw 76.2
Rot.+Jig 76.6

Ours 224× 224 ResNet-18 – 74.0
GC 75.2
SC 75.2
SS-GC 77.3
SS-SC 77.2
SS-GC+SS-SC 77.6

objectives as auxiliary losses to the ProtoNet training objective, we simply merge
the query and support set, augment each exampled within it, and compute the
contrastive losses detailed in Sect. 4 over this merged and augmented set. The
experimental details of this section are presented in the supplementary material.

Results. To investigate the impact of the contrastive losses on the performances
of ProtoNet, we report the mean acc. for 5-way 5-shot classification on Ima-
geNet derivatives with different training objectives. The results in Table 6 show
a notable performance gain over the ProtoNet baseline. Additionally, we com-
pare the performances of our approach with other self-supervised auxiliary losses,
i.e., rotation prediction [12] and jigsaw puzzle [26], for which [38] provided their
integration into the ProtoNet framework. As shown in Table 7, we observe that a
larger performance gain can be obtained with the contrastive objectives as aux-
iliary losses compared to other self-supervised objectives, especially when using
both the SS-SC and SS-GC losses with a 3.6% gain over the baseline, which
further confirms the effectiveness of the proposed SC loss.

7 Conclusion

In this paper, we investigated contrastive losses as auxiliary training objectives
along the CE loss to compensate for its drawbacks and learn richer and more
transferable features. With extensive experiments, we showed that integrat-
ing contrastive learning into existing few-shot learning frameworks results in
a notable boost in performances, especially with our spatial contrastive learning
objective. Future work could investigate the spatial contrastive method exten-
sion for other few-shot learning scenarios and adapt it for other visual tasks such
as unsupervised representation learning.
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1. Afrasiyabi, A., Lalonde, J.-F., Gagné, C.: Associative alignment for few-shot image
classification. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV
2020. LNCS, vol. 12350, pp. 18–35. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-58558-7 2

2. Bertinetto, L., Henriques, J.F., Torr, P.H., Vedaldi, A.: Meta-learning with differ-
entiable closed-form solvers. In: International Conference on Learning Representa-
tions (2019)

3. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for con-
trastive learning of visual representations. In: Proceedings of the 37th International
Conference on Machine Learning (2020)

4. Chen, W.Y., Liu, Y.C., Kira, Z., Wang, Y.C.F., Huang, J.B.: A closer look at
few-shot classification. In: International Conference on Learning Representations
(2019)

5. Dhillon, G.S., Chaudhari, P., Ravichandran, A., Soatto, S.: A baseline for few-
shot image classification. In: International Conference on Learning Representations
(2020)

6. Doersch, C., Gupta, A., Zisserman, A.: CrossTransformers: spatially-aware few-
shot transfer. In: Advances in Neural Information Processing Systems (2020)

7. Dvornik, N., Schmid, C., Mairal, J.: Diversity with cooperation: ensemble methods
for few-shot classification. In: IEEE International Conference on Computer Vision
(2019)

8. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adapta-
tion of deep networks. In: Precup, D., Teh, Y.W. (eds.) Proceedings of the 34th
International Conference on Machine Learning. Proceedings of Machine Learning
Research, vol. 70, pp. 1126–1135. PMLR (2017)

9. Gao, Y., Fei, N., Liu, G., Lu, Z., Xiang, T., Huang, S.: Contrastive proto-
type learning with augmented embeddings for few-shot learning. arXiv preprint
arXiv:2101.09499 (2021)

10. Garcia, V., Bruna, J.: Few-shot learning with graph neural networks. In: Interna-
tional Conference on Learning Representations (2018)

11. Gidaris, S., Bursuc, A., Komodakis, N., Pérez, P., Cord, M.: Boosting few-shot
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Abstract. Anomaly Detection (AD) is used in many real-world appli-
cations such as cybersecurity, banking, and national intelligence. Though
many AD algorithms have been proposed in the literature, their effec-
tiveness in practical real-world problems are rather limited. It is mainly
because most of them: (i) examine anomalies globally w.r.t. the entire
data, but some anomalies exhibit suspicious characteristics w.r.t. their
local neighbourhood (local context) only and they appear to be normal in
the global context; and (ii) assume that data features are all numeric, but
real-world data have numeric/quantitative and categorical/qualitative
features. In this paper, we propose a simple robust solution to address
the above-mentioned issues. The main idea is to partition the data space
and build local models in different regions rather than building a global
model for the entire data space. To cover sufficient local context around
a test data instance, multiple local models from different partitions (an
ensemble of local models) are used. We used classical decision trees that
can handle numeric and categorical features well as local models. Our
results show that an Ensemble of Local Decision Trees (ELDT) produces
better and more consistent detection accuracies compared to popular
state-of-the-art AD methods, particularly in datasets with mixed types
of features.

Keywords: Anomaly detection · Mixed data · LOF · IForest ·
Ensemble anomaly detection · Decision trees

1 Introduction

Anomaly Detection (AD) is a machine learning task of identifying anomalous
data instances automatically using algorithms. Anomalies (also refer to as out-
liers) are data instances that are significantly different from most of the other
data causing suspicions that they are generated from a different mechanism
from the one that is normal or expected. AD has many applications such as
intrusion detection in computer networks, fraud detection in banking, detect-
ing illegal activities (e.g., drug trafficking, money laundering) in national intel-
ligence/security. In the literature, AD problems have been solved using three
learning approaches [8,12]: (i) Supervised learning: A classification model
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is learned using training instances from both normal and anomalous classes
to make predictions for test data; (ii) Unsupervised learning: Given data
instances (which may have anomalies) are ranked directly based on some outlier
scores, i.e., no training involved; and (iii) Semi-supervised learning: A pro-
file of normal/expected behaviour is learned from labelled training samples of
normal data only, and test data are ranked based on how well they comply with
the learned profile of normal data.

Regardless of the learning approaches used, existing AD methods have some
limitations/issues that restrict their wide applicability in practice. Supervised
methods have the following major issues [12]: (i) it might be very expensive or
even impossible to obtain labelled training anomalous samples in many real-
world applications; (ii) even if possible, they are infinitesimally rare resulting in
the class imbalanced problem; and (iii) a few known anomalies are not enough
to generalise characteristics of all possible anomalous patterns because anoma-
lies can be anywhere in the feature space. Though techniques like minority class
(anomalies) oversampling, majority class (normal) under-sampling, and algo-
rithmic adjustments [18] are used to alleviate the above-mentioned issues, their
effectiveness in practice are limited. It is because they assume that unseen/future
anomalies are generated from the same distribution as previously seen/observed
anomalies. Often, it is not the case in practice. New anomalies can be very
different from previously seen anomalies.

Un/semi-supervised approaches do not require labelled training anomalous
samples. Unsupervised approaches do not require training samples at all. Assum-
ing anomalies are few and different, they use distance/density based scores to
rank given data (which may have anomalies) directly. They may perform poorly
when the assumption does not hold, i.e., when there are far too many anoma-
lies [8,12]. Semi-supervised approaches do not make such assumption. Because a
vast majority of observed data are normal, normal training data can be obtained
easily. Thus, we focus on semi-supervised AD approach in this paper.

Most existing un/semi-supervised AD methods assume that data have
numeric features. However, in many real-world applications, data have both
numeric (e.g., age, height) and categorical (e.g., gender, nationality) features.
The common practice is to convert categorical features into numeric features
using technique like one-hot encoding [15]. Each categorical label (e.g., Aus-
tralian for nationality) is converted into a binary feature with the value of 1 (if
the nationality is Australian) or 0 (otherwise) and treated as a numeric feature.
A categorical feature with n possible values is converted into n binary numeric
features, out of which only one has the value of 1 for each instance. Because
of this, each original categorical feature and original numeric feature contribute
differently to AD models, which can degrade the performances of AD methods.
There are methods proposed for categorical data only [26]. Numeric features
can be converted into categorical features through discretisation [15]. Most AD
methods developed for categorical data have high computational complexities
limiting their use in large real-world datasets.
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Most existing AD methods examine data instances globally, i.e., w.r.t. the
entire dataset. They can detect global anomalies that exhibit anomalous charac-
teristics in the entire dataset. However, they cannot detect local anomalies that
appear to be normal when examined globally but exhibit anomalous character-
istics w.r.t. their local neighbourhood (i.e., in the local context). For example,
in Fig. 1(a), a4 and a5 have significantly lower density than normal cluster C1

in their neighbourhood but have the same density as many instances in normal
cluster C2. Most existing methods fail to detect them as anomalies. Real-world
data have complex structures and instances may exhibit characteristics that look
normal in the global perspective but suspicious in their local contexts. There are
some methods that examine anomalies w.r.t. their localities (e.g., [5,11]), but
they are limited to numeric data only.

To summarise, most existing AD methods do not work well in practical appli-
cations due to the following three main issues:

• Lack of sufficient examples of known anomalies: It is not possible to
have a good representative sample of known anomalies to generalise charac-
teristics of all possible anomalies.

• Global view of anomalies: Data often exhibit suspicious characteristics
w.r.t. their neighbourhood (in local context) that can appear to be normal in
the global context.

• Limitations to handle mixed types of data features: Most real-world
applications have numeric and categorical features, but most existing methods
can not handle mixed types of features well.

In this paper, we present a simple idea to address the above-mentioned issues
and introduce a new semi-supervised AD method. Instead of using one global
model, we propose to partition the data space into many regions and build an
AD model in each region using data falling in the region only, i.e., many local
AD models are built. To make prediction for a test instance, the AD model
learned on the region where it falls is used. Instead of just relying on a local
region from one partitioning of the space, we propose to create multiple parti-
tions of the data space and use ensemble of multiple local models learned on
local regions from each partition. It exploits the benefits of ensemble learning
to consider sufficient locality around the test instance. Though there are not
many AD models that can work well with mixed data, there are classifiers such
as traditional Decision Tree (DT) [22] that can handle numeric and categorical
features directly. We used DTs in local regions for AD without using labelled
anomalies by adding synthetic data. Our results show that an Ensemble of Local
Decision Trees (ELDT) produces better and more consistent detection results
compared to popular state-of-the-art AD methods, particularly in datasets with
mixed types of features.

2 Related Work

In the semi-supervised approach, a model is learned from a training set D of N
instances belonging to the normal class only and evaluated on a test set Q, which
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is a mixture of normal and anomalous data. Let x be a data instance represented
as an M -dimensional vector 〈x1, x2, · · · , xM 〉, where each component represents
its value of a feature that can be either numeric xi ∈ R (R is a real domain) or
categorical xi ∈ {vi1 , vi2 , · · · , viw} (where vij is a label out of w possible labels
for feature i). Let F = {A1, A2, · · · , AM} be a set of data features, also called
as attributes of data.

In this section, we review prior work related to this paper that includes AD
methods for numeric and categorical data, and ensemble approaches for AD.

2.1 Methods for Numeric Data

Because anomalies are few and different, they are expected to have feature values
that are significantly different from most data and lie in low density regions. Most
of them use distance/density-based anomaly scores to rank data according to
their degrees of outlying behaviour, e.g., Nearest Neighbours (NNs) or Support
Vectors (SVs) based methods.

In the NN-based methods, the anomaly score of x ∈ Q is estimated based on
the distances to its kNNs in D, where k is a user defined neighbourhood parame-
ter. Local Outlier Factor (LOF) [11] and kth NN distance [6] are the most widely
used NNs-based methods. Being different from normal instances, anomalies are
expected to have larger distances to their kNNs than normal instances. They
require to compute distances of x with all instances in D, which can be com-
putationally expensive when D is large. Though the nearest neighbour search
can be speed up by using indexing schemes such as k-d tree [7], their effective-
ness reduces as the number of dimension increases and become useless in high
dimensional problems [19]. Sugiyama and Borgwardt (2013) [25] showed that the
nearest neighbour search in a small subset D ⊂ D (|D| = ψ � N) is enough.
They proposed a simple, but very fast, anomaly detector called Sp where the
anomaly score of x is its distance to the nearest neighbor (1NN) in D. It has
been shown that Sp with ψ as small as 25 produces competitive results to LOF
but runs several orders of magnitude faster [25].

The SV-based methods define the boundary around normal (expected) data
and identify a set of data instances lying in the boundary called Support Vectors
(SVs). They compute the pairwise similarities of data using a kernel function.
Gaussian kernel that uses Euclidean distance is a popular choice. In the testing
phase, the anomaly score of x ∈ Q is estimated based on its kernel similarities
with the SVs. One-Class Support Vector Machine (OCSVM) [23] and Support
Vector Data Description (SVDD) [27] are widely used methods in this class. The
training process is computationally expensive in the case of large D because of
the pairwise similarity calculations.

2.2 Methods for Categorical Data

Despite the widespread prevalence of categorical/qualitative data in real-world
applications, AD in categorical data has not received much attention in the
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research community [26]. The common practice is to convert categorical fea-
tures into numeric features and use methods designed for numeric data. There
are some methods proposed in the literature specifically for categorical data
based on frequencies of categorical labels, information theory and data compres-
sion/encoding [26]. They are computationally expensive to run in large datasets
and do not perform better than using methods for numeric data by converting
categorical data into numeric data [4].

He et al. (2005) [17] proposed a method for categorical data based on fre-
quent patterns. The intuition is that an instance is more likely to be an anomaly
if it has a few or none of the frequent patterns. Akoglu et al. (2012) [2] pro-
posed a pattern-based compression technique called COMPREX. The intuition
is that the higher the cost of encoding x, the more likely it is to be an anomaly.
Aryal et al. (2016) [4] revisited the Simple Probabilistic AD (SPAD) where
multi-dimensional probability is estimated as the product of one-dimensional
probability and show that it works quite well compared to more complex state-
of-the-art methods, such as LOF, One-Class SVM, in datasets with categorical
only and mixed types of features. It uses the frequencies of categorical label in
each feature individually assuming features are independent to each other. Most
of these methods for categorical datasets except SPAD have high time and/or
space complexities limiting their use in small and low-dimensional datasets only.
SPAD is simple and arguably the fastest AD method.

2.3 Ensemble Approaches

To solve a given task, the ensemble methods build multiple models by using an
algorithm on different subsets of given data (data sampling or feature sampling)
or using different parameter settings of the algorithm [13]. The final decision of
the ensemble is an aggregation of decisions by its individual models. The main
idea is that models are different and they make different errors so that they
compensate each other’s weaknesses and results in better overall performance
than any individual model. Ensemble learning is widely studied for classification
problems and various frameworks have been proposed that can be used with
different base classifiers [9,10,28]. However, the use of ensemble learning to solve
the AD problem is rather limited [1]. Ensemble based AD methods build multiple
models using subsamples of data and/or subsets of features, e.g., Lazarevic and
Kumar (2005) [20] and Zimek et al. (2013) [29] used LOF using random subsets of
features (i.e., subspaces) and data (i.e., subsamples), respectively. AD techniques
such as iForest [21] and usfAD [3] used a collection of random trees to partition
the data space using small subsamples of data until the instances are isolated.
Each tree is using a small subset of features. The main idea of these methods
is that anomalies are expected to isolate early in the trees and lie in leaves
with low heights. They run very fast as they do not require pairwise distance
calculations. All these ensemble-based methods assume that data have numeric
features only. Most of them are not applicable to data with categorical only or
mixed features. Also, many of them build multiple global models, they can not
detect local anomalies.
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3 Our Proposal: An Ensemble of Local Decision Trees

To address the three limitations of existing AD methods in practical real-world
applications discussed in Sect. 1, we develop a new ensemble learning framework
for anomaly detection based on the of idea of Feating [28]. First, we explain
Feating for classification as used by Ting et al. (2011) [28] (Subsect. 3.1) and
then discuss how we can adapt it for anomaly detection (Subsect. 3.2).

3.1 Feating for Classification

Feature-Subspace Aggregating (Feating) [28] is an ensemble framework
developed for classification that uses an ensemble of local models. It is a fea-
ture bagging approach, ensemble learning using subsets of features of fixed size
m < M (i.e., using m-dimensional subspaces). In each subspace S ⊂ F with
|S| = m, rather than building a global model trained on the entire training set,
it first partitions the subspace using a tree structure called “Level Tree” (LT).
At each node of the tree, the space is partitioned using one of the m features in
S. Each feature in S is used only once in the tree, resulting in the maximum tree
height of m. LTs can handle both numeric and categorical features. For numeric
feature, the space is divided into two regions by the cut-point selected in the
same manner as in ordinary decision tree [22] based on information gain. For
categorical feature with w possible values, the space is partition into w regions,
one for each categorical label. Further partitioning of a node stops when the node
is either pure (i.e., has instances belonging to the same class), there are less than
minPts data instances or reaches the maximum height of m. In each impure leaf
node with more than minPts samples, a classifier is learned from the training
samples falling in the node only, i.e., a Local Model (LM) is built. For rest of
the other leaves (with less than minPts instances or pure), class probabilities
are recorded based on the training samples they have. In the testing phase, a
test instance is traversed from the root to a leaf in each LT. If a LM was built
in the leaf node, the class probabilities are the predicted probabilities of the
LM. Otherwise, the recorded class probabilities are used. The final prediction is
based on the aggregated class probabilities from multiple LTs. The enumerated
version of Feating builds

(
M
m

)
LTs, which has a large space complexity making

it infeasible in problems with large M (high-dimensional applications). To over-
come this issue, Ting et al. (2011) introduced a randomised version, where only
t � (

M
m

)
random subspaces of size m are used. It significantly improves the time

and space requirements without any significant compromise in accuracy.

3.2 Feating for Anomaly Detection

We propose the following adjustments to use Feating in semi-supervised AD,
where there are no labelled anomalies. LT building process uses class information
but in this case we do not have labelled anomalies. We are given D which is a set
of normal data only. To build each LT, we propose to consider the given data D
as “+ve” class and the same number of synthetic points are added as “-ve” class
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(a) Example dataset (b) Local Regions

Fig. 1. An example of dataset and definition of local regions. (a) C1 and C2 are clusters
of normal data, whereas a1, · · · , a5 are anomalies. (b) Note only half of the normal data
(red points) are used in the training process as “+ve” class samples. Blue points, which
are uniformly generated synthetic points, are “-ve” class samples. R1, R2, R3, and R4

are local regions created by a Level Tree. Note that local classifiers are built in regions
R1 and R4 only. (Color figure online)

Fig. 2. An example of a Level Tree in 3-dimensional subspace S = {A1, A2, A3}. Note
that A1 is a categorical feature with three possible values (a1, b1, c1), and A2 and A3

are numeric features.

as done by Shi and Horvath (2006) [24] to use Random Forest in unsupervised
problems. The values of synthetic points in each feature are selected uniformly at
random from the range of possible values, i.e., for a numeric feature, values are
selected uniformly randomly between the possible range defined by instances in
D, and for a categorical feature, values are selected randomly from the possible
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values. With the samples from “+ve” and “-ve” classes, a LT can be built exactly
in the same way as for the classification task. An example of space partition into
local region is shown in Fig. 1(b). Note that we add new “-ve” class samples for
each LT. It is possible to have two LTs using the same subset of m features if
t >

(
M
m

)
, but the two LTs will be different because of the new set of “-ve” class

samples.

Algorithm 1: Feating(D, A, m, t) - Build a set of Level Trees
Input : D - Given data, A - the set of given features, m - the maximum level

of a level tree. t - number of trees to build
Output: E - a collection of Level Trees

1 N = |D| (#training samples);
2 M ← |A| (#features);
3 minPts = �log2(N)� + 1;
4 m = �log2(M)� + 1;
5 E ← ∅;
6 for i = 1 to t do
7 // get a set of m attributes from A
8 L ← randomSetOfAttributes(A,m);
9 Ds ← addSyntheticPoints(D);

10 E ← E
⋃

BuildLevelTree(Ds, L, 0);

11 end
12 return E;

Once the space is partitioned into regions, the idea is to build a classifier to
separate “+ve” class (given training data, which are normal) from “-ve” class
(synthetic data). Anomalies are expected to have low probabilities of belonging
to “+ve” class (normal data). Local classifier is built in each leaf with more
than minPts samples from the “+ve” class and current class probabilities are
recorded in other leaves. To ensure balanced class distribution to build a classifier
in a local region, we first remove all “-ve” class samples (synthetic points) and
then add the same amount of new synthetic points (“-ve” class) as the “+ve”
class samples in the region. The synthetic points are sampled uniformly at ran-
dom from the range of possible values in the region. With the same amount of
“+ve” class and “-ve” class (newly added) samples, local classifier is built. We
use Decision Tree (DT) [22] that can handle numeric and categorical features
directly as local classifier. An example of a Level Tree in 3-dimensional subspace
is provided in Fig. 2 and the procedures to build LTs and local DTs are provided
in Algorithms 1, 2 and 3. In the testing phase the anomaly score of a test instance
x is estimated as the aggregated P (+ve|x) over t local models. Anomalies are
expected to have low aggregated score than normal data. We call the proposed
method as “Ensemble of Local Decision Trees (ELDT)”.
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Algorithm 2: BuildLevelTree(Ds, L, j) - Build a single Level Tree recur-
sively
Input : Ds - Data with synthetic points to build a tree, L - Attribute list, j -

Current tree level
Output: node - Level Tree node

1 // Check if we have enough positive samples

2 if |D+
s | < minPts then

3 return As a leaf with P+ =
|D+

s |
N

and P− = 1.0 − P+;
4 end
5 // Check if we have a pure node with all -ve class samples

6 if |D−
s | = |Ds| then

7 return As a leaf with P+ = 0.0 and P− = 1.0;
8 end
9 // Check if we have a pure node with all +ve class samples

10 if |D+
s | = |Ds| then

11 // Build a local DT in the node.

12 return BuildLocalDecisionTree(Ds);

13 end
14 if j = m then // m is the maximum level of the Level Tree

15 // Build a local DT in the node.

16 return BuildLocalDecisionTree(Ds);

17 end
18 // retrieve the next attribute from L based on current level, j
19 a ← nextAttribute(L, j);
20 // Construct a node with attribute a
21 if a is a numeric attribute then
22 // cut-point selection based on information gain

23 node.splitpoint ← findSplitPoint(a, Dt);
24 D1 ← filter(Dt, a > node.splitpoint);
25 D2 ← filter(Dt, a ≤ node.splitpoint);
26 node.branch(1) ← BuildLevelTree(D1, L, j + 1);
27 node.branch(2) ← BuildLevelTree(D2, L, j + 1);

28 else
29 // split according to categorical values

30 let {v1, . . . , vw} be possible values of a;
31 for i = 1 to w do
32 Di ← filter(Dt, a == vi);
33 node.branch(i) ← BuildLevelTree(Di, L, j + 1);

34 end

35 end
36 return node;
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Algorithm 3: BuildLocalDecisionTree(Ds) - Build a local Decision Tree
Input : Ds - Training set
Output: node - Level Tree node

1 RemoveOldSyntheticPoints(Ds);
2 DS ← addSyntheticPoints(Ds);
3 // Learn a Decision Tree

4 node.localModel ← BuildDecisionTree(DS);
5 return node;

The ensemble of local DT based on the idea of Feating addresses the three
limitations of existing AD approaches in practical problems discussed in Sect. 1.
It does not require labelled anomalies. It examines anomalies with respect to
their local context or locality defined by multiple local regions. This is useful
to detect local anomalies. Using DT that can handle categorical and/or mixed
features directly at the local regions, it works well with categorical and mixed
data.

4 Experimental Results

In this section, we present the results of our experiments conducted to evaluate
the performance of ELDT. The three parameters of ELDT were set as default
to: minPts = �log2(|D|)� + 1, (note that D is the training normal data); m =
�log2(|F |)� + 1 (note that F is the set of features of D), and t = 100. We
compared the performance of ELDT with Bagging using DT (Bag.DT) [9] and
Random Forest (RF) [10], where each model in the ensemble is a global DT for
the entire data space. They also used D as “+ve” class and the same amount of
synthetic points as “-ve” class as did in building level trees in ELDT. Each tree
in the ensemble has different “-ve” class samples to ensure diversity between
trees. We considered the following three state-of-the-art AD methods as main
baselines:

1. iForest [21]: It is an ensemble-based AD method. It uses a collection of t
random trees, where each tree Ti is constructed from a small random sub-
sample of data Di ⊂ D, |Di| = ψ (=256 by default). The idea is to isolate
each instance in Di. Anomalies are expected to have shorter average path
lengths over the collection of random trees. It produces good results and runs
significantly fast. It works only with numeric features, so categorical features
are converted into numeric features using one-hot encoding. It is unable to
detect local anomalies [5].

2. LOF [11]: It is the most widely used AD method based on kNN (k = �√N�
by default) search. It compares the density of a test instance with the average
densities of its kNNs. It examines anomalies w.r.t. to their locality defined
by the kNNs. It is a local model-based existing AD method. It is also mainly
for numeric data, categorical features have to be first converted into numeric
features. It is computationally very expensive when D is large.



Ensemble of Local Decision Trees for Anomaly Detection in Mixed Data 697

3. SPAD [4]: It is a simple probabilistic AD method, where multi-dimensional
probability is estimated as the product of one-dimensional probabilities
assuming features are independent. It works with discrete or categorical data.
Numerical features are converted into categorical features through equal-
width discretisation [15] with the number of bins b (=�log2(N)� + 1 by
default). Despite its simplicity, it has been shown to perform better than
more complex methods such as LOF, One-Class SVM and iForest [4].

We used 10 benchmark datasets with categorical only, mixed (categorical and
numeric) and numeric only features. The characteristics of datasets used in terms
of data size, dimensionality (numeric and categorical) and proportion of anoma-
lies are provided in Table 1. Most of these datasets are from the UCI Machine
Learning Repository [14]1. All methods are implemented in JAVA using the
WEKA platform [16]. We used Area Under the Receiver Operating Character-
istic (ROC) Curve (AUC) as the performance evaluation metric. We conducted
10 trials of different train (D) and test (Q) sets and presented the average AUC
over 10 runs.

Table 1. Characteristics of data sets. #Inst: data size, #Feat: num. of features,
#NFeat: num. of numeric features, #CFeat: num. of categorical feaures, anomaly%:
percentage of anomalies

Name #Inst #Feat #NFeat #CFeat anomaly%

Census 299285 40 7 33 6.0

Covertype 287128 12 10 2 1.0

Kddcup99 64759 41 34 7 6.5

U2r 60821 41 34 7 0.5

Mnist 20444 96 96 0 3.5

Annthyroid 7200 21 6 15 7.5

Chess 4580 6 0 6 0.5

Mushroom 4429 22 0 22 5.0

Hypothyroid 3772 29 7 22 7.5

Spambase 2964 57 57 0 6.0

The average AUC results of contending methods are provided in Table 2. The
results show that ELDT produced best results overall with the average AUC of
0.918 and average rank of 2.0 over 10 datasets used. It had the best AUC in
four out of 10 datasets followed by Bag.DT in three datasets, RF and SPAD in
two datasets each, and iFoest and LOF in only one dataset each. The closest
contender in terms of consistent performance across datasets is SPAD the average
AUC of 0.864 and the average rank of 3.3. Though Bag.DT produced the best
results in three datasets, it performed worst in the other four datasets, whereas
1 http://archive.ics.uci.edu/ml.

http://archive.ics.uci.edu/ml
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ELDT was ranked second in three datasets, third in two datasets and forth in the
remaining one dataset. This results show that ELDT produced more consistent
results across different datasets with numeric only, categorical only and mixed
attributes and those with local and global anomalies. Among the three baselines,
SPAD has the best overall performance. These results are consistent with those
claimed by the authors in [4].

The runtime results in the five largest datasets with more than 10,000
instances are presented in Table 3. These results show that ELDT ran slower
than all contender except LOF, but it had the runtimes in the same order of
magnitudes with them. It was at last one order of magnitude faster than LOF,
two orders of magnitude faster in the largest dataset.

Table 2. Average AUC over 10 runs. The best performance in each dataset is high-
lighted on bold.

Dataset ELDT Bag.DT RF iForest LOF SPAD

Census 0.713 0.561 0.57 0.589 0.491 0.684

Covertype 0.995 0.974 0.984 0.945 0.992 0.966

Kddcup99 0.993 0.504 0.636 0.998 0.896 0.998

U2r 0.988 0.515 0.576 0.978 0.931 0.988

Mnist 0.815 0.691 0.771 0.841 0.880 0.824

Annthyroid 0.921 0.975 0.802 0.771 0.612 0.705

Chess 0.998 0.997 1.000 0.889 0.968 0.995

Mushroom 0.999 1.000 1.000 0.791 0.996 0.977

Hypothyroid 0.953 0.977 0.894 0.694 0.607 0.723

Spambase 0.808 0.549 0.718 0.805 0.659 0.781

Avg. AUC 0.918 0.774 0.795 0.830 0.803 0.864

Avg. Rank 2.0 3.9 3.4 3.8 4.3 3.3

Table 3. Average runtime (in seconds) over 10 runs in the five largest datasets with
more than 10,000 instances.

Dataset Ft.DT Bag.DT RF iForest LOF SPAD

Census 420 346 119 180 58,140 180

Covertype 1,621 1,572 187 39 10,429 150

Kddcup99 39 88 20 6 1,424 7

U2r 32 79 20 4 1,431 8

Mnist 84 282 19 2 160 6
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4.1 Sensitivity of Parameters

In this section, we present the results of experiments conducted to assess the
sensitivity of the three parameters, m (the size of subspaces that determines
the maximum height of Level Trees), minPts (minimum points required at leaf
nodes to build local AD models) and t (ensemble size), in the performance of
ELDT. We varied one parameter at a time setting the other two parameters
to default values. For this experiments, we used two datasets - Annthyroid and
Mnist. The results are presented in Figs. 3 and 4. The results show that the
performance of ELDT can be improved by setting m and minPts properly.
In terms of t, higher the better. In both cases, performance improved when t
was increased and started to flatten. Increasing t also increases time and space
complexities linearly. Therefore, there has to be a trade-off between performance
and complexities.
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Fig. 3. Annthyroid: Effect of parameter in ELDT
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Fig. 4. Mnist: Effect of parameter in ELDT

5 Conclusions and Future Work

In this paper, we presented a simple idea to address the three main limitations of
existing Anomaly Detection (AD) methods in practical applications: (i) lack of
sufficient examples of known anomalies; (ii) unable to detect local anomalies; and
(iii) inability to handle mixed attributes well. Instead of using one global model,
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we propose to partition the data space into many regions and build an AD model
in each region using data falling in the region only, i.e., many local AD models
are built. To make prediction for a test instance, the AD model learned on the
region where it falls is used. Instead of just relying on a local region from one
partitioning of the space, we proposed to create multiple partitions of the data
space and use ensemble of multiple local models learned on local regions from
each partition. It exploits the benefits of ensemble learning to consider sufficient
locality around the test instance. We used the idea of Feating to partition the
data space. Though there are not many AD models that can work well with
mixed data, there are classifiers such as traditional Decision Tree (DT) that can
handle numeric and categorical features directly. We used DTs in local regions
for AD without using labelled anomalies by adding synthetic data. We presented
a new AD method called Ensemble of Local Decision Trees (ELDT). Our results
show that ELDT produces better and more consistent detection results compared
to popular state-of-the-art AD methods, particularly in datasets with mixed
types of features.

Our results suggest that ensemble of local AD models produces better results
than using a single global model. AD algorithms that can handle categorical and
numeric features directly without any conversion produce better results than
using methods designed for only type of features, which require all features to
be converted into the supported type. AD problems can be converted into clas-
sification problems by adding uniformly distributed synthetic points and classi-
fication algorithms can be used. Our results indicate that it is a very promising
line of research to investigate further to develop a flexible and robust AD frame-
work for practical use. It can lead to a general ensemble learning framework for
AD, where different space partitioning techniques can be used to define local
regions and any classifier or AD algorithm can be used in local regions. In this
paper, we presented one simple variant of it. In future, we would like to focus
on: (i) using other classifiers (e.g., Naive Bayes, KNN, SVM, Neural Networks,
etc.) and AD methods (e.g., LOF, SPAD, One-Class SVM, etc.) as local models;
and (ii) investigating different implementations of space partitioning: using trees
(e.g., Feating), grids, nearest neighbours, etc.
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Abstract. Machine teaching under strong simplicity priors can teach
any concept in universal languages. Remarkably, recent experiments sug-
gest that the teaching sets are shorter than the concept description itself.
This raises many important questions about the complexity of concepts
and their teaching size, especially when concepts are taught incremen-
tally. In this paper we put a bound to these surprising experimental
findings and reconnect teaching size and concept complexity: complex
concepts do require large teaching sets. Also, we analyse teaching cur-
ricula, and find a new interposition phenomenon: the teaching size of a
concept can increase because examples are captured by simpler concepts
built on previously acquired knowledge. We provide a procedure that not
only avoids interposition but builds an optimal curriculum. These results
indicate novel curriculum design strategies for humans and machines.

Keywords: Machine teaching · Interposition · Kolmogorov complexity

1 Introduction

A teacher instructing a series of concepts to a learner using examples would ide-
ally design a curriculum such that the whole teaching session is shortest. For one
concept, the field of machine teaching has analysed the efficiency of the teacher,
the learner or both, for different representation languages and teaching settings
[5,16,28,37,42]. For more than one concept, however, we need to consider differ-
ent sequences of concepts, or curricula, to make learning more effective. While
there has been extensive experimental work in curriculum learning [36], the the-
oretical analysis is not abundant and limited to continuous models [12,26,40]. It
is not well understood how curriculum learning can be optimised when concepts
are compositional, with the underlying representation mechanisms being rich
languages, even Turing-complete. Also, in a curriculum learning situation where
a teacher chooses the examples sequentially, it is surprising that the connec-
tion with machine teaching has not been made explicit at a general conceptual
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level, with only a specific minimax approach for gradient-based representations
[10,11,41]. In other words, to our knowledge, a theoretical framework has not
yet been articulated for curriculum learning in machine teaching, or curriculum
teaching, when dealing with universal languages, as a counterpart to incremental
inductive inference based on simplicity [34,35].

While the teaching dimension has been the traditional metric for determining
how easy it is to teach a concept [42], the teaching size [38] is a new metric that
is more reasonably related to how easy it is to teach an infinite compositional
concept class. It is also more appropriate to understand ‘prompting’ of language
models as a kind of teaching, where users need to think of the shortest prompts
that make a language model such as BERT, GPT-2 or GPT-3 achieve a task by
few-shot learning [4,6,27]. However, as far as we know, the following issues are
not clear yet: (1) What is the relationship between the Kolmogorov complexity of a
concept and how difficult it is to be taught under the teaching size paradigm? and
(2) Is there a way to extend machine teaching, and teaching size in particular,
to consider the notion of optimal teaching curricula?

Theorem 1 addresses the first question and shows that concepts with high
complexity are difficult to teach, putting a limit to the surprising experimental
finding recently reported in [38], where teaching a concept by examples was
usually more economical (in total number of bits) than showing the shortest
program for the concept. This connection suggests that the second question may
rely on a strong relation between incremental learning using simplicity priors
and curriculum teaching. For instance, consider the concepts c+ for addition, c×
for multiplication, c∧ for exponentiation and c0 for the removal of zeros (Fig. 1).
If the concept of c+ is useful to allow for a shorter description of c×, is it also
reasonable to expect that c+ would also be useful to teach c× from examples? Or
even c∧? In general, is the conditional algorithmic complexity K(c2|c1) related
to the minimal size of the examples needed to teach c2 after having acquired c1?

+

×
∧

0

Fig. 1. Curriculum teaching for a set of concepts.

Our perspective studies the sequence of learning a set of concepts, instead
of learning a sequence of instances under the same concept. In the general case,
we define a teaching curriculum as a set of partial alternative sequences, such as
the top and bottom branches in Fig. 1. The order between branches is irrelevant,
but the order of concepts inside each branch is crucial. This tree structure is
proposed as future work in [26]. Given a set of concepts, is there a curriculum
that minimises the overall teaching size?

Our second group of contributions turns around this new concept of teach-
ing curriculum. We provide a definition of conditional teaching size, given some



Optimal Teaching Curricula with Compositional Simplicity Priors 707

other concepts already taught, TS(c|c1, . . . , cn). We show that, in general,
K(c1|c2) < K(c2|c1), for conditional Kolmogorov complexities, does not imply
TS(c1|c2) < TS(c2|c1), and vice versa. Furthermore, given a concept c, it is
not true that TS(c|B) ≤ TS(c), ∀B. We find a new interposition phenomenon:
acquired concepts may increase the teaching size of new concepts. We give con-
ditions to avoid or provoke interposition. Theorems 3 and 4 are key results in
this direction, providing an explicit range where interposition might happen.
Finally, we present an effective procedure, I-search, to design optimal curricula,
minimising overall teaching size, for a given set of concepts.

2 Notation and Background

Let us consider a machine M and a universal (i.e., Turing complete) language
L. We assume that L is formed by a finite set of instructions in an alphabet Υ ,
each of them been coded with the same number of bits. Hence, each program
p in language L can simply be represented as a string in Σ = {0, 1}∗, whose
length is denoted by �̇(p) (in number of instructions) and denoted by �(p) (in
bits). There is a total order, ≺, over programs in language L defined by two
criteria: (i) length and (ii) lexicographic order over Υ only applied when two
programs have equal size. Programs map binary strings in Σ to Σ ∪ ⊥, denoted
by p(i) = o, with p(i) =⊥ representing that p does not halt for i. Two programs
are equivalent if they compute the same function.

We say that c is an L-concept if it is a total or partial function c : Σ → Σ∪⊥
computed by at least a program in language L. The class of concepts defined by
all programs in L is denoted by CL; [p]L denotes the equivalence class of program
p. Given c ∈ CL, we denote [c]L as the equivalence class of programs in L that
compute the function defined by c. Examples are just pairs of strings, and their
space is the infinite set X = {〈i, o〉 : 〈i, o〉 ∈ Σ × (Σ ∪ ⊥)}. A witness can be
any finite example subset of X, of the form S = {〈i1, o1〉, . . . , 〈ik, ok〉}. In order
to calculate the size of these sets, we consider self-delimiting codes. Let δ be the
number of bits needed to encode S, using certain prefix code. For instance, if we
consider Elias coding [7], the string 01010010001001000101 (size = 20) expresses
the example set {〈1, 010〉, 〈0, 1〉} unambiguously. The size of an example set is
the size of its encoding (e.g., δ({〈1, 010〉, 〈0, 1〉} = 20 in Elias coding). For output
strings, the natural number to be encoded is increased by 1, to accommodate
for ⊥. We also define a total order � on X, i.e., ∀S, S′ such that S � S′ then
δ(S) ≤ δ(S′) with any preference (e.g., lexicographic) for equal size.

A concept c defines a unique subset of the example space X and we call any
element in that subset a positive example. A concept c satisfies example set S,
denoted by c � S, if S is a subset of the positive examples of c. For instance, a
witness set for the concept c0 (remove zeros) is {〈10011, 111〉, 〈001, 1〉}. Example
sets cannot have different outputs for equal inputs: {〈1, 00〉, 〈1, 01〉} is not valid.

A program p is compatible with S = {〈ij , oj〉}k
j=1 ⊂ X, denoted by p � S, if

pS(ij) = oj for every j ∈ {1, . . . , k}. For a finite example set S, there is always a
program, denoted by p̈S , that implements a conditional hard-coded structure of
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if-then-elses (trie) specifically designed for S. If we know the number of bits of
input i and the set of examples in S, the number of comparisons using a trie-data
structure is linearly time-bounded. Namely, for any p̈S , there exists a constant,
ρ, such that ρ ·min{�(i), �(imax)}+ �(omax) is an upper bound of time steps for
each input i, where �(imax), �(omax) are the lengths of the longest input string
and output string in S, respectively. In general, for any program that employs a
trie-data structure for S, there exists a time-bound linear function, denoted by
λL(i, S), that represents an upper bound in time steps on every input i.

Complexity functions f : N → N act as time bounds. We say that a program p
is f-compatible with the example set S = {〈ij , oj〉}k

j=1 ⊂ X, denoted by p �f S,
if p(ij) = oj within max{f(�(ij)), λL(ij , S)} time steps (time-bound) for each
j ∈ {1, . . . , k}. In other words, within time bound, for each pair 〈i, o〉 ∈ S the
program p on input i: (1) outputs o when o �=⊥ or (2) does not halt when
o =⊥. Note that: (i) For any complexity function f and any example set S, there
is always1, a program f-compatible with S, (ii) there may be programs p such
that p �f S ∧ p � S, if f and S do not guarantee enough time bound and (iii)
larger complexity functions distinguish more programs.

3 Absolute Teaching Size and Complexity

Now we can study how a non-incremental teacher-learner setting works and the
relationship between teaching size and Kolmogorov complexity.

Following the K-dimension [2,3], seen as preference-based teaching using sim-
plicity priors [8,15], we assume that the learner is determined to find the shortest
program (according to the prior ≺). Namely, the learner Φ returns the first pro-
gram, in order ≺, for an example set S and a complexity function f as follows:

Φf
�(S) = arg min

p

≺ {�(p) : p �f S}

Note that the f-bounded Kolmogorov complexity of an example set S, K f(S),
is the length of the program returned by the learner K f(S) = �(Φf

�(S)). We say
that S is a witness set of concept c for learner Φ if S is a finite example set such
that p = Φf

�(S) and p ∈ [c]L.
The teacher selects the simplest witness set that allows the learner to identify

the concept, according to set size (δ) and associated total order �, as follows:

Ωf
�(c) = arg min

S

�
{
δ(S) : Φf

�(S) ∈ [c]L)
}

The K f -teaching size of a concept c is TSf
�(c) = δ(Ωf

�(c)).
Every program the teacher picks defines a concept c. The teacher-learner

protocol is computable for any complexity function f and able to create pairs
(pc, wc), where pc defines a concept c and wc is a witness set of c. We can think of
these pairs as if they were inserted sequentially in the so-called f-Teaching Book

1 Note that this p̈S is ensured by the max with time costs.
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ordered by wc, with no repeated programs or witness sets. For example, if we
consider the concept a ∈ CL for swapping ones and zeros in a binary string, there
will be a pair (pa, wa) in the f-Teaching Book, e.g., containing a witness set like
wa = {〈10, 01〉, 〈110, 001〉} that the teacher would provide with which the learner
would output pa, a program that swaps 1 and 0. Theorem 1 in [38] shows that
for any concept c ∈ CL, there exists a complexity function f such that there is a
pair (pc, wc) in the f-Teaching Book. The teaching size makes more sense than
the traditional teaching dimension (the smallest cardinality of a witness set for
the concept) because some concepts could be taught by very few examples, but
some of them could be extremely large. Also, the use of size instead of cardinality
allows us to connect teaching size and Kolmogorov complexity, as we do next.

Our first result2 shows an equipoise between teaching size and data compres-
sion, an extra support for machine teaching; the compressing performance of the
learner and the minimisation of the teaching size go in parallel.

Proposition 1. Let f be a complexity function and Φf
� the learner. There exist

two constants k1, k2 ∈ N, such that for any given pair (w, p) ∈ f-Teaching Book
we have that:3

K(p) ≤ δ(w) + k1 and K(w) ≤ �(p) + k2 (1)

Proposition 1 is a key result ensuring that the size difference between pro-
grams and witness sets is bounded: a short witness set would not correspond
with an arbitrarily complex concept and vice versa. This puts a limit to the
surprising empirical observation in [38], where the size of the witness sets in bits
was usually smaller than the size of the shortest program for that set, i.e., in
terms of information it was usually cheaper to teach by example than sending
the shortest description for a concept.

There is another close relationship between the Kolmogorov complexity of a
concept and its teaching size. First we need to define the complexity of a concept
through the first program of a concept in language L.

p∗
c = arg min

p

≺ {�(p) : p ∈ [c]L}

For every concept c ∈ CL, we will simply refer to the Kolmogorov complexity of
a concept c with respect to the universal language L as KL(c) = �(p∗

c). Now,

Theorem 1. Let L be a universal language, M be a universal machine and kM

be a constant that denotes the length of a program for Φ in M .4 For any concept
c ∈ CL, there exists a complexity function f, such that KL(c) ≤ TSf

�(c) + kM .
2 The proofs can be found in [9].
3 We use the standard definition of K using a monotone universal machine U [19] (we

will drop U when the result is valid for any U), applied to binary strings (where
programs and example sets are encoded as explained in the previous section). With
Kf we refer to a non-universal version where the descriptional machine is the learner.

4 For any universal Turing machine M , a finite program can be built coding an inter-
preter for Φ in M and taking wc as input. The length of this ‘glued’ program does
not depend on the concept c but on the machine M to glue things together and how
many bits of the program instructions are required to code Φ, i.e., KM (Φ).
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This gives an upper bound (the teaching size) for the Kolmogorov complexity
of a concept. On the other hand, this theorem implies that concepts with high
complexity are difficult to teach in this setting. The surprising observation found
in [38] of some concepts having shorter TS than K has a limit.

4 Conditional Teaching Size

In this section we introduce the notion of conditional teaching size and the
curriculum teaching problem. We now assume that the learner can reuse any
already learnt concept to compose other concepts. The curriculum teaching
problem is to determine the optimal sequential way of teaching a set of con-
cepts Q = {c1, c2, . . . , cn}, in terms of minimum total teaching size. Let
TS(ci|cj , ck . . . ) be the conditional teaching size of concept ci, given the set
of concepts {cj , ck . . . } previously distinguished by the learner. The challenge is
to minimise TS(c1) + TS(c2|c1) + TS(c3|c1, c2) + . . . .

In this new setting we need a definition of TS(ci|cj) that considers that (1)
a concept c has infinitely many programs that generate it, so which one the
learner has identified may be important, and (2) the learner must have some
memory, where that program is stored. Interestingly, if we assume that memory
is implemented by storing the identified programs in a library, where the learner
can only make calls to—but not reuse its parts—, then it is irrelevant which
program has been used to capture concept c, since the learner only reuses the
functional behaviour of the program5.

4.1 Conditional Teaching Size and Minimal Curriculum

We define a library B = {p1, . . . , pk}, as a set of programs in the universal
language used by the learner. Let |B| = k the number of primitives. We assume
that Υ always includes an instruction @ for making static6 library calls. We use
@i to denote the instruction that calls the primitive that is indexed as i in the
library. If |B| = 1, then @ needs no index. Accordingly, the length of a call to
the library is �(@i) = �(@) + log2(|B|) = log2(|Υ |) + log2(|B|) bits.

Let p, p′ be programs in the universal language L and B a library. We say
that a program p contains a call to p′ when @i is a substring of p and i is the
index of p′ ∈ B. LB denotes a language L that implements static calls to a
library B. Even with static calls, the flow of the program may never reach @
for an input. Interestingly, we can avoid this undecidable question when dealing
with programs in the teaching book by considering @ as the last instruction
regarding lexicographical order.
5 If the learner uses a complexity function f, then we may have that a particular pro-

gram p1 identifies c1 and c1 is very useful for c2, but p1 is too slow to be used in
any reasonably efficient program for c2, so becoming useless incrementally. Compu-
tational time has also been considered in other machine teaching frameworks [21,43].

6 There is no loss of generality here, since every program that uses dynamic calls can
be rewritten only using static calls [1].
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Lemma 1. Let f be a complexity function and B a library. For any (w, p) ∈
f-Teaching Book, if p has a call to B then p effectively reaches @ and executes
a primitive on at least one input of w.

Let us use ṗ to denote program @i, where i is the index of p in the library.

Lemma 2. Let B be a library. The language LB satisfies: ṗ ≺
p′, ∀p′ such that p′ /∈ [p]L ∧ p′ has a call to p.

Now, we are able to redefine the learner, Φf
�, and the time-bounded Kol-

mogorov complexity for a given library.

Definition 1. Let f be a complexity function, B a library and S an example
set. The learner Φ calculates the first program for S in language LB :

Φf
�(S|B) = arg min

p∈LB

≺ {�(p) : p �f S}

The f-bounded Kolmogorov complexity of S, denoted by K f(S|B), is the length
of the program returned by the learner: K f(S|B) = �

(
Φf

�(S|B)
)
. The extension

of the teacher, denoted by Ωf
�(c|B), also selects the shortest witness set that

makes the learner distinguish the concept:

Ωf
�(c|B) = arg min

S

�
{
δ(S) : Φf

�(S|B) ∈ [c]LB
)
}

And the definition of the K f -teaching size of a concept c is TSf
�(c|B) =

δ(Ωf
�(c|B)).

We can also extend Theorem 1 in [38].

Corollary 1. Let L be a universal language and B a library. For any concept c
in CLB

, there is a complexity function f so that the f-Teaching Book will contain
some (pc, wc) with pc ∈ [c]LB

and TSf
�(c|B) = δ(wc).

Sometimes we will refer to the original L OR the augmented LB depending
on whether we see it conditional to B or not. We are now in position to give a
formal definition of the conditional teaching size given a set of concepts.

Definition 2. Let a ∈ CL, {ci}n
i=1 ⊂ CL and let pi = Φ(Ωf

�(ci)), for each
i = 1, . . . , n. Let B = {pi}n

i=1. We define the conditional teaching size of concept
a given the concepts {ci}n

i=1, denoted by TSf
�(a|c1, . . . , cn), as

TSf
�(a|c1, . . . , cn) = TSf

�(a|B)

The programs that identify the concepts are in the same f-Teaching Book.
We now give a definition of curriculum. Given a set of concepts, a curriculum

is a set of disjoint sequences covering all the concepts. Our notion of curriculum
is more general than just a simple sequence. If some branches are unrelated,
a curriculum should not specify which branch comes first, and are considered
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a

b

c d

e
f

g

TS(a)

TS(b|a)
TS(c|a, b) TS(d|a, b, c)

TS(e)
TS(f |e)

TS(g)

Fig. 2. Curriculum {a → b → c → d, e → f, g} for a set of concepts {a, b, c, d, e, f, g}.

independent ‘lessons’. We will see how this flexibility is handled by the algorithm
that finds the optimal curriculum in Sect. 5. For instance, Fig. 2 shows how a set
of concepts {a, b, c, d, e, f, g} is partitioned into three branches: {a → b → c →
d, e → f, g}, where a → b means that b must come after a in the curriculum. For
each branch, there is no background knowledge or library at the beginning. The
library grows as the teacher-learner protocol progresses in each branch.

Definition 3. Let Q = {ci}n
i=1 a set of n labelled concepts. A curriculum π =

{σ1, σ2, · · · , σm} is a full partition of Q where each of the m subsets σj ⊂ Q has
a total order, becoming a sequence.

We denote Q as the set of all the curricula in Q. The order in which the
subsets are chosen does not matter, but the order each subset is traversed does.
For example, the curriculum π = {a → b → c → d, e → f, g} can have many
paths, such as abcdedfg or gabcdef . But note that π is different from π′ = {b →
a → c → d, f → e, g}. It is easy to check that, for any Q with n concepts, the
number of different curricula is |Q| = n! · (∑n−1

k=0

(
n−1

k

) · 1
(k+1)!

)
.

In what follows we will consider that all concepts are in the original f-
Teaching Book, so they can be taught independently. This is not an important
constraint, given Theorem 1 in [38] and Corollary 1. With this we ensure the
same f for all of them. Now we can define the teaching size of a curriculum:

Definition 4. Let f be a complexity function and let Q be a set of concepts
that appear in the original f-Teaching Book. Let π = {σ1, σ2, · · · , σm} a curricu-
lum in Q. We define the teaching size of each sequence σ = {c1, c2, ..., ck} as
TSf

�(σ) = TSf
�(c1) +

∑k
j=2 TSf

�(cj |c1, . . . , cj−1). The overall teaching size of π is
just TSf

�(π) =
∑m

i=1 TSf
�(σi).

We say that a curriculum in Q is minimal, denoted by π∗, if no other has
less overall teaching size.

4.2 Interposition and Non-monotonicity

We now show a teaching phenomenon called interposition: new acquired concepts
may lead to an increase in teaching size. The phenomenon might not even pre-
serve the relationship established between two concepts, in terms of conditional
Kolmogorov complexity, when considering conditional teaching size.
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Definition 5. We say that B is an interposed library for concept c if TS(c|B) >
TS(c); if B = {p′} we say that p′ is an interposed program for c.

Proposition 2. For any (wc, pc) ∈ f-Teaching Book, such that @ ≺ pc, there is
an interposed library for concept c.

The above proposition means that virtually every concept (represented in the
teaching book by a program of more than one instruction) may be interposed by
a primitive that makes the witness set lead to another concept. Not only may
some concepts be useless for the concepts yet to come in the curriculum, but
that they may even be harmful. This will have important implications when we
look for minimal curricula in the following section.

This contrasts with conditional Kolmogorov complexity, where for every a
and b we have that K(a|b) ≤ K(a). Given this, we can study the monotonicity
between concept complexity and teaching size. Namely, is there any relationship
between K(a|b) ≤ K(b|a) and TS(a|b) ≤ TS(b|a)? We now show that, for any
universal language, the inequalities aforementioned have, in general, different
directions. First, we give the following definition.

Definition 6. Let c ∈ CL and let B be a library. We define the Kolmogorov
conditional complexity of a concept c given a library B as KLB

(c) = �(p∗
c) where

p∗
c is calculated using LB . We use the notation K(c|B) = KLB

(c)

We now extend the conditional Kolmogorov complexity to a set of concepts
through programs that identify the concepts given in the same f-Teaching Book:

Definition 7. Let a ∈ CL, the set {ci}n
i=1 ⊂ CL and pi = Φ(Ωf

�(ci)), for each
i = 1, . . . , n. Let B = {pi}n

i=1. We define the Kolmogorov complexity of concept
a given the concepts {ci}n

i=1, denoted by K(a|c1, . . . , cn), as

K(a|c1, . . . , cn) = K(a|B)

In words, the conditional complexity of a concept given a set of concepts is
equal to the conditional complexity of the concept given the canonical programs
for those concepts as extracted from the original teaching book.

We now show the non-monotonicity between K and TS:

Theorem 2. There exist two concepts a, b ∈ CL and a complexity function, f,
such that K(a|b) < K(b|a) and TSf

�(a|b) > TSf
�(b|a).

When considering conditional teaching size for curriculum learning, we need
general conditions to avoid interposition. For instance, an important reduction
of program size in language LB usually minimises the risk of interposition.

Corollary 2. Let (wc, pc) ∈ f-Teaching Book, with pc ∈ [c]L. If there exists a
library B and a witness set w, verifying the following conditions (1) δ(w) < δ(wc)
and (2) the first program p′

c ∈ [c]LB
, using order ≺, such that p′

c �f w, precedes
any other program p in language LB , satisfying p �f w, then TSf

�(c|B) < TSf
�(c).

These conditions to avoid interposition are strong, since we shall elucidate,
e.g., whether a program is the shortest one, using a time complexity bound f.
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5 Minimal Curriculum: Interposition Range and I-search

One key reason why interposition is hard to avoid is the existence of programs
(and concepts) with parallel behaviour, i.e., programs with equal inputs-outputs
up to large sizes of the inputs, e.g., one implementing the even function, and
the other doing the same except for the input 2300. However, in practice, the
concepts we use in the break-out for a curriculum do not have this problem. For
instance, we can use addition to teach multiplication. They coincide in a few
cases, 2+2 = 4 and 2×2 = 4, but they clearly differ in many other short inputs.

Thus, let a, b be distinct concepts such that ∃(wa, pa), (wb, pb) ∈ f−Teaching
Book, with pa, pb in L verifying wa �f pb and wbfpa. Assume that we use wa first
and the learner outputs pa, and adds it to B = {pa}. With this increased LB , if
we give wb to the learner, it does not output pa since pa �f wb. However, there
might still be interposition. For instance, suppose that L has four instructions:
x, y, z and t. Let B = {xx} and suppose that pb = zytxz is f-compatible with wb.
Suppose that there exists p = xxytxx, expressed as p = @yt@ in LB , such that
p �f wb. Program p would interpose to pb. It would be important to know about
such programs p, i.e., the ones that precede pb in LB and are posterior in L.

5.1 Interposition Range: I-sets

Firstly, we define the set of interposed programs.

Definition 8. Let w be a witness set and B be a library. Let p be a program
in language LB such that p �f w. We define the I-set of interposed programs in
language LB for p and w as I

f
w(p|B) = {q in LB : q �f w and q ≺ p}.

We now show how large the I-sets can be. To do that, we use the size of a
program when its library calls are unfolded, i.e., given a program p and a library
B, we use ◦(p) to denote the program that is equivalent to p (as it worked in
LB), where each primitive call @ has been replaced by the instructions of the
called primitive in B.

Given an I-set, we call size-range, denoted as [imin, imax], to the range of
i = �̇(◦(q)), ∀q ∈ I-set. The call-range, denoted as [jmin, jmax], is the range of
the number of library calls, j, ∀q ∈ I-set. We call s/c-ranges to both ranges;
interposition occurs within them. The following theorem gives the s/c-ranges
explicitly and provides a bound for the cardinality of the I-set.

Theorem 3. Let (wa, pa), (wb, pb) ∈ f-Teaching Book, with pa, pb in L and
pa �f wb. Consider the library B = {pa}. Let p′

b an equivalent program to pb

for LB . Then, the cardinal of I
f
wb

(p′
b|B) is bounded by

∑
i

(∑
j

(
i−�̇(pb)·j+j

j

) ·
(|Υ | − 1)(i−j·�̇(pb))

)
with i, j ∈ N ranging in the intervals: (1) imin = �̇(pb),

imax = 1 + (�̇(p′
b) − 1) · �̇(pa), jmin = � i−�̇(p′

b)

�̇(pa)−1
� and jmax = � i

�̇(pa)
�, when

1 < �̇(pa) < �̇(pb); (2) imin = �̇(pa)+1 and the rest is as (1), when �̇(pa) ≥ �̇(pb).



Optimal Teaching Curricula with Compositional Simplicity Priors 715

Could we identify an empty I-set, based just on the sizes of the programs
involved? It happens when the s/c-ranges define an empty region. In Theorem 3
(1), it occurs whenever imax < imin. Namely, we have I

f
wb

(pb
′|B) = ∅, when:

�̇(pb) > 1 + (�̇(p′
b) − 1) · �̇(pa) (2)

For instance, if �̇(pa) = 4, �̇(pb) = 8 and we know that �̇(pb
′) = 2, then imin = 8

and imax = 1+(2−1) ·4 = 5. We see that this becomes more likely as pb is much
greater than pa and the program for b using B, i.e., pb

′, is significantly reduced
by the use of B = {pa}.

Let p′ be the first program in [b]LB
such that p′ �f wb. With the conditions

of Theorem 3 (1), p′ must be equivalent to pb and operating with Eq. 2 we get
�̇(p′) < �̇(pb)−1

�̇(pa)
+ 1, which means there is no interposition for any program for b

by including B = {a} and TSf
�(b|a) ≤ TSf

�(b). But, since �(p′
b) ≥ K(b|a) we also

have that Eq. 2 is impossible when K(b|a) ≥ ( �̇(pb)−1

�̇(pa)
+ 1) · log2 |Υ |.

We now consider a library with more than one primitive. We cannot extend
Theorem 3 as a Corollary, since the relationships involved change completely,
but we can connect both cases through the s/c-ranges.

Theorem 4. Let {(wm, pm)}n
m=1, (wc, pc) ∈ f-Teaching Book, with pc, pm in L,

∀m. Consider B = {pm}n
m=1 with pm �f wc, ∀m, and 1 < |B|. Let pc

′ be an equiv-
alent program to pc for LB . Let D, r ∈ N such that �(p′

c) = D ·�(@i)+r, i.e., they
are the divisor and the remainder of the division �(p′

c)/�(@i). Note that �(@i) =
log2 |Υ | + log2 |B|. Let pmax = max≺{pm}n

1 and pmin = min≺{pm}n
1 . Then, the

cardinal of I
f
wc

(pc
′|B) is bounded by |B| · ∑�̇(p′

c)
s=2

(∑s
t=1(|Υ | − 1)s−t · |B|t−1

)

and the s/c-intervals are: (1) if 1 < �̇(pmin) ≤ �̇(pc), then imin = �̇(pc), imax =
D · �̇(pmax)+�r/ log2 |Υ |�, jmin = � �̇(p′

c)−�̇(◦(q))
�̇(@i)−�̇(pmax)

� and jmax = min{D, � �̇(◦(q))
�̇(pmin)

�};

(2) if �̇(pc) < �̇(pmin), then imin = �̇(pmin) + 1 and the rest is as in (1).

We need D · �̇(pmax) + �r/ log2 |Υ |� < �̇(pmin) + 1, to avoid interposition
directly, in the same conditions as in Theorem4 (1). It entails �(pc

′) < �(@i)
when �r/ log2 |Υ |� = 0 in the extreme case. For Theorem 4 (2), an unfeasible
s-range implies D < �̇(pc)−	r/ log2 |Υ |


�̇(pmax)
, which is restrictive.

5.2 Teaching Size Upper Bounds: I-safe

In practice, we deal with a program p that has the desired behaviour for a given
witness set, but there may be interposition. If we know which the interposed
programs are, then it is possible to get an upper bound of the teaching size of
the concept that defines p, by deflecting interposition, refining the witness sets.

We employ I-safe witnesses: example sets attached to input/output pairs.
For instance, if we want to teach exponentiation, a set of examples might be
{(3, 1) → 3, (2, 2) → 4}. This witness set is compatible with exponentiation, but
also compatible with multiplication. To avoid multiplication being interposed,
we can add another example to distinguish both concepts: {(3, 1) → 3, (2, 2) →
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4, (2, 3) → 8}. We can always replace the original witness set by an I-safe witness
set, where, in general, we need to add examples to avoid interposition.

Proposition 3. Let f be a complexity function and (w, p), {(wm, pm)}n
m=1 ∈ f-

Teaching Book, with p, pm in L, ∀m. Let B = {pm}n
m=1 be a library such that

pm �f w, ∀m. Let c ∈ CL such that c � w. Let p′
c ∈ [c]LB

be the first program,
using order ≺, such that p′

c �f w. If n = |If(p′
c|B)|

w , there exist {〈ik, ok〉}n
k=1 such

that TSf
�(c|B) ≤ δ

(
w

⋃n
k=1{〈ik, ok〉}).

For a library B, if we find an example set w that can be converted into an
I-safe witness set w = w

⋃n
k=1{〈ik, ok〉} with δ(w) < TSf

�(c) using B, then we
reduce the teaching size. This is a sufficient and necessary condition to avoid
interposition and get TSf

�(c|B) ≤ TSf
�(c).

Finally, given these general bounds: how can we find minimal curricula? Let
us consider, for example, the set of concepts Q = {a, b}, where (wa, pa) and
(wb, pb) are in the f-Teaching Book. We also know that their behaviours are
not parallel, i.e., pa �f wb and pb �f wa. There are three different curricula
{a, b}, {a → b} or {b → a}. There is an I-safe witness set w, such that δ(w) ≤
TSf

�(b|a) (or δ(w) ≤ TSf
�(a|b)). Thus, we can choose a curriculum, with less

overall teaching size than the non-incremental version.

5.3 Minimal Curriculum Algorithm: I-search

We now search minimal curricula. For example, let Q = {c+, c×} be a set of
two concepts from Fig. 1, which appear in the non-incremental f-Teaching Book
as (w+, p+) and (w×, p×). The set of possible curricula, Q, is π0 = {c+, c×},
π1 = {c+ → c×} and π2 = {c× → c+}.

The starting point for our algorithm will be π0, the non-incremental curricu-
lum, and its overall teaching size TSf

�. Then, we generate another curriculum:
π1. We know TSf

�(c+) = δ(w+) and we need to add TSf
�(c×|c+). We compare

this total size to the best TS so far. We explore all the curricula in Q but, in
order to save computational steps, we generate successive witness sets wk, using
order �, such that c× � wk (Fig. 3).

. . . . . .

c×

∅ w1

I
f
w1(p×|p+)

c×
w2

c×
wn

I
f
wn

(p×|p+)

c×
w×

Fig. 3. Non-decreasing sequence of witness sets wk, through c× with δ(wk) ≤ δ(w×).

For each wk, we get the first program pk of I
f
wk

(p×|p+). We then investigate
whether pk ∈ [p×]LB

or not. If pk acts like p× to certain witness size limit,
H, then we can identify pk and p×. The I-search algorithm (5.3) shown below
extends this strategy.
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Note that the s/c-ranges reduce, drastically, the computational effort of
executing the teacher-learner protocol (calculating teaching book and TS).

Algorithm: I-search
Input: Q = {a, b, . . .}; f-Teaching Book (wa, pa), (wb, pb)...; Witness size limit H

1. For each distinct pair of concepts 〈x, y〉 ∈ Q × Q:
(a) If [TSf

�(y|x) ≤ TSf
�(y) ∧ TS(x|y)f� ≥ TSf

�(x)]
then Q = Q \ {π : ∃ a branch starting as y → x}

2. π∗ = {a, b, . . .}, TSf
�(π

∗) =
∑

x∈Q TSf
�(x) and Q = Q \ {π∗}

3. For each π ∈ Q:
(a) TSf

�(π) = 0
(b) For each branch σ ∈ π:

i. For each concept x ∈ σ (ordered by σ):
– B = {py : (y ∈ σ) ∧ (y precedes x)}
– Let p′

x be the first program equivalent to px in LB , using order ≺
– For each wk ∈ {w ⊂ X : p′

x �f wk}, using order �:
• If [TSf

�(π
∗) ≤ TSf

�(π) + δ(wk)] then break to 3
• p = min≺{I

f
wk

(p′
x|B)}; use s/c ranges to refine the calculation

• If [p �f w ←→ px �f w, ∀w such that δ(w) < H]
then [ TSf

�(π) = TSf
�(π) + δ(wk) and break to 3(b)i ]

(c) π∗ = π and TSf
�(π

∗) = TSf
�(π)

Output: π∗ and TSf
�(π

∗)

In the previous example, e.g., if there is a wn such that TSf
�(c×|c+) = δ(wn) <

TSf
�(c×), then we set π∗ = π1 (and TSf

�(π
∗) = δ(w+) + δ(wn)). Finally, we test

π2 and follow the same steps as with π1. If, at some stage, there is a witness set
wm such that TSf

�(c×) + δ(wm) ≥ TSf
�(π

∗), then π1 is minimal and we stop.
The algorithm is complete but the search is not exhaustive, since we can

discard curricula that contain a branch starting in a way that does not decrease
the overall teaching size for sure. For example, if TSf

�(c×|c+) ≤ TSf
�(c×) and

TSf
�(c+|c×) ≥ TSf

�(c+), the branch σ = {c+ → c× → c∧} has less or equal
overall teaching size than σ′ = {c× → c+ → c∧}. Consequently, we can remove
all branches starting with c× → c+. We can test this for every pair of distinct
concepts at the beginning of the branches.

The I-search algorithm (5.3) satisfies the following theorem.

Theorem 5. Let H be certain witness size limit, f be a complexity function
and Q be a set of concepts registered in the f-Teaching Book. We also assume,
for each c ∈ Q, that c � w → pc �f w, ∀w verifying δ(w) ≤ ∑

x∈Q TSf
�(x). Then,

the I-search algorithm expressed in algorithm 5.3 returns a minimal curriculum.

The I-search algorithm shows that: (1) We should create curricula containing
concepts that significantly reduce the complexity of another ones. For instance,
if concepts c× and c+ (Fig. 1) satisfy K(c×|c+) < K(c×), then the chances to
minimise the teaching size increase significantly. (2) Given a set of concepts, it
may be useful to implement some kind of isolation (or even forgetting by sepa-
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rating concepts in different branches7). For instance, c0 might be f-compatible
with a considerable number of witness sets wk and it may cause interposition
with c+, c× or c∧. This is why we should allocate c0 in a different branch. (3) The
branches (or lessons) could simply suggest ways in which we can arrange, clas-
sify and organise large sets of concepts. The tree-structure for curricula proposed
here is a solution for the problem posed in [26].

6 Conclusions and Future Work

The teaching size—rather than teaching dimension—opened a new avenue for
a more realistic and powerful analysis of machine teaching [38], its connections
with information theory (both programs and examples can be measured in bits)
and a proper handling of concept classes where examples and programs are
compositional and possibly universal, such as natural language.

The intuitive concept of how much of the description of a concept is reused
for the definition of another dates back to Leibniz’s règle pour passer de pensée
en pensée [18], and has been vindicated in cognitive science since Vigotsky’s zone
of proximal development [29,39], to more modern accounts of compositionality
based on what has been learnt previously [22,24,30].

In mathematical terms, a gradient-based or continuous account of this view
of incremental teaching, and the reuse of concepts, is not well accommodated.
Incremental teaching is usually characterised as a compositional process, which
is a more appropriate view for the acquisition of high-level concepts. The learn-
ing counterpart is still very elegantly captured by conditional Kolmogorov com-
plexity, and some incremental learning schemata have followed this inspiration
[13,17,20,23,31]. However, even if the concept of teaching size suggests that a
mapping was possible, we have had to face a series of phenomena in order to
translate some of these intuitions to the machine teaching scenario, and a new
setting for curriculum teaching.

The absence of monotonicity because of interposition presents some difficul-
ties for implementing curriculum teaching for compositional languages. Theo-
rems 3 and 4 and its consequences make possible such an implementation: either
through sufficient conditions to avoid interposition, by implementing I-safe wit-
ness sets or through the I-search.

Given the theoretical bounds and the algorithms for the optimal curricula, we
can now start exploring novel algorithms and strategies for curriculum teaching
that are suboptimal, but more efficient, such as (1) greedy algorithms intro-
ducing the next concept as the one with maximum local TS reduction, (2)
approximations based on Vigotsky’s zone of proximal development principles
[29,39] where each step is bounded by some teaching length Z, i.e., such that
TS(ci+1|c1, . . . , ci) ≤ Z,∀i; or (3) variations of the incremental combinatorial
optimal path algorithm [32]. All these new research possibilities in curriculum
teaching, and even others, are now wide open to exploration.
7 Forgetting may simply refer to a lesson not using primitives that are considered out

of the context of a “lesson”.
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Because of the fundamental (re-)connection we have done between K and
TS in this paper, another novel possibility for curriculum teaching would be
the combination of teaching by examples and descriptions of the concepts them-
selves. This is actually the way humans teach other humans, combining exam-
ples and descriptions, but it is nevertheless unprecedented in the application of
machine teaching in natural language processing [25,33]. However, it is beginning
to become common with language models, with prompts that combine examples
and some indications of the task to perform [4,14].

Acknowledgements. This work was funded by the EU (FEDER) and Spanish
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Abstract. In the federated learning paradigm, multiple mobile clients
train their local models independently based on the datasets generated
by edge devices, and the server aggregates the model parameters received
from multiple clients to form a global model. Conventional methods
aggregate gradient parameters and statistical parameters without dis-
tinction, which leads to large aggregation bias due to cross-model distri-
bution covariate shift (CDCS), and results in severe performance drop for
federated learning under non-IID data. In this paper, we propose a novel
decoupled parameter aggregation method called FedDNA to deal with
the performance issues caused by CDCS. With the proposed method,
the gradient parameters are aggregated using the conventional federated
averaging method, and the statistical parameters are aggregated with
an importance weighting method to reduce the divergence between the
local models and the central model to optimize collaboratively by an
adversarial learning algorithm based on variational autoencoder (VAE).
Extensive experiments based on various federated learning scenarios with
four open datasets show that FedDNA achieves significant performance
improvement compared to the state-of-the-art methods.

Keywords: Federated learning · Deep learning · Machine learning

1 Introduction

Federated learning (FL) has emerged as a novel distributed machine learning
paradigm that allows a global machine learning model to be trained by mul-
tiple mobile clients collaboratively while protecting their private data in local
devices. In such a paradigm, mobile clients train local models based on datasets
generated by edge devices such as sensors and smartphones, and the server is
responsible to aggregate parameters from local models to form a global model
without transferring data to a central server. Federated learning has been drawn
much attention in mobile-edge computing with its advantages in preserving data
privacy [9,35] and enhancing communication efficiency [22,28].

Parameter aggregation is the key technology of federated learning, which typ-
ically involves the following three steps repeated periodically during the train-
ing process: (1) the involved clients train the same type of models with their
c© Springer Nature Switzerland AG 2021
N. Oliver et al. (Eds.): ECML PKDD 2021, LNAI 12975, pp. 722–737, 2021.
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local data independently; (2) when the server sends an aggregation signal to
the clients, the clients transmit their model parameters to the server; (3) after
receiving the local models’ parameters, the server applies an aggregation method
to the received parameters to form a global model, and broadcast the global
model’s parameters to the involved clients for the next round of federated train-
ing. The standard aggregation method FedAvg [22] and its variants such as
q-FedSGD [19] applied a synchronous parameter averaging method to form the
global model. Several efforts had been made to deal with non-IID data in feder-
ated learning. Zhao et al. proposed to use a globally shared dataset for training to
address data heterogeneity [34]. FedProx [18] modified FedAvg by adding a het-
erogeneity bound on local datasets to tackle the non-IID condition. FedMA [28]
demonstrated that permutations of layers could affect the parameter aggregation
results and proposed a layer-wise parameter-permutation aggregation method to
improve the accuracy of the global model.

Despite the efforts that have been made, applying the existing parameter
aggregation methods for a large number of heterogeneous clients in federated
learning suffers from performance degrade. It was reported in [34] that the accu-
racy of a convolutional neural network (CNN) model trained by FedAvg reduced
by up to 55% for a highly skewed heterogeneous dataset. The work of [28] showed
that the accuracy of FedProx [18] dropped over 11% when the client number
increases from 5 to 20 under non-IID data partition. A key issue to cause the
performance drop in federated learning could be the covariate shift of data dis-
tribution among clients due to non-IID data, which is known as cross-model
distribution covariate shift (CDCS). Such issue has not been addressed appro-
priately by the previous parameter aggregation methods. We use the following
example to illustrate the impact of CDCS in federated learning.

Aggregation Bias Due to CDCS: A CNN model typically consists of the
convolutional (Conv) layers, the full connected (FC) layers, and the normaliza-
tion layers. Those layers are formulated by two different types of parameters to
be trained: (1) the gradient parameters that represent the weights of the CNN
model, which are commonly contained in all layers; (2) the statistical param-
eters that represent the statistical information such as mean and variance of
the feature maps, which are solely contained in the normalization layers (e.g.,
Batch-Normalization and Layer-Normalization). Conventional federated learning
approaches such as FedAvg simply average the local model parameters indiscrim-
inately to form a global model, which will lead to bias on the statistical infor-
mation for non-IID data. Figure 1(a) illustrates the KL-divergence [10] between
the parameters of a FedAvg-aggregated model and that of a centrally-trained
model with varying number of clients on non-IID data. It is shown that with
the increasing of communication rounds, the divergence of gradient parameters
approaches to 0, but that of statistical parameters increases to a large value.
The more heterogeneous clients involved, the higher divergence is observed. The
divergence is mainly caused by the model aggregation methods such as FedAvg
that fail to address the CDCS of non-IID local datasets. As a result, the aggre-
gated models’ test accuracy decreases dramatically, as shown in Fig. 1(b).
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(a) (b)

Fig. 1. Illustration of divergence and performance drop caused by CDCS on non-IID
data. (a) The KL-divergence of gradient parameters and statistical parameters between
a federated learning model and a central model of ResNet18@CIFAR-10. (b) The test
accuracy of ResNet18 on CIFAR-10 with different #clients.

In this paper, we propose a novel decoupled model aggregation method
called FedDNA (shorten for federated learning with decoupled normalization-
layer parameter aggregation) to address the performance issues caused by CDCS
on non-IID data for federated learning. FedDNA aggregates gradient parame-
ters and statistical parameters in a decoupled way. The gradient parameters are
aggregated using the conventional distributed stochastic gradient descent (SGD)
method, which is theoretically converged during distributed training. The statis-
tical parameters are aggregated with an importance weighting method to reduce
the divergence between the local models and the central model, and they are
optimized collaboratively by an adversarial learning algorithm based on varia-
tional autoencoder (VAE). Extensive experiments based on a variety of federated
learning scenarios with four open datasets show that FedDNA significantly out-
performs the state-of-the-art methods.

The contributions of our work are summarized as follows.

– We illustrate that cross-model distribution covariate shift (CDCS) can cause
large divergence in the aggregated statistical parameters of multiple heteroge-
neous local models, which is a key problem of performance drop for federated
learning under non-IID data.

– We propose a novel decoupled model aggregation method to deal with the
performance issues caused by CDCS, where the gradient parameters and sta-
tistical parameters are aggregated separately, aiming to reduce the divergence
between the local models and the central model.

– We propose an adversarial learning algorithm to derive the optimal proba-
bilistic weights for statistical parameters aggregation. It enables a data-free
solution for the federated server with a variational autoencoder (VAE) to min-
imize the divergence of unknown distributions based on limited information
received from the clients.
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– We conduct extensive experiments using five mainstream CNN models based
on three federated datasets under non-IID conditions. Compared to the de
facto standard FedAvg, and the state-of-the-art for non-IID data (FedProx,
FedMA), the proposed FedDNA has the lowest divergence of the aggregated
parameters, and the test accuracy improves up to 9%.

The rest of the paper is organized as follows: Sect. 2 presents the related
works on federated learning and optimizing federated learning under non-IID
data. Section 3 proposes the detailed decoupled mechanism of FedDNA. Section 4
describes the adversarial learning algorithm on optimizing FedDNA, inference
and optimization on VAE and the detailed algorithm of FedDNA. Section 5 shows
the performance evaluation for FedDNA with 5 state-of-the-art baselines. And the
paper is concluded in Sect. 6.

2 Related Work

Federated learning [14,21,24,26,31,32] is an emerging distributed machine learn-
ing paradigm that aims to build a global model based on datasets distributing
across multiple clients. One of the standard parameter aggregation methods is
FedAvg [22], which combined local stochastic gradient descent (SGD) on each
client with a server that performs parameter averaging. Later, the lazily aggre-
gated gradient (Lag) method [2] allowed clients running multiple epochs before
model aggregation to reduce communication cost. The q-FedSGD [19] method
improved FedAvg with a dynamic SGD update step using a scale factor to
achieve fair resources allocation among heterogeneous clients. The FedDyn [1]
method proposed a dynamic regularizer for each round of aggregation, so that
different models are aligned to alleviate the inconsistency between local and
global loss.

Several works focused on optimizing federated learning under non-IID data.
Zhao et al. used the earth mover’s distance (EMD) to quantify data heterogeneity
and proposed to use globally shared data for training to deal with non-IID [34].
FedProx [18] modified FedAvg by adding a heterogeneity bound on local datasets
to tackle heterogeneity. The RNN-based method in [8] adopted a meta-learning
method to learn a new gradient from the received gradients and then applied it
to update the global model. The FedMA [28] method, derived from AFL [23] and
PFNM [33], demonstrated that permutations of layers can affect the parameter
aggregation results, and proposed a layer-wise parameter-permutation aggrega-
tion method to solve the problem. FedBN [20] suggested keeping the local Batch
Normalization parameters not synchronized with the global model to mitigate
feature shifts in Non-IID data. FedGN [5] replaced Batch Normalization with
Group Normalization to avoids the accuracy loss induced by the skewed distri-
bution of data labels. SCAFFOLD [11] used variance reduction to correct the
“client-drift” in each client’s local updates to prevent unstable and slow conver-
gence for heterogeneous data. FedRobust [25] adopted a distributed optimization
method via gradient descent ascent to address affine distribution shifts across
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users in federated settings. Instead of averaging the cumulative local gradient,
FedNova [29] aggregated normalized local gradients to eliminate objective incon-
sistency while preserving fast error convergence.

To the best of our knowledge, the problem of performance drop of federated
learning caused by CDCS has not been explored in the literature. In this paper,
we make the first attempt to deal with CDCS by decoupling the aggregation of
gradient parameters and statistical parameters, and adopt an adversarial learn-
ing algorithm to optimize model aggregation to achieve high accuracy in non-IID
conditions.

3 Decoupled Federated Learning with CDCS

3.1 Optimization Objectives

As discussed in Sect. 1, conventional federated learning methods suffers from
noteworthy bias when aggregating statistical parameters and gradient parame-
ters without distinction. To address this issue, we propose a decoupled method
to optimize model parameters aggregation.

Consider a federated learning scenario with K clients that train their local
deep neural network (DNN) models independently based on local datasets
x1,x2, . . . ,xK , and report their model parameters to a central server. The objec-
tive of the server is to form an aggregate global DNN model to minimize the
following loss function.

min
w

L(w,x) :=
K∑

k=1

|xk|
|x| Lk(ŵk, w̃k,xk), (1)

where x = {x1,x2, . . . ,xK} is the total dataset; ŵk, w̃k are the gradient
parameters and statistical parameters of local model received from the k-
th client; Lk(·) indicates the loss functions of the k-th local model; w =
F (ŵ1, w̃1, ŵ2, w̃2, · · · , ŵK , w̃K) are the global model’s parameters and F is the
aggregation method to be derived that maps K local models to a global model.

To deal with the CDCS problem, we aggregate the gradient parameters
and statistical parameters separatively. Different from the gradient parameters,
which can be optimized with the conventional distributed stochastic gradient
descent (SGD), the statistical parameters should be optimized to eliminate their
covariate shifts. Since the real distribution of global data is unknown to the
server, we propose a collaborative optimization approach that enables multiple
clients to update their statistical parameters to gradually reduce their distribu-
tion divergence.

For the k-th client, we use w̃k to denote its own statistical parameters, and
w̃¬k to denote the averaged statistical parameters of the other clients except
client-k. We refer to w̃k and w̃¬k as the twin statistics. We assume that w̃k is
drawn from client-k’s local distribution w̃k ∼ pk(w̃), and w̃¬k is drawn from
the distribution without client-k, i.e., w̃¬k ∼ q¬k(w̃), where w̃ represent the
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statistical parameters of the global model. Aggregation of statistical parameters
should eliminate the discrepancy between w̃k and w̃¬k so that they converge
to the same objective distribution, which can be represented by the following
optimization problem:

min
w̃

L̃(w̃) :=
1
K

K∑

k=1

D[pk(w̃), q¬k(w̃)], (2)

where D[·] represents the divergence of two distributions.

3.2 FedDNA Mechanism

Based on the optimization objectives, we proposed a decoupled method called
FedDNA to optimize parameters aggregation for federated learning. The feder-
ated server received model parameters from the clients periodically. In the t-th
communication round, the received parameters are:

– ŵt
k: the gradient parameters of client-k in round t;

– w̃t
k = [ ˜meant

k, ˜vart
k]: the statical parameters of client-k in round t, where

˜meant
k and ˜vart

k represent the parameters of statical mean and variance
accordingly.

The parameter update process is as follows.

(1) Aggregation of Gradient Parameters: The gradient parameters can be
aggregated using the principle of distributed stochastic gradient descent (SGD),
the same as the method of FedAvg [22]:

ŵt+1 =
K∑

k=1

|xk|
|x| ŵt

k. (3)

(2) Aggregation of Statistical Parameters: The statistical parameters are
aggregated collaboratively to reduce the divergence between the individual’s
distribution and the overall distribution, which are updated with the following
reweighting manner:

˜meant+1
k = γt

k ˜meant
k + (1 − γt

k)
K∑

i=1,i �=k

1
K − 1

˜meant
i,

˜vart+1
k = γt

k ˜vart
k + (1 − γt

k)
K∑

i=1,i �=k

|xi| − 1
|x| − K − 1

˜vart
i. (4)

In the above equations, the term
∑K

i=1,i �=k
1

K−1
˜meant

i is the average of other

statistical means, and the term
∑K

i=1,i �=k
|xi|−1

|x|−K−1var
t
i is the weighted pooled

variance [12] which gives an unbias estimation of the variance of the overall
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dataset without client-k. The adjustable parameter γt
k is called the importance

weight, which tends to reduce the discrepancy between the twin statistics w̃k

and w̃¬k. The weight γt
k can be formulated by

γt
k = f(D[pk(w̃t), q¬k(w̃t)]), (5)

where f : R+ → [0, 1) is a function that projects the divergence into the interval
[0, 1). Generally speaking, the mapping f could be non-linear, and it can be
implemented by a neural network in practice.

The proposed method minimize the loss function in Eq. (2) by gradually
updating the statistical parameters to approach the overall distribution with an
importance weight. By minimizing Eq. (2), the importance weight γt

k approaches
to 0, and the statistical parameters of the ith client converges to that of the other
clients. Thereafter, the final statistical parameters of the global model can be
represented by w̃k = [ 1

K

∑K
k=1 ˜meanT

k ,
∑K

k=1
(|xk|−1)
|x|−K

˜varT
k ] where T is the total

communication rounds.
To determine the value of importance weight γt

k, it needs to derive the diver-
gence D and the mapping function f , which can be solved by the adversarial
learning algorithm discussed in the following section.

4 Adversarial Learning Algorithm

FedDNA aggregates the statistical parameters with an importance weight γt
k

intending to eliminate the discrepancy between the twin statistics w̃k and w̃¬k.
The updating process can be viewed as sampling from pk(w̃) to match q¬k(w̃)
with acceptance rate α(w̃) ∈ [0, 1]. Here α(w̃) can be interpreted as a binary
classifier between “from pk(w̃)” and “from q¬k(w̃)”.

More formally, we let y = 1 to represent “from pk(w̃)” and y = 0 to represent
“from q¬k(w̃)”. The overall dataset can be represent by a joint distribution
p(w̃, y), which can be written as p(w̃, y) = p(w̃|y = 1)p(y = 1) + p(w̃|y =
0)p(y = 1). So the classifier can be represented by α(w̃) = p(y = 1|w̃k). By
Bayes’ theorem, we have:

α(w̃) =
p(w̃|y = 1)p(y = 1)

p(w̃, y)
=

pk(w̃)p(y = 1)
p(w̃|y = 1)p(y = 1) + p(w̃|y = 0)p(y = 0)

=
pk(w̃)p(y = 1)

pk(w̃)p(y = 1) + q¬k(w̃)p(y = 0)
∝ pk(w̃)

pk(w̃) + q¬k(w̃)
.

(6)

Therefore, the α(w̃) is only related with pk(w̃) and q¬k(w̃).
By introducing the classifier α, the derivation of the importance weight γt

k

can be described as an adversarial learning framework, which is illustrated in
Fig. 2(a). The classifier α works as an “adversarial discriminator” to distinguish
pk(w̃) and q¬k(w̃) as possible, which forms a divergence measure of the twin
statistics. Based on the divergence from α, the project function f generates an
importance weight γt

k, which is used to adjust the statistical parameters with
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w̃k and w̃¬k to reduce their discrepancy. The intuition is that the twin statistics
are more likely to converge to the objective distribution if they are harder to be
differentiated by a classifier.

4.1 Adversarial Training

Based on the adversarial learning framework with f and α, the training object
to optimize Eq. (2) can be written as minf

1
K

∑K
k=1 D(pk(w̃, f, α), q¬k(w̃, f, α)),

where the divergence measure can be expressed by:

D(pk(w̃, f, α), q¬k(w̃, f, α)) = max
α

Ew̃∼pk
[log α(w̃)] + Ew̃∼q¬k

[log(1 − α(w̃))].

(7)
Therefore f and α can be derived by solving the following min-max optimization:

min
f

max
α

1
K

K∑

k=1

Ew̃∼pk
[log α(w̃)] + Ew̃∼q¬k

[log(1 − α(w̃))]. (8)

To form a learning model to solve the min-max problem, f(·) can be parame-
terized by a fully-connected neural network, and α(·) can be parameterized by a
variational auto-encoder (VAE) as illustrated in Fig. 2(a), where the latent vari-
able z represents the divergence between pk(w̃) and q¬k(w̃) in priori distribution.
Next we inference α(·) with VAE.

4.2 Inference with VAE

We construct a variational encoder-decoder model that takes the observed sta-
tistical parameters as input, encodes them to a latent variable, and decodes the
statistical information from the latent variable to minimize the reconstruction
error. The plate notions of the generative model are shown in Fig. 2(b), which
are explained as follows.

• w̃t
k is the observed statistical parameters from the local model of client-k.

In communication round t, the server receives a set statistical parameters
w̃t = {w̃t

1, . . . , w̃
t
K}, and they are used to train the VAE to generate the

latent representation of the twin statistics.
• zt

k is a latent variable whose prior is the joint distribution of p(w̃,y) ∼
Gaussian(μ,σ), where μ and σ are inferred parameters that are used to
generate zt

k.
• θ are the generative model parameters (decoder), and φ are the variational

parameters (encoder).

The solid lines in Fig. 2(b) denote the generative process pθ (zt
k)pθ (w̃t

k|zt
k),

and the dashed lines denote the variational approximation qφ(zt
k|w̃t

k) to the
intractable posterior pθ (zt

k|w̃t
k). We approximate pθ (zt

k|w̃t
k) with qφ(zt

k|w̃t
k) by

minimizing their divergence:

φ∗,θ∗ = arg min
θ ,φ

D(qφk
(zt

k|w̃t
k) || pθk

(zt
k|w̃t

k)). (9)
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pk(w̃)
α

z

f

p¬k(w̃)
Encoder Decoder

μ

σ

(a)

w̃t
k

ztkφ θ

K

(b)

Fig. 2. Illustration of adversarial learning. (a) The framework. (b) The plate notations
of VAE.

To derive the optimal value of the parameters φ and θ, we compute the marginal
likelihood of w̃t

k:

log p(w̃t
k) = DKL(qφ(zt

k|w̃t
k) || pθ (zt

k|w̃t
k)) + Eqφ (zt

k|w̃t
k)

[
log

pθ (zt
k, w̃t

k)
qφ(zt

k|w̃t
k)

]
. (10)

In Eq. (10), the first term is the KL-divergence [10] of the approximate distribu-
tion and the posterior distribution; the second term is called the ELBO (Evidence
Lower BOund) on the marginal likelihood of dataset in the k-th client.

Since log p(w̃t
k) is non-negative, the minimization problem of Eq. (9) can be

converted to maximize the ELBO. To solve the problem, we change the form of
ELBO as:

Eqφ (zt
k|w̃t

k)

[
log

pθ (zt
k, w̃t

k)
qφ(zt

k|w̃t
k)

]
=

Eqφ (zt
k|w̃t

k)

[
log

p(zt
k)

qφ(zt
k|w̃t

k)

]

︸ ︷︷ ︸
Encoder

+Eqφ (zt
k|w̃t

k)
[log pθ (w̃t

k|zt
k)]

︸ ︷︷ ︸
Decoder

.
(11)

The above form is a variational encoder-decoder structure: the model
qφ(zt

k|w̃t
k) can be viewed as a probabilistic encoder that given an observed

statistics w̃t
k it produces a distribution over the possible values of the latent

variables zt
k; The model pθ (w̃t

k|zt
k) can be refered to as a probabilistic decoder

that reconstructs the value of w̃t
k based on the code zt

k. According to the theory
of variational inference [13], the problem in Eq. (11) can be solved with the SGD
method using a fully-connected neural network to optimize the mean squared
error loss function.

After training the model, we feed the twin statistics {w̃t
k, w̃t

¬k} into the VAE
and obtain the corresponding latent variables {zt

k, zt
¬k}. The latent variables are
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Algorithm 1. FedDNA
Initialize w0 and γk.
for each round t = 0, 1, . . . , T − 1 do

St := (random set of m clients)
Send wt to client in St as wt

k

for each client k ∈ St in parallel do
for each local epoch e = 0, 1, . . . , E − 1 do

wt
k := wt

k - η∇l(wt
k;xk)

end for
end for
Receive wt

k from client in St

for each client k ∈ St do
w̃t

k := [ ˜meant
k, ˜vartk].

end for
Update ŵt

k by Eq. (3)
Compute w̃t

¬k based on Eq. (4)
repeat

μ, σ := φ(w̃t
k), φ(w̃t

¬k)
Sample ztk and zt¬k from N (μ, σ2)
γt
k := f(D[zk, z¬k])

(φ, θ) := (φ, θ) − η∇l(φ, θ; w̃t
k)

f = f − η∇l(f ;D[zk, z¬k])
Update every client’s statistical parameters based on Eq. (4)

until α and f Converge.
Form wt

k by ŵt
k and w̃t

k.
end for

further used by the nueral network of f to derive their divergence and output
the important weight γt

k, which is used to update the statistical parameters in
Eq. (4). The pseudo-code of FedDNA is shown in Algorithm 1.

5 Performance Evaluation

5.1 Experimental Setup

Implementation. We implement FedDNA1 and the considered baselines in
PyTorch. We train the models in a simulated federated learning environment
consisting of one server and a set of clients with wireless network connections.
Unless explicitly specified, the default number of clients is 20 as FedMA [28], and
the learning rate β = 0.01. We conduct experiments on a GPU-equipped per-
sonal computer (CPU: Intel Core i7-8700 3.2 GHz, GPU: Nvidia GeForce RTX
2070, Memory: 32 GB DDR4 2666MHz, and OS: 64-bit Ubuntu 16.04).

Models and Datasets. We conduct experiments based on 6 mainstream neural
network models: ResNet18 [4], LeNet [16], DenseNet121 [6], MobileNetV2 [27]
1 The source code will be publicly available after acceptance.
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Fig. 3. Convergence of different algorithms.

and BiLSTM [7]. The first 5 models used Batch-Normalization (BN), which are
commonly applied in computer vision (CV), and the last model used Layer-
Normalization (LN), which is applied in natural language processing (NLP).

We use 4 real world datasets: MNIST [17], Fashion-MNIST [30], CIFAR-10
[15] and Sentiment140 [3]. MNIST is a dataset for hand written digits clas-
sification with 60000 samples of 28 × 28 greyscale image. Fashion-MNIST is
an extended version of MNIST for benchmarking machine learning algorithms.
CIFAR-10 is a large image dataset with 10 categories, each of which has 6000
samples of size 32 × 32. Sentiment140 is a natural language process dataset
containing 1,600,000 extracted tweets annotated in scale 0 to 4 for sentiment
detection.

We generate non-IID data partition according to the work [22]. For each
dataset, we use 80% as training dada to form non-IID local datasets as follows.
We sort the data by their labels and divide each class into 200 shards. Each
client draw samples from the shards to form a local dataset with probability

pr(x) =
{

η ∈ [0, 1], if x ∈ classj ,
N (0.5, 1), otherwise. It means that the client draws samples from

a particular class j with a fixed probability η, and from other classes based on a
Gaussian distribution. The larger η is, the more likely the samples concentrate
on a particular class, and the more heterogeneous the datasets are.

5.2 Performance Analysis

We compare the performance of FedDNA with 5 state-of-the-art methods: FedAvg
[22], FedProx [18], Fed-GN [5], SCAFFOLD [11], and FedMA [28] with η = 0.5.
The results are analyzed as follows.

Convergence: In this experiment, we study the convergence of FedDNA and all
baselines by showing the total communication rounds versus train loss with local
training epoch E = 10. Figure 3(a) and Fig. 3(b) show the result of ResNet18 on
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Fig. 4. Training efficiency of different algorithms.

Fig. 5. Comparison of KL-divergence of statistical parameters of different models with
different algorithms.

CIFAR-10 and BiLSTM on Sent140. It is shown that the loss of all algorithms
tends to be stable after a number of epochs. Clearly, FedDNA has the lowest loss
among all algorithms, and it converges faster than all baselines.

Training Efficiency: In this experiment, we study the test accuracy versus com-
munication rounds during training with local training epoch E = 10. Figure 4(a)
and Fig. 4(b) show the results of training ResNet18 on CIFAR-10 and BiLSTM
on Sent140. For ResNet18, it is shown that FedDNA reaches 0.8 accuracy after 16
communication rounds, while the others take 30 to 80 communication rounds to
reach the same accuracy. FedDNA exceeds 0.9 accuracy after 63 communication
rounds, while the accuracy of other algorithms is below 0.86. Similar results are
found for BiLSTM, where FedDNA achieves the highest accuracy at the same com-
munication round. It suggests that FedDNA trains much faster than the baseline
algorithms, and it can reach higher accuracy with less communication cost.
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Table 1. Average test accuracy (%) on datasets with local training epoch E = 10. The
“Central” method trains the CNN models in the central server with global dataset.

Algorithm LeNet@MNIST LeNet@F-MNIST BiLSTM@Sent140

Central 98.95 90.42 81.47

FedAvg 97.32 (±0.09) 87.41 (±0.29) 72.14 (±0.93)

FedProx 97.55 (±0.14) 88.33 (±0.35) 71.08 (±1.28)

Fed-GN 95.88 (±0.25) 88.21 (±0.27) 74.44 (±1.04)

SCAFFOLD 97.47 (±0.19) 89.36 (±0.21) 73.83 (±0.79)

FedMA 97.86 (±0.18) 89.02 (±0.46) 72.81 (±1.38)

FedDNA 98.49 (±0.12) 90.11 (±0.18) 77.51 (±0.87)

Algorithm ResNet18@CIFAR-10 DenseNet121@CIFAR-10 MobileNetV2@CIFAR-10

Central 92.33 93.24 92.51

FedAvg 81.29 (±0.83) 81.86 (±0.46) 80.11 (±0.87)

FedProx 83.47 (±0.68) 85.03 (±0.65) 80.68 (±0.79)

Fed-GN 83.08 (±0.63) 83.43 (±0.53) 82.82 (±0.61)

SCAFFOLD 85.72 (±0.45) 86.94 (±0.39) 85.27 (±0.85)

FedMA 86.44 (±0.59) 87.12 (±0.71) 85.59 (±1.07)

FedDNA 90.31 (±0.45) 90.29 (±0.42) 89.17 (±0.72)

Divergence: We compare the KL-divergence of statistical parameters between
the global model aggregated by different algorithms and the central model, which
are shown in Fig. 5. It is shown that FedMA, FedProx, Fed-GN, and FedAvg
have exceptional high divergence varying from 140.4 to 447.1 on the CIFAR-10
dataset, while FedDNA has significantly lower divergences than all baselines for
all models and datasets. It suggests that the statistical parameters aggregated
by FedDNA are much more close to the central model in non-IID settings.

Global Model Accuracy: In this experiment, we compare the global model
accuracy of different federated parameter aggregation algorithms after training
to converge. We repeat the experiment for 20 rounds and show the average
results in Table 1. As shown in the table, the central method yields the highest
accuracy. In the comparison of different federated learning methods, FedDNA sig-
nificantly outperforms the other algorithms in global model accuracy. It performs
better than the state-of-the-art method FedMA with 3.87%, 3.17%, 3.58%, and
4.09% accuracy improvement on ResNet18, DenseNet121, MobileNetV2, and 4-
L CNN respectively for CIFAR-10; 1.09% and 0.63% improvement on LeNet for
F-MNIST and MNIST; 4.70% improvement on BiLSTM for Sent140. Compared
to Fed-GN, FedDNA achieves accuracy improvement with 7.32%, 6.86%, 6.35%,
and 3.08% on ResNet18, DenseNet121, MobileNetV2, and 4-L CNN respectively
for CIFAR-10; 1.90% and 2.61% on LeNet for F-MNIST and MNIST; 3.07%
on BiLSTM for Sent140 accordingly. Compared to FedAvg, FedDNA improves
the test accuracy up to 9.02% for ResNet18 on CIFAR-10. In summary, FedDNA
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Fig. 6. Test accuracy with different num-
ber of clients (ResNet18 on CIFAR-10).

Fig. 7. Test accuracy on different level of
heterogeneity (ResNet18 on CIFAR-10).

achieves the highest accuracy among all baselines, and it performs very close to
the centralized method, whose accuracy drop is within 4% in all cases.

Hyperparameter Analysis: We further analyze the influence of two hyperpa-
rameters in federated learning: the number of clients and the heterogeneity of
local datasets.

Figure 6 compares the test accuracy of the global model for a different number
of involved clients. According to the figure, the performance of FedDNA remains
stable. When the number of clients increases from 5 to 20, the test accuracy
slightly decreases from 0.912 to 0.903. The other algorithms yield significant per-
formance drop, and the accuracy of most baselines is below 0.85 for 20 clients.
FedDNA achieves the highest test accuracy among all federated learning algo-
rithms in all cases, and it performs very close to the central model.

In the experiment, the heterogeneity of local datasets is represented by η,
the probability that a client tends to sample from a particular class. The more η
approaches to 1, the more heterogeneous the local datasets are. Figure 7 shows
the test accuracy under different levels of heterogeneity. As η increases, the test
accuracy of all models decreases. FedDNA yields the highest test accuracy among
all algorithms, and its performance drops much slower than that of the baselines.
It verifies the effectiveness of the proposed decoupled aggregation approach under
non-IID conditions.

6 Conclusion

Parameter aggregation played an important role in federated learning to form
a global model. To address the problem of aggregation bias in federated learn-
ing for non-IID data, we proposed a novel parameter aggregation method called
FedDNA that decoupled gradient parameters and statistical parameters to aggre-
gate them separately with stochastic gradient descent and importance weighting
method to reduce the divergence between the local models and the central model.
FedDNA optimized parameter aggregation by an adversarial learning algorithm
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based on variational autoencoder (VAE). Extensive experiments showed that
FedDNA significantly outperforms the state-of-the-arts on a variety of federated
learning scenarios.
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Abstract. This paper investigates a constrained formulation of neu-
ral networks where the output is a convex function of the input. We
show that the convexity constraints can be enforced on both fully con-
nected and convolutional layers, making them applicable to most archi-
tectures. The convexity constraints include restricting the weights (for
all but the first layer) to be non-negative and using a non-decreasing
convex activation function. Albeit simple, these constraints have pro-
found implications on the generalization abilities of the network. We
draw three valuable insights: (a) Input Output Convex Neural Net-
works (IOC-NNs) self regularize and significantly reduce the problem of
overfitting; (b) Although heavily constrained, they outperform the base
multi layer perceptrons and achieve similar performance as compared
to base convolutional architectures and (c) IOC-NNs show robustness
to noise in train labels. We demonstrate the efficacy of the proposed
idea using thorough experiments and ablation studies on six commonly
used image classification datasets with three different neural network
architectures. The appendix and codes for this paper are available at:
https://github.com/sarathsp1729/Convex-Networks.

1 Introduction

Deep Neural Networks use multiple layers to extract higher-level features from
the raw input progressively. The ability to automatically learn features at mul-
tiple levels of abstractions makes them a powerful machine learning system that
can learn complex relationships between input and output. Seminal work by
Zhang et al. [30] investigates the expressive power of neural networks on finite
sample sizes. They show that even when trained on completely random labeling
of the true data, neural networks achieve zero training error, increasing training
time and effort by only a constant factor. Such potential of brute force memo-
rization makes it challenging to explain the generalization ability of deep neural
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Fig. 1. Training of AllConv and IOC-AllConv on CIFAR-10 dataset. (a) Loss curve
while training with true labels. AllConv starts overfitting after few epochs. IOC-
AllConv does not exhibit overfitting, and the test loss nicely follows the training loss.
(b) Accuracy plots while training with randomized labels (labels were randomized
for all the training images). If sufficiently trained, even a simple network like MLP
achieves 100% training accuracy and gives around 10% test accuracy. IOC-MLP resists
any learning on the randomized data and gives 0% generalization gap. (c) and (d) Loss
and accuracy plots on CIFAR-10 data when trained with 50% labels randomized in the
training set.

networks. They further illustrate that the phenomena of neural network fitting
on random labeling of training data is largely unaffected by explicit regulariza-
tion (such as weight decay, dropout, and data augmentation). They suggest that
explicit regularization may improve generalization performance but is neither
necessary nor by itself sufficient for controlling generalization error. Moreover,
recent works show that generalization (and test) error in neural networks reduces
as we increase the number of parameters [22,23], which contradicts the tradi-
tional wisdom that overparameterization leads to overfitting. These observations
have given rise to a branch of research that focuses on explaining the neural net-
work’s generalization error rather than just looking at their test performance [24].

We propose a principled and reliable alternative that tries to affirmatively
resolve the concerns raised in [30]. More specifically, we investigate a novel con-
strained family of neural networks called Input Output Convex Neural Networks
(IOC-NNs), which learn a convex function between input and output. Convex-
ity in machine learning typically refers to convexity in terms of the parameters
w.r.t to the loss [3], which is not the case in our work. We use an IOC prefix to
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indicate the Input Output Convexity explicitly. Amos et al. [1] have previously
explored the idea of Input Output convexity; however, their experiments limit to
Partially Input Convex Neural Networks (PICNNs), where the output is convex
w.r.t some of the inputs. They deem fully convex networks unnecessary in their
studied setting of structured prediction, highly restricted on the allowable class
of models, highly limited, even failing to do simple identity mapping without
additional skip (pass-through) connections. Hence, they do not present even a
single experiment on fully convex networks.

We wake this sleeping giant up and thoroughly investigate fully convex net-
works (outputs are convex w.r.t to all the inputs) on the task of multi-class
classification. Each class in multi-class classification is represented as a convex
function, and the resulting decision boundaries are formed as an argmax of con-
vex functions. Being able to train IOC with NN-like capacity, we, for the first
time, discover the beautiful underlying properties, especially in terms of gen-
eralization abilities and robustness to label noise. We investigate IOC-NNs on
six commonly used image classification benchmarks and pose them as a pre-
ferred alternative over the non-convex architectures. Our experiments suggest
that IOC-NNs avoid fitting over the noisy part of the data, in contrast to the
typical neural network behavior. Previous work shows that [2] neural networks
tend to learn simpler hypotheses first. Our experiments show that IOC-NNs
tend to hold on to the simpler hypothesis even in the presence of noise, without
overfitting in most settings.

A motivating example is illustrated in Fig. 1, where we train an All Convo-
lutional network (AllConv) [28] and its convex counterpart IOC-AllConv on the
CIFAR-10 dataset. AllConv starts overfitting the train data after a few epochs
(Fig. 1(a)). In contrast, IOC-AllConv shows no signs of overfitting and flattens
at the end (the test loss values pleasantly follow the training curve). Such an
observation is consistent across all our experiments on IOC-NNs across differ-
ent datasets and architectures, suggesting that IOC-NNs have lesser reliance on
explicit regularization like early stopping. Fig. 1(b) presents the accuracy plots
for the randomized test where we train Multi-Layer Perceptron (MLP) and IOC-
MLP on a copy of the data where the true labels were replaced by random labels.
MLP achieves 100% accuracy on the train set and gives a random chance per-
formance on the test set (observations are coherent with [30]). IOC-MLP resists
any learning and gives random chance performance (10% accuracy) on both
train and test sets. As MLP achieves zero training error, the test error is the
same as generalization error, i.e., 90% (the performance of random guessing on
CIFAR10). In contrast, the IOC-MLP has a near 0% generalization error. We
further present experiment with 50% noisy labels Fig. 1(c). The neural network
training profile concurs with the observation of Krueger et al. [17], where the net-
work learns a simpler hypothesis first and then starts memorizing. On the other
hand, IOC-NN converges to the simpler hypothesis, showing strong resistance
to fit the noise labels.

Input Output Convexity shows a promising paradigm, as any feed-forward
network can be re-worked into its convex counterpart by choosing a non-
decreasing (and convex) activation function and restricting its weights to be
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non-negative (for all but the first layer). Our experiments suggest that activa-
tion functions that allow negative outputs (like leaky ReLU or ELU) are more
suited for the task as they help retain negative values flowing to subsequent lay-
ers in the network. We show that IOC-MLPs outperforms traditional MLPs in
terms of test accuracy on five of the six studied datasets and IOC-NNs almost
recover the performance of the base network in case of convolutional networks.
In almost all studied scenarios, IOC networks achieve multi-fold improvements
in terms of generalization error over unconstrained Neural Networks. Overall,
our work makes the following contributions:

– We bring to light the little known idea of Input Output Convexity in neural
networks. We propose a revised formulation to efficiently train IOC-NNs,
retaining adequate capacity (with changes like using ELU, increasing nodes
in the first layer, whitening transform at the input, etc.). To the best of our
knowledge, we for the first time explore a usable form of IOC-NNs, and shows
that they can be trained with NN like capacity.

– Through a set of intuitive experiments, we detail its internal functioning, espe-
cially in terms of its self regularization properties and decision boundaries.
We show that how sufficiently complex decision boundaries can be learned
using an argmax over a set of convex functions (where each class is repre-
sented by a single convex function). We further propose a framework to learn
the ensemble of IOC-NNs.

– With a comprehensive set of quantitative and qualitative experiments,
we demonstrate IOC-NN’s outstanding generalization abilities. IOC-MLPs
achieve near zero generalization error in all the studied datasets and a neg-
ative generalization error (test accuracy is higher than train accuracy) in a
couple of them, even at convergence. Such never seen behaviour opens up a
promising avenue for more future explorations.

– We explore the robustness of IOC-NNs to label noise and find that it strongly
resists fitting the random labels. Even while training, IOC-NNs show no signs
of fitting on noisy data and efficiently learns patterns from non noisy data.
Our findings ignites explorations towards tighter generalization bounds for
neural networks.

2 Related Work

Simple Convex Models: Our work relates to parameter estimation on models
that are guaranteed to be convex by its construction. For regression problems,
Magnani and Boyd [19] study the problem of fitting a convex piecewise linear
function to a given set of data points. For classification problems, this tradition-
ally translates to polyhedral classifiers. A polyhedral classifier can be described
as an intersection of a finite number of hyperplanes. There have been several
attempts to address the problem of learning polyhedral classifiers [15,20]. How-
ever, these algorithms require the number of hyperplanes as an input, which is a
major constraint. Furthermore, these classifiers do not give completely smooth
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boundaries (at the intersection of hyperplanes). As another major limitation,
these classifiers cannot model the boundaries in which each class is distributed
over the union of non-intersecting convex regions (e.g., XOR problem). The pro-
posed IOC-NN (even with a single hidden layer) supersedes this direction of
work.

Convex Neural Networks: Amos et al. [1] mentions the possibility of fully convex
networks, however, does not present any experiments with it. The focus of their
work is to achieve structured predictions using partially convex network (using
convexity w.r.t to some of the inputs). They propose a specific architecture
called FICNN which is fully convex and has fully connected layers with skip
connections. The skip connections are a must because their architecture cannot
even achieve identity mapping without them. In contrast, our work can take any
given architecture and derive its convex counterpart (we use the IOC suffix to
suggest model agnostic nature of our work). The work by Kent et al. [16] analyze
the links between polynomial functions and input convex neural networks to
understand the trade-offs between model expressiveness and ease of optimization.
Chen et al. [7,8] explore the use of input convex neural network in a variety of
control applications like voltage regulation. The literature on input convex neural
networks has been limited to niche tailored scenarios. Two key highlights of our
work are: (a) to use activations that allow the flow of negative values (like ELU,
leaky ReLU, etc.), which enables a richer representation (retaining fundamental
properties like identity mapping which are not achievable using ReLU) and (b) to
bring a more in-depth perspective on the functioning of convex networks and the
resulting decision boundaries. Consequently, we present IOC-NNs as a preferred
option over the base architectures, especially in terms of generalization abilities,
using experiments on mainstream image classification benchmarks.

Generalization in Deep Neural Nets: Conventional machine learning wisdom
says that overparameterization leads to poor generalization performance owing
to overfitting. Counter-intuitively, empirical evidence shows that neural net-
works give better generalization with an increased number of parameters even
without any explicit regularization [25]. Explaining how neural networks gener-
alize despite being overparameterized is an important question in deep learn-
ing [22,25].

Neyshabur et al. [23] study different complexity measures and capacity
bounds based on the number of parameters, VC dimension, Rademacher com-
plexity etc., and conclude that these bounds fail to explain the generaliza-
tion behavior of neural networks on overparameterization. Neyshabur et al. [24]
suggest that restricting the hypothesis class gives a generalization bound that
decreases with an increase in the number of parameters. Their experiments show
that restricting the spectral norm of the hidden layer leads to tighter general-
ization bounds.

The above discussion implies that a hypothetical neural network that can
fit any hypothesis will have a worse generalization than the practical neural
networks which span a restricted hypothesis class. Inspired by this idea, we
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propose a principled way of restricting the hypothesis class of neural networks (by
convexity constraints) that improves their generalization ability in practice. In
the previous efforts to train fully input output convex networks, they were shown
to have a limited capacity compared to its neural network counterpart [1,3],
making their generalization capabilities ineffective in practice. To our knowledge,
we for the first time present a method to formulate and efficiently train IOC-NNs
opening an avenue to explore their generalization ability.

3 Input Output Convex Networks

We first consider the case of an MLP with k hidden layers. The output of ith neu-
ron in the lth hidden layer will be denoted as h

(l)
i . For an input x = (x1, . . . , xd),

h
(l)
i is defined as:

h
(l)
i = φ(

∑

j

w
(l)
ij hl−1

j + b
(l)
i ), (1)

where, h
(0)
j = xj (j = 1 . . . d) and h

(k+1)
j = yj (jth output). The first hidden

layer represents an affine mapping of input and preserves the convexity (i.e. each
neuron in h(1) is convex function of input). The subsequent layers are a weighted
sum of neurons from the previous layer followed by an activation function. The
final output y is convex with respect to the input x by ensuring two conditions:
(a) w

(2:k+1)
ij ≥ 0 and (b) φ is convex and a non-decreasing function. The proof

follows from the operator properties [5] that the non-negative sum of convex
functions is convex and the composition f(g(x)) is convex if g is convex and f
is convex and non-decreasing.

A similar intuition follows for convolutional architectures as well, where each
neuron in the next layer is a weighted sum of the previous layer. Convexity can
be assured by restricting filter weights to be non-negative and using a convex and
non-decreasing activation function. Filter weights in the first convolutional layer
can take negative values, as they only represent an affine mapping of the input.
The maxpool operation also preserves convexity since point-wise maximum of
convex functions is convex [5]. Also, the skip connection does not violate Input
Output Convexity, since the input to each layer is still a non-negative weighted
sum of convex functions.

We use an ELU activation to allow negative values; this is a minor but a key
change from the previous efforts that rely on ReLU activation. For instance, with
non-negativity constraints on weights (w(2:k+1)

ij ≥ 0), ReLU activations restrict
the allowable use of hidden units that mirror the identity mapping. Previous
works rely on passthrough/skip connections to address [1] this concern. The use
of ELU enables identity mapping and allows us to use the convex counterparts
of existing networks without any architectural changes.

3.1 Convexity as Self Regularizer

We define self regularization as the property in which the network itself has
some functional constraints. Inducing convexity can be viewed as a self regu-
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Fig. 2. Decision boundaries of different networks trained for two class classification.
(a) Original data: one class shown by blue and the other orange. (b) Decision boundary
learnt using MLP. (c) Decision boundary learnt using IOC-MLP with single node in
the output layer. (d) Decision boundary learnt using IOC-MLP with two nodes in the
output layer (ground truth as one hot vectors) (Color figure online)

Fig. 3. (a) Using two simple 1-D functions we illustrate that argmax of two convex
functions can result into non-convex decision boundaries. (b) Two convex functions
whose argmax results into the decision boundaries shown in Fig. 2(d). The same plot
is shown from two different viewpoints.

larization technique. For example, consider a quadratic classifier in R
2 of the

form f(x1, x2) = w1x
2
1 + w2x

2
2 + w3x1x2 + w4x1 + w5x2 + w0. If we want the

function f to be convex, then it is required that the network imposes following
constraints on the parameters, w1 ≥ 0, w2 ≥ 0, −2

√
w1w2 ≤ w3 ≤ 2

√
w1w2,

which essentially means that we are restricting the hypothesis space.
Similar inferences can be drawn by taking the example of polyhedral clas-

sifiers. Polyhedral classifiers are a special class of Mixture of Experts (MoE)
network [13,26]. VC-dimension of a polyhedral classifier in d-dimension formed
by the intersection of m hyperplanes is upper bounded by 2(d+1)m log(3m) [29].
On the other hand, VC-dimension of a standard mixture of m binary experts
in d-dimension is O(m4d2) [14]. Thus, by imposing convexity, the VC-dimension
becomes linear with the data dimension d and m log(m) with the number of
experts. This is a huge reduction in the overall representation capacity com-
pared to the standard mixture of binary experts.

Furthermore, adding non-negativity constraints alone can lead to regulariza-
tion. For example, the VC dimension of a sign constrained linear classifier in
R

d reduces from d + 1 to d [6,18]. The proposed IOC-NN uses a combination of
sign constraints and restrictions on the family of activation functions for induc-
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Fig. 4. (a) Original Data. (b) Output of the gating network, each color represents pick-
ing a particular expert. (c) Decision boundaries of the individual IOC-MLPs. We mark
the correspondences between each expert and the segment for which it was selected.
Notice how the V-shape is partitioned and classified using two different IOC-MLPs.
(Color figure online)

ing convexity. The representation capacity of the resulting network reduces, and
therefore, regularization comes into effect. This effectively helps in improving
generalization and controlling overfitting, as clearly observed in our empirical
studies (Sect. 4.1).

3.2 IOC-NN Decision Boundaries

Consider a scenario of binary classification in 2D space as presented in Fig. 2(a).
We train a three-layer MLP with a single output and a sigmoid activation for
the last layer. The network comfortably learns to separate the two classes. The
learned boundaries by the MLP are shown in Fig. 2(b). We then train an IOC-
MLP with the same architecture. The learned boundary is shown in Fig. 2(c).
IOC-MLP learns a single convex function as output w.r.t the input and its
contour at the value of 0.5 define the decision boundary. The use of non-convex
activation like sigmoid in the last layer does not distort convexity of decision
boundary (Appendix A).

We further explore IOC-MLP with a variant architecture where the ground
truth is presented as a one-hot vector (allowing two outputs). The network learns
two convex functions f and g representing each class, and their argmax defines
the decision boundary. Thus, if g(x)−f(x) > 0, then x is assigned to class C1 and
C2 otherwise. Therefore, it can learn non-convex decision boundaries as shown
in Fig. 3. Please note that g − f is no more convex unless g′′ − f ′′ ≥ 0. In the
considered problem of binary classification in Fig. 2, using one-hot output allows
the network to learn non-convex boundaries (Fig. 2 (d)). The corresponding two
output functions (one for each class) are illustrated in Fig. 3 (b). We can observe
that both the individual functions are convex; however, their arrangement is
such that the argmax leads to a reasonably complex decision boundary.This
happens due to the fact that the sets S1 = {x | g(x) − f(x) > 0} and S2 =
{x | g(x) − f(x) ≤ 0} can both be non-convex (even though functions f(.) and
g(.) are convex).
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3.3 Ensemble of IOC-NN

We further explore the ensemble of IOC-NN for multi-class classification. We
explore two different ways to learn the ensembles:

1. Mixture of IOC-NN Experts: Training a mixture of IOC-NNs and an addi-
tional gating network [13]. The gating network can be non-convex and outputs
a scalar weight for each expert. The gating network and the multiple IOC-
NNs (experts) are trained in an Expectation-Maximization (EM) framework,
i.e., training the gating network and the experts iteratively.

2. Boosting + Gating: In this setup, each IOC-NN is trained individually. The
first model is trained on the whole data, and the consecutive models are
trained with exaggerated data on the samples on which the previous model
performs poorly. For bootstrapping, we use a simple re-weighting mechanism
as in [10]. A gating network is then trained over the ensemble of IOC-NNs.
The weights of the individual networks are frozen while training the gating
network.

We detail the idea of ensembles using a representative experiment for binary
classification on the data presented in Fig. 4(a). We train a mixture of p IOC-
MLPs with a gating network using the EM algorithm. The gating network is an
MLP with a single hidden layer, the output of which is a p dimensional vector.
Each of the IOC-MLP is a three-layer MLP with a single output. We keep a
single output to ensure that each IOC-MLP learns a convex decision boundary.
The output of the gating network is illustrated in Fig. 4(b). A particular IOC-
MLP was selected for each partition and led to five partitions. The decision
boundaries of individual IOC-MLPs are shown in Fig. 4(c). It is interesting to
note that the MoE of binary IOC-MLPs fractures the input space into sub-spaces
where a convex boundary is sufficient for classification.

4 Experiments

Dataset and Architectures: To show the significance of enhanced performance of
IOC-MLP over traditional NN, we train them on six different datasets: MNIST,
FMNIST, STL-10, SVHN, CIFAR-10, and CIFAR-100. We use an MLP with
three hidden layers and 800 nodes in each layer. We use batch normalization
between every layer, and it’s activation in all hidden layers. ReLU and ELU are
used as activations for NN and IOC respectively, and softmax is used in the last
layer. We use Adam optimizer with an initial learning rate of 0.0001 and use
validation accuracy for early stopping.

We perform experiments that involve two additional architectures to extend
the comparative study between IOC and NN on CIFAR-10 and CIFAR-100
datasets. We use a fully convolutional [28], and a densely connected architec-
ture [12]. We choose DenseNet with growth rate k = 12, for our experiments.
We term the convex counterparts as IOC-AllConv, IOC-DenseNet, respectively,
and compare against their base neural network counterparts [12,28]. In all com-
parative studies, we follow the same training and augmentation strategy to train
IOC-NNs, as used by the aforementioned neural networks.
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Training on Duplicate Free Data: The test sets of CIFAR-10 and CIFAR-100
datasets have 3.25% and 10% duplicate images, respectively [4]. Neural net-
works show higher performance on these datasets due to the bias created by
this duplicate data (neural networks have been shown to memorize the data).
CIFAIR-10 and CIFAIR-100 datasets are variants of CIFAR-10 and CIFAR-
100 respectively, where all the duplicate images in the test data are replaced
with new images. Barz et al. [4] observed that the performance of most neural
architectures drops when trained and tested on bias-free CIFAIR data. We train
IOC-NN and their neural network counterparts on CIFAIR-10 data with three
different architectures: a fully connected network (MLP), a fully convolutional
network (AllConv) [28] and a densely connected network (DenseNet) [12].

Training IOC Architectures: We tried four variations for weight constraints to
enforce convexity constraints: clipping negative weights to zero, taking absolute
of weights, exponentiation of negative weights and shifting the weights after
each iteration. We use exponentiation strategy in all experiments, as it gave
the best results. We exponentiate the negative weights after every update. The
IOC constrained optimization algorithm differs only by a single step from the
traditional algorithms (Appendix B).

To conserve convexity in the batch-normalization layer, we also constrain the
gamma scaler with exponentiation. However, in practice we found that the IOC
networks retains all desirable properties without constraining the gamma scalar.
We make few additional modifications to facilitate the training of IOC-NNs. Such
changes do not affect the performance of the base neural networks. We use ELU
as an activation function instead of ReLU in IOC-NNs. We apply the whitening
transformation to the input so that it is zero-centered, decorrelated, and spans
over positive and negative values equally. We also increase the number of nodes
in the first layer (the only layer where parameters can take negative values).
We use a slower schedule for learning rate decay than the base counterparts.
The IOC-NNs have a softmax layer at the last layer and are trained with cross-
entropy loss (same as neural networks).

Training Ensembles of Binary Experts: We divide CIFAR-10 dataset into 2
classes, namely: ‘Animal’ (CIFAR-10 labels: ‘Bird’, ‘Cat’, ‘Deer’, ‘Dog’, ‘Frog’
and ‘Horse’) and ‘Not Animal’. We train an ensemble of IOC-MLP, where each
expert is a three-layer MLP with one output (with sigmoid activation at the
output node). The gating network in the EM approach is a one layer MLP
which takes an image as input and predicts the weights by which the individual
expert predictions get averaged. We report test results of ensembles with each
additional expert. This experiment resembles the study shown in Fig. 4.

Training Boosted Ensembles: The lower training accuracy of IOC-NNs makes
them suitable for boosting (while the training accuracy saturates in non-convex
counterparts). For bootstrapping, we use a simple re-weighting mechanism as
in [10]. We train three experts for each experiment. The gating network is a reg-
ular neural network, which is a shallow version of the actual experts. We train
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Table 1. Table shows train accuracy, test accuracy and generalization gap for MLP
and IOC-MLP on six different datasets.

NN IOC-NN

Train Test Gen. gap Train Test Gen. gap

MNIST 99.34 99.16 0.19 98.77 99.25 −0.48

FMNIST 94.8 90.61 3.81 90.41 90.58 −0.02

STL-10 81 52.32 28.68 62.3 54.55 7.75

SVHN 91.76 86.19 5.57 81.18 86.37 −5.19

CIFAR-10 97.99 63.83 34.16 73.27 69.89 3.38

CIFAR-100 84.6 32.68 51.92 46.9 41.08 5.82

Table 2. Train accuracy, test accuracy and generalization gap of three neural archi-
tectures and their IOC counterparts

CIFAR-10 CIFAR-100

NN IOC-NN NN IOC-NN

Train Test Gen.
gap

Train Test Gen.
gap

Train Test Gen.
gap

Train Test Gen.
gap

MLP 99.17 63.83 35.34 73.27 69.89 3.3 84.6 32.68 51.9 46.9 41.08 5.8

AllConv 99.31 92.8 6.5 93.2 90.6 2.6 97.87 69.5 28.4 67.07 65.08 1.9

DenseNet 99.46 94.06 5.4 94.22 91.12 3.1 98.42 75.36 23.06 74.9 68.53 6.3

an MLP with only one hidden layer, a four-layer fully convolutional network,
and a DenseNet with two dense-blocks as the gate for the three respective archi-
tectures. We report the accuracy of the ensemble trained in this fashion as well
as the accuracy if we would have used an oracle instead of the gating network.

Partially Randomized Labeling: Here, we investigate IOC-NN’s behavior in the
presence of partial label noise. We do a comparative study between IOC and neu-
ral networks using All-Conv architecture, similar to the experiment performed
by [30]. We use CIFAR-10 dataset and make them noisy by systematically ran-
domizing the labels of a selected percentage of training data. We report the
performance of All-Conv, and it’s IOC counterpart on 20, 40, 60, 80 and 100%
noise in the train data. We report train and test scores at peak performance
(performance if we had used early stopping) and at convergence (if loss goes
below 0.001 or at 2000 epochs).

4.1 Results

IOC as a Preferred Alternative for Multi-Layer-Perceptrons: MLP is most basic
and earliest explored form of neural networks. We compare the train and test
scores of MLP and IOC-MLP in Table 1. With a sufficient number of parame-
ters, MLP (a basic NN architecture) perfectly fits the training data. However,
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it fails to generalize well on the test data owing to brute force memorization.
The results in Table 1 indicate that IOC-MLP gives a smaller generalization gap
(the difference between train and test accuracies) compared to MLP. The gener-
alization gap even goes to negative values on three of the datasets. MLP (being
poorly optimized for parameter utilization) is one of the architectures prone to
overfitting the most, and IOC constraints help retain test performance resisting
the tendency to overfit. Obtaining negative or almost zero generalization error
even at convergence is a never seen behaviour in deep networks and the results
clearly suggest the profound generalization abilities of Input Output Convexity,
especially when applied to fully connected networks.

Furthermore, having the IOC constraints significantly boosts the test accu-
racy on datasets where neural network gives a high generalization gap (Table 1).
This trend is clearly visible in Fig. 5(b). For the CIFAR-10 dataset, unconstrained
MLP gives 34.16% generalization gap, while IOC-NN brings down the general-
ization gap by more than ten folds and boosts the test performance by about 6%.
Even in scenarios where neural networks give a smaller generalization gap (like
MNIST and SVHN), IOC-NN marginally outperforms regular NN and gives an
advantage in generalization. Overall, the results in Table 1 highlight that IOC
constraints are extremely beneficial when training Multi Layer Perceptrons for
image classification, giving comprehensive advantages in terms of generalization
and test performance.

Better Generalization: We investigate the generalization capability of IOC-NN
on other architectures. The results of the base architectures and their convex
counterparts on CIFAR-10 and CIFAR-100 datasets are presented in Table 2.
IOC-NN outperforms base NN on MLP architecture and gives comparable test
accuracies for convolutional architectures. The train accuracies are saturated in
the base networks (reaching above 99% in most experiments). The lower train
accuracy in IOC-NNs suggests that there might still be room for improvement,
possibly through better design choices tailored for IOC-NNs. In Table 2, the dif-
ference in train and test accuracy across all the architectures (generalization
gap) demonstrates the better generalization ability of IOC-NNs. The general-
ization gap of base architectures is at least twofold more than IOC-NNs on
the CIFAR-100 dataset. For instance, the generalization error of IOC-AllConv
on CIFAR-100 is only 1.99%, in contrast to 28.4% in AllConv. The generaliza-
tion ability of IOC-NNs is further qualitatively reflected using the training and
validation loss profiles (e.g., Fig. 1(a)). We present a table showing the confi-
dence intervals of prediction across all three architectures with repeated runs in
Appendix C.

Table 5 shows the train and test performance of the three architectures on
CIFAR-10 dataset and the drop incurred when trained on CIFAIR-10. The drop
in test performance of IOC-NNs is smaller than the typical neural network. This
further strengthens the claim that IOC-NNs are not memorizing the training
data but learning a generic hypothesis.



750 S. Sivaprasad et al.

Table 3. Results for systematically randomized labels at peak and at convergence for
both IOC-NN and NN. The IOC constraints bring huge improvements in generalization
error and test accuracy at convergence.

NN IOC-NN

Peak Convergence Peak Convergence

Train Test Train Test Gen. gap Train Test Train Test Gen. gap

100 98.63 10.53 97.80 10.1 87.7 9.98 10.62 10.21 9.94 0.27

80 22.40 60.24 97.83 27.75 70.08 21.93 61.48 23.80 56.20 −32.4

60 38.52 75.80 97.80 46.71 51.09 37.90 75.91 39.31 71.75 −32.44

40 56.48 80.47 97.96 61.83 36.13 55.01 81.58 54.63 81.01 −26.38

20 72.8 85.72 98.73 76.31 22.42 69.92 85.85 70.22 83.61 −13.39

Table 4. Results comparing FICNN [1] with IOC-NN on CIFAR-10 using MLP archi-
tecture. First column shows base MLP results. Second column presents results with a
convex MLP using ReLU activation. Third and final columns show the accuracies of
FICNN and IOC-NN, respectively.

Base MLP Constrained MLP FICNN IOC-NN

Train 99.17 46.81 62.8 73.27

Test 63.83 27.36 53.07 69.89

Gen-gap 35.34 19.45 9.73 3.38

Comparison with FICNN: Table 4 shows the results of IOC-NN and FICNN [1]
on CIFAR-10 data. For comparison, we use a three layer MLP with 800 nodes in
each layer, for both IOC-NN and FICNN. FICNN uses a skip connection from
input layer to each of the intermittent layers. This enables each layer to learn
identity mapping inspite of non-negative constraint. The number of parameters
in FICNN model is almost twice compared to the base MLP and IOC mod-
els but still the test performance drops by more than 10%. The results clearly
shows that IOC-NN gives better test accuracy and lower generalization gap com-
pared to FICNN, while using the same number of parameters as the base MLP
architecture.

Robustness to Random Label Noise: Robustness of IOC-NNs on partial and fully
randomized labels (Fig. 1 (b, c, and d)) is one of its key properties. We further
investigate this property by systematically randomizing increasing portion of
labels. We report the results of neural networks and their convex counterparts
with percentage of label noise varying from 20% to 100% in Table 3. The train
performance of neural networks at convergence is near 100% across all noise
levels. It is interesting to note that IOC-NN gives a large negative generalization
gap, where the train accuracy is almost equal to the percentage of true labels in
the data. This observation shows that IOC-NNs significantly resist learning noise
in labels as compared to neural networks. Both neural network and it’s convex
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Table 5. Results on CIFAIR-10 dataset

NN IOC-NN

C-10 CIFAIR Gap C-10 CIFAIR Gap

MLP 63.6 63.08 0.52 69.89 69.51 0.38

AllConv 92.8 91.14 0.66 90.6 90.47 0.13

DenseNet 94.06 93.28 0.78 91.12 90.73 0.39

Fig. 5. (a) shows the test accuracy of IOC-MLP with increasing number of experts in
the binary classification setting. Average performance of normal MLP is shown in red
since it does not change with increase in number of experts. (b) The generalization gap
of MLP plotted against the improvement gained by the IOC-MLP for the six different
datasets (represented by every point on the plot). The performance gain with IOC
constraints increase with the increase in generalization gap of MLP.

counterpart learns the simple hypothesis first. While IOC-NN holds on to this,
in later epochs, the neural network starts brute force memorization of noisy
labels. The observations are coherent with findings in [17,27], demonstrating
neural network’s heavy reliance on early stopping. IOC-AllConv outperforms
test accuracy of AllConv + early stopping with a much-coveted generalization
behavior. It is clear from this experiment that IOC-NN performs better in the
presence of random label noise in the data in terms of test accuracy both at
peak and convergence.

Leverage IOC Properties to Train Ensembles: We train binary MoE on the
modified two-class setting of CIFAR-10 as described in Sect. 4. The result is
shown in Fig. 5 (a). Traditional neural network gives a test accuracy of 89.63%
with a generalization gap of 10%. Gated MoE of NNs does not improve the test
performance as we increase the number of experts. In contrast, the performance
of ensemble of IOC-NNs goes up with the addition of each expert and moves
closer to the performance of neural networks. It is interesting to note that even in
the higher dimensional space (like CIFAR-10 images), the intuitions derived from
Fig. 4 holds. We also note that gate fractures the space into p partitions (where
p is the number of experts). Moreover, in the binary case for a single expert, the
generalization gap is almost zero. This can be attributed to the convex hull like
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Table 6. Result for single expert, gated MoE and with oracle on CIFAR-10 for three
architectures

Single expert Gate Oracle

MLP 69.89 71.8 85.47

All-Conv 90.6 92.83 96.3

DenseNet 91.12 93.25 97.19

(a) MLP (b) AllConv (c) DenseNet

Fig. 6. These diagrams show expected sample accuracy as a function of confidence [9].
The blue bar shows the confidence of the bin and the orange bar shows the percentage
correctness of prediction in that bin. If the model is perfectly calibrated, the bars align
to form identity function. Any deviation from a perfect diagonal is a miscalibration.
(Color figure online)

smooth decision boundary that the network predicts in the binary setting with
a single output.

The results with the boosted ensembles of IOC-NNs are presented in Table 6.
The boosted ensemble improves the test accuracies of IOC-NNs, matching or
outperforming the base architectures. However, this performance gain comes at
the cost of increased generalization error (still lower than the base architectures).
In the boosted ensemble, the performance significantly improves if the gating
network is replaced by an oracle. This observation suggests that there is a scope
of improvement in model selection ability, possibly by using a better gating
architecture.

Confidence Calibration of IOC-NNs: In a classification setting, given an input,
the neural network predicts probability-like scores towards each class. The class
with the maximum score is considered the predicted output, and the correspond-
ing score to be the confidence. The confidence and accuracy being correlated is a
desirable property, especially in high-risk applications like self-driving cars, med-
ical diagnoses, etc. However, many modern multi-class classification networks are
poorly calibrated, i.e., the probability values that they associate with the class
labels they predict overestimate the likelihoods of those class labels being cor-
rect in the real world [11]. Recent works have explored methods to improve the
calibration of neural networks [11,21].

We observe that adding IOC constraints improve calibration error on the
base NN architecture. We present the reliability diagrams [9] (presenting accu-
racy as a function of confidence) of three neural architectures and their convex
counterparts in Fig. 6. The sum of the difference between the blue bars and the
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orange bars represents the Expected Calibration Error. IOC constraints show
improved calibration in all three architectures (with notable improvements in
the case of MLP and AllConv). Better calibration further strengthens the case
for IOC-NNs from the application perspective.

5 Conclusions

We present a subclass of neural networks, where the output is a convex func-
tion of the input. We show that with minimal constraints, existing neural net-
works can be adopted to this subclass called Input Output Convex Neural Net-
works. With a set of carefully chosen experiments, we unveil that IOC-NNs show
outstanding generalization ability and robustness to label noise while retaining
adequate capacity. We show that in scenarios where the neural network gives
a large generalization gap, IOC-NN can give better test performance. An alter-
nate interpretation of our work can be self regularization (regularization through
functional constraints). IOC-NN puts to rest the concerns around brute force
memorization of deep neural networks and opens a promising horizon for the
community to explore. We show that in the case of Multi-Layer-Perceptrons,
IOC constraints improve accuracy, generalization, calibration, and robustness to
noise, making an ideal proposition from a deployment perspective. The improved
generalization, calibration, and robustness to noise are also observed in convo-
lutional architectures while retaining the accuracy. In future work, we plan to
investigate the use of IOC-NNs for recurrent architectures. Furthermore, we plan
to explore the interpretability aspects of IOC-NNs and study the effect of con-
vexity constraints on the generalization bounds.
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27. Sjöberg, J., Ljung, L.: Overtraining, regularization and searching for a minimum,
with application to neural networks. Int. J. Control 62(6), 1391–1407 (1995)

28. Springenberg, J.T., Dosovitskiy, A., Brox, T., Riedmiller, M.: Striving for simplic-
ity: the all convolutional net. arXiv preprint arXiv:1412.6806 (2014)
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Abstract. Subtype Discovery consists in finding interpretable and con-
sistent sub-parts of a dataset, which are also relevant to a certain super-
vised task. From a mathematical point of view, this can be defined as
a clustering task driven by supervised learning in order to uncover sub-
groups in line with the supervised prediction. In this paper, we propose
a general Expectation-Maximization ensemble framework entitled UCSL
(Unsupervised Clustering driven by Supervised Learning). Our method
is generic, it can integrate any clustering method and can be driven by
both binary classification and regression. We propose to construct a non-
linear model by merging multiple linear estimators, one per cluster. Each
hyperplane is estimated so that it correctly discriminates - or predict -
only one cluster. We use SVC or Logistic Regression for classification
and SVR for regression. Furthermore, to perform cluster analysis within
a more suitable space, we also propose a dimension-reduction algorithm
that projects the data onto an orthonormal space relevant to the super-
vised task. We analyze the robustness and generalization capability of
our algorithm using synthetic and experimental datasets. In particular,
we validate its ability to identify suitable consistent sub-types by con-
ducting a psychiatric-diseases cluster analysis with known ground-truth
labels. The gain of the proposed method over previous state-of-the-art
techniques is about +1.9 points in terms of balanced accuracy. Finally, we
make codes and examples available in a scikit-learn-compatible Python
package. https://github.com/neurospin-projects/2021 rlouiset ucsl/.
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1 Introduction

Subtype discovery is the task of finding consistent subgroups within a population
or a class of objects which are also relevant to a certain supervised upstream
task. This means that the definition of homogeneity of subtypes should not
be fully unsupervised, as in standard clustering, but it should also be driven
by a supervised task. For instance, when identifying flowers, one may want
to find different varieties or subtypes within each species. Standard clustering
algorithms are driven by features that explain most of the general variability,
such as the height or the thickness. Subtype identification aims at discover-
ing subgroups describing the specific heterogeneity within each flower species
and not the general variability of flowers. To disentangle these sources of vari-
ability, a supervised task can identify a more relevant feature space to drive
the intra-species clustering problem. Depending on the domain, finding relevant
subgroups may turn out to be a relatively hard task. Indeed, most of the time,
boundaries between different patterns are fuzzy and may covariate with other
factors. Hence, ensuring that resulting predictions are not collapsed clusters or
biased by an irrelevant confound factor is a key step in the development of such
analysis. For example, in clinical research, it is essential to identify subtypes
of patients with a given disorder (red dots in Fig. 1). The problem is that the
general variability (that stems from age or sex) is observed in both healthy
controls (grey dots in Fig. 1) and disease patients, therefore it will probably
drive the clustering of patients toward a non-specific solution (second plot in
Fig. 1). Adding a supervised task (healthy controls vs patients) can be used
to find direction(s) (horizontal arrow Fig. 1) that discards non-specific variabil-
ity to emphasize more disease-related differences (subtype discovery in Fig. 1).

Fig. 1. Subtype discovery in clini-
cal research.

This is a fundamental difference between
unsupervised clustering analysis and subtype
identification.

Subgroups identification is highly relevant
in various fields such as in clinical research
where disease subtypes discovery can lead to
better personalized drug-treatment and prog-
nosis [28] or to better anticipate at-risk pro-
files [26]. Particularly, given the extreme vari-
ability of cancer, identifying subtypes enable
to develop precision medicine [2,14,16,18,28,28]. In psychiatry and neurology,
different behaviour, anatomical and physiological patterns point out variants
of mental disorders [13] such as for bipolar disorder [31], schizophrenia [5,8],
autism, [24,33], attention-deficit hyperactivity disorder [29], Alzheimer’s dis-
ease [7,25,27,32] or Parkinson’s disease [6]. In bio-informatics, DNA subfolds
analysis is a key field for the understanding of gene functions and regulations,
cellular processes and cells subtyping [23]. In the field of data mining, crawling
different consistent subgroups of written data enables enhanced applications [20].
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2 Related Works

Early works [2,6] proposed traditional clustering methods to find relevant
subgroups for clinical research in cancer and neurology. However, they were
very sensitive to high-dimensional data and noise, making them hardly repro-
ducible [17,18].

To overcome these limits, [23] and [18] evaluated custom consensus methods
to fuse multiple clustering estimates in order to obtain more robust and repro-
ducible results. Additionally, [23] also proposed to select the most important fea-
tures in order to overcome the curse of dimensionality. Even if all these methods
provide relevant strategies to identify stable clusters in high-dimensional space,
they do not allow the identification of disease-specific subtypes when the dom-
inant variability in patients corresponds to the variability in the general popu-
lation. To select disease-specific variability, recent contributions propose hybrid
approaches integrating a supervised task (patient vs. controls) to the clustering
problem. In [22], authors propose a hybrid method for disease-subtyping in preci-
sion medicine. Their implementation consists of training a Random Forest super-
vised classifier (healthy vs. diseased) and then apply SHAP Algorithm [10,11]
to get explanation values from Random Forest classifiers. This yields promising
results even though it is computationally expensive, especially when the dataset
size increases.

Differently, a wide range of Deep Learning methods propose to learn better
representations via deep encoders and adapt clustering method on compressed
latent space or directly within the minimizing loss. In this case, encoders have
to be trained with at least one non-clustering loss, to enhance the represen-
tations [21] and avoid collapsing clusters [30]. [3] proposes a Deep Clustering
framework that alternates between latent clusters estimation and likelihood max-
imization through pseudo-label classification. Yet, its training remains unstable
and designed for large-scale dataset only. Prototypical Contrastive Learning [9],
SeLA [1], SwAV [4] propose contrastive learning frameworks that alternatively
maximize 1- the mutual information between the input samples and their latent
representations and 2- the clustering estimation. These works have proven to be
very efficient and stable on large-scale datasets. They compress inputs into denser
and richer representations, and successfully get rid of unnecessary noisy dimen-
sions. Nevertheless, they still do not propose a representation aligned with the
supervised task at-hand. To ensure that resulting clusters identify relevant sub-
groups for the supervised task, one could first train for the supervised task and
then run clustering on the latent space. This would emphasize important features
for the supervised task but it may also regress out intra-class specific heterogene-
ity, hence the need of an iterative process where clustering and classification tasks
influence each other.

CHIMERA [8], proposes an Alzheimer’s subtype discovery algorithm driven
by supervised classification between healthy and pathological samples. It assumes
that the pathological heterogeneity can be modeled as a set of linear transfor-
mations from the reference set of healthy subjects to the patient distribution,
where each transformation corresponds to one pathological subtype. This is a
strong a priori that limits its application to (healthy reference)/(pathological case)
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only. [25,27] propose an alternate algorithm between supervised learning and
unsupervised cluster analysis where each step influences the other until it reaches
a stable configuration. The algorithm simultaneously solves binary classification
and intra-class clustering in a hybrid fashion thanks to a maximum margin frame-
work. The method discriminates healthy controls from pathological patients by
optimizing the best convex polytope that is formed by combining several linear
hyperplanes. The clustering ability is drawn by assigning patients to their best
discriminating hyperplane. Each cluster corresponds to one face of the piece-wise
linear polytope and heterogeneity is implicitly captured by harnessing the classifi-
cation boundary non-linearity. The efficiency of this method heavily relies on the
prior hypothesis that negative samples (not being clustered) lie inside the convex
discrimination polyhedron. This may be a limitation when it does not hold for a

Fig. 2. Toy Datasets - Different configurations we want to address. Grey points repre-
sent negative samples. The upstream task is to classify negative (grey) samples from all
positive (colored) samples while the final goal is to cluster positive samples. The upper
plots show 3 and 2 clusters respectively along the classification boundary. The lower plot
show 4 and 2 clusters respectively parallel (and also along on the left) to the classification
boundary. Furthermore, plots on the left and right show clusters outside and inside the
convex classification polytope respectively.
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given data-set (left examples of Fig. 2). Another hypothesis is that relevant psychi-
atric subtypes should not be based on the disease severity. This a priori implies that
clusters should be along the classification boundary (upper examples of Fig. 2).
Even though it may help circumvent general variability issues, this strongly limits
the applicability of the method to a specific variety of subgroups.

Contributions. Here, we propose a general framework for Unsupervised Clus-
tering driven by Supervised Learning (UCSL) for relevant subtypes discovery.
The estimate of the latent subtypes is tied with the supervision task (regression
or classification). Furthermore, we also propose to use an ensembling method in
order to avoid trivial local minima or collapsed clusters.

We demonstrate the relevance of the UCSL framework on several data-sets.
The quality of the obtained results, the high versatility, and the computational
efficiency of the proposed framework make it a good choice for many subtype dis-
covery applications in various domains. Additionally, the proposed method needs
very few parameters compared to other state-of-the-art (SOTA) techniques, mak-
ing it more relevant for a large number of medical applications where the number
of training samples is usually limited. Our three main contributions are :

1. A generic mathematical formulation for subtype discovery which is robust to
samples inside and outside the classification polytope (see Fig. 2).

2. An Expectation-Maximization (EM) algorithm with an efficient dimensional-
ity reduction technique during the E step for estimating latent subtypes more
relevant to the supervised task.

3. A thoughtful evaluation of our subtype discovery method and a fair compari-
son with several other SOTA techniques on both synthetic and real data-sets.
In particular, a neuroimaging data-set for psychiatric subtype discovery.

3 UCSL: An Unsupervised Clustering Driven by
Supervised Learning Framework

3.1 Mathematical Formulation

Let (X,Y ) = {(xi, yi)}ni=1 be a labeled data-set composed of n samples. Here,
we will restrict to regression, yi ∈ R, or binary classification, yi ∈ {−1,+1}. We
assume that all samples, or only positive samples (yi = +1), can be subdivided
into latent subgroups for regression and binary classification respectively.

The membership of each sample i to latent clusters is modeled via a latent
variable ci ∈ C = {C1, ..., CK}, where K is the number of assumed subgroups.
We look for a discriminative model that maximizes the joint conditional likeli-
hood:

n∑

i=1

log
∑

c∈C

p(yi, ci|xi) (1)

Directly maximizing this equation is hard and it would not explicitly make
the supervised task and the clustering depend on each other, namely we would
like to optimize both p(ci|xi, yi) (the clustering task) and p(yi|xi, ci) (the
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upstream supervised task) and not only one of them. To this end, we introduce
Q, a probability distribution over C, so that

∑
ci∈C Q(ci) = 1.

n∑

i=1

log
∑

c∈C

p(yi, ci|xi) =
n∑

i=1

log

(
∑

c∈C

Q(ci)
p(yi, ci|xi)

Q(ci)

)
. (2)

By applying the Jensen inequality, we then obtain the following lower-bound:

n∑

i=1

log

(
∑

c∈C

Q(ci)
p(yi, ci|xi)

Q(ci)

)
≥

n∑

i=1

∑

c∈C

Q(ci) log
(
p(yi, ci|xi)

Q(ci)

)
, (3)

It can be shown that equality holds when:

Q(ci) =
p(yi, ci|xi)∑
c∈C p(yi, ci|xi)

=
p(yi, ci|xi)
p(yi|xi)

= p(ci|yi, xi). (4)

The right term of Eq. 3 can be re-written as:

n∑

i=1

∑

c∈C

(
Q(ci) log

(
p(yi|ci, xi)p(ci|xi)

)
− Q(ci) logQ(ci)

)
. (5)

We address the maximization of Eq. 5 with an EM optimization scheme
(Algorithm 2) that exploits linear models to drive the clustering until we obtain a
stable solution. First, during the Expectation step, we tighten the lower bound in
Eq. 3 by estimating Q as the latent clusters conditional probability distribution
p(ci|yi, xi) as in Eq. 4. Then, we fix Q, and maximize the supervised conditional
probability distribution p(yi|ci, xi) weighted by the conditional cluster distribu-
tion p(ci|xi) as in Eq. 5.

3.2 Expectation Step

In this step, we want to estimate Q as p(ci|yi, xi),∀i ∈ �1, n�,∀c ∈ C in order
to tighten the lower bound in Eq. 3. We remind here that latent clusters c are
defined only for the positive samples (y = +1), when dealing with a binary
classification, and for all samples in case of regression. Let us focus here on the
binary classification task. Depending on the problem one wants to solve, different
solutions are possible. On the one hand, if ground truth labels for classification
are not available at inference time, Q should be computed using the classification
prediction. For example, one could use a clustering algorithm only on the samples
predicted as positive. However, this would bring a new source of uncertainty
and error in the subgroups discovery due to possible classification errors. On
the other hand, if ground truth labels for classification are available at inference
time, one would compute the clustering using only the samples associated to
ground-truth positive labels ỹi = +1, and use the classification directions to
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Fig. 3. Limit of maximum-margin based clustering starting from an optimal cluster
initialization. When the separation of clusters to discover is co-linear to the super-
vised classification boundary, the maximum margin cluster assignment (as in [25])
converges towards a degenerate solution (upper figures). Instead, with our direction
method (lower figures), the Graam-Schmidt algorithm returns one direction where
input points are projected to and perfectly clustered.

guide the clustering. Here, we will focus on the latter situation, since it’s of
interest for many medical applications.

Now, different choices are again possible. In order to influence the resulting
clustering with the label prediction estimation, HYDRA [25] proposes to assign
each positive sample to the hyperplane that best separates it from negative
samples (i.e. the furthest one). This is a simple way to align resulting clustering
with estimated classification while implicitly leveraging classification boundary
non-linearity. Yet, we argue that this formulation does not work in the case
where clusters are disposed parallel to the piece-wise boundary as described
in Fig. 3. To overcome this limit, we propose to project input samples onto a
supervision-relevant subspace before applying a general clustering algorithm.

Dimension Reduction Method Based on Discriminative Directions.
Our goal is a clustering that best aligns with the upstream-task. In other words,
in a classification example, the discovery of subtypes should focus on the same
features that best discriminate classes, and not on the ones characterizing the
general variability. In regression, subgroups should be found by exploiting fea-
tures that are relevant for the prediction task. In order to do that, we rely on
the linear models estimated from the maximization step. More specifically, we
propose to first create a relevant orthonormal sub-space by applying the Graam-
Schmidt algorithm onto all discriminant directions, namely the normal directions
of estimated hyperplanes. Then, we project input features onto this new linear
subspace to reduce the dimension and perform cluster analysis on a more suit-
able space. Clustering can be conducted with any algorithm such as Gaussian
Mixture Models (GMM), K-Means (KM) or DBSCAN for example.
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Algorithm 1. Dimension reduction method based on discriminative directions
Input : X ∈ Rnxd, training data with n samples and d features.
Output :X ′ ∈ RnxK , training data projected onto relevant orthonormal subspace.

1: Given K estimated hyperplanes, concatenate normal vectors in D ∈ RKxd.
2: Ortho-normalize the direction basis D with Graam-Schmidt obtaining D⊥ ∈ RKxd.
3: Project training data onto the orthonormal subspace, X ′ = X(D⊥)T .

Fig. 4. Starting with an optimal initialization of clusters to discover, constant negative
samples weighting (top row) may lead to co-linear discriminative hyperplanes and thus
errors in clustering. Conversely, our negative samples weighting enforces non-colinearity
between discriminative hyperplanes resulting in higher quality clustering.

3.3 Maximization Step

After the expectation step, we fix Q and then maximize the conditional likeli-
hood. The lower bound in Eq. 5 thus becomes:

n∑

i=1

∑

c∈C

Q(ci) log p(yi|ci, xi) +
n∑

i=1

∑

c∈C

Q(ci) log p(ci|xi) (6)

Here, we need to estimate p(ci|xi). A possible solution, inspired by
HYDRA [25], would be to use the previously estimated distribution p(ci|yi, xi)
for the positive samples and a fixed weight for the negative samples, namely:

p(ci|xi) =
{
p(ci|xi, yi) if ỹi = +1
1
K if ỹi = −1 (7)

However, as illustrated in Fig. 4, this approach does not work well when neg-
ative samples lie outside of the convex classification polytope since discrimina-
tive directions (or hyperplanes) may become collinear. This collinearity hinders
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the retrieving of informative directions and consequently degrades the resulting
clustering.

To overcome such a shortcoming, we propose to approximate p(ci|xi) using
p(ci|xi, yi) for both negative and positive samples or, in other words, to extend
the estimated clustering distribution to all samples, regardless their label y.
In this way, samples from the negative class (yi = −1), that are closer to a
certain positive cluster, will have a higher weight during classification. As shown
in Fig. 4, this results in classifications hyperplanes that correctly separate each
cluster from the closer samples of the negative class, entailing better clustering
results. From a practical point of view, since we estimate Q(ci) as p(ci|yi, xi), it
means that p(ci|xi) can be approximated by Q(ci). Q(ci) being fixed during the
M step, only the left term in Eq. 6 is maximized.

3.4 Supervised Predictions

Once trained the proposed model, we compute the label yj for each test sample
xj using the estimated conditional distributions p(yj |cj , xj) and p(cj |xj) as:

p(yj |xj) =
∑

cj∈C

p(yj , cj |xj) =
∑

cj∈C

p(yj |xj , cj)p(cj |xj) (8)

In this way, we obtain a non-linear estimator based on linear hyperplanes,
one for each cluster.

3.5 Application

Multiclass Case. In the case of classification, we handle the binary case in the
same way as [25] does. We consider one label as positive ỹi = 1 and cluster it
with respect to the other one ỹi = −1. In the multi-class case, we can cast it as
several binary problems using the one-vs-rest strategy.

Ensembling: Spectral Clustering. The consensus step enables the merging of
several different clustering propositions to obtain an aggregate clustering. After
having run the EM iterations N times, the consensus clustering is computed by
grouping together samples that were assigned to the same cluster across differ-
ent runs. In practice, we compute a co-occurrence matrix between all samples.
And then we use co-occurence values as a similarity measure to perform spectral
clustering. Hence, for example, given two samples i and j and 10 different runs,
if samples i and j ended up 4 times in the same cluster, the similarity measure
between those 2 samples will be 4

10 . Given an affinity matrix between all samples,
we can then use the spectral clustering algorithm to obtain a consensus clustering.

3.6 Pseudo-code

The pseudo-code of the proposed method UCSL (Algorithm 2) can be subdivided
into several distinct steps:
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Algorithm 2. UCSL general framework pseudo-code
Input : X ∈ Rnxd, y ∈ {−1, 1}n, K number of clusters.

Output : p(c|x, y) = Q(c), p(y|x, c) (linear sub-classifiers).

1: for ensemble in n ensembles do

2: Initialization: Estimate Q(0) for all samples (y = ±1) with a clustering algorithm (e.g.

GMM) trained with positive samples only (y = +1).

3: while not converged do

4: M step (supervised step) :

5: Freeze Q(t)

6: for k in [1, K] :

7: Fit linear sub-classifier k weighted by Q(t)[:, k] (Eq. 6).

8: end for

9: E step (unsupervised step) :

10: Use Algorithm 1 to obtain X′ ∈ RnxK from sub-classifiers normal vectors D ∈ RKxd.

11: Estimate Q(t+1) = p(c|x, y) (Eq. 4) for all samples with a clustering algorithm

trained on X′ with positive samples only.

12: end while

13: end for

14: Ensembling: Compute average clustering with the ensembling method (Sec. 3.5).

15: Last EM : Perform EM iterations from ensembled latent clusters until convergence.

1. Initialization: First, we have to initialize the clustering. There are several
possibilities here, we can make use of traditional ML methods such as KM or
GMM. For most of our experiments we used GMM.

2. Maximization: The Maximization step consists in training several linear
models to solve the supervised upstream problem. It can be either a classifi-
cation or a regression. We opted for well-known ML linear methods such as
logistic regression or max-margin linear classification method as in [25].

3. Expectation: The Expectation step makes use of the supervised learning
estimates to produce a relevant clustering. In our case, we exploit the direc-
tions exhibited by the linear supervised models. We project samples onto a
subspace spanned by those directions to perform the unsupervised clustering
with positive samples.

4. Convergence: In order to check the convergence, we compute successive
clustering Adjusted Rand Score (ARI), the closer this metric is to 1, the
more similar both clustering assignments are.

5. Ensembling: Initialization and EM iterations are performed until conver-
gence N times and an average clustering is computed with a Spectral Clus-
tering algorithm [25], [18] that proposes the best consensus. This part enables
us to have more robust and stable solutions avoiding trivial or degenerate
clusters.

4 Results

We validated our framework on four synthetic data-sets and two experimental
ones both qualitatively and quantitatively.
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Implementation Details. The stopping criteria in Algorithm2 is defined using
the ARI index between two successive clusterings (at iteration t and iteration
t+1). The algorithm stops when it reaches the value of 0.85. In the MNIST exper-
iment, convolutional generator and encoder networks have a similar structure to
the generator and discriminator in DCGAN [19]. We trained it during 20 epochs,
with a batch size of 128, a learning rate of 0.001 and with no data augmenta-
tion and a SmoothL1 loss. More information can be found in the Supplementary
material. Standard deviations are obtained by running 5 times the experiments
with different initializations (synthetic and MNIST examples) or using a 5-fold
cross-validation (psychiatric dataset experiment). MNIST and synthetic exam-
ples were run on Google Colaboratory Pro, whose hardware equipments are PNY
Tesla P100 with 28Gb of RAM.

Synthetic Dataset. First, we generated a set of synthetic examples that sum
up the different configurations on which we wish our method to be robust: sub-
types along the supervised boundary or parallel to it. We designed configura-
tions with various number of clusters, outside or inside the convex classification
polytope. UCSL was run with Logistic Regression and GMM. In order to make
our problem more difficult we decided to add noisy unnecessary features to the
original 2-D toy examples. For each example and algorithm, we performed 10
runs with a different initialization each time (GMM with only one initializa-
tion) and we did not perform the ensembling step for fair comparison with the
other methods. We compared with other traditional ML methods such as KM
GMM, DBSCAN and Agglomerative Clustering. Results are displayed in Fig. 5.
For readability, we divided the standard deviation hull by 2. Compared with
the other methods, UCSL appears to be robust to unnecessary noisy features.
Furthermore, it performs well in all configurations we addressed.

MNIST Dataset. To further demonstrate what an intra-class clustering could
be used for, let us make an example from MNIST. We decided to analyse the
digit 7 looking for subtypes. To perform this experiment, we trained on 20 000
MNIST digits and considered the digit 7 as positive class. We use a one-vs-rest
strategy for classification where input samples are the flattened images.

Visually, digit 7 examples have two different subtypes: with or without the
middle-cross bar. In order to quantitatively evaluate our method, we labeled 400
test images in two classes, 7 with a middle-cross bar, and those with none. We
ran UCSL with GMM as a clustering method, logistic regression as classification
method and compared with clustering methods coupled with deep learning mod-
els or dimension reduction algorithms. We use the metrics V-Measure, Adjusted
Rand Index (ARI) and balanced accuracy (B-ACC), since we know the expected
clustering result.
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As it is possible to notice from Table 1, UCSL outperforms other clustering
and subtypes ML methods. We also compared our algorithm with DL methods,
a pre-trained convolutional network and a simple convolutional encoder-decoder.
Only the convolutional autoencoder network along with a GMM on its latent
space of dimension 32 slightly outperforms UCSL. However, it uses a definitely
higher number of parameters (7500 times more!) and takes twice the time for
training. Our model is thus more relevant to smaller data-sets, which are common
in medical applications. Please note that UCSL could also be adapted in order
to use convolutional auto-encoders or contrastive methods such as in [9] and [3],
when dealing with large data-sets. This is left as future work.

Psychiatric Dataset. The ultimate goal of the development of subtype discov-
ery methods is to identify homogeneous subgroups of patients that are associated

Fig. 5. Comparison of performances of different algorithms on the four configurations
presented in Fig. 2. Noisy features are added to the original 2D data. For each example,
all algorithms are run 10 times with different initialization.
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Table 1. MNIST dataset, comparison of performances of different algorithms for the
discovery of digit 7 subgroups. AE : convolutional AutoEncoder; PT VGG11: VGG11
model pre-trained on imagenet; GMM: Gaussian Mixture Model; KM: K-Means. Latent
size: dimension of space where clustering is computed. * : to limit confusion, we assign
no parameters for t-sne, umap and SHAP. We use default values (15,30,100) for per-
plexity, neighbours and n estimators in t-sne, umap and SHAP respectively.

Methods Latent

Size

Nb

params

Avg Exec

Time

V-measure ARI B-ACC

AE + GMM 32 3M 21m40 s 0.323 ± 0.013 0.217 ± 0.025 0.823 ± 0.009

UCSL (our) 2 406 12m31 s 0.239 ± 0.001 0.330 ± 0.001 0.808 ± 0.001

PT VGG11 + KM 1000 143M 32m44 s 0.036 ± 0.001 0.087 ± 0.001 0.616 ± 0.001

AE + GMM 2 3M 13m34 s 0.031 ± 0.015 0.033 ± 0.021 0.607 ± 0.025

t-sne* [12] + KM 2 4 2m04 s 0.029 ± 0.020 0.049 ± 0.056 0.568 ± 0.033

t-sne* [12] + GMM 2 14 2m04 s 0.023 ± 0.021 0.020 ± 0.048 0.566 ± 0.033

umap* [15] + KM 2 4* 24 s 0.050 ± 0.015 0.078 ± 0.015 0.555 ± 0.022

umap* [15] + GMM 2 14* 24 s 0.025 ± 0.006 0.080 ± 0.010 0.547 ± 0.005

SHAP [10]* + KM 196 392* 1 h 02 0.012 ± 0.007 −0.014 ± 0.035 0.540 ± 0.016

KM 196 392 0.32ms 0.006 ± 0.000 0.010 ± 0.000 0.552 ± 0.000

HYDRA 196 394 9m45 s 0.005 ± 0.006 0.024 ± 0.031 0.520 ± 0.018

GMM 196 77K 0.32ms 0.0002 ± 0.000 −0.001 ± 0.000 0.510 ± 0.000

Fig. 6. Comparison of latent space visualization in the context of MNIST digit “7”
subtype discovery. Differently from t-SNE, our method does not focus on the general
digits variability but only on the variability of the “7”. For this reason, subtypes of “7”
are better highlighted with our method.

with different disease mechanisms and lead to patient-specific treatments. With
brain imaging data, the variability specific to the disorder is mixed up or hidden
to non-specific variability. Classical clustering algorithms produce clusters that
correspond to subgroups of the general population: old participants with brain
atrophy versus young participants without atrophy, for instance.
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To validate the proposed method we pooled neuroimaging data from patients
with two psychiatric disorders, (Bipolar Disorder (BD) and Schizophrenia (SZ)),
with data from healthy controls (HC). The supervised upstream task aims at
classifying HC from patients (of both disorders) using neuroimaging features
related to the local volumes of brain grey matter measured in 142 regions of
interest (identified using cat12 software). Here, we used a linear SVM for classi-
fication. The clustering task is expected to retrieve the known clinical disorder
(BD or SZ). Training set was composed of 686 HC and 275 SZ, 307 BP patients.

We measured the correspondence (Table 2) between the clusters found by the
unsupervised methods with the true clinical labels on an independant TEST set
(199 HC, 190 SZ, 116 BP) coming from a different acquisition site. As before, we
used the metrics V-Measure, Adjusted Rand Index (ARI) and balanced accu-
racy (B-ACC). Please note that the classification of SZ vs BD is a very difficult
problem due to the continuum between BP and SZ. Therefore, performances
should be compared with the best expected result provided by a purely super-
vised model (here a SVM) that produces only 61% of accuracy (last row of
Table 2).

Table 2. Results of the different algorithms on the subtype discovery task BP/SZ.
The last row provides the best expected result obtained with a supervised SVM.

Algorithm V-measure ARI B-ACC

GMM 0.002 ± 0.001 0.003 ± 0.008 0.491 ± 0.024

KMeans 0.008 ± 0.001 −0.01 ± 0.001 0.499 ± 0.029

umap* [15] + GMM 0.001 ± 0.002 0.000 ± 0.007 0.497 ± 0.013

umap* [15] + KM 0.000 ± 0.002 0.001 ± 0.005 0.502 ± 0.006

t-sne* [12] + GMM 0.002 ± 0.0024 −0.00 ± 0.005 0.498 ± 0.028

t-sne* [12] + KM 0.004 ± 0.004 0.003 ± 0.005 0.505 ± 0.041

HYDRA [25] 0.018 ± 0.009 −0.01 ± 0.004 0.556 ± 0.019

SHAP [22] + GMM 0.004 ± 0.005 0.000 ± 0.006 0.527 ± 0.027

SHAP [22] + KMeans 0.016 ± 0.005 0.017 ± 0.012 0.575 ± 0.011

UCSL + GMM 0.024 ± 0.006 0.042 ± 0.016 0.587 ± 0.009

UCSL + KMeans 0.030 ± 0.012 0.004 ± 0.006 0.594 ± 0.015

Supervised SVM 0.041 ± 0.007 0.030 ± 0.008 0.617 ± 0.010

As expected, mere clustering methods (KMeans, GMM) provide clustering
at the chance level. Detailed inspection showed that they retreived old patients
with brain atrophy vs younger patients without atrophy. Only clustering driven
by supervised upstream task (HYDRA, SHAP+KMeans and all UCSL) can
disentangle the variability related to the disorders to provide results that are
significantly better than chance (59% of B-ACC). Models based on USCL sig-
nificantly outperformed all other models approaching the best expected result
that would provide a purely supervised model.
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5 Conclusion

We proposed in this article a Machine Learning (ML) Subtype Discovery (SD)
method that aims at finding relevant homogeneous subgroups with significant
statistical differences in a given class or cohort. To address this problem, we
introduce a general Subtype Discovery (SD) Expectation-Maximization (EM)
ensembled framework. We call it UCSL : Unsupervised Clustering driven by
Supervised Learning. Within the proposed framework, we also propose a dimen-
sion reduction method based on discriminative directions to project the input
data onto an upstream-task relevant linear subspace. UCSL is adaptable to both
classification and regression tasks and can be used with any clustering method.
Finally, we validated our method on synthetic toy examples, MNIST and a neuro-
psychiatric data-set on which we outperformed previous state-of-the-art methods
by about +1.9 points in terms of balanced accuracy.
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Abstract. With the rapid growth in mobile computing, massive
amounts of data and computing resources are now located at the edge.
To this end, Federated learning (FL) is becoming a widely adopted dis-
tributed machine learning (ML) paradigm, which aims to harness this
expanding skewed data locally in order to develop rich and informative
models. In centralized FL, a collection of devices collaboratively solve a
ML task under the coordination of a central server. However, existing FL
frameworks make an over-simplistic assumption about network connec-
tivity and ignore the communication bandwidth of the different links in
the network. In this paper, we present and study a novel FL algorithm, in
which devices mostly collaborate with other devices in a pairwise man-
ner. Our nonparametric approach is able to exploit network topology to
reduce communication bottlenecks. We evaluate our approach on various
FL benchmarks and demonstrate that our method achieves 10× better
communication efficiency and around 8% increase in accuracy compared
to the centralized approach.

Keywords: Machine learning · Federated learning · Distributed
systems

1 Introduction

The rapid growth in mobile computing on edge devices, such as smartphones
and tablets, has led to a significant increase in the availability of distributed
computing resources and data sources. These devices are equipped with ever
more powerful sensors, higher computing power, and storage capability, which
is contributing to the next wave of massive data in a decentralized manner. To
this end, federated learning (FL) has emerged as a promising distributed machine
learning (ML) paradigm to leverage this expanding computing and data regime
in order to develop information-rich models for various tasks. At a high-level,
in FL, a collection or federation of devices collaboratively solve a ML problem
(i.e., learn a global model) under the coordination of a centralized server. The
crucial aspect is to accomplish the task while maintaining the data locally on
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the device. With powerful computing resources (e.g., cloud servers), FL can scale
to millions of mobile devices [13]. However, with the continual increase in edge
devices, one of the vital challenges for FL is communication efficiency [3,13,17].

Unlike classical distributed ML, where a known architecture is assumed, the
structure for FL is highly heterogeneous in terms of computing resources, data,
and network connections. Devices are equipped with different hardware, and are
located in dynamic and diverse environments. In these environments, network
connections can have a higher failure rate on top of varying communication and
connection patterns. For example, 5% and more of the devices participating in
the single round of training may fail to complete training or completely drop
out of communication [13]. The device network topology may evolve, which can
be useful information for communication efficiency. In FL, the central server
has the critical role of aggregating and distributing model parameters in a back
and forth manner (i.e., rounds of communication) with the devices to build
and maintain a global model. One natural solution is to have powerful central
servers. However, this setup comes with high costs and are only affordable for
large corporations [13]. Moreover, overly relying on a central server can suffer
from single point failure [32] and communication bottleneck.

An alternative to the client-server architecture is peer-to-peer (P2P) net-
working. P2P dramatically reduces the communication bottleneck by allowing
devices to communicate with one another. Given this insight, we propose a
FL framework, which we dub as FedP2P, that leverages and incorporates the
attributes of a P2P setting. FedP2P significantly reduces the role and commu-
nication requirements of the central server. Additionally, P2P naturally utilizes
network topology to better structure device connections. It is widely accepted
that communication delays increase with the node degrees and spectral gap of
the network graph [13]. Explicit consideration of network topology increases com-
munication efficiency such as wall-clock time per iteration. Empirically, we show
FedP2P outperforms the established FL framework, FedAvg [21] on a suite of FL
benchmark datasets on both computer vision and language tasks, in addition
to two synthetic data, involving three different model architectures. With the
same number of communication rounds with a central server, FedP2P achieves
an 8% increase in accuracy. With the same number of devices participating in
the training, FedP2P can achieve 10× speed up in communication time.

2 Preliminary and Related Work

FL is a distributed ML paradigm, where data reside on multiple devices, and
under the coordination of a centralized server, the devices collaboratively solve
an ML problem [13]. Moreover, and importantly, data are not shared among
devices, but instead, model aggregation updates, via communication between
server and devices, are used to optimize the ML objective. Naturally, what we
can expect as corollaries, and as key challenges, from this setting are: a mas-
sive number of devices, highly unbalanced and skewed data distribution (i.e.,
not identically and independently distributed, and limited network connectivity
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Fig. 1. (a) Structure for centralized FL framework, in which central server directly
communicates with all devices for model distribution and aggregation (b) Communi-
cation flow for centralized FL (FedAvg). The steps are 1: server G sends global model
to clients, 2: G designates client devices for training (C1, C3, C5), 3: selected client
devices train on local data, 4: devices send parameters of the trained model back to G,
5: G aggregates the trained parameters, and the process repeats. (b) Structure for our
proposal (FedP2P). Dash circle represents local P2P network, in which devices perform
pairwise communication. The central server only communicates with a small number
of devices, one device within each local P2P network here. (d) Communication flow for
FedP2P. The steps are: 1: form P2P network, 2: all devices train in parallel on local data,
3: devices can aggregate/synchronize models via Allreduce, 4: G receives aggregated
parameter from each partition (not from all devices), 5: G aggregates the parameters
from the partitions to get global parameter, and 6: G sends global parameter to the
P2P networks (not to all devices).

(e.g., slow connections and frequent disconnections). In FL, the optimization
problem is defined as

min
θ

f(θ) where f(θ) �
N∑

i=1

piFi(θ). (1)

N is the number of devices, pi ∈ [0, 1], and
∑N

i=1 pi = 1. For supervised classi-
fication, we typically have Fi(θ) = �(Xi, Yi; θ), where (Xi, Yi) are the data and
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θ are the model parameters. � is some chosen loss function for client devices Ci.
We assume data is partitioned across N client devices, which give rise to poten-
tially different data distributions. Namely, given data D partitioned into samples
D1, . . . , DN such that Di corresponds to Ci, the local expected empirical loss is
Fi(θ) = EXi∼Di

[fi(Xi; θ)] where pi = |Di|/|D|. Di varies from device to device
and is assumed to be non-IID. The federated averaging (FedAvg) algorithm [21]
was first introduced to optimize the aforementioned problem, which we describe
next.

2.1 Centralized Federated Learning: Federated Averaging

FedAvg is a straightforward algorithm to optimize Eq. (1). The details are shown
in Algorithm 1 and Fig. 1(b). The global objective, orchestrated by a central
server G, is optimized locally via the Fi functions applied to the local data
on the devices. Let C = {C1, . . . , CN} be the collection of client devices that
are willing and available to participate in training a global model for a specific
machine learning task. At each training round t, the central server randomly
selects a subset Z ⊂ C devices to participate in round t of training. G sends to
each selected device a complete copy of the global model parameters θt

G. Each
device trains Fi, via stochastic gradient descent (SGD), initialized with θt

G using
its own training data Di for a fixed number of epochs E, batch size O, and
according to a fixed learning rate η. Subsequently, the client devices sends the
updated parameters θt+1

Ci
back to G, where G performs a model synchronization

operation. This process is repeated for T rounds, or until a designated stopping
criterion (e.g., model convergence). Unlike traditional distributed machine learn-
ing, FedAvg propose to average model parameters (i.e., Aggregate(·) operation
in Algorithm 1) instead of aggregating gradients to dramatically reduce commu-
nication cost. FedAvg started an active research field on centralized federated
learning, which assumes that all communications occur directly with the central
server.

2.2 Multi-model Centralized Federated Learning

Here we focus on related FL settings, where the goal is to learn multiple models
using the idea of clustering. These methods mostly utilize the information from
model parameters for device clustering. All these methods concentrate on opti-
mization while ignoring practical communication constraints. For example, [5]
uses a hierarchical k-means clustering technique based on similarities between
the local and global updates. At every round, all devices are clustered accord-
ing to the input parameter k, which makes this technique not practical in a
real-world FL setting. [10] focuses on device clustering. They assume k different
data distributions, and the server maintains k different global models. A subset
of devices is sampled at each round, and all k models are sent to each of the
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Algorithm 1. Federated Averaging (FedAvg)
Input: T, Z, η, O, E, θ0

G

for t = 0 to T−1 do
Server G samples subset of client devices Ci ∈ Z
and sends θt

G to sampled devices: θt
Ci

← θt
G

for each Ci ∈ Z in parallel do
//Device trains on local data with

//step size η, batch size O, epochs E
θt+1
Ci

← min Fi(θ
t
Ci

)
end for
θt+1
G ← Aggregate

(
θt+1
Ci

, ∀Ci ∈ Z
)

end for

devices. The sampled devices then optimize the local objective, using each of the
k models, and selects the model with the lowest loss. The updated model with
the lowest loss, which also corresponds to the device’s cluster identity, is sent
back to the server for aggregation based on the clusters. The process is repeated
for a given number of rounds. This method can be interpreted as a case of k-
means with subsampling. The need to communicate k models to each device
creates an information communication bottleneck. We emphasize that our goal
is not to solve a clustering problem.

2.3 Decentralized Federated Learning

Decentralized FL is also an active area of research, and we focus on the cor-
responding FL setting that involves P2P communication in this section. FL
utilizing P2P communication has been previous proposed by [15]. However, a
graph structure is imposed, and communication is based on the graph structure
and limited to one-hop neighbors. Also, graph topology can change over time.
The algorithm requires potentially complex Bayesian optimization. In addition,
the experiments are limited to 2 nodes.

P2P ML, where the goal is to learn personalized models, as opposed to a single
global model, has been proposed by in [32,34] and under strong privacy require-
ments by [2]. The gossip protocol is a P2P communication procedure based on
how epidemics spread [9]. Gossip algorithms are distributed asynchronous algo-
rithms with applications to sensors, P2P, and ad-hoc networks. It has been used
to study averaging as an instance of the distributed problem [4], and success-
fully applied in the area of decentralized optimization [8,14]. Also, several works
focus on decentralized FL from the perspective of optimization, decentralized
SGD [19,20,28,29] with topology consideration [23]. Note that these works do
not consider the non-IID case.
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2.4 Efficient Pairwise Communication

Allreduce [26,31] is a collective operation that reduces the target tensors in all
processes to a single tensor with a specified operator (e.g., sum or average) and
broadcasts the result back to all processes. It is a decentralized operation and
only involves P2P communication for the reduction (e.g., model synchroniza-
tion). Because Allreduce is a bandwidth-optimal communication primitive and
is well-scalable for distributed training, it is widely adopted in distributed ML
frameworks [25,27].

3 Less Centralized Federated Learning

In this section, we outline our federated learning framework, FedP2P, and provide
a detailed discussion of the critical aspects of our design. With FedP2P, we exploit
efficient P2P communication in conjunction with a coordinating center that does
high-level model aggregation.

3.1 Proposed Framework: FedP2P

The structure of centralized FL follows a star graph, in which the central server
directly communicates with all client devices (see Fig. 1(a)). On the contrary,
we aim to reorganize the connectivity structure in order to distribute both the
training and communication on the edge devices by leveraging P2P communica-
tion. To this end, we form L local P2P networks in which client devices perform
pairwise communication within each P2P network, which we refer to as FedP2P.
With FedP2P, the central server only communicates with a small number of
devices, one from each local P2P network (see Fig. 1(c)).

Here, we describe the training process. The details are shown in Algorithm 2
and Fig. 1(d). To better understand our framework, we follow the centralized
setup by describing the whole training process in T rounds. We describe the
process as three phases for each round as follows.

1. Form Local P2P Network: At the start of each round t, the central server
randomly partitions N devices into L local P2P networks Z1, . . . , ZL, each of
size Q. The central servers distribute the global model θt−1 from the previous
round to each P2P network. Note that the central server only communicates
with one or a few devices from each P2P network for the global model dis-
tribution. In practice, L is not a tuning parameter, but can be precisely
calculated to minimize communication cost given devices bandwidth and the
desired number of total participating devices in each round. We provide more
information on the choice of L in Sect. 3.2.

2. P2P Synchronization: Within a local P2P network Zl, part of or all devices
train the local P2P network model θt

Zl
using its own data in parallel. Once

the devices finish training, the model is locally synchronized within Zl. This is
done via an Aggregate(·) operation, which we define as θZt+1

l
← ∑

Ci∈Z γiθCi
,

where γi = |Di|/
∑

i |Di|. This process can be conducted one or more times,
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Algorithm 2. Federated Peer-to-Peer (FedP2P)
Input: T, L, Q, η, O, E, θ0

G

for t = 0 to T−1 in parallel do
Z1, Z2, . . . , ZL //Form P2P networks

for l = 1 to L in parallel do
for Ci ∈ Z ⊆ Zl s.t. |Z| = Q in parallel do

//Device trains on local data with

//step size η, batch size O, epochs E
θt+1
Ci

← min Fi(θ
t
Ci

)
end for
θt+1
Zl

← Aggregate
(
θt+1
Ci

, ∀Ci ∈ Z
)
//Allreduce

end for
θt+1
G ← Aggregate

(
θt+1
Z1

, . . . , θt+1
ZL

)

end for

and we can efficiently accomplish a single P2P network model synchroniza-
tion using the Allreduce approach. Note that all training and communication
inside each local P2P network are conducted independently and in parallel.

3. Global Synchronization: The central server G globally aggregates the
updated models, θt+1

Zl
for l = 1, . . . , L, from every local P2P network, and per-

form model averaging over L models. Namely, θt+1
G ← L−1

∑L
l=1 θt+1

Zl
. Since

each local P2P network is already locally synchronized, G gathers models
from one device for each P2P network.

In order to obtain the global model among all P2P networks, our proposed
framework also utilizes a central coordinator for global model synchronization.
However, note that the communication and workload for the central coordinator
in FedP2P are significantly reduced. Assume both FedP2P and FedAvg utilizes
P participating devices in a single round of training. The FedAvg central server
communicates with P devices and perform model synchronization among P mod-
els. In contrast, the FedP2P central server only communicates with K devices
and perform model synchronization among K cluster models where P � K.
From another perspective, we assume the central server has a fixed bandwidth
that can be devoted to coordinating federating training. FedP2P allows for many
more devices to participate within each global round, enabling the global model
to train on more data in a single global communication round. FedP2P distributes
both computation workloads and communication burden to the edge, and we will
provide a detailed comparison of communication cost in Sect. 3.2.

Potential privacy and trust problems of FedP2P arise from two levels of coop-
eration: 1) the cooperation between the central server and the device within each
local P2P network; and 2) the cooperation within each local P2P network. The
first level is the same as standard centralized FL and we expect established solu-
tions such as cryptographic protocols proposed by [3] to work well for FedP2P.
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The second level follows decentralized FL settings. Existing secure aggregation
protocols such as confidential smart contract [13] can be adopted.

3.2 Communication Efficiency

The central server bandwidth becomes the performance bottleneck in FedAvg
when there are a large number of sampled devices. FedP2P alleviates this server-
device bottleneck through decentralization. Namely, the server only needs to
communicate with a subset of the sampled devices, which we refer to as agents.
However, it incurs additional communication overhead inside P2P networks
because the agents have to communicate with other devices. FedP2P needs to
balance the trade-off between the server-agent and agent-device communication
overhead.

We model and analyze the communication cost of FedAvg and FedP2P in this
section. To simplify the analysis, we define Bd as the bandwidth between each
device-device pair for the training, Bs as the total bandwidth capacity from the
server to the devices (i.e., uplink bandwidth of server), and M as the model size.
We assume all P2P networks have the same P number of devices participating
in one single round of model training.

Communication Efficiency of FedAvg: There are two main steps in the data
transmission: 1) the model distribution from the server to the sampled devices
has the communication time of MP/Bs; and 2) the model aggregation from the
devices to the server has the communication time of αMP/Bs, where 1/αBs

is the total bandwidth capacity from the devices to the server (i.e., downlink
bandwidth of server). Note that α ≥ 1 since the upload bandwidth of devices is
typically lower than their download bandwidth. Let Havg, denoting the commu-
nication time in FedAvg, be Havg = (1 + α)MP/Bs.

Communication Efficiency of FedP2P: There are four main steps in the data
transmission: 1) the model distribution from the server to the agent in each
cluster has the communication time of LM/Bs; 2) the model distribution from
the agent to the sampled devices in each P2P network has communication time
of PM/LBd, where P/L is the number of sampled devices in each P2P network;
3) local model synchronization at the end of each local training round has the
communication time of 2M/Bd (the exact communication time of Allreduce is
2(n−1)M

nBd
, where n is the number of workers); and 4) global model synchronization

at the end of each global training round has the communication time of αLM/Bs.
Let Hp2p denote the communication time in FedP2P be defined as

Hp2p =
(1 + α)LM

Bs
+

PM

LBd
+

2M

Bd
.

The choice of L is a way to balance the trade-off between the server-agent
and agent-device communication overhead. A small L results in the low server-
agent communication overhead because the server just communicates with a
small number of agents, while it increases the agent-device communication time
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because each agent needs to broadcast the model to more devices; and vice
versa. Hp2p reaches its minimum: min Hp2p = 2M

Bd
(P

L + 1) when L = A
√

P , where

A =
√

Bs

(1+α)Bd
is a constant in a federated learning system. Define R = Havg

minHp2p

and γ = Bs

Bd
. Then

R =
(1 + α)P

2
√

γ(1 + α)P + 2γ
. (2)

R > 1 indicates that FedP2P has lower communication overhead than FedAvg.
Equation (2) shows that the value of R increases with 1) the increasing number
of sampled devices; 2) the decreasing gap between the bandwidth capacities of
the server and devices; and 3) the increasing gap between the server’s uplink
and downlink bandwidth capacities.

3.3 Theoretical Insight

In this section, we provide some theoretical insight into the performance of
FedP2P. We instantiate the framework of [18] (i.e., Theorems 1, 2, and 3; for
spacing, we omit the details) to simplify the analysis. Similarly, let F ∗ and F ∗

i

be the minimal values of F and Fi. Let Γ = F ∗ − ∑N
i=1 piF

∗
i . The magni-

tude of Γ quantifies the degree of non-IID (i.e., heterogenity) such that Γ goes
to zero as the number of non-IID samples decrease. We also apply the same
assumptions on smoothness, convexity, and bounds on variance and norm of the
stochastic gradient. Notation-wise, we substitute θG = w, J =C, U =L as the
Lipschitz constant, and V 2 = G2 to uniformly bound the expected squared norm
of stochastic gradients from the top. First, FedP2P satisfies the following base
case.

Corollary 1. Let
∑L

l=1 |Zl| = N and the aggregation at the server G be defined
as θt

G ← ∑L
l=1 ψlθ

t
Zl

such that ψl = |D|−1
∑

Ci∈Zl
|Di|. Then the same bound in

Theorem 1 [18] holds for FedP2P.

Corollary 1 is restrictive since we cannot hope to compute all ψl, and the total
number of devices participating varies due to the stragglers effect in practice.
However, we next analyze Theorems 2 and 3 under the FedP2P scheme at the level
of server G, which highlights an advantage of FedP2P. To ground the analysis,
under the special case of one device P2P network, we have the following.

Corollary 2. Let
∑L

l=1 |Zl| < N and |Zl| = 1, ∀l. Then the same bound in
Theorem 2 and 3 [18] holds for FedP2P.

Here we focus on the J term in Theorems 2 and 3. From Theorem 2, we have
J = 4K−1E2V 2, where K is number of devices for aggregation. However, note
that with FedP2P, effectively, we have J = 4(K

∑
l |Zl|)−1E2V 2 at G. Therefore,

J is reduced by a factor of
∑

l |Zl| and thus, improves the bound. Similarly, from
Theorem 3, we have J = 4(N−1)−1K−1(N−K)E2V 2. However, at G, the terms
(N − K) shrinks, and K−1 grows significantly under FedP2P since K increases
by a factor of

∑
l |Zl|, thereby also improves the bound.
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Fig. 2. (a), (b), (c), (d), and (e) are average testing accuracy across devices as a function
of global communication rounds. FedP2P shows higher and much smoother accuracy
curves on all real datasets and two synthetic datasets. (f) plots the loss during training
on FEMNIST. FedP2P gives a smooth convergence curve.

4 Experiments

In this section, we present the experiment results that demonstrate the per-
formance between FedP2P and FedAvg from various perspectives. Specifically,
we focus on answering the following questions: 1) how does FedP2P perform
compared to centralized methods on model accuracy? 2) does FedP2P outper-
form centralized federated learning in terms of communication efficiency? 3) how
robust is FedP2P handling network instability such as stragglers? 4) how does
FedP2P perform with different parameters?

4.1 Datasets

Synthetic Datasets: In FL, the data on devices are non-IID. Following the
taxonomy described in [13], non-IID is decomposed into five regimes: 1) covari-
ance shift, 2) label probability shift, 3) same label with different features, 4)
same features with different labels, and 5) quantity skew. To effectively explore
and understand the various non-IID situations, we create two synthetic datasets:
SynCov and SynLabel. The setup is similar to [17]. SynCov simulates covariance
shift with quantity skew, and SynLabel simulates label probability shift with
quantity skew. The high-level data generation process is as follows. First, we
designate N(= 100) number of client devices Ci. Next, we sample from a lognor-
mal distribution to determine the number of data points for each Ci. Let X be
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Fig. 3. Numerical comparison between FedP2P and FedAvg on normalized communica-
tion time. Black line is FedP2P and others are FedAvg with various bandwidth settings.
FedAvg outperforms FedP2P only when the number of sampled devices is small or the
device bandwidth is extremely poor. Detailed discussion is in Sect. 4.4.

the features and Y be the class labels, where feature dimension is 60 and num-
ber of classes is 10. Then, we sample (X,Y ) from the data distribution Pi(X,Y )
for Ci. The non-IID data refers to differences between Pi(X,Y ) and Pj(X,Y )
for two different client devices Ci and Cj . Note that we can factor Pi(X,Y ) as
Pi(Y |X)Pi(X) or Pi(X|Y )Pi(Y ). Using this factorization, the details of the data
generation process is as follows.

– SynCov: Pi(X) varies and P (Y |X) shared among client devices Ci. We
parameterize Pi(X) with a Gaussian distribution N (μi, σi) and P (Y |X)
with a softmax function, which has weight and bias parameters W and b
respectively. First, we sample W, b ∼ N (0, 1). Then, for each Ci, we sam-
ple μi, σi ∼ N (0, 1) and sample features xi ∼ Pi(X). We obtain yi from
arg maxy∈Y P (Y |X = xi).

– SynLabel: Pi(Y ) varies and P (Y |X) shared among client devices i. Given
the number classes |Y |, we create a discrete multinomial distribution sampled
from a Dirichlet distribution Dir(β1, . . . , β|Y |), where βk > 0. We repeat this
for each Ci. Then, for each y ∈ Y , we sample μy, σy ∼ N (0, 1) to parameterize
P (Y |X) for all i. For each client device we apply logical sampling [11] to
obtain yi ∼ Pi(Y ) and xi ∼ P (X|Y = yi) accordingly.

Real-world Datasets: We evaluate on three standard FL benchmark datasets:
MNIST [16], Federated Extended MNIST (FEMNIST) [7], and The Complete
Works of William Shakespeare (Shakespeare) [21]. These datasets are curated
from recently proposed FL benchmarks [6,30]. We use the data partition pro-
vided by [17]. For MNIST, the data is distributed, via power law, across 1,000
devices and each device has samples of 2 classes. FEMNIST is a 62 image clas-
sification dataset, including both handwritten digits and letters. There are 200
devices and 10 lowercase letters (‘a’ to ‘j’) is subsampled such that each device
has samples for 5 classes. Shakespeare is used for the next character prediction
task, consisting of lines spoken by different characters (80 classes) in the plays.
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Fig. 4. Comparison on average test accuracy across clients between FedAvg and FedP2P

with 50% Stragglers. FedP2P achieves similar accuracy as when there are no stragglers.
However, FedAvg suffers from straggler. FedAvg achieves much lower accuracy. Besides,
FedP2P shows a much smoother curve. We can observe accuracy jump up to 20%
between two rounds for FedAvg.

Table 1. Best test accuracy on various datasets for FedP2P and FedAvg.

Dataset FedP2P FedAvg Dataset FedP2P FedAvg

MNIST 0.9092 0.8763 SynCov 0.9252 0.9032

FEMNIST 0.9168 0.8929 SynLabel 0.6199 0.5149

Shakespeare 0.5019 0.4563

4.2 Implementation

We consider centralized FL as our comparison and implemented FedAvg and
FedP2P in PyTorch [25]. We evaluate using various model architectures, both
convex and non-convex. We use logistic regression for synthetic and MNIST,
Convolution Neural Network for FEMNIST, and LSTM classifier for Shake-
speare. In order to draw a fair comparison, we use the same set of models and
parameters for FedAvg and FedP2P. Specifically, we use 2-layer CNN with a hid-
den size of 64 and 1-layer LSTM with a hidden size of 256. Models are trained
using SGD. ReLU is used as the activation function. Data is split 80% train and
20% test. We use batch size of 10. We use learning rates of .01 for synthetic,
MNIST, FEMNIST, and .5 for Shakespeare based on grid search on FedAvg and
20 epochs. Number of devices selected to train per round is fixed to 10. Code
located at github.com/lchou/fedp2p.

4.3 Model Accuracy

In this section, we compare FedP2P and FedAvg in terms of test accuracy. We
hold test data for each device and follow the standard evaluation metric of
classification accuracy. As shown in Table 1, FedP2P outperforms FedAvg on all
datasets. Figure 2 shows the test accuracy as a function of the total round of
communication with the central server. Here, we control the number of global
communication to be the same for both methods. For a fair comparison, we only
let one round of training within each local P2P network.
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Fig. 5. Test accuracy on MNIST for FedP2P on various parameter settings. (a) FedP2P

with various numbers of local P2P network. Different choices of L do not affect model
performance with FedP2P, and thus we can set L to optimize for communication effi-
ciency. (b) and (c) FedP2P with various number of total participating devices. FedP2P
is also robust with diverse choices of L and Q.

On FEMNIST, FedP2P achieved 2.6% increase in test accuracy. On MNIST,
FedP2P achieved 3.7% increase in test accuracy. On Shakespeare, FedP2P
achieved 9% increase in test accuracy. We see that FedP2P achieves higher test-
ing accuracy on every global communication from Fig. 2. Compared to FedAvg,
FedP2P gives a rather smooth accuracy curve. In Fig. 2(f), we provide a plot for
training loss on FEMNIST. It worth noting that FedP2P also gives a smooth con-
vergence curve. These results demonstrate that FedP2P achieves higher model
accuracy compared to the centralized approach.

4.4 Communication Efficiency

We numerically compare FedP2P and FedAvg in terms of the communication effi-
ciency based upon the analysis in Sect. 3.2. The ratio of the download bandwidth
to the upload bandwidth of devices varies with different Internet providers, and
it covers a wide range. We set the ratio α to {1, 4, 16} as in [1]. The number
of sampled devices for one round of training is within [500, 5000] [13]. Another
parameter that determines the value of R in Eq. (2) is γ, which is the ratio of
the server bandwidth to the device bandwidth. Current edge devices have the
bandwidth of more than 20 Mbps (e.g., 4K streaming [24]). Also, the advent of
5G enables much higher bandwidth for edge devices [33]. The server bandwidth
typically ranges from 10 Gbps to less than 1 Gbps [12]. Therefore, we set γ in
the range of [50, 1000] in our simulation.

Figure 3 shows the comparison of the communication time. With γ = 100,
FedP2P always outperforms FedAvg with the number of sampled devices larger
than 500. FedP2P can achieve better performance than FedAvg with more sam-
pled devices, smaller γ, or larger α. However, if the number of sampled devices
is small (e.g., P < 100), or if the device bandwidth is extremely poor (e.g.,
γ > 1000), then FedAvg can potentially outperform FedP2P in terms of the
communication time because the performance bottleneck is not the server in
these cases. In practice, thousands of devices are sampled for the training in
each round, and the sampled devices usually have high bandwidth due to the
sampling mechanism [13]. For example, the server tends to select devices with
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powerful computing capacity and high bandwidth to avoid stragglers. As a result,
we argue that FedP2P is more scalable and communication-efficient than FedAvg
for large-scale FL.

4.5 Stragglers Effect and Choice of L and Q

Straggers: It is known that FL suffers from stragglers. Specifically, devices fail in
on-device training or drop connection due to hardware issues or communication
instability. Stragglers cause convergence problems and lead to models with poor
performance. We empirically test how robust FedP2P is in the straggler situation
in terms of model performance, and we present our result in Fig. 4. We drop 50%
of the selected devices to simulate stragglers. FedP2P performs exceptionally
well with stragglers. FedP2P archives similar accuracy while the performance of
FedAvg dramatically drops. Besides, comparing to FedAvg, accuracy curves are
still relatively smooth for FedP2P. For example, the most significant jump on
MNIST for FedAvg can exceed over 20%, while we do not observe a noticeable
increase with FedP2P.

L and Q: We conduct two sets of experiments on MNIST to illustrate how
FedP2P performs under various parameters. FedP2P introduces L local P2P net-
works, and within each P2P network, Q devices participated in the training. We
conduct the first set of experiments with varying L and the same Q and present
the result in Fig. 5(a). We do not observe significant differences among various L.
Compared with FedAvg from Fig. 2(a), we notice that all FedP2P plots lies above
FedAvg. Thus, we conclude that FedP2P is robust to various L setting from the
perspective of convergence and accuracy. As a result, in practice, FedP2P allows
us to choose L to optimize for communication efficiency. We conduct the second
set of experiment with various combination of L and Q, where P = L × Q and
P = 100 and 200. We present the result the in Fig. 5(b) and (c). We observe
that different combinations of L and Q has negligible effect on classification
performance.

5 Conclusion

In this work, we focus on decentralizing FL and propose FedP2P, an approach
that utilizes peer communication to train one global model collectively. A unique
possibility due to our random partition process is that it allows us to exploit
device network topology. If we assume that the data distribution is independent
of the network evolving topology, then a random selection of devices to form
local P2P networks is identical with any deterministic selection (i.e., Principle
of deferred decisions [22]). Effectively, we can partition devices into local P2P
networks based on favorable network topology. For example, it is widely accepted
that long communication hops create potential problems such as low throughput
and high latency due to network congestion. Grouping devices based on commu-
nication hops would greatly benefit communication efficiency. For example, in
Fig. 1(c), devices within fewer communication hops are grouped into the same
local P2P network.
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Abstract. Motivated by the recent surge of criminal activities with
cross-cryptocurrency trades, we introduce a new topological perspective
to structural anomaly detection in dynamic multilayer networks. We pos-
tulate that anomalies in the underlying blockchain transaction graph that
are composed of multiple layers are likely to also be manifested in anoma-
lous patterns of the network shape properties. As such, we invoke the
machinery of clique persistent homology on graphs to systematically and
efficiently track evolution of the network shape and, as a result, to detect
changes in the underlying network topology and geometry. We develop
a new persistence summary for multilayer networks, called stacked per-
sistence diagram, and prove its stability under input data perturbations.
We validate our new topological anomaly detection framework in appli-
cation to dynamic multilayer networks from the Ethereum Blockchain
and the Ripple Credit Network, and demonstrate that our stacked PD
approach substantially outperforms state-of-art techniques.

Keywords: Anomaly detection · Dynamic multilayer network ·
Blockchain transaction · Topological data analysis · Clique persistent
homology

1 Introduction

Due to the recent spike in popularity of crypto assets, detecting anomalies in time
evolving blockchain transaction networks has gained a new momentum. Here
anomaly detection in dynamic graphs can be broadly defined as the problem
of identifying instances within a sequence of graph observations where changes
occur in the underlying structure of the graph. Indeed, these anomalies have
significant implications, ranging from emergence of new ransomware (e.g., col-
lecting ransom via cryptocurrencies) to financial manipulation. For example, in
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blockchain transaction networks, e.g., Ethereum, more frequent than expected
appearance of particular subgraphs may indicate newly emerging malware or
price pump-and-dump trading [55]. Similarly, as recently shown by [53], the flow
of coins on the Bitcoin graph provides important insights into money laundering
schemes. As criminal, fraudulent, and illicit activities on blockchains continue to
rise, with already stolen $1.4B only in 2020, cryptocurrency criminals increas-
ingly employ cross-cryptocurrency trades to hide their identity [41]. As such, [57]
have recently shown that the analysis of links across multiple blockchain trans-
action graphs is critical for identifying emerging criminal and illicit activities
on blockchain. However, while there exists a plethora of methods for network
anomaly detection in single layer networks [21,44,45], there is yet no single
method designed to detect anomalies in dynamic multilayer networks.

Why TDA? Motivated by the problem of tracking financial crime on
blockchains, we develop a state-of-the-art methodology for anomaly detection
on multilayer networks using Topological Data Analysis (TDA). Since crime
on blockchains such as money laundering tends to involve multiple parties who
possibly move funds across multiple cryptocurrency ledgers, one of our primary
goals is to identify anomalous patterns in higher order graph connectivity. We
postulate that anomalous higher order patterns can be detected using geometric
and topological inference on graphs, that is, via a systematic analysis of the
graph shape. To explore latent graph shape, we invoke the TDA machinery of
the clique persistent homology (PH). PH allows to systematically infer qualita-
tive and quantitative multi-lens geometric and topological structures from data
directly and, hence, to enhance our understanding on the hidden role of geom-
etry and topology in the system organization [9,12,52]. As a result, it may be
intuitive to hypothesize that there shall be an intrinsic linkage between changes
in the underlying graph structure and changes in the network shape which are
then reflected in the extracted network topological characteristics. However, to
the best of our knowledge, this paper is the first attempt to introduce TDA to
anomaly detection in dynamic multilayer networks.

Why Ethereum and Ripple? Using the Blockchain global events timeline [54],
we validate our methodology in application to anomaly detection in two multi-
layer blockchain network types, Ethereum and Ripple. While cryptocurrencies
have already been adopted in payments, the recent surge in financial blockchain
activity is largely due to platforms, such as Ethereum, which have brought algo-
rithmic trading of digital assets by using Smart Contracts (i.e. short software
code on the blockchain) in what is called Decentralized Finance [15]. Assets
include cryptocurrencies and crypto tokens as well. Hence, a given address (i.e.
a node) may participate in transactions of multiple digital assets. Looking at an
individual asset transaction network alone (i.e. a single layer of the transaction
graph) may provide a limited view. As a result, we need to consider multiple lay-
ers (e.g., a layer for each crypto token) and their interactions to detect anomalies.
Resulting multilayer networks and participant activities are temporal, nuanced
in the traded assets (e.g., coins, or fiat currencies), rich in network patterns and
encode a new wave of financial heart-beat. The Ripple Credit Network trans-
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actions also comprise cross-border remittance transfers and even fiat currency
trades, allowing trading Ether, Bitcoin and other currencies on its system.

Our contributions, both in application and theory, are as follows:

1 To the best of our knowledge, this is the first paper on anomaly detection in
dynamic multilayer networks.

2 Our new methodology is based on the notion of clique persistent homology.
To quantify topology of multilayer graphs, we introduce a multidimensional
multi-set object, called the stacked persistence diagram (SPD). We prove that
SPD is robust against minor input data perturbations w.r.t. bottleneck dis-
tance.

3 In the absence of the state-of-the-art anomaly detection methods for dynamic
multilayer networks, we benchmark our topological anomaly detection (TAD)
tool against a multiple testing framework, based on the strongest state-of-
the-art (SOTA) methods for anomaly detection in single layer networks. To
control for family wise error rate (FWER) in the multiple testing framework,
we use Bonferroni correction. We show that TAD substantially outperforms all
competitors based on SOTA single layer solutions and the additional tech-
nique based on graph embedding.

4 We demonstrate utility of TAD on Ethereum and Ripple blockchains, where
digital assets worth billions of US Dollars are traded daily. We provide
Blockchain benchmark data for anomaly detection on multilayer networks
which is the first benchmark multilayer network dataset with ground-truth
events, thereby further bridging AI with crypto-finance.

2 Related Work

Graph-Based Anomaly Detection: Over recent years, there has been an
increase in application of anomaly detection techniques for single layer graphs in
interdisciplinary studies [20,58]. For example, [31] employed a graph-based mea-
sure (DELTACON) to assess connectivity between two graph structures with homo-
geneous node/edge attribution, and identified anomalous nodes/edges in the
sequence of dynamic networks based on similarity deviations. With DELTACON,
an event is flagged as anomalous if its similarity score lies below a threshold.
In turn, [51] devised a likelihood maximization tool that extracts a “feature”
vector from individual networks, and uses dissimilarity between successive net-
works snapshots to classify anomalous or normal/regular events. Procedure of
[62] segments network snapshots into separate clusters, infers local and global
structure from individual nodes and their distribution via community detec-
tion and chronological ordering of the results in an effort to single-out potential
anomalies. An online algorithm for detecting abrupt edge weight and structural
changes in dynamic graphs has been recently introduced by [56], but the method
requires a pre-training data set to identify tuning parameters. In turn, [6,36,47]
discuss detection of malicious nodes in multiplex/multilayer networks. Finally,
[18] proposed a score test for change point detection in multilayer networks that
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follow a multilayer weighted stochastic block model (SBM). However, the SBM
assumption is infeasible for financial networks. To our knowledge (see also the
reviews by [21,44]), there is no existing anomaly detection method designed for
dynamic multilayer networks.

Blockchain: Blockchain graphs have been extracted and analyzed for price
prediction [1,25,32], measurement studies [33,50] and e-crime detection [3,14].
Graph anomalies have been tracked to locate coins used in illegal activities,
such as money laundering and blackmailing [43]. These findings are known as
taint analysis [17]. Typically, a set of features are extracted from the blockchain
graph and used in Machine Learning (ML) tasks. Here we bypass such a feature
engineering step in learning on Blockchain networks. Ethereum structure has
been analyzed by [22,33], while anomalies in Ethereum token prices have been
evaluated using TDA tools [35]. In turn, Ripple has been assessed for its pri-
vacy aspects [39] and for health of the credit network [38]. However, multilayer
analysis of blockchains have not been studied before.

TDA: Multiple recent papers show utility of TDA for developing early warn-
ing signals for crashes in the cryptocurrency market [24], cryptocurrency price
analytics [35], and ransomware detection on blockchain transaction graphs [3].
While TDA (as any other tool) cannot be viewed as a universal solution, TDA
allows us to assess graph properties which are invariant under continuous defor-
mations; hence it is likely to be one of the most robust tools for blockchain data
analytics [60]. TDA has been employed for visual detection of change points
in single layer graphs [27]. In the multilayer network context, TDA has been
used primarily for centrality ranking [48], including analysis of connectivity in
the multiplex banking networks [16], and clustering [59]. Application of TDA to
anomaly detection in multilayer networks is yet an unexplored area.

Multilayer Network Benchmark Data: Multilayer networks receive an
increasing attention in the last few years, due to their flexibility of modeling
interconnected systems [4]. There also exist several data repositories with multi-
layer graphs, e.g. [5,19], but neither of them have publicly available benchmark
data on multilayer graphs with ground truth for anomaly detection.

3 The Mechanism of Persistent Homology

Topology is the study of shapes. TDA and, in particular, persistent homology
(PH) provides systematic mathematical means to extract the intrinsic shape
properties of the observed data X (in our case X is a multilayer graph but X
can be a point cloud in Euclidean or any finite metric space) that are invariant
under continuous transformations. The key postulate is that X are sampled from
some metric space M whose properties are lost due to sampling. The goal of
PH is then to reconstruct the unknown topological and geometric structure of
M, based on systematic shape analysis of X . In this paper, we introduce the
PH concepts to analysis of dynamic multilayer networks, starting by providing
background on PH on graphs.
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Definition 1. Let G = (V,E, ω) be a (weighted) graph, with vertex set V , edge
set E = {e1, e2, . . .} ⊆ V × V , edge weights ω = ω(e) : E → Z

+ for all e ∈ E.

At the initial stages of PH, we select a certain threshold ν∗ > 0, and then
we generate a subgraph G∗ = (V,E∗, ω∗), such that E∗ = {e | ω(e) ≤ ν∗}, and
ω∗(e) = ω(e), for all e ∈ E∗. Then the observed graph G∗ is equipped with a
basic combinatorial object known as an abstract simplicial complex. Formally,
a simplicial complex is defined as a collection C of finite subsets of V (G) such
that if σ ∈ C then τ ∈ C for all τ ⊆ σ. The basic unit of simplicial complexes
is called the simplex, and if |σ| = m + 1 then σ is called an m-simplex. Specific
to our analysis, we use a simplicial complex type called the clique complex to
systematically and efficiently extract topological features from the observed G.
A clique complex C(G∗) is a simplicial complex with a simplex for every clique
(i.e., a set of vertices of G∗ such that any two points in the clique are adjacent) in
G∗. Furthermore, a k-clique community is formed whenever two k-cliques share
k −1 vertices (k ∈ Z

+). With a range of thresholds ν1 < . . . < νn, we can obtain
a hierarchically nested sequence of graphs G1 ⊆ . . . ⊆ Gn for any graph G, where
each individual subgraph will generate its own clique complex. Subsequently, the
procedure which generates complexes from the nested sequence G1 ⊆ . . . ⊆ Gn

is known as the network filtration, and the resultant complex generated by G is
called a filtered complex [63]. Particular to cliques, we construct clique complexes
and then obtain the clique filtration C(G1) ⊆ . . . ⊆ C(Gn).

The mechanism of clique persistent homology involves tracking clique com-
plexes over the filtration and quantifying lifespan of topological features/shapes
such as loops, holes, and voids that appear and disappear at various thresh-
olds ν∗ [46,64]. We say that a topological feature is born at the i-th filtration
step if it appears in C(Gi), and the topological feature dies at the j-th filtration
step, if it disappears at C(Gj). Hence, the lifespan of a topological feature is
νj − νi. The primary objective of TDA will then be to assess which topological
features/shapes persist (i.e. have longer lifespan) over the clique filtration and,
hence, are likelier to contain important structural information on the graph, and
which topological features have shorter lifespan. The latter features are typically
referred to as topological noise.

One of the most widely used topological summaries is the persistence diagram
(PD) [9,63]. The PD is a collection of points (vi, vj) ∈ R

2 with each point
corresponding to a topological feature, and the x- and y-coordinates representing
birth and death times for the topological feature. Similarity between any two
PDs, Da and Db, can be computed using the Wasserstein (Wr) or the Bottleneck
distances (W∞):

Wr(Da, Db) =
(
inf
η

∑

x∈Da

‖x − η(x)‖r
∞

)1/r
, W∞(Da, Db) = inf

η
sup

x∈Da

‖x − η(x)‖∞.

Here r ≥ 1, η ranges over all bijections from Da ∪ Δ to Db ∪ Δ, counting mul-
tiplicities, with Δ = {(x, x)|x ∈ R} and ||z||∞ = maxi |zi| [30,52]. We evaluate
both distances in the methodological development of the TAD.
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4 Persistence Methodology for Network Anomaly
Detection

We now introduce the new topological method (TAD) for anomaly detection on
multilayer graphs and support its design with relevant theoretical guarantees.
Table 1 in Appendix A details all notations we introduced, and we use the terms
graph and network interchangeably.

Definition 2 (Multilayer network). A multilayer network, G = (G1, . . . ,
GL), is a graph structure that consists of L non-overlapping graph layers, where
each layer is modeled with a (weighted) graph Gi = (Vi, Ei, ωi), with i = 1, . . . , L.

Problem Statement: Let {Gt}Tt=1 = {(G1
t , . . . ,GL

t )}Tt=1 be a T sequence of
multilayer networks observed over time t, with 1 ≤ t ≤ T < ∞. The objective
is to locate a time point t∗ < T , such that an event within the time range
[t∗ − m, t∗ + m], for 0 ≤ m < t∗ causes the structure and shape of Gt∗ to differ
from the structural properties of the earlier observed networks G1, . . . ,Gt∗−1.
With this search, we include anomalies which cause: 1 the network system to
experience a brief shock at t∗, and 2 a permanent change in the network system
until the next t∗ + m.

Main Idea: Conceptually, TAD method is designed to associate anomalies in
the sequence of multilayer networks to anomalies identified from the time series
of their topological summaries. In addition, we introduce our new idea of a
specialized persistence diagram for multilayer networks known as the stacked
persistence diagram (SPD).

Definition 3 (Stacked Persistence Diagram (SPD)). For a multi-
layer network G = (G1, . . . ,GL), we define the associated PD of G as DG

=(DG1
⊕

. . .
⊕

DGL), i.e. DG is created as a direct sum of all PDs DGl associ-
ated with each single intra-/inter-layer network Gl ⊆ G, for 1 ≤ l ≤ L.

Why Do We Stack PDs and Why Not to Average PDs? As our primary
focus here is on anomaly detection in multilayer graphs, our goal is to simulta-
neously capture joint dynamics of topological properties exhibited by each graph
layer within the interconnected system. As such, currently existing methods
based on averaging PDs and their vectorizations [7,40] which are developed for
analysis of a single, possibly time-varying object, are not feasible in our context.
That is, averaging PDs of the two distinct layers may be viewed as averaging
PDs, extracted from apples and oranges. In turn, our idea is to jointly track
dynamic topological properties which are demonstrated by apple and orange
trees over the same time period, and the SPD structure is motivated by the
notion of direct sums of multiple vector spaces which serve as mathematical
formalization of very different objects.

Geodesic Densification of Blockchain Graphs: Dynamic networks such
as Blockchain transaction graphs tend to be sparse, because a node (i.e. an
address) can be inexpensively created without proving identity, which allows
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Fig. 1. An example of the formation of the SPD for a multilayer network. The multi-
layer network has 3 layers with PDs that have unequal topological features (3 in the
first, 2 in the second, and 3 in the third). Although the first and third layer PDs contain
information about 3-dimensional topological features, they have unequally-positioned
points. Essentially, the SPD for the multilayer network will contain information about
7 classes of topological features.

users to hide their transactions behind new addresses for privacy and security
purposes. Furthermore, blockchain communities (e.g. Bitcoin) encourage one-
time-use addresses (i.e. creating a new address every time a transaction is cre-
ated). As a result, a sparse and constantly evolving network structure emerges,
making it difficult to rely on conventional network connectivity (i.e. adjacency
matrix). To address this limitation, we replace the (weighted) adjacency matrix
of the single layer graph Gl of G with the (weighted) geodesic distance (GD)
matrix [8] which redefines the edge weights ωl as ωl+ =

∑
e∈E(Puv)

ω(e), where
Puv is the shortest path length between vertex pair u, v. This densification recon-
nects node pairs that have a common path. Paths encode useful information
because nodes (i.e. addresses) may merge their coins into a single address to sell
them to leave the Blockchain (and thus pay less transaction fees).

The proposed TAD framework operates according to the following order:

{Gt}Tt=1
T−step−−−−−→ {D(DGt−1 ,DGt

)}Tt=2
AD−step−−−−−−→ {t∗1, . . .},

where D(DGt−1 ,DGt
) is any suitable distance metric between two persistence

diagrams DGt−1 and DGt
. Note that this distance can either be the Bottleneck

or the r-th Wasserstein distance.

T – Step: At this step, we implement the clique PH to convert the sequence of
multilayer networks {Gt}Tt=1 into a sequence of SPDs. This involves the trans-
formation of all the (weighted) adjacency matrices of Gl

t into Gl+

t , followed by
the filtration of persistent topological features by using clique PH.

AD – Step: While TAD method can be integrated with any user-preferred outlier
or change point detection algorithm for univariate time series, we adopt the
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Algorithm 1: Topological anomaly detection in multilayer networks (TAD)
Input : Sequence of L-multilayer graphs {Gt}T

t=1 = {Gt
1, . . . , Gt

L}T
t=1.

Output: Anomalous events {t1
∗, . . .}.

1 for t ← 1 : T do
2 for l ← 1 : L do

3 Compute GD matrix Gt
l+ for Gt

l

4 Generate the PD DGl+
t

for Gt
l+

5 end
6 Obtain SPD DGt by chronologically stacking PDs from DG1+

t
to DGL+

t

7 end
8 for t ← 2: T do
9 With suitable distance metric (D), obtain similarity between DGt−1 and DGt

10 end
11 With S-ESD, detect anomalies (t1

∗, . . .) from the series
{
D(DG1 , DG2), . . . ,

12 D(DGT−1 , DGT )
}

recently proposed seasonal extreme studentized deviate test S-ESD [28,49]. For
an observed time series, S-ESD filters out the seasonal component, piecewise
approximates the long-term trend component (in order to decrease the instances
of false positives) and then incorporates robust statistical learning to identify the
location of anomalies. S-ESD is our choice due to its sensitivity to both global
anomalies irrespective of seasonal trends and intra-seasonal local anomalies. We
provide pseudocode for TAD below, and discuss its computational complexity in
Appendix C.

4.1 Theoretical Properties of the Stacked Persistence Diagram

As shown by [10], the conventional PD of an object (i.e. a single layer graph
or point cloud) is stable under minor data perturbations. Noting that SPD
is derived from the direct sum of the persistence modules corresponding to
each layer in G and using the Isometry theorem for individual persistence mod-
ules [11], we derive similar theoretical guarantees for SPD.

Theorem 4 (Stability of SPD). Let GX = {G1
X , . . . ,GL

X} and GY =
{G1

Y , . . . , GL
Y } be two multilayer networks generated from the same space of L-

multilayer networks. Then

W∞(DGX
,DGY

) ≤ max
1≤l≤L

(
dGH

({Gl
X , ωGl

X
}, {Gl

Y , ωGl
Y
}))

where W∞ is the Bottleneck distance and dGH is the Gromov-Hausdorff distance.

Proof for Theorem 4 is in Appendix B of the Supplementary material. Theorem 4
implies that the proposed new SPD DG (see Definition 3) for any multilayer
network G is robust with respect to W∞ under minor input data perturbations.
As a result, Theorem 4 provides theoretical foundations to our TAD idea. Hence,
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under the null hypothesis of no anomaly, we expect to observe similar SPDs
over dynamic multilayer networks DGt

, while a noticeable difference between
two adjacent SPDs is likely to be a sign of anomaly. Note that stability of
SPD in terms of W1 requires vectorization of SPD and Lipschitz continuity
of the associated vectorization. While such vectorization approaches are highly
successful for image and graph learning (see, e.g., [2,29,61]), our preliminary
studies show lack of sensitivity of such vectorization techniques in conjunction
with network anomaly detection.

5 Experiments on Blockchain Networks

5.1 Experimental Setup

Baseline Algorithms: We compare performance of TAD method against
the following strong state-of-the-art (SOTA) algorithms for anomaly detec-
tion on single layer networks: 1 DeltaCon by [31] (which we label DC) for
weighted/unweighted networks, 2 Scan Statistics algorithm by [13] (which we
label gSeg) for unweighted networks, 3 Edge monitoring method with Euclidean
distance by [51] (which we label EMEu) for weighted networks, and 4 Edge mon-
itoring method with Kullback-Leibler divergence by [51] (which we label EMKL)
for weighted networks. Finally, we also considered an embedding-based algorithm
for anomaly detection. That is, we tracked Frobenius norms among embeddings
of multilayer blockchain graphs at each time snapshot, delivered by the one of
the most widely used algorithms for multilayer graph embedding, MANE of [34].
This 5 -th approach is denoted by Graph-Em. We provide a brief description
of the mechanism for each method in Appendix C in the Supplementary mate-
rial. For all competing methods, we use the default parameters reported in the
literature. Wherever applicable, we set a standard level of significance α of 0.05.

Since all competing methods are designed for single layer networks, we imple-
ment them (individually) w.r.t. each l layer in all the multilayer graphs {Gt}Tt=1

and then combine the detected results, while correcting for the multiple hypothe-
sis testing framework. In Appendix C, we provide two types of multiple hypothe-
ses that specifies how we retain anomalies for the sequence of multilayer graphs
and these include: 1 keep all anomalies identified from at least one {Gl

t}Tt=1,
2 keep all anomalies that are commonly identified from all {Gl

t}Tt=1. We pro-
vide results for choice (1), and defer the results for (2) to Appendix C in the
Supplementary material. Additionally, we construct a single layer version of TAD
(which we call S-TAD) and apply this to the same single layers. To be precise,
our improvised S-TAD will extract PDs from each l-layer, and without creating
SPDs, apply the chosen distance metric to consecutive PDs to obtain a time
series of topological summaries for the sequence {Gl

t}Tt=1. Therefore, our evalua-
tion will investigate the performance of TAD method against the performance of
the chosen techniques (DC, gSeg EMEu, EMKL, Graph-Em), and S-TAD when
the (un)weighted multilayer networks are viewed as a multiple hypothesis.

Topological Distances in TAD. We have experimented with various topological
metrics, particularly, W∞ bottleneck and W1 Wasserstein distances. While our
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Fig. 2. Anomalous events detected by TAD for the multilayer Ethereum network.

preliminary results do not indicate that W1 yields substantial gains over W∞ (i.e.
70% of the true anomalous events are detected regardless of the distance choice),
W1 tends to be slightly more sensitive than W∞. As such, we proceed with W1

as the primary choice and consider W1(DGt−1 ,DGt
), between consecutive SPDs

DGt−1 and DGt
for 2 ≤ t ≤ T . We apply the TAD technique to two input data

types: weighted and unweighted multilayer networks. Edge weight is defined as
a number of transactions between nodes.

Reproducibility and Replicability. The anonymized codes and data sets for
this project are available at https://github.com/tdagraphs.

5.2 Ethereum Token Networks

Data Set: The Ethereum blockchain was created in 2015 to implement Smart
Contracts, which are Turing complete software codes that execute user defined
tasks. Among many possible tasks, contracts are used to create and sell digi-
tal assets on the blockchain. The assets can be categorized into two categories:
1 Tokens whose prices can fluctuate; ERC20 or ERC721 [50], 2 Stablecoins
whose prices are pegged to an asset such as USD [37] (these are also ERC20
tokens). Token networks are particularly valuable because each token naturally
represents a network layer with the same nodes (addresses of investors) appear-
ing in the networks (layers) of multiple tokens. For our experiments, we extract
token networks from the publicly available Ethereum blockchain, and use the
normalized number of transactions between nodes as the edge weights. By prin-
ciple, a token network is a directed, weighted multigraph where an edge denotes
the transferred token value. Although address creation is cheap and easy, most
blockchain users use the same address over a long period. Furthermore, the same
address may trade multiple tokens. As a result, the address appears in networks
of all the tokens it has traded. From our data set timeline, we only include
tokens reported by the EtherScan.io online explorer to have more than $100M
in market value. Eventually, the data set contains 6 tokens, and on average, each
token has a history of 297 days (minimum and maximum of 151 and 576 days,

https://github.com/tdagraphs
http://etherscan.io/
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Table 1. Anomaly detection performance for the weighted Ethereum blockchain and
Ripple currency networks.

Ethereum Ripple

S-TAD DC EMEu EMKL TAD S-TAD DC EMEu EMKL TAD

TP 15 52 3 5 10 95 105 10 10 16

FP 28 69 3 5 2 260 283 40 32 9

TN 99 30 132 130 135 872 837 1152 1161 1187

FN 10 1 14 12 5 35 37 60 59 50

Acc. 0.750 0.539 0.888 0.888 0.954 0.766 0.746 0.921 0.928 0.953

Table 2. Anomaly detection performance for the unweighted Ethereum blockchain
networks.

Ethereum Ripple

S-TAD DC gSeg Graph-Em TAD S-TAD DC gSeg Graph-Em TAD

TP 17 52 14 3 10 80 105 17 0 11

FP 28 69 21 11 2 241 283 56 1 23

TN 97 30 106 126 135 900 837 1130 1195 1173

FN 10 1 11 12 5 41 37 59 66 55

Acc. 0.750 0.539 0.789 0.849 0.954 0.777 0.746 0.909 0.947 0.938

respectively). Note that each token has a different creation date, hence token
networks have non-identical lifetime intervals.

Ground Truth: As ground truth, we adopt and curate Blockchain events from
Wikipedia [54], which lists and explains major events since 2008. In total, there
are 72 events that have shaped blockchain networks—some of them in adverse
(see the supplementary material for the complete list). However, token networks
cannot detect events before 2015 because Ethereum and its tokens did exist
before then. Hence, our experiments focused on at most 32 (out of the 72) the
token transaction events.

Fig. 3. Precision and F1 scores for the weighted Ethereum blockchain and Ripple
currency networks.
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Results: Table 1 presents summary statistics for the weighted token multilayer
network analysis against the three single-layer SOTA solutions (i.e. DC, EMEu,
EMKL) and our topological S-TAD method. We find that TAD delivers lower FP
values. In addition, we notice that TAD achieves a significantly higher accuracy
(>7% of what EMEu/EMKL report). This is evidenced by the detected points
in Fig. 2. From Fig. 3 we notice again that the TAD yields substantially higher
Precision (66% more than what DC gets) and F1 (>23% of what DC gets) values,
implying that TAD tends to be substantially more efficient in locating relevant
anomalies within the multilayer graph sequence than its competitors. In addition,
we find that the performance results of the Graph-Em method in Table 2 and
Fig. 4 are substantially worse than the ones delivered by our proposed TAD. This
phenomenon can be explained by higher data aggregation typically performed by
graph embedding tools which results in lower sensitivity to anomalous changes in
the graph structure. Altogether, these results indicate that TAD tends to be the
most preferred tool for identifying anomalies in the multilayer network setting.
Table 2 presents experimental results for the anomalous event detection in the
unweighted multilayer Ethereum blockchain networks. We find that TAD delivers
the highest detection accuracy (0.954, which is about 20% greater than what
gSeg yields). In addition, we notice that TAD attains the lowest FP value (about
10% of what gSeg obtains) and the highest TN value (about 27% more than what
gSeg gets). In turn, Fig. 4 suggests that TAD yields the highest precision (93%
greater than DC) and the highest F1 score (23% more than DC). These findings
suggest that the new TAD method tends to be the most accurate approach for
flagging relevant anomalous events.

5.3 Ripple Currency Networks

Data Set: The Ripple Credit Network was created to facilitate remittance across
countries, but the network has transitioned to a blockchain-like structure where
network approved entities (e.g., banks) issue currencies in I-Owe-You notes, and
addresses can trade these currencies in blocks (which are called ledgers). On
the Ripple network any real life asset, such as Chinese Renminbi or US$, can
be issued by certain participants only but traded by all addresses (nodes). In

Fig. 4. Precision and F1 scores for the unweighted Ethereum blockchain and Ripple
currency networks.
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terms of regulatory issues by governments and price movements, Ripple is a part
of the Blockchain ecology and the networks are impacted by the global events
such as government regulations and trade volume increases [38]. We use the offi-
cial Data API (https://xrpl.org/data-api.html) and extract the five most issued
fiat currencies on the Ripple network: JPY, USD, EUR, CCK, CNY. We con-
struct a multilayer network from the payment transactions of the five currencies
that covers a timeline of Oct-2016 to Mar-2020. Similar to the Ethereum token
analysis, we use the normalized number of transactions between nodes as the
edge weights.

Ground Truth: As ground-truth, we use the same events described in the
Ethereum token network experiments. However, since the Ripple data set has a
longer temporal span of observations than the Ethereum token networks, there
are a total of 66 Blockchain events.

Results: Summaries from Table 1 indicate that TAD attains the highest event
detection accuracy (0.953). Furthermore, we find that TAD yields the lowest FP
value, which is actually 22.5% of the value by EMEu and about 28% of the
value by EMKL. Figure 3 displays detection results for the anomalous events
in the multilayer Ripple payment networks. We find that TAD yields the highest
precision (more than double what DC/S-TAD get) and is close to the top F1 score.
Differing from Ethereum experiment, the best F1 performance is delivered by
DC, closely followed by S-TAD and then TAD. Table 2 suggests that TAD delivers
the highest detection accuracy (0.938, which is about 3% greater than what
gSeg yields) for the unweighted Ripple currency network. In addition, we notice
that TAD attains the lowest FP value (about 41% of what gSeg obtains) and the
highest TN value (about 3% more than what gSeg gets). In turn, Fig. 4 shows
that TAD yields the highest precision (about 18% greater than DC) but the lowest
F1 score (55% of what DC gets).

Finally, note that in Ethereum we use 6 tokens, whereas Ripple experiments
are performed on 5 currencies. As Tables 2 and 1 suggest, the Ethereum results
appear to be better than those of Ripple. That is, detection accuracy substan-
tially improves with a higher number of layers. However, for both cases TAD
either outperforms or on par with baseline techniques. The key intuition behind
these results is that TAD allows for simultaneous evaluation of subtle changes
in multiple homological features both within network layers and across network
layers in sparse dynamic environments of blockchain transaction graphs. As such,
SPD appears to be more sensitive to subtle changes in the multilayer network
structure than competing non-TDA tools.

6 Conclusion

We have proposed the first topological anomaly detection (TAD) framework for
dynamic multilayer networks. We have derived stability guarantees of the new
topological summary for multilayer graphs, i.e., stacked persistence diagram,
which is the key tool behind TAD and validated utility of TAD on two blockchain
transaction graphs. Our studies have indicated that TAD yields a highly com-
petitive performance in detecting anomalous events on Ethereum and Ripple

https://xrpl.org/data-api.html
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blockchains. In the future we plan to advance TAD to anomaly detection in
attributed dynamic networks and analysis of evolving communities.
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