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Abstract. Proliferation of temporal data in many domains has gener-
ated considerable interest in the analysis and use of time series. In that
context, clustering is one of the most popular data mining methods.
Whilst time series clustering algorithms generally succeed in capturing
differences in shapes, they most often fail to perform clustering based on
both shape and amplitude dissimilarities. In this paper, we propose a new
time series clustering method that automatically determines an optimal
number of clusters. Cluster refinement is based on a new dispersion cri-
terion applied to distances between time series and their representative
within a cluster. That dispersion measure allows for considering both
shape and amplitude of time series. We test our method on datasets and
compare results with those from K-means time series (TSK-means) and
K-shape methods.

1 Introduction

Time series analysis is applied in many areas of business engineering, finance, eco-
nomics, health care, etc. It serves various purposes such as subsequence match-
ing, anomaly detection, pattern discovery, clustering, classification, etc. Our
study focuses on time series clustering There are two main approaches for time
series clustering. The first approach is based on feature construction. Series are
described by a vector of feature attributes [5], and instances are grouped using a
classical clustering method (K-means,DBscan, ...). The second one uses similarity
measures adapted to time series comparison, combined with basic approaches (e.g.
K-means) to cluster set of raw time series. Several similarity measures have been
suggested for time series clustering, such that DTW [8], SBD [7], LCSS [10], and
ERP [1] measures. All those distance measures compare series considering only
effects of the temporal phase shift, and do not include amplitude drifts. However,
in some application domains, time series clustering should be done by considering
invariance and interval of measurements on the y axis as well as the shift of series
on the x axis. Indeed, the range of values on the y axis can strongly discriminate
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between classes. For example, in agriculture or aquaculture domains, the range
of y values in time series related to environmental data, such as changes in tem-
perature, can significantly influences the growth and survival of living species. In
this paper, we propose an approach based on shape analysis and that also takes
into account the variance along the y axis. In addition, we develop a strategy that
allows to automatically define an optimal number of clusters k using a new dis-
persion criterion applied on distances between instances and their representative
within each cluster. Unlike most methods that normalize data, our approach can
be applied to both normalized and raw time series. This new method is robust to
the shifting of series on the x axis because we use metrics that take into account the
distortion of series over time, in particular DTW , which is the most used for time
series clustering [3,11]. For the y shift, we consider a maximum interval over which
those metrics vary. Section 2 presents notations and basic definitions. In Sect. 3,
we present our contribution, in which a new dispersion measure of distance distri-
bution is presented as well as the principle of our method. Section 4 gives results
of experiments on several datasets and compared to those of TSK-means [4] and
K-shape [9].

2 Notations and Definitions

Let s be a time series of length n where s(i) corresponds to the value of the
signal at time i. Let T = {s1, s2, . . . , sn} a set of time series.
Clusters and Their Representatives: We call k-clustering C of T , the set
C = {C1, C2, . . . , Ck} containing k homogeneous subsets of T (in relation to a
measure of distance Dist), each having a representative noted RCi

with ∀i ∈
{1, . . . , k}, Ci = {si1 , si2 , . . . , simi

} and verifying the following criteria: (1) T =
∪k

i=1 Ci and Ci ∩ Cj = ∅ ∀i �= j and (2) Dist(Rci , s) < Dist(Rcj , s) ∀s ∈ Ci

and j �= i. The representative of a cluster (called prototype) can be a centroid,
medoid, etc.
Standard Deviation and Entropy of a Cluster: Let Ci be a cluster of C on
T according to a measure of distance Dist. Let Dist(Ci) = {di1 , . . . , dimi

} the
set of values of the Dist between an instance of Ci and its representative RCi

.
Let σ(Ci) the standard deviation calculated on the distribution of values taken

by Dist(Ci), and E(Ci) its entropy measure. σ(Ci) =
√

1
mi

∑mi

k=1(dik − di)2

where di is the average of Dist(Ci) and E(Ci) = −∑mi

k=1 P (dik) × log(P (dik)).
In this paper, we used the distance measure DTW optimized by Kehog [6].

3 TSX-Means: A New Method for Time Series Clustering

Our approach mainly focuses on a new strategy for robust cluster refinement
and automatic determination of the optimal number of clusters k. Any distance
(or similarity) measure adapted to time series can be used in this approach. We
tested it with different distance measures, such as measures derived from DTW .
The method, based on a minimum number of clusters initially set to nb min clust
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and a set of defined criteria, implements the principle of refining each cluster by
revisiting all its instances. Instances that do not verify the criteria, in relation to
the class they belong to, are put in a reject class. We then iterate the principle on
that reject class (considered as a new set of series to be clustered) until the stop-
ping conditions are verified. The criteria used in our approach are linked to the
following thresholds: (1) nb min inst: the minimum number of instances allowed
per cluster and (2) seuil disp: the intra-cluster variability, defined from a new dis-
persion measure that depends on both the variability and the entropy measures of
distances between each instance and its representative in cluster belongs to. In this
contribution, we propose a new dispersion measure of distances between instances
and their representative in a cluster. This dispersion measure, noted disp, is deter-
mined by the ratio between the standard deviation and the entropy of the distance
values.

Definition 1 (measure of dispersion disp). Let Ci a cluster of the set T .
We define its measure of dispersion by: disp(Ci) = σ(Ci)

E(Ci)
.

If the dispersion is minimal then the homogeneity is maximal. disp(Ci) reflects
the inner cluster variability. The smaller disp is, the smaller the variability
around the representative is. That allows to select the nearest instances to a
representative according to a fixed threshold, denoted sd in the following.

Criteria for Selecting Cluster Instances: Let sd a fixed threshold and Ci

a cluster. A new associated cluster C ′
i ⊂ Ci is built, verifying the disp(C ′

i) ≤ sd.
Computation of the dispersion measure requires at least two values. A mini-
mum number of instances initially in the new C ′

i cluster is thus provided by
nb min inst in the algorithm. In order to determine those instances, Dist(Ci)
are ordered and saved in Sort(Dist(Ci)) = {v1, v2, . . . , vm} with ∀ i < j, vi ≤ vj

(procedure ApplyCriteria). We integrate in C ′
i the first nb min inst instances

in the sorted list Sort(Dist(Ci)). If disp(C ′
i) ≤ sd then other instances are added

one by one in C ′
i, as long as the criterion remains true, otherwise instances that

do not verify the criterion are put in the reject cluster. The value disp(C ′
i) is

updated each time an instance is added.

3.1 Principle of the Method

The algorithm takes as parameters thresholds nb min clust, nb min inst, and
sd and uses any Dist. As output, it provides a number of clusters determined
automatically based on dispersion criteria, and a reject class noted CR. The
principle of the algorithm is the following:
Step 1: Definition of Initial Clusters. Instances of T (set of time series)
are partitioned into a minimum number of nb min clust clusters. To create
those clusters, we apply the classic algorithm TSK-Means (or K-shape) with
k = nb min clust and a distance measure Dist (f.ex DTW , etc.). The proce-
dure [C,Dist(C)] = CreateInitialsClusters(T, nb min clust) of Algorithm 1
returns initial clusters.
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Step 2: Refining Clusters by Applying the Dispersion Criterion. The
procedure [C ′, CR] = ApplyCriteria(C,Dist, sd, nb min inst) consists in apply-
ing the homogeneity criterion to each cluster Ci to only keep instances verifying
that criterion. The remaining instances are assigned to the reject class CR. If
the number of instances of an initial cluster Ci is less than nb min inst, then
this cluster is deleted and its instances are assigned to the reject class.
Step 3: Applying the Stopping Criterion. If the number of instances in the
reject class is greater than nb min inst, then the initial step is repeated taking
as new set T the rejected class. Otherwise, the algorithm stops.

3.2 TSX-Means Algorithm

At first call of our recursive method (Algorithm 1), the number of clusters to
be determined nbClust, is initialized to 0, and the set of final clusters Cf to
the empty set. At each call of the recursive algorithm, a new set of at most
nb min clust clusters and the reject cluster are created from initial clusters
obtained by the CreateInitialsClusters method. The algorithm is therefore
repeated as long as the reject cluster is not empty and the number of instances
is greater than nb min inst. The method could assign to the reject cluster CR
the same instances indefinitely if no admitted new cluster Cf was generated.
The recursiveCpt iteration counter allows to stop the algorithm when it reaches
a maximum number of iterations provided by the user. Thus, it is possible to
get a number of clusters lower than nb min clust or even no cluster at all. This
occurs when the ApplyCriteria method does not find any instance verifying
the dispersion criterion in each of the initial clusters. This case is linked to a
low value of the dispersion threshold. Nevertheless, increasing the threshold will
integrate instances that are far from the representative and will lead to creating
a cluster with high variability.

4 Experimental Results

The method has been tested on data of the UEA & UCR [2] archives. We tested
our algorithm on 20 datasets. Chosen datasets have series of various lengths and
a different number of classes. Most of them have a low number of classes (≤7),
we say non complex data. In order to test our new method TSX-Means on
more complex data, the last 7 datasets have a higher number of classes (≥24).
For each dataset and for each distance used, we tested our method by varying
the parameters sd and nb min clust. Nb min inst was set to the number of
instances of the smallest class of the dataset. Once the number k is found by
our algorithm, we run TSK-means and k-shape with the same value of k to
compare the performances between the 3 methods. We used different metrics
(Accuracy, ARI and V-Measure (VM)) for performance comparison averaged for
the tested parameters. Accuracy is calculated when the number of clusters is
the actual number of classes. Otherwise, ARI and V-M are used. The parameter
nb min clust has a greater impact on performance measures, and particularly
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Algorithm 1 . TSX-Means(T,nb min clust,sd,nbMaxIter,nbClust,recursifCpt, nb min

inst)

Output: - Cf set of clusters

1: if nb min clust < p then
2: TmpCpt = 0
3: {C, Dist(C)} = CreateInitialsClusters(T, nb min inst)
4: for i=1 to nb min clust do
5: {C′ , CR} = ApplyCriteria(Ci, Dist, seuil disp, nb min inst)
6: if C′ �= ∅ then
7: Cf [nbClust] = C′

8: T = T − C′

9: nbClust = nbClust + 1
10: else
11: TmpCpt = TmpCpt + 1
12: end if
13: end for
14: if TmpCpt == nb min clust then
15: recursifCPT = recursifCpt + 1
16: end if
17: if recursifCpt < nbMaxIter then
18: TSX-Means(T, nb min clust, sd, nbClust, nbMaxIter, recursifCpt)
19: end if
20: end if
21: return Cf

V-Measure, than threshold sd. The difference of ARI and V-M are, in average,
10% higher for complex data for TSX-Means than for K-Shape method. The
new dispersion measure is a good indicator of cluster homogeneity. In general,
TSX-Means method is more efficient than other methods, especially when the
number of classes is very high. Table 1 shows results for accuracy scores. We
noticed that dispersion measure improves clustering performance. Indeed, TSX-
Means outperforms TSK-Means and K-Shape methods for the majority of data.

Table 1. Accuracy of TSX-Means with initial clusters from TSK-Means.

Dataset Distances k TSX-Means TSK-Means Kshape Reject
TSX-means

Kmin

Car sakoechiba 4 0.446 0.433 0.433 4 4

Fish fast 7 0.457 0.440 0.391 0 5

Herring itakura 2 0.609 0.594 0.509 0 2

LargeKitchen sakoechiba 3 0.517 0.453 0.521 0 3

Meat classic 3 0.782 0.653 0.750 1 3

Refrigeration fast 3 0.363 0.361 0.360 0 3

SmallKitchen itakura 3 0.417 0.460 0.407 0 3

WormsTwoClass fast 2 0.575 0.511 0.602 0 2

We noticed that the dispersion measure improves clustering performance with
the set of measures derived from DTW . Indeed, TSX-Means outperforms TSK-
Means and k-shape methods for the majority of data. Table 2 shows accuracy
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scores of TSX-Means using K-Shape as initial clusters generator. Our method
outperforms k-Shape for 5/7 data.

Table 2. Accuracy of TSX-Means and the K-Shape with initial clusters from K-Shape

Dataset k X-Shape K-Shape nb min clust

Computers 2 0.616 0.548 2

Meat 3 0.700 0.683 3

OSULeaf 6 0.420 0.435 6

OliveOil 4 0.800 0.433 4

RefrigerationDevices 3 0.416 0.368 3

ScreenType 3 0.357 0.360 3

Yoga 2 0.487 0.480 2

5 Conclusion and Perspectives

We proposed a new dispersion measure in a cluster, and designed a new method
TSX-Means for time series clustering, allowing to automatically determine an
optimal number of clusters. This measure allows to refine clusters initially gener-
ated by existing clustering methods. Performance of TSX-Means was compared
to TSK-Means and K-Shape methods on a set data. Quality measures of clus-
tering performance showed that TSX-Means method outperforms TSK-Means
and K-Shape, especially for data with a very large number of clusters.
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