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Abstract. The linear and geometrically nonlinear flexural vibration of simply
supported simply supported free rectangular plates punctually supported at the
free corner is investigated. First, the frequency parameters and mode shapes are
calculated with the efficient Rayleigh-Ritz method (RRM). The RRM is used here
to study the geometrically nonlinear vibrations occurring at large amplitudes of
the plates examined. The test plate functions used are the products of beam func-
tions with appropriate end conditions, i.e. simply supported-free beam functions,
in each direction and the point support is modeled by a factious translational spring
with a stiffness tending to infinity. The solutions obtained for various plate aspect
ratios compare well with available solutions based on different approaches. The
nonlinear vibrations have been then examined using spectral analysis and Hamil-
ton’s principle to determine the backbone curves of SSFF plates with various
aspect ratios via the so-called the second formulation in order to determine the
fundamental nonlinear frequency parameter and its mode shape.

Keywords: Linear vibration · Non-linear vibrations · Rayleigh-Ritz method ·
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1 Introduction

Rectangular plates are commonly used as structural components in many engineering
fields. The knowledge of their natural frequencies and mode shapes is necessary to
determine their response under the working loads and to estimate properly the induced
strains and stresses in order to make an optimal design. In spite of the very large number
of research work devoted to this topic, due to the variety of edge conditions, there are
still numerous situations which are not yet covered by the literature, particularly in the
non-linear regime. Free vibration of rectangular plates punctually supported at a corner
has been studied by numerous researches using various laborious methods, such as [1,
2], but yet the studies were restricted to linear vibration. The present work investigated
the vibration of plates simply supported at two adjacent edges and free at the two other
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edgeswith a point support at the free corner, denoted as (SSFFRPSC). TheRayleigh-Ritz
method (RRM) has been used to study the plate linear vibrations for various values of the
aspect ratio. Benamar’s method (BM) [3, 4] has then been to investigate the nonlinear
vibration for large vibration amplitudes, leading to the plotted backbone curves.

2 General Formulation

The studied SSFFRPSC is plotted in Fig. 1. The transverse displacement function W of
the current point P(x,y) is given by the following expression:

W(x, y, t) =
∑N

k=1
akwk(x, y)sin(ωt) (1)

Fig. 1. Plates simply supported at the edges x = y = 0 and free at the edges x = a and y = b
with a point support at the corner x = a, y = b (SSFFRPSC)

ak represents the contribution coefficient of test plate function wk. This test functions
wk used, for k = 1, 2 . . . n2, are obtained as products of n linear simply supported-free
beam mode Xi in the x- and y- directions:

wk(x, y) = wij(x, y) = Xi(x)Xj(y), k = n(i− 1) + j (2)

With:

Xi(x) = C1 sin(λx) + C2 cos(λx) + C3 sinh(λx) + C4 cosh(λx) (3)

n being the number of trial beam functions used. The simply supported-free beam

frequency parameters λ = L
π

4
√

ρω2
b

EI , listed in Table 1, are analytical solution of the
differential equation which governs the beam vibration [5].

The nonlinear vibrations have been described in many papers by Benamar and al [6–
8] by a set of nonlinear algebraic equation involving the rigidity and the mass matrices
[K] and [M ] and a fourth order tensor [B({A})] expressing the structure nonlinearity. A
similar study is applied in the present work leads to:

[K]{A} − �2[M] · {A} + 2

3
[B({A})]{A} = 0 (4)
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Table 1. Lowest ten frequency parameters λ = L
π

4

√
ρω2

b
EI of a simply supported-free beam.

λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9 λ10

0.499 1.2499 2.25 3.25 4.25 5.25 6.25 7.25 8.25 9.25

{A} being the vector of the trial function contribution coefficients. The expressions
for [M ] and [B] are identical to those given in [6] but the parameters are calculated here
using the functions defined above which satisfy the present edge conditions. On the other
hand, the strain energy due to the point support, modeled by a translational spring of
rigidity KSp, is given by:

VSpr = KSp

2
W 2(a, b) = 1

2
aiajK

Sp
ij sin(ωt) =

1

2
aiajKSpwi(a, b) · wj(a, b) (5)

KSp
ij is the rigidity term associated to the elastic energy stored in the spring to be

included in the tensor [K]. For very large values of KSp,W (a, b) tends to zero.

3 Numerical Results

3.1 Numerical Results for Linear Vibration

The free linear vibration of the point supported plate is found by eliminating the nonlinear
tensor B({A}). The Eq. (4) becomes:

[K]{A} − �2[M] · {A} = 0 (6)

The results obtained from solution of Eq. (6) are summarized giving The lowest
seven frequency parameters of SSFFRPSC are listed in Table 2 for several values of
α = a

b . These results are compared with those given by Li in [2]. The differences remain
less than 0.6%. The lowest four mode shapes are shown in Fig. 2 for α = 0.6. The cross-
sections at the plate diagonal x

a = y
b are given in Fig. 3, showing a zero displacement at

the simply supported corner.

3.2 Numerical Results for Nonlinear Vibration

In order to investigate the nonlinear vibrations of the studied plate the fourth order
tensor [B({A})] is not neglected in Eq. (4). Benamar’s method is applied to find the
amplitude dependent nonlinear fundamental frequency parameters for plates having
different values of the plate aspect ratio α = a

b . Equation (4), allows to calculate the
frequency parameters: both sides of the equation are pre-multiplied by {A}T which
becomes [6]:

�2
NL =

aiajmij + 1.5aiajakalbijkl
aiajkij

. (7)
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Table 2. Lowest seven frequency parameters �i = ωi

√
ρH
D a2 of a SSFFRPSC for several values

of α = a/b

α �1 �2 �3 �4 �5 �6 �7

1 Present 9.6387 17.3790 30.6260 43.8479 51.2420 64.3751 73.0867

Li [2] 9.6079 17.3160 30.5960 43.6520 51.0350 64.3440 72.9660

0.5 Present 3.9943 10.2852 15.0008 19.8891 25.4359 30.7094 39.3289

Li [2] 3.9872 10.2440 14.9390 19.8740 25.3470 30.6630 39.1590

1/3 Present 2.3999 5.9854 10.6275 14.3218 17.3415 20.2735 22.9328

Li [2] 2.3976 5.9694 10.5780 14.2560 17.3300 20.2070 22.9000

0.25 Present 1.7204 4.0177 7.1548 10.8415 13.9386 16.4236 18.0810

Li [2] 1.7193 4.0100 7.1301 10.7800 13.8660 16.4130 18.0200

0.2 Present 1.3453 3.0058 5.1828 7.9251 10.9966 13.6731 16.0045

Li [2] 1.3447 3.0016 5.1687 7.8893 10.9180 13.5900 15.9900

Fig. 2. Lowest four modes of SSFFRPSC for α = 0.6
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Fig. 3. Cross-sections of the four modes at the plate diagonal (x/a = y/b). α = 0.6.

The so-called second formulation (SF) was used in this work to solve Eq. (4) and
find the ai’s, i = 2 to N, for various values of the first component a11, and consequently
the amplitude dependent nonlinear mode shapes. The bases of this approximate method,
developed by El Kadiri–Benamar, are detailed in Ref [6] for the nonlinear free vibration
problem formulated in the MFB (see Appendix B in Ref [6]), leads to (m× n) − 1
equations, the ith equation is:

−�2 as msi + as ksi + 1.5 as au av bsuvi = 0, i = 2, 3, 4, ... n× m (8)

Examples of numerical results obtained by the SF are listed in Table 3 corresponding
to a SSFFRPC forα = 0.6, and in Table 4 for α = 0.3, 0.6, 0.9 and for several values of
a11 showing the nonlinear amplitude dependence of the contribution coefficient. Figure 4
plots the backbone curves of SSFFR by the second formulation for several values of the
aspect ratio indicating a nonlinear behavior of the hardening type. The aspect ratio influ-
ence on the fundamental mode shape is shown in Fig. 5. It appears that the hardening
effect is more accentuated with increasing the aspect ratioα. Figure 6 gives the corre-
sponding normalized cross sections of the amplitude dependent nonlinear first mode, for
increasing values of the first componenta11, at the plate diagonal

y
b = x

a and at the plate
middle line y = b

2 , showing a nonlinear increase of curvature at the simply supporter
corner with increasing the vibration amplitude.

Table 3. �NL/.�, Wmaxand aij as functions of a11 for α = 0.6 (� = 5.10929)

WMax �NL/� a11 a12 a13 a14 a21 a22

0.1404 1.0090 0.05 3.46E−02 −1.95E−03 3.68E−04 4.31E−03 −6.32E−04

0.2775 1.0354 0.10 6.82E−02 −3.96E−03 6.69E−04 9.44E−03 −1.21E−03

0.5334 1.1316 0.20 1.30E−01 −8.43E−03 9.18E−04 2.42E−02 −2.11E−03

0.7637 1.2691 0.30 1.84E−01 −1.38E−02 7.00E−04 4.51E−02 −2.67E−03

0.9753 1.4324 0.40 2.30E−01 −2.01E−02 1.82E−04 7.07E−02 −3.07E−03

a23 a24 a31 a32 a33 a34 a41 a42 a43 a44

3.80e−4 −1.53e−4 −0.90e−4 2.13e−4 −0.73e−5 4.07e−5 −3.10e−6 −0.84e−5 2.63e−5 −0.57e−5

8.50e−4 −2.94e-4 −4.62e−4 4.26e−4 −1.70e−4 8.61e−5 1.32e−5 −1.77e−4 5.96e−5 −3.40e−5

2.33e−3 −5.16e-4 −1.43e−3 8.41e−4 −4.37e−4 2.14e−4 1.44e−4 −3.50e−4 1.66e−4 −8.95e−5

4.72e−3 −6.66e−4 −2.95e−3 1.22e−3 −8.5e−4 4.32e−4 3.89e−4 −5.11e−4 3.33e−4 −1.89e−4

8.3e−3 −7.83e−4 −4.77e−3 1.53e−3 −1.22e−3 7.86e−4 6.75e−4 −6.48e−4 5.55e−4 −3.53e−4
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Table 4. �NL/� and Wmax as functions of a11 for several values of α

a11 α = 0.3 (� = 2.1218) α = 0.6 (� = 5.10929) α = 0.9 (� = 8.6366)

Wmax �NL/� Wmax �NL/� Wmax �NL/�

0.05 0.1549 1.0238 0.1404 1.0090 0.1008 1.0052

0.10 0.3066 1.0916 0.2775 1.0354 0.2004 1.0206

0.20 0.5910 1.3238 0.5334 1.1316 0.3923 1.0797

0.30 0.8435 1.6280 0.7637 1.2691 0.5748 1.1708

0.40 1.0673 1.9618 0.9753 1.4324 0.7513 1.2866

Fig. 4. Backbone curves of SSFFRPSC by the second formulation with various aspect ratios

Fig. 5. Fundamental mode shape of SSFFRPSC with various aspect ratios α = 0.2, 0.6, 1.

Fig. 6: Normalized cross sections of the amplitude dependent nonlinear first mode shape of
SSFFRPSC for increasing values of a11; (a) at the diagonal

y
b = x

a ,(b) at middle plate y = b
2
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4 Conclusion

Linear frequencies and mode shapes of point supported rectangular plates at the free
corner whose opposite edges are simply supported has been studied using the Rayleigh-
Ritzmethodwith appropriate plate functions. The efficiency of theRayleigh-Ritzmethod
used in such plate is established by the accuracy of found results which are compared
with the available bibliography. The results are given for several values of the aspect ratio.
The mode shapes not only were given up to the fourth mode, but their normalized cross
sections are plotted. TheBenamar’smethodwas applied to study the nonlinear vibrations.
The nonlinear frequency parameter �NL has been calculated by the second formulation
developed by Benamar and al for various values of the maximum displacement. The
Backbone has been plotted for many values of the plate aspect ratio α = a/b. The first
nonlinear mode shape which depends on the amplitude has been determined and plotted
for several values of first component a11 of the vector of the trial function contribution
coefficients {A}.
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