
Deep Reinforcement Learning for Job
Scheduling on Cluster

Zhenjie Yao1,2,3(B) , Lan Chen1,2, and He Zhang1,2

1 Institute of Microelectronics, Chinese Academy of Sciences, Beijing, China
{yaozhenjie,chenlan,zhanghe}@ime.ac.cn

2 Beijing Key Laboratory of Three-dimensional and Nanometer Integrated Circuit
Design Automation Technology, Beijing, China

3 Purple Mountain Laboratory: Networking, Communications and Security,
Nanjing, China

Abstract. Job scheduling is a key function of cluster computing. Effi-
cient job scheduling can improve hardware resource utilization and pro-
mote the execution efficiency of jobs. Conventional scheduling work
is dominated by heuristic algorithms. The scheduling efficiency of the
heuristic algorithm is not optimal. In this paper, we improved the deep
reinforcement learning algorithm for the cluster scheduling, which named
DeepCM. Test results on the simulation data shows that the DeepCM is
capable of improving the performance for job scheduling on the cluster.
The slowdown could be improved from 2.248 to 2.235 in a environment
of 3 machines. The fusion of internal baseline and external baseline could
reduce the variations of the performance on different jobsets. The exper-
imental results demonstrate that the deep reinforcement learning get
improved scheduling efficiency in cluster computing. The performance
advantage is more obvious when the load gets heavier.

Keywords: Deep reinforcement learning · Schedule · Cluster · Policy
gradient · Fusion baseline

1 Introduction

In computing clusters, we can access the CPU, memory, storage, software and
other resources of different physical machines through the network. Computing
tasks could be completed more efficiently by efficient utilization of the resources
in the clusters. The establishment, lease, and even maintenance of computing
clusters are expensive. Therefore, efficient utilization of computing clusters is
essential. For large clusters, a small increment in utilization efficiency can save
millions of investment [2].

Task scheduling is to establish the mapping relationship between tasks and
computing resources. Tasks and computing resources can have a one-to-many or

Supported by National key R & D program high performance computing project
(2017YFB0203501).

c© Springer Nature Switzerland AG 2021
I. Farkaš et al. (Eds.): ICANN 2021, LNCS 12894, pp. 613–624, 2021.
https://doi.org/10.1007/978-3-030-86380-7_50

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86380-7_50&domain=pdf
http://orcid.org/0000-0003-1027-637X
https://doi.org/10.1007/978-3-030-86380-7_50

614 Z. Yao et al.

many-to-one relationship. The essence of scheduling is a combinatorial optimiza-
tion problem. The mapping relationship between tasks and resources is extremely
complex, and finding the optimal task scheduling strategy is complex and dif-
ficult. The existing scheduling method is dominated by heuristic algorithms.
Common heuristic algorithms include Shortest Job First (SJF), fairness-based
algorithms [3,5], and resource matching-based algorithms (such as Tetris [4]).
Park et al. suggested to take the runtime uncertainty into consideration, and
gave an end-to-end strategy for job scheduling with uncertainty [10]. Heuris-
tic algorithms have the advantages of easy understanding, easy implementation,
and strong generalization, and are widely used in various distributed systems.
However, due to the lack of in-depth analysis of tasks and resources, heuris-
tic algorithms are not optimal. In some scenarios, the scheduling efficiency is
low. Task scheduling in a distributed environment still has a lot of room for
improvement, especially for some specific scenarios.

Reinforcement learning has been widely used for sequential decision mak-
ing in an unknown environment, where the agent learns a policy to optimize
a cumulative reward by trial-and-error interactions with the environment [14].
In the last decade, the introduction of deep learning technology has promoted
the rapid development of reinforcement learning, and has achieved success in
games [9,13] and other scenarios. Reinforcement learning can learn the expe-
rience during the interaction with the environment and make better decisions.
Task scheduling itself is also a sequential decision-making process. A natural idea
is whether reinforcement learning can be used to optimize task scheduling in a
distributed environment. Mao et al. implemented a task scheduling algorithm
using reinforcement learning, the entire cluster was simplified into a resource
pool, and tasks were allocated to the resource pool [8]. Since the whole cluster
is one resource pool, the key factor is to determine the order of the tasks. In the
follow-up work, Mao et al. described task dependencies through Directed Acyclic
Graph (DAG), and modeled it using graph convolutional neural networks. Then
reinforcement learning was adopted to schedule the tasks [7]. Compared with the
heuristic scheduling algorithms, reinforcement learning algorithm has achieved
significant efficiency improvements on both simulated and real data sets, which
verifies the effectiveness of reinforcement learning in task scheduling. Neither of
the above two algorithms restricts the task flow and they are general schedul-
ing algorithms. Another research direction is the scheduling of dedicated task
streams, such as machine learning clusters. By modeling the convergence curve
of the machine learning algorithms, Peng et al. can estimate the end time of
various deep learning tasks accurately. Heuristic greedy strategy is used to allo-
cate resources, the efficiency improved more than 60% [11]. In another algorithm
DL2, Peng et al. used reinforcement learning, combined with off-line initializa-
tion training and on-line learning for training, and the performance was improved
by 17.5% [12]. Bao et al. tested the degree of interference between different
machine learning tasks, used reinforcement learning for task scheduling, which
tried to put tasks with low mutual interference in one computing unit (one or
several machines). Experimental results show that compared with the traditional
heuristic scheduling algorithm, the performance of this algorithm is improved by

Deep Reinforcement Learning for Job Scheduling on Cluster 615

more than 25% [1]. The results showed that reinforcement learning algorithms
improve the performance of machine learning clusters. Wang et al. applied a
deep-Q-network model in a multi-agent reinforcement learning setting to guide
the scheduling of multi-workflows over infrastructure-as-a-service clouds, which
shows better performance than traditional scheduling method [16].

In Mao’s works [7,8], the entire cluster is abstracted into a resource pool
without considering the boundaries of physical machines. In this paper, we follow
their method, the main contributions of this paper are summarized as follows:

– Applying reinforcement learning-based scheduling algorithms to more practi-
cal clusters, which taking resource boundaries of physical machines into con-
sideration, aiming to improve resource utilization of the computing cluster.

– We propose a fusion baseline strategy, which adopt a fusion of internal base-
line and external baseline as the final baseline in policy gradient algorithm,
to reduce the variations of the reinforcement learning model.

The remainder of this paper is organized as follows. Section 2 presents our deep
reinforcement learning model for job scheduling on cluster, Deep Cluster Manage-
ment (DeepCM), in detail. Section 3 covers the experimental results on a simula-
tion environment. Finally, Sect. 4 gives conclusions and discusses future work.

2 Deep Reinforcement Learning for Job Scheduling on
Cluster

As other Reinforcement Learning (RL) system, the Deep Reinforcement Learn-
ing system for Cluster management include 3 important parts: environ-
ment(represented by state), agent and reward, which are illustrated in Fig. 1(a).

(a) Overall architecture of DeepCM (b) Architecture of the neural network

Fig. 1. System architecture of DeepCM and the architecture of the policy network.

2.1 RL Formulation for Schedule

In the application for job scheduling on cluster, the environment is the infor-
mation about the jobs and the cluster. The state of the environment including
the state of all the jobs that needed to schedule, and all the available resources
on the nodes in the cluster. Suppose the cluster is composed of N nodes, each

616 Z. Yao et al.

node contains D types of limited resources (CPU, memory, IO and disk etc.).
As for the task, we suppose the resource and time requirement are known. The
scheduling task is to allocate required resources of appropriate node to the jobs.
State. The state of the system is represented by a big image composed of subim-
ages. The subimages represent the state of candidate jobs, and nodes, and some
extra information about job arriving time, and number of jobs out of the candi-
date queue. The image presentation of the system state is illustrated in Fig. 2. As
show in the figure, the whole state image is composed by three kinds of subim-
ages: subimage of machines, subimage of jobs and subimage of extra information.
The state matrix representation is explained as follows.

1. Machine state image. Each machine image contains D images of different
resources. In Fig. 2, one machine image of one resource was given for example.
The size of subimage is T × K, indicating the occupancy state of K units
of resource in T timesteps. Each column of the image represents one unit
of the resource, and each row represents a time step. The image contains
the information about resource occupancy of the machine. The colored grid
indicates that the resource has been occupied, which is represented by 1. The
grids of the same color indicate that they are occupied by the same task. The
white grids represent spare resources, represented by 0. The machine image
is capable of representing the resource utilization of the machines. The size
of one machine image is T × (D × K)

2. Job state image. A job stage image contains D subimages of different
resources. The size of each subimage is T × K, too. The colored grid indi-
cates the resource and time the job required. For example, the job subimage
in Fig. 2, the red square containing 2 × 2 grids, indicating executing this job
require 2 units of this resource, and it will last for 2 timesteps. It should be
pointed out that the amount of various resources required for the same job
is different. For example, one job may need 3 units of CPU, and 1 units of
memory. However, the duration of source requirement is the same. The size
of one job image is T × (D × K)

3. Extra information state image. This state image of extra information contains
information about the jobs out of the candidate job queue. The size of extra
information image T × K. The first K − 1 columns is about the number jobs
in the backlog queue, which is the job that has been submitted but not in the
candidate queue (Usually because the candidate queue is full). The number
of rows with a value of 1 is proportional to the number of jobs in the backlog.
The length of backlog is set to Lb, if Nb jobs in backlog, then the elements
of the first �Nb

Lb
× T � rows are set to 1. The blue part of the extra subimage

indicates about 60% of the whole back queue are full. The last column is the
number of timesteps past since last submitted job. The value of the whole
column is max(Tp

Tw
, 1), where Tp is the number of timesteps past since last

submitted job, Tw is a parameter.

Deep Reinforcement Learning for Job Scheduling on Cluster 617

Fig. 2. Image representation of the state

Reward. Our goal is to minimize the average job slowdown. The job slowdown
is defined by

Sj =
Cj

Tj
, (1)

where Cj is the completion time of the job, which last from job submission to
job completion, including four parts: the waiting time for entering the candidate
queue, time in the candidate queue, waiting time on the scheduled machine, and
time for execution. Tj is the ideal (minimum) duration of the job, including the
time for execution only. It is easy to find that, Cj > Tj , so Sj > 1. The reward
of each timestep is a piece of the negative slowdown, which defined as:

Rt =
∑

j∈Jt

− 1
Tj

, (2)

where Jt indicates all the jobs in the system at timestep t, including the job
waiting for entering the candidate queue, the job in the candidate queue, the
job scheduled on a machine (no matter it is waiting for execution or executing).
The final cumulative reward is

Rc =
Ts∑

t=0

Rt =
Ts∑

t=0

∑

j∈Jt

− 1
Tj

=
∑

j∈J

Cj × (− 1
Tj

) =
∑

j∈J

−Cj

Tj
, (3)

where Rc is the total cumulative reward of all the tasks in the Ts steps, J is
the jobset of all the jobs during the Ts timesteps. The average job slowdown is
defined as

Ra = −Rc

|J | , (4)

where |J | is the number of jobs in jobset J .

Agent. A reasonable schedule method should take multiple actions in one
timestep. For simplicity, multiple action selection was achieved in a manner of
repeat single action selections, only one action is selected at a time. Repeat the
selection until a void action was selected. Suppose there are M candidate jobs

618 Z. Yao et al.

and N machines. For each single action selection, we select a job (M candidates)
and allocate a machine (N candidates), which leads to M ×N selections and one
void selection. There are M × N + 1 selections in the action space for a single
action selection, which is also the output dimension of the policy neural network
shown in Fig. 1(a).

As shown in Fig. 1(a), the action policy is achieved by a neural network.
The input is the state of the system, and the output is a probability distribution
about potential actions. Figure 1(b) shows the architecture of the neural network,
including the input layer, 2 hidden layers and 1 output layer.

Suppose there are 3 machines with 2 types of resources, each machine contains
10 units of either resources. At time step t, we can schedule job to t+20 timesteps.
Under this setting, the number and size of the each layer are given in Fig. 1(b).
The input layer has one input only, whose size is 20 × 400. The output of the
convolution layer includes 32 feature maps with size of 1×400. The hidden layer
as 32 neurons, with a dropout rate of 0.2. The output layer has 31 neurons with
softmax activation, indicating the probability of 31 candidate actions.

2.2 Policy Gradient

We train the policy network with policy gradient descent algorithm [15]. As
the name suggests, policy gradient means gradient descent of policy network.
The policy neural network can be seen as a multi-class neural network. Its loss
function is categorical cross-entropy. The goal of reinforcement learning is to
maximize the expected cumulative reward, whose gradient is

� Eπθ

[
T∑

t=0

γtrt

]
= Eπθ

[
T∑

t=0

�θ log πθ(s, a)Qπ
θ (st, at)

]
, (5)

where Qπ
θ (st, at) is the expected reward of choosing action at in state st. Its

unbiased estimation obtained by Monte Carlo simulation [6] is denoted by vt =
̂Qπ
θ (st, at) and substitute vt in (5), we have

� Eπθ

[
T∑

t=0

γtrt

]
= Eπθ

[
T∑

t=0

�θ log πθ(st, at)vt

]
, (6)

The gradient can be decomposed into two terms, �θ log πθ(st, at) is the gradient
of conventional classification neural network, and vt is the weight. As mention
above, vt is the expected reward of each step, we can find that the policy gradient
is the conventional gradient weighted by reward. This is the key idea of policy
gradient.

The policy gradient training algorithm was shown in Algorithm 1. There are
J jobsets for training, each jobset run K episodes, which leads to K trajectories.
Expected cumulative reward are estimated from the trajectories.

The cumulative reward has cumulative effect, which leads to heavy depen-
dency on its time step. In order to reduce the significant difference caused by the
position, a common trick of policy gradient algorithm is to adjust the rewards

Deep Reinforcement Learning for Job Scheduling on Cluster 619

Algorithm 1. Policy gradient training algorithm for cluster management

1: Initialize
−→
be =

−→
0.0

2: for each iteration do
3: for each jobset j = 1 to J do

4: for episode k = 1 to K do

5: {sk
1 , a

k
1 , r

k
1 , sk

2 , a
k
2 , r

k
2 , ...sk

Lk
, ak

Lk
, rk

Lk
} ∼ πθ

6: Calculate returns: vk
t =

∑Lk

i=t γi−trk
i

7: Calculate internal jobset baseline

−→
bj
a =

∑K
k=1

−→
vj

K
(7)

8: Calculate jobset baseline

−→
bj = β

−→
bj
a + (1 − β)

−→
be (8)

9: Calculate the gradient of all the samples.

�θ = �θ log πθ(s, a)(v − b) (9)

10: Calculate external jobset baseline

−→
be =

∑J
i=1

−→
bj
a

J
(10)

11: θ ← θ + α � θ

by subtracting the baseline, which is also used in [8]. The conventional baseline
calculation is shown in (7), which is the average of different trajectories of the
same jobset. We name it internal jobset baseline. The trajectories subtract the
baseline as the reward. In the training process, we found that the differences
between jobsets are also very large, and internal baseline adjustments cannot
handle the difference.

We use the weighted average of the internal baselines of different jobsets as
the external baseline between jobsets (10), and combine the external baseline
in the last iteration and the internal baseline through linear combination (8).
We use the combinational result as the final baseline for reward adjustment,
expecting better learning performance. The introduction of an external baseline
is a major improvement for policy gradient, and subsequent experimental results
verify the effectiveness of this mechanism.

Gradients were calculate by (9), which is a cumulative gradient of all the
samples in this iteration. The samples include all the trajectories of all the
jobsets.

620 Z. Yao et al.

3 Experimental Results

This section contains the experimental results. First explain our test environ-
ment. Then compare the training procedure of the conventional and improved
policy gradient model. Compare the schedule efficiency of our model with refer-
enced models under different settings.

3.1 Environment Setting and Reference Models

In our setting, there are 1–3 machines in the cluster, each machine has 2 types
of resources, both are divided into 10 units. Tasks are randomly generated as
a batch, according to the same distribution, 20% tasks are long tasks, whose
duration is uniformly from 10 to 15 timesteps. 80% of the tasks are short tasks,
whose duration is from 1 to 3 timesteps. All the tasks have one dominant resource
that is randomly selected. The dominant resource requirement is uniformly from
4 to 6 units of resource, and the other resource requirement is uniformly from 1
to 2 units of resource. The tasks submitted to the cluster with a probability of
ps, which is used for workload control. In the following experiments, we suppose
one jobset contains 50 tasks for both training and testing.

The parameters involved in the training algorithm include: The discount
parameter during cumulative reward calculation is γ = 1.0. The fusion parameter
of internal baseline and external baseline β is set to 0.9. We train the network
for 1000 or 1500 iterations, if the reward did not improve from the 900th to the
1000th iteration, it will stop at the 1000th iteration; Otherwise, it will stop at
the 1500th iterations. Another important parameter is the learning rate, which
is set to lr = 0.003 at the beginning, and recalculated every 30 iterations by
lr = max(lr × 0.8, 0.001).

We adopt 4 scheduling models as reference. Shortest Job First (SJF) is one
of the best heuristic scheduling method. Take machines into consideration, there
are two strategies for allocation: compact strategy, which allocate the job to the
machine with highest resource utilization; and spread strategy, which allocate the
job to the machine with lowest resource utilization. Combine SJF with compact
and spread leads to SJF compact and SJF spread, together with Tetris [4] and
DeepRM [8], there are the 4 reference models. Here, DeepRM was modified for
cluster scheduling scenario.

Our DeepCM model has similar principle as DeepRM. However, the policy
gradient algorithm is improved by a mechanism of fusion baseline, as mentioned
in Algorithm 1.

3.2 Tests on Cluster with Different Number of Machines

In this part, we test the same workload on cluster with different number of
machines. We set the workload control parameter ps = 0.8. The number of
machines is set to 1,2 and 3. Since 3 machines leads to almost no slowdown, we
reduce each type of the resource on a machine from 10 units to 8 units.

Deep Reinforcement Learning for Job Scheduling on Cluster 621

The average slowdown is shown in Table 1. From the table, we can find that
no matter how many machines are in the cluster, DeepCM and DeepRM achieve
consistently better result than conventional heuristic methods. The performance
of DeepRM is close to DeepCM. DeepCM is slightly better than DeepRM.

When there is only one machine, we have no choice, the 3 heuristic schedule
models degrade to the SJF schedule. The average slowdown in the top 3 rows of
the first column are the same.

Table 1. Average slowdown on cluster with different number of machines

Scheduling model Average slowdown

1 2 3
SJF compact 2.833(±0.850) 1.260(±0.213) 1.147(±0.125)
SJF spread 2.833(±0.850) 1.263(±0.215) 1.149(±0.127)
Tetris 2.833(±0.850) 1.267(±0.201) 1.152(±0.130)
DeepRM 2.805(±0.846) 1.254(±0.206) 1.144(±0.128)
DeepCM 2.773(±0.839) 1.245(±0.178) 1.143(±0.125)

Compare the average slowdown on the same model with different number
of machines, we find that the slowdown decreases as the number of machines
increases. That is due to more resources are available as the number of machines
increases. However, the performance improvement of DeepCM decrease as the
machine number increase. When there is one machine, DeepCM outperforms
the best heuristic model by 0.06, outperforms DeepRM by 0.032. When there
are three machines, DeepCM outperforms the best heuristic model by 0.004,
outperforms DeepRM by 0.001. We infer that as more machines get involved,
resources are no longer tight, and the advantages of scheduling shrinks.

3.3 Tests Under Different Workloads

In this part, we fix the number of machines in cluster as 3, and test different
workload on it. We set the workload control parameter ps as 0.7, 0.8, 0.9 and 1.0.
Each machine contains 8 units of each type of resources.

The average slowdown is shown in Table 2. From the table, we can find that
no matter what value ps is, DeepCM and DeepRM achieve consistently better
result than conventional heuristic methods. The performance of DeepRM is close
to DeepCM. DeepCM is slightly better than DeepRM.

Compare the average slowdown on the same model with different workload,
we find that the slowdown increases as the workload increases. The performance
improvement of DeepCM did increase as the workload increase. When the con-
trol parameter is 0.7, DeepCM outperforms the best heuristic model by 0.002,
outperforms DeepRM by 0.001. When the control parameter is 1.0, DeepCM
outperforms the best heuristic model by 0.019, outperforms DeepRM by 0.006.

Combined with the previous experimental results in Table 1, we can con-
clude that DeepCM can achieve better performance than conventional models,

622 Z. Yao et al.

especially when the workload is heavy. Moreover, the heavier the workload, the
greater performance gain can be achieved.

Table 2. Average slowdown of different workload

Scheduling model Average slowdown

0.7 0.8 0.9 1.0

SJF compact 1.041(±0.042) 1.147(±0.125) 1.455(±0.265) 2.248(±0.133)

SJF spread 1.044(±0.050) 1.149(±0.127) 1.460(±0.264) 2.254(±0.139)

Tetris 1.045(±0.051) 1.152(±0.130) 1.459(±0.264) 2.254(±0.139)

DeepRM 1.040(±0.039) 1.144(±0.128) 1.450(±0.261) 2.241(±0.131)

DeepCM 1.039(±0.040) 1.143(±0.125) 1.448(±0.261) 2.235(±0.126)

Compared to scheduling on single resource pool, the scheduling on the cluster
is more difficult, and we see that the improvement of DeepRM relative to the
heuristic methods is small. DeepCM has further improved DeepRM. Although
the numerical improvement is small, it is still important for cluster scheduling.

3.4 Benefits of the Fusion Baseline

We have seen that DeepCM has achieved better performance than conventional
scheduling methods. In this section, we focus on the comparison between DeepCM
and DeepRM, to demonstrate why the fusion baseline policy gradient works better
than conventional policy gradient. We compared the training curve of the fusion
baseline policy gradient and conventional policy gradient. Training curves of both
algorithms are shown in Fig. 3. The red curve is the average slowdown of all the
jobsets, the yellow region is 3σ (σ is the standard deviation) around the average
curve, the blue curves are average slowdown of each jobset. The average slowdown
is smoothed by moving average with 50 as the moving window width.

(a) Training curves of conventional PG (b) Training curves of FPG

Fig. 3. Training curves. The red curve is the average slowdown of all the jobsets, the
yellow region is 3σ (σ is the standard deviation) around the average curve, the blue curves
are average slowdown of different jobset. The average slowdown is smoothed by moving
average. (Color figure online)

Deep Reinforcement Learning for Job Scheduling on Cluster 623

Table 3. Statistics of the training curves

Max Min Mean

PG Mean –2.369 –6.444 –2.812
Std 0.692 0.157 0.218

FPG mean –2.300 –6.067 –2.611
Std 0.646 0.093 0.156

Figure 3(a) is the training curves of conventional policy gradient (PG),
Fig. 3(b) is the training curves of the fusion baseline policy gradient (FPG).
Statistics of the training curves are listed in Table 3. By comparison, we can find
that:

1. Compare the red curve in both figures. It is easy to find that the mean of
rewards increase sharply at the beginning. As the training iterations increase,
the growth rate decreases. Quantitatively, the average reward of PG increases
from −6.444 to −2.369, while that of FPG increases from −6.067 to −2.300.

2. The curve of FPG increases more sharply than PG, PG reach −3 at 265th
iteration, while FPG reach the same value at 147th iteration. Which means
FPG can be trained more efficiently.

3. The standard deviation of PG is larger than that of FPG. The standard
deviation of PG are reduce from 0.692 to 0.157, with mean value of 0.218.
The standard deviation of FPG are reduced from 0.646 to 0.093, with mean
value of 0.156.

4. By observing the blue curves, we find that the average reward on all jobsets
of PG has no significant improvement after 700 iterations; while that of FPG
has three significant improvements after 700 iterations, which leads to smaller
deviation.

4 Conclusion and Future Works

In this paper, we improved the reinforcement learning based scheduling algo-
rithm, and applied it for the cluster resource management, which named
DeepCM. Test results on the simulation dataset shows that DeepCM is capable
of improving the performance for job scheduling on the cluster, especially when
the workload is heavy. Furthermore, the fusion of internal baseline and external
baseline could reduce the variation of the performance on different jobsets, which
makes the trained model more steady.

However, it is worth noting that, as the number of candidate jobs or the
number of machines increases, both the state representation and the output
dimension would increase sharply, which leads to bad scalability of the DeepCM.
Poor scalability limits the application of deep reinforcement learning scheduling
algorithms to large-scale clusters. In our further work, we would try to enhance
the scalability of DeepCM and related algorithm.

624 Z. Yao et al.

Future work will include improving the performance of the reinforcement
learning by incorporating more layers into the policy network, and considering
more complex application scenarios, such as the inter dependency of the jobs, the
actual resource occupation of the jobs, and the uncertainty of runtime estimation.
Another possible direction is multi-objective optimization, which optimize cost,
make-span and delay, etc. simultaneously.

References

1. Bao, Y., Peng, P., Wu, C.: Deep learning-based job placement in distributed
machine learning clusters, pp. 505–513 (2019)

2. Barroso, L.A., Hlzle, U.: The datacenter as a computer: an introduction to
the design of warehouse-scale machines. Synth. Lect. Comput. Archit. 8(3),
(2009). https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/
FairScheduler.html

3. Ghodsi, A., et al.: Dominant resource fairness: Fair allocation of multiple resource
types. In: Proceedings of the 8th USENIX Symposium on Networked Systems
Design and Implementation (NSDI), vol. 11, pp. 323–336 (2011)

4. Grandl, R., Ananthanarayanan, G., Kandula, S., Rao, S., Akella, A.: Multi-resource
packing for cluster schedulers. ACM SIGCOMM Comput. Commun. Rev. 44(4),
455–466 (2014)

5. Hadoop, A.: Hadoop fair scheduler. http://hadoop.apache.org/common/docs/
stable1/fair scheduler.html (2014)

6. Hastings, W.K.: Monte carlo sampling methods using markov chains and their
applications. Biometrika 57(1), 97–109 (1970)

7. Mao, H., Schwarzkopf, M., Venkatakrishnan, S.B., Meng, Z., Alizadeh, M.: Learn-
ing scheduling algorithms for data processing clusters. In: Proceedings of the ACM
Special Interest Group on Data Communication, pp. 270–288 (2019)

8. Mao, H., Alizadeh, M., Menache, I., Kandula, S.: Resource management with deep
reinforcement learning. In: Proceedings of the 15th ACM Workshop on Hot Topics
in Networks, pp. 50–56 (2016)

9. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature
518(7540), 529–533 (2015)

10. Park, J.W., Tumanov, A., Jiang, A., Kozuch, M.A., Ganger, G.R.: 3sigma:
distribution-based cluster scheduling for runtime uncertainty. In: Proceedings of
the Thirteenth EuroSys Conference (2018)

11. Peng, Y., Bao, Y., Chen, Y., Wu, C., Guo, C.: Optimus: an efficient dynamic
resource scheduler for deep learning clusters. In: Proceedings of the Thirteenth
EuroSys Conference, pp. 1–14 (2018)

12. Peng, Y., et al.: Dl2: A deep learning-driven scheduler for deep learning clusters.
In: arXiv preprint arXiv:1909.06040 (2019)

13. Silver, D., et al.: Mastering the game of go with deep neural networks and tree
search. Nature 529(7587), 484–489 (2016)

14. Sutton, R., Barto, A.: Reinforcement Learning: An Introduction. MIT Press, Cam-
bridge (1998)

15. Sutton, R.S., Mcallester, D., Singh, S., Mansour, Y.: Policy gradient methods for
reinforcement learning with function approximation. In: Advances in Neural Infor-
mation Processing Systems, pp. 1057–1063 (1999)

16. Wang, Y., et al.: Multi-objective workflow scheduling with deep-q-network-based
multi-agent reinforcement learning. IEEE Access 7, 39974–39982 (2019)

https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/FairScheduler.html
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/FairScheduler.html
http://hadoop.apache.org/common/docs/stable1/fair_scheduler.html
http://hadoop.apache.org/common/docs/stable1/fair_scheduler.html
http://arxiv.org/abs/1909.06040

	Deep Reinforcement Learning for Job Scheduling on Cluster
	1 Introduction
	2 Deep Reinforcement Learning for Job Scheduling on Cluster
	2.1 RL Formulation for Schedule
	2.2 Policy Gradient

	3 Experimental Results
	3.1 Environment Setting and Reference Models
	3.2 Tests on Cluster with Different Number of Machines
	3.3 Tests Under Different Workloads
	3.4 Benefits of the Fusion Baseline

	4 Conclusion and Future Works
	References

