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Abstract. Universal Adversarial Perturbations (UAPs) are input per-
turbations that can fool a neural network on large sets of data. They
are a class of attacks that represents a significant threat as they facili-
tate realistic, practical, and low-cost attacks on neural networks. In this
work, we derive upper bounds for the effectiveness of UAPs based on
norms of data-dependent Jacobians. We empirically verify that Jacobian
regularization greatly increases model robustness to UAPs by up to four
times whilst maintaining clean performance. Our theoretical analysis also
allows us to formulate a metric for the strength of shared adversarial per-
turbations between pairs of inputs. We apply this metric to benchmark
datasets and show that it is highly correlated with the actual observed
robustness. This suggests that realistic and practical universal attacks
can be reliably mitigated without sacrificing clean accuracy, which shows
promise for the robustness of machine learning systems.

Keywords: Adversarial machine learning · Universal adversarial
perturbations · Computer vision · Jacobian regularization

1 Introduction

Neural networks have been the algorithm of choice for many applications such as
image classification [15], real-time object detection [21], and speech recognition
[11]. Although they appear to be robust to noise, their accuracy can rapidly dete-
riorate in the face of adversarial examples – inputs that appear similar to genuine
data, but have been maliciously designed to fool the model [1,25]. Thus, it is
important to ensure that neural networks are robust to such attacks, especially
in safety-critical applications, as this can greatly undermine the performance
and trust in these models.

A concerning subset of attacks on neural networks come in the form of Uni-
versal Adversarial Perturbations (UAPs), where a single adversarial perturba-
tion can cause a model to misclassify a large set of inputs [18]. These present a
systemic risk, as many practical and physically realizable adversarial attacks are
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based on UAPs. These attacks can take the form of adversarial patches for image
classification [2], person recognition [26], camera-based [7,8] and LiDAR-based
object detection [3,9,10,28]. In the digital domain, UAPs have been shown to facil-
itate realistic attacks on perceptual ad-blockers for web pages [27] and machine
learning-based malware detectors [16]. Furthermore, an attacker can utilize UAPs
to perform query-efficient black-box attacks on neural networks [4,6].

In the literature, existing defenses to adversarial attacks focus primarily on
input-specific (“per-input”) attacks–where adversarial perturbations need to be
crafted for each single input. In contrast to universal attacks, input-specific attacks
fool the model on only one input. However, the practicality of input-specific
attacks suffers in realistic settings, as the perturbations need to be constantly
modified to match the current input. In contrast, defences against UAPs have
not been thoroughly investigated, even if they are potentially more dangerous and
should intuitively be easier to defend against because the same perturbation needs
to be shared across many inputs. These are the main focus of this paper.

A number of studies have investigated the use of Jacobian regularization to
improve the stability of model predictions to small changes to the input, but
up to this point, studies have only considered input-specific perturbations [12,
13,20,22,24,29]. In this work, we expand the theoretical formulation of Jacobian
regularization to UAPs and derive upper bounds on the effectiveness of UAPs
based on the properties of Jacobian matrices for individual inputs. Our work
shows that for inputs to strongly share adversarial perturbations, their Jacobians
need to share singular vectors.

We empirically verify our theoretical findings by applying Jacobian regu-
larization to neural networks trained on popular benchmark datasets: MNIST
[17], Fashion-MNIST [30] and then evaluating their robustness to various UAPs.
Our results show that even a small amount of Jacobian regularization drastically
improves model robustness against many universal attacks with negligible down-
sides to clean performance. To summarize, we make the following contributions:

– We extend theoretical formulations for universal adversarial perturbations
and are the first to show that the effectiveness of UAPs is bounded above by
the norms of data-dependent Jacobians.

– We empirically verify our theoretical results and show that even a minimal
amount of Jacobian regularization reduces effectiveness of UAPs by up to
4-times, whilst leaving clean accuracy relatively unaffected.

– We propose the use of cosine similarity for Jacobians of inputs to measure
the strength of shared adversarial perturbations between distinct inputs. Our
empirical evaluations on benchmark datasets demonstrate that this similarity
measure is an effective proxy for measuring robustness to UAPs.

The rest of this paper is organized as follows. Section 2 introduces adver-
sarial examples, universal adversarial perturbations, and Jacobian regulariza-
tion. Section 3 formulates Jacobian regularization for UAPs and derives our key
propositions. Section 4 evaluates the robustness of models trained with Jacobian
regularization to various UAP attack. Finally, Sect. 5 discusses implications of
our results and summarizes our findings.
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2 Background

2.1 Universal Adversarial Perturbations

Let f : X ⊂ R
n → R

d denote the logits of a piece-wise linear classifier which
takes as input x ∈ X . The output label assigned by this classifier is defined by
F (x) = arg max(f(x)). Let τ(x) denote the true class label of an input x).

An adversarial example x′ is an input that satisfies F (x′) �= τ(x), despite x′

being close to x according to some distance metric (implicitly, τ(x) = τ(x′)).
The difference δ = x′ − x is referred to as an adversarial perturbation and its
norm is often constrained to ‖δ‖p < ε, for some �p-norm and small ε > 0 [25].

Universal Adversarial Perturbations (UAP) can come in targeted or
untargeted forms depending on the attacker’s objective. An untargeted UAP
is an adversarial perturbation δ ∈ R

n that satisfies F (x + δ) �= τ(x) for suffi-
ciently many x ∈ X and with ‖δ‖p < ε [18]. Untargeted UAPs are generated by
maximizing the loss

∑
i L(xi + δ) with an iterative stochastic gradient descent

algorithm [5,19,23,27]. Here, L is the model’s training loss, {xi} are batches of
inputs, and δ are small perturbations that satisfy ‖δ‖p < ε. Updates to δ are
done in mini-batches in the direction of −∑

i ∇L(xi + δ). Targeted UAPs for a
class c are adversarial perturbations δ that satisfy F (x + δ) = c for sufficiently
many x ∈ X and with ‖δ‖p < ε. To generate this type of attack, we use the
same stochastic gradient descent as in the untargeted case, but modify the loss
to be minimized when all resulting inputs xi + δ are classified as c.

2.2 Jacobian Regularization

Given that f(x) is the logit output of the classifier for input x, we write Jf (x)
to denote the input-output Jacobian of f at x. We can linearise f within a
neighbourhood around x as follows using the Taylor series expansion:

f(x + δ) = f(x) + Jf (x)δ + O(δ2) (1)

For a sufficiently small neighbourhood ‖δ‖p ≤ ε with ε > 0, the higher order
terms of δ can be neglected and the stability of the prediction is determined by
the Jacobian.

f(x + δ) 	 f(x) + Jf (x)δ (2)

and equivalently, for any q-norm, we have:

‖f(x + δ) − f(x)‖q ≈ ‖Jf (x)δ‖q (3)

For a small ε, we want the δ that maximizes the right hand side of Eq. 3 in order
to sufficiently change the original output and fool the model. With constraint
‖δ‖p ≤ ε, this is equivalent to finding the (p, q) singular vector for Jf (x) [14].

To improve the stability of model outputs to small perturbations δ, existing
works have proposed regularizing the Frobenius norm [12,13,20] or the Spectral
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norm [22,24,29] of this data-dependent Jacobian Jf (x) for each input. Addition-
ally, [22] show that the input-specific adversarial perturbations align with the
dominant singular vectors of these Jacobian matrices.

Although [14] considered Jacobians in the context of UAPs, they only focused
on the computation of δ as an attack and did not perform any theoretical or
empirical analysis for mitigating the effects of UAPs. Prior studies that explore
Jacobian regularization focused solely on improving robustness to single-input
perturbations and did not explain nor consider the effectiveness of Jacobian
regularization for UAPs. Thus, we extend these formulations [14,22] to have a
more concrete theoretical understanding for how Jacobian regularization miti-
gates UAPs.

3 Jacobians for Universal Adversarial Perturbations

When computing a universal adversarial perturbation δ that uniformly general-
izes across multiple inputs {xi}N

i=1, one would optimize:

max
δ:‖δ‖p=1

N∑

i=1

‖Jf (xi)δ‖q (4)

This extends the intuition from Eq. 3 to many inputs, and due to the homogeneity
of the norm, it is sufficient to solve this for ‖δ‖p = 1 [14]. The solution to δ for
Eq. 4 is equivalent to finding the (p, q) singular vector for the stacked Jacobian
matrix JN , the matrix formed by vertically stacking the Jacobians of the first
N inputs.

max
δ:‖δ‖p=1

‖JNδ‖q where JN =

⎡

⎢
⎢
⎢
⎣

Jf (x1)
Jf (x2)

...
Jf (xN )

⎤

⎥
⎥
⎥
⎦

(5)

3.1 Upper Bounds for the Stacked Jacobian

To obtain an upper bound for the (p, q)-operator norm shown in Eq. 5, note that
it is bounded above by its Frobenius norm denoted by ‖JN‖F :

‖JNδ‖q ≤ ‖JN‖F ‖δ‖ (6)

Thus, mitigating the effectiveness of a UAP across multiple inputs can be
achieved by limiting the Frobenius norm of the stacked Jacobian ‖JN‖F .

Before proceeding, let us define the inner product induced by the Frobenius
norm for two real matrices. Given A,B ∈ R

m×n, let the inner product in R
m×n

be defined as:

〈A,B〉 = Tr(A′B) =
m∑

i=1

n∑

j=1

aijbij (7)
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where A′ denotes the transpose of A, the lowercase letters aij are the entries of
the matrix A, and Tr(·) is the trace. This inner product is associated with the
Frobenius norm ‖ · ‖F . Now we introduce the following proposition.

Proposition 1. For matrices A,B ∈ R
m×n, we have:

〈A,B〉 ≤ ‖A‖F ‖B‖F (8)

with equality if and only if A and B share singular directions and their singular
values satisfy σi(A) = s · σi(B) for all i for a constant scalar s > 0, where σi(·)
is the singular value that corresponds to the i-th largest singular value.

Proof. Consider the singular value decomposition of A = UAΣAV′
A and B =

UBΣBV′
B , where UA,UB ,VA,VB are orthogonal matrices and ΣA,ΣB are

diagonal matrices whose diagonal entries σi(A) and σi(B) are non-negative and
in descending order. Let r = max(rank(A), rank(B)).

〈A,B〉 = Tr(A′B)
= Tr(VAΣ′

AU′
AUBΣBV′

B)
= Tr(V′

BVAΣ′
AU′

AUBΣB) cyclic property of trace

Note that since UA,UB ,VA,VB are all orthogonal matrices, ‖U′
AUB‖2 ≤

‖U′
A‖2‖UB‖2 = 1, and in a similar way, ‖V′

BVA‖2 ≤ 1.

〈A,B〉 = Tr(V′
BVAΣ′

AU′
AUBΣB)

=
r∑

i=1

r∑

j=1

zij · σi(A)σj(B) where
r∑

i=1

|zij | ≤ 1,
r∑

j=1

|zij | ≤ 1

≤
r∑

i=1

σi(A)σi(B) equality ⇐⇒ zij

{
1, if i = j,

0, if i �= j.

≤
(

r∑

i=1

σ2
i (A)

) 1
2

(
r∑

i=1

σ2
i (B)

) 1
2

Cauchy-Schwarz Inequality

= ‖A‖F ‖B‖F ��

The equality conditions for the above requires zii = 1,∀i as the σi are in
descending order. This implies that U′

AUB and V′
BVA are identity matrices,

which requires UA = UB and VA = VB , i.e. A and B share the same singular
vectors. Equality under Cauchy-Schwarz requires the singular values to be scalars
of one another: σi(A) = s · σi(B) for the same scalar s > 0,∀i.

This proposition is significant as it gives us upper bounds for the inner prod-
uct and equality conditions to achieve this upper bound. Applying this result to
the stacked Jacobian matrix JN gives us the following:
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‖JN‖2F = Tr(J
′
NJN )

= Tr

⎛

⎝
N∑

i=1

N∑

j=1

Jf (xi)′Jf (xj)

⎞

⎠

=
∑

i,j

Tr(Jf (xi)′,Jf (xj))

=
∑

i,j

〈Jf (xi),Jf (xj)〉 Frobenius inner product

≤
∑

i,j

‖Jf (xi)‖F ‖Jf (xj)‖F Proposition 1

With equality if and only if, for all pairs of inputs (xi,xj), we have Jf (xi)
and Jf (xj) sharing singular vectors and their corresponding singular values are
constant up to a fixed scalar s > 0.

Our result can be summarized with the following equation:

‖JN‖F ≤
⎛

⎝
∑

i,j

‖Jf (xi)‖F ‖Jf (xj)‖F

⎞

⎠

1
2

(9)

From a defense perspective, this shows that regularizing the Frobenius of the
Jacobian for the xi decreases the total Frobenius norm of the stacked Jacobian
and hinders the overall effectiveness of a UAP. Thus, data-dependent Jacobian
regularization across inputs should make it significantly more difficult to generate
effective UAPs.

3.2 Measuring Alignment of Jacobians

To measure the alignment between Jacobians of two distinct inputs, we use the
cosine similarity between their respective Jacobians under the inner product
induced by the Frobenius norm:

sim(xi,xj) =
〈Jf (xi),Jf (xj)〉

‖Jf (xi)‖F ‖Jf (xj)‖F
≤ 1 (10)

This is precisely the formula given in Proposition 1, with the above ratio equal
to one if and only if the singular vectors of their Jacobians are the same. This
shows to us that alignment of Jacobians can be evaluated with this similarity
measure. Also, combining this with our findings from Eq. 9, this ratio allows us
to measure how strongly two inputs share adversarial perturbations.

Although the Jacobian is a first-order derivative, we show in later sections
that our Jacobian similarity measure correlates with vulnerability to iterative
UAP attacks. Thus, demonstrating that it is an effective measure to determine
the “universality” of adversarial vulnerability even against iterative adversaries.
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Having a similarity measure like this is beneficial as this allows us to easily
determine if two inputs are likely to share adversarial perturbations. This is
more advantageous than manually generating adversarial perturbations for each
pair of inputs as one would have to consider many additional attack parameters
when generating adversarial attacks, including the ε bounds, chosen �p-norm,
step size, number of attack iterations, and so on.

4 Experiments

4.1 Experimental Setup

Models & Datasets. We consider the benchmark datasets MNIST [17] and
Fashion-MNIST [30]. These are widely-used image classification datasets, each
with 10 classes, whose images are 28 by 28 pixels, and their pixel values range
from 0 to 1. For the neural network architecture, we use a modernized version
of LeNet-5 [17] as detailed in [12] as it is a commonly used benchmark neural
network. We refer to this model as LeNet.

Jacobian Regularization. For training with Jacobian regularization (JR), we
optimize the following joint loss and use the algorithm as proposed by [12]:

Ljoint(θ) = Ltrain({xi,yi}i, θ) +
λJR

2

(
1
B

∑

i

‖J(xi)‖2F
)

(11)

where θ represent the parameters of the model, Ltrain is the standard cross-
entropy training loss, {xi,yi} are input-output pairs from the mini-batch, and
B is the mini-batch size. This optimization uses a regularization parameter λJR,
which lets us adjust the trade-off between regularization and classification loss.

UAP Attacks. We evaluate the robustness of these models to UAPs generated
via iterative stochastic gradient descent with 100 iterations and a batch size of
200. Perturbations are applied under �∞-norm constraints. The ε we consider
in our attacks for this norm are from 0.1 to 0.3, this perturbation magnitude is
equivalent to 10%–30% of the maximum total possible change in pixel values.

We generate untargeted and targeted attacks. For targeted UAPs, we gener-
ate one UAP for each of 10 classes of each dataset. Clean and UAP evaluations
are done on the entire 10,000 sample test sets.

Robustness Metrics. The effectiveness of untargeted attacks are measured
using the Universal Evasion Rate (UER), defined as the proportion of inputs
that are misclassified. Targeted UAPs for class c are evaluated according to
their Targeted Success Rate (TSR), the proportion of inputs classified as class c.

4.2 Jacobian Regularization Mitigates UAPs

Regular training without JR (i.e. λJR = 0) achieves 99.08% and 90.84% test accu-
racy on MNIST and Fashion-MNIST respectively. Figure 1 shows that increasing
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Fig. 1. Test accuracy of LeNet on MNIST (left) and Fashion-MNIST (right) for various
Jacobian regularization strengths λJR.

Fig. 2. Effectiveness of untargeted UAPs for various �∞-norm perturbation constraints
ε. Plots are shown for various models with different degrees of Jacobian regularization.

the weight of JR decreases the resulting model’s test accuracy. Note, however,
that this decrease appears to be negligible for very small λJR ≤ 0.1.

Untargeted UAPs. Figure 2 presents the effectiveness of our untargeted UAP
attacks on different LeNet with varying JR strengths. The regularly trained
model is especially vulnerable to UAP attacks on both datasets, with untargeted
UAPs achieving above 80% UER for ε ≥ 0.2 on both datasets.

On MNIST, UAP attacks seem to gain reasonable success only after ε ≥
0.25. This is permissible as the adversary perturbs the input by 25% of its
maximum possible value in this case, which entails an enormous change. What
is striking is that JR has a protective effect for ε ≤ 0.2, even for small amounts of
regularization at λJR = 0.05. Here, UAP effectiveness is down from 80% to 20%
at ε = 0.2. Increasing the strength of the regularization likely has diminishing
returns for robustness as stronger regularization also begins to damage clean
accuracy, and thus the model’s generalization. Fashion-MNIST can be seen to
be less robust since it begins with a lower clean accuracy at around 91%. This
means that the model is overall less robust to begin with than the model trained
for MNIST, so we can expect it to be less robust to UAP attacks in general.
Nonetheless, we still see a protective effect from JR for ε ≤ 0.15 even with only
a minor degree of regularization λJR = 0.05.

Targeted UAPs. Figure 3 shows our results for the effectiveness of targeted
UAPs. These plots follow a similar trend as with untargeted UAPs, suggesting
that JR is able to improve model robustness against a diverse array of UAP
attacks and not only against untargeted UAPs.
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Fig. 3. Average Targeted Success Rate (TSR) of targeted UAPs generated for each
class, with error bars showing standard deviation across UAPs for different classes.
Plots are shown for various models with different degrees of Jacobian regularization.

Even a minor amount of regularization in λJR = 0.05 provides up to a 4-times
decrease in effectiveness of UAPs while maintaining the model’s performance on
the clean test set, as seen in Table 1.

Comparison with Adversarial Training. We compare JR with the current
state-of-the-art defense against universal attacks: Universal Adversarial Training
(UAT) [23], where adversarial training is done on UAPs. UAT models in Table 1
are trained on ε = 0.2 and ε = 0.15 adversaries for MNIST and Fashion-MNIST
respectively. Although UAT improves robustness to UAPs compared to standard
training, it doubles the test error on both clean datasets. In contrast, JR achieves
better robustness than UAT without damaging clean accuracy.

Adversarial training relies on training against specific UAP perturbations.
The heuristic quality of UAT makes improving robustness against all possible
perturbations computationally difficult. Our results show that regularizing a
more general property of the model, in the norm of the Jacobian, leads to better
robustness while maintaining accuracy.

Table 1. Performance metrics (in %) of LeNet. Jacobian regularization (JR) uses λJR =
0.05. UAP evaluations are for �∞-norm attacks at ε = 0.2 for MNIST and ε = 0.15 for
Fashion-MNIST. Lowest values indicate the best robustness and are highlighted.

MNIST Fashion-MNIST
Standard UAT [23] JR Standard UAT [23] JR

Test Error 0.92 1.81 0.90 9.16 16.66 9.15

Untargeted UER 85.88 27.49 20.47 86.63 34.10 29.96

Average TSR 85.94 24.05 21.57 86.33 26.64 30.59

4.3 Jacobian Alignment of Input Pairs

We now investigate how the cosine similarity of input Jacobians as introduced in
Eq. 10 correlates with the models’ robustness to UAPs. We consider LeNet with
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Jacobian regularization (λJR = 0.05) and without (λJR = 0.0). The performance
of the models on the test sets is the same as the ones in Table 1. For each dataset,
we take a random subset of 1,000 test set images with a uniform distribution on
the output classes. Thus, we measure the similarity for a million input pairs.

Fig. 4. Jacobian similarity for pairs of inputs on MNIST (left) and Fashion-MNIST
(right) for LeNet with and without Jacobian regularization (JR). Median similarity
values on MNIST are 0.18 and 0.58; and on Fashion-MNIST are 0.11 and 0.46 with
and without JR respectively.

Figure 4 shows the histogram of the similarity values for the generated ran-
dom pairs (cosine similarity is bounded in [−1, 1]). We observe that Jacobian
regularization significantly reduces the median of the distributions by around
0.35. Although the Jacobian is only a first-order derivative, this greatly corre-
lates with the models’ robustness even for iterative stochastic gradient descent
UAP attacks. This shows that observing the similarity measure we introduced
can help to analyze the strength of shared adversarial perturbations, allowing
defenders to better evaluate model robustness against UAPs.

5 Conclusion

In this work, we are the first to derive upper bounds on the impact of UAPs,
we theoretically show and then empirically verify that data-dependent Jacobian
regularization significantly reduces the effectiveness of UAPs, and finally we pro-
pose cosine similarity of Jacobians to measure the strength of shared adversarial
perturbation between inputs.

In contrast to input-specific adversarial examples which have been shown
to be difficult to defend against and often incur a notable decline in accuracy
to achieve robustness, we show that Jacobian regularization can greatly miti-
gate the effectiveness of UAPs whilst maintaining clean performance through
theoretical bounds and comprehensive empirical results.

These results give us confidence that applying Jacobian regularization to
existing models significantly improves robustness to practical and realistic uni-
versal attacks at minimal cost to clean accuracy. Additionally, the proposed
similarity metric for Jacobians can be used to further diagnose and analyze the
vulnerability of models by identifying subsets of inputs with shared adversar-
ial perturbations. Overall, these enable us to put defenses for neural networks
against realistic and systemic UAP attacks on a more practical footing.
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