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Abstract. A three-layered neural-network (NN), which consists of an
input layer, a wide hidden layer and an output layer, has three types
of parameters. Two of them are pre-neuronal, namely, thresholds and
weights to be applied to input data. The rest is post-neuronal weights to
be applied after activation. The current paper consists of the following
two parts. First, we consider three types of stochastic processes. They are
constructed by summing up each of parameters over all neurons at each
epoch, respectively. The neuron number will be regarded as another time
different to epochs. In the wide neural-network with a neural-tangent-
kernel- (NTK-) parametrization, it is well known that these parameters
are hardly varied from their initial values during learning. We show that,
however, the stochastic process associated with the post-neuronal param-
eters is actually varied during the learning while the stochastic processes
associated with the pre-neuronal parameters are not. By our result, we
can distinguish the type of parameters by focusing on those stochastic
processes. Second, we show that the variance (sort of “energy”) of the
parameters in the infinitely wide neural-network is conserved during the
learning, and thus it gives a conserved quantity in learning.

Keywords: Wide neural-networks - Cumulative sum of parameters -
Energy conservation

1 Introduction

In recent years, great developments have been made in understanding the mech-
anisms of training of a neural networks when the width of the network is large.
The first step was given in Neal [7], where it was shown that for any NTK-
parametrized NN, the output before training converges to a Gaussian process
on the space of inputs as the width increases. This means that even in the case of
a neural network with nonlinear transformations, Bayesian regression with this
Gaussian process as its prior distribution is tractable when we take the limit
of width to infinity (Williams [12] and Goldberg et al. [2]). This idea has been
extended to deep neural-networks by Lee et al. [5].

The Bayesian regression and training by gradient method have been linked
by Jacot et al. ([4]). They found that gradient method in a NTK-parametrized
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NN with the large width is equivalent to kernel learning with the neural tangent
kernel (NTK), and found a connection between the kernel and the maximum-a-
posteriori estimator in Bayesian inference. They and Lee et al. ([6]) also showed
that as the NTK-parametrized NN becomes wider, the model becomes linearized
along the gradient descent or flow as the training, and the parameters become
harder to be changed. This “lazy” regime appears, as shown in Chizat et al. [1],
not only in over-parametrized neural-networks, but also in more abstract settings
depending on the choice of scaling and initialization.

Due to the universal nature discovered in [4] and [6], we have not been able to
distinguish whether they are pre- or post-neuronal if we focus on the behavior of
the parameters. In this paper, we show that, during the learning, the behaviors
of the cumulative sums of parameters over all neurons are different from each
other according to their types of parameters. This implies that it is possible to
distinguish whether the parameters are pre- or post-neuronal. When the width
of the network tends to infinity, we also show that the “energy” of the cumulative
sum is conserved (Theorem 2).

2 Related Works

Integral Representation of Mean-Field Parametrized NN. A mean-field
parametrized NN forms like a Riemann sum, and thus has an integral representa-
tion when the width tends to infinity. In Sonoda-Murata [8] and Murata [11], the
relationship between the distribution of parameters and the output is described
via ridgelet transformation and their reconstruction theorem. On the other hand,
in the case of our NTK-parametrized NN, the output before training is given by
a stochastic integral when the network is infinitely wide. It would be of indepen-
dent interest to investigate the reconstruction theorem in this situation.

Dynamics of Infinitely Wide Mean-Field Parametrized NIN. For train-
ing of mean-field parametrized NN, another method for training is the stochas-
tic gradient descent. It is described as a stochastic differential equation in the
parameter space, in particular, it gives a gradient Langevin dynamics. When the
width of the network is infinite, the parameter space is infinite-dimensional. Then
the corresponding dynamics is described by an infinite-dimensional Langevin
dynamics in a reproducing kernel Hilbert space, which appears as a collection of
features. This infinite-dimensional model contains all models of finite width, and
thus allows us to analyze them universally among all models with finite width.
The convergence of this learning and the generalization error are discussed in
Suzuki [9] and Suzuki-Akiyama [10].

3 Our Contribution

We consider the following NTK-parametrized NN of the width m:

f(x;0) = % g; bjo(a;x + ag ;).
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Here, the input x € R is one-dimensional and the activation function ¢ : R — R
is assumed to be non-negative and Lipschitz continuous. We denote the coordi-
nates of the parameter 6 = (ag, a, b) as follows.

— Pre-neuronal thresholds: ag = (@01, @02, .., a0,m) € R™,
— Pre-neuronal weights: a = (a1, as,...,a,) € R™,
— Post-neuronal weights: b = (b1, b, ..., b,) € R™.

Given a training data {(x;,y;)}7, we put 4;(0) := f(x;;60) and define a loss
function by

L) = D 5:0) — i)

The solution to the associated gradient flow equation $8(t) = —1(VeL)(0(t))
is denoted by 0(t) = (ao(t).a(t).b(t)) = ({ao s ()72 {ay(0)} 72y (b, (D)),
where we set its initialization by 6(0) = (a(0),a(0),b(0)) ~ N(O0, I3,,). Here,
I3, is the identity matrix of order 3m.

It is known that when the width m of the network is sufficiently large and
training is performed, the optimal parameters are obtained as values close to the
initial ones (Jacot et al. [4]). In this paper, we further investigate behaviors of the
parameters. Specifically, we consider cumulative sums of the parameters over all
neurons at each epoch, which are normalized by a scale depending on the width
m. We focus on what arises when we take the normalized cumulative sums along
the gradient flow, even the values of parameters are hardly varied. It is enough to
consider only two cumulative sums ZT:l a;(0) and Z;nzl b;(0) associated with
pre- and post-neuronal weights respectively since thresholds have the same role
as pre-neuronal weights by considering {(z;,1)}?_, as a two-dimensional input.

To compare their behaviors among different widths during the training, we
have to consider which scale is appropriate to normalize the cumulative sums of
the parameters. The initialization gives us a hint. At the initialization, variances
of the cumulative sums are given by 377" Var(a;(0)) = Y272, Var(b;(0)) = m.
Thus it would be natural to normalize 77" | a;(0) and 7", b;(0) by scaling of
/m. Moreover, we embed them into the space of continuous functions on the
interval [0,1] as follows. On the m-equidistant partition {s; := £} of the

. m k m k
interval, we set Agk )(t) = ﬁ > j—1 a;(t) and ng )(t) = \/% > j=1 bj(t) and
then we extend them onto subintervals [sx_1, sx] by linear interpolations:

AT () — ASY, (1)

AU(t) = (s = sw-1) + AGY, (1),
Sk T Skl if <s<
B(m)( ) B(m) ( ) I Sp—1 58 = Sk
Bgm)(t) — Sk Sk—1 (S — S 1) 4 Bg:n)l( )
Sk — Sk-1

For each width m and time ¢ of the gradient ﬂow these embedded func-
tions A (t) = {A(m (t)}o<s<1 and B™(t) = {B ( )}o<s<1 are random
continuous-functions on [0, 1], namely, stochastic processes.
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With this embedding, it will be necessary that they do not diverge when
m — oo in order to compare them appropriately among various widths. At
the initialization, by the so-called Donsker’s invariance principle, which is well
known in probability theory, the stochastic processes {(A™)(0), B (0))}5_,
converge to a two-dimensional Brownian motion. In general, for any time ¢ of
the gradient flow, the following is valid.
Theorem 1. The family {(A™)(t), B"™)(t))}2°_, is tight.

m=1

This implies that a certain subsequence {(A™*) (), BU™)(¢))}22 | converges
almost surely (by replacing the probability space appropriately if necessary). In
what follows, we denote the subsequence again by {(A™)(t), B(™)(t))} for sim-
plicity of notations. The limit (A(t), B(t)) of this subsequence gives a dynamics
on the infinite-dimensional Banach space C([0,1] — R?) and then it would be
another interest to describe the dynamics. In terms of B(t) = {Bs(t) }o<s<1, we
have

m

1 ' (c0)
170 = B i)b; s s)dBs =9,
F@is0) = —= Y oo+ ang)by — [ olasa -+ a0 )dB.(0) =

j=1

in probability as m — oo, and this limit is called a stochastic integral. In the
above, {as}o<s<1 and {ag s Jo<s<1 are mutually independent Gaussian processes
on [0,1] with a zero mean and the covariance function given by Elasa,] =
E[ao,sa0,u] = 1401 (u — s). Here, 140 is the indicator function of the singleton
{0}. These are also independent of B(0). Although it can be smoothly expected
that the dynamics of {(A(t), B(t)) }+>0 is described by the neural tangent kernel,
since C([0,1] — R?) is a non-Hilbert Banach space, it is difficult to employ the
concepts of their gradient and kernel that depend on the inner product structure.

Now, among NTK-parametrized NNs

of various widths, we can compare the 1
dynamics for the cumulative sum at an
“appropriate scale”. Figurel shows out-
puts of neural networks widths of m =
100, 1000, 10000 after training. The train-
ing data are indicated by points, and we
have used gradient descent. The follow-
ing Figs.2, 3, 4 and 5 show the changes
of the parameters and their cumulative
sums during the training. Each line in ' ipus
Figs.2 and 4 represents how the corre-
sponding parameter is varied during the
training.

Fig. 1. Outputs after training
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width=10000
width=1000
—— width=100

0 5000 10000 15000 20000 25000 30000
& Epoch

Fig. 2. Changes of parameters a; dur-
ing the training

—4 width=1000
~— width=100

0 5000 10000 15000 20000 25000 30000
t: Epoch

Fig. 4. Changes of parameters b; dur-
ing the training

m =100, at initialization
—— m =100, at the end
m =1000, at initialization

0.0 0.2 0.4 0.6 0.8 1.0

=

Fig. 3. Cumulative sums of parameters
a; before/after the training

m =100, at initialization
—— m =100, at the end

™ =1000, at initialization
21 —— M =100, at the end

m =10000, at initialization
—— m ~10000, at the end

0.0 0.2 0.4 0.6 0.8 Lo

3=

Fig. 5. Cumulative sums of parameters
b; before/after the training

From the figures, as width increases, the variation of cumulative sum becomes
smaller for parameters a, while we can see it is actually varied for parameters b.
In fact, when ¢ = 0 and m — oo, by the law of large numbers, we have

d

m _ 1 ~
4 amn = -1y Goo)

t=0 i

—%Z_:

0)z; + ag,;(0))x;b;(0)

- —% > (07— ) B0’ (@ (0)zi + a0,1(0)) ] By (0)] = 0.

d
dt

t=0 =1

B = =5 3 (3:(000) -
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As above, we observed numerically that the cumulative sum of the parameters
b is varied along the gradient flow. It can be shown, however, that the following
“energy” is conserved along the gradient flow.

1 m
Theorem 2. We have lim - Z (b;(t) — Eb, (t)])2 =1 forallt > 0.
j=1
Here, E denotes the expectation operator. The same for ag ;(¢) and a;(¢).
Figures6 and 7 below confirm Theorem 2 in the learning shown in Fig. 1.

The expectations have been simulated with using Monte Carlo methods.

14 — m=100 14 — m=100
m =1000 m =1000
—— m =10000 — m=10000

0.0 0.0

m m

Fig. 6. Graph of % S (a;(t)~Ela; (1)))>  Fig. 7. Graph of % S0 (8) — Efby (1))

j=1 Jj=1

4 Conclusion

In this paper, we showed that in a three-layer wide neural-network, the cumu-
lative sum of pre-neuronal parameters is hardly varied along the gradient flow,
while it is varied for post-neuronal parameters. This allowed us to find a critical
difference among the behaviors of the pre- and post-neuronal parameters, this
is a first trial to distinguish them, which has not been so far. Furthermore, we
showed that the energy is conserved along the gradient flow.

Acknowledgments. The authors would like to express their appreciation to Professor
Masaru Tanaka and Professor Jun Fujiki who provided valuable comments and advices.

A Proof of Theorem 1 and Theorem 2

Recall that the activation function o has been assumed to be non-negative and
Lipschitz continuous. Then ¢ is differentiable almost everywhere and the Lips-
chitz constant can be expressed as ||0'||s := esssup |o’|, where ¢’ is the almost-
everywhere-defined derivative of o. We shall put |X| := max;=1 2, ., ||, where
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{z;}1, is the input data. Note that the loss function L(#) = L 3" | (9,(6) —yi)2
depends on the width m as does so for the outputs §;(0) = \/% >y olajzi +

Cl07j)bj.

A.1 Equipments About Gradient Flow %H(t) = —7(V9L)(0(t))

Lemma 1. Along the gradient flow, we have L(6(t)) < L(6(0)) fort > 0.

In the coordinate 6(t) = (ao(t),a(t),b(t)) = ({ao;(t)}jr, {a;(H)}jL,
{bj(t)}72;), the gradient flow d@() = —32(VyL)(6(t)) can be written as
follows: for j =1,2,...,m and t € R,

d 1~ . bi(t)
&ao,y’(t) = ; (9:(0(t)) — i) o' (a;(t)zi + ao,;(t)) \J/m,
d 1. b;(t)
&aj(t) = ; (9:(0(t)) — i) o' (a; ()i + ag (1)) i \7/7%, (1)
de ™’ n — J 7 Vm
Proposition 1. Form=1,2,3,..., j=1,2,...,m and t > 0, we have
a(0)t 7”0’H°°%‘ U L)

i) < (Fj<o> + 20 L<e<o>>) e ,

where Fy(t) = |ao ;(6)] + ay(5)] + [b; (1)

Proof. We begin with estimating a;(t). Let a;(s) := £-a;(s). By fundamental
theorem of calculus, the triangle inequality and (1), we have

1 22 005 ) (oo + ) 2 s

< Ja; (0 |+/ ”U/”°°|X|< Z| )|b()ds.

Since it holds that

L3 13:(605)) - il < VW) < VIGO)) )

a5 (8)] < | (0) +/O

by virtue of Jensen’s inequality and Lemma 1, we obtain

|a; ()] < la;(0)] + M\';%'X\/L(G(O))/Ot 1b;(s)|ds. (3)
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Similarly, we have

lao,; ()] < lao,; (0 ”UIHOOV /|b )|ds. (4)

For b;(t), by estimating in a manner similar to |a;(t)|, we get

1b;(®)] < b;(0)] +/O %Z 19:(0(s)) — wil - o (az(s)as + aO,j(S))%ds'

By using a estimate: o (a;xz; + ao;) < 0(0) + ||0”[|oc (|X||a;| + |ao,;|) and (2),

o/ ||eot(|X t
1b;(8)] < 16;(0)] + % L(o0)) + 11 f/(‘m‘“)\/w(o»fo (Jas ()] + lao.; (5)]) ds.

()
By putting estimates (3), (4) and (5) together, we have
o(0)t lo"lloo (1X] + 1) '
F;(t) < F;(0) + —=+/L(0(0)) + ———=——=/L(0(0)) | F;(s)ds
! ! vm vm 0
Now, by applying Gronwall’s inequality, we reach the conclusion.
Proposition 2. For every j =1,2,...,m, we have
t
0 [ Fwde <60,
0
. ¢ . L(6(0 ,
(1) [ e {0l by w0l Iy ) e < /22 G 1]+ 15 0) + (001},
where Fy(u) = Jao ()| + |a; (u)] + [b; (w)| and
2]lo" [l (1X] +1)
o(0) —— =/ LOO)t
G;(t) = <F-(0)+>t~e vim . (6)
! ’ llo"lloe (1] + 1)

Note that each G,(t) depends on the width m of the network.

Proof. (i) Put ¢; = 1Zl=UXHD  /T{0)) and ¢; = 22 /L(0(0)). Then by

Proposition 1, we have

it _q c
2 .
t+ —t-et
C1 C1

/ Fi(u)du < / (F1(0) + cou) e**du < Fi(0) o
0 0

Since it holds that e%l < e** for x > 0, we obtain

t
/ Fi(w)du < F(0)2 -t + 2
0

C1

et < (Fl(O) + C2> t-e2at = Gj(t).

C1
(ii) We show only for fo b, (u)|du. The same is for the other parameters. By
(1) and (2), we get fo b (u)|du < 4/ L(g 0) fo (a;(u)z; + ag,;(u))du. Then by

<
using that o (a;(u)z; +ao,J( ) < HU’Hoo |X[ + 1)Fj(u) + o(0) and by (i), w
have the conclusion.
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Proposition 3. Forallp > 0, we have the following: limsup,, .. E[(v/L(6(0)))"] <
00, limsup,,_, ., E[G;()P] < co and limsup,,_, ., E[(\/L(G(O)) G]-(t))p] < o0.

Proof. The last estimate follows from the first two estimates and Cauchy-
Schwarz’ inequality. Since the first estimate is obvious, we show only the second.
For this, it is sufficient to show that
P
——=1/ L(6(0))
lim sup E[e V™ ] < o0. (7)
m— 00

and b;(0) = b;. First, we

In the following, we write ao_;(0) = ao ;, a;(0) = q;
gl < S 15(60)] + =il

note that /L(6(0)) < ﬁz;l |9:(6(0)) —

Then by using Holder’s inequality, we get

/ p\f
E[e\F <e\/%2:|y1 (HE |y1(0(0 )1/n
v P n M
T Cmax Bevin ) <o o 2 > E v OO

Since we have (9;(6(0)) | ap, a ) ~N(0,L Yoy olajzi + ao0,j)?),

2
w

1 m 1/2
o [ y,(9(0))| \/7/00 7 - z:: (ajzs + ao,j)z) w} T2 dw

2 2 m

p\/ﬁ(l - 2\ 1/2 w p’n 1 2

2 —_— | — o(ajx; + ao,j ) wy —— _— o(ajx; + ao,j;

< 7/ME[e\/m m; (@@ 0.4) ]e 2dw:2E[e2'mm].71 (@@ DJ)].
T J—oco s s

Furthermore by Jensen’s 1nequahty and independence,
Pl O

ZU(GgTa +a0,1) 72‘7(“1"@"‘“0‘]) }1/771

2
oo <efin s s o)

=E |e

We can show that o(ai1m; + ag1)? < 16{||0"|lo(|X]| + 1)}*{(a0,1)? + (a1)?} +
(0(0))2. Hence

—o(a1zi + a0,1)2

E [eQm

p’n 2 8p?nllo’ |5 (1X] + 1)° 2 2
5 (0(0))". 2 (a0,1)” + (a1)
] < e2m E [e m (a0 )} .

The right-hand-side is finite if 8p2n‘|gll%(|x|+l)2 — % < 0, that is, m >

16p%n||o’||%,(|X] + 1)%, and then it is decreasing with respect to m. By putting
e}

all together, (7) is proved.

A.2 Proof of Theorem 1

It is enough to prove that both of {A™)(£)}2°_, and {B™)(t)}°_, are tight.
For this, from [3, Chapter I, Section 4, Theorem 4.3], it is sufficient to show that
(i) sup,, E[|Agm) )]+ |B((Jm) (t)]] < oo and (i) there exist v, > 0 such that

(m) gy Am) oy 1y (m) ey _ g(m) gyy
. sup (EUAS (1) — A" @P] | BB () - B <t>|]><m

m s,uel0,1]: |8 - u|1+a IS - u|1+a
s#u
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(i) is clear since A{™ (t) = B{™(t) = 0. Thus we show only (ii). We will
only show the one for A™)(t). Since A(™)(t) is a piecewise linear interpolation
of values on {s;, = %}L":O, it suffices to show that for some ~,a > 0, it holds
that

B[4S (1) - A (1))

sup sup < 00. 8
m 1<k,j<m: sk — 8|t (®)
k]

Let k,j € {1,2,...,m} be arbitrary. Without loss of generality, we assume
that 7 < k. Then we have

4G 0 - AL 0] < —| S (o)~ Blar(0)) |+ =] S Bla |

I=j+1 I=j+1
(9)

We shall make estimates for two terms on the right-hand-side.

Lemma 2. With G,(t) defined in (6), we have

k k el X] F
‘ > (a®) - E[al(t)])‘ < ‘ > al(0)| + % > (VL(6(0) Gi(t) + E[{/L(6(0)) G1(1)])-
I=j+1 I=j+1 m I=j+1

Proof. Since E[a;(0)] = 0, we have a;(t) —E[a;(t)] = fot ay(u)du— fo (u)]du+
a;(0). By summing up thisover {=75+1,7+2,...,k and by using ( ) and (2),

| Z () Bl o) < | Z ]+ = 0y 5 [ i

l=j+1
Ha Hoo\?fl
L(6(0)) Z \bl(u |da].
l=j+1

Finally, by applying Proposition 2, we get the conclusion.

Lemma 3. We have‘ Z Ela ]’ ol |21 ||°°|X‘ E[VvL Z Gi(t

I=j+1 I=j+1
Proof. By (1), Ela(®)] = [E330 (:(0@) - w)o(m(w +
ag,(u))z; b\l/(%)]du. By taking the sum over | = j+ 1,7 +2,...,k, we have
> )| < =g rgmy 3 / ().
l=j+1 - \/ﬁ l=j+1

Then by using Proposition 2, we reach the conclusion.

Turning back to Eq. (9), we apply Lemma 2 and Lemma 3 to get

1< o’ [lo|¥] &
AGD@) = AL 0] < —=| D2 @(O)] + ST (28 (1) + E[H),

7 m
I=j+1 I=j+1

3
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where H;(t) = \/L(0(0)) G,(t). By an easy estimate: (z + y)* < 24(2* + y?),

(AG >7Ag’;><t>)4
2 [ § s e (N (LS '
< 2 o) v (52) (5 X emo+rme) | -
™ \iEi " T

Therefore E[(AS" (1) — AT (1))"] = 251 + 240’ ||4 | X|* (s — s;)*11. Here,

k 1 k

1=6( Y )] H:E(;;;Xj@mw+Ewmmfy

I=j+1 I=j+1

First, we shall focus on II. By Jensen’s inequality,

< ﬁ Z E[(2H,(t) + E[H, (1)) "] = B[(2H:1(t) + B[H1 (1)])"].
I=j+1

On the other hand, for I, since a1(0),a2(0),...,a,(0) are independent and
identically distributed, and each of them is distributed in N(0,1), we have
I =3(k — j)?. Hence

E[(AIM (1) — AT ()]
< 2% 3(sp — 55)2 + 210 1% | X[ (51, — ;) E[(2H (1) + E[H1 (1)) ).

Finally, by noting Proposition 3, we see that (8) holds for v =4 and a = 1.

A.3 Proof of Theorem 2

By the law of large numbers, we see that - >, (b; (O))2 — E[(bj(O))Q] =1as
m — oo. Then it suffices to show that

1 1
\ag S O DRI
Since b, () [ (1)) = b;(0) + fo (bj(w) [bj(u)})du we have (b;(t) —
E[b;(t)])*— (b = (fy (bj(w)=E[b;(u)])d ) +2b;(0) fy (b, [b; (w)])du.

Thus we have

L3 () - B0~ =3 (5(0)]

Jj=1 Jj=

—
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By taking the expectation, we get

‘—ib(t — E[b;(1)]) *%i b(O)‘
j=1

;ij{ ([ G+ s @nan) T+ 2800 [0 +E[|bj(u)n)du}}.

—

E

<.
-

For the term fo |b )|du appeared above, we know by Proposition 2 that

t L(6(0)) .., . M;(@)
/O 165 (w)ldu < [ == {llo"lloo (1¥] + 1)G; (1) + o (0)t} = VR

where note that M;(t) depends on the width m. Thus, b +
J 0
E[|bj(u)\])du < W By Proposition 3, we have hmsupE[(Ml( )+

E[Ml(t)])2} < oo and h;nj:,lopEUbl(O)‘(Ml(t) + E[M;(t)])] < oc. Hence as

m — 00,

<Ly {E[(Mju) +EM; )], Ellbi(O)](M; (1) + EM; (1))] }
m m vm
_EB[Mn@0) +BPAW)’] B0 OI(40 +ERAO)]
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