
Generating Math Word Problems
from Equations with Topic Consistency

Maintaining and Commonsense
Enforcement

Tianyang Cao1,2, Shuang Zeng1,2, Songge Zhao1, Mairgup Mansur3,
and Baobao Chang1,2(B)

1 Key Laboratory of Computational Linguistics, Peking University, MOE,
Beijing, China

{ctymy,zengs,zhaosongge}@pku.edu.cn
2 School of Software and Microelectronics, Peking University, Beijing, China

chbb@pku.edu.cn
3 Sogou Technology Inc., Beijing, China

maerhufu@sogou-inc.com

Abstract. Data-to-text generation task aims at generating text from
structured data. In this work, we focus on a relatively new and challeng-
ing equation-to-text generation task – generating math word problems
from equations and propose a novel equation-to-problem text genera-
tion model. Our model first utilizes a template-aware equation encoder
and a Variational AutoEncoder (VAE) model to bridge the gap between
abstract math tokens and text. We then introduce a topic selector and
a topic controller to prevent topic drifting problems. To avoid the com-
monsense violation issues, we design a pre-training stage together with a
commonsense enforcement mechanism. We construct a dataset to eval-
uate our model through both automatic metrics and human evalua-
tion. Experiments show that our model significantly outperforms baseline
models. Further analysis shows our model is effective in tackling topic
drifting and commonsense violation problems.

Keywords: Math word problem generation · Topic controlling ·
Commonsense enforcement

1 Introduction

Text generation, aiming to automatically generate fluent, readable and faithful
natural language text from different types of input, has become an increasingly
popular topic in NLP community.

Many recent text generation approaches [3,6,7,10,13,14] focus on data-to-
text generation task, which generates textual output from structured data such
as tables of records or knowledge graphs (KGs). However in this paper, we focus
on a relatively new type of data-to-text generation task: generating math word
c© Springer Nature Switzerland AG 2021
I. Farkaš et al. (Eds.): ICANN 2021, LNCS 12893, pp. 66–79, 2021.
https://doi.org/10.1007/978-3-030-86365-4_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86365-4_6&domain=pdf
https://doi.org/10.1007/978-3-030-86365-4_6

Generating Math Word Problems 67

Fig. 1. Two examples selected from the
MWP generation dataset.

Fig. 2. Three bad cases generated by
baseline (Seq2Seq) model.

problems (MWP) from equations [15], which seems has not been fully studied by
NLP community. Successful math word problems generation has the potential to
automate the writing of mathematics questions. Thus it can alleviate the burden
of school teachers and further help improve the teaching efficiency (Fig. 1).

Our target is to design a model to generate math problem text from the
given equations and the generated math problem could be solved by the equa-
tions. Different from the traditional text generation task, there are three major
challenges in effective MWP generation from equations:

(1) Encoding math equations is much more difficult than encoding plain text,
tables or KGs. A math equation consists of different type of tokens, such
as number, variable and operator. They express different meanings and are
very abstract for generating text. So a model should use different methods to
encode them and need to bridge the gap between the abstract math tokens
and natural language text.

(2) Recent language modeling advancements indeed make generated text more
fluent, but still lacking of coherence, especially in the aspect of topic drift-
ing, has always been a non-trivial problem that traditional text generation
models usually suffer from [4]. And we find this problem is even worse in
MWP generation since target math word problems in MWP dataset covers
a broad variety of topics. Figure 2 shows three bad cases generated by a
Seq2Seq model. The first case reveals the topic drifting problem where the
topic of the first generated sentence is the price of goods but the topic of
the second sentence is changed to substance mixture. So how to maintain the
topic consistency in generated text to avoid topic drifting is very challenging.
(3) The task requires generated problem text to be in line with the common-
sense which is very hard for existing architecture. As shown in the last two
cases in Fig. 2, we cannot say “hypotenuse of a square” or “dimension of
a number”, because they aren’t in accordance with the commonsense. So
we should design an effective architecture to avoid commonsense violation
problem.

To tackle these challenges, we propose a novel architecture for generating
MWP from equations. First, to effectively encode different kinds of math tokens
in the given equations, we propose a template-aware equation encoder that con-
siders both template information and equation information. We further utilize

68 T. Cao et al.

a problem-aware Variational AutoEncoder (VAE) with a Kullback-Leibler dis-
tance loss to bridge the gap between abstract math tokens and problem text.
Then we propose a topic selection mechanism that selects a fixed topic for each
generated text and a topic controlling mechanism that controls the topic at
every decoding step to avoid topic drifting problem. To cope with the possible
commonsense violation issue of generated text, we design a pre-training stage as
well as a commonsense enforcement module to encourage our model to generate
math problem text that is in line with the commonsense.

Our contributions can be summarized as follows:

– We propose an effective way of encoding different math tokens and a problem-
aware VAE to bridge the gap between abstract math tokens and generated
text.

– We utilize a topic selection and a topic controlling mechanism, so topic con-
sistency of generated math problem text could be maintained.

– We design a pre-training stage and a commonsense enforcement module to
alleviate commonsense violation.

In order to verify the effectiveness of our model, we construct a dataset by
obtaining math word problems and their corresponding equations from Yahoo! 1.
Experimental results on this dataset show our model significantly outperforms
previous models. Further analysis and human evaluation show our model is effec-
tive in tackling the three challenges mentioned before, especially the topic drift-
ing and commonsense violation problems.

2 Task Definition

The input of MWP generation task is a set of equations
{
E1, E2, ..., E|E|

}
, each

equation can be denoted as a sequence of math tokens: Ek = x1x2...x|Ek|, where
|Ek| is the length of k-th equation measured by the number of math tokens.
Each math token belongs to one of the following three types: math operator
(e.g., +,−, ∗,÷,=, ...), number (e.g., 0.2, 1, 30, ...), variable (e.g., x, y, z, ...). The
output of the task is the MWP text: y = y1y2...yL, which could be solved by the
input equations. L is the length of problem text. Our model aims to estimate the
following conditional probability depending on equations and previously gener-
ated words y<t:

P (y|x) =
L∏

t=1

P (yt|y<t, E1, E2, ...) (1)

The difficulty of the input equations in this task is not beyond mid-
dle school level, only involving algebra operation in elementary mathematics:
“+,−, ∗, /,∧, ...”.

1 https://github.com/caotianyang/math2textcs1.

https://github.com/caotianyang/math2textcs1

Generating Math Word Problems 69

3 Model

The overall architecture of our model is shown in Fig. 3. We start with a vari-
ational encoder-decoder model as our base model which consists of a template-
aware equation encoder and a math word problem generation decoder. Since the
math tokens in the original input equation are very abstract and lack enough
context information for generating text, we introduce a problem-aware Varia-
tional AutoEncoder to encourage the equation encoder to produce text-sensitive
representation that is more suitable for decoding problem text.

To tackle the problem of topic drifting, we introduce a topic selector with a
topic controller. The topic selector chooses a specific topic based on the latent
representation of equations. The dynamic topic memory is used to control the
decoding process to favor the topic-consistent text. To alleviate the commonsense
violation, we introduce a pre-training step to produce commonsense embed-
ding for words and use a commonsense enforcement module to aggregate com-
monsense information which will influence the following choice at each step of
decoding.

Fig. 3. The overview of our proposed model. We omit the pretraining step for sim-
plicity. In our variational autoencoder enhanced model, the problem encoder serves as
prior network and the equation encoder serves as posterior network. Topic type pre-
dicted by the hidden equation representation z is used to select the corresponding row
in topic memory. Next, the MWP decoder resorts to both the dynamic topic memory
and the Commonsense KG reasoning to generate MWP text.

3.1 Variational Encoder-Decoder Module

As we mentioned before, we choose the variational encoder-decoder model as
the basic model to generate the MWP text from equations. The backbone of
our model consists of a template-aware equation encoder and a problem text
decoder.

Template-Aware Equation Encoder: The input to our model is a sequence
of math tokens x1x2...xn, our input encoder encodes each token to one fixed

70 T. Cao et al.

hidden vector. Math equations encoding is different from encoding other natural
languages, we should distinguish numbers, variables and operations to assign
them different encoding.

We exploit BiGRU as the basic module, it consumes token embedding
of the equation sequences and the hidden states are computed by:

←−
h i =

GRU(emb(xi),
←−
h i−1),

−→
h i = GRU(emb(xi),

−→
h i−1). emb(xi) = Etoken(xi) +

Etype(xi) is the sum of corresponding token embedding and type embedding.
Combining forward and backward state yields hi =

←−
h i +

−→
h i.

To improve the generalization capacity of the equation encoder, we further
incorporate a soft gate controlled by equation template. The equation template
is constructed by replacing all numbers in the equation to a fixed mask [M].
We separately feed the original sequence and the template sequence into two
different GRUs, then encoded hidden states are denoted as {ha,1,ha,2, ...,ha,n}
and {hb,1,hb,2, ...,hb,n}, respectively. Here we utilize Gated Linear Unit (GLU)
[5] to compute final encoded hidden state:

hk = MLP1(ha,k) � σ(MLP2(hb,k)) 1 ≤ k ≤ n (2)

where σ(·) is a sigmoid function and MLP (·) is a linear layer. � indicates
element-wise multiplication. hb,k can be understood as a weight matrix to select
salient information in ha,k. We perform linear transformation to hn and approx-
imate mean and variance of z’s posterior distribution by assuming the hidden
equation representation z follows multivariate Gaussian distribution.

[μ,σ] = MLP (hn) z|x ∼ N (μ,σ2I) (3)

I is an identity matrix and z can then be sampled by using reparameterization
trick: z = μ + r � σ, where r is a standard Gaussian distribution variable.

Problem Decoder: For generating problem text, we use GRU based decoder.
We first initialize the decoder state by s0 = MLP ([hn;z;hn � z]). We denote
the hidden state of the decoder at tth step as st and context vector obtained
by attentions over the input equation as ct. Assume the decoder generates word
wt−1 in step t − 1, decoding process can be formulated by:

s′
t = f(st) st = GRU(st−1, g(ewt−1)) (4)

pD(yt|y<t,x, z, p̂; θD) = softmax(W otanh(W vs [s′
t; ct])) (5)

where W vs ∈ R
d×d, W o ∈ R

d×|V |. |V |, p̂ and d is the vocabulary size, topic
category and embedding size, respectively. f(·) and g(·) is designed for lever-
aging topic restriction and commonsense restriction, respectively, which will be
explained later. We further adopt copy mechanism [11] to copy numbers from
equations.

3.2 Enhancing Equation Encoder by Variational Autoencoder

Hidden equation representation z derived by (3) fails to capture interaction
between equations and MWP text. We thus introduce a problem-aware VAE

Generating Math Word Problems 71

to further restrict z into similar vector space of MWP text to obtain problem
text aware representation. In this paper, the VAE is comprised of the problem
encoder and the problem decoder. As the problem text is known when training,
posterior distribution of z generated by the equation encoder is conditioned on
prior distribution generated by the problem encoder.

The problem encoder summarizes the MWP text to a vector q and works
as a prior network. It takes the corrupted version of problem text y as input
to guarantee robustness when testing, i.e., we randomly mask and delete some
words in the original MWP text. We implement the problem encoder module
based on convolutional neural network (CNN) with F different convolutional
kernels to extract multi-scale features:

hq
k = MaxPool(fconv(

[
yi;yi+1; ...;yi+lk−1

]
)) (6)

q = tanh(W q [hq
1;h

q
2; ...;h

q
F]) (7)

where W k ∈ R
dlk is the kth convolutional kernel and parameter matrix W q ∈

R
Fd×d. Similar to (3), we perform linear transformation to q and obtain mean

and variance of z’s prior distribution: [μ′,σ′] = MLP (q) z′|y ∼ N (μ′,σ′2I).
We denote the problem decoder parameterized by θD as pD(y|x, z, p̂; θD),

during training, z is obtained by prior network. We aim to minimize Kullback-
Leibler distance (KL loss) between prior distribution and posterior distribution.
Loss function of our Variational Encoder-Decoder framework can then be com-
puted by combining KL loss and generator decoding loss:

LV AE = −KL(p(z|y)||p(z|x))
+ Ez∼N (μ′,σ ′2I)pD(y|x, z, p̂; θD) (8)

Besides, we use KL cost annealing to avoid KL-vanishing phenomenon [2]. During
inference, z is approximated by posterior network.

3.3 Topic Selection and Controlling

Generally speaking, given an input equation, for example, 0.5 ∗ x + 0.3 ∗ y = 10,
our model should first select a certain type of topic and then incorporate related
topic words under this type into the problem decoder.

Topic Selection: To leverage topic background to the hidden equation repre-
sentation z, we apply an unsupervised document topic model– Latent Dirichlet
Allocation (LDA) [1] to assign a topic type for each math problem text. We
treat each math question as a document, each document is associated with a
topic distribution over all topics, meanwhile each topic contains several words
with the highest probability in this topic. We then estimate the problem topic
type through z:

p̂ = arg max softmax(W zz + bz) (9)

Topic Controling: Topic controling renders our generator to interact with topic
word distribution. With the help of LDA, a topic memory C ∈ R

|P |×K×d is

72 T. Cao et al.

constructed for storing pretrained embedding of topic keywords, where |P | is
the total topic number. K means each row of C contains information of top-K
words of one topic and d is the vector dimension. With the most probably topic
type p̂ predicted in (9), the concatenation of st and ct is used as a query to
the p̂th row of topic memory and update st with the weighted sum of topic
embedding in C:

score(t, j) =
exp([st; ct] W tC p̂,j)

∑K
j=1 exp([st; ct] W tC p̂,j)

1 ≤ j ≤ K (10)

and f(st) in (4) is realized by:

f(st) = st + V

K∑

j=1

score(t, j)C p̂,j (11)

where W t ∈ R
2d×d and V ∈ R

d×d serves for linear projection. Futhermore,
memory contexts are initialized by the pretrained word representation, but dur-
ing the generating process, it should be dynamicly updated with the produced
sequence to keep recording new information, thus the topic memory can provide
better guidance for the generator. We achieve this goal by computing a weight
vector with a gated mechanism to weight in what degree the topic memory
should be updated, then we obtain candidate state based on s′

t and C p̂,j , where
W u,W c ∈ R

d×d:

u = σ(W u [s′
t;C p̂,j]) (12)

C̃ p̂,j = tanh(W c [s′
t;C p̂,j]) (13)

C p̂,j = u ⊗ C̃ p̂,j + (1 − u) ⊗ C p̂,j (14)

3.4 Commonsense Enforcement

We argue it’s beneficial to make our network leverage context-related concepts.
We thus implement commonsense enforcement in two aspects: word knowledge
pretraining and commonsense aware generator.

Word Embedding Pretraining For Commonsense Enforcement: We
directly enrich information of our generator by pretraining word-level represen-
tation in an external commonesense KB. Note that word embedding pretraining
is an off line step and is based on Graph Attention Network (GAT) [12]. For
detail, see the Appendix.

Commonsense Aware Generator: In decoding phase, we merge neighbour
nodes information in commonsense KB of generated words in the previous step
to inject commonsense knowledge into our generator. For example, if “original
cost” has been generated, we hope next sequence is “of the stock”, other than “of
the volume”, for stock has the property “cost”. Assume the decoder generates
word wt−1 in step t − 1, we extract a sub-graph within two-hop paths starting

Generating Math Word Problems 73

Fig. 4. Illustration of searching adjacent nodes. For word “triangle”, first-order neigh-
bors in knowledge graph are colored in blue while second-order neighbors are colored
in orange. (Color figure online)

from wt−1 by Breadth First Search (BFS), as is shown in Fig. 4. Let eij denote
the path representation from node i to node j if i and j are directly connected:

eij = φ(W g [ei;ej]) (15)

where W g ∈ R
2d×d. If i and j are connected via intermediate node k, we aggre-

gate the shortest path representation from i to j to obtain eij :

eij = αφ(W g [ei;ej]) + (1 − α)σ(eik ⊗ (Uekj)) (16)

where U ∈ R
d×d, φ(·) is a nonlinear function, in this paper we use tanh(·).

σ(·) is Sigmoid function. α ∈ [0, 1] is a scalar to control the contribution of
direct and indirect information. Denote first order neighbour set and second
order neighbour set of wt−1 as N1(wt−1) and N2(wt−1), respectively. We use an
attention mechanism to tend to all possible paths, i.e., we calculate the aggregate
summary of ewt−1,j when j goes through N1(wt−1) ∪ N2(wt−1):

βt−1,j ∝ exp(ewt−1W
bewt−1,j) (17)

gt−1 =
∑

j∈N1(wt−1)∪N2(wt−1)

βt−1,jewt−1,j (18)

Followed by (18), to better reflect the effect of concept knowledge to word choice,
we combine ewt−1 with gt−1 to realize g(ewt−1) in (4):

g(ewt−1) = GRU(ewt−1 ,Hgt−1) (19)

3.5 Training Objective

We aggregate 1): VAE loss mentioned in (8) 2) auxiliary topic prediction loss
Ltopic = Ez∼N (μ′,σ ′2I)p(p̂|z,x) to obtain total loss:

Ltotal = LV AE + μLtopic (20)

where μ is a hyperparameter.

74 T. Cao et al.

4 Experiments

4.1 Datasets

Dolphin-18K [16] is the largest MWP dataset with various types of MWP text,
while only a part of it (3154) are released. We then reuse the python script
provided by [16] to crawl and collect data from Yahoo, which extends Dolphin-
18K to 9643 samples in total. Statistic information of our data is listed in Table 3.
We conduct some data preprocessing by deleting those equation-problem text
pairs whose problem text length is longer than 45 tokens, besides, we replace
those words appearing less than 2 times to 〈UNK〉.

4.2 Motivation of Creating New Dataset

MWP solving datasets currently used include Alg514 [18], Dolphin1878 [19],
DRAW-1K [20], Dolphin18K [16]. Table 3 gives the statistic of these datasets.
Alg514, Dolphin1878, DRAW-1K are all public available, while neural generation
models for generative tasks are usually data-hungry thus equation-MWP pairs
in those datasets are insufficient. Though Dolphin18K is a large scale dataset,
only a part of it (3154) are released. Moreover, existing datasets only include a
certain type of MWP text, e.g., MWP text for linear equations, which restricts
their practical application. We then reuse the python script provided by [16] and
acquire 14943 equation-MWP text pairs in total from Yahoo !. Generally, the
public available datasets can be treated as the subset of our dataset. Next, we
conduct data preprocess as follows, which is beneficial to train the generation
model:

– We normalize the equations by replacing all the equation variables in each
sample to x, y, z, ... in order, e.g., u + v + r = 100, u − r = 10 is replaced to
x + y + z = 100, x − z = 10.

– We manually correct the wrong spelling words in MWP text (Table 1).

Table 1. Statistics of several existing MWP solving datasets. Avg EL, Avg Ops refer
to average equation length and average numbers of operators in equations, respectively.
∗ indicates only 3154 equation-MWP pairs of Dolphin18K are available.

Dataset Size Problem type Avg EL Avg Ops

Alg514 514 Algebra, linear 9.67 5.69

Dolphin1878 1878 Number word problems 8.18 4.97

DRAW-1K 1000 Algebra, linear, one-variable 9.99 5.85

Dolphin18K 18460∗ Algebra, linear, multi-variable 9.19 4.96

Our Dataset 14943 Algebra, linear/nonlinear, multi-variable 16.64 6.41

Generating Math Word Problems 75

4.3 Model Settings

The batch size for training is 32. We employ ConceptNet52 to construct KB, it
has 34 types of relationship in total. 2 layer graph attention network is imple-
mented for word knowledge pretraining step. The embedding size and all hidden
state size of GRU are set to 256. In problem encoder three different convolutional
kernels are used and their kernel sizes are 2,3,4, respectively. To be fair, we use
1-layer GRU for both our model and baseline. For LDA we divide all samples
into 9 topic types and their amount and representative words are reported in
Table 2. Each problem is associated with a topic distribution over 9 topics. The
topic with the highest probability is adopted as the golden category. Meanwhile
each topic contains several words and we choose top 30 words to construct topic
memory for each topic. μ in (20) is set to 0.5. Weight coefficient in (16) is set
to α = 0.7. We use Adam optimizer [17] to train our model, the learning rate is
set to 0.0005.

Table 2. Topic classes statistics and representative words sampled from each topic

Topic type Train Representative words

1 810 Do, people, divided, men, mean...

2 758 Length, width, rectangle, area, inches...

3 1573 Probability, quarter, dimes, coins, marbles...

4 557 Sum, difference, larger, smaller, less...

5 1087 Solution, gallon, mixture, grams, water...

6 633 Interest, year, invested, dollars, rate...

7 663 Angles, degrees, percent, digit, increased...

8 879 Sold, ticket, prices, children, adult...

9 754 Speed, minutes, travels, took, plane...

4.4 Automatic Evaluation

We report automatic evaluation in five aspects: BLEU (up to bigrams) [9],
ROUGE-L [8], Dist-1, Dist-2, which indicates the proportion of different uni-
grams (bigrams) in all unigrams (bigrams), Number recall, which is used to
measure how many numbers in problem text are correctly copied. Results are
reported in Table 4. In Table 4 we also present results of ablation study. We can
observe 1) our model yields higher performance in all metrics compared with
baselines, especially in Dist-1 and Dist-2, which proves our model can generate
more diversity math word problems. We consider this is because baseline mod-
els have no guidance in topic words and knowledge, thus they tend to generate
the simplest question type like “one number is twice the second number...”.

2 https://github.com/commonsense/conceptnet5.

https://github.com/commonsense/conceptnet5

76 T. Cao et al.

2) taking out topic control or commonsense enhancement will both decrease
evaluation scores, which verifies their effectiveness. For example, removing com-
monsense enhancement declines BLEU score by 24.4%, while removing VAE &
topic memory declines BLEU score by 35.5%.

We also separately compare MAGENT with our model including the same
keywords as an extra input in Table 5, which demonstrates our model can still
achieve performance gain with the same input.

Table 3. Statistic of datasets.

Train Dev Test

Size 7714 964 965

Equation Length (average) 16.69 16.23 16.63

Problem Length (average) 28.90 29.64 28.74

Tokens 7445 3065 2875

Table 4. Automatic results in test dataset with BLEU, ROUGE-L (ROU), Dist-1 (D1),
Dist-2 (D2) and Number Recall (NR). TP, TM and V denote the equation template,
topic memory and VAE, respectively. CE includes both the pretraining step and the
commonsense enforcement for the decoder.

Model BLEU ROU D1 (%) D2 (%) NR (%)

Seq2seq 0.0259 0.2025 14.56 34.99 47.60

SeqGAN 0.0262 0.1922 12.96 30.02 44.00

DeepGCN 0.0304 0.2094 16.81 45.17 49.21

Transformer 0.0277 0.2036 16.69 37.57 50.89

Our model 0.0433 0.2415 20.84 53.81 55.14

w/o TP 0.0385 0.2377 18.88 57.41 55.84

w/o CE 0.0327 0.2273 18.75 51.19 54.42

w/o TM 0.0345 0.2256 20.00 55.00 54.31

w/o V & TM 0.0280 0.2141 18.79 50.05 53.82

Table 5. Comparison between our model with keywords (KW) and MAGNET in
automatic results

Model BLEU ROU D1 (%) D2 (%) NR (%)

MAGNET 0.0976 0.3793 21.72 57.22 42.62

Our model (KW) 0.1152 0.4006 18.81 58.85 51.50

Generating Math Word Problems 77

4.5 Human Evaluation

Automatic metrics such as BLEU and ROUGE only focus on n-gram similarity,
but fail to measure true generation quality (i.e., if topic drifting occurs). We
invite three human annotators to judge generation quality in four aspects. 1)
Fluency (Flu): it mainly judges whether the problem text is fluent, i.e., whether
the generated problem text has some grammar errors. 2) Coherence (Coh):
it weights if the problem text is coherent in text-level; 3) Solvability-1 (S1):
as our target is a math word problem, we should pay attention to whether the
problem text can be solved, i.e., in what percentage we can set up the same (or
equivalent) equations and solve them according to the generated problem text;
4) Solvability-2 (S2) is a more relaxed criterion compared with Solvability-1,
it only requires the text produced is a valid math problem and could be solved
regardless what equations could be set. We randomly select 50 generated MWP
texts and score them in five grades. The scores are projected to 1–5, where higher
score implies better performance (for solvability we use percentage). We report
the average scores in Table 6.

Table 6 (upper) confirms our proposed model receives significant higher score
in coherence and solvability, we assume this is because our model restricts the
problem text into a certain topic and provides related words for reference.

In Table 6 (bottom) we report comparison between our model with keywords
and MAGNET. Human scores reflect that our method achieves 12% relative
improvement over MAGNET in Solvability-1. Especially, with keywords fed into
the model, the problem of topic drifting is no longer notable for both our model
and MAGNET.

Table 6. Human evaluation results: comparison between the proposed model and
baseline models.

Flu Coh S1 (%) S2 (%)

Our model 4.03 4.02 35 55

Seq2seq 3.78 3.48 23 34

SeqGAN 3.75 3.28 20 40

DeepGCN 3.61 3.55 29 52

Transformer 3.80 3.53 20 45

MAGNET 4.00 4.33 44 76

Our model (KW) 4.27 4.60 56 74

4.6 Case Study

Table 7 shows some math word problems generated by different models. It’s easy
to show problem text generated by Seq2seq suffers from lack of coherence, e.g.,
in the above case, the baseline result talks about different topics in the same
sentence. As a comparison, our generator discusses the same topic and generates

78 T. Cao et al.

words around this topic. What’s more, the topic of problem text generated by
our proposed model is highly consistent with reference answer, which verifies the
effectiveness of the proposed model.

We can also observe commonsense violation appears in baseline results, for
example, “chemist has a perimeter” and “geometric is 4 more than” are obviously
illogical. Relatively speaking, MWP text generated by our model, is more in line
with commonsense, such as “the hypotenuse of a right triangle”. These results
reflect that our model can benefit from both the topic consistency maintaining
and commonsense enforcement mechanism.

Table 7. Three examples of math word problems generated by different models. Trans-
former is abbreviate to Trans. Topic words in the left column indicate the overlap
between selected topic words and the generated MWP text, which is also highlighted
in the right column. CG reflects the reasoning procedure adopted by the decoder.

Equation: equ : 4 ∗ (x − y) = 800 equ : 2 ∗ (x+ y) = 800
Reference: An airplane travels 800 miles against the wind in 4
hrs and makes the return trip with the same wind in 2 hrs . Find
the speed of the wind.
Topic Words: travels, miles, speed
CG: travel RelatedTo−−−−−−−→ trip travel RelatedTo−−−−−−−→ take

Ours: A plane travels 800 miles in 4 hours . the return trip
against the same wind took 4.5 hours. Find the speed of the
current wind.
Seq2seq: A chemist has a perimeter of 80 cm, the area of the
rectangle is 800 m. what is the length of the rectangle.
SeqGAN: The perimeter of a rectangle is 800 inches. Find the
length.
DeepGCN: A man has 800 more than four times as old as his
son . If the current is 800 m. Find the speed of the plane.
Trans: The sum of two numbers is 800. The sum of their
squares is 25% . Find the numbers.

Equation: equ : 0.1 ∗ x+ 0.05 ∗ y = 1.95 equ : y = x+ 3
Reference: Ken has $ 1.95 in nickels and dimes . There are 3
more nickels than dimes. How many of each does he have?
Topic Words: nickels, dims, ticket
CG: nickel IsA−−→coin RelatedTo−−−−−−−→dime

Ours: Arnold has some nickels and dimes . If he made a
number of $ 3 .50 . If she had 3 more nickels than dimes. Find
the amount of each ticket .
Seq2seq: A total of 1.95 seats is in the ratio of 10%. If the
total area of the coins is 1.95. Find
SeqGAN: A carpet is 3 times as many more than the other.
The total value is 3.
DeepGCN: Dan invested $ 1.95 . part a t 10% annual interest.
the total value of the cost of a 10% salt solution is added to
Trans: A computer has a mixture of $ 3 . 000 and a mixture
contains 5% profit of 5% . How much does each have.

Equation: equ : 0.1 ∗ x+ 0.05 ∗ y = 1.95 equ : y = x+ 3
Reference: A car radiator contains 10 liters of 30% antifreeze
solution. How many liters will have to be replaced with the pure
antifreeze if the resulting solution is to be 50% antifreeze?
Topic Words: acid, solution
CG: acid IsA−−→liquid RelatedTo−−−−−−−→ solution

Ours: How many liters of a 30% acid solution must be added
to 10 liters of 20% solution on the mixture to make l0 litters of
a 50% solution.
Seq2seq: A raditor contains 50% nitric acid. If we take the same
place to be 10. What is the total number of water.
SeqGAN: A boat travels 10 miles per hour. How much would a
20% acid solution to be worth in 100 account
DeepGCN: A <UNK> radiator is $ 10 . 00 a t a certain number.
and the rest a t the same time .
Trans: A car traveled in a car point is going a t a constant speed.
If the car going a car point in the car . about 0 mph . how many
miles apart.

5 Conclusion

We propose a novel model and a dataset for generating MWP from equations.
Our model can effectively encode different types of math tokens in equations
and reduce the gap between abstract math tokens and generated natural lan-
guage text. It is also very useful in tackling the topic drifting and commonsense
violation problems. Experiments on our dataset show our model significantly
outperforms baseline models.

Generating Math Word Problems 79

References

1. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J. Mach. Learn.
Res. (2003)

2. Bowman, S.R., Vilnis, L., Vinyals, O., Dai, A.M., Jozefowicz, R., Bengio, S.: Gen-
erating sentences from a continuous space. In: SIGNLL. ACL (2016)

3. Chen, S., Wang, J., Feng, X., Jiang, F., Qin, B., Lin, C.Y.: Enhancing neural
data-to-text generation models with external background knowledge. In: EMNLP-
IJCNLP. Association for Computational Linguistics (2019)

4. Cui, L., Wu, Y., Liu, S., Zhang, Y., Zhou, M.: Mutual: a dataset for multi-turn
dialogue reasoning (2020)

5. Dauphin, Y.N., Fan, A., Auli, M., Grangier, D.: Language modeling with gated
convolutional networks. arXiv, Computation and Language (2016)

6. Gong, L., Crego, J., Senellart, J.: Enhanced transformer model for data-to-text
generation. In: Proceedings of the 3rd Workshop on Neural Generation and Trans-
lation. Association for Computational Linguistics (2019)

7. Gyawali, B., Gardent, C.: Surface realisation from knowledge-bases. In: ACL. The
Association for Computer Linguistics (2014)

8. Lin, C.: Rouge: a package for automatic evaluation of summaries, pp. 74–81 (2004)
9. Papineni, K., Roukos, S., Ward, T., Zhu, W.: Bleu: a method for automatic eval-

uation of machine translation. In: ACL. ACL (2002)
10. Puduppully, R., Dong, L., Lapata, M.: Data-to-text generation with content selec-

tion and planning. In: AAAI. AAAI Press (2019)
11. See, A., Liu, P.J., Manning, C.D.: Get to the point: summarization with pointer-

generator networks. In: SIGNLL. Association for Computational Linguistics (2017)
12. Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph

attention networks. arXiv, Machine Learning (2017)
13. Wiseman, S., Shieber, S.M., Rush, A.M.: Challenges in data-to-document genera-

tion. In: EMNLP. Association for Computational Linguistics (2017)
14. Zhao, C., Walker, M., Chaturvedi, S.: Bridging the structural gap between coding

and decoding for data-to-text generation. In: ACL. Association for Computational
Linguistics (2020)

15. Zhou, Q., Huang, D.: Towards generating math word problems from equations and
topics. In: INLG. Association for Computational Linguistics (2019)

16. Huang, D., Shi, S., Lin, C.-Y., Yin, J., Ma, W.-Y.: How well do computers solve
math word problems? Large-scale dataset construction and evaluation. In: ACL.
Association for Computational Linguistics (2016)

17. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv, Learning
(2014)

18. Kushman, N., Artzi, Y., Zettlemoyer, L., Barzilay, R.: Learning to automatically
solve algebra word problems. In: ACL, pp. 271–281. Association for Computational
Linguistics (2014)

19. Shi, S., Wang, Y., Lin, C.-Y., Liu, X., Rui, Y.: Automatically solving number
word problems by semantic parsing and reasoning. In: EMNLP. Association for
Computational Linguistics (2015)

20. Upadhyay, S., Chang, M.-W.: Annotating derivations: a new evaluation strategy
and dataset for algebra word problems. In: EACL. Association for Computational
Linguistics, April 2017

	Generating Math Word Problems from Equations with Topic Consistency Maintaining and Commonsense Enforcement
	1 Introduction
	2 Task Definition
	3 Model
	3.1 Variational Encoder-Decoder Module
	3.2 Enhancing Equation Encoder by Variational Autoencoder
	3.3 Topic Selection and Controlling
	3.4 Commonsense Enforcement
	3.5 Training Objective

	4 Experiments
	4.1 Datasets
	4.2 Motivation of Creating New Dataset
	4.3 Model Settings
	4.4 Automatic Evaluation
	4.5 Human Evaluation
	4.6 Case Study

	5 Conclusion
	References

