
Computational Approach to Identifying
Contrast-Driven Retinal Ganglion Cells

Richard Gault1(B) , Philip Vance2 , T. Martin McGinnity2,3 ,
Sonya Coleman2 , and Dermot Kerr2

1 School of Electronics, Electrical Engineering and Computer Science,
Queen’s University, Belfast, Northern Ireland, UK

richard.gault@qub.ac.uk
2 Intelligent Systems Research Centre, Ulster University,

Derry/Londonderry, Northern Ireland, UK
{p.vance,tm.mcginnity,sa.coleman,d.kerr}@ulster.ac.uk

3 Department of Computer Science, Nottingham Trent University, Nottingham, UK
martin.mcginnity@ntu.ac.uk

Abstract. The retina acts as the primary stage for the encoding of
visual stimuli in the central nervous system. It is comprised of numerous
functionally distinct cells tuned to particular types of visual stimuli. This
work presents an analytical approach to identifying contrast-driven reti-
nal cells. Machine learning approaches as well as traditional regression
models are used to represent the input-output behaviour of retinal gan-
glion cells. The findings of this work demonstrate that it is possible to
separate the cells based on how they respond to changes in mean contrast
upon presentation of single images. The separation allows us to identify
retinal ganglion cells that are likely to have good model performance in
a computationally inexpensive way.

Keywords: Retinal modelling · Encoding natural images · Identifying
cell behaviour · Visual modelling

1 Introduction

Visual perception begins with the encoding of visual stimuli into neuronal spikes
by the retina. The retina receives few afferent signals from the central nervous
system allowing the function of the retina to be studied as a black box with an
input, i.e. light stimulus, and output, i.e. spiking activity of retinal ganglion cells
(RGCs). Recent studies have tried to gain insight in to the internal operations
using deep learning [1]. The majority of RGCs can be classified as being either
ON- and/or OFF-cells that are described as being transient or sustained [2]. ON-
cells respond to an increase in light intensity while conversely OFF-cells respond
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to a decrease in light intensity. A subdivision of each class can be made into tran-
sient and sustained responses. RGCs described as sustained produce continual
firing in response to stimulus while transient cells respond only momentarily to
temporal changes. For the investigation of how the retina encodes single images
it is likely that sustained RGCs are of greatest interest to model the encoding
using the corresponding spiking responses [2]. Many types of RGC have been
documented for their selective response to particular types of stimuli, for exam-
ple, direction specific motion, orientation or global environmental changes [2]. It
is unlikely that cells with such diverse functionality are as important for single
image processing as those with a sustained response.

The stimuli directly responsible for a RGC’s activity are solely contained
within the receptive field (RF) of the cell. Environmental changes or saccades
of the eye mean that the stimuli that falls on the receptive field is constantly
changing. It is therefore not surprising a significant proportion of RGC behaviour
is directly coupled with temporal changes in environment. RGCs with transient
responses are sensitive to subtle temporal changes in the RF but not station-
ary patterns [3]. In order to model the retinal encoding of single images it is
important to identify RGCs whose behaviour is sustained over longer temporal
periods. The ability to identify RGCs with sustained (or transient) responses to
single images during the analysis stage would remove the need to use artificial
stimuli which is known to not comprehensively probe the cell’s functionality.

RGCs receive inputs from various networks of cells in the preceding layers
of the retina which all contribute to forming the RF. Identification of the stim-
ulus values that contribute to a cell eliciting a response is an essential stage in
identifying the cells receptive field. Factorisation techniques have been used to
infer potential sub-receptive fields (SRFs) that contribute to the overall RFs.
Accurate identification of these sub-receptive fields and the underlying bipolar
cells is essential in order to develop an accurate retinal model [4]. Models that
consider the SRFs of the RGCs have been shown to provide improved accuracy
when compared with approaches that consider the information contained in the
entire RF as one single input [4]. SRFs allow detailed spatial information to be
efficiently combined in a non-linear manner within RGCs when compared with
single RF modelling approaches.

The aim of this work is to present an approach that can efficiently iden-
tify RGCs suitable for single image retinal models. Section 2 will outline the
methodology used; this includes Sects. 2.2 and 2.3 that outline the investigation
of cell identification and the modelling approaches used for single image process-
ing. The results are first presented in Sect. 3 before being discussed in detail in
Sect. 4. Section 5 provides a discussion of the findings of this work and an outline
of directions for future work.

2 Methods

Multi-electrode array recordings from isolated Tiger Salamander retinas were pre-
pared and conducted at the Gollisch Lab, University Medical Center Göttingen
as outlined and described in [4–6]. The stimulus set comprised of a wide
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range of three hundred grayscale natural images from the “McGill Calibrated
Colour Image Database” (http://tabby.vision.mcgill.ca/html/browsedownload.
html) which were presented to the isolated retinas at a resolution of 256 × 256
pixels. Images were presented in a pseudo-random order for 200 ms with an inter-
stimulus interval of 800 ms allowing sufficient time for no overlap in the cells
response to different images. Spikes occurring within 300 ms of stimulus onset were
considered to be evoked by the stimulus whilst later activity was considered to be
evoked by the removal of the stimulus and are ignored in this study.

The overall data analyses pipeline for the present study is comprised of iden-
tifying the RF of each cell and subsequently modelling and optimising SRFs for
each cell. The input-output relationship that maps the information contained in
the stimulus image to the resulting spiking activity is determined and modelled
using the RF and SRFs. These components are described in detail through the
remainder of Sect. 2.

The initial RF estimate was determined using a reverse correlation approach.
Each retina was stimulated with spatio-temporal checker stimuli and the resul-
tant spike-triggered average (STA) calculated. Singular Value Decomposition
(SVD) is used to extract the spatial element of the STA over time [7]. The size,
location and shape of a RGC’s RF is approximated by fitting a 2D Gaussian
distribution to the extracted data. Artificial stimuli are known to not capture
the complexity of natural images and it has been shown that RGCs produce
a different RF response when stimulated with natural images [8,9]. Therefore
in this study the RF is refined using a subset of natural images based on the
approach outlined in [10].

We then apply a number of machine learning methods to derive input-output
models of the RGC using RFs that are comprised of different numbers of SRFs,
and then compare the models’ responses against the actual real RGC neuron’s
response. Results gathered from experiments involving several RGCs provide
quantitative evidence on the benefits of considering SRFs of RGCs when deriving
computational models rather than considering the complete RF as a summation
of all its parts.

2.1 Modelling Sub-receptive Fields

Considering the stimulus values contained within the RF as a singular value,
such as the mean contrast, results in the loss of much of the spatial information
contained within this RF [11]. A better approach is to consider the RF as com-
posed of a number of SRFs and corresponding singular values from each of these
SRF regions. Here, the SRFs are characterised using two separate approaches.
The first approach is a straightforward geometric approximation of the RF into
several equal sectors. While analytically simple, this approach is in no way bio-
logically plausible. Each SRF is obtained by segmenting the elliptical RF along
its circumference and intersecting these points in the centre of the RF. Each of
the resulting sectors that the elliptical RF is now composed is considered to be a
SRF in such a way that there is approximately equal pixel coverage across each
of the SRFs. An illustration of this approach is shown in Fig. 1 No emphasis
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Fig. 1. Illustration of a geometric segmentation of a RF in to 2,...,8 SRFs

is placed on the particular arrangement or orientation of each SRF as no prior
knowledge of the underlying biological SRF is known.

The second approach to identify SRFs is aimed at approximating the recep-
tive fields of the bipolar cells in a more biologically plausible way using non-
negative matrix factorisation (NNMF) [4]. The pixels of 300 natural images
(each image being 256 × 256) are restructured into a matrix, X, of dimension
2562 × 300. The NNMF methodology allows for the dimension of the original
problem to be reduced by approximating X as follows

X ≈ FY (1)

where F is a 2562 × n non-negative dictionary matrix of n factors and Y is the
n×300 expansion matrix of weights. This technique is naturally suited for decom-
posing grayscale images as the original images and the corresponding factors con-
tain only non-negative values. Each column vector of F can be restructured in to a
256 × 256 pixels image by reversing the process used to originally restructure the
natural images into column vectors. The NNMF was carried out using the MAT-
LAB function nnmf with alternating least-squares approach. The number of non-
negative factors, n, equated to the number of SRFs being modelled.

Given the factors of each cell, now restructured to a resolution of 256 × 256
pixels, the SRFs are identified by fitting 2D-Gaussian distributions to each factor
in a similar way to the original RF approximation. In the case of the geomet-
ric approach, 100% of the receptive field is covered by SRFs while the NNMF
approach cannot guarantee such coverage. A Genetic Algorithm (GA) is used
to optimise the size of the NNMF generated SRFs to maximise their coverage
within the RF. The sizes of the SRFs are constrained such that at least 60% of
the SRF must be located within the original RF and no two SRFs may over-
lap by more than 30% of their individual size. An example of these optimised
SRFs (where the number being modelled is 1–8 SRFs) is shown in Fig. 2 for one
particular RGC.

2.2 Assessing Input-Output Relationship

Information present in grayscale images can be represented in many different ways.
In this study the mean contrast of each SRF contained within the RF is considered
in line with previous studies [10,12,14]. The mean contrast is defined as

CRF =
MRF − Mgray

Mgray
(2)
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Fig. 2. Example of a cell’s optimised SRFs (red) of the full RF (green) for 1–8 SRFs
displayed relative to the 256 × 256 pixel stimuli size (Color figure online)

where MRF is the mean intensity of the RF and Mgray is the mean intensity
of the entire image. The output is considered to be the average spike count
of each cell in response to each image. To assess the significance of the input-
output relationships for each cell, the input-output pairs are fitted with a linear
regression model. This provides an efficient approach to describe the significance
of the input-output relationships. The gradient of the linear least-squares fit
quantifies the rate of change in output with respect to change in the input
quantity. Therefore, a large gradient (either positive or negative) indicates there
is a significant change in the output behaviour relative to the input feature.
Conversely, little or no gradient indicates that similar outputs are found for
varying input values. An illustration of a large gradient is shown in the fitted
data of Fig. 3a whilst an example where there is a weak input-output gradient
is shown in Fig. 3b. It is clear from the example in Fig. 3b that if varying input
values create the same output that the input feature of the image does not
represent the driving force behind the cell’s behaviour.

2.3 Modelling Retinal Behaviour

Inspired by previous modelling approaches for natural image processing [12,13,
15] a number of different machine learning techniques are considered in this
study; namely a Multi-Layer Perceptron (MLP) [16], Bayesian Regularised Neu-
ral Networks (BRNN) [17], Support Vector Regression (SVR) [18] and k-Nearest
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Fig. 3. Illustration of the linear least-squares fit (gray) to an example of a strong input-
output relationship (a) and a weak input-output relationship (b) for two different cells
across all input images; in these cases the input property is the mean contrast of each
image.

Neighbours (k-NN) [19]. Methodological details of each model can be found in the
associated literature [20]. The data are randomly separated into training (80%)
and testing (20%) sets which remained constant across all modelling approaches.
Each cell is modelled individually with 80% of the images used for training and
20% of the images used for testing. The same training and testing images are
used for each cell. Each cell model is subject to 5 fold cross-validation and eval-
uated on the test data in each fold. In a practical sense the MLP is implemented
in MATLAB by first constructing a network with 10 neurons in the hidden layer
(using fitnet) before training the network using the training function trainlm.
The trained network is then evaluated using the unseen testing data. The BRNN
model is implemented in a similar way to the MLP case with the exception that
the training function used is trainbr. The number of neurons found in the hid-
den layers of the MLP and BRNN (i.e. 10) is chosen arbitrarily for this prelim-
inary investigation. Future work could include the optimisation of the network
architecture. The SVR model is fitted to the training data using the function
fitrsvm with a radial basis kernel function. The k-NN model is implemented
using the knnsearch function with the distance metric being the Euclidean dis-
tance. The optimum value for k was determined through an exhaustive search of
possible values for k between 1 and 100 with k chosen to minimise the model’s
error.

Additionally, more classical modelling approaches are used as computation-
ally efficient alternatives to the machine learning approaches outlined above;
namely linear regression and non-linear (quadratic) modelling. The linear model
is fitted using an ordinary least-squares approach utilising the fitlm function in
MATLAB. The quadratic model is fitted using the MATLAB function fitnlm
using a unitary initial guess and a constant error based variance model.
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3 Performance Evaluation

To evaluate the effectiveness of each model in representing the behaviour of
the RGCs in response to natural images, the coefficient of determination, or R2

measure, is used. Given the model’s predictions, p, compared with the true RGC
output, t, over the 300 images the R2 measure defined as

R2 = 1 −
∑

(t − p)2
∑

(t − t̄)2
(3)

where t̄ denotes the mean of the true spike rates t over all images. The model
is considered to perfectly match the real world behaviour when R2 = 1 and the
R2 metric is bounded below by 0.

Figure 4 shows the average performance across all cell models when a thresh-
old is placed on the absolute value of the input-output least-squares gradient
(described in Section II-B). The input is considered to be the mean contrast
for the entire receptive field of each cell. The y-axis indicates the average model
performance across all cells with an absolute input-output least-squares gradient
of at least the threshold indicated on the x-axis.

Figure 4 illustrates that when using the mean contrast as model input we
can observe a positive relationship between the gradient of the least-squares fit
and the average R2 across all the models. A gradient threshold may be used
to divide the cells into two groups for further analysis. This removes the need
for individual analysis of each cell to consider those where spiking response is
unlikely to be correlated to differing mean contrasts within the RF. The threshold
is chosen to be indicative of a significant input-output gradient. Therefore, for
the remainder of this analysis the upper-quartile of the input-output gradients is
selected as the threshold (this represents the median value of the upper portion
of the gradients).

The second stage of the analysis is concerned with modelling performance
when considering additional spatial information through the use of SRFs. The
138 cells are now separated into two groups. Firstly the absolute input-output
gradient of all cells is considered. The upper-quartile of these data is taken to be
the differentiation point. Group 1 consists of those cells with a minimum absolute
input-output gradient of the upper-quartile (3.61) and Group 2 consists of cells
with an absolute input-output gradient below this threshold. When considering
cells from Group 1 (35 cells) all models perform significantly better (at least
R2 = 0.4) compared with the inclusion of all cells (at most R2 = 0.28) as
seen in Figs. 5 and 4 respectively. Conversely, when the cells in Group 2 (103)
are considered in isolation (Fig. 6) the cell model performance is greatly reduced
(R2 ∈ [0.1, 0.3]) compared with the performance observed when modelling Group
1 cells (R2 ∈ [0.4, 0.72]). This is true irrespective of the modelling technique or
the number of SRFs considered. Thus, it has been possible to identify RGCs
suitable for the processing contrast-driven natural images through the division
of the entire cell dataset into two groups prior to modelling.

As the geometric approach to SRF modelling does not yield biologically real-
istic SRF of the cells, the NNMF approach to modelling SRF is considered on



642 R. Gault et al.

Fig. 4. Average performance for each model given cells with a minimum input-output
gradient listed along the x-axis.

Fig. 5. The average model performance across all Group 1 cells for varying numbers
of geometrically defined SRFs with an absolute input-output gradient of at least 3.61.
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Fig. 6. The average model performance across all Group 2 cells for varying numbers
of geometrically defined SRFs with an input-output gradient of less than 3.61.

Fig. 7. The average model performance across all cells for varying numbers of NNMF
defined SRFs with an absolute input-output gradient of at least 3.61.
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those cells in Group 1. The results are illustrated in Fig. 7. The results show
again that including SRF models improves modelling performance compared
with modelling only a single RF irrespective of the modelling approach used.
However, comparing each model in turn leads in general to the unexpected find-
ing that NNMF defined SRFs (results shown in Fig. 7) did not provide better per-
formance than the geometrically defined counterparts (results shown in Fig. 5).
One possible explanation could be that SRFs derived through NNMF did not
cover all of the RF and thus may omit some spatial information in contrast to
the geometric approach to SRF modelling.

4 Discussion

The primary aim of this work was to investigate whether it is possible to iden-
tify relevant RGCs for processing natural images i.e. cells that predominantly
respond to variations in mean contrast. Analysis indicated that model perfor-
mance was improved with an increase in the absolute gradient of the input-
output least-squares fit (Fig. 4). The simple process of fitting a linear least-
squares line to the input-output data provided the basis for data to be segmented
into two groups. It was determined that cells with a large absolute gradient were
most likely to provide the best model performance. It is appropriate to separate
RGCs by functionality as different cell types are known to have disjoint path-
ways. We postulate that the proposed approach is a step towards an analytical
approach for classifying cell functionality.

It is well known that modelling a RGC Receptive Field using a singular value
results in a loss of spatial information. Vance et al. [11] have shown that using
finer grained spatial information led to improved model performance compared
with single RF models (Figs. 5, 6 and 7). The NNMF constructed SRFs provide
improved modelling performance over single RFs models (Fig. 7); however, sur-
prisingly the results from of the NNMF approach did not, in general, improve
upon the results from the geometrically defined SRFs (Fig. 5). Comparing the
geometric and NNMF approaches, it can be deduced that it is possible to pro-
duce models with at least the accuracy of the bio-inspired NNMF SRF method-
ology with a relatively efficient and simple geometric approach. Further work is
required to ascertain the reason why the geometric approach produced the best
results for SRF modelling despite having no immediately apparent biological
connection to the SRFs of the RGCs.

A number of machine learning and regression modelling approaches were
considered in this work. Figures 5, 6 and 7 show the regression approaches (illus-
trated with dotted lines) performed similar to the machine learning approaches.
The quadratic model performed better than the linear model irrespective of the
number of SRFs taken into account. This is unsurprising as the RGCs are known
to respond in a non-linear way to stimuli [21]. In the case of NNMF derived SRF
models (Fig. 7) the quadratic model outperformed all other modelling approaches
irrespective of the number of RFs modelled. Using the geometrically derived
SRFs the quadratic model provided the overall best performance (0.72, Fig. 5)
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compared with all other models with the maximum number of SRFs. Amongst
the machine learning approaches SVR performed, in general, the strongest across
different numbers of SRFs whilst MLP consistently performed poorly. It should
be noted that all modelling approaches, with the possible exception of the linear
model, performed similarly and showed that an accurate model of single image
processing can be achieved once appropriate cells are identified and at least 6
SRFs are considered (Figs. 5 and 7).

5 Conclusion

The encoding of visual information is carried out by a variety of functionally
diverse cells whose response is driven by a particular characteristic of the stim-
uli. To create bio-inspired models of retinal processing of visual information
this work aimed to identify a method for generating a subset of functionally
similar retinal cells appropriate for single image processing. A computationally
efficient linear fit of the input-output relationship of a stimulus attribute, such
as mean contrast, and the RGC response, namely the mean firing rate, was used
to identify cells whose behaviour is proportional to the stimulus attribute. It was
possible to divide the cells into two groups using this information prior to mod-
elling the RGC behaviour. Separating cells in this way allows us to identify those
cells that could be modelled accurately. Therefore, it is postulated that the iden-
tified cells are appropriate for single image processing. Increasing the number of
SRFs modelled in general led to increased model performance irrespective of the
modelling approach used. The machine learning models performed comparably
with the more computationally efficient quadratic model.

Future work is required to identify additional attributes of input stimuli
that can be used to construct functionally homogeneous subgroups of RGCs
such as those that respond to transient stimuli rather than stationary stimuli.
Accurate modelling of RGC behaviour with distinct functionality could provide
the building blocks to construct a complete representation of the encoding of
visual information by the retina. Future work will also need to consider a greater
repertoire of cell functionality including modelling the temporal encoding by
RGCs compared with the firing rate models considered in the present work.

References

1. Zhang, Y., et al.: Reconstruction of natural visual scenes from neural spikes with
deep neural networks. Neural Netw. 125, 19–30 (2020)

2. Dhande, O.S., Stafford, B.K., Lim, J.-H.A., Huberman, A.D.: Contributions of
retinal ganglion cells to subcortical visual processing and behaviors. Ann. Rev.
Vis. Sci. 1, 291–328 (2015)

3. Gollisch, T., Meister, M.: Eye smarter than scientists believed: neural computations
in circuits of the retina. Neuron 65(2), 150–164 (2010)

4. Liu, J.K., et al.: Inference of neuronal functional circuitry with spike-triggered
non-negative matrix factorization. Nature Commun. 8(1), 149 (2017)



646 R. Gault et al.

5. Liu, J.K., Gollisch, T.: Spike-triggered covariance analysis reveals phenomenolog-
ical diversity of contrast adaptation in the retina. PLoS Comput. Biol. 11(7),
e1004435 (2015)

6. Onken, A., et al.: Using matrix and tensor factorizations for the single-trial analysis
of population spike trains. PLoS Comput. Biol. 12(11), e1005189 (2016)

7. Gauthier, J.L., et al.: Receptive fields in primate retina are coordinated to sample
visual space more uniformly. PLoS Biol. 7(4), e1000063 (2009)

8. Rapela, J., Mendel, J.M., Grzywacz, N.M.: Estimating nonlinear receptive fields
from natural images. J. Vis. 6(4), 11 (2006)

9. Touryan, J., Felsen, G., Dan, Y.: Spatial structure of complex cell receptive fields
measured with natural images. Neuron 45(5), 781–791 (2005)

10. Vance, P.J., Das, G.P., Kerr, D., Coleman, S.A., McGinnity, T.M.: Refining recep-
tive field estimates using natural images for retinal ganglion cells. Iaria, Cognitive,
pp. 77–82 (2016)

11. Vance, P.J., et al.: Bioinspired approach to modeling retinal ganglion cells using
system identification techniques. IEEE Trans. Neural Netw. Learn. Syst. 29(5),
1796–1808 (2017)

12. Vance, P.J., Das, G.P., Coleman, S.A., Kerr, D., Kerr, E.P., McGinnity, T.M.:
Investigation into sub-receptive fields of retinal ganglion cells with natural images.
In: 2018 International Joint Conference on Neural Networks (IJCNN), pp. 1–8
(2018)

13. Kerr, D., Coleman, S.A., McGinnity, T.M.: Modelling and analysis of retinal gan-
glion cells with neural networks. In: Irish Machine Vision and Image Processing,
pp. 95–100 (2014)

14. Das, G.P., et al.: Computational modelling of salamander retinal ganglion cells
using machine learning approaches. Neurocomputing 325, 101–112 (2019)

15. Das, G., Vance, P., Kerr, D., Coleman, S.A., McGinnity, T.M.: Modelling retinal
ganglion cells stimulated with static natural images. In: COGNITIVE 2016: The
Eighth International Conference on Advanced Cognitive Technologies and Appli-
cations, Rome, Italy. IARIA (2016)

16. Haykin, S., Network, N.: A comprehensive foundation. Neural Netw. 2(2004), 41
(2004)

17. MacKay, D.J.C.: A practical Bayesian framework for backpropagation networks.
Neural Comput. 4(3), 448–472 (1992)

18. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297
(1995)

19. Altman, N.S.: An introduction to kernel and nearest-neighbor nonparametric
regression. Am. Stat. 46(3), 175–185 (1992)

20. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data
Mining, Inference, and Prediction. Springer Series in Statistics, Springer, New York
(2013). https://doi.org/10.1007/978-0-387-84858-7

21. Pillow, J.W., Paninski, L., Uzzell, V.J., Simoncelli, E.P., Chichilnisky, E.J.: Pre-
diction and decoding of retinal ganglion cell responses with a probabilistic spiking
model. J. Neurosci. 25(47), 11003–11013 (2005)

https://doi.org/10.1007/978-0-387-84858-7

	Computational Approach to Identifying Contrast-Driven Retinal Ganglion Cells
	1 Introduction
	2 Methods
	2.1 Modelling Sub-receptive Fields
	2.2 Assessing Input-Output Relationship
	2.3 Modelling Retinal Behaviour

	3 Performance Evaluation
	4 Discussion
	5 Conclusion
	References




