
Advances in Password Recovery Using
Generative Deep Learning Techniques

David Biesner1,2,3, Kostadin Cvejoski1,3(B), Bogdan Georgiev1,3,
Rafet Sifa1,2,3, and Erik Krupicka4

1 Fraunhofer IAIS, Sankt Augustin, Germany
Kostadin.cvejoski@iais.fraunhofer.de

2 University of Bonn, Bonn, Germany
3 Competence Center for Machine Learning Rhine-Ruhr (ML2R),

Dortmund, Germany
4 Federal Criminal Police Office, Wiesbaden, Germany

Abstract. Password guessing approaches via deep learning have recently
been investigated with significant breakthroughs in their ability to gener-
ate novel, realistic password candidates. In the present work we study a
broad collection of deep learning and probabilistic based models in the
light of password guessing: attention-based deep neural networks, autoen-
coding mechanisms and generative adversarial networks. We provide novel
generative deep-learning models in terms of variational autoencoders
exhibiting state-of-art sampling performance, yielding additional latent-
space features such as interpolations and targeted sampling. Lastly, we
perform a thorough empirical analysis in a unified controlled framework
over well-known datasets (RockYou, LinkedIn, MySpace, Youku, Zomato,
Pwnd). Our results not only identify the most promising schemes driven
by deep neural networks, but also illustrate the strengths of each approach
in terms of generation variability and sample uniqueness.

1 Introduction and Motivation

Most authentication methods commonly used today rely on users setting custom
passwords to access their accounts and devices. Password-based authentications
are popular due to their ease of use, ease of implementation and the established
familiarity of users and developers with the method [10]. However studies show
that users tend to set their individual passwords predictably, favoring short
strings, names, birth dates and reusing passwords across sites [16,17]. Since
chosen passwords exhibit certain patterns and structure, it begs the question
whether it is possible to simulate these patterns and generate passwords that a
human user realistically might have chosen.

Password guessing is an active field of study, until recently dominated by sta-
tistical analysis of password leaks and construction of corresponding generation
algorithms (see Sect. 2). These methods rely on expert knowledge and analysis

D. Biesner and K. Cvejoski—Equal contribution.

c© Springer Nature Switzerland AG 2021
I. Farkaš et al. (Eds.): ICANN 2021, LNCS 12893, pp. 15–27, 2021.
https://doi.org/10.1007/978-3-030-86365-4_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86365-4_2&domain=pdf
https://doi.org/10.1007/978-3-030-86365-4_2

16 D. Biesner et al.

of various password leaks from multiple sources to generate rules and algorithms
for efficient exploitation of learned patterns.

On the other hand, in recent years major advances in machine-driven text
generation have been made, notably by novel deep-learning based architectures
and efficient training strategies for large amounts of training text data. These
methods are purely data driven, meaning they learn only from the structure
of the input training text, without any external knowledge on the domain or
structure of the data. Major advancements in the field have been fueled by
the development of new architectures and mechanisms, advanced representation
capabilities and training procedures.

In this paper we will continue the exploration of data driven deep-learning text
generation methods for the task of password-guessing. While some applications
to password guessing already show promising results, most frameworks still can
not reach or surpass state-of-the-art password generation algorithms. Ideally, one
would attempt to design more efficient password-guessing models aided by neural
networks and cutting-edge practices. Our findings and contributions can be sum-
marized as follows: (1) we provide extensive unified analysis of previous as well
as novel password guessing models based on deep learning and probabilistic tech-
niques; (2) our collection of architectures based on deep learning exhibits varying
performance, with the top-performing models being able to reach sophisticated
password generation algorithms in the password recovery task; (3) We show that
attention-driven text generation methods (Transformers) can be applied to pass-
word guessing with little additional adjustments; (4) we additionally analyse the
effect of model pre-training on general language data for the password generation
task against training on pure password data; (5) our novel variational autoencoder
(VAE) approach allows more flexible latent representations and outperforms pre-
vious autoencoding methods based on Wasserstein training [26]; (6) the VAE pro-
vides a state-of-art password matching performance as well as further sampling
possibilities (conditional and targeted sampling). However, the password latent
space geometry is quite sensitive to training and regularization yielding promising
grounds for future investigations in terms of conditional sampling.

2 Related Work

Password generation has a long history outside of deep-learning architectures.
There are tools available for purely rule-based approaches (Hashcat [1] and John-
TheRipper [4]), which generate password candidates either by brute-force or dic-
tionary attacks, in which a dictionary of words or previously known passwords
is augmented by a set of rules, either hand-written or machine generated [2].

Machine-learning based approaches to password guessing may come in their
most simple form as regular n-gram Markov Models [27] or more sophisticated
approaches like probabilistic context free grammar (PCFG) [31], which analy-
ses likely structures in a password training set and applies various generation
algorithms based on these observations.

Neural network based password generation has become an active field of
study in the recent years. Ranging from relatively simple recurrent neural net

Advances in Password Recovery Using Generative Deep Learning Techniques 17

(RNN) architectures [25] to recent seminal works applying state-of-the-art text
generation methods to password generation: Generative adversarial networks
(GANs) [20,26], Wasserstein Autoencoders [26], and bidirectional RNNs trained
with the aid of pre-trained Transformer models [24].

Our work extends this palette of deep learning architectures with the Varia-
tional Autoencoder [23] and Transformer-based language models [28]. We addi-
tionally offer an extensive, unified and controlled comparison between the both
various deep-learning based methods and more established methods mentioned
above. This analysis yields a stable benchmark for the introduction of novel
models.

3 Models

GAN. A central idea of adversarial methods is the construction of generative
models by game-theoretic means: a “generator” neural network produces data
samples, whereas a “discriminator” neural network simultaneously attempts to
discern between the real and artificially produced (by the generator) samples.
The training of such a system consists in optimizing the performance of both
the generator and discriminator (usually, via types of suitably chosen gradient
descents and additional regularization). An important tool that smooths out
gradients and makes the model more robust is the Wasserstein distance, which
provides means to efficiently compute discrepancies between two given distribu-
tions. We refer to [14,18,19] for further background.

Concerning password guessing and generation our starting point is the well-
known PassGAN model proposed in [20]. The PassGAN defines a discriminator
and generator in terms of residual networks [32] - these are assembled from the
so-called residual blocks (e.g. a stack of convolutional neural networks followed
by a batch-normalization [21]).

Deep Latent Variable Models. The Variational Auto Encoder (VAE) [23] is
a framework for efficient optimization of deep latent variable models (DLVM).
It comprises of two main components: encoder and decoder. The encoder is a
stochastic function φ : X → Z that maps the input space (passwords) X to the
latent space Z. The decoder is deterministic function that maps a code from the
latent space to the input space θ : Z → X. The model is trained by maximizing
the evidence lower bound (ELBO)

L(θ, φ,x(i)) = −DKL(qφ(z|x(i))||pθ(z)) + Eqφ(z|x(i))

[
log pθ(x(i)|z)

]
. (1)

The model learns to reconstruct the password x given to the input by first,
mapping the password to a distribution of latent codes qφ(z|x), then sampling
from the posterior distribution and passing the latent code z to the decoder
pθ(x(i)|z). During training a strong prior pθ(z) is imposed on the learned latent
code distribution. Usually in the VAE framework the prior is set to be centered
isotropic Gaussian distribution pθ(z) = N (z;0, I), which enables us to later
easily sample from the prior and generate new passwords.

18 D. Biesner et al.

The latent space learned by the encoder imposes a geometric connections
among latent points that have some semantic similarity in the data space. As a
result similar points in the data space have latent representation that are close
to each other. The notation of similarity depends on the modeled data, in the
case of password generation it may be based on the structure of the password,
like a common substring.

Transformers. In recent years the transformer, originally applied to machine
translation in [30], has become increasingly popular, with transformer-based
architectures setting new benchmarks in text generation, machine translation
and many other natural language processing tasks.

Transformers rely almost solely on self-attention to process an input text,
which considers all pairs of words in the sentence instead of the linear sequence
of words. While RNNs may lose the memory of words in the beginning of a
sentence rather quickly, transformers are able to capture long-term dependencies
between words in a sentence and between sentences.

The self-attention mechanism evaluates attention for each word pair by mul-
tiplying their entries in the query, key and value matrices Q,K ∈ R

n,dk and
V ∈ R

n,dv (dk dimensionality of the query and key, dv of the value vectors
respectively) as Attention(Q,K, V) = softmax

(
QKT

√
dk

)
V , where the output

of the softmax operation provides for each word a probability distribution over
all other words in the sequence, which is then used to weight the word values to
produce the attention output.

In our work we apply the GPT2 [28] architecture to the password modeling
task. GPT2 is a transformer-based language model, trained on the causal lan-
guage modeling objective, meaning given an incomplete sentence it will try to
predict the next upcoming word. A tokenized input sentence is therefore read by
a transformer block which outputs a probability distribution pθ over the vocab-
ulary. For a corpus of tokens U = (u1, . . . , uN) and a context window k ∈ N the
loss is then given as L(U) =

∑N
i=1 pθ(ui|ui−1, . . . , ui−k).

To generate text, given a text prompt (e.g. “Hello my”) the model will start
generating text that continues the sentence (“name is GPT2!”). We provide
details on the model and training in Sect. 4.2.

4 Results

4.1 Data

There are several datasets of passwords publicly available. These lists contain
passwords that were at some point in time leaked to the public from certain
websites. Leaks contain in rare cases plaintext passwords (e.g. the RockYou
leak), but more commonly only password hashes that are then recovered using
password guessing methods. Password datasets contain either passwords from a
single leak or are aggregated from several leaked sources. We apply the same
preprocessing to all datasets: Removing duplicates, removing passwords <4

Advances in Password Recovery Using Generative Deep Learning Techniques 19

and >12 characters and removing passwords containing characters other than
letters, numbers and punctuation .!?* $ #&/+.

The specific password datasets we employ for training or evaluation are:
‘rockyou’ (13.0M passwords, [7]); ‘Have I Been Pwnd V1’/‘pwnd’ (274.8M, [3]),
‘linkedin’ (60.1M, [5]), ‘myspace’ (53k, [6]), ‘yahoo’ (430k, [11]), ‘youku’ (48M,
[12]), ‘seclist’ (969k, [8]), ‘skullsecurity’ (6.2M, [9]), ‘zomato’ (6.3M, [13]). All
counts after preprocessing. Note that all datasets are sets of unique passwords.
Since the main task is not accurate learning of the training data distribution but
generation of new passwords we hypothesize that training on unique passwords
improves the guessing performance. Benchmarks on the VAE-model have shown
a slight improvement over training on the original non-unique password leak.

For training we employ splits of the rockyou (80%, 10.4M training/20%, 2.6M
testing) and pwnd (80%, 219.8M training/20%, 54.9M testing).

4.2 Experimental Setup

GAN-Based Models. In our setup, we essentially utilize the PassGAN as a
standard benchmark - this is well motivated by previous substantial studies of
GAN-based models [20,26]. The generator/discriminator are defined as residual
neural networks consisting of 6 standard residual blocks followed by a linear
projection/softmax function, respectively. Each of the standard residual blocks
consists of 2 convolutional layers (with kernel-size 3, stride 1, no dilation) fol-
lowed by a batch-normalization layer. The generator’s latent space (i.e. the input
space) is set to 256 inspired by [20].

The PassGAN training is based on state-of-art practices such as Wasserstein
GAN and gradient clipping (cf. [14]), as well as gradient penalty regularization
(cf. [19]). We used a batch-size of 256, a gradient-penalty-hyperparameter λ =
10 and 10 discriminator iterations per generator step. The preferred gradient
descent was based on ADAM [22] with an initial learning rate η = 10−4 and
momentum parameters β1 = 0.5, β2 = 0.9; a fixed-interval annealing with an
iteration step of 106 was also used.

Note that [26] report improvements of the GAN-architecture and training for
password generation by adding additive noise to the input, replacing the residual
blocks with deeper residual bottleneck blocks and applying batch normalization
to the generator. We compare to the results reported in their paper in Sect. 4.4,
Table 2.

Variational Autoencoders. For both the encoder and the decoder we use a
CNN with fixed kernel size of 3. The depth and the dilation of the convolution
is gradually increase from [1, 2, 4], [1, 2, 4, 8], [1, 2, 4, 8, 16] to [1, 2, 4, 8, 16,
32]. We use cross-validation to pick the best hyper-parameters for the model.
The number of channels for the CNN block is 512, the latent dimension of the
model z is chosen from [64, 128, 256]. We use the ADAM [22] with learning rate
η = 10−4 and momentum β1 = 0.5, β2 = 0.9. The batch size is chosen to be
128 and we also use early stopping. Following [15], we use KL cost annealing
strategy.

20 D. Biesner et al.

Table 1. Most common generated passwords per model, separated by training dataset.

Model ‘rockyou’ ‘pwnd’ Model ‘rockyou’ ‘pwnd’ Model ‘rockyou’ ‘pwnd’ Model ‘rockyou’

VAE

leslie MARIA

GPT2S

love 2010

GPT2F

ilove 1234

PassGAN

123456

yankee hilton mrs. love love 2010 12345

kirsty SEXY baby 1234 baby love 123456789

jeremy 4678 sexy 2000 iluv 2000 1234567

claudia NATA girl 2009 sexy 2009 12345678

gangsta ALEX angel 2008 pink 2008 angela

violet JOSE 1992 12345 memyself 12345 angels

andrei BABY 1993 2011 caoimhe 2011 angel1

jennifer MAMA 1994 2007 cintaku 2007 buster

natalie ANGEL 2007 1992 jess 1987 128456

GPT2-Based Models. The original openly available GPT2 model is trained on
a large corpus of internet text. Training data is provided simply as a sequence
of raw, unlabeled text that is fed into the model. For training on passwords,
one can therefore take a dataset of passwords and construct training data by
concatenating shuffled passwords into continuous text. In our report we train
two GPT2-based models:

(i) We finetune (i.e. continue the training of) the pre-trained model with our
password dataset. We expect that the original training gives the model some
background on how language is generally structured as well as a vocabulary
of common words. Finetuning on passwords should then give the model an
understanding of the structures and the vocabulary of passwords and force it
to generate passwords when prompted. We call this model GPT2-Finetuned
or GPT2F;

(ii) The other model only uses the architecture of GPT2 and trains a randomly
initialized model from scratch. A concern using a pre-trained and finetuned
model is whether the model resorts back to generating regular English text
when faced with certain prompts, this problem will not appear with a model
trained from scratch since all the text it has ever known are passwords. We
call this model GPT2-Scratch or GPT2S.

We train the model using an openly available implementation of GPT2,1 with
the default gpt2 2 model as pre-trained base and default hyperparameters. The
model is therefore a 12 layer, 12 attention-head model with latent dimension
768, maximum sequence length of 1024 and a vocabulary size of 50257. GPT2
applies byte-pair encoding trained on general English text to tokenize text [29].

4.3 Analysis of Generated Passwords

In Table 1 we compare the most common passwords generated by our models
along with the most commonly generated passwords by the comparison methods.
1 https://huggingface.co/transformers/model doc/gpt2.html.
2 https://huggingface.co/transformers/pretrained models.html.

https://huggingface.co/transformers/model_doc/gpt2.html
https://huggingface.co/transformers/pretrained_models.html

Advances in Password Recovery Using Generative Deep Learning Techniques 21

l8

l6
d2 d8 l1
0 l9

l7
d2

l8
d2 l7 d7

l4
d4 d1
0

l6
d4 l6

l5
d4

l6
d3

Password Pattern

0

10%

pwnd
vae

gpt2s

Fig. 1. Statistics on password structure for ‘pwnd’ dataset and passwords generated
by models trained on ‘pwnd’.

We observe that each model and training dataset generates a unique set of
password candidates.

While the GPT2-based models trained on ‘pwnd’ commonly generate year
numbers and short sequences of digits, the equivalent models trained on ‘rockyou’
produce strings that generally look more like real words that one might com-
monly find as a password or password substring. The VAE model focuses for
both training datasets on names, with the ‘rockyou’ model generating lowercase
names and the ‘pwnd’ model prefering all-caps strings. Finally, for the PassGAN
model implemented on the ‘rockyou’ training data. we observe a combination of
simple number strings containing some variation of 12345 and character strings
based on the substring angel. In general the most common passwords seem
similar to each other, with less variance as observed for the other models when
trained on ‘rockyou’.

Additionally, to estimate whether our trained model follow the distribution
of the empirical dataset (the training set), we introduce PCFG-like statistics
[31] – password password!23 is split into pure segments as L8S1D2 where L is
alpha character, S is special symbol character and D is a digit.

The most common password structure for the ‘pwnd’ dataset is l8 (see Fig. 1)
with almost 20% of the whole dataset. The GPT2S model successfully matches
the number of passwords with structure l8. For the rest of the password struc-
tures the GPT2S and the VAE model perform roughly the same and approxi-
mately match the underlying empirical distribution.

4.4 Password Guessing Performance

To evaluate the power of our password generation methods we match generated
passwords to a predefined test set. As mentioned in Sect. 4.1, given a dataset of
passwords we split into train and test (80%/20%) and use the train set to train
the deep learning text generation model. Once the model is trained we generate
a fixed number of passwords (in our experiments up to 109). We are interested
in the number (both total and as ratio) of generated passwords that appear in
the test set.

Table 2 presents all the deep models trained on the ‘rockyou’ or ‘pwnd’
dataset and evaluating on the full ‘linkedin’, ‘myspace’, ‘yahoo’, ‘seclist’,

22 D. Biesner et al.

Table 2. Evaluate the model password-matching performance on all datasets with 109

generated passwords. (*) Models trained on the ‘rockyou’ dataset; (**) Models trained
on ‘pwnd’ dataset. Evaluation is done on the full size of the dataset except for the
‘rockyou’ and ‘pwnd’ where the models are evaluated only on the test set (20% of the
full size). Pasquini [26] trained PassGAN on a different 80/20 ‘rockyou’ split and report
23.3%.

Model rockyou linkedin pwnd myspace yahoo seclist skullsec youku zomato

VAE* 44.9% 21.8% 15.4% 62.5% 47.3% 57.4% 32.1% 13.8% 20.3%

PassGAN* 15.9% 6.8% 4.7% 24.6% 19.0% 30.7% 13.6% 5.1% 8.3%

GPT2F* 45.1% 20.3% 14.7% 65.8% 47.6% 55.3% 31.1% 11.8% 18.6%

GPT2S* 41.7% 18.7% 13.9% 61.1% 45.0% 53.6% 31.0% 13.4% 17.8%

VAE** 26.7% 13.5% 14.6% 44.7% 33.1% 46.2% 24.8% 9.7% 16.5%

GPT2F** 36.4% 19.9% 22.1% 57.1% 42.4% 56.5% 34.8% 14.4% 24.3%

GPT2S** 37.6% 20.7% 22.7% 58.3% 43.7% 58.0% 36.0% 14.5% 25.3%

‘skullsecurity’, ‘youku’ and ‘zomato’ dataset. In the case of ‘rockyou’ and ‘pwnd’
only the test set is used for evaluation.

First, focusing on the ‘rockyou’ trained models in Table 2 we see that the
PassGAN benchmark is significantly outperformed by VAE and transformer-
based models (up to almost three times on e.g. ‘rockyou’ and ‘linkedin’ datasets).
The improved GAN-architecture and training from [26] reports a 23.3% recovery
performance for a model trained on rockyou evaluated on rockyou. This is a clear
improvement over the PassGAN benchmark from [20] but still does not reach
the latent variable or transformer architectures. On one hand, this demonstrates
how effective model selection may lead to substantial matching improvements; on
the other hand, one might speculate that the direct application of GAN-based
methods is sub-optimal when one works with password datasets with richer
latent structure.

Interestingly, although having a very different structure, the VAE performs
very similarly to the proposed GPT-models, thus suggesting that perhaps some
internal password dataset features (e.g. complexity/margins/topology) are cru-
cially guiding the performance of both approaches.

A similar analysis of the ‘pwnd’ trained models in Table 2 can be brought
forward, where the overall model performance is reduced in comparison to the
‘rockyou’ trained models. Here, in contrast, the transformers seem to have a
clear advantage over the autoencoding method.

These observations illustrate the effect of the training dataset’s generalization
ability - the ‘rockyou’ training appears much richer than the ‘pwnd’ one and,
curiously, renders VAE almost equivalent in performance to the attention-driven
solutions.

Advances in Password Recovery Using Generative Deep Learning Techniques 23

4.5 Comparison to Established Methods

In order to compare our models to the established methods mentioned in Sect. 2,
we evaluate on a third dataset. We use our training split of ‘rockyou’ (80%,
10.4M passwords) to generate new passwords using various established methods
and evaluate on a subset of the ‘linkedin’ dataset (originally 60.7M passwords).
Additionally to the preprocessing mentioned in Sect. 4.1 we remove all entries
that also appear in our ‘rockyou’ training split. We are left with a test set of
47.3M passwords.

Table 3. Results of our evaluation on the ‘linkedin’ dataset (47.3M passwords). All
our models were trained on ‘rockyou’ and generated 109 passwords, all models above
generated 109 passwords or the maximum number of possible combinations from the
‘rockyou’ training split. (*) Numbers taken from [20] for comparison, trained and eval-
uated on different data splits.

Model Unique Passwords Matches

3-gram Markov Model 4.35 × 108 4.27 × 106

Hashcat – best64 6.66 × 108 7.26 × 106

Hashcat – gen2 8.49 × 108 2.55 × 106

PCFG v4.1 9.71 × 108 12.52 × 106

PRINCE v0.22 9.99 × 108 1.65 × 106

FLA* 7.4 × 108 8.29 × 106

PassGAN (ours) 2.95 × 108 3.2 × 106

GPT2S 4.54 × 108 8.85 × 106

GPT2F 4.57 × 108 9.60 × 106

VAE 5.99 × 108 10.3 × 106

For comparison, we train PCFG3 on a non-unique version of the training
split, i.e. passwords appear multiple times in the frequency of the original leak,
and generate 109 passwords. We use Hashcat to apply two rulesets to the training
split of unique passwords. Ruleset best64 contains 64 rules and generates 6.9 ×
108 passwords in total. Ruleset generated2 4 contains 65k rules and generates
an exceedingly large number of password candidates, of which we sample 109

passwords. Both lists are the result of large-scale quantitative evaluations of the
effect of various hand-written and machine generated rules on multiple wordlists,
password datasets and target hashes. We additionally train a simple 3-gram
Markov Model5 on the unique training split and generate 109 passwords. Finally
we use the PRINCE algorithm6 to construct 109 passwords of length 4 to 12
from the ‘rockyou’ training set.
3 https://github.com/lakiw/pcfg cracker.
4 https://github.com/hashcat/hashcat/tree/master/rules/generated2.rule.
5 https://github.com/brannondorsey/markov-passwords.
6 https://github.com/hashcat/princeprocessor.

https://github.com/lakiw/pcfg_cracker
https://github.com/hashcat/hashcat/tree/master/rules/generated2.rule
https://github.com/brannondorsey/markov-passwords
https://github.com/hashcat/princeprocessor

24 D. Biesner et al.

Additionally we compare to the FLA [25] experiments done in [20]. Note that
the model is trained on a ‘rockyou’ split of 9.9M passwords, evaluated on ‘linkedin’
test set of 40.6M passwords, both only containing passwords ≤10 characters.

For our models, we train on the ‘rockyou’ training split, generate 109 pass-
words each and count the matches in the ‘linkedin’ test data. Table 3 shows the
results. We first observe that all trained models recover a significant amount of
passwords from the ‘linkedin’ test data. Ranging from 3.2 (PassGAN) to 10.3M
(VAE) there is large variance in the performance of the individual models. For
these models we additionally observe a correlation between number of unique
generated passwords and number of matches.

Both implementations of VAE and GPT2 respectively achieve very high
matching results, with the character-based VAE representing the top-performer
with 10.3M matches. Only the probabilistic PCFG algorithm can surpass this
model by another 20%. The VAE and GPT2 models additionally score higher
than all other comparison methods.

4.6 Operations in Latent Space

The learned latent space by the encoder imposes geometric connections among
latent points that have some semantic similarity in the data space. This means
that similar points in data space have latent representation that are close to each
other. This property can be used also for password generation. Let us assume
that we have the password veronica2296 and we want to generate variants
of this passwords. To this end we encode the password veronica2296 into its
latent representation zt. We parametrize the posterior using the zt as mean
(µ = zt), sample latent codes from that region, zi ∼ N (µ, σI) with σ = 0.001,
and then generate passwords by passing the latent codes to the decoder. The
results from this task are presented in Table 4. One can see that most of the
passwords generated from this region contain the word veronica in combination
with different number or variants of the name veronica (e.g. veronico) and a
number. This shows that our models have learned semantically meaningful latent
space given the training set.

Table 4. Latent space models allow for conditioning generation on prior informa-
tion. Left: Samples with latent representation close to the latent representation of
veronica2296. Right: Conditional generation of passwords. We condition the genera-
tion on ***love***.

veronica2286 veronica296

veronica22U6 veronic22259

verogama2296 veronica2269

veroga_a2986 veronic2205

verosgaj2!98 vertinac2219

veronica2229 veroicata22U

veroneza2269 veron_ma2295

9alolove71u nublove85/9 miblovenv11

licloverrs9 siclove00me riglover2k

hicloven3ke failoveye4 n2ulovemswo

lyaloveji8 gemloveso1 irolovesor

ltelovejr* vatlover10 mejlovey4u

cetlovesder biolove121 inudlove12

Advances in Password Recovery Using Generative Deep Learning Techniques 25

Having latent representation for each password allows us to also do condi-
tional generation. Let ***love*** be a template password, where * is a place-
holder for any character defined in the vocabulary. We can condition our model
to generate passwords that contain the word ‘love’ in the middle, with three ran-
dom characters as prefix and suffix by encoding ***love*** (representing the *
by an UNK character) and sampling from the region in latent space. In Table 4 we
present some conditionally generated samples. For a further thorough analysis of
conditional password sampling in terms of EM-based algorithms we refer to [26].

5 Conclusion and Future Work

The present work illustrates various deep learning password generation tech-
niques. Conducting a thorough unified analysis we discuss password-matching
capabilities, variability and quality of sampling and robustness in training. On
one hand, we bridge and extend previously established methods based on atten-
tion schemes and GANs; on the other hand, we provide a promising novel app-
roach based on Variational Autoencoders that allows for efficient latent space
modeling and further sampling mechanisms. Lastly, we hope our work will facili-
tate and provide benchmark lines for further deep learning and ML practitioners
interested in the field of password guessing.

In terms of further investigation, the application of deep learning tech-
niques to password generation poses further intriguing questions on the interplay
between classical probabilistic methods and neural networks, where one would
ultimately hope to construct more efficient and reliable domain-inspired pass-
word representation schemes - e.g. based on carefully crafted fragmentations.

Acknowledgement. This project was funded by the Federal Ministry of Education
and Research (BMBF), FZK: 16KIS0818. The authors of this work were supported by
the Competence Center for Machine Learning Rhine Ruhr (ML2R) which is funded by
the Federal Ministry of Education and Research of Germany (grant nos. 01—S18038B,
01—S18038C). We gratefully acknowledge this support.

References

1. Hashcat - advanced password recovery. https://hashcat.net/hashcat/. Accessed 07
Dec 2020

2. Hashcat raking generated2.rule. https://github.com/evilmog/evilmog/wiki/
Hashcat-Raking---generated2.rule. Accessed 07 Dec 2020

3. Have i been pwnd v1. https://hashes.org/leaks.php?id=70. Accessed 07 Dec 2020
4. John the ripper password cracker. https://www.openwall.com/john/. Accessed 07

Dec 2020
5. Linkedin leak. https://hashes.org/leaks.php?id=68. Accessed 07 Dec 2020
6. Myspace leak. https://weakpass.com/wordlist/22. Accessed 07 Dec 2020
7. Rockyou leak. https://weakpass.com/wordlist/90. Accessed 07 Dec 2020
8. Seclist compilation. https://weakpass.com/wordlist/50. Accessed 07 Dec 2020

https://hashcat.net/hashcat/
https://github.com/evilmog/evilmog/wiki/Hashcat-Raking---generated2.rule
https://github.com/evilmog/evilmog/wiki/Hashcat-Raking---generated2.rule
https://hashes.org/leaks.php?id=70
https://www.openwall.com/john/
https://hashes.org/leaks.php?id=68
https://weakpass.com/wordlist/22
https://weakpass.com/wordlist/90
https://weakpass.com/wordlist/50

26 D. Biesner et al.

9. Skullsecurity compilation. https://weakpass.com/wordlist/671. Accessed 07 Dec
2020

10. Troy hunt: Here’s why [insert thing here] is not a password killer. https://www.
troyhunt.com/heres-why-insert-thing-here-is-not-a-password-killer/. Accessed 07
Dec 2020

11. Yahoo leak. https://weakpass.com/wordlist/44. Accessed 07 Dec 2020
12. Youku leak. https://hashes.org/leaks.php?id=508. Accessed 07 Dec 2020
13. Zomato leak. https://hashes.org/leaks.php?id=587. Accessed 07 Dec 2020
14. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks.

In: 34th International Conference on Machine Learning, ICML 2017 (2017)
15. Bowman, S.R., Vilnis, L., Vinyals, O., Dai, A.M., Jozefowicz, R., Bengio, S.: Gen-

erating sentences from a continuous space. arXiv preprint arXiv:1511.06349 (2015)
16. Chanda, K.: Password security: an analysis of password strengths and vulnerabil-

ities. Int. J. Comput. Netw. Inf. Secur. 8, 23–30 (2016)
17. Dell’Amico, M., Michiardi, P., Roudier, Y.: Password strength: an empirical anal-

ysis, pp. 1–9 (2010)
18. Goodfellow, I.J., et al.: Generative adversarial nets. In: Advances in Neural Infor-

mation Processing Systems (2014)
19. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.: Improved

training of wasserstein GANs. In: Advances in Neural Information Processing Sys-
tems (2017)

20. Hitaj, B., Gasti, P., Ateniese, G., Perez-Cruz, F.: PassGAN: a deep learning app-
roach for password guessing. In: Deng, R.H., Gauthier-Umaña, V., Ochoa, M.,
Yung, M. (eds.) ACNS 2019. LNCS, vol. 11464, pp. 217–237. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-21568-2 11

21. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by
reducing internal covariate shift. In: 32nd International Conference on Machine
Learning, ICML 2015 (2015)

22. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

23. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114 (2013)

24. Li, H., Chen, M., Yan, S., Jia, C., Li, Z.: Password guessing via neural lan-
guage modeling. In: Chen, X., Huang, X., Zhang, J. (eds.) ML4CS 2019. LNCS,
vol. 11806, pp. 78–93. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
30619-9 7

25. Melicher, W., et al.: Fast, lean, and accurate: modeling password guessability using
neural networks. In: 25th USENIX Security Symposium (USENIX Security 2016),
Austin, TX, pp. 175–191. USENIX Association, August 2016

26. Pasquini, D., Gangwal, A., Ateniese, G., Bernaschi, M., Conti, M.: Improving pass-
word guessing via representation learning. In: 42nd IEEE Symposium on Security
and Privacy (Oakland) (2021)

27. Rabiner, L., Juang, B.: An introduction to hidden Markov models. IEEE ASSP
Mag. 3(1), 4–16 (1986)

28. Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I.: Gpt2. Open
AI (2019)

29. Sennrich, R., Haddow, B., Birch, A.: Neural machine translation of rare words with
subword units. arXiv preprint arXiv:1508.07909 (2015)

30. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information
Processing Systems (2017)

https://weakpass.com/wordlist/671
https://www.troyhunt.com/heres-why-insert-thing-here-is-not-a-password-killer/
https://www.troyhunt.com/heres-why-insert-thing-here-is-not-a-password-killer/
https://weakpass.com/wordlist/44
https://hashes.org/leaks.php?id=508
https://hashes.org/leaks.php?id=587
http://arxiv.org/abs/1511.06349
https://doi.org/10.1007/978-3-030-21568-2_11
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1312.6114
https://doi.org/10.1007/978-3-030-30619-9_7
https://doi.org/10.1007/978-3-030-30619-9_7
http://arxiv.org/abs/1508.07909

Advances in Password Recovery Using Generative Deep Learning Techniques 27

31. Weir, M., Aggarwal, S., de Medeiros, B., Glodek, B.: Password cracking using
probabilistic context-free grammars, pp. 391–405 (2009)

32. Zagoruyko, S., Komodakis, N.: Wide residual networks. In: British Machine Vision
Conference 2016, BMVC 2016 (2016)

	Advances in Password Recovery Using Generative Deep Learning Techniques
	1 Introduction and Motivation
	2 Related Work
	3 Models
	4 Results
	4.1 Data
	4.2 Experimental Setup
	4.3 Analysis of Generated Passwords
	4.4 Password Guessing Performance
	4.5 Comparison to Established Methods
	4.6 Operations in Latent Space

	5 Conclusion and Future Work
	References

