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Abstract. The incompleteness of Knowledge Graph (KG) stimulates
substantial research on knowledge graph completion, however, current
state-of-the-art embedding based methods represent entities and rela-
tions in a semantic-separated manner, overlooking the interacted seman-
tics between them. In this paper, we introduce a novel entity-relation
interaction mechanism, which learns contextualised entity and relation
representations with each other. We feature entity interaction embed-
dings by adopting a translation distance based method which projects
entities into a relation-interacted semantic space, and we augment rela-
tion embeddings using a bi-linear projection. Built upon our interaction
mechanism, we experiment our idea using two decoders, namely a simple
Feed-forward based Interaction Model (FIM) and a Convolutional net-
work based Interaction Model (CIM). Through extensive experiments
conducted on three benchmark datasets, we demonstrate the advantages
of our interaction mechanism, both of them achieving state-of-the-art
performance consistently.

Keywords: Knowledge graph completion · Link prediction ·
Knowledge inference

1 Introduction

Extensive applications [14,25] of real-world employ knowledge graphs, consisting
of abundant facts [1,2,9]. Specifically, each fact is denoted by a triple, (h, r, t),
representing a head entity h has relation r with a tail entity t. In real KG
applications, annotated facts are sparse and many facts remain unrevealed, thus
requiring to be completed or inferred using the existing facts, i.e., Knowledge
Graph Completion (KGC) [8,17,23]. One of the most common KGC tasks is link
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Fig. 1. An example of a knowledge graph. The nodes represent entities while the edges
represent relations. The dashed red circle represents the entity to be predicted in a
given incomplete triple. (Color figure online)

prediction that infers a missing entity in an incomplete triple, e.g. (h, r, ?), or
vise versa (?, r, t).

Generally, tackling link prediction requires KGC model understanding the
semantics of entities and relations, as well as the structure information of existing
graph. For example, in Fig. 1, when inferring the tail entity in the incomplete fact
(Ben Affleck, IsOlderBrotherof, ?), one can imply that the tail entity should be
a person rather than other type of entity given the semantic information of rela-
tion IsYoungerBrotherof, i.e. either Casey Afflect or Kenneth Lon in the current
KG. Such semantics can usually be discovered by existing SOTA KGC methods
[8,16], however, this is not enough to distinguish these two candidates. In fact,
Casey Afflect is “younger than” a person, given the semantics of the relation
IsYoungerBrotherof, which makes Casey Afflect more likely to be the candidate.
That is the semantics of the relation, as the contextual information of the entity,
can provide sufficient information for learning the entity representations, while it
is often omitted by the existing embedding methods, e.g. translation-based meth-
ods. On the other hand, when learning relation representations, the semantic of
context entity can also be helpful. Furthermore, semantics of the mutual learning
procedure will be aggregated. The idea of contextualised representations have
been successfully applied to NLP applications [5,15], however not well-studied
for KGC. Therefore, in this paper, we test the hypothesis that learning contextu-
alised representations of entity and relation can help KGC models better utilise
and understand the semantics of surrounding entities and relations.

Recently, [13] considers a intuitive tensor factorization model that describes
the semantic relevance of entities via a bi-linear transformation based on the
entity relationship. And [22] relaxes the bi-linear transformation with a diagonal
matrix. Inspired by their approaches of bi-linear inter-relation, to capture a
contextual representation, we extend the idea of bi-linear interaction to entities
and relations, where entity and relation are not only represented by their original
embeddings but also contextualised with each other within the fact triple. And
finally, the model is capable of learning contextualised representations for entity
and relation.
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Following the above inspirations, in this paper, we propose a novel interaction
mechanism to better learn the contextualised entity and relation representations.
Our interaction mechanism (1) adopts the idea of translational models [3,8], i.e.,
we project the relation embedding into the entity space and integrate it with the
entity embedding to form an interacted entity embedding, (2) takes advantages
of bi-linear models for their semantic interaction [13,20,22], i.e., we take an
element-wise Hadamard product over entity embedding, relation embedding and
entity interactive embedding to form an interacted relation embedding. Based
on these two interaction mechanisms, we explore two decoders: a state-of-the-
art Convolutional Neural Net (CNN) and a feed-forward neural network, and we
experiment with link prediction tasks across different benchmarks.

We summarize our main contributions as follows:

1. We propose a novel entity-relation interaction mechanism and experiment
with a CNN and a feed-forward Interaction Models (CIM and FIM) based on
the proposed interaction mechanism.

2. Our CIM achieves the SOTA performance on all of FB15k-237, WN18RR
and YAGO3-10 datasets for link prediction task. Even without CNN, the
simple FIM can achieve comparable performance with previous SOTA meth-
ods consistently, demonstrating the advantages of the proposed interaction
mechanism.

2 Related Works

Translational Methods. Translational model is an important founder in KGC. Its
main idea is based on translation distance, projecting both entities and relations
into the same embedding space and utilizing a distance based reductive equation
to reflect the translation constraint. Among them, TransE is the origin, which
holds a translation distance for the relation between the corresponding head and
tail entities for the triple (h, r, t), that is, h + r ≈ t [3]. Similarly, TransR also
applies the translation distance but by projecting the embeddings of head and
tail entities from entity space into relational space, and then uses translation
distances for relations hr + r ≈ tr [8].

Bi-linear Methods. Bi-linear models describe the semantic relevance of entities
by a bi-linear transformation based on the relationship between entities, and it
can effectively describe the coordination between entities. RESCAL expresses the
relation by full rank matrix and defines the scoring function as fr(h, t) = h�Mrt
[13]. To avoid overfitting, Distmult relaxes the constraint on the relation matrix
and replaces it with a diagonal matrix of relation by fr(h, t) = h�Diag(Mr)t
[22], however, only symmetric relations can be well studied.

Convolutional Network Methods. Beneficial from the powerful ability of feature
extraction, many recent methods are developed upon CNN. ConvE introduces an
CNN based model to KGC, which applies a 2D convolution network to extract
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Fig. 2. An illustration of the proposed interaction mechanism. We take two different
methods to get the interaction embedding for entity and the interaction embedding for
relation, then we construct the interaction unit.

features [4]. Differently, ConvKB deploys 1D convolution filters rather than 2D
filters and has been declared to be superior to ConvE [12]. However, the per-
formance of ConvKB has been revealed inconsistent across different datasets
and the evaluation protocol of ConKB is concerned [18]. To take advantages of
the translation property, Shang et al. proposes ConvTransE [16]. CrossE makes
attempts to simulate the crossover interactions between entities and relations
[24] by considering the interaction as two parts: the interaction from relations
to entities and vice versa. InteractE captures heterogeneous feature interactions
through permutations over the embedding structure [21]. It realigns components
from both entities and relations to form a so-called feature permutation followed
by decoding procedure with ConvE which is quite different from our method
that explores extra latent features from real interactions between entities and
relations.

Graph Network Methods. Recently, more works [11,16] aggregate inherent local
graph neighbourhood to encode embeddings of entities. SACN [16] builds entity
embedding matrix by a weighted GCN encoder but pays little attention on
encoding relation embeddings before feeding them into the ConvTransE decoder.
KBGAT [11] utilizes a simple transformation to the initial relation embedding for
calculating the relative attention value for single triple to compute new embed-
dings of entities so that contextual semantics can hardly make contribution to
relation embeddings beyond 2-hop neighbors. Moreover, the attention mecha-
nism is questioned because of a data leakage problem [18].

3 Methodology

We apply an interaction method to learn contextualised entity and relation rep-
resentations. Firstly, we define the interaction embeddings for both entity and
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relation, which constitute an interaction unit as feature of the triple. The inter-
action unit integrates the superiorities of both translational models and bi-linear
models by combining the representations of general embeddings and interaction
embeddings. We then feed the interaction unit into the decoder to make a pre-
diction. In this paper, we utilise two types of decoders, a feed-forward based
model and a convolutional network based model to test our hypothesis.

3.1 Interaction Mechanism

The interaction mechanism is illustrated in Fig. 2. In this paper, we focus on the
link prediction task, that is, given only one entity and the relation of a triple,
we need to predict the other entity. We build interaction embeddings for both
the given entity and the relation accordingly. For the convenience, we take the
head entity h as the known entity and the tail entity t as the predicting entity
in the following of this section.

Entity Interaction Embedding. Inspired by translation based models, we
notice the strong interrelations among the basic elements of a triple: head entity,
relation, and tail entity. For example, aiming at the task of predicting tail entity
for a masked triple (h, r, ?), we project the relation embedding r into the entity
space, and use a translation transformation over the embedding of head entity
h. The interaction embedding for entity is formulated as:

hI = h + Wer, (1)

where We denotes a trainable transferring matrix used to project the embedding
of relation into the entity space. Intuitively, it also delivers information hidden
in r to h.

We can describe Eq. 1 in terms of semantic spatial features. We divide the
whole semantic space into entity space and relation space. When the head entity
h is taken as a central node and the edge corresponding to relation r is con-
sidered, all neighbor nodes connected to the central via the edge should have
features similar to hI in the entity space, as is illustrated in Fig. 2.

Relation Interaction Embedding. Different from entity interaction embed-
ding, we take inspirations from bi-linear models to construct relation interaction
embedding. Here, we utilize Hadamard product, an element-wise multiplication
operator, to formulate the interaction embedding for relation:

rI = h ◦ r ◦ hI , (2)

where ◦ denotes Hadamard product.
One advantage of applying bi-linear function is that the interacted embedding

is capable of representing the potential semantic information of entities and
relations, which tends to obtain deep level interactions and inter-relationships
between entities and relations. Note that all the embeddings above are vectorised
in the same dimension h,hI , r, rI ∈ R

E , where E is dimension of the embedding.
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Interaction Unit. To enhance the features of latent interactions between enti-
ties and relations, we concatenate the two general embeddings h and r and the
two interaction embeddings hI and rI to preserve more information. Finally, the
interaction unit is formulated as:

U = concat([h, r,hI , rI ]) ∈ R
4×E . (3)

The interaction unit is further served as an input of the decoder models. By
utilizing the interaction mechanism, we aim to make more information interac-
tion of entity and relation directly from the embedding level, so that our models
are expected to be more robust than having them separated in their own seman-
tic spaces.

Fig. 3. An illustration of the two proposed methods, CIM and FIM. Both CIM and
FIM take the proposed interaction unit as the input and utilize a convolutional neural
network and a feed-forward neural network, respectively.

3.2 Interaction Embedding Decoders

Based on our interaction mechanism, we propose two methods to decode the tail
entity.

Feed-Forward Neural Network Based Interacted Model (FIM). The
first one is a simple feed-forward neural network based interacted model. The
overall architecture of FIM is depicted in Fig. 3.

Taking the interaction unit U as the input, the model firstly reshapes it into
an 1d vector, and then puts it into a fully-connected (FC) layer to produce a
hidden representation VH .

Û = vec(U) (4)

VH = FC(Û) = relu(WfcÛ + bfc), (5)

where vec denotes the vectorization operator, FC denotes the fully-connected
layer with the activation function relu, producing VH ∈ R

D, where D is the
dimension of the hidden layer.
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Then we transform VH into a predicted embedding V ∈ R
E parameterised

by a transformation matrix WF ∈ R
D×E and a non-linear function f :

V = f(VHWF). (6)

And V is the acquired prediction vector for the target entity of the task.
Finally, we measure the similarity between the prediction embedding and the

candidate tail entity embedding using dot product, formulated as V · t, where
t denotes the embedding of a tail entity. And the overall scoring function of a
triple is summarised as following:

f (FC(vec([h, r,hI , rI ]))) · t. (7)

For training, we calculate the scoring function for all entities and minimise
the cross-entropy loss between the score logits (with a softmax) and the true
label. For inference, we choose the entity with high score as the predicted entity.

CNN Based Interacted Model (CIM). We also propose a novel CNN based
interacted model CIM. We take advantages of previous ConvTransE [16], and
the main idea of our CIM is also illustrated in Fig. 3.

Based on the interaction unit U, we take advantages of the convolutional
neural network for its computation efficiency and powerful ability to learn fea-
tures. We first apply the convolutional filters on U and generate the output C
as follow:

C = conv(U), (8)

where conv denotes a convolution operator. The convolution operator uses NC

channels, each applying a 1D convolutional filter with size 4×k, where k is kernel
width. Specifically, the c-th kernel is parameterised by ωc (ωc is trainable), and
the convolution utilized here is as follows:

mc(n) =
k−1∑

τ=0

3∑

j=0

ωc(τ, j)Ûj(n + τ), (9)

where the Û over a vector denotes a padding version of the corresponding vector,
and n indexes the entries in the output vector. And the output vector correspond-
ing to the c-th kernel is formulated as Mc = [mc(0), · · · ,mc(E−1)]. Considering
the channel size NC , our output of the convolution C is actually a combination
of different Mc, and C ∈ R

E×NC .
To predict the tail entity from a masked triple (h, r, ?), we resize C to a

vector:
V = f(vec(C)WC), (10)

where vec again denotes reshaping operator to reshape a matrix shaped as
R

E × NC into a vector V ∈ R
ENC , WC denotes the parameter for the linear

transformation (WC ∈ R
ENC× E), and f denotes a non-linear function.
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Similar to FIM, we present the overall scoring function for CIM, formulated
as follows:

f (vec(conv([h, r,hI , rI ]))) t. (11)

Overall, the model aims to minimise the same cross-entropy loss for training.
Note that we only take the head entity h as the known entity as an example,

and we can also apply our method to a tail entity t when predicting h.

4 Experiments

4.1 Benchmark Dataset

We experiment link prediction task on three commonly accepted benchmarks:
FB15k-237, WN18RR and YAGO3-10.

Table 1. Results on link prediction over FB15k-237, WN18RR and YAGO3-10. The
best score is in bold and second best score is underlined. Since both CIM and FIM
generalize CrossE while CIM generalizes ConvTransE alone, we highlight performance
comparison among the four methods specially in the table above. Note that Hits@3 is
missing for YAGO3-10, as it is not reported by other methods.

Model FB15k-237 WN18RR YAGO3-10

Hits MR MRR Hits MR MRR Hits MR MRR

@10 @3 @1 @10 @3 @1 @10 @1

DistMult 0.419 0.263 0.155 254 0.241 0.491 0.439 0.389 5,110 0.425 0.540 0.240 5,926 0.340

ComplEx 0.419 0.263 0.152 248 0.240 0.507 0.458 0.411 5,261 0.444 0.550 0.260 6,351 0.360

R-GCN 0.417 0.258 0.153 – 0.248 – – – – – – – – –

ConvE 0.491 0.350 0.239 246 0.316 0.480 0.430 0.390 5,277 0.460 0.660 0.450 2,792 0.520

RotatE 0.533 0.375 0.241 177 0.338 0.571 0.492 0.428 3,340 0.476 – – – –

SACN 0.536 0.385 0.261 – 0.352 0.540 0.480 0.430 – 0.470 – – – –

InteractE 0.535 – 0.264 172 0.354 0.528 – 0.430 5,202 0.463 0.687 0.462 2,375 0.541

CrossE 0.474 0.331 0.221 – 0.299 – – – – – – – – –

ConvTransE 0.513 0.365 0.240 – 0.331 0.520 0.470 0.430 – 0.460 – – – –

FIM (our) 0.534 0.383 0.256 201 0.348 0.530 0.484 0.442 4,332 0.472 0.688 0.473 3,017 0.550

CIM (our) 0.538 0.390 0.265 176 0.355 0.543 0.494 0.446 4,531 0.478 0.693 0.485 1,969 0.559

The FB15k-237 [19] dataset contains extensive knowledge base triples and
has been commonly used in link prediction task. Consisting of 14, 541 entities
and 237 relations, the dataset is a subset of FB15k [3] and all inverse relations
are removed.

The WN18RR [4] dataset contains 40, 943 entities and 11 relations, derived
from WordNet [10] and WN18 [3]. And all inverse relations are removed.

It has been revealed [19] that FB15k and WN18 suffer from test leakage
through inverse relations: a large number of test triples can be obtained simply
by inverting triples in the training set. To perform the evaluation more rigorously,
we prefer FB15k-237 and WN18RR, where inverse relations and inverse triples
have been removed.
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The YAGO3-10 [9] dataset is a subset of YAGO3 which includes at least
10 relations involved for each entity. YAGO3-10 contains extensive relations
with high in-degrees and out-degrees. Since the meanings of these head and tail
entities may differ greatly, modeling on YAGO3-10 is more challenging.

4.2 Evaluation Protocol

The reported performance is evaluated on 5 standard metrics: proportion of
correct triples ranked at top 1, 3 and 10 (Hits@1, Hits@3, and Hits@10), Mean
Rank (MR), and Mean Reciprocal Rank (MRR). The Hits@N and MRR are the
higher the better, while the MR is the lower the better. For all experiments,
we report averaged results across 5 runs, and we omit the variance on all the
metrics as they are not significant.

4.3 Main Results

Performance Comparison. To evaluate our CIM and FIM, we compare them
with a range of knowledge graph embedding methods, including current state-of-
the-art methods. The results over three benchmark datasets are listed in Table 1.

Fig. 4. The convergence study of FIM, CIM and ConvTransE by epochs on FB15k-237
validation set. It takes more than 150 epochs for ConvTransE to reach its convergent
performance, but both our proposed CIM and FIM need fewer than 80 epochs. (Color
figure online)

Overall, compared to the existing SOTA models, our CIM outperforms them
over all three datasets on Hits@N and MRR, and it also achieves comparable
performances on MR. On the other hand, FIM is also competitive with these
methods on all metrics over all datasets. This demonstrates the advantages of
our proposed methods.

Interaction Mechanism. Since the basic idea of our interaction mechanism is
similar to CrossE [24], to explore the interaction between entities and relations,
we focus on performance comparisons among FIM, CIM and CrossE. On FB15k-
237, both CIM and FIM outperform CrossE on all metrics. On average, our CIM
has a 17.5% performance improvement, and our FIM has a 15.2% performance
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improvement. Based on the improvements of the metrics, we can easily find out
our novel interaction mechanism is more effective compared to CrossE, and even
our FIM with a simple feed-forward neural network can make a huge boost.

We also compare against ConvTransE [16] with the proposed CIM since CIM
also utilises the CNN structures. We observe that CIM outperforms ConvTransE
across all metrics. On average, it has a 7.4% performance improvement over
FB15k-237 and a 4.2% higher performance over WN18RR. In fact, our CIM
adopts the same CNN module as ConvTransE does, and the only difference is
that CIM takes our proposed interaction mechanism as the input feature, which
aims to strengthen the interactions between entities and relations but cannot be
fully learnt by the CNN model, empirically. From the metrics comparison, it is
easy to find out our innovative interaction mechanism functions well.

On the other hand, we observe that compared to ConvTransE, our FIM also
performs well, which only uses a feed-forward net on our interaction embeddings.
On average, it has a 5.2% performance improvement over FB15k-237 and a 2.6%
higher performance over WN18RR. This shows that our interaction mechanism
can actually encode more information, which cannot be captured by CNN, and
that our interaction mechanism is still compatible with CNN models. Even for
some metrics, our FIM can outperform the strong CNN baseline ConvTransE,
which also demonstrates the superiority of our interacted models.

Fig. 5. t-SNE plots of learned entity embeddings by our CIM and ConvTransE over
FB15k-237 dataset under two settings. We plot 5 most frequent relations with 1, 000
entities for each relation.
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Comparing with GCN-Based SOTA. As shown in Table 1, SACN [16] is
also a competitive baseline and even it is the second best on several metrics.
It is built on a weighted graph convolutional network (WGCN) as an encoder,
which can help improve performance but at an extra computational expense [16]
that it needs to load all the nodes and edges of a graph for training, as well
as high computational complexity. By contrast, both of our FIM and CIM are
computationally friendly and achieve comparable or even better performance as
SACN. On the other hand, our methods are in a fully end-to-end manner, which
is much easier for re-training when the KG is modified or evolved. Above all,
these observations illustrate the practical and advantages of our models from
many perspectives.

4.4 Analysis and Discussion

Convergence Analysis. Figure 4 shows the convergence study of FIM (the red
line) and CIM (the yellow line) compared to ConvTransE (the green line) on
FB15k-237 validation set. For convergence analysis, we utilize the Adam opti-
mizer [6] and the same settings such as learning rate for all three models. We
observe that both our CIM and FIM converge faster than ConvTransE, and
achieve better performance. It takes more than 150 epochs for ConvTransE to
reach its convergent performance, while both our proposed CIM and FIM need
fewer than 80 epochs. The converge difference between our models and Con-
vTransE proves that our interaction mechanism can provide better representa-
tions for models. And after a period of training (after 100 epochs), as is depicted
in Fig. 4, our FIM tends to descend slightly, which seems to be overfitting, while
the CIM does not. Convincingly, the CNN based CIM is empirically better than
the fully-connected layer based FIM.

Can Our Methods Learn Better Embeddings? To understand how well our meth-
ods learn interactions between entities and relations, we visualise the learned
embeddings. We choose the five most frequent relations and randomly sample
1000 corresponding triples for each relation on FB15k-237 test set. To present in
a 2D view, we utilize t-SNE [7] on these learned embeddings. Specially, we com-
pare our CIM with ConvTransE since they both generalise a CNN architecture
while CIM has an additional interaction mechanism.

Figure 5a shows the results of using the embeddings of tail entities only.
Obviously, grouped by relations, tail entity embeddings trained by our CIM can
be easily differentiated and separated from each other, while there is no such
pattern for ConvTransE. Since tail entities corresponding to the same relation are
supposed to have similar features in the entity space, it is easy to evaluate that
the embeddings learned by CIM are better than those learned by ConvTransE
in reflecting their semantics.

Figure 5b shows the results of using the concatenated embeddings of both
head and tail entities, that is, the concatenation of the triples with the rela-
tion masked. Evidently, although the scatters plotted only contain information
of entities, our CIM implicates information of relations since clusters of entity
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concatenation embeddings corresponding to different relations separate from
each other, while ConvTransE can hardly make it. Because the main difference
between CIM and ConvTransE lies in our interaction mechanism, we intuitively
show the advantages of our interaction mechanism in the embedding process.

5 Conclusion

Introducing a novel interaction mechanism to learn the contextualised repre-
sentation of entities and relations, we alleviate the limitations of existing KGC
methods. Based on the proposed interaction mechanism, we build two effective
models, FIM and CIM, utilizing a feed-forward neural network and a convolu-
tional neural network respectively. Through extensive experiments and sufficient
comparisons, we demonstrate that considering the contextualised representations
of entity and relation, our models achieve the new SOTA performance in link
prediction task. Furthermore, we evaluate and prove the necessity of our inter-
action mechanism in performance improvement.
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