
An Empirical Study of the Expressiveness
of Graph Kernels and Graph

Neural Networks

Giannis Nikolentzos1,2(B), George Panagopoulos1, and Michalis Vazirgiannis1,2

1 École Polytechnique, Palaiseau, France
2 Athens University of Economics and Business, Athens, Greece

{nikolentzos,mvazirg}@lix.polytechnique.fr,
george.panagopoulos@polytechnique.edu

Abstract. Graph neural networks and graph kernels have achieved
great success in solving machine learning problems on graphs. Recently,
there has been considerable interest in determining the expressive power
mainly of graph neural networks and of graph kernels, to a lesser extent.
Most studies have focused on the ability of these approaches to dis-
tinguish non-isomorphic graphs or to identify specific graph properties.
However, there is often a need for algorithms whose produced graph rep-
resentations can accurately capture similarity/distance of graphs. This
paper studies the expressive power of graph neural networks and graph
kernels from an empirical perspective. Specifically, we compare the graph
representations and similarities produced by these algorithms against
those generated by a well-accepted, but intractable graph similarity func-
tion. We also investigate the impact of node attributes on the perfor-
mance of the different models and kernels. Our results reveal interesting
findings. For instance, we find that theoretically more powerful models do
not necessarily yield higher-quality representations, while graph kernels
are shown to be very competitive with graph neural networks.

Keywords: Expressive power · Graph neural networks · Graph kernels

1 Introduction

In recent years, graph-structured data has experienced an enormous growth in
many domains, ranging from chemo- and bio-informatics to social network anal-
ysis. Several problems of increasing interest require applying machine learning
techniques to graph-structured data. Examples of such problems include predict-
ing the quantum mechanical properties of molecules [13] and modeling physical
systems [2]. In the past years, the problem of machine learning on graphs has
been governed by two major families of approaches, namely graph kernels (GKs)
[26] and graph neural networks (GNNs) [35].

Recently, much research has focused on measuring the expressive power of
GNNs [1,5,6,19,22–24,36]. On the other hand, in the case of GKs, there was a
limited number of similar studies [17]. This is mainly due to the fact that the
c© Springer Nature Switzerland AG 2021
I. Farkaš et al. (Eds.): ICANN 2021, LNCS 12893, pp. 139–150, 2021.
https://doi.org/10.1007/978-3-030-86365-4_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86365-4_12&domain=pdf
https://doi.org/10.1007/978-3-030-86365-4_12

140 G. Nikolentzos et al.

landscape of GKs is much more diverse than that of GNNs. Indeed, although
numerous GNN variants have been recently proposed, most of them share the
same basic idea, and can be reformulated into a single common framework,
so-called message passing neural networks [13]. These models employ a mes-
sage passing procedure to aggregate local information of vertices and are closely
related to the Weisfeiler-Lehman test of graph isomorphism, a powerful heuristic
which can successfully test isomorphism for a broad class of graphs.

When dealing with learning problems on graphs, a practitioner needs to choose
one GNN or one GK for her particular application. The practitioner is then faced
with the following question: Does this GNN variant or GK capture graph similar-
ity better than others? Unfortunately, this question is far from being answered.
Most of the above studies investigate the power of GNNs in terms of distinguish-
ing between non-isomorphic graphs or in terms of how well they can approximate
combinatorial problems. However, in graph classification/regression problems, we
are not that much interested in testing whether two (sub)graphs are isomorphic
to each other, but mainly in classifying graphs or in predicting real values associ-
ated with these graphs. In such tasks, it has been observed that stronger GNNs
do not necessarily outperform weaker GNNs. Therefore, it seems that the design
of GNNs is driven by theoretical considerations which are not realistic in practical
settings. Ideally, we would like to learn representations which accurately capture
the similarities or distances between graphs.

A practitioner can then choose an algorithm based on its empirical perfor-
mance. Indeed, GNNs and GKs are usually evaluated on standard datasets derived
from bio-/chemo-informatics and from social media [21]. However, several con-
cerns have been raised recently with regards to the reliability of those datasets,
mainly due to their small size and to inherent isomorphism bias problems [15].
More importantly, it has been observed that the adopted experimental settings
are in many cases ambiguous or not reproducible [8]. The experimental setup is
not standardized across different works, and there are often many issues related
to hyperparameter tuning and to how model selection and model assessment are
performed. These issues easily generate doubts and confusion among practitioners
that need a fully transparent and reproducible experimental setting.

Present Work. In this paper, we empirically evaluate the expressive power of
GNNs and GKs. Specifically, we build a dataset that contains instances of dif-
ferent families of graphs. Then, we compare the graph representations and sim-
ilarities produced by GNNs and GKs against those generated by an intractable
graph similarity function which we consider to be an oracle function that outputs
the true similarity between graphs. We perform a large number of experiments
where we compare several different kernels, architectures, and pooling functions.
Secondly, we study the impact of node attributes on the performance of the dif-
ferent models and kernels. We show that annotating the nodes with their degree
and/or triangle participation can be beneficial in terms of performance in the
case of GNNs, while it is not very useful in the case of GKs. Finally, we investi-
gate which pairs of graphs (from our dataset) lead GNNs and GKs to the highest
error in the estimated similarity. Surprisingly, we find that several GNNs and
GKs assign identical or similar representations to very dissimilar graphs.

An Empirical Study of the Expressiveness of GKs and GNNs 141

2 Related Work

Over the past years, the expressiveness of GKs was assessed almost exclusively
from experimental studies. Therefore, still, there is no theoretical justification
on why certain GKs perform better than others. From the early days of the field,
it was clear though that the mapping induced by kernels that are computable
in polynomial time is not injective [12]. Recently, a framework was developed to
measure the expressiveness of GKs based on ideas from property testing [17]. It
was shown that some well-established GKs such as the shortest path kernel, the
graphlet kernel, and the Weisfeiler-Lehman subtree kernel cannot identify basic
graph properties such as planarity or bipartitness.

With a few exceptions [28], until recently, there has been little attempt to
understand the expressive power of GNNs. Several recent studies have investi-
gated the connections between GNNs and different variants of the Weisfeiler-
Lehman (WL) test of isomorphism. For instance, it was shown that stan-
dard GNNs do not have more power in terms of distinguishing between non-
isomorphic graphs than the WL algorithm [22,36]. Morris et al. proposed in [22]
a family of GNNs which rely on a message passing scheme between subgraphs
of cardinality k, and which have exactly the same power in terms of distinguish-
ing non-isomorphic graphs as the set-based variant of the k-WL algorithm. In a
similar spirit, Maron et al. introduced in [19] k-order graph networks which are
at least as powerful as the folklore variant of the k-WL graph isomorphism test
in terms of distinguishing non-isomorphic graphs. These models were also shown
to be universal [20], but require using high order tensors and therefore are not
practical. Chen et al. showed in [5] that the two main approaches for studying
the expressive power of GNNs, namely graph isomorphism testing and invariant
function approximation, are equivalent to each other. Furthermore, the authors
propose a GNN that is more powerful than 2-WL. Based on a connection between
the WL algorithm and first order logic, Barceló et al. characterized in [1] the
expressive power of GNNs in terms of classical logical languages. The impact of
random features on the expressive power of GNNs is considered in [27]. Niko-
lentzos et al. showed in [24] that standard GNNs cannot identify fundamental
graph properties such as triangle-freeness and connectivity, and they proposed a
model that can identify these properties. Other studies take into account all pos-
sible node permutations and produce universal graph representations [6,23]. The
emerging problems become intractable once the number of nodes is large and
they propose approximation schemes to make the computation feasible. Some
recent works have studied the generalization properties of GNNs [11,29,34].

3 Comparing Graphs to Each Other

Formally, for any two graphs G1 = (V1, E1) and G2 = (V2, E2) on n vertices with
respective n×n adjacency matrices A1 and A2, we define a function f : G×G →
R where G is the space of graphs which quantifies the similarity of G1 and G2.
Note that in the literature, this problem is often referred to as graph comparison.

142 G. Nikolentzos et al.

In this paper, we consider a graph comparison function which is not computable
in polynomial time. The function can be expressed as a maximization problem,
and is defined as follows:

f(G1, G2) = max
P∈Π

∑n
i=1

∑n
j=1

[
A1 � PA2P�]

ij

||A1||F ||A2||F (1)

where Π denotes the set of n × n permutation matrices, � denotes the element-
wise product, and || · ||F is the Froebenius matrix norm. For clarity of presenta-
tion we assume n to be fixed (i.e., both graphs consist of n vertices). In order to
apply the function to graphs of different cardinality, one can append zero rows
and columns to the adjacency matrix of the smaller graph to make its number
of rows and columns equal to n. Therefore, the problem of graph comparison
can be reformulated as the problem of maximizing the above function over the
set of permutation matrices. A permutation matrix P gives rise to a bijection
π : V1 → V2. The function defined above seeks for a bijection such that the num-
ber of common edges |{(u, v) ∈ E1 :

(
π(u), π(v)

) ∈ E2}| is maximized. Then, the
number of common edges is normalized such that it takes values between 0 and
1. Solving the above optimization problem for large graphs is clearly intractable
since there are n! permutation matrices of size n. In this paper, we investigate
how different graph comparison/representation learning approaches approximate
the above-defined function from an empirical standpoint.

4 Empirical Evaluation

4.1 Dataset

Since the function defined in (1) is intractable for large graphs, we generated
graphs consisting of at most 9 vertices. Furthermore, each graph is connected
and contains at least 1 edge. We generated 191 pairwise non-isomorphic graphs.
The dataset consists of different types of synthetic graphs. These include simple
structures such as cycle graphs, path graphs, grid graphs, complete graphs and
star graphs, but also randomly-generated graphs such as Erdős-Rényi graphs,
Barabási-Albert graphs and Watts-Strogatz graphs. Table 1 shows statistics of
the synthetic dataset that we used in our experiments. Figure 1 illustrates the
distribution of the similarities of the generated graphs as computed by the pro-
posed measure. There are 191∗192/2 = 18, 336 pairs of graphs in total (including
pairs consisting of a graph and itself). Interestingly, most of the similarities take
values between 0.5 and 0.8.

4.2 Selected Approaches

Suitable GKs and GNNs were selected according to the following criteria: (1)
publicly available implementations, (2) strong architectural differences, (3) pop-
ularity, and (4) peer reviewed. We next present the GKs and GNNs that were

An Empirical Study of the Expressiveness of GKs and GNNs 143

Table 1. Summary of the synthetic
dataset that we used in our experiments.

Synthetic dataset

Max # vertices 9

Min # vertices 2

Average # vertices 7.29

Max # edges 36

Min # edges 1

Average # edges 11.34

graphs 191

Fig. 1. Distribution of similarities between
the synthetically generated graphs.

included into our evaluation. For a detailed description of each kernel and each
GNN, we refer the reader to their respective papers.

We selected the following 6 GKs: (1) random walk kernel (RW) [12], (2) short-
est path kernel (SP) [4], (3) graphlet kernel (GR) [31], (4) Weisfeiler-Lehman
subtree kernel (WL) [30], (5) pyramid match kernel (PM) [25], and (6) Graph-
Hopper kernel [9]. Note that GR can only operate on unlabeled graphs. The rest
of the kernels can handle graphs with discrete node labels, while GraphHopper is
the only kernel that can deal with continuous multi-dimensional node features.

We also selected the following GNNs: (1) GCN [16], (2) GAT [33], (3) 1-GNN
[22], (4) GG-NN [18], (5) GraphSAGE [14], (6) GIN [36], (7) ChebNet [7], (8)
ARMA [3], (9) 1-2-GNN [22], (10) k-hop GNN [24], and (11) Provably Powerful
GNN [19]. To produce graph representations, we use 3 pooling functions, namely
the sum aggregator, the mean aggregator and the max aggregator.

4.3 Baselines

We utilize some simple baselines whose purpose is to understand the extent to
which GKs and GNNs can indeed learn representations that capture graph sim-
ilarity. The first baseline is a function that randomly computes the similarity
of two graphs by sampling a number from [0, 1] with uniform probability. The
second baseline is a constant function (output equal to 1). Using such simple
baselines as a reference is crucial since they can provide feedback on the effec-
tiveness of GKs and GNNs in the considered task. If the performance of a GNN
or a GK is close to that of one of the baselines, that would mean that the
GNN/GK fails to encode accurately graph representations and similarities.

4.4 Experimental Settings

Normalization. As discussed above, the function defined in (1) gives an out-
put in the range [0, 1]. The similarity of two graphs G1 and G2 is equal to
1 if and only if G1 and G2 are isomorphic to each other. We normalize the

144 G. Nikolentzos et al.

obtained kernel values as follows such that they also take values in the range
[0, 1]: kij = kij/

√
kii

√
kjj. where kij is the kernel between graphs Gi and Gj . For

the GNNs, we compute the cosine similarity between the graph representations
of the penultimate layer as follows: z�

i zj/||zi|| ||zj || where zi is the representation
of graph Gi. Note that the ReLU function has already been applied to these
representations, and thus the cosine similarity also takes values between 0 and
1. In fact, the two employed normalization schemes (i.e., for kernels and GNNs)
are equivalent since a kernel value corresponds to an inner product between the
representations of two graphs in some Hilbert space.

Evaluation Metrics. To assess how well the different approaches approximate
the similarity function defined in (1), we employed two evaluation metrics: the
Pearson correlation coefficient and the mean squared error (MSE). The Pearson
correlation coefficient measures the linear relationship between two variables. It
takes values between −1 and 1, while a value of 1 denotes total positive linear
correlation. In our setting, a high value of correlation would mean that the
approach under consideration captures the relationships between the similarities
(e.g., whether the similarity of a pair of graphs is greater or lower than that
of another pair). The second measure, MSE, is equal to the average squared
difference between the estimated values and the actual values. A very small value
of MSE denotes that the derived similarities are very close to those produced by
the function defined in (1). A credible graph representation learning/similarity
approach would yield both a high correlation and a small MSE. Note that the
correlation between the output of a constant function and the output of (1) is
not defined since the values produced by the constant function have a variance
equal to zero.

Hyperparameters. For RW, we set λ to 0.01. For GR, we count all the
graphlets of size 3. For the WL kernel, we choose the number of iterations from
{1, 2, . . . , 6}. For PM, the dimensionality of the embeddings d and the number
of levels L are set equal to 6 and 4, respectively. For the GraphHopper kernel, a
linear kernel is used on the continuous-valued attributes.

For the GNNs, we use 2 neighborhood aggregation layers. For GraphSAGE,
we use the mean function to aggregate the neighbors of a node. For ChebNet,
we use polynomials of order 2, and for ARMA, we set the number of stacks K
to 2 and the depth T also to 2. The hidden-dimension size of the neighborhood
aggregation layers is set equal to 64. We apply the ReLU activation function
to the output of each neighborhood aggregation layer. As mentioned above,
we use 3 common readout functions: sum, mean and max. The output of the
readout function is passed on to a fully-connected layer with 32 hidden units
followed by ReLU nonlinearity. The output of the ReLU function corresponds
to the representation of the input graph (i.e., each graph is represented by a 32-
dimensional vector). For Provably Powerful GNN, we use a network suffix that
consists of an invariant readout function followed by 2 fully connected layers. To
train all neural networks, we use the Adam optimizer with learning rate 0.001.
We set the batch size to 32 and the number of epochs to 100. We store the model
that achieved the best validation accuracy into disk. At the end of training, the
model is retrieved from the disk, and we use it to generate graph representations.

An Empirical Study of the Expressiveness of GKs and GNNs 145

Protocol. For deterministic approaches, we compute the graph similarities once
and report the emerging correlation and MSE. For the remaining approaches
(e.g., GNNs, since their parameters are randomly initialized), we repeat the
experiment 10 times and report the average correlation, the average MSE and
the corresponding standard deviations.

Implementations. For the GKs, we used the implementations contained in the
GraKeL library [32]. For 1-2 GNN, k-hop GNN, and Provably Powerful GNN,
we use the implementations provided by the authors. The remaining GNNs were
implemented with the Pytorch Geometric library [10].

4.5 Results

No Features. In the first set of experiments, we do not use any pre-computed
features, and therefore, the emerging representations/similarities rely solely on
the representational capabilities of the different approaches. Note that all GNNs
except Provably Powerful GNN and most GKs require the nodes to be anno-
tated with either continuous attributes or discrete labels. Therefore, for these
approaches, we annotate each node with a single feature (i.e., the discrete label
1 or the real value 1.0).

For GNNs, we consider two alternatives: (1) we randomly initialize the
parameters of the models and we perform a feedforward pass to generate the
graph representations or (2) we randomly initialize the parameters of the mod-
els, we train the models on some independent dataset and then we perform the
feedforward pass to generate the representations. GKs are, in a sense, unsuper-
vised, and cannot be trained on any dataset. The obtained results for the two
aforementioned cases are illustrated in Fig. 2. Note that in the second case, the
models were trained on the IMDB-BINARY graph classification dataset.

In terms of correlation, 1-GNN and GIN are the best-performing approaches
followed by GG-NN and one variant of Chebnet. The 6 GKs along with 2-hop
GNN and Provably Powerful GNN perform slightly worse than the above models.
In terms of MSE, the GKs outperform in general the GNNs. Notably, some GKs
such as WL and PM achieve very low values of MSE. On the other hand, most
GNNs fail to outperform the random baseline. Specifically, the only models that
outperform this baseline are 1-GNN, 2-hop GNN, GG-NN with sum pooling,
Chebnet with sum pooling and Provably Powerful GNN with max pooling. With
regards to the three pooling functions, the sum operator seems to outperform the
others. Furthermore, it is important to mention that more powerful architectures
(e.g., 1-2-GNN, 2-hop GNN, Provably Powerful GNN) do not necessarily lead to
higher correlation and lower MSE than standard, less expressive GNNs. We next
investigate how the performance of the GNNs changes when the models are first
trained on the IMDB-BINARY dataset. The results are shown in Fig. 2 (Bottom).
We observe that there is a decrease in correlation, and no GNN achieves higher
correlation than the ones achieved by the WL and PM kernels anymore. On the
other hand, the MSE of most GNNs also decreases. For instance, most GNNs
now yield lower MSEs than the random baseline. However, still, GCN, GAT and
GraphSAGE fail to outperform this baseline.

146 G. Nikolentzos et al.

No training

−0.05
0.05
0.15
0.25
0.35
0.45
0.55
0.65
0.75
0.85

C
or
re
la
tio

n

0.00

0.05

0.10

0.15

0.20

RW SP GR WL PM Graph
Hopper

GCN GAT 1−GNN Graph
SAGE

GG−NN GIN ChebNet ARMA 1−2−GNN 2−hop
GNN

Provably
Powerful
GNN

M
SE

Trained on IMDB-BINARY

−0.05
0.05
0.15
0.25
0.35
0.45
0.55
0.65
0.75
0.85

C
or
re
la
tio

n

0.00

0.05

0.10

0.15

0.20

RW SP GR WL PM Graph
Hopper

GCN GAT 1−GNN Graph
SAGE

GG−NN GIN ChebNet ARMA 1−2−GNN 2−hop
GNN

Provably
Powerful
GNN

M
SE

Fig. 2. Performance of the different approaches without node features. The GNNs
were either not trained (Top) or trained on the IMDB-BINARY dataset (Bottom). For
GNNs, the different colors indicate the three pooling functions: sum (•), mean (•),
and max (•). The horizontal lines correspond to the two baselines (random, constant)
(Color figure online).

The Effect of Node Features. In GNN literature, it is common practice to
use local features (e.g., degree) as node attributes. In previous studies, it has
been reported that using node degrees as input features leads to an increase in
performance on almost all graph classification datasets [8]. We next investigate
what is the impact of such features on the learned graph representations. Specifi-
cally, each node is annotated with a 2-dimensional vector where the two elements
correspond to its degree and to the number of triangles in which it participates.
Note that the GR kernel cannot handle node labels/attributes, and hence, it
is excluded from the evaluation. Furthermore, all the other GKs except Graph-
Hopper can only handle discrete node labels, and thus we map each unique pair
of features (i.e., degree and triangle participation) to a natural number.

Figure 3 illustrates the obtained results for the case of randomly initialized
GNNs and GNNs trained on IMDB-BINARY. We observe that GraphHopper,
the only kernel that can naturally handle multi-dimensional continuous node fea-
tures, takes advantage of the node degree and triangle participation information
since it exhibits a very high correlation and a small MSE. On the other hand, the
quality of the representations learned by the remaining GKs seems to be lower

An Empirical Study of the Expressiveness of GKs and GNNs 147

No training

−0.05
0.05
0.15
0.25
0.35
0.45
0.55
0.65
0.75
0.85

C
or
re
la
tio

n

−0.01
0.04
0.09
0.14
0.19
0.24
0.29
0.34

RW SP WL PM Graph
Hopper

GCN GAT 1−GNN Graph
SAGE

GG−NN GIN ChebNet ARMA 1−2−GNN 2−hop
GNN

Provably
Powerful
GNN

M
SE

Trained on IMDB-BINARY

−0.05
0.05
0.15
0.25
0.35
0.45
0.55
0.65
0.75
0.85

C
or
re
la
tio

n

−0.01
0.04
0.09
0.14
0.19
0.24
0.29
0.34

RW SP WL PM Graph
Hopper

GCN GAT 1−GNN Graph
SAGE

GG−NN GIN ChebNet ARMA 1−2−GNN 2−hop
GNN

Provably
Powerful
GNN

M
SE

Fig. 3. Performance of the different approaches with node features. The GNNs were
either not trained (Top) or trained on the IMDB-BINARY dataset (Bottom). For
GNNs, the different colors indicate the three pooling functions: sum (•), mean (•),
and max (•). The horizontal lines correspond to the two baselines (random, constant)
(Color figure online).

when these features are taken into account. The addition of the features leads to
slight decrease in correlation, and also to a large increase in MSE. This suggests
that for GKs that are not designed to operate on graphs with continuous node
attributes, using these features may result into a decrease in performance. In
the case of randomly initialized GNNs, we observe an increase in the correlation
between most models and the considered graph similarity function. 1-2-GNN,
1-GNN and GG-NN achieve the highest levels of correlation, while 2-hop GNN,
GG-NN and Provably Powerful GNN are the best-performing models in terms
of MSE. Again, more complicated models do not necessarily outperform simpler
models. When trained on IMDB-BINARY, the correlation between the models
and (1) decreases. At the same time, the models yield slightly higher MSEs.

Which Pairs are Hard? We next find for each approach the similarity that
deviates most from the one computed using (1). These pairs of graphs can be
thought of as the most challenging for a model or kernel. For each approach,
we find the pair of graphs which maximizes the absolute difference between the
similarity computed using (1) and the one produced by the model/kernel. Note
that for GNNs, we focus on the worst-case scenario independent of the pooling

148 G. Nikolentzos et al.

(a) Pair 1: P2 vs. K9. (b) Pair 2: C9 vs. S8. (c) Pair 3: P2 vs. T (9, 3).

(d) Pair 4: C3 vs. T (9, 2). (e) Pair 5: S7 vs. C9. (f) Pair 6: C3 vs. C9.

Fig. 4. Examples of challenging pairs of graphs for certain GNNs/GKs.

function. The different pairs of graphs are illustrated in Fig. 4. Surprisingly, a lot
of methods fail to accurately estimate the similarity of structurally very dissim-
ilar graphs. For instance, GCN, GAT, GraphSAGE, ARMA, Chebnet, SP and
GraphHopper all found the first two graphs (the path graph P2 and the com-
plete graph on 9 vertices) to be identical to each other (i.e., similarities equal to
1), while the output of (1) is 0.166. In the case of the two GKs, this is because
the implicit vector representation of one graph is a positive scalar multiple of
the representation of the other. With regards to the GNNs, note that the above
models use the mean function to aggregate the representations of their neighbor-
hoods. When such neighborhood aggregation approaches are followed by mean
or max pooling functions, they produce identical representations for the P2 and
K9 graphs. Another pair of graphs which turns out to be challenging for several
approaches is the one consisting of the cycle graph with 9 vertices and the star
graph S8. The output of (1) for this pair is equal to 0.235, while the similarities
produced by all the following approaches are greater than 0.900: GIN, 1-GNN,
GG-NN, 2-hop GNN and RW. The next four pairs of graphs correspond to the
worst-case scenarios for Provably Powerful GNN, 1-2-GNN, PM and WL, respec-
tively. The similarity between the path graph P2 and the Turán graph T (9, 3)
(i.e., 3rd pair) is 0.192 according to (1), while the representations generated by
Provably Powerful GNN yielded a similarity equal to 0.955. Likewise, the output
of (1) is 0.258 for the 4th pair of graphs, while 1-2-GNN produced a value equal
to 0.922. The star graph S7 along with the cycle graph with 9 vertices (i.e., 5th

pair) led PM to the worst similarity estimation. While (1) gave a similarity of
0.251, the normalized kernel value was equal to 0.773. The last pair of graphs,
the cycle graph with 3 vertices and the cycle graph with 9 vertices, turns out to
be the hardest for the WL kernel. While the value of (1) is 0.384, the normalized
kernel value is equal to 1. Again, this is due to the fact that the representation
of one graph is a positive scalar multiple of the representation of the other.

5 Conclusion

In this paper, we studied the expressive power of GNNs and GKs from an empir-
ical standpoint. The produced representations and similarities were compared
against those generated by an intractable graph similarity function. The results
showed that theoretically more powerful GNNs do not necessarily yield higher-
quality representations, while GKs were found to be competitive with GNNs.

An Empirical Study of the Expressiveness of GKs and GNNs 149

References

1. Barceló, P., Kostylev, E.V., Monet, M., Pérez, J., Reutter, J., Silva, J.P.: The
logical expressiveness of graph neural networks. In: International Conference on
Learning Representations (2020)

2. Battaglia, P., Pascanu, R., Lai, M., Rezende, D.J., et al.: Interaction networks for
learning about objects, relations and physics. In: Advances in Neural Information
Processing Systems, pp. 4502–4510 (2016)

3. Bianchi, F.M., Grattarola, D., Alippi, C., Livi, L.: Graph neural networks with
convolutional ARMA filters. arXiv preprint arXiv:1901.01343 (2019)

4. Borgwardt, K.M., Kriegel, H.P.: Shortest-path kernels on graphs. In: Proceedings
of the 5th IEEE International Conference on Data Mining, pp. 74–81 (2005)

5. Chen, Z., Villar, S., Chen, L., Bruna, J.: On the equivalence between graph iso-
morphism testing and function approximation with GNNs. In: Advances in Neural
Information Processing Systems, pp. 15894–15902 (2019)

6. Dasoulas, G., Santos, L.D., Scaman, K., Virmaux, A.: Coloring graph neural net-
works for node disambiguation. In: Proceedings of the 29th International Joint
Conference on Artificial Intelligence, pp. 2126–2132 (2020)

7. Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on
graphs with fast localized spectral filtering. In: Advances in Neural Information
Processing Systems, pp. 3844–3852 (2016)

8. Errica, F., Podda, M., Bacciu, D., Micheli, A.: A fair comparison of graph neural
networks for graph classification. In: 8th International Conference on Learning
Representations (2020)

9. Feragen, A., Kasenburg, N., Petersen, J., de Bruijne, M., Borgwardt, K.: Scalable
kernels for graphs with continuous attributes. In: Advances in Neural Information
Processing Systems, pp. 216–224 (2013)

10. Fey, M., Lenssen, J.E.: Fast graph representation learning with PyTorch geometric.
arXiv preprint arXiv:1903.02428 (2019)

11. Garg, V.K., Jegelka, S., Jaakkola, T.: Generalization and representational limits
of graph neural networks. In: Proceedings of the 37th International Conference on
Machine Learning (2020)

12. Gärtner, T., Flach, P., Wrobel, S.: On graph kernels: hardness results and efficient
alternatives. In: Schölkopf, B., Warmuth, M.K. (eds.) COLT-Kernel 2003. LNCS
(LNAI), vol. 2777, pp. 129–143. Springer, Heidelberg (2003). https://doi.org/10.
1007/978-3-540-45167-9 11

13. Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O., Dahl, G.E.: Neural message
passing for quantum chemistry. In: Proceedings of the 34th International Confer-
ence on Machine Learning, pp. 1263–1272 (2017)

14. Hamilton, W.L., Ying, R., Leskovec, J.: Inductive representation learning on large
graphs. arXiv preprint arXiv:1706.02216 (2017)

15. Ivanov, S., Sviridov, S., Burnaev, E.: Understanding isomorphism bias in graph
data sets. arXiv preprint arXiv:1910.12091 (2019)

16. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907 (2016)

17. Kriege, N.M., Morris, C., Rey, A., Sohler, C.: A property testing framework for the
theoretical expressivity of graph kernels. In: In Proceeding of the 27th International
Joint Conference on Artificial Intelligence, pp. 2348–2354 (2018)

18. Li, Y., Tarlow, D., Brockschmidt, M., Zemel, R.: Gated graph sequence neural
networks. arXiv preprint arXiv:1511.05493 (2015)

http://arxiv.org/abs/1901.01343
http://arxiv.org/abs/1903.02428
https://doi.org/10.1007/978-3-540-45167-9_11
https://doi.org/10.1007/978-3-540-45167-9_11
http://arxiv.org/abs/1706.02216
http://arxiv.org/abs/1910.12091
http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1511.05493

150 G. Nikolentzos et al.

19. Maron, H., Ben-Hamu, H., Serviansky, H., Lipman, Y.: Provably powerful graph
networks. In: Advances in Neural Information Processing Systems, pp. 2156–2167
(2019)

20. Maron, H., Fetaya, E., Segol, N., Lipman, Y.: On the universality of invariant net-
works. In: Proceedings of the 36th International Conference on Machine Learning,
pp. 4363–4371 (2019)

21. Morris, C., Kriege, N.M., Bause, F., Kersting, K., Mutzel, P., Neumann, M.:
TUDataset: a collection of benchmark datasets for learning with graphs. arXiv
preprint arXiv:2007.08663 (2020)

22. Morris, C., et al.: Weisfeiler and leman go neural: higher-order graph neural net-
works. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 4602–
4609 (2019)

23. Murphy, R., Srinivasan, B., Rao, V., Ribeiro, B.: Relational pooling for graph
representations. In: Proceedings of 36th the International Conference on Machine
Learning, pp. 4663–4673 (2019)

24. Nikolentzos, G., Dasoulas, G., Vazirgiannis, M.: k-hop graph neural networks. Neu-
ral Netw. 130, 195–205 (2020)

25. Nikolentzos, G., Meladianos, P., Vazirgiannis, M.: Matching node embeddings for
graph similarity. In: Proceedings of the 31st AAAI Conference on Artificial Intel-
ligence, pp. 2429–2435 (2017)

26. Nikolentzos, G., Siglidis, G., Vazirgiannis, M.: Graph kernels: a survey. arXiv
preprint arXiv:1904.12218 (2019)

27. Sato, R., Yamada, M., Kashima, H.: Random features strengthen graph neural
networks. arXiv preprint arXiv:2002.03155 (2020)

28. Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: Compu-
tational capabilities of graph neural networks. IEEE Trans. Neural Netw. 20(1),
81–102 (2008)

29. Scarselli, F., Tsoi, A.C., Hagenbuchner, M.: The Vapnik-Chervonenkis dimension
of graph and recursive neural networks. Neural Netw. 108, 248–259 (2018)

30. Shervashidze, N., Schweitzer, P., Van Leeuwen, E.J., Mehlhorn, K., Borgwardt,
K.M.: Weisfeiler-Lehman graph kernels. J. Mach. Learn. Res. 12(9) (2011)

31. Shervashidze, N., Vishwanathan, S., Petri, T., Mehlhorn, K., Borgwardt, K.: Effi-
cient graphlet kernels for large graph comparison. In: Proceedings of the 12th Inter-
national Conference on Artificial Intelligence and Statistics, pp. 488–495 (2009)

32. Siglidis, G., Nikolentzos, G., Limnios, S., Giatsidis, C., Skianis, K., Vazirgiannis,
M.: GraKeL: a graph kernel library in python. J. Mach. Learn. Res. 21(54), 1–5
(2020)

33. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph
attention networks. arXiv preprint arXiv:1710.10903 (2017)

34. Verma, S., Zhang, Z.L.: Stability and generalization of graph convolutional neural
networks. In: Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pp. 1539–1548 (2019)

35. Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., Philip, S.Y.: A comprehensive
survey on graph neural networks. IEEE Trans. Neural Netw. Learn. Syst. 32(1),
4–24 (2020)

36. Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural networks?
In: International Conference on Learning Representations (2019)

http://arxiv.org/abs/2007.08663
http://arxiv.org/abs/1904.12218
http://arxiv.org/abs/2002.03155
http://arxiv.org/abs/1710.10903

	An Empirical Study of the Expressiveness of Graph Kernels and Graph Neural Networks
	1 Introduction
	2 Related Work
	3 Comparing Graphs to Each Other
	4 Empirical Evaluation
	4.1 Dataset
	4.2 Selected Approaches
	4.3 Baselines
	4.4 Experimental Settings
	4.5 Results

	5 Conclusion
	References

