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Abstract. There is a surge of interest in cross-modal representation
learning, concerning mainly images and texts. Image-Text Matching task
is one major challenge in cross-modal tasks. Traditional methods use
multi-paths to encode features across modalities separately and project
them into a shared latent space. Recently, the development of pre-trained
models inspires people to learn cross-modal features jointly and boost
performances through large-scale data. However, traditional methods are
less effective when both modalities use pre-trained uni-modal encoders.
Methods that encode features jointly would face an unacceptable calcu-
lation cost during inference, thus less valuable for real-time applications.
In this paper, we first explore the pros and cons of these methods, then
we propose an enhanced separate encoding framework, using an extra
encoding process to project multi-layer features of pre-trained encoders
into a similar latent space. Experiments show that our framework out-
performs current methods that do not use large-scale image-text pairs in
both Flickr30K and MS-COCO datasets while maintaining minimal cost
during inference.
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1 Introduction

With the development of deep learning, neural networks achieve great progress
in computer vision and natural language processing. Cross-modal tasks, mainly
between images and texts, are gaining more and more attention [5]. In this work,
we focus on one major task in cross-modal learning: image-text matching.

The goal of the image-text matching task is to find the most matching pairs
through a large number of given images and texts. Thus, in real-time applica-
tions, it is vital to find the best matches of the given images/texts efficiently.
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Fig. 1. Different encoding methods

Traditional solutions in deep learning are to find a shared latent space [25]
by encoding image and text features separately. Normally, convolution-based
[11] networks are used to encode images while RNN-based [8] networks such as
LSTM [12] are applied for text encoding. Then the distance measurements like
cosine similarity are used to calculate the similarity of the pooled vectors from
different modalities. A triplet ranking loss [25] is then applied to train the neural
network for finding the most similar pairs across modalities. These architectures
can be illustrated by Fig. 1(a). As shown, features across modalities are isolated
since they are separately encoded.

Recently, there has been much progress achieved with the development of
pre-trained models in different modalities. These improvements make it possible
to joint-encode the features across modalities to learn a joint representation of
vision and language.

Pre-trained models push the state-of-the-art performances of many tasks to
a new level. In the CV field, the pre-trained models, such as VGG [24] and
ResNet [11], have been regarded as the backbone models to extract the visual
features for the downstream tasks. In the NLP field, the pre-trained models,
exemplified by ELMo [19], GPT [21] and BERT [6], use fine-tuning method
to achieve new state-of-the-art performances in downstream tasks like natural
language inference [2].

The arise of pre-trained encoders allows separate encoding to encode single
modal features with higher representation quality. However, the distribution of
pre-trained encoders are different across modalities, thus the traditional usage of
bottom-up structures (Fig. 1(a)) would make it difficult to project cross-modality
features into a shared latent space.

Later in the cross-modal field, following the idea of applying large-scale data
to create pre-trained models, joint encoding methods are based on large-scale
image-text paired data [15]. This architecture, shown in Fig.1(b), combines
texts and images together through an attention-based structure [27] encoder
to learn joint representations across two modalities. These models, exemplified
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by Unicoder-VL [15], UNITER [4], achieve new state-of-the-art results on many
cross-modal tasks like VQA [1], image-captioning [3] as well as image-text match-
ing [25]. In image captioning and VQA tasks, the goal is to generate correspond-
ing captions or to find answer spans, which requires images and texts to entangle
with each other. Joint-encoding models boost these tasks to a whole new level.

However, in the image-text matching task, the goal is to find the most match-
ing pair from a large number of images and texts.

Since joint encoding methods combine the texts and images as inputs to the
model, during inference, these models require the pre-trained structure to iterate
all possible pairs which take massive calculation consumption. We name such
unacceptable cost Inference Disaster. Such a problem constrains these models
in real-time usage despite its outstanding performance.

As illustrated above, in the image-text matching task, traditional methods
are relatively weak in representation encoding compared with joint-encoding
methods based on pre-training with large-scale image-text pairs. Meanwhile, the
joint-encoding methods suffer from the inference disaster.

In this work, in order to maintain the retrieval efficiency as well as promoting
the performance of the model, we propose an Enhanced Separate Encoding
Framework to modify the separate encoding framework, focusing on excavat-
ing multi-layer features of separate pre-trained visual and textual encoders and
projecting them to the common subspace.

Our proposed framework is constructed based on separate encoding models,
thus is very efficient during inference compared with the joint-encoding methods.

We attach extra encoding modules to align and project features across modal-
ities. These extra modules extract features from the entire pre-trained encoder
in different modalities and project them in a shared latent space, thus the repre-
sentations across modalities are less distant compared with separate pre-trained
features.

Experiments show that our proposed framework achieves competitive per-
formances against joint-encoding methods without using large-scale image-text
pairs for pre-training and outperforms all previous traditional separate-encoding
methods in Flickr30K and MS-COCO dataset.

To summarize our Contributions:

(a) We analyze the traditional separate-encoding methods as well as recent
joint-encoding methods, pointing out the importance of both performances
and efficiency in the image-text matching task.

(b) We propose a framework to break the limit of separate encoding methods.
The framework outperforms all previous separate encoding methods and
achieves competitive performances against joint-encoding methods, mean-
while, it does not use large-scale image-text pairs.
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2 Related Work

2.1 Traditional Methods in Image-Text Matching

Encoding features from different modalities separately is the major method
used before. The goal is to find a better shared latent space of image features
and text features. Triplet ranking loss is introduced by [25] and used to nar-
row down the distance between matching pairs. [9] incorporated a hard neg-
ative method to focus on maximum violating negative pairs, which is widely
applied by later works. More recently, [14,28] introduced faster-RCNN network
to use regional semantic features to enhance the image encoding quality. Other
approaches such as incorporating knowledge graphs [23], using graph networks
[16,29] are explored to further boost the performances. Most of these methods
encode image features with pre-trained models such as ResNet and faster-RCNN,
while encoding text features with RNNs. Thus, when incorporating pre-trained
text encoders, it is more difficult to learn a shared latent space in two different
distributions from pre-trained encoders across modalities.

2.2 Pre-trained Models and Joint-Encoding

In computer vision field, ResNet [11] and VGG [24] are widely used as backbones
in vision models. These convolution-based structure models are trained using
image classification data such as ImageNet. Models like Fast RCNN [10], Faster
RCNN [22] are built based on these backbone models and aim for detection and
segmentation tasks.

Recent arise of pre-trained models in natural language processing started
with ELMo [19], using unsupervised data to train language models. GPT [21]
and BERT [6] introduce the attention-based structure called transformer [27],
take the NLP research into a new era of pre-training. These successes of pre-
trained models motivate researchers to construct cross-modal pre-trained models
using large-scale cross-modal datasets. These models use pre-calculated regional
features combined with text sequences to create joint-encoded features, exempli-
fied by UNITER [4], Unicoder-VL [15] and LXMERT [26]. These models achieve
great performances in cross-modal tasks such as VQA, image captioning; yet in
the image-text matching task, the inference efficiency is limited by its joint-
encoding nature.

3 Limits of Previous Encoding Methods

3.1 Different Distribution in Separate Encoding

When both modalities are equipped with pre-trained encoders, exemplified by
ResNet in images and BERT in texts, the distribution is different inherently,
making previous methods difficult to project different modalities into a shared
latent space.



Enhancing Separate Encoding with Multi-layer Feature Alignment 407

3.2 Inference Disaster in Joint Encoding

Joint-Encoding models use large-scale image-text paired data to pre-train the
joint-encoding models [4,15,17,26,30].
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Fig. 2. Structure of enhanced separate encoding framework

Most of these methods firstly encode input image region features that are
extracted from an RCNN model trained with [13]. These regional features from
original images play roles as tokens in a sequence.

Despite the excellent performances in downstream tasks, such structures
would face a massive calculation consume problem during inference in the match-
ing task: Suppose N sequences(captions) and M images are to be examined,
which are total M x N entangled pairs. Suppose the inference time for each
pair is T, with a batch-size B. The model needs to went through M x N times
inference, resulting in a time cost 28T "which has an O(n?) time complex-
ity. While inference with separately encoded features only need to run a cosine
similarity between pairs, which has an O(n) time complexity.

4 Framework Construction

Separate encoding methods would be less effective in applying pre-trained
encoders in both modalities, considering that features in two modalities are
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under different distribution; meanwhile, joint encoding methods, though encod-
ing jointly, would suffer from a less efficient inference process. Leveraging advan-
tages and disadvantages, we propose an enhanced separate encoding method,
aiming to narrow down the distance between features from two different pre-
trained encoders. The core motivation is that allowing separately pre-trained
features to be further encoded by non-pre-trained modules, thus these features
are more similar in nature since these non-pre-trained modules are more aligned.

Therefore, we construct extra modules to align and extract pre-trained cross-
modality multi-layer features and train these modules from scratch to learn a
shared latent space (Fig. 2).

The entire enhanced separate encoding framework consists of three steps:
feature encoding, feature alignment, and feature projection.

4.1 Feature Encoding

First, we obtain the multi-layer features of separate pre-trained encoders.

Separate encoding features are trained with different types of corpora. In
image pre-training, ResNet is trained with image classification data and the
feature map of ResNet can be used as the backbone of further downstream
tasks. Faster-RCNN model is trained with object detection data or semantic
segmentation data and the output feature is regional features of a given image.
In text pre-training, BERT is trained with a mask language model, using large-
scale Wikipedia corpus. Based on the transformer structure, the output is the
multi-layer token-level feature.

We use all levels of separately pre-trained features combined to find better
cross-modal representations: In image encoding, we denote the i*” layer of feature
map from ResNet as H; € RW«*HixDi. W, H, are the width and height size of
the convolution output. We denote the regional feature from faster-RCNN as
H, € RN"*Pr and N is the region number. In text encoding, we denote the j*
layer of transformer block output from BERT as S; € REXDi | [ is the sequence
length.

These obtained features are encoded separately from pre-trained models, thus
are quite different across modalities.

4.2 Feature Alignment

In text encoding, the output feature is token-level, which is sub-word level feature
in BERT specifically. In image encoding, the output features are feature-maps
extracted from ResNet features and regional features extracted from RCNN
network features. Therefore, it is difficult to directly project these features with
different layers and different dimensions into a shared latent space. We manage to
convert different layers of features into aligned regional features across modalities
by reshaping them via feature concatenation and average pooling.
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4.3 Feature Projection

After feature alignment, we have multi-level regional image features and multi-
level sub-word textual features. The feature projection is a two-phase process:

Region/Token-Wise Projection. First we project both region features in
encoding images and token features in encoding texts into a similar latent space.
The token-region matching can be better encoded with attention-based modules
as explored by [6,14,15], thus we construct a self-attention based encoder to
encode these aligned features.

The encoder F'(X) follows a standard transformer structure [27].

_ Softmax( VX Wi X
A = Softmax( 7 ) (W X) (1)
F(X) = LayerNorm(X + A+ FFN(A)) (2)

We feed the aligned feature ﬁIZ—, I;Tr from image encoder and :5'\1 from text
encoder into corresponding transformer blocks to get token/region level features.
Considering that we have both ResNet features and faster-RCNN features com-
bined, we duplicate the last layer of Sk to create S to match the corresponding
H,. We then apply average pooling over the region/token level representations
to obtain vectors of the given image and text.

H; = AvgPool(F;(H;)), H, = AvgPool(F,(H,)), S, = AvgPool(F(S)) (3)

Layer-Wise Projection. As mentioned in feature alignment, we use layer
concatenation to align multi-level features, which is rigid in nature. We are
unaware which level of features across modalities might be encoded more similar,
thus we fully connect these vectors, allowing different level of features to match
their potential similar features across modalities.

Vi = Linear(C’oncat([ﬁo,--- ﬁ“--.], 1)) (4)
Vs = Linear(Concat([Sy, -+, Sp,--+), 5, (5)

These two steps of feature projection encode the features that are inherently
different into a similar latent space. Since joint-encoding the concatenated token
and region features are not feasible in separate encoding, we decompose the
separate encoding features into token-wise and layer-wise, and align them to be
encoded into a more similar latent space.

After acquiring the separate encoded vectors V;; and VTg from two modalities,
we use triplet ranking loss to train the entire model.
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5 Experiment

5.1 Datasets

We use Flickr30K [20] dataset and MS-COCO [18] to test our enhance separate
encoding framework.

In Flickr30K, there are 31,783 images with 5 captions each, and MS-COCO
2014 contains 123,287 images with 5 cations per image. We follow [9] for the
train-valid-test split, which is 1k test for Flickr30K, 1k, and 5k for MS-COCO.
which results in 113287 training, 5000 validation, and 5000 testing images for
MS-COCO. Flickr30K dataset is split into 29783 training, 1000 validation, and
1000 testing images. Our results average over 5 folds of 1k test images and use
the full 5000 test images for MS-COCO testing. We use recall by K (RQK)
defined as the fraction of queries for which the correct item is retrieved in the
closest K points to the query.

5.2 Implementation Details

For both Flickr30K and COCO dataset, we use ResNet152 and Faster-RCNN
with ResNet101 as image encoding models. The Faster-RCNN features are
extracted following [30], with region number 100 and hidden size 2048. The
dimension of 4 layers of feature maps in ResNet152 are [56, 56, 256], [28, 28,
512], [14, 14, 1024] and [7, 7, 2048]. We apply average pooling with pooling win-
dow [8, 8], [4, 4], [2, 2] and [1, 1]. After merging and linear transformation, the
output features of 4 feature maps are [49, 256], [49, 256], [49, 512], [49, 1024].
The region feature is [100, 1024]. And we use BERT-base as a text encoding
model, which contains 12 layers with hidden dimension size 768. We set max
sequence length to 32. During feature alignment, we concatenate every 3 layers
of BERT output and use linear transformation to obtain 4 layers of features with
dimension size [32, 256], [32, 256], [32, 512] and [32, 1024]. We duplicate the last
layer to align with region features from faster-RCNN. The transformer block is
a l-layer transformer with 8 heads and an intermediate size 1024.

During training, we use NVIDIA 1080Ti GPUs to train the entire model,
with learning rate set to 2e—5, batch-size 128 for Flickr30K, and 320 for MS-
COCO dataset. We also ensemble two single models to create an ensemble model
of an enhanced separate encoding framework to boost the performances.

5.3 Experiment Setup

We establish baselines testing the matching results as well as inference cost.
We implement joint-encoding approaches based on two different joint-encoding
structures. In the Unicoder-VL structure, we follow the implementation in [15].
In the LXMERT structure, the core idea is encoding features across modalities
jointly only in the higher layers. Thus, we use the first 8 layers of BERT-base
structure for text encoding and region-features from Faster-RCNN for image
encoding. Then we concatenate the image and text features and feed them into
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the last 4 layers of BERT-base structure and use the special [CLS] token for
similarity score learning.

The inference cost is tested on a single NVIDIA 1080Ti GPU. We set batch-
size 128 evaluating our enhanced separate encoding framework. When evaluating
joint-encoding methods on 1k test of Flickr30K dataset, we use batch-size 5000
which is the caption number; we iterate each image to calculate the similarity
score of the matching pairs.

Table 1. Performances on Flickr30K dataset Unicoder-VL™* is further pre-trained with
large-scale image-text pairs.

Methods Image-to-text Text-to-image Inference cost

R@1|R@5 R@10 | RG1 | R@5|RQ@10 Time cost GPU cost
Joint-encoding methods
Unicoder-VL [15] | 73.0 |89.0 |94.1 |57.8 |82.2 |{88.9 |8800 (s) |8X
LXMERT [26] 73.3 1925 196.5 |53.6 |[81.4 [89.0 |5807 (s) |6X
Unicoder-VL* 86.2 [96.3 199.0 |71.5 /909 |94.9 |- -

Separate-encoding methods

VSE++ [9] 52.9 |80.5 87.2 [39.6 70.1 |79.5 | — -
SCAN [14] 67.4 90.3 958 |48.6 T77.7 852 |- -
SCG [23] 71.8 |90.8 |94.8 | 49.3 |76.4 85.6 | — -
VSRN [16] 71.3 |90.6 |96.0 | 54.7 |81.8 882 |- -
SGRAF [7] 77.8 |94.1 (974 585 |83.0 88.8 | — -
Ours 79.4 |94.9 (975 63.3 |88.0 923 615 (s) |1X

Ours [ensemble] |80.9|95.5/97.9 |66.0 88.8/93.1 |63.1 (s) |2X

5.4 Experiment Result

As seen in Table 1 and 2, our enhanced separate encoding framework outperforms
previous separate encoding approaches by a large margin, while outperforming
joint encoding methods that are trained without image-text pair pre-training.

The calculation cost during inference, as seen in Tablel, is enormous in
joint-encoding methods. We use 8 GPUs to run inference in joint-encoding with
very large batch-size, still the time cost is unbearable. Meanwhile, without pre-
training, the performance of joint-encoding is not superior to separate encoding
methods.

Joint-encoding model further pre-trained with large-scale image-text pairs
has great performances while it has less competitive performances when only
trained with image-text pairs in the given task. This indicates that joint-encoding
method relies on using large-scale image-text pairs to enhance the model while
joint- Therefore, we believe that separate encoding with our enhanced framework
is both effective and efficient.
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Table 2. Results on MS-COCO dataset.

Methods Image-to-text ‘ Text-to-image Image-to-text ‘ Text-to-image

1K test images 5K test images
R@1|R@5 | R@10 | R@1|R@5 | R@10| R@1 | R@5 R@10| R@1 R@5|R@10

Joint-encoding methods
Unicoder-VL 75.1 | 94.3 |97.8 |63.9 |91.6 |96.5 |- - - - - -
Unicoder-VL* 84.3 |97.3 [99.3 |69.7 |93.5 |97.2 |62.3 87.1 | 92.8 |46.7 |76.0 | 85.3

Separate-encoding methods

VSE++ 64.6 | 90.0 |95.7 |52.0 |84.3 [ 92.0 |41.3 |71.1 |81.2 |30.3 |59.4 |72.4
SCAN 72.7 194.8 | 98.4 |58.8 | 88.4 94.8 |50.4 |82.2|90.0 |38.6 |69.3 |80.4
SCG 76.6 | 96.3 | 99.2 |61.4 |88.9 |95.1 56.6 | 84.5 |92.0 |39.2 |68.0 |81.3
VSRN 76.2 | 94.8 | 98.2 |62.8 | 89.7 1 95.1 53.0 | 81.1 | 89.4 |40.5 70.6 |81.1
SGRAF 79.6 | 96.2 | 98.5 |63.2 |90.7 |96.1 |57.8 |- 91.6 |41.9 |- 81.3
Ours 79.7 1 96.7 | 98.7 |64.7 |90.0 | 95.1 57.2 | 84.5 |91.4 |41.5 | 72.1 |82.0

Ours [ensemble] | 80.4 | 97.0 | 98.8 65.5 | 90.8 | 95.7 58.6 | 85.6 | 92.2 | 42.7|73.4 | 83.2

Table 3. Projection study on Flickr30K dataset; R/T-P is region/token-wise projec-
tion; L-P is layer-wise projection.

Projection | Image-to-text Text-to-image
R/T-P | L-P |RQ1 | R@5 | R@10 | R@1 | R@5 | R@10
73.9 193.6 |96.0 |58.0 |85.4 90.8

v 76.1 |93.4 [96.4 |61.4 |86.4 |91.8
v 755 193.1 1964 |59.5 |85.7 |91.3
v v 7941949 975 |63.3 |88.0 |92.3

6 Ablation Studies

6.1 Effectiveness of Feature Projection

The motivation of our enhanced separate encoding framework is to project sep-
arately pre-trained features into a similar latent space. Therefore, we construct
ablations studies proving that feature projection modules play vital roles in our
framework.

We establish baselines on both Flickr30K and COCO dataset. We concate-
nate the pooled H and S without using F'(X) region/token-wise projection or
layer-wise linear transformation projection. That is we run baselines without
feature projection, we simply use concatenated outputs features from feature
align process.

As seen in Table 3, F'(X) projection (R/T-P) and linear transformation (L-P)
are important in projecting features to be more similar, indicating that though
the pre-trained features possess abundant information, they are different inher-
ently across modalities. Therefore, though both projection methods are easy to
construct, the idea of allowing separately-pre-trained features to be aligned and
further encoded is extremely effective.
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7 Conclusions and Future Work

In this paper, we focus on the image-text matching task. Firstly, we analyze the
traditional separate encoding methods as well as recent joint-encoding methods
based on pre-training with large-scale image-text pairs. We discuss the problems
that constrain these methods, then we propose a framework to leverage the
advantages and disadvantages of these methods, achieving competitive results
while maintaining a minimal inference cost.

In the future, following our analysis, we are hoping to apply large-scale image-
text pairs to train the projection modules to take performances of the image-text
matching task to a higher level as well as try different languages.
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