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Preface

Research on artificial neural networks has progressed over decades, in recent years
being fueled especially by deep learning that has proven, albeit data-greedy, efficient in
solving various, mostly supervised, tasks. Applications of artificial neural networks,
especially related to artificial intelligence, affect our lives, providing new horizons.
Examples range from autonomous car driving, virtual assistants, and decision support
systems to healthcare data analytics, financial forecasting, and smart devices in our
homes, just to name a few. These developments, however, also provide challenges,
which were not imaginable previously, e.g., verification of raw data, explaining the
contents of neural networks, and adversarial machine learning.

The International Conference on Artificial Neural Networks (ICANN) is the annual
flagship conference of the European Neural Network Society (ENNS). Last year, due to
the COVID-19 pandemic, we decided not to hold the conference but to prepare the
ICANN proceedings in written form. This year, due to the still unresolved pandemic,
the Organizing Committee, together with the Executive Committee of ENNS decided
to organize ICANN 2021 online, since we felt the urge to allow research presentations
and live discussions, following the now available alternatives of online conference
organization. So for the first time, ENNS and the Organizing Committee prepared
ICANN as an online event with all its challenges and sometimes unforeseeable events!

Following a long-standing successful collaboration, the proceedings of ICANN are
published as volumes within the Lecture Notes in Computer Science Springer series.
The response to this year’s call for papers resulted, unexpectedly, in a record number of
557 article submissions (a 46% rise compared to previous year), of which almost all
were full papers. The paper selection and review process that followed was decided
during the online meeting of the Bratislava organizing team and the ENNS Executive
Committee. The 40 Program Committee (PC) members agreed to check the submis-
sions for the formal requirements and 64 papers were excluded from the subsequent
reviews. The majority of the PC members have doctoral degrees (80%) and 75%
of them are also professors. We also took advantage of filled-in online questionnaires
providing the reviewers’ areas of expertise. The reviewers were assigned one to four
papers, and the papers with undecided scores also received reports from PC members
which helped in making a final decision.

In total, 265 articles were accepted for the proceedings and the authors were
requested to submit final versions. The acceptance rate was hence about 47% when
calculated from all initial submissions. A list of PC members and reviewers who agreed
to publish their names is included in the proceedings. With these procedures we tried to
keep the quality of the proceedings high while still having a critical mass of contri-
butions reflecting the progress of the field. Overall we hope that these proceedings will
contribute to the dissemination of new results by the neural network community during
these challenging times and we hope that we can have a physical ICANN in 2022.



Finally, we very much thank the Program Committee and the reviewers for their
invaluable work.

September 2021 Igor Farkaš
Paolo Masulli
Sebastian Otte

Stefan Wermter
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Abstract. Neural networks can be repurposed via adversarial repro-
gramming to perform new tasks, which are different from the tasks they
were originally trained for. In this paper, we introduce new and improved
reprogramming technique that, compared to prior works, achieves better
accuracy, scalability, and can be successfully applied to more complex
tasks. While prior literature focuses on potential malicious uses of repro-
gramming, we argue that reprogramming can be viewed as an efficient
training method. Our reprogramming method allows for re-using exist-
ing pre-trained models and easily reprogramming them to perform new
tasks. This technique requires a lot less effort and hyperparameter tun-
ing compared training new models from scratch. Therefore, we believe
that our improved and scalable reprogramming method has potential to
become a new method for creating neural network models.

Keywords: Adversarial machine learning · Efficient deep learning ·
Reprogramming

1 Introduction

Reprogramming of neural networks was first introduced in [3] as a new form of
adversarial attack that allows to “...reprogram the target model to perform a
task chosen by the attacker - without the attacker needing to specify or compute
desired output for each test-time input” [3].

We successfully replicated the results in Elsayed et al. [3]; however, when
we applied their method to more complex tasks it did not perform well. In this
paper we present new and improved reprogramming methodology, which we suc-
cessfully applied to complex classification tasks. The reprogramming technique
in [3] relies on hardcoding an arbitrary mapping between labels of the origi-
nal and new tasks, and learning an adversarial program P. The program P is
applied as a universal additive contribution to all examples from the new task
domain regardless of their label to create X ′ = X + P . Our improved technique
is instead based on transforming input X to conform to the dimensions that the
target model accepts: X ′ = f(X), and learning a new prediction layer. In partic-
ular, our reprogramming method reuses model hyperparameters of the original
c© Springer Nature Switzerland AG 2021
I. Farkaš et al. (Eds.): ICANN 2021, LNCS 12891, pp. 3–15, 2021.
https://doi.org/10.1007/978-3-030-86362-3_1
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model (i.e., the target model) for layers 1 through L − 1, where L is the total
number of layers. We then create a new Lth layer with number of neurons equal
to number of labels the new task has and learn its parameters, which can be
formulated as θ̂ = arg minθ (−logP (y|h)), where h are the values of hidden units
from the penultimate layer of the target model.

Using our methodology, we successfully reprogrammed several ImageNet
models to perform classification on Caltech 101 and reduced Caltech 256
datasets. Moreover, we demonstrate that creating a new model using our repro-
gramming technique yields accurate results while requiring a lot less effort in
terms of training time and tuning compared to training a new model from
scratch. Therefore, we argue that reprogramming does not need to be adver-
sarial, instead we view it as a new machine learning technique.

1.1 Contributions

Our main contributions are two-fold.

– We demonstrate the shortcomings of the methodology for reprogramming
introduced in prior literature with various experiments to show that it does
not scale to complex tasks. We hope that this finding will be helpful to other
researchers.

– We develop a new methodology for reprogramming that addresses the lim-
itations of the prior methodology. Our technique, compared to prior works,
yields more accurate results, is scalable, and can be applied to complex tasks.
We also show that our reprogramming method can be used to efficiently cre-
ate new models. Creating new models using our reprogramming methodology
requires significantly less effort in terms of training time and hyperparameter
tuning compared to training models from scratch.

2 Background and Related Work

Adversarial reprogramming is a new research area of adversarial machine learn-
ing, which studies security vulnerabilities of machine learning models. It is a new
type of attack first introduced in [3], which involves reprogramming an existing
machine learning model to perform a different task. The adversarial reprogram-
ming literature is very limited - to our best knowledge there are only three works
that studied adversarial reprogramming: [3,14,23]. Elsayed et al. [3] successfully
conducted white-box adversarial reprogramming on neural net models for image
classification. Neekhara et al. [14] demonstrated that reprogramming also works
on text classification neural networks by performing a white-box attack and also
a black-box attack. And [23] claim to have developed a defense against repro-
gramming attacks.

A related area to reprogramming is transfer learning [12,17]. Transfer learn-
ing allows for reusing trained models. The idea behind transfer learning is that
knowledge gained during learning one task is useful and can be applied to another
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task. Reprogramming and transfer learning share the same goal of repurposing a
trained model to perform a new task; however, “transfer learning is very different
from the adversarial reprogramming task in that it allows model parameters to
be changed for the new task” [3].

2.1 The Rise of Adversarial Machine Learning

Traditionally, it has been assumed that the environment during training and
evaluation of machine learning models is benign. Until the year 2014 the focus
of machine learning research has been on accuracy. However, after [21] have
shown that neural nets with human level accuracy can have 100% error rate
on adversarial examples, robustness of machine learning models and protecting
against adversarial attacks became an active research area. Goodfellow et al.
[8] define adversarial examples as inputs to machine learning models that an
attacker has intentionally designed to cause the model to make a mistake.

Adversarial examples are not created by adding random noise to legitimate
inputs, instead they are carefully computed perturbations that possess the prop-
erty of transferability. Adversarial examples crafted for a particular model trans-
fer to other models, which means that the same adversarial examples can be
applied to different models to cause mistakes [21]. In particular, adversarial
examples generated against a neural network can fool other neural networks
with the same architecture, but trained on different datasets [21]. It has also
been shown that adversarial examples can also fool neural networks with dif-
ferent architectures and even models trained with different machine learning
algorithms [15]. Therefore, adversarial examples must exploit some systematic
issue or property of neural nets.

There are several hypotheses attempting to explain the existence of adversar-
ial examples and adversarial vulnerability of machine learning models. According
to [9] the reason is excessive linearity of neural net models. However, it is not
only neural nets that are susceptible to attacks, so further aspects may play a
role. Other works [5,7,11,19] argue that high dimensionality of the input space
that prevents a classifier from learning a robust model that would be resilient
to adversarial examples. On the other hand, [18] argued that adversarial exam-
ples arise due to insufficient information about the true data distribution. Tanay
et al. [22] propose that overfitting causes adversarial examples, while [4] and
[6] maintain that a classifier’s robustness to noise determines the extent of its
adversarial vulnerability. Shamir et al. [20] suggests that the piecewise-linear
geometric structure of decision boundaries leads to adversarial perturbations.
And [1,13] argue that computational constraints or model complexity cause the
model to learn non-robust features, which means that the resulting model may
be accurate on benign test data, but highly vulnerable to adversarial inputs.
Finally, [10] claim that adversarial examples can be attributed to the presence
of non-robust features. They define non-robust features as “highly predictive,
yet brittle” features, which are well-generalizing on benign data, but vulnerable
to adversarial perturbations. They present accuracy and robustness as almost a
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trade-off and claim that “robustness can be at odds with accuracy”. Hence, the
reasons for the existence of adversarial examples is still not fully understood.

Attacks can be either untargeted or targeted depending on the goal of the
attacker – an attacker may design adversarial examples that cause the model to
output any incorrect label, or a specific incorrect label. Formally, given a target
model that takes x as input and outputs y, and a perturbation η, an adversarial
example for an untargeted attack can be formulated as:

x′ = x + η, f(x) = y, x ∈ X s.t. f(x′) �= y (1)

Adversarial example for a targeted attack can be expressed as:

x′ = x + η, f(x) = y, x ∈ X s.t. f(x′) = y′ (2)

One important factor that determines the attack methods is the amount of
knowledge that an attacker has about the target model. In a white-box scenario
the attacker has access to the model architecture and parameters, whereas in a
black-box scenario this information in not available and the attacker can only
query the target model for labels.

There are several white-box scenario techniques for crafting adversarial exam-
ples. Some of the common ones are: Fast Gradient Sign Method (FGMS)
[9], Limited memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm
[21], Jacobian-based Saliency Map Attack (JSMA) [16], and Carlini & Wagner
(C&W) attack developed by [2]. The FGMS method is one of the most popular
technique for its low computational cost. It fixes the size of perturbation and
maximizes loss as follows:

η = arg maxη J(x + η, y) s.t. ||η||∞ ≤ ε

η = arg maxη J(x, y) + ηT ∇xJ(x, y) s.t. ||η||∞ ≤ ε

η = ε × sgn(∇xJ(x, y))

(3)

where η is the perturbation, ε is the perturbation magnitude parameter,
∇xJ(x, y) is the loss function gradient, and sgn is the sign function.

There are three types of methods that can be deployed to conduct a black-
box attack: (1) training a substitute model and leveraging white-box techniques
for crafting adversarial examples, (2) estimating gradients using zeroth order
approximation, or (3) GenAttack, a gradient-free optimization technique that
uses genetic algorithms for synthesising adversarial examples.

2.2 Adversarial Reprogramming

Adversarial reprogramming is a type of attack introduced in [3], which repro-
grams a target model to perform a task chosen by the attacker. There are two pri-
mary differences between prior adversarial attacks and reprogramming in terms
of their goals and methodology. First, the goal of reprogramming is to reprogram
a target model to perform a different task, while the goal of adversarial exam-
ples is to degrade performance of the model. Second, reprogramming is achieved
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by finding a single adversarial perturbation, an adversarial program that can
be added to all inputs without the need for crafting many different adversarial
examples and computing their outputs.

Reprogramming does not require modifications to the target network archi-
tecture or parameters. Instead, only two reprogramming functions must be
learned to map the inputs and outputs between the domains of the new and
original task. The motivation of reprogramming is to reprogram an existing
model in a computationally efficient way to perform a new task. Computational
efficiency is key – if the desired results were achievable using a computationally
inexpensive classifier created from scratch specifically for that task, this would
defeat the purpose of reprogramming [14]. It has been shown that adversarial
reprogramming is significantly less effective on randomly initialized untrained
networks [3,14], which is evidence that reprogramming works.

Motivations for Reprogramming. There is a concern that reprogramming
could be used for malicious purposes such as theft of computational resources
through attacks on cloud-hosted machine learning models, which could be mali-
ciously re-purposed by an attacker to, for example, create spam accounts. Such
an attack should be a great concern to cloud providers offering machine learning
APIs such as Google or Amazon. Nevertheless, despite the fact that the current
literature on adversarial reprogramming focused on the security concerns created
by adversarial reprogramming, we would like to argue that reprogramming does
not need to be adversarial. Reprogramming has a great potential for developing
high quality models at a significantly reduced computational cost.

Reprogramming Method. Adversarial reprogramming and its methods were
first introduced in [3] and later used by [14]. Elsayed et al. [3] assume a white-box
scenario and their reprogramming method is based on crafting an adversarial
program, which they formulate as an additive contribution to network input.
The adversarial program can be viewed as a “universal” adversarial perturba-
tion that can be applied to all inputs, whose parameters are learned through
backpropagation. The goal is to repurpose an existing trained target model with
inputs x and outputs f(x) as seen in Fig. 1 for a new task with inputs x′ and
outputs g(x′) as illustrated in Fig. 2.

Fig. 1. Original setting

Fig. 2. New setting
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Adversarial Program Crafting. In this section we describe the adversarial
program crafting methodology from [3] with additional details and explanations.
Let x ∈ R

n×n×h be an input image for the original task, where n is the image
width and height, and h is the number of channels. Note that grayscale images
have one channel and color images have three channels. Let f(x) be an output
of the original task. The new task sample input is defined as x′ ∈ R

k×k×h, where
k < n. The output of the new task is represented as g(x′). In order to feed the
new inputs into the original target model and receive outputs that are of the
new task’s domain as illustrated in Fig. 3, two mapping functions are required
hf and hg. The function hf maps x′ into the domain of x, i.e., hf (x′, θ) = x.
And hg maps f(x) to g(x′), i.e., hg(f(x), θ) = g(x′).

Fig. 3. Reprogramming goal

The goal is to learn θ such that hg(f(hf (x′))) = g(x′). Prior to learning θ
the label mapping function hg is defined as a hard-coded one-to-one mapping
function that can convert f(x) to g(x′). Let P be the adversarial program, which
is applied to all image inputs x’ be defined as:

P = tanh(θ � M) (4)

where tanh scales the adversarial program to in range of (–1, 1), θ ∈ R
n×n×h

are the parameters of P , and M is a n × n × h masking matrix ∈ 0, 1. Let xadv

be the image input after conversion of x′ into the domain of x:

xadv = hf (x′, θ) (5)

The adversarial program P is an additive variable applied to every input x’:

xadv = x’ + P (6)

Let yadv be the label of xadv. The goal is:

max P (hg(yadv)|xadv) (7)

which can be derived as follows:

P (y′|x′) = P (g(x′)|x′)
P (y′|x′) = P (hg(g(x′))|hf (x′, θ))
P (y′|x′) = P (hg(yadv)|hf (x′, θ))
P (y′|x′) = P (hg(yadv)|xadv))

(8)
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The probability P (hg(yadv)|xadv) can be maximized by solving the following
optimization problem:

θ∗ = arg maxθ∈Rn×n×h (P (hg(yadv)|hf (x′, θ))
θ∗ = arg minθ (−P (hg(yadv)|hf (x′, θ))
θ∗ = arg minθ (−logP (hg(yadv)|hf (x′, θ))

θ∗ = arg minθ (−logP (hg(yadv)|hf (x′, θ) + λ||θ||22))

(9)

where λ is a coefficient that serves as a regularization hyperparameter, which
is multiplied by L2 norm squared of θ. Therefore, the adversarial program
can crafted by solving the optimization problem arg minθ (−logP (hg(yadv)|
hf (x′, θ) + λ||θ||22).

3 Experiments with Prior Reprogramming Method

In this section we examine the reprogramming method introduced in [3] in more
detail. First, we apply the method in new scenarios to test if this method also
works for datasets other than the ones tested in [3]. Second, we attempt tweaking
this method in various ways to investigate whether the shortcomings of this
method discovered in the first set of experiments can be addressed with small
changes to the method.

3.1 Experiment 1: Prior Reprogramming Method

We applied the reprogramming method introduced in [3] to various datasets
and scenarios that have not been explored in other papers, and found that this
method does not work reliably. It is not scaleable and cannot be applied to
more complex tasks as evidenced in Table 1. Elsayed et al. [3] successfully repro-
grammed six different models trained on ImageNet to perform three relatively
simple tasks: counting number of squares in an image, MNIST and CIFAR.
However, when the target model is trained on simpler datasets, the accuracy
of the reprogrammed model on the new tasks is equivalent to random guess-
ing. In addition to that, reprogramming Imagenet models using this technique
to perform more complex tasks such as CIFAR 100 or Caltech 101 does not
work well. Moreover, these operations are quite computationally expensive and
therefore, not practical - using Nvidia GPU GeForce GTX 1080 it took approx-
imately 12 h to reprogram a ResNet50V2 Imagenet model to perform MNIST.
Based on the results there seems to be a relationship between the reprogram-
ming performance and the nature of the new task - as the input dimension and
number of categories get larger, reprogramming becomes less accurate and more
computationally expensive.
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Table 1. Reprogramming experiments with Elsayed et al. [3] methodology

Original task New task Train accuracy Test accuracy

Imageneta MNIST 93.69% 94.36%

Imagenet CIFAR 101 1.16% 1.21%

Imagenet Caltech 101 0.40% 0.30%

Caltech 101b MNIST 9.87% 9.61%

CIFAR 10c MNIST 9.03% 8.92%

CIFAR 10 FASHION MNIST 14.32% 14.25%

CIFAR 10 MNIST 0 s and 1 s 53.17% 53.24%

MNIST FASHIONd MNIST 12.08% 12.30%

MNIST FASHION MNIST 0 s and 1 s 42.82% 43.83%

MNISTe MNIST FASHION 14.66% 14.94%
a Pretrained ResNet50V2 model
bTrain accuracy: 99.58%, Test accuracy: 74.37%
cTrain accuracy: 92.12%, Test accuracy: 80.18%
dTrain accuracy: 99.99%, Test accuracy: 89.40%
e Train accuracy: 100.00%, Test accuracy: 99.25%

3.2 Experiment 2: Tweaking Prior Reprogramming Method

After concluding that the reprogramming method introduced in [3] does not
work reliably on all datasets we attempted tweaking their methodology in dif-
ferent ways, but none of them yielded better results. First, we experimented
with learning the label mapping function as opposed to hardcoding it. Second,
we tried resizing the new task input image to smaller dimensions to achieve a
higher ratio between the original and new input dimensions. In particular, we
took a model pre-trained on MNIST FASHION with input dimension 28× 28× 1
and reprogrammed it to classify resized handwritten 1 s and 0 s digits with input
dimension 4× 4× 1. Third, we investigated if changing the area of the image that
is being trained makes a difference. The method in [3] trains the adversarial pro-
gram only on the part of the image, where the new and original image don’t
overlap. We tried training the entire area; however, this also did not yield better
results. Finally, we attempted changing the operations used to apply the adver-
sarial program to the the new task input image. Specifically, we experimented
with multiplying and subtracting the program from the input image as opposed
to adding it as in [3].

4 Proposed Methodology

Our proposed methodology, like the one in [3], assumes access to target model
parameters and architecture. The objective is to learn input and output repro-
gramming functions that allow for re-using a trained model without changing
its parameters to create a new model that performs a new task. Prior works
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focused on crafting an adversarial program that served as additive contribution
to inputs while hardcoding an arbitrary mapping between the original and new
labels. This can be expressed as:

x + P, (10)

where x is the new task inputs and P is the adversarial program.
Our improved technique does not rely on simple constant additive contribu-

tion to inputs and arbitrarily hardcoding label mappings, instead it is based on
learning two programs. These programs can be viewed as functions - one applied
to inputs and one to outputs. The first program applied to the new task inputs
x can be viewed as a conversion or input adjustment function that outputs x′,
an adjusted input that can be passed into the target model, i.e.,

x′ = f(x) (11)

The purpose of function f is to resize the input image such that its dimensions
match the ones that the target model accepts. The second program applied to
the target model outputs and is represented as a new dense layer containing a
number of neurons equal to number of new task labels and a softmax activation
function.

The softmax function takes an input vector of k real numbers and outputs k
probabilities that sum up to 1, where k is the total number of labels. This can
be expressed as:

softmax(z)i = exp(zi)/
∑

j

exp(zj), (12)

where zi is the unnormalized log probability that x belongs to class i:

zi = logP̃ (y = i|x) (13)

The original target model parameters are not changed, only the last dense layer
that outputs probabilities is removed. Therefore, the second program can be
expressed as a function g:

y′ = g(NN ′(x′)), (14)

where y′ is the new task label and NN ′ is the original model with the last layer
removed.

The goal of a neural is to approximate some function f∗. In case of classifi-
cation, f∗ is a mapping function f∗(x) = y that maps input x to class y. The
objective is to find function f that approximates the true function f∗. Therefore,
finding the mapping can be expressed as y = f(x, θ). The parameter θ represents
the neural network’s weights and biases that and the goal is to learn θ, which
results in the best approximation of f∗.

Deep neural network is a chain of functions, where each function represents
one layer:

f(x) = f (L)(f (L−1)...(f (1)(x))) (15)
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Training a neural network from scratch requires learning weights and biases for
all functions f (1),..., f (L). However, our reprogramming method allows us to re-
use θ from a previously trained target model for layers 1, ..., L − 1 and learn the
parameters of the last layer only, which can be formulated as:

y = f (L)(h; θ), (16)

where h are the values of hidden units from the penultimate layer.
Therefore, our goal is to maximize probability P (y|f (l)(f (l−1))), which can

be set up as an optimization problem:

θ̂ = arg minθ (−logP (y|h)) (17)

5 Results of Proposed Methodology

To demonstrate effectiveness and superiority of our reprogramming method, we
conducted experiments on eight different architectures trained on ImageNet,
which served as target models and were reprogrammed to perform new tasks:
Caltech 101 and Caltech 256 - reduced image classification. The reduced ver-
sion of the Caltech 256 dataset was created by randomly selecting 20 images
from each class from the original Caltech 256 dataset. As a result, Caltech 256
- reduced contains 83% fewer labeled examples. The purpose of the reduced
dataset is to test the effectiveness of the proposed reprogramming technique
on a non-trivial task with a small dataset. As evidenced in Table 2, our repro-
gramming method yields higher accuracy than prior works even on more complex
tasks. We also trained models on Caltech 101 and Caltech 256 - reduced datasets
from scratch and compared them to models created using our proposed repro-
gramming methodology while holding hyperparameters and number of training
epochs constant for a fair comparison. As shown in Table 2, the models cre-
ated by reprogramming achieve much higher accuracy than models trained from
scratch. It is possible to create models from scratch with much higher accuracy
than the one we report; however, this requires increased training time and care-
ful hyperparamenter tuning. The purpose of comparing reprogrammed models
and models trained from scratch is to compare the two techniques in terms of
the effort spent to create them.

Most models created with reprogramming performed very well - the average
testing accuracy on Caltech 101 was 82.07% with the best testing accuracy of
89.81% achieved by reprogramming ResNet152V2. This is a significantly better
result compared to the model created from scratch using the same hyperpa-
rameters, which achieved only 38.95% testing accuracy on Caltech 101. It is
interesting that reprogrammed VGG16 performed slightly better than repro-
grammed VGG19. VGG16 contains 16 layers while VGG 19 consists of 19 lay-
ers and therefore more parameters. The training accuracy for the two models
is almost identical, but the testing accuracy is approximately 2.5% lower for
VGG19 compared to VGG16. It seems that increased model complexity caused
the model to slightly overfit. The Caltech 256 - reduced models also performed
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significantly better than the model made from scratch and trained with the
same hyperparameters. The average testing accuracy of the models made using
reprogramming was 55.95% with the best one of 69.65% created through repro-
gramming ResNet152V2, whereas the testing accuracy of the model made from
scratch was only 3.63%. While an average testing accuracy of 55.95% is not very
high, it should be noted that the training dataset had a very limited number of
examples and that the testing accuracy of the model created from scratch using
the same hyperparameters was a mere 3.63%. Additionally, it can be observed
that there is a gap between training and testing accuracy of the Caltech 256
- reduced models. The most likely reason for this is overfitting, because the
training set is small and the model complexity is high.

Overall, these results demonstrate that: (1) our reprogramming method is
superior to the prior method, and (2) that our reprogramming method can be
used to quickly create new accurate models without requiring much training
time and hyperparameter tuning.

Table 2. Reprogramming experiments with proposed methodology

Original task New task

Imagenet Caltech 101 Reduced Caltech 256

Architecture Train accuracy Test accuracy Train accuracy Test accuracy

ResNet50V2 98.16% 88.73% 98.39% 66.93%

ResNet101V2 98.48% 89.48% 98.36% 70.04%

ResNet152V2 98.14% 89.81% 97.75% 69.65%

MobileNet 96.94% 83.05% 95.89% 53.96%

NASNetMobile 93.19% 82.73% 92.19% 67.06%

MobileNetV2 93.47% 83.05% 91.58% 60.05%

VGG16 80.79% 71.14% 54.10% 29.96%

VGG19 80.44% 68.56% 55.02% 29.96%

From scratch 85.16% 38.95% 27.47% 3.63%

6 Conclusion

The focus of this paper is reprogramming of neural networks, which involves re-
purposing a target model to perform a new task without changing its parameters.
We propose a new reprogramming methodology that improves upon [3], who
first introduced reprogramming as an adversarial machine learning attack. We
demonstrate that our method, compared to prior works, yields more accurate
results, is more scalable, and can be applied to complex tasks. Furthermore,
we argue that while reprogramming can be misused maliciously, it can also be
viewed as an efficient learning technique.
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Abstract. We identify fragile and robust neurons of deep learning archi-
tectures using nodal dropouts of the first convolutional layer. Using an
adversarial targeting algorithm, we correlate these neurons with the dis-
tribution of adversarial attacks on the network. Adversarial robustness of
neural networks has gained significant attention in recent times and high-
lights an intrinsic weaknesses of deep learning networks against carefully
constructed distortion applied to input images. In this paper, we evaluate
the robustness of state-of-the-art image classification models trained on
the MNIST and CIFAR10 datasets against the fast gradient sign method
attack, a simple yet effective method of deceiving neural networks. Our
method identifies the specific neurons of a network that are most affected
by the adversarial attack being applied. We, therefore, propose to make
fragile neurons more robust against these attacks by compressing features
within robust neurons and amplifying the fragile neurons proportionally.

Keywords: Deep learning · Fragile neurons · Data perturbation ·
Adversarial targeting · Robustness analysis · Adversarial robustness

1 Introduction

Deep neural networks (DNNs) have been widely adapted to various tasks and
domains, achieving significant performances in both the real world and in numer-
ous research environments [11]. Previously considered state-of-the-art DNNs
have been subjected to a plethora of tests and experiments in an attempt to bet-
ter understand the underlying mechanics of how and what exactly these learning
models actually learn [13]. In doing so, we now better recognise the strengths
and more importantly the weaknesses of DNNs and have subsequently developed
better networks building on from previous architectures [15].

Adversarial attacks are one the most used methods to evaluate the robustness
of DNNs. Such methods introduce a small carefully crafted distortion to the
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input of the network in an attempt to deceive the network into misclassifying
the input with a high level of confidence [9,18]. The small distortions to the
input, termed adversarial perturbations, are hardly perceptible to humans, even
when the perturbation is amplified by several orders of magnitude [18]. This
ability to fool DNNs with hardly perceptible changes in the input highlights an
intrinsic difference between artificial intelligence and true intelligence.

There are many ways in which an adversarial perturbation can be crafted,
utilising various tools and assumptions on the target model and dataset. Existing
adversarial attacks, and methods for designing such distortions, can be broadly
categorised into white-box and black-box attacks. The distinction between the
two different types of attacks being the information that the adversary has on the
model and its parameters. With the white-box attacks, the adversary is assumed
to have complete access to the target model in question, including model param-
eters and architecture [4]. Conversely, the black-box attack is a type of pertur-
bation designed by an adversary with no information to the model’s parameters
or architecture [14]. In this paper, we focus our efforts at evaluating the robust-
ness [17] of ResNet-18, ResNet-50 and ResNet-101 networks against a simple yet
effective white-box adversarial attack, the fast gradient sign method (FGSM)
attack [9]. We apply the FGSM perturbations on the MNIST and CIFAR10
datasets for the mentioned models and present a correlative relationship between
the distribution of neurons with high influence and targeting by an adversary.
We also evaluate a method in minimising the effects of such distortions.

With the numerous adversarial attacks formed against DNNs, there have
been equally as many defences proposed in literature [14]. The ability of a defence
model to remain unbeaten by an ever-growing selection of adversarial attacks has
proven to be difficult [14,20]. Adversarial defences, much like adversarial attacks,
can be divided into different categories: (i) defences focusing on gradient mask-
ing/obfuscation, whereby the network weight gradients used by adversaries to
form attacks are disguised; (ii) robust optimization [19], where the network struc-
ture/parameters are altered to increase adversarial defences; and (iii) adversarial
example detection, where the goal is to detect an adversarial input and process
this entity differently to ordinary inputs [15].

The goal of all adversaries is to deceive the network into predicting, clas-
sifying, or recognising an input as a different class to its true self. When the
adversary has knowledge of the information held by the network, as is the case
for white-box attacks, it utilises this to craft a perturbation that will exploit
weaknesses within the network’s representations of the data [14]. In this paper,
we propose viewing an adversarial attack as an exploitative method that targets
specific neurons within a given layer. We also draw a relationship between the
adversaries’ target neurons and neurons that show to have higher influence on
the model’s unperturbed performance.

We assume that, for a given layer, information about the input learned by
the layer through back propagation is distributed unevenly amongst individ-
ual neurons. We propose using nodal dropout to find redundant nodes within a
given layer of a network [12]. Thus, also finding fragile neurons that carry more



18 C. Pravin et al.

information about the input [7]. We identify null neurons that once removed
do not significantly affect the overall model performance and thus considered to
carry less information about the dataset. We examine how the FGSM attack
affects different models (ResNet-18, ResNet-50 and ResNet-101) at different
stages (epochs) in learning, whilst also comparing how increasing the network
architecture affects the effectiveness of the formed attack. Therefore, we propose
to make fragile neurons more robust against these attacks by compressing robust
neurons and amplifying the fragile neurons proportionally.

Furthermore, the FGSM attack utilises a given network’s learned representa-
tions in the form of its layer weights to calculate an effective adversarial example.
The adversarial examples can be used as a method of evaluating the robust-
ness [16] of the model’s composite representations. We aim to identify the fragile
and robust neurons within specific parts of the network, and post-process them
separately to investigate how they affect the overall model’s robustness against
an adversarial attack.

2 Related Work

Robustness analysis evaluates the defence of DNNs against malicious distor-
tion of its input [1,9,20]. There are different types of attacks available for a
potential adversary, each with their own strengths and limitations. Szegdey
et al. [18] initially proposed adversarial examples for DNNs using the Limited-
memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm, an expensive
linear search method for adversarial examples. Thereafter, the FGSM attack
proposed by Goodfellow et al. [9] has become one of the benchmarks for adver-
sarial attacks due to its computational process being less resource intensive when
compared to other attacks. The FGSM attack performs a pixel-wise one step
gradient update along the gradient sign direction of increasing loss. There are
several other attack methods available in the literature. However, in this study,
we focus specifically on the FGSM adversarial attack due to its one-step gradient
calculation and effective performance against state-of-the-art DNN models.

In terms of defences against adversarial attacks, there are an equal number of
approaches proposed in literature. For every newly developed adversarial attack,
soon there have been suitable defences proposed by researchers [20]. One method
of defending a DNN model is by masking the network’s parameters, therefore
making it more difficult for an adversary to exploit the network’s learned infor-
mation to generate adversarial examples. However, this method has shown to be
ineffective against many types of attacks and there exist techniques to circum-
vent such defensive measures [15]. Some studies show that adversarial examples
are drawn from a different distribution to the regular dataset [10]. Therefore, one
method to defend against the effects of such adversarial examples is to identify
them and deal with the perturbed inputs to the model separately [15]. These
methods are also subjected to exploitation by techniques that can bypass the
adversarial examples detection, making such defence methods weaker to some
types of attacks [3].
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In this paper we try to find a relationship between highly influential neu-
rons and the likelihood of being targeted by an adversary, and accordingly, pro-
pose a method of regularising the specific neurons during post-training. As we,
the observer, propagate through the network we notice that the deconstructed,
abstract characteristics of the data begin to take a shape of salient features,
which are then assigned semantic meaning in the form of target labels [21].
Literature on leveraging the information content of a DNN has been used for
various applications, we direct the reader to Golatkar et al. [8] and their method
of selective forgetting, in which they propose a framework for erasing the infor-
mation about a particular subset of data from the model’s learned weights. We
take inspiration from this framework and propose that adversarial robustness is
hinged on the distribution of influential and uninfluential neurons, referred to
as sets S and S′ respectively within the context of this study.

We are motivated by the works of Li and Chen [12] along with related litera-
ture in reducing network complexity by using techniques such as nodal pruning.
We leverage the idea that there exist neurons within a network that can be clas-
sified as redundant, or uninfluential to the overall model performance. Remov-
ing redundant neurons in some cases also shows to improve robustness against
attacks [5]. Conversely, we also consider the works of [7] that prove the existence
of multi-model neurons within networks; multi-modal neurons being representa-
tions that hold a higher degree of influence in the network’s understanding of the
data. We investigate the correlation between representations that show a higher
influence and the highest average concentration of an adversarial attack to these
features. In consequence, we draw attention to the nature of adversarial attacks
and how such perturbations target the model’s learned knowledge specifically.

3 Adversarial Attack and Defense Formulations

We consider an image classifier model fθ with L layers, and trainable parameters
θ that accepts an input image x and its associated true class label y. The model
returns ŷ as its prediction for input x. The goal of the model is to reduce loss
function L(fθ, x, y). The image x′ = x + δε is an adversarial example produced
by a distortion δε added to image x, where ε is the perturbation magnitude.

Our objective is to minimise the difference in predictions values ŷ obtained for
unperturbed input x and perturbed input x′. We examine the model’s learnable
parameters θL ∈ θ of layer L at various stages of the model’s training. It should
be noted that while assessing the significance of the neurons, we remove one-
neuron at a time from θL. We, therefore, identified two sets of neurons indices,
S and S′ respectively representing (i) neuron indices within the layer L showing a
higher influence on the overall model performance, and (ii) neurons indices with
lower overall influence on model performance. In our work, we are concerned
with removing one-neuron at a time, removing multiple neurons from the model
fθ would warrant an alternative method. We also assessed neurons of the first
layer of the network because of its high importance and influence on features
learned by subsequent layer in a network [5].



20 C. Pravin et al.

3.1 Attack Formulation

We formulated attack in this work using FGSM method. This method leverages
a network’s learned representations in the form of layer weights θL to construct
an efficient and effective adversarial perturbation x′. The FGSM attack is a
perturbation for an input x computed as:

δε = ε sign(∇xL(x, y, θ)), (1)

where ∇x is the required gradients calculated using backpropagation. The adver-
sarial example therefore is x′ = x + δε [1,9].

We find that for a 100 epoch pre-trained ResNet-50 model on the CIFAR10
dataset, a baseline model accuracy of 75.87% on unperturbed input x is found.
The same model applied to the CIFAR10 dataset with an FGSM attack, using
a perturbation magnitude of ε = 0.01, results in an accuracy of 58.88%. If we
consider the same ResNet-50 architecture trained equally for 100 epochs, with
the input dimensions adjusted to comply with the MNIST dataset, the baseline
model accuracy on unperturbed MNIST dataset is 99.42%. While the model
accuracy is found to be 79.4% when perturbed with an ε = 0.34 attack. These
are examples of the FGSM attack performance against CIFAR10 and MNIST
datasets on the ResNet-50 DNN model.

If we consider a metric to assess the complexity of a given dataset, such as
the cumulative spectral gradient (CSG) method [2], we notice that the CSG
complexity measure for the for the CIFAR10 dataset is 1.00 and MNIST dataset
is 0.11. As we may expect, the FGSM attack is more effective on more complex
data (e.g., CIFAR10) compared to less complex data (e.g., MNIST). This can be
realised from the perturbation magnitude ε required for the model performance
to decrease proportionally. For example, to decrease performance by approxi-
mately 20%, a lower value of ε (small perturbation) is required for CIFAR10 and
a higher value of ε (large perturbation) is required for MNIST.

3.2 Defence Formulation

To better understand how to form a suitable defence against an adversarial
attack, we may consider how an adversary can form an effective attack. With
the FGSM attack, a single step in the parameter space is taken in the direction
of increasing loss. The perturbation is calculated using the network’s weights to
perturb the input data features in the direction of an incorrect class. Then it
is natural to consider that this informed way of creating adversarial perturba-
tions may, even with relatively low magnitudes, affect the neurons that are more
influential to the model’s performance (e.g., set of highly influencing neurons S).

We aim to show this effect of adversarial perturbations experimentally by
comparing the output of the layer-wise convolution for original input x and
perturbed input x′ computed using pre-trained parameters θ. We expect the
original model prediction f(x, y, θ) and the model prediction on perturbed input
f(x′, y, θ) to be not equal. In our defence formulation, we aim to modify the
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model’s layer parameters θL as θ′
L such that a potential adversary is forced to

distribute the attack strength throughout the layer. We propose that this will
make the model’s layer θ′

L more robust against an adversarial attack.

3.3 Fragile and Null Kernels Identification

We identified fragile neurons (kernels) S and null neurons (kernels) S′ by drop-
ping the kernels out systematically one-by-one and measuring the variance in
model performance. Figure 1 show model’s performance for each kernel along
the x-axis being dropped. The indices of fragile kernels S are indicated with
blue circled symbols and are below the mean performance line indicated in red,
which is computed over each kernel’s effect on the model’s accuracy. The drop-
ping of these fragile kernels has a higher influence on the model’s performance
when compared to the dropping of the null kernels indicted with black star
symbol shown above mean performance line.

Fig. 1. Evaluated ResNet-50 model trained for 10 epochs. Fragile kernels S shown in
blue below mean performance line in red and null kernels S′ are shown in black star
above mean line in red. (Color figure online)

4 Adversarial Targeting Algorithm

We assuming that the parameters θL,S′ of null kernels S′ in layer L, carry within
them some noise that render the overall influence of these kernels on the model
performance to be lower than the fragile kernel S, we propose to filter parameters
θL,S′ to remove noise. We assume the distribution of the noise in matrix KL,S̄

to be Gaussian noise. For this, we can use the works of Gavish and Donoho [6]
to recover a lower rank matrix from noisy data and retaining only the most
important features. The filtering of θL,S′ produces the modified parameters θ′

L,S′ .
The filtered parameters relating to null kernels θ′

L,S′ , are said to be more robust
if the probability of predicting the true class using modified model parameters
θ′ is higher than θ as per:

P (ŷ = y|x′, θ′) > P (ŷ = y|x′, θ). (2)
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We compose a matrix KL,S′ by stacking flattened null kernel parameters θ′
L,S′

and compress KL,S′ to remove noise or redundant information, thus increasing
the influence of these null kernels S′ on the model’s overall performance. While
filtering the null kernels S′, we proportionally amplify fragile kernel S. This
is to maintain relative magnitude of the local features within the network and
propagate the essential representations to deeper layers of the network better.

4.1 Filtering of Null Kernels S′

We decompose the null kernel’s matrix KL,S′ using singular value decomposition
(SVD) and reduce the complexity of the representations by clamping all values
below a filtering threshold τ . We apply this method only to the first convolutional
layer because of its susceptibility to any distortions having a higher influence on
the network’s performance [5]. We use SVD to decompose our null kernel matrix
KL,S̄ into its respective eigenvalues Σ and eigenvectors matrices U and V as:

KL,S′ = UΣV T . (3)

We then compute a truncated matrix of singular values ˜Σ by clamping all sin-
gular values to be at most equal to threshold value τ as per:

σ̃i = arg min(σ, τ), (4)

where σ is the diagonal of Σ and σ̃i is the row upto which the matrix σ is
truncated. The thresholding value τ for m-byn matrix is given as:

τ = λ(β) · √
nε, (5)

where β = m/n, ε is the noise level within the matrix, and the term λ(β) is
expressed as [6]:

λ(β) =

√

2(β + 1) +
c1β

(β + 1) +
√

β2 + c2β + 1
, (6)

where constants c1 and c2 respectively are 8 and 14.
We then find the noise level value ε in (5) experimentally through a systematic

search method using a sample set of the parameters. As the final filtering step,
we reconstruct the filtered weight matrix ˜KL,S̄ by using the clamped singular
values and corresponding eigenvectors as:

˜KL,S̄ = U ˜ΣV T . (7)
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4.2 Amplification of Fragile Kernels S

The amplification of fragile kernels parameters matrix KL,S by a scaling factor
of α computed using (3) and (7) as per:

˜KL,S = αKL,S , (8)

where scaling factor of α is

α = 1 + ||KL,S̄ − ˜KL,S̄ ||2. (9)

The aim of this process is to amplify the features within fragile kernels S, such
that a greater magnitude of adversarial perturbation is required to vary such
kernels.

4.3 Adversarial Targeting of Fragile and Null Kernels

We assess the robustness of the fragile kernels S and null kernels S′ by our
robustness targeting algorithm shown in Algorithm 1. The FSGM attack for
varied range of perturbations ε is used to compute the evaluated first convolu-
tional layer’s outputs ŷx and ŷx′ . The mean difference between each kernel in
the output of ŷx and ŷx′ are calculated and compared to see which is highest,
indicating a greater average concentration of the attack.

Algorithm 1. Adversarial targeting
1: Initialise f() → fL() � fL() is the L-th layer of full network f()
2: Compute indices of fragile kernels S and null kernels S′ as per Sect. 3.3
3: Sattack = {} � an empty list to store examples that attacks S
4: for perturbation ε ∈ R do � where ε is perturbation magnitude
5: attack = FGSM(fL, ε)
6: Scount = 0
7: for (x, y) in (Xtest, Ytest) do
8: x′ = attack(x, y) � create an adversarial example x′ for input x and level y
9: ŷx = fL(x) � output of L-th layer on unperturbed input x

10: ŷx′ = fL(x′) � output of L-th layer on perturbed input x′

11: d = ||ŷx − ŷx′ ||2 � Euclidean distance d = (d1, . . . , dk) between ŷx and ŷx′

12: Sf = (
∑|S|

j dj,S)/|S| � Average of distances dj,S of all S select from d

13: Sn = (
∑|S′|

j dj,S′)/|S′| � Average of distances dj,S′ of all S′ select from d
14: if Sf > Sn then
15: Scount = Scount + 1 � increase counter of attacks for fragile kernels
16: end if
17: end for
18: Sattack ← Scount � add Scount to the list Sattack

19: end for
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5 Results and Discussion

In first series of experiments, we use the two sets S and S′ obtained as per Fig. 1
on the ResNet-50 model and apply them to Algorithm 1 using the CIFAR10
dataset, resulting in Fig. 2 and the MNIST dataset, resulting in Fig. 3:

For Fig. 2, we measure the robustness of ResNet-50 models and compare
the percentage of examples attacking fragile kernels S and the model accuracy
against FGSM attack. In Fig. 2 (Left), we notice that as the number of training
epochs increases, the model’s accuracy also increases for both the unperturbed
(ε = 0) and perturbed (ε > 0) examples. In Fig. 2 (Right), using the results
from the adversarial targeting Algorithm 1, we also notice that the percentage
of examples attacking fragile kernels S is higher for highly perturbed examples.
However, for smaller perturbation magnitudes, 100 epoch model is more robust.
This suggests that as the model becomes more robust (from epoch 10 to 100),
the percentage of examples attacking fragile kernels S and null kernels S′ tends
to distribute equally.

Fig. 2. Left: ResNet-50 model trained on the CIFAR10 dataset for epochs 10, 50 and
100 against the FGSM attack, with ε increasing linearly, marked by dots. Right: ResNet-
50 model trained on the CIFAR10 dataset for epochs 10, 50 and 100 against the FGSM
attack, with attack magnitude increasing logarithmically, marked by star symbols.
Epoch 10, 50, 100 respectively indicated in colors grey, green, violet. (Color figure
online)

After applying our framework proposed in Sects. 4.1 and 4.2 using ε value
of 0.015 to the first convolutional layer θL, resulting in filtered layer parameters
θ′

L, we observe the difference in attack distribution between original model and
modified model using Algorithm 1.



Adversarial Robustness in Deep Learning 25

Fig. 3. Concentration of the adversarial attack on fragile kernels S for both the original
model with parameters θL and the modified model, with θ′

L in a ResNet-50 model
trained on the MNIST dataset for 10 epochs, using the methods proposed in Sects. 4.1
and 4.2.

We apply the parameter filtering framework to a ResNet-50 model trained
on the MNIST for 10 epochs. The results of which is shown in Fig. 3. In this
experiment, although the number of fragile kernels S are 37% of the total kernels
within the layer, these kernels show a larger average distance between the outputs
of the original layer θL and modified layer θ′

L for almost 89% of the tested input
examples on original model. Furthermore, as the attack strength is increased by
increasing ε, the average magnitude of the attack on kernels S also increased.
However, our method of filtering parameters θ′

L kept the percentage of tested
examples attacking fragile kernels S lower than the original model.

We observe from Fig. 4 how the influence of kernels in the first convolutional
layer varies during the training process while we systematically drop and assess
the kernels. In Fig. 4, red circles are the kernels that carry a higher influence
through all stages of model training. We notice that as we change the model
from ResNet-18 to ResNet-50 and ResNet-101, the number of influential fragile
kernels increases on the CIFAR10 dataset. This is as we may expect, model
architectures with greater complexities are able to learn the important features
from the dataset faster than shallower model architectures. We notice from Fig. 4,
that the average model performance of the kernels in θL increases to a limit
for models trained on the CIFAR10 dataset and shows to increase and then
decrease for the models trained on the MNIST dataset. This characteristic invites
a separate set of experiments to better understand how model overfitting affects
nodal dropouts.
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Fig. 4. Variance of model performance to individual kernels being dropped out within
the first convolutional layer. Red circles indicate fragile kernels that remain frag-
ile throughout the all training epochs, whereas red crosses indicate kernels that are
observed as fragile for the specific training epoch length. (Color figure online)

6 Conclusion

In this study we show how an FGSM attack targets specific neurons within
the first convolutional layer of ResNet-18, ResNet-50 and ResNet-101 models
trained on both the CIFAR10 and NNIST datasets. To prove this property,
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we first identify fragile kernels S and null kernels S′ sets within the evaluated
layer using an iterative dropout method and measuring the variance in model
performance. We use the kernel indices of S and S′ to evaluate the highest
average distance between the outputs of the layer using the original input x and
perturbed example x′. In doing so, we find that for a ResNet-50 model trained
on the CIFAR10 dataset for 50 epochs, the number of fragile kernels S account
to 37% of the total number of kernels in the layer yet show to have a higher
average difference for approximately 89% of the examples evaluated.

We also show how the robustness against the FGSM attack, and the target-
ing of fragile kernels S varies as the model is trained, thus showing a correlation
between a model becoming more robust and the targeting of fragile kernels.
Furthermore, we propose a layer parameter filtering algorithm that improves
robustness in a model by removing information from null kernels S′ and ampli-
fying the information in S. This simple method, despite only being applied to the
first convolutional layer, improves the robustness of a model with less training.
It should be noted that, although our study focuses on the first convolutional
layer only due to the layer being highly influence over the model’s performance,
other layers can also be evaluated using this proposed framework.
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Abstract. Adversarial robustness of machine learning models has
attracted considerable attention over recent years. Adversarial attacks
undermine the reliability of and trust in machine learning models, but
the construction of more robust models hinges on a rigorous understand-
ing of adversarial robustness as a property of a given model. Point-wise
measures for specific threat models are currently the most popular tool
for comparing the robustness of classifiers and are used in most recent
publications on adversarial robustness. In this work, we use robustness
curves to show that point-wise measures fail to capture important global
properties that are essential to reliably compare the robustness of dif-
ferent classifiers. We introduce new ways in which robustness curves can
be used to systematically uncover these properties and provide concrete
recommendations for researchers and practitioners when assessing and
comparing the robustness of trained models. Furthermore, we charac-
terize scale as a way to distinguish small and large perturbations, and
relate it to inherent properties of data sets, demonstrating that robust-
ness thresholds must be chosen accordingly. We hope that our work con-
tributes to a shift of focus away from point-wise measures of robustness
and towards a discussion of the question what kind of robustness could
and should reasonably be expected. We release code to reproduce all
experiments presented in this paper, which includes a Python module to
calculate robustness curves for arbitrary data sets and classifiers, sup-
porting a number of frameworks, including TensorFlow, PyTorch and
JAX.

Keywords: Adversarial robustness · Deep learning

1 Introduction

Despite their astonishing success in a wide range of classification tasks, deep
neural networks can be lead to incorrectly classify inputs altered with specially
crafted adversarial perturbations [11,34]. These perturbations can be so small
that they remain almost imperceptible to human observers [13]. Adversarial
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robustness describes a model’s ability to behave correctly under such small per-
turbations crafted with the intent to mislead the model. The study of adversarial
robustness – with its definitions, their implications, attacks, and defenses – has
attracted considerable research interest. This is due to both the practical impor-
tance of trustworthy models as well as the intellectual interest in the differences
between decisions of machine learning models and our human perception. A cru-
cial starting point for any such analysis is the definition of what exactly a small
input perturbation is – requiring (a) the choice of a distance function to measure
perturbation size, and (b) the choice of a particular scale to distinguish small
and large perturbations. Together, these two choices determine a threat model
that defines exactly under which perturbations a model is required to be robust.

The most popular choice of distance function is the class of distances induced
by �p norms [5,11,34], in particular �1, �2 and �∞, although other choices such
as Wasserstein distance have been explored as well [39]. Regarding scale, the
current default is to pick some perturbation threshold ε without providing con-
crete reasons for the exact choice. Analysis then focuses on the robust error of
the model, the proportion of test inputs for which the model behaves incorrectly
under some perturbation up to size ε. This means that the scale is defined as a
binary distinction between small and large perturbations based on the pertur-
bation threshold. A set of canonical thresholds have emerged in the literature.
For example, in the publications referenced in this section, the MNIST data set is
typically evaluated at a perturbation threshold ε ∈ {0.1, 0.3} for the �∞ norm,
while CIFAR-10 is evaluated at ε ∈ {2/255, 4/255, 8/255}, stemming from the
three 8-bit color channels used to represent images.

Based on these established threat models, researchers have developed special-
ized methods to minimize the robust error during training, which results in more
robust models. Popular approaches include specific data augmentation, some-
times used under the umbrella term adversarial training [7,14,16,23], training
under regularization that encourages large margins and smooth decision bound-
aries in the learned model [9,10,15,37], and post-hoc processing or randomized
smoothing of predictions in a learned model [8,19].

In order to show the superiority of a new method, robust accuracies of differ-
ently trained models are typically compared for a handful of threat models and
data sets, eg., �∞(ε = 0.1) and �2(ε = 0.3) for MNIST. Out of 22 publications on
adversarial robustness published at NeurIPS 2019, ICLR 2020, and ICML 2020,
12 publications contain results for only a single perturbation threshold. In five
publications, robust errors are calculated for at least two different perturbation
thresholds, but still, only an arbitrary number of thresholds is considered. Only
in five out of the total 22 publications do we find extensive considerations of
different perturbation thresholds and the respective robust errors. Out of these
five, three are analyses of randomized smoothing, which naturally gives rise to
certification radii [7,21,28]. [27] follow a learning-theoretical motivation, which
results in an error bound as a function of the perturbation threshold. Only [25]
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Fig. 1. Excerpt of a toy data set with two decision boundaries (left) and respective
robustness curves (right). The data is separated perfectly by one smooth boundary
(blue robustness curve), and one squiggly boundary (orange robustness curve). We
indicate margins around the boundaries at distances ε and 2ε. Selecting a single per-
turbation threshold is not sufficient to decide which classifier is more robust. (Color
figure online)

do not rely on randomization and still provide a complete, empirical analysis of
robust error for varying perturbation thresholds.1

Our Contributions: In this work, we demonstrate that point-wise measures of �p
robustness are not sufficient to reliably and meaningfully compare the robustness
of different classifiers. We show that, both in theory and practice, results of
model comparisons based on point-wise measures may fail to generalize to threat
models with even slightly larger or smaller ε. Furthermore, we show that point-
wise measures are insufficient to meaningfully compare the efficacy of different
defense techniques when distance functions are varied. Finally, we analyze how
scale depends on the underlying data space, choice of distance function, and
distribution. Based on our findings we suggest that robustness curves, which
represent the robust error for all perturbation thresholds, should become the
standard tool when comparing adversarial robustness of classifiers, and that the
perturbation threshold of threat models should be selected carefully in order to
be meaningful, considering inherent characteristics of the data set. We release
code to reproduce all experiments presented in this paper2, which includes a
Python module with an easily accessible interface (similar to Foolbox [30]) to
calculate robustness curves for arbitrary data sets and classifiers. The module
supports classifiers written in most of the popular machine learning frameworks,
such as TensorFlow, PyTorch and JAX.

2 Methods

An adversarial perturbation for a classifier f and input-output pair (x, y) is a
small perturbation δ with f(x + δ) �= y. Because the perturbation δ is small, it
1 Single thresholds: [1,4,10,26,29,31–33,35,36,41,42], multiple thresholds: [3,16,20,

24,38], full analysis: [7,21,25,27,28].
2 The full code is available at www.github.com/niklasrisse/how-to-compare-adversari

al-robustness-of-classifiers-from-a-global-perspective.

http://www.github.com/niklasrisse/how-to-compare-adversarial-robustness-of-classifiers-from-a-global-perspective
http://www.github.com/niklasrisse/how-to-compare-adversarial-robustness-of-classifiers-from-a-global-perspective
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is assumed that the label y would still be the correct prediction for x + δ. The
resulting point x + δ is called an adversarial example. The points vulnerable
to adversarial perturbations are the points that are either already misclassified
when unperturbed, or those that lie close to a decision boundary.

One tool to visualize and study the robustness behavior of a classifier are
robustness curves, which represent the distribution of shortest distances between
a set of points and the decision boundaries of a classifier:

Definition 1. Given an input space X and label set Y, distance function d on
X × X , and classifier f : X → Y. Let data points (x, y) i.i.d.∼ P . Then the
d-robustness curve for f is the graph of the function

Rf
d(ε) := P(x,y) (∃ x′ : d(x, x′) ≤ ε ∧ f(x′) �= y)

A model’s robustness curve shows how data points are distributed in relation
to the decision boundaries of the model, essentially visualizing simultaneously
an extremely large number of point-wise measures. This allows us to take a step
back from robustness regarding a specific perturbation threshold which in turn
makes it easier to compare global robustness for different classifiers, distributions
and distance functions. To see why this is relevant, consider Fig. 1, which shows
toy data along with two possible classifiers that perfectly separate the data.
For a perturbation threshold of ε, the blue classifier has robust error 0.5, while
the orange classifier is perfectly robust. However, for a perturbation threshold
of 2ε, the orange classifier has robust error 1, while the blue classifier remains
at 0.5. By freely choosing a single perturbation threshold for comparison, it
is therefore possible to make either classifier appear to be much better than
the other, and no single threshold can capture the full picture. In fact, as the
following Theorem shows, for any two disjoint sets of perturbation thresholds,
it is possible to construct a data distribution and two classifiers f , f ′, such that
the robust error of f is lower than that of f ′ for all perturbation thresholds in
the first set, and that of f ′ is lower than that of f for all perturbation thresholds
in the second set. This shows that even computing multiple point-wise measures
to compare two models may give misleading results.

Theorem 1. Let T1, T2 ⊂ R
>0 be two disjoint finite sets. Then there exists a

distribution P on R × {0, 1} and two classifiers c1, c2 : R → {0, 1} such that
Rc1

|·|(t) < Rc2
|·|(t) for all t ∈ T1 and Rc1

|·|(t) > Rc2
|·|(t) for all t ∈ T2.

Proof. Without loss of generality, assume that T1 = {t1, . . . , tn} and T2 =
{t′1, . . . , t

′
n} with ti < t′i < ti+1 for i ∈ {1, . . . , n}. We will construct c1, c2 such

that the robustness curves Rc1
|·|(·), Rc2

|·|(·) intersect at exactly the points (ti+t′i)/2
and (ti + t′i+1)/2 on the interval (t1, t′n]. Let d = t′n and

P
(
−d − ti+t′

i+1
2 , 0

)
= P

(
d + ti+t′

i

2 , 1
)

= 2
4n+1 , P

(−d − t1
2 , 0

)
= 1

4n+1

Let c1(x) = 1x≥−d and c2(x) = 1x≥d. Both classifiers have perfect accuracy on
P , meaning that Rci

|·|(0) = 0. The closest point to the decision boundary of c1
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is −d − t1
2 with weight 1

4n+1 , so Rc1
|·|(

t1
2 ) = 1

4n+1 . The second-closest point is

−d − t1+t′
2

2 with weight 2
4n+1 , so Rc1

|·|(
t1+t′

2
2 ) = 3

4n+1 , and so on. Meanwhile, the

closest point to the decision boundary of c2 is d + t1+t′
1

2 , so Rc2
|·|(

t1+t′
1

2 ) = 2
4n+1 ,

the second-closest point is d
t2+t′

2
2 , so Rc2

|·|(
t2+t′

2
2 ) = 4

4n+1 , and so on.

3 The Weaknesses of Point-Wise Measures

In the following, we empirically evaluate the robustness of a number of recently
published models, and demonstrate that the weaknesses of point-wise measures
described above are not limited to toy examples, but occur for real-world data
and models. We evaluate and compare the robustness of models obtained using
the following training methods:

1. Standard training (ST), i. e., training without specific robustness considera-
tions.

2. Adversarial training (AT) [23].
3. Training with robust loss (KW) [37].
4. Maximum margin regularization for a single �p norm together with adversarial

training (MMR + AT) [9].
5. Maximum margin regularization simultaneously for �∞ and �1 margins

(MMR-UNIV) [10].

Together with each training method, we state the threat model the trained model
is optimized to defend against, eg., �∞(ε = 0.1) for perturbations in �∞ norm
with perturbation threshold ε = 0.1, if any. The trained models are those made
publicly available by [9]3 and [10]4. The network architecture is a convolutional
network with two convolutional layers, two fully connected layers and ReLU
activation functions. The evaluation is based on six real-world datasets: MNIST,
Fashion-MNIST (FMNIST) [40], German Traffic Signs (GTS) [17], CIFAR-10 [18],
Tiny-Imagenet-200 (TINY-IMG) [22], and Human Activity Recognition (HAR) [2].
Models are generally trained on the full training set for the corresponding data
set, and robustness curves evaluated on the full test set, unless stated otherwise.

For complex models, calculating the exact distance of a point to the closest
decision boundary, and thus estimating the true robustness curve, is computa-
tionally very intensive, if not intractable. Therefore we bound the true robustness
curve from below using strong adversarial attacks, which is consistent with the
literature on empirical evaluation of adversarial robustness and also applicable
to many different types of classifiers. We base our selection of attacks on the
recommendations by [5]. Specifically, we use the �2-attack proposed by [6] for
�2 robustness curves and PGD [23] for �∞ robustness curves. For both attacks,
we use the implementations of Foolbox [30]. In the following, “robustness curve”
refers to this empirical approximation of the true robustness curve.
3 The models trained with ST, KW, AT and MMR + AT are avaible at www.github.com/

max-andr/provable-robustness-max-linear-regions.
4 The models trained with MMR-UNIV are avaible at www.github.com/fra31/mmr-

universal.

www.github.com/max-andr/provable-robustness-max-linear-regions
www.github.com/max-andr/provable-robustness-max-linear-regions
www.github.com/fra31/mmr-universal
www.github.com/fra31/mmr-universal
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Table 1. Three point-wise measures for different threat models. All threat models use
the �∞ distance function, but differ in choice of perturbation threshold (denoted by
ε). Each row contains the robust test errors for one point-wise measure. Each column
contains the robust test errors for one model, trained with a specific training method
(marked by column title). The lower the number, the better the robustness for the
specific threat model. Each point-wise measure results in a different relative ordering
of the classifiers based on the errors. The order is visualized by different tones of gray
in the background of the cells.

ε ST AT KW MMR + AT MMR-UNIV

1/255 0.60 0.38 0.43 0.42 0.54

4/255 0.99 0.68 0.57 0.63 0.74

8/255 1.00 0.92 0.73 0.84 0.91

Fig. 2. �∞ robustness curves (left plot) and �2 robustness curves (right plot) resulting
from different training methods (indicated by label), optimized for different threat
models (indicated by label). The dashed vertical lines visualize the three point-wise
measures from Table 1.

Point-wise measures are used to quantify robustness of classifiers by mea-
suring the robust test error for a specific distance function and a perturbation
threshold (eg., �∞(ε = 4/255)). In Table 1 we show three point-wise measures to
compare the robustness of five different classifiers on CIFAR-10. If we compare
the robustness of the four robust training methods (latter four columns of the
table) based on the first point-wise threat model �∞(ε = 1/255) (first row of the
table), we can see that the classifier trained with AT is the most robust, followed
by MMR + AT, followed by KW, and MMR-UNIV results in the least robust classifier.
However, if we increase the ε of our threat model to ε = 4/255 (second row of
the table), KW is more robust than AT. For a even larger ε (third row of the table),
we would conclude that MMR-UNIV is preferable over AT, and that AT results in
the least robust classifier. All three statements are true for the particular per-
turbation threshold (ε), and the magnitude of all perturbation thresholds is rea-
sonable: publications on adversarial robustness typically evaluate CIFAR-10 on
perturbation thresholds ≤ 10/255 for �∞ perturbations. Meaningful conclusions
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Fig. 3. �∞ robustness curves for multiple data sets. Each curve is calculated for a
different model and a different test data set. The data sets are indicated by the labels.
The models are trained with MMR + AT, Threat Models: MNIST: �∞(ε = 0.1), FMNIST:
�∞(ε = 0.1), GTS: �∞(ε = 4/255), CIFAR-10: �∞(ε = 2/255). The curves for MNIST

and FMNIST both show a change in slope, which can not be captured with point-wise
measures and could be a sign of overfitting to the specific threat models for which the
classifiers were optimized for.

Fig. 4. �∞ robustness curves (left plot) and �2 robustness curves (right plot) resulting
from different training methods (indicated by color and label), optimized for different
threat models (indicated by label) on CIFAR-10.

on the robustness of the classifiers relative to each other can not be made without
taking all possible ε into account.

A Global Perspective: Figure 2 shows the robustness of different classifiers for
the �∞ (right plot) and �2 (left plot) distance functions from a global perspec-
tive using robustness curves. The plot reveals why the three point-wise measures
(marked by vertical black dashed lines in the left plot) lead to different results
in the relative ranking of robustness of the classifiers. Both for the classifiers
trained to be robust against attacks in �∞ distance (left plot) and �2 distance
(right plot), we can observe multiple intersections of robustness curves, corre-
sponding to changes in the relative ranking of the robustness of the compared
classifiers. Robustness curves, as opposed to point-wise measures, allow us to reli-
ably compare the robustness of classifiers because they clearly show for which
perturbation ranges robustness holds, and are not biased by an arbitrarily chosen
perturbation threshold.
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Fig. 5. Example of a data distribution and two linear classifiers such that the �2 robust-
ness curves intersect, but not the �∞ robustness curves. (Color figure online)

Overfitting to Specific Perturbation Thresholds: In addition to the problem of
robustness curve intersection, relying on point-wise robustness measures to eval-
uate adversarial robustness is prone to overfitting when designing training pro-
cedures. Figure 3 shows �∞ robustness curves for MMR + AT with �∞ threat model
as provided by [9]. The models trained on MNIST and FMNIST both show a change
in slope, which could be a sign of overfitting to the specific threat models for
which the classifiers were optimized for, since the change of slope occurs approx-
imately at the chosen perturbation threshold ε. This showcases a potential prob-
lem with the use of point-wise measures during training. The binary separation
of “small” and “large” perturbations based on the perturbation threshold is not
sufficient to capture the intricacies of human perception under perturbations,
but a simplification based on the idea that perturbations below the perturba-
tion threshold should almost certainly not lead to a change in classification. If a
training procedure moves decision boundaries so that data points lie just beyond
this threshold, it may achieve a low robust error, without furthering the actual
goals of adversarial robustness research. Using robustness curves for evaluation
cannot prevent this effect, but can be used to detect it.

Transfer of Robustness Across Distance Functions: In Fig. 4 we compare the
robustness of different models for the �∞ (left plot) and �2 (right plot) distance
functions. The difference to Fig. 2 is that the models (indicated by colour) are the
same models in the left plot and in the right plot. We find that for MMR + AT, the
�∞ threat model leads to better robustness than the �2 threat model both for �∞
and �2 robustness curves. In fact, MMR + AT with the �∞ threat model even leads to
better �∞ and �2 robustness curves than MMR-UNIV, which is specifically designed
to improve robustness for all �p norms. Overall, the plots are visually similar.
However, since both plots contain multiple robustness curve intersections, the
ranking of methods remains sensitive to the choice of perturbation threshold.
For example, a perturbation threshold of ε = 3/255 (vertical black dashed line)
for the �∞ distance function (left subplot) shows that the classifier trained with
MMR + AT (�2(ε = 0.1)) is approximately as robust as the classifier trained with
MMR-UNIV. The same perturbation threshold for the �2 distance function (right
subplot) shows that the classifier trained with MMR + AT is more robust than the
classifier trained with MMR-UNIV for �2 threat models. Using typical perturbation
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Fig. 6. Empirical inter-class distance distributions, measured in �∞, �2, and �1 norm.

thresholds from the literature for each distance function does not alleviate this
issue: At perturbation threshold ε = 2/255 for �∞ distance, the classifier trained
with MMR + AT (�2(ε = 0.1)) is more robust than the one trained with MMR-UNIV,
while at perturbation threshold ε = 0.1 for �2 distance, the opposite is true.
This shows that even when robustness curves across various distance functions
are qualitatively similar, this may be obscured by the choice of threat model(s)
to compare on (Fig. 6).

For linear classifiers, the shape of �p robustness curves is the same for all p
[12]. However, even for linear classifiers, robustness curve intersections do not
transfer between distances induced by different �p norms. That is, for two linear
classifiers, there may exist p, p′ such that the robustness curves for the �p distance
intersect, but not the robustness curves for the �p′ distance.

Example: To see that robustness curve intersections do not transfer between
different �p norms, consider the example in Fig. 5. The blue and orange linear
classifiers both perfectly separate the displayed data. The �∞ robustness curves
of the classifiers do not intersect, meaning that the robust error of the blue
classifier is always better than that of the orange classifier. In �2 distance, the
robustness curves intersect, so that there is a range of perturbation sizes where
the orange classifier has better robust error than the blue classifier.

3.1 On the Relationship Between Scale and Data

As the previous sections show, robustness curves can be used to reveal properties
of robust models that may be obscured by point-wise measures. However, some
concept of scale, that is, some way to judge whether a perturbation is small
or large, remains necessary. Especially when robustness curves intersect, it is
crucial to be able to judge how critical it is for a model to be stable under the
given perturbations. For many pairs of distance function and data set, canonical
perturbation thresholds have emerged in the literature, but to the best of our
knowledge, no reasons for these choices are given.

Since the assumption behind adversarial examples is that small perturba-
tions should not affect classification behavior, the question of scale cannot be
answered independently of the data distribution. In order to understand how
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to interpret different perturbation sizes, it can be helpful to understand how
strongly the data point would need to be perturbed to actually change the cor-
rect classification. For each data point (x, y), we approximate this inter-class
distance empirically over the data set S by min(x′,y′)∈S:y′ �=y d(x, x′). Below, we
analyze the distribution of empirical inter-class distances for several popular
data sets.

Table 2. Smallest and largest inter-class distances for subsets of several data sets,
measured in l∞, l2, and l1 norm, together with basic contextual information about the
data sets. All data has been normalized to lie within the interval [0, 1], and duplicates
and corrupted data points (samples in TINY-IMG containing NaN elements) have been
removed. Apart from HAR, all data sets contain images – the dimensionality reported
specifies their sizes and number of channels.

Inter-class distance

Smallest Largest

Dataset Samples Classes Dimensionality l∞ l2 l1 l∞ l2 l1

MNIST 10 000 10 28 × 28 × 1 0.88 3.03 19.16 1.00 10.18 132.38

TINY-IMG 98 139 200 64 × 64 × 3 0.27 5.24 369.29 0.71 47.49 4184.37

FMNIST 10 000 10 28 × 28 × 1 0.36 2.00 24.87 1.00 10.70 194.29

GTS 10 000 43 32 × 32 × 3 0.07 0.90 31.46 0.62 19.54 833.22

CIFAR-10 10 000 10 32 × 32 × 3 0.27 3.61 130.77 0.70 18.57 831.44

HAR 2947 6 561 0.26 1.26 12.95 0.87 4.29 73.19

In Table 2, we summarize the smallest and largest inter-class distances in
different norms together with additional information about the size, number of
classes, and dimensionality of the all the data sets we consider in this work.
Compare, for example, MNIST and GTS: While it appears reasonable to expect
�∞ robustness of 0.3 for MNIST, the same threshold for GTS is not possible. Relat-
ing Table 2 and Fig. 3, we find entirely plausible the strong robustness results for
MNIST, and the small perturbation threshold for GTS. Based on inter-class dis-
tances we also expect less �∞ robustness for CIFAR-10 than for FMNIST, but not
as seen in Fig. 3. In any case, it is safe to say that, when judging the robustness
of a model by a certain threshold, that number must be set with respect to the
distribution the model operates on. Overall, the strong dependence of robust-
ness curves on the data set and the chosen norm, emphasizes the necessity of
informed and conscious decisions regarding robustness thresholds. We provide
an easily accessible reference in the form of Table 2, that should prove useful
while judging scales in a threat model.
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4 Discussion

We have demonstrated that comparisons of robustness of different classifiers
using point-wise measures can be heavily biased by the choice of perturbation
threshold and distance function of the threat model, and that conclusions about
rankings of classifiers with regards to their robustness based on point-wise mea-
sures therefore only provide a narrow view of the actual robustness behavior of
the classifiers. Further, we have demonstrated different ways of using robust-
ness curves to overcome the shortcomings of point-wise measures, and therefore
recommend using them as the standard tool for comparing the robustness of
classifiers. Finally, we have demonstrated how suitable perturbation thresholds
necessarily depend on the data they pertain to. It is our hope that practitioners
and researchers alike will use the methodology proposed and the code provided
in this work, especially when developing and comparing adversarial defenses,
and carefully motivate any concrete threat models they might choose, taking
into account all available context.
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Abstract. Deep Reinforcement Learning models inherit not only gener-
alization abilities but also vulnerabilities under adversarial attacks from
Deep Neural Networks. The recent external model based defense method
for Reinforcement Learning (RL) detects and corrects the action relying
on only the observation prediction method. The observation prediction
method may not perform well in complicated applications because of
the knowledge of environment, which will downgrade the defense effi-
cacy. This study proposes a multiple-model based defense method for
RL which considers detection and correction tasks separately. Since the
problem is broken down into two tasks, their complexity and difficulty
is also lower, i.e., a better performance is expected. We propose a Cor-
relation Feature Map to extract the observation consistency in the tem-
poral sequence which is destroyed by adversarial noise to separate clean
and attacked states. Our correction only deal with the states classified
as contaminated and maps them to proper actions. The performance
of our proposed method is evaluated and compared to the state of the
art method experimentally in various settings. The results confirm the
superiority of our methods in terms of robustness and time.

Keywords: Adversarial learning · Reinforcement learning ·
Robustness

1 Introduction

Deep Neural Networks (DNNs) have been rapidly developed because of the excel-
lent performance. However, many studies [5,16] show that DNNs are vulnerable
in an adversarial environment in which an adversary may craft a sample in order
to mislead a target system. Since Deep Reinforcement Learning (DRL) meth-
ods inherit the capabilities of DNNs, they have many landmark achievements
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recently in various applications [11,12,15]. However, the vulnerability to adver-
sarial samples of DNNs is also inherited by the DRL methods [3,7,9]. Recently,
most of the discussions on adversarial attacks are in the framework of Supervised
Learning which assumes samples are independent and identically distributed.
However, this assumption does not apply to RL in which the consecutive states
are closely related since they may share the same observations. As the setting
of RL is different from Supervised Learning, the security of RL should be inves-
tigated separately. However, few studies focus on defense methods for RL. The
influence of adversarial attacks is reduced by considering adversarial samples
in training [8,14] using a robust loss function [4] or specially designed model
structure [1,6], and using external models [10].

The defense methods using external models are focused in this study due to
flexiblilty. To the best of our knowledge, there is only one defense method [10] in
this type of defense. Both contamination detection and action correction of this
method rely on an observation prediction model. We categorize this method as a
single-model based defense method since both detection and correction only rely
on one model, as shown in Fig. 1(a). The detection task is a simple comparison
between the obtained state and corrected state, as shown in the green block. How-
ever, predicting an observation accurately in RL is difficult since comprehensive
understanding of an environment is required. Unaccurate prediction will cause
both incorrect detection and correction, i.e., the mistakes will cumulate.

Our study devises a multiple-model based defense method for RL, shown in
Fig. 1(b), which considers detection and correction tasks separately. Compared
with a single-model based method, our multiple-model based method avoids the
cumulation of mistakes in detection and correction tasks. In our detection model,
a feature map named Correlation Feature Map (CFM) is proposed to extract the
consistency of observations in the temporal sequence in a state in our detection
method. The observation continuity is usually ignored when crafting an adver-
sarial sample in recent attack methods as each state is modified independently.
Therefore, the different patterns of observation continuity in clean and contam-
inated states are expected. Moreover, a correction method is devised in order
to reduce the influence of the adversarial states. Since making a correct deci-
sion is the main objective, recovering an observation is difficult and unnecessary.

Fig. 1. Block diagrams of the Single-Model and Multiple-Model based Defense Method.
(Color figure online)
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Therefore, our method maps an attacked state to a correct decision directly.
Simplicity is another advantage of our multiple-model based method compared
to the single-model based one. As both detection and correction tasks are sim-
pler than the observation prediction, a simpler model structure can be used.
Not only a shorter training time but also a faster decision time is expected. Our
proposed method is evaluated and compared experimentally with the state-of-
the-art defense methods in three Atari games. Experimental results confirm the
effectiveness of our proposed method in terms of robustness and speed, compared
with the state-of-the-art defense methods.

The main contributions of this work are summarized as follows:

– A multiple-model based defense method combining detection and correction
tasks against adversarial attacks in RL is proposed. It utilizes the accurate
contamination detection to enhance the overall performance.

– The continuity of temporal observation sequence is captured by the proposed
Correlation Feature Map in our detection model.

– A simple action correction method is proposed to reduce the impact of adver-
sarial samples.

– Experimental results confirm the effectiveness of our method, compared with
state-of-the-art methods.

2 Related Work

Adversarial Attack: Adversarial attack, sometimes called evasion attack [16],
aims to reduce the performance of a model by manipulating samples in inference.
Many studies prove that DNNs are sensitive to adversarial attacks [2,5,13,16].
In such attacks, it is assumed that samples in inference can be manipulated
by a small change. Adversarial attacks against DRL mainly follow the idea of
attacks in the Supervised Learning, i.e., each sample is attacked independently.
To be specific, an adversarial state s̃ is generated by an attack method A adding
adversarial perturbation η to clean state s, i.e., s̃ = Aθ(s) = s + η, where θ
denotes the parameters of A. Fast Gradient Sign Method (FGSM ) [5] is a com-
mon and famous one-time attack due to its low time complexity. The adversarial
perturbation is calculated by the gradient of the model function:

η = ε ∗ sign(∇sJ(θ, s, a)) (1)

where J(θ, s, a) denotes the cross-entropy loss, and ε controls the upper limit
of the perturbation. Carlini & Wagner L2 (CWL2 ) [2], which optimizes a near-
optimal adversarial state in terms of minimal adversarial perturbation:

minimize ‖η‖22 + c ∗ max(max{π(s + η)i : i �= t} − π(s + η)t,−κ) (2)

where π()i is the i-th output of the target RL policies π, κ controls the attack
confidence.

Adversarial Defense: Some defense methods have been proposed in order to
reduce the influence of adversarial attacks to RL models and can be divided into
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three categories: data modification, model modification and external models.
Flexibility is a concern for both data and model modification methods, since
retraining of the target model is required. The new models may perform worse
than the original ones, especially when the attack is absent, i.e., the general
performance may be sacrificed for the robustness. As a result, our study focuses
on the third type of defense methods which rely on external models. The only
existing method using external models in RL Foresight [10] predicts the current
observation x according to multiple historical observations and the last action by
an action-conditioned observation prediction model. An observation considered
contaminated based on whether or not it has a large difference from the predicted
observation. The contaminated observation is then replaced by its predicted one
for decision.

3 Analysis on Single-Model and Multiple-Model Based
Defense

The performance analysis on single-model and multiple-model based defense
is given in this section. We argue that a multiple-model based defense which
contains the detection and correction models separately is able to achieve better
performance. Let ps,cor be the accuracy of the only model used in a single-model
based defense method, which quantifies the probability of corrected and original
actions being the same. The defense accuracy of a single-model based method
ACCs is calculated as:

ACCs = ps,cor (3)

On the other hand, let pdet and pm,cor be the detection and correction accuracy
respectively for a multiple-model based defense method. Let α be the attack
ratio defined as the probability of attack, i.e., α ∈ [0, 1]. The detection model
first determines whether a state is contaminated, and then the correction model
corrects the contaminated states. The overall defense accuracy of the multiple
model ACCm is defined as:

ACCm = (1 − α) ∗ pdet + α ∗ pdet ∗ pm,cor (4)

We assume pcor = ps,cor = pm,cor for discussion since their corresponding
tasks both aim at correcting actions. In other words, the model used in a single-
model based method can be used in the correction task of multiple-model based
defense. By considering Eq. (3) and (4), the following statement can be obtained:

pcor ≤ (1 − α) ∗ pdet

1 − α ∗ pdet
if and only if ACCm ≥ ACCs (5)

Lines in Fig. 2 represents ACCm = ACCs (i.e., pcor = ((1−α)∗pdet)
(1−α∗pdet)

) with
α ∈ {0, 0.01, 0.25, 0.5, 0.75, 0.99, 1}. Since the detection task is generally simpler
than the correction task, it is reasonable to ignore the grey-triangle region (pcor ≥
pdet). By considering the triangle area under the diagonal, the area below and
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Fig. 2. Values of pcor and pdet when ACCs = ACCm with different α.

above the line ACCm = ACCs are denoted by Ab and Aa respectively. Ab

contains (pdet, pcor) pairs which cause ACCm > ACCs, while Aa contains the
ones which cause ACCm > ACCs. The size of Ab is much larger than Aa when
alpha tends to 0. This means that even slight improvement of pdet from pcor will
cause ACCm > ACCs. Ab/Aa decreases with the increase of α. When α tends
to 1, Ab tends to 0. This analysis indicates that multiple-model based defense is
more suitable to deal with attacks with smaller attack ratio compared with the
single one. Moreover, the multiple-model based method prefers the situation in
which the detection accuracy is much larger than the correction accuracy.

By considering the the partial derivative of ACCm with respect to pdet and
pcor, pdet plays a more important role than pcor in the performance of a multiple-
method based model when α is smaller:

if Δp ≤ 1
α

− 1, then
∂ACCm

∂pdet
≥ ∂ACCm

∂pcor
(6)

where Δp = pdet − pcor. When α is smaller, 1/α − 1 is larger. It implies the
chance of satisfying that the hypothesis (i.e., 1/α−1 ≥ Δp) is higher. As a result,
when the attack rate is smaller, pdet plays a more important role in the multiple-
method based model than pcor, and vice versa. As attacked states are the minor-
ity in reality, the detection performance is more important in a defense method.
Therefore, the main contribution of our proposed defense method focuses on the
detection method, which is discussed in next section.

4 Proposed Approach

The defense methods using external models are investigated in our study since
they can be applied to any RL model without retraining. As discussed in the
previous session, a multiple-model based defense method is more efficient than a
single-method based one. A multiple-model based defense, including the detec-
tion and action correction models are proposed for RL. Our proposed method
detects a contaminated state according to the correlation between observations
in a state since the continuity of consecutive observations is destroyed by the
adversarial perturbation. The continuity of consecutive observations in a state
is extracted by the proposed Correlation Feature Map (CFM). The decision on
a clean state is then made by the original RL model, while a contaminated state
is handled by our correction model.
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4.1 Detection Model

A state containing a number of consecutive observations captures the responses
of the environment in a sequence of time. However, most adversarial attack
methods do not consider time continuity when crafting adversarial samples. As
a result, the original distribution of observations in an adversarial state is dis-
turbed, i.e., the observations in adversarial states follow different distributions
with ones in clean states.

Our detection method aims to capture the difference of observation distribu-
tions between adversarial and clean states. A state st at time t is defined as the
stack of N consecutive observations in RL, i.e., st = φ(xt−(N−1), ..., xt−1, xt),
where φ() denotes a stacking function. The feature map of each observation of a
state is first extracted independently based on the target DRL model. To extract
the information from xi, a state si

t is generated by setting all values in st to zero
except the ones in xi:

si
t = φ(O, ...,O, xi,O...,O) (7)

where O is a zero matrix with the size of an observation. The feature map defined
as the output of the m-th layer of the DRL model is then extracted for si

t. This
setting preserves the information in xi while ignoring the other observations. We
propose the Correlation Feature Map (CFM) defined as the stack of the feature
maps of all si

t in st, shown in Eq. (8). Figure 3 shows the CFM generation.

CFM(st) = φ(fm(st−(N−1)
t ), ..., fm(st−1

t ), fm(st
t))) (8)

where fm() is defined as the feature map extracting function of the m-th layer
of the target RL model. The last convolutional layer is chosen as fm in this
study since it preserves spatial information and contains more abstract features
compared to other layers.

Finally, a detection model gdet is trained to distinguish clean states from
adversarial ones based on their CFM difference. A dataset D containing clean
states s and adversarial states s̃ is generated in advance. The clean states s
are collected randomly from the interaction between the target RL model and
environment. For each clean state s, corresponding adversarial state s̃ is crafted
according to an attack method with particular parameters. A simple network

Fig. 3. Generation of Correlation Feature Map function (CFM)
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structure of gdet should be used since the CFM are already extracted by the
RL model. The structure consisting of two convolutional layers and four fully-
connected layers is used in this study. All the convolutional layers have 512
channels with kernel size 3 * 3 and stride 1, while the sizes of fully-connected
layers are 1024, 128, 16 and 1. The batch normalization is implemented after the
first convolutional layer. The loss function is

Ldet = − log(h(CFM(s̃))) − log(1 − h(CFM(s))) (9)

where h(a) = 1/ [1 + exp(−gdet(a))]. When detecting a new state s, its CFM is
input to the detection model, i.e., gdet(CFM(s)). If the output is larger than 0,
s is classified as an attacked state; otherwise, it is clean.

4.2 Correction Model

This section devises an action correction model πcor : s → a mapping an adver-
sarial state s̃ to the decision made by the target model π on s, i.e., πcor(s̃) = π(s).
The model only handles the states classified as contaminated, which makes the
correction task simpler since the characteristics of clean and contaminated states
are different. The corrected action is then used to interact with the environment.
Our correction model is trained by minimizing the following regression loss using
s and s̃ in D:

Lcor = ‖πcor(s̃) − π(s)‖2 (10)

The learning of πcor is guided by the output of π on s. The structure of πcor is
set as the same as π since their tasks are similar. In order to take advantage of
the feature extraction ability of π, its parameters are applied to initialize πcor.

5 Experiment

5.1 Experimental Setting

Three Atari games (Freeway, MsPacman and Seaquest) are considered. DQN is
used as the target agent, and all the settings follow [12]. The program codes
will be available when the paper is accepted. Two popular adversarial attack
methods, FGSM and CWL2, are used. Different attack parameters are consid-
ered, i.e., ε = {1, 2, ..., 10} for FGSM and κ = {0, 1, ..., 10} for CWL2. Baseline
which contains only DQN but no defense method is considered for comparison.
Ours A represents our model trained with D contaminated by attack method
A, i.e., Ours FGSM and Ours CWL2. In D, 10,000 clean states are collected,
and corresponding adversarial states generated with random attack parameters
from the range mentioned above. The attack ratio α is 0.5. Our detection and
correction models are trained for 50 and 200 epochs respectively. Foresight [10],
AT [8], and Noisy [1] are used for comparison. All the settings follow the original
papers.
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Fig. 4. Average cumulative reward of baseline and the defense methods. From left to
right: Freeway, MsPacman, and Seaquest

5.2 Defense Performance

The performance of our proposed defense method and the other three methods
are discussed in this section. Figure 4 shows the average cumulative reward of
defense methods under FGSM and CWL2 attacks with different parameters.
When the attack methods in training and inference are the same, our methods
perform significantly better than other all methods, except Foresight in Freeway.
Our methods perform slightly worse than Foresight in Freeway. Foresight has
excellent performance in Freeway but not in MsPacman and Seaquest, because
the environment of Freeway is the simplest. Even when the attack methods used
in training and inference are different, the performance of our methods is still
satisfying. These results confirm the efficacy of our defense method against adver-
sarial attacks. Although the knowledge on the attack strategy may be inaccurate,
its performance is still consistently reasonable.

5.3 Transferability on Attack Parameters

This section discusses the transferability of our defense method across attack
parameters used in the training and inference phases. Three levels of attack
parameters are defined for each attack method according to the intensity: low,
middle and high, which are ε ∈ [1, 3] , [4, 6] , [8, 10] for FGSM, and κ ∈ [0, 2],
[4, 6], [8, 10] for CWL2. Figure 5 shows the performance of our model training
with one attack level under different levels. Better defense performance yields
a higher average cumulative reward, which is illustrated by a darker color. The
cells in the diagonal, representing that same parameter settings are used in both
training and inference, achieve the largest rewards. Our method has the best
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Fig. 5. Average cumulative reward of our method with different level of attack param-
eter. From left to right: Freeway, MsPacman, and Seaquest

performance when the full knowledge on the attack is obtained. On the other
hand, more different attack settings used in training and inference reduces the
efficacy of our method more significantly. For example, the reward achieved by
the model using HIGH is lower than the ones using MID and LOW when the
attack is using LOW in inference. When the real attack parameters are unknown,
using weaker attack parameters is preferable. Regarding to the models trained
with MID, its performance under HIGH is better than the one under LOW.

5.4 Performance on Detection Task

The detection performance of our method is discussed and compared with Fore-
sight in this section. For each attack method, a test set consists of 10,000 clean
states and 10,000 adversarial states. The experimental results are shown in
Table 1. The largest accuracy in a column is bolded. Our method achieves excel-
lent performance in detection compared with Foresight. Accuracy of our detec-
tion model is larger than Foresight in all cases no matter which attack method is
used in training, except Freeway under FGSM. Accuracy of our method using the
same attack method in training and inference is higher than 95% in all settings,
while it is higher than 83% when the attack methods are different. The perfor-
mance of our method drops when different attack methods are used in training
and inference. Accuracy of Ours CWL2 is higher than Ours FGSM under both
attack methods. One possible explanation is adversarial samples generated by
CWL2 are more various than FGSM. On the other hand, the observation pre-
diction in Foresight is inaccurate when the applications are complicated, e.g.,
MsPacman and Seaquest.
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Table 1. Detection accuracy (%).

(a) FGSM

Freeway MsPacman Seaquest

Foresight 99.99 53.27 59.82

Ours FGSM 99.77 99.33 99.11

Ours CWL2 87.95 92.01 92.22

(b) CWL2

Freeway MsPacman Seaquest

Foresight 95.18 66.56 72.63

Ours FGSM 95.55 85.28 83.80

Ours CWL2 95.63 98.04 96.23

Table 2. Correction accuracy on adversarial samples (%).

(a) FGSM

Freeway MsPacman Seaquest

Foresight 91.16 45.28 29.61

Ours FGSM 90.61 43.47 30.79

Ours CWL2 67.21 38.11 15.57

(b) CWL2

Freeway MsPacman Seaquest

Foresight 89.74 41.79 22.27

Ours FGSM 44.27 37.45 14.31

Ours CWL2 88.46 47.46 22.92

5.5 Performance on Correction Task

The performance on adversarial samples of the correction task is shown in
Table 2. Our method and Foresight are evaluated by the probability of actions
in clean states and corrected actions being the same. Since our correction model
only deals with attacked states, only accuracy on adversarial samples is con-
sidered. Also, the results show that Foresight has similar accuracy on clean
and adversarial samples. Our correction model performs similarly with Foresight
when the same attack methods are considered in training and inference, i.e., the
accuracy difference is less than 5% in most cases. Although the accuracy of our
correction is lower than Foresight when using different attack methods in train-
ing and inference, the overall performance of our defense method is still higher
due to our better detection performance. This confirms the superiority of the
multiple-model based defense compared with the single one, which is consistent
with the analysis in Sect. 3. Also, similar to the results found in last discussion,
the correction performance of Foresight highly relies on the complexity of the
environment.

5.6 Influence of Attack Ratios

This section investigates the influence of the attack ratio α on the performance
of our method and Foresight. Figure 6 show the average cumulative reward under
FGSM with ε = 5 when α = {0.1, 0.2, ..., 0.9} respectively. It shows in general, a
larger α causes a smaller average cumulative reward. The reward decreases faster
when attack methods in training and inference are different for our method. From
the results shown in Table 1, the detection accuracy of our method when using
different attack methods in training and inference is close to the one using the
same attack methods. However, the correction accuracy of these two situations
are much different, shown in Table 2. On the other hand, the performance of
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Fig. 6. Average cumulative reward with different levels of attack ratio α.

Foresight is more stable than our methods since its performance on both clean
and contaminated states is similar. Moreover, the advantages of our method
using different attack methods reduce compared to Foresight with the increase
of α. This confirms the discussion in Sect. 3.

5.7 Time Complexity

The average training times in MsPacman are 7.8, 17.9, 18.5 and 53.0 h for our
method, Foresight, AT and Noisy respectively. It show that our method require
the shortest training time, i.e., average 7.8 h although our model contains the
RL agent, detection and correction models. This may be because our detection
and correction models have relatively simple structures. Noisy needs the longest
training time since the revised RL model is more complicated than the original
one. The training time of AT and Foresight are more than double of our method
because of retraining. On the other hand, the average inference times are 10.2,
16.2, 0.7 and 0.7 ms respectively. The inference time of AT and Noisy is the
shortest among all methods since they do not rely on an external model. Our
time is shorter than Foresight because of the simpler network structure.

6 Conclusion

The robustness of single-model based methods, e.g., Foresight, relies on the accu-
racy of the state correction process, which is usually a difficult task since compre-
hensive understanding of the environment is required. Therefore, single-model
based methods may not be suitable for complicated applications. A multiple-
model based defense method containing the detection and correction tasks is
proposed in this study. Since the complexity of these tasks is lower, a simpler
model can be used and also better performance is expected. Our method dis-
tinguishes attacked states from clean states by using the proposed Correlation
Feature Map (CFM) which captures the observation consistence in the tem-
poral sequence of a state. The decision on an attacked state is made by our
action correction method mapping an attacked state to its original action. All
the experimental results illustrate that our proposed defense method achieves
excellent performance and outperforms the other methods in terms of robustness
and running time. This study provides a foundation for developing secure RL
systems.
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Abstract. Automatic paraphrase generation is an important task for
natural language processing. However, progress in paraphrase generation
has been hindered for a long time by the lack of large monolingual paral-
lel corpora. We can alleviate the data shortage by effectively using multi-
domain corpus. In this paper, we propose a novel model to exploit infor-
mation from other source domains (out-of-domains) which benefits our
target domain (in-domain). In our method, we maintain a private encoder
and a private decoder for each domain which are used to model domain-
specific information. In the meantime, we introduce a shared encoder
and a shared decoder shared by all domains which only contain domain-
independent information. Besides, we add a domain discriminator to the
shared encoder to reinforce the ability to capture common features of
shared encoder by adversarial training. Experimental results show that
our method not only perform well in traditional domain adaptation tasks
but also improve performance in all domains together. Moreover, we show
that the shared layer learned by our proposed model can be regarded as
an off-the-shelf layer and can be easily adapted to new domains.

Keywords: Paraphrase generation · Adversarial training

1 Introduction

Paraphrases refer to texts that convey the same meaning but with different
expressions. Paraphrase generation is very important in many Natural Language
Processing (NLP) applications such as information retrieval, information extrac-
tion, question answering, summarization and data augmentation. Deep learning
theory formulate paraphrase generation as a Seq2Seq task and achieve better
performance than traditional symbolic approaches. [4,6,10] apply deep learning
theory to paraphrase generation task and made great progress. However, they
all have the limitation that must rely on large-scale monolingual parallel data in
a specific domain. The performances of their models will greatly degrade when
there is no enough data in target domain, which greatly reduces the generaliza-
tion ability of their models. Suppose we want to generate paraphrase in a target
domain (such as novel domain). However, we often find that there is very little
supervised data in our target novel domain due to the difficulty of obtaining par-
allel paraphrase. But we maybe have some sufficient data in some other domains
c© Springer Nature Switzerland AG 2021
I. Farkaš et al. (Eds.): ICANN 2021, LNCS 12891, pp. 54–66, 2021.
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(such as news, or some public benchmark datasets). If we directly train the model
with other domains data, the performance of model in the target domain will
be poor. So we need to find a way to efficiently use datasets in other domains.
Unsupervised paraphrase generation methods can solve the lack of parallel data
problem to some extent, but [11] conclude that access to parallel data is still
advantageous for paraphrase generation compared with unsupervised method.
So it is of significant importance to explore paraphrase generation methods with
multi-domain parallel corpus.

To this end, in this paper we propose a novel neural network model to generate
paraphrases with multi-domain data. We employ a shared encoder and decoder
among all the domains as well as a private encoder and decoder for each domain
separately. The private encoder-decoder has direct influence to the generation and
shared encoder-decoder serves as a supplement. This architecture is based on the
consideration that out-of-domain data still embodies useful common knowledge
shared between all the domains and incorporating this kind of information can
help to generate target domain paraphrases. Inspired by [3] theory, which sug-
gests that effective domain transfer must be made based on features that cannot
discriminate between the in-domain and out-of-domains. So we attach a domain
discriminator to the shared encoder and implement adversarial training between
shared encoder and domain discriminator. Adversarial training force the shared
encoder only to capture the domain invariant characteristic of the input sentences,
which is useful for our target domain. Under the framework of our method, the
paraphrase generation of each domain is predicted on the output of both the
shared decoder and its corresponding private decoder. Experiments prove that
our method consistently outperform all the baselines whether there are sufficient
in-domain training data or not. Besides, we demonstrate that the well-trained
shared encoder-decoder can generate domain-invariant representations, which can
be considered as off-the-shelf knowledge and then used for unseen new domains.

2 Related Work

The task of multi-domain paraphrase generation aims to improve the result for
each domain. Our work is most relevant to paraphrase generation and multi-
task learning, which use some method to generate paraphrase and introduce
other domain’s information to help each domain’s inner generation process.

Recent years, the application of deep learning models to paraphrase gener-
ation has been explored rigorously. [10] is one of the first major works that
used deep architecture for paraphrase generation and introduce the residual
recurrent neural networks. [4] use variational autoencoder (VAE) to generate
multiple paraphrases for a given sentence, [6] learn word level and phrase level
paraphrased pairs to generate paraphrases.

To make use of other domain parallel data, [14] select sentence pairs from the
out-of-domain data set according to their similarity to the in-domain data and
then add them to the in-domain training data. [15] combine the in-domain and
out-of-domain data together as the training data but apply instance weighting
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to get a weight for each sentence pair in the out-of-domain data which is used
in the parameter updating during back propagation.

3 Methodology

Before introducing our full method, we will first briefly describe our single
encoder-decoder model with attention, which is a basic component of our full
model.

3.1 Basic Encoder-Decoder Model

A neural approach to sequence to sequence modeling proposed by [13] is a model
with two parts, where an input sequence is first encoded into some low dimen-
sional representation that is later used to reproduce the sequence back to a high
dimensional target sequence (i.e. decoding). Most of the deep learning models
for NLP use Recurrent Neural Networks (RNNs). RNNs differ from normal per-
ceptrons as they allow gradient propagation in time to model sequential data
with variable-length input and output [12]. To avoid vanishing gradient problem
for RNN, we use LSTM [5] as our basic architecture of encoder and decoder.

The Encoder uses LSTM to go through input words bidirectionally to get
two hidden states

−→
h i,

←−
h i for input word xi, which are then concatenated to

produce the final hidden states hi =
[−→
h i;

←−
h i

]
for xi.

The Attention Mechanism aims to extract weight distribution of each
word in the input sentences, rather regarding them as the same. This allows the
model to focus on parts of the input before producing each output token. First
it evaluates the correlation between the previous decoder hidden state si−1 and
each source hidden state hj by

eij = vT
α tanh (Wαsi−1 + Uαhj)

Next, it calculates αij which is the correlation degree to each target hidden
state hj and then gets the attention cj . The formulation is as follows

αij =
exp (eij)∑ls

i′=1 exp (ei′j)
; cj =

ls∑
i=1

αijhi

The Decoder also employs a LSTM to get the hidden state sj for the target
word yj as

sj = g (yj−1, sj−1, cj)

Then the probability of the target word yj is defined as follows

p (yj | sj , yj−1, cj) ∝ exp
(
Ey�

j Wotj

)

where tj is computed by

tj = Uosj−1 + VoEyj−1 + Cocj

Uo Vo Co are trainable parameters and Eyj is the embedding of yj .
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Fig. 1. The architecture of the full model. X1, X2 represent the input of the two
domains, and Y1, Y2 represent the outputs. The output of shared encoder connects
to a domain discriminator with a gradient reversal layer.

3.2 Full Model Architecture

Assume that D1 and D2 represent training datasets of two domains respectively,

{(
xk,y∗k

)}N1

k=1
∼ D1

{(
xk,y∗k

)}N2

k=1
∼ D2

where N1, N2 are the numbers of training data of the two domains,
(
xk,y∗k

)
is

kth paraphrase pair. The main idea of our method is to extract domain invariant
information from other domain data to improve target domain text generation.
To this end, we employ a shared encoder-decoder model shared by both of the
domains, and a private encoder-decoder for each domain. The main architecture
is given in Fig. 1. In this paper, we use two private encoder-decoder models and
one shared encoder-decode model. Encoder-decoder model has been described
in the above section.

The working scenario of our method is as follows. A source sentence is input
into the shared encoder and the private encoder of the corresponding domain
simultaneously. Then the output of the shared encoder is fed into the shared
decoder and the output of the private encoder into its corresponding private
decoder. Finally, the shared decoder and the private decoder collaborate to gen-
erate the current target word with a gate to decide the contribution ratio.

In addition, to make the shared encoder only encodes domain invariant infor-
mation, our method also introduce a discriminator to distinguish the domain of
the input sentence based on the output of the shared encoder. When the discrimi-
nator cannot predict the domain of the input sentence, we can think the knowledge
encoded in the shared encoder is domain invariant. This is achieved with a gradient
reversal layer (GRL) so that the gradients are reversed during back-propagation.
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The discriminator learns to distinguish between domains, but the encoder is forced
to compute domain-invariant representations that are not useful to the discrimina-
tor, preventing it from making an accurate prediction. In this way, the adversarial
training is performed between the generation part and the discriminator.

3.3 The Generation Part

The Encoder. Our model has a shared encoder and two private encoders,
where the shared encoder accepts input from the two domains. Given a sentence
of domain p (p ∈ D1,D2), the shared encoder and the private encoder of domain
p will roll the sentence as the encoder shown in Sect. 2.2 and the outputs of the
shared encoder and the private encoder for word xj are represented as hc

j and
hp

j respectively.

The Attention Layer. As the output of the shared encoder is only fed to the
shared decoder and the output of the private encoder of domain p only flows
to the private decoder of domain p, we only need to calculate the attention of
the shared decoder over the shared encoder and the attention of the private
decoder of domain p over the private encoder of domain p. We calculate these
two attentions as in Sect. 2.2 and denote them as cc

j and cp
j for the shared decoder

and the private decoder, respectively

The Decoder. We also maintain a shared decoder and two private decoders
corresponding to the two private encoders. For a sentence of domain p (p ∈
D1 ,D2 ), the shared decoder and the private decoder of domainp produce the hid-
den states sc

j and tc
j for the shared decoder, and sp

j and tp
j for the private decoder.

To predict the target word yj , tc
j and tp

j are weighted added to get tj as

zj = σ
(
Wztcj + Uzt

p
j

)
tj = zj · tcj + (1 − zj) · tpj

Where σ(·) is the sigmoid function and Wz and Uz are learned parameters
shared by the two private decoders. Finally the probability of the target word
yj is computed with

P (yj | . . .) ∝ exp
(
y�

j Wotj

)

3.4 Domain Discriminator

The domain discriminator serves as a text classification neural network. The
discriminator uses encoded representation from the shared encoder of input sen-
tence to predict the correct domain. When a well trained discriminator cannot
classify the domain properly, we can think the knowledge in the shared encoder
is domain invariant [3]. The output of domain discriminator can be described as:

d = softmax
(
Whk + b

)

where d is prediction probabilities of the kth sentence, hk is the output of
shared encoder, W is the weight which needs to be learned, and b is a bias term.
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Gradient Reversal Layer. We introduce a special gradient reversal layer (GRL)
between the shared encoder and the domain discriminator. The gradient reversal
layer has no parameters associated with it. During forward propagation, the
GRL has no influence to the model, while during back propagation training, it
multiplies a certain negative constant i.e, multiplies it by −1, to the gradients
back propagated from the discriminator to the shared encoder. In this way, GRL
forces shared encoder to encode domain-independent representations.

3.5 Objective Function

Our final loss considers the text generation loss and the domain prediction loss.
For the generation loss, we employ cross entropy to maximize the generation
probability of the ground truth, so we have this loss as follows and the training
objective is to minimize the loss.

LGEN = −
N1+N2∑

k=1

Lk∑
j=1

log p
(
y∗k

j |y∗k
1 , . . . , y∗k

i−1,X
)

where N1 and N2 are the numbers of training sentences in each of the two
domains. Lk is the length of the k-th ground, and p

(
y∗k

j |y∗k
1 , . . . , y∗k

i−1,X
)

is the
predicted probability of the j-th word for the k-th ground truth sentence given
the input sentence X and previous ground truth target words y∗k

1 , . . . , y∗k
i−1.

For the domain prediction loss, it is a n-class classification task, and n rep-
resent number of domains. In this paper n = 2. We also use cross-entropy to
minimize the following loss

LD = −
N1 +N2∑

k=1

log p
(
d∗k

)

where d∗k is the ground truth domain label of the k-th input sequence. Adver-
sarial learning is applied between the generation part and the discriminator by
minimize LD.

Then the final loss is defined as

L = LGEN + λLD

where λ is a hyper-parameter to balance the effects of the two parts of loss. In
order to choose the best λ, we select in the range of 0.1 to 1.5 with an interval
of 0.1, taking the BLEU in test set as the evaluation metric, and selecting the
best λ as 0.5.

At the beginning of the training, we just use the LGEN to train the generation
part on the combined data, including the shared encoder-decoder and the private
encoder-decoders. Then we use LD to only train the domain discriminator until
the precision of the discriminator reach 90% while the parameters of the shared
encoder keep fixed. In this way, we get an initially well-performed generator
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and well-performed discriminator. Finally, we train the whole model with the
complete loss L with all the parameters updated. In the training process, the
sentences in each batch is sampled from the two domains data at the same rate.
During testing, we just use the shared encoder-decoder and the private target
domain encoder-decoder to generate paraphrase.

4 Experiment

4.1 Datasets

We use two benchmark datasets, namely the MSCOCO and Quora datasets.
And we also use WikiAnswers dataset to test the generalization ability of our
model. MSCOCO is a large-scale image captioning dataset and we use different
descriptions for a image as paraphrase. 20K instances are randomly selected from
the data for testing, 10K instances for validation and remaining data over 320K
instances for training. Quora dataset consists of over 400K potential question
duplicate pairs. We use true examples of duplicate pairs as paraphrase gener-
ation dataset. There are a total of 155K paraphrase pairs. We spilit Quora to
145K training dataset, 5K validation dataset and 4K testing dataset. WikiAn-
swers [2] is a large question paraphrase corpus created by crawling the WikiAn-
swers website. Although WikiAnswer is also a question paraphrase corpus, it
is quite different from Quora according to word distribution. We only use this
dataset in our Generalization Ability experiment. We only pick 20K sentences
pairs for training and 5K pairs for testing.

4.2 Evaluation Metric

To comprehensively evaluate the paraphrases, we rely on a combination of both
automatic evaluation and human evaluation.

Automatic Evaluation. We use the well-known evaluation metrics for compar-
ing parallel corpora: BLEU [9] and METEOR [7]. Previous work has shown
that these metrics can perform well for paraphrase detection [8] and correlate
well with human judgments in paraphrase generation [16]. BLEU considers exact
matching between reference paraphrases and system generated paraphrases by
considering ngram overlaps. METEOR uses stemming and synonymy in Word-
Net to improve and smoothen this measure.

Human Evaluation. We also conduct human evaluation to evaluate the generated
paraphrases more accurately. We randomly select 300 generated sentences and
ask three human annotators to evaluate the generated paraphrases from two
perspectives: semantic similarity with the original sentence (Relevance) and
Fluency. Each aspect was scored from 1 to 5. We average the three scores from
the three annotators as the final score.
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4.3 Implementation Details

In our setup, we do not use any external word embeddings and we train these
as part of the model-training. The all domains embedding sizes were set to 256
and the size of the hidden units in the shared encoder-decoder RNNs was also
set to 256. All the parameters were initialized by using uniform distribution
over [0.1, 0.1]. The mini-batched Adam algorithm is used to optimize the objec-
tive function. The batch size and base learning rates are set to 32 and 0.001,
respectively.

We conducted three experiments based on different settings.

1. Domain Mixing: In this setting we aim to train a paraphrase gener-
ation model on two-domain data to improve test-time performance in each
constituent domain. Supposed both domain contains a sufficient amount of
data.
2. Domain Adaptation: Traditional domain adaptation task supposed that
we have small quantity of target domain training data but a large amount
of source domain data. Source domain and target domain data belong to
the same task, but have different distribution. Practical applications often
face this kind of situation. We implement this experiment by restricting the
amount of in-domain’s training data to 20K and we only care about in-
domain performances. Note that in the Domain Mixing experiment, we
use all the data in both of the two domains.
3. Generalization Ability: In this setting, we use Quora and MSCOCO to
pre-train our full model and then use the WikiAnswer to test the generaliza-
tion ability of our shared encoder-decoder model.

4.4 Baselines

For the first two experiments, we compared our method with following models.
Note that since our main purpose is to demonstrate the domain mixing ability of
our model, we do not compared with some previous SOTA paraphrase generation
models considering the model complexity and training speed.

• Seq2Seq-Single: Seq2Seq represents the basic encoder-decoder model
described in our Methodology part. It is a component of our full model.
Single means only use in-domain training data.

• Seq2Seq-Mix represents using all the two domains training data together
on the Seq2Seq model, Mix means use two domain’s mix data for training.

• Without Discriminator represents our proposed model but remove the
discriminator part.

For the Generalization Ability experiment, we compared our method with
following models:

• Only Wiki means only use 20K WikiAnswer data to train on the single
encoder-decoder model.
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• Generalization means use MSCOCO and Quora to pre-train our proposed
model, and then use the shared encoder-decoder to generate WikiAnswer test
set paraphrase. Note that in this setting we do not use any WikiAnswer data
during training.

• Fine-tune means that after pre-train our model with MSCOCO and Quora,
using WikiAnswer training data to fine-tune the shared encoder-decoder
model. Then use it to generate paraphrase.

Table 1. Domain mixing results on MSCOCO and Quora dataset. Higher BLEU and
METEOR score is better

Model MSCOCO Quora

BLEU METEOR BLEU METEOR

Beam size = 1

Seq2Seq-Single 24.56 23.54 25.25 29.86

Seq2Seq-Mix 25.43 24.14 25.48 30.03

Without Discriminator 25.79 22.99 25.97 29.16

Our method 26.87 24.29 26.47 30.13

Beam size = 10

Seq2Seq-Single 26.03 24.13 26.58 30.25

Seq2Seq-Mix 27.65 24.75 27.22 30.70

Without Discriminator 27.93 25.17 27.06 31.53

Our method 29.72 27.45 28.64 31.92

Table 2. Domain adaptation results on MSCOCO and Quora dataset. Numbers in the
table represents BLEU scores for greedy search. Higher BLEU score is better

Model MSCOCO Quora

Seq2Seq-Single 20.17 20.10

Seq2Seq-Mix 21.81 17.31

Without Discriminator 19.26 19.51

Our method 21.96 20.90

5 Results and Analysis

For Domain Mixing experiments, results are shown in Table 1. For Domain
Adaptation experiment, automatic results are shown in Table 2 and human
evaluation results of Quora shown in Table 3. For MSCOCO, the comparison
between two models is significant at 95% CI, if the difference in their score
is more than 0.2 in BLEU and 0.1 in METEOR. For Quora, the comparison
between two models is significant at 95% CI, if the difference in their score
is more than 0.2 in BLEU and 0.1 in METEOR. We can draw the following
observations:
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1. From Table 1, we demonstrate that our model consistently outperforms all
the contrast models for both greedy search (beam size = 1) and beam search
(beam size = 10) in the two datasets. Similar conclusion can be drawn from
Table 2 Domain Adaptation results. Table 3 shows our method also outper-
forms the baselines from relevance and fluency perspective. These results
conclude that our method successfully extract useful information from other
domains which benefit to our target domain.

2. Seq2Seq-Mix outperforms Seq2Seq-Single in both of the two dataset at
the Domain Mixing experiment, similar result can be seen in the MSCOCO
dataset at the Domain Adaptation experiment. According to the theory
proposed by [1], this result may be that the divergence between two domains
is not significant enough, so the merging operation dosen’t “contaminate”
in-domain representation too much and also provided extra training data.
We can see that this improvement is more obvious in MSCOCO. However,
in the Quora at Domain Adaptation experiment, Seq2Seq-Mix BLEU
scores drop compared with Seq2Seq-Single, this could because the model
tend to fit MSCOCO feature as the amount of MSCOCO data is much more
than Quora and Quora seems to be more sensitive and susceptible to other
domains features.

Table 3. Human evaluation on the Quora dataset for domain adaptation experiments.

Model Relevance Fluency

Seq2Seq-Single 3.21 3.60

Seq2Seq-Mix 2.92 2.87

Without Discriminator 3.43 3.24

Our method 3.66 3.75

Table 4. Generalization Ability results. Numbers in the table represents BLEU
scores for greedy search. Higher BLEU score is better

Model BLEU

Only Wiki 16.03

Generalization 19.35

Fine-tune 21.44

3. We can find our method outperforms Without Discriminator in all set-
tings, which demonstrate the impact of domain discriminator in our full
model. We can also find that our main architecture without discriminator
cannot substantially improve generation performance. So simply divided the
representation into common and private is not enough, our model may suffer
a loss of information during the divided and merge process.
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4. For Generalization Ability experiment, results are shown in Table 4. We
can find that only using 20K WikiAnswer training data gets a poor 16.03
BLEU score. With the help of pre-train shared encoder-decoder, General-
ization model can get substantial improvement compared with Only Wiki
even without any WikiAnswer training data. We get further improvement
when using 20K WikiAnswer to Fine-Tune on the shared encoder-decoder.
These results demonstrate the domain generalization ability to unknown new
domain of our well-trained shared encoder-decoder.

5.1 Case Study

Table 5 gives some examples of generated paraphrases by some contrast model
and our proposed model. We can read from Table 5 that paraphrases generated
by our system are not only well-formed and grammatically correct for the most
part, but also brings more semantically sensible variant which does not appear
in the target sentences compared with baseline. This could be because of the
training data come from multi-source domains and bring more diversity to our
model. These improvements can’t reflect from the BLEU or METEOR score,
still, our method outperforms all the baselines in BLEU and METEOR metrics.

Table 5. Example generated paraphrases

Source sentence Proposed model Seq2Seq-Single Target sentence

How did Germany
defeat France so

quickly in 1940

How did Germany

conquer France (in

May 1940) in 1940

How did Germany

win in May France in

1940 who were able

to win

Why was France

defeated so quickly

during WW2

some sheep eating
grass in the field

a herd of sheep
grazing on a lush
green field

a herd of sheep eating
grass on a field

a bunch of sheep are
standing in a field

what would hillary
clinton do now that
the election is over

what would hillary
clinton do now that
presidential election
is going to the end

what would hillary
clinton do now that
the election is better

what role can hillary
clinton play now that
her presidential hopes
are extinguished

how can we improve
india’s current
education system

how can we change
india’s education
system

how can india’s
education system be
fixed

how can india’s
education system be
fixed

For example, for the source sentence How did Germany defeat France so
quickly in 1940, our method paraphrases defeat to conquer, which does not
appear in the target sentences but semantically sensible while other baselines
model just simply copies the word defeat. Surprisingly, due to the knowledge
from mixing other domains, our proposed model ‘remember’ the exact month
when German defeat France in the second world war. Similarity, for the input
sentence some sheep eating grass in the field, our method retell eating grass to
grazing on, this is a very idiomatic expression but fail to appear in the target
sentence either. We use red color to denote these paraphrasing.
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6 Conclusion and Future Work

In this paper, we present an effective method to make use of multi-domain data
to help improve paraphrase generation performances. The key idea is to divide
the knowledge into domain invariant and domain specific by employing a shared
encoder-decode and private encoder-decoders for each domain to process knowl-
edge of the corresponding domain. In addition, a discriminator is added to the
shared encoder and apply adversarial learning to make sure the shared encoder
can learn domain invariant knowledge by a gradient reversal layer. Experiments
show that our method outperform all the baselines in different experiments set-
tings. Moreover, we demonstrate that a well-trained shared encoder-decoder can
be regarded as a off-the-shelf model and easily transfer to new domains. Our
model can be easily adapted to multi-domain by concatenating more private
encoder-decoder. In future work, we aim to use some other models to replace
current Seq2Seq architecture (such as Transformer).

References

1. Britz, D., Le, Q., Pryzant, R.: Effective domain mixing for neural machine
translation. In: Proceedings of the Second Conference on Machine Trans-
lation, pp. 118–126. Association for Computational Linguistics, Copenhagen,
September 2017. https://doi.org/10.18653/v1/W17-4712. https://www.aclweb.
org/anthology/W17-4712

2. Fader, A., Zettlemoyer, L., Etzioni, O.: Paraphrase-driven learning for open ques-
tion answering, vol. 1, pp. 1608–1618 (2013)

3. Ganin, Y., et al.: Domain-adversarial training of neural networks. J. Mach. Learn.
Res. 17(1), 2096-2030 (2015)

4. Gupta, A., Agarwal, A., Singh, P., Rai, P.: A deep generative framework for para-
phrase generation (2017)

5. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

6. Huang, S., Yu, W., Wei, F., Ming, Z.: Dictionary-guided editing networks for para-
phrase generation (2018)

7. Lavie, A., Agarwal, A.: METEOR: an automatic metric for MT evaluation with
high levels of correlation with human judgments (2007)

8. Madnani, N., Tetreault, J., Chodorow, M.: Re-examining machine translation met-
rics for paraphrase identification. In: Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies
(2012)

9. Papineni, K., Roukos, S., Ward, T., Zhu, W.J.: BLEU: a method for automatic
evaluation of machine translation. In: Proceedings of Meeting of the Association
for Computational Linguistics (2002)

10. Prakash, A., et al.: Neural paraphrase generation with stacked residual LSTM
networks (2016)

11. Roy, A., Grangier, D.: Unsupervised paraphrasing without translation (2019)
12. Sutskever, I., Martens, J., Hinton, G.E.: Generating text with recurrent neural

networks. In: International Conference on Machine Learning (2016)

https://doi.org/10.18653/v1/W17-4712
https://www.aclweb.org/anthology/W17-4712
https://www.aclweb.org/anthology/W17-4712


66 L. Qiao et al.

13. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural
networks (2014)

14. Wang, R., Finch, A., Utiyama, M., Sumita, E.: Sentence embedding for neural
machine translation domain adaptation. In: Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics (Volume 2: Short Papers),
pp. 560–566. Association for Computational Linguistics, Vancouver, July 2017.
https://doi.org/10.18653/v1/P17-2089. https://www.aclweb.org/anthology/P17-
2089

15. Wang, R., Utiyama, M., Liu, L., Chen, K., Sumita, E.: Instance weighting for neural
machine translation domain adaptation. In: Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing, pp. 1482–1488. Association
for Computational Linguistics, Copenhagen, September 2017. https://doi.org/10.
18653/v1/D17-1155. https://www.aclweb.org/anthology/D17-1155

16. Wubben, S., Van Den Bosch, A., Krahmer, E.: Paraphrase generation as monolin-
gual translation: data and evaluation. In: International Natural Language Gener-
ation Conference (2010)

https://doi.org/10.18653/v1/P17-2089
https://www.aclweb.org/anthology/P17-2089
https://www.aclweb.org/anthology/P17-2089
https://doi.org/10.18653/v1/D17-1155
https://doi.org/10.18653/v1/D17-1155
https://www.aclweb.org/anthology/D17-1155


Leveraging Adversarial Training
to Facilitate Grammatical

Error Correction

Kai Dang, Jiaying Xie, and Jie Liu(B)

College of Artificial Intelligence, Nankai University, Tianjin, China
{dangkai,ying}@mail.nankai.edu.cn, jliu@nankai.edu.cn

Abstract. Grammatical error correction (GEC) task aims to detect and
correct grammatical errors in sentences. Recently, the pre-trained lan-
guage model has provided a strong baseline for GEC and achieved excel-
lent results by fine-tuning on a small amount of annotated data. How-
ever, due to the lack of large-scale erroneous-corrected parallel datasets,
these models tend to suffer from the problem of overfitting. Previous
researchers have proposed a variety of data augmentation methods to
generate more training data and enlarge the dataset, but these methods
either rely on rules to generate grammatical errors and are not auto-
mated, or produce errors that do not match human writing errors. The
pre-trained model only improves significantly after task-specific data fine-
tuning; otherwise, the highly noisy data can impair the performance of
the pre-trained model. To address this issue, we propose a method to
enhance the robustness of the model based on adversarial training. This
approach constructs the adversarial samples and treats them as the aug-
mented data. Unlike previous methods that introduce token-level noise,
our method introduces embedding-level noise and can obtain extra sam-
ples that are close to human writing errors. Besides, we employ the adver-
sarial consistency constraint to reduce the gap between the adversarial
sample and the original sample. The experimental results demonstrate
that our method can further boost the performance of the pre-trained
model on GEC task.

Keywords: Grammatical error correction · Adversarial training ·
Consistency constraint

1 Introduction

Grammatical error correction (GEC) task is a promising natural language pro-
cessing (NLP) application, whose goal is to detect and correct grammatical errors
in sentences. Previous researchers regarded the erroneous sentence as the source
sentence and the correct sentence as the target sentence, thus converting GEC
task as a translation task from the erroneous sentence to the correct sentence [36].
They applied statistical machine translation (SMT) and neural machine trans-
lation (NMT) models to GEC task and produced remarkable results [5,13].
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I. Farkaš et al. (Eds.): ICANN 2021, LNCS 12891, pp. 67–78, 2021.
https://doi.org/10.1007/978-3-030-86362-3_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86362-3_6&domain=pdf
https://doi.org/10.1007/978-3-030-86362-3_6


68 K. Dang et al.

Table 1. Different data augmentation methods examples.

Method Example

Clean Safety is one of the crucial problems that many countries
and companies are concerned about

Random noise Safety is one of the crucial problems that many [mask] and
companies are on concerned about

Back translation Safety is one of the crucial problems which many country
and company are concerned about

Adversarial training Safety is one of the crucial problems that many countries
and company are concerned on

Recently, the pre-trained language model provides a stronger baseline for GEC
task [16]. By fine-tuning on a small number of annotated data, the pre-trained
language model can reach an excellent performance.

However, GEC often faces the problem of lacking a large-scale parallel anno-
tated dataset, making the model prone to over-fitting and poor generaliza-
tion [14]. To address this problem, researchers have proposed a variety of data
augmentation methods for GEC task, such as synthesizing data [12], random
noise injection [37,38] and back translation [17]. These methods are able to gen-
erate a large amount of pseudo-data and enlarge the GEC dataset so that they
facilitate the development of GEC. Nevertheless, these methods either require
the use of prior knowledge like grammatical rules to yield grammatical errors,
which are not automated enough [33], or create errors that do not match human
writing errors, which may impair the performance of the model. As shown in
Table 1, random noise severely impairs the sentences, so the model does not learn
to correct errors well. Back translation tends to generate common errors, which
is not conducive to the model solving rare errors. Furthermore, through prelim-
inary experiments, we found that previous data augmentation methods applied
to this stage can seriously damage the performance of the model. The reason
for this phenomenon is that the previous approach introduced token-level noise,
which reduced the quality of the dataset. Especially in the fine-tuning phase,
only task-specific high-quality annotated data can improve the performance of
the pre-trained model. Therefore, the previous methods are not suitable for the
fine-tuning phase of pre-trained models.

To address this issue, inspired by adversarial training [11,22,25], we propose
a new approach to enhance the robustness of GEC system. The concrete way is
to construct adversarial samples with adversarial training and treat them as aug-
mented data for training the model. The adversarial samples introduce perturba-
tions in the word embedding space, which can be regarded as embedding-level
noise. Unlike the previous token-level noise, the adversarial sample introduces
lower noise, which makes the gap between the augmented sample and the orig-
inal sample not too large. Besides that, we employ the adversarial consistency
constraint, which constrains the adversarial sample to produce a similar proba-
bility distribution to the original sample. This regularization term also helps to
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avoid model overfitting. In this approach, our GEC system is more robust and
has better generalization capability. To verify the effectiveness of our method, we
conduct expensive experiments base on BART [18] model, which is a pre-trained
encoder-decoder model and can provide high performance in GEC. The exper-
imental results indicate that our approach can further boost the performance of
the pre-trained model on GEC task. The contributions of our paper are as follows:

– We demonstrate the importance of high-quality annotated data in the fine-
tuning stage and data augmentation can further improve the performance of
the pre-trained model on GEC task.

– We propose a simple and effective method to enhance the robustness of GEC
systems, i.e., constructing the adversarial samples by adversarial training and
treating them as augmented data to train the model. To the best of our
knowledge, this is the first work to introduce adversarial training into GEC
task.

– We conduct extensive experiments on GEC datasets. The experimental results
demonstrate that our approach can boost the performance of the pre-trained
model on GEC task.

2 Related Work

2.1 Grammatical Error Correction

The early GEC systems are based on rules, relying on the parser and linguistic
characteristics to detect and correct the errors [26]. However, designing rules and
resolving conflicts between rules are complex and require a great magnitude of
labor. Later, the classifier-based methods are used to solve type-specific errors,
such as preposition errors and article errors [8]. Subsequently, the researchers
converted GEC task into a machine translation task and applied statistical
machine translation models [13].

Currently, neural networks based methods have become the mainstream app-
roach for GEC. Chollampatt et al. [5] first applied neural machine translation
(NMT) models to GEC task. Chollampatt and Ng [4] used a multilayer convo-
lutional encoder-decoder neural network, which outperformed prior systems on
this task. Recently, a novel edit-based approach has been proposed for GEC task.
Relying on pre-trained language models, Awasthi et al. [1], Malmi et al. [23] and
Omelianchuk et al. [27] designed different edit mode and achieved significant
advances in speed and accuracy by predicting editing operations.

To improve the generalization of the model, researchers proposed various data
augmentation methods. Zhao et al. [37] introduced the pretraining stage to GEC
task and demonstrated the importance of pretraining. Kiyono et al. [17] borrowed
the idea of back translation and trained an extra model to generate more corpus.
Ge et al. [10] came up with round-trip translation, which iteratively corrected
the sentences. Zhao and Wang [38] utilized a dynamic masking approach that
enabled exponentially expanding the amount of data. These methods make the
model more generalizable and greatly boost the performance of GEC.
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2.2 Adversarial Training

PGD-based adversarial training method [11] has been proven effective in numer-
ous tasks. It constructs adversarial samples according to the gradient and trains
a more robust model [22]. Researchers applied it to NLP tasks and noticed it
was effective in enhancing the generalization of the model [25]. Sato et al. [28]
used adversarial training as a regularization technique and improved the per-
formance of machine translation. Zhu et al. [39] suggested the FreeLB method,
which gained enhancements in many NLU tasks. Wang et al. [31] presented
an adversarial MLE training strategy for a language modeling task, improving
the generalizability of the model without increasing the parameters and com-
putational cost. Liu et al. [20] combined adversarial training with pre-training
and found adversarial pretraining could improve both generalization and robust-
ness. In parallel to our work, [32] proposed a data argumentation method for
GEC task by constructing adversarial samples and emphasized the importance
of high-quality samples, but it is still essentially word-level noise. We apply
adversarial training to GEC task and introduce embedding level noise during
training. These adversarial samples can be considered as enlarged data, so this
is an implicit method of data augmentation.

3 Approach

3.1 Standard Method

We denote that the input sentence as X = {x1, x2, ..., xm}, and the correspond-
ing output sentence as Y = {y1, y2, ..., yn}, where xi denotes the i-th token in
the input sentence, yj denotes the j-th token in the output sentence, m and n are
the lengths of input and output sentences, respectively. A sequence-to-sequence
(Seq2Seq) model is often used in GEC task to produce the following conditional
probabilities:

P (Y |X) =
n+1∏

t=1

p(yt|X, y<t) (1)

where y0 and yn+1 denote the beginning token and the end token of the sentence,
respectively. And y<t = {y0, y1, ..., yt−1} denotes the previous output.

Suppose E ∈ R
D×|V | is the encoder and decoder embedding matrix, where

D is the dimension of the embedding vectors and |V | is the vocabulary size.
Normally, an encoder and a decoder are used to produce p(yt|X, y<t) as follows:

ei = Exi, fj = Eyj

h1, h2, ..., hm = Enc(e1, e2, ..., em)

p(yt|X, y<t) = Dec(f1, ..., ft−1, h1, ..., hm)

(2)
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Fig. 1. Illustrations of standard training method (a) and adversarial training method
(b). Adversarial training adds perturbations to the word embedding of the input at
the encoder and decoder sides.

where Enc(·) and Dec(·) indicates the abstract functions for encoding and decod-
ing procedures, respectively.

Finally, the model is usually optimized by using maximum likelihood estima-
tion (MLE), which is equivalent to minimizing the negative log-likelihood (NLL)
loss:

�nll = −
n+1∑

t=1

log p(yt|X, y<t; θ) (3)

3.2 Adversarial Training (AdvT)

In adversarial training, subtle perturbations δ are added to the word embedding
space to noise the input. For a Seq2Seq model, as shown in the Fig. 1, the input
includes both the encoder side and the decoder side, so we add perturbations
δ and δ′ to these two sides respectively. Suppose that δi ∈ R

D and δ′
j ∈ R

D

are perturbation vectors for the i-th token in X and the j-th token in Y . The
perturbed word embedding e′

i and f ′
j are computed as follows:

e′
i = ei + δi , f ′

j = fj + δ′
j (4)

Therefore, the optimization objective of the model becomes:

�adv = −
n+1∑

t=1

log p(yt|X, y<t; θ, δ, δ′) (5)

In order to obtain the meanful perturbation vectors, previous work argued
that meaningful perturbations should be those that are not conducive to model
optimization, i.e., maximizing losses:

δ, δ′ = arg max
‖δ‖≤ε,‖δ ′‖≤ε

�adv (6)
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Algorithm 1: Algorithm(AdvT + AdvC)
Input: Training dataset D = {(X, Y )},

Number of iterations T ,
Number of adversarial samples K,
Adversarial step η

1 Initialize the model parameters θ
2 for t = 1, ..., T do
3 for (x, y) ∈ D do
4 compute �nll according to Eq 3
5 L ← �nll

6 for k = 1, ..., K do
7 g ← ∇e �adv, g′ ← ∇f �adv

8
δ ← η · g/‖g‖2,

δ′ ← η · g′/‖g′‖2

9 compute �adv according to Eq 5
10 compute �kl according to Eq 8
11 L ← L + �adv + �kl
12 end for
13 Calculate the gradient based on L and update the parameter θ
14 end for
15 end for

For a neural network model, estimating the exact values of δ and δ′ is not
feasible, thus Goodfellow et al. [11] proposed the approximation method by
linearizing �adv around the input:

δi = η · gi/‖gi‖2, gi = ∇ei
�adv

δ′
j = η · g′

j/‖g′
j‖2, g′

j = ∇fj
�adv

(7)

3.3 Adversarial Consistency (AdvC)

The adversarial samples can be considered as noisy results of the original sample,
and they are both different states of the same sample. Therefore, the probability
distributions produced by the original sample and adversarial sample should be
similar. We use Kullback-Leibler (KL) divergence as an additional constraint to
ensure that these two probability distributions are close.

�kl = KL(p(·|X, y<t; θ)‖p(·|X, y<t; θ, δ, δ′)) (8)

where KL(·‖·) denotes the KL divergence.
In summary, Algorithm 1 shows the details of our approach. Lines 6–12 show

that we could generate K adversarial samples for training. However, as the num-
ber of adversarial samples K increases, the consuming time increases linearly.
Hence, in the subsequent experiments, we set K = 1.
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Table 2. Dataset statistics for GEC.

Split Dataset #sents #tokens Scorer

Train NUCLE 57k 1.16M –

FCE-train 28k 455k –

Lang-8 1.04M 11.86M –

W& I+LOCNESS 34.3k 628.7k –

Valid BEA-valid 4.3k 87k –

Test CoNLL-2014 1.3k 36.4k M2 scorer

FCE-test 2.4k 42k M2 scorer

BEA-test 4.4k 85.6k ERRANT

4 Experiments

4.1 Datasets

Following the BEA 2019 shared task setting [2], we train our GEC models
on NUCLE [7], FCE-train [35], Lang-8 Corpus [30], and W&I+LOCNESS [34]
datasets. We use W&I-dev as the development dataset. We select the model
checkpoint that performs best on the validation set for evaluation. In the eval-
uation phase, we evaluate our model on CoNLL2014 test set, FCE test set, and
BEA 2019 test set, respectively. Table 2 shows the statistics of all datasets used
in the experiments. During the pre-processing phase, hunspell1 is used to cor-
rect spelling errors in all datasets. Byte pair encoding (BPE) [29] is applied to
tokenize all the sentences.

4.2 Evaluation Metrics

For CoNLL-2014 test set and FCE-test, we report the scores measured by the
M2 scorer2 [6]. For BEA-test, we use the ERRANT3 [3,9] scores for evaluation.
All our results are the average of five distinct trials using different random seeds.

4.3 Experimental Setting

We employ BART-large [18] model implemented by fairseq4 toolkit as our base
model and fine-tune it on the GEC data. We use AdamW [21] for the optimizer
and the learning rate increases linearly from zero to 3 × 10−5 and then decays
linearly to zero. The warmup steps is 500 and the total update steps is 10,000.
The batch size is set to 2,000 tokens and the accumulation steps is set to 4. We set
η = 10−2 and K = 1 for training efficiency (i.e., generate one adversarial sample).
1 https://github.com/hunspell/hunspell.
2 https://github.com/nusnlp/m2scorer.
3 https://github.com/chrisjbryant/errant.
4 https://github.com/pytorch/fairseq.

https://github.com/hunspell/hunspell
https://github.com/nusnlp/m2scorer
https://github.com/chrisjbryant/errant
https://github.com/pytorch/fairseq
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Table 3. Comparison with existing models. A bold value denotes the best result within
the column. A underline value denotes the second-best result within the column.

Model CoNLL-2014 BEA-2019 FCE

P R F0.5 P R F0.5 P R F0.5

Mita et al. [24] 63.8 52.4 61.1 59.9 66.9 61.2 – – –

Kiyono et al. [17] 67.9 44.1 61.3 65.5 59.4 64.2 – – –

Omelianchuk et al. [27] 77.5 40.1 65.3 79.2 53.9 72.4 – – –

Lichtarge et al. [19] 69.4 43.9 62.1 67.6 62.5 66.5 – – –

Kaneko et al. [15] 69.2 45.6 62.6 67.1 60.1 65.6 59.8 46.9 56.7

BART 69.4 46.1 63.0 66.6 59.5 65.0 69.4 40.7 60.8

BART+AdvT 70.3 45.9 63.5 71.1 57.9 68.0 70.7 40.5 61.5

BART+ AdvT+AdvC 71.3 44.7 63.7 71.4 58.9 68.5 71.1 40.5 61.8

In the inference phase, we use greedy decoding to generate, i.e., the beam size
is 1. It is worth noting that, except for spelling correction, our system does
not use additional corpus and no pre-processing and post-processing operations,
such as ensembling models and re-ranking outputs, which are commonly used in
GEC tasks.

4.4 Results

We compare our model with several well-known GEC systems, as shown in
Table 3. In order to make a fair comparison, we choose single models of the
same scale as baselines. Mita et al. [24] proposed a self-refinement strategy to
remove inappropriate corrections in the dataset. Kiyono et al. [17] used a seed
corpus and back translation to generate pseudo-data for GEC and applied it for
training. Omelianchuk et al. [27] employed a GEC sequence tagger and achieved
good results after pre-training and two-stage fine-tuning. Kaneko et al. [15] inte-
grates mask language model into encoder-decoder architecture to improve the
performance of the model.

The experimental results show that except for Omelianchuk et al. [27], which
utilized an annotation dataset, our approach outperforms other existing GEC
systems. Our enhancements come from two aspects. On the one hand, BART
provides a strong baseline for GEC which can surpass most existing models
by fine-tuning on a small amount of data. This indicates that pre-training is
crucial for GEC task and it can significantly improve the performance of GEC
system. On the other hand, our approach can effectively prevent pre-trained
model overfitting and further boost the performance of the pre-trained model.

4.5 Effect of Adversarial Training

From Table 3, we can see that after introducing adversarial training, the model
gains improvement on all benchmarks. Especially on the BEA-2019 dataset,



Leveraging Adversarial Training to Facilitate Grammatical Error Correction 75

Table 4. Perturbation position analysis experimental results.

Perturbation position CoNLL-2014 BEA-2019

P R F0.5 P R F0.5

No perturbation 69.39 46.12 63.03 66.57 59.50 65.02

Encoder-only 70.96 45.16 63.68 71.00 57.87 67.92

Decoder-only 70.45 45.06 63.31 70.64 57.92 67.67

Encoder-decoder 70.80 45.24 63.61 71.06 57.85 67.96

adversarial training brings a 3% improvement to the BART model. This is
because the adversarial samples produced by adversarial training can be regarded
as augmented data, which can help to avoid the model from overfitting. Previous
data augmentation methods generate token-level noise, which is higher than the
adversarial sample. When the noise does not match human writing errors, the
augmented samples may damage GEC model. In contrast, the embedding-level
noise is much lower and more targeted, and it can be considered as a general
data augmentation method. Besides, we can observe that the noise makes slightly
decreases the recall of the model but can enhance the precision of the model,
which is crucial for GEC task.

4.6 Effect of Perturbation Position

Furthermore, to verify the role of the perturbation position, we conduct experi-
ments on CoNLL-2014 and BEA-2019 by adding perturbations at different posi-
tions, adding perturbations to the encoder side (encoder-only), adding perturba-
tions to the decoder side (decoder-only), and adding perturbations to both sides
(encoder-decoder). The experimental results, as shown in Table 4, indicate that
the perturbation is capable of improving the performance of the model regard-
less of the perturbation position. Moreover, the perturbation on the encoder
side is more effective than that on the decoder side, because it is equivalent to
constructing additional data. Perturbation on the decoder side can also bring
enhancement, and we speculate that introducing noise to the decoder can allevi-
ate the problem of exposure bias during decoding, which consequently enhances
the robustness of the decoder.

4.7 Effect of Adversarial Consistency

The experimental results show that adversarial consistency is an effective reg-
ularization method. It achieves +0.2%, +0.5%, and +0.3% improvement over
no AdvC on the three test sets, respectively. Due to the introduction of noise,
the optimization direction of the model is biased. The adversarial consistent
loss minimizes the difference between the output probability distribution of the
adversarial sample and the original sample, which prevents the model from devi-
ating from the optimization direction of the original sample. As well, this can be
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considered as a smoothing term, which makes the optimization process smoother
and the model gradually converges to the optimal value.

5 Conclusion

In this paper, we proposed a simple and effective method for the GEC task,
i.e., improving the robustness and generalization of GEC model by adversarial
training. The experimental results demonstrate the effectiveness of the method,
and we analyzed the reasons for this in detail. We viewed the adversarial samples
as a kind of high-quality augmented data that can prevent the overfitting of the
model. We believe that this approach can be used as a fundamental technique
to improve the performance of GEC systems.

Acknowledgments. This research is supported by the National Natural Science
Foundation of China under the grant [No. 61976119] and the Natural Science Founda-
tion of Tianjin under the grant [No. 18ZXZNGX00310].
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Abstract. Neural network robustness measurement is a critical step
before deploying neural network applications. However, existing meth-
ods, such as neural network verification and validation, do not fully meet
our criteria for robustness measurement. From the industrial point-of-
view, this paper proposes to use statistical robustness certificates (SRC)
for measuring the robustness of neural networks against random noises
as well as semantic perturbations and tries to bridge between verification
and validation methods through Hoeffding Inequality. Our experiments
show that our method is accurate in comparing robustness of different
neural networks and has polynomial time complexity which leads to 3x-
30x boost in efficiency compared to related methods. Together with the
intrinsic statistical guarantee, the issued certificates are considered prac-
tical in comparing the robustness of various commercial neural networks.

1 Introduction

With the proliferation of AI applications, the topic of AI robustness and safety
have drawn significant attention in the past few years. Especially in safety-critical
applications, the intrinsic robustness of the AI components, e.g., neural net-
works, is vital. To build certain confidence in the application of neural networks,
researchers have defined neural network robustness and proposed many different
approaches concerning robustness validation and verification. For many studies,
measuring the (deterministic) robustness of a neural network for an input x is
expressed as an optimisation problem:

max σx (1)
s.t. ∀x′ : L(x, x′) ≤σx ⇒ x′ is not adversarial (2)

to find the maximum perturbation σx within which no adversarial example is
possible (equivalent to finding the minimum adversarial perturbation [5]). L here
measures the “distance” between x and its perturbed version x′. However, in this
work, we propose to consider its statistical version, i.e., a statistical robustness.
Let g(x) be a function such that, g(x) = 1 if x is an adversarial example, and
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g(x) = 0 otherwise. Formally, the statistical robustness can also be expressible
as an optimisation problem:

max σx (3)
s.t. P[g(x′) = 1|L(x, x′) ≤ σx] ≤ ε (4)

which requires an acceptable level of robustness, i.e., 1 − ε, when finding the
maximum perturbation σx. As suggested in [25], even for safety critical systems,
a certain degree of safety risk must be accepted. Furthermore, in ISO/IEC Guide
51: Safety Aspects, it states that “There can be no absolute safety: some risk will
remain, defined in this Guide as residual risk. Therefore, a product, process or
service can only be relatively safe.” Practically, with a certain level of acceptable
robustness (95% as in our experiments), we can have a much larger σx as opposed
to those that can be computed with verification approaches for deterministic
robustness – this leads to the possibility of conducting a practical evaluation of
robustness.

With the new robustness definition, the key contribution of this paper is a
general method for robustness measurement of neural network classifiers which
features in the following three important aspects:

– Comparing to neural network verification methods, many of which are ineffi-
cient and produce inconsistent measurements, our method allows fair robust-
ness comparison among various neural networks and, more importantly, nicely
scales to large commercial neural networks.

– Comparing to adversarial attacks, our method is attack-independent and
supplies statistical commitments of the theoretical guarantee of the model
robustness.

– The method is generally applicable with different types of classification model
and various types of natural data perturbation, e.g., random noise, image
rotation and scaling, with different data space assumptions and distance
metrics.

We discuss and measure the applicability of our method, and show that it is
currently the most practical method which supports neural network measure-
ment with theoretical guarantee and circumvents the processing of the details of
neural networks, such as, different activation functions and layer types.

2 Relative Work

In 2013, Szegedy et al. [5] propose the first practical definition of model robust-
ness, i.e., the average of the minimum adversarial perturbations of different sam-
ples. Since then, many methods for robustness estimation have been introduced.
Essentially, there are two primary approaches to estimate the model robustness:
1) verification and 2) validation. The next two subsections will discuss related
methods concerning these two approaches, especially for neural networks.
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2.1 Neural Network Verification

In the research domain of neural network verification, researchers are looking for
efficient and effective ways to identify the minimum perturbation of a data sam-
ple under which no perturbed data will be misclassified by the neural network.
It has been a hot research topic for the past several years and many distin-
guished approaches have been proposed [6]. Roughly speaking, the methods for
neural network verification could be divided into optimization-based methods,
reachability-based methods as well as search-based methods.

Given a certain perturbation, reachability-based methods try to find the
upper and lower probability bounds of the output labels or the probability
difference between two labels (one of which is the true label). If the lower
bound is below a threshold, it is suspected that the given perturbation is not
robust enough and should be reduced accordingly. As the process of calculating
the output bounds of non-linear activation functions in neurons often requires
over-approximation for verification efficiency, the resulting perturbation is much
smaller than the actual minimum perturbation. The methods proposed by ETH
[10,15] and IBM [9] follow this research line and easing the negative effects
of over-approximation has become a primary research problem. For the other
research direction, optimization-based methods transform the neural network
verification problem into optimization problems, e.g., MILP, and use existing
programming solvers to find the minimum perturbation without approximation.
[8,16,17] are all optimization-based methods. Although most optimization-based
methods are not only sound but also complete for neural network verification,
they typically consume much more computation time compared to reachability-
based methods. This is due to the limited capability of optimization solvers
and also the enormous number of optimization constraints introduced by the
non-linear activation functions of the neurons.

In this paper, we choose CNN-Cert [9] as one of the compared methods in our
experiments. This is because CNN-Cert is a general method that supports verifi-
cation for both convolution neural networks and fully connected neural networks,
and works for various types of neurons. Due to its intrinsic symbolic propagation
schema, CNN-Cert is more efficient compared to many other methods.

2.2 Neural Network Validation

For neural network validation, the fundamental ideas are to 1) find perturbations
as small as possible to attack the target neural network and 2) thoroughly test
the generalization capability of the target neural network. The former idea links
to the broad research area of adversarial attacks of neural networks. It has been
a fruitful research direction over the past 5 year. The latter idea is simply to
test the neural network with specific samples for measuring the capability of the
neural network in certain situations.

For adversarial attacks, Google Cleverhans [18], Bethgelab Foolbox [7], and
Baidu Benchmark [19] are practical tools for generating adversarial examples and
validating the effectiveness of the target neural network. Gradient-based attack,
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Fig. 1. From left to right: a) original image; b) image attached by C&W; c) image with
maximum acceptable Gaussian noise (44.7%) calculated by SRC (ε = 5%, c = 1.2%).

score-based attack, decision-based attack, and transfer-based attack are four fun-
damental types of adversarial attacks. Some famous attacks are FGSM [14], C&W
attack [4], and Local Search Attack [20]. The robustness of neural networks are
considered as the average minimum perturbation to find adversarial examples.
In addition to adversarial attacks, designed neural network testing is another
road to validate the robustness of neural networks. [3] presents ImageNet-C and
ImageNet-P as two benchmark datasets for the evaluation of model robustness
against common corruptions and perturbations. It gives a purely testing-based
robustness measurement metric for neural networks. Nevertheless, compared to
verification/certification methods, such as CNN-Cert and ours, [3,7,18,19] pro-
vide no guarantee concerning the robustness of the neural networks. On the other
hand, [2] uses the inverse of the KL divergence between the classification result of
the original data and that of the perturbed data as the metric for neural network
robustness measurement. It is to design a novel metric for the measurement. Our
method shares the same spirit as [2] but further extends the theoretical aspects of
the neural network robustness to build certain confidence of the robustness of the
target neural network. Additionally, [1] proposes adversarial frequency and sever-
ity as two primary metrics to measure the robustness. However, we try to find the
point-wise εs that produce similar adversarial frequency for different neural net-
works and use the adversarial severity as the metric for robustness measurement.
Compared to [1], our method features in that it supports a theoretical statement
concerning the robustness and can be applied to all classification models.

3 Robustness Definition

This paper focuses on the robustness measurement of neural networks against nat-
ural perturbations. To clarify the difference between natural perturbations and
digital space adversarial attacks, Fig. 1 illustrates an image with its two perturbed
versions: perturbed by C&W attack and by maximum acceptable Gaussian noise
(44.7%) calculated by SRC (our method). Practical neural network robustness
measurement at this stage shall care more about the images with Gaussian noise
and other semantic changes rather than the ones perturbed by C&W and other
digital attacks. Thereby, we define the robustness of classifiers as:
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R = Ex∈X [max σx], (5)
s.t. P[g(x′) = 1|L(x, x′) ≤ σx] ≤ ε (6)

where x and X are an input sample and the corresponding dataset respectively;
σx represents the acceptable perturbation bound of x; x′ is a perturbed version
of x and its distance to x is measured by L, i.e., L(x, x′); and ε is an acceptable
probabilistic bound for the ratio of adversarial examples in a given region. It is
noted that this definition is a generalized version of that in [5] and [7] (set ε = 0
and finding the minimum adversarial perturbation is equivelant to finding the
maximum perturbation under which no adversarial example can be found) but
emphasizes the acceptance of limited adversarial examples.

4 Statistical Robustness Certificates for Neural Networks

In many applications, sound and complete neural network verification is not
practical due to limited computation resources and time. Consequently, rather
than proving that a neural network is perfectly robust against some small pertur-
bations, it is preferred to find a large bound which provides statistical guarantee
of the limited existence of adversarial examples. According to the discussion in
the last section, we are prone to finding a bound that is able to state with high
confidence, e.g., 99%, that the chance that a neural network performs unexpect-
edly is below an acceptable threshold, e.g., 5%. This statement is regarded as a
statistical robustness certificate that helps build our confidence in utilizing the
corresponding neural network, and it aligns well with the robustness definition
in Eqs. (5) and (6).

4.1 Hoeffding Inequality

To help identify the bound maxσx in Eq. (5), we have to figure out a way to get
P in Eq. (6). Due to the reason that the target region S = {x′|L(x, x′) ≤ σx}
has infinite samples, we resort to statistical sampling methods for estimating P.
Hoeffding Inequality [21,22] is a mathematical tool that discusses the feasibil-
ity of estimating the probability of an event happening, e.g., a tossed coin got
landing heads up, through sampling. Its mathematical formulation is as follows:

P[|ν − μ| > ε] ≤ 2e−2ε2 N , (7)

where ν denotes the empirical probability of event happening, μ the ground-truth
probability of event happening, ε the error bound, N the number of events being
tested, and P[|ν−μ| > ε] the probability of the event |ν−μ| > ε happening. To fit
the context of statistical robustness certificates, ν and μ represent respectively
the estimated and real probability of adversarial examples of a data instance x
within a certain nearby area parametrized by σx, i.e.,

μ = E[g(x′)|L(x, x′) ≤ σx] = P[g(x′) = 1|L(x, x′) ≤ σx]. (8)
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By sampling and testing the perturbed data around x, ν is thereby available by
simply calculating the percentage of the perturbed inputs that are adversarial.
Note that, by estimating Eq. (8) with the sampling method, we assume that all
the samples are independent, and all the features of the samples are independent.
Hoeffding Inequality tells us that ν approximates μ as close as possible when the
sample size grows to infinite, i.e., N → ∞. As we could tolerate certain difference
between ν and μ, i.e., ε �= 0, the sample size N can be limited.

Now, imagine that a bound σx and an error bound, e.g., ε = 5%, are given
in the first place. With certain selected number of samples, e.g., N = 1024, by
Hoeffding Inequality we have P[|ν − μ| > 5%] ≤ 1.2%. If no adversarial example
is found, i.e., ν = 0, it becomes P[μ > 5%] ≤ 1.2%. This means we have more
than 98.8% confidence to believe that μ ≤ 5%. In other words, it is believed
that the proportion of the adversarial examples in the given region is less than
5%. Building upon this idea, the key of statistical robustness certification is to
identify the maximum perturbation maxσx such that it suffices ν = 0, so that:

P[μ > ε] ≤ 2e−2ε2 N , (9)

with chosen ε and N . This could be easily achieved through dichotomizing search
and sampling. Concerning the sample size, it is worth noting that, Hoeffding
Inequality [21] works whenever the underlying population size is infinite, i.e.,
there are infinite data samples in a region around x. Therefore, the increased
dimensions of x, e.g., the increased resolution of input images, do not change its
applicability and the required sample size N remains unchanged. In the scenario
when the population size is limited, a smaller sample size may be sufficient [22].

4.2 Statistical Robustness Certification

Algorithm 1: Statistical Robustness Certification (SRC)
Input: target data point x; number of samples N ; perturbation bounds

[σL, σU ]; lower bound decrease factor γ; distance measurement L.
Output: a maximum perturbation max σx that satisfies Eq. (9)

1 select a perturbation σx from range [σL, σU ];
2 while ending condition is not satisfied do
3 sample N data uniformly from the selected region parametrized by σx, i.e.,

x′ ∼ {x′|L(x, x′) ≤ σx};
4 if All x′ have the same label as x then
5 set σL = σx;

6 else
7 set σU = σx and σL = γσL;

8 set σx = 1
2
(σL + σU );

9 return σx;
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With a slight modification of the Hoeffding Inequality, we are able to construct a
simple certification process for identifying the robustness of a target neural net-
work in a data instance. The robustness is quantified as the maximum distance
max σx within which all the sampled data instances have the same label as x, the
target data instance. The detailed process is illustrated in Algorithm 1. It takes
as input the target data x, the number of samples N , and the distance measure-
ment L which could be based on L1, L2 or other semantic distances, e.g., rotation
degree. The perturbation bounds [σL, σU ] are to make sure the selected distance
σx is within a controllable range and the decrease factor γ is to help decrease
the lower perturbation bound σL so as to find tighter σxs. In addition, the ter-
mination condition could be based on the number of iterations or the change of
σx and etc. In each iteration of the algorithm, we randomly pick N data samples
from the region controlled by x, σx, and L, i.e., S = {x′|L(x, x′) ≤ σx}. All
the N data samples are tested for their labels. If all the labels are the same
as that of x, it means we get ν = 0 and the corresponding σx is a potential
valid bound. We thereby set the lower bound, i.e., σL = σx, and look for larger
potential valid bounds. If it is not the case, i.e., ν �= 0, we set a sound upper
bound, i.e., σU = σx, and penalize the lower bound, i.e., σL = γσL. The new
bound to be tested is selected as the mean of the upper and lower bounds. To
sum up with, given a neural network N and a data x, a distance σ = max σx

could be identified through sampling data instances surrounding x according to
L so that it is able to claim that the probability of μ > ε is upper bounded by
2e−2ε2N . We call this (ε, c)-robustness, where c = 2e−2ε2N . In other words, with
Algorithm 1, a neural network obtains a certificate of its robustness. If (ε, c) is
fixed for all neural networks, the different distance σs indicate their discrepancies
in robustness, i.e., larger σ represents better robustness.

5 Experiments

To validate the effectiveness and efficiency of the proposed method, experi-
ments are conducted using various datasets and neural networks. We provide
the detailed setting in the next subsection and the results follow. Note that in
all the experiments if without further clarification, L∞-norm is utilized as the
distance measurement. We pick ε = 5% and N = 1024 for identifying (5%, 1.2%)-
robustness of different models. And all the experiments are conducted in a desk-
top computer with 3.20 GHz Inter(R) Core(TM) i7-8700 CPU. And no GPU is
used in all the experiments.

5.1 Datasets and Neural Nets

In our experiments, we choose image classification as the task and pick MNIST
[26], CIFAR-10 [27], ImageNet-C [3] and ImageNet-P [3] as the datasets. MNIST
dataset contains grayscale images, each of which has 28× 28 pixels, while CIFAR-
10 and ImageNet-C/P datasets contains RGB images. 10 images are randomly
selected from the repository in each experiment. Note that ImageNet-C and
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Table 1. Model information

Layer setting Size

MNIST 2-FCNN [1024] alexnet 243MB

CIFAR 2-FCNN [1024] mn25 2MB

MNIST CNN (DD/Adv) [32, 32, 64, 64, 200, 200] mn100 19MB

CIFAR CNN (DD/Adv) [64, 64, 128, 128, 256, 256] resnet50 121MB

Table 2. Comparison of method effectiveness for neural network robustness measure-
ment (MNIST and CIFAR-10)

Perturbation [0, 1] 2-FCNN CNN CNN DD CNN Adv

MNIST SRC 0.36815 0.44700 0.45402 0.52097

C&W attack 0.07393 0.12958 0.13602 0.17146

CNN-Cert 0.00917 0.00790 0.00848 0.00826

CIFAR-10 SRC 0.10191 0.08232 0.07455 0.08469

C&W attack 0.00746 0.00839 0.00900 0.00710

CNN-Cert 0.00180 0.00092* 0.00092* 0.00092*

* The result is not accurate due to early stop.

Table 3. Comparison of method efficiency for neural network robustness measurement
(MNIST and CIFAR-10)

Time (s) 2-FCNN CNN CNN DD CNN Adv

MNIST SRC 2.00 15.9 16.06 15.96

C&W attack 32.25 78.62 78.61 77.12

CNN-Cert 0.77 445.69 453.77 454.61

CIFAR-10 SRC 6.16 56.19 54.30 55.65

C&W attack 59.77 161.08 168.47 159.63

CNN-Cert 2.27 331.82* 327.18* 327.79*

* The result is not accurate due to early stop.

ImageNet-P are generated using ImageNet dataset with “corruptions” and “per-
turbations” respectively which are detailed in [3].

For neural networks used in the experiments, we have trained 4 neural net-
works: a 2-layer fully connected neural network (2-FCNN), a 7-layer convo-
lution neural network (CNN), a 7-layer CNN trained with defensive distilla-
tion [23] (CNN DD), and an adversarial trained 7-layer CNN using adversar-
ial examples found by C&W attack (CNN Adv). In addition, 4 well-known
pre-trained neural networks [28] for ImageNet dataset are also introduced.
They are alexnet, mobilenet v1 025 (mn25), mobilenet v1 100 (mn100), and
resnet v2 50(resnet50). Selected details of these models are shown in Table 1.
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5.2 Accuracy and Efficiency

Accuracy. In Table 2, the effectiveness of SRC in MNIST and CIFAR-10
datasets are illustrated comparing with C&W attack [4] and CNN-Cert [9], which
are two existing methods that could be applied for robustness measurement of
neural networks. It is shown that CNN-Cert produces the lowest perturbation
bounds. This is due to the fact that CNN-Cert over-approximates its output
bounds during the certification process and as a result largely shrinks the per-
turbation bounds. Larger and deeper neural networks will make the situation
worse and result with perturbation bounds of little use. For example, the per-
turbation bounds provided by CNN-Cert in Table 2 have values lower than 0.0018
which means averagely a 0.2% change of the pixels in an image could result in
a different label. This is usually not acceptable in practice. What is worse is
that the results produced by CNN-Cert are not comparable because the effect
of over-approximation vary according to different settings of a model. Therefore,
CNN-Cert and other methods that leverage over-approximation have limitation
in the task of neural network robustness measurement. On the other hand, C&W
attack provides larger bounds but it does not support any guarantee concern-
ing the robustness of the neural networks. Moreover, the results given by C&W
attack primarily reflect the security of neural networks against carefully crafted
digital attacks rather than the robustness of neural networks against natural per-
turbations. SRC gives the largest perturbation bounds among the three methods
and, in MNIST, it aligns well with C&W attack. This demonstrates its effective-
ness. In CIFAR-10, SRC and C&W attack do not agree with each other. This
could be due to the increased complexity of the images in CIFAR-10 and the
essential difference of the security against manually crafted adversarial examples
and the robustness against natural perturbations.

Figure 2 represents the effectiveness of four well-known neural networks over
ImageNet-C dataset. In detail, 6 types of perturbation, i.e., snow, blur, bright-
ness, and three types of noise, are considered here and each perturbation contains
250 images with 5 different degrees. For the validation results measured by test-
ing different models with the perturbed dataset, the values are in percentage.
For example, the accuracy of alexnet over perturbed dataset ‘snow’ is 16%. For
‘PERTURBATION [0,1]’, the values are produced by SRC. For 0.06891, it means
averagely in alexnet one has to perturb the pixels in an image (each pixel is nor-
malized to [0,1]) by 0.06891 to randomly produce an adversarial example with
more than 5% chance. The top part of Fig. 2 vividly illustrates the robustness of
each neural network. The left axis is in percentage representing the testing accu-
racy (coloured bars) of different models against different perturbations, while
the right axis is in range [0, 1] indicating the model robustness (red line) calcu-
lated by SRC. It is obvious that the results of SRC align well with the validation
results using ImageNet-C. This strongly supports the effectiveness of SRC.

Efficiency. From the perspective of efficiency, SRC also demonstrates its advan-
tageous. In Table 3, it is apparent that SRC consumes the least time in larger
scale neural networks, having a 3x-30x boosting in time saving compared to



88 C. Huang et al.

Fig. 2. Comparison of method effectiveness for neural network robustness measurement
(ImageNet)

CNN-Cert and C&W attack. For small networks, i.e., 2-FCNN, CNN-Cert takes
only 0.77 s and 2.27 s in MNIST and CIFAR-10 datasets respectively. This is
because 2-FCNN has few neurons and layers so that CNN-Cert could solve the
underlying matrix calculation and over-approximation efficiently, while SRC and
C&W attack still have to go through many iterations to find a satisfactory result.
In this study, we did not compare our method with optimization-based neural
network verification method due to their low efficiency reported in [9].

5.3 Semantic Perturbations: Rotation, Scale, Shear, and Tilt

In the above experiments, SRC controls image perturbation according to indi-
vidual pixels, i.e., focusing on the L∞-norm of the image x. This is to measure
the general robustness of a classifier. In practice, the concerns about specific risk
scenarios, e.g., camera rotation, motivate the robustness measurement under
specific types of perturbations. Image rotation, scaling, shear, and tilt are con-
sidered as four critical perturbations that intensely effect the performance of an
image recognition system. The inability to work well with the perturbations will
definitely undermine the trustworthiness of the system. To measure the robust-
ness against specific perturbations, SRC can manipulate images according to the
specific perturbation type. For example, if SRC is to measure the robustness of
a neural network against image rotation, the perturbation bounds are picked as
rotation bounds [0◦, 360◦). The distance measurement L becomes the measure-
ment of the rotated degree difference between the original and perturbed images.
The N samples in each iteration of SRC are picked according to N randomly
selected rotation degrees within the rotation bounds. In other words, as long as
a semantic perturbation has a solid bound to pick samples from, SRC is applica-
ble in measuring the robustness of neural networks against this perturbation. All
the individual degrees are treat independently to meet the basic assumption of
Hoeffding Inequality. Due to the intrinsic sampling procedure, the measurement
process of SRC for semantic perturbations is much simpler than related formal
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Table 4. Measure of model robustness against semantic perturbations (ImageNet)

alexnet mn25 mn100 resnet50

rotation (◦) 48.71 16 63.96 88.73

upscale (%) 137 132 184 249

shear (factor) 19.67 16.70 28.83 27.29

tilt (factor) 24.94 18.18 29.38 29.70

verification methods, such as [24] which turns semantic perturbations into neural
networks for verification.

In Table 4, the (5%, 1.2%)-robustness of different models are measured accord-
ing to four semantic perturbations. In 10 randomly selected images, resnet v2 50
maintains (5%, 1.2%)-robustness under average 88◦ rotation of the images. It can
also averagely withstand 249% upscale and 29.7◦ tilt of the images. Other models
do not show higher robustness in the three perturbations. It is only for shear that
mobilenet v1 100 model slightly outperforms resnet v2 50. These results show
that in average cases, resnet v2 50 has better robustness compared with other
three models. This result also aligns with the result in Fig. 2 indicating that SRC
is useful in measuring model robustness against semantic perturbations.

6 Conclusion

In this paper, we propose a practical method SRC to efficiently measure the
robustness of neural networks against natural perturbations which includes ran-
dom noises and semantic perturbations. Through extensive experiments, it is
shown that the method is effective and efficient, and most importantly it is
applicable in comparing commercial neural networks such as alexnet and resnet
with little resources. The distinct features of SRC make it a valid commercial
tool for robustness measurement of neural networks.
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15. Singh, G., Gehr, T., Mirman, M., Püschel, M., Vechev, M.: Fast and effective
robustness certification. In: Advances in Neural Information Processing Systems,
pp. 10802–10813 (2018)

16. Dutta, S., Jha, S., Sanakaranarayanan, S., Tiwari, A.: Output range analysis for
deep neural networks (2017). arXiv preprint arXiv:1709.09130

17. Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neural
networks. In: International Conference on Computer Aided Verification, pp. 3–29
(2017)

18. Papernot, N., et al.: Technical report on the cleverhans v2. 1.0 adversarial examples
library (2016). arXiv preprint arXiv:1610.00768

19. Baidu (2019).https://github.com/advboxes/perceptron-benchmark
20. Narodytska, N., Kasiviswanathan, S.P.: Simple black-box adversarial perturbations

for deep networks (2016). arXiv preprint arXiv:1612.06299
21. Hoeffding, W.: Probability inequalities for sums of bounded random variables. J.

Am. Stat. Assoc. 58, 13–30 (1963)
22. Serfling, R.: Probability inequalities for the sum in sampling without replacement.

Ann. Stat. 38, 39–48 (1973)
23. Papernot, N., McDaniel, P., Wu, X., Jha, S., Swami, A.: Distillation as a defense

to adversarial perturbations against deep neural networks. In: IEEE Symposium
on Security and Privacy, pp. 582–597 (2016)

24. Mohapatra, J., Chen, P.Y., Liu, S., Daniel, L.: Towards verifying robustness of neural
networks against semantic perturbations (2019). arXiv preprint arXiv:1912.09533

25. FAA: System Safety Handbook, Washington, DC (2000)
26. https://github.com/MadryLab/mnist
27. https://github.com/MadryLab/cifar10
28. http://jaina.cs.ucdavis.edu/datasets/adv/imagenet/

http://arxiv.org/abs/1903.06758
http://arxiv.org/abs/1707.04131
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/1709.09130
http://arxiv.org/abs/1610.00768
https://github.com/advboxes/perceptron-benchmark
http://arxiv.org/abs/1612.06299
http://arxiv.org/abs/1912.09533
https://github.com/MadryLab/mnist
https://github.com/MadryLab/cifar10
http://jaina.cs.ucdavis.edu/datasets/adv/imagenet/


Model Extraction and Adversarial
Attacks on Neural Networks Using

Switching Power Information

Tommy Li and Cory Merkel(B)

Brain Lab, Rochester Institute of Technology, Rochester, NY 14623, USA
{txl2747,cemeec}@rit.edu

http://www.rit.edu/brainlab/

Abstract. Artificial neural networks (ANNs) have gained significant
popularity in the last decade for solving narrow AI problems in domains
such as healthcare, transportation, and defense. As ANNs become more
ubiquitous, it is imperative to understand their associated safety, secu-
rity, and privacy vulnerabilities. Recently, it has been shown that ANNs
are susceptible to a number of adversarial evasion attacks - inputs that
cause the ANN to make high-confidence misclassifications despite being
almost indistinguishable from the data used to train and test the net-
work. This work explores to what degree finding these examples may
be aided by using side-channel information, specifically switching power
consumption, of hardware implementations of ANNs. A black-box threat
scenario is assumed, where an attacker has access to the ANN hard-
ware’s input, outputs, and topology, but the trained model parameters
are unknown. Then, a surrogate model is trained to have similar func-
tional (i.e. input-output mapping) and switching power characteristics
as the oracle (black-box) model. Our results indicate that the inclusion
of power consumption data increases the fidelity of the model extraction
by up to 30% based on a mean square error comparison of the oracle and
surrogate weights. However, transferability of adversarial examples from
the surrogate to the oracle model was not significantly affected.

1 Introduction

Artificial neural networks (ANNs) have become increasingly popular in the past
several years due to a convergence of better training algorithms, faster hard-
ware, and the availability of large labeled datasets. However, as they become
more ubiquitous, ANNs are facing mounting challenges related to their privacy,
security, and safety. In large part, this is due to recent demonstrations that show
ANNs such as deep convolutional neural networks (CNNs) can easily be fooled
into providing high-confidence misclassifications through small, imperceptibly-
perturbed versions of their inputs (a.k.a. adversarial examples) [13]. The study
of these types of issues from a more general machine learning (ML) context
(adversarial machine learning or AML) can be traced back to the mid-2000’s
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[5,10]. Today, AML research focus has been amplified by the popularity of deep
learning, with over 3000 papers published on AML attacks, defenses, and theory
since 2014 alone [4].

An important subset of AML research deals with so-called black-box attacks of
ML models, where an attacker has no knowledge of the model parameters, but can
query the model by controlling its inputs and observing its outputs (e.g. classifica-
tion). Through this process, the attacker may be able to learn the model’s behav-
ior, or even its exact parameter values, which could hold private or proprietary
information. Furthermore, if the behavior is extracted, then one may craft adver-
sarial examples that cause the model to behave in an unintended way. In this work,
we consider the case where attackers make use of not only model outputs, but also
side-channel information, to perform black-box attacks. side-channel information
can be described as unintended or non-primary sources of information about a
computation that typically depend on low-level implementation details. Exam-
ples include power consumption, analyzing timing between inputs and outputs,
observing emitted sound, and checking memory accesses [20]. In this work, we
focus on power consumption as a source of side-channel information. A few exist-
ing works have explored the ability to extract information about black-box ANN
models by measuring power consumption. Wei et al. utilized a hardware-based
ANN’s power to recover the inputs to the network [16]. Yoshida et al. mounted a
model extraction attack on a small multilayer perceptron (MLP) model (20 model
parameters) implemented on a field programmable gate array (FPGA) using cor-
relation power analysis [19]. Hua et al. successfully performed a model extraction
attack on a CNN by observing read and write memory accesses to extract layer
parameters [7]. Batina et al. extracted all parameters of an MLP model using tim-
ing and power side-channel information [2]. The activation function was recovered
using timing analysis, the weights were calculated using correlation power analy-
sis, and the layer parameters were obtained using simple power analysis.

This work expands on these previous studies and provides the following novel
contributions:

– A Siamese ANN-based methodology for extracting black-box ANN parame-
ters using switching power consumption

– A study of the transferability of adversarial examples from the extracted
model to the black-box model

The rest of this paper is organized as follows: Sect. 2 provides necessary back-
ground on AML. Section 3 details the simulation setup, including ANN parame-
ters, power consumption model, and important metrics. Section 4 provides sim-
ulation results and analyses, and Sect. 5 concludes this work.

2 Background

AML concerns both the offensive and defensive measures associated with malper-
formance and/or privacy of ML. This paper focuses on offensive measures, or
attacks, which can be placed into three categories [3,9,15]. 1.) Evasion attacks
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exploit the idea that most ML models such as ANNs learn small-margin decision
boundaries. Legitimate inputs to the model are perturbed just enough to move
them to a different decision region in the input space. 2.) Poisoning attacks typ-
ically use modified labeling or addition of training data to reduce the margins of
decision boundaries or insert new boundaries that cause misclassifications and
also make evasion attacks easier to perform. 3.) A third type of attack targets the
privacy of ML models and/or training data. By querying models, these attacks
can use statistical methods to infer private information about the parameters
of the model or the training set itself. Of these types, evasion attacks are the
most well-studied, especially in deep learning models. In the mid-2000’s, evasion
attacks were introduced as small perturbations to the content of emails, causing
them to be misclassified by linear spam filters [5,10,11]. In 2014, Szegedy et al.
[13] showed that imperceptible perturbations in the pixel space of images led to
high-confidence misclassifications by CNNs. The goal of an evasion attack can
be expressed as an optimization problem, where, for some model Π, a correctly-
classified input u, usually from the test or training set, is perturbed by r∗ to
maximize a loss function L and cause Π’s classification of u′ = u + r∗ to be
different from u’s ground truth label:

r∗ = arg max
r∈R,

LΠ(u + r, l)

s.t. l′ �= l
(1)

where l is u’s ground truth label, l′ is the model’s label for u′, and R is the set
of set of allowed perturbations. u′ is called an adversarial example. Often, the
allowed set of perturbations takes the form of an �p-norm constraint: R = {r ∈
R

N : ||r||p ≤ D} where N is the dimension of the input space. The �p-norm of
r is usually bounded in a way that the difference between u and u′ is difficult
or impossible to perceive by a human. Attacks are usually performed using �p-
norms with p = 2 or p = ∞. However, p = 0 and p = 1 are also common.
R may also be formed using multiple �p-norms, box constraints (e.g. bounding
all inputs between a minimum and maximum value), or by choosing r as some
type of transformation that imposes a dependence between the elements of r
(e.g. affine transformations such as rotation, scaling, etc.). A number of evasion
attacks have been proposed based on (1), differing primarily in the way they
define R, how much information they assume is known about Π (white-box
vs. black-box attacks), the way they approach the optimization procedure, and
whether they are targeted (e.g. classifying a school bus image as an ostrich) or
untargeted (e.g. classifying a school bus as anything other than a school bus).

This paper focuses on the untargeted fast gradient sign method (FGSM)
evasion attack applied to ANN models. Introduced by Goodfellow et al. [6],
FGSM can be written as

r∗ = ε × sgn (∇uLΠ(u, l)) (2)

where sgn(·) is the sign function. This attack is easy to apply when full details
of Π (i.e. structure and parameters) are known. However, a more realistic attack
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scenario is that limited information about Π is available to the attacker. In this
case, Π is considered a black-box model, and attacking Π is called a black-
box attack1. Specifically, in this work, we assume that the attacker does not
know the weights and biases of the black-box ANN model, but does know the
ANN topology, activation functions, etc. We believe that this is a likely scenario,
since many applications employ well-known ANNs (e.g. CNNs such as ResNet-50,
VGG-16, etc.) and then train them or fine tune them for their particular dataset.
One of the popular methods for performing black-box attacks on ANNs is to
estimate their behavior using a surrogate model Π̂. Then, adversarial examples
can easily be generated for the surrogate model since all of the model details are
known (white-box attack). Finally, the adversarial examples generated against
the surrogate model can be transferred to the black-box model. Note, in this
context, the black-box model is often referred to as the oracle model. We can
define the transferability as the probability that the oracle’s label will be modified
by the adversarial example given that the example also modified the surrogate’s
label and the original labels of both models matched the ground truth target
label lt:

Tr = Pr
(
l′ �= l

∣∣∣l̂′ �= l̂ ∧ l̂ = l = lt

)
(3)

where l′ and l are the oracle’s label of the adversarial and original inputs and l̂′

and l̂ are the surrogate’s label of the adversarial and original inputs. In general,
the transferability depends on how well the oracle model is extracted and esti-
mated by the surrogate. Interestingly, transferability does not necessarily depend
on Π and Π̂ having identical parameters, and extracting the model behavior is
generally much easier than finding the exact parameter values [8,12,14]. Here,
we adopt a query-based approach [12], where the surrogate model is trained on
examples from the oracle’s training set. The surrogate’s target for each input is
the label that the oracle assigns to it. The goal of this work is to determine if
additional information (power consumption) from the query will lead to better
transferability between the surrogate and the oracle with the same number of
queries.

3 Simulation Setup

In this work, the oracle and surrogate models are MLPs with 784 inputs, a single
100-neuron hidden layer, and a 10-neuron softmax output layer, trained on the
MNIST dataset [1]. The hidden neurons use a binary activation function:

b(s) =
{

0 s < 0
1 s ≥ 0 (4)

Quantized activations, especially binary activations, are attractive from a hard-
ware perspective, since they require fewer hardware resources (i.e. transistors)
1 Note that sometimes gray-box is used to describe the situation where some, but not

all details of Π are known, but here we use the term black-box to indicate imperfect
knowledge of Π.
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Fig. 1. Extraction of the oracle model using switching power information. (a) The
surrogate model is trained using both the model outputs (i.e. classification label) and
the oracle’s switching power. (b) A Siamese network structure with shared weights is
used to train the surrogate to match the oracle’s classifications as well as its switching
power.

and they often have a limited effect on the accuracy of an ANN [18]. One chal-
lenge of training ANNs with binary activations is that the gradient is undefined
when the activation function input is 0. To overcome this challenge, we approx-
imate the gradient as if b were a sigmoid function:

∂b(s)
∂s

≈ ∂σ(2s)
∂s

= σ(2s) (1 − σ(2s)) (5)

where σ(·) is the logistic sigmoid function. Here, we empirically found that scal-
ing the sigmoid argument by 2 leads to better training results.

Both the oracle and surrogate models were implemented in tensorflow. The
oracle model was trained on all 60,000 images of the MNIST training set and
achieved an average test accuracy of ≈90%. The surrogate model was trained
on different subsets of the MNIST training set, using the outputs of the trained
oracle as the target labels. In addition, the relative switching power of the oracle
model’s hidden layer was simulated to use as an additional training target for
the surrogate, as shown in Fig. 1(a). Here, we assume that the oracle model is
implemented on digital hardware such as an FPGA, and that we can isolate
the switching power of the hidden layer neurons from the rest of the power
consumption profile. For a digital circuit, the switching power at a node can be
written as

Pswitch = αCV 2
ddf (6)

where α is the probability that a circuit node changes from 0 to 1 within a clock
period, C is the node’s capacitance, Vdd is the supply voltage, and f is the clock
frequency [17]. Since C, Vdd, and f are the same for the output of each hidden
layer neuron, we can capture their relative power consumption by how often they
switch from 0 to 1. However, note that an attacker would likely only have access
to a total, aggregated power profile. Even if the hidden layer’s switching power
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can be isolated from other power components, the attacker will only know the
total switching power. Therefore, in essence, we can simplify our assumptions
by stating that, for each subsequent pair of inputs, the attacker will be able
to determine from the power profile the total number of hidden layer neurons
that switched from 0 to 1. Therefore, we redefine the power consumption for a
particular input pair as

P p = (πp − πp−1)(πp)� (7)

where π is a binary vector representing the state (neuron outputs) of the oracle’s
hidden layer. Note, that this is just the sum of the number of hidden nodes that
switched from 0 to 1 when input p − 1 switched to input p. Now, the surrogate
can be trained using both the oracle outputs and power information, as shown
in Fig. 1(b). Here, we adopt a Siamese network structure, where two surrogate
models with shared weights are trained on two inputs that were subsequently
used to query the oracle. The loss function for the surrogate can be written as

L = LCE(yp−1, ŷp−1) + LCE(yp, ŷp) + β
[
P p − P̂ p

]2
(8)

where LCE is the cross entropy loss, β ≥ 0 is the relative loss of the power
consumption, and y and ŷ or the outputs of the oracle and surrogate models,
respectively.

4 Results and Analysis

4.1 Model Estimation

In our first set of simulations, we analyzed the effect of including switching
power consumption on the efficacy of query-based model estimation. The surro-
gate model was trained with different-sized subsets of the MNIST training data,
raining from 1 to 60,000. The surrogate model was identically initialized for each
training set size. After simulating each training set size, the weights between the
oracle and the surrogate were compared using mean-squared error (MSE). The
surrogate was trained on each of the training set sizes 50 times, and the results
were averaged. A run consisted of the training of the oracle and each training
set size for the surrogate. While the weights before the training of the surrogate
were identically initialized during each run, they were not identically initialized
between runs. Figure 2 shows the relationship between the number of training
samples used to train the surrogate and the MSE of the weight matrices.

The MSEs between the various training sample numbers used to train the
oracle grows linearly as the number of training examples increases. Initially,
this may seem counter-intuitive. However, there are several valid solutions to
the MNIST classification problem within the MLP’s weight space. As a result,
we can loosely think of the training process for both the oracle and surrogate
models as two independent random walks starting at the same point. From this
view, it is clear that their average distance and MSE will grow with more steps.
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Fig. 2. MSE of the weights between the oracle and the surrogate models with β = 0
and β = 1.

We also observe that, with the introduction of power information, there is a
decrease in MSE for the larger training set sizes - the MSE at 60,000 training
samples decreased from 0.13 to about 0.087, or an overall decrease of 30%. The
power information in the loss function likely constrained the weight updates at
larger sample sizes.

4.2 Adversarial Transferability

Next, we studied FGSM attacks against the oracle and surrogate models. First,
a white-box attack was performed on the trained oracle using the 10,000 test
samples to obtain a set of adversarial images. A white-box attack was also per-
formed on the trained surrogates, regardless of the number of training samples
used to train it. Two relative accuracies were calculated - one for the white-box
attack on the oracle, and a black-box attack on the oracle, where the adversarial
images from the surrogate were used to attack the oracle. A relative accuracy
is defined as the accuracy of the model on the adversarial examples divided by
the accuracy of the model on the unperturbed images. This metric allows for
the comparison of how strong the black-box attack is compared to the white-box
attack.

Several values for the strength, ε, were used to test the effects of the scaling
on the attack. Values used for ε ranged from 0 to 1. More ε values that were
tested were between 0.1 and 1, as lower ε values did not add enough noise to the
adversarial image to cause a large number of misclassifications. Figure 3 shows
the average relative accuracy plot of the white-box attack on the oracle vs. the
black-box attack on the oracle. Relative accuracy is defined as the accuracy
of adversarial images divided by accuracy of unperturbed images. At lower ε
values, the relative accuracies for both sets of attacks are very close to 1.0, as
not much noise was added to the image. The first noticeable change in relative
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Fig. 3. White-box vs. black-box relative accuracies for (a) β = 0 and (b) β = 1.

accuracy occurs at ε = 0.01. For all ε, the relative accuracy from the black-
box attack asymptotically approaches the relative accuracy from the white-box
attack. This is expected, as the differing weights between the oracle and surrogate
would produce different gradients, and thus, different perturbations would be
generated in the attack. For the attacks with the power information, the overall
relative accuracy of the black-box attack was higher (such as 0.01 and 0.05),
which implies the networks are more resistant to the adversarial examples. We
believe that this is likely due to additional and unintended regularization of the
surrogate model coming from the power loss.

The transferability of the attacks are presented in Fig. 4. At lower ε values,
attacks are less likely to transfer, as the adversarial images are unlikely to cause
either the oracle or surrogate to mispredict. As expected, more training samples
result in higher transferability, as the functionality between the two networks is



Adversarial Attacks Using Switching Power 99

Fig. 4. Transferability of the FGSM attack for (a) β = 0 and (b) β = 1.

closer. As ε increases, surrogates trained on fewer training examples are more
likely to have attacks transferred, as there was increased noise being added to
the image. With power information, the overall transferability remained approx-
imately the same and sometimes even decreased. One potential reason for this is
that we observed the power component of the loss function often reached a local
minimum. Since there are so many possible hidden layer switching behaviors
that would lead to the same sum of total switches for two subsequent inputs, it
is likely that the power loss landscape is highly non-convex. Further investiga-
tion into techniques to better optimize the power loss will be needed in order for
this approach to improve transferability.
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5 Conclusions

This work explored the use of power consumption information as a means to
improve the query efficiency of surrogate-based black-box attacks on artificial
neural networks. Our results indicate that including switching power information
in the training of the surrogate model can lead to a significant improvement in
the fidelity of model extraction (up to 30%) as measured by the MSE of the
surrogate and oracle weights. However, we did not observe a significant change
in the transferability of attacks from the surrogate to the oracle when power
consumption data was included. This is likely due to the idea that the power loss
is highly non-convex, and likely settles into a local minimum. Future directions
for this work may include the exploration of other optimization techniques, such
as genetic algorithms for minimizing the power loss, or smarter querying that
allows more efficient integration of the power data into the surrogate training
process.
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Abstract. Anomaly detection for dynamic graphs, with graphs chang-
ing over time, is essential in many real-world applications. Existing works
did not consider the accurate community structures in a dynamic graph.
This paper introduces CmaGraph, a TriBlocks framework using an inno-
vative deep metric learning block to measure the distances between ver-
tices within and between communities from an evolution community
detection block. A one-class anomaly detection block can capture the
dynamic graph’s anomalous edges after these two functional blocks. This
method significantly enhances the capability to detect anomalous edges
by reconstructing the distance between the evolutionary communities’
vertices. We demonstrate the implications on three real-world datasets
and compare them with the state-of-the-art method.

Keywords: Anomaly detection · Dynamic graph · Evolutionary
community detection · Deep metric learning

1 Introduction

Anomaly detection in a dynamic graph has a wide range of applications, such as
computer networks, economic systems, and social networks [16]. Many anomalies
occur due to significant differences from the previous pattern [3]. For example, if
a computer from a subnet suddenly sends many messages to other computers in
another subnet that it has rarely sent before, the messages may be anomalous in a
computer network. The dynamic graph represents a computer vertex with many
edges connected to the surrounding vertices, resulting in a dense subgraph around
the vertex or generating a community. These updated edges could be abnormal.

A crucial problem over anomaly detection in dynamic graphs is anomalous
edge detection. Edges contain rich features about relationships and structures
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[17]. Therefore, finding anomalous edges can be used in security domain, such
as an intrusion detection system, social network anomaly detection, and fault
detection [3]. In this paper, we focus on anomalous edge detection in a dynamic
graph.

Limited work has been done in community structures in dynamic graph
anomaly detection [5]. Many of the existing anomaly detection methods for
the dynamic graph used heuristic rules [1,5,15,15]. These methods heuristically
defined the anomalies features in a dynamic graph and then used the defined
features for anomaly detection. However, heuristic methods are challenging in
adapting to complex and variable patterns of anomalies in large-scale dynamic
graphs. With the popularity of deep learning, there have been many anomaly
detection methods for a dynamic graph using deep learning technologies [21,22].
Compared with traditional heuristic rules, these methods can learn better fea-
tures that can adapt to complex anomaly patterns. However, existing deep learn-
ing anomaly detection methods for dynamic graphs did not consider the dynamic
graph’s community structures.

The main difficulty in anomaly detection based on community structures
is learning accurate community structures by using representation learning in a
dynamic graph. First, attention or community-aware based representation learn-
ing method can transfer the dynamic graphs to feature space. Then using the
above features for anomaly detection. Learning accurate features for anomaly
detection will improve the performance of anomaly detection. Both the clique
embedding of NetWalk [21] and anomalous score layer of AddGraph [22] are
designed for anomaly detection, which all achieve good performance of anomaly
detection. However, in community deep learning methods for dynamic graphs,
existing works were aimed at the general domain and did not consider how to
apply community structures to anomaly detection.

We propose a dynamic graph anomaly detection framework, CmaGraph,
which detects a dynamic graph’s evolution community structures and learns
a community metric enhancement feature for subsequent anomaly detection. It
significantly enhances the capability to detect anomalous edges by reconstructing
the distances between vertices within and between communities. CmaGraph con-
sists of three blocks, Evolution Community Detection Block (C-Block), Commu-
nity Metric Enhancement Block (M-Block), and One Class Anomaly Detection
Block (A-Block). Specifically, the contributions of CmaGraph are as follows:

– CmaGraph detects the evolutionary community structures of dynamic graph.
– CmaGraph uses deep metric learning to learn community metric enhancement

feature for anomaly detection, which significantly enhances the capability to
detect anomalous edges.

– We experiment on three real datasets to prove the effectiveness of CmaGraph.

The rest of this article is organized as follows. We first summarize the related
work in Sect. 2. In Sect. 3, we propose the CmaGraph framework, including the
formula of the method and the anomaly detection process. Then, in Sect. 4,
we conduct experiments on three real datasets and show the performance of
CmaGraph. Finally, we summarize this paper in the Sect. 5.
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2 Related Work

Most of the existing methods were based on heuristic rules. GOutlier [1] designed
a reservoir sampling method to maintain a structural summary of the dynamic
graph and dynamically partitioned the graph to build a model of connection
behavior. Then it defined the outliers by the model. CM-Sketch [15] used sketches
to provide constant complexity of time and space, and extracted global and local
structure feature to define outliers. StreamSpot [12] designed a similarity func-
tion of two graphs and used clustering algorithms to distinguish between normal
and anomalous behaviors. GMicro [2] created hash-compressed micro-clusters
from the graph stream by using hash-based edges, which can reduce the size of
the representation. SpotLight [7] encoded the graph by randomly sample vertex
sets and calculating the overlap between vertex sets and vertices of the current
edge set. Finally, it used a clustering algorithm to find an anomalous graph. The
above methods used heuristic rules to define the features of the dynamic graph.
However, the anomalies patterns are variable and complex. Heuristic rules are
challenging in adapting to complex anomalies patterns.

With the development of deep learning, some methods used graph embed-
ding for anomaly detection. Most of existed works learned the static graph
embedding at each timestamp through deep learning techniques [8,14,18]. The
static graph embedding was extended to dynamic graph embedding by aggrega-
tion, sequence model, etc. [10,20]. However, in most cases, these dynamic graph
embedding techniques were aimed at the general domain, and may not work
well in anomaly detection. Therefore, there are some anomaly detection methods
based on dynamic graph embedding recently. NetWalk [21] learned vertex embed-
ding on a random walk sequence set by a custom autoencoder introduced clique
embedding for anomaly detection. AddGraph [22] used Graph Convolutional
Network [11] and Gated Recurrent Unit to capture the structural and temporal
features of dynamic graph respectively, and introduced anomalous score layer
for anomaly detection. These two methods were based on graph embedding for
anomaly detection, which can learn better features, adapt to complex anomalies
patterns, and have better performance than heuristic rules. However, in graph
embedding methods for anomaly detection, existing methods did not consider
the dynamic graph’s community structures. We detect evolutionary community
structures and reconstruct the distances between vertices within and between
communities for anomaly detection.

3 Proposed Method

In this section, we formalize the problem and propose the framework of our
method.
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3.1 Problem Definition

A dynamic graph G where the element takes the form of Gt = (Vt, Et) is a
temporal graph. Here Gt is the graph in G at timestamp t, and G = {Gt}Tt=1.
With the update of the graph, the incoming edge set is denoted by Et, and all
vertices in Et are denoted by set V t. We set the entire vertex set Vt = ∪t

i=1V
i,

the entire edge set Et = ∪t
i=1E

i, n = |Vt|, and mt = |Et|. At timestamp t, we
use At ∈ R

n×n to represent the adjacency matrix of Gt. We focus on undirected
graph, so At is symmetrical. Given G and timestamp t, our goal is to find
anomalous edges in Et without labelled data. Specifically, this paper outputs
anomalous score vectors {st}Tt=1 where st contains anomalous scores of all edges
in Et, and obtains anomalous edges by setting a threshold.

3.2 CmaGraph Framework

From a global perspective, the main idea of CmaGraph is to detect evolutionary
community structures of G and enhance it for anomaly detection. Figure 1 shows
the overview of CmaGraph. The details of each part of the overview are explained
in the following.

Evolution Community Detection Block (C-Block). The goal of C-Block
is to detect evolutionary community structures. We use adjacency matrices as
the input of autoencoder to get vertex embedding and apply k-means to ver-
tex embedding for community detection. Previous research proves that drastic
variation in the network is not suitable in many real-life dynamic graph [19].
Therefore, inspired by [13] and [19], we introduce sparsity evolution autoencoder
(SeAutoencoder), which can get the stable vertex embedding so that k-means
can get stable community labels. It ensures that the changes of community struc-
tures cannot be changed drastically. Figure 2 shows the inputs and outputs of
C-Block in a synthetic dynamic graph, which shows C-Block can get stable ver-
tex embedding and community labels in dynamic graph.

Formally, at timestamp t, we receive the adjacency matrix At of Gt and set
the hyper-parameter k which is the number of communities. We construct vertex
embedding by a ls layers SeAutoencoder which the forward propagation formula
is given by

f l+1
s = σ(f l

sW
l
s + bl

s) (1)

where l = 1, . . . , ls − 1, f1
s = At, Wl

s and bl
s are the weight matrix and bias

vector of the l-th layer of SeAutoencoder, and sigmoid function σ(z) = 1
1+exp(z) .

We set Ht = f
� ls

2 �
s . We apply k-means with k communities to Ht, so we can get

a community label vector ct that contains the community label of each vertex.
Here, Ht ∈ R

n×d, d is the dimension of vertex embedding, and ct ∈ R
n. The

reconstruction loss function of SeAutoencoder is

JAE =
1
2

∥
∥f ls

s − At
∥
∥
2

F
(2)
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Fig. 1. The overview of CmaGraph. (a) dynamic graph, (b) adjacency matrices, (c)
Evolution Community Detection Block, (d) Community Metric Enhancement Block,
(e) One Class Anomaly Detection Block.

Fig. 2. Inputs and outputs of C-Block in a synthetic dynamic graph. (a) input graph
Gt−1, (b) output vertex embedding of Gt−1, (c) input graph Gt, (d) output vertex
embedding of Gt. c1 and c2 are two different communities. Arrows in (d) represent the
direction of movement of vertex embedding compared to (c).

where ‖·‖F is frobenius norm. Since the adjacency matrices are sparse, we intro-
duce a sparsity constraint. The penalty term of units of SeAutoencoder is defined
by Kullback-Leibler divergence [13],

KL(ρ‖ρ̂lj) = ρlog
ρ

ρ̂lj
+ (1 − ρ)log

1 − ρ

1 − ρ̂lj
(3)
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Fig. 3. Input and output of M-Block in a synthetic graph. (a) vertex embedding of
Gt−1, (b) community metric enhancement vertex embedding of Gt−1. c1 and c2 are two
different communities.

where ρ is sparsity parameter, ρ̂lj is the average activation of j-th units in the
l-th layer, and ρ̂lj = 1

n

∑n
i=1 f l

ij . When the graph is updated, the change of
vertex embedding and community labels should not be too drastic. Therefore,
we introduce a temporal loss JT between Ht and Ht−1 [19] which is given by

JT =
1
2

∥
∥Ht − Ht−1

∥
∥
2

F
(4)

where JT = 0 if t = 1. With ls layers SeAutoencoder, we want to minimize the
final loss function which is given by

JSeAutoencoder = JAE + β

ls∑

l=1

∑

j

KL(ρ‖ρ̂lj) + λJT (5)

where β and λ control the weights of sparsity constraint and temporal loss
respectively.

Community Metric Enhancement Block (M-Block). The goal of M-Block
is to reconstruct the distances between the vertices, which makes the euclidean
distance between vertices in the same community closer to each other, and the
euclidean distance between vertices in different communities farther away from
each other. As shown in Fig. 1d, vertex embedding and community label vec-
tor are the input of M-Block, and the output of M-Block is community metric
enhancement vertex embedding. M-Block uses a community metric enhance-
ment network (CenNet) which is a siamese network [6] for enhancement of ver-
tex embedding, and siamese network is one of deep metric learning methods.
It reconstructs the distances between the vertices within the evolutionary com-
munities. As shown in Fig. 3, the enhancement vertex embedding is better than
original vertex embedding because the euclidean distances between vertices are
more indicative than before.

Formally, at timestamp t, we receive Ht and ct from C-Block. We construct
community metric enhancement vertex embedding Ot ∈ R

n×d by a lc layers fully
connected network CenNet with d units for each layer where forward propagation
formula is given by

f l+1
c = σ(f l

cW
l
c + bl

c) (6)



CmaGraph 111

Here l = 1, . . . , lc − 1, f1
c = Ht, Wl

c and bl
c are the weight matrix and bias

vector of the l-th layer of CenNet respectively, and Ot = f lc
c . The loss function

of CenNet is contrastive loss which proposed by [6,9], and is given by

JCenNet =
1
2n

n∑

i=1

n∑

j=1

(yijd2ij + (1 − yij)max(b − dij , 0)2) (7)

where dij = ‖Ot
i· − Ot

j·‖2 represents the euclidean distance between sample i

and j, Ot
i· is the i-th row of matrix Ot, yij = 1 if sample i and j are in the same

community or yij = 0, and b is margin. Since n may be too large to make the
calculation of (7) complicated, for a given sample i, instead of going through the
whole dataset to get index j, we use negative sampling to get index j, which can
reduce the complexity.

One Class Anomaly Detection Block (A-Block). Given Et, the goal of
A-Block is to obtain anomalous scores of all edges in Et. As shown in Fig. 1e,
A-Block applies an edge encoder to Ot for getting edge embedding. In A-Block,
given each edge (u, v) in Et and Ot, the edge embedding of (u, v) is exp(−(Ot

u·−
Ot

v·)
2). It can make better use of the distance information of the embedding.

Then A-Block inputs edge embedding into One Class Neural Network (OCNN)
[4] which is an anomaly detection model.

Formally, at timestamp t, we receive Ot of M-Block and Et. Edge encoder
φ is an operator to compute edge embedding Pt ∈ R

mt×d by using Ot and Et.
We introduce a la layers fully connected network OCNN with d hidden units
for each hidden layer and its last layer have one unit that represents anomalous
score. The forward propagation formula of OCNN is given by

f l+1
a = σ(f l

aW
l
a + bl

a) (8)

where l = 1, . . . , la − 2. The last layer does not apply activation function which
means f la

a = f la−1
a Wla−1

a + bla−1
a . Here f1

a = Pt, Wl
a and bl

a are the weight
matrix and bias vector of the l-th layer of OCNN, and anomalous score vector
st = f la

a . The loss function of OCNN is proposed by [4] and is given by

JOCNN =
1
2

la−2∑

l=1

‖Wl
a‖2F +

1
2
‖Wla−1

a ‖22 +
1
ν

× 1
mt

mt
∑

i=1

max(0, r − sti) − r (9)

where r is the bias of the hyper-plane. ν controls the number of data points
that are allowed to cross the hyper-plane, and ν is equivalent to the percentage
of anomalies [4]. Finally, we get st and we classify anomalous edges by setting
threshold.

Dynamic Update. Formally, at timestamp t, we get the updated edge set Ωt.
We update the adjacency matrix At according to Ωt, and we use At as the input of
CmaGraph. Then we train the SeAutoencoder, CenNet, and OCNN with learning
rate α and previous weights. Our framework is summarized in Algorithm 1.
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Algorithm 1. CmaGraph
Input: Graph stream G which contains edge stream {Ei}ti=1, vertex set Vt

Parameter: d, α, ρ, β, λ, k, b, φ, ν, r, ls, lc, and la
Output: anomalous score vector {st}Tt=1

1: Define the network structure of SeAutoencoder, CenNet, OCNN.
2: for t=1 to T do
3: Update At according to Et and Vt

4: Minimize JSeAutoencoder (5)

5: Ht = f
� ls

2 �
s

6: Apply kmeans to Ht with hyper-parameter k to get community label ct

7: Minimize JCenNet (7) with the input Ht, ct

8: Ot = f lc
c

9: Minimize JOCNN (9) with the input Ot, Et

10: st = f la
a

11: return {st}Tt=1

4 Experiment

In this section, we show the setup of the experiment and the results compared
with other methods.

4.1 Experiment Setup

Dataset. We evaluate the performance of CmaGraph on the datasets shown in
Table 1. UCI Message is a directed graph which is based on an online community
graph from the University of California where each vertex represents the user
and each edge represents the interactions between users. Digg is based on reply
graphs of the website Digg. Similar to the UCI Message, each vertex represents
the user and each edge represents the reply between the users. DBLP-2010 is
a collaboration network of authors from the computer science bibliography in
2010 where each vertex represents author and each edge represents collaboration
between authors. Since the anomalous data is difficult to obtain, we use the
method of [21] to inject anomalous edges into three datasets.

Table 1. Statistics of datasets

Dataset #Node #Edge Max. Degree Avg. Degree

UCI Message 1,899 13,838 255 14.57

Digg 30,360 85,155 283 5.61

DBLP-2010 300,647 807,700 238 5.37
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Baseline. We compare CmaGraph with the following competing edge anomaly
detection methods in dynamic graph.

– GOutlier [1]. It maintains summaries of a graph by designing a sampling
method, defines the outliers of the dynamic graph, and outputs an anomalous
score for a given edge.

– CM-Sketch [15]. It introduces a sketch-base method to approximate the global
and local structural properties of graphs. These approximations are used to
find outliers.

– NetWalk [21]. It uses a vertex reservoir strategy to maintain the summaries
of dynamic graph, uses custom autoencoder to build vertex embedding, and
uses stream k-means to detect anomalous edges.

Experimental Design. We evaluate CmaGraph in two settings: static and
dynamic setting. In static setting, we see whether CmaGraph could effectively
detect community structures and enhance it for anomaly detection without
dynamic updates. In dynamic setting, we split the test set into multiple snap-
shots to see the performance of CmaGraph in dynamic updates. We use AUC
as a metric to compare different methods.

4.2 Experimental Result

Static Setting. For static settings, we use 50% of the data as the normal
edge and use them as the input of CmaGraph for training. We inject 1%, 5%,
10% anomalous edges into the remaining 50% of the data as the test set. The
dimension d of vertex embedding is set to 64. For C-Block, the number of clusters
k is set to 15, the sparsity parameter ρ is set to 0.1, the weight β of sparsity
constraint is set to 0.1, the weight λ of temporal loss is set to 1, and the number
of layer of C-Block ls is set to 3. For M-Block, the parameter b is set to 1, and
the number of layer of CenNet lc is set to 2. For A-Block, ν and r are set to
0.05 and 1 respectively, the number of layer of OCNN la is set to 3, and the
output dimension of OCNN is set to 1. For UCI, the learning rate α of the three
networks is set to 0.0001, and α = 0.00001 for DBLP-2010 and Digg.

Table 2. AUC results in static setting

Methods UCI Messages Digg DBLP-2010

1% 5% 10% 1% 5% 10% 1% 5% 10%

GOutlier 0.7181 0.7053 0.6707 0.6963 0.6763 0.6353 0.7172 0.6891 0.6460

CM-Sketch 0.7270 0.7086 0.6861 0.6871 0.6581 0.6179 0.7097 0.6892 0.6332

Netwalk 0.7758 0.7647 0.7226 0.7563 0.7176 0.6837 0.7654 0.7388 0.6858

CmaGraph 0.9520 0.9574 0.9523 0.9117 0.9124 0.9178 0.8131 0.8148 0.8157

The results of CmaGraph and baselines are shown in Table 2. Because UCI
and Digg are the same as those used by Netwalk, and DBLP-2010 is similar
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to DBLP dataset used by Netwalk, we use the results of baselines reported by
Netwalk [21]. The results of CmaGraph are obtained by averaging 10 times and
all variances are less than 0.001. CmaGraph surpasses all the other methods in
all of the datasets. On UCI and Digg, CmaGraph has at least 0.1554 increment
compared to the baselines. On DBLP-2010, it has at least 0.0477 increment
compared to the baselines. Significant performance improvement is mainly due
to CmaGraph can effectively detect community structures and enhance it for
anomaly detection by using deep metric learning, and the learned features can
adapt to complex anomalies patterns. It also demonstrates community structures
can be effectively applied to graph anomaly detection by deep metric learning.

Dynamic Setting. For dynamic settings, we split test set into multiple snap-
shots. Averagely, we split 6, 7 and 10 snapshots for UCI, Digg and DBLP-2010
respectively. For each snapshot, we update CmaGraph according to Algorithm 1.
The hyper parameters are the same as the static setting. Figure 4 reports the
result of dynamic setting where the results of baselines are reported by NetWalk
[21] and the results of CmaGraph are obtained by averaging 10 times and all
variances are less than 0.001. We see that CmaGraph exceeds other baselines on
all the datasets. On UCI, Digg and DBLP-2010, CmaGraph has at least 0.16,
0.08, 0.0045 increment compared to Netwalk respectively. The main reason that
CmaGraph beats the baselines on all snapshots of all datasets is that CmaGraph
can detect structural features of evolutionary communities and steadily enhance
the features for anomaly detection. This also demonstrates that CmaGraph can
learn the evolution community structures which can adapt to complex anomalous
patterns.

Fig. 4. AUC results in dynamic setting with 5% anomalies

Stability of CmaGraph over Different Percentages of Training Data.
In this part, we test the performance of CmaGraph at different percentages of
training data. In each percentage, with 5% anomalous edges and parameters in
static setting, we run 20 times to get Fig. 5 on dataset Digg. We can see that
the AUC of CmaGraph increases gradually with the increase of the percentage.



CmaGraph 115

Fig. 5. Stability on Digg with different training percentages

From 10% to 20% training percentage, AUC increases the most. After 20% train-
ing percentage, the AUC grows steadily. In different training percentages, the
standard deviations are between 0.0003 and 0.0008, which shows the stability
of CmaGraph. Even we use 10% training percentage of Digg, CmaGraph also
exceeds the best performance of baselines in static settings of 5% anomalous
edges, which shows that CmaGraph can achieve good performance in the case
of a small number of data.

5 Conclusion

In this paper, we propose the CmaGraph framework that can detect anomalous
edges in a dynamic graph. CmaGraph uses three blocks to effectively detect
evolutionary community structures and enhance it for anomaly detection. It
significantly enhances the capability to detect anomalous edges by reconstruct-
ing the distances between the evolutionary communities’ vertices. We conduct
experiments based on three real-world datasets, and the results demonstrate the
effectiveness and stability of CmaGraph, and CmaGraph has an outperformance
than existing methods in dynamic graph anomaly detection.
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Abstract. Android is the most popular smartphone operating system.
At the same time, miscreants have already created malicious apps to
find new victims and infect them. Unfortunately, existing anti-malware
procedures have become obsolete, and thus novel Android malware tech-
niques are in high demand. In this paper, we present Falcon, an Android
malware detection and categorization framework. More specifically, we
treat the network traffic classification task as a 2D image sequence classi-
fication and handle each network packet as a 2D image. Furthermore, we
use a bidirectional LSTM network to process the converted 2D images
to obtain the network vectors. We then utilize those converted vectors
to detect and categorize the malware. Our results reveal that Falcon
could be an accurate and viable solution as we get 97.16% accuracy on
average for the malware detection and 88.32% accuracy for the malware
categorization.

Keywords: Malware detection · Malware categorization ·
Bi-directional LSTM · 2D image sequence classification

1 Introduction

As the most popular mobile operating system globally, Android has become
the main target for many attackers who seek to exploit new victims. These
adversaries leverage malicious apps to infect mobile devices to carry out miscre-
ants’ nefarious activities, such as sending spam emails, spreading new malware,
generating revenue from online advertisements by performing click-frauds, or
even tricking users into revealing personal and private data. On the other side,
both industry and academia work on the domain of Android malware investi-
gation, which includes malware detection and categorization in an attempt to
mitigate the aforementioned phenomenon [7,10,14,18,20]. Many of the proposed
approaches utilize the contextual information of Android applications (primarily
Android APKs code). Chen et al. [8] propose a technique that examines Android
malware based on its static behavior that involves the use of components, permis-
sions, and sensitive Application Programming Interface (API) calls. Li et al. [14]
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introduce a classifier based on the Factorization Machine (FM) architecture, in
which they extract numerous Android app heuristics from both the manifest files
and source code. However, both methods analyze the Android application stat-
ically without running the program. Gibert et al. [11] present a way to convert
the executable files into a 2D image and achieve malware detection based on the
2D image classification.

Meanwhile, several works either utilize the Android dynamic features, which
are generated by running the Android application in a sandbox [26,29] or capture
the network traffic to detect legitimate and malicious behaviors [2,16,17,28,32].
The first approach is expensive because it monitors those running applications
in different level calls (system-level, function-level, etc.) and performs several
low-level operations during their running activities. In contrast, capturing net-
work traffic to analyze the application’s behavior is cheaper. However, most
of the existing network traffic research is based on the manual indicated rules
and builds rule-based classic machine learning classifiers (network port, deep
packet inspection, statistical, and behavior-based features) to detect and cate-
gorize Android malware. Still, those methods face a new challenge which is how
to pick up the appropriate features.

Representation learning [5], which can learn features from raw data automat-
ically, has increasingly attracted researchers and engineers. It can solve the above
challenge with the manual indicated methods. Wang et al. [28] present a represen-
tation learning method for malware traffic classification, which converts the raw
network traffic/flow data to image and takes the converted images as the input.
Then, it uses a Convolutional Neural Network (CNN) to extract features from the
raw network traffic. However, converting the network flows to images, and pre-
train the 2D-gray-image-sequence-based multi-class classification model, cannot
classify those malware or benign samples based on each 2D gray image. Normally,
each PCAP file includes hundreds or thousands of raw network packets and net-
work flows. Therefore, the malware classification issue converts to a continuous
2D image classification task. In other words, that is a 2D image sequence classifi-
cation or sequential image classification [4,15]. Most of the sequential image clas-
sification works combine Recurrent Neural Networks (RNNs) and CNNs, as they
put the RNNs focus on the sequential task and the CNNs on the image features.
Meanwhile, in the Natural Language Processing (NLP) field, in order to process
the sequential issues with a pre-trained model, BERT [9], GPT (v2, v3) [6,23],
and other transformers (e.g., ELMo [22], Transformer [27]) capture the sequence
relationship by leveraging Long Short Term Memory (LSTM) or RNN networks.

In this paper, we present Falcon, a network-traffic-pattern-based malware
detection and categorization framework. We operate Falcon as follows. First,
we convert the network packets to 2D gray images and leverage CNNs to pre-
train the classification network for the network traffic features. We then use
a bi-directional LSTM network to process the continuous network traffic and
perform malware classification similar to the 2D image sequence classification
task. The results of our system are promising since Falcon exhibits 97.16% accu-
racy on average for the malware detection and 88.32% accuracy for the malware
categorization.
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In summary, we make the following main contributions:

– We introduce Falcon, a network-traffic-pattern-based Android malware detec-
tion and categorization framework.

– We design a bidirectional LSTM network to accomplish 2D gray image
sequence classification, which takes the network packets (converted to 2D
images) as input.

– We create a dataset, AndroNetMnist , which includes 3,255,391 2D gray
images in five classes for network traffic classification.

– We evaluate the accuracy of our approach using real-world datasets.

2 Related Work

With the increasing popularity of Android smartphones in recent years, the
topic of detecting Android malware and categorizing its families attracts sev-
eral researchers’ and engineers’ attention. As with every malware detection sys-
tem, Android malware detection can be classified into two types: the tradi-
tional feature-codes-based method and the machine/deep-learning-based meth-
ods. Regarding the conventional feature-codes-based approach, the detector
checks the classic malicious behaviors. For machine/deep-learning-based meth-
ods, there are also multiple features based frameworks. Permission-based mal-
ware detection extract several types of permission features that are highly rele-
vant to the manifest file and source code of each mobile application, including
API calls and permissions [14,21,30].

Program-code-based malware detection methods extract features from the
code itself. Technically those features include the API calls, N-gram, and control
flow graph (CFG) based methods. API call based malware detection uses API
calls to detect Android malware [1,3,14,21,30]. In general, this type of method
first constructs two ranked lists of popular Android APIs. One is benign API list
that contains the top popular APIs commonly used in benign apps, and the
other malicious API list that contains the top popular APIs commonly used in
malicious apps. N-gram-based Malware Detection is based on the n-gram opcode
to detect Android malware [12,18,24]. Last but not least, Graph-based malware
detection systems use graph structure to perform their detection [10,19,31].

Machine learning and deep learning techniques are heavily introduced into
the network traffic analysis. Researchers use manual indicated features (e.g.,
port, deep packet inspection, statistical and behavior-based features) to rec-
ognize network traffic application patterns with traditional machine learning
algorithms [2,13,17,25,28]. Finally, Gibert et al. [11] present a way to convert
the executable files to 2D images and achieve malware detection based on the
2D image classification, which is different compared to the 2D image sequence
classification problem.
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3 System Design and Implementation

In our work, we consider that network packets are composed of many network
flows. Those flows are counted as a binary representation and can be converted to
2D gray images. Therefore, we transform a malware detection and categorization
problem into a continuous 2D image classification and categorization problem.
For instance, randomly choosing one network packet from our dataset, it includes
3,329 network flows. Falcon converts those network flows to 3,329 2D gray images
and then to 3,329 vectors to represent those network flows. Finally, we take those
converted vectors into our classifier to accomplish the malware detection and
categorization tasks.

3.1 Overview

Fig. 1. The architecture of Falcon

The architecture of Falcon is presented in Fig. 1. Our malware detection and
categorization framework includes a bi-directional LSTM to prepare the feature
vectors (F-V block in Fig. 1) and a classifier to detect (DE block) and categorize
(CA block) Android application. We input the PCAP files and convert each
network flow contained in the PCAP file into a 2D image, and pre-train a model
on 2D images with CNN network.1 We use the pre-trained model to convert each
2D image to a vector and process the continuous network flows in a PCAP file
as a 2D image sequence by a bi-directional LSTM network. We present this part
in Sect. 3.2 in detail.

3.2 Features from Network Traffic

This section presents our method to convert network traffic to vectors based on
image classification and transfer learning (see Fig. 2). To compare to other works
in this field, we have two challenges. The first challenge (C1) is how to classify
each network flow (several network packets) efficiently, and the second one (C2)
is how to classify the whole network packets based on the split flows.

1 https://wiki.wireshark.org/SampleCaptures.

https://wiki.wireshark.org/SampleCaptures
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Fig. 2. Converting network traffic to vectors

Network Packets and Flows. For the network traffic analysis, there are three
different granularity, raw packet level, flow level, and session level [28]. In our
work, we take the network flow as our analysis target. All raw packets from
the PCAP files are defined as a set P = {p1, · · · , p|P |}, and every packet is
defined as pi = (xi, bi, ti), where i = 1, 2, · · · , |P | and xi stands for a 5-tuple,
which includes source IP, source port, destination IP, destination port, and the
protocol types (e.g., TCP, UDP), where bi and ti stand for the packet’s size and
the starting time of the packet, respectively. Network flow groups several packets
that have the same 5-tuple. In this way, we solve the challenge C1. Meanwhile,
for the network flow level analysis, it is shown as the flow generation in Fig. 2.
It is worth mentioning that we arrange all raw packets in the same network flow
in time order.

Network Flows to Images. As we have previously mentioned, we split the
network flow from the raw network packets. After getting network flow files, we
convert them to 2D images like the image generation in Fig. 2. Here we utilize
trimming and padding methods to normalize all network flows that have the
same size. If the network flow’s size is larger than 784 bytes, we trim it to 784
bytes. If those flow files’ size is smaller than 784 bytes, we pad them by 0×00 to
784 bytes. Finally, we convert those trimmed and padded files to 2D gray images.
Each byte of the original file represents a pixel, such as 0×80 is gray, and 0xff is
white. We also generate the class label in this step, which stands for the different
network traffic classes. We define five different labels in our work because we
have four various malware families and one benign group. That is reasonable
for our malware categorization task. We pre-train the model indirectly for our
malware detection task based on the previous malware categorization. In total,
for the malware categorization task, we label all samples with five classes (four
malware classes and one benign class) and label all samples with two classes for
the malware detection task (malware and benign).
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Transfer Learning and Feature Generation. In our work, we leverage an
8-layer convolution neural network to pre-train our converted 2D gray images.
Our model has 70,213 total parameters. After the previous step, we transform
our malware categorization and detection tasks into a 5-category classification
problem.

Y
1
= MaxPooling2∗2(Relu(conv2d3∗3(X28∗28)))

Y
2
= MaxPooling2∗2(Relu(conv2d3∗3(Y

1
)))

Y
3
= FC128,32(Y

2
)

Y = FC32,5(Y
3
)

(1)

We use our 5-categories classification task to train the model. After getting the
pre-train model, we take Y 3 that has a 32-bit vector as our features for the next
step. We use sparse categorical crossentropy loss and Adam optimizer and set
the learning rate as 0.001 and epoch as 50. We use one dropout layer between
MaxPool2 and FC1, and we set the dropout rate as 0.5.

Continuous Network Traffic Processing. So far, we have converted the
network flows to images and pre-train the 2D gray image-based multi-class clas-
sification model. However, we cannot classify those malware or benign samples
based on each 2D gray image for our malware detection and categorization task.
Typically, each PCAP file includes hundreds or thousands of raw network pack-
ets and network flows. Therefore, the malware classification issue converts to
a continuous 2D image classification task. In other words, that is a 2D image
sequence classification or sequential image classification [4,15]. Most sequential
image classification works combine the RNN and CNN and put RNN focusing on
the sequential task and CNN for the image features. Meanwhile, in the natural
language processing (NLP) field, in order to process the sequential issues with
the pre-trained model, BERT [9], GPT (v2, v3) [6,23] and other transformers
(e.g., ELMo [22], Transformer [27]) are introduced into to capture the sequence
relationship by leveraging the LSTM or RNN networks. Therefore, in our work,
to capture the network traffic’s continuous characteristics, we introduce a bidi-
rectional LSTM network on top of the pre-trained 2D-image classification model,
which helps to extract image features from the converted network flows. This
method can solve the C2 effectively. Figure 3 presents our sequential image clas-
sification structure. The steps mentioned above prepare the image sequences
and img2vec model, which replace each 2D gray image with a 32-bit vector. We
take the 32-bit vectors from the second to last layer of the pre-trained CNNC
model. We use a bidirectional LSTM network, and the input of LSTM has con-
verted vectors with (1, 32) shape. Both inputs for the forward and backward
direction LSTM are the same. Furthermore, we concatenate the last hidden sta-
tus fv, v ∈ N as our final output vectors, where N stands for the number of all
PCAP files. After getting the fv vectors for N PCAP files (N different Android
samples), we use a full connection layer followed by a softmax layer to classify
those raw network traffic into five different categories.
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Fig. 3. 2D sequential image classification with bidirectional LSTM

3.3 Model Training and Prediction

After preparing the feature vectors by the bi-directional LSTM, we train and test
our model by using the sparse categorical crossentropy loss function like Eq. 2.

Loss = −
i=1∑

N

yilabel
∗ log(yipred

)

= −
i=1∑

N

yilabel
∗ log(< (< fv, wi1 > +bi1), wi2 > +bi2)

(2)

where wi1, wi2 ∈ Rp is the weight of the classifier and bi1, bi2 ∈ Rp is the offset
from the origin of the vector space. In this setting, a converted vector fv is
classified into five categories.

4 Evaluation

4.1 Experimental Setup

We set up our experiments on our Euklid server, which runs on a Linux
X86 64 platform and has 128 GB RAM and 16 GB GPU. Further, we trained
our model with Tensorflow 2.0.0-beta0, Keras 2.2.4, and Sklearn 0.20.0.
We also used the SplitCap tool to split the PCAP files.2 Additionally, we
used the pillow 6.1.0 imaging library when we convert the network flows to
images. Finally, we used other assistant libraries, such as numpy 1.16.4 and
matplotlib 3.1.1.

4.2 Dataset

For the train and evaluation dataset, we used the Android Malware CICMal2017
dataset [13,25]. It includes 426 malware and 1700 benign samples and their
corresponding network traffic raw files. Table 1 illustrates the number of various

2 https://github.com/Master-13/SplitCap.

https://github.com/Master-13/SplitCap
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Table 1. Dataset explanation

Name Description Number

PCAP files All the raw network traffic files 2,126

Network flows All network flows in Sect. 3.2 3,255,391

Adware Adware network flows partition 580,170

Ransomware Ransomware network flows 382,279

Scareware Scareware network flows 517,954

SMSmalware SMSmalware network flows 245,691

Benign Network flows for benign applications 1,529,297

categories in detail. For the network traffic, we extracted 3,255,391 network flows
in total from 2,216 PCAP files. Here, to pre-train our 2D gray image classification
task, we created our dataset, AndroNetMnist , which provides a benchmark to
network traffic analysis with the convolution neural network. We split the dataset
with 80% training and 20% testing in our experiment.

4.3 Results Comparison

This section compares our results with other related works, both from the pro-
gram code and network traffic-based field. We reimplemented (Droidmat [30]
and CICMal2017 [25]) and reproduced (Drebin [3]3, Adagio [10]4) other related
works and compared them with our framework. We should mention here that
the results of those frameworks differ a little from the original works because of
the different datasets.

For Falcon, after preparing the dataset as CSV files, we used the Random
Forest (RF) classifier by default to perform our malware detection and malware
categorization. Our RF is defined as 1,400 trees in the forest and 80 as the tree’s
maximum depth. We set min samples split as five and the number of features to
consider when looking for the best split as sqrt. Table 2 illustrates the malware
detection (binary classification) performance.

Table 2 shows that Falcon-CNN gets the best performance, which catches
up to 98% accuracy. However, this experiment processes the malware classifica-
tion on AndroNetMnist similar to the digital handwriting classification on the
MNIST dataset, which indirectly did the classification. That means we firstly
extract and convert all network flows to images and then classify all images that
belong to one class. For example, for a PCAP file, we extracted and converted
network flows to images and got 3,329 samples. The 98% accuracy means 98% of
3,329 samples are classified correctly. However, we cannot determine the whole
network flows characteristics because most malicious behaviors are hidden in a
few network flows by sophisticated attackers. Even if we get a high performance

3 https://github.com/alisakhatipova/Drebin.
4 https://github.com/hgascon/adagio.

https://github.com/alisakhatipova/Drebin
https://github.com/hgascon/adagio
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Table 2. Malware detection comparison

Classifier Accuracy Precision Recall F1

Drebin [3] 96.58 95.37 97.85 96.59

Adagio [10] 89.32 91.27 95.28 93.23

Droidmat [30] 89.87 90.89 88.28 89.56

CICAndMal2017 [13] 87.52 87.14 87.73 87.18

Falcon-CNN 98.04 98.09 98.05 98.06

Falcon 97.16 97.13 97.16 97.09

of over 98%, we cannot infer that this malware detection system can accurately
determine the malware’s network traffic. Therefore, we introduced Falcon, which
converts all 2D images to a 2D image sequence for each PCAP file. With this
method, Falcon gets 95.39% accuracy. The results are illustrated in Table 2 in
detail.

In our experiment, the malware categorization task is a multi-class clas-
sification issue. Similar to the malware detection (binary classification) task,
Falcon-CNN on AndroNetMnist gets the best performance on the image classi-
fication task indirectly. Take the same example with malware detection above;
97.23 accuracy means that 97.23% of images from the same PCAP file are clas-
sified to Adware class. However, we cannot determinedly infer that this PCAP is
Adware network traffic. Additionally, we compared our results only with CICAn-
dMal2017 [13] because most Android malware detection works, such as Drebin,
Adagio, and Droidmat did not consider the malware categorization problem.
Although FM [14] considers the malware categorization task, it converts the
multi-class task to binary-class (i.e., if one malware sample belongs to a specific
malware family, then the label is 1; otherwise, that is 0). Falcon on the multi-
class classification task gets better results than CICAndMal2017. The primary
reason is that essential patterns for various malware families represent the man-
ually indicated features by CICAndMal2017 that lose some information. Our
method can catch up with better malware families’ features by representation
learning. Table 3 shows the performance results of malware categorization.

Table 3. Malware categorization comparison (the average is weighted)

Classifier Accuracy Precision Recall F1

CICAndMal2017 [13] 86.85 85.92 86.85 84.82

Falcon-CNN 97.23 97.28 97.23 97.24

Falcon 84.70 80.22 84.70 82.39

Last but not least, besides the Random Forest (RF) classifier, we also consider
the other four classifiers by Sklearn implementation for malware detection and
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Table 4. Various classifiers settings

Classifier Settings

RF n estimators = 1400, min sample split = 5, max features =
“sqrt”, max depth = 80

AdaBoost All default values

GradientBoost lr = 0.01, n estimators = 1500, max depth = 4,
min samples split = 40, max features = 4

MLP sover = “sgd”, alpha = 1e−5, hidden layers sizes =
(400,400,200,100,10)

DecisionTree min samples split = 10, max features = “sqrt”, max depth = 20

Table 5. Falcon’s performance with various classifiers

Classifier Accuracy Precision Recall F1

RF 97.16 97.13 97.16 97.09

AdaBoost 93.13 92.81 93.13 92.85

GradientBoost 96.88 96.83 96.88 96.80

MLP 91.01 90.48 91.01 90.02

DecisionTree 93.66 93.64 93.66 93.65

categorization. The classifiers are described in Table 4. Besides the settings in
Table 4, we used all default parameters. Due to the limited space, we only present
results in Table 5 for the malware detection (binary classification) task. Table 5
shows that the RF classifier gets the best performance and then is followed by
the GradientBoost classifier. MLP gets the worst in our framework.

5 Limitations

In contrast with other machine and deep learning based works in the malware
detection field, Falcon can catch up with the dynamic information of the Android
application. Our work has more time consumption than port-matching or per-
mission matching systems to contrast with other rule-based methods, such as
port-based malware detection with network traffic and permission-based Android
malicious program detection. On the other hand, in contrast to other Android
malware detection works, the dataset, especially the dynamic network-traffic
dataset, is too small. Although our evaluation demonstrates better performance
than its precedent, we need to increase the number of samples in the future.

6 Conclusion

In this work, we present Falcon, a network-traffic-pattern-based malware detec-
tion and categorization framework. We use the transfer learning method to
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extract features from the network traffic with pre-trained models. We treat the
network-traffic-based classification as a 2D gray image sequence classification
task and use a bi-directional LSTM to process image sequences. For the 2D gray
image, we use an 8-layer CNN to pre-train the gray images, which stand for the
network flows.
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Abstract. Anomaly detection in time-series data is a significant
research problem that has applications in multiple areas. Unsupervised
anomaly detection is a fundamental aspect of developing intelligent auto-
mated systems. Existing work in this field has primarily focused on devel-
oping intelligent systems that use dimensionality reduction or regression-
based approaches to annotate data based on a certain static threshold.
Researchers in fields such as Natural Language Processing (NLP) and
Computer Vision (CV) have realized considerable improvement by incor-
porating attention in prediction-related tasks. In this work, we propose
an attention-based bi-directional long short term memory (Attention-Bi-
LSTM) networks for anomaly detection on time-series data. It helps in
assigning optimal weights to instances in sequential data. We evaluate
the proposed approach on the entirety of the popularly used Numenta
Anomaly Benchmark (NAB). Additionally, we also contribute by cre-
ating new baselines on the NAB with recent models such as REBM,
DAGMM, LSTM-ED, and Donut, which have not been previously used
on the NAB.

Keywords: Anomaly detection · Attention based neural networks ·
Univariate time-series

1 Introduction

Unsupervised anomaly detection is a dynamic field of research with a myriad of
applications, including climate monitoring, image, and video processing tasks,
and many other applications in fraud detection, public health, and industrial
and sensor monitoring [7].

The advent of inexpensive computing devices flooding the markets, in con-
junction with ever-expanding reliable internet access, has led to an explosion in
“smart” devices, often dubbed as the Internet of Things (IoT). This unprece-
dented level of connectedness and distributed computing power at scale enables
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the creation of real-time data streams from a wide range of sensors. Such sys-
tems are employed in a wide range of scenarios, ranging from agriculture [25] to
manufacturing, business analytics, and monitoring in almost any enterprise [15].
Abnormal behavior in any of these cases might indicate a fault in the sensors
or some abnormal activity in the region where the sensors are placed. There is
a need for automated models to detect anomalous points in streaming data to
ensure necessary interventions can occur.

In this paper, we use the Numenta Anomaly Benchmark (NAB) [14] to test
and validate our model. The NAB is a benchmark dataset consisting of seven
real-world and diverse univariate streams of data. We present an attention-based
bi-directional LSTM for anomaly detection on time-series. The proposed frame-
work uses an unsupervised model to predict the values of incoming data points
(forecasting). The difference between actual values and predicted values is called
the anomaly score. This anomaly score is then sent into a thresholding mech-
anism which classifies points as anomalous or not. We outline the significant
contribution of this work below:

– We have used a novel hybrid mechanism of allotting anomaly scores and using
it as a feedback in the thresholding mechanism for identifying anomalies.

– A significant performance improvement on the widely used Numenta Anomaly
Benchmark, compared to the existing state-of-the-art forecasting approaches
such as DeepAnT [18] and FuseAD [19].

– The proposed approach is not data intensive as it uses a windowing mech-
anism estimated by the Least Spectral Square Analysis (LSSA) method.

– To the best of our knowledge, this is the first work that experiments with new
baselines like REBM, Donut, & DAGMM, which haven’t been applied on the
NAB before but have shown promise in other anomaly detection applications.

2 Related Work

Anomaly detection is an active area of research with a wide variety of mod-
els being experimented with, including various statistical approaches, density,
and distance-based approaches, and recently machine learning and deep learn-
ing models as well [6].

Researchers have used a wide variety of methods on the Numenta Anomaly
Benchmark. DeepAnT [18] proposes a Convolutional Neural Network (CNN)
architecture to predict the upcoming univariate values - the difference between
predicted and actual values is the anomaly score of the point. DeepAnT uses a
sliding window mechanism where a fixed number of points are passed as input
to the model, which it uses to predict the next point’s value. FuseAD [19] lever-
ages the power of an ARIMA (Auto-Regressive Integrated Moving Average)
model fused with a CNN-based deep learning model to predict incoming values.
Numenta [14] and NumentaTM (NTM) [2] use a Hierarchical Temporal Memory
(HTM) methodology to detect anomalies. Skyline [8], a widely used [1,11] real-
time anomaly detection software developed by the e-commerce website Etsy, uses
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an ensemble of simpler models to detect anomalies, where each model votes on
each point to decide whether to classify as an anomaly or not. Some approaches
include deep learning models, such as autoencoders and Long Short-Term Mem-
ory (LSTM) networks. Attention mechanisms [3] have been used for a wide range
of tasks on sequential data, in machine translation [23], computer vision [9] and
natural language processing [10]. Pereira and Silveira [20] use an attention-based
autoencoder for anomaly detection in smart grids while [26] uses an attention
based model for detecting anomalies in HTTP traffic.

3 Proposed Model

This section discusses the various modules of the proposed framework that
detects anomalies in time-series data. Figure 1 provides a broad overview of
the framework along with its modules. The proposed framework consists of the
following modules:

1. Optimum window size estimation
2. Forecasting model - attention based bi-directional LSTM
3. Thresholding mechanism.

Fig. 1. Proposed framework

We first capture a section of the incoming time-series into a window size esti-
mation module. This module approximates the periodicity of the time-series given
by ω. We use this window size in the next step, for training the attention-based
neural network. The neural network learns to predict the (ω + 1)th point given
ω consecutive points. To make predictions, we pass ω consecutive points as input
to the neural network, which predicts the (ω +1)th point. The difference between
the predicted value of the point and the actual value of that point is called the
anomaly score. Higher absolute anomaly scores indicate that the point is likely to
be an anomaly. The knowledge gained from anomaly scores helps in the thresh-
olding mechanism then determines whether this point is anomalous or not.
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3.1 Windowing Mechanism

This module of the framework estimates the periodicity of the incoming data
stream. Accurate estimation is necessary to get better predictions. Finding an
optimal window size is primarily experimental in many works [18,19]. Finding
the ideal window size is a trade-off between capturing patterns and trends in data
and increased susceptibility to noise due to redundant points (as the window size
gets bigger). We use the Lomb-Scargle periodogram [16,22] as it detects weak
periodicity in unevenly sampled data. The data we are dealing with has very
weak periodicity as it is real-time streaming data. This motivated us to employ
this method for window size estimation. The Lomb Scargle method is outlined
as follows PX(f):
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where x̄ and σ2 are the mean and variance of data and the value of τ is
defined as
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3.2 Forecasting and Thresholding Models

The core part of our framework relies on a forecasting model - given ω consecutive
points of the univariate stream, the forecasting model predicts the (ω+1)th point.
These predictions are then used in the next step to calculate the anomaly scores.
CNN and LSTM based neural networks are highly effective for time-series related
tasks [13,21]. Bi-directional LSTMs or Bi-LSTMs are neural networks in which
the signal propagates both backward and forward on the input data. In this we
work, we experiment with attention-based CNNs, LSTMs, and Bi-LSTMs as our
forecasting models. We attempt to build and then train forecasting models using
all three types of these models (CNN, LSTM, Bi-LSTM) and then select the best
performing model to be our forecasting model. We measure these forecasting
models’ performance by their ability to predict the (ω+1)th with minimal error.

Bi-directional LSTMs: Consider a time-series dataset D = d1, d2, . . . , dn

where each step dt ε R. Each data point represents an n dimensional vector
d1, d2, . . . , dn. We have used a windowing mechanism estimated using Least Spec-
tral Square Analysis (LSSA) method to identify periodicity in time-series data.
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The model predicts a sequence of length l, for d dimensions of dt ε D for length
l < t ≤ n − l is predicted l times. Then we compute an error vector e(t) =
[e1l(t), . . . , edl(t)], where emn

(t) represents the difference between actual value
and predicted value.

Attention Mechanism: For a certain query, the vector is represented by the
attention mechanism that uses a parameterized computability function f(xt, q)
that computes the dependencies between xt and qt, i.e., the attention of q to xt.
To transform the alignment score a ∈ R

n to a probability distribution p(z|x, q),
we employ a softmax function that normalizes over all the n tokens on q for a
particular task, where z indicates the importance of specific tokens to q. Thus,
the process can be summarized as follows:

a = [f(xt, q)], for t = 1, . . . , n, p(z|x, q) = softmax(a) (3)

The attention mechanism gives the weighted expectation of a sample taken
based on its importance. The most commonly used attention mechanisms are
additive attention and multiplicative attention. In this work, we use an extended
version of additive attention known as self-attention, which substitutes the
token embedding xj in place of the vector representation, q. It utilizes latent
correlation for exploiting local dependencies at different positions for various
dependencies [29].

Thresholding Mechanism: We used a supervised thresholding mechanism
to detect the optimal threshold for binarizing points as anomalous or not. We
obtain the minimum and maximum values of the anomaly scores calculated on
the training set and then consider each value from the minimum score to the
maximum score with a small step and select the value returning the highest
F-Score as the overall model threshold.

3.3 Implementation

We implement the CNN, LSTM, and Bi-LSTM attention-based neural network
models in Python3 using the Tensorflow framework and the Keras-Self-Attention
library [28]1. The models were trained with a batch size of 32 using the Adaptive
Moment Estimation (Adam) optimizer to minimize the mean square error (MSE).
The input to neural networks is a one-dimensional vector of size (ω) where ω is the
window size, and the output shape is that of one single value, i.e., size (1).

The CNN consists of a 1D-Convolution layer (16 units, filter size 2) followed
by a 1D-MaxPooling layer. The MaxPooling layer’s output is flattened to form
a vector, which is connected to the output layer, which consists of one node.
The CNN layers use the relu activation function, and the penultimate layer
uses a dropout of 50%. In the LSTM, the input layer is connected to a layer of
1 All code and models to reproduce the results of this paper are available in this Github

repository: https://github.com/Varad2305/Time-Series-Anomaly-Detection.

https://github.com/Varad2305/Time-Series-Anomaly-Detection
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LSTM nodes (10 units), which is then flattened. This flattened layer (with 50%
dropout) is connected to the output layer. The Bi-LSTM is structured similarly,
with Bi-LSTM units replacing LSTM units in the second layer. We use the
tanh activation function for both LSTM and Bi-LSTM. The attention Bi-LSTM
creates an attention layer over the Bi-LSTM units with a sigmoid activation
unit. We arrive at these values of hyperparameters (number of units in each
layer and batch size) on each of these models through the use of the Tree of
Parzen Estimators (TPE) algorithm [5] from the hyperopt library [4], with mse
(mean squared error) being used as the objective function.

We use standard evaluation metrics, F-score and AUC, for measuring per-
formance of models. F-score is defined as the harmonic mean of precision and
recall. Area under curve (AUC), which is the area under the Receiver Operator
Characteristic curve, depicts to what degree a model can distinguish between
classes. Since NAB consists of multiple datasets belonging to various domains,
we average scores for each model on each domain, similar to how existing works
on the NAB have evaluated performances [2,18].

4 Experimental Results and Analysis

In this section, we discuss the outcomes of the experiments performed with the
proposed approach.

4.1 Dataset Description

The publicly released Numenta Anomaly Benchmark [14] comprises 58 time-
series data streams, with each stream consisting of 1000 to 22000 data points,
totalling to 356, 551 data points across all the files. The dataset contains data
streams from many areas, such as road traffic, AWS (Amazon Web Service)
server metrics, internet traffic data, tweets, and online advertisements. The data
points are labelled as outliers or inliers, based on the ground truth cause of the
anomaly, following the procedural guidelines explained in the white paper [14].
The files in the dataset primarily contain time-series data, while separate files
are maintained for anomaly labels. We use the NAB dataset for assessing and
comparing the performance of the proposed approach.

We use Least Spectral Square Analysis (LSSA) to estimate an optimal
window size for training the deep learning model. The resulting periodogram for
the realTweets dataset2 is shown in Fig. 2.

One of the most commonly used approaches to detect periodicity in time-
series data is the Fast Fourier Transform (FFT) which identifies periodicity by
exploring high peaks in the Fourier transform of the given time-series data. The
FFT method assumes the data to be evenly spaced. However, this assumption
that FFT makes may or may not hold in real-world datasets, motivating our use
of LSSA. LSSA makes no assumptions regarding the periodicity of the dataset
but searches for the highest periodic component.
2 Similar results are obtained for other datasets not depicted in this work. In this

paper, visualizations are restricted to the realTweets and realTraffic datasets only.
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4.2 Windowing Mechanism

Fig. 2. Windowing mechanism summarised (Color figure online)

Figure 2a exhibits the resultant periodogram after the application of the LSSA
method, representing the inherent periodic nature of most real-world time-series
datasets. The windowing algorithm is executed for each dataset, and unlike Deep-
ant [18], or FuseAD [19], the window size in our proposed model varies for each
dataset depending upon its underlying statistical properties. Figure 2b presents
the variation in model performance as the window size changes - we notice that
the window size predicted by LSSA (red line) corresponds to the maxima iden-
tified through experimentation with multiple window sizes.

4.3 Forecasting Model

Fig. 3. Performance Comparisons based on (a) AUC and (b) F-scores on one file from
realTraffic and realTweets dataset respectively

In this section, we describe the neural network models used for forecasting.
We decide on using an attention-based bi-directional LSTM as our proposed
model of choice after extensive experimentation. As discussed in Sect. 3.2 and 3.3,
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we experiment with CNNs, LSTMs and Bi-LSTMs for the forecasting models.
Firstly, we perform experiments with CNNs, LSTMs, and Bi-LSTMs to compare
their relative performance. Experiments with these models consistently depicted
Bi-LSTM as having superior forecasting ability compared to LSTMs and CNNs
for most of the data files, which is why we choose a Bi-LSTM model over the
other models. Figure 3a depicts one representative performance comparison of
these models on a data file from the realTraffic dataset in the form of a ROC
curve.

Figure 3 depicts a similar comparison between the performance of a Bi-LSTM
used with and without attention module. We notice that the usage of the atten-
tion boosts the performance of the Bi-LSTM. Based on these experiments and
comparisons, we observe that attention-based bi-directional LSTM to have the
best performance out of the experimented models.

4.4 The Baselines and Results

We divide this subsection into two further subsections. In the first subsection,
we depict the performance on the Numenta Anomaly Benchmark (NAB) of our
model against the reported performances of other state-of-the-art models identi-
fied in the literature review. In the second subsection, we experiment with gen-
eral time-series anomaly detection methods3 that have been used successfully
for other anomaly detection tasks but have not been used for the NAB dataset.
By reporting results for these models, we aim at comprehensively investigating
the performance of our model against state-of-the-art approaches.

Table 1. Averaged F-score on NAB

Dataset Our

model

DeepAnT

[18]

WG

[18]

AdVec

[12]

Skyline

[8]

NTM

[18]

Numenta

[2]

KNNCAD

[18]

HTMJava

[18]

artificialWithNoAnomaly 0 0 0 0 0 0 0 0 0

artificialWithAnomaly 0.402 0.156 0.013 0.017 0.043 0.017 0.012 0.003 0.017

realAdExchange 0.214 0.132 0.026 0.018 0.005 0.035 0.040 0.024 0.034

realAWSCloudwatch 0.269 0.146 0.060 0.013 0.053 0.018 0.017 0.006 0.018

realKnownCause 0.331 0.200 0.006 0.017 0.008 0.012 0.015 0.008 0.013

realTraffic 0.398 0.223 0.045 0.020 0.091 0.036 0.033 0.013 0.032

realTweets 0.165 0.075 0.026 0.018 0.035 0.010 0.009 0.004 0.010

State-of-the-Art Performance on NAB: Tables 1 and 2 depict the average
F-scores and the AUC scores of our model and results reported from litera-
ture compiled from [2,14,18,19]. In these tables, WG refers to the Windowed
Gaussian method reported in [18], while AdVec refers to Twitter’s open-source
Anomaly Detection program [12]. We note that our proposed approach has the
highest average F-score across all six datasets of the Numenta Anomaly Bench-
mark. The FuseAD [19] framework returns only anomaly scores, and not direct

3 We use the four recent models from the KDD-OpenSource Repository DeepADoTS
on Github - DAGMM (2018), Donut (2018) REBM (2016) and LSTMED (2016).

https://github.com/KDD-OpenSource/DeepADoTS
https://github.com/KDD-OpenSource/DeepADoTS
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predictions of whether a point is an anomaly or not, meaning that comparisons
in terms of F-score are not possible for this model. Therefore, we present a com-
parison of AUCs of these models as well, in Table 2. Even here, we note that our
proposed approach outperforms all other approaches on all the datasets. The fact
that the proposed model outperforms existing benchmarks for multiple different
datasets attests to the proposed model’s robustness and generalisability.

Figure 4 depicts a comparison of the proposed model against current bench-
marks on the NAB. Each box in the boxplot corresponds to the results (average
F-scores) obtained by the proposed model on each of the NAB datasets.

Table 2. Averaged AUC-score on NAB

Dataset Our

model

FuseAD

[19]

DeepAnT

[18]

WG

[18]

AdVec

[12]

Skyline

[8]

Numenta

[2]

HTMJava

[18]

artificialWithNoAnomaly 0 0 0 0 0 0 0 0

artificialWithAnomaly 0.678 0.544 0.555 0.406 0.503 0.558 0.531 0.653

realAdExchange 0.673 0.588 0.563 0.538 0.504 0.534 0.576 0.568

realAWSCloudwatch 0.640 0.572 0.583 0.614 0.503 0.602 0.542 0.587

realKnownCause 0.909 0.587 0.601 0.572 0.504 0.610 0.590 0.584

realTraffic 0.737 0.619 0.637 0.553 0.505 0.556 0.679 0.691

realTweets 0.729 0.546 0.554 0.560 0.505 0.559 0.586 0.549

Fig. 4. Performance comparison of the proposed model based on F-Scores against
current benchmarks on the NAB on all datasets

New Baselines: Table 3 depicts our proposed framework’s performance against
new baselines that we have created - DAGMM, REBM, Donut, and LSTMED.
We notice that our proposed model outperforms all of these four new models on
four of six datasets. For the realAdExchange dataset, we notice that DAGMM
outperforms our proposed approach but underperforms compared to our pro-
posed approach on all other datasets. Similarly, for the realTweets dataset,
LSTMED performs better than the proposed approach, but in four other cases,
the proposed approach works better.
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Table 3. Performance comparison based on averaged F-score

Dataset Our model DAGMM [30] REBM [27] Donut [24] LSTMED [17]

artificialWithNoAnomaly 0 0 0 0 0

artificialWithAnomaly 0.402 0.400 0.325 0.399 0.346

realAdExchange 0.214 0.279 0.167 0.173 0.222

realAWSCloudwatch 0.269 0.226 0.209 0.207 0.208

realKnownCause 0.331 0.326 0.155 0.197 0.326

realTraffic 0.398 0.327 0.288 0.315 0.365

realTweets 0.165 0.132 0.117 0.127 0.182

5 Conclusion

This paper presents an attention-based bi-directional LSTM framework for
anomaly detection on univariate time-series data. We benchmark our proposed
model against eleven different models on six datasets that are a part of the
Numenta Anomaly Benchmark (NAB). We outperform the current state-of-the-
art models, DeepAnT and FuseAD, on all six datasets. Additionally, we create
new baselines on the NAB with the anomaly detection models DAGMM, REBM,
LSTM-ED, and Donut, to facilitate better comparison of future research on
the NAB against state-of-the-art methods that are being used for other time-
series anomaly detection tasks today. Directions for future work could involve
extending this model to support multivariate streams, applying this forecasting-
thresholding-prediction anomaly on other anomaly benchmark datasets, or
experimenting with other forms of attention or transformer models [23], that
have seen success in NLP applications.

Acknowledgement. The authors would like to thank TCS R&D for funding this
research through PhD fellowship to the first author.
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Abstract. In recent years, with deep learning development, graph-based
deep anomaly detection has attracted more and more researchers’ atten-
tion due to graph data’s strong expression ability. However, at present,
graph-based methods mainly focus on node-level anomaly detection,
while edge-level anomaly detection is relatively minor. Anomaly detec-
tion at the edge level can distinguish the specific edges connected to
nodes as detection objects, so its resolution granularity is more detailed
than that of the node-based method. Second, the rules of anomalies are
challenging to learn. At present, most of the algorithms adopt the unsu-
pervised method to train the model. As a result, the detected result is
likely to be noise data. In this paper, we propose a Graph Edge Anomaly
Detection model based on a Semi-supervised auto-encoder (GEADS). In
this model, we first adjust the traditional mini-batch training strategy to
train the model on a large-scale graph. It improves the scalability of the
model. Second, we design an edge convolutional neural network layer to
realize the fusion of edge neighborhood information. We take the recon-
struction error as the evaluation criterion after stacking multiple edge
convolutional neural network layers that encode and decode the edges.
Third, the few abnormal samples with known labels are utilized to guide
the model’s parameter optimization process. While ensuring the gener-
alization ability of the model, it also improves the pertinence to specific
anomalies. Finally, we show the effectiveness of the proposed algorithm
through experiments on two real-world datasets.

Keywords: Anomaly detection · Neural networks · Semi-supervised
learning · Deep auto-encoder

1 Introduction

Due to graph data’s strong representation ability, data in many fields can be
expressed in a graph, such as in social media networks [1], financial transac-
tion networks [2], and computer networks [3]. Currently, these networks are rife
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Fig. 1. Example computer network diagram. The node is the host, and the edge is the
traffic between the hosts. The attack anomaly in the computer network is the anomaly
of traffic, the anomaly of the edge.

with many kinds of anomalies. Anomaly refers to the patterns whose behavior
is unexpected in a dataset [4]. These are intrinsically harmful to the network
ecosystem. For example, the spread of rumors in social media may cause social
shock and endanger public safety. Malicious users can obtain improper wealth
through abnormal transactions and even harm the whole financial system. Effec-
tive and accurate detection of such anomalies plays a vital role in such systems.
Anomaly detection technology has attracted wide attention in academia and
industry, and many anomaly detection methods are introduced.

Traditional algorithms identify anomalies by distinguishing certain features
such as distance and density [5–7]. However, the effect of the traditional method
highly depends on feature engineering. Once the feature selection is not reason-
able, the detection effect will not be ideal. The deep learning methods [8–13]
can automatically learn the complex nonlinear features between data. In addi-
tion to attribute characteristics, complex interaction structure information also
exists in the graph data, which is very important for recognizing abnormal data.
Many graph-based deep learning methods [1,14] have been proposed for anomaly
detection to fully use the interactive information.

However, there are still some shortcomings in the current graph-based meth-
ods. First, the current methods mainly focus on node-level anomaly detection.
As shown in Fig. 1, we found that abnormalities sometimes occur at the edges.
Besides, the degree of nodes in the graph is power-law distribution [15]. The num-
ber of edges attached to a node can be huge. Therefore, when we detect abnor-
mal interaction behavior between entities, we find the anomaly’s most direct
evidence. Besides, when the node’s anomaly does not reach a significant level,
it will lead to the anomaly detection model’s omission. Second, anomalies’ rules
are hard to learn because of the scarcity of abnormal samples and the variability
of anomaly type. Most current algorithms adopt the unsupervised method to
train the model to solve this problem. As a result, precious abnormal samples
are not fully used, the pertinence of the model is poor, and the detected result
is likely to be noise data.

In this paper, we propose a Graph Edge Anomaly Detection model based on
a Semi-supervised auto-encoder (GEADS). First, we design the edge convolu-
tional neural network layer. It realizes the edge neighborhood information fusion
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and improves the edge representation ability. Second, to solve the problem that
the proportion of abnormal samples is too tiny in anomaly detection inspired by
the auto-encoder [16], we construct an auto-encoder by using the overlapping
method of multiple edge convolutional neural network layers. It completes the
encoding and decoding of the edge, and we use the reconstruction error as the
evaluation criterion of the anomaly. In addition, in the model training process,
we use a few abnormal samples with known labels to guide the parameter opti-
mization process and achieve semi-supervised learning. In this way, both the
detection of abnormal edges and the application of a few abnormal samples are
achieved. While ensuring the generalization ability of the model, it also improves
the pertinence to specific anomalies. Finally, to solve the difficulty of training the
model on large-scale data, we design a neighborhood sampling strategy specifi-
cally for the edge. The purpose is to make the space complexity in the process
of model training controllable. The significant contributions of this work are as
follows:

– The edge convolutional neural network layer is designed, and it fuses the edge
neighborhood based on the structure information.

– An auto-encoder is constructed to measure edge anomaly through the
reconstruction error, and the model parameters are learned through semi-
supervised learning.

– A batch sampling strategy for edges is designed, and the sub-graph of each
batch of data is determined by neighborhood sampling after batch.

– Experimental results on two real-world datasets show the we proposed method
outperforms several state-of-the-art approaches.

2 Related Work

The traditional anomaly detection methods include the distance-based [5,6]
method, density-based [7] method, etc. Deep learning has been developing in
recent years. It is a subset of machine learning, which uses neural networks to
learn data embedded in different layers to achieve excellent performance with a
substantial degree of flexibility. The research shows that performing deep learn-
ing is better than the traditional method with increased data size. Deep learning
algorithms are primarily divided into two stages. First, the neural network is used
to learn the high-quality representation of data, and then the anomaly evaluation
process is designed based on some assumptions, such as RandNet [16], REPEN
[8], FSNET [11], DSVDD [9]. Besides representation learning, other methods use
an end-to-end approach to learn the abnormal scores of data directly. For exam-
ple, DevNet [10] proposes an end-to-end anomaly detection framework, which
outputs an anomaly score directly after passing through a multi-layer neural
network instead of being a feature representation.

In anomaly detection, the complex interaction between graph data is
undoubtedly a piece of precious information. The proposal of graph convolutional
neural network GCN [17] extends the convolution operation to graph struc-
ture data. As the graph convolutional neural network can comprehensively use
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Fig. 2. The overall framework of our proposed graph edge anomaly detection based on
a semi-supervised auto-encoder.

the attribute information and structural information, some GCN-based anomaly
detection technologies have been proposed successively [14,18]. However, most
of the algorithms based on GCN can only achieve node-level anomaly evalua-
tion. In practice, the anomaly to be detected can be traced back to some specific
abnormal behavior, represented as an edge between entities in the graph. For
example, users spread rumors among each other, computers between the net-
work attack traffic, etc. Therefore, compared with node-level anomaly detection,
edge-level anomaly detection can provide more detailed detection granularity
and more specific detection results. Some abnormal means some accidents such
as network attack, so abnormal sample is precious. How to make full use of
these precious abnormal samples is essential. Otherwise, the anomalies detected
by the model may be noise data unrelated to the problem. Although there are
some semi-supervised learning methods [19,20] that utilize abnormal samples,
these methods are not suitable for the edges of the graph.

3 The Proposed Approch

In this paper, a semi-supervised learning algorithm for graph anomaly detection
is designed by studying graph anomaly detection’s essential techniques. It shows
the overall technology roadmap in Fig. 2. Next, we will introduce three aspects
of the model in detail.

3.1 Mini-Batch Training for Edges in Graphs

In deep learning, when the gradient descent algorithm is used to update the
model’s parameters, the efficiency will be very low or even unable to be trained
if all the samples are processed. The common method is the mini-batch training
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Fig. 3. The feature representation of an edge at the h-layer is only related to its h
order subgraph. Red is the central region, blue is the first-order neighborhood, and
purple is the second-order neighborhood. (Color figure online)

strategy. The practice shows that the mini-batch training strategy also intro-
duces randomness into the model’s training and avoids the local optimization
problem. However, in graph-based algorithms, due to structural information’s
interdependence, the input data involved in each calculation cannot be deter-
mined by simple sample batch processing. Simultaneously, since the number of
abnormal samples marked in the anomaly detection task is tiny, it is neces-
sary to ensure that a few abnormal samples take part in the guidance in each
optimization process of the model.

In this paper, we design a mini-batch model training strategy for the edge
to solve the model’s training problem on large-scale data. We can know from
the edges’ neighborhood information fusion process that the features of an edge
in the h + 1-layer are only related to its neighborhood features in the h-layer.
Therefore, it is only necessary to consider the h-order subgraph of an edge to
create the h-layer characteristics of an edge, as shown in Fig. 3 for a specific
example. We first separate the large-scale graph data into small batches to con-
trol the subgraph size. We then make each batch of samples as the center to
sample the h-hop neighbor of the sample according to the number of layers h of
the edge aggregation network. To control the subgraph scale, we fix the number
of samples in each layer as Si to limit the subgraph of order h to the factorial
level. In addition, we ensure that each batch is semi-supervised by ensuring that
there is a certain amount of abnormal data in each batch. It further improves
the utilization of abnormal data in the model.

3.2 Edge Convolutional Layer

At present, the anomaly detection technology based on the deep neural net-
work has realized the detection of abnormal nodes based on attribute informa-
tion and structural information. However, in graph data, besides nodes, edges
between nodes are another critical element. In practical applications, edges
between nodes such as traffic between hosts in the computer network or mes-
sages sent between users in the social media network represent some specific
association between entities. Edge-level anomaly detection can accurately locate
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Fig. 4. An example of abnormal edges’ correlation, where the red edges represent
anomal, and the blue edges represent normal. For node V3, the proportion of abnormal
edges in the total number of edges is 0.6, which is significantly higher than that of other
nodes. Also, in the neighboring nodes, the proportion of emitting abnormal edges is
0.2, which is significantly higher than that of other nodes.

the detected anomaly to a subset of the nodes’ many edges. So the detection
granularity provided by edge detection is more refined than that provided by
node detection. Besides, for the edge in the graph, its abnormal situation often
has a specific correlation. For example, in a social media network, if a user posts
a message related to the plan of a terrorist attack, it is more likely that a user
who is in close contact with the user will also post such a message rather than
others. Therefore, the fusion of neighborhood information is essential to judge
whether an edge is an anomaly. As shown in Fig. 4 is a specific example.

This paper’s second major innovation is the strategy designing the edges’
neighborhood information fusion. The goal is to realize the detection of abnormal
edges in the graph and improve edge embedding’s expression ability. The edge
convolution layer adds the weighted attribute information of adjacent edges.
One edge convolution layer can realize information aggregation of first-order
adjacent edges. The h-order neighborhood information of the edge is gathered
by stacking the multi-layer edge convolution network. In the process of multi-
layer edge convolution, we adopt an automatic encoder to encode and decode
the edge features. The edge features are first embedded into the low-dimensional
space and then mapped back to the original dimensional space. Finally, the loss
function is designed based on reconstruction error. We can express the formula
of the edge convolutional neural network layer as:

H(l+1) = σ[AD−1/2(D−1/2)TATH(l)W (l)], (1)

where A ∈ RNe×Nv is the adjacency vertex matrix of the edge, and each row
represents an edge. If edge i is connected to vertex j, the aij = 1 in the matrix A,
otherwise aij = 0. D ∈ RNv×Nv is the diagonal matrix of vertex degrees, that is,
dii =

∑
j aji, and dij = 0 if i not equal to j. H(l) ∈ RNe×d(l)

is the representation

matrix of edges in the l-th layer. W (l) ∈ Rd(l)×d(l+1)
is the parameter matrix at

the l-th level. σ is the activation function.
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Fig. 5. An example of anomaly evaluation based on nearest-neighbor distance, when
using an unsupervised algorithm, assumes that the data’s characteristics can be rep-
resented eventually as the graph’s data points, the abnormal data for p1 and p2. If
the measurement method based on the nearest-neighbor distance is used to evaluate
the degree of anomalies in the data, the nearest-neighbor distance of points in C1 is
between the nearest-neighbor distances of p1 and p2. So the algorithm cannot accu-
rately distinguish points in p1, p2, and points in C1.

3.3 Semi-supervised Learning Strategy Based on Auto-Encoder

As the high cost of collecting anomaly data, it is challenging to get large-scale
labeled data to train the anomaly detection model. However, the purpose of the
unsupervised algorithm is to find the data significantly different from most of the
data, which will lead to the anomaly detected by the model is the data unrelated
to the problem or noise, making the model less targeted. As shown in Fig. 5 is a
specific example. The third research content of this paper is the semi-supervised
model training strategy we designed. The purpose is to make full use of rare
abnormal data to improve the model’s pertinence while ensuring generalization.

In this paper, the earlier edge convolution neural network encodes the edge
characteristics. We can obtain a high-quality low-dimensional representation of
the edge. Then the encoded feature is decoded to map the edge feature vector
back to the original dimensional space. Finally, based on the decoded output
and original input features’ reconstruction errors, the loss function guided by
a few samples is designed. We argue that instances of data with significant
reconstruction errors are more likely to be anomalies because their patterns
differ significantly from most cases and cannot be accurately reconstructed from
observed data. Through a literature review, the hypothesis has been validated
by many unsupervised methods [16,21–23]. Based on this hypothesis, our loss
function’s optimization aim is to gradually reduce the reconstruction errors of
unmarked data while the reconstruction errors of abnormal samples gradually
increase. So far, we have completed the auto-encoder design based on the edge
convolutional neural network and the model optimization process based on the
small sample guide. We can express the loss function of a few samples guide
designed by us as:

loss =
exp(α 1

|Eabnormal|
∑

e∈Eabnormal
dev(xe, x̂e))

1 + β 1
|Enon−abnormal|

∑
e∈Enon−abnormal

dev(xe, x̂e)
, (2)
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where α and β are super parameters, which are used to control the influence
degree of abnormal data and non-abnormal data. Eabnormal refers to the set of
abnormal edges with known marks, and Enon−abnormal refers to the set of other
edges except Eabnormal. xe represents the original input feature vector of edge
e, and x̂e represents the feature vector of edge e after encoded and decoded by
the auto-encoder. The function dev represents the calculation of reconstruction
error. The reconstruction error in this paper adopts the Euclidic distance, and
we can express its specific formula as:

dev(xa, xb) =
√

∑

i
(xai − xbi)

2
. (3)

4 Experiments

4.1 Data Sets

According to this paper’s research content, we select the dataset that can be rep-
resented as the graph structure and the edges in the graph have attributes. Such as
network traffic datasets for intrusion detection. We can set the host or IP as nodes
in the graph and treat traffic as edges. Similarly, for social public media datasets,
such as Weibo, Twitter, and Facebook. We can set users as vertices and set com-
munication or interactive posts between users as edges. There are two datasets
applied in this experiment, namely UNSW-NB 15 [24] and Weibo [25].

The raw network packets of the UNSW-NB 15 dataset are created by the
IXIA PerfectStorm tool in the Cyber Range Lab of the Australian Centre
for Cyber Security (ACCS) for generating a hybrid of normal activities and
attack behaviors. This dataset has nine families of attacks: Fuzzers, Analysis,
Backdoors, DoS, Exploits, Generic, Reconnaissance, Shellcode, and Worms. The
dataset contains 2,540,047 traffic, of which 174,348 are abnormal, accounting for
6.86% of the total traffic. Weibo dataset is collected from Sina Weibo, the most
popular social media site in China, and is mainly used for rumor detection. As
rumor is false information that mainly fast disseminated through interpersonal
communication. Meanwhile, it is rare and significantly different from other mas-
sive data due to their particularity. So we consider that rumors are a kind of
anomaly. The dataset contains a total of 3,805,656 microblogs. These microblogs
come from 4,664 source posts, of which 2,351 were marked as abnormal, account-
ing for 0.06% of the total microblog posts. We show detailed statistics of the two
datasets in Table 1.

4.2 Baselines Methods

We compare the proposed method with some state-of-the-art baselines,
including:
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Table 1. Detailed statistics of the two datasets

Statistic UNSW-NB 15 Weibo

Time length 649 h 2,461 h

# nodes 49 2,746,818

# edges 2,540,047 3,805,656

# features 87 5000

# anomalies 174,348 2,351

Proportion of anomalies 6.86% 0.06%

– REPEN [8]: A model of deep anomaly detection with limited labeled data.
By unifying representation learning and anomaly detection, the model learns
customized low-dimensional representations of ultrahigh-dimensional data for
random distance-based detectors.

– FSNet [11]: A few-shot classifier. It can represent each class by the mean of its
examples in a representation space learned by a neural network. The model
performs well in the few-shot setting by using episodic training.

– DSVDD [9]: A feature learning method for anomaly detection. It inspires the
method by kernel-based one-class classification and minimum volume estima-
tion. By training a neural network while minimizing the volume of a hyper-
sphere encloses the data’s network representations, the model can extract the
common factors of variation since the network must closely map the data
points to the sphere’s center.

– DevNet [10]: The framework fulfills end-to-end differentiable learning of
anomaly scores by leveraging a few labeled anomalies with a prior. Instead of
representation learning, the method leverage a few labeled anomalies and a
prior probability to directly enforce statistically significant deviations of the
anomaly scores of anomalies from that of normal data objects in the upper
tail.

– Bi-GCN [1]: A bi-directional graph model. It leverages a GCN with a top-
down directed graph of rumor spreading to learn the rumor propagation pat-
terns and a GCN with an oppositely directed graph of rumor diffusion to
capture the structures of rumor dispersion. It involves the information from
the source post in each GCN layer to enhance the influences from the roots
of rumors.

4.3 Overall Performance

In experiments, we evaluate the performance of our method GEADS by com-
paring it with the baselines above. We first present the results in Table 2.

Experimental results show that our method GEADS is better than other
methods in three indexes, AUC-ROC, AUC-PR, and F1. Although the F1 score
on UNSW-NB 15 dataset is not as good as that of DevNet, this method’s feasibil-
ity and effectiveness in anomaly detection of graph data are proved. The model’s
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Table 2. AUC-ROC, AUC-PR and F1 performance of our method and five baseline
methods.

Method Weibo UNSW-NB 15

AUC-ROC AUC-PR F1 AUC-ROC AUC-PR F1

REPEN [8] 0.791 0.795 0.712 0.878 0.116 0.104

FSNet [11] 0.819 0.782 0.754 0.928 0.573 0.427

DSVDD [9] 0.847 0.845 0.837 0.952 0.856 0.736

DevNet [10] 0.943 0.948 0.902 0.969 0.883 0.875

Bi-GCN [1] 0.960 0.962 0.961 0.921 0.472 0.423

GEADS 0.980 0.986 0.963 0.981 0.897 0.872

Table 3. The ROC-AUC index of the proposed method based on edge convolutional
neural network compared with that of various point-based GCNs and unsupervised
learning in two datasets.

Method Weibo UNSW-NB 15

DGCN 0.953 -

UDGCN 0.956 -

Bi-GCN 0.960 -

GEADS-semi 0.743 0.960

GEADS 0.980 0.981

excellent performance on two datasets from different application fields further
highlights the superiority of our method GEADS, which can be well extended
to different applications.

4.4 Ablation Study

To analyze the importance of the key components of our method GEADS. First,
we compare the proposed method with D-GCN, UD-GCN, and Bi-GCN in Weibo
dataset. Table 3 shows the experimental results. D-GCN, UD-GCN, and Bi-GCN
represent directed GCN, undirected GCN, and Bi-Directional GCN, respectively.
For the relationship between posts in Weibo, we can easily compose the graph
with posts as the point and the relationship between posts and comments as the
edge in the experiment. Compared to how we construct the graph in this paper,
the GCN-based approach lacks the user’s additional information. Experimental
results show that our method is optimal, which further shows the edge convo-
lutional neural network’s importance. However, in the network traffic dataset
UNSW-NB15, there is no convenient condition to construct such a graph as
described above, so we only carry the experimental analysis out on the Weibo
dataset here.

Then, to analyze the effectiveness of semi-supervised learning, we conduct a
comparative experiment on two datasets. In semi-supervised learning, we use a
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few abnormal samples with known labels to guide the model, while the method
of unsupervised learning has no guidance. It shows the experimental results in
Table 3. The results show that a few abnormal samples taking part in the model’s
optimization can significantly improve performance. It indicates that although
guidance without abnormal samples can achieve great results, if a few abnormal
samples are added, the model will be more targeted, and the false positives and
missed positives of the model can be effectively reduced to a certain extent.

5 Conclusion

In this paper, a novel Graph Edge Anomaly Detection algorithm based on a
Semi-supervised auto-encoder (GEADS) is proposed. We design edge convolu-
tional neural networks to realize edge neighborhood information fusion to realize
edge-level anomaly detection in graph data and make full use of attribute infor-
mation and structure information. A semi-supervised learning strategy based on
an auto-encoder is adopted, anomaly samples are fully utilized to improve the
model’s specificity. Besides, a mini-batch training method is designed for the
edges of graphs enables the model to be extended to large-scale graphs. The
experimental results on two real-world datasets show that the proposed model
is superior to most advanced methods.

References

1. Bian, T., Xiao, X., Xu, T., et al.: Rumor detection on social media with bi-
directional graph convolutional networks. In: Proceedings of the AAAI Conference
on Artificial Intelligence, pp. 549–556 (2020)

2. Behdad, M., Barone, L., Bennamoun, M., et al.: Nature-inspired techniques in the
context of fraud detection. IEEE Trans. Syst. Man Cybern Part C (Applications
and Reviews) 42(6), 1273–1290 (2012)

3. Alpaydın, G.: An adaptive deep neural network for detection, recognition of objects
with long range auto surveillance. In 2018 IEEE 12th International Conference on
Semantic Computing (ICSC), pp. 316–317. IEEE (2018)

4. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Com-
put. Surv. (CSUR) 41(3), 1–58 (2009)

5. Angiulli, F., Pizzuti, C.: Fast outlier detection in high dimensional spaces. In:
Elomaa, T., Mannila, H., Toivonen, H. (eds.) PKDD 2002. LNCS, vol. 2431, pp.
15–27. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45681-3 2

6. Ramaswamy, S., Rastogi, R., Shim, K.: Efficient algorithms for mining outliers
from large data sets. In: Proceedings of the 2000 ACM SIGMOD International
Conference on Management of Data, pp. 427–438 (2000)

7. Breunig, M.M., Kriegel, H.P., Ng, R.T., et al.: LOF: identifying density-based local
outliers. In: Proceedings of the 2000 ACM SIGMOD International Conference on
Management of Data, pp. 93–104 (2000)

8. Pang, G., Cao, L., Chen, L., et al.: Learning representations of ultrahigh-
dimensional data for random distance-based outlier detection. In: Proceedings of
the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, pp. 2041–2050 (2018)

https://doi.org/10.1007/3-540-45681-3_2


152 Z. Lun et al.

9. Ruff, L., Vandermeulen, R., Goernitz, N., et al.: Deep one-class classification. In:
International Conference on Machine Learning, pp. 4393–4402. PMLR (2018)

10. Pang, G., Shen, C., van den Hengel, A.: Deep anomaly detection with deviation
networks. In: Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pp. 353–362 (2019)

11. Snell, J., Swersky, K., Zemel, R.S.: Prototypical networks for few-shot learning
(2017). arXiv preprint arXiv:1703.05175

12. Cheng, Y., Liu, W., Duan, P., et al.: PyAnomaly: a Pytorch-based toolkit for video
anomaly detection. In: Proceedings of the 28th ACM International Conference on
Multimedia, pp. 4473–4476 (2020)

13. Wang, Q., Liu, X., Liu, W., et al.: MetaSearch: incremental product search via
deep meta-learning. IEEE Trans. Image Process. 29, 7549–7564 (2020)

14. Ding, K., Li, J., Bhanushali, R., et al.: Deep anomaly detection on attributed
networks. In: Proceedings of the 2019 SIAM International Conference on Data
Mining, pp. 594–602. Society for Industrial and Applied Mathematics (2019)

15. Wang, X.F., Chen, G.: Complex networks: small-world, scale-free and beyond.
IEEE Circ. Syst. Mag. 3(1), 6–20 (2003)

16. Chen, J., Sathe, S., Aggarwal, C., et al.: Outlier detection with autoencoder ensem-
bles. In: Proceedings of the 2017 SIAM International Conference on Data Mining,
pp. 90–98. Society for Industrial and Applied Mathematics (2017)

17. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks (2016). arXiv preprint arXiv:1609.02907

18. Li, A., Qin, Z., Liu, R., et al.: Spam review detection with graph convolutional net-
works. In: Proceedings of the 28th ACM International Conference on Information
and Knowledge Management, pp. 2703–2711 (2019)

19. Nadeem, M., Marshall, O., Singh, S., et al.: Semi-Supervised Deep Neural Network
for Network Intrusion Detection (2016)

20. Song, H., Jiang, Z., Men, A., et al.: A hybrid semi-supervised anomaly detection
model for high-dimensional data. Comput. Intell. Neurosci. 2017, 1–9 (2017)

21. Zhou, C., Paffenroth, R.C.: Anomaly detection with robust deep autoencoders. In:
Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 665–674 (2017)
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Abstract. With malware attacks on the rise, approaches using low-
level hardware information to detect these attacks have been gaining
popularity recently. This is achieved by using hardware event counts as
features to describe the behavior of the software program. Then a clas-
sifier, such as support vector machine (SVM) or neural network, can be
used to detect the anomalous behavior caused by malware attacks. The
collected datasets to describe the program behavior, however, are nor-
mally imbalanced, as it is much easier to gather regular program behavior
than abnormal ones, which can lead to high false negative rates (FNR).
In an effort to provide a remedy to this situation, we propose the usage
of Genetic Programming (GP) to create new features to augment the
original features in conjunction with the classifier. One key component
that will affect the classifier performance is to construct the Hellinger
distance as the fitness function. As a result, we perform design space
exploration in estimating the Hellinger distance. The performance of dif-
ferent approaches is evaluated using seven real-world attacks that target
three vulnerabilities in the OpenSSL library and two vulnerabilities in
modern web-servers. Our experimental results show, by using the new
features evolved with GP, we are able to reduce the FNR and improve
the performance characteristics of the classifier.

Keywords: Feature construction · Anomaly detection · Hardware
performance counters · Data-only attacks · Machine learning

1 Introduction

Malware is a common type of cybersecurity attacks. It often takes advantage
of vulnerabilities that exist in programs. Of these, low-level memory corruption
errors are very common and very dangerous [16]. Malicious agents exploit these
memory errors so as to manipulate both control and non-control data struc-
tures within the program’s memory to alter the program behavior. As a result,
these attacks can be classified as control-oriented attacks or non-control-flow
hijacking attacks, depending on what data structures are manipulated. Prior
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work has shown that hardware-level information can be used to detect control-
oriented attacks with high accuracy [1,12,18]. This is achieved by collecting
hardware event counts such as number of instructions, cache misses and mis-
predicted branches, etc., during the execution of a software application, and
use these hardware events as features to describe the behavior of the software
program. Then a classifier, such as support vector machine (SVM) or neural net-
work, can be used to detect the anomalous behavior caused by malware attacks.
Non-control-flow hijacking attacks, however, maintain the control-flow of the vic-
tim application to follow a valid execution path, making them more difficult to
detect [13]. Conversely, prior work [1,6–8,17] regarding non-control-flow hijack-
ing attacks have suggested using non-hardware-based techniques such as manual
code re-factoring with significant overhead.

In addition to its stealth nature, another reason why developing a highly
accurate model for detecting a non-control-flow hijacking attack is challenging
is due to limited hardware resources available when using hardware events as
features. To further compound the difficulty of this problem, during the training
process, the amount of behavior that is measured to be malicious is vastly smaller
than the amount of behavior that is deemed normal. This large imbalance can
lead to models with very high false negative rates (FNR), which is the error rate
when malicious behavior is classified as normal system behavior. Considering a
busy webserver that receives numerous requests and connections made every day
in a real world scenario, even a 1% difference in FNR actually corresponds to a
non-trivial amount of undetected malicious actions.

Due to these aforementioned difficulties, we propose to use Genetic Program-
ming (GP) to construct new features to augment the original hardware-level fea-
tures for the detection of non-control-flow hijacking attacks in order to achieve
high detection accuracy. Under the constraints of highly imbalanced dataset, we
use the Hellinger distance as a fitness function to evaluate the feature quality,
which has been shown being skew insensitive in prior work under similar scenar-
ios [2,5]. This paper is novel in terms of applying evolutionary computing tech-
niques to hardware-level information for the purposes of anomaly detection for
malware, which is a research territory has not been touched before. Especially, we
contribute a novel study and estimation of the Hellinger distance in the context of
using the Hellinger distance as a fitness function for the creation of new features.

2 Background

The performance of a classification algorithm is impacted by how well the dataset
represents the underlying probability distributions and the degree of similarity
between different classes [15]. Datasets with a large degree of similarity or highly
imbalanced representation of each class creates difficult classification problems.
To combat this, it is advantageous to create new features to maximize the degree
of separability. This can be achieved by using Genetic Programming for creat-
ing functions to generate new features, i.e., the GP algorithm creates trees of
deterministic n-ary operators and constants, which may evolve within each itera-
tion [19]. Each tree is a representation of a program, i.e., a function, wherein the
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inputs to this program represent a subset of the original features and the output is
a new feature built from a deterministic function of the inputs. The fitness func-
tion is a heuristic used to guide the evolution of the programs towards a more
desirable program. As such the fitness function is chosen so that it maximizes the
degree of separability between the two classes [19]. In the evolutionary algorithm
the programs with the highest fitness are selected and reproduced, using crossover
of nodes in the tree representations. Additionally, random mutations are intro-
duced to the members of the population with high fitness, where a mutation is
defined as a substitution of a random part of a program with another random
part of program. In general each generation is more fit than its predecessors.

While a universal approximator, e.g., a deep neural network, could be used
to solve this problem, the mechanisms behind the final model are often unin-
tuitive, as the models tend to have many thousands of parameters if not more.
Conversely, evolutionary approaches allow the model to be built with a limited
number of parameters and greater flexibility in the types of deterministic oper-
ators used to construct the model. Common methods of assessing the quality of
newly created features are Information Gain, Gini Index, and Chi-square [15].
Hart et al. [5] showed that the use of the Hellinger distance as the choice of
fitness criterion performed well with imbalanced datasets. While the Hellinger
distance has been shown to be a helpful fitness criterion, there has been little
consensus and work on showing how to estimate the Hellinger distance in this
context. Naturally, while the GP algorithm yields the feature creation function,
it does not provide an estimation of the distribution function. However, the
Hellinger distance relies on the knowledge of the distribution functions of both
classes. This now necessitates a strategy for estimating the underlying proba-
bility distribution from the discrete samples. In this work we explore different
possible implementations of the Hellinger distance that have tractable solutions.
Primarily, we are trying to answer the following questions:

i) Over what values is the Hellinger distance evaluated?
ii) What role does normalization play in the feature creation process?
iii) Which distributions should the Hellinger distance be applied to?
iv) How should the distribution functions be estimated?

3 Dataset

There exists no standard dataset for the testing of security mechanisms in a
consistent manner, which is one of the main difficulties with the evaluation of
anomaly detection systems [11]. This difficulty is more apparent with the study of
non-control-flow hijacking attacks, which are more difficult to deploy. Addition-
ally, there exists no standard exploit benchmarks for evaluating non-control-flow
hijacking attacks and very few working instances of these attacks exist publicly.

We used seven real-world exploits, four of these exploits target vulnerable
web servers as described by Hu et al. [6], and the other three target different
vulnerabilities in the OpenSSL library. Table 1 lists the vulnerabilities targeted
in this study. Each of these exploits were manually recreated on real machines
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Table 1. Vulnerabilities and exploits

Vulnerability Type Program Exploit Type

bugtraq ID: 41956 FS∗
orzHTTPd orzhttpd rootdir Data leak

orzhttpd leakaddr Mem leak

CVE-2013-2028 SBO†
nginx nginx rootdir Data leak

nginx keyleak Data leak

CVE-2014-3566 ED‡
OpenSSL poodle Data leak

CVE-2015-0204 ED‡
OpenSSL frea Data leak

CVE-2015-0400 ED‡
OpenSSL logjam Data leak

(∗) Format string (†) Stack buffer overflow (‡) Encryption downgrade

hosting web servers. The experiments of the vulnerable orzHTTPd and nginx

were conducted on a 32-bit system with an Intel Core i5 M540 (DualCore, HT,
2.53 GHz) processor with 4 GB of memory running Ubuntu 12.04 with version
3.2.0 of the Linux kernel. The experiments for the exploits targeting OpenSSL

were conducted on a 64-bit system with an Intel Core i7 950 (QuadCore, HT,
3.06 GHz) processor with 8 GB of memory running Ubuntu 13.04 with version
3.8.0 of the Linux kernel.

Modern processors are equipped with Performance Monitoring Unit (PMU)
that can track hardware-level events during the software program execution. We
used a set of 12 hardware events as original features. They are the numbers of load
instructions, store instructions, direct new calls, indirect near calls, near returns,
mis-predicted branches, mis-predicted conditional branches, I-TLB misses,
D-TLB misses, shared-TLB hits, I-cache misses and last-level cache misses. The
choice of events is based on those reported in recent literature on using low-level
hardware information to model the execution of software [12,13,18]. Hardware
event counts are collected during the “point-of-attack”, i.e., we read the hardware
event count before we enter and after we exit the software function (procedure)
where the vulnerability resides, the delta between these two readings forms the
datasets we used in this study1. The same 12 hardware events were measured on
both hardware platforms we used in experiments.

4 Methodology

We first employ the GP algorithm to find the m best performing individuals using
the Hellinger distance as the fitness criterion. Thereafter, these new features are
used to augment the dataset and sent to a detection algorithm, either a support
vector machine (SVM) or a neural network (NN). We use the detection algorithm
to differentiate the benign behavior of the program from the malicious behavior
resulted from attacks.
1 The datasets may be found at https://github.com/camel-clarkson/non-controlflow-

hijacking-datasets.

https://github.com/camel-clarkson/non-controlflow-hijacking-datasets
https://github.com/camel-clarkson/non-controlflow-hijacking-datasets
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4.1 Genetic Programming

The genetic program creates functions f : X → R whose purpose is to construct
a new feature out of the original features, where X denotes the feature space.
The objective of the GP is to find such a function that maximizes the distance
between the two classes.

In our experiment, the genetic program is initialized using a ramped half
and half scheme that uses sub-tree crossover and mutation to create the next
generation of individuals. This is done with an initial population of 300 indi-
viduals. A number of tournaments with three individuals are conducted. Those
with the highest fitness criterion are passed to the next generation. We apply
crossover and mutation with a probability of 80% and 10%, respectively [5]. The
expression generation scheme creates trees with a depth of one or two, and the
maximum bloat depth varies between 6 and 17 [9]. The terminal nodes consist of
the original 12 features with three additional constants, which are a fixed-point
number, a floating-point number and −1. The function node set consists of the
following operators: add, sub, mul, div, max, min, neg, cos, sin, log and
abs.

4.2 Fitness Function

Prior work has shown that the Hellinger metric is strongly skew insensitive,
lending it useful as a fitness criterion for imbalanced datasets [2]. The fitness
function is a functional � on the space of functions mapping X → R. Let X,Y
be random variables with X denoting the feature vector and Y denoting the
label. Then the new features would be denoted as f(X). Let T0, T1 � X denote
the two datasets of features for anomalous and normal samples, respectively. A
natural choice for the fitness function would be a measure of distance between
the transformed anomalous distribution and transformed normal distribution.
Let ρi denote the density (or mass) function of the distribution P (f(X)|Y = i).
Often the data space X is discrete, as is the case in our application. Therefore
f(X ) � R is discrete as well. So, the Hellinger distance can be written as

�
2[f ] =

1
2

∑

a∈f(X )

(√
ρ1(a) −

√
ρ0(a)

)2

(1)

as the expression for our fitness function. However, this form is not guaranteed
to be tractable for all ρi induced by f .

This leads to our first question concerning implementation: Over what values
is the Hellinger distance evaluated? The first option is to evaluate only over
the samples we are given. Note, this approach can also be viewed as taking an
expectation on P (f(X )) rather than a sum over all the samples which form our
dataset drawn from P (f(X )), so Eq. (1) becomes

�
2[f ] =

1
2

Ea∼P (f(X ))

[(√
ρ1(a) −

√
ρ0(a)

)2]
(2)
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The alternative option is to evaluate over a finite subset of f(X ). We use a
uniformly discrete subset from min f(T0 ∪ T1) to max f(T0 ∪ T1).

The second question concerning implementation is: Should f be applied purely
to samples from original space or from a normalized space? Often features are
normalized to ensure that one does not dominate the others. Therefore, we test
an approach using feature rescaling to map each feature onto [−1, 1] before
passing to the GP algorithm.

Intuitively, the fitness criterion would be the Hellinger distance between
P (f(X)|Y = 1) and P (f(X)|Y = 0). However, prior work has suggested using
another distance derived from the Hellinger distance by using the posterior dis-
tributions, but evaluating on f(X) and not Y . This can be thought of as mini-
mizing the overlap between two classifiers on the scoring space rather than two
distributions on the scoring space. This discussion leads into our third question
concerning implementation: Which distributions should the Hellinger distance be
applied to? At the suggestion of Hart et al. [5], the implementation of the fitness
criterion becomes:

�
2[f ] =

∑

a∈f(X)

(√
ρ1(a)P (Y = 1)

ρ(a)
−

√
ρ0(a)P (Y = 0)

ρ(a)

)2

(3)

where ρ is the density of P (f(X)). Note, the normalization term 1
2 is droped in

favor of the unnormalized Hellinger distance, i.e., the fitness criterion now has a
range of [0,

√
2] rather than [0, 1].

4.3 Density Estimation

The caveat with using the Hellinger distance is that we need ρi. However, we only
have discrete samples Ai = f(Ti). This leads to our fourth question concerning
implementation: How should the distribution functions be estimated? One app-
roach is to create a histogram of the observed data and normalizing it so that
it becomes a probability mass function. The caveat is that often the samples,
Ai, form a sparse covering of f(X ), and may lack information about the relative
density. Therefore, we propose the usage of kernel density estimation (KDE) to
model the densities ρi from the data Ai. KDE is a statistical model used to
approximate a density function which has the following definition

ρ̂i(a) =
1

βi|Ai|
∑

a′∈Ai

K

(
a − a′

βi

)
(4)

where K : R → R
+ is the kernel and βi > 0 is a smoothing parameter known as

the bandwidth. We chose the Gaussian kernel and used Scott’s rule to determine
the bandwidth, which is given as βi = |Ai|−0.2σi, where σi is the standard
deviation of the samples Ai [4]. As we consider the true densities ρi to be discrete
mass functions, we account for this in the KDE estimation by normalizing ρ̂i by
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∑
a′∈Ai

ρ̂i(a) so that the total mass is one. Let the normalized estimate of ρi be
denoted as p̂i, the Hellinger distance becomes

�
2[f ] =

∑

a∈f(T ′
0∪T ′

1)

(√
p̂1(a) −

√
p̂0(a)

)2

(5)

where T ′
0, T

′
1 denote the normalized datasets.

4.4 Classifiers

We use three models to differentiate the benign behavior of the program from the
malicious behavior created by the attacks, these are: a Support Vector Machine
(SVM) with linear kernel, a SVM with radial basis function (RBF) kernel, and
a Neural Network. Both SVMs are implemented with the scikit-learn package
with the default parameters for their respective kernels. The neural network is
implemented in TensorFlow with 4 fully connected layers, dropout, and leaky
rectified linear unit; the neural network trained using softmax regression to min-
imize the cross entropy of the output with labelled data. Gradient descent is
performed using the Adam optimization algorithm. Torres et al. [13,14] and
Liu et al. [10] provided detailed studies on constructing classifiers using low-
level hardware information to detect Non-control-flow hijacking attack using a
variety of detection models, where they also used an SVM with RBF kernel as
the baseline. Remark the focus of this work is on the usage of GP to generate
new features to augment the original hardware-level features may be used with
other classifiers.

5 Experimental Setup

The following procedure was used to construct the new features and datasets:

i) Run the GP algorithm with the different Hellinger distance implementations
on the entire original dataset and select the top-4 performing individuals,
i.e., the programs that construct the new features.

ii) Create 5 pairs of new training and testing sets from the original data using
stratified k-fold cross-validation.

iii) The individuals created by the GP algorithm are used to construct new
features. These new features are partitioned in accordance to the scheme
from the previous step.

The data imbalance is preserved across all the datasets so that the constraint of
the imbalanced dataset is preserved equally on all runs; the entire imbalanced
dataset is provided to the GP algorithm. After creating the new datasets, the
new features are evaluated using the three classifiers with k-fold cross-validation.
The partitions for cross-validation is kept the same between each dataset so
the partitions cannot bias the classifier performance. The genetic program is
implemented using DEAP (Distributed Evolutionary Algorithms) in Python [3].
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Fig. 1. Average ROC curve of classi-
fiers using different Hellinger distance
estimates

Fig. 2. Average DET curve of classi-
fiers using different Hellinger distance
estimates

Note, we collected the hardware event at run-time, however, at the current stage,
the classifier is not operated in an online fashion yet, i.e., the classification is
done off-line. On the other hand, our proposed approach will greatly pave the
way towards online detection scheme.

Each genetic program was run with 20 generations using the Hall of Fame
(HoF) algorithm to select the top 4 performing individuals through the entire
execution of the algorithm. The GP was implemented using the parameters
outlined in Sect. 4.1 and varied in accordance with different implementations
of the Hellinger distance described in Sects. 4.2 and 4.3. Cross-validation was
performed via the scikit-learn package using all three classifiers. After training
the model on a particular dataset, it was evaluated via the detection accuracy
metric.

6 Experimental Results

In this section we examine the performance of different implementations of the
Hellinger distance as outlined in Sect. 4. For each of the Hellinger variants dis-
cussed in Sect. 4, only one component was changed from the implementation
found in Eq. (5), which is treated as the baseline implementation labelled base-
line. For example, the implementation that uses discrete estimation over KDE
does not use the posterior probabilities, the samples are normalized, and it is
evaluated strictly over samples in the dataset.

6.1 Hellinger Implementation Analysis

Figure 1 illustrates the average ROC curves for classifiers using only features
generated by the GP algorithm with different Hellinger implementations. Each
curve in the plot denotes the average ROC of all three classifier variants aver-
aged overall all exploits; whereas, Fig. 2 illustrates the average Detection Error
Tradeoff (DET) curves for classifiers for the same curves as in the ROC plot.
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Table 2. Detection performance of different models using different GP approaches
where EER denotes the Equal Error Rate and AUC denotes the AUC-ROC. Best
performing approach is in bold.

Exploit Model Posterior Discrete Full Baseline Unnormalized

EER AUC EER AUC EER AUC EER AUC EER AUC

freak SVM linear 0.00 100.00 0.00 100.00 0.00 100.00 0.00 100.00 0.00 100.00

SVM RBF 0.00 100.00 0.00 100.00 0.00 100.00 0.00 100.00 0.00 100.00

NN 0.00 100.00 0.00 100.00 0.04 100.00 0.00 100.00 0.00 100.00

poodle SVM linear 2.97 98.74 6.71 96.07 2.89 98.91 2.67 98.98 6.62 96.06

SVM RBF 1.94 99.04 3.06 98.45 1.97 99.06 2.01 99.02 1.61 99.29

NN 2.35 99.38 4.09 98.59 2.56 99.37 2.40 99.29 2.41 99.40

nginx keyleak SVM linear 35.34 70.37 33.44 71.57 34.98 70.77 31.20 66.11 25.87 84.16

SVM RBF 17.00 92.94 18.18 90.33 20.10 88.84 17.80 92.77 6.77 96.81

NN 20.79 80.72 17.36 80.77 14.93 81.34 24.96 79.02 16.11 95.31

nginx rootdir SVM linear 16.97 88.94 11.77 81.07 12.62 78.28 17.42 86.06 16.16 77.70

SVM RBF 16.48 88.75 17.49 80.28 14.81 82.90 16.33 88.40 13.10 94.78

NN 16.42 88.16 12.30 79.64 12.39 77.38 17.04 84.06 14.71 92.85

logjam SVM linear 0.56 99.96 5.30 97.61 5.35 97.77 1.46 99.86 5.18 97.54

SVM RBF 0.00 100.00 4.21 97.90 3.79 98.12 0.22 100.00 2.50 98.90

NN 1.66 99.82 5.71 98.19 5.46 98.55 3.12 98.99 3.34 99.11

orzhttpd rootdir SVM linear 18.04 82.65 21.13 79.96 16.84 82.14 18.44 81.45 13.96 80.90

SVM RBF 19.74 81.20 17.92 81.65 20.23 82.19 18.07 83.07 15.17 85.65

NN 10.70 73.91 15.06 74.45 16.17 69.40 16.40 69.91 10.96 88.49

orzhttpd restore SVM linear 24.07 80.89 24.56 80.37 23.94 80.54 21.83 80.87 20.98 75.36

SVM RBF 19.55 78.13 25.24 78.89 25.12 80.16 24.07 79.40 14.95 92.34

NN 18.28 82.46 11.93 81.65 18.71 63.28 19.99 82.78 19.43 84.93

What we can see is the unnormalized approach has the best ROC curve
overall, followed closely by the posterior approach. The other approaches have
different regions in the ROC plot where they dominate the other approaches,
but the performance hierarchy is less clear for the remaining approaches. Table 2
provides a focused view per exploit and per classifier using both the original and
created features on two performance metrics: the Equal Error Rate (EER) and
Area Under the Curve ROC (AUC-ROC). EER refers to the point when the false
positive rate and false negative rate are equal, while AUC-ROC is the integral
of the ROC curve. For each exploit and classifier, the Hellinger estimation that
yielded the highest AUC-ROC is denoted in bold; if there is a tie all the entries
are in bold.

Figure 1 shows that the Hellinger approach which evaluates over a uniform
discrete subset of the feature space, labelled full, performs worse than the base-
line approach. Additionally, when used to augment the original features, it does
not generally provide as much improvement as other approaches as shown in
Table 2. While only evaluating the Hellinger distance over the samples from the
dataset could potentially cause the distance to deviate significantly from the true
Hellinger distance, the pitfall of the full approach is that it necessitates perfect
knowledge of the density functions; however, in practice this generally is not fea-
sible and therefore it actually increases the error in estimation when evaluating
on samples that lie outside the training data. Similarly, the discrete approach,
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Fig. 3. Average ROC curve of classi-
fiers using different features.

Fig. 4. Average DET curve of classi-
fiers using different features.

i.e., using a histogram to estimate density, is found to be lacking in performance
capabilities both on its own and when used to augment the original features.
This particular approach has the worst DET curve with high FNR rates until
reaching an FPR of roughly 80%.

Examining Table 2 together with Figs. 1 and 2, it is clear that one Hellinger
approach outperforms the others, i.e., the unnormalized approach. In addition
to having a generally low EER across all exploits, this approach yields the best
performing model consistently where its AUC-ROC readings have 14 instances
of being the best performing approach. The performance of the posterior nearly
outperforms the baseline in every run with a few exceptions. While the baseline
approach is a more faithful implementation of the Hellinger distance, the poste-
rior is, in reality, another statistical divergence that accounts for the class imbal-
ances by using the class priors leading to better performance, at the relatively
minor cost of losing the proven properties of the Hellinger distance. Interestingly,
the posterior approach tends to outperform the unnormalized approach when
used by the linear kernel SVM; whereas, the unnormalized approach performs
better when used by the other models. Moreover, it is common for the AUC-
ROC to vary little across classifiers for the posterior approach, implying that
the additional information provided by this approach did not yield information
usable by the more complicated NN and RBF kernel SVM. Conversely, those two
models perform significantly better across the board when compared against the
linear kernel SVM using the unnormalized features. The unnormalized approach
allows the GP algorithm to exploit the latent meaning of the hardware-level
features the differences in the range of the features can be important in creating
new features.

6.2 Performance Improvement Analysis

Figure 3 shows the difference in performance in terms of the ROC, averaged over
exploits, models, and using the unnormalized approach, when using the original
features only, the GP created features, and the combination of the two; whereas,
Fig. 4 shows the same curves but in a DET plot. Equation 6 is an example of a
created feature from the ngninx keyleak exploit.
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F = cos(max(LOAD,−CALL D · CALL D)) (6)

This demonstrates the power of the proposed approach of using GP to generate
new features. As we can see, this is a fairly complex new feature generated by
the GP algorithm. First of all, no such hardware event exists at the hardware
level. Secondly, this can also serve as a recommendation to computer architect
engineers as a new hardware event for future microprocessors. Figures 3 and 4
illustrate the performance improvements gained by using GP features, where
there is a significantly lower FNR for an FPR between roughly 5% and 45%.
Moreover, when using both the original and GP features, the best performance
characteristics of each are combined together resulting in superior performance.
This greatly improves performance especially at lower FPR rates.

7 Conclusion

In this work, we presented a novel approach using genetic programming (GP)
to create new optimal features to augment the original features from low-level
hardware information towards the detection against non-control-flow hijacking
attacks. With a neural network and SVMs acting as classifiers, our proposed
approach is effective in improving the overall detection accuracy across all stud-
ied exploits. Importantly, we have performed in-depth study for estimating the
Hellinger distance in the context of GP in order to generate optimal features. We
thoroughly compared different facets concerning the estimation of the Hellinger
distance in improving the classification accuracy and error rates. Our experi-
mental results show that using a smooth estimator, like KDE, yields a superior
fitness function than using a discrete estimator. Additionally, we show that it is
not necessary to evaluate the Hellinger distance over the full support of the dis-
tribution functions to yield a usable fitness function. This allows the estimation
of the Hellinger problem to become computationally feasible and efficient.
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Abstract. Attention mechanism has been regarded as an advanced
technique to capture long-range feature interactions and to boost the
representation capability for convolutional neural networks. However,
we found two ignored problems in current attentional activations-based
models: the approximation problem and the insufficient capacity problem
of the attention maps. To solve the two problems together, we initially
propose an attention module for convolutional neural networks by devel-
oping an AW-convolution, where the shape of attention maps matches
that of the weights rather than the activations. Our proposed attention
module is a complementary method to previous attention-based schemes,
such as those that apply the attention mechanism to explore the rela-
tionship between channel-wise and spatial features. Experiments on sev-
eral datasets for image classification and object detection tasks show the
effectiveness of our proposed attention module. In particular, our pro-
posed attention module achieves 1.00% Top-1 accuracy improvement on
ImageNet classification over a ResNet101 baseline and 0.63 COCO-style
Average Precision improvement on the COCO object detection on top of
a Faster R-CNN baseline with the backbone of ResNet101-FPN. When
integrating with the previous attentional activations-based models, our
proposed attention module can further increase their Top-1 accuracy on
ImageNet classification by up to 0.57% and COCO-style Average Preci-
sion on the COCO object detection by up to 0.45. Code and pre-trained
models will be publicly available.

Keywords: Attention mechanism · Convolution · Representation

1 Introduction

Recent literature [6,12,31] have investigated the attention mechanism since it can
improve not only the representation power but also the representation of inter-
ests. Convolutional neural networks can extract informative features by blend-
ing cross-channel and spatial information [9]. Attention modules [19,29] can learn
“where” and “what” to attend in channel and space axes, respectively, by focus-
ing on important features and suppressing unnecessary ones of the activations.
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Dynamic Filter Networks [13,17] generate the filters conditioned on the input and
show the flexibility power of such filters because of their adaptive nature, which
has become popular in prediction [15] and Natural Language Processing [30].
Both Dynamic Filter Networks and attention-based models are adaptive based
on the inputs, but there are significant differences between them. Attention-based
models [9,29] produce attention maps using the attention mechanism to operate
on the activations of convolution. On the contrary, Dynamic Filer Networks [22]
generate input information-specific kernels, such as position-specific kernels [22]
and few-shot learning setting-specific kernels [32], which work as the weights of
convolution. Our proposed attention module leverages the attention mechanism
to compute the attention maps for attending the activations of convolution, so it
is clear to categorized the models applied with our proposed attention module as
attention-based models instead of Dynamic Filter Networks.

In this paper, we analyze two ignored problems of the current attentional
activations-based models: the approximation problem and the insufficient capac-
ity problem of the attention maps. To address the two problems together, we
originally propose an attention module by developing an AW-convolution, where
the shape of the attention maps matches that of the weights instead of the acti-
vations. Besides, we present and refine the architecture of calculating attention
maps A. Our proposed attention module is a complementary method to previous
attention mechanism-based modules, such as Attention Augmented (AA) con-
volution [2], the SE [10] and CBAM [29] modules in the attentional activations-
based models. Integrating with our proposed attention module, the accuracy of
SE-Net, and CBAM-Net will be improved further.

We use image classification and object detection tasks to demonstrate the
effectiveness of our proposed attention module. With negligible computational
complexity increase, our proposed attention module can boost the image classi-
fication and object detection task performance, and it can achieve better accu-
racy when integrating with other attention-based models. In particular, our pro-
posed attention module achieves 1.00% Top-1 accuracy improvement on Ima-
geNet classification over a ResNet101 baseline and 0.63 COCO-style Average Pre-
cision improvement on the COCO object detection on top of a Faster R-CNN
baseline with the backbone of ResNet101-FPN. When integrating with the pre-
vious attentional activations-based models, our proposed attention module can
further increase their Top-1 accuracy on ImageNet classification by up to 0.57%
and COCO-style Average Precision on the COCO object detection by up to 0.45.

2 Related Work

2.1 Network Engineering

Increasing the depth of convolutional neural networks has been regarded as an
intuitive way to boost performance, which is the philosophy of VGGNet and
ResNet [7]. In addition, since the skip connection from ResNet shows a strong
ability to assist the gradient flow, WideResNet, PyramidNet, Inception-ResNet
[23], and ResNeXt are ResNet-based versions proposed to explore further the
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influence of the width, the increase of the width, the multi-scale and the cardi-
nality of convolution, respectively. In terms of efficiency, DenseNet [11] reuses
the feature maps by concatenating the feature maps from different layers. In
particular, MobileNet [8] and ShuffleNet [20] series present the advantage of
depthwise convolution and the shuffle operation between various group convolu-
tions, respectively. Another design approach uses automated neural architecture
search, which achieves state-of-the-art performance regarding both accuracy and
efficiency across a range of computer vision tasks [24].

2.2 Attention Mechanism

The attention mechanism plays an important role in the human vision percep-
tron since it can allocate the available resources to selectively focus on processing
the salient part instead of the whole scene [5]. Multiple attention mechanisms
are used to address a known weakness in convolution [3,4,10,14,19], by cap-
turing long-range information interactions [1,26]. The Inception family of archi-
tectures [23], Multigrid Neural Architectures [14], and Octave Convolution [3]
aggregate the scale-space information, while Squeeze-and-Excitation Networks
[10] and Gather-Excite [9] adaptively recalibrate channel-wise response by mod-
eling interdependency between channels. GALA [19], CBAM [29], and BAM [21]
refine the feature maps separately in the channel and spatial dimensions. Atten-
tion Modules [27] and self-attention [2,25] can be used to exploit global context
information. Precisely, non-local networks [28] deploy self-attention as a gener-
alized global operator to capture the relationship between all pairwise convolu-
tional feature maps interactions. Except for applying the attention mechanism
to computer vision tasks [16], it has been a widespread adoption to modeling
sequences in Natural Language Processing [30].

3 Proposed Attention Module

In this section, we analyze the two ignored problems in current attentional
activations-based models and develop an attention module that mainly refers
to the AW-convolution. Besides, we refine the branch of calculating the atten-
tion maps. Last but not least, we integrate our proposed attention module with
other attention-based models.

3.1 Motivation

First, we define basic notations in a traditional convolutional layer. In a tra-
ditional convolutional layer, the input activations, weights, and output acti-
vations are denoted as I, K, and O, respectively. For the input activations
I ∈ RN×C1×H×W , N , C1, H, and W refer to the batch size, the number of
input channels, the height, and width of the input feature maps, respectively.
For the weights K ∈ RC2×C1×h×w, C2, h and w refer to the number of out-
put channels, the height and width of the weights, respectively. For the output
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activations O ∈ RN×C2×H×W , it is computed as the convolution between the
input activations I and the weights K. In particular, every individual value of
the output activations O[l,p,m,n] is calculated as follows.

O[l,p,m,n] = Convolution(I,K) =
C1∑

o=1

h−1∑

j=1

w−1∑

k=1

I[l,o,m′+j,n′+k] × K[p,o,j,k] (1)

where l = 0, ..., N − 1, m = 0, ...,H − 1, n = 0, ...,W − 1, o = 0, ..., C1 − 1,
p = 0, ..., C2 − 1, m′ = m − h−1

2 , n′ = n − w−1
2 .

To apply the attention mechanism on the input activations I, previous
attentional activations-based models produce the channel attention maps Ac ∈
RN×C1×1×1 and spatial attention maps As ∈ RN×1×H×W separately. For exam-
ple, applying the channel attention maps Ac on the input activations I is pre-
sented as O = Convolution((I �Ac),K), where � refers to the Hadamard prod-
uct and broadcasting during element-wise multiplication is omitted.

Approximation Problem of the Attention Maps. To thoroughly attend
the input activations I, we need to compute the attention maps Af ∈
RN×C1×H×W and apply it as O = Convolution((I � Af ),K), which requires
too much computational and parameter overhead. Thus, all the current atten-
tional activations-based models produce the attention maps separately into the
channel attention maps Ac and spatial attention maps As. We use Ac and As to
approximate the four-dimensional attention map Af , which leads to the approx-
imation problem of attention maps.

Inspired by convolution, we adopt local connection and attention maps shar-
ing to reduce the size of the attention maps. We compute the attention maps
Aa ∈ RN×C1×h×w as follows, where ⊗ is a special element-wise multiplication
since it only works associated with convolution.

O[l,p,m,n] = Convolution(I ⊗ Aa,K)

=
C1∑

o=1

h−1∑

j=1

w−1∑

k=1

(I[l,o,m′+j,n′+k] × Aa[l,o,j,k]) × K[p,o,j,k]

(2)

Insufficient Capacity Problem of the Attention Maps. To compute differ-
ent channels of the output activations of the convolution, the input activations
are constrained to be recalibrated by the same attention map, i.e., the four-
dimensional attention map Af , which indicates the insufficient capacity of the
attention maps. As each channel of the feature maps is considered as a feature
detector, different channels of the output activations of the convolution expect
the input activations to be adapted by different attention maps.

Take two channels of output activations of a convolutional layer as an exam-
ple, the two channels are responsible for recognizing rectangle shape and triangle
shape, respectively. Thus, it is reasonable for the two channels to expect that
there are different attention maps for attending the input activations of the



An Attention Module for Convolutional Neural Networks 171

(a) The AW-convolution architecture.

(b) The architecture of calculating attention maps A.

Fig. 1. The architecture of our proposed attention module.

convolution (i.e., the attention maps to compute the channel of recognizing the
rectangle shape should be different from the attention maps to compute the
channel of recognizing the triangle shape). To meet this expectation, we need to
compute the five-dimensional attention map Aic ∈ RN×C2×C1×1×1 and apply it
on the input activations as follows.

O[l,p,m,n] = Convolution(I � Aic[l,p,:,:,:],K)

=
C1∑

o=1

h−1∑

j=1

w−1∑

k=1

(I[l,o,m′+j,n′+k] × Aic[l,p,o,0,0]) × K[p,o,j,k]

(3)

To solve the approximation problem and the insufficient capacity problem of
the attention maps together (i.e., combining the solution of Eq. 2 and the solu-
tion of Eq. 3), we introduce our proposed attention module by developing
the AW-convolution. Specifically, we propose to compute the attention maps
A ∈ RN×C2×C1×h×w and apply it as follows where the attention maps A[l,:,:,:,:]

has the same shape as that of the weights instead of the input activations. In
this paper, “Attentional weights” refers to the element-wise multiplication result
between the attention maps and the weights. Similarly, “Attentional activations”
refers to the element-wise multiplication result between the attention maps and
the activations in previous attentional activations-based models. Thus, I ⊗ A
and A[l,:,:,:,:] � K represent the attentional activations and attentional weights,
respectively. To reduces half the number of element-wise multiplications, we cal-
culate attentional weights instead of attentional activations as follows.

O[l,p,m,n] = Convolution(I ⊗ A,K)

=
C1∑

o=1

h−1∑

j=1

w−1∑

k=1

I[l,o,m′+j,n′+k] × (A[l,p,o,j,k] × K[p,o,j,k])

= Convolution(I,A[l,:,:,:,:] � K) = AW-Convolution(I,A � K)

(4)
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Fig. 2. The schema of bottlenecks when integrating with our proposed attention mod-
ule. Left: bottleneck in ResNet. Middle: bottleneck in SE-ResNet/CBAM-ResNet.
Right: bottleneck in AW-SE-ResNet/AW-CBAM-ResNet.

3.2 AW-Convolution in Proposed Attention Module

The AW-convolution in our proposed attention module is presented in Fig. 1a.
In this figure, the attention maps A has five dimensions, which is computed
from the input activations I as A = F1(I). F1 is a function to calculate the
attention maps A given the input activations I. Then, the attentional weights
AK ∈ RN×C2×C1×h×w is calculated as AK = F2(A,K) = K + A � K. F2 is a
function to calculate the attentional weights AK given the weights K and the
attention maps A. Finally, the output activations O is calculated from the input
activations I and the attentional weights AK as follows.

O[l,p,m,n] = F3(I,AK) = AW-Convolution(I,AK)

=
C1∑

i=1

h−1∑

j=1

w−1∑

k=1

I[l,o,m′+j,n′+k] × AK[l,p,o,j,k] = Convolution(I,AK[l,:,:,:,:])
(5)

where F3 is a function to calculate the output activations O given the input
activations I and the attentional weights AK. Compared with the traditional
convolution, the attentional weights AK of the AW-convolution in our proposed
attention module has five dimensions rather than four dimensions, which are
different from each other for every individual sample of the input activations
batch to convolute.

It is also worth explaining the definition of the function F2. AK = K+A�K
instead of AK = A�K is used to describe the function F2 since it can be regarded
as a residual design as follows.

O = F3(I,AK) = AW-Convolution(I, F2(A,K))
= Convolution(I,K) + AW-Convolution(I,A � K)

(6)
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3.3 Calculating the Attention Maps A

As shown in Fig. 1b, the architecture to compute the attention maps A (i.e.,
the definition of the function F1) is presented, which can be expressed as fol-
lows. Avgpool2d aggregates feature responses from the whole spatial extent and
embeds them into A0, and Pointconv1 and Pointconv2 followed by Relu redis-
tribute the pooled information to capture the dynamic and no-linear dependen-
cies between channels and spatial spaces.

A = F1(I) = ExpandC1(A2) = ExpandC1(Pointconv2(A1))
= ExpandC1(Pointconv2(Pointconv1(A0)))
= ExpandC1(Pointconv2(Pointconv1(Avgpool2d(I))))

(7)

where Pointconv1 and Pointconv2 are pointwise convolutions. We add Batch
Normalization and Relu layers after Pointconv1, while adding Batch Normaliza-
tion and Sigmoid layers after Pointconv2, and they are omitted here to provide
a clear expression.

In Fig. 1b, Expand function along C1 dimension, denoted as ExpandC1
, is

used as an example, and Expand function can be also executed along N , C2, h,
and w dimensions in a similar way. ExpandC1 function is used to expand the
tensor A2 ∈ RN×(C2C1/rC1 )×h×w into the attention maps A ∈ RN×C2×C1×h×w

with the reduction ratio rC1 , including necessary squeeze, reshape, and expand
operations. ExpandC1

can be expressed as follows.

A = ExpandC1(A2) = A2.reshape(N,C2, C1/rC1 , h, w).unsqueeze(dim = 3)
.expand(N,C2, C1/rC1 , rC1 , h, w).reshape(N,C2, C1, h, w)

(8)
Calculating the five-dimension attention maps A is not an easy computational
task without careful design. Thus, we analyze the additional computational com-
plexity of an AW-convolution compared with a traditional convolution as a ref-
erence to refine this design. Considering the trade-off between computational
complexity and accuracy, all the experiments in the remainder of this paper use
the same settings for the architecture of calculating the attention maps A in our
proposed attention module, including rC1 = C1, rC2 = rhw = 1, r = 16, used in
all the stages, and AK = K + A � K as the definition for the function F2.

3.4 Integrating with Other Attention-Based Modules

In this section, we show how to integrate our proposed attention module
with the previous attention-based convolutional neural networks to demonstrate
the complementary relationship between our proposed attention module and
other attention-based modules. Since applying our proposed attention module
is using the AW-convolution to replace the traditional convolution, we can eas-
ily integrate our proposed attention module with any convolutional neural net-
works consisting of traditional convolution, including all the recently developed
attention-based models [2,10,19,21,29].
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We choose the recent attentional activations-based models, i.e., SE-Net and
CBAM-Net, as examples to show how to integrate our proposed attention mod-
ule with other attention-based models. Here we use the popular ResNet [7] as
the backbone to apply the attention mechanism. As shown in Fig. 2, the left side
is the structure of a primary bottleneck in ResNet. The middle one is the struc-
ture of a bottleneck with SE/CBAM modules in SE-ResNet/CBAM-ResNet.
Integrating the central bottleneck with our proposed attention module is com-
pleted by replacing its 3 × 3 convolution with a 3 × 3 AW-convolution, and
its final structure in AW-SE-ResNet/AW-CBAM-ResNet is shown on the right
side. In summary, our proposed attention module is a general module to be inte-
grated seamlessly with any CNNs architectures, including previous attention-
based CNNs.

4 Experimental Results

4.1 ImageNet Image Classification

According to the results shown in Table 1, our proposed attention module is
complementary to other attentional activations-based models. AW-ResNet50
achieves a 1.18% Top-1 error reduction compared with the ResNet50 baseline.
Integrating with our proposed attention module, SE-ResNet50 [10] can improve
further by 0.42% Top-1 accuracy. The Top-1 accuracy of our AW-SE-ResNet101
is 1.60% and 0.57% higher than that of ResNet101 and SE-ResNet101, respec-
tively. To integrate with CBAM-ResNet [29] more carefully, we define CBAM-
ResNet (MaxPool) and CBAM-ResNet (Spatial) separately to reduce computa-
tional complexity. We do not use max-pooled features in CBAM-ResNet. The
Top-1 accuracy of AW-CBAM-ResNet50 is better than AW-ResNet50 by 0.18%
but worse than AW-SE-ResNet50. The number of additional parameters for our
proposed attention module is 0.16 M, which is much smaller than 2.83 M (i.e.,
one-sixteenth) of SE and CBAM modules. Moreover, it takes only 0.01 GFLOPs
to apply our proposed attention module on the ResNet50 model on ImageNet
classification, which is comparable with 0.01 GFLOPs and 0.04 to adopt the
SE and CBAM modules and is negligible in terms of FLOPs to implement the
baseline model.

Resource-Constrained Architecture. To inspect the generalization of our
proposed attention module in this resource-constrained scenario, we conduct
the ImageNet classification with the MobileNet architecture [8]. We apply our
proposed attention module to pointwise convolution instead of depthwise convo-
lution in every two depthwise separable convolutions. When integrating with the
CBAM models [29], we remove the max-pooled features and keep spatial atten-
tion maps. As shown in Table 1, AW-SE-MobileNet and AW-CBAM-MobileNet
achieve 0.56% and 0.19% Top-1 accuracy improvements compared with SE-
MobileNet [10] and CBAM-MobileNet, respectively. It is an impressive result
that the Top-1 accuracy of AW-CBAM-MobileNet is 2.57% better than that of
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Table 1. Comparisons of attention-based models on ImageNet classification. * refers
to the baseline results from [29]. All the rest results are produced using the source code
from [29].

Model Top-1 error Top-5 error GFLOPs Parameters (M)

ResNet50 [7] * 24.56%(+0.00%) 7.50% 3.86 25.56

AW-ResNet50 23.38%(+1.18%) 6.79% 3.87 25.72

SE-ResNet50 [10] * 23.14%(+1.42%) 6.70% 3.87 28.09

AW-SE-ResNet50 22.72%(+1.84%) 6.47% 3.88 28.25

AW-CBAM-ResNet50 (MaxPool) 22.82%(+1.74%) 6.41% 3.89 28.25

AW-CBAM-ResNet50 (Spatial) 23.20%(+1.36%) 6.58% 3.90 28.25

ResNet101 Baseline [7] * 23.38%(+0.00%) 6.88% 7.57 44.55

AW-ResNet101 22.38%(+1.00%) 6.21% 7.58 44.95

SE-ResNet101 [10] * 22.35%(+1.03%) 6.19% 7.58 49.33

AW-SE-ResNet101 21.78%(+1.60%) 5.74% 7.59 49.73

AW-CBAM-ResNet101 (MaxPool) 21.64%(+1.74%) 5.76% 7.60 49.73

AW-CBAM-ResNet101 (Spatial) 22.32%(+1.06%) 6.18% 7.61 49.73

MobileNet Baseline [8] * 31.39%(+0.00%) 11.51% 0.569 4.23

SE-MobileNet [10] * 29.97%(+1.42%) 10.63% 0.581 5.07

AW-SE-MobileNet 29.41%(+1.98%) 10.59% 0.623 5.52

CBAM-MobileNet [29] 29.01%(+2.38%) 9.99% 0.611 5.07

AW-CBAM-MobileNet (Spatial) 28.82%(+2.57%) 9.98% 0.652 5.52

the MobileNet baseline. For the MobileNet model, our proposed attention mod-
ule increases the computation by 0.041 GFLOPs, while SE and CBAM modules
need 0.012 and 0.041 GFLOPs, respectively. Also, the required parameters for
our proposed attention module are 0.45 M, which is much less than 0.84 M for
SE and CBAM modules.

4.2 Object Detection on COCO

To show the generalization of our proposed attention module, we apply it to object
detection tasks. We evaluate our proposed attention module further on the COCO
dataset, which contains 118K images (i.e., train2017) for training and 5K images
(i.e., val2017) for validating. Here we intend to evaluate the benefits of applying
our proposed attention module on the ResNet101-FPN backbone [18], where all
the lateral and output convolutions of the FPN adopt our AW-convolution. The
SE and CBAM modules are placed right before the lateral and output convolu-
tions. As shown in Table 2, applying our proposed attention module on ResNet101-
FPN boosts mAP@[0.5, 0.95] by 0.63 for the Faster R-CNN baseline. Integrating
with attentional activations-based models, Faster R-CNNs with the backbones of
ResNet101-AW-SE-FPN and ResNet101-AW-CBAM-FPN outperform Faster R-
CNNs with the backbones of ResNet101-SE-FPN and ResNet101-CBAM-FPN by
0.34 and 0.45 on COCO’s standard metric AP.
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Table 2. Comparisons of attention-based Faster R-CNN on COCO. All the results are
produced using Pytorch.

Backbone Detector mAP@[0.5, 0.95] mAP@0.5 mAP@0.75

ResNet101-FPN [18] Faster R-CNN 37.13(+0.00%) 58.28 40.29

ResNet101-AW-FPN Faster R-CNN 37.76(+0.63%) 59.17 40.91

ResNet101-SE-FPN [10] Faster R-CNN 38.11(+0.98%) 59.41 41.33

ResNet101-AW-SE-FPN Faster R-CNN 38.45(+1.32%) 59.70 41.86

ResNet101-CBAM-FPN [29] Faster R-CNN 37.74(+0.61%) 58.84 40.77

ResNet101-AW-CBAM-FPN Faster R-CNN 38.19(+1.06%) 59.52 41.43

5 Conclusion

In this paper, we analyze the two ignored problems in attentional activations-
based models: the approximation problem and the insufficient capacity problem
of the attention maps. To address the two problems together, we propose an
attention module by developing the AW-convolution, where the shape of the
attention maps matches that of the weights rather than the activations, and inte-
grate it with attention-based models as a complementary method to enlarge their
attentional capability. We have implemented extensive experiments to demon-
strate the effectiveness of our proposed attention module, both on image classi-
fication and object detection tasks.
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Abstract. The rapid and accurate prediction of residual stresses in
metal additive manufacturing (3D printing) processes is crucial to ensur-
ing defect-free fabrication of parts used in critical industrial applications.
This paper presents promising outcomes from applying attention-based
neural architectures for predicting such 3D stress phenomena accurately,
efficiently, and reliably. This capability is critical to drastically reduc-
ing the design maturation time for additively manufactured parts. High
fidelity, physics-based numerical models of the additive melting process
exist that can simulate the thermal gradients and consequent stresses
produced during manufacturing, which can then be used to synthesize a
3D crack index field for the entire part volume, capturing the likelihood
that a region in a part will crack upon heat treatment. However, these
models are expensive and time-consuming to run. In response, a Deep
Convolutional Neural Network (DCNN) model is explored as a surrogate
for the physics-based model, so that it can be used to time-efficiently esti-
mate the crack index for a given part-design. This requires careful design
of the training regime and dataset for a given design problem. Using the
U-Net architecture as the baseline, we expand the standard 2D applica-
tion of this architecture for segmentation to the estimation of the full
3D, continuous valued, stress field. We illustrate the primary challenge
faced by the standard U-Net architecture with L2-loss arising from spar-
sity in critical values of the crack index and show how augmenting the
architecture with attention mechanisms helps address the issue as well
as improve the overall accuracy of estimation.

Keywords: Attention mechanism · 3D segmentation · Regression ·
Additive manufacturing · 3D printing · Generative design

1 Introduction

Laser Powder Bed Fusion (LPBF) of Ni-based Superalloys is a popular paradigm
of additive manufacturing (AM) applied in the fabrication of turbomachinery
components in aerospace and land-based turbines [1]. LBPF-AM involves the use
of a focused beam to selectively melt powder in a layer-by-layer fashion [2]. Each
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powder layer is a few tens of microns thick and after melting each layer, it is cooled
to solidify the layer before sequentially depositing the next layer on top. Such
rapid heating and cooling can induce high thermal stresses in the part resulting
in the generation of significant thermal residual stresses. These residual stresses
manifest in the form of part deformation or if significantly high, it can result in
the part cracking at multiple locations [3]. A cracked part results in the need to
refine the part-design and to repeat the print, leading to multiple iterations from
design to full scale manufacture of the part. As a result, the overall design matura-
tion time can span months to years, involving multiple hand-offs between design
and manufacturing engineers. Moreover, as metal additive manufacturing evolves
from manufacturing part prototypes to large scale, high volume industrial parts,
its throughput is a critical factor for its adoption. Addressing this inefficiency and
cost, due to cracking during manufacturing, requires understanding and modeling
the phenomena that lead to the initiation of cracks. Several commercially available
high fidelity, physics-based software tools can simulate the additive melting pro-
cess, the resulting thermal gradients and consequent residual stresses during man-
ufacturing. These stresses can then be used to synthesize a 3D crack index field for
the entire part, capturing the likelihood of failure around specific locations in the
part. However, high-fidelity simulation of the nonlinear, transient, multiphysics
melting process is resource intensive and time consuming, often requiring several
days to complete one simulation of a part even few inches tall. For example, the
process simulation of a 7-inch tall part can take more than a week on a 24 core high
performance processor with 256 GB of memory. This inhibits designers from iter-
ating on the part design, and evaluating part designs in terms of their propensity
to crack. In response, we explore the hypothesis of whether time-efficient and accu-
rate surrogates can be designed, leveraging these expensive physics-based models,
so that they can provide a reliable estimate of the crack index for a given candidate
of the design problem.

2 Related Work

The application of 3D segmentation techniques using CNNs, while prevalent in
medical imaging domain [10–15], is fairly new in the domain of additive manu-
facturing. Many of the workflows implement a 2D based inference followed by
postprocessing to stitch the outcomes volumetrically. [19] provides a broad sur-
vey into the application of deep learning to AM. The work described in [16] is
analogous to ours, where a 3D U-Net is applied for segmentation of 3D printed
volumes to facilitate automated identification of defects in the part. Unlike our
paper, this work targets the standard segmentation task, formulated as classifi-
cation and does not need to target the voxel-level spatial resolution for regression
that is critical for the problem targeted in our paper. Some other related efforts
in the space of AM include [14,16] that make use of 2D inference of defects
during AM, by analysis of 2D camera images during part printing. [17] deals
with stress prediction for AM parts; while it employs high-fidelity physics-based
simulation, and a deep learning based model as a surrogate, to estimate stress
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for varying geometries, it is largely focused on modeling 2D separation stress at
the interface that occurs in bottom-up stereolithography printing. [18] makes use
of finite element model and deep learning to estimate surface Von Mises stress
distribution on aorta walls; however, it also abstracts the estimation problem
into a 2D modeling problem by unrolling the aorta wall into a 2D surface, by
applying a shape abstraction model. [20] presents the application of deep neu-
ral networks for predicting the 2D stress fields on cantilevered structures. To
the best of our knowledge, our paper is the first body of work to look at the
application of attention-based 3D architectures for a full end to end volumetric
regression of 3D stress fields in AM.

3 Approach

This work leverages Deep Convolutional Neural Networks (DCNN) to construct
high fidelity and time-efficient surrogates for the high fidelity physics-based mod-
els of residual stress. Using the U-Net architecture [4] as the baseline, we expand
the standard application of this architecture for 2D segmentation to the esti-
mation of the full 3D, continuous valued, stress field. We illustrate the primary
challenge faced by the standard U-Net architecture with L2-loss arising from
sparsity in critical values of the crack index - part regions with high values of
the crack index are often in a much smaller minority of the overall volume of the
dataset used to train the surrogate. As a result, using standard metrics of loss
like L2-loss can lead to a surrogate that only learns to reliably predict in regions
where the crack index values are from the likely values of the overall distribu-
tion, but ignore or poorly model the rarer high values of crack index, which are
critical to the problem at hand. More recently, the idea of attention, inspired
from cognitive attention as seen in humans, has been explored to address this
problem, predominantly in the NLP community [6,7] with promising outcomes.
We extend this idea to the crack index prediction problem and show how aug-
menting the architecture with attention mechanisms helps address the issue as
well as improve the overall accuracy of estimation.

3.1 Design Problem Formulation

The design problem we focused on is represented by Fig. 1, which shows 2
instances of design candidates. The problem tackles design of a hole near a
triangular notch at the bottom of the design coupon. This configuration and
its variants represent a class of design problems that are relevant to features
like cooling holes or weight reduction holes commonly used in industrial design
components. The primary variant (parameter) in this configuration space, in our
experiment, involves the shape and volume of the hole; it is known that there are
variants of this configuration that can be printed reliably without the appearance
of any cracks, and others which almost always lead to cracks after manufacture.
The goal then is to understand the relationship between the hole shape, volume
and the crack index distribution, so that designs that lead to high crack index



182 N. Iyer et al.

Fig. 1. Example coupons showing the design problem tackled in this paper. The sec-
ond, blue volume in each subfigure shows the crack index distribution with red values
indicating high propensity of cracking upon printing. The first design-instance clearly
shows a high likelihood of cracking at the bottom wall of the hole (red values), while
the second design-instance looks to have low crack index values. (Color figure online)

values can be avoided at the outset during the design phase. While approaches
like transfer learning can facilitate extending the surrogate model generated for
a given feature to other design problems that are only incrementally different,
or to varying feature-sizes, for a drastically different design feature or geometry,
a new surrogate might need to be created emulating the workflow presented in
this paper. In that sense, the vision is for there to be a library of surrogates each
of which would apply to a distinctly different feature and help optimize it for
crack free manufacturing, within a class of design problems.

3.2 Training Data Generation

A parametric data generator was designed to invoke suitably diverse variants of
the design problem, thereby enriching the training data for developing the sur-
rogate model. A few examples of the samples, illustrated as 2D slices for clarity,
are shown in Fig. 2 along with their corresponding crack index evaluations. The
generator runs a set of topology optimization (TO) simulations across a broad
range of boundary conditions, loading conditions, design constraints and combi-
nations of those to create a series of topology optimized design variants. These
3D design variants, voxelised at an appropriate resolution, are the inputs for
training the surrogate. Given that these design variants are targeted for addi-
tive manufacturing, additional constraints like presence of overhangs, enforcing
the hole to remain open through the volume for each sample are also accounted
for, by the design generator, to ensure that the candidates are feasible and can
be reliably printed by an AM machine. The two baseline geometries that were
shown in Fig. 1 were considered as seed designs for the design generation, since
these two geometries represent samples that respectively have a low and a high
propensity for cracking when printed. This is expected to bring valuable vari-
ability in the generated set of samples across the spectrum of the crack index.
One way to explicitly introduce variation in the samples was to vary the direc-
tion and magnitude of the external loads applied to the coupon. To this end, a
set of loading conditions were proposed featuring traction force applied directly
on the surface of the design domain which is herein just the initial hole in the
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Fig. 2. Few examples of the 3D data used for training the surrogate - shown using 2D
slices for clarity of depiction.

coupon. To introduce more variation, the inner surface of the initial hole was
divided into four segments with the vertical and horizontal symmetrical planes
of the hole as the cutting planes. Each of these four segments is subjected to
an independently varying traction force. Each such design variant is evaluated
using the physics-based additive simulation model to estimate the crack index.
Using additive build simulation to estimate crack index values in 3D is com-
putationally intensive (almost 18 h per design candidate), with complexity that
increases exponentially with the number of voxels (i.e. resolution) used to mesh
the geometry. In order to manage this complexity, the design evaluation was
conducted at a lower resolution, which reduced the required computation time
to a more feasible value of 4 h, followed by the application of trilinear interpo-
lation to reconstruct the crack index at the desired high resolution. The output
from this upsampling step was validated using a few samples which were eval-
uated at both resolutions; the interpolation outcomes successfully preserve the
critical, spatial trends of the crack signal. A set of 116 distinct design samples
were generated and evaluated as described above to generate the training data
for the crack index surrogate.

3.3 3D U-Net for Crack Prediction

A 3D U-Net architecture inspired from [4] was implemented for dense, voxel-wise
prediction of the 3D crack index from the 3D geometry. The choice of architec-
ture for the surrogate was influenced by multiple factors: 1) the successes shown
in literature in the application of the U-Net architecture to semantic segmen-
tation, 2) the ability of the U-Net to perform equally well, if not better, with
fewer parameters compared to a fully connected network, and 3) the ability
of U-Nets to improve spatial localization. Whereas the standard invocation of
U-Net for semantic segmentation addresses a classification problem (going from
pixel intensities to categorical labels for each pixel), in our case we need to esti-
mate a continuous number (i.e., crack index) for each voxel, which is a regression
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problem. In summary, the baseline architecture that we consider is a 3D U-Net
for voxel-wise regression that makes use of MaxPooling for feature abstraction.
The high computational cost of training a 3D U-Net is addressed by conduct-
ing the training on an Nvidia DGX machine configured with 8, P100 GPUs.
Table 1 shows some details of the training regimen, that was used to train all the
surrogates. The use of standard metrics of loss like L2-loss can lead to a surrogate

Table 1. Training regimen characteristics for the surrogates

Training parameter Description

Architecture 3D U-Net, 3 × 3, ReLU, 1-32-64-128-256-128-64-32-1

Feature abstraction Max pooling

Output layer activation Linear

Loss function L2/MSE

Target Raw crack index values

Optimizer ADAM, init-lr = 1e−4

Number of samples 116

Batch normalization No

Dropout No

Input sample 100 × 60 × 178 volume

Train/test split 100/16 samples

Batch size per GPU 8

#epochs 150, with early stopping check

Early stopping val-loss, min-delta = 1e−9, patience = 5

Initialization Glorot-uniform

Compute Parallel 4-GPU

that only learns to reliably predict in regions where the crack index values belong
to the likely values of the overall distribution, but ignore or poorly model the
rarer high crack index values, which are critical to the problem at hand. Whereas
approaches like Focal Loss [5] can be used to dynamically tweak the training to
target harder-to-estimate values in the input data, our initial exploration did
not show much promise in using Focal Loss to our problem. In response, we con-
sider the application Attention mechanisms to the standard U-Net architecture
to help better capture the critical crack index values in the part. The concept of
Attention is well-suited to the crack index prediction problem because it helps
to focus learning on areas of interest with high crack index that are often present
only in small regions of the overall training data.

3.4 Attention Mechanisms for 3D U-Net

The idea of attention, inspired from cognitive attention as seen in humans,
has been explored predominantly in the NLP community [6,7] with promising
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outcomes. An attention mechanism is formalized as a part of the learning archi-
tecture and it allows focusing on the most important parts of the input, while
leaving out the irrelevant components, for a task at hand. In other words, atten-
tion is a mechanism by which task-relevant weights can be learned for different
components of the inputs, thereby improving learning performance. In computer
vision, tasks that involve object detection require reliable differentiation between
foreground and background pixels. The attention module can learn to produce
and present soft proposals for regions of interest, and further amplify the learn-
ing of objects within those regions of interest, while pixels outside those regions
are largely rendered irrelevant to the learning. Specifically, as shown in Fig. 3,
we looked at two alternate mechanisms of encoding attention, from literature,
within the baseline U-Net architecture, by extending them to their 3D versions.
One variant, as in Fig. 3(a), is inspired from [8] where the spatial attention map
is computed on the bottleneck features that connects the encoder of the U-Net
to the Decoder: it entails applying average-pooling and max-pooling operations
on the bottleneck features, concatenating them and then using a single 7 × 7
Sigmoid-activated, convolution kernel to construct the spatial attention map.
The features at the bottleneck are multiplied with this attention map, which
acts as spatial weights to help focus on the regions most relevant for accurate
estimation of the crack index, by emphasizing or suppressing the feature chan-
nels. The other one, as in Fig. 3(b), is inspired from [9] in which an additive
attention gating mechanism is encoded allowing for attention-based coefficients
to be learned specific to sub-regions in the image. The gating signal helps amplify
critical, task-specific and spatial features in the input at multiple scales, that is
already encoded in the skip connections in a U-Net. The attention gates further
ensure that only salient features pass through the skip connections. Unlike clas-
sification models, the attention gating signal in these segmentation problems is
not represented as a single, global vector for all image pixels, but as a grid signal
that carries image spatial information. This enables amplify spatially relevant
features in the encoder skip connections before it is merged with the decoder
signal. As stated in [9], because the gating signal helps filter the neuron activa-
tions during the forward pass as well as during the backward pass, the gradients
originating from background regions are down weighted during the backward
pass, thus emphasizing the objects in the foreground.

4 Outcomes

While L2-loss is used for training the surrogate and for measuring its perfor-
mance, its values are in the units of the quantity being measured, in this case
the crack index. Hence, we make use of the normalized metric, Mean Relative
Error, MRE, defined below, to report performance, since it captures the relative
error rate in percent units when comparing deviation of predictions from ground
truth, and thus expressed within a standard range (0–1).

MRE =
1
n

n∑

j=1

|yj − ŷj |
ε + max(|yj |, |ŷj |)
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Fig. 3. The two attention mechanisms explored in this paper: (a) SA U-Net [8] and
(b) AG U-Net [9]

This metric, defined below, also allows us the report performance of the model in
terms of its mean voxelwise accuracy. Table 2 compares the relative performance
of the 3 surrogates in terms of both MRE and Accuracy for each of the 3 surro-
gates. The metrics reflect the mean relative error (or accuracy) across all voxels

Table 2. Performance comparison

Surrogate description %Mean relative error %Accuracy

Standard 3D U-Net for regression 21.78 78.22

U-Net with spatial attention 20.25 79.75

U-Net with attention gates on skip 19.89 80.11

in the set of test samples. The numbers indicate that both U-Net architectures
with attention mechanisms perform marginally better than the baseline U-Net.
However, much like the L2-loss, the MRE can easily mislead true performance
since being able to predict the sparsely occurring, high crack index values, is
more critical than the average performance across all the voxels. The real benefit
of using attention mechanisms is better illustrated from outcomes captured in
Fig. 4, which shows the predictions of the 3 surrogates, viewed on the same
samples visuo-spatially across the part slice. A careful inspection of each of
the 3 samples (columns) shows how the attention-based architectures (rows (c)
and (d)) tend to capture salient aspects (red dotted ellipses) of the crack index
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distribution as shown by the ground truth (row (a)) relatively better compared to
the prediction by the baseline U-Net architecture (row (b)). Reliable estimation
of the rare, but high values of the crack index are critical since these regions of
the part are the one most prone to cracking, thus making the design candidate
inferior or less-producible. One primary reason why the U-Net architecture is

Fig. 4. Comparing surrogate predictions on 3 test samples: (a) shows ground-truth
distribution of crack index on 2D slice, (b) shows predictions from baseline U-Net, (c)
shows predictions from spatial attention U-Net architecture and (d) predictions from
attention gated U-Net architecture. Red dashed ellipses show critical crack features
that are picked up only by the attention-based model (Color figure online)

ideally suited for dense prediction tasks like segmentation task is its ability to
extract and merge features at multiple scales. The introduction of attention
gates on these skip connections helps further amplify task-specific features at
these different scales, thus additionally improving the information capture from
the multi-scale feature-maps towards estimation of the crack index.

4.1 Discussion

The sample design candidates illustrated in Fig. 2 show that design candidates
have critical geometric features of varying shapes and size, which are domi-
nant at different spatial scales, and therefore this is expected to be true of the
crack index distribution as well. What attention coefficients enable is give higher
weights to the estimation of crack index in regions where critical features of a
design occur, which is precisely the challenge related to being able to estimate
the critical crack index values accurately. This is seen more clearly by looking
at the attention coefficients that are created during the prediction task. Figure 5
shows the attention coefficients generated at each of the 3 skip connections of the
AG-UNet architecture (rows 2, 3, and 4) for 4 design candidates; the topmost
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Fig. 5. Multi-scale features for the crack index captured by Attention coefficients in
the skip connections [9]

row shows the actual crack index value. The figure shows more clearly how these
coefficients weight all the feature maps, spatially, at each skip connection so as
to emphasize portions of the feature-maps in regions of the part where dominant
geometric features are visible at that scale. Finally, attention mechanisms can
help regularize the learning process to construct the right semantic representa-
tion and put the network parameters to use in learning the right function that is
also semantically aligned with the task at hand. More specifically, the presence
of geometric features semantically signal the existence of interesting behaviour
of the crack index near those features; attention mechanisms help reinforce the
need for the network to learn those crack index values better.

5 Conclusions

The accurate, reliable and time-efficient prediction of crack likelihood of LPBF
manufactured parts based on part geometry is critical to reducing design mat-
uration cost, time and to the adoption of additive manufacturing in the indus-
try. While high-fidelity physics based models exist that can accurately estimate
crack-relevant stresses induced by the LPBF process, however, their runtime
complexity and resource intensive framework creates a barrier in their applica-
tion to the problem at hand. We demonstrated early, promising outcomes in cre-
ating accurate and time-efficient surrogates for such physics-based models by the
application of deep convolutional neural network architectures. Crack index pre-
diction is a regression problem in 3D, unlike semantic segmentation, and we show
how the extension of the U-Net architecture to a 3D, dense prediction regression
problem is highly effective. However, whereas the U-Net architecture has many
characteristics that are critical to the crack index prediction problem, we show
how an L2-Loss trained U-Net alone can miss accurate estimation of rare, but
extreme values of the crack index. We experimented with 2 different attention
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mechanisms to address this issue and show that attention mechanisms can effec-
tively help amplify task-specific features at different scales of the input already
represented in the U-Net architecture within the skip connections. We extract
and plot attention coefficients encoded in the skip connection of the AG-UNet
architecture and show how attention coefficients encode higher feature-weights
in regions where critical features of a design occur, which is precisely the chal-
lenge related to being able to estimate the critical crack index values accurately.
We show that the attention mechanisms also marginally improve the prediction
accuracy of the baseline U-Net architecture. Finally, in addition to the features
themselves, attention mechanisms also help focus the overall network towards
parsimonious learning of the right approximation function that is aligned with
the underlying physics related to the phenomena being modeled. Our outcomes
show that attention-based architectures can help usher in a new era of design
that will target discovery of designs that are not only optimal to meet design
requirements, but additionally conducive to being manufactured reliably, after
their discovery. The next phase of the experiment will target the generation and
use of a larger data set to further strengthen and generalize the findings of the
work reported in this paper, based on statistical ablation studies.
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Abstract. Constituency parsing is the process of analyzing a sen-
tence by breaking it down into sub-phrases also known as constituents.
Although many deep neural models have achieved state-of-the-art results
on this task, few consider entity-violating issue, i.e. an entity cannot
form a complete sub-tree in the resultant constituent parsing tree. To
attack this issue, this paper proposes an entity-aware biaffine atten-
tion model for constituent parsing. It leverages entity information for
a potential phrase when conducting biaffine attention between the start
and end words of the phrase. In the absence of the proper metric for
comparison, the entity violating rate (EV R) as a new metric is intro-
duced here to evaluate how many the final parsing trees suffer from
entity violating issue. The lower the EV R, the better the model. This
metric from a brand perspective helps us understand the potential of
existing arts. Experiments on three publicly popular datasets including
ONTONOTES, PTB and CTB show that our model achieves the low-
est EV R while almost achieving the same performance in terms of the
three conventional metrics, i.e., precision, recall, and F1-score. Moreover,
extensive experiments of sentence sentiment analysis as a downstream
application further exhibit the efficacy of our model and the validity of
the proposed metric EV R.

Keywords: Constituent parsing · Entity information · Biaffine
attention

1 Introduction

Constituent parsing is to construct the syntactic tree for a given sentence whose
words constitute leaf nodes. In the syntactic tree, non-terminal nodes are called
constituents. For intuition, Fig. 1(a) illustrates a constituent parsing tree of the
phrase “vice-minister of the US Department of Defense Doetch”. This tree serves
as an important feature to represent a sentence, and has been applied in many
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Fig. 1. Constituent parsing tree of phrase “vice-minister of the US Department of
Defense Doetch”. (a) The entity-violating case. (b) The entity consistent case.

high-level natural language tasks, such as sentiment analysis [9], relation extrac-
tion [8], natural language inference [2], and machine translation [14].

In this subject recent chart-based neural models have achieved state-of-the-
art results by using advanced text encoders (i.e., BERT and XLNet) to represent
all possible spans, where each span stands for a single word or several consecutive
words from a sentence. Such models score each span, and then employs CKY
algorithm to choose the resultant tree in terms of the highest score [10,11,15,17].
Despite their astonishing success in light of precision, recall and F1-score, few
consider whether such arts also work well in the entity-violating issue: the entity
span parsed by a neural model does not conform to the true phrasal one of human
natural language. As in Fig. 1, “Department of Defense” as a true organization
(ORG) entity should be in a complete sub-tree (b) but is parsed by previous
neural models so that its words are distributed into two separate sub-trees (a).

Finkel et al. [5,6] firstly focus on this issue. They manually annotate the orig-
inal dataset ONTONOTES [7] by adding entity nodes to the constituent parsing
trees. This new dataset can greatly promote the model to output the consistent
entity spans. Besides, other works [12,13] endeavor to explore the entity-related
label as heuristic information, for instance, Chinese word can be labeled with
‘GPE-END’. Different from aforesaid works that absorb entity-related informa-
tion, Yang et al. [20] considered utilizing the named entity recognition (NER) task
to capture the entity information, and combining the PCFG algorithm for pars-
ing, of which the parameter sharing enjoys the benefits of two tasks. However,
since these entity-related parsing models either demand manual annotations or
implicitly merge entity information into training process of constituent parsing,
it may be underestimate the potential of the entity information.

To attack such problems above, we propose a biaffine attention based parsing
model by integrating entity information into constituent parsing process without
any manual annotations. Our model overally follows the basic biaffine attention
model [23]. Similarly, each word is represented as two role vectors: start role
vector and end role vector. Differently, we encode the entity information as the
entity role vector and append it to the previous two role vectors. In this sim-
ple way, the proposed vector is more informative and reasonable than before.
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By using the proposed entity-aware vector for each word, the basic biaffine atten-
tion model can boost potential score for each entity span. In our empirical stud-
ies, we find that although the entity information reinforces the ability of atten-
tion model to parse consistent phrasal span, it is lack of effective supervision and
the entity information might be ignored in the learning process. To this end, we
treat a simple NER task as the supervision similar to [22]. In our model, we add
a binary NER model to share the same word embeddings with the primary pars-
ing model. It helps our parsing model to capture informative entity structures.
The overall model is light-weight, simple yet effective, free from large amounts of
manual annotations, and even achieves the state-of-the-art performance on the
benchmarks. To evaluate the entity-violating degree, we propose an very intuitive
metric to calculate the ratio of the entity-violating spans to the entire samples.

In summary, this paper makes the following contributions.

1) We put forward an entity-aware biaffine attention model for constituent pars-
ing, which encodes the entity information of a span as the attention input
component.

2) To further exert the entity information in the attention model, we introduce
an auxiliary bi-nary NER model in the whole parsing model, in order to make
the parsing model aware of entity information.

3) Experiments on three datasets including ONTONOTES, PTB and CTB show
that our strategy greatly promote the parsing performance, especially based
on entity-violating metric. More importantly, the proposed model achieves
the sound performance in terms of precision, recall and F1-score.

4) To make our model more convincing, we apply our parsing model for a typical
downstream task—sentence classification [9]. Extensive results verify that
our model performs best when comparing with several well-behaved parsing
siblings.

2 Related Work

Constituent Parsing. Most constituent parsing models can be roughly clas-
sified into three types: transition-based, sequence-based and chart-based ones,
according to which decoding algorithm they choose. For transition-based models,
without no need of the decoder, they directly build the parsing trees through a
sequence of ‘shift’ or ‘reduce’ actions, or other extended actions [1,3,21]. A recent
representative model proposed by Yang and Deng starts with current partial pars-
ing tree, then builds the corresponding graph and applies dynamic graph neural
network to decide the next action [21]. This process will continuously iterate until
the entire parsing tree is built successfully. Sequence-based approaches primarily
convert a tree structure into a linear sequence form and generate a sequence of
pertinent labels using seq2seq model [16,18,19]. Differently, chart-based methods
firstly score all possible spans, then use CKY dynamic algorithm to decode out
a highest scored tree [4,10,11,15,17,23]. In this regard, attention mechanism is
introduced to represent a span by using self-attention [11], labeling attention [15]
and n-gram attention [17] to complement those span boundary information. These
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models focus on how to construct a more powerful word representation for model
inference. However, none of these models above consider entity-violating issue.
Although these models take entity information into consideration [5,6,12,13,20],
they are either suffer from massive manual labeling work [5,6,12,13] or cannot
effectively convey entity information directly in parsing process [20]. To this end,
we introduce an entity-aware parsing model which can apply entity information
directly into inference process without extra labeling work.

3 Method

3.1 Parsing Model

This section explores the entity-aware biaffine attention model for constituent
parsing, which follows the two-step parsing model [23]. The first step (span-
parsing) decides whether a span is a node in the resultant constituent tree, and
the second label-parsing model labels each node with POS tag. The two steps
share the same contextual word embeddings.

Figure 2 shows the overall architecture of constituent parsing. For the given
sentence, the first input embedding for each word (e.g. Xi) is the concatenation
of word embedding, and its char-level feature gained through CharLSTM on
each word. To obtain contextual information, we feed the embedding of each
word into a 3-layer BiLSTM layer. The BiLSTM module outputs two hidden
embeddings f and b for each word from forward and backward direction. Then
for each word, e.g. wordi we concatenate fi and bi+1 to form its contextual
representation hi:

hi = [fi; bi+1] . (1)

In biaffine model, the role of each word could be either the start of a span or
the end of a span. After yielding the contextual representation h of each word, we
implement four MLP (multi-layer perceptron) modules for each word, resulting
in four vectors, vspanl

, vspanr
, vlabell and vlabelr (collectively referred to as vl,i,

vr,i in Fig. 2). The first two participate the span-parsing model deciding whether
a span exists or not while vlabell and vlabelr are used to label the span with POS
tag. The dimension size of vspanl

and vspanr
is 450, while that of vlabell and

vlabelr is 100.

Span Parsing. We construct an entity-aware biaffine attention model for con-
stituent parsing. In our baseline biaffine model [23], wordi always uses the same
start vector vspanl,i

when pairs with different end wordj or wordk. We design a
unique start and end vector for each span(i,j) based on start vector of wordi i.e.
vspanl,i

, end vector of wordj i.e. vspanr,j
and entity information of span(i,j). More

specifically, for a given sentence with n words, we construct two n∗n embedding
matrixes, embed-matrix-l: L and embed-matrix-r: R, which store the start and
end vectors for all possible spans. For example, L[i, j] and R[i, j] are the start
and end vectors applied in biaffine calculation of span(i,j). As a consequence,
the issue left now is how to build L and R? For a given sentence with n words,
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Fig. 2. The framework of entity-aware constituent parsing approach

the n ∗ n matrix S represent all possible spans. S[i, j] means a span start from
wordi and end at wordj . It is obvious that these nodes in the Lower triangle
of matrix S bear no meaning (we cannot build a span of words starts from the
back and ends at the front), which will not be considered in practice. We traverse
every node located in the upper triangle of S. For a certain node S[i, j], we check
whether span(i,j) is an entity, and embed entity information (i.e. 0 or 1) into
a vector vis entity with length 50. Then we concatenate vis entity to vspanl,i

and
vspanr,j

, resulting in two vector vl(i,j) and vr(i,j) of length 500. Store vl(i,j) in L
and vr(i,j) in R at position (i, j), respectively. When doing biaffine operation, we
traverse the upper triangle of matrix S again, for every node(i, j), and fetch the
start vector vl(i,j) from L and end vector vr(i,j) from R at position (i, j). Then
both vl(i,j)and vr(i,j) are fed to the following biaffine operation:

vTl(i,j)Wvr(i,j), (2)

where vl(i,j) and vr(i,j) are vectors with length d = 500, and W is the learning
parameter with d ∗ d. The result is a scalar indicating the potential score for
span(i,j) being a node in the sentence’s constituent parsing tree, and we mark
it as s(i, j).

For a sentence x, the score of a tree y is the sum score of all spans containing
in the tree:

s(x,y) =
∑

(i,j)∈y

s(i, j). (3)
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Under TreeCRF algorithm, the condition probability of the golden tree is:

p(ŷ | x) =
es(x,ŷ)

Z(x) ≡
∑

y ′∈T (x) e
s(x,y ′) , (4)

where Z(x) is the sum score for all possible trees, which can be calculated by
inside algorithm. T (x) is a set including all possible trees for x.

Based on the scores of all spans calculated above, we use the CKY algorithm
to decode the parse tree with the highest score:

ȳ = arg max
y

s(x,y) = arg max
y

p(y | x). (5)

As illustrated above, we build unique start and end vectors for each span by
adding their entity attribute embedding (whether it is an entity or not). Through
this processing, parsing inference can then consider the entity information, which
is entity-aware.

Label Parsing. After finishing the span parsing work, we obtain a constituent
tree structure without labels. We feed vlabell,i and vlabelr,j into the following
biaffine attention operation to finish the labeling job for span(i,j):

vTlabell,iWvlabelr,j . (6)

In this module, the corresponding parameter W is c ∗ d ∗ d, where c is the
number of POS types and d is the length of vlabell,i and vlabelr,j . The result is a
probability vector of length c.

3.2 Entity Compatible Split Method

Our model belongs to chart-based parsing model. It relies on CKY algorithm to
decode. The result trees are binarized trees agreeing with CNF rule. However,
little training data satisfies a binarized tree structure. It is common to use third-
party tool (e.g. NLTK) to convert an original parsing tree into its binarized
form with split choice right or left. As we observed, many entities satisfy a sub-
tree structure in their original non-binarized parsing trees, violating after these
trees binarized. One group of samples suffers from left binarized operation, while
other samples suffering from right choice. The baseline biaffine attention model
[23] uniformly chooses left split mechanism, which is not friendly to first group.
In our model, we compare entity violating number of the two split choices for
every single sample, and choose those results suffering from lower entity violating
number.

3.3 NER Sub-task

Besides adding entity information in parsing process, to make our model more
related with entity structure, we add a binary NER model that only judges
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whether a span is an entity or not. The NER model is also implemented with
biaffine attention architecture, which shares the same contextual word embed-
ding h with parsing model. Computing entity score of a certain span(i,j) is analo-
gous to parsing model above. Two extra MLPs are applied to obtain entity span
boundaries representation ventityl

and ventityr
, then follows the same biaffine

process as Label parsing, vTentityl,i
Wventityr,j

. W is a 2 ∗ d′ ∗ d′ tensor, 2 repre-
sents two types (a span is an entity or not). d′ is the dimensions of ventityl,i

,
ventityr,j

and is set to 150 in this paper.

3.4 Training Loss

The losses for the whole model originate from three parts: Span parsing loss,
Label parsing loss and NER loss:

Loss = Lossspan + Losslabel + Lossentity. (7)

The first item Lossspan is to maximize the probability of the golden parsing
tree and has the following form:

Lspan(x, ŷ) = −s(x, ŷ) + logZ(x). (8)

The latter two terms correspond to label parsing loss and NER loss, which
belong to classification tasks and have the common cross entropy loss, i.e.,

p(i, j)c =
exp (score(i, j)c)∑C

c′=1 exp (score(i, j)c′)
, (9)

loss = −
∑

(i,j)∈ŷ

C∑

c′=1

y(i,j)c′ log p(i,j)c′ , (10)

where p(i, j)c is the probability of entity span(i,j) with label c in NER task, or
the parse span probability with label c for label parsing task. y(i, j) is a one-hot
vector with golden label position setting 1 and the other positions setting 0. ŷ
here can be a golden parsing tree or a set containing all golden entity spans of
sentence x.

4 Experiment

Dataset. We conduct experiments on PTB, CTB, and ONTONOTES. The
first two datasets are popular benchmarks in constituent parsing tasks, while
ONTONOTES contains both parsing and NER tags, which is rather suitable
for discussing the entity-violating issue. Given that there is no NER tags in
datasets PTB and CTB5.1, we use third party tool StanfordCoreNLP to obtain
the entities on these two datasets. We follow the conventional train/dev/test
data split approaches on the three datasets.
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Metrics. The main idea of this paper is to alleviate the entity-violating issue in
constituent parsing task. Besides the following frequently-used three metrics, i.e.
precision, recall and F1-score, we introduce a new metric named entity-violating
rate named EV R, which indicates how many samples suffer from entity violating
problem. We calculate EV R as follows:

EV R = numv/nums, (11)

where numv is the number of entities conflicting with constituent trees, and
nums is the total number of samples.

Parameter Setting. To compare with baseline biaffine attention method and
illustrate the effectiveness of our model in EV R aspect, we follow most of hyper-
parameter values in [23]. The main parameters are shown in Table 1. We set all
the dropout rate to 0.33, and the batch size to 1000, respectively. Our model is
optimized by Adam, and the learning rate is 0.001 with decay rate 0.999 after
every 100 steps.

Table 1. Hyper-parameter setting

wordembed featureembed BiLSTMhidden vspanl/r
vlabell/r ventity ventityl/r

300 100 400 450 100 50 150

Compared Models. We compare our model with 5 methods that have ranked
among the best in constituent parsing. The abbreviation of model names are
shown in Table 2. B−biaffine [23] is the abbreviation of baseline biaffine model,
it achieves constituent parsing through basic biaffine attention. BeneparT5 [11] is
proposed by Kitaev and Klein, it encodes spans with self-attention, using MLP to
obtain the confidence score of a span to be a node in constituent tree. LALXLNet

[15] is a model that represents spans with label attention and follows the same
decoding framework as BeneparT5 [11]. SAParBert [17] is also a chart-based
model, it encodes spans by n-gram attention. HPSGBert [24] adjusts the form
of Head-Driven phrase structure grammar (HPSG) to satisfy both constituent
parsing and dependency parsing, and fulfills a joint constituent and dependency
parsing model sharing syntactic information of each task.

Given that BeneparT5 [11], LALXLNet [15], SAParBert [17] and HPSGBert

[24] have not been trained on ONTONOTES dataset, we just run prediction
on PTB and CTB for these four models. For BeneparT5 [11], we run parsing
operation based on the published benepar tool package. For LALXLNet [15],
SAParBert [17] and HPSGBert [24], we download their published pre-trained
models on websites corresponding to PTB and CTB datasets.
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Table 2. Results on ONTONOTES and PTB

ONTONOTES PTB

P R F1 EV R P R F1 EV R

BeneparT5 [11] - - - - 93.22 93.06 93.14 18.53

SAParBert [17] - - - - 95.64 95.64 95.64 17.73

LALXLNet [15] - - - - 94.43 94.34 94.39 18.70

HPSGBert [24] - - - - 95.69 95.69 95.69 17.57

B − biaffine [23] 91.44 91.42 91.43 2.64 93.79 93.85 93.82 17.60

OursGC 92.15 92.32 92.23 [0.65] 93.54 93.91 93.72 12.51

OursGB 95.36 95.02 95.18 1.10 94.91 94.54 94.72 [10.29]

OursB 95.34 95.49 95.41 0.98 94.55 94.45 94.50 12.12

Oursright 92.13 92.40 92.26 1.10 93.95 93.84 93.89 17.58

OursnoNER 92.03 92.19 92.11 1.21 93.36 93.45 93.40 12.96

Table 3. Results on CTB5.1

CTB

P R F1 EV R

SAParBert [17] 92.62 92.62 92.62 16.51

B − biaffine [23] 88.53 88.64 88.58 17.14

OursB 88.42 89.71 89.06 [14.92]

Oursright 88.30 88.58 88.44 16.50

OursnoNER 88.75 88.75 88.75 15.87

Results. The results of three conventional metrics precision, recall, F1-score and
our introduced EV R are shown in Tables 2 and Table 3. In each experiment per-
formance was averaged over seven runs. The superscripts of these compared mod-
els indicate the pre-trained embeddings, while in the lower part of our models,
these superscripts bear the following meaning: OursGC means that we use glove
word embedding concatenating char-level features as initial input, which is also
our kernel method mentioned above. OursGB replaces char-level feature with
Bert-feature, and OursB initializes word embedding randomly (without glove),
using Bert embedding as feature. Oursright is a variant based on OursGC , using
right-choice binarized tree to compare with our proposed entity compatible split
method. OursnoNER cuts off the NER model of OursGC .

Comparison with Other Methods: When comparing our proposed model
with the other five baseline models, we can see that our proposed models out-
perform all the other models on metric EV R. The observations are detailed as
follows: a) On ONTONOTES dataset, OursGC reduces more than 75% of EV R
when compared with B−biaffine, while maintaining a higher level of the other
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three metric (precision, recall, F1-score). b) On PTB dataset, HPSGBert obtains
the highest performance on F1-score with the pre-trained Bert embeddings and
shared syntactic information between constituent and dependency parsing. How-
ever, these 5 models perform worse more than 5 points of EV R than our proposed
models OursGC , OursGB . c) On CTB dataset, OursB achieves lower F1-score
than SAParBert, may be due to the inappropriate way of Bert feature used in
our model, however we still gain the best performance on EV R indicator. d)
The EV R on ONTONOTES is much lower than that on PTB and CTB. Since
ONTONOTES is a professional NER dataset with high quality NER labeled
data while we apply the third-party tool on PTB and CTB to get NER labels,
which has an unexpected result with noise.

Ablation Study: a) When comparing OursGC with OursGB across the three
datasets, the latter improves performance on PTB and CTB datasets after using
Bert features while OursGC achieves the lowest violating rate on ONTONOTES.
It indicates that our definedEV R is not that sensitive to these pre-trained embed-
dings. b) When the original binarized tree method is applied, Oursright suffers
from higher EV R than OursGC across all the three datasets, which proves the
effectiveness of our proposed compatible split method. c) OursnoNER cuts off the
NER sub-task module and performs worse than OursGC , which suggests that the
NER sub-task helps our model to understand the added NER feature better.

Table 4. Comparison of downstream task performance

Parsing data Accuracy

SAParBert [17] 95.4

HPSGBert [24] 96.0

LALXLNet [15] 96.2

BeneparT5 [11] 95.4

B − biaffine [23] 95.0

Ours 96.2

Performance in Downstream Tasks. To make our method and the intro-
duced EV R metric more convincing, we extend our parsing model to a down-
stream task: Sentiment Analysis. Kim et al. [9] introduced a Tree-LSTM frame-
work for sentence sentiment classification based on constituent parsing tree. It
implements bottom-up LSTM operation recursively and sends the root node
embedding into a inference layer for classification results. We deploy the tree
structure used in [9] with the counterparts from BeneparT5 [11], LALXLNet

[15], SAParBert [17], HPSGBert [24] and B − biaffine [23], and our proposed
model, respectively, in order to compare the effectiveness of parsing tree gener-
ated by our model.
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Tabel 4 depicts the results. Our model and LALXLNet [15] achieve the highest
accuracy 96.2% on sentence classification on TREC. It implies that our entity-
aware biaffine attention model is more in line with the language model.

Case Study. Figure 3 illustrates a case study performed by our proposed
model (Fig. 3(a)) and the baseline biaffine attention model (Fig. 3(b)) for sen-
tence “Where is John Wayne airport?”. Our model treats the PERSON entity
“John Wayne” as a complete constituent, while the baseline model splits it, and
integrates the two words “Wayne” and “airport” into a sub-tree. The example
indicates that our model can learn additional entity structure knowledge.
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Fig. 3. Comparison of the parsing result for “Where is John Wayne airport?” between
(a) our model and (b) B − biaffine [23].

5 Conclusion

In this paper, we investigate entity-violating problem in constituent parsing
tasks. To alleviate the violating issue, we construct an entity-aware parsing model
based on biaffine attention method. We modify the basic biaffine model, making
every biaffine operation correlated with its span’s entity information, without
extra manual annotations. Experimental results on ONTONOTES, PTB and
CTB show that our proposed model achieves lowest EV R on the three datasets.
The best performance of our parsing model on downstream task also demon-
strates the superiority of our method.
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1 Introduction

In recent years, cross-domain recommendation has attracted great interest as
they can solve the data sparsity problem in recommender systems [1–4]. The
cross-domain recommendation aims to utilize the information of the source
domain to enrich the target domain. Thus, the data sparsity problem in the
target domain can be alleviated effectively.

Lily

Movie domain Book domain

Actor Director AuthorLength

Type

PlotPlot

Type

Fig. 1. An illustration of the movie’s and book’s features in the movie domain and
book domains.

Existing methods for cross-domain recommendation can be roughly divided
into two categories according to features’ learning and utilization: specific-feature-
based methods and sharing-feature-based methods. For specific-feature-based
methods, they first obtain users’ and items’ domain-specific features in each
domain. Thereafter, the same or similar features are transferred through com-
mon users across domains for recommendation [5–8]. As shown in Fig. 1, these
methods first obtain the features of the movie that Lily has watched in the movie
domain (i.e., the type, plot, actor, and director). Meanwhile, they learn books’
features in the book domain (i.e., the type, plot, author, and length). Then, the
same or similar features (i.e., the type and plot) are transferred by Lily from the
movie domain to the book domain. Finally, the specific-feature-based methods
recommend the book with the same/similar type/plot as the movie to Lily. For
the sharing-feature-based methods, they directly learn users’ and items’ latent
transferable feature cross domains and then utilize these features for recommen-
dation [9,10]. For instance, in Fig. 1, if these methods learn that the movie Lily has
watched involves mathematical knowledge, they will get the correlation between
the movie and a mathematics book. Then, they treat the correlation as a latent
transferable feature. According to the latent transferable feature, the sharing-
feature-based methods recommend a mathematics book to Lily.

However, both specific-feature-based methods and sharing-feature-based
methods have their own problems.

First, specific-feature-based methods are difficult to capture the latent trans-
ferable features cross domains. These methods focus on learning users’ and items’
domain-specific features in their respective domains. Without considering the
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relation between two domains, the specific-feature-based methods failed to cap-
ture users’ and items’ latent correlation cross domains. Therefore, the latent
transferable features cross domains are difficult to capture, so that the utiliza-
tion of source domain information is greatly reduced. As illustrated in Fig. 1, if
Lily has watched a suspense movie that involves mathematical knowledge in the
process of reasoning, she may read a mathematics book. However, the specific
feature-based methods cannot obtain this latent transferable feature between the
movie and the book. Second, sharing-feature-based methods ignore users’ and
items’ domain-specific features. Since they attach great importance to users’ and
items’ latent transferable features, the recommended items in diverse domains
have high similarity. Thus, the recommended items may be unsuitable for users
as user preferences are distinct in different domains. As Fig. 1 shows, if these
methods recommend a mathematics book to Lily just as she has watched a
movie that involves some mathematical knowledge, the book may be unsuitable
for her. The reason is that they ignore the book’s domain-specific features (i.e.,
the author and length), and Lily may dislike the book’s author or length.

To address the above problems, we put forward the following ideas. First,
the users’ and items’ latent transferable features and domain-specific features
should be learned simultaneously. In this way, the latent transferable features
and domain-specific features can work together in recommendation. Therefore,
the utilization of source domain information can be improved, and the recom-
mender system can recommend suitable items to users. Second, seamlessly fusing
different features is a challenge as various features make distinct contributions
to the recommendation. Different importance of latent transferable features and
domain-specific features should be learned so that the features can be fully uti-
lized for recommendation.

Motivated by the above ideas, we propose an Attention-based Multi-View
Feature fusion model for cross-domain recommendation (AMVF). Multi-view
features include users’ and items’ latent transferable features and domain-specific
features. Figure 2 shows the architecture of AMVF. First, heterogeneous graphs
GS , GT , and GST are constructed to store the user-item historical interactions
in domain S, domain T, and cross domain S and domain T, respectively. Then,
AMVF learns users’ and items’ features from GS , GT , and GST simultaneously.
The latent transferable features are fully captured from GST , and the domain-
specific features are obtained from GS and GT . Therefore, the latent transferable
features and domain-specific features work together to improve the performance
of AMVF. Next, an attention-based feature fusion algorithm is designed to fuse
different features seamlessly. Through considering different importance of various
features, the features are fully utilized, and suitable items are recommended to
users. Finally, user preferences in different domains are predicted, and the list
of recommended items is given.

In summary, this paper makes the following contributions:

– To our best knowledge, this is the first work to learn and utilize both users’
and items’ domain-specific features and latent transferable features for cross-
domain recommendation.
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Fig. 2. The architecture of AMVF. Heterogeneous graphs GS and GT are used to
learn users’ and items’ domain-specific features in each domain. Heterogeneous graph
GST is used to capture users’ and items’ latent transferable features cross domain S
and domain T.

– AMVF learns users’ and items’ domain-specific features and latent trans-
ferable features on three graphs simultaneously. Hence, these features work
together to recommend suitable items to users.

– To fuse different features seamlessly, an attention-based feature fusion algo-
rithm is designed to learn different importance of various features. Therefore,
AMVF fully utilizes the features and its performance is improved.

– We conduct extensive experiments on two pairs cross-domain datasets. The
results empirically verify the superior performance of AMVF.

2 Related Work

Along with the explosive growth of information, recommender systems have
become an essential tool to help users find suitable items [11,12]. Among various
recommender systems, collaborative filtering is an early popular and widely used
method [13,14]. For instance, BPR [13] is a classic technology for collaborative
filtering, which learns users’ and items’ features based on matrix factorization.
NCF [14] is one representative neural network architecture to model users’ and
items’ features by collaborative filtering. However, these methods are faced with
the data sparsity problem.

To alleviate the data sparsity problem, several cross-domain recommenda-
tion methods have been proposed and achieved promising performance, such as
NCF+ [14], CoNet [6], SCoNet [6], BiTGCF [8], and PPGN [9]. NCF+ [14] is a
cross-domain recommendation model modified from NCF with conducting multi-
task training and transferring users’ features. CoNet [6] learns users’ and items’
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features in each domain and transfers them cross domains based on the cross-
stitch network. SCoNet [6] is a modified version of CoNet with sparsity-induced
regularization. BiTGCF [8] initializes users’ and items’ features in each domain
and considers users’ domain-specific features and domain-sharing features when
transferring. PPGN [9] fuses the historical interactions cross two domains into a
graph and learns users’ and items’ latent transferable features from the graph.

However, these methods cannot learn and utilize both users’ and items’
domain-specific features and latent transferable features for cross-domain recom-
mendation. Thus, the utilization of source domain information is greatly reduced,
and the recommended items may be unsuitable for users. In this work, we propose
an attention-based multi-view feature fusion model to solve the above problems.
Since users’ and items’ domain-specific features and latent transferable features
are learned simultaneously, the features work together to improve the perfor-
mance of the recommender system. Moreover, an attention-based feature fusion
algorithm is designed to learn the importance of various features. Thus, the
features are seamlessly fused to recommend suitable items to users.

3 The Proposed Model: AMVF

3.1 Input

The inputs of AMVF comprise three parts: the user-item historical interactions
of domain S (stored in graph GS); the user-item historical interactions of domain
T (stored in graph GT ); the total user-item historical interactions integrate from
domain S and domain T (stored in graph GST ). Blue stands for items in domain
S, orange stands for items in domain T, and green stands for common users.
Note that common users exist in both domain S and domain T.

3.2 Feature Extraction

To fully capture users’ and items’ features, deep learning models are consid-
ered [15]. In this paper, Node2vec [16] is used to generate the feature matrices.
Node2vec maps users and items to low-dimensional space features that maxi-
mizes the likelihood of preserving users’ and items’ neighborhoods in GS , GT ,
and GST . The biased random walk procedure helps us capture users’ and items’
domain-specific features from GS and GT , and their latent transferable features
from GST . We use U c

S ,U c
T ,U c

ST ∈ R
m×d to represent common users’ domain-

specific features in domain S, domain T, and latent transferable features cross
domain S and domain T. Meanwhile, IS ∈ R

n×d and IT ∈ R
o×d denote items’

domain-specific features in domain S and domain T, respectively. Moreover,
IST

S ∈ R
n×d and IST

T ∈ R
o×d stand for items’ latent transferable features of

domain S and domain T. m,n, o are the numbers of common users, items in
domain S, and items in domain T. d is the dimension of the features.
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3.3 Feature Fusion

To seamlessly fuse different features and make full use of them, an attention-
based feature fusion algorithm is designed to learn the importance of various
features. Since different features contribute differently to the cross-domain rec-
ommendation, lack of differentiating them can result in suboptimal suggestions.
Therefore, we take advantage of the attention mechanism to discriminate the
importance of these features. Features with large contribution are given high
weights, while features with small contribution are given low weights.

We use WS ∈ R
n×d, WS

S ∈ R
m×d, and WT

S ∈ R
m×d to denote the weight

matrices for the attention network of items’ domain-specific features in domain S,
common users’ domain-specific features in domain S and domain T, respectively.
The fused features of common users U′

S ∈ R
m×d and items I′

S ∈ R
n×d, used for

the recommendation of domain S, are given as follows:

U′
S = WS

S � Uc
S + WT

S � Uc
T + (1 − WS

S − WT
S ) � Uc

ST , (1)

I′
S = WS � IS + (1 − WS) � IST

S , (2)

where � is the element-wise multiplication.
Similarly, the fused features of common users U′

T ∈ R
m×d and items I′

T ∈
R

o×d, used for the recommendation of domain T, are given as follows:

U′
T = WS

T � Uc
S + WT

T � Uc
T + (1 − WS

T − WT
T ) � Uc

ST , (3)

I′
T = WT � IT + (1 − WT ) � IST

T , (4)

where WT ∈ R
o×d, WS

T ∈ R
m×d, and WT

T ∈ R
m×d denote the weight matrices

of items’ domain-specific features in domain T, common users’ domain-specific
features in domain S and domain T, respectively.

3.4 Prediction

To predict users’ preferences on non-interactive items, we apply the Multi-Layer
Perceptron (MLP) to represent the relationship between users and items on
domain S. First, we merge common users’ fused features U′

S and items’ fused
features I′

S with the element-wise multiplication. Then, we place MLP above
the element-wise multiplication. By specifying the non-linear activation function
(Leaky Relu), we allow the model to learn higher-order feature interactions in a
non-linear way. The predicted score of domain S is obtained by:

R′
S = MLP (U′

S � I′
S). (5)

The predicted score of domain T is obtained in the same way as R′
S :

R′
T = MLP (U′

T � I′
T ). (6)
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3.5 Output

To get the lists of items to be recommended to users in each domain, we rank the
prediction scores into a descending ordered list. According to the list, we select
the items with the top-K highest prediction scores as the recommendations for
users. The lists of items to be recommended to users in domain S and domain
T are defined as:

R̂S = topK(RankDes(R′
S)), (7)

R̂T = topK(RankDes(R′
T )). (8)

The complete AMVF framework is presented in Algorithm 1.

Algorithm 1. The AMVF framework.
Input: the user-item historical interactions of domain S, domain T, and the integra-

tion of domain S and domain T (stored in graph GS , GT , and GST );
Output: the lists of items to be recommended to users in domain S (R̂S) and domain

T (R̂T );
1: Learn items’ domain-specific features IS from GS , IT from GT , and latent trans-

ferable features IST
S and IST

T from GST ; learn users’ domain-specific features Uc
S

from GS , Uc
T from GT , and latent transferable features Uc

ST from GST ;
2: Obtain the fused features U′

S , I′
S , U′

T , and I′
T based on (1), (2), (3), and (4);

3: Predict users’ preferences on non-interactive items of domain S (R′
S) and domain

T (R′
T ) based on (5) and (6);

4: Get the recommendation lists R̂S and R̂T based on (7) and (8).

3.6 Optimization Strategy

The input of training instances in AMVF requires positive samples and negative
samples, and the ratio between them is 1: η (η > 1). Following [9], to solve
this sample imbalance problem, we apply a weighting strategy to the objective
function. The overall objective to be optimized is defined as:

L∗ = −
∑

α(R∗logR′
∗ + (1 − R∗)log(1 − R′

∗)) + λ∗
∑

|Θ|, (9)

α =
{

η, ifR∗(u,i) = 1;
1, ifR∗(u,i) = 0,

(10)

where ∗ ∈ {S, T}, R∗ = {R∗(u,i)}τ denotes users’ true preferences on items, τ is
the number of the user-item pair that we need to predict, λ∗ is the regularization
coefficient, and α is the weight value determined by the labels of input set, which
speeds up the training process.
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4 Experiments

4.1 Datasets

To demonstrate the effectiveness of AMVF, we conduct extensive experiments
on two pairs cross-domain datasets from Amazon-5cores1 [17]. They are CD
(named “CDs and Vinyl” in Amazon), Music (named “Digital Music” in Ama-
zon), Book (named “Books” in Amazon), and Movie (named “Movies and TV”
in Amazon), respectively. Moreover, each user or item of these datasets has at
least five ratings. For these two couple datasets, we first transform them into
implicit data, where each entry is marked as 0 or 1, indicating whether the user
has rated the item. Then, we extract the common users in both domains for
training and testing. Table 1 summarizes the detailed statistics of the two couple
datasets.

Table 1. The detailed statistics of the two pairs cross-domain datasets. #Users,
#Items, #Ratings, and #C.users denote the numbers of users, items, user-item rat-
ings, and common users, respectively. The density of the after extracting datasets is
calculated by #Ratings/(#C.users × #Items).

Datasets Before extracting After extracting

#Users #Items #Ratings #C.users #Items #Ratings Density

CD 75,258 64,443 1,097,592 5,331 55,848 376,347 0.126%

Music 5,541 3,568 64,706 5,331 3,563 63,303 0.333%

Book 603,668 367,982 8,898,041 37,388 269,301 1,254,288 0.012%

Movie 123,960 50,052 1,697,533 37,388 49,273 792,319 0.043%

4.2 Evaluation Measures

To evaluate the performance of AMVF and baselines, we adopt the ranking-
based evaluation strategy, i.e., leave-one-out evaluation, which has been widely
used in the top-K recommendation task [8,20,21]. Specifically, we take a random
sample from each user’s historical interactions as the test set, and the remaining
are utilized for training. Following [9], we randomly sample 99 unobserved inter-
actions for the test user and 4 unobserved interactions for the train user. AMVF
predicts 100 records (99 negative samples and 1 positive sample) of the user and
output top-K items. We use the commonly used Hit Ratio (HR), Mean Recip-
rocal Rank (MRR), and Normalized Discounted Cumulative Gain (NDCG) to
evaluate the performance of all the models. For these measures, we truncate the
ranked list at 10, i.e., K = 10.

1 http://jmcauley.ucsd.edu/data/amazon/.

http://jmcauley.ucsd.edu/data/amazon/
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4.3 Baselines

We consider three categories of recommendation methods: the single-domain
recommendation, which only uses a single dataset (i.e., BPR [13] and
NCF [14]), specific-feature-based methods for cross-domain recommendation
(i.e., NCF+ [14], CoNet [6], SCoNet [6], and BiTGCF [8]), and sharing-feature-
based methods for cross-domain recommendation (i.e., PPGN [9]).

4.4 Implementation Details

We use Tensorflow to implement AMVF and deploy it on an Nvidia GeForce
GPU with 11 GB memory. The dimensionality of users’ and items’ features is
fixed to 128 for all datasets. The negative/positive sample ratio η is set as 4.
The optimizer of AMVF is Adam [18,19,22]. We test the learning rate in {0.01,
0.001, 0.0001} and fine-tune it in a small step. The batch size is tuned among
{512, 1024, 2048, 4096, 8192}. The scores of BPR, NCF, NCF+, CoNet, ScoNet,
and PPGN are directly taken from [9]. The optimal hyper-parameter settings
for BiTGCF are determined by either our experiments or the original papers.

Table 2. Performance comparison of two pairs cross-domain datasets. The best method
appears in boldface. The best performing baseline appears underlined.

Methods HR@10 MRR@10 NDCG@10 HR@10 MRR@10 NDCG@10

CD Music

BPR [13] 0.5532 0.2742 0.3532 0.4742 0.1431 0.2045

NCF [14] 0.6421 0.3092 0.3933 0.5322 0.1549 0.2432

NCF+ [14] 0.6655 0.3593 0.4303 0.5991 0.2472 0.3297

CoNet [6] 0.7539 0.4735 0.5227 0.7179 0.3855 0.4436

SCoNet [6] 0.7547 0.4875 0.5291 0.7205 0.3878 0.4603

BiTGCF [8] 0.8255 0.5458 0.6130 0.7766 0.4403 0.5204

PPGN [9] 0.7839 0.5012 0.5697 0.7874 0.4388 0.5147

AMVF 0.8411 0.5557 0.6223 0.8839 0.5601 0.6378

Methods HR@10 MRR@10 NDCG@10 HR@10 MRR@10 NDCG@10

Book Movie

BPR [13] 0.3654 0.1543 0.2365 0.4538 0.2034 0.2654

NCF [14] 0.4300 0.2241 0.2725 0.5665 0.2775 0.3445

NCF+ [14] 0.4291 0.2249 0.2724 0.5605 0.2742 0.3416

CoNet [6] 0.5223 0.3273 0.3396 0.6460 0.3651 0.4060

SCoNet [6] 0.5141 0.3261 0.3370 0.6465 0.3829 0.4210

BiTGCF [8] 0.6801 0.4151 0.4782 0.7561 0.4555 0.5274

PPGN [9] 0.5770 0.3280 0.3574 0.6909 0.3869 0.4249

AMVF 0.7337 0.4735 0.5353 0.6817 0.3815 0.4527
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Table 3. The ablation test on two pairs cross-domain datasets.

Methods HR@10 MRR@10 NDCG@10 HR@10 MRR@10 NDCG@10

CD Music

AMVF 0.8411 0.5557 0.6223 0.8839 0.5601 0.6378

AMVF-spec 0.8314 0.5456 0.6134 0.8732 0.5512 0.6285

AMVF-shar 0.8234 0.5318 0.6017 0.6557 0.3610 0.4304

AMVF-single 0.8202 0.5270 0.5972 0.6551 0.3602 0.4297

AMVF-add 0.8090 0.5118 0.5825 0.7706 0.4383 0.5174

Methods HR@10 MRR@10 NDCG@10 HR@10 MRR@10 NDCG@10

Book Movie

AMVF 0.7337 0.4735 0.5353 0.6817 0.3815 0.4527

AMVF-spec 0.7286 0.4699 0.5322 0.6774 0.3762 0.4473

AMVF-shar 0.7275 0.4662 0.5331 0.6452 0.3849 0.4464

AMVF-single 0.7263 0.4630 0.5325 0.6397 0.3805 0.4417

AMVF-add 0.7073 0.4404 0.5040 0.6339 0.3466 0.4143

4.5 Performance Comparison

The experimental results of AMVF and the baselines are reported in Table 2.
From Table 2, we have the following observations:

– AMVF achieves the best performance in all cases except the movie dataset
which demonstrates its effectiveness. Since learning both users’ and items’
domain-specific features and latent transferable features, AMVF improves the
availability of source domain information and recommends suitable items to
users. Moreover, the attention-based feature fusion algorithm fuses different
features seamlessly and fully utilizes them by learning different importance
of various features. Therefore, the performance of AMVF is improved.

– The performance improvement of AMVF is most obvious on the music
dataset. The reason is that the common users are 96% of total users in this
dataset, so AMVF captures more transferable features from the CD domain
than other datasets. Therefore, the information of the CD domain is fully
utilized to improve the performance of AMVF. On the contrary, AMVF per-
forms worst on the movie dataset. This is because the common users are only
30% of the total users in the movie dataset. Hence, AMVF only captures
limited transferable features from the book domain. Finally, the performance
improvement of AMVF is unsatisfactory.

– Compared to the recommender systems in single domain, the systems cross
domains perform better. Since the cross-domain recommendation can trans-
form knowledge from source domain to target domain, the performance of
the recommender system on target domain is improved effectively.
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4.6 Ablation Study

To verify the impact of different features and the attention-based feature fusion
algorithm on the performance of AMVF, we design four diverse baselines for
experiments: a) AMVF-spec: AMVF only considers users’ and items’ latent
transferable features; b) AMVF-shar: AMVF only considers users’ and items’
domain-specific features; c) AMVF-single: AMVF makes the recommendation
in a single domain; d) AMVF-add: AMVF without the attention-based feature
fusion algorithm, and the features are fused by simple addition.

Table 3 shows that AMVF’s performance is most affected by the latent trans-
ferable features. Since latent transferable features are transferred easily cross
domains, the source domain information is fully utilized to improve AMVF’s
performance in target domain. Meanwhile, the attention-based feature fusion
algorithm also plays a crucial role. The reason is that discriminating the impor-
tance of different features helps AMVF make full use of the features. Moreover,
users’ and items’ domain-specific features also contribute to helping AMVF rec-
ommend suitable items to users.
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Fig. 3. Impact of MLP with different layers on two pairs cross-domain datasets.

4.7 Impact of MLP with Different Layers

We also verify the impact of MLP with different layers. The results are shown
in Fig. 3. We can observe that the performance of AMVF is gradually improved
when the layer of MLP increases from 1 to 5. Then, the performance of AMVF
tends to be stable. The reason is that 5 layers are enough to capture the non-
linearity interaction of higher-order features which is important in capturing
helpful information for rating prediction.

5 Conclusion

In this paper, we propose an Attention-based Multi-View Feature fusion model
for cross-domain recommendation (AMVF). To fully capture latent transferable
features and take domain-specific features into account, AMVF learns these fea-
tures on three graphs simultaneously. Since seamlessly fusing different features
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is a challenge, an attention-based feature fusion algorithm is designed to learn
different importance of various features. In this way, AMVF can effectively fuse
and fully utilize these features. Therefore, AMVF recommends suitable items
to users. We conduct extensive experiments on four popular datasets, and the
results empirically verify the superior performance of AMVF.
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Abstract. Image captioning aims to generate proper textual sentences
for an image. However, many existing captioning models explore infor-
mation incompletely and generate coarse or even incorrect descriptions
of region details. This paper proposes a controllable captioning approach
called Say in Human-like Way (Shway), which exploits intra- and inter-
modal information in vision and language hierarchically in a diamond
shape with the control signal of image regions. Shway is divided into
abstraction and summarization stages. It can adequately explore cross-
modal information in the first stage and effectively summarize generated
contexts with a novel fusion mechanism for making predictions in the
second stage. Our experiments are conducted on COCO Entities and
Flickr30k Entities. The results demonstrate that our proposed model
achieves state-of-the-art performances compared with current methods
in terms of controllable caption quality.

Keywords: Attention mechanism · Cross-modal information ·
Hierarchical LSTM · Image captioning

1 Introduction

Image captioning is an essential task in the interaction between computer vision
and natural language. Moreover, it is also a fundamental step towards artificial
intelligence as it combines image understanding and language generation. With
the rapid development of deep learning, the encoder-decoder framework has been
introduced to generate natural languages for images efficiently [2,16,17,28,32].

A modern solution is to utilize a convolutional neural network (CNN) as
an encoder to extract the representation of images and a recurrent neural net-
work (RNN) as a decoder to generate sentences for the images. However, despite
encouraging success in image captioning, previous methods still suffer limita-
tions such as generating coarse or even incorrect descriptions of region details,
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reflecting that there is still room to explore and effectively utilize information
adequately.

The attention mechanism has been proposed to trigger the interaction
between visual content and natural sentence successfully [2,32]. However, intra-
modal information of a single modality should also be exploited adequately to
maintain the essential details. Meanwhile, unlike the Transformer-based method
with a multi-head mechanism [26], many LSTM-based methods explore gener-
ated multi-modal representations from a single perspective. Limiting the width
of exploiting intra- and inter-modal information may lead to inaccurate and
coarse predictions.

In addition, most captioning models compress cross-modal representations
into few context vectors to predict words [2,3,9,12,22,28]. Therefore, it is espe-
cially crucial to merge generated multi-modal representations into comprehen-
sive, high-quality ones. However, many existing approaches directly input earlier
cross-modal information into the last decoding unit and then predict words. The
inadequate interaction between decoding units may limit the depth of multi-
modal information mining. Also, the long chain of parameter optimization may
overstress the last decoding unit and harm the deep network training procedure,
resulting in performance degrading and generating inaccurate words.

When humans describe an image, we take visual contents from the visual sys-
tem into the brain and combine them with existing semantic information. Then
complex reasoning will be performed after extracting meaningful information.
Finally, describing words for the image will be determined by summarizing all
reasoned information. Inspired by the human captioning procedure and also to
alleviate the problems mentioned above, we propose a hierarchical cross-modal
information abstraction and summarization method called Say in Human-like
Way (Shway), as is shown in the left part of Fig. 1. Taking visual contents with
the control signal, Shway is built on a hierarchically recurrent architecture in a
diamond shape, which increases the width and depth of the network to exploit
intra- and inter-modal information from vision and language fully. The proposed
model is divided into abstraction and summarization stages. In the abstraction
stage, we design two branches with selective information input to emphasize lan-
guage and vision separately. In the summarization stage, We introduce a novel
fusion mechanism coupled with multi-LSTM to obtain comprehensive informa-
tion from generated cross-modal representations for predicting words.

In summary, our main contributions are as follows:

– We propose a hierarchical controllable captioning method called Shway, which
is in a diamond shape to exploit wider and deeper information for generating
better descriptions.

– We model Shway from a cross-modal perspective to explore information ade-
quately in vision and language. Specifically, two branches with selective infor-
mation input are designed for two modalities severally.

– We introduce a novel fusion mechanism to couple with proposed architec-
ture to utilize and merge information effectively for improving captioning
performance.
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2 Related Work

Image captioning has achieved significant improvements with the introduction
of encoder-decoder framework in the recent years [2,3,28,32]. Mostly, a CNN
is adopted as an encoder, e.g., ResNet-101 [12], and RNN or its variants are
adopted as a decoder, e.g., GRU and LSTM.

Extensive works have been proposed on the RNN-based decoder in both net-
work depth and width increments to exploit information fully. Attentive models
are proposed to extract relevant auxiliary information from a grid of features or
image regions at every step [2,32], or model a visual sentinel to adaptively guide
the model in knowing when to look [16]. Then the two-layer LSTM structure is
deployed for attention and language, respectively, and becomes popular [2,6,17].
To explore overall and salient information, Ge et al. [10] propose a bi-direction
LSTM and cross-modal attention method. Moreover, three-layer LSTM struc-
tures are proposed to model a coarse-to-fine architecture or generate two words
at one timestep [11,22].

From the point of depth increment of the network, a three-branch method
taking the object, subject, and the union feature as inputs respectively is
designed to model the relationship between the object and the subject [14].
Swell-and-Shrink [29] decomposes image captioning into dense captioning and
text summarization tasks. Furthermore, basic operations, such as add, multipli-
cation, and concatenation, are commonly used in existing models to fuse infor-
mation. The Tree-LSTM unit is proposed to make connections between words
in a sentence, which performs well on semantic relatedness prediction and senti-
ment classification tasks [25]. Early-fusion and late-fusion methods are proposed
to merge the context of different units [33]. Also, the context gate projected from
the main context is utilized by some approaches to merge contexts from different
units [9,30,31].

In addition, controllable image captioning with designated control signals
is proposed recently to make captioning more controllable, interpretable, and
easier. Some captioning methods have conditioned the generation with a specific
style or sentiment [8,18,19]. To generate more diverse or grained captioning,
some methods are proposed with Part-of-Speech (POS) syntax, region control
signals, and abstracted scene graph [5–7].

Our work is based on Show, control and tell [6], which is denoted as SCT for
simply. SCT mainly introduces the region control signal into the captioning and
builds the entities dataset where entity mentions in the caption are linked with
one or more corresponding bounding boxes in the image. It forces the model
to focus on different visual contents at different time steps by a Chunk-shifting
gate. Unlike the two-layer LSTM structure in SCT, our framework employs addi-
tional LSTM to process the visual modality sequence to better use the sequence
information of image regions.

Moreover, to extract auxiliary information for word selection and inspired
by Tree-LSTM and the context gate mentioned above, we design a novel fusion
mechanism to couple with the proposed architecture. The Tree-LSTM unit con-
tains one forget gate for each child, which aims to learn syntactic properties
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Fig. 1. The framework of our proposed method Shway, which is divided into abstrac-
tion stage and summarization stage. hi

t, ci
t indicates outputs of the LSTM i at timestep

t, and âtt
j
t is the output of attention mechanism j at time step t. fbt−1 is the con-

catenation of previous hidden states hv
t−1, hl

t−1 and visual attention attat−1. inputlt is

the concatenation of xt, hv
t , ht

t and âtt
t
t.

of natural language. We employ similar forget gates to extract generated cross-
modal information for language generation.

3 Method

3.1 Overview

Our proposed method models captioning from a cross-modal perspective hierar-
chically and consists of two stages, as illustrated in Fig. 1.

The abstraction stage is implemented by two layers. In the first layer, atten-
tion LSTM LSTMatt and visual attention Attvis are employed to obtain the
basic context and the visual attention, respectively. And in the second layer,
intra-modal information of image or text and outputs from the first layer are fed
into visual LSTM LSTMvis and textual LSTM LSTMtext , respectively. Fur-
ther more, a textual attention Atttext is employed to acquire textual attention.

In the summarization stage, language LSTM LSTMlan is utilized for prelim-
inarily fusing generated information. Then a novel fusion mechanism contains
two gate mechanisms is designed to summarize generated contexts. The con-
text gate mechanism Gatectx is to extract complementary information, and the
memory gate mechanism Gatemem is to exploit interactions between decoding
units. Finally, word prediction is made with the summarized information.

Given an image I and ground-truth caption w = [w1, w2, ..., wL], R =
[r1, r2, ..., rM ] is a sequence of a set of extracted region features from the
image I, where ri is switched by the Chunk-shifting gate [6]. Specifically,
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ri = [r1
i , r2

i , ..., rn
i ] is a set of region features related to the i-th noun chunk

of caption and n is the number of the related regions. Our goal is to generate a
sentence y = [y1, y2, ..., yL] which describes the image regions in turn correctly
while maintaining the fluency of language, and L is the length of sequence. Fol-
lowing the standard learning paradigm, we learn parameter θ of our model by
maximizing the likelihood of the correct caption:

θ∗ = arg max
θ

∑

(I ,y)

log p(y|R, I;θ) (1)

log p(y|R, I;θ) =
L∏

t=1

log p(yt|y1:t−1, rt, I) (2)

where y1:t−1 is the slice from 1 to (t − 1) elements of y.

3.2 Cross-modal Information Abstraction

At the t-th time step, given the word input wt−1, previous generated contexts
and the chosen set of region features rt, the abstraction stage aims to extract
cross-modal information adequately.

First, current word wt−1 is embedded into the embedding vector xt and
image descriptor Ig is defined as the average feature of all the image regions
as [2]. LSTMatt takes the concatenation of previous hidden state hv

t−1 from
LSTMvis , previous hidden state hl

t−1 from LSTMlan , previous visual atten-
tion attc

t−1, image descriptor Ig, as well as the word embedding xt as input:
inputa

t = [hv
t−1;h

l
t−1;atta

t−1; Ig;xt], where [;] indicates concatenation. And we
denote the current hidden state of LSTMatt as ha

t .
Following [16], we employ a visual sentinel denoted as st that models a com-

ponent of memory in the visual attention mechanism Attvis . Attention is com-
puted on extracted current regions rt and the sentinel st with query ha

t :

αa
t = softmax([wT tanh(Wahha

t + Wasst);va
t ]) (3)

va
t = wT tanh((Wahha

t )1 + Warrt),atta
t = αa

t,1st +
n+1∑

i=2

αa
t,ir

i−1
t (4)

where αa
t is the attention weight and atta

t denotes visual attention result. αa
t,1 is

the weight of sentinel, and αa
t,i, where i = {2, 3, ..., n+1}, is the attention weight

for image regions. War, Wah and Was are learnable parameters, and wT is a
row vector, and 1 is a vector with all elements set to 1. Furthermore, we model a
visual attention context âtt

a

t by simply employing a fully-connected layer whose
input is the concatenation of atta

t−1 and atta
t .

Then, to explore information further from vision and language, selective
information extraction are realized by setting different inputs for LSTMtext

and LSTMvis : inputt
t = [ha

t ;hl
t−1; âtt

a

t ;xt] and inputv
t = [ha

t ; âtt
a

t ; Ig]. The
hidden states of these two LSTM are denoted as ht

t and hv
t , memory cells are
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denoted as ct
t and cv

t . And text attention mechanism Atttext is employed after
LSTMtext to merge generated semantic information:

ut
t = wT tanh((Wthht

t)1 + WtHHt)

βt
t = softmax(ut

t),attt
t =

L∑

i=1

βt
t,ih

l
i

(5)

where βt
t is the attention weight and attt

t denotes visual attention result. Ht =
[hl

1,h
l
2, ...,h

l
L] is a set of hidden states of LSTMlan , and its last L−t+1 vectors

in are set to full of zero elements as we cannot get word information of the future.
And WtH and Wth are learnable parameters. To learn the relationship between
previous and current textual attention results implicitly, we also model a textual
attention context âtt

t

t as the visual one by a fully-connected layer.

3.3 Summarizing with Fusion Mechanism

The summarization stage aims to summarize generated contexts for prediction
and is implemented with two steps.

First we update LSTMlan with taking inputs inputl
t = [hv

t ;ht
t; âtt

t

t;xt] to
obtain its outputs,e.g., hidden state hl

t and memory cell cl
t.

As we have mentioned in Sect. 1, it is crucial for predicting proper words to
guarantee the quality of compressed context vectors. At the same time, besides
being used as inputs, outputs from the first stage can provide rich auxiliary
contexts and suggestions on maintaining or forgetting information. Therefore
in the second step, a fusion mechanism which consists of Context Gate Mecha-
nism Gatectx and Memory Gate Mechanism Gatemem , is designed to exploit
auxiliary information.

Context Gate Mechanism. To extract complementary information, we revisit
information generated before by projecting hl

t into a context gate, as the bottom
right part of Fig. 1 shows.

gl = σ(Wlgh
l
t), ctxt = (1 − gl) � ht

t + gl � hv
t (6)

where σ represents sigmoid function, � represents the Hadamard element-wise
product and Wlg is learnable parameter. As gl is in the range of [0, 1], informa-
tion from LSTMtext and LSTMvis is balanced adaptively.

Memory Gate Mechanism. Inspired by Tree-LSTM [25], we interact par-
ent LSTMlan with its children LSTMvis and LSTMtext by learning two
forgetting gates individually, as the top right part of Fig. 1 shows.

f t
t = σ(Wf inputl

t + Ufht
t)

fv
t = σ(Wf inputl

t + Ufhv
t )

(7)

where Wf and Uf are learnable matrices. Then the memory cell of LSTMlan

is updated by:
ĉl

t−1 = cl
t−1 + f t

t � ct
t + fv

t � cv
t (8)
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The new hidden state ĥl
t will be obtained by updating LSTMlan with

refined ĉl
t−1. And word probability distribution is computed by a softmax

function:
p(yt+1|yt) = softmax(Wout[ctxt; ĥl

t] + bout) (9)

where Wout and bout are matrices of learnable weights.
This fusion mechanism applies to binary tree LSTM structure and even more

complex tree-structure models. It is beneficial to extract auxiliary information
like interactions among units for generating better captions. Experiments show
that the proposed fusion mechanism improves model performance significantly.

Additionally, we also utilize the similar chunk-shifting gate to switch regions
as [6]. Differently, we represent current visual content by hidden state hv

t from
LSTMvis to compute the attention score, rather than the one from attention
LSTM. This procedure is formulated as follows:

sgate = tanh(cv
t ) � σ(Wiginputa

t + Whgh
v
t ) (10)

gatechunk = wT tanh(Wgasgate + Wahhv
t ) (11)

p(gt = 1|R) =
exp gatechunk

exp gatechunk + exp
∑n+1

i=2 αa
t,i

(12)

When gt = 1, the current region set rt = ri from R will be shifted into the
next one, e.g., rt+1 = ri+1, and rt+1 = ri otherwise. This gating mechanism
forces the model to focus on different visual contents corresponding to different
noun chunk in order, which realizes the control over captioning.

3.4 Training and Inference

Given a sequence of the set of image regions R, chunk-shifting gate values g∗
1:L

and ground truth sentence w, we utilize cross-entropy loss and CIDEr rein-
forcement learning to train our model as [6]. For cross-entropy loss which is on
word-level and chunk-level, is defined as:

LXE(θ) = −
L∑

t=1

⎧
⎩log p(wt|w1:t−1, r1:t)

+ λg∗
t log p(gt = 1|w1:t−1, r1:t)

+ (1 − g∗
t )(1 − log p(g∗

t |w1:t−1, r1:t))
⎫
⎭

(13)

where λ is a trade-off parameter. And for the CIDEr objective function, the
negative expectation score is defined as:

LRL(θ) = −Ews∼pθ[r(ws) + r(gs)] (14)

where r is the CIDEr score function, ws and gs are sampled sentence and gate
sequence.

In training, the current image region set rt and word input wt, are the ground-
truth region set and word at timestep t. In testing, the choice of rt is driven by
the chunk-shifting gate, and wt is sampled from the last prediction by model.
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Table 1. Performances on the COCO Entities test split. B4 is short for BLEU-4, M
is short for METEOR, R is short for ROUGE-L, C is short for CIDEr, S is short for
SPICE. The † marker indicates non-controllable methods.

Methods B4 M R C S NW

FC-2K† [24] 10.4 17.3 36.8 98.3 25.2 0.257

UpDown† [2] 12.9 19.3 40.0 119.9 29.3 0.296

NBT† [17] 12.9 19.2 40.4 120.2 29.5 0.305

C-LSTM [6] 11.4 18.1 38.5 106.8 27.6 0.275

C-UpDown [6] 17.3 23.0 46.7 161.0 39.1 0.396

SCT [6] 20.9 24.4 52.5 193.0 45.3 0.508

Shway 21.7 25.3 53.4 201.2 46.0 0.533

4 Experiments

4.1 Datasets, Metrics and Experimental Setting

Our experiments are conducted on two image captioning datasets, COCO Enti-
ties [6], and Flickr30k Entities [21], which are extracted from MSCOCO and
Flickr30k, respectively. MSCOCO has 123,000 images, and Flickr30k has 31,000
images, where each image is paired with five captions. Compared to the original
datasets, image regions extracted from the detector are associated with noun
chunks, and region sequence is provided for each image-caption pair in Entities
datasets. The numbers of train/val/test captions in COCO Entities are 545,202,
7,818 and 7,797. For Flickr30k Entities, those are 144,256, 5,053 and 4,982. Both
datasets followed the publicly available splits in [13].

We evaluate our captioning systems simultaneously with several automatic
evaluation metrics, namely BLEU-4 from BLEU [20], METEOR [4], CIDEr [27],
SPICE [1], and ROUGE [15]. Moreover, we also utilize NW from [6] to test the
alignment score of nouns between generated and ground truth sentences.

In our experiments, visual features are extracted by Faster R-CNN [23] with
ResNet-101 [12] for image regions, and feature dimension is set to 2048. The
dimensions of LSTM layers and attention layers are set to 1000 and 512, respec-
tively. The vocabulary size of COCO Entities is 9,883, and that of Flickr30k
Entities is 7,537, and word embedding size is set to 1000.

4.2 Experimental Results and Analysis

Quantitative Analysis. For evaluation of methods on COCO Entities test
datasets in Table 1, we compare our model (referred to as Shway) with the cur-
rent controllable methods and conventional methods without any control signals
like region sequence. SCT [6] employs a two-layer LSTM structure with designed
visual sentinel as decoder and shifts regions given a sequence of regions by a gate
shift mechanism to control captioning. Shway utilizes the same control signal
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Table 2. Ablation studies on COCO Entities test split.

Methods B4 M R C S NW

v-Shway 20.8 24.7 52.9 194.0 45.5 0.522

t-Shway w/o fm 20.8 24.5 52.1 191.6 44.8 0.508

t-Shway w/o gctx 21.0 24.7 52.7 193.8 45.4 0.511

t-Shway w/o gmem 21.2 24.6 52.7 194.5 45.1 0.502

t-Shway 21.4 24.9 52.8 196.4 45.6 0.513

Shway w/o fm 20.9 24.6 52.7 193.6 45.3 0.515

Shway w/o gctx 21.2 24.8 52.9 197.3 45.6 0.510

Shway w/o gmem 21.4 24.8 52.8 198.3 45.7 0.515

Shway 21.7 25.3 53.4 201.2 46.0 0.533

Table 3. Performances on the Flickr30k Entities Karpathy test split.

Methods Cross-entropy loss CIDEr optimization

B4 M R C S NW B4 M R C S NW

C-LSTM [6] 6.5 12.0 29.6 40.4 15.7 0.078 6.7 12.1 30.0 45.5 15.8 0.079

C-UpDown [6] 10.1 15.2 34.9 69.2 21.6 0.158 10.1 14.8 35.0 69.3 21.2 0.148

SCT [6] 11.3 15.4 36.9 74.5 23.4 0.152 12.4 16.6 38.8 83.7 23.5 0.221

Shway 11.5 15.9 36.9 76.3 22.8 0.163 12.9 16.9 39.3 88.2 23.6 0.239

as SCT does, and defines the gate shift mechanism differently with hidden state
from LSTMvis as visual content guider rather than LSTMatt in SCT. Under
cross-entropy loss, Shway overpasses all other works in terms of all metrics and
especially improves 8.2% in terms of the CIDEr metric compared to SCT, which
shows that our proposed method can capture critical information better.

To testify the effectiveness of exploring cross-modal information with
designed two branches, we perform several ablation studies by comparing differ-
ent variants of Shway in Table 2. We ablate our model by removing LSTMtext

or LSTMvis , and replace their outputs by the ones from LSTMatt , and name
the variants as v-Shway and t-Shway respectively. The comparisons between
experimental results of v-Shway, t-Shway and Shway, show that Shway can
achieve better performance on all evaluation metrics and prove that explor-
ing information from cross-modal can achieve better performances. Especially,
removing LSTMtext decreases the performance of the model significantly, which
proves the importance of language information.

To investigate contributions of Gatemem and Gatectx , we perform ablation
studies by comparing different variants of t-Shway and Shway in Table 2. Firstly,
we denote the model without fusion mechanism as w/o fm. Then we extend
experiments with additionally employing Gatemem and Gatectx individually
and denote the variants as w/o gctx and w/o gmem respectively. The results
indicate that incorporating both gates can lead to performance improvements,
and their effects can be stacked.
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GT: a group of young men and 
women sitting at a table
SCT: a group of people and a man
and a table
Ours: a group of men and women
sitting at a table

GT: boy sleeping with no blanket 
in a large bed
SCT: a young child laying on a
bed
Ours: a little boy sleeping on a
pillow on a bed

GT: a woman standing in a
kitchen with hard wood floors
SCT: a woman standing in a
kitchen in a room
Ours: a woman in a kitchen
standing on a hardwood floor

GT: a plate with a sandwich
and a pickle
SCT: a plate of sandwiches
with a pickle
Ours: a white plate topped 
with sandwiches and a pickle

Fig. 2. Examples of generated captions. Different colors show the associations between
regions and noun chunks.

In Table 3, we compare Shway with the current state-of-the-art methods for
evaluation on Flickr30k Entities. Under cross-entropy loss, it can be seen that the
proposed captioning model achieves better performance in terms of most metrics.
To validate the effectiveness of our proposed model further, we train Shway under
CIDEr reinforcement learning. Our model outperforms those works in all metrics
and significantly improves 4.5% in terms of the CIDEr metric compared with
SCT, which approves that Shway is more effective for captioning.

Qualitative Analysis. We visualize some examples of our model compared to
the reference and SCT under cross-entropy loss on the COCO Entities test split.
As Fig. 2 shows, both models can generate fluent and descriptive sentences of the
image. However, our approach has a stronger ability to capture more information
in detail and generate higher-quality descriptions.

5 Conclusion

In this paper, we propose the Say in Human-like Way approach for image cap-
tioning. Our model is built on a hierarchically recurrent architecture for con-
trollable captioning. It is in a diamond shape and consists of abstraction and
summarization stages. The real power of our model lies in its ability to exploit
intra- and inter-modal information adequately in vision and language for higher
quality captions. The proposed method is shown to improve image captioning
performance on COCO and Flickr30k Entities. It will be interesting to apply
the interaction method in our model to more cross-modal tasks such as visual
question answering.
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Abstract. Missing data is a recurrent and challenging problem, espe-
cially when using machine learning algorithms for real-world applica-
tions. For this reason, missing data imputation has become an active
research area, in which recent deep learning approaches have achieved
state-of-the-art results. We propose DAEMA (Denoising Autoencoder
with Mask Attention), an algorithm based on a denoising autoencoder
architecture with an attention mechanism. While most imputation algo-
rithms use incomplete inputs as they would use complete data - up to
basic preprocessing (e.g. mean imputation) - DAEMA leverages a mask-
based attention mechanism to focus on the observed values of its inputs.
We evaluate DAEMA both in terms of reconstruction capabilities and
downstream prediction and show that it achieves superior performance
to state-of-the-art algorithms on several publicly available real-world
datasets under various missingness settings.

1 Introduction

Machine learning researchers and practitioners frequently encounter the problem
of missing data. Data can be missing for many reasons. These include system fail-
ures, loss of data, or the fact that data was never known, measured or recorded.
Missing data can introduce bias and alter the statistical properties of a dataset.
This can impact the performance of models learnt from this data, both in obvious
(e.g. poor performance due to lack of data) or subtle (e.g. a bias is learnt) ways.
Simple approaches consist in discarding samples with missing data, removing an
entire feature if it is too often missing or imputing the mean/median value per
feature. In practice, these provide a satisfying solution when a small proportion
of the data is missing. Otherwise, it is likely to significantly alter the empirical
data distribution.

Missing data imputation has received a lot of attention and many approaches
have been proposed recently [9,12,21]. The literature can be divided into two
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Fig. 1. The goal of DAEMA is to produce a representation of the input which is robust
to missingness, so that a Feature Decoder can impute the missing data from it. To do
so, a Feature Encoder produces multiple values for each latent feature. These are then
weighted by a Feature Selector based on the missingness mask. This mask enables the
attention mechanism to focus on the values that are produced using only observed
inputs.

categories: discriminative and generative approaches. Discriminative approaches
model the conditional probability of each feature given the others. That is, they
use all features but one to impute the remaining feature, and iterate over all fea-
tures to produce a complete dataset. On the other hand, generative approaches
model the joint distribution of all features to impute missing data all at once.

Generative approaches for missing data imputation generally involve some
form of denoising autoencoder [19]. A denoising autoencoder deals with noise,
taking noisy samples as input and learning to reconstruct the cleaned samples.
As missing data is a special case of noisy data, a denoising autoencoder can be
used to reconstruct the missing parts.

Attention is a very popular technique in the fields of natural language pro-
cessing and computer vision. Introduced in [18], attention mechanisms can be
summed up as paying attention to parts of the input which are relevant to gener-
ate an output. Attention enables a model to understand the underlying structure
of data better, resulting in better generalisation [21].

To leverage this promising technique, we propose DAEMA (Denoising
Autoencoder with Mask Attention). It improves on a simple yet efficient denois-
ing autoencoder architecture by adding an attention mechanism based on the
missingness mask. Its architecture can be seen in Fig. 1. Thanks to a mask-
based attention module, the latent representation produced by DAEMA is a
missingness-robust embedding of the original sample. This approach achieves
good performance with both randomly and systematically missing data, beating
previous state-of-the-art techniques.
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2 Related Work

Early approaches have modelled the task of missing data imputation as a pre-
dictive task. These are referred to as discriminative approaches. Some of them
are based on k-nearest neighbours [17] and support vector techniques [20], using
models whose capacity is often insufficient for the task. Others are iterative, such
as MissForest [16] and Multiple Imputation using Chained Equation (MICE) [1],
which respectively use random forests and linear regressors to predict missing
values for one feature at a time. Both approaches impute a same dataset sev-
eral times, using the previous result to compute the next one more precisely.
Since they produce multiple imputation of said dataset, these are referred to
as multiple-imputation methods. Having multiple-imputed datasets can be an
advantage as it helps to account for the uncertainty in the imputation process.
However, these iterative methods are meant to impute whole datasets at once.
This can be a drawback in real-world situations, where new data comes everyday.

Due to recent advances in deep learning and more particularly in generative
deep-learning, more recent works have modelled the task of missing data impu-
tation as a generative task. The resulting methods are referred to as generative
approaches. One such method is called Multiple Imputation using Denoising
Autoencoders (MIDA) [4]. It applies the denoising autoencoder approach to
missing data imputation. Another method, called Generative Adversarial Impu-
tation Nets (GAIN) [22], leverages a conditional GAN [5] to learn the real dis-
tribution of data through adversarial training. However, GANs are known to
be hard to train, suffering from non-convergence and mode collapse. WGAN-
GP [6] refines GANs to overcome these problems and ensure better training.
Other methods, such as VAE [8] and HI-VAE [10], use a variational autoencoder
architecture. More recently, MCFlow [12] leverages normalising flows and Monte
Carlo sampling for imputation. Finally, GINN [15] exploits graph convolutional
networks to take advantage of the information contained in the nearest neigh-
bours at imputation time instead of using only the information contained in each
sample being imputed.

A recent deep-learning discriminative method, AimNet [21], achieves state-of-
the-art results with a dot-product attention mechanism applied to the individual
embedding of each feature. Its attention weights depend only on which feature
is being imputed.

Finally, some variants of existing methods have been proposed. In [2], embed-
dings for categorical input features and gumbel-softmax activation layers for cat-
egorical output features are successfully applied to GAIN and to a VAE architec-
ture. In [9], the optimal transport distance between two batches is proposed to
be used as a training loss for missing data imputation models. These approaches
are complementary to our method.

We propose DAEMA, a generative method based on a denoising autoencoder
and an attention mechanism. In contrast to AimNet, our attention mechanism is
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input-oriented: the attention weights of DAEMA depend on which feature values
are missing instead of depending on which feature we want to impute. Therefore,
the model can focus on non-missing values and distinguish them from placeholder
values. To our knowledge, DAEMA is the first method to use an input-oriented
attention mechanism for the imputation problem.

3 Problem Statement

A dataset is defined as D = {X, C, N}. X ∈ R
n×d is a matrix of data composed

of n samples of d features xi = (x1
i , . . . , xd

i ) ∈ R
d. C (resp. N) is the set of

indices of categorical (resp. numerical) features, that is, features taking discrete
(resp. continuous) values. In this work, in order to keep the loss and metrics
simple, we focus on datasets containing only numerical features, i.e. C = ∅.

For the missing data imputation task, a dataset with missing values in X
is given. We define the missingness-mask matrix M ∈ {0, 1}n×d such that xj

i is
missing if and only if mj

i = 1. We denote D∗ = {X∗, C, N} the ground truth
dataset without missing data. Missing data are generally classified into three
different categories [13,14]:

– Missing completely at random (MCAR) means the probability that a value
is missing does not depend on any value in the dataset.

– Missing at random (MAR) means the probability that a value is missing
depends only on the observed (non-missing) values.

– Missing not at random (MNAR) means the probability that a value is missing
depends on unobserved values or latent variables.

We are interested in learning an imputation function f : R
d × {0, 1}d →

R
d; (x,m) �→ f(x,m). Using the dataset D and the corresponding missingness-

mask matrix M, the goal is to find the best function f† minimizing a recon-
struction metric and a metric based on a downstream machine-learning task as
described in Sect. 6.2.

4 Our Approach

Figure 1 shows the architecture of DAEMA, which is based on a standard denois-
ing autoencoder. At its core is a mask-based attention mechanism, designed to
help the network efficiently use the available data to produce robust latent rep-
resentations. This in turn makes imputation possible by decoding these very
representations.

4.1 Denoising Autoencoder

As a denoising autoencoder, DAEMA takes a noisy input sample x and produces
a clean version x̂ of it. In our case, noise is defined as missingness of data,
meaning that ground truth values of the missing data are unknown. It is trained
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using additional artificial missingness in each batch, as the values of the missing
features are needed to train the network. As it is impossible for the model to
distinguish between originally missing values and artificially missing values, the
model reconstructs both. Let m be the original missingness mask of the input
sample x, m̄ the one including artificial missingness and x̄ = x · (1 − m̄) the
sample with artificially missing values.

Because the originally missing values are unknown, the reconstruction loss
has to take into account the missingness mask m, as done in GAIN [22] and
MCFlow [12]. The masked reconstruction loss used is defined as follows:

�(x̂i,xi,mi) =
∑

j

(1 − mj
i ) · (xj

i − x̂j
i )

2 (1)

Minimising the loss implies correctly imputing artificially missing data as well as
correctly reconstructing observed values. However, the minimisation of the loss
is not impacted by originally missing data.

4.2 Mask-Based Attention Mechanism

To help the model focus on non-missing values, we add an attention mecha-
nism into the encoder part of the network. The intuition is that, for different
missingness patterns, the model has to focus on different non-missing values
to reconstruct the missing ones. By adding an attention mechanism based on
the missingness mask, the model can choose the values it has to focus on. As
shown in Fig. 1, the attention mechanism is based on three elements: the Feature
Encoder, the Feature Selector and a Sum aggregation.

The Feature Encoder fe is a function that takes as input a sample with
artificial missingness x̄ and its corresponding missingness mask m̄ and produces
dz feature vectors of dimension d′:

fe(x̄, m̄) = (f1, . . . , fdz ) with f j ∈ R
d′

(2)

In practice, the Feature Encoder is implemented as a multilayer perceptron
producing an output of size d′ · dz. This output is then reshaped into a two-
dimensional feature map of size (d′, dz).

The Feature Selector fs is a function that takes the artificial missingness
mask m̄ as input and produces dz selection vectors of dimension d′:

fs(m̄) = (s1, . . . , sdz ) with sj ∈ R
d′

(3)

It is also implemented using a multi-layer perceptron which produces an output
of size d′ · dz. This output is then reshaped into a two-dimensional feature map
of size (d′, dz).

The objective of the Feature Encoder is to create multiple estimation values
for each latent feature (i.e. one feature vector f j per latent feature zj ∈ z) while
the goal of the Feature Selector is to give more attention to the most meaningful
values from each vector f j according to the artificial missingness mask m̄.
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The Attention Mechanism combines feature vectors and selection vectors.
To do so, the selection vectors sj are normalized with a softmax function σ.
Then, an element-wise product is used to combine each feature vector f j with
its selection vector sj . Finally, a summation aggregates each resulting vector to
get the final latent representation z. Mathematically:

z = (σ(s1)T · f1, . . . , σ(sdz )T · fdz ) = (z1, . . . , zdz ). (4)

5 Technical Implementation

In order to ensure the reproducibility of our results, the architecture and imple-
mentation details are thoroughly defined in this section. The full training and
testing code of DAEMA is available1.

5.1 Preprocessing Steps

To evaluate the imputation performance of DAEMA, complete datasets (i.e.
without missing values) are needed. To train the model, we create real-world-like
datasets D (with missing values) from ground truth datasets D∗. The prepara-
tion of all datasets follows these steps:

– We separate the downstream target label from the other features. In real-
world applications, the target is unknown during the imputation process as
it is predicted by the downstream model afterwards.

– For a few datasets, we remove some samples, such as samples containing
naturally missing data or extreme outliers, as detailed in Sect. 6.1.

– We introduce missing values in the ground truth datasets. We use the two
uniform mechanisms described in the MIDA paper [4] to create both MCAR
and MNAR data. For the MCAR setting, each single value has 20% chance
to be removed, possibly removing none or all the values of a sample. For the
MNAR setting, we randomly choose two features and select the samples for
which a) the first feature has a value smaller or equal to the median of that
first feature or b) the second feature has a value bigger or equal to the median
of that second feature. Then, each single value of the selected samples has
20% chance to be removed.

– We randomly split each dataset into a train set and a test set. We use a 70-30
ratio for all experiments.

– We apply a z-normalisation on the non-missing values by subtracting the
mean and dividing by the variance of the training set.

5.2 Detailed Architecture

Inspired by AimNet [21] and GAIN [22], DAEMA has been kept as shallow as
possible. The Feature Encoder is a multilayer perceptron with two layers both
1 https://github.com/euranova/DAEMA.

https://github.com/euranova/DAEMA
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using the hyperbolic tangent as activation. The input size is 2d (x̄ concatenated
with m̄). Both hidden and output layers are of size d′ · dz. The output of the
Feature Encoder is reshaped into a (d′, dz) feature map. The Feature Selector
is a single fully-connected layer without activation going from dimension d to
dimension d′ ·dz. The output vector is reshaped into a two dimensional matrix of
size (d′, dz). The Feature Decoder is a single fully-connected layer of dimension
d without activation. For our experiments, d′ and dz are set to 2d.

During the training, the artificial missingness mask m̄ and its corresponding
sample x̄ are built on the fly by randomly removing features with a 0.2 probabil-
ity. Besides, we use the masked reconstruction loss defined in Eq. 1. The model
is trained by gradient descent using the Adam optimizer [7] with a learning rate
of 0.001 and a batch-size of 64. The training is stopped after 40,000 batch-steps.

All hyperparameters are chosen based on early experiments. Fine-tuning
these hyperparameters could probably improve the performance of the algo-
rithm. However, this is out of the scope of this paper and is left for future work.

6 Experimentation

To validate our approach, we compare it to state-of-the-art algorithms on differ-
ent datasets and with different missingness proportions.

6.1 Datasets

We use seven publicly available real-life datasets, six from the UCI repository [3]
and one from the sklearn.datasets module [11]: EEG Eye State (14,976 sam-
ples, 14 features, 2 classes), Glass (214 samples, 9 features, 6 classes), Breast
Cancer (683 samples, 9 features, 2 classes), Ionosphere (351 samples, 34 features,
2 classes), Shuttle (58,000 samples, 9 features, 7 classes), Boston Housing (506
samples, 13 features, regression) and CASP (45,730 samples, 9 features, regres-
sion). These datasets have different sizes and different dimensions to perform
comprehensive experimentation. Note that the Breast Cancer dataset has sam-
ples with NA values and the EEG dataset has four extreme outliers in its sixth
feature. We remove these samples from the datasets. Boston, Glass, Breast Can-
cer, Ionosphere and Shuttle datasets are used for experimentation in MIDA [4].
EEG and CASP datasets are used for experimentation in AimNet [21]. As these
two models are state-of-the-art and direct competitors to our model, it is more
relevant to perform comparison on these datasets.

6.2 Metrics

We use two metrics to compare the algorithms, namely a reconstruction metric
and a downstream metric. The reconstruction metric is the normalised root mean
square error (NRMS ) over the missing values of the test set, as in [21]. The
normalisation is done using all the ground truth values of the test set. Although
NRMS is a direct metric to assess the performance of the models, it favours
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predicting the mean of multi-modal distributions rather than one of the possible
modes. To assess better the ability of the models to capture the structure of
the data, we also use a complementary downstream metric. This metric is more
relevant regarding real-world situations as missing data imputation is often used
as a preprocessing step to train a model. However, this metric is indirect and
results in a less precise evaluation.

As downstream models, we use random forests trained and tested respectively
on the imputed train set and the imputed test set. The performance of a random
forest is measured by the NRMS in the case of a regression and the accuracy
in the case of a classification. Because of the randomness of the random forest
algorithm, we define the metric as the mean performance of ten random forests
trained with different seeds. We use random forests with 100 estimators and at
most 1000 leaf nodes per estimator for computational reasons.

To obtain more stable results from each run, the metrics are averaged on
five of the last training steps (see Sect. 6.3 for details). To account for the ran-
domness of the dataset preprocessing and the one of the models initialisation
and training procedure, each experiment is run ten times, using ten different
seeds. All compared algorithms are run on the same ten preprocessed datasets
to obtain more significant results. The mean of the ten metric measurements
obtained is reported in order to compare the algorithms with each other. The
sample variance of the ten values obtained is reported for better reproducibility.

6.3 Compared Algorithms

To validate our approach, we have selected and implemented three state-of-the-
art algorithms for comparison: AimNet [21], MIDA [4] and MissForest [16]. We
have also implemented a custom denoising autoencoder, which we will refer to
as DAE. For DAEMA, we evaluate the model after 39200, 39400, 39600, 39800
and 40000 batch-steps. For AimNet, we use the hyperparameters described in
the paper [21]. We evaluate the model after 18, 19, 20, 21 and 22 epochs. For
MIDA, we have not found any indication on the batch size. Therefore, we use
the whole train set at each training step. Moreover, we use the Adam optimiser
with a learning rate of 0.0001 instead of the recommended one as we found it
achieves better results. We evaluate the model after 492, 494, 496, 498 and 500
epochs.

We also compare DAEMA with MissForest. However, MissForest targets a fix
dataset, as it reconstructs the whole dataset at once. Thus it can be seen as a one
shot process only, with a computational burden that makes it difficult to apply on
a data stream. To have a fair comparison we had to adapt the algorithm. During
the training procedure, we save all predictors produced by each iteration. At test
time, each predictor is applied one by one to unseen data. We use random forests
of 100 estimators each without any leaf-node limit. The maximum number of
iterations is set to 10. For this approach, as the number of steps is dynamically
chosen, we evaluate the model only once, i.e. after convergence or after the
maximum number of iterations has been reached.
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Table 1. State-of-the-art comparison under the MCAR setting. NRMS is reported in
the top table and the performance of a downstream random forest using the imputed
datasets is reported in bottom one (accuracy for classification and NRMS for regression).

EEG Glass Breast Ionosphere Shuttle Boston CASP
DAEMA 0.392 ±.005 0.714 ±.093 0.678 ±.041 0.745 ±.035 0.546 ±.123 0.635 ±.047 0.422 ±.069

DAE 0.467 ±.005 0.754 ±.092 0.645 ±.037 0.799 ±.034 0.597 ±.111 0.645 ±.057 0.460 ±.066

AimNet 0.440 ±.005 0.926 ±.108 0.681 ±.029 0.846 ±.036 0.568 ±.123 0.704 ±.063 0.431 ±.070

MIDA 0.925 ±.015 0.954 ±.108 0.797 ±.033 0.901 ±.020 1.470 ±.401 0.845 ±.064 0.861 ±.051

MissForest 0.364 ±.006 0.741 ±.076 0.677 ±.050 0.756 ±.040 0.673 ±.182 0.601 ±.052 0.379 ±.077

Mean 0.998 ±.013 1.003 ±.112 0.993 ±.035 1.018 ±.023 0.969 ±.077 0.998 ±.048 1.004 ±.030

Accuracy (higher is better) NRMS (lower is better)
EEG Glass Breast Ionosphere Shuttle Boston CASP

DAEMA 0.861 ±.004 0.684 ±.043 0.973 ±.011 0.932 ±.022 0.996 ±.001 0.481 ±.047 0.708 ±.004

DAE 0.849 ±.003 0.678 ±.034 0.971 ±.011 0.933 ±.019 0.995 ±.001 0.492 ±.049 0.720 ±.005

AimNet 0.851 ±.004 0.669 ±.043 0.970 ±.011 0.930 ±.022 0.996 ±.001 0.506 ±.053 0.712 ±.006

MIDA 0.823 ±.005 0.665 ±.026 0.973 ±.011 0.930 ±.024 0.994 ±.000 0.505 ±.038 0.761 ±.004

MissForest 0.869 ±.006 0.675 ±.041 0.971 ±.013 0.931 ±.016 0.997 ±.000 0.492 ±.045 0.683 ±.005

Mean 0.824 ±.005 0.669 ±.044 0.968 ±.013 0.927 ±.024 0.996 ±.000 0.495 ±.033 0.752 ±.004

Real 0.925 ±.005 0.750 ±.040 0.973 ±.009 0.940 ±.020 1.000 ±.000 0.372 ±.051 0.615 ±.006

Finally, we also compare DAEMA against a classical denoising autoencoder
(DAE). The training procedure of the DAE is similar to the one of DAEMA.
The autoencoder is composed of three fully-connected layers, respectively of size
2d, 2d and d, followed by an hyperbolic tangent activation function for the first
two layers and no activation function for the last one. We evaluate the model
after 39200, 39400, 39600, 39800 and 40000 batch-steps.

6.4 Comparison with State-of-the-Art Algorithms

We compare DAEMA with the other algorithms on seven publicly available
datasets both in MCAR and MNAR settings (see Sect. 5.1 for dataset prepro-
cessing). The performance of a simple mean imputation Mean and a perfect
reconstruction Real are also reported as indicative lower and upper bounds.

As shown in Table 1, DAEMA achieves good results in the MCAR setting
both in terms of data reconstruction (top table) and downstream task (bottom
table) compared to DAE, AimNet and MIDA. It obtains the best performance
for six of the seven datasets, sometimes by a huge margin. DAEMA also performs
well in the more challenging MNAR setting as shown in Table 2, which can be
explained by the kind of patterns an attention mechanism can learn.

We also compare DAEMA with MissForest. We can see DAEMA is very
competitive for both missingness settings. The MNAR setting gives a slight
advantage to MissForest though. We hypothesise it is because the local nature
of MissForest makes it less sensitive to the introduced bias than DAEMA, which
models the data distribution on a global scale. However, the scope of MissForest
is limited, as it is meant to reconstruct a fix dataset, while DAEMA can process
new data, making DAEMA more suitable for real-world applications.
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Table 2. State-of-the-art comparison under the MNAR setting. NRMS is reported in
the top table and the performance of a downstream random forest using the imputed
datasets is reported in bottom one (accuracy for classification and NRMS for regression).

EEG Glass Breast Ionosphere Shuttle Boston CASP
DAEMA 0.390 ±.006 0.731 ±.123 0.703 ±.046 0.765 ±.080 0.611 ±.253 0.634 ±.051 0.429 ±.052

DAE 0.467 ±.006 0.725 ±.129 0.656 ±.047 0.807 ±.078 0.683 ±.217 0.644 ±.045 0.465 ±.044

AimNet 0.440 ±.008 0.822 ±.128 0.687 ±.056 0.853 ±.072 0.642 ±.247 0.683 ±.041 0.435 ±.053

MIDA 0.962 ±.023 0.897 ±.119 0.820 ±.069 0.884 ±.060 1.481 ±.244 0.842 ±.033 0.862 ±.032

MissForest 0.363 ±.006 0.786 ±.231 0.688 ±.051 0.768 ±.085 0.653 ±.178 0.591 ±.059 0.386 ±.058

Mean 1.041 ±.024 0.957 ±.119 1.018 ±.041 0.994 ±.057 1.027 ±.148 1.003 ±.046 1.013 ±.030

Accuracy (higher is better) NRMS (lower is better)
EEG Glass Breast Ionosphere Shuttle Boston CASP

DAEMA 0.870 ±.004 0.710 ±.037 0.968 ±.011 0.935 ±.018 0.997 ±.001 0.469 ±.045 0.696 ±.011

DAE 0.859 ±.006 0.693 ±.060 0.969 ±.013 0.938 ±.016 0.996 ±.001 0.479 ±.048 0.706 ±.013

AimNet 0.862 ±.006 0.681 ±.048 0.966 ±.012 0.932 ±.019 0.997 ±.001 0.482 ±.053 0.698 ±.012

MIDA 0.837 ±.009 0.668 ±.056 0.968 ±.008 0.932 ±.020 0.995 ±.001 0.505 ±.038 0.739 ±.018

MissForest 0.876 ±.005 0.695 ±.057 0.967 ±.011 0.930 ±.021 0.997 ±.000 0.462 ±.053 0.674 ±.009

Mean 0.837 ±.010 0.672 ±.034 0.963 ±.012 0.932 ±.019 0.997 ±.001 0.509 ±.053 0.732 ±.017

Real 0.924 ±.003 0.748 ±.039 0.969 ±.013 0.940 ±.017 1.000 ±.000 0.392 ±.058 0.618 ±.004

6.5 Missingness Sensitivity

Figure 2 shows the sensitivity of the algorithms with respect to the missing-
ness percentage. Mean imputation provides a lower baseline for imputation. We
can see that AimNet, MissForest and DAEMA achieve significantly better per-
formance than mean imputation for EEG and Boston datasets. However, their
superiority is limited for the Glass dataset. It can be explained by the fact that
the Glass dataset has only a few samples (214 samples), showing that AimNet,
MissForest and DAEMA need a sufficient amount of data to model the data
distribution. This hypothesis is confirmed by the fact that they also seem to be
more impacted by the amount of missing data.

Compared to MissForest, we can see that DAEMA achieves very competitive
performance. DAEMA seems to be less impacted by the amount of missingness,
giving it an advantage for high missingness rates. Furthermore, as explained in
Sect. 6.3, the scope of DAEMA is less limited than the one of MissForest making
it more adapted to real-world applications.

Fig. 2. NRMS reconstruction metric on (a) EEG, (b) Glass and (c) Boston datasets
for varying missingness proportions.
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7 Conclusion

In this work, we propose a novel algorithm, DAEMA, a denoising autoencoder
with an attention mechanism. Unlike state-of-the-art algorithms that learn from
the entire input including placeholder values (mean-imputed or zero-imputed),
DAEMA focuses on observed values thanks to its specifically designed attention
mechanism. We show that, even when applied to a simple denoising autoen-
coder without hyperparameter tuning, this new attention mechanism outper-
forms state-of-the-art approaches on several instances of missing data under
missing completely at random (MCAR) and missing not at random (MNAR)
settings. These results also propagate nicely to improve the performance on
downstream tasks.
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Abstract. High-quality traffic data is crucial for intelligent transporta-
tion system and its data-driven applications. However, data missing
is common in collecting real-world traffic datasets due to various fac-
tors. Thus, imputing missing values by extracting traffic characteristics
becomes an essential task. By using conventional convolutional neural
network layers or focusing on standalone road sections, existing impu-
tation methods cannot model the non-Euclidean spatial correlations of
complex traffic networks. To address this challenge, we propose a graph
attention convolutional network (GACN), a novel model for traffic data
imputation. Specifically, the model follows an encoder-decoder structure
and incorporates graph attention mechanism to learn spatial correlation
of the traffic data collected by adjacent sensors on traffic graph. Tem-
poral convolutional layers are stacked to extract relations in time-series
after graph attention layers. Through comprehensive case studies on the
dataset from the Caltrans performance measurement system (PeMS), we
demonstrate that the proposed GACN consistently outperforms other
baselines and has steady performance in extreme missing rate scenarios.

Keywords: Graph attention · Temporal convolution · Data
imputation

1 Introduction

In recent years, many data-driven approaches have been proposed with the
development of intelligent transportation system (ITS), such as traffic speed
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prediction, traffic signal control, and origin-destination prediction [22]. These
data-driven approaches heavily rely on high-quality spatial-temporal traffic data.
However, due to various natural and human factors, traffic data collected in prac-
tice are often incomplete or corrupted, e.g., about 10% traffic data is missing in
Beijing. Some extreme missing scenarios are reported in Alberta, Canada [12].
The average missing rate of traffic data in 7 years was 50%, and the short-term
missing rate can reach up to 90%. It is reported that missing data is unfavorable
to data-driven models, such as traffic flow prediction [8]. Thus, imputing the
missing values by analyzing spatial-temporal traffic features is an urgent issue.

Traditional imputation methods are based on universal interpolation meth-
ods such as k-Nearest Neighbor (k-NN) and support vector regression [10]. These
methods are inefficient when there are massive missing points. Compared with
traditional methods, methods based on deep learning have improved estima-
tion accuracy by capturing temporal or spatial dependency. Denoising stacked
autoencoder (DSAE) [5], which combines denoising and stacked autoencoders, is
a typical deep model applied to impute traffic data. Subsequent work improved
imputation accuracy by using DSAE as a generator and designing a discrimina-
tor [4]. However, these methods only focus on isolated road segments and show
their limitations in modeling spatial correlation. Further research reconstructed
traffic trajectories into a two-dimensional matrix and applied a convolutional
neural network (CNN) for encoding and decoding [1].

There is a research gap in the aforementioned imputation methods, espe-
cially when they are employed to impute the traffic data in a large region. With
a complex network topology, the real-world traffic data is with a non-Euclidean
structure. These traditional learning models (such as CNN, etc.) are efficient for
data with Euclidean structures, but they are relatively insufficient in modeling
non-Euclidean spatial correlation. With a graph structure for relational reason-
ing, graph neural network (GNN) is a framework that can learn the correlation
in topological space [21]. In ITS, GNN and its variants have been applied to traf-
fic forecasting tasks. See [16] for an example. Utilizing graph convolutional lay-
ers in a GAN framework, graph convolutional generative autoencoder (GCGA)
achieved significant performance in real-time traffic seed estimation [19]. Guo et
al. proposed ASTGCN, which captured spatial-temporal correlations by atten-
tion mechanism and convolution module [6]. GNN has shown its advantages in
modeling topological relationships of the traffic network. However, to the best
of our knowledge, traffic data imputation method using GNN-based approaches
has not been assessed in the literature.

To bridge the research gap, we propose a novel imputation model, namely,
graph attention convolutional network (GACN). The primary efforts of this work
are summarized as follows.

1. We design a spatial-temporal block with a graph attention layer and a convo-
lutional layer. Compared with the previous work, the graph attention mecha-
nism can better capture non-Euclidean spatial correlations in traffic networks.
As far as we are concerned, this is the first time to apply graph attention net-
work (GAT) [13] in traffic data imputation.
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2. We propose an end-to-end traffic data imputation model that follows the
encoder-decoder structure. Specifically, both the encoder and the decoder
consist of two spatial-temporal blocks for spatial-temporal modeling, which
are concatenated to obtain an embedding of the input.

3. We conduct comprehensive case studies on real-world traffic datasets. In addi-
tion, we investigate a wide missing rate range from 10% to 90% to evaluate
all kinds of practical scenarios. The experimental results demonstrate that
the proposed model achieves accurate imputation and maintains steady per-
formance under extreme missing scenarios.

The remainder of this paper is structured as follows. Section 2 briefly reviews
the development of traffic data imputation methods and attention mechanism.
Section 3 presents the problem formulation and introduces the proposed impu-
tation method. Section 4 represents and analyzes experimental results. Finally,
the paper is concluded in Sect. 5.

2 Related Work

2.1 Traffic Data Imputation

Traditional Imputation Approaches. In the early traffic data imputation
literature, traditional methods can be summarized into three groups, i.e., predic-
tion, interpolation, and statistical learning [10]. Autoregressive integrated mov-
ing average (ARIMA) and its variants are typical prediction examples. One dis-
tinct shortcoming of the prediction model is that it only uses the foregoing tem-
poral information of the missing points. Commonly used interpolation methods,
e.g., k-NN interpolates missing points by averaging neighboring observed points.
However, these methods show their limits by mainly focusing on a single traffic
sensor or a road section. On the other hand, statistical learning is another line
of traffic data imputation research, such as Probabilistic principal component
analysis (PPCA) [9]. More advanced method utilized low-rank tensor structures
to represent the traffic data and recover missing points [3].

Deep Learning Based Approaches. In the era of big data, many deep learn-
ing based approaches have been proposed for time-series data imputation, but
not necessarily traffic data imputation. Generative adversarial networks (GAN),
which learn the distribution of training samples, have been applied to create
data imputation models. Yoon et al. proposed generative adversarial imputation
nets (GAIN) [17]. In GAIN, the discriminator was fed with a hint vector which
provided auxiliary information about the missing position. Luo et al. proposed
an end-to-end GAN (E2GAN) framework for multivariate time-series imputation
[11]. These universal imputation models usually concentrate on temporal mod-
eling rather than the correlations between different time-series. There are also
methods that capture spatial correlations with CNN layers [1,15]. For example,
Yang et al. designed a GAN model with CNN layers and bidirectional attention
[15]. However, these methods neglect the network topology, which is crucial to
spatial correlations modeling.
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2.2 Graph Attention in ITS

The attention mechanism is first emerged as a method to improve recurrent
neural networks’ performance on sequence-to-sequence learning tasks. The idea
of the attention mechanism is to select features that have a relatively larger
impact on the task. In real-world traffic networks, the graph is large-scale and
combined with noise. Extracting features from these graphs is difficult and may
lead to massive computational cost. A practical solution is to incorporate the
attention mechanism on graphs, namely graph attention networks (GAT) [13].
Graph attention mechanism allows a model to focus more on relevant parts of
the graph. In ITS-related applications, especially traffic speed prediction, many
methods based on graph attention mechanism have been proposed [6,20]. In the
reported results, these methods outperform graph convolution networks (GCN)
in many scenarios.

Inspired by the above literature and making use of its outstanding capability
in modeling complex and dynamic traffic networks, we employ graph atten-
tion mechanism in our model to learn the spatial correlations for traffic data
imputation.

3 Methodology

The proposed GACN estimates missing values by capturing spatial-temporal cor-
relations from the observations. In this section, we first introduce our data pre-
processing techniques, including traffic network representation and traffic data
imputation formulation. Then, we present the structure of the proposed GACN.
Finally, we give a detailed description of the spatial graph attention and tempo-
ral convolutional layers respectively.

3.1 Data Preprocessing

In this paper, we define a traffic network as an undirected graph G = (V,E,A),
where V is the set of vertexes, i.e., the set of sensors in a specific region |V | =
N . Edges e(vi, vj) ∈ E represent the spatial correlations between sensors. The
adjacent matrix of graph G is represented by A ∈ R

N×N , in which aij = 1
indicates sensor i and sensor j are adjacent and aij = 0 otherwise. Similar to
[20], we generate the adjacent matrix by thresholded Gaussian kernel,

aij =

{
1, exp

(
−dist(vi,vj)

2

σ2

)
≥ ε or i = j

0, otherwise
, (1)

where σ2 and ε are the thresholds that decide the sparsity of A. dist(vi, vj) is
the Euclidean distance between sensors i and j, which can be derived from their
respective locations.

Suppose a sensor records T observations in a day. We denote the ground truth
traffic speed in a day as S = {st

i} ∈ R
N×T , where st

i is the observation from
sensor i at time t. Figure 1 depicts a diagram of traffic data imputation problem.
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Fig. 1. Diagram of traffic data imputation problem.

We first randomly drop points on a complete observation S as input. A missing
mask M = {mt

i} ∈ R
N×T that records the missing positions is defined as,

mt
i =

{
1, if xt

i is observed
0, if xt

i is missing . (2)

Then the input X = {xt
i} ∈ R

N×T can be represented by,

X = S � M , (3)

where � is the element-wise multiplication. xt
i = 0 indicates a missing value and

xt
i = st

i indicates an observation. Missing rate is defined as the ratio of missing
values to the observations. The output of the model is denoted as Y = {yt

i} ∈
R

N × T . The imputation error E(S,Y ), which is calculated on missing points,
is defined as follows,

E(S,Y ) =
∑
i,t

mt
i‖st

i − yt
i‖2, (4)

Take Fig. 1 as an example. The model takes random missing points as input.
Then, the imputation error is only calculated on those blocks with diagonal
shadow (the missing points).

According to the previous studies, we investigate two traffic data missing
types in this study, i.e., random missing (RM) and block missing (BM) [8]. BM
is the same as not missing at random (NMR) in [8]. Figure 1 gives an illustration
of two missing types, where the blank blocks are the missing points, and the
blocks with dark shadows are observations. In RM, which is typically caused by
transmission failure, all the missing points are randomly scattered. BM is more
commonly caused by data center errors or power failure. The BM missing points
are gregarious in the spatial and temporal dimensions.

3.2 Graph Attention Convolutional Network for Imputation

We proposed a graph attention convolutional network (GACN) for traffic data
imputation in this paper. As shown in Fig. 2, GACN has an encoder-decoder
structure, where the encoder extracts the traffic characteristics, and the decoder
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Fig. 2. Structure of the proposed graph attention convolution network.

recovers the input sequence. Both the encoder and the decoder are composed of
two spatial-temporal blocks (ST block). In each block, there is a graph attention
layer for feature extraction in the spatial dimension and a standard convolutional
layer for time-series modeling along the temporal dimension. Specifically, blocks
in the encoder apply convolution layers, which perform merging and learn tem-
poral characteristics. Blocks in the decoder apply deconvolution layers, which
recover the internal features to their original size.

As illustrated in Fig. 2, the inputX of GACN is the observation from a specific
region embedded on a graph. Each node has the observation from a sensor in a day,
which is denoted as xi = {x1

i , x
2
i , ..., x

T
i }. The red points are missing points which

are set to zero in X. And the output of GACN is a graph that has the identical size
of the input. The missing positions may change on different timestamps (i.e., in
Fig. 2, the red points are on different nodes in different timestamps). We define the
reconstruction loss L(S,Y ) of GACN as the mean squared error between input
and output feature maps. Let the network parameters be θ, the objective of the
training is to minimize the reconstruction loss as follow,

arg min
θ

L(S, Y ) = arg min
θ

∑
i,t

‖sj
i − yj

i ‖2. (5)

Note that this reconstruction loss is different from the imputation error men-
tioned in Eq. 4. As shown in Fig. 1, reconstruction loss is calculated on the entire
output with dark shadow while imputation error is only calculated on the miss-
ing points. The reason is that missing positions may change on different days. In
the training stage, instead of only focusing on the missing points, we pay more
attention to learn the correlation and distribution from the entire observation.
The network parameter can be optimized by gradient descent algorithms.

3.3 Spatial Graph Attention

The traffic condition of a road section is changing over time. In addition, it is
affected by adjacent road sections. Such highly dynamic influence poses chal-
lenges in spatial modeling. To address this issue, we apply the graph attention
network (GAT) [13] to learn the spatial correlations. GAT captures dynamic spa-
tial correlations by applying a self-attention strategy and calculating dynamic
weights between vertexes.

The input of a graph attention layer can be denoted as H = {h1, h2, ..., hN},
where N is the number of vertexes, hi ∈ R

F represents each vertex that has
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F -dimension features. As mentioned in the above section, each sensor has T
observed values in a day, i.e., T -dimension features. Thus, the input of the first
graph attention layer in GACN is X ∈ R

N×T , which is with missing points.
Since the temporal features are captured by convolutional layers, we set the
output dimension the same as the input dimension for all graph attention layers
in GACN. With a weight matrix W ∈ R

F×F , the graph attention layer can
transform the input to the output feature space. Consequently, the attention
coefficient eij is calculated by a self-attention mechanism a : RT × R

T → R,

eij = a(Whi,Whj). (6)

The coefficient represents the influence of vertex j on vertex i. Generally, every
vertex in the graph affects each other. However, calculating coefficients in the
entire graph can be expensive. Thus, considering the graph topology, we only
compute the coefficients between adjacent vertexes. The hypothesis is that the
adjacent vertexes have more significant influence than non-adjacent vertexes.
The output h′

i is only affected by the input from adjacent nodes. Then, with
LeakyReLU [14] as the activation function, attention coefficients from neighbors
are normalized by softmax,

αij =
exp(LeakyReLU(eij))∑

k∈Ni
exp(LeakyReLU(eik))

, (7)

where Ni is a set of adjacent vertexes of i. To prevent overfitting, we randomly
dropout normalized attention coefficients in the training stage. Finally, the out-
put features of vertex i are updated by the attention coefficient and the input,
which is calculated by,

h′
i = σ

⎛
⎝ ∑

j∈Ni

αijWhj

⎞
⎠, (8)

where σ(·) is a non-linear activation function. We apply exponential linear unit
(ELU) here, which is the same as in [13].

3.4 Temporal Convolution and Deconvolution

After the graph attention layer capturing the spatial information from adjacent
sensors, a canonical convolutional operation is performed on the temporal dimen-
sion. The convolutional layers are with vector-like convolutional kernels which
aggregate neighboring values in time-series. After the convolutional layers in the
encoder part transform the input into the internal feature maps, the decoder
restores the feature maps back to the original size. Besides convolution layers,
deconvolution layers perform reversed convolutions that restore the input. We
use LeakyReLU which is relatively simple in gradient calculation as the activa-
tion function [14]. Both the convolution and deconvolution layers are carefully
designed to ensure that the input and output time-series share the same size.
The specific hyperparameters of convolution and deconvolution layers are listed
in Table 1.
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Table 1. Settings of convolution and deconvolution layers

Layer Kernel Stride Padding Out dimension

Conv1 4 2 1 T/2

Conv2 4 2 1 T/4

DeConv1 4 2 1 T/2

DeConv2 2 2 - T

4 Case Studites

In this section, we evaluate the performance of the proposed model by case stud-
ies. First, we introduce the dataset and detailed experiment settings. Then, we
conduct simulations with different missing scenarios and compare the proposed
model with other baselines.

4.1 Dataset

PeMSD71 is collected from District 7 in California Performance Measurement
System (PeMS). PeMS provides real-time and historical 5-min average traffic
speed data, which is applied in this study. There are in total over one thousand
sensors on the arterial roads of District 7. Similar to [18], we selected 231 sensors
from the central area, which have a more complicated spatial distribution. The
locations of 231 sensors are shown in Fig. 3a, which are in the downtown of
Los Angeles. The investigated time ranges from May 1, 2012, to June 30, 2012,
excluding weekends. No missing points are found in this period.

(a) Location of sensors (b) Attention coefficients

Fig. 3. Sensor distribution of PeMSD7 and results of spatial attention mechanism.

1 http://pems.dot.ca.gov/.

http://pems.dot.ca.gov/
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4.2 Experiment Configurations

We investigate two missing data types as mentioned in Sect. 3.1 in this study,
i.e., random missing (RM) and block missing (BM). To investigate the proposed
model in typical missing scenarios as well as in extreme cases, we select a wide
missing rate range from 10% to 90% with 10% interval. For each sample, the
missing points are randomly erased according to the missing rate and missing
type. Then, the missing points together with the observations are fed into the
network. For cross-validation, we sequentially group 80% of the data for training,
10% for validation, and 10% for testing. For samples in both the training and
testing stage, the missing points are randomly erased ten times, i.e., the number
of input samples is enlarged ten times compared to the original dataset. Similarly,
the experiment is repeated ten times to reduce the impact of randomness when
evaluating the baselines.

The proposed network is trained by Adam optimizer [7]. The learning rate
starts at 0.0005 and is subsequently adjusted with a decay rate of 0.5. The
negative slope of LeakyReLU is set to 0.1. And the dropout layer in GAT is
with a dropout rate of 0.2. During the training stage, the batch size is set to 8.
Same as [18], the thresholds σ2, ε in Eq. 1 are set to 10 and 0.5, respectively. The
model is iterated for 150 epochs. All experiments are implemented with PyTorch
and conducted on an NVIDIA GeForce RTX 2080Ti GPU.

The imputation accuracy is evaluated by Mean Absolute Percentage Error
(MAPE), which is defined as follows:

MAPE =
1
n

n∑
i=1

∣∣∣∣ x̂i − xi

xi

∣∣∣∣ × 100%, (9)

where x̂i is the imputed traffic speed at i, and xi is the ground truth observation.

4.3 Baselines

We select the following imputation methods as a comparison of the proposed
model:

– Historical Average (HA): In this paper, we average the previous 5 days
to estimate the missing values.

– k-Nearest Neighborhood (k-NN): k-NN is a typical example of
interpolation-based methods. The imputation is performed by calculating the
average value of neighboring points [10]. In this paper, we set k = 4.

– Support Vector Regression (SVR): We select SVR as a representative
of regression-based imputation methods [2].

– Denoising Stacked Autoencoder (DSAE): We choose DSAE as an exam-
ple of imputation methods based on deep learning. In this paper, we use the
DSAE with the same hyperparameters in [4].

– Bayesian Gaussian CP decomposition (BGCP): Based on probabilistic
matrix factorization, BGCP utilized variational Bayes and achieved better
performance compared to other tensor-based imputation methods [3].
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(a) Random Missing (RM) (b) Block Missing (BM)

Fig. 4. Imputation results of the proposed GACN (30% missing rate).

4.4 Experimental Results

Imputation Results. The attention coefficients matrix is shown in Fig. 3b,
where the i-th row presents the spatial correlation between sensor i and each
other. As we constructed an undirected graph, the matrix is approximately
symmetric. Since the graph attention is calculated on the adjacent nodes, the
attention matrix is sparse. To see the detailed imputation results, we ran-
domly select one sensor and visualize the imputation results using the proposed
GACN in Fig. 4. The black dot-dashed line is the ground truth observations,
and the red dotted line is the output of GACN. The missing points are marked
as blue crosses. In Fig. 4a where a random missing scenario is demonstrated,
though some sharp fluctuations are smoothed, the proposed model can accurately
recover the missing points as well as other observations. Compared to random
missing, block missing in Fig. 4b is more difficult. Although the imputed output
has the same overall trend as the ground truth, relatively large fluctuation with
continuous missing points is not restored well.

Performance Comparison. Figure 5 presents the performance comparison of
the proposed GACN and other baselines. In the comparison, we can have the
following observations. First of all, GACN achieves the best imputation accuracy
in most scenarios and has similar results to other methods at low missing rates
(e.g., 10%). Secondly, for the same missing types, while other baselines’ perfor-
mance drops as the missing rate increases, the proposed GACN maintains its
outstanding recovery accuracy. The reason is that the proposed GACN learns the
overall traffic distribution by reconstruction loss. Methods like KNN and SVR,
which only focus on the missing points, can be effective when only a few points
are missing. Thirdly, all the methods have better performance in RM than BM,
which is in accordance with the results shown in Fig. 4. The proposed GACN has
relatively steady MAPE while other methods degenerate rapidly. This observa-
tion indicates that spatial correlations of adjacent sensors may provide auxiliary
information when missing points are continuously distributed.
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Fig. 5. Imputation MAPE (%) of different methods for different missing types.

5 Conclusion

In this paper, we propose a novel GACN for traffic data imputation. An undi-
rected graph is first utilized to represent the traffic network. Then, data impu-
tation is implemented by a graph attention convolutional network that follows
an encoder-decoder structure. Both the encoder and the decoder consist of two
stacked spatial-temporal blocks. In each block, a graph attention layer extracts
spatial correlations, and a convolution/deconvolution layer models temporal rela-
tions of the traffic data. Comprehensive case studies are conducted to evaluate
the imputation accuracy of the proposed model. Specifically, we consider two
missing types and a wide missing rate range from 10% to 90%. Experimental
results show that the proposed method outperforms other imputation baselines
and maintains steady performance in extreme missing scenarios. In future stud-
ies, we plan to further improve the imputation accuracy by employing the missing
mask in the training stage.
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Abstract. Most state-of-the-art Graph Neural Networks focus on node
features in the learning process but ignore edge features. However, edge
features also contain essential information in real-world, such as financial
graphs. Node-centric approaches are suboptimal in edge-sensitive graphs
since edge features are not adequately utilized. To address this prob-
lem, we present the Edge-Featured Graph Attention Network (EGAT) to
leverage edge features in the graph feature representation. Our model is
based on the edge-integrated attention mechanism, where both node and
edge features are included in the calculation of the message and attention
weights. In addition, the importance of edge information suggests that
the edge features should be updated to learn high-level representation.
So we perform edge updating with the integration of the features of con-
nected nodes. In contrast to edge-node switching, our model acquires the
adjacent edge features with the node-transit strategy, avoiding significant
lift of computational complexity. Then we employ a multi-scale merge
strategy, which concatenates features of every layer to construct hierar-
chical representation. Moreover, our model can be adapted to domain-
specific graph neural networks, which further extends the application
scenarios. Experiments show that our model achieves or matches the
state-of-the-art on both node-sensitive and edge-sensitive datasets.

Keywords: Graph neural network · Edge feature · Attention

1 Introduction

Graphs are a popular way to model data in real-world applications, where nodes
represent entities and edges represent relationships between entities. In recent
years, several works [1,2] have applied neural networks to graph data. Kipf
and Welling [3] propose graph convolutional networks (GCN) based on spec-
tral graph theory. Velickovic et al. [4] present graph attention networks (GAT)
with non-spectral graph methods, which introduce self-attention mechanisms [5]
into graph neural networks. These methods focus on node features and achieve
good results on node classification tasks, but they do not consider edge features.

However, edge features may play an equal or even more essential role to node
features in some data. For example, in a financial transaction graph, nodes con-
tain account information and edges contain transaction data. In an anti-money
c© Springer Nature Switzerland AG 2021
I. Farkaš et al. (Eds.): ICANN 2021, LNCS 12891, pp. 253–264, 2021.
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Fig. 1. The architecture of EGAT. H and E represent node features and edge features,
respectively. The outputs of each EGAT layer, Hl and El, are fed to the merge layer
to generate the final representation Hfinal and Efinal.

laundering task, we often make the judgment based on the pattern of transac-
tions rather than the characteristics of the account itself. In other words, edge
data plays a more significant role than node data on this task, which we call edge-
sensitive. The current node-centric approach cannot handle these tasks properly
because they cannot exploit edge features effectively. Additionally, since the edge
features are continuous vectors, the heterogeneous graph-based methods, which
deal with discrete labels, are also suboptimal to these tasks.

In this paper, we propose the Edge-Feature Graph Attention Network (EGAT)
to address this problem. We apply both edge data and node data to the graph
attention mechanism, which we call edge-integrated attention mechanism. Specif-
ically, both edge data and node data are essential factors for message generation
and attentional weight computation. Similarly, the edge features are updated with
the adjacent node features to generate high-level representations. In an EGAT
layer, we update node features and edge features iteratively so that both node
and edge can learn from each other. The final representations of nodes and edges
are generated with the concatenation of the outputs of each layer to combine fea-
tures from multi-scales. Moreover, EGAT is also a general framework that we can
integrate custom message functions to adapt to specific areas.

Our main contributions are as follows.

1. To the best of our knowledge, we are the first to propose the introduction of
edge features into the graph attention mechanism, making edge features play
the same important role as node features. Therefore, our model can deal with
the graphs with high dimensional continuous edge features.

2. Our model can handle graphs with different feature preferences, including
both node-sensitive and edge-sensitive. Experimental results show that our
model exceeds or matches the state-of-the-art on both node-sensitive (Cora,
Citeseer, PubMed [6]) and edge-sensitive (AMLSim [7]) datasets.

3. We apply EGAT to specialized graph networks and obtain improved accuracy,
showing the compatibility with other message-passing-based methods.



EGAT: Edge-Featured Graph Attention Network 255

2 Related Work

2.1 Attention Mechanism

Attention mechanism was proposed by Vaswani et al. [5] and is popular in natural
language processing and computer vision areas. It assigns various weights to
related entities, rather than acquiring their features evenly. Velickovic et al.
[4] proposes graph attention networks (GAT), which introduces the attention
mechanism to graph neural networks. GAT computes the attention weights of
neighboring nodes, thus focusing on important nodes rather than being affected
equally. Additionally, GAT mitigates the over-smoothing problem, which makes
it possible to stack more layers. Our work will follow these approaches and extend
the application of the attention mechanism in graph neural networks.

2.2 Edge-Featured Approaches

In graph data, edges may contain different types of information. In some graphs,
edges have discrete labels, such as the relationship types in knowledge graphs.
Several methods for handling heterogeneous graphs can deal with these graphs
effectively, such as HAN [8] and R-GCN [9]. On the other hand, edges carry
continuous feature vectors in some other graphs. For example, the edges of trad-
ing graphs contain the transaction information. Gong and Cheng [10] propose
EGNN to exploit these edge features, which uses the edge features to compute
the weight matrix to assist propagation node features. This method is still node-
centric since the edge features are only used as weights rather than the embed-
ding of the edges. CensNet [11] uses the Edge-Node Switch strategy to update
the edge features on the corresponding line graph. This approach treats nodes
and edges as equally important entities and produces both node and edge embed-
dings. However, it suffers performance overhead on dense graphs. In quantum
chemistry, several methods [12,13] introduce edge data into the computation of
messages during message passing. These methods exploit of edge features ade-
quately and work well on quantum chemistry datasets. However, this specially
designed approach may not be suitable for other areas.

3 Method

3.1 Preliminary

Firstly, we present the notation for node and edge features. Given a graph G with
N nodes and M edges, we use H = {�h1,�h2, ...�hN} to represent node features,
where �hi ∈ R

FH . Similarly, we use E = {�ei1j1 , �ei2j2 , ...�eiM jM } to represent edge
features, where �eij ∈ R

FE represents the edge between the ith and jth nodes.
Superscripts are used to distinguish the stages of node features and edge features.
We use Eori and Hori for the input edge and node features, El and H l for the
output of the lth EGAT layer, and Efinal and Hfinal for the final edge and node
representations. We may omit the superscript if there is no ambiguity.
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Then, we present the definition of the task. The input is a graph G with node
features Hori and edge features Eori, and the supervised learning task T with
the corresponding label L (e.g., edge classification with edge labels). Our model
aims to generate the node embedding Hfinal and edge embedding Efinal that
achieve the highest possible performance in the supervised learning task T .

It should be emphasized that there are several related but different tasks.
The first one is the heterogeneous graph, where the node and edge features are
discrete types (e.g., knowledge graphs). A typical solution is to define different
weight matrices for each type, which is unable to apply to our task, where the
edge features are continuous. Another related task is the weighted graph. In that
case, edge features are used as the weight during the aggregation. However, this
approach can only deal with low-dimensional edge features and cannot produce
meaningful edge embeddings.

3.2 Architecture Overview

We will start by giving an overview of the whole EGAT network. The EGAT
network consists of three types of layers, including the bottleneck layer, EGAT
layer, and merge layer. Figure 1 gives the illustration of architecture.

The input node and edge features are firstly fed into the bottleneck layer to
perform a linear transform. Then, the EGAT layers are sequentially applied to
the node and edge features to generate higher-level representations. Inside the
EGAT layer, the node module is applied before the edge module, which meets
the property of the edge module (introduced below).

Inspired by [14,15], we adopt multi-scale strategy by adding a merge layer
to build hierarchical features. In the merge layer, we collect the output of the
bottleneck layer and each EGAT layer, and aggregate them by concatenation.
The final node features Hfinal and edge features Efinal can be expressed as:

�hfinal
i =

L�

l=0

�hl,out
i , �e final

ij =
L�

l=0

�e l,out
ij (1)

where L is the number of EGAT layers and
�

represents the concatenate operator.
The final node and edge embeddings are used to perform the subsequent task

T . With the guide of supervised task T and label L, the EGAT model could be
optimized via backpropagation and refine the node and edge embedding.

3.3 Node Module

The node module accepts node features H and edge features E, then process the
edge-integrated attention mechanism to update node features according to the
adjacent edges and nodes, and finally generates higher-level node features H ′.

Firstly, we map the node and edge features to higher-level features with
the linear transformation to improve the expression ability. Specifically, weight
matrices Wh ∈ R

F ′
H×FH and We ∈ R

F ′
E×FE are applied to every node
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and edge, respectively. Then, an edge-integrated attention mechanism a :
(RF ′

H ,RF ′
H ,RF ′

E ) → R, which generates the attention weights as follows, are
performed on each node:

wij = a(Wh
�hi,Wh

�hj ,We�eij) (2)

where wij indicates the importance of node j and edge ij to node i. Similar to
the GAT model [4], normalization will be performed on these weights across all
choices of node j, where hj ∈ Ni, with a softmax function:

αij = softmaxj(wij) =
exp(wij)∑

k∈Ni
exp(wik)

(3)

where Ni represents the neighboring nodes of node i.
In our work, the edge-integrated attention mechanism a is a single-layer feed-

forward neural network, which can be parameterized as a one-dimensional weight
vector �a ∈ R

2F ′
H+F ′

E , and applying LeakyReLU [16] as the activation function.
The whole process can be formulated as follows:

αij =
exp(LeakyReLU(�aT [Wh

�hi‖Wh
�hj‖We�eij ]))

∑
k∈Ni

exp(LeakyReLU(�aT [Wh
�hi‖Wh

�hk‖We�eik]))
(4)

where ·T is the transpose operation and ‖ represents the concatenation operation.
After acquiring the normalized attention weights, we can perform a weighted

sum on these neighboring node features. In addition, a non-linearity σ will be
applied to these summation results. The final result can be expressed as:

�h′
i = σ(

∑

j∈Ni

αij [Wh
�hj‖We�eij ]) (5)

The aggregation process is also illustrated in Fig. 2(a).
Note that the new node features �h′

i consist of neighbor node features and
edge features, which allows the representation of the node to integrate the edge
information. However, in practice, we often want the input and output node fea-
tures to keep the same dimension (i.e., F ′

H +F ′
E = FH). Therefore, we introduce

λ ∈ [0, 1] to control the contribution ratio of node features to edge features:

F ′
H = �λFH�, F ′

E = �(1 − λ)FH� (6)

where F ′
H and F ′

E denote the dimension of node and edge features after linear
transformation, respectively. Moreover, we can tune λ according to the feature
preferences of specific dataset. For example, we can decrease the λ to integrate
more edge features to nodes on edge-sensitive datasets, and vice versa. The
detailed impact of λ is introduced in the experiments.

3.4 Edge Module

Similarly, the edge module accepts node features H and edge features E, updates
edge features with its adjacent nodes and edges, and finally generates higher-level
edge features E′.
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(a) The updating process of Node Module. (b) The updating process of Edge Module.

Fig. 2. The updating process of node module and edge module. Orange and blue
represent the node and edge features, respectively. (Color figure online)

An ideal approach to update edge features may include all the adjacent edge
and node features. However, the number of adjacent edge pairs could be large in
dense graphs, which may increase the computational complexity. As a result, we
use the node-transit strategy, which uses nodes as transit ports of edge features.
Firstly, we aggregate the adjacent edge features to the node with the edge-
integrated attention mechanism:

βij = softmaxj(LeakyReLU(�bT [Wh
�hi‖Wh

�hj‖We�eij ])) (7)

�ei
′ =

∑

j∈Ni

(βijWe�eij) (8)

where �ei
′ is the aggregated edge features on node i. Note that Wh and We are

not shared among node modules.
Next, we use the aggregated edge features and node features to generate the

higher-level edge features with the multilayer perceptron (MLP):

�eij
′ = MLP(�hi,�hj , �ei

′, �ej
′, �eij) (9)

3.5 EGAT with Custom Message Function

So far we have introduced the specific node and edge updating method. EGAT
is also a framework that can integrate with message-passing-based approaches
[12]. Suppose we have such a message passing neural network (MPNN) that:

�eij
′ = E(�hi,�hj , �eij), �m′

ij = M(�hi,�hj , �eij) (10)

where E means the edge updating function, �mij means the message vector and
M is the message function.

We use the symmetric strategy to generate the attention weights wij with
the edge-integrated attention mechanism:

wij = a(�hi,�hj , �eij)

= LeakyReLU(�aT [M(�hi,�hi, �eij)‖M(�hi,�hj , �eij)])
(11)
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There are three reasons to apply the message function M to both node i and
node j. Firstly, it reuses the calculated message vector �m′

ij , thus reduces the
performance overhead and the overfitting risk. Secondly, the custom message
function M contains the domain-specific inductive bias, so it is more suitable
for specific areas. Thirdly, �m′

ii and �m′
ij are mapped into the same feature space,

making the attention vector �a easier to assess the importance.
Then, we calculate the normalized attention weights αij with Eq. 3, and

finally aggregate messages:

�h′
i = σ(

∑

j∈Ni

αijM(�hi,�hj , �eij)) (12)

As for the edge module, we use the custom edge function E to update edge
features. If E is not specified, we will use the default Edge Module to instead.

4 Experiments

4.1 Dataset and Preprocessing

To show the adaptability on both edge-sensitive and node-sensitive scenarios,
we evaluate our models on two categories of datasets, including edge-sensitive
AMLSim and node-sensitive citation networks (Cora, Citeseer and PubMed [6]).

AMLSim. AMLSim [7] is a simulated dataset for anti-money laundering, where
nodes represent accounts and edge represent the transaction of accounts. Each
node has 2 features about account property, and each edge has 4 transaction-
related features. Among them, money laundering is primarily related to trans-
action patterns rather than account properties, so the edge features are more
essential than node. In other words, AMLSim is an edge-sensitive dataset.

The task of AMLSim is to classify nodes into the eight types, including
normal accounts and seven patterns of money laundering. Since nearly 80% of
nodes are normal accounts, we use the F1 score as the metric.

We generate the dataset with the default configuration, except that we enable
all money laundering patterns. 100 graphs are generated with different random
seeds, and split into 5/5/90 for training, evaluating and testing, respectively.

The dataset is preprocessed as follows. Firstly, we aggregate the multiple
transactions between two accounts into one edge. The aggregated edge features
contain the number of transactions and the statistic of original features, includ-
ing the minimum, maximum, average, and standard deviation. Then, we encode
directed edges following the method of [10].

Citation Networks. Cora, Citeseer, and PubMed [6] are three widely used
node classification datasets, where nodes and edges represent papers and citation
relationships, respectively. We create two edge features following [11], including
the cosine similarity of node features and the one-hot encoded edge direction.
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To perform a fair comparison with CensNet [11], we follow the same split
strategy. Specifically, we evaluate our models with 3% nodes as the training set
on Cora, 1% on Citeseer, and 0.1% on PubMed. Additionally, 50% of nodes are
used as the validation set, and the rest is the testing set. Since the exact split is
not published, we use the GCN [3] as the calibration to minimize the unfairness
caused by different partitions. In detail, we split the dataset with several random
seeds, among which we select the random seed with the closest accuracy to [11].
In this way, the difficulty of the dataset partition is similar.

4.2 Baselines

We compare our models with both node-centric and edge-featured approaches.
The former aggregates edge features to nodes and then applying node-centric
methods, while the latter processes edge features directly.

Node-Centric Methods. One approach to processing edge-sensitive graph is
aggregating edge features to nodes and then use node-centric methods. Following
this approach, we use three baseline methods:

1. GAT. We neglect edge features and predict with only node features.
2. GAThandpick. We attach the statistic of adjacent edge features to nodes,

including the minimum, maximum, average, and standard deviation.
3. GATEGAT.We replace the first layerwithEGAT.Themain difference between

GAThandpick is that the aggregation method of GATEGAT is learnable.

Edge-Featured Methods. We select three typical edge-features methods as
the baseline: NNConv [12], MGCN [13], and CensNet [11]. In the experiments,
NNConv and MGCN are evaluated on the AMLSim dataset while CensNet is
evaluated on the citation networks because the Edge-Node Switching [11] oper-
ation of CensNet is too heavy on the AMLSim dataset. Moreover, to evaluate
the compatibility of EGAT, we integrate it with NNConv and MGCN, providing
two EGAT variants: EGATNNConv and EGATMGCN .

4.3 Experimental Setup

For all experiments, Batch Normalization [17] is used before the activation func-
tion of each layer. We use Adam optimizer [18] with learning rate 0.005. Early
stopping strategy is adopted with the patience of 100 epochs. For all the fol-
lowing GAT and EGAT models, we use K = 8 attention heads and ELU [19]
nonlinearity. The dataset-specific settings are described as follows.

AMLSim. For AMLSim, we apply the EGAT model with 6 layers. The bottle-
neck layer is a one-layer MLP. We use two-layer MLP as the predicting layer for
classification. The outputs of the merge layer are used to process the classifica-
tion. We use 128 for both node feature and edge feature. The node feature ratio
λ is set to 0.25. Dropout [20] with p = 0.3 is applied to the output of all layers
except for the predicting layer. Besides, we apply L2 regularization with 0.001.
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Table 1. Results on AMLSim dataset. We report the F1 scores of seven patterns and
the classification accuracy. The star labeled methods are ours.

Method F1 score Acc.

Bipartite Cycle Fan-in Fan-out Gather-
scatter

Scatter-
gather

Stack Avg.

GAT 0.000 0.000 0.000 0.000 0.086 0.105 0.000 0.027 79.1%

GAThandpick 0.769 0.896 0.839 0.878 0.888 0.986 0.574 0.833 97.1%

GATEGAT 0.767 0.902 0.904 0.939 0.936 0.988 0.575 0.859 97.6%

MGCN 0.819 0.942 0.939 0.965 0.972 0.997 0.676 0.901 98.3%

NNConv 0.812 0.924 0.945 0.974 0.975 0.995 0.672 0.900 98.3%

EGATMGCN* 0.808 0.979 0.954 0.981 0.981 0.998 0.695 0.914 98.6%

EGATNNConv* 0.826 0.944 0.950 0.977 0.978 0.998 0.705 0.911 98.5%

EGAT* 0.856 0.991 0.965 0.986 0.987 0.999 0.774 0.937 98.9%

CitationNetworks. Since the overfitting is severe in these datasets, we simplify
the network structure. The bottleneck layer and the MLP-based predicting layer
are removed. Instead, we use GAT to produce the prediction. In all, we use only
2 layers of EGAT. As for hyperparameters, we tried the FH from {32, 64, 128},
the FE from {8, 16, 32}, the L2 regulation from {0.0002, 0.0005, 0.001}, and the
dropout from {0.6, 0.65, 0.7, 0.75}. The node feature ratio λ is set to 0.875. We
report the best result from the above combinations.

4.4 Results and Discussions

AMLSim. We compare our model with baselines mentioned above. In Table 1,
we report the F1 scores of all patterns and the classification accuracy.

The results of GAT-based methods show that the F1 scores drop to a low level
if the edge features are neglected. This result is consistent with our analysis in
dataset description that the AMLSim is an edge-sensitive dataset. Additionally,
the GATEGAT model outperforms the GAThandpick model, which shows that the
learnable aggregation is better than naive handpicked features. However, these
methods underperform all the edge-featured methods, because these methods do
not take full advantage of edge features.

On the other hand, all the edge-featured methods outperform the GAT-based
methods, which shows the superiority of edge feature updating. In particular, the
EGAT model gives a higher F1 score than quantum-chemistry-oriented methods
and their EGAT variants. The probable reason is that these models are specially
designed, whose inductive bias is not suitable for the AMLSim.

The EGAT model obtains the best F1 scores for all patterns as well as the
highest classification accuracy. Moreover, integrating with EGAT can effectively
improve the accuracy of quantum-chemistry-oriented methods. It shows that
domain-specific message functions are compatible with EGAT model well, which
indicates the potential to apply EGAT model in specific areas.
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Table 2. Classification accuracy on citation networks. The data of star labeled methods
are provided by [11].

Method Cora (3%) Citeseer (1%) PubMed (0.1%)

GCN* [3] 74.0 ± 2.8% 58.3 ± 4.0% 73.0 ± 5.5%

LNet* [21] 76.3 ± 2.3% 61.3 ± 3.9% 73.4 ± 5.1%

AdaLNet* [21] 77.7 ± 2.4% 63.3 ± 1.8% 72.8 ± 4.6%

CensNet* [11] 79.4 ± 1.0% 62.5 ± 1.5% 69.9 ± 2.1%

GCN [3] 74.2 ± 0.4% 58.3 ± 0.7% 73.0 ± 0.9%

GAT 77.5 ± 0.4% 60.2 ± 1.1% 73.2 ± 1.0%

GAThandpick 78.2 ± 0.6% 61.0 ± 0.8% 73.9 ± 1.1%

GATEGAT 78.5 ± 0.4% 59.0 ± 0.5% 73.6 ± 0.5%

EGAT (ours) 79.3 ± 0.7% 59.8 ± 0.5% 74.7 ± 0.7%

Citation Networks. We compare our model with another edge processing
approach, CensNet, on the citation network. The results are shown in Table 2. As
mentioned above, we use GCN as the calibration of dataset partition. The result
shows that our model obtains the best accuracy on PubMed, and is competitive
on Cora. Although, our models do not perform as well on CiteSeer. In conclusion,
EGAT model is competitive with state-of-the-art methods.

Summary. The experiment result shows that EGAT achieves the highest F1

score in edge-sensitive AMLSim dataset and obtain a competitive accuracy node-
sensitive citation networks. Moreover, EGAT is compatible to specialized mes-
sage functions and effectively improves accuracy. Additionally, the complexity of
the edge module is O(|E|(FE+2FH)FE), which is much smaller than Edge-Node
Switching operation, so EGAT is more scalable on large and dense graphs.

4.5 Ablation Study

Impact of Layer Number L and Merge Layer. To study the impact of
different layer numbers L and the effectiveness of merge layer, we test EGAT on
different L, both with and without the merge layer.

Figure 3(a) shows the results. The EGAT with merge layer achieves the high-
est F1 score at L = 6. Despite the multi-scale merge strategy, the accuracy
slightly decreases with the increment of depth. The most likely reason is that
the dimension of the final features is increased with depth, which causes the
overfitting problem of the classification task. On the other hand, in general, the
accuracy of EGAT w/o merge layer is lower. In practice, the optimum layer
number is related to the property of datasets.
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Fig. 3. Impact of hyperparameters, including (a) layer number and (b) node feature
ratio. The average F1 scores are reported (the higher the better).

Impact of Node Feature Ratio λ. We also test different node feature ratio
of EGAT model, and Fig. 3(b) shows the result. The selection of λ is a trade-
off, where a high λ reduces the information loss of the previously learned node
features, but it also restrains the utility of edge features. As the result indicates,
λ has little effect on the F1 score when λ ≤ 0.875, while the F1 score drops
significantly when λ > 0.875. In practice, the optimum λ is highly related to
the preference of datasets. Specifically, higher λ is suitable for node-sensitive
datasets, while lower λ is appropriate for edge-sensitive datasets.

5 Conclusion

We propose a new framework EGAT to handle both node and edge features,
which extends the scenarios of application of graph neural networks. EGAT
exceeds or matches the state-of-the-art on both node-sensitive and edge-sensitive
datasets, and can also be combined with domain-specific methods. In the future,
we will explore how to apply EGAT to multigraphs and time-related graphs.
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Abstract. Generative question answering tasks usually suffer from the
challenge of the lack of external knowledge. The generative question
answering model cannot understand the intention of questions effectively
because the questions asked by users are short and the amount of infor-
mation is insufficient. Therefore, it needs to be supplemented by external
knowledge. In this paper, we propose a generative question answering
model combined with knowledge graph (KG-Transformer), which can
solve the problem of inaccurate generation caused by the above chal-
lenge. The advantage of KG-Transformer is that it designs a knowledge
retrieval module which can obtain external knowledge from the knowl-
edge graph as a supplement to the intention of question. Besides, com-
pared with the traditional sentence similarity method and hard fusion,
it uses a soft switching mechanism, which can switch between the knowl-
edge vector and the question vector, effectively extracting knowledge
information and questions information and then fusion. Experiments on
a benchmark dataset demonstrate that our model has robust superiority
over compared methods in generating informative and accurate answer.

Keywords: Knowledge graph · Transformer · Question answering

1 Introduction

Building a generative question answering model that is capable of providing
informative responses is a long-term goal of artificial intelligence. The current
generative question answering models based on Seq2Seq [1–4] and Transformer
[5] are faced with the problem of lack of external knowledge. As the question
contains little valid information in the generative question answering tasks, it is
difficult to extract valid information if model based on Seq2Seq [1–4] or Trans-
former [5] only encodes a single question without external knowledge or human
intervention. Without enough valid information, the model cannot understand
the intention of the question well and thus cannot generate accurate answers.

In order to enhance the understanding of the intention of the question, some
scholars have begun to study the knowledge graph as supplementary information
of questions. He [6] used the information copied from the question and the rele-
vant knowledge retrieved from the trigram of knowledge graph to integrate the
c© Springer Nature Switzerland AG 2021
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attention mechanism into the question representation to improve the understand-
ing of the intention of the question. Annervaz [7] proposed a convolution-based
knowledge graph entity and relation cluster representation learning model, using
attention mechanism to extract fact-supporting knowledge from the task-based
knowledge graph. Madotto [8] used memory networks to store knowledge graph,
and then used pointer network [9] to switch between the original text and the
vocabulary to select words to improve the generative network generation effect.
Yang [10] studied the use of a marked attention mechanism to adaptively decide
whether to pay attention to background knowledge and decide which part of the
knowledge base information to add to improve machine reading. Although these
methods have improved in performance, most models except vocabulary distribu-
tion combine copy distribution and retrieval distribution, and accurate modeling
the dependencies between multiple distributions is quite complex and difficult,
which leads to the not comprehensive knowledge obtained from the knowledge
graph. An [11] and Tu [12] both proposed a knowledge unit with a key-value
structure to integrate knowledge graph triple information into the answer gen-
eration model. This method can avoid the modeling of the dependencies of the
above distributions and obtain the external knowledge while reducing the com-
plexity. Although the method is feasible, the approach of knowledge fusion does
not fully consider the semantic relationship between knowledge information and
question information.

Aiming at the problem of lack of external knowledge in traditional genera-
tive models, we propose a new generative question answering model that com-
bines knowledge graphs (KG-Transformer) which consists of KGT encoder and
KGT decoder. We directly use the Transformer decoding module [5] as the KGT
decoder and design a knowledge fusion module composed of a retrieval module
that retrieves knowledge graph information and a dual Transformer encoder [5]
that encodes knowledge information and question information separately as the
KGT encoder. In addition, the soft switching mechanism is used in the knowledge
fusion module to flexibly switch between the knowledge vector and the question
vector, effectively extract and merge knowledge information and question infor-
mation, which can improve the accuracy of answer generation and enrich the
content of generated answers.

The main contributions of this work are as follows:

• In order to solve the problem of lack of external knowledge, we propose a
novel module of knowledge retrieval, which retrieves relevant facts informa-
tion from knowledge graph and extracts its knowledge information using the
Transformer encoder [5].

• Since the knowledge information may contain some lengthy and useless infor-
mation, we propose a knowledge fusion module, which applies a deep neural
network to further extract features and finally fuse the knowledge information
with the question information.

• We conduct extensive experiments to demonstrate the superiority of our pro-
posed model for improving generative answers performance in terms of the
BLUE [13], topic similarity [14] and human evaluation [15].
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2 Related Work

Generative question answering aims at generating meaningful and coherent
answer given input question. Various techniques have been proposed to improve
the quality of generated answers from different perspectives, including the fol-
lowing aspects:

2.1 Generative Question Answering

Bahdanau [2] combined the Seq2Seq model with the attention mechanism to gen-
erate the answer, but the model did not encode the entire input as a fixed-length
vector. Serban [16] proposed the hierarchical Seq2Seq model, which modeled the
context by adding additional session-level encoders to reduce information loss and
produced more accurate answers. Li [17] proposed a dialogue generation model
combined with reinforcement learning to explore the possible space of maximiz-
ing the expected reward by simulating the dialogue between two virtual machines.
Some scholars are also engaged in the research of memory-based Seq2Seq model.
The memory network proposed by Sukhbaatar [18] contains a large external mem-
ory, and the model can read the external memory storage many times and finally
produce an output. Different from the above methods, this paper is a question and
answer system mainly based on knowledge graph and Transformer.

2.2 Knowledge Acquisition Method

He [6] first identified the subject entity of the question, and retrieved relevant
facts from the knowledge base using the constructed retrieval mechanism based
on the subject entity. Madotto [8] stored all relevant information in the memory
network, and directly copied the relevant information through the copy mecha-
nism. However, these methods all have to deal with the dependence of multiple
distributions including vocabulary distribution, copy distribution and retrieval
distribution, which caused the acquired knowledge may not be guaranteed and
the model is difficult to train. An [11] and Tu [12] calculated the degree of corre-
lation between the question (or context information), the state of the encoding
stage and the key part of the triple, weighted and summed the value part to
obtain knowledge. Although the method capture knowledge information to a
certain extent, the extracted effective knowledge information is limited. There-
fore, we directly use the traditional retrieval-based question answering model to
retrieve relevant facts from the knowledge graph and extract knowledge using the
Transformer encoder [5], which avoids the dependency of multiple distributions
while ensuring access to comprehensive knowledge information.

2.3 Knowledge Fusion Method

He [6] used the retrieval distribution to fuse the facts in the knowledge base into
the generation process. Madotto [8] merged the copied historical information into
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the generation. An [11] directly added knowledge to the question expressions. Tu
[12] linearly transformed the knowledge, questions, words predicted at the last
moment and the decoded hidden layer state, and applies softmax function to
calculate the knowledge fusion. However, the knowledge fusion methods of these
scholar do not fully consider the degree of semantic matching between question
information and knowledge information. Therefore, we first encodes the retrieved
knowledge to extract useful features, calculates the degree of correlation with
the encoded question, and uses it as a soft switching mechanism to weight the
knowledge vector and the question vector separately and then sum them. This
fusion method can more effectively extract the semantic features of the question.

Fig. 1. KG-Transformer structure Fig. 2. Knowledge retrieval module

3 Model

As shown in Fig. 1, KG-Transformer (referred to as KGT) consists of two parts:
KGT encoder (Fig. 1(a)) and KGT decoder (Fig. 1(b)). The KGT encoder is
a retrieval module and a knowledge fusion module, where the knowledge fusion
module is mainly composed of two Transformer encoder modules [5]. In addition,
the KGT decoder directly uses the Transformer decoder module [5].

3.1 KGT Encoder

The KGT encoder is composed of a knowledge retrieval module and a knowledge
fusion module.
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Knowledge Retrieval Module. Knowledge retrieval module (the knowledge
retrieval module in Fig. 1(a)) is actually a question answering system based on
the knowledge graph. The basic principle is to semantically analyze the question,
and then query from knowledge graph and infer to obtain the knowledge infor-
mation. We use the method of semantic analysis [19] retrieve answers from the
knowledge graph, no need to redesign the retrieval distribution and deal with
the complex dependencies of multiple distributions, meanwhile it can ensure the
accuracy of the retrieved answers.

As shown in Fig. 2, after receiving the question in natural language form,
the question answering system based on the knowledge graph first analyzes the
question, classifies the question by matching the pre-defined category keyword
list, and obtains the question list of categories, at the same time using AC
automaton [20] to extract the subject words and keywords in the question to
construct an entity dictionary, through question analysis to convert question
category information and keyword information into a structured cypher query
sentence list. The structured query statement list is queried in the graph database
neo4j, and the related answer list is returned. Finally, we performed further
processing to obtain answers in the form of natural sentences, which are returned
to the user.

Knowledge Fusion Module. The knowledge fusion module (other compo-
nents than the knowledge retrieval module in Fig. 1(a)) is composed of two parts:
Knowledge Encoding Module and Question Encoding Module.

Knowledge Encoding Module is a Transformer encoder [5] (the left half of
Fig. 1(a)). We use AC automaton [20] to retrieve the original knowledge infor-
mation related to the question from the knowledge graph, and then vectorize the
knowledge information and input it into the Transformer encoder [5] to obtain
the knowledge vector rk. rk contains the semantic information of the knowledge
retrieved from the knowledge retrieval module.

Question Encoding Module is also a Transformer encoder [5] (the right half of
Fig. 1(a)), through using the same calculation method as the knowledge encoding
module can obtain question vector ra. ra contains all the semantic information
of the question, and we can directly decode the question expression. However,
in order to enable the generative model to obtain richer semantic information
related to the question in the decoding stage, we perform knowledge fusion before
decoding. First, we calculate a function of ra and rk:

f(ra, rk) = W 1
k ∗ ra ∗ rk + b1k (1)

Where W 1
k is the weight adjustment matrix and b1k is the offset term. The values

of W 1
k and b1k can be obtained through training.
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Then, according to matching degree weight α:

α = sigmoid(W 2
k f(ra, rk) + b2k) (2)

Where W 2
k is the weight adjustment matrix and b2k is the offset term. The values

of W 2
k and b2k can be obtained through training.

α ∈ R
n, n is the size of the knowledge unit, which indicates that each piece

of knowledge information corresponds to the weight of the question expression.
In addition, sigmoid is an activation function. The degree of relevance α plays
a soft switching role, extracting the information from knowledge representation
with the probability of α, and extracting the information from the question
representation with the probability of 1 − α:

r′
k = α ∗ rk (3)

r′
a = (1 − α) ∗ ra (4)

The soft switching mechanism dynamically adjusts the probability α of
knowledge information rk be 0 and the probability 1-α of question informa-
tion ra to 1 if the retrieval system cannot give the answers to the questions
without relevant question types in the knowledge base. On the contrary, if there
is invalid information in the question, the soft switching mechanism will adjust
the probability α of extracting knowledge information rk to 1 and the probability
1−α of question information ra to 0. The soft switching mechanism is more flex-
ible than simply adding the weighted knowledge representation and the question
representation directly. We prove the validity of the soft switching mechanism
through experiments. Finally, the knowledge representation r′

k and the question
representation r′

a are fused to generate a new question representation Ra that
combines knowledge information:

Ra = r′
k + r′

a (5)

We use this new semantic representation Ra as the final output of the encod-
ing model for subsequent decoding task.

3.2 KGT Decoder

We use the Transformer decoder as the KGT decoder. In the decoding stage, the
model is autoregressive that uses the predicted words as the input of the current
step. At the same time, considering the output from the KGT encoder, we select
the word with the highest probability from the vocabulary as the output at the
current time. Meanwhile, we input the encoding result Ra into the decoder. The
decoder outputs y through the Transformer [5] decoder, and y generates a lexical
distribution Pkg after passing through a linear layer and a softmax layer:

Pkg = softmax(V y + b) (6)
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Where V and b are learnable parameters. Pkg is the probability distribution of
all vocabularies in the dataset and knowledge graph, from which we can know
the probability of predicting vocabulary y:

P (y) = Pkg(y) (7)

In the training phase, the loss function of the time step t is as follows:

losst = −logP (yt) (8)

The objective function of the model that the total loss of the entire
sequence is:

Loss =
1
T

T∑

t=0

losst (9)

4 Experiment

4.1 Datasets

Medical Question Answering Dataset (Referred to as Medical): This
dataset is provided by [23]. We make some small changes to the original dataset.
The processed Medical contains 1,000K, 5K, and 5K pairs for training, valida-
tion, and testing, respectively.

4.2 Knowledge Graph

The knowledge graph (referred to as MKG) we use is a vertical website as a data
source and a medical knowledge graph centered on disease1. The MKG contains
44,000 knowledge entities of 7 entity types, 300,000 relationship magnitude of
10 entity relationship types, 8 attribute types and 18 question types.

It can query information about 8807 kinds of diseases, and the Medical con-
tains 901 kinds of diseases. Therefore, we can basically find relevant information
in the MKG.

4.3 Evaluation

We apply BLEU [13], topic similarity [14] and human evaluation [15] to evaluate
the experimental results.

1 https://github.com/liuhuanyong/QASystemOnMedicalKG.

https://github.com/liuhuanyong/QASystemOnMedicalKG
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4.4 Baselines

We compare the proposed KG-Transformer with the following baseline models:

ACNM: The first neural dialogue model to apply RNN-based Seq2Seq frame-
work to dialogue generation tasks [1].

RNNsearch: Model combining attention mechanism with Bi-LSTM-based
Seq2Seq framework [2].

DIAL-LV: Combining latent variables with standard Gaussian priors and
decoders in the Seq2Seq model based on Bi-RNN [3].

Adver-REGS: An adversarial reinforcement learning model consisting of
a generator and a discriminator [4]. An RNN-based discriminator is used to
evaluate the sequence, and the learning of the generator based on the Seq2Seq
model is guided by reinforcement learning to generate answers.

Transformer: Encoding-decoding structure based entirely on attention
mechanism [5].

4.5 Implementation Details

In the experiment, the maximum length of the questions and the answers in the
Medical are both 100, and the size of the vocabulary is 8189. We set the batch
size to 32, the number of encoder/decoder layers and hidden layer dimensions to
6 and 256 respectively. The hidden layer dimension of the feedforward network
layer is 1024, the learning rate is 0.0001, the number of epochs is 8 and dropout
rate is 0.1.

4.6 Experimental Results

We score the proposed method in the light of several metrics that can reflect the
accuracy. The details are summarized in Table 1, Table 2 and Table 3, Table 4.

Table 1. Performance of KG-Transformer and five baselines on medical question
answering task.

Model BLEU-1 (%) BLEU-2 (%) BLEU-3 (%) BLEU-4 (%)

ANCM 14.43 24.32 26.33 25.19

RNNsearch 16.37 25.93 27.41 27.01

DIAL-LV 17.27 27.42 28.86 27.20

Adver-REGS 17.64 25.92 26.73 25.00

Transformer 20.22 29.64 30.36 28.26

KGT 22.10 32.51 33.04 31.78
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Table 2. Greedy Matching (Greedy), Embedding Average (Average), and Vector
Extrema (Extrema). Unlike the BLEU, which measure the token-level match, these
embedding-based metrics map answers to a vector space and compute the cosine sim-
ilarity with golden answers, which can to a large extent measure the sentence-level
semantic similarity.

Model Greedy (%) Average (%) Extrema (%)

ACNM 94.390 99.565 97.701

RNNsearch 94.438 99.534 97.891

DIAL-LV 95.160 99.674 98.237

Adver-REGS 94.613 99.204 96.537

Transformer 95.188 99.726 98.083

KGT 95.552 99.752 98.433

Automatic Evaluation. Table 1 reports BLEU scores [13] of different models.
It can be seen from the Table 1 that in the Seq2Seq model, the BLEU scores [13]
of DIAL-LV and Adver-REGS are higher than those of ANCM and RNNsearch,
but the effect is not much improved. The BLEU scores [13] of DIAL-LV are
relatively higher, because it can directly capture the possible response of a given
input. Compared to all Seq2seq models, Transformer has higher BLEU scores
[13] due to its self-attention mechanism, which can effectively solve the problem
of long distance dependence within a sentence. Compared with Transformer, KG-
Transformer has improved by 9%, 10%, 9%, and 12% on the BLEU-1, BLEU-2,
BLEU-3, and BLEU-4 [13], respectively. It shows that it is effective to fuse
knowledge information of knowledge graph in the generation model.

Table 2 reports the results of embedding-based topic similarity of the different
models. As can be seen from the Table 2, compared with the Transformer model
with the highest score in the baseline, KG-Transformer model has improved on
three evaluation metrics, which further verifies the effectiveness of the knowledge
information of the fusion knowledge graph.

Human Evaluation. In order to assist the automatic evaluation, we apply
the artificial evaluation proposed by [15] to further evaluate the model. We
randomly selected 300 questions from the test set and applied the baseline model
and our model KG-Transformer to generate answers. We invited 10 scholars with
backgrounds in related fields to let them evaluate the generated answers in terms
of fluency, accuracy, and diversity. Results are as Table 3 shows.

From the perspective of fluency analysis, ACNM has the lowest fluency, fol-
lowed by RNNsearch and DIAL-LV, because they cannot solve the problem of
out-of-vocabulary words [24] and the problem of repeated generation [9]. Other
models can basically guarantee fluency. In terms of accuracy, the fluency of the
Adver-REGS model is higher than that of ACNM, RNNsearch, DIAL-LV, and
Transformer, but the accuracy is only 15%, indicating that the discriminator of
the Adver-REGS model does not guide the generator well to generate answers
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Table 3. Artificial evaluation of the KG-Transformer and five baselines on medical
question answering task.

Model Fluency (%) Accuracy (%) Diversity (%)

ACNM 32 34 28.5

RNNsearch 47 35.5 31.5

DIAL-LV 48 21 44.5

Adver-REGS 69.5 15 19

Transformer 66 54 51.5

KGT 79 58 70

Table 4. BLEU score of three models with different knowledge fusion structures.

Model BLEU-1 (%) BLEU-2 (%) BLEU-3 (%) BLEU-4 (%)

Transformer 20.22 29.64 30.36 28.26

KGT-hard 21.81 30.97 31.34 28.98

KGT-soft 22.10 32.51 33.04 31.78

that meet the requirements. Transformer is more accurate than RNN-based mod-
els (ACNM, RNNsearch, DIAL-LV, Adver-REGS). In addition, KG-Transformer
has the highest score, indicating that combining medical knowledge graph can
alleviate the lack of knowledge, and the model can better understand the intent
of the question. In terms of diversity, KG-Transformer model is relatively highest
because it introduces external knowledge and contains many words that are not
found in the vocabulary, which enriches the content generated by the model to
a certain extent.

As can be seen from Table 3, on the Medical, manual scoring further illus-
trates that fusion of knowledge graphs can improve the fluency, accuracy and
diversity of the model.

Effectiveness Analysis of Knowledge Fusion Structure. In order to verify
the superiority of the soft switching mechanism in the knowledge fusion struc-
ture, we have designed an ablation experiment, including a generation model
without the knowledge fusion structure and two generation models with differ-
ent knowledge fusion structures.

The Transformer Model does not have a knowledge retrieval module and a knowl-
edge fusion module, so it does not take information from the knowledge graph.
It only takes information from the input to generation the answer.

The KG-Transformer-hard Model (KGT-hard) applies the L1 paradigm to calcu-
late the degree of relevance of knowledge and questions, and adds the weighted
knowledge to the question to obtain the question representation of the fusion
knowledge.
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Table 5. Answers generated by different models in Medical (The text in blue indi-
cates the generative repeated words, while the text in red shows that KG-Transformer
generate the same answer as reference answer.)

Questin:

My baby is 10 days after birth, he felt a little short of breath, nasal congestion,
sputum, a little milk spitting, choking, but in a good mental state, whats going on
with my baby, please?

Reference answer1:

Hello, you baby maybe have a cold, if cold usually cough, expectoration, fever.
Guidance: You can use pediatric aminophenol huangnamin granules to treat, drink
plenty of water, pay attention to keep warm is very important, if necessary, use
infusion for treatment.

Reference answer2:

Hello, this situation considers upper respiratory tract infections, upper respiratory
tract infections generally have nasal congestion, children are relatively small, there
may be poor breathing, spitting milk and other symptoms.

ANCM:

Hello, according to your description, the baby’s situation is caused by a cold, you can
give the baby to take children’s cold particles, children’s cold particles, children’s
cold particles, children’s cold particles, children’s cold particles, drink more water,
eat more fruit, drink water and eat more fruits. <unk>

RNNsearch:

Hello hello, according to your description, consider the baby baby’s snoring, you can
still pay attention to when you can give your baby. Baby babies are recommended
<unk>.

DIAL-LV:

Your situation is normal, don’t worry, don’t worry about advice: hello, I suggest
you go to the hospital to do a test, see if there is inflammation, if it is inflammation,
can be treated with antibiotics.

Adver-REGS:

Hello, your situation is a certain risk, I suggest you go to the hospital to check.
Suggestion: Hello, I suggest you go to the hospital for a comprehensive check to see
if there is a problem. If it is calcium deficiency, you can take calcium treatment.

Transformer:

The child has the above symptoms and is considered to be caused by respiratory
infections. He can take pediatric aminophenol huangnamin granules and ribavirin
granules.

KG-Transformer:

If the baby has the above symptoms, consider the cause of acute upper respira-
tory tract infection. You can take pediatric aminophenol huangnamin granules and
amoxicillin for treatment.
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The KG-Transformer-soft Model (KGT-soft) applies a deep neural network to
learn a soft switching mechanism, and switches back and forth between knowl-
edge and questions to obtain the question representation of the fusion knowledge.

We compare the BLEU scores of three models on the Medical. It can be
seen from the data in Table 4 that the BLEU scores of the Transformer are lower
than those of the other models with the knowledge fusion module, proving that
knowledge graph mitigates the lack of external knowledge to some extent. In
addition, we also can clearly see that the BLEU scores of the KG-Transformer-
soft are higher than KG-Transformer-hard, indicating that the soft switching
mechanism can improve the performance of the model.

Analysis of Generated Samples. Table 5 shows the answers generated by
a question on each model. It can be seen from Table 5 that RNN-based mod-
els (ACNM, RNNsearch, DIAL-LV, Adver-REGS) all have repetitive generation
problems, and the generated sentences have <unk> characters, which cannot
solve the problem of out-of-vocabulary words. All models have the ability to
generate new words, such as RNNsearch’s “snoring”, DIAL-LV’s “antibiotics”,
Adver-REGS’s “calcium”. Compared with the reference answers, these new
words are not accurate, indicating that the above three models cannot under-
stand the meaning of the question well. Compared with the reference answers,
it was found that the diagnosis of the disease “upper respiratory tract infection”
generated by KG-Transformer and the recommended drug “pediatric aminophe-
nol huangnamin granules” are accurate, indicating that KG-Transformer is effec-
tive in introducing knowledge information. The generated new word “amoxi-
cillin” was found to be used to treat typhoid fever and other Salmonella infec-
tions after reviewing the data. Children can also take it, indicating that KG-
Transformer can enrich the generated content.

From the above experimental results, it is shown that KG-Transformer model
can generate correct, coherent and natural answers more effectively than existing
methods.

5 Conclusion

In response to the problem of lack of external knowledge in the generative ques-
tion answering model, we propose KG-Transformer. The model is composed
of a KGT encoder and a KGT decoder. By using the soft switching mecha-
nism in the knowledge fusion structure, it is possible to flexibly switch between
the knowledge vector and the question vector, and effectively extract and inte-
grate knowledge information and question information. We also verified through
experiments that KG-Transformer with soft switching mechanism can alleviate
the lack of external knowledge, improve the accuracy of answer generation and
enrich the content of generated answers.
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Abstract. Transformer attention architectures, similar to those devel-
oped for natural language processing, have recently proved efficient also
in vision, either in conjunction with or as a replacement for convolutional
layers. Typically, visual attention is inserted in the network architecture
as a (series of) feedforward self-attention module(s), with mutual key-
query agreement as the main selection and routing operation. However
efficient, this strategy is only vaguely compatible with the way that atten-
tion is implemented in biological brains: as a separate and unified net-
work of attentional selection regions, receiving inputs from and exerting
modulatory influence on the entire hierarchy of visual regions. Here, we
report experiments with a simple such attention system that can improve
the performance of standard convolutional networks, with relatively few
additional parameters. Each spatial position in each layer of the net-
work produces a key-query vector pair; all queries are then pooled into
a global attention query. On the next iteration, the match between each
key and the global attention query modulates the network’s activations—
emphasizing or silencing the locations that agree or disagree (respec-
tively) with the global attention system. We demonstrate the usefulness
of this brain-inspired Global Attention Agreement network (GAttANet)
for various convolutional backbones (from a simple 5-layer toy model to
a standard ResNet50 architecture) and datasets (CIFAR10, CIFAR100,
Imagenet-1k). Each time, our global attention system improves accuracy
over the corresponding baseline.

Keywords: Transformer · Convolution · Global attention · Image
classification

1 Introduction

Transformer Attention Networks - Modern Natural Language Processing
(NLP) strongly relies on attention mechanisms to handle long-distance relations
between elements in a sequence of text. In particular, the Transformer architec-
ture, which uses key-query vector agreement to determine information routing
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in feed-forward attention modules, has become an important component of most
state-of-the-art language models [24].

More recently, the same Transformer attention strategy has been successfully
integrated in state-of-the-art vision architectures. Some studies have proposed to
insert separate attention modules within standard convolutional backbones [2,25],
while others have suggested to do away with convolutions entirely, and instead
rely solely on Transformer operations [2,16,27]. Indeed, it can be demonstrated
that convolutions are actually a subset of all operations permitted by Transformer
modules [5]—so attention is strictly more expressive than convolution, although
it may be less computationally efficient, depending on implementation.

On the one hand, the latest vision Transformer architectures often surpass
the performance of convolutional networks on image classification [7,22]. On
the other hand, performance need not be the only standard by which we should
evaluate vision models. For instance, biological plausibility of the resulting archi-
tecture also matters: if a computational solution was selected by evolution, it
probably deserves attention (no pun intended). Of course, this selection may just
be the result of biophysical (e.g. metabolic) constraints that are not relevant to
computer vision. But conversely, it could well be that brain-inspired solutions
represent a true functional optimum towards machine intelligence; and that the
dominant strategy in the field, of iteratively optimizing deep learning architec-
tures with SOTA accuracy as the sole objective, could be driving us towards
a local minimum in the space of functional architectures. Here, we look to the
brain for inspiration on alternative attention architectures for computer vision.

Visual Attention in the Brain - How is attention implemented in the brain,
and how does it differ from current deep learning models in computer vision?

The first thing to note is that deep convolutional networks are, to a first
approximation, fairly representative of the computations taking place in the first
feedforward sweep of information through the hierarchy of visual brain regions
[9,17]. As neural information propagates from the retina through the thalamus,
the primary “striate” visual cortex, and subsequent “extra-striate” visual areas,
towards temporal cortex regions where object recognition and categorization
take place [14], the pattern of synaptic connections between neurons undergoes
a systematic increase of receptive field sizes, spatial invariance, and complexity
of the neuron’s optimal features (from small oriented edges in V1, to full objects
or scene classes in infero-temporal cortex). This pattern is compatible with what
one would expect from a series of convolutional kernels in deep learning models.

This apparent match between deep convolutional networks and the feed-
forward sweep of neural activity in the brain [13,26] does not mean that attention
plays no role in vision—only that attention typically comes into play after this
initial feed-forward sweep. In this sense, attention in the brain is thus very
different from the way that it has been recently inserted into deep convolutional
networks [2,25] or implemented by vision transformers [7,16,22,27], as a direct
component of the main feed-forward pass.

The brain comprises a separate and unified attention network (the so-called
“fronto-parietal” network) that receives sensory inputs from the various brain
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regions, and on the basis of this information determines where and how to pay
attention [4,12,21]. Subsequently, attention signals from the fronto-parietal net-
work are sent back to the visual stream to modulate neural activations according
to attentional priorities [6,11,18]. This is of course a very coarse description that
leaves aside important nuances, but in short, attention in the brain is computed
outside of the visual cortical hierarchy, based on its initial feedforward activation,
and modulating it in an iterative fashion at subsequent steps. Could a similar
architecture also benefit deep convolutional networks?

2 Proposed Architecture

Here we present a series of simple experiments to begin addressing this ques-
tion. Our base architecture is a deep convolutional network pre-trained for
image classification, which we augment with a separate attention system, and an
iterative attention modulation mechanism implementing a form of “routing by
agreement”. Attention priority is computed as a matching (or agreement) score
between keys and queries, as in Transformer architectures. Here, for simplicity,
the queries are pooled across the entire network, effectively implementing a form
of Global Attention Agreement (hence the name: GAttANet). While this greatly
simplifies the computational demands of the attention network (compared to a
full self-attention strategy), this simple first implementation proved sufficient to
improve classification accuracy across a variety of backbones and datasets.

Convolutional Network Backbones - Our first backbone was a “toy model”
with three convolutional layers followed by two dense (fully-connected) layers, the
latter of which served as the classification layer. This was meant as a computation-
ally inexpensive architecture to explore our proposed augmentation with global
attention, its individual components and its functional properties. Specifically, we
used (3 × 3) convolutional kernels at each stage, ReLU activation functions, fol-
lowed by (2 × 2) max pooling operations to decrease spatial resolution, and 0.2
drop-out as regularization. The input RGB image corresponded to 3 input chan-
nels, and the three subsequent convolutional layers comprised respectively 32, 64
and 128 channels. After flattening the output of the last convolutional layer, it was
projected onto a dense layer with 256 units (with ReLU activation), then onto a
final dense layer for classification, ending with a softmax operation (the number of
classes in the dataset, 10 for CIFAR10 and 100 for CIFAR100, dictating the cor-
responding number of units). The resulting networks, counting around 620,000
to 640,000 parameters (depending on the dataset), were pretrained on CIFAR10
or CIFAR100. We used data augmentation (0–20◦ rotation, 0–20% shift in width
and height, and random horizontal flips), with a batch size of 128, the Adam opti-
mizer (with default parameters) and early-stopping (patience = 50 epochs) until
convergence, which typically took less than 500 epochs. The resulting baseline net-
works reached an accuracy of 83.28% on CIFAR10 and 52.54% on CIFAR100 (see
Table 1). These baseline architectures were then augmented with our global atten-
tion agreement mechanism, as described in the next section.
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Fig. 1. Proposed GAttANet architecture. A standard convolutional network (here our
“toy model” with 3 convolutional layers and 2 dense layers) can be augmented with
the global attention agreement system. Each layer’s activations are multiplied by Q
and K matrices to produce corresponding Query and Key maps. Queries are averaged
across all layers and spatial positions, resulting in a unique qavg global query vector.
The dot product of this global query with each layer’s key determines the layers global
attention agreement map, that directly modulates the layer’s activations on the next
time step. Features that were more or less compatible with the rest of the network are
up- or down-regulated (respectively; compare red and blue pixels in the initial vs. final
states), and the network’s classification can be improved. (Color figure online)

To determine the usefulness of our proposed scheme in more general situ-
ations, we also explored standard modern convolutional architectures as back-
bones, namely ResNet18 and ResNet50, pretrained on ImageNet-1k. These net-
works comprised respectively 11.7M and 25.6M parameters. The baseline top-1
accuracy was 68.43% for ResNet18 and 74.94% for ResNet50 (see Table 1).

Global Attention Agreement - The general architecture of our proposed
Global Attention Agreement system (GAttANet) is illustrated in Fig. 1. Just
like in the brain, attention is envisioned here as a separate system from the
convolutional visual backbone, that receives information from it (in the form of
attention keys and queries) and influences its processing in return (based on the
global attention agreement score at each location in the network).

More specifically, the activation in each layer i is turned into a pair of (Key,
Query) attention maps (ki,qi), via learned linear projection matrices Ki and
Qi. This is done slightly differently for convolutional and dense layers. For a
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convolutional layer Convi of spatial dimensions (hi, wi) and ci channels, the
attention matrices are Ki, Qi ∈ R

ci×d where d is the chosen attention dimension
(in our experiments, we varied d between 4 and 64). The attention projection is
given by the dot product:

ki(x, y,m) =
ci∑

c=1

(Convi(x, y, c) ∗ Ki(c,m))

qi(x, y,m) =
ci∑

c=1

(Convi(x, y, c) ∗ Qi(c,m))

(1)

where (x, y) ∈ [1, wi] × [1, hi] is a unit’s spatial position, and m ∈ [1, d].
For a dense layer Densej of cj units, the learned attention matrices are

Kj , Qj ∈ R
cj×d, and the attention projection is given by the scalar product:

kj(c,m) = Densej(c) ∗ Kj(c,m)

qj(c,m) = Densej(c) ∗ Qj(c,m)
(2)

where c ∈ [1, cj ] is a unit’s index, and m ∈ [1, d].
All queries inside the network (across all layers and spatial positions) are

then collected and averaged into a single global query qavg, as follows:

qavg(m) =
1

nc + nd

⎛

⎝
∑

i∈C

wi∑

x=1

hi∑

y=1

qi(x, y,m)
wi ∗ hi

+
∑

j∈D

cj∑

c=1

qj(c,m)
cj

⎞

⎠ (3)

where m ∈ [1, d], and C and D are the index sets of convolutional layers and
dense layers, respectively, of cardinals nc and nd.

Next, the qavg global query is compared against each key across the entire
network by means of a simple dot product, resulting in the “Global Attention
Agreement” score:

gattai(x, y) = ki(x, y, .) · qavg

gattaj(c) = kj(c, .) · qavg
(4)

for convolutional and dense layers, respectively.
On the next pass through the network, each unit’s computation is modulated

(via multiplicative scaling) according to the global attention agreement score
assigned to it, i.e.:

Convi(x, y, c) := Convi(x, y, c) ∗ (1 + αi ∗ gattai(x, y))

Densej(c) := Densej(c) ∗ (1 + αj ∗ gattaj(c))
(5)

where αi is a learned parameter controlling the strength of attentional modula-
tion for each layer i.

ResNet models are augmented in a slightly different way compared to the toy
model. To limit computational demands, only a subset of layers are connected
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to the global attention system. Specifically, four convolutional layers are chosen
to span the model’s hierarchy (typically the output layer of a ResNet block),
plus two dense layers: the average-pooling layer and the final classification layer
(pre-softmax). These chosen layers, and only these, convey keys and queries to
the global attention system, and receive attentional modulation in return, as
described in Eqs. (1–5).

Training Details - We trained the global attention system on the original
datasets (CIFAR10 or CIFAR100 for the toy model, ImageNet-1k for the ResNet
models), with the pretrained weights of the convolutional backbone entirely
frozen. Thus, the only trained parameters were the key/query matrices Ki and
Qi across the entire network, and the attentional modulation factor αi for each
layer. The number of trained parameters was very small in comparison to the
number of weights in the backbone models (see Table 1): with d = 16, there were
about 20,000 parameters to train for the toy model, 100,000 for the ResNet18
backbone and 200,000 for the ResNet50 (compared to about 600,000, 12M and
25M weights, respectively). During training we applied 0.25 drop-out to keys and
queries for regularization in all models; for the toy models, we also used 0.00001
L2 regularization; for ResNet models, we applied batch-normalization for keys
and queries, and layer normalization for the gatta attention scores. We used a
batch size of 128 for the toy models and 8 for the ResNets; the Adam optimizer
with learning rate set to 0.001 (the default) for the toy models and 0.0003 for the
ResNets; and early-stopping (patience = 500 epochs for toy models and 1 epoch
for ResNets) until convergence, which typically took less than 1000 epochs for
toy models and less than 10 epochs for ResNets.

Table 1. Accuracy across models and datasets. The base parameters are pre-
trained and fixed (corresponding accuracy listed under ‘base acc.’), and we only train
the additional attentional parameters (‘att. params’). The final accuracy is listed under
‘acc. (ours)’, in bold for the best accuracy over a given backbone/dataset combination.

Backbone Dataset Base
params.

Base
acc.

Att.
dim.

Att.
params.

Acc.
(ours)

Toy model CIFAR10 620.4K 83.28% d = 16 15.8K 85.34%

Toy model CIFAR100 643.5K 52.54% d = 16
d = 32
d = 64

18.7K
37.4K
74.9K

55.54%
55.86%
56.03%

ResNet18 ImageNet-1k 11.70M 68.43% d = 8
d = 16
d = 32

68.9K
101.4K
166.5K

68.72%
68.83%
68.84%

ResNet50 ImageNet-1k 25.64M 74.94% d = 4
d = 8
d = 16
d = 32
d = 64

78.7K
118.0K
196.7K
353.9K
668.4K

75.23%
75.21%
75.18%
75.20%
75.18%
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3 Results

Accuracy - Table 1 summarizes test set accuracy for the different models
and datasets. The proposed GAttANet architecture yields accuracy improve-
ments over the toy models on the order of 2% for CIFAR10 and up to 3.5%
for CIFAR100. Given the relatively small increase in parameters, this improve-
ment is noticeable (informal tests with feedforward toy models using comparable
parameter numbers, obtained by augmenting the number of convolution chan-
nels, did not yield any significant improvement).

For ResNets, performance improvements were robust but more modest: about
0.3–0.4% on ImageNet top-1 accuracy. Obviously, it may be more difficult to
optimize a ResNet—a pretty solid model already—compared to our simple toy
model. Still, these improvements are not negligible, especially considering the
small number of additional parameters. If we use as a reference the slope of the
function relating parameters to accuracy between a ResNet18 and a ResNet50,
the measured accuracy improvement for a standard ResNet architecture would
have required 0.9M additional parameters (8.5 times more than our proposed
architecture with d = 16). Similarly, using the ResNet50-ResNet101 slope as
a reference, it would take a standard ResNet architecture with 3.8M additional
parameters to match our augmented version of ResNet50 (which is 48 times more
than our proposed architecture with d = 4). Therefore, our approach appears
viable not just in simple scenarios, but also in state-of-the-art models.

Nonetheless, to limit computational demands, the following explorations of
the global attention system were performed with the (more flexible) toy models.

Fig. 2. Results on CIFAR10. (a) Comparison between the baseline model and the
attention-augmented model (d = 16). Accuracy is plotted as a function of the amount
of Gaussian noise (log-scale) added to each image. (b) 2-D UMAP visualization of
the learned attention space of the global average query qavg. Points are colored by
image category (in alphabetical order). Animal classes (bird, cat, deer, dog, frog, horse)
correspond to labels 2–7 and project in a separate region compared to vehicle classes
(airplane, automobile, ship, truck) with labels 0–1 and 8–9.
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Noise Robustness - To assess the generalization abilities of our proposed
strategy with respect to out-of-distribution examples, we exposed the trained
models to various levels of additive Gaussian noise on input images. For both
CIFAR10 (Fig. 2a) and CIFAR100 (Fig. 4a and b), the performance improve-
ments from our global attention strategy on clean images remained consistently
visible across several levels of noise, even increasing for moderate noise (up to
8% point improvements on CIFAR100 with noise σ = 0.03 to 0.04), and only
vanishing when the baseline model (without attention) approached chance level
(noise σ = 0.1 to 0.25).

Properties of the Global Attention Query Space - Figure 2b shows a 2-D
embedding of the learned 16-D space of the global attention query qavg across
images of the CIFAR10 dataset. It is noteworthy that the 10 classes appear
to be separated, in particular along a main direction reflecting the ‘animals
vs. vehicles’ distinction. Although such a separation may already exist in the
representation layers of the convolutional backbone, the fact that it is also visible
in the global attention system indicates that it has learned (through the key and
query matrices) a meaningful representation of image properties. We believe that
this could make the system useful not only in a bottom-up attention scenario as
here (where the input fully determines the attentional modulation), but also in
a top-down attention scenario, where the model’s behavior could be controlled
by the user in a class-specific way, e.g. when there is a strong prior for a given
class (like ‘airplane’), or for a given semantic property (like ‘vehicle vs. animal’).
We plan to explore this avenue in follow-up work.

Visualization of Global Attention Agreement Maps - In addition to the
learned space of the global attention query qavg, it may be helpful to visualize
global attention agreement maps for each of the model’s layers. The resulting
map visualizations in Fig. 3 correspond to the gatta maps defined in Eq. (4), and
schematically illustrated in purple color in Fig. 1. We see that in the final layer,
the logit corresponding to the target class is typically among the units with the
highest global attention agreement score (red bar in the right-most column).
This indicates that on the next feed-forward pass through the convolutional net-
work, this unit’s activity will be increased by attention. Similarly, many spatial
locations in the 2D agreement maps will be specifically enhanced (red colors) or
decreased (blue colors) by attention.

Effect of Attention Dimension d - Table 1 as well as Fig. 4b provide a mixed
interpretation for the effects of increasing the dimension d of the key/query
attention space. On the one hand, going from d = 16 to d = 64 proved beneficial
for the toy model on CIFAR100, and even more so at moderate levels of added
Gaussian noise (Fig. 4b). On the other hand, for ResNet models on ImageNet
there was not much effect of increasing d, at least in the range explored. Our
global attention strategy was only marginally better for a ResNet18 with d = 16
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Fig. 3. Visualization of attention agreement scores. For the three convolutional layers,
the score is represented as a spatial map, for the two dense layers as a bar plot (neurons
along the x-axis). The last dense layer reflects the agreement of the global query qavg
with the key from each possible class of CIFAR10. The correct class, highlighted in
red, is often the one with highest agreement.

or 32 compared to d = 8, and was equally (or more) beneficial for a ResNet50
with d = 4 as with d = 64. This may be because ResNet backbones are already
close to optimal, and there is little room for improvement.

Lesion Experiments - Finally, we asked if attentional modulation of specific
convolutional or dense layers in our toy model was critical to the observed atten-
tional improvements. Figure 4c reports CIFAR100 accuracy of the baseline toy
model (denoted by ‘.....’ in the figure, i.e. no layer receiving attentional modula-
tion); the full attention-augmented version (‘cccdd’, all 3 convolutional layers and 2
dense layers receiving attentional modulation); and several ablations of the latter.
First, when a single layer’s modulation was ablated (marked by a ‘.’ in the figure),
effects on the model performance varied from inexistant (‘cccd.’) to catastrophic
(‘.ccdd’). However, when only a single layer was modulated at a time (all other
modulations ablated), no performance improvements were visible. This indicates
that, while some layers may be more important than others, the global attention
agreement strategy requires pooling signals across the entire model’s hierarchy.
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Fig. 4. Results on CIFAR100. (a) Comparison between the baseline CNN and
our attention-augmented models (with different dimensions d for the attention
key/queries). Accuracy is plotted as a function of the amount of Gaussian noise (log-
scale) added to each image. (b) Improvement in accuracy of the attention-augmented
models relative to the baseline CNN (c) Lesion studies of the trained model (d = 16).
After training, we ran the model with certain layers receiving no attention modulation
(layers indicated by a ‘.’ on the left; for example, ‘c.cdd’ indicates that the second con-
volutional layer did not receive attention, while ‘...d.’ indicates that only the first dense
layer received attention). No single layer was sufficient to yield performance improve-
ments in isolation; but some layers impaired the model more than others when they
were lesioned (e.g., compare ‘.ccdd’ to ‘cccd.’).

4 Discussion

We described an attention architecture with a global key/query matching system
that pools queries across the entire hierarchy of layers in a convolutional network,
and in return modulates each layer’s activations based on their global attention
agreement score. This proposal is similar to—and in large part also inspired
by—the many “vision transformer” architectures in the recent literature [7,16,
22,27], especially those that employ transformer modules in addition to (not
instead of ) convolutional layers [2,25]. However, a fundamental difference is that
our transformer/attention system is entirely separate from the convolutional
backbone—just like the frontoparietal attention system in the brain is separate
from the visual regions that it modulates [4,6,11,18,21].

Our system improved classification accuracy compared to each convolutional
backbone across multiple datasets, at a minimal cost in terms of additional
parameters. Augmenting the feedforward convolutional backbones with a similar
parameter budget (i.e. with additional convolutional channels or ResNet blocks)
would not produce significant performance improvements (we explicitly tested
this for the toy models). It is possible that stand-alone transformer vision models
would be more parameter-efficient [7,22], but we view this as an orthogonal
question: even if a vision transformer could match or surpass our attention model,
it remains a biologically implausible architecture.



Global Attention Agreement Networks 291

Does our global attention system relate to the “Global Workspace” frame-
work for cognition and awareness, advocated by several authors in cognitive sci-
ence [1,19], neuroscience [15], and more recently also in machine learning [3,23]?
As initially proposed, the Global Workspace is a shared multimodal represen-
tation used to collect relevant information across multiple independent neural
systems, and to broadcast its contents to the rest of the brain. Our model is a
unimodal attention system and as such, does not really fit this description. On
the other hand, we note that our proposed architecture is highly similar in imple-
mentation to the “Shared Global Workspace” recently described by Goyal and
colleagues [10]. In their model, each stage of a hierarchical visual Transformer
architecture sends and receives information from a separate “workspace” module
via a key-query attention mechanism, essentially similar to our global attention
system (except for our use of convolutional layers instead of transformer mod-
ules). Thus, while we view our proposed attention model as independent from the
Global Workspace theory, it may serve as a building block for a future large-scale
Global Workspace system.

Several possibilities come to mind for improving our system in the future. For
instance, rather than relying on a pretrained network with frozen weights, the
convolutional backbone could be trained (or at least fine-tuned) jointly with the
global attention system. In addition, could we further increase performance by
iterating the global attention agreement mechanism across multiple time steps?
For the present model trained on a single iteration, our explorations revealed
that this was actually detrimental. A model trained for two or more iterations
could still outperform ours, but our initial attempts in this direction encountered
difficulties in terms of computational demands and numerical stability, so we
leave this question open for future work.

Could we use a full self-attention mechanism rather than relying on our
global query qavg? That is, compute the entire pairwise map of attention agree-
ment scores between all network locations? Theoretically yes, though this would
also require a separate scheme for combining activation values across distinct
layers having potentially different channel numbers. This could be achieved, for
example, by relying on value matrices Vi, as in standard Transformers. In prac-
tice, however, this could prove prohibitively costly, as the computational cost
of full self-attention grows with O(N2), instead of O(N) for our pooled global
attention (where N is the number of spatial locations in the network). Yet this
is definitely one avenue to explore in the future.

Finally, could we also benefit from using multi-head attention—or an equiv-
alent strategy allowing attention to simultaneously query multiple input prop-
erties? The potential functional advantage in the context of global attention
agreement could be an ability for the network to simultaneously “agree” on
multiple objects or interpretations. This may be particularly helpful in ambigu-
ous situations, or for images with numerous targets. Such a scheme, unfortu-
nately, appears incompatible with our current system where the final output is
a scalar attention modulation score for each location. In ongoing work, we are
exploring the possibility of employing complex-valued units, whose phase angles
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can be controlled by pairwise mutual attention agreement, to achieve a similar
purpose. Our hope is that convolutional networks augmented in this way may
develop a form of “binding-by-synchrony”, whereby clusters of complex phase
values delimit distinct objects in the scene, as observed in several neuroscience
experiments [8,20].
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Abstract. Many models such as Long Short Term Memory (LSTMs),
Gated Recurrent Units (GRUs) and transformers have been developed
to classify time series data with the assumption that events in a sequence
are ordered. On the other hand, fewer models have been developed for set
based inputs, where order does not matter. There are several use cases
where data is given as partially-ordered sequences because of the gran-
ularity or uncertainty of time stamps. We introduce a novel transformer
based model for such prediction tasks, and benchmark against exten-
sions of existing order invariant models. We also discuss how transition
probabilities between events in a sequence can be used to improve model
performance. We show that the transformer-based equal-time model out-
performs extensions of existing set models on three data sets.
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1 Introduction

With the development of Recurrent Neural Networks (RNNs), many model archi-
tectures such as LSTMs and GRUs have been used to classify time series data
[3,5]. Extensions such as the attention mechanism have improved classification
accuracy dramatically [2]. Attention seeks to improve model performance by
learning a trainable weighting for the relative importance of model inputs. Other
improvements include architectures such as sequence-to-sequence or sequence-
to-one which can be used for video captioning or sentiment analysis, respectively.
In addition, attention based models such as transformers have been developed
for sequence classification [12].

However, fewer models have been built for set, or order-invariant, inputs.
Examples of order-invariant data sets include estimating the red shift of a clus-
ter of galaxies [16]. Existing set-based classification models seek to classify sets
by building an order-invariant layer. These models do so by either summing a
representation of the inputs or by using attention to determine an order-invariant
representation [13,16].
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With the advent of Internet of Things (IoT) and sensor data, it is possible
to have inputs from multiple sensors where the order of the inputs is unknown.
That is, the time granularity may not be fine enough, leading to multiple inputs,
or events, at the same time step. The näıve approach is to average all equal-time
events, or time steps with multiple events, and then apply standard sequence
models to the output. This is problematic as information is lost through averag-
ing. We propose models that first generate a single representation for equal-time
events and then use that representation along with the remaining events in the
sequence as the input to a classifier such as a transformer or LSTM. We also
propose a model that uses the transition matrix, computed using the subset of
ordered events in the training set, as an input to the equal-time layer to deter-
mine a single representation that attempts to better capture the true ordering
of the data. We propose novel transformer-based methods with and without the
transition matrix input and benchmark against extensions of existing set-based
models. The set-based transformer models significantly improve on the existing
models by 7.4% to 10.1% depending on the data set. Furthermore, we observe an
8.71% improvement over the set-based transformer model when the transition
matrix input is used. The main contributions are as follows:

1. a novel transformer-based model for representing equal-time events for par-
tially ordered time series data so that standard sequence classification models
can be applied;

2. a novel model that uses a transition matrix to order equal-time events that
improves model performance;

3. a computational benchmarking study of existing set models on the partially-
ordered data sets.

In the next section, we discuss relevant literature. Section 3 discusses all of the
models, while the computational results are presented in Sect. 4.

2 Literature Review

Recently, some models have been developed to deal with unordered set data.
These include models that build order-invariant neural networks as well as mod-
els that aim to order a set of data. The order-invariant models can be used
for tasks such as adding a set of numbers together or sorting a set. Models for
set ordering have been developed primarily for ordering a bag of words into a
semantically correct sentence.

In [16], a definition of order invariant functions on a set is provided, and it
is shown that it is possible to build a neural network architecture that is order-
invariant. The Deep Sets model achieves order invariance by applying the same
dense layer to each input and summing the outputs. It is suited for tasks such
as summing a set of numbers together. Another method defines a way to use
an attention mechanism to build a recurrent model that is order-invariant [13].
With recurrent models that are invariant to an input set order, one can build set-
to-set, set-to-sequence and sequence-to-set models. In particular, set-to-sequence
models can be used to impose an order on an input set.
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Many models have been developed that take a set of words as input and
produce a semantically correct sentence as output, for example, n-gram language
models and Statistical Machine Translation [1,14]. In [10], the model orders a
bag of words by using an LSTM hidden state to estimate the probability that a
word occurs next in the sentence. These probabilities are then used in adaptive
beam search to determine the highest probability ordering of words. Thus, the
loss function takes into account both the conditional probability the current word
is next given the words that have already been ordered as well as an estimate of
the yet-to-be-ordered words.

However, these models are designed for data that is entirely unordered, not
partially ordered sequence data. With partially ordered sequence data, it is possi-
ble to determine transition probabilities between events from the ordered events,
and to use that to order the unordered events in the data assuming said data
has an unknown inherent ordering. The idea of using a transition matrix for
unordered events borrows from Hidden Markov Models which can learn the
most likely sequence of events by considering transition probabilities [11].

Transformers are an attention based model architecture that have been used
for encoder-decoder sequence models. Instead of an LSTM cell, the attention
mechanism is used to determine the output of the encoder and decoder, by
considering the interaction between an event in a sequence and all other events in
the sequence. As the attention is computed between each event and the remaining
events in the sequence, it seems reasonable that attention used in transformer-
based models can also be applied to ordering sequential data where the order is
unknown [12]. The difference between the problem that we consider and the set-
based models is that we want to determine a representation for the unordered
data for use within the context of a sequence model, while set-based models aim
at order invariance. Therefore, as transformer models are built on the basis of
examining the relative importance of each event in the sequence, it makes sense
to base partially-ordered sequence models on transformers.

Transformers have been used in language models such as BERT and XLNet
[4,15]. In particular, the XLNet model has an argument in the transformer self-
attention, where a relative segment encoding for elements in the sequence is used
to compute the attention. The segment encoding value varies based on elements
being from the same or a different segment. We borrow this concept to capture
a transition matrix input in an equal-time model.

3 Approaches

We consider a partially-ordered sequence x = (x1, x2, . . . , xT ) ∈ X where each
element xi of the sequence consists of up to N unordered events, each represented
by a vector of dimension M ; we have xi = {e1, e2, . . . , en} where ej ∈ RM and
n ≤ N . Sequence length T can vary by sequence. In this section, we discuss
equal-time models for determining a representation x̃i ∈ RM for all equal-time
events in the sequence. Note that whenever n = 1, we set x̃i = xi. Each of
these set representation models is then incorporated in either an LSTM or a
transformer model on the sequence x̃ = (x̃1, . . . , x̃i, . . . , x̃T ).
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3.1 Deep Sets

For the deep set model, the same dense layer is applied to the n unordered events
and then the outputs are summed to get

x̃i =
1
n

∑

i∈n

Wei

where W are trainable weights. As discussed in [16], this model is invariant to
the order of inputs as the parameters are shared and by applying a dense layer
we expect the model to learn relevant features for each of the unordered events.

3.2 LSTM Set

We consider the LSTM and attention mechanism technique for order invariant
models to compute a single representation for unordered equal-time events [13].
To generate a representation for the equal-time events xi = {e1, e2, . . . , en}, we
apply attention and the LSTM equations N times and use the final output of the
LSTM equation as the representation x̃i for the unordered events. By applying
the attention repeatedly, we compute a representation that encodes the relative
importance of each equal-time event. The cell and hidden state (q0 and r0) are
both initialized as a constant vector and the same attention and LSTM weights
are applied at each of the N iterations. We apply the following equations for
each of the N iterations and use the final q∗

t as the representation for xi where
q∗
t is determined by concatenating qt and rt.

qt = LSTM(q∗
t−1)

di,t = V · tanh(W · [ei, qt])

ai,t =
exp(di,t)∑
j exp(dj,t)

rt = A · ai,t + b

q∗
t = [qt, rt]

(1)

3.3 Transformers for Equal-Time Events

As in the standard transformer model, we use the set of equal-time events
{e1, e2, . . . , en} and consider weights WK ,WV and KQ to compute the value,
key and query vectors to compute self-attention. For each attention head, we
compute self-attention to get the output of the attention vectors. As the trans-
former output is the same length as the transformer input, we use attention to
output a single representation for each equal-time event. The number of attention
heads is a tunable hyperparameter. The difference with standard transformers
is that we do not employ positional encoding.
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Transition Matrix Input for Transformers. For a dataset where we have
inherently ordered data, we can use the ordered events in the training data to
compute a transition matrix T . Each entry in this matrix, Tij , is the transi-
tion probability from event ei to event ej for ei, ej ∈ xi where xi is an equal-
time event. No additional transformations or filters are applied to the matrix
T . Instead of using the transition matrix, which represents only probabilities, to
order the unordered equal-time events we alter the model such that the transition
matrix can be used in the attention computation of the transformer. Further-
more, the transition matrix might not imply a total order. For example, with a
text based data set, one could compute transition probabilities between different
parts-of-speech or between different words, though the latter transition matrix is
not likely to be useful for computing a total order. Given T and the transformer
model discussed earlier, we alter the computation for each attention head so
that given the query, value and key vector denoted by qi, ki and vi respectively,
instead of the standard transformer attention equation

xj =
∑

i

softmax(qjki)vi,

we consider the transformer attention equation

xj =
∑

i

[
softmax(qjki) + (qj + b)TTij

]
vi.

where b is a trainable bias.

4 Computational Study

We consider four sequential datasets1. Each of these datasets consists of multi-
feature sequence data where a subset of time steps in the sequence contains
a set of unordered events. The first dataset is sensor data from environmental
sensors placed around the city of Chicago where we predict if the sensor reading
values exceed a threshold in the next 12 h2. The second dataset consists of power
readings from household sensors where we predict if five appliances are turned on
or off based on power usage3 [8]. The third dataset considers a meeting transcript
dataset where we have multiple speakers who may be speaking at the same time4

[6]. The goal here is to predict the next word that is spoken in the meeting. As
the input is text, we can apply the transformer with transition matrix model
on this dataset where we compute the transition probabilities between parts-
of-speech (POS). Lastly, a business use case on a large, proprietary data set is
discussed.
1 Code and data are available at https://github.com/stephanieger/equal-time/. Three
datasets are provided.

2 https://aot-file-browser.plenar.io/.
3 https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/FIE0
S4.

4 http://groups.inf.ed.ac.uk/ami/download/.

https://github.com/stephanieger/equal-time/
https://github.com/stephanieger/equal-time/
https://aot-file-browser.plenar.io/
https://aot-file-browser.plenar.io/
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/FIE0S4
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/FIE0S4
http://groups.inf.ed.ac.uk/ami/download/
http://groups.inf.ed.ac.uk/ami/download/
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To consider equal time events with n < N , we apply different masking strate-
gies for each of the equal time models. In order to apply the LSTM Set model
only to time steps with multiple events, (1) is implemented in a recurrent layer
with a switch function. The cell and hidden states are both initialized as a con-
stant vector and the same attention and LSTM weights are applied at each of the
n iterations. For this transformer model, we mask the attention for any missing
events because it is possible to have fewer than N co-occurring events at a given
time step. When we implement the additional transition matrix, we compute the
transition probability between POS on the training set using only the ordered
events and apply these probabilities to the rest of the data.

We compare the classification accuracy across the equal-time models and a
baseline model on each dataset. The baseline that we compare against is the aver-
aging model where equal-time events are averaged, such that x̃i = 1

N

∑
i∈N ei,

and then processed by LSTM. For the transformer equal-time model, we con-
sider both an LSTM model and a transformer model after the equal-time model
has been applied to the data. For all other models, we use LSTM for sequence
classification. We write each model as U-V where U ∈ {ds, LSTM, trans, avg}
with “ds = deep set,” “trans = transformer,” and “avg = averaging” represents
the underlying equal-time model, and V ∈ {trans, LSTM} encodes the model
used on x̃. For example, ds-LSTM represents the model with deep set used for
equal time and then the resulting ordered sequence is treated by LSTM.

The transformer equal-time models are compared against the existing models:
ds-LSTM, LSTM-LSTM and avg-LSTM. We also consider the trans-trans model
as it is an extension of the trans-LSTM model. In each dataset, we have samples
of varying length. Instead of padding the data to a maximum sequence length, we
instead group samples by sequence length and train on batches of equal length
sequences. On both of the sensor datasets, we merge adjacent sensor readings
to create equal-time event sets. As the equal-time events on these datasets are
synthetically created, we compare the classification results between the datasets
with and without equal-time events. All models are implemented in Keras and
trained on a single GPU card. For the business use case and sensor datasets, we
report the F1-score as they are classification tasks. For the next word prediction
task on the meeting transcript data we report perplexity.

4.1 Environmental Sensors

This data set consists of a series of contiguous readings of environmental factors
from sensors located around the city of Chicago. The sensor readings include
humidity, precipitation, sound in decibels and the amount of light detected. We
predict if each of the 52 sensor values will be “large” 12 h in the future. A sensor
value is determined to be large if it is at least one standard deviation over the
mean. The data consists of partially ordered sequences with up to 80 co-occurring
events and at most 60 time steps in the sequence. The distribution of the number
of co-occurring events is shown in Fig. 1. As the majority of the time steps have
fewer than 10 co-occurring events, the distributions are plotted separately for
samples with more than 10 equal time events and samples with fewer than 10
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equal time events. The time between sequential readings is computed and if the
elapsed time is under a certain threshold, the readings are binned. In this way,
multiple sequential readings may be binned together. There are 31 thousand
samples in the data set, 70% of which comprise the training set.

Fig. 1. Histogram of co-occurring events

We observe in Table 1 that the trans-trans model outperforms all pre-existing,
or non-transformer, models. The trans-trans model yields an 11.2% improvement
over the avg-LSTM model and a 10.1% improvement over the LSTM-LSTM
model which is the best existing model for unordered events on this dataset.
The improvement over the LSTM-LSTM model is significant with p-value =
1.18 × 10−6.

Table 1. Environmental sensor performance metrics (F1 score)

Model Average Std Dev

avg-LSTM 0.883 0.006

ds-LSTM 0.892 0.006

LSTM-LSTM 0.899 0.006

trans-LSTM 0.908 0.004

trans-trans 0.983 0.001

As this data is ordered and synthetic equal-time events are created by bin-
ning, we can train an LSTM model and a transformer model on the ordered
data. On this dataset, the LSTM model returns a test F1-score of 0.930 and
the transformer model returns a test F1-score of 0.993. The models trained on
the ordered data outperform the models trained on the partially ordered data.
This is consistent with our expectations as information is lost when equal-time
events are created. It is noteworthy that the trans-trans equal-time model (on
the partially ordered data) outperforms the LSTM model on the totally ordered
data.
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4.2 Household Power

This dataset consists of a sequence of utility readings from a residential household
over a two year period. These measurements include water, natural gas and
power readings. We use 11 power-related measurements on the household level
as features and consider sequences with at most 60 time steps. As with the
environmental sensor dataset, readings are binned if the elapsed time between
sequential readings is under a set threshold. At a given time step, there are
at most 11 co-occurring events as shown in Fig. 2b. We use these household
power measurements to determine if five appliances are turned on or off (it is a
5-class problem). These appliances are the furnace, heat pump, wall oven, clothes
washer and clothes dryer and we threshold the power usage for each appliance
in order to label each appliance as on or off. An appliance is classified as on
if the power usage is over one standard deviation above the mean. For each
sequence, a prediction is made for each appliance and the F1-scores for each
class are averaged. There are 20 thousand samples in the data set 70% of which
comprises the training set.

We observe in Table 2a that the trans-trans model outperforms all pre-
existing, or non-transformer, models. The trans-trans model yields a 21.7%
improvement over the avg-LSTM model and a 7.4% improvement over the ds-
LSTM model which is the best pre-existing model for unordered events on this
dataset. The improvement over the ds-LSTM model is significant with p-value
= 0.02. It is interesting that while the trans-trans model consistently outper-
forms all pre-existing models on both sensor datasets, the best performing non-
transformer model varies between the datasets. This suggests that the non-
transformer equal-time models lack consistency.

(a) Household Power Per-
formance Metrics (F1)

Model Average Std Dev

avg-LSTM 0.533 0.025
ds-LSTM 0.604 0.021
LSTM-LSTM 0.472 0.037
trans-LSTM 0.591 0.011
trans-trans 0.649 0.027

(b) Histogram of Number of Equal Time Events

Fig. 2. (a) Household power performance metrics (F1) (b) Histogram of number of
equal time events

As the utilities readings are ordered and equal-time events are created by
binning, we can compare the F1-scores for the equal-time models against the
F1-scores for a standard LSTM model and a transformer model on the ordered
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dataset. On the ordered dataset, the LSTM model returns a test F1-score of
0.653 and the transformer model returns a test F1-score of 0.665. The models
trained on the ordered datasets outperform the equal-time models as expected.
As we observed on the sensor dataset, the trans-trans model performance is the
most similar to the model performance on the ordered data.

Table 2. Power dataset with more equal-
time events

Model Average Std Dev

avg-LSTM 0.550 0.017

ds-LSTM 0.515 0.034

LSTM-LSTM 0.503 0.034

trans-LSTM 0.522 0.045

trans-trans 0.557 0.017

Table 3. Power dataset with fewer equal
time events

Model Average Std Dev

avg-LSTM 0.573 0.026

ds-LSTM 0.591 0.025

LSTM-LSTM 0.534 0.013

trans-LSTM 0.554 0.026

trans-trans 0.656 0.019

To examine the effect of the number of equal-time events on model perfor-
mance, we consider a dataset with more equal-time events and a dataset with
fewer equal-time events. These datasets have at most 24 co-occurring events and
5 co-occurring events, respectively. We observe in Table 2 that when there are
more equal-time events, the scores for equal-time models are on the whole lower
which is expected. The trans-trans model returns the highest average F1-score
in all datasets. In addition, the differences in F1-score for the power dataset
with more events between the best performing existing model, avg-LSTM, and
the trans-trans model are not statistically significant. The trans-trans model
outperforms the best performing existing model, ds-LSTM, and the difference
is significant with p-value = 0.002 in Table 3. Therefore, we observe that the
trans-trans model outperforms the best pre-existing model across different levels
of equal-time events.

4.3 Meeting Transcripts

This dataset consists of transcriptions of audio meeting recordings with four
speakers in the room from the Augmented Multi-party Interaction (AMI)
dataset. These recordings contain both scripted and unscripted meetings. Of the
words that are uttered in the recording, 20.2% of words occur on co-occurring
events, which make up 7.4% of all timestamps. At a given timestamp, we have at
most 9 co-occurring words as shown in Fig. 3b. As this is a language dataset, we
consider the next word prediction task. There are 3,586 words in the vocabulary,
sequences are on average 35 time steps long and there are 17 thousand samples
with 70% in the training set. Words are embedded using a pretrained BERT
model [4]. For the transformer model with transition matrix, we use the default
NLTK part-of-speech tagger to compute the part-of-speech for each word in the
transcript [7]. We report test perplexity for each of the models.
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As a baseline comparison, we compare the trans-trans with transition matrix
model against both the trans-trans model and a pre-trained GPT-2 model. In
order to apply the GPT-2 model, we randomly order equal-time events and
then use the XL pre-trained GPT-2 weights to infer the next word [9]. This
model returns a test perplexity of 2,226.63. We observe in Table 3a that both
transformer models significantly outperform the GPT-2 model. We only bench-
mark the transition matrix model against the trans-trans model as we want to
determine if the transition matrix input improves on the transformer equal-time
representation. Furthermore, when we consider the average test perplexity across
five runs with different initial seeds, we observe that the transformer model with
transition matrix input results in an 8.21% decrease in test perplexity over the
trans-trans model.

(a) Meeting Transcript Perfor-
mance Metrics

Model Average Std. Dev

trans-trans 1036.40 114.93
trans-trans with transition matrix 951.47 40.12

(b) Histogram of Number of Equal Time Events

Fig. 3. (a) Meeting transcript performance metrics (b) Histogram of number of equal
time events

Therefore, we observe that for the dataset which is inherently unordered,
when a random ordering is chosen for equal-time events, it results in a higher
perplexity than when an equal-time model is applied. This is the opposite of
what is observed in the two sensor datasets, which makes sense as those datasets
are inherently ordered and synthetic equal-time events were generated through
binning. We also show that the transition matrix input to the self-attention cal-
culation improves model performance. However, the transition matrix input can
be considered only for datasets such as this one where the ordering of different
event types is known and is meaningful.

4.4 Business Use Case

This dataset consists of a prediction task on a partially ordered sequence dataset.
Sequences are at most 100 time steps long and at a given time step we have at
most 20 co-occurring events. There are on the order of 1 million samples, with
about 70% in the training set. Comparing the results of each of the proposed
models against the baseline averaging model in Table 4, we observe that the avg-
LSTM model outperforms the proposed equal-time models. When we ensemble
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across all of the proposed models, we report a test F1-score of 0.22, which out-
performs the avg-LSTM model. We do not observe the same improvement in
behavior when we ensemble across multiple runs of the averaging models. On
this dataset, a non-deep learning model with hand selected features returns an
F1-score of 0.22. While these deep learning equal-time models do not outperform
a non-deep learning model, we achieve the same F1-score without feature selec-
tion. The co-occurrence of events in a superficial sense is arising from the coarse
granularity of the time stamps. The transformer approaches not being able to
realize gains similar to the ones observed in the other use cases triggered a closer
examination of the data. The conclusion was that time stamps for a significant
subset of the events represent merely start or end points of longer time periods
during which the event in question actually occurred. This is a major difference
to the other three use cases. Treating these time stamp as actual event occur-
rence introduces misleading information. We suspect this to contribute to the
performance gap seen in the tranformer models. Consequently, in future work,
we will need to consider co-occurence of such events across multiple time steps
in a probabilistic sense.

Table 4. Performance metrics

Model Validation F1 Test F1

avg-LSTM 0.245 0.217
ds-LSTM 0.227 0.207
LSTM-LSTM 0.224 0.207
trans-LSTM 0.229 0.212
trans-trans 0.219 0.204

Ensemble 0.237 0.220

5 Conclusion

We have presented several techniques for classification of partially ordered
sequence data. Models were evaluated on four data sets, where it was observed
that the transformer model for equal-time events outperforms models that incor-
porate existing order-invariant techniques. On data sets where the data is inher-
ently ordered and synthetic events are generated by binning, models trained on
the ordered sequences outperform the equal-time models. On a language dataset
with unordered data, the equal-time models outperform a language model with
randomly ordered equal-time events. Finally, we provide evidence on the meet-
ing transcript data that transition probabilities between events can be used to
further improve model performance.
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Abstract. Missing traffic data problem has a significant negative
impact for data-driven applications in Intelligent Transportation Systems
(ITS). However, existing models mainly focus on the imputation results
under Missing Completely At Random (MCAR) task, and there is a con-
siderable difference between MCAR with the situation encountered in
real life. Furthermore, some existing state-of-the-art models can be vul-
nerable when dealing with other imputation tasks like block miss impu-
tation. In this paper, we propose a novel deep learning model TINet for
missing traffic data imputation problems. TINet uses the self-attention
mechanism to dynamically adjust the weight for each entries in the
input data. This architecture effectively avoids the limitation of the Fully
Connected Network (FCN). Furthermore, TINet uses multi-dimensional
embedding for representing data’s spatial-temporal positional informa-
tion, which alleviates the computation and memory requirements of
attention-based model for multi-dimentional data. We evaluate TINet
with other baselines on two real-world datasets. Different from the previ-
ous work that only employs MCAR for testing, our experiment also tested
the performance of models on the Block Miss At Random (BMAR) tasks.
The results show that TINet outperforms baseline imputation models for
both MCAR and BMAR tasks with different missing rates.

Keywords: Data mining · Attention network · Data imputation

1 Introduction

In recent years, models based on deep neural networks have been proposed and
applied to solve traffic data-related problems, such as traffic prediction, traffic
planning, and traffic simulation [18]. These deep learning methods are mostly
built on sufficient and reliable historical traffic data, which is the fundamental
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I. Farkaš et al. (Eds.): ICANN 2021, LNCS 12891, pp. 306–317, 2021.
https://doi.org/10.1007/978-3-030-86362-3_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86362-3_25&domain=pdf
https://doi.org/10.1007/978-3-030-86362-3_25


TINet: Multi-dimensional Traffic Data Imputation via Transformer Network 307

basis of the modern Intelligent Transportation Systems (ITS). However, it is
found that the traffic data collection process suffers from information loss or
anomaly collection by various factors, and a large amount of data might be
missing due to device failure in severe cases [1]. Rather than a high-quality
dataset with available data, researchers obtain partially missing data or even
sparse data most time. For instance, [14] found that nearly 50% of traffic data
was missing in the past seven years at Alberta in Canada. Texas Transportation
Institute (TTI) pointed out that their traffic management system had 16%–93%
incomplete data [11]. This makes deep learning models trained on ideal traffic
data fragile in the practical application, as deep learning models may experience
severe performance degradation when the data is corrupted [9]. Thus, building
a robust and reliable traffic data imputation method is of great importance for
the data-driven models [18].

In the past decades, a number of methods have been proposed to tackle
the missing traffic data problem. Two of the most outstanding models among
them are Bayesian Gaussian CANDECOMP/PARAFA factorization (BGCP)
[2] and Stacked Autoencoder (SAE) [15]. BGCP considers the data imputation
problem from the low-rank matrix approximation perspective. However, as it
relies heavily on dimensional information, it meets a critical performance decline
when the misses appear in random blocks or it needs to impute data with high
missing rate. SAE learns to impute from the historical data, which makes it
effective in solving the problems encountered by BGCP. However, the design of
SAE’s fully connected structure is not sufficiently flexible. Fixed-weight layers
learn data blindly and require deeper network layers and more parameters to
learn about the all the possible missing scenarios.

To tackle the problems listed above, in this work, we propose TINet, a novel
missing traffic data imputation framework based on the Transformer structure
[12]. The main contribution of our work can be listed as follows:

1. To the best of our knowledge, this is the first work that adopts a Transformer-
based deep learning framework to study the problem of missing traffic data
imputation. The results show that our model outperforms other baselines.

2. We propose a multi-dimensional embedding representation for the discrete
attributes for traffic data, with the spatial embedding learned from a ran-
dom walk-based graph embedding and the temporal embedding learned from
embedding layers.

3. We conduct comprehensive experiments on two real-world datasets to com-
pare TINet with baseline models and give a detailed analysis of experimental
results.

2 Related Work

Missing traffic data imputation methods have been researched for decades. The
mainstream of traffic data imputation methods can be divided into two cate-
gories: (1) Tensor completion models, (2) Data-driven models. Tensor comple-
tion models is proposed base on the low-rank property of traffic data, and mod-
els built based on the CANDECOMP/PARAFA (CP) decomposition method is
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among the most representative models for its imputation performance. [2] intro-
duces the idea of tensor completion into traffic data with a Bayesian Gaussian
CANDECOMP/PARAFA (BGCP) model, while [3] proposes a Bayesian Prob-
abilistic Matrix Factorization (BPMF) method for traffic data imputation and
traffic forecasting. Both these two models perform well under the Missing Com-
pletely At Random (MCAR) imputation task. However, it shows a significant
performance drop when handling the block missing task. We will discuss this in
detail in Sect. 5.

Data-driven approaches largely tackle the above problems for their scal-
able learning process and use more parameters to capture the data correlation.
Stacked Autoencoder (SAE) [15] builds a deep autoencoder structure with a
fully connected Network. GAIN [16] uses a generative adversarial training style
to generate missing data with the available data. However, GAIN has poor gener-
alizing ability as it trains and tests its model on the same dataset, which causes a
severe overfitting problem. Transformer [12] is the current state-of-the-art model
for dealing with sequence data in the field of natural language processing. Trans-
former and its conceptual progeny have topped many benchmark leaderboards
in sequence data learning tasks [12]. A Transformer network uses self-attention
mechanism to dynamically adjust the weight of input data, and it uses residual
connections, layer normalization for better performance [12]. One of the most
outstanding Transformer-based work is BERT [5]. It pre-trains the model with
massive existing data and two subtasks, Masked Language Model and Next Sen-
tence Prediction, which requires the model to predict the words it masks and
the next sentence, respectively. The success of Transformer, especially BERT,
shows the great potential of self-attention-based structure in sequence data. In
this work, we will introduce how to apply the Transformer structure network to
traffic data.

3 Preliminaries

In this section, we elaborate on the preliminaries to the missing traffic data
problems. The problem formulation and introductions to the investigated missing
types are presented as follows.

3.1 Problem Formulation

In this work, we treat traffic data as a sequence data D = {x1, x2, · · · , xn}, with
each value in the sequence representing its traffic speed value. Two adjacent data
in the sequence have a fixed interval of s minutes, and ti represents the time of
xi. Each sequence has a corresponding day of week wdD and a corresponding
traffic node vj . We denote the sequence with missing data with ̂D, and value
in D, ̂D with xi, x̂i, respectively. To simulate the missing data, we introduce a
mask tensor M = {m1,m2, · · · ,mn} with its value mi ∈ {0, 1}. Therefore, we
can get the sequence ̂D with x̂i = xi × mi. Given D and ̂D, we aim to find a
model f to learn the objective:
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Fig. 1. Visualization example for different missing types. Gray cells refer to missing
values, while the white ones are available. For MCAR, missing values appear randomly.
For BMAR, missing values appear in block as introduced in Sect. 3.2

min
θ

∑

i

(xi − f(x̂i|θ))2 (1)

where θ is the parameters of f .

3.2 Missing Types

Missing data have different types. In our study, we mainly study the following two
missing types: MCAR: The data is missing completely at random; BMAR: The
data is missing completely at random and appears as blocks. In our experiments,
the block missing appears randomly as one of the following types: (1) One or
multiple nodes lost their data at arbitrary time. (2) All day data are lost for
particular nodes. The visualization examples of MCAR and BMAR can be seen
from Fig. 1.

4 TINet

In this section we describe the architecture of our proposed model TINet.
Figure 2 depicts the overall architecture.

4.1 Model Architecture

TINet is mainly composed of Transformer modules, where a Transformer module
comprises two sub-layers: a Multi-Head Attention sublayer and a position-wise
Fully Connected sublayer. A residual connection is incorporated around each
of the two-sublayers with layer normalization. According to [12], to promote
the Transformer-based model’s performance, we set all Transformer layers to
produce outputs of dimension do. The final Transformer module’s output feeds
to a fully connected network with size [do, 1]. Then we can get the final output
imputation ̂D.
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Fig. 2. Overview of TINet.

4.2 Context Embedding

TINet computes a context embedding from its normalized continuous value and
discrete attributes for each input value xi.

Layer Normalized Continuous Value: For continuous value xi, we normalize
it with z-score layer normalization:

x̄ =
x − μ

σ
(2)

where μ and σ are the mean and variance of corresponding layer input.

Multi-dimensional Embedding: For a point xi in the traffic sequence D,
TINet selects the day of week wdD, its daytime ti, node id vj as its discrete
attributes. For wdD and tj , we use two projection layers with l1 and l2 dimen-
sions, respectively. For node id vj , we compute its embedding by applying the
Deep Walk method [8]: Firstly, node sequences are generated based on random
walk. The transition probability of random walk is defined as

P (vj | vi) =

{

Wij∑
j∈N(vi)

Wij
, vj ∈ N (vi)

0, otherwise
(3)

where N (vi) represents the neighbour nodes of vi, eij represents the edge from
vi to vj , Wij is the historical travel data statistics from vi to vj

1, respectively.
After finishing the random walk, we apply Skip-Gram algorithm [7] to learn the
embedding of node. Assume a walking sequence Walk = {v′

1, v
′
2, · · · , v′

n}, the
learning process of Deep Walk can be summarized by the following formula:

max
ϑ

log P
({

(v′
i−w), · · · , (v′

i+w)
} | ϑ (v′

i)
)

(4)

For a given node v′
i in the walking sequence Walk, (v′

i) ∈ R
N represents its

one-hot encoding vector. We feed (v′
i) to a network ϑ. The objective is to max-

imize the output probability of the nodes near v′
i in Walk with window size w.

1 For PeMS dataset which will be introduced in Sect. 5, we represent Wij by the
distance between vi and vj as there is no historical travel data statistics.
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The intuition of this idea is that the nodes with a closer distance in the walking
sequence have similar representation on latent space [8]. ϑ commonly adopts a
two-layer fully connected encoder-decoder structure. The first and second fully
connected layers are of size [N,Lv] and [Lv, N ], where N is the number of node
and Lv is hidden size. Typically, the first layer is used to extract embedding
vectors of input nodes, the second layer is used to transform them into nodes’
one-hot encoding vector close in the walk sequences.

After the embedding of wdD, ti and vj is learned, we concatenate them with
normalized continuous value as the context embedding and feed them into the
first Transformer module.

4.3 Multi-head Attention Computaion

The context embedding is firstly associated with three learnable weight param-
eters WQ, WK , and WV , each with size [Lem, k] where Lem is the length of
context embedding, and k is the latent dimension. This process is reflected by

Q = X · WQ

K = X · WK

V = X · WV

(5)

where Q, K, V represents the query vector, key vector and value vector in the
self-attention mechanism [12]. {·} represents the matrix multiplication operator.
We can see that the self-attention mechanism builds the dynamic weights between
input data with learnable parameters, and a detailed explanation for attention can
refer to the previous work [13]. The final layer output of self-attention layer is:

Att(Q,K,V) = softmax(
QKT

√
dk

)V (6)

where the resulting output is a context vector of dimension k.
√

dk represents
the square root of key vector, and it leads to more stable gradients. Furthermore,
we use a n-head attention mechanism [12], which aims to mine n different atten-
tion scores by setting n WQ, WK and WV. [4] shows that a proper number of
attention heads can better mine the information in data and enhance the model
performance.

5 Case Studies

In this section, we introduce the settings of our experiment. We conduct experi-
ments on two real-world datasets and compare TINet with other baseline models.

5.1 Experimental Settings

Experimental Environment. All experiments are performed on a Linux
Server (CPU: Intel(R) Xeon(R) CPU E5-2620v4, GPU: GeForce RTX2080Ti,
System: Ubuntu 18.04). All models are conducted with Python 3.7.
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Hyperparameter Settings. The number of Transformer modules is 4, and the
attention heads are 2. The dimensions l1, l2 of projection layers are both set to
8. The self-attention layer’s hidden size is set to 16, while the hidden size of the
Fully Connected sublayer and the final output dimension do are both set to 32.
The hidden size Lem of Deep Walk is set to 16. The proportions for the training
set, validation set, and test set are 70%, 10%, and 20%, respectively. For both
TINet and baseline models, we run 20 times and take the results’ average as
the final comparison. We use Adam optimizer [6] to optimize model parameters.
During training, the learning rate is 10−3, and the batch size used in training
is 16. We choose the max training epoch 500 for all data-driven models. All the
parameters above are set from a empirical grid-search finetuning results. Data-
driven models all use an early stopping strategy to avoid the overfitting problem
where the validation loss no longer decreases for three consecutive epochs.

Dataset Description. We conduct our experiments on two open datasets:

1. PeMS Dataset2: This dataset collects real-time traffic data from nearly 40,000
individual detectors across all major districts in California. Followed by pre-
vious work [2,15], we choose the District 5 data ranging from January 1, 2013
to December 31, 2013. All the collected data is preprocessed into 144 road
sections, and their information is aggregated every five minutes, which means
the data of one day is embedded in a matrix of 288 × 144.

2. Shenzhen Dataset3: This dataset collects raw GPS trajectories in Shenzhen
from October 8, 2019 to October 14, 2019. We select the area centered on
Futian District area as it only has few missing data. Therefore, we can make
intentional data missing simulation expediently. This dataset involves 802
areas. We use the map-matching algorithm to process the raw data and aggre-
gate their traffic information every 5 min.

For missing rate selection, we consider the following two aspects: (1) The per-
formance gap of the models under low missing rate is not significant. (2) The
design of TINet method is more inclined to address the imputation tasks with
high missing rates. Since that, the missing rates selected in our experiment is 0.1,
0.5, 0.8, 0.9. Before training, we generate datasets with different missing rates.
For MCAR, we mask the value in dataset randomly. For BMAR, we randomly
select one of the two BMAR types as we introduce in Sect. 3.2. For instance, if
type (1) of BMAR is selected, we randomly select an arbitrary time in a day,
and mask all data at that time with a high probability of 95%4. We repeat this
process until the proportion of missing data in the dataset meets the require-
ments.

2 https://dot.ca.gov/programs/traffic-operations/mpr/pems-source.
3 https://opendata.sz.gov.cn/data/dataSet/toDataDetails/29200 00403602.
4 We don’t set this to be a 100% probability, which somehow rarely happens in

practice.

https://dot.ca.gov/programs/traffic-operations/mpr/pems-source
https://opendata.sz.gov.cn/data/dataSet/toDataDetails/29200_00403602
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5.2 Baselines and Evaluation Metrics

We compare TINet with two categories of methods: matrix completion and data-
driven methods. In the former class, we select BPMF [3] and BGCP [2] as the
baselines. On the other hand, for data-driven models, we adopt HA [11], SAE
[15], and GAIN [16] as the baselines. Besides, we introduce TINetw, which is a
variant of TINet without multi-dimensional embedding, to evaluate the effective-
ness of such embedding. We also choose three performance metrics to compute
the difference between ground truth Yi and masked data ̂Yi, including:

1. Mean Absolute Error (MAE):

MAE =
1
m

m
∑

i=1

‖(Yi − ̂Yi)‖ (7)

2. Root Mean Squared Error (RMSE):

RMSE =

√

√

√

√

1
m

m
∑

i=1

(Yi − ̂Yi)2 (8)

3. Mean absolute percentage error (MAPE):

MAPE =
‖Y − ̂Y ‖

‖Y ‖ × 100% (9)

MAE and RMSE measures the average prediction error of the model. MAPE
measures the percentage gap between predicted value and target value (Table 2).

5.3 Experimental Results

Table 1 shows the experimental results, which corresponds to the model’s per-
formance for imputing two missing data types on the two datasets. Notably, for
GAIN, we can see a significant error in our experiment. We attribute this perfor-
mance to GAIN’s training strategy. GAIN trains and tests its imputation ability
on the data without splitting into training, validation, and testing sets. How-
ever, we consider this not meeting the practical scenarios. In our experiment, we
train models on separate training and validation sets. Under this experimental
settings, the obtained results of GAIN are not satisfactory. Furthermore, we can
see that TINetw has an apparent performance degradation compared to TINet,
which shows the effectiveness of multidimensional embedding. In the rest of this
section, we discuss the experiment results from multiple perspectives:

Matrix Completion Models v.s. Data driven Models. From Table 1 we
can see that the data-driven models have a robust performance under high miss-
ing rate scenarios. Take the performance of MCAR task on PeMS dataset with
0.9 missing rate as an example, the MAPE of TINet and SAE is 3.05% and
3.63%, while BGCP and BPMF’s MAPE reach 14.12% and 15.38%, which are
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Table 1. Experimental Results for MCAR task

Performance on MCAR task for PeMS dataset (MAE/RMSE/MAPE(%))

Missing rate 0.1 0.5 0.8 0.9

HA 3.87/4.29/7.70 3.89/4.88/8.03 3.60/4.26/7.52 3.86/4.84/8.01

BPMF 1.88/2.88/3.60 3.21/5.38/6.86 5.00/7.47/10.31 7.78/10.41/15.38

BGCP 1.34/1.78/2.55 1.86/2.49/3.11 4.05/5.21/7.77 7.38/9.96/14.12

SAE 2.17/2.86/3.75 2.03/2.70/3.52 2.17/2.94/3.74 1.92/2.81/3.63

GAIN 38.62/42.42/76.20 40.42/43.50/79.03 42.01/44.25/82.06 46.78/47.81/91.31

TINetw 1.84/2.60/3.32 1.57/1.63/2.54 1.84/2.50/3.35 1.85/2.64/3.38

TINet 1.69/2.41/2.90 0.97/1.33/1.64 1.76/2.34/3.01 1.76/2.42/3.05

Performance on MCAR task for Shenzhen dataset (MAE/RMSE/MAPE(%))

Missing rate 0.1 0.5 0.8 0.9

HA 10.65/11.93/26.77 10.71/12.74/27.44 10.69/12.97/26.81 10.50/12.81/26.83

BPMF 3.94/5.67/9.43 4.66/6.59/10.79 5.49/7.67/12.91 6.61/8.76/15.61

BGCP 3.51/4.56/8.27 4.25/5.36/10.46 4.89/5.87/11.54 5.73/6.92/13.50

SAE 2.56/3.37/6.02 2.23/2.98/5.25 2.38/2.75/5.60 2.63/3.47/6.19

GAIN 30.04/33.54/77.48 32.54/35.70/81.99 35.11/37.21/88.09 36.08/37.98/90.10

TINetw 1.44/1.61/3.27 1.96/2.33/4.61 2.24/2.70/5.27 2.55/3.14/6.00

TINet 1.07/1.33/2.52 1.26/1.41/3.36 1.73/2.11/4.57 2.15/2.47/5.20

Table 2. Experimental Results for BMAR task

Performance on BMAR task for PeMS dataset (MAE/RMSE/MAPE(%))

Missing rate 0.1 0.5 0.8 0.9

HA 4.13/4.55/8.85 4.55/5.42/8.56 4.28/5.10/8.32 4.22/5.43/8.21

BPMF 10.74/13.69/23.92 13.93/14.40/26.37 19.40/29.42/34.81 19.65/20.01/37.41

BGCP 12.38/14.87/24.50 15.97/20.56/37.18 21.40/27.68/42.89 28.72/36.64/53.11

SAE 2.20/2.90/3.78 4.95/6.69/9.60 5.32/7.04/10.58 5.54/7.25/10.70

GAIN 42.64/45.78/83.08 41.85/44.86/82.21 44.22/45.42/86.60 41.93/45.05/81.96

TINetw 2.48/3.46/4.09 3.13/4.68/4.83 4.43/6.13/8.63 5.05/6.43/10.46

TINet 1.94/2.46/2.95 1.64/2.72/2.98 1.82/2.44/3.03 1.77/2.48/3.05

Performance on BMAR task for Shenzhen dataset (MAE/RMSE/MAPE(%))

Missing rate 0.1 0.5 0.8 0.9

HA 11.24/12.74/28.19 10.94/12.39/27.73 10.91/12.25/27.37 10.82/12.23/27.45

BPMF 8.56/10.62/21.68 9.87/12.47/24.62 8.91/11.37/22.36 20.19/26.10/51.38

BGCP 12.50/16.98/32.08 13.25/17.98/35.23 18.62/24.38/45.64 21.20/27.33/55.30

SAE 3.06/3.51/7.32 5.10/6.65/12.74 5.28/6.81/13.06 5.46/7.09/13.39

GAIN 36.97/39.72/91.21 32.13/35.52/79.87 34.18/36.95/86.23 35.40/37.26/88.43

TINetw 1.47/1.83/3.46 4.07/5.51/11.16 4.83/6.94/12.70 5.40/7.16/13.21

TINet 1.12/1.35/2.59 2.78/4.19/7.41 3.43/4.87/9.45 3.99/5.72/10.47

nearly four times higher than the former two. The high missing rate makes the
numerical information of each dimension of the matrix or tensor largely lost.
Nonetheless, the matrix and tensor factorization techniques rely on this infor-
mation for inferring the posterior numerical distribution of values on specified
positions. Therefore, a high missing rate brings a significant performance drop on
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BGCP and BPMF. Besides, the performance of data-driven models is relatively
stable under both tasks. We attribute this stability to the scalable parameter
learning scheme for deep learning models, as they can continuously learn new
data and update network parameters. However, BGCP and BPMF methods both
perform low rank approximation to the structure of the input data itself, and do
not have such scalability. Meanwhile, BGCP and BPMF are underperforming on
BMAR. This can also be attributed to its dependency on dimensional numerical
information, and the blocks of missing data can hardly provide such informa-
tion. There is another interesting observation in the comparison, i.e., BGCP and
BPMF do not perform well for MCAR task on Shenzhen dataset. We can see
the MAPE of BGCP and BPMF of MCAR task on Shenzhen dataset with 0.1
missing reach 8.27% and 9.43%, respectively. CP decomposition enforces a strict
structure assumption by modeling hidden parameters for each dimension, which
makes it suitable for highly structured data. However, this also undermines the
generalization capability of CP decomposition method for the scenarios that the
correlation among data is relatively trivial [10].

Comparison Between TINet and SAE. From Table 1 we can obtain a direct
comparison among data-driven models. As GAIN performs poorly during our
test due to the overfitting problem, we mainly discuss the difference between
SAE and TINet in this comparison. It can be seen that TINet has a slight
performance advantage over SAE in all tasks. Moreover, TINet’s performance
advantage on the Shenzhen dataset is even more significant. In particular, under
0.1 missing rate, TINet got 2.52% MAPE for MCAR task and 2.59% MAPE
for BMAR task, while SAE’s MAPE reach 6.02% and 7.32%, respectively. We
attribute this to the difference in the model architecture. As SAE mainly uses
a näıve, fully connected layer as the basic module, this fixed-weight connection
makes it difficult for the model to impute data with misses appear in random
positions. Furthermore, it needs a larger amount of parameters and a deeper
network to learn the parameters suitable for all missing cases for this fixed weight
structure. However, this is somehow difficult and computationally expensive. On
the other hand, The self-attention mechanism applied in TINet can dynamically
adjusts the weights of networks according to the input data, making the model
more robust and effective.

Impact of Missing Types. The main difference between MCAR and BMAR
is that BMAR causes a complete loss of dimensional information, impacting
both BPMF and BGCP. Besides, data-driven models also suffer from a slight
performance drop. TINet has the smallest performance gap between the two
tasks. We attribute this robust performance to the self-attention mechanism
and the multi-dimensional embedding used in TINet, as it models the spatial-
temporal relationship among traffic data in a more reasonable way. Additionally,
TINet without a self-attention layer is a special case of SAE, and their difference
in metrics can reveal the effectiveness of the self-attention layer directly.
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5.4 Limitations of Applying Self-attention Mechanism on Long
Sequence Data

Applying self-attention mechanism on traffic data has computational and mem-
ory requirements which are quadratic with the input sequence length. With con-
temporary computing hardware and model sizes, this typically limits the input
sequence [17]. However, this does not meet the needs of traffic sequence data,
as the multi-dimensional traffic data requires a huge attention matrix, which
is impractical. Thus, a natural question arises: can we achieve the empirical
performance of quadratic full self-attention performance with a network with
fewer parameters? In this work, TINet computes time embedding and graph
embedding of node to avoid calculating attention of multi-dimensional data.
This method is simple and practical to improve the performance of the model.
Nevertheless, how to effectively solve the calculation and memory requirements
of the self-attention mechanism on long-sequence multi-dimensional traffic data
is still a problem worthy of research.

6 Conclusions

In this paper, we study the multi-dimensional traffic data imputation problem
with two missing patterns. We design TINet, an effective Transformer-based
model to impute data with random data missing and block data missing scenar-
ios. The self-attention-based Transformer Module makes TINet circumventing
the limitations of Fully Connected Network. Furthermore, the multi-dimensional
embedding not also improves the performance of TINet, but also avoids the
excessive calculation of attention on multi-dimensional data. We evaluate TINet
and compare the results with other baselines. The result shows that TINet devel-
ops superior imputation performance under most scenarios. We also discuss the
limitations of applying self-attention mechanism on long sequence traffic data.
To overcome these existing drawbacks, we will further extend current work into
designing effective and efficient Transformer models for multi-dimensional traffic
data in the future.
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Abstract. With the ongoing development of online education plat-
forms, knowledge tracing (KT) has become a critical task that can help
online education platforms provide personalized education. KT aims
to find out students’ knowledge states and predict whether students
can correctly answer the question according to their exercise history.
However, existing works fail to incorporate question information and
ignore some useful contextual information. In this paper, we propose a
novel Sequential Self-Attentive model for Knowledge Tracing (SSAKT).
SSAKT utilizes question information based on Multidimensional Item
Response Theory (MIRT) which can capture the relations between ques-
tions and skills. Then SSAKT uses a self-attention layer to capture the
relations between questions. Unlike traditional self-attention networks,
the self-attention layer in SSAKT uses Long Short-Term Memory net-
works (LSTM) to perform positional encoding. Moreover, a context mod-
ule is designed to capture the contextual information. Experiments on
four real-world datasets show that SSAKT outperforms existing KT
models. We also conduct a case study that shows our model can effec-
tively capture the relations between questions and skills.

Keywords: Knowledge Tracing · Recurrent Neural Networks ·
Educational data mining · Attention networks

1 Introduction

Online education platforms, such as massive open online courses and intelligent
tutoring systems have attracted great attention due to their convenience. Stu-
dents can acquire knowledge by solving problems offered by the platforms. For
such platforms, a method to get the knowledge states of students is necessary.
Knowledge Tracing (KT) is considered to be an effective method to track the
knowledge states of the students. The goal of KT is to discover the knowledge
states of students based on their past exercise records. The probability that stu-
dents can correctly answer a problem depends on their knowledge states, which
represents how well students have mastered the underlying knowledge concepts
behind the problems [19]. If the student has mastered the knowledge concept
well, the probability that he or she would correctly answer the problem would
be high.
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Effectively modeling the knowledge states of students is of great significance,
however, using numerical simulations to model human learning in real-life is
inherently difficult. Early attempts [13,18] for the KT task are mostly based on
Recurrent Neural Networks (RNNs). Inspired by the prevalence of Transformer
[16], recently Self-Attentive Knowledge Tracing (SAKT) model was proposed by
[11], which uses the self-attention mechanism to discover the relevance between
past interactions and target exercises. Context-aware Attentive Knowledge Trac-
ing (AKT) [4] also incorporated transformer-like architecture and designed an
elaborate attention scoring function for the knowledge tracing task, which has
achieved better performance. However, unlike RNN-based models, transformer-
like knowledge tracing models lack the ability to effectively capture sequential
characteristics and ignore useful contextual information. Besides, question infor-
mation hasn’t been effectively utilized in previous works.

In this paper, we propose a novel KT model which is called Sequential Self-
Attentive Knowledge Tracing (SSAKT). Different from existing methods which
only use LSTM or transformer, our model combines transformer and LSTM in an
effective way. We use a transformer layer to encode the question and the response
and use LSTM to encode sequential features and contextual information. The
main contributions of our work are summarized as follows:

1. We design a new positional encoding method that uses LSTM instead of the
traditional positional encoding method to encode sequential features.

2. We develop a question embedding method that can appropriately capture
the relations between questions and skills, which significantly improves the
prediction performance.

3. We introduce a context module to capture the contextual information which is
ignored by the self-attention mechanism and incorporate the context module
into the self-attention layer.

4. We conduct extensive experiments on several benchmark datasets and the
results show that our model outperforms the state-of-the-art baselines.

2 Related Works

With the development of deep learning in recent years, neural networks have
been successfully applied to many tasks, which inspired researchers to apply
deep learning techniques to KT tasks. Deep Knowledge Tracing (DKT) [13]
first applied LSTM to KT tasks and achieved substantial improvement in stu-
dent performance prediction. Yeung et al. found DKT could not reconstruct
the input and hidden knowledge state was not smooth across the time, thus
proposed DKT+ [18] to address the two problems. Inspired by MANN, Zhang
et al. proposed Dynamic Key-Value Memory Networks (DKVMN) [19] which
utilizes external matrices to store key-value pairs, the key matrix stores the
question representation, and the value matrix stores the mastery of students.
Abdelrahman et al. proposed Sequential Key-Value Memory Network (SKVMN)
[1] based on DKVMN, which uses a modified LSTM with hops to capture the
long-term dependencies between questions. SAKT [11] is the first model that
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uses the self-attention mechanism in the context of KT. SAKT uses a vanilla
transformer decoder to predict the performance of the students. Relation-Aware
Self-Attention model (RKT) [12] extends SAKT by introducing an exercise-
relation coefficient matrix, which is calculated according to the correct rate of
each question. AKT [4] uses modified self-attention called monotonic attention to
model the forget behavior of students and uses Item Response Theory (IRT) to
model question difficulties, which has achieved great improvement over previous
models.

There are some other models that attempt to take other information into
account. Prerequisite-driven Deep Knowledge Tracing (PDKT) [2] improves
DKT by incorporating prerequisite relations between knowledge concepts.
Exercise-aware Knowledge Tracing (EKT) [7] encodes the question using the
question text so that question embeddings can contain more information.
Nagatani et al. augmented DKT by explicitly adding the time features to the
question embeddings [10].

3 Problem Formulation

The goal of knowledge tracing is to track down the learner’s knowledge state
through a sequence of his or her past learning activities. In this paper, we for-
mulate knowledge tracing as a sequence prediction problem, which requires us to
predict whether a learner will correctly answer the question at time step t given
his or her exercise history record X = {x1, x2, ..., xt−1}. Each interaction xi in
the sequence X is a tuple (qi, ci, ri), where qi ∈ {1, ..., Q} is the question ID,
ci ∈ {1, ..., C} is the ID of the skill which the question contains, and ri ∈ {0, 1} is
the learner’s response. Under this notation, knowledge tracing can be formalized
as follows:

Given a learner’s history exercise sequence X = {x1, x2, ..., xt−1}, the goal
of knowledge tracing is to predict the probability of correctly answering the
question qt at time step t, i.e. Pt(rt = 1|qt, ct,X).

4 Proposed Method

In this section, we introduce our model Sequential Self-Attentive model for
Knowledge Tracing, Fig. 1 shows the overall framework of our model. We first
use the embedding layer to encode questions, skills and responses based on the
IRT model, and LSTM is used to encode the sequential information into the
question-response embedding. To capture the relations between questions and
question-response pairs, we use a transformer layer to calculate the attention
weights. Finally, the interaction layer is used to produce the final prediction.

4.1 Embedding Layer

Following previous work [19], our model uses embeddings to represent questions
and question-response pairs, the questions embeddings are used for querying
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Fig. 1. The overall architecture of SSAKT, where
⊙

denotes point-wise production
operation and

⊕
denotes concatenation operation.

the latent knowledge state at the corresponding time step, and the question-
response pairs are used to update the knowledge state. In most datasets, the
question number is much larger than the skill number. To avoid data sparsity
and overparameterization, most of the previous works use the skills covered by
the question to represent the question. In this paper, we propose a method to
utilize question information to improve the prediction performance.

Question Embedding. Due to limited exercise records and massive questions
in the dataset, learning informative question representation is a big challenge.
It is useful to learn question representations because whether a student will
correctly answer a question depends on not only the related skills of the question
and the skill mastery of the students but also the question characteristics (e.g.
question difficulty and question discrimination).

Inspired by the MIRT [15], a classic and interpretable method used in psycho-
metrics, we propose a novel method to encode questions and question-response
pairs. MIRT uses multidimensional vectors to characterize the problem and the
student. In our model, we construct the question embeddings qt at time step t
as follows:

qt = ct + μt · dt (1)

The ct ∈ R
d is the embedding of the skill covered by question qt at time step

t, which reflect the inherent representation of the skill. μt ∈ R
d is the difficulty

vector of question qt, and dt ∈ R
d is the vector which summarizes the variations

of questions that cover the skill [4].
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Question-Response Embedding. The embeddings of question-response pairs
are similar to the question embeddings. We use skill-response embeddings and
question difficulty embeddings to construct the question-response embeddings.
Question-response embeddings at are constructed as follows:

at = st + μt · f t (2)

The st ∈ R
d is the skill-response embedding, the f t ∈ R

d is the variation
embedding. We use the same difficulty parameter μt as we used in the question
embedding. Using the question embedding which is more informative than the
skill embedding leads to better performance of our model.

4.2 Self-Attentive Layer

Sequential Encoding. Self-attention networks have achieved great success in
various research areas include knowledge tracing tasks. However, due to using
raw embeddings as input, the information contained in query, key and value is
limited. Unlike RNNs which inherently take the order of question into consid-
eration, self-attentive networks don’t have a sense of position for each question
without positional encoding. To address the problems above, we use LSTM as
a positional encoding method to encode the sequential features before inputting
the embedding into the self-attention module. The raw embeddings are encoded
as follows:

X = LSTM(I) (3)

where I denotes the raw question or question-response embedding sequence.
LSTM can encode positional features into embeddings due to its recurrent struc-
ture. Compared to existing positional encoding techniques which model the for-
get behavior implicitly e.g. sinusoidal positional encoding, LSTM is more effec-
tive in modeling forget behavior owing to its gating mechanism, and the weight
of distant past exercises is reduced.

Self-Attention Module. To calculate the correlation between current exer-
cise and exercises practiced before, a self-attention module is used in our model.
The module consists of an encoder and a decoder, both the encoder and the
decoder use the scaled dot-product attention mechanism. The encoder is used
to encode the question-response sequence, the decoder encodes the question
sequence and calculates the relation between exercises at different time steps.
Under this framework, both encoder and decoder have key, query and value
matrices WK ∈ R

d×dk , WQ ∈ R
d×dq and W V ∈ R

d×dv , which can project
the input X ∈ R

N×d to keys K ∈ R
N×dk , queries Q ∈ R

N×dq and values
V ∈ R

N×dv as follows:

Q = XWQ,K = XWK ,V = XW V (4)
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dq, dk and dv is the dimension of query, key and value vectors respectively and
dq = dk. Let α be the attention weights, α is calculated as follows:

α = Softmax(
QKT

√
dk

) (5)

where n is the number of time steps. To prevent the information leakage from
future time steps, we use a triangular matrix to mask the attention weights.
We incorporate multi-head attention into our models to capture the relevance
between current question and past questions so that different heads can attend
to different parts of past exercises. We use H attention heads and concatenate
the output of different heads into one vector, then use a fully connected network
to project the vector into hout

t ∈ R
d. The final output of the multi-head attention

module is

Attni = Softmax(Mask(
QiK

T
i√

dk
))V i (6)

Hout = [Attn1, ..., AttnH ]W out (7)

where the [,] denotes the concatenation operation, Hout is the representation of
the entire sequence, we use hout

t to represent the output of multi-head attention
module at time step t.

Pointwise FeedForward Network. We apply the Point-wise Feed-Forward
Network (FFN) to the output hout. FFN adds the non-linearity to the self-
attention layer. It contains two linear transformations and a ReLU activation
function between, then the final output of self-attention module is as follows:

ht = W (1)(ReLU(W (2)hout + b(2))) + b(1) (8)

Residual Connetion and Layernormalization. Following [16], we use layer
normalization after masked multi-head attention networks and FFN, and we use
residual connection [5] to propagate low-level features.

Context Module. The self-attentive layer is used to capture the dependencies
between exercises. However, the self-attentive layer only focuses on the exercises
related to the current question, which ignores some useful contextual informa-
tion. To utilize the contextual information, we need to encode the context into
a vector. Inspired by the global context in [17] and the context representation
in [6], we use LSTM to encode the contextual information. The LSTM takes
the sequential encoded question-response sequence X̂ as input and outputs a
context sequence.

C = LSTM(X̂) (9)
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4.3 Interaction Layer

Finally, we use an interaction layer to predict the learner’s response to the current
question qt. We first add the context vector Ct−1 at time step t − 1 to the
output of self attention layer ht−1 to get the context-aware knowledge state h̃.
Then we concatenate raw question embedding qt and h̃t−1 which reflects the
knowledge state of the learner. Finally, the concatenated vector is passed to a
fully connected layer ending with Sigmoid activation to output the probability
of the correct response.

h̃t = Ct−1 + ht−1 (10)

p = σ(W (4)(ReLU(W (3)[qt, h̃t] + b(3))) + b(4)) (11)

All learnable parameters in our model are trained in an end-to-end fashion by
minimizing the binary cross-entropy between the prediction outputs and ground-
truth labels.

l = −
∑

i∈T

(rilog(pi) + (1 − ri)log(1 − pi)) (12)

where T denotes all the exercise records in the training set.

5 Experiments

In this section, we conduct extensive experiments on several real-world datasets
to evaluate the performance of our model1. Then we perform ablation studies
on components of our model to validate if these modules are effective. Finally,
we visualize the embeddings to further explain the effectiveness of our model.

Table 1. Dataset statistics

ASSIST2009 ASSIST2017 EdNet Junyi

#students 4,029 1,709 10,000 7,101

#questions 16,891 3,162 12,098 24,916

#skills 110 102 1,792 1,326

#responses 321,486 941,107 1,173,020 1,577,903

responses per student 79.79 550.67 117.30 222.20

responses per skills 2922.60 854.99 654.58 1189.97

responses per question 19.03 297.63 96.95 63.32

5.1 Datasets

We conduct experiments on four datasets widely used in KT tasks and all of
these datasets have question and skill information. The statistics of the datasets
are listed in Table 1. We use the area under the curve (AUC) as the evaluation
metrics to evaluate the performance on each dataset.
1 Source code will be available at https://github.com/zxlzxlzxlzxlzxl/SSAKT.

https://github.com/zxlzxlzxlzxlzxl/SSAKT


Sequential Self-Attentive Model for Knowledge Tracing 325

– ASSISTment2009 (ASSIST2009)2 was collected in the school year 2009–2010
on the online tutoring platform ASSISTment.

– ASSISTment2017 (ASSIST2017)3 is the dataset used in ASSISTment 2017
competition, which spans from middle school to the students’ eventual choice
of career. It was collected from the same platform as ASSISTment2009.

– EdNet4 was collected by [3]. Because the entire dataset is too large which
makes the training process time-consuming, we randomly sample the exercise
sequences of 10,000 students and conduct our experiments on this subset.

– JunyiAcademy5 was collected from JunyiAcademy, an online platform pro-
viding education resources, over the course of a year [14].

Following [19], we remove the records without named skills for ASSIST2009
and ASSIST2017. We also truncate the input sequence whose length is over 200
following [13,19] for efficiency. If the length of an input sequence is over 200, we
split it into several sequences whose length is less than 200.

5.2 Baselines

To evaluate the effectiveness of our model, we compare our model against the
following models:

– DKT [13] is the first deep KT model using a single-layer LSTM to model the
knowledge states of students.

– DKVMN [19] is a Memory Augmented Neural Network based KT model
with dynamic key and value matrices where the key matrix stores the latent
exercise representations and the value matrix stores the knowledge states.

– DKT-Q is a variant of DKT, which uses questions instead of skills as input.
– DKVMN-Q is similar to DKT-Q, which uses questions instead of skills as

input.
– SAKT [11] uses the self-attention mechanism to identify the relevant exercises

practiced before and make predictions based on relevant past exercises.
– AKT [4] is a transformer-like KT model with an encoder and a decoder, which

uses monotonic self-attention to model forget behavior and uses Rasch model
[9] to generate question embeddings.

5.3 Implementation Details

We perform k-fold cross-validation on datasets with k = 5. 60% of the dataset
are used for training, 20% are the validation set, and the rest are used for test-
ing. The embedding dimensions of questions, skills and question-response pairs

2 https://sites.google.com/site/assistmentsdata/home/assistment-2009-2010-data/
skill-builder-data-2009-2010.

3 https://sites.google.com/view/assistmentsdatamining/.
4 https://github.com/riiid/ednet.
5 https://www.kaggle.com/junyiacademy/learning-activity-public-dataset-by-junyi-

academy.

https://sites.google.com/site/assistmentsdata/home/assistment-2009-2010-data/skill-builder-data-2009-2010
https://sites.google.com/site/assistmentsdata/home/assistment-2009-2010-data/skill-builder-data-2009-2010
https://sites.google.com/view/assistmentsdatamining/
https://github.com/riiid/ednet
https://www.kaggle.com/junyiacademy/learning-activity-public-dataset-by-junyi-academy
https://www.kaggle.com/junyiacademy/learning-activity-public-dataset-by-junyi-academy
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are the same and fixed to 256. The dimensions of hidden states in all LSTM are
set to 256, the number of attention heads is set to 8. The dropout rate is set to
0.2 to avoid overfitting and a mini-batch size is set to 32. We use the normal-
ized xavier initialization method to initialize the embedding matrices and linear
transformation matrices, and all trainable parameters are optimized by Adam
optimizer with the learning rate of 0.0001.

5.4 Performance Prediction

We conduct our experiments on the four datasets mentioned above and the
results are shown in Table 2, which are the averages of the five-fold cross-
validation experiments. From the table, we can notice that SSAKT outperforms
other baselines on all datasets. To be specific, our model outperforms other
models by at least 0.5%, which demonstrates the effectiveness of our model. It’s
noticeable that our model SSAKT significantly outperforms other models on
the ASSISTment2017 dataset, which shows an increase of at least 2%. The rea-
son can be that ASSISTment2017 has the largest responses per student, which
demonstrates that our model is good at capture long-distance dependencies in
sequence. In general, AKT and SSAKT significantly outperform other models,
which can attribute to the effective utilization of the question information and
related skills. Compared to AKT, SSAKT uses more informative question rep-
resentations and models the forget behavior using LSTM, which helps SSAKT
achieve better performance.

Table 2. The performance comparison of all models on four datasets.

Dataset ASSIST2009 ASSIST2017 EdNet Junyi

DKT 0.8080 0.7252 0.6928 0.7488

DKVMN 0.8123 0.7121 0.6937 0.7514

SAKT 0.8005 0.6609 0.6919 0.7478

DKT-Q 0.7574 0.7733 0.7325 0.7692

DKVMN-Q 0.7250 0.7492 0.7380 0.7784

AKT 0.8367 0.7640 0.7454 0.7883

SSAKT 0.8432 0.7935 0.7510 0.7949

SAKT performs worst in all datasets among all deep models. The possible
reason can be that SAKT uses learnable positional embeddings and doesn’t
model the forget behavior explicitly, thus isn’t able to learn effective position
representations in these datasets.

We also find that using question embeddings instead of skill embeddings as
input may improve the performance. DKT-Q and DKVMN-Q outperform DKT
and DKVMN on all datasets except for ASSISTment2009, the reason can be
that ASSISTment2009 has the lowest responses per question thus suffers from
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data sparsity problem. On the contrary, DKT-Q outperforms DKT by 4.8% on
ASSISTment2017, which has the largest responses per question.

5.5 Ablation Study

To investigate the effectiveness of different parts in our model, we perform several
ablation studies. We compare our model with several variants:

– SSAKT-RQE (Remove Question Embeddings) doesn’t use question informa-
tion, only uses skill embeddings as input.

– SSAKT-RQR (Replace Question embeddings with Rasch model based embed-
dings) replaces the question embedding mentioned in this paper with the
Rasch model-based embeddings [4] used in AKT.

– SSAKT-RSE (Remove Sequential Encoding) removes the sequential encoding
layer, which directly takes question embeddings as the input of the encoder
and the decoder.

– SSAKT-RSS (Replace Sequence encoding with Sinusoidal encoding) removes
the sequential encoding and uses sinusoidal encoding to encode the exercise
embeddings instead.

– SSAKT-RC (Remove Context layer) removes the context layer, which only
uses the output of the self-attention layer for prediction.

Table 3. Ablation studies

Dataset ASSIST2009 ASSIST2017 EdNet Junyi

SSAKT-RQE 0.8191 0.7288 0.6970 0.7518

SSAKT-RQR 0.8338 0.7721 0.7500 0.7930

SSAKT-RSE 0.8367 0.7864 0.7458 0.7905

SSAKT-RSS 0.8307 0.7896 0.7477 0.7935

SSAKT-RC 0.8355 0.7790 0.7482 0.7920

SSAKT 0.8432 0.7935 0.7510 0.7949

We don’t modify other parts of the model except for the changes mentioned
above. The results of ablation studies are shown in Table 3. From the table, we
can find that our model SSAKT achieves the best performance among all vari-
ants, which demonstrates the effectiveness of different parts of our model. We find
that SSAKT-RQE performs worst among all variants of SSAKT, but still out-
performs the deep models which only use skills as input, i.e. DKT, DKVMN and
SAKT. This fact shows that question information is of great significance, which
can greatly improve the performance of our model. Our model SSAKT outper-
forms SSAKT-RQR on all datasets, especially on ASSIST2009 and ASSIST2017,
which reflects that the question embedding method is more effective than the
Rasch model-based question embedding used in AKT. SSAKT-RSS outperforms
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SSAKT-RSE on most datasets which shows the necessity of position information
but is still slightly inferior to our model especially on ASSIST2009, which shows
the effectiveness of the sequential encoding layer in our model. From the SSAKT-
RC, we can see that some contextual information is ignored by the self-attention
layer which leads to a decrease in performance, thus showing the effectiveness of
the context layer.

5.6 Visualization of Question Embeddings

We use t-SNE [8] to visualize the question embeddings learned by our model.
Figure 2 shows the visualization of question embeddings of two datasets
ASSIST2009 and EdNet, where ASSIST2009 is a small dataset while EdNet
is significantly larger. The questions covering the same skills are labeled in the
same color. We can see that the question embeddings in ASSIST2009 are well-
clustered, questions with different skills are separated and questions with the
same skills are close to each other. We can also find some well-clustered question
embeddings in EdNet, but there are also many question embeddings scattered
across the space. The possible reason is that the skill number is large in EdNet,
while the question number is close to ASSIST2009, thus the relations between
questions and skills are not well learned by the model.
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Fig. 2. The visualization of question embeddings. The questions covering the same
skills have the same color.

6 Conclusion and Future Work

In this paper, we propose a new KT model SSAKT that combines LSTM and self-
attention. Our model first incorporates the question information into question
embeddings based on MIRT. Then we design a self-attention layer to capture
the relations between exercises. To model the forget behavior, we use LSTM
instead of the positional encoding to encode the sequential features. To capture
the contextual information ignored by the self-attention module, we design a



Sequential Self-Attentive Model for Knowledge Tracing 329

context module to capture the contextual information. Finally, we use an inter-
action layer to get the prediction. Experiments on the real-world datasets show
that SSAKT outperforms the existing deep KT models. Future work includes
i) incorporating question text into our model to improve our question embed-
ding method and ii) incorporating cognitive diagnosis methods to improve the
interpretability of our model.
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Abstract. Noisy detection and similar appearance lead to deteriorated
mis-identification and id-switch in Multi-Object Tracking (MOT). To
address these problems, we propose a novel Nearest Optimal Template
Library (NOTL) associated with two tailor-made methods based on the
NOTL. Here, the NOTL is a historical sample set of the tracked objects,
and the elements in the NOTL are closest to the complete object at the
current instant. It provides reliable appearance information of the object.
Then, we use the single object tracker (SOT) for position prediction,
and spatio-temporal network for appearance modeling. They can allevi-
ate mis-identification and id-switch problems, respectively. Besides, the
triplet loss is used to train our spatio-temporal network further improves
the performance. The proposed algorithm achieves 55.3% and 55.1% in
MOTA on challenging MOT16 and MOT17 benchmark datasets respec-
tively. These results show our method is competitive with the previous
state-of-the-art approaches.

Keywords: Multi-object tracking · Template library · Single object
tracker · Spatio-temporal network

1 Introduction

Multiple object tracking (MOT) is a classical research field in computer vision,
which focuses on locating and associating the same object in continuous video
frames. Tracking-by-detection paradigm is widely used in the MOT approach.
This method performs a cross-frame correlation for the given detection results.
However, the unreliable detection and high similarity between targets bring prob-
lems such as the mis-identification and id-switch for MOT tasks.

In order to reduce mis-identification, the useful method is to predict the
position of the tracked object to recover the missed detection. Some methods use
linear position prediction to recover the missed objects. But the accuracy of the
linear predictor could decrease if it is not updated by detection over a long time.
Others utilize nonlinear methods such as the SOT tracker to solve this problem.
But the SOT tracker [14,15] is based on template matching which is manually
masked in the first frame, while MOT can not provide an accurate template for
c© Springer Nature Switzerland AG 2021
I. Farkaš et al. (Eds.): ICANN 2021, LNCS 12891, pp. 331–342, 2021.
https://doi.org/10.1007/978-3-030-86362-3_27
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Fig. 1. Nearest Optimal Template Library (NOTL). It selects the targets from the
tracklet as the templates according to the appearance score. We get the score of each
target and update the library according to the strategy.

the SOT tracker. For the similar appearance, many methods [6,23] based on the
CNN network aim at building a robust appearance model to distinguish different
targets. But occlusion or interaction could disturb the appearance features and
we can not make a judgment when it happens. Therefore, obtaining complete and
reliable appearance information of the target is the key to solving the problem.

For this purpose, we propose a novelty online MOT method which includes
a Nearest Optimal Template Library (NOTL) and two optimization methods
to improve the accuracy of the tracker. The building procedure of the proposed
NOTL can be summarized in two steps, shown in Fig. 1. Firstly, we utilize a
sliding window to maintain and update the historical appearance information
of these objects which have been tracked. We move the sliding window over
time and update templates with appearance scores higher than the threshold
so that the trajectory in the library is the latest and optimal. Based on the
NOTL, we propose two methods to predict the position and distinguish different
objects respectively, thereby alleviating these problems in MOT. We use a SOT
tracker combines with the NOTL for position prediction. The comprehensive
and accurate appearance in the library makes our methods more effective than
others. And we combine the constraints of spatio-temporal information with the
NOTL to build a network, and train the network with triplet loss [19]. It can
make our network learn adaptive features in the library to distinguish different
targets in the same frame. Notably, combining spatio-temporal information and
triplet loss is the first attempt in MOT task. We tested our algorithm in the
datasets of MOT16 and MOT17, and verified that our algorithm is effective.

2 Related Work

Tracking-by-Detection paradigm is a popular framework in recent years. Numer-
ous approaches [4,7,9] combine the detections in a period of time and these use
future information when processing the current frame, which is called the offline
MOT method. Corresponding to these, the online MOT method [22,26] does not
use future information. The effect of the offline method is better than the online
method, but real-time performance is the opposite. Majority of MOT methods
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[11,12] focused on improving the association by finding a more robust appearance
model or combining multi-models. And the tracking result was closely related to
the detection.

Position prediction is a very important task in MOT. There are many noisy
detections in the public dataset, which greatly affect the performance of the
tracker. Generally speaking, position prediction is to establish a model for the
target that has been tracked and predict the new position in the new frame
through the historical trajectory. Since significant progress has been made on
SOT in recent years. Some previous works [6,29] tried to adopt SOT trackers
into MOT problem. In SOT, the template is manually in the first frame and they
focus on distinguishing the foreground from the object effectively. But in MOT,
there is frequent interaction between the targets, taking the detection results as
the template is also ambiguous. So the SOT tracker will produce serious id-switch
or missed target when occlusion happens.

The objects of MOT are pedestrians, and the difference between classes in
the same category is very small, so how to distinguish different people well is
a challenging task. In order to solve the problems of similarity. Some methods
[20,27] tried to build a discriminative model based on CNN. Recently, RNN
had been proposed to learn the temporal information of the object in MOT
and established a spatio-temporal attention mechanism [6,29] to solve objects of
similar appearance. They all established a spatio-temporal attention mechanism
to assign weights to objects in different time and space. Du et al. [8] proposed
an adaptive network using LSTM to learn the appearance variation in visual
object tracking. Sadeghian et al. [18] successfully joined the appearance, motion,
and interaction cues with independent LSTM, combining the learned feature to
distinguish different objects. Kim et al. [13] utilized Bilinear LSTM (Bi-LSTM)
to improve the learning of long-term appearance models combine with motion,
and achieved state-of-the-art performance.

In this work, we mainly use the SOT tracker and spatio-temporal network
based on the NOTL to create a new multi-object tracking framework. And cer-
tified the improvement of this algorithm.

3 Proposed Method

Our algorithm framework is shown in Fig. 2. First of all, we build the NOTL
for the tracked objects according to the strategy we proposed. Based on this
template library, we propose a single object tracker (SOT) and spatio-temporal
attention network to predict the position and to model the appearance of the
tracked objects. Specifically, we train our network by the triplet loss to improve
the discernment of the network.

3.1 Build the Nearest Optimal Template Library

The inaccurate detection results provided by the detector make the appearance
incomplete and unreliable. The appearance of the object directly affects the effect
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Fig. 2. The overall framework of our approach. Firstly, we build the Nearest Optimal
Template Library (NOTL) based on the tracking trajectory we have obtained. Then,
we propose to use a single object tracker (SOT tracker) to predict the position and
spatio-temporal information to build the appearance model (ST network) based on the
NOTL. Finally complete the task of MOT and update our library.

of the appearance-based method. So we need to develop a system to measure
appearance and to get reliable appearance information as much as possible. The
ideal appearance of the target is the closest to the current moment and is not
blocked by the background or other targets. Based on these, we choose to use
a sliding window method to build our template. We set a sliding window and
make the window progress with time, removing the target farthest from the
current moment when the library updated. And it also can ensure the temporal
information in the template not be destroyed.

The warehousing standard is important because the occlusion may exist. The
occlusion in MOT is divided into two types: background occlusion and mutual
occlusion between targets. For the first type of occlusion, the boxes will become
farther from the class of ‘people’, so a pre-trained classifier can be used to score
the box. The classification score cti is proportional to the degree of occlusion,
Here, cti means the classification score of candidate i in time t. For the second,
the maximum Intersection over Union (IOU) at the current time t can be used
to measure the mutual occlusion between objects.

oti = argmax
i�=j

(
di ∩ dj
di ∪ dj

) i �= j, j = 0, · · · (1)

where the oti is the maximum IOU of the candidate i in time t, di and dj is the
coordinate of candidate and other detections. If the maximum value of the IOU
calculated by the candidate object i and other detections are less than a certain
threshold, it can be considered that the possibility of mutual occlusion between
the object and other objects is relatively low.

From these situations, we filter out those samples with bad appearance when
select templates, so our template library is more referential. For a candidate bti
in time t, the classification score denoted as cti and the maximum IOU in the
same time t denoted as oti. We define the update score as:

sti = α · cti + β · (1 − oti) (2)
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Fig. 3. Single object tracker based on template library. We successively use the tem-
plate in NOTL as the template of the SOT tracker. After obtaining several candidates,
we refine these to get the final prediction result.

Where the α, β is hyperparameter set according to experience. The template
library of the target i updated when the score sti is over the threshold we set.

3.2 Position Predictor

In MOT task, there are many lost situations caused by unreliable detection,
which have seriously affected the tracking results in many published methods.
Therefore, an accurate position prediction method is essential. The position of
the object can be obtained in consecutive frames with SOT, so we use SOT to
do position prediction. But SOT trackers are based on template matching and
the template is manually marked in the first frame. However, MOT is based on
detection and the inaccuracy of the detection results makes it hard to provide a
good template for the SOT tracker. We solve this problem by the NOTL.

The NOTL can provide reliable appearance information. We use the histor-
ical appearance information of the same object in the template library as the
template, and use the SOT tracker to search in the area where the target appears.
In this work, the SiameseFC [21] used as our baseline. The model is shown in
Fig. 3. We denote the tracked objects as T = {T1, T2, . . . , Ti}. Each target i has
its own template library, which contains history information Ti = {A1

i , . . . , A
N
i },

here N is the length of the slide windows. The feature of object i at the NOTL
xi
n taken as a template and the original image zt+1 at time t + 1 taken as the

search area. We denote the fp
(
xi
n

)
are extracted from the library and fp (zt+1)

is extracted from the image of t + 1. The position of the object predicted in the
new frame and get the predicted result xn

t+1, y
n
t+1, w

n
t+1, h

n
t+1 refer to [21].

We can get M new candidates after predicted by the SOT tracker, then use a
classifier and regressor to classify these boxes and fine-tuning. Finally, the most
suitable box selected through the non-maximum suppression (NMS).

xi
t+1, y

i
t+1, w

i
t+1, h

i
t+1 = NMS(s1

cls, · · · , sMcls) (3)

where xi
t+1, y

i
t+1, w

i
t+1, h

i
t+1 mean the predicted candidates coordinates which

contain the horizontal and vertical coordinates of the upper left corner, the
width and height of the object i. sncls is the score calculated by the classifier
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Fig. 4. We extract the appearance features of each target in the NOTL by a pre-
trained CNN network, which will be sent into GRU network in turn. Then, we utilize
the intermediate feature of GRU as anchor in triplet network (blue dotted line). In the
last layers, we take object that is the same to the target as positive sample and another
object in the same frame as negative sample (blue and red features), taking them as
the last layer’s input of the GRU network. And we use these two outputs (red dotted
line) as the positive and negative examples of triplet to calculate the final loss. (Color
figure online)

of the bounding box predicted by the template n. In addition, we also use the
regression network to refine the candidates.

3.3 Appearance Model

In MOT task, the appearance of the targets is similar, which brings great chal-
lenges to the association. How to build an efficient appearance is important in
MOT tasks. A good appearance model must have strong discrimination and be
adaptable because there will be new targets in the video sequence. In addition,
the video sequence contains inter-frame and intra-frame information. The posi-
tion and appearance of a target are continuous between sequence frames. We
want to learn these information and use it to distinguish different objects.

Our NOTL library contains the information, and we want to learn through
the network. For these purposes, we utilize a spatio-temporal network to learn
this information, which is shown in Fig. 4. We extract the appearance of each
target in the template library by a CNN network, and use the Gate Recurrent
Unit (GRU) network to learn temporal information of the appearance which
belongs to the same target. In order to make our network more discriminative,
the triplet loss method adopted to train the network.

Spatio-Temporal Network. It is not enough to make accurate judgment rely
on appearance characteristics, because the appearance of pedestrians is similar.
So we need to combine the spatial position and the appearance of objects in
historical. The templates in the NOTL are arranged in chronological order, and
for the target i the appearance xn in the template library has temporal infor-
mation. And different objects in different spatial positions in the same frame.
Generally speaking, the position of the object will not change suddenly, so there
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is continuity in the spatial position. We use the GRU network to learn this infor-
mation. Denoting v1

i , · · · , vN
i as the features extracted from the template library

of object i by a CNN network. We treat these as the input of the GRU. Then to
distinguish different objects by the output of the network. it can be expressed
as follows.

On−1 = GRU
(
v1
i , · · · , vN

i

)
(4)

where On−1 is the feature extracted by GRU, i is the object identification, N is
the length of the template.

Triplet Loss and Training Algorithm. Triplet loss is proposed to solve these
problems that we need the network has strong ability to distinguish the same
and the different. Similarly, the tracker also needs to have this ability, so we use
it to train our network.

Triple loss consists of three features. Two of these come from the object i
and one from the other object j. We generate a set of triplets S from a tracklet
and two images patch, one patch xi belongs to this tracklet and the other xj

belongs to another tracklet in the same frame. For our spatio-temporal network,
we extract the appearance of target i in the NOTL, and put it into the GRU
network. The output of the GRU network On−1 is employed as the anchor in
the triplet network, as Fig. 4 showed. We respectively take the xN

i and xN
j as

the input of the last layer of GRU. Then, two different features Opositive and
Onegative are output by GRU. We take these as the positive and negative samples
in triplet loss respectively. Here xi and xj represent the appearance features of
target i extracted in a new frame and different target j in the same frame as xi.

We aim to ensure that the distance of the positive pair (On−1, Opositive) is
closer than the negative pair (On−1, Onegative) by a distance margin margin.
The triplet loss is of the form:

Lt = max(d(On−1, Opositive) − d(On−1, Onegative) + margin, 0) (5)

where the d is the euclidean distance represents the similarity between features.
margin is a distance threshold set to 0.5 in our work. We utilize the training
dataset of MOT16 to train the network.

Table 1. The results of the ablation study.

Baseline MOTA FN IDS

B1 36.4 68920 1178

B2 52.0 51959 527

B3 53.6 49783 549

B4 54.4 49032 357

B5 55.1 48171 320
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4 Experiments

4.1 Dataset and Evaluation Metrics

We utilize MOT16 and MOT17 [16] to evaluate our method. These datasets
contain 14 sequences and are split into train and test. MOT16 is provided with
one public detections and MOT17 contains three separate tracking benchmarks
detected by DPM [10], Faster R-CNN [17], SDP [25]. And we evaluate our results
by the MOT benchmark as the metric [3], which includes the following indicators:
Multiple Object Tracking Accuracy(MOTA), Multiple Object Tracking Precision
(MOTP), False Positives (FP), False Negatives (FN), ID Switches (IDs), the
number of Fragment Error (Frag), ID F1 Score (IDF1), Recall, Precision.

4.2 Ablation Study

To demonstrate the contribution of each module in our algorithm, we build
different combinations and test on MOT16. A total of five sets of comparative
experiments are established. Each approach is described as follows:

B1: We use the classifier and regression to filter the detection results, and
associate them with IOU and Hungarian algorithm.
B2: We add the SOT tracker to predict the position based on B1.
B3: In order to certify the improvement of our NOTL to SOT, we build the
NOTL for the tracked object, and make prediction based on NOTL.
B4: We use the CNN network to extract the features, and calculate the affinity
matrix based on the features to complete the data association.
B5: We use our proposed spatio-temporal network to combine the NOTL for
feature matching, and follow the method described to complete the MOT
task. Moreover, this result is submitted to the mot challenge website.

4.3 Analysis of the Results

Our results are shown in Table 1. We choose some indicators that can prove the
effectiveness of our method. The FN of B3 is lower than the FN of B2, which
proves that our NOTL greatly improves the performance of the SOT tracker.
We select several scenes from three different sequences for comparison, shown in
Fig. 5. The first line is the result obtained by using SOT for position prediction.
The second line is the SOT combined with the NOTL for position prediction. It
can be seen that more targets have been tracked in the second row. This proves
that the library has achieved our purpose.

The IDS of B5 is lower than that of B4, which proves that our spatio-temporal
network is more effective than the general appearance model. In order to validate
the effectiveness of our appearance model intuitively, we selected a trajectory in
the test sequence and compared it with the detection results in the same frame.
Prove the effectiveness of our model by comparing the similarity scores given by
the network. As shown in Fig. 6, our trajectory and candidates are given on the
left, while output scores of the two networks for different targets are shown on
the right. Our model has a greater difference in the output-score for the targets,
which proves that our model is more discriminative.



Multi-object Tracking Based on Nearest Optimal Template Library 339

Fig. 5. Position prediction results of different predictors. The first row is the results
predicted by Siamesefc, and the second row is the results combining with the NOTL.
The blue box is the target, the green number is the ID. Each column of images comes
from the same frame of the same video (Color figure online)

Fig. 6. Scores calculated by different appearance models for different objects. The left
is the trajectory and candidates, and the right is the score output by different network.
The green and blue bars represent the scores value of our network and the general
CNN network, respectively. (Color figure online)

4.4 Benchmark Evaluation

We evaluate our approach on MOT16 and MOT17 benchmark against other
methods, including online and offline methods. Table 2 and 3 present the perfor-
mance on the datasets.

Our novel method is comprehensively compared with some selected methods
[6,23,29] based on the spatial-temporal mechanism. These validate the effective-
ness of our library and training method. Also, we choose the method [2] using
the detector to reclassification. Our algorithm is tested on the public detection
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Table 2. Tracking performance on the test set of the MOT16 Benchmark with public
detections. We bold the best indicators of the listed methods.

Tracker Mode MOTA MOTP FP FN IDs Frag IDF1 Recall Precision

STAM16 [6] Online 46.0 74.9 6895 91117 473 1422 50.0 50.0 93.0

MOTDT [5] Online 47.6 74.8 9253 85431 792 1858 50.9 53.1 91.3

Tracktor++ [2] Online 54.4 78.2 3280 79149 682 1480 52.5 56.6 96.9

TrctrD16 [24] Online 54.8 77.5 2955 78765 645 1515 53.4 56.8 97.2

NOTL (ours) Online 55.3 78.2 3385 77407 630 1327 52.6 57.5 96.9

STRN-MOT16 [23] Offline 48.5 73.7 9038 84178 747 2919 53.9 53.8 91.6

HDTR [1] Offline 53.6 80.8 4714 79353 618 833 46.6 56.5 95.6

Table 3. We have selected some indicators of the algorithm on the MOT17 dataset.
We bold the best indicators of the listed online and offline methods.

Tracker Mode MOTA MOTP FP FN IDs Frag IDF1 Recall Precision

DMAN [29] Online 48.2 75.7 26218 263608 2194 5378 55.7 53.3 92.0

Tracktor++ [2] Online 53.5 78.0 12201 248047 2072 4611 52.3 56.0 96.3

LSST17O [11] Online 52.7 76.2 22512 241936 2167 7443 57.9 57.1 93.5

TrctrD17 [24] Online 53.7 77.2 11731 247447 1947 4792 53.8 56.1 96.4

NOTL (ours) Online 55.1 78.0 11944 239128 2001 4269 53.2 57.6 96.5

LSST17 [11] Offline 54.7 75.9 26091 228434 1242 3726 62.3 59.5 92.8

TT17 [28] Offline 54.9 78.1 20236 233295 1088 2392 63.1 58.7 94.2

set. In contrast to other MOT methods, our methods achieve the highest MOTA
score by preserving the good performance of other metrics. It also improved in
various aspects compared to some offline methods. Table 3 shows the comparison
of some new methods on the MOT17 dataset, our method still works well.

5 Conclusion

In this paper, we have proposed a novel online MOT framework based on the
Nearest Optimal Template Library (NOTL) assisted by two optimization meth-
ods. Our NOTL can build the appearance model of the target effectively, and
improve the effect of the methods we proposed. At the same time, our method
also combines a variety of information to alleviate the two major challenges in
multi-target tracking: position-prediction and appearance modeling. Our method
outperforms previous works on the MOT16 and MOT17 benchmarks using pub-
lic detection. But there is a limitation of our work. Our method cannot achieve
the real-time requirements in the actual application. In our future work, we will
try to exploit how to improve our method to achieve real-time requirements
without deteriorating accuracy.
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Abstract. Making accurate traffic forecasting is of great importance
in smart city-related researches. However, as the traffic features like
traffic speed have a complex spatial-temporal characteristics, how to
build an accurate traffic prediction model is still an open challenge.
In this work, we propose TSTNet, a Sequence to Sequence (Seq2Seq)
spatial-temporal traffic prediction model. TSTNet adopts Graph Atten-
tion Network (GAT), which can learn the spatial feature aggregation,
to build spatial dependency. For temporal dependency, TSTNet applies
a Seq2Seq Transformer structure to establish temporal dependency. As
a GAT layer’s operation only aggregate the attribute information for
neighbor nodes, it does not involve any spatial positional information.
Similarly, if we apply the Transformer model on sequence learning tasks,
the Transformer model also does not involve any temporal positional
information as it does not know the exact time slot of different inputs.
To solve the above problems, TSTNet implements a spatial-temporal
embedding method to obtain the spatial-temporal positional representa-
tion for each input data. We evaluate TSTNet on traffic speed prediction
tasks with other baselines upon two real-world datasets, the results show
that TSTNet outperforms all the baseline models.

Keywords: Sequence to sequence model · Spatial-temporal
forecasting · Time series data

1 Introduction and Background

Intelligent Transportation Systems (ITS) have emerged as a popular research
subject due to their potential to provide road users with more comfortable
and convenient travel experiences and encourage more efficient and reliable
traffic systems. Accurate and reliable traffic forecasting is vital for ITS, espe-
cially in traffic management, traffic demand prediction, urban planning [4,8,20].
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With advances in computing power and the advancement of data acquisition
technologies, data-driven approaches to developing accurate traffic forecasting
systems have recently gained widespread attention [1,18,19].

Traffic forecasting is difficult due to dynamic intra-dependencies (i.e., tempo-
ral connections across one traffic sequence), inter-information (i.e., spatial asso-
ciations through multiplexed links in traffic networks), multi-source data (i.e.,
different loop detectors/sensors), and extra-disturbing factors (i.e., weather and
accidents). Traditional methods depend solely on the periodicity of time series,
e.g., Historical Average (HA) and Autoregressive Integrated Average (ARIMA)
[9], which cannot provide a reliable prediction for long-term traffic forecasting
on a large scale. To improve the accuracy of long-term forecasting, researchers
shift to design new neural network architectures to model temporal correlation
by recurrent neural networks (e.g., Long Short-term Memory [3] (LSTM) cells
and Gated Recurrent Unit [2] (GRU) cells). However, such RNN variants only
capture temporal information in traffic sequences, they neglect the importance of
spatial dependency for accurate prediction. To narrow that gap, models derived
from Graph Neural Networks (GNN) like DCRNN [5], FC-LSTM [10], Graph-
WaveNet [14], STGCN [17] are proposed as a structure that uses graph network
to extract finer-grained spatial knowledge. Despite the fact that GNN offers a
solution for spatial dependency modeling, they still have issues when combining
with Seq2Seq model. When dealing with a long input sequence task, the latent
information at the early input order is easily lost in the context vector. Further-
more, due to the order limitations of sequence tasks, those models are unable to
perform parallel calculations, resulting in a decline in training efficiency.

Recently, the breaking progress in the field of Natural Language Process-
ing (NLP) arises a heated research interest on Transformer-based model [11].
Transformer is a model based on self-attention mechanism, positional encoding,
residual link and layer normalization. It solves the distance problems of Seq2Seq
models effectively by directly calculating the attention value of sequence data
at all positions. STTN adopts a spatial-Temporal Transformer Network network
for traffic flow forecasting. This model explicitly measures the attention of traffic
data from spatial and temporal perspective. Then STTN concatenates them as
the overall spatial-temporal features. In spite of the promising performance of
STTN, this approach is costly in terms of computation and storage, and it is
prone to overfitting due to the large number of parameters. We will talk about
this in detail in Sect. 4.1.

To overcome the above models’ drawbacks, we propose TSTNet, a novel
spatial-temporal traffic forecasting model based on graph attention mechanism,
and Seq2Seq-based Transformer structure. The main contribution of this is as
follows:

1. To the best of our knowledge, we are the first to build a Seq2Seq model with
graph attention network and transformer network for traffic forecasting. The
results show the effectiveness of our model.

2. We apply a novel spatial-temporal embedding learning algorithm based on
random walk for traffic node’s spatial representation. This spatial embedding
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is concatenated with time embedding, which is learned from a projection layer
as the spatial-temporal positional embedding of traffic data.

3. We evaluate our model on two real-world collected GPS datasets. The results
show that our model achieves state-of-the-art performance compared to other
baselines. Besides, we also give a detailed analysis of experimental results.

2 Methodology

In this section, we first provide the definition of the problem we study. Then, we
elaborate on the main structure of TSTNet. Figure 1 depicts the overall structure
of TSTNet.

2.1 Problem Definition

Definition 1: Road Network. The topological structure of a city is a directed
graph G = (V,E) formed by intertwined roads. V = {v1, v2, · · · , vNv

} is the set
of road nodes, and E = {e1, e2, · · · , eNe

} is the set of edges. We use adjacent
matrix as the data structure to store this graph. Let the adjacent matrix be
M ∈ RNv×Nv . If there is an edge from node vi to node vj , Mij = 1. Otherwise
Mij = 0.

Definition 2: Spatial-temporal Series. The time of a day is divided evenly
into T time steps. The spatial-temporal series are represented as

S = {Xi | i ∈ T} (1)

where i represents time step, Xi ∈ R
Nv×F represents the F types of traffic

features (e.g., traffic speed, traffic demand) for Nv nodes at time step i. The
traffic features for node vj ∈ Nv in Xi is represented as xj ∈ R

F

Definition 3: Traffic Prediction Task. Given the traffic features X0 (speed,
traffic flow volume, etc.) at time step 0, the objective is to predict the traffic
features in the next L time steps for road network G as

[X1, · · · ,XT ] = fθ ((X−n, · · · ,X0)) (2)

where θ are the parameters of TSTNet. In this work, we focus on the traffic
speed prediction task, and X represents the traffic speed.

2.2 TSTNet

In this section, firstly, we introduce how TSTNet uses GAT to establish the spa-
tial dependency of the traffic network. We then introduce Traffic Graph Context
Embedding (TGCE), a spatial-temporal hybrid embedding composed of random
walk-based graph spatial embedding and temporal embedding learned from the
projection layer. TSTNet concatenates obtained traffic spatial dependency with
Traffic Graph Context Embedding, and feeds them into the Temporal Trans-
former Network network. We provide a detailed description of the Temporal
Transformer Network network of TSTNet in the last part of this section.
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Fig. 1. Overview of TSTNet. Notably, this figure shows the training phase of TST-
Net and its Decoder Network is working in a parallel computing. However, in actual
prediction tasks, we cannot directly obtain the target sequence. Therefore, in actual
prediction tasks with no ground truth, TSTNet obtains its prediction sequence within
a classical Seq2Seq prediction style.

Spatial Dependency Modeling. TSTNet adopts GAT to establish spatial
dependency for its ability to capture dynamic local spatial features. For each
time step t, GAT computes an attention coefficients between vi and vj as

eij = a (Concat [Wxi,Wxj ]) (3)

where xi, xj is the features of vi and vj , respectively. W ∈ R
F ′×F is a learnable

weight matrix applied to every node for features extraction. eij indicates the
importance of vj ’s features to vi. Typically, we compute the attention coefficients
eij by concatenating Wxi and Wxj , and feed the combined vector into a fully
connected network a ∈ R

2F ′
[11]. Next, the attention score is computed by

αij = softmax (eij) =
exp (eij)∑

k∈Ni
exp (eik)

(4)
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we apply the LeakyReLU activation function for attention coefficients computa-
tion. In this form, the graph attention computation can be expressed as:

αij =
exp

(
LeakyReLU

(
aT Concat [Wxi,Wxj ]

))

∑
k∈Ni

exp (LeakyReLU (aT Concat [Wxi,Wxk]))
(5)

After obtaining the attention value, we use it to compute a linear combination
for the features from each node’s neighbour. The final output is served as:

x′
i = σ

⎛

⎝
∑

j∈Ni

αijxjW

⎞

⎠ (6)

where Ni represents the neighbour nodes of vi. Finally we obtain spatial depen-
dency representation x′

i ∈ R
F ′

produced by GAT.

Traffic Graph Context Embedding. As novel graph deep learning methods
for traffic-related data-driven models only involve the spatial dependency on
nodes’ features [11,12]. Most of them ignore the spatial positional information of
graph nodes. For example, vi and vj have a very close distance in Euclidean space
but may not be linked within several hops in Semantic Space. On the words, the
hot traffic regions covering central business districts (CBDs) or other important
blocks can share semantic relational characteristics but lack a direct or clear
Euclidean space connection. Existing graph deep learning methods rarely make
use of this knowledge. To capture the spatial information, here we introduce the
idea of traffic graph context embedding (TGCE), which is inspired by [7]. The
process of TGCE is as follows:

1. Firstly, TGCE adopts a biased walking to obtain the walking sequence of
nodes. The biased transition probability from vi to vj is defined as Pij =

Iij∑
j∈N(vi)

Iij
, where Iij is the historical travel statistics from vi to vj .

2. After the walking sequences are obtained, TGCE applies Skip-Gram [6] algo-
rithm to learn the embedding from walking sequences of traffic nodes with a
two-layer fully connected network structure with hidden size F s.

Since the walking sequence generated by TGCE mainly focuses on the neigh-
bors of each start nodes, this methods can effectively compute a graph spatial
embedding with highly spatial correlation. We further show this effectiveness in
Sect. 4.1. Typically, the TGCE of xi is represented as x′′

i ∈ F s.

Temporal Dependency Modeling. After obtaining the graph spatial depen-
dency at each time-step, TSTNet selects K nodes in order from these graph data
sequences as a trade-off between time and space, as opposed to STTN, which
feeds the sequence data of all graph nodes into the Temporal Transformer Net-
work all at once. The insights of this design are that it can have fewer number
of parameters while minimizing the negative effects of over-fitting, and reducing
the demand for computing resources. As the computation of K node’s temporal
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sequence is actually independent of each other, we introduce the temporal depen-
dency modeling with a single node va first. TSTNet builds a transformer-based
Seq2Seq network to learn the temporal dependency of the input sequence. We
introduce this from two aspects: Encoder Network and Decoder Network. As the
input data of Transformer network does not contain temporal positional informa-
tion, TSTNet uses an embedding layer for encoding the discrete time information
of each input data. The time embedding of xi can be represented as x′′′

i ∈ F t,
where F t is the hidden size of embedding layer. Time embedding will further be
concatenated to each input data before feeding into the Temporal Transformer
network. Notably, the data representation of xi before it’s fed into Temporal
Transformer Network can be represented as x∗ = Concat[x′, x′′, x′′′] ∈ R

F ∗
,

where F ∗ = F ′ + F s + F t.
TSTNet’s structure adopts two transformer encoder modules1. Each trans-

former encoder module is built with a self-attention sublayer and a fully con-
nected sublayer. A residual link is used around each of the two-sublayers with
layer normalization. The self-attention computation is composed of three lin-
ear transform layer Q ∈ R

F ∗×d, K ∈ R
F ∗×d, V ∈ R

F ∗×d. F ∗ represents the
feature length at each time slot. d represents the hidden size of the Temporal
Transformer Network. Q, K, V are also known as Query, Key and V alue, as
explained further in [11]. They are used to compute the temporal attention for
an input data sequence as

A(Q,K,V) = softmax(
QKT

√
dk

)V (7)

where
√

dk represents the square root of K, and it uses as a normalization for
more stable gradients. We can see that these computations can build a dynamic
weights adjustment with different input data, rather than a linear layer with fixed
weights. The self-attention layer’s output is further fed to a fully connected layer
for a better feature extraction [11].

For Decoder Network, we use the target sequence of va as its input. Assume
the target sequence is of length T , for parallel computation, the input sequence
of a single node is of size T × T × F , which is a vector obtained by stacking the
target sequence T times. Next we explain the reason of this design: Since our
goal is to predict the target sequence with size T × F and the traffic forecasting
in real scenarios can not perceive the ground truth or future data. The input
data is then processed a masked-attention layer for masking the unavailable time
with a lower triangular matrix for each traffic feature. Next, TSTNet computes
the self-attention for masked target sequence, above process is also called the
Masked Attention. After masked attention computed, we come key difference
between the Transformer-based Seq2Seq model with the RNN-based Seq2Seq
models: Rather than representing the input sequence information with a context
vector, the Transformer model uses K and V from the last encoder module and
involves it into the Decoder Network’s Encoder-Decoder Attention layer. This
1 The number of encoder modules and decoder modules are chosen according to the

best experimental results.
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layer computes attention with K and V from Encoder Network and Q from its
previous layer’s output with layer normalization and residual link. This method
effectively computes the correlation between output sequence and input sequence
[11]. The Decoder Network output is of size T ×T ×d, TSTNet further flatten it
into size T ×(T ∗d) connected to a fully connected layer with size [T ∗d, F ]. Thus,
we obtain the final output decoding sequence with a parallel Seq2Seq learning
scheme.

Multi-head Attention. To stabilize the learning process of graph attention and
the self-attention in the Temporal Transformer Network network, we employ the
Multi-head Attention mechanism for its benefits on feature extraction ability
[11,12]. We apply k1 independent attention heads for graph attention and k2
heads for temporal self-attention computation. Specially, as the attention matrix
can be quadratic and resource-consuming with a long time sequence data or large
graph data, it is no longer sensible to concatenate them directly. Thus, inspired
by [12], we employ an averaging computation for graph attention or temporal
self-attention heads in the corresponding computation stage and delay applying
the final non-linearity function, it finally can be formulated as

A = σ

(
1
K

K∑

k=1

Ak

)

(8)

where Ak represents the attention matrix in corresponding computation stage.

Loss Function. TSTNet uses Mean Square Error (MSE) as the objective loss
function, it can be expressed as:

min
θ

L (fθ (Xi) , Yi) = |f (Xi) − Yi|2 (9)

3 Experiments

In this section, we evaluate the performance of TSTNet on two real-world city
open datasets. Besides, For a better understanding of TSTNet, we provide a
ablation study on TSTNet.

3.1 Dataset Description

Chengdu Dataset. This dataset2 collects GPS data of Didi car-hailing trajec-
tories in the northeastern part of Chengdu city during November 1, 2016 and
November 31, 2016. This area has 3223 nodes and 8265 edges.

Xi’an Dataset. This dataset collects GPS data of Didi car-hailing trajectories in
the northeastern part of Xi’an city during November 1, 2016 to November 30,
2016. This area has 2656 nodes and 6308 edges.
2 The use of these two datasets needs a permission request. All two datasets can be

found at https://outreach.didichuxing.com/app-vue/personal?id=1.

https://outreach.didichuxing.com/app-vue/personal?id=1
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3.2 Data Preprocessing

Since the above datasets contain only raw GPS points, they need to be pro-
cessed into traffic speed values before training. As we focus on the task of speed
prediction, the speed can be intuitively calculated as follows:

Δtj = tj+1 − tj (10)
RDj = V incenty (latj , lonj , latj+1, lonj+1) (11)

Speedj = RDj/Δtj (12)

where ti represents the timestamp of node i, lati and loni represent the latitude
and longitude of GPS point i. V incenty(·) represents the Vincenty formula [13],
which is used to calculate the distance between two points on the surface of
a spheroid. After the speed is calculated, we use the mapmatching approach
proposed in [16] to match the GPS points to corresponding edges. The nodes’
speed values are the average of GPS points’ speed on the connecting edges, and
the distance from GPS points to the node is empirically set to less than 300 m.

3.3 Baseline Models and Evaluation Metric

We compare TSTNet on traffic speed forecasting task with some most novel and
competitive traffic forecasting models: FC-LSTM [10], STGCN [17], DCRNN
[5], Graph WaveNet [14], and STTN [15]. To evaluate the speed forecasting
performance of models, we use three metrics to compute the difference between
ground truth Yi and the prediction Ŷi, including:

1. Mean Absolute Error (MAE):

MAE =
1
m

m∑

i=1

∣
∣
∣(Yi − Ŷi)

∣
∣
∣ (13)

2. Root Mean Squared Error (RMSE):

RMSE =

√
√
√
√ 1

m

m∑

i=1

(Yi − Ŷi)2 (14)

3. Accuracy (ACC):

ACC = 1 −

∣
∣
∣Y − Ŷ

∣
∣
∣

|Y | (15)

MAE, RMSE measures the average prediction error of the model. ACC measures
how close the average speed prediction is to the real speed.

3.4 Experimental Settings

Experiment Environment. All experiments are performed on a Linux server
(CPU: Intel(R) Xeon(R) CPU E5-2620 v4, GPU: GeForce RTX 2080 Ti, System:
Ubuntu 18.04). All experiments are conducted with Pytorch 1.6.0.
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Hyperparameter Settings. The total number of time steps in one day is set to
288, which means that the average speed of each road is computed every 5 min.
For the traffic graph context embedding algorithm, the random walk step size
is 10, and each node walks 10 times. The hidden size of GAT i.e., W and the
hidden size of Temporal Transformer Network i.e., d are 16. Attention heads k1
and k2 are both set to 2. F s is set to 8 and F t is set to 4. We choose the Adam
optimizer to optimize network parameters. The learning rate τ during training is
10−3. The batch size used in training is 32, while the number of training epochs is
1000. TSTNet uses an early stopping strategy to avoid overfitting problem when
the validation loss no longer increases for three consecutive epochs. The propor-
tions for the training set, validation set, and test set are 70%, 10%, and 20%,
respectively. For both TSTNet and baseline models, we run 20 times and take
the results’ average as the final comparison. All the selection of hyperparameters
are based on their performance empirically.

4 Results

Table 1 show the results of TSTNet and other baseline models in forecasting
the speed of the city road network in the next 15 min (15 min), 30 min (30 min),
and 60 min (60 min) on different datasets. In the following section, we provide
reasonable discussions about performance on different models.

4.1 Case Study

From Table 1 we can see that TSTNet outperforms all other models on both
datasets. Though STTN adopts a resource-consuming computation by applying
spatial and temporal Transformer network on traffic forecasting tasks, TST-
Net still has a significant performance advantage over STTN. This reason is
attributed to its massive model architecture of STTN, which includes a large
number of redundant paramaters. As a result, STTN easily causes an over-fitting
problem without regularization. Graph WaveNet and STGCN both use temporal
convolutional layers on temporal dependency. However, this design has an obvi-
ous drawback as it hardly captures a long-distance temporal relation. DCRNN
and FC-LSTM adopt a classical Sequence to Sequence (Seq2Seq) model archi-
tecture, but its context vector can fail to capture the information with previous
input, which has a long distance. To further understand the advantages of TST-
Net, we conduct an ablation study in the next section.

4.2 Ablation Study

We conduct an ablation study by removing one of its components iteratively.
These ablations are defined as follows:

1. TSTNetNGCE : TSTNet without graph context embedding.
2. TSTNetNTE : TSTNet without temporal embedding.
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Table 1. Experiment results.

Model Chengdu dataset (15 min/30 min/60 min)

MAE ACC (%) RMSE

FC-LSTM 4.75/4.82/4.92 89.9/89.8/89.8 7.02/7.14/7.19

STGCN 4.57/4.61/4.85 90.2/90.1/89.9 6.73/6.75/7.05

DCRNN 4.38/4.40/4.45 90.6/90.6/90.5 6.59/6.51/6.56

Graph WaveNet 4.34/4.35/4.39 90.7/90.7/90.6 6.41/6.50/6.43

STTN 4.01/4.06/4.09 91.4/91.3/91.2 6.29/6.32/6.37

TSTNet 3.49/3.52/3.54 92.5/92.4/92.4 5.86/5.87/5.89

Xi’an Dataset (15min/30 min/60 min)

MAE ACC (%) RMSE

FC-LSTM 7.77/7.51/7.46 76.8/77.6/77.8 12.62/12.48/12.39

STGCN 6.80/7.06/7.23 79.8/78.9/78.3 11.92/11.84/11.99

DCRNN 6.73/7.00/7.21 79.9/79.1/78.4 10.85/11.95/12.03

Graph WaveNet 6.39/6.46/6.51 80.9/80.8/80.8 10.62/10.78/10.80

STTN 6.00/6.01/6.03 82.1/82.1/82.0 10.48/10.50/10.51

TSTNet 5.54/5.58/5.56 83.4/83.5/83.5 10.12/10.17/10.15

3. TSTNetTT : TSTNet without GAT. For the traffic features x of one node v
in input data sequence at time t. It feeds the Temporal Transformer Network
with x∗

TT = [x, x′′, x′′′], where x′′ is the TGCE of v, and x′′′ is the embedding
of t.

4. TSTNetST : TSTNet without temporal Seq2Seq transformer network. It uses
the spatial features obtained from GAT and traffic graph context embedding
to forecast the target sequence with a fully connected network directly.

The results of our ablation study are shown in Table 2. The performance
advantage of TSTNet over TSTNetNGCE and TSTNetNTE reflects the ben-
efits of graph context embedding and temporal embedding. Furthermore,
TSTNetNGCE has a minor performance advantage compared to TSTNetNTE ,
which indicates that a proper spatial dependency is relatively more important
than the temporal dependency of the spatial-temporal traffic forecasting model.
Furthermore, as the TSTNetST shows a more significant performance degrada-
tion compared to TSTNetTT , this indicates that there should be a higher priority
for temporal dependency modeling in the construction of spatial-temporal traffic
forecasting models.
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Table 2. Ablation study results.

Model Chengdu dataset (15min/30 min/60 min)

MAE ACC (%) RMSE

TSTNetNGCE 3.85/3.88/3.90 91.8/91.7/91.7 6.17/6.21/6.22

TSTNetNTE 3.59/3.61/3.62 92.3/92.3/92.2 5.90/5.92/5.93

TSTNetTT 4.62/4.65/4.71 90.1/90.1/90.0 6.73/6.80/6.90

TSTNetST 5.12/5.22/5.28 89.0/88.8/88.7 8.13/8.28/8.35

TSTNet 3.49/3.52/3.54 92.5/92.4/92.1 5.86/5.87/5.89

Xi’an dataset (15 min/30 min/60 min)

MAE ACC (%) RMSE

TSTNetNGCE 5.88/5.92/5.95 82.4/82.3/82.3 10.41/10.44/10.45

TSTNetNTE 5.70/5.72/5.73 83.0/82.9/82.9 10.22/10.28/10.20

TSTNetTT 7.15/7.32/7.40 78.6/78.1/77.9 11.99/12.15/12.26

TSTNetST 8.19/8.33/8.65 75.5/75.1/74.1 13.11/13.63/14.35

TSTNet 5.54/5.58/5.56 83.4/83.5/83.5 10.12/10.17/10.15

5 Conclusion

In this work, we propose TSTNet, a novel spatial-temporal traffic forecasting
model built on a Seq2Seq learning scheme. We use Graph Attention Net to build
the spatial dependency of traffic data, and Transformer to build the temporal
dependency. The experiment results show TSTNet’s superiority over two real-
world datasets comparing with the state-of-the-art traffic forecasting approaches.
Besides, to further understand TSTNet, we conduct an ablation study and test
the efforts of each modules in TSTNet.

In future work, we will expand on current existing work into two main aspects:
(1) Minimizing the model’s time complexity and space complexity. (2) Further
study the interpretability of TSTNet.
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Abstract. Video-based egocentric activity recognition involves spatio-
temporal and human-object interaction. With the great success of deep
learning technology in image recognition, human activity recognition in
videos has got increasing attention in multimedia understanding. Com-
prehensive visual understanding requires the detection and modeling of
individual visual features and the interactions between them. The cur-
rent popular human action recognition approaches based on the visual
features extracted from 2-D images, and therefore often lead to unre-
liable salient visual feature detection and inaccurate modeling of the
interaction context between individual features. In this paper, we show
that these problems can be addressed by combining data from images
and skeletons. First, we propose a pose-based two-stream network for
action recognition that effectively fuses information from both skeleton
and image at multiple levels of the video processing pipeline. In our net-
work, one stream models the temporal dynamics of the action-related
objects from video frames, and the other stream models the temporal
dynamics of the targeted 2D human pose sequences which are extracted
from raw video. Moreover, we demonstrate that a ConvNet trained on
RGB data is able to achieve good performance in spite of limited training
data. Our architecture is trained and evaluated on the standard video
actions benchmarks of UCF101-24 and JHMDB, where it is competitive
with the state of the art. Among them, we have got the best results
currently on the JHMDB, the mAP reached 90.6%.

Keywords: Action recognition · Multimodal fusion · Self-attention ·
Two-stream network

1 Introduction

Understanding human activities from video has always been one of the most
popular problem in computer vision. However, there are difficulties in accu-
rately detecting objects and events using 2D convolutional network. The latest
advent of wearable devices has led to a growing interest in understanding egocen-
tric actions. Compared with the current convolutional research on third-person
activities, egocentric activities usually involve more complex fine-grained human-
object interactions in spatial and temporal dimensions. The performance of a
c© Springer Nature Switzerland AG 2021
I. Farkaš et al. (Eds.): ICANN 2021, LNCS 12891, pp. 357–368, 2021.
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recognition method depends largely on whether the relevant fine-grained spatio-
temporal patterns can be extracted and utilized. However, due to many factors,
like frequent egocentric movements, capturing such information is a challenging
task.

Although great efforts have been made in action recognition in videos
[23,32], the existing action recognition methods are not suitable for dealing with
egocentric human-object interaction problems. Most of the recent researches
employ a two-branch deep learning architecture for the recognition of egocentric
activities [1,22]. However, the traditional optical-flow estimation approaches are
computationally expensive and storage demanding [18].

In this paper, we have conducted an extensive evaluation of the features of
objects and egocentric actions, and proposed an end-to-end trainable instance-
centered attention module that learns to highlight information regions using the
appearance of humans or objects instance. We investigate a different architecture
based on two separate recognition streams (RGB and skeleton), which are then
combined by late fusion. The RGB stream performs action recognition from
stacked video frames, while the skeleton stream is trained to recognize action
from skeleton-based motion information. Both streams are implemented as Con-
vNets. Our framework can effectively integrate skeleton motion information with
the conventional image at different levels of the processing pipeline including: 1)
individual feature extraction; 2) contextual information encoding; and 3) global
scene representation.

2 Related Work

Recently, many studies have considered human action recognition. According to
the complexity of human action, it can be divided into the following four types of
action semantics: primitive action, single-person action recognition, interaction
recognition and group action recognition. The earliest method of human behavior
recognition was mainly developed by Bobick [3], who proposed the motion energy
image (MEI) and motion history image (MHI) for representing actions. Klser
extended the histogram of gradients (HOG) feature of the image to the space-
time dimension, and proposed the 3DHOG feature to describe the human action
in the video [12].

The application of deep learning in computer vision has received consider-
able attention [9,19,20,29]. In the field of human action recognition, many deep
learning-based behavior representation methods have been proposed [16,21,26].
According to the structure of deep learning network, the main representation
works can be summarized as methods based on 3D convolutional networks,
methods based on two-stream convolutional networks, and those based on long
short-term memory (LSTM). Tran [26] proposed to use a 3D convolutional net-
work to learn spatiotemporal features on large-scale video datasets, and connect
multiple adjacent consecutive frames so that action information can be captured
effectively. However, 3D convolutional improves the recognition performance at
the expense of GPU memory. When the memory is constant, the depth of the
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feature map is limited. Tran [27] proposed decomposition techniques and hybrid
architectures, which combine 3D and 2D operations at different levels of the net-
work. Kozlov [13] proposed the method of sequence modeling, which can achieve
better results on many tasks while addressing the significant shortcomings of
RNNs such as sequential computing or gradient vanishing.

Human posture is used as a high-level clue for action recognition. Jhuang
[11] find that high-level pose features greatly outperform low-mid level features,
in particular, pose over time is critical. Farrajota combined the information of
human skeleton to assist motion recognition to process low-level motions [7].
Baradel [2] proposed a two-stream network to classify activity sequences by
extracting features from human poses and RGB frame. Song [14] proposed a
separate and temporal attention network for action recognition from pose.

Fig. 1. The proposed pose-based two-stream network. In RGB frame, we sample frames
at intervals in the original video as input. These frames first obtain actor-centered
visual features through a spatial attention mechanism. Then model the motion in the
frame sequence through a self-made decoder containing self-attention mechanism. In
pose stream, we first calculate PoTion for video clips [5], and then classify PoTion
features through a classification network. Finally, the model merges features of these
two streams by point-wise addition before the softmax layer, and then classifies the
video through a fully connected layer with softmax.

3 Method

3.1 Network Architecture

In this section, we will explain the proposed pose-based two-stream network in
details. Figure 1 shows the architecture of the multimode two-stream network, it
includes a RGB stream based on the spatial-temporal attention mechanism and
a pose stream based on skeletal motion information. Our method is based on
multi-modal data fusion, where pose information can be used to improve action
recognition.
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RGB Stream ConvNet. RGB stream ConvNet operates on video frames,
effectively performing action recognition from images. The static appearance by
itself is a useful clue, since some actions are strongly associated with particular
objects. In the Spatial Attention Encoder module, images pass through a multi-
branch network to model the spatial relationship of objects. Specifically, the
visual branch extracts visual features from people, objects and the surrounding
environment; the spatial attention branch is used to explore the spatial rela-
tionship between people and objects. This module is dedicated to learning the
spatial interaction mode between people and objects. Its main function is to
generate attention features and enhance visual features by enlarging pairs with
high spatial correlation. The model architecture is shown in Fig. 2.

Fig. 2. The detail of Spatial Attention Encoder module. It consists of two branches.
Visual branch extracts human, object features. Spatial Attention branch refines the
visual features by utilizing the spatial configuration of human-object pair. These oper-
ations are repeated for every human-object pair.

For a given human bounding box Xh and object bounding box Xo, two binary
maps are generated. For each of the two maps respectively, the pixel values are
set to zero except the positions defined by human and object box coordinates
Xh and Xo. It will generate a 2-channel binary spatial configuration map Bho.
Similar to [4,6], we use a Spatial Attention Module to analyze the spatial posi-
tion relationship of objects. It first analyze the binary spatial configuration map
through a 2-layer convolution. Then through the global average pooling opera-
tion and the fully connected layer to generate the spatial attention feature aho.
Since objects and humans are defined in different channels, the convolution on
the binary spatial configuration map Bho allows the model to learn the possi-
ble spatial relationships between humans and objects. The attention vector aho

encodes the spatial configuration and is set to the same size as the visual feature
vector, which allows us to multiply these two vectors to refine the visual features
through the spatial configuration.

Finally, we model video frames through a self-attention mechanism module.
This module is mainly used to integrate time information within frames. For
the acquire frame features of size d, frame embedding is performed, and then
the multi-head attention block and the convolution block are repeatedly applied
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to transform them. In multi-head attention block, the attention mechanism is
used to model the temporal relationship between frames by informing each frame
with the representation of other frames. It consists of several sequential opera-
tions. First, different affine transformations are used to map the vectors of frame
representations to multiple key, value, and query spaces. We compute the dot
products of the query with all keys, and divide each of them by dk. Finally the
Softmax function is applied to obtain the weights on the values, as shown in
Eq. 1. Similar to [13], we cascade the output of each head and pass it to the con-
volution block. Then, the obtained frame representation is refined by applying
the same process for multiple times (Fig. 3).

headi = softmax(
QKT

√
dk

)V (1)

Fig. 3. The architecture of multi-head attention module. Each head uses three trainable
transformations to independently transformer the frame embedding features into its
query, key and value triples, and apply the self-attention operations.

Pose Stream ConvNet. In this section, we describe how to use pose infor-
mation to improve the model’s action recognition ability. First, the movement
of semantic key points is encoded through skeleton-based pose representation
introduced by Choutas [5]. Human joints are used as these points to obtain
posture motion representation feature, termed is as Potion. The algorithm first
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obtains the human skeleton information through the human pose estimator, then
extracts the heatmap of the key points of the human body in the frame, and
obtains the feature representation of the motion by aggregating these probability
maps on the time series. The representation of features is achieved by “color-
ing” each frame according to the relative time of the frame in the video clip
and summing it. This focuses on the movement of the relevant key points of the
entire video segment, in which the modeling of the movement of the key points
is in contrast to the processing of optical flow. Finally, we classify the features
through a classification convolutional network as shown in the Fig. 4.

Fig. 4. The architecture of the classification network.

Finally, the motion features from RGB stream and the skeletal information
stream are fused before the final softmax layer in a post-fusion manner. Specifi-
cally, the model merges the features of the two streams by point-wise addition,
and then classifies the video through a fully connected layer with softmax.

Considering that both two-stream networks can be used to perform recogni-
tion task. We supervise our model with the following total loss:

Ltotal = Lpos + Lrgb + λθ||θ||2 (2)

where Lpos, Lrgb are two cross-entropy loss corresponding to pose position rep-
resentation and rgb appearance representation. ||θ||2 is the weight decay regu-
larization for all the model parameters, and λθ is the weight decaying coefficient
which is set to 0.00004 in the experiments.

Due to the similar form of two cross-entry losses, we take Lrgb as an example:

Lpos = −
M∑

m=1

C∑

c=1

ym,clogŷpos
m,c (3)

Where M is action videos and C is the number of classes of human actions, ym,c

is the groundtruth label while ŷpos
m,c is the prediction when using pose positions.
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4 Experiment

In this section, we first introduce the experimental datasets and implementation
details. Then, we compare the proposal two-stream network with several state-
of-the-art methods. Finally, we perform model analysis by evaluating the key
model components and analyzing the classification result on dataset.

4.1 Dataset

We evaluate our pose-based two-stream network on two benchmarks in action
recognition, i.e., JHMDB and UCF101-24. These two datasets are very challeng-
ing due to the richer variation in terms of appearance and dynamics. It should
be noted that the full body human joints are annotated for the video in JHMDB,
but not in UCF101-24.

JHMDB. The JHMDB dataset comes from the HMDB dataset, and is a sub-
set of the HMDB dataset with fewer categories, which excludes categories that
mainly include facial expressions (such as smiling faces), interaction with others
(such as shaking hands), and actions that can only be done in a specific way
(such as a cart). The result contains 21 categories, involving people in a single
event. The dataset has removed clips in which the actor is not obvious. For the
remaining clips, crop them in time such that the first and last frame roughly
correspond to the beginning and end of an actor. This selection-and-cleaning
process results in 36–55 clips per action class with each clip containing 15–40
frames. Finally, there are 31838 annotated frames in total.

Fig. 5. Pose estimation examples of UCF101-24 dataset on OpenPose.

UCF101-24. UCF101-24 is a subset of the UCF101 dataset, which consists of
3207 temporally untrimmed videos from 24 sports classes. There is no pose infor-
mation in UCF101-24 and our work not aim to propose a new pose estimation
method, we choose the approach presented in [4] to estimate the person poses of
action videos in UCF101-24, which is called PAF. It proposes a part affinity field
to associate body parts in a bottom-up way to achieve real-time performance
while maintaining high precision. The detection results in UCF101-24 are shown
in Fig. 5.
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4.2 Implementation Details

We perform our network on the two datasets with the same implement details.
The sampled video frame is cropped and resized to 224 × 224 for the ResNet
to extract spatial feature maps, and the potion of the corresponding video clip
is pre-calculated, which is introduced in [4]. During both training and testing
stages, we select 5 frames in every 1 s video clip for action analysis in RGB
stream. We implement our network by PyTorch.

Network Training. The layer configuration of our RGB and Pose ConvNets
is schematically shown in Fig. 1. The training process of the network can be
regarded as the modeling of video sequence frames. The network weights are
learnt using the Adam optimizer. For a better convergence, we vary the learning
rate in a similar way to the warmup strategy introduced in [28].

For RGB stream, in the training process, we split the video sequence into
1 s clips. For shorter videos, we loop the video as needed to meet the input
of the model. Considering that there are many similar frames in a continuous
video sequences, the video sequence is sampled once every 6 frames to get the
sampled video frame. In each iteration, 5 consecutive sampled frames and the
corresponding bounding box coordinates are selected from the above sampled
video frames as model input, and the intermediate frame is used as the key
frame. The bounding box coordinates of the input frame are all the coordinates
of the key frame bounding box, and the bounding box coordinates of the key
frame are obtained through the cascade-rcnn detection network.

In pose stream, for each second of the video clip, the pose key points of
each frames are obtained. Then calculate the PoTion and use it as the input
of the model. Among them, the relevant pose information is provided in the
JHMDB dataset and can be used directly. However, there is no pose information
in UCF101-24, which needs to be obtained through the OpenPose.

The model in the RGB stream uses ImageNet pretrained ResNet as base
network. The classification network in the pose stream is trained from scratch.
For all architectures we follow each convolutional layer by a batch normalization
layer and a ReLU activation function, except for the last convolutional layers
which produce the class scores for each network.

4.3 Experiment Result

To evaluate the performance of the proposed two-stream network, we compare
our results with the recent state-of-the-art approaches in action recognition on
JHMDB and UCF101-24. Our method recognizes the action category by model-
ing multiple frames in the video clip, so we utilize video-mAP to evaluate detection
accuracy. Our model completes action recognition by analyzing 1 s video clips. In
JHMDB, the video clips are shorter, and we can almost completely model and
predict each video clip. In UCF101-24, for each clip, we set 0.5 as the thresh-
old for identification, and compare the experimental results with IOU of 0.5.
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Table 1. The result on JHMDB

Method Optical flow Pre-trained Backbone Video-mAP (%)

Two-stream RCNN] [17]
√

VGG 58.5

T-CNN [10] C3D 61.3

ACT [10]
√

VGG 65.7

AVA baseline [8]
√

Kinetics-400 I3D 73.3

ACRN [24]
√

Kinetics-400 S3D 80.1

Context-Aware RCNN [30] Kinetics-400 R50-NL 79.2

Dance with flow [31]
√

ImageNet SSD 74.74

MOC [15] ImageNet DLA34 80.5

Ours ImageNet resNet34 90.6

Table 2. The result on UCF101-24

Method Optical flow Pre-trained Backbone Video-mAP (%)

MOC [15] ImageNet DLA34 53.8

AVA baseline [8]
√

Kinetics-400 I3D 59.9

Dance with flow [31]
√

ImageNet SSD 50.3

AIA [25] Kinetics-400 ResNet50-C2D 75.5

Action detection [1] Kinetics-400 I3D 77.9

Ours ImageNet ResNet34 74.9

The experimental results on dataset JHMDB is shown in Table 1, and the exper-
imental results on dataset UCF101-24 is shown in Table 2. Our results outper-
formed many methods on both the JHMDB dataset and the UCF101-24 dataset,
which indicates the importance of the attention mechanism and demonstrates the
effectiveness of the pose information. Generally, the performance of the 3D CNN-
based methods were higher than those of the 2D CNN-based methods for action
recognition. We can see that our two-stream network based on 2D backbone but
achieves the comparable results with other approaches. It should be noted that
in our method, we simply insert our attention mechanism module into 2D CNN
without too much additional computation, the FLOPS of our model is 4.5 × 109

and the recognition performance could be significantly improved.
Our model can distinguish spatio-temporal feature representations, highlight

spatial regions related to action categories, and focus on frames related to action
categories through a temporal attention mechanism. Besides, it also outper-
formed the latest two-stream networks on both datasets, such as Dance with
flow [31], AVA baseline [8]. They perform action recognition based on optical
flow, which is more expensive to obtain than pose information. We observed
that the method appears to work better for JHMDB than UCF101-24. The
reason is because the JHMDB provides more detailed pose information. In the
JHMDB dataset, there will be fewer frames that are not related to a certain
action in the video, and there will be less background noise.
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In order to further verify the performance, we verified the improvement of
the pose information to the model. As shown in Fig. 6, the recognition result
of the two-stream network based on skeletal information is significantly better
than the model based on RGB appearance feature alone, such as “sit”, “stand”,
“throw”. Compared with the original model, the performance has been signifi-
cantly improved. This means that our model can effectively focus on the spatial
region related to the action category in the frame, and capture the key frame
containing information that is relevant to the action class. Figure 6 compares
the improvement of the original model after fusing the pose information, and
compares it with the groundtruth in the test set. For most of the action cate-
gories, our model can perform correct recognition, especially for “run”, “stand”
and other categories that are difficult to distinguish based on RGB appearance
features. These actions can be accurately recognized after adding pose informa-
tion, which indicates that our model can exploit the discriminative information
at frame level and improve the recognition performance of the network through
more powerful spatiotemporal feature learning.

Fig. 6. Results of the classification in each category. The red column is the result
on the single-modal. The green column is the result on our pose-based two-stream
network. The blue column is the groundtruth on the dataset. The left shows the result
on JHMDB, and the right is the result on UCF101-24. (Color figure online)

Furthermore, we discussed the impact of the number of model input frames
and the amount of sampling frame intervals. We compared the sampling frame
interval of 2, 4, 6, 8 and 10 and get the best result when the interval is 4,
the mAP achieved 91.8%. Moreover, we compared the experimental results of
modeling frames 3,5 and 7 when the interval sampling is set to 4. The best result
is obtained when the number of frames is 5.

5 Conclusion

In this paper, we propose a new problem, using cues from the content of image,
and then combined with human-object interaction feature to help recognize
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human action in the video. Moreover, wo propose to improve the action recogni-
tion ability of the model through a method based on multi-modal fusion. Com-
pared with other methods, our method achieves the best performance on two
challenging datasets.

While plenty of work studies human action recognition, predicting interac-
tive objects in an action-independent manner is both challenging and practical
for various applications, the proposed method shows promising results to tackle
this challenge. We demonstrate its advantages over multiple informative base-
lines. Our action recognition method provides a framework to detect a large
number of human actions in a visual scene by using global and local visual cues.
The proposed method can recognize actions in indoor environment with stable
backgrounds. In future work, we will explore more methods to get better results.
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29. Véges, M., Lőrincz, A.: Multi-person absolute 3D human pose estimation with
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Abstract. Keyword spotting (KWS) is becoming a ubiquitous need
with the advancement in artificial intelligence and smart devices. Recent
work in this field have focused on several different architectures to achieve
good results on datasets with low to moderate noise. However, the perfor-
mance of these models deteriorates under high noise conditions as shown
by our experiments. In our paper, we present an extensive comparison
between state-of-the-art KWS networks under various noisy conditions.
We also suggest adaptive batch normalization as a technique to improve
the performance of the networks when the noise files are unknown during
the training phase. The results of such high noise characterization enable
future work in developing models that perform better in the aforemen-
tioned conditions.

Keywords: Keyword spotting · High noise conditions · Adaptive batch
normalization · Sinc convolution network · Temporal convolution ResNet

1 Introduction

Automatic speech recognition is one of the fastest developing fields in artificial
intelligence and machine learning. With the advent of smart assistants (e.g.
Google assistant, Siri, Cortana) in most of the latest devices, the ability of
speech recognition software to recognize certain wake words (e.g. “Ok Google”,
“Hey Siri”) from continuous speech filled with varying levels of background noise
becomes paramount in enhancing the user experience.

The networks used for KWS have evolved significantly from the initial Gaus-
sian Mixture Model-Universal Background Models (GMM-UBMs) and Hidden
Markov Models (HMMs) to Deep Neural Networks (DNNs) to the current use
of different variations of Convolutional Neural Networks (CNNs) [1,3,7,15]. Due
to their inherent properties, CNNs can discover robust and invariant representa-
tions of the input waveforms provided to them, and have obtained state-of-the-art
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performance on several speech recognition tasks carried out under moderate
noise conditions.

KWS networks have undergone several transformations in their architectures
and currently CNNs provide the best performance under moderate noise condi-
tions. Despite their impressive performance, as demonstrated in Fig. 1, the test
accuracy falls at a steep rate once the signal-to-noise ratio (SNR) in the dataset
crosses a certain threshold. Considering day-to-day situations like heavy traffic,
construction sites etc., the places where there is very high background noise,
the current architectures won’t give the same performance as they will give in
a lower noise environment. This calls for an architecture which can perform the
task of KWS under such noisy conditions with a competitive accuracy.

Fig. 1. Performance of networks under varying noise (trained on clean dataset). Clas-
sification accuracy of all networks decreases significantly as the level of noise increases
beyond a certain threshold.

For our experiments, we use three models for comparison. The first one is the
TC-ResNet8 (TC: temporal convolutions) which uses pre-processed MFCC fea-
tures as inputs for classification. The second one is the SincConv Network (SCN)
which classifies on raw audio data and finally the last model is our variation of
the SCN but with optimal parameter tuning to reduce the memory footprint and
total computation cost without reducing the classification accuracy. We subject
the models to different noise conditions to obtain a detailed characterization of
the models’ performances.

The remainder of the paper is organized as follows. Section 2 gives a brief
description of other relevant work going on in this field. Section 3 discusses the
basic features of all the architectures used during evaluation. Section 4 outlines
the experimental setup and the results respectively. Here we also propose the
use of batch normalization (BatchNorm) as a method to adapt the network to
unknown noise conditions. Finally, Sect. 5 discusses our conclusions and scope
for future work.
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2 Related Works

Significant research has been done in the field of KWS in recent times, with
a focus on developing compact and accurate models that can be implemented
in hardware without consuming too much power. Zhang et al. [18] provides a
comparison of performance and hardware requirement (memory and operation
count) of Deep Neural Network (DNN), CNN, Long short-term memory (LSTM),
and depthwise separable (DS) CNN models on MFCC feature data as input,
where the DS-CNN provides the best result. Choi et al. [4] proposed the TC-
ResNet which provides state-of-the-art 96.6% accuracy on MFCC input data,
as well as a speedup of 385× compared to previous architectures on the Google
Speech Commands Dataset [17]. Since pre-processed data like MFCC features
won’t be always available, few CNN architectures have been developed to work
on raw audio data as input. One of the notable ones is the SCN architecture pro-
posed by Mittermaier et al. [11], which uses SincNet [14] and DS convolutions [5]
to achieve comparable accuracy to the state-of-the-art TC-ResNet models.

There is very little documentation about the performance of popular KWS
networks under high noise, or in situations where the noise present during the
inference stage is much different from that during training. Liu et al. [10] have
provided a brief noise characterization of the performance of their binary weight
network using different types of noise like white, pink and miscellaneous noise
in daily-life activities. Huang et al. [9], Raju et al. [13] and Pervaiz et al. [12]
have provided detailed studies on the performance of their systems for the task
of KWS under noise, but the datasets and the metrics used in these works are
all different and cannot be used to draw a comparison with current state-of-the-
art models. To the best of our knowledge, we are the first to provide a detailed
characterization of popular KWS networks on a standard dataset under varying
high noise conditions and provide a simple and efficient solution to improve the
accuracy by quite a significant margin in the aforementioned conditions.

3 Model Architectures

In this paper we consider three representative neural networks. Table 1 sum-
marizes the multiply accumulate operations (MACs) and total weights in the
considered models and Fig. 2 shows the respective architectures.

Table 1. Summary of models

Model MACs Parameters

TC-ResNet8 1.5M 66k

SCN 18M 60k

Modified SCN 7.5M 34.5k
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Fig. 2. Architectures of the models. The hyperparameters c, k and s represent the
number of output channels, kernel size and stride respectively for all the models. Archi-
tectures of TC-ResNet8 and SCN adopted from [4] and [11] respectively.

3.1 TC-ResNet8 Architecture

TC-ResNet8 (Fig. 2) [4] is a CNN architecture which utilizes temporal convolu-
tions, 1-D convolutions along the temporal dimension, for KWS and classifies
on the MFCC data (pre-processed from raw audio signals) as input. This model
adopts ResNet [6], one of the most popular CNN architectures, but uses m × 1
kernels (m = 3 for the first layer and m = 9 for the other layers) in its layers.
By switching to temporal convolutions instead of 2D convolutions, there is a
decrease in the output feature map of each layer which leads to a huge reduction
in the computational burden and memory footprint of the subsequent layers.

TC-ResNet8 model has shown good performance for KWS with only 66k
parameters. There is no bias in the convolution and fully connected layers. Each
batch normalization layer has trainable parameters for scaling and shifting. The
TC-ResNet8 model has 3 residual blocks and {16, 24, 36, 48} channels for each
layer including the first convolution layer.

3.2 SCN Architecture

SCN network (Fig. 2) [11] uses rectangular band-pass filters (in the frequency
domains) in the first convolutional layer to classify on the input raw audio wave-
form. This is equivalent to convolving the input signal with parametrized sinc
functions (sinc(x) = sin(x)

x ) in the time domain. The filters can be represented as:

H[f, f1, f2] = rect(
f

f2
) − rect(

f

f1
) (1)

h[n, f1, f2] = 2f2sinc(2πf2n) − 2f1sinc(2πf1n) (2)
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From (1), the frequency domain expression of the filters, we can see that
a single filter extracts only the information lying between the two frequency
levels, f1 and f2. This extracted data acts as a feature set for the consequent
CNN layers. Since only two parameters, the upper and lower cut-off frequencies,
are required to define any sinc filter, this leads to a smaller memory footprint.
As suggested in [11], a log-compression activation (y = log(abs(x) + 1)) is used
after the sinc convolutions.

In the subsequent layers we have five grouped DS convolutional blocks. DS
convolutions [5] are a great alternative to standard convolutions as they reduce
the computation power by a significant value without reducing the effectiveness
much. Grouping [8] is introduced to reduce the number of parameters introduced
by the pointwise convolutions after each depthwise convolution. Each convolu-
tion block is followed by layers for batch normalization, spatial dropout for reg-
ularization and an average pooling block. After these 5 blocks we have a global
average pooling block followed by a softmax layer to obtain the class posteriors
to classify into 12 classes.

3.3 Modified SCN Architecture

As can be seen from Table 1, though there is a decrease in the parameter count
when we go from the TC-ResNet8 to the SCN model as well as the added ben-
efit of not spending resources on pre-processing to obtain the MFCC data, the
number of MACs inside the latter model is almost 12 times more than the for-
mer model (excluding the MACs in pre-processing of raw audio in TC-ResNet8).
This huge level of disparity in the computation costs of the two models certainly
raises questions over the viability of the SCN network over the TC-ResNet8
while considering a hardware implementation.

Following several experiments, study of the properties of the SCN model and
extensive fine-tuning of the hyperparameters, we present the modified SCN model
(Fig. 2) which gives comparable accuracy to the original model but reduces the
computation cost and memory footprint by almost a factor of two. The subtle
changes can be seen in Fig. 2 and Table 1. We change the grouping in CNN layers
from alternate (2, 3) grouping to alternate (4, 8) grouping. This impacts primarily
the total number of parameters used in the model as can be seen in Table 1. Almost
50% of the computations are carried out in the very first sinc convolution layer.
To tackle this issue we double the stride in the sinc convolution layers which leads
to decrease in the MACs in the subsequent layers as well.

The primary motivation of the modified SCN architecture is to obtain the
best possible optimized version of the SCN architecture without sacrificing any
of the advantage the SCN network has over the TC-ResNet8 architecture. The
difference in performance due to the architecture changes in Fig. 2 won’t be
noticeable when running the networks on a modern GPU, but on moving the
networks to smaller embedded systems for a more practical setup, there will be a
significant change in the latency and power consumption due to the discrepancy
in the number of MACs and parameters compared to the SCN network. Based
on the optimizations that we have incorporated into the SCN architecture, the
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modified SCN is able to compete with both the SCN and TC-ResNet8 networks
in terms of accuracy and efficiency respectively.

3.4 Batch Normalization Method

In standard neural networks problems, the statistics of batches during training
are learned in the BatchNorm layers and used without changing during the test
and validation phases. This works well in most cases because the test statistics
resemble closely to the training statistics. But when the test statistics vary signif-
icantly from the training statistics due to environmental noise, this assumption
fails and the model won’t perform well. In this case, a better training dataset
should be found, but that is not always possible. To tackle this fall in perfor-
mance and not having to resort to finding a new training set, we adapt a simple
modification from Schneider et al. [16] - we do not switch off the BatchNorm lay-
ers during the validation and test phases when the noise during test is unknown.
This way the network will learn and use the batch norm statistics during infer-
ence rather than the training statistics which might vary significantly from the
inference statistics, and provide us with better results as seen in Fig. 5 without
a significant computation overhead.

4 Experimental Evaluation

The networks mentioned in Sect. 3 have been trained and evaluated on the
Google’s Speech Commands dataset [17]. The dataset consists of 105,829 one-
second (or less) long utterances of 35 different keywords spoken by 2,618 different
speakers. We choose the following 10 keywords: “yes”, “no”, “up”,“down”, “left”,
“right”, “on”, “off”, “stop”, “go”, along with classes for unknown and silence.
The remaining 25 words are labeled as unknown. The utterances are then ran-
domly divided into training, validation and test sets in the ratio of 80:10:10
respectively.

For noise injection, one-second chunks are chosen randomly from three types
of noise present: white, pink and miscellaneous (consisting of samples from real
life activities like traffic noises, conversation, flowing water etc.). For the training
phase, these chunks are sampled randomly between the SNR range of [−5 dB,
+10 dB] and added to the clean dataset. For the validation and test phase, the
SNR value is kept fixed at one of the following values: −5 dB, 0 dB, +5 dB,
+10 dB. To ensure that the final signal after mixing the noise with the dataset
does not get clipped at any instant, we introduce a small gain block to scale the
signals so that the SNR remains constant and no clipping takes place.

For the first experiment, all the noise files are available for the training,
validation and test phases. For the second experiment, white and pink noise is
injected into the training dataset and miscellaneous noise is added to validation
and test dataset. Our model is trained for 150 epochs with the Stochastic Gra-
dient Descent (SGD) optimizer with an initial learning rate of 0.1 and learning
rate decay of 0.75 after 10 epochs. The model with highest validation accuracy
after 150 epochs is saved to evaluate the accuracy on the test set.
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4.1 Network Performance When Noise Conditions Are Known

In this case, the noise files in miscellaneous category are available during training,
validation and test phase i.e. we can train the model to learn the nature of the
noise distribution used and give close to state-of-the-art performance. Random
chunks from the noise files are added to the keyword signals at a SNR value
chosen randomly between [−5 dB, +10 dB]. The classification accuracies of the
different networks are plotted against the noise spectrum in Fig. 3.

Fig. 3. Performance of networks under known test noise conditions. The network accu-
racy steadily decreases as the amount of noise in the samples is increased.

As observed from the results of Fig. 3, even the state-of-the-art KWS net-
works are susceptible to high noise, evident from the ∼10% fall in accuracy as
test noise level increases to −5 dB.

4.2 Network Performance When Noise Conditions Are Unknown

In this case, the miscellaneous noise files are only available in the validation
and test phases i.e. while training the noise distribution used in the inference
stage is unknown. Hence to train the models under noisy conditions, we inject
the training dataset with a random mixture of white and pink noise sampled
randomly between [−5 dB, +10 dB].

The contrast in the performance of the networks for the two different con-
ditions can be seen in Fig. 4. Though the networks perform satisfactorily under
moderate noise (∼10 dB range), the performance deteriorates catastrophically
under severe noise conditions. To mitigate this, we enable the networks to learn
the batch normalized statistics of the validation and test datasets during the
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Fig. 4. Comparison of performance when noise conditions are known (solid) and
unknown (dotted). At 10 dB there is a small discrepancy between the performance
in the two conditions, but at −5 dB there is almost a 40% difference between the
network performance in the two different conditions.

corresponding phases rather than depend on the parameters learned during the
training phase. The change in the performances of the networks after implement-
ing this is encapsulated in Fig. 5.

Fig. 5. Comparison of accuracy before and after implementing BatchNorm technique.
The BatchNorm method is able to significantly boost the performance of all the models
under high unknown test noise conditions.
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In Fig. 5, though the performance remains almost similar in moderate noise,
there is a steady improvement in the final accuracy as we move towards the
higher end of the noise spectrum. The SCN models record an improvement of
∼10% and the TC-ResNet model shows a massive rise in accuracy of ∼20% at
−5 dB test SNR.

5 Conclusions and Future Work

We provide an extensive characterization of the performance of popular KWS
networks under heavy noise, and our results show how the existing architectures
fail to deliver satisfactory results under non-ideal conditions. We also observe
that if the noise in the test phase is not known, training the network by injecting
white/pink noise in the training phase performs satisfactorily under moderate
noise but fails catastrophically under severe noise conditions. To create networks
that perform better under such situations, new models may need to be created.

One solution might be to increase the number of weights and/or layers in the
networks and train them on much larger and varied datasets, which also contain
an appreciable amount of noise injection. But then this will be contrary to our
motive of building networks with small memory footprints. And even though we
train the networks using noisy signals, the performance is still sub-par at best.
Hence, to create networks that perform better under such situations, new models
and algorithms may need to be created. Our BatchNorm algorithm takes one
step in that direction by achieving significant enhancement in classification at
noisy conditions.

Further improvements to the BatchNorm technique and hardware support
for UltraTrail [2] of the aforementioned techniques and networks is left as future
work.
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Abstract. Stroke recognition in table tennis is a challenging task, due to
the variety of the movements. Many different sensors have been adopted
in robotic table tennis, with the goal of detecting the players’ movements.
In this paper, we propose a two-stage approach to directly recognize the
table tennis racket’s movement. A bounding box around the racket can
be extracted from an RGB image in the first stage. An efficient and
lightweight CNN architecture is then developed to regress the racket 3D
position by fusion of the cropped image and the 3D rotation data from an
IMU in the second stage. Together with the rotation data, a robust 6D
racket pose is available at a frame rate 100 Hz. In the experiments, two
datasets are collected from our KUKA table tennis robot for evaluation
and comparisons, which show a position error of 4.7 cm at a range of
6 m. One behavior cloning experiment is performed in order to reveal
the potential of this work.

Keywords: Racket pose estimation · Sensor fusion · Table tennis
robot

1 Introduction

Human activity detection has spawned a large amount of research in many appli-
cations, such as gesture recognition, video surveillance, health care and sports
performance analysis. Typically, it includes two steps: feature extraction and
action classification. In recent years, a variety of sensors have been applied to
obtain the human pose, thereby resulting in different kinds of techniques.

Vision-based methods extract the 2D human joints [6], hand keypoints [18]
or 3D human pose [16] as features from RGB cameras. To get more accurate
information, the depth maps from RGB-D sensors are included to derive the full
3D human pose [29]. Motion sensor based methods adopt low-cost accelerom-
eters, gyroscopes, and sometimes magnetometers to detect the human’s linear
acceleration and angular velocity [28] as features. With the fusion of multiple
inertial measurement units (IMUs) and a single camera, one can recover accurate
3D human pose in the wild [14].

Supported by the Vector Stiftung and KUKA.

c© Springer Nature Switzerland AG 2021
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Fig. 1. Playing with our KUKA table tennis robot. A wearable IMU is mounted at
the bottom of the player’s racket handle. The quaternion value qIMU streamed from it,
is defined as the racket orientation in the IMU frame. One of the stationary cameras
fixed on the ceiling is used to capture the human player movements from above (Fig. 2
left). By fusing the images with IMU signals, we can take them as inputs and regress
the 3D racket position robustly with the proposed approach. The camera and the IMU
are synchronized with a software trigger.

To understand the performance of the players and provide them with a guide
to tactics and skills, some systems with different sensors have been designed for
sports. An AI Coach system for athletic training [23] is built with a single camera.
They design a binary player detector to extract a single player as bounding box
in the first frame. To accelerate the detection step, a tracking model based on
the detected bounding box is used from the second frame to the last frame. After
knowing each player’s tubelet, the player 2D pose can be regressed by a pose
estimation model. In order to estimate and track player’s 3D pose, Bridgeman et
al. [5] calculate the correspondences between 2D poses in different camera views.
The 2D pose associations can be used to generate the player 3D skeletons.

In robotic table tennis we face many challenges, especially due to the move-
ment of the human opponent, also including some deceptive actions. Each move-
ment creates different types of spin and speed. Therefore, instead of recognizing
the human 2D or 3D pose, the main focus in this paper is the table tennis racket
pose estimation. This gives our table tennis robot (shown in Fig. 1) the ability
to recognize the human stroke pose and consequently mimic the human motion
with imitation learning. To achieve this we use a single camera fused with an
IMU and develop a novel approach for robustly recognizing human strokes. The
main contributions of this paper are as follows:

– We propose a novel two-stage position estimation network for table tennis
rackets via vision and IMU. Together with the 3D rotation data retrieved
from the IMU, a robust 6D racket pose is available at a frame rate 100 Hz
without any special markers.
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– The training dataset is created based on simulated views of a racket CAD
model. The evaluation dataset is collected from our KUKA robot, which can
be annotated automatically with the pre-calibrated transformation matrix
between the robot and the camera. Therefore, manually labeling is not needed
in our work.

– The experiment shows that our approach achieves the best performance with
a position error of 4.7 cm at a range of 6 m. To reveal the goal of this work,
we perform an experiment to operate the robot in a human-like way, which
is a clone of the human movements.

2 Related Work

Image-based 6D object pose estimation is one of the trendiest topics in computer
vision. Recent state-of-the-art methods have shown huge success in detecting the
6D pose of objects in close range to the camera. PoseCNN [26] directly estimates
the 6D object pose with an end-to-end network from a single image. Sundermeyer
et al. [20] present an implicit method for 3D orientation estimation based on
Augmented Autoencoders (AAEs), which is trained on synthetic images. The
3D translation is then computed according to the pinhole camera model. A
pixel-wise voting network (PVNet) [17] localizes 2D keypoints on the object
using RANSAC and aligns them with 3D keypoints to obtain the 6D pose. The
Coordinates-based Disentangled Pose Network (CDPN) [11] uses a Dynamic
Zoom In (DZI) technique to compensate the 2D object detection error, which
achieves accurate and robust results. However, if the object is too small in the
camera or, like the racket, has a texture-less surface and very thin paddle, it is
prone to failure using these methods, because of insufficient features.

By labeling special markers on the racket, Zhang et al. [27] could use color
thresholding to extract them from two cameras, and the initial racket pose is
then computed by the perspective-n-point (PnP) method. To generate a robust
pose, they employed an IMU sensor and fused all of the data by means of an
extended Kalman filter (EKF), which lead to a 1.1◦ rotation error. They don’t
test the position error since there is no dataset available. Gao et al. [8] employ
a markerless method by segmenting the racket red side contours from stereo
cameras. A stereo matching method is used to align the points on the contours.
The final position error is 7.8 mm and the rotation error is 7.2◦. Omron [10] puts
9 small and round markers on each racket side for their Forpheus robot, which
can accurately predict the moving direction of the racket based on a high-speed
camera. However, these methods are neither convenient nor robust, since they
are sensitive to the color and brightness and need to be manually adjusted to
find the better color thresholding values.

Inspired by the aforementioned methods, we decompose the 6D pose into
position and rotation components. A wireless IMU mounted at the bottom of the
racket handle is continuously streaming rotation data. By deeply fusing the IMU
information and the camera images, a novel CNN-based method is proposed.
The output is the racket 3D position and it is trained fully based on a synthetic
dataset.
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3 Methodology

3.1 Overview

IMUs are widely used in wearable devices to measure human activity in real-time
and with high accuracy. In this paper, we mount a MetaMotionR (MMR) IMU
[15] at the bottom of the racket handle, as shown in Fig. 2. With Bosch sensor
fusion technology [4], the MMR sensor can provide robust linear acceleration and
quaternion values via Bluetooth 4.0 at 100 Hz. Kristen Beange [3] has assessed
the MMR sensors, which have a robust performance at 1◦ error in all axes
when considering the absolute angle orientation. They compare the IMU with
an optical motion capture equipment (Vicon Motion Systems) during controlled,
repetitive sinusoidal motion at frequencies of 20 cpm and 40 cpm (i.e., 0.33 Hz
and 0.67 Hz, respectively). Therefore, we mainly focus on the 3D racket position
estimation by fusing the IMU and camera in this part.

To estimate the racket position of the human player, we propose a novel app-
roach, as shown in Fig. 2. Compared to the single-stage object pose estimation,
two-stage methods usually comprise one step for object detection and another
for pose regression, which leads to a very fast inference time and is well suited
for the real-time operation in sports. The first stage can be easily replaced with
any state-of-art method along the development of the 2D object detection in the
future.

Fig. 2. CNN architecture for the racket position estimation during testing in our sce-
nario. The rotation qIMU is read from a wireless IMU as a 4D quaternion in the IMU
frame. It is transformed to the camera frame as qcam. The images with 640×512 pixels
are first fed into a pre-trained 2D object detector in order to find the racket bound-
ing box objbox and its position [xc, yc, h, w] in pixels. A new region of interest bbROI ,
[x′

min, y
′
min, h

′, w′], is computed to compensate the 2D object detection error by Eq.
(2). Then quaternions and bbROI together with the image crops are fed into different
network layers in order to extract the global and local features, respectively. The last
fully-connected layers output the racket depth Z and the 2D projection point [u, v] of
the racket 3D centroid. Finally, X and Y positions can be reconstructed with Eq. (1).
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The outputs of our architecture are the depth component Z and the local 2D
projection point [u, v] of the racket 3D centroid. Then we can indirectly derive
the entire 3D position [X,Y,Z] with the equation below:

X =
(x′

min + u − cx) Z

fx
, Y =

(y′
min + v − cx) Z

fy
(1)

where x′
min, y′

min are the left upper corner in bbROI . fx, fy are the focal lengths
in pixels, [cx, cy] is a principal point. Here [u, v] is different from [xc, yc] which is
provided from the object detector, since the later one is not the exact centroid
but the center of the detected bounding box. This will affect the [X,Y ] a lot
when having a large depth Z (from 2.6 m to 5.3 m in our case). Therefore, the
position regression problem is decomposed into the following two sub-tasks.

3.2 Racket Centroid Extraction

In order to detect the racket in images, we employ a self-pretrained YOLOv4
[2] model, which is a very fast and accurate one-stage object detector. It can
generate a 4-D vector objbox localizing the racket as a 2D bounding box. The
objbox is composed of the rectangle center xc, yc, height h and width w in image
coordinates. To tolerate detection errors and make the subsequent estimation
more robust and accurate, we dynamically adjust the objbox to a new region of
interest bbROI = [x′

min, y′
min, h′, w′] during training. The bbROI is computed by

the following equations:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

s = max(h,w)
N = randint(−αs, αs)

(h′, w′) = (βs + s, h′)
(x′

c, y
′
c) = (xc, yc) + N

(x′
min, y′

min) = (x′
c, y

′
c) − 0.5(h′, w′)

(2)

where s is the maximum value in h and w. α and β are coefficients to control the
center noise N and corner offsets, which are equal to 0.2 and 1.5, respectively. N
is a 2D vector of integers, randomly chosen from −αs to αs during training and
evaluation, while is set to zero during testing. The resulting objbox has a square
size and keeps the same aspect ratio as before.

Finally, it is scaled to the size of 64× 64 as the input for the ResNet (see
Fig. 2). This Dynamic Resize technique is based on the Dynamic Zoom In (DZI)
in [11]. In contrast to the DZI that enlarges the crops, here we simply shrink
them, since the texture-less surfaces on the racket contain many similar features
and it has little influence to the centroid regression. An example with a synthetic
image for training is shown in Fig. 3. Then a ResNet18 [9] is deployed to extract
the deep features, followed by two dense layers with 512 and 2 units, respectively
as shown at the bottom of Fig. 2.
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Fig. 3. An example for Dynamic Resize during training. Left: The detected bounding
box (red) from YOLOv4 and the dynamically computed ROI candidates (cyan). The
bounding box center [xc, yc] and the racket centroid [u, v] are marked as blue and green
circle, respectively Middle: the randomly selected bbROI for training. Right: the final
resized crop. (Color figure online)

3.3 Depth Regression

Next, we propose a novel deep fusion approach for the depth Z regression. Intu-
itively, if we know the bounding box positions in images, the racket 3D position
could be estimated by the given camera intrinsics [fx, fy, cx, cy]. However, these
positions will change with different orientations and especially if there are occlu-
sions or truncations. To avoid these problems, [25] runs a RetinaNet [12] on
the input images and concatenates the generated RoIAlign features and bound-
ing box information as joint features, which are used for translation regression.
RoIAlign features are only for predicting rotation. It is a one-stage vehicle pose
method, and not sufficiently fast and accurate for sports.

Fig. 4. ResNet-FPN (Feature Pyramid Network).

Inspired from it, we consider the combination of the rotation value qcam and
bbROI as the global features, which are fed into a 4-layer MLP network with 256,
1024, 1024, 128 units separately. The local features indicating the racket local
pixel position, size and occlusions, are concatenated with the global network
(via

⊕
in Fig. 2). A Resnet-FPN network (in Fig. 4) is used for extracting local

features, since it includes multi-scale features and can recover the scale ratio
information when resizing the ROI crops to 64 × 64. Finally, the depth Z is
retrieved as output of a 128-D dense layer.
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To train the whole networks, we design a joint position loss function Lpos to
optimize the centroid detection and depth regression as follows:

Lpos = γ1 · |Z − Ẑ| + γ2 ·
∥
∥
∥Cpos − Ĉpos

∥
∥
∥
1

(3)

where Z and Ẑ are representing the estimated and ground-truth depth. Cpos

and Ĉpos are the estimated and true centroid pixel positions. γ1 and γ2 are used
to balance the different errors.

4 Experiments

4.1 Dataset

To train the proposed model, we create a synthetic dataset which can be labeled
automatically. A racket CAD model is first reconstructed from a real racket
with the free, open-source reconstruction software Meshroom [24], based on the
structure from motion (SfM) technique. This results in a reconstructed 3D mesh
in Fig. 5 left. Then post-processing is used to remove the background, fill the
holes, smooth the surface, blend vertex color, scale the model size, and change
the coordinates in Meshlab [7]. The final high-quality 3D model is shown in
Fig. 5 right.

Fig. 5. Left: Reconstructed mesh with background from multiple views using Mesh-
room software. Right: the final CAD model with its coordinates.

By using domain randomization (DR) [22], we can generate a set of synthetic
images as well as their 6D pose. The racket CAD model is placed in a simulated
scene at random positions and rotations. Then, each one is projected into the
image plane as the foreground, with a known bounding box. The images from
the Pascal VOC dataset are embedded as the background. Each synthetic image
is rendered with a random light source position and diffuse reflection. Other
techniques, like Gaussian noise, motion blur, ping pong ball and occlusions, are
included to reduce the “reality gap”. A few examples are presented in Fig. 6(a).
Meanwhile, the annotations, including the bounding box positions, racket cen-
troids in pixels and the racket 6D pose, are collected from the simulated 3D scene
as the ground truth tags, which are then used to train the object detector and
the position regression model, respectively. 50,000 training patterns are collected
finally. The resulting range of the depth Z is [2.6m, 5.3m].
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For evaluation dataset collection, a usual way that we tried was mounting
multiple reflection markers on the racket and then capturing the human player
motions with an OptiTrack systems. However, the markers must be placed at
the surface in a critical requirement, which would result in many occlusions in
images. Therefore, one convenient method is to make use of our KUKA robot
that has a racket at the end-effector. This racket differs slightly from the rendered
CAD model such that this can also test the robustness against multiple rackets.
Another stationary camera opposite to the robot is used to take the images.
By moving the robot to given positions and rotations, we collect an evaluation
dataset of 208 images (Fig. 6(b)). To obtain the correct pose with respect to the
camera coordinate frame, we first calculated the transformation matrix between
the robot and the camera by the hand-eye calibration method [21]. The resulting
range of the depth Z is from 2.8 m to 5.2 m. To simulate a fast moving racket,
we manually apply motion blur (Fig. 6(c)) with a 7 × 7 kernel on each image for
the following comparisons. Due to the high frame rates and fast shutter speed
of the cameras, motion blur is actually imperceptible in our case.

Fig. 6. Cropped examples for training and evaluation of the racket position estimation.

4.2 Training and Inference

As shown in Fig. 2, we need to train two separate models one by one for the
different stages. To make the first stage (Yolov4) faster, we resize the network
input to 512× 512 and change the trained model from darknet [2] to the tkDNN
[13] framework. The activation function used in the second stage is ReLU [1].
The last two 128-D dense layers for depth Z regression are activated by leaky
ReLU, with a negative slope 0.02. The outputs Z and [u, v] are activated by the
logistic sigmoid function. All the inputs are normalized for better performance.
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To avoid overfitting, we freeze the parameters in the first 4 residual blocks of the
ResNet during the beginning 40 epochs. The other hyperparameters are given
in the table below (Table 1):

Table 1. Hyperparameters separately for different models.

Optimizer Epochs Batch size Learning rate

2D object detector Adam 100 16 3e−3

Position regression RAdam 100 4 1e−4

The training is processed by a host computer with an NVIDIA RTX 2080Ti
GPU, a 3.0 GHz Intel i7-97000 CPU and 32 GB RAM. Each bounding box is
extracted by Yolov4 in 7.8 ms, then the depth Z and the centroid [u, v] can be
regressed in 1.7 ms. The overall inference rate is around 100 Hz.

4.3 Evaluation

The mAP (mean Average Precision) by Yolov4 is 86.9% for an IoU threshold of
0.5 in the evaluation dataset. To evaluate the position estimation accuracy, we use
two metrics: position error Etrans, and ≤5 cm. In the ≤5 cm metric, a pose is con-
sidered correct if the position error is within 5 cm. Due to some other approaches
having large position errors, we extend ≤5 cm to a third metric: ≤10 cm.

Table 2. Evaluation for racket position estimation.

Sensors Etrans ≤5 cm ≤10 cm

Zhang et al. [27] Camera, IMU, marker - - -

Gao* et al. [8] Stereo cameras 2.8 cm 91.8% 100.0%

AAEs [20] Single camera 39.1 cm 6.7% 17.3.0%

CDPN [11] Single camera 36.6 cm 7.5% 21.8%

R. Staszak [19] Single camera 23.5 cm 10.6% 25.0%

OUR (no FPN) Single camera, IMU 6.8 cm 48.6% 85.1%

OUR (with motion blur) 5.2 cm 60.1% 93.2%

OUR 4.7 cm 65.0% 95.5%

In Table 2, we compare our method with current research in which different
sensors are used. Zhang et al. [27] did not show the position error, since they did
not have a dataset for evaluation and their method is not compatible with our
dataset. The remaining methods are trained and evaluated in our dataset. In order
to use stereo cameras in Gao et al. [8], we expand the evaluation dataset by the
second well-calibrated camera. Instead of using the color thresholding method to
detect the red surface, we extract the racket center either on the red side or on the
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black side by our centroid regression model. The * indicates it is used with mod-
ifications. The resulting performance is the best one. However, it will take twice
as much time as ours’ and can not extract the rotation value robustly and accu-
rately. Moreover, it needs more effort to pre-calculate the transformation matrix
between these two cameras. To get a fair comparison, we replace the rotation head
with the true value and only use the translation head in [11,19,20]. Among them,
[20] and [11] obtain the 3D position under two assumptions: the bounding box
size is linearly affected only with respect to the depth Z, and is therefore never
changed when having the same Z. These assumptions lead to a large position error
when the object is far away from the camera (6 m distance in our case). Although
[19] has a bit better results, they still did not take the global pixel positions of
the bounding box into consideration. In comparison, our method achieves a more
robust performance with the second best accuracy.

Furthermore, two additional experiments, with motion blur (in Fig. 6(c)) and
without FPN layers, are performed to simulate a moving racket and do an abla-
tion study, respectively. Figure 7 shows four examples with different movements.
To demonstrate this work, we apply the human movements to our KUKA robot
with coordinate transformation. The robot uses the penhold grip while playing
since it is more flexible and controllable than the shakehand style in our scenario,
as shown in the video https://youtu.be/U2YPh ZwQxQ.

Fig. 7. Four stroke movements for the racket pose estimation.

5 Conclusion

In this paper, we proposed a novel approach for stroke recognition via a cam-
era and IMU. We generated several datasets for training and evaluation. The

https://youtu.be/U2YPh_ZwQxQ
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experiment has shown the proposed method gives a robust performance. With
the main goal of improving the capabilities of our table tennis robot in mind, we
are planning to apply our approaches to human stroke examples and make the
table tennis robot hit the ball by imitating the human movements. In addition,
we could also predict the ball’s flying trajectory by analyzing the racket pose,
since our approach can be run 100 Hz.

However, our approach is going to fail if the detected bounding box is wrong
in the first stage. For example, the player’s left hand could also be recognized
as a racket if there are some circle patterns in the background, as shown in the
demo video. In this case, we could utilize the tracking method to identify the
coherent relations between frames.
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Abstract. Real-world data are typically described using multiple modalities or
multiple types of descriptors that are considered as multiple views. The data from
different modalities locate in different subspaces, therefore the representations
associated with similar semantics would be different. To solve this problem, many
approaches have been proposed for fusion representation using data from multi-
ple views. Although effectiveness achieved, most existing models lack precision
for gradient diffusion. We proposed Asymmetric Multimodal Variational Autoen-
coder (AMVAE) to reduce the effect. The proposed model has two key compo-
nents: multiple autoencoders and multimodal variational autoencoder. Multiple
autoencoders are responsible for encoding view-specific data, while the multi-
modal variational autoencoder guides the generation of fusion representation. The
proposed model effectively solves the problem of low precision. The experimen-
tal results show that our method is state of the art on several benchmark datasets
for both clustering and classification tasks.

Keywords: Multi-view representation · Variational autoencoder · Deep
learning

1 Introduction

Real-world data are typically described using multiple modalities or multiple types of
descriptors that are considered multiple views. For example, an object may be described
as its three views (elevation view, side view, top view). In multimedia content under-
standing, a multimedia fragment can be described by both its video and audio signals.
Another example, in content-based network image retrieval, an object is described by
both the visual features of the image and the text around the image. Since the feature
data from different modalities locate in different subspaces, the representations associ-
ated with similar semantics would be different. Here, this phenomenon is referred to as
the heterogeneity gap. Especially in today’s world, these multi-view data collected by
diverse sensors are highly heterogeneous. The gap between multiple data would hinder
the multimodal data from being comprehensively utilized by the subsequent machine
learning modules. To solve this problem, many approaches have been proposed for fed-
erated representation using data from multiple views [5,16].
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Most of the current multi-view learning frameworks focus on specific tasks (e.g.,
fake news detection [6], cluster [28]). These tasks usually have two integral parts, one
to extract representations from the multiple data and the other to perform specific tasks
with the representations. The two parts are coupled together for the specific task. But it
is significant to use the only part for extracting representation. Because we can unify the
multi-view data into a low-dimensional representation which is convenient for down-
stream task algorithms (e.g., K-means, classification algorithms).

There are a complex correlation and a high degree of heterogeneity between the
different views, so exploring multiple views representation is a long-term challenge.
Canonical Correlation Analysis (CCA) [8] is a classical method to find relationships
between multiple views of data. This method reduces the dimensionality of data from
multiple views to obtain two representations that have the max linear correlation. More-
over, Deep Canonical Correlation Analysis (DCCA) [1] combines a deep neural net-
work with CCA to learn nonlinear mappings from high dimensional data to low dimen-
sional representations. Deep Matrix Factorization (DMF-MVC) [28] proposed a solu-
tion based on deep matrix factorization, which uses semi-non-negative matrix factor-
ization to get the hierarchical semantics of multiple data. Another type of method is
mainly based on the framework of autoencoder (e.g., AE2 − Nets [27], MVAE [6]).
Autoencoder [2] is widely used for unsupervised learning on single-view via reducing
the dimensionality of input data. AE2 − Nets [27] proposed taking advantages of AE-
net to get a lower-dimensional representation of each view, which is used in degra-net
to get a fusion representation. MVAE [6] concatenates encoding which is encoded by
the encoder of each view and uses Variational Autoencoder (VAE) [10] to get a repre-
sentation.

Although current algorithms have achieved effectiveness on multi-view learning,
there are still some problems. For the family of CCA [1,8,23] and DMF-MVC [28], they
all assume sufficient correlations between different views. Because different views are
highly heterogeneous, independence between different views makes these algorithms
not work. For the family of AE [6,27], they solve the correlation problem. They extract
features from each view individually and use some clever methods (e.g., degrad [27],
variational bayes [6]) to get a representation. But because of the gradient diffusion, these
networks often have few layers so that it cannot integrate multimodal information fully.
Therefore, we proposed a novel algorithm to fully use the information of multi-view
for representation learning.

We proposed Asymmetric Multimodal Variational Autoencoder (AMVAE) for
multi-view representation learning. The proposed model has two key components, mul-
tiple autoencoders and multimodal variational autoencoder. Multiple autoencoders are
responsible for encoding view-specific data, while the multimodal variational autoen-
coder guides the generation of fusion representation. The main contributions of our
work are summarized as follows:

– We proposed a novel multi-view representation model - Asymmetric Multimodal
Variational Autoencoder (AMVAE) for multi-view representation learning.

– Our proposed model is able to find correlations between different views and there-
fore leading to a better multimodal shared representation.
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– We extensively evaluate the performance of the proposed AMVAE on several
datasets for clustering and classification tasks, the results show that our model is
state of the art.

The rest of the paper is organized as follows. In Sect. 2, we review the multi-view
representation learning briefly. In Sect. 3, we present our proposed model in detail. In
Sect. 4, we describe the implementation details of the novel model. Conclusions and
future work are presented in Sect. 5.

2 Related Work

The representation learning based on multi-modal data is to complete the learning task
by using the relation between different views. Meanwhile, the data of multi-modal is
complementary to make up for the shortage of single modal, which has attracted great
attention in recent years. For multi-view supervised learning, MVAE [6] proposed a
multi-mode variational auto-encoder to capture the shared representation of text and
image and was trained for the task of classifying fake news in Twitter. There are meth-
ods [18,25] that aggregate decisions from multiple classifiers, where each classifier is
based on single modal learning. Under certain assumptions, the results illustrate the
advantages of aggregating multi-view classifiers for subsequent tasks. For clustering
tasks, algorithms based on joint training [11] and collaborative regularization [12] keep
the clustering assumptions consistent for different views. Other multi-view clustering
methods mainly focus on the purpose of dimension reduction [26], which take advan-
tage of the complementarity of multiple views and the similarity among the data points
for reducing the multi-view dimension.

Unsupervised multi-view representation tasks are challenging because there is no
category information to guide the learning process. In the process of solving this chal-
lenge, many novel and effective methods have emerged, which are mainly divided into
two categories: one is the traditional machine learning method, represented by Canon-
ical Correlation Analysis (CCA) [8], and the other is the deep learning method which
takes autoencoder as the prototype. CCA searches the hidden space to maximize the
potential relevance between multiple views. Due to its ability to deal with nonlinear cor-
relations, Kernel Canonical Correlation Analysis (KCCA) [23] has been widely applied
to the integration or dimension reduction of multi-view features. Deep Canonical Cor-
relation Analysis (DCCA) [1] combines the advantages of deep learning that can effec-
tively extract multi-view features, aiming at learning two deep neural networks (DNN)
to maximize the typical correlation between two views.

The other kind of method is mainly the framework of the autoencoder. Under the
deep learning framework, the model based on the autoencoder [17] learns a compact
representation of the optimal reconstructed input. MVAE [6] adds a variational structure
on the basis of the auto-encoder and can learn the probabilistic potential variable model
by optimizing the boundary of the marginal likelihood value of the observed multi-
view data. AE2 − Nets [27] proposed inner AE networks to encode the features of
each view, while degradation networks reduce dimensions and integrate hidden vectors
from multiple views to get multi-view representation. AE2 − Nets is a relatively new
result of multi-view representation learning.
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There are some other interesting methods. I. Gallo et al. [4] fused pictures and text
together to form a new picture which is classified by CNNs. N. Punn et al. [19] proposed
a novel 3D deep neural network components based on inception U-Net architecture [21]
for brain tumor segmentation.

3 Asymmetric Multimodal Variational Autoencoder

In this section, we present AMVAE for learning multi-view representation. In this paper,
X = {X(1), ...,X(V )} is used to represent multi-view data, where X(v) ∈ R

dv×n is
the feature matrix of the vth view in the whole V views, dv and n being dimensionality
of feature space and the number of samples for the vth view respectively. The purpose
of multi-view representation learning is to obtain a fused representation. For the goal,
we use multiple autoencoders to learn latent vectors from multiple views. Then the
multimodal variational autoencoder ensures the representation to be learned.

Fig. 1. Overview of Asymmetric Multimodal Variational Autoencoder (AMVAE). The whole net
has two main components. The part of the autoencoder networks is to generate view-specific
latent features, while the multimodal variational autoencoder fuses the latent code and gener-
ates gaussian distribution as representation. The proposed model can be viewed as Asymmetric
Multimodal Variational Autoencoder which has a complex encoder.

3.1 Multiple Autoencoders

In order to obtain complete information from every single view, we use Autoencoder
networks. The reasons are as follows: 1. Autoencoder is widely used in unsupervised
learning, which is exactly consistent with the fact that we have no supervisory informa-
tion such as category information. 2. Autoencoder can effectively extract the features
of high-dimensional data in a single view and reduce noise.

First, the encoder for the vth view is defined as

Z(v) = f (v)
e (X(v), λ(v)

e ), (1)
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where Z(v) ∈ R
hv×n is the latent features of the vth view, hv is the dimension of latent

features. λ
(L,v)
e = {W

(l,v)
e , b

(l,v)
e }L, l ∈ (0, L) is the parameter set, where L is the

number of layers of encoder network and W
(l,v)
e , b

(l,v)
e is the weight and bias between

layer l and layer l + 1 respectively.
Second, we define the vth view’s decoder as follows

X̂(v) = f
(v)
d (Z(v), λ

(v)
d ), (2)

where X̂(v) ∈ R
dv×n is the matrix reconstructed from Z(v) by decoder. Similar to the

encoder, λ(L,v)
d = {W

(l,v)
d , b

(l,v)
d }L, l ∈ (0, L) is the parameter set of the vth decoder.

In order to obtain the latent features Z(v) of the vth view, we should minimize the
end-to-end reconstruction loss, which is defined as follows

Lossae−rec =
1
2

V∑

v=1

‖X(v) − X̂(v)‖. (3)

3.2 Multimodal Variational Autoencoder

In Subsect. 3.1, we obtain the latent features for each view, then, we fuse these highly
heterogeneous latent features. In this section, we use the structure of MVAE. The
encoder of MVAE encodes the latent features of different views into a hidden vec-
tor, and the decoder reconstructs the original multi-view feature information from the
hidden vector.

The encoder of MVAE fuses the multi-view latent features into a hidden vector, we
define it as

M (v) = f (v)
mvae e(Z

(v), φe), (4)

Hin = φ(Wv

V⊕

v=i

M (v) + bv), (5)

In the Eq. (4), the vth view’s latent featuresZ(v) is nonlinear mapped toM (v) by several
fully-connected layers. Then,M (v) are concatenated (operator

⊕
is used to concatenate

vectors) and passed through a fully-connected layer to generate the shared representa-
tion Hin. In the Eq. (5), Wb and bv are weight and bias of the fully-connected layer
respectively, and φ is the activation function. From the shared representation Hin we
get the mean μ and the variance σ that can be thought of as representing the distribution.
Subsequently, we sample a random variable ε from the prior Gaussian distribution. The
final representation is denoted as

H = μ + σ ◦ ε, (6)

The MVAE decoder is similar in structure to the encoder but upside down, whose
goal is to generate reconstruction Ẑ(v) ∈ R

hv×n vector from sampled mutimodal rep-
resentation

Ẑ(v) = f (v)
mvaed

(H,φd). (7)



396 W. Youpeng et al.

In Fig. 1, the structure of our model is shown clearly. Intuitively, the model is a
Multimodal Variational Autoencoder having a more complex encoder. So we called it
Asymmetric Multimodal Variational Autoencoder.

MVAE is trained by optimizing reconstruction loss and Kullback - Leibler Diver-
gence. We define the reconstruction loss for the latent feature of each view.

Lossmvae−rec =
1
2

V∑

v=1

‖Z(v) − Ẑ(v)‖, (8)

KL Divergence is used to measure the similarity between two distributions, here we
define the KL divergence of the shared representation distribution relative to the target
distribution (normal distribution)

Losskl =
1
2

dh∑

k=1

(μ2
k + σ2

k − log(σk) − 1), (9)

In the end, our goal is to optimize the sum of all losses.

min
{λ,φ}

(Lossae−rec + Lossmvae−rec + Losskl). (10)

Finally, we train the whole network until convergence to obtain the shared representa-
tion.

4 Experiments

In this section, we compare the proposed model in five benchmark datasets with several
state-of-the-art multi-view representation learning models.

Table 1. Clustering performance comparison for different algorithms

Method Handwritten ORL CUB-200 COIL-20 Caltech101-7

NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC

FeatConcate 76.40 75.32 78.97 62.41 71.30 73.79 78.21 71.64 56.33 47.22

CCA 69.57 66.81 76.10 57.15 48.51 46.10 69.33 58.69 50.59 46.41

DCCA 75.21 72.49 77.84 62.21 52.57 55.10 76.10 64.12 60.64 58.25

DMF-MVC 72.73 71.98 78.22 66.52 40.50 39.38 72.44 59.61 46.91 57.85

AE2 −Nets 71.50 82.27 86.73 68.90 77.82 77.94 83.37 74.10 61.66 65.28

MVAE 76.22 78.38 85.40 69.14 68.59 64.20 79.52 68.44 58.27 62.44

Ours 80.93 86.77 87.54 76.07 77.17 78.43 84.01 75.94 54.17 56.22
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Table 2. Classification performance comparison for different algorithms

Method Handwritten ORL CUB-200 COIL-20 Caltech101-7

FeatConcate 89.70 78.26 82.55 78.50 87.98

CCA 94.45 77.34 64.21 91.23 92.74

DCCA 95.23 84.92 66.76 90.41 92.80

DMF-MVC 94.66 93.13 59.37 95.49 89.43

AE2 −Nets 96.89 97.90 84.78 96.15 93.92

MVAE 95.47 95.29 83.52 95.87 91.25

Ours 97.25 98.11 86.19 96.77 92.68

4.1 Experiments Settings

Datasets. To show that our model is working well with diverse datasets, we choose the
following datasets.

– handwritten [3]: A dataset containing 2000 images consists of 10 handwritten
numeral classes from number 0 to 9. We use pix (240 pixel averages in 2 × 3 win-
dows) and fac (216 profile correlations) as two views.

– ORL1: it contains 40 subjects and each set of 10 different images.
– Caltech-UCSD Birds (CUB-200) [22]: An image dataset of 200 bird species. We

use 1024-dimensional features extracted by GoogLeNet and 300-dimensional fea-
tures based on text.

– COIL-20 [15]: it contains 1440 images of 20 object categories. Each category has
72 photos of the same object taken from different views. For COIL-2o and ORL, we
use Gabor descriptors and gray levels as two views.

– Caltech101-7 [13]: it contains a subset of 1474 images in 7 categories selected from
Caltech101. We use the HOG and GIST descriptors as two views.

Comparison Methods. To verify the validity of our model, we selected six baseline
models.

– FeatConcate: This method only concatenates different multi-view features.
– CCA: Canonical Correlation Analysis (CCA) [8] maximizes the linear correlation
of different views to obtain two representations and combine them together.

– DCCA: Deep Canonical Correlation Analysis (DCCA) [1] is based on CCA but
adds deep neural network to obtain more detailed low-dimensional representation.

– DMF-MVC: Deep Semi-nonnegative Matrix Factorization for Multi-View Cluster-
ing (DMF-MVC) [28] combines semi-nonnegative matrix factorization with deep
neural network to find shared representation of different views, which is used for
clustering tasks. Here, we use it for representation learning.

– AE2 − Nets: Autoencoder in Autoencoder Networks (AE2 − Nets) [27] uses inner
autoencoder networks to obtain detailed information of each view, and utilizes
degradation networks to get a shared representation.

1 https://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html.

https://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
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– MVAE:Multimodal Variational Autoencoder for Fake News Detection (MVAE) [6]
utilizes multiple variational autoencoder to learn probabilistic latent representation
and optimizes it by minimizing the Kullback-Leibler Divergence of the shared rep-
resentation distribution relative to the normal distribution.

Because the dimensions of the input data are different, we set different network
structures to different datasets. Our detailed settings are shown in Table 3. We train the
model for 300 epochs with an early stopping. The learning rate is 0.001. We set the
weight penalty to 0.2. We employ f(x) = sigmoid(x) as the activation function. l2-
norm is used as regularization for initializing the variables. We use Adam [9] as the
optimizer. We make the code publicly available2.

Table 3. Description the structure of our model

Datasets View Encoder/decoder of
AE networks

Encoder/decoder of
MVAE networks

H

Handwritten view1 (input shape, 200) (200, 150, 32) 64

view2 (input shape, 200) (200, 150, 32)

ORL view1 (input shape, 512, 256) (256, 128, 64) 128

view2 (input shape, 512, 256) (256, 128, 64)

CUB-200 view1 (input shape, 512, 256) (256, 128, 64) 128

view2 (input shape, 256, 128) (128, 128, 64)

COIL-20 view1 (input shape, 512, 256) (256, 128, 64) 128

view2 (input shape, 512, 256) (256, 128, 64)

Caltech101-7 view1 (input shape, 1024, 512, 256) (256, 256) 320

view2 (input shape, 256, 128) (128, 128, 64)

4.2 Evaluation

We evaluate the effects of the clustering task and the classification task respectively. For
the clustering task, we apply k-means algorithm to the shared representation H which
is represented by our method. We use k-means because this algorithm is simple and can
reflect the quality of representation by Euclidean distance.

We use Accuracy (ACC) [24], Normalized Mutual Information, to evaluate cluster-
ing performance. ACC is defined as

ACC =
∑n

i=1 δ(yi,map(li))
n

,

where n is the number of samples, yi and li are the ground truth label and the resolved
label respectively. map(li) is used to map the cluster label li to the ground truth label.
The best mapping can be obtained by the Kuhn-Munkres algorithm [20]. δ(x, y) equals

2 https://github.com/jirufengyu/AMVAE.

https://github.com/jirufengyu/AMVAE
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1 when x = y, otherwise δ(x, y) = 0. NMI is a standard measure to calculate the
similarity between two labels of the same data. It is defined as

NMI =
I(y, l)

maxH(y),H(l)
.

where I(y, l) is the mutual information between ground truth label y and cluster label
l, and function H calculates their entropy.

Details of the performance of the different algorithms are shown in Table 1. Our
model works better in four data sets except for the Caltech101-7 data set. As expected,
the completely neural network-based method (MVAE, AE2 − Nets) performs better
than other methods (DCCAE, DMF-MVC) that combined traditional algorithm and
neural network. Since CCA only pursues linear correlation, it does not perform well.
AE2 − Nets performs better than MVAE except for the handwritten dataset. One pos-
sible reason is that the handwritten dataset is relatively small, and the degradation net-
works are overoptimized, resulting in overfitting. Our model not only combines MVAE
to effectively integrate multimodal data but also combines multiple AEs ofAE2 − Nets
to effectively obtain latent features, so it performs better than the above two methods.

For the classification task, we employ k-nearest neighbours (kNN) algorithm. Sim-
ilar to the clustering task, we use this method because it is simple and fair for all
methods. We use standard accuracy as the metric. We split data into 80% training
sets and 20% test sets. Table 2 shows the detailed results of the experiment. The pro-
posed method still performs well on the four data sets. Our method performs poorly
on Caltech101-7 for both classification task and clustering task, probably because the
information we extract is incomplete by GoogLeNet. Compared with MVAE, our model
results are better and show that deeping the depth of the autoencoder network could
improve feature extraction.

We conduct ablation studies on five datasets. We evaluate four approaches: 1. multi-
ple AEs represent multi-view data and concatenate them together. 2. MVAE 3. AMVAE
4. AMVAE with mutual information [7] (AMVAE + MI). We use these four methods to
get the shared representation and then use clustering algorithm to evaluate the validity of
our model. Table 4 shows the performance of the four approaches. AMVAE performs
better than both AEs and MVAE. It demonstrates that our model improves the accu-
racy of clustering effectively. MVAE contributes more to the effective improvement of
AMVAE. We also experiment with the method of adding mutual information (MI) [7].
AMVAE + MI performs slightly worse than AMVAE on the first four datasets. One
possible cause is overfitting.

Table 4. Ablation studies on five datasets.

Method Handwritten ORL CUB-200 COIL-20 Caltech101-7

NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC

AEs 71.45 69.52 72.86 62.39 47.13 54.64 70.08 60.11 52.18 49.76

MVAE 76.22 78.38 85.40 69.14 68.59 64.20 79.52 68.44 58.27 62.44

AMVAE 80.93 86.77 87.54 76.07 77.17 78.43 84.01 75.94 54.17 56.22

AMVAE + MI 78.65 85.61 84.91 73.43 78.26 78.17 82.97 73.23 59.38 58.75
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Fig. 2. Visualization of the shared representation using handwritten dataset

As shown in Fig. 2, We visualize our learned shared representation with t-SNE [14]
comparing with other methods using handwritten dataset. Figure 2(a) represents the
space of concatenating raw data, Fig. 2(b) is the result of AEs, Fig. 2(c) and (d) show
the shared representation of AE2 − Nets and MVAE respectively, and the rest are our
proposed model with different strategies. The results demonstrate the shared represen-
tations obtained by our method have a more clear distribution structure.

5 Conclusion

This paper introduces a novel model for multi-view representation learning. Our model
innovatively uses multiple autoencoders to obtain latent codes and then uses multi-
modal variational autoencoder to get hidden representations. The experiments show
that AMVAE outperforms the comparison state-of-the-art algorithms on most of the
data. In the future, we probably extend the current AMVAE. For example, because of
the experimental results (superposition autoencoder can better extract features.), we
will consider the design of residual multi-view autoencoder networks to obtain a better
intact representation.
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Abstract. There is a surge of interest in cross-modal representation
learning, concerning mainly images and texts. Image-Text Matching task
is one major challenge in cross-modal tasks. Traditional methods use
multi-paths to encode features across modalities separately and project
them into a shared latent space. Recently, the development of pre-trained
models inspires people to learn cross-modal features jointly and boost
performances through large-scale data. However, traditional methods are
less effective when both modalities use pre-trained uni-modal encoders.
Methods that encode features jointly would face an unacceptable calcu-
lation cost during inference, thus less valuable for real-time applications.
In this paper, we first explore the pros and cons of these methods, then
we propose an enhanced separate encoding framework, using an extra
encoding process to project multi-layer features of pre-trained encoders
into a similar latent space. Experiments show that our framework out-
performs current methods that do not use large-scale image-text pairs in
both Flickr30K and MS-COCO datasets while maintaining minimal cost
during inference.

Keywords: Image-text matching · Separate encoding · Cross modal

1 Introduction

With the development of deep learning, neural networks achieve great progress
in computer vision and natural language processing. Cross-modal tasks, mainly
between images and texts, are gaining more and more attention [5]. In this work,
we focus on one major task in cross-modal learning: image-text matching.

The goal of the image-text matching task is to find the most matching pairs
through a large number of given images and texts. Thus, in real-time applica-
tions, it is vital to find the best matches of the given images/texts efficiently.
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Fig. 1. Different encoding methods

Traditional solutions in deep learning are to find a shared latent space [25]
by encoding image and text features separately. Normally, convolution-based
[11] networks are used to encode images while RNN-based [8] networks such as
LSTM [12] are applied for text encoding. Then the distance measurements like
cosine similarity are used to calculate the similarity of the pooled vectors from
different modalities. A triplet ranking loss [25] is then applied to train the neural
network for finding the most similar pairs across modalities. These architectures
can be illustrated by Fig. 1(a). As shown, features across modalities are isolated
since they are separately encoded.

Recently, there has been much progress achieved with the development of
pre-trained models in different modalities. These improvements make it possible
to joint-encode the features across modalities to learn a joint representation of
vision and language.

Pre-trained models push the state-of-the-art performances of many tasks to
a new level. In the CV field, the pre-trained models, such as VGG [24] and
ResNet [11], have been regarded as the backbone models to extract the visual
features for the downstream tasks. In the NLP field, the pre-trained models,
exemplified by ELMo [19], GPT [21] and BERT [6], use fine-tuning method
to achieve new state-of-the-art performances in downstream tasks like natural
language inference [2].

The arise of pre-trained encoders allows separate encoding to encode single
modal features with higher representation quality. However, the distribution of
pre-trained encoders are different across modalities, thus the traditional usage of
bottom-up structures (Fig. 1(a)) would make it difficult to project cross-modality
features into a shared latent space.

Later in the cross-modal field, following the idea of applying large-scale data
to create pre-trained models, joint encoding methods are based on large-scale
image-text paired data [15]. This architecture, shown in Fig. 1(b), combines
texts and images together through an attention-based structure [27] encoder
to learn joint representations across two modalities. These models, exemplified
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by Unicoder-VL [15], UNITER [4], achieve new state-of-the-art results on many
cross-modal tasks like VQA [1], image-captioning [3] as well as image-text match-
ing [25]. In image captioning and VQA tasks, the goal is to generate correspond-
ing captions or to find answer spans, which requires images and texts to entangle
with each other. Joint-encoding models boost these tasks to a whole new level.

However, in the image-text matching task, the goal is to find the most match-
ing pair from a large number of images and texts.

Since joint encoding methods combine the texts and images as inputs to the
model, during inference, these models require the pre-trained structure to iterate
all possible pairs which take massive calculation consumption. We name such
unacceptable cost Inference Disaster. Such a problem constrains these models
in real-time usage despite its outstanding performance.

As illustrated above, in the image-text matching task, traditional methods
are relatively weak in representation encoding compared with joint-encoding
methods based on pre-training with large-scale image-text pairs. Meanwhile, the
joint-encoding methods suffer from the inference disaster.

In this work, in order to maintain the retrieval efficiency as well as promoting
the performance of the model, we propose an Enhanced Separate Encoding
Framework to modify the separate encoding framework, focusing on excavat-
ing multi-layer features of separate pre-trained visual and textual encoders and
projecting them to the common subspace.

Our proposed framework is constructed based on separate encoding models,
thus is very efficient during inference compared with the joint-encoding methods.

We attach extra encoding modules to align and project features across modal-
ities. These extra modules extract features from the entire pre-trained encoder
in different modalities and project them in a shared latent space, thus the repre-
sentations across modalities are less distant compared with separate pre-trained
features.

Experiments show that our proposed framework achieves competitive per-
formances against joint-encoding methods without using large-scale image-text
pairs for pre-training and outperforms all previous traditional separate-encoding
methods in Flickr30K and MS-COCO dataset.

To summarize our Contributions:

(a) We analyze the traditional separate-encoding methods as well as recent
joint-encoding methods, pointing out the importance of both performances
and efficiency in the image-text matching task.

(b) We propose a framework to break the limit of separate encoding methods.
The framework outperforms all previous separate encoding methods and
achieves competitive performances against joint-encoding methods, mean-
while, it does not use large-scale image-text pairs.



406 K. Wen et al.

2 Related Work

2.1 Traditional Methods in Image-Text Matching

Encoding features from different modalities separately is the major method
used before. The goal is to find a better shared latent space of image features
and text features. Triplet ranking loss is introduced by [25] and used to nar-
row down the distance between matching pairs. [9] incorporated a hard neg-
ative method to focus on maximum violating negative pairs, which is widely
applied by later works. More recently, [14,28] introduced faster-RCNN network
to use regional semantic features to enhance the image encoding quality. Other
approaches such as incorporating knowledge graphs [23], using graph networks
[16,29] are explored to further boost the performances. Most of these methods
encode image features with pre-trained models such as ResNet and faster-RCNN,
while encoding text features with RNNs. Thus, when incorporating pre-trained
text encoders, it is more difficult to learn a shared latent space in two different
distributions from pre-trained encoders across modalities.

2.2 Pre-trained Models and Joint-Encoding

In computer vision field, ResNet [11] and VGG [24] are widely used as backbones
in vision models. These convolution-based structure models are trained using
image classification data such as ImageNet. Models like Fast RCNN [10], Faster
RCNN [22] are built based on these backbone models and aim for detection and
segmentation tasks.

Recent arise of pre-trained models in natural language processing started
with ELMo [19], using unsupervised data to train language models. GPT [21]
and BERT [6] introduce the attention-based structure called transformer [27],
take the NLP research into a new era of pre-training. These successes of pre-
trained models motivate researchers to construct cross-modal pre-trained models
using large-scale cross-modal datasets. These models use pre-calculated regional
features combined with text sequences to create joint-encoded features, exempli-
fied by UNITER [4], Unicoder-VL [15] and LXMERT [26]. These models achieve
great performances in cross-modal tasks such as VQA, image captioning; yet in
the image-text matching task, the inference efficiency is limited by its joint-
encoding nature.

3 Limits of Previous Encoding Methods

3.1 Different Distribution in Separate Encoding

When both modalities are equipped with pre-trained encoders, exemplified by
ResNet in images and BERT in texts, the distribution is different inherently,
making previous methods difficult to project different modalities into a shared
latent space.
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3.2 Inference Disaster in Joint Encoding

Joint-Encoding models use large-scale image-text paired data to pre-train the
joint-encoding models [4,15,17,26,30].

Fig. 2. Structure of enhanced separate encoding framework

Most of these methods firstly encode input image region features that are
extracted from an RCNN model trained with [13]. These regional features from
original images play roles as tokens in a sequence.

Despite the excellent performances in downstream tasks, such structures
would face a massive calculation consume problem during inference in the match-
ing task: Suppose N sequences(captions) and M images are to be examined,
which are total M × N entangled pairs. Suppose the inference time for each
pair is T , with a batch-size B. The model needs to went through M × N times
inference, resulting in a time cost M×N×T

B , which has an O(n2) time complex-
ity. While inference with separately encoded features only need to run a cosine
similarity between pairs, which has an O(n) time complexity.

4 Framework Construction

Separate encoding methods would be less effective in applying pre-trained
encoders in both modalities, considering that features in two modalities are
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under different distribution; meanwhile, joint encoding methods, though encod-
ing jointly, would suffer from a less efficient inference process. Leveraging advan-
tages and disadvantages, we propose an enhanced separate encoding method,
aiming to narrow down the distance between features from two different pre-
trained encoders. The core motivation is that allowing separately pre-trained
features to be further encoded by non-pre-trained modules, thus these features
are more similar in nature since these non-pre-trained modules are more aligned.

Therefore, we construct extra modules to align and extract pre-trained cross-
modality multi-layer features and train these modules from scratch to learn a
shared latent space (Fig. 2).

The entire enhanced separate encoding framework consists of three steps:
feature encoding, feature alignment, and feature projection.

4.1 Feature Encoding

First, we obtain the multi-layer features of separate pre-trained encoders.
Separate encoding features are trained with different types of corpora. In

image pre-training, ResNet is trained with image classification data and the
feature map of ResNet can be used as the backbone of further downstream
tasks. Faster-RCNN model is trained with object detection data or semantic
segmentation data and the output feature is regional features of a given image.
In text pre-training, BERT is trained with a mask language model, using large-
scale Wikipedia corpus. Based on the transformer structure, the output is the
multi-layer token-level feature.

We use all levels of separately pre-trained features combined to find better
cross-modal representations: In image encoding, we denote the ith layer of feature
map from ResNet as Hi ∈ R

Wi×Hi×Di ; Wi,Hi are the width and height size of
the convolution output. We denote the regional feature from faster-RCNN as
Hr ∈ R

Nr×Dr and Nr is the region number. In text encoding, we denote the jth

layer of transformer block output from BERT as Sj ∈ R
L×Dj , L is the sequence

length.
These obtained features are encoded separately from pre-trained models, thus

are quite different across modalities.

4.2 Feature Alignment

In text encoding, the output feature is token-level, which is sub-word level feature
in BERT specifically. In image encoding, the output features are feature-maps
extracted from ResNet features and regional features extracted from RCNN
network features. Therefore, it is difficult to directly project these features with
different layers and different dimensions into a shared latent space. We manage to
convert different layers of features into aligned regional features across modalities
by reshaping them via feature concatenation and average pooling.
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4.3 Feature Projection

After feature alignment, we have multi-level regional image features and multi-
level sub-word textual features. The feature projection is a two-phase process:

Region/Token-Wise Projection. First we project both region features in
encoding images and token features in encoding texts into a similar latent space.
The token-region matching can be better encoded with attention-based modules
as explored by [6,14,15], thus we construct a self-attention based encoder to
encode these aligned features.

The encoder F (X) follows a standard transformer structure [27].

A = Softmax(
WqXWT

k X√
d

)(WvX) (1)

F (X) = LayerNorm(X + A + FFN(A)) (2)

We feed the aligned feature ̂Hi, ̂Hr from image encoder and ̂Si from text
encoder into corresponding transformer blocks to get token/region level features.
Considering that we have both ResNet features and faster-RCNN features com-
bined, we duplicate the last layer of ̂Sk to create ̂Sr to match the corresponding
̂Hr. We then apply average pooling over the region/token level representations
to obtain vectors of the given image and text.

�Hi = AvgPool(Fi( ̂Hi)), �Hr = AvgPool(Fr( ̂Hr)), �Sk = AvgPool(Fk(̂Sk)) (3)

Layer-Wise Projection. As mentioned in feature alignment, we use layer
concatenation to align multi-level features, which is rigid in nature. We are
unaware which level of features across modalities might be encoded more similar,
thus we fully connect these vectors, allowing different level of features to match
their potential similar features across modalities.

�VH = Linear(Concat([ �H0, · · · , �Hi, · · · ], �Hr)) (4)
�VS = Linear(Concat([�S0, · · · , �Sk, · · · ), �Sr) (5)

These two steps of feature projection encode the features that are inherently
different into a similar latent space. Since joint-encoding the concatenated token
and region features are not feasible in separate encoding, we decompose the
separate encoding features into token-wise and layer-wise, and align them to be
encoded into a more similar latent space.

After acquiring the separate encoded vectors �VH and �VS from two modalities,
we use triplet ranking loss to train the entire model.
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5 Experiment

5.1 Datasets

We use Flickr30K [20] dataset and MS-COCO [18] to test our enhance separate
encoding framework.

In Flickr30K, there are 31,783 images with 5 captions each, and MS-COCO
2014 contains 123,287 images with 5 cations per image. We follow [9] for the
train-valid-test split, which is 1k test for Flickr30K, 1k, and 5k for MS-COCO.
which results in 113287 training, 5000 validation, and 5000 testing images for
MS-COCO. Flickr30K dataset is split into 29783 training, 1000 validation, and
1000 testing images. Our results average over 5 folds of 1k test images and use
the full 5000 test images for MS-COCO testing. We use recall by K (R@K)
defined as the fraction of queries for which the correct item is retrieved in the
closest K points to the query.

5.2 Implementation Details

For both Flickr30K and COCO dataset, we use ResNet152 and Faster-RCNN
with ResNet101 as image encoding models. The Faster-RCNN features are
extracted following [30], with region number 100 and hidden size 2048. The
dimension of 4 layers of feature maps in ResNet152 are [56, 56, 256], [28, 28,
512], [14, 14, 1024] and [7, 7, 2048]. We apply average pooling with pooling win-
dow [8, 8], [4, 4], [2, 2] and [1, 1]. After merging and linear transformation, the
output features of 4 feature maps are [49, 256], [49, 256], [49, 512], [49, 1024].
The region feature is [100, 1024]. And we use BERT-base as a text encoding
model, which contains 12 layers with hidden dimension size 768. We set max
sequence length to 32. During feature alignment, we concatenate every 3 layers
of BERT output and use linear transformation to obtain 4 layers of features with
dimension size [32, 256], [32, 256], [32, 512] and [32, 1024]. We duplicate the last
layer to align with region features from faster-RCNN. The transformer block is
a 1-layer transformer with 8 heads and an intermediate size 1024.

During training, we use NVIDIA 1080Ti GPUs to train the entire model,
with learning rate set to 2e−5, batch-size 128 for Flickr30K, and 320 for MS-
COCO dataset. We also ensemble two single models to create an ensemble model
of an enhanced separate encoding framework to boost the performances.

5.3 Experiment Setup

We establish baselines testing the matching results as well as inference cost.
We implement joint-encoding approaches based on two different joint-encoding
structures. In the Unicoder-VL structure, we follow the implementation in [15].
In the LXMERT structure, the core idea is encoding features across modalities
jointly only in the higher layers. Thus, we use the first 8 layers of BERT-base
structure for text encoding and region-features from Faster-RCNN for image
encoding. Then we concatenate the image and text features and feed them into
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the last 4 layers of BERT-base structure and use the special [CLS] token for
similarity score learning.

The inference cost is tested on a single NVIDIA 1080Ti GPU. We set batch-
size 128 evaluating our enhanced separate encoding framework. When evaluating
joint-encoding methods on 1k test of Flickr30K dataset, we use batch-size 5000
which is the caption number; we iterate each image to calculate the similarity
score of the matching pairs.

Table 1. Performances on Flickr30K dataset Unicoder-VL∗ is further pre-trained with
large-scale image-text pairs.

Methods Image-to-text Text-to-image Inference cost

R@1 R@5 R@10 R@1 R@5 R@10 Time cost GPU cost

Joint-encoding methods

Unicoder-VL [15] 73.0 89.0 94.1 57.8 82.2 88.9 8800 (s) 8X

LXMERT [26] 73.3 92.5 96.5 53.6 81.4 89.0 5807 (s) 6X

Unicoder-VL∗ 86.2 96.3 99.0 71.5 90.9 94.9 – –

Separate-encoding methods

VSE++ [9] 52.9 80.5 87.2 39.6 70.1 79.5 – –

SCAN [14] 67.4 90.3 95.8 48.6 77.7 85.2 – –

SCG [23] 71.8 90.8 94.8 49.3 76.4 85.6 – –

VSRN [16] 71.3 90.6 96.0 54.7 81.8 88.2 – –

SGRAF [7] 77.8 94.1 97.4 58.5 83.0 88.8 – –

Ours 79.4 94.9 97.5 63.3 88.0 92.3 61.5 (s) 1X

Ours [ensemble] 80.9 95.5 97.9 66.0 88.8 93.1 63.1 (s) 2X

5.4 Experiment Result

As seen in Table 1 and 2, our enhanced separate encoding framework outperforms
previous separate encoding approaches by a large margin, while outperforming
joint encoding methods that are trained without image-text pair pre-training.

The calculation cost during inference, as seen in Table 1, is enormous in
joint-encoding methods. We use 8 GPUs to run inference in joint-encoding with
very large batch-size, still the time cost is unbearable. Meanwhile, without pre-
training, the performance of joint-encoding is not superior to separate encoding
methods.

Joint-encoding model further pre-trained with large-scale image-text pairs
has great performances while it has less competitive performances when only
trained with image-text pairs in the given task. This indicates that joint-encoding
method relies on using large-scale image-text pairs to enhance the model while
joint- Therefore, we believe that separate encoding with our enhanced framework
is both effective and efficient.
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Table 2. Results on MS-COCO dataset.

Methods Image-to-text Text-to-image Image-to-text Text-to-image

1K test images 5K test images

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

Joint-encoding methods

Unicoder-VL 75.1 94.3 97.8 63.9 91.6 96.5 – – – – – –

Unicoder-VL∗ 84.3 97.3 99.3 69.7 93.5 97.2 62.3 87.1 92.8 46.7 76.0 85.3

Separate-encoding methods

VSE++ 64.6 90.0 95.7 52.0 84.3 92.0 41.3 71.1 81.2 30.3 59.4 72.4

SCAN 72.7 94.8 98.4 58.8 88.4 94.8 50.4 82.2 90.0 38.6 69.3 80.4

SCG 76.6 96.3 99.2 61.4 88.9 95.1 56.6 84.5 92.0 39.2 68.0 81.3

VSRN 76.2 94.8 98.2 62.8 89.7 95.1 53.0 81.1 89.4 40.5 70.6 81.1

SGRAF 79.6 96.2 98.5 63.2 90.7 96.1 57.8 – 91.6 41.9 - 81.3

Ours 79.7 96.7 98.7 64.7 90.0 95.1 57.2 84.5 91.4 41.5 72.1 82.0

Ours [ensemble] 80.4 97.0 98.8 65.5 90.8 95.7 58.6 85.6 92.2 42.7 73.4 83.2

Table 3. Projection study on Flickr30K dataset; R/T-P is region/token-wise projec-
tion; L-P is layer-wise projection.

Projection Image-to-text Text-to-image

R/T-P L-P R@1 R@5 R@10 R@1 R@5 R@10

73.9 93.6 96.0 58.0 85.4 90.8

� 76.1 93.4 96.4 61.4 86.4 91.8

� 75.5 93.1 96.4 59.5 85.7 91.3

� � 79.4 94.9 97.5 63.3 88.0 92.3

6 Ablation Studies

6.1 Effectiveness of Feature Projection

The motivation of our enhanced separate encoding framework is to project sep-
arately pre-trained features into a similar latent space. Therefore, we construct
ablations studies proving that feature projection modules play vital roles in our
framework.

We establish baselines on both Flickr30K and COCO dataset. We concate-
nate the pooled ̂H and ̂S without using F (X) region/token-wise projection or
layer-wise linear transformation projection. That is we run baselines without
feature projection, we simply use concatenated outputs features from feature
align process.

As seen in Table 3, F (X) projection (R/T-P) and linear transformation (L-P)
are important in projecting features to be more similar, indicating that though
the pre-trained features possess abundant information, they are different inher-
ently across modalities. Therefore, though both projection methods are easy to
construct, the idea of allowing separately-pre-trained features to be aligned and
further encoded is extremely effective.
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7 Conclusions and Future Work

In this paper, we focus on the image-text matching task. Firstly, we analyze the
traditional separate encoding methods as well as recent joint-encoding methods
based on pre-training with large-scale image-text pairs. We discuss the problems
that constrain these methods, then we propose a framework to leverage the
advantages and disadvantages of these methods, achieving competitive results
while maintaining a minimal inference cost.

In the future, following our analysis, we are hoping to apply large-scale image-
text pairs to train the projection modules to take performances of the image-text
matching task to a higher level as well as try different languages.
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Abstract. Birds embody particular phonic and visual traits that dis-
tinguish them from 10,000 distinct bird species worldwide. Birds are
also perceived to be indicators of biodiversity due to their propensity
for responding to changes in their environment. An effective, automatic
wildlife monitoring system based on bird bioacoustics, which can support
manual classification, can be pivotal for the protection of the environ-
ment and endangered species. In modern machine learning, real-life bird
audio classification is still considered as an esoteric challenge owing to
the convoluted patterns present in bird song, and the complications that
arise when numerous bird species are present in a common setting. Exist-
ing avian bioacoustic monitoring systems struggle when multiple bird
species are present in an audio segment. To overcome these challenges,
we propose a novel Faster Region-Based Convolutional Neural Network
bird audio diarization system that incorporates object detection in the
spectral domain and performs diarization of 50 bird species to effectively
tackle the ‘which bird spoke when?’ problem. Benchmark results are pre-
sented using the Bird Songs from Europe dataset achieving a Diarization
Error Rate of 21.81, Jaccard Error Rate of 20.94 and F1, precision and
recall values of 0.85, 0.83 and 0.87 respectively.

Keywords: Deep neural networks · Audio classification · Diarization ·
Automatic wildlife monitoring

1 Introduction

Bioacoustics, a blend of biology and acoustics, has facilitated several pioneering
biodiversity monitoring systems resulting in major advances towards the conser-
vation of species prone to extinction [1,2]. Most of these systems are based on
monitoring avian phonetics since bird songs are acknowledged to be the most
prominent, reliable, and consistent indicators of biodiversity, capable of provid-
ing invaluable insights on the state of the ecology [2]. Unfortunately, tracking
birds manually can be an onerous task [3].
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Recent advances in machine and deep learning have made possible the
automation of biodiversity monitoring systems. However, the precision of these
systems has been severely undermined due to the presence of numerous bird
species vocalising in an environment, which can also be further occluded by other
environmental sounds [4]. Consequently, this research aims to improve upon tra-
ditional bird audio classification approaches by adopting an object detection
approach to bird audio diarization, in which objects are in the form of bird audio
vocalisations in the spectral domain. This will group an input audio stream into
homogeneous segments based on a bird species identity, hence revealing ‘which
bird sang when’ along with the number of distinct bird species singing within a
specified time-frame in an ecosystem [5].

This research uses the Bird Songs from Europe corpus, a subset of the Xeno-
canto database containing intrinsic audio recordings of the 50 most common
bird species in Europe [6]. A Faster Region-Based Convolutional Neural Net-
work (R-CNN) model with a pre-trained ResNet50 Feature Pyramid Network
(FPN) backbone was trained with spectrograms and their corresponding anno-
tations obtained from pre-processed bird audio segments. The Faster R-CNN
classifier [7] performs object detection based on features extracted to locate bird
specific spectral patterns for effective bird species recognition. The rest of this
paper is structured into four sections. Section 2 examines the background of this
research and details existing approaches in bird audio-based wildlife monitoring,
followed by the methodology, experiments and results in Sect. 3. Discussions are
provided in Sect. 4 and Sect. 5 provides conclusions and future work.

2 Literature Review

Global concern of ecological deterioration has led to much research on automated
bioacoustics monitoring. Accordingly, several annual challenges, such as Confer-
ence and Labs of the Evaluation Forum (CLEF), Detection and Classification
of Acoustic Scenes and Events (DCASE), Neural Information Processing Scaled
for Bioacoustics (NIPS4B), and Machine Learning for Signal Processing (MLSP)
have led to the development of some ground-breaking architectures for acoustic
wildlife monitoring [1,3]. Even though, modern systems can identify the major-
ity of the species present in a natural setting, a highly accurate automatic bird
audio-based wildlife monitoring system capable of identifying all the vocalising
species is still missing [3].

The majority of approaches, which contemplate passive wildlife monitoring
centred on avian phonetics, share three identical pre-processing measures: a)
Noise Filtering, b) Bird audio detection, and c) Feature extraction. Initially,
the audio segments are filtered from environmental noise followed by bird audio
detection on the filtered chunks that enables the system to identify segments
with bird audio, which leads to the extraction of the features relevant for
bird species recognition [1]. Early systems of passive bioacoustic monitoring
used traditional speech recognition-based techniques, such as template-matching
(Dynamic Time Warping) and Hidden Markov Models (HMMs), as they were
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the most effective audio processing systems of the time [8]. Algorithms that
demonstrated success with speech recognition struggled when it came to bird
species recognition, as avian phonetics are composed of complex patterns unlike
those found in the human voice [8]. Substantial approaches have been devel-
oped since this early work, among these systems employing Support Vector
Machines (SVMs), Machine Learning and CNN based approaches, have demon-
strated gradual progress comparatively [1,2].

Initially, SVMs were not able to achieve much success with bird audio clas-
sification, while classifiers utilising decision trees as a base demonstrated better
results [9]. Later, it was discovered that SVMs based on syllable segmentation
algorithms outperformed the avian phonetics classification models of that time
when feature selection computed from combined Mel Frequency Cepstral Coeffi-
cients (MFCCs) [10]. The segmentation algorithm was successfully able to filter
environmental noise and extract bird audio syllables through the application of
a pre-emphasis filter, which focused on high frequencies that were most likely to
represent avian phonetics [11]. SVMs also achieved success with multi-class bird
audio classification, demonstrating an average accuracy of 98.7% while catego-
rizing 7 distinct bird species from the Xeno-canto database [12] using a Gaussian
radial basis function kernel [10].

Further work described how the traditional SVM model was extended to
classify 11 species extracted from the Xeno-canto database [12] with 92.8% accu-
racy [13]. The approach was centred on MFCC-based feature extraction from an
acoustic event-based-sifting approach combined with a Gaussian Mixture Model
(GMM)-based frame selection for distinguishing specific spectral patterns from
the songs of the 11 bird species [13]. In 2018 [14], a two-windows method was
adapted to minimise processing time by 24% and node-level space requirements
by 43% as a speed boost for the SVM classifier. This approach was evaluated on
214 wildlife recordings from the Xeno-canto database [12], based on 5 species,
and achieved a maximum accuracy of 93.85% [14]. Despite this strong perfor-
mance of the SVM with fewer bird species, the accuracy of the system decreased
rapidly as more bird species were included in the classification [14].

In recent years, machine learning-based classifiers have exhibited major
improvements for recognising bird species from audio recordings and dominated
the leader boards in major competitions [2]. It was found that machine learning
classifiers worked relatively well with spectrograms for bioacoustic monitoring.
The second-place team for MLSP 2013 employed Extremely Randomized Trees
and obtained an area under the curve (AUC) score of 95.05% while categoriz-
ing 19 bird species [11]. This work, updated with randomized decision trees [15],
proved to be the winning system for the NIPS4B 2013 competition with an AUC
score of 91.7% while classifying 87 bird species [15].

Artificial Neural Network-based approaches to bird audio classification began
in 1997 when a neural network trained with back propagation on manually col-
lected open source wildlife recordings was evaluated against 6 audio clips cor-
responding to 1 recording per species and demonstrated 82% accuracy for the
task [16]. Deep Neural Networks (DNN), Recurrent Neural Networks (RNN)
and CNNs have shown improvements with their ability to extract features and
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classify images with higher accuracy [16]. Currently, CNNs are mostly preferred
for effective feature extraction for spectrogram-based approaches [17].

In BirdCLEF 2016, the winning solution incorporated a simple CNN archi-
tecture with five convolutions and one dense layer for the classification of 999
bird species, achieving an official mean Average Precision (mAP) of 0.686 and
0.555 for the foreground species and foreground species mixed with background
species, respectively [18]. However, when this system was evaluated for a sound-
scape with arbitrary bird species singing in the background, it obtained a mAP
score of 0.078 [18].

In BirdCLEF 2019 [19,20], the Inception v3 model provided better classifi-
cation results for biodiversity monitoring, possibly due to the increased num-
ber of parameters, which allowed the model to represent the mappings more
accurately [19]. The classification mAP (cmAP) is the standard evaluation met-
ric considered for this challenge [20]. The Inception v3 model winning submis-
sion [20] was trained with sophisticated data augmentation techniques, such as
filtering audio chunks with random transfer functions and applying local time
stretching and pitch shifting in time domain identification, along with the use
of validation data for fine-tuning the pre-trained network [20]. This result sur-
passed state-of-the-art model performances by 20%, achieving a cmAP score of
35.6% while classifying 659 bird species from intrinsic recordings belonging to
the BirdCLEF 2019 evaluation set [20].

The winning submission of BirdCLEF 2020 [21] achieved a cmAP score of
13.1% while classifying 960 species. Even though the system outperformed other
competing systems, most of the species that were present in the test recordings
could not be recognised [21]. In this approach, a 1D convolution/Gabor wavelet
transformation first layer accepts augmented spectrograms and the remaining
layers of the network were determined by performing a Neural Architecture
Search (NAS).

The CNN has also performed well with a simultaneous segmentation and
classification approach using a five-layer encoder-decoder model [4]. The encoder
layers in the network encode high-dimensional features from the spectrograms
and the decoder layers decode the encoded features and their location in the
spectrogram, allowing the network to execute segmentation and classification
simultaneously [4]. The network was able to predict the classes for 19 species
with a True Positive Rate (TPR) of 98% on the MLSP 2013 dataset.

Existing systems and architectures are still struggling to perform highly accu-
rate classification of bird species in the wild [21]. The concept of speaker diariza-
tion could be applied to perform diarization on bird audio to identify the birds
present in an environment and recognise which bird sang when [22]. In the only
diarisation-based research on bird audio, an accuracy of 53% was achieved while
identifying 10 bird species from the H.J. Andrews Long-Term Experimental
Research Forest (HJA) dataset [22]. The performance of the model was sat-
isfactory compared to the standard deep learning-based bird audio classification
approaches [11,15] undertaken at that time. Research involving a bird activity
detector [22], which detected segments voiced by birds followed by a change
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point detector, detected a change in speaker/bird turns through the application
of Bayesian Information Criterion (BIC) with Agglomerative Clustering.

Our proposed Faster R-CNN model approaches bird audio diarization by per-
forming object detection in the spectral domain and shows significant refinement
to the diarization based bio-acoustic monitoring approach.

3 Methodology

3.1 Data Acquisition and Pre-processing

The acquisition of real-life bird audio datasets with sufficient recordings per
bird species extracted from a naturally occurring habitat is challenging. Sev-
eral datasets such as BirdCLEF and RefSys have insufficient recording samples
per bird species [23]. Thus, the balanced, medium-sized subset Bird Songs from
Europe, consisting of 50 discrete European bird species with 43 high-quality
natural recordings per species [6] was used in this work. Pre-processing of the
raw input audio consisted of downsampling, conversion to the wav file format,
segmentation, overlapping, bird audio detection, merging of audio segments,
generation of spectrograms, accurate data annotation and data partitioning for
training, validation, and evaluation. Firstly, the 16 kHz audio was downsampled
to 8 kHz and converted from mp3 to wav. The wav files were then segmented
into uniform 1-s chunks with 50% overlap as depicted in Fig. 1, which played a
significant role in increasing the volume of training data.

A Pydub-based [24] bird audio detector operates as the filtering layer that
processes the incoming audio stream and combines 1-s segments with bird songs
from a certain species with a random 1-s segment representing a different bird
species to simulate a complex natural audio recording with multiple bird species
in an audio segment, see Fig. 2. Spectrograms facilitate the visualisation of the
magnitude of the raw frequencies and signals in an audio chunk as a spectrum
of sound over contrasting time-frames [17]. Subsequently, a Short-time Fourier
Transfer (STFT)-based spectrogram of size 256×256 pixels was generated using
Librosa [25].

Timings for the ground-truth labels were provided by the bird audio detec-
tion algorithm, which calculates the bird audio start and end time parameters

Fig. 1. 50% overlap for each 1-s audio segment
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Fig. 2. New waveform (left) and spectrogram (right) generated after merging 1-s audio
segments from two random species

for the corresponding chunks associated with the bird species. These parame-
ters in turn specify the start and end coordinates of the bounding boxes along
the x-axis, which display 2 s of audio across a visual stretch of 256 × 256 pixels
containing the bounding boxes, see Fig. 2. To represent a time frame of 2 s, 1
unit along the axis of the spectrogram should correspond to 0.128 ms as the
ratio between 256 and 2,000 yields 1:0.128. Hence, the time frame can be repre-
sented in pixels by multiplying the time with 0.128 i.e. bbox = time(ms)× 0.128
where bbox represents the corresponding bounding box co-ordinate for specific
time represented as time(ms). However, the coordinates along the y-axis for the
bounding box remain as the default, i.e. the minimum value is set to ‘0’ and the
maximum value is set to ‘256’.

The final step in the pre-processing phase deals with accurate annotation
in the Pascal Visual Object Classes (VOC) format, which stores bounding box
coordinates along with essential information for object detection [7]. Figure 2
depicts a spectrogram sample and visualises the bounding box and labels based
on the Pascal VOC format. A total of 297,075 spectrograms were obtained from
91.71 h of intrinsic audio recordings, out of which 247,479 (80%) of the data was
used for training, 24,798 (10%) for validation, and the evaluation (test) set was
comprised of the remaining 24,798 (10%) spectrogram images.

3.2 Model Training

A Faster R-CNN model with ResNet50 FPN backbone pre-trained on the COCO
dataset with a Region Proposal Generator was used to train the model. Figure 3
shows the Faster R-CNN object detection model’s functionality pipeline. When a
spectrogram is inputted, the Region Proposal Network acts as a selective search
layer that generates anchor boxes for all the spectrogram regions. Based on fea-
ture maps generated by the ResNet50 architecture, the Region Proposal Layer
computes the Region of Interest (ROI) proposals for specific regions in the spec-
trogram and selects the anchor box and segments that correspond with the
extracted features [7]. An Intersection over Union (IoU) score between ‘0’ and
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Fig. 3. Faster R-CNN object detection pipeline

‘1’ is used to compute the magnitude of intersection between the generated pro-
posals and the ground truth labels where an IoU score closer to ‘1’ represents a
stronger intersection with the ground truth boxes for the spectrograms. Hence,
the proposal regions would undergo a procedure known as Non-Maximal Sup-
pression (NMS) that suppresses all the proposals with an IoU score less than
0.3, such that only boxes with a strong association with the ground truth would
be used for training. Spatial pooling is used to select only the most important
features from the feature map extracted by the FPN. Finally, bounding box
co-ordinates are made more precise by performing regression and the Faster R-
CNN classifier predicts the labels for the corresponding bounding boxes based
on features extracted from that specific region [7].

To ensure that the model is optimally trained, the Fastai library [26] has
been implemented utilising functionalities from the IceVision package [27]. To
ensure optimal model training, Smith [28] suggests performing a cycle with two
steps of equal length where the model is trained by cycling the learning rate
(LR) between the maximum LR and the minimum LR, computed as one-tenth
of the maximum LR. In the end, the LR can be reduced lower than the minimum
LR i.e. to one-hundredth of the minimum LR, which has been deemed crucial
for optimal model training [28].

For transfer learning, the latest version of Fastai makes use of several fit one
cycle iterations to fine-tune modules with pre-trained weights more efficiently.
Fine-tuning in Fastai allows the model to freeze the backbone by stopping gra-
dient calculations and train only the head accompanied by randomly initialized
parameters for the first few epochs [28]. Then, the model can be unfrozen and
trained with all the layers, allowing gradient calculations for the parameters to
be adjusted until the model is optimally trained. Weights & Biases (W&B) call-
backs were used for visualising and tracking the model training [29]. The weights
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Fig. 4. Predictions generated for test set spectrogram simulating multiple bird species

of the model instance exhibiting minimum validation loss were saved and used
for generating predictions on the unseen test set for inference. During inferenc-
ing, this trained Faster R-CNN classifier [7] was used to generate predictions
for the spectrograms from the unseen test set which also contained additional 5
spectrograms obtained after combining audio-segments from more than two bird
species to test if the system could cope with the presence of multiple birds in a
common setting as shown in Fig. 4.

Using an NVIDIA GeForce GTX 1080 Ti GPU, the total time to train the
model was 8 days and 12 h, with an average training time of 3 h and 13 min per
epoch. The model was trained for a total of 60 epochs, during the first 5 epochs
the backbone was frozen and only the model head was trained. This was followed
by the remaining 55 epochs to train all the layers and adjust the parameters
accordingly. For the first 5 epochs, the minimum validation loss achieved was
6.89 with a minimum training loss of 4.09. During the remaining 55 epochs, the
validation loss of the model started gradually decreasing from 0.793 to 0.478
until the loss plateaued in the 52nd epoch. Hence, the parameters of the model
at the 52nd epoch were saved for inferencing.

3.3 Model Testing

The trained model was evaluated with the 24,798 test set spectrograms, Fig. 5
outlines the Faster R-CNN Inference Pipeline. This model generates predictions
on the test set, and a confidence score between ‘0’ and ‘1’ is provided for each
prediction where a detection threshold of 0.5 is defined such that predictions
with confidence score less than 0.5 are discarded. The predicted outputs were
compared with the ground truth reference labels and Diarization Error Rate
(DER), Jaccard Error Rate (JER), F1, recall and precision were calculated as
evaluation metrics. A sample of predictions for the evaluation set can be seen
in Fig. 6, which simulates vocalisation of multiple bird species in a single audio
segment obtained by merging the audio segments from random species. The
proposed Faster R-CNN model is able to perform bird audio diarization with
minimal DER and JER of 21.81 and 20.94, respectively, even under the complex
circumstances simulated by combining multiple species in a single audio segment.
The model achieved an F1 score of 0.85, with 0.83 precision and 0.87 recall value.
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Fig. 5. Faster R-CNN inferencing pipeline

4 Discussion

From the obtained evaluation metrics it is evident that bird audio diarization
implemented using the Faster R-CNN model and centered on object detection in
the spectral domain is an improvement over previous diarization approaches [22].
This approach has also been shown to cope with the separation of 50 bird species
from intrinsic audio recordings compared to the pioneering work with diarization
on the HJA dataset that considered only 10 classes. There has been numerous
research in the literature focused on bird audio classification, which have used
the Xeno-canto database or one of its subsets, such as BirdCLEF, NIPS4B and
DCASE. We have chosen three of these models, which have used a similar num-
ber of species, in order to compare and validate the performance of our model.
Silla Jr. and Kaestner [30] approached acoustic bird species classification with 48
classes extracted from a different subset of the Xeno-canto database, using the
Global Model Naive Bayes (GMNB) algorithm. This approach was able to yield
an F1 score of 0.50, which outperformed other heirarchial-based classification
approaches. Incze et al. [31] used a pre-trained MobileNet-based CNN architec-
ture to classify bird species from another subset of the Xeno-canto database [12].
This approach initially showed promising results for audio classification of two
bird species with an accuracy of over 80%, which reduced to below 40% when
the number of classes was increased to 10. Finally, the model demonstrated an
accuracy of 20% when trying to classify 50 bird species. The authors discussed
the need for a deeper network being employed in future. It was observed that
transfer learning on the pre-trained VGG16 CNN architecture achieved a bird
audio classification accuracy of 73.5% on the evaluation set, on the same Bird
Songs From Europe dataset consisting of 50 classes [23]. This demonstrated an
improved accuracy on the existing systems for bird species classification, with
this number of classes. Table 1 outlines the performance of these three approaches
against the performance achieved in this work, based on an evaluation of bird
species obtained from the Xeno-canto database.
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Fig. 6. Sample prediction (left), Blbird = Blackbird; Njar = NightJar; RoFch =
RoseFinch; GrFch = GreenFinch, Sample prediction (right), GrWb = Great Warbler;
Lowl = Little Owl; Bowl = Boreal Owl; Ckoo = Cuckoo

Table 1 clearly shows that our proposed Faster R-CNN model outperforms
standard classification approaches and has the potential to cope with the chal-
lenges associated with automated biodiversity monitoring. It was seen that seg-
mentation of bird audio with 50% overlap plays a vital role in increasing the
training data. Spectrograms generate distinct patterns based on the energies
possessed by avian vocalisation and these patterns differ for every bird species.
Functionalities from the Fastai library [26] support model training [28] to achieve
minimal validation loss. This work, in performing object detection in the spectral
domain for effective spectral pattern recognition could provide a breakthrough
for biodiversity monitoring systems through diarization.

Table 1. Model performances

Model Number of species Metrics

GMNB [30] 48 0.50 (F1)

MobileNet [31] 50 20% (accuracy)

VGG16 [23] 50 73.5% (accuracy)

Faster R-CNN 50 0.85 (F1)

5 Conclusions

A huge amount of research has been invested to build a fully functional auto-
mated non-invasive biodiversity monitoring system. However, this research area
has lacked an exploration of diarization-based techniques. In this research, we
approached bird audio diarization through a Faster R-CNN model, performing
object detection in the spectral domain. The results achieved with this novel
approach to this challenging problem show promise. It was observed that the
augmentation techniques used, such as segmentation with 50% overlap, was cru-
cial for improving the model performance by increasing the training data by 50%.
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The functionalities adopted from the Fastai library [26] were also extremely use-
ful for ensuring optimal model training. The inferencing pipeline presented in
this approach can be used directly with the pre-trained model weights to gener-
ate predictions in a real life-scenario.

Bird audio diarization is able to separate intrinsic avian vocalisations into
separate homogeneous segments according to their species, and determine the
length of their songs alongside identifying the number of species vocalising in an
ecosystem [5]. We believe that this system and its spectral object detection app-
roach can play an important role in the monitoring of population dynamics of
bird species within an ecosystem. Our research demonstrates promising results
for the diarization of 50 bird species from a subset of the Xeno-canto database.
In future work, we aim to tackle larger and more challenging bird audio classifi-
cation problems presented by challenges such as BirdCLEF, MLSP and DCASE,
which would enable us to test and enhance our system further in this domain.

References

1. Dong, X., Jia, J.: Advances in automatic bird species recognition from environmen-
tal audio. In: Journal of Physics: Conference Series, vol. 1544, p. 012110 (2020)

2. Kahl, S., Clapp, M., et al.: Overview of BirdCLEF 2020: bird sound recognition in
complex acoustic environments. In: Conference and Labs of the Evaluation Forum
(CLEF) Task Overview (2020)

3. Kahl, S., Wilhelm-Stein, T., et al.: Large scale bird sound classification using con-
volutional neural networks. In: Working Notes of Conference and Labs of the Eval-
uation Forum (CLEF) (2017)

4. Narasimhan, R., Fern, X., Raich, R.: Simultaneous segmentation and classification
of bird song using CNN. In: IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP) (2017)

5. Huang, Z., Watanabe, S., et al.: Speaker diarization with region proposal network.
In: IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP) (2020)

6. Lima, F.: Bird songs from Europe (Xeno-canto) (2020). https://doi.org/10.34740/
kaggle/dsv/1029985

7. Ren, S., He, K., et al.: Faster R-CNN: towards real-time object detection with
region proposal networks. In: Advances in Neural Information Processing Systems
(NeurIPS) (2015)

8. Anderson, S., Dave, A., Margoliash, D.: Template-based automatic recognition of
birdsong syllables from continuous recordings. J. Acoust. Soc. Am. 100(2), 1209–
1219 (1996)

9. Mporas, I., Ganchev, T., et al.: Automated acoustic classification of bird species
from real-field recordings. In: IEEE International Conference on Tools with Arti-
ficial Intelligence (2012)

10. Fagerlund, S.: Bird species recognition using support vector machines. EURASIP
J. Adv. Sig. Process. 1, 64 (2007). https://doi.org/10.1155/2007/38637

11. Ng, H.W., Nguyen, T.N.T.: The 9th annual MLSP competition: second place. In:
IEEE International Workshop on Machine Learning for Signal Process (MLSP),
pp. 1–2 (2013)

https://doi.org/10.34740/kaggle/dsv/1029985
https://doi.org/10.34740/kaggle/dsv/1029985
https://doi.org/10.1155/2007/38637


426 R. Shrestha et al.

12. Vellinga, W.: Xeno-canto - bird sounds from around the world. Xeno-Canto Foun-
dation for Nature Sounds. https://doi.org/10.15468/qv0ksn

13. Zhao, Z., Zhang, S., et al.: Automated bird acoustic event detection and robust
species classification. Ecol. Inform. 39, 99–108 (2017)

14. Weerasena, H., Jayawardhana, M., et al.: Continuous automatic bioacoustics mon-
itoring of bird calls with local processing on node level. In: IEEE Region 10 Con-
ference (TENCON), pp. 235–239 (2018)

15. Lassek, M.: Bird song classification in field recordings: winning solution for NIPS4B
2013 competition. In: Neural Information Process Scaled for Bioacoustics (NIP4B):
From Neurons to Big Data, pp. 176–181 (2013)

16. McIlraith, A.L., Card, H.C.: Bird song identification using artificial neural networks
and statistical analysis. In: IEEE Canadian Conference on Electrical Computer
Engineering, Engineering Innovation: Voyage of Discovery, vol. 1, pp. 63–66 (1997)

17. Schuller, B.: Intelligent Audio Analysis. Signals and Communication Technol-
ogy, pp. 99–124. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
36806-6

18. Sprengel, E., Jaggi, M., et al.: Audio based bird species identification using deep
learning techniques. In: Working Notes of Conference and Labs of the Evaluation
Forum (CLEF) (2016)

19. Koh, C.Y., Chang, J.Y., et al.: Bird sound classification using convolutional neural
networks. In: Working Notes of Conference and Labs of the Evaluation Forum
(CLEF) (2019)

20. Lassek, M.: Bird species identification in soundscapes. In: Working Notes of Con-
ference and Labs of the Evaluation Forum (CLEF) (2019)

21. Muhling, M., Franz, J., et al.: Bird species recognition via neural architecture
search. In: Working Notes of Conference and Labs of the Evaluation Forum (CLEF)
(2020)

22. Maina, C.: Audio diarization for biodiversity monitoring. In: IEEE AFRICON
International Conference on Green Innovation for African Renaissance, pp. 1–5
(2015)

23. Lima, F.: Audio classification in R. poissonisfish (2020). https://poissonisfish.com/
2020/04/05/audio-classification-in-r/

24. Robert, J., Webbie, M., et al.: Pydub. Github (2018). http://pydub.com/
25. McFee, B., Lostanlen, V., et al.: Librosa/librosa: 0.8.0. Zenodo (2020)
26. Howard, J., Gugger, S.: Fastai: a layered API for deep learning. Information 11(2),

108 (2020)
27. Vazquez, L., Hassainia, F.: IceVision: an agnostic object detection framework.

Github (2020). https://github.com/airctic/icevision
28. Smith, L.N.: Cyclical learning rates for training neural networks. In: IEEE Con-

ference on Applications of Computer Vision (WACV), pp. 464–472 (2017)
29. Biewald, L.: Experiment tracking with weights and biases. Weights and Biases

(2020). https://www.wandb.com/
30. Silla Jr., C.N., Kaestner, C.A.A.: Hierarchical classification of bird species using

their audio recorded songs. In: IEEE International Conference on Systems, Man,
and Cybernetics (2013)

31. Incze, A., Jancso, H., et al.: Bird sound recognition using a convolutional neural
network. In: IEEE International Symposium on Intelligent Systems and Informatics
(SISY) (2018)

https://doi.org/10.15468/qv0ksn
https://doi.org/10.1007/978-3-642-36806-6
https://doi.org/10.1007/978-3-642-36806-6
https://poissonisfish.com/2020/04/05/audio-classification-in-r/
https://poissonisfish.com/2020/04/05/audio-classification-in-r/
http://pydub.com/
https://github.com/airctic/icevision
https://www.wandb.com/


Multi-modal Chorus Recognition
for Improving Song Search

Jiaan Wang1, Zhixu Li1(B), Binbin Gu4, Tingyi Zhang1, Qingsheng Liu5,
and Zhigang Chen2,3

1 School of Computer Science and Technology, Soochow University, Suzhou, China
jawang1@stu.suda.edu.cn, zhixuli@suda.edu.cn

2 iFLYTEK Research, Suzhou, China
3 State Key Laboratory of Cognitive Intelligence, iFLYTEK, Hefei, China

4 University of California, Irvine, USA
5 Anhui Toycloud Technology, Hefei, China

Abstract. We discuss a novel task, Chorus Recognition, which could
potentially benefit downstream tasks such as song search and music sum-
marization. Different from the existing tasks such as music summariza-
tion or lyrics summarization relying on single-modal information, this
paper models chorus recognition as a multi-modal one by utilizing both
the lyrics and the tune information of songs. We propose a multi-modal
Chorus Recognition model that considers diverse features. Besides, we
also create and publish the first Chorus Recognition dataset containing
627 songs for public use. Our empirical study performed on the dataset
demonstrates that our approach outperforms several baselines in chorus
recognition. In addition, our approach also helps to improve the accuracy
of its downstream task - song search by more than 10.6%.

Keywords: Chorus recognition · Song search · Multi-modal data

1 Introduction

Nowadays, music streaming services have become mainstream ways for people
to enjoy music. As a key function of music streaming services, song search aims
to search for target songs by a segment of lyrics or tune. Despite its impor-
tance, the song search capabilities offered by the existing applications are still
unsatisfactory.

According to our study, the song search in popular music applications (e.g.,
Youtube Music, QQ Music and Netease Cloud Music) often flawed in two ways.
On the one hand, when the searching lyrics segment or tune segment is short,
plenty of irrelevant songs might be returned by the song search. On the other
hand, when searching with a long lyrics or tune segment towards a large song
library, the searching speed would be greatly slowed down. The major reason for
the above defects is that the existing song searches take fine-grained keywords or
fragments of tunes as the basic searching unit, which are often shared by many
c© Springer Nature Switzerland AG 2021
I. Farkaš et al. (Eds.): ICANN 2021, LNCS 12891, pp. 427–438, 2021.
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Fig. 1. (a) Song search by lyrics keywords. (b) Song search by tune fragments.

songs such as the example shown in Fig. 1, resulting in too many matching
targets, thus reducing the efficiency and accuracy of song searches.

In this paper, we propose to improve the song search experience by identifying
the most impressive part of a song, namely the chorus of the song. This allows the
song search to primarily focus on lyrics or tunes belonging to chorus. Therefore,
the length of the songs’ searchable part could be greatly shortened, and the
overlaps between the lyrics or tunes of different songs could be significantly
reduced. As a result, both the accuracy and efficiency of the song search are
expected to be enhanced.

Given the motivation above, we discuss a novel task called Chorus Recog-
nition, aiming at identifying the chorus of a given song. In order for better song
search experience, we model Chorus Recognition as a multi-modal task where
both lyrics and tune of songs would be taken into account. There are some other
music-relevant tasks like music summarization and lyrics summarization. Music
summarization utilizes the tune of music to identify the most representative
parts, lyrics summarization focuses on extracting or generating a short sum-
mary of the lyrics of songs. Either task only considers single-modal information.
Thus, their approaches could not be directly adopted in Chorus Recognition.

Unfortunately, there is no publicly available dataset for the Chorus Recogni-
tion task. Some existing related datasets cannot meet the needs of this task. For
example, the RWC music dataset [10] which has been widely used in the music
summarization task, only has manual annotation of the start and end times of
each chorus section in each song, and do not provide the lyrics information.

In this work, we first build a CHOrus Recognition Dataset (CHORD) which
contains 27k lyrics lines from 627 songs, each of which has been labeled with
a boolean value to indicate whether it belongs to the chorus. Then, based on
this dataset, we propose the first multi-modal Chorus Recognition model which
utilizes both the lyrics and tune information. Our contributions are summarized
as follows:

– In order for better song search experience, we propose a novel upstream task
called Chorus Recognition, aiming at identifying the chorus of a given song.
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Futhermore, we construct the first CHOrus Recognition Dataset (CHORD)
and release it for further research1.

– We propose a novel multi-modal Chorus Recognition model, where multi-
modal features are employed.

– Our empirical study not only shows the effectiveness of our model in chorus
recognition, but also demonstrates its effectiveness in improving the perfor-
mance of song search with human evaluation.

2 Related Work

Existing researches on song search explore how to search target songs through
various given information [4,5,12,20]. Wang et al. [20] study how to use multi-
granularity tags to query songs. Buccoli et al. [4] explore how to search songs
through a text description. Leu et al. [12] and Chen et al. [5] make use of the
tune segment to search target songs. But there are few influential works on
lyrics-based song search. The lyrics search mechanism in the existing music apps
basically borrows from general search engine. However, different from the ordi-
nary texts, lyrics are the carrier of melody. The fact that the lyrics lines and
their corresponding melodies can be divided into intro, verse and chorus has
never been recognized by the existing work.

There are some other music tasks related to Chorus Recognition like music
summarization and lyrics summarization. Music summarization, also named as
music thumbnailing, works on extracting a short piece of music to represent the
whole piece. Previous works typically assume that the repeated melody pattern
can represent the whole music. They use Self-Similarity Matrix (SSM) or Hidden
Markov Model (HMM) methods to divide the song into several segments and
then extracted the most frequent ones as the result [2,6]. Nevertheless, many
songs do not follow this assumption. To solve this problem, Bittner et al. [3]
propose to do peak detection near the location where the user often pulls the
progress bar to, because users usually prefer the representative part of a song.
Also, Huang et al. [11] consider that the most emotional part of a song usually
corresponds to the highlight, so they use music emotion classification as a surro-
gate task for music summarization. Lyrics summarization aims to preserve key
information and the overall meaning of lyrics. As a special kind of text summa-
rization task, Fell et al. [9] propose to employ the generic text summarization
models over lyrics.

3 The Chorus Recognition Task and Dataset

3.1 Task Overview

The chorus of music is usually the most representative and impressive part of
the music, which consists of one or several segments from the music. Given music
M = {(S1, A1), (S2, A2), · · · , (Sk, Ak)}, where Si denotes the i-th lyrics line, Ai

1 https://github.com/krystalan/MMCR.

https://github.com/krystalan/MMCR
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denotes its corresponding audio piece in M and k represents the number of lyrics
lines in M . The goal of Chorus Recognition is to decide whether (Si, Ai) (1 ≤
i ≤ k) belongs to the chorus part of M .

3.2 Dataset Collection

Music Collection. We collected different types of Chinese songs from the pop-
ular song lists on QQ music2. Due to the copyright reasons, we only reserved the
songs available for free download. We randomly selected 1000 songs as the basic
data for building CHOrus Recognition Dataset (CHORD). These songs cover
many genres, such as rock, pop, classical, and so on. After a song is downloaded,
two related files are available: MP3 file and LRC file. The MP3 file stores all
the audio information of the song. The LRC file records each lyrics line and its
corresponding timeline information.

Ground-Truth Chorus Annotation. In order to annotate the data more
efficiently, we developed a strict annotation standard for the chorus to guide data
annotation. Based on its corresponding audio piece, each lyrics line is marked as
“0” or “1”. “0” represents that the lyrics line is not in the chorus part, and “1”
represents the opposite. We have 22 out of 25 annotators pass our annotation
qualification test. All these annotators are undergraduate students in the music
school of our university. During the process of annotation, each song will be
assigned to three different annotators separately. If three annotating results are
consistent, the annotation will be passed directly. Otherwise, the final annotation
will be confirmed by the data specialists. In the end, all the data specialists will
recheck the annotating results, and the questionable data will be re-annotated
until the annotation meets all its requirements.

Statistics. After the data annotation process, we only keep 627 songs because
some song files are invalid or some of their lengths are too short (e.g., less than
60 s). Finally, CHORD contains 27k lyrics lines and each song contains an average
of 43.17 lyrics lines. In our experiments, we divide CHORD into train, validation
and testing sets with a rough ratio of 80/10/10.

4 Model

Our proposed model MMCR (Multi-Modal Chorus Recognition) consists of
three parts. Given a lyrics line Si and its corresponding audio piece Ai from
music M . Firstly, the information of Ai (i.e., tune information) is represented
by the Mel Frequency Cepstrum Coefficient (MFCC) feature and chord feature.
Secondly, the information of Si (i.e., lyrics information) is obtained through a
Pre-trained Language Model and Graph Attention Networks [18]. Lastly, upon
getting the final feature Fi of (Si, Ai) based on its corresponding tune informa-
tion and lyrics information, a classifier is used to predict whether the (Si, Ai)
belongs to the chorus.
2 https://y.qq.com/.

https://y.qq.com/
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4.1 Tune Information

Audio piece Ai is represented by MFCC feature and chord feature. MFCC feature
has been widely used as the basic feature of audio in the field of speech recogni-
tion, speaker recognition, etc. [1]. The MFCC feature of audio piece Ai is denoted
by Mi. Note that although each type of audio has the MFCC feature, only music
audio has chord sequence which represents its melody. Chord sequence in music
is just like word sequence in natural language. Thanks to skip-gram model [14],
we can obtain pre-trained chord embedding by training skip-gram model on the
LMD MIDI dataset [16] with chord modeling task (given central chord to pre-
dict surrounding chords), which is similar to obtain word embedding through
language modeling task. For audio piece Ai, its chord sequence is denoted by
{c1, c2, · · · , cli} which extracted by an off-the-shelf script. Then, each chord cj is
converted to chord embedding CEj based on pre-trained chord embedding. The
chord feature of audio piece Ai (denoted by Ci) is obtained by concatenating
each chord embedding,

Ci = C(Ai) = CE1 ⊕ CE2 ⊕ · · · ⊕ CEli (1)

where ⊕ means the concatenation operation.

4.2 Lyrics Information

In order to get lyrics information of a given lyrics line Si. The whole sequence of
Si is input to BERT [8] which calculate the representation of each token through
stacked transformer encoders [17]. Then, we use the final representation of token
[CLS] (denoted by LBerti) as the basic semantic information of Si, because it
aggregates information from the whole lyrics line through BERT. Note that,
LBerti only contains the semantic information of lyrics line Si itself. Intuitively,
different lyrics lines from the same song can be complementary to each other.
For example, if two lyrics lines have similar words or tune, we can use one lyrics
line to enrich the representation of another, making the lyrics embedding more
meaningful. Inspired by HSG [19], we use Graph Attention Networks [18] to
show how we achieve this purpose.

As shown in Fig. 2(a), given music M , we first construct a heterogeneous
graph which consists of three types of nodes, i.e., sentence nodes, word nodes,
and chord nodes. Each sentence node corresponds to a lyrics line in M . For each
word (or chord) in the lyrics (or tune) of M , we create a word (or chord) node
for it. We connects each sentence node with the word (or chord) nodes if the
sentence (or its corresponding tune) contains the words (or chords). The graph
takes the importance of relationships as their edge feature. We denote eij as the
edge feature between word nodes and sentence nodes and e∗

ij as the edge feature
between chord nodes and sentence nodes. The representation of word nodes and
chord nodes are initialized by GloVe embeddings [15] and chord embeddings.
For each sentence node, LBerti is set to the initial value. Besides, we consider
TF-IDF values as the edge weights which indicate the importance between each
pair of nodes.



432 J. Wang et al.

Fig. 2. (a) The heterogeneous graph for a song. (b) The information propagation order
in the heterogeneous graph.

After initialization, we use Graph Attention Networks [18] to update the
representations of each node in the heterogeneous graph. Formally, given a con-
structed graph with node features and edge features, the graph attention (GAT)
layer is designed as follows:

Zij = LeakyReLU(Wa[Wqhi;Wkhj ; e
(∗)
ij ]) (2)

αij =
exp(zij)∑

l∈Ni
exp(zil)

(3)

ui =
∑

j∈Ni

αk
ijW

khj (4)

hi is the hidden states of input nodes, Wa,Wq,Wk,Wv are trainable weights. αij

means the attention weight between hi and hj . We calculate it based on hi, hj

and the corresponding edge feature eij . After that, we use the attention weight
to aggregate other nodes’ information (i.e., ui) for the central node. In addition,
the multi-head attention can be denoted as:

ui =‖Kk=1 (
∑

j∈Ni

αk
ijW

khj) (5)

where ‖Kk=1 means multi-head attention. After obtaining the additional informa-
tion (i.e., ui) for the central node, we update the representation of central node
by combining the original representation hi and the additional information ui

as follows:
h

′
i = ui + hi (6)

where h
′
i is the updated representation of the central node. Inspired by trans-

former [17], we leverage a position-wise feed-forward (FFN) layer which consists
of two linear transformations after each graph attention layer.

As shown in Fig. 2(b), the information propagation order is built in the het-
erogeneous graph. Firstly, we use word nodes to enrich the representation of



Multi-modal Chorus Recognition for Improving Song Search 433

sentence nodes (i). Secondly, the sentence nodes are enriched by chord nodes
(ii). Lastly, we enrich the representation of word nodes and chord nodes with
the representation of sentence nodes (iii and iv). Through the above process, the
representation of the lyrics line Si is enriched by the global information from the
whole song. We denote the contextual representation of lyrics line Si by LHGi

.
Finally, in order to supplement the position information of Si in the whole lyrics,
we add sinusoid positional embeddings [17] to LHGi

. The final lyrics feature is
denoted by Li.

4.3 Multi-modal Fusion for Classification

While three features (i.e., MFCC feature, chord feature and lyrics feature) have
been obtained seperately, the final representation of (Si, Ai) is obtained by con-
catenating MFCC feature Mi, chord feature Ci and lyrics feature Li.

Fi = Li ⊕ Mi ⊕ Ci (7)

Then, the final representation Fi is input to a sigmoid classifier to predict
whether the (Si, Ai) belongs to the chorus of the given music M . The cross-
entropy loss is used as the training objective for the developed model.

5 Experiments

5.1 Implementation Detail

We set our model parameters based on the preliminary experiments on the val-
idation set. We use the python script3 to get MFCC feature Mi ∈ Rti×13 for
audio piece Ai, where ti is decided by the length of Ai. Futhermore, the first
dimension of MFCC feature is pruned (or padded) to 1280. For pre-trained chord
embedding, we empirically limit the size of chord vocabulary to 500, and set the
dimension of chord embedding to 64. We leverage the off-the-shelf script4 to
extract chord sequences from the LMD-full dataset [16], and train skip-gram
model [14] on those sequences. To build the heterogeneous graph, we limit the
size of vocabulary to 50k and only 12 most common chords are used in chord
nodes. We initialize word nodes with 300-dimensional GloVe embeddings [15].
To get rid of the noisy common words, we further remove 10% of the vocabulary
with low TF-IDF values over the whole dataset. We pre-train the parameters
of the graph attention (GAT) layer with next lyrics line prediction task, which
is similar to next sentence prediction (NSP) [8]. Then we fix the parameters of
the graph attention layer in the chorus recognition task. In MMCR, we do grid
search of learning rates [2e−4, 4e−4, 6e−4, 8e−4] and epochs [3–6] and find the
model with learning rate 6e−4 and epochs 5 to work best. Besides, training uses
the Adam optimizer with batch sizes of 128 and the default momentum.

3 https://github.com/jameslyons/python speech features.
4 https://github.com/yashkhem1/Chord-Extraction-using-Machine-Learning.

https://github.com/jameslyons/python_speech_features
https://github.com/yashkhem1/Chord-Extraction-using-Machine-Learning
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5.2 Metrics and Approaches

We compare the developed model with typical baselines and new baselines which
proposed in the latest years, in terms of accuracy, precision, recall and F1 score.

– TextRank [13]: TextRank is an unsupervised graph-based text summariza-
tion method that computes each sentence’s importance score based on eigen-
vector centrality within weighted-graphs.

– PacSum [21]: PacSum is also an unsupervised text summarization algorithm.
Different from TextRank, PacSum builds graphs with directed edges and
employs BERT to better capture sentential meaning.

– Ext-BERT: Extractive summarizer with BERT learns the semantic of each
lyrics line in a purely data-driven way. The method calculates each lyrics line
importance score based on their semantics.

– RNAM-LF [11]: Recurrent Neural Attention Modeling by Late Fusion is
a supervised music thumbnailing algorithm proposed in recent years, which
provides the music highlight span for a given song.

5.3 Results

As shown in Table 1, MMCR significantly improves the performance compared
with other approaches. The first part of Table 1 contains two unsupervised
text summarization methods. These two methods only calculate the importance
scores of lyrics lines and we only keep the most important K lyrics lines as a
result. K represents how many lyrics lines belong to the chorus part in each
song from the testing set of CHORD (different song has different K value). The
second part is the supervised models based on lyrics embedding. Ext-BERT
has been explained above, Ext-BERT-wwm-ext is just replace BERT [8] with
BERT-wwm-ext [7]. RNAM-LF [11] is a music thumbnailing algorithm. Since
it has been trained on tens of thousands of music data on tasks different from
ours, we used the pre-trained RNAM-LF directly to get the highlighted span
in music. After obtaining the highlight span of music, only if, at least half of a
lyrics line is within this span, we then predict that the lyrics line belongs to the
chorus part.

5.4 Ablation Study

To evaluate the effectiveness of each feature (MFCC feature, chord feature or
lyrics feature), we removed some features respectively from our model in the
testing set.

The models shown in Table 2 are explained below:
Chord (Random) only uses randomly initialized chord embedding and

update the embedding during the process of training. Chord (skip-gram, fix)
uses pre-trained chord embedding as a fixed value. Chord (skip-gram, fine-
tune) uses pre-trained chord embedding and fine tuning it in chorus recognition
task. Ext-BERT and Ext-BERT-wwm-ext are same as the models we intro-
duce above. These two models only use lyrics feature. MFCC only considers the
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Table 1. Performance comparison of different models on CHORD. Acc.: accuracy, P:
precision, R: recall.

Model Acc. P R F1

TextRank 49.21 48.15 48.15 48.15

PacSum 64.09 63.34 63.34 63.34

Ext-BERT 69.65 68.17 71.35 69.73

Ext-BERT-wwm-ext 70.39 69.16 71.35 70.24

RNAM-LF 67.87 67.21 67.17 67.19

MMCR (BERT) 85.44 86.56 83.19 84.84

MMCR (BERT-wwm-ext) 85.94 85.52 85.83 85.67

Table 2. Result of ablation experiment on CHORD. Acc.: accuracy, P: precision, R:
recall.

Model Acc. P R F1

Chord (Random) 54.25 53.03 57.60 55.22

Chord (Skip-gram, fix) 55.89 54.71 57.66 56.14

Chord (Skip-gram, fine-tune) 56.06 54.36 64.11 58.84

Ext-BERT 69.65 68.17 71.35 69.73

Ext-BERT-wwm-ext 70.39 69.16 71.35 70.24

MFCC 81.84 80.54 84.38 82.42

MFCC+Lyrics (BERT) 85.21 84.71 85.17 84.94

MFCC+Lyrics (BERT-wwm-ext) 85.56 84.86 85.83 85.34

MMCR (BERT) 85.44 86.56 83.19 84.84

MMCR (BERT-wwm-ext) 85.94 85.52 85.83 85.67

MFCC feature to handle the chorus recognition task. MFCC+Lyrics approach
combines MFCC feature and lyrics feature, the lyrics feature has been extracted
from BERT [8] or BERT-wwm-ext [7] respectively.

As can be seen from Table 2, MFCC is the most important feature among
these three features, as we find that MFCC achieves much better performance
when only one of three features is considered. The results also demonstrate
that we can use lyrics feature and chord feature to make the overall represen-
tation more meaningful and achieve better performance on chorus recognition
task. Besides, the results indicate that BERT-wwm-ext is better than BERT in
extracting lyrics feature.

5.5 Evaluation on Song Search

We also demonstrate the effectiveness of our model in the song search task with
human evaluation. Our song search experiment uses keywords to search for songs.

We compare our model with several applications and typical baselines:
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Table 3. Result of song search task. Hits@n means the proportion of correct song
in top n ranks.

Methods Hits@1 Hits@3

Youtube Music 0.73 0.84

QQ Music 0.75 0.86

Netease Cloud Music 0.69 0.79

TF-IDF 0.55 0.71

MMCR 0.83 0.91

– MMCR: We calculate the chorus probability of each lyrics line by MMCR
on our music database which has about 370k popular Chinese songs. Several
lyrics lines from different songs may contain the same keyword input. We
return the song whose lyrics line has the maximum chorus probability.

– TF-IDF: The term frequency (TF) is the number of times wi occurs in Sj

and the inverse document frequency (IDF) is made as the inverse function
of the out-degree of wi [19]. When several lyrics lines from different songs
contain the keyword, we compute the average TF-IDF value of keyword in
each song and return the song with the highest value.

– Youtube Music5, QQ Music6 and Netease Cloud Music7: All of the
three music applications provide song search services for users. Among them,
Youtube Music is extremely popular and serves the worldwide users. QQ
Music and Netease Cloud Music are the two most popular music applications
in China.

In our human evaluation, we construct candidate keywords set for each song in
our music database. Given a song, we first extract chorus lyrics lines by MMCR.
Then we collect all three or four consecutive words from each chorus lyrics line.
If the consecutive words appear in at least two other songs’ non-chorus part, it
will be added to the candidate keywords set of the given song. We choose three
or four consecutive words as keyword for the following reasons: (1) too few words
may be identified as a song title by music apps; (2) too many words leads to the
probability of the keyword appearing in other songs dropping significantly.

The specific process of human evaluations is as follows: (a) Choose a song
from our music database which has about 370k popular Chinese songs. (b)
Choose a keyword from the candidate keywords set of the song. (c) Use the
selected keyword to search songs by all applications and methods. (d) We give
one point if the target song (i.e., the song selected in the first step) is within the
top k (k = 1 or 3 in our evaluation) search results and zero otherwise.

We also make the following restrictions to ensure the fair comparison: (a)
the selected keyword needs to be identified as a part of lyrics rather than a song

5 https://music.youtube.com/.
6 https://y.qq.com/.
7 https://music.163.com/.

https://music.youtube.com/
https://y.qq.com/
https://music.163.com/
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title by all apps. (b) The search result of applications only retains songs which
also appear in our music database. (c) All the applications are not logged in,
because the search results may be influenced by the users’ preference due to the
built-in recommendation system. (d) Each song can be selected at most once.

We ask 30 volunteers to do human evaluation for 20 times per person. The
result of the song search is shown in Table 3. Each score represents the average
result of human evaluation. As we can see, our method achieves better perfor-
mance in the scenario of song search by keywords. Specifically, TF-IDF only use
the lyrics information, which leads to uncompetitive result. Note that the lyrics
lines and their corresponding melodies have never been recognized by existing
work. So, our approach achieves better performance than these methods. Specifi-
cally, our model improves the accuracy of this task by more than 10.6% compared
with the second best approaches.

6 Conclusion

In this work, we develop a multi-modal chorus recognition model. Through the
improved BERT and graph attention networks, we achieved better lyrics embed-
ding. Also, by leveraging the pre-trained chord embedding we enhanced the
performance of the model. We showed the superior performance of our model
compared to existing work on CHORD.
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Abstract. The strong relation between face and voice can aid active
speaker detection systems when faces are visible, even in difficult set-
tings, when the face of a speaker is not clear or when there are several
people in the same scene. By being capable of estimating the frontal
facial representation of a person from his/her speech, it becomes easier
to determine whether he/she is a potential candidate for being classi-
fied as an active speaker, even in challenging cases in which no mouth
movement is detected from any person in that same scene. By incorpo-
rating a face-voice association neural network into an existing state-of-
the-art active speaker detection model, we introduce FaVoA (Face-Voice
Association Ambiguous Speaker Detector), a neural network model that
can correctly classify particularly ambiguous scenarios. FaVoA not only
finds positive associations, but helps to rule out non-matching face-voice
associations, where a face does not match a voice. Its use of a gated-
bimodal-unit architecture for the fusion of those models offers a way
to quantitatively determine how much each modality contributes to the
classification.

Keywords: Active speaker detection · Face-voice association ·
Crossmodal · Audiovisual · Deep learning

1 Introduction

The task of active speaker detection (ASD) consists of determining from which
individuals in an audiovisual footage a given speaking activity originates. The
combined use of auditory and visual modalities is fairly common in multimodal
learning, including tasks like speech enhancement [9], speaker diarisation [7],
speech reconstruction [14], and active speaker detection [1]. ASD is closely
related to other audiovisual multimodal learning tasks, and a high-performing
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ASD model might help in paving the way for better models for those tasks
to emerge. Related tasks include speech enhancement [9] and speech separa-
tion [7,15].

Recent solutions to the problem of detecting speaking activity in the wild
involve the use of 3D convolutions [6,17], information from other individuals
in the same scene [1] and the optical flow of facial movements [10]. Although
being very powerful, those models still face some difficulties depending on the
resolution or the inclination of a person’s face [1,10,16]. Most of them also
struggle when working with medium- to long-term time spans [6,10,16,17].

In cases where faces are not clear enough, ASD must rely mainly on the
auditory modality. However, in scenes where there are two people talking to
each other and their faces are not clear enough – due to a low resolution or
to a high yaw inclination of their faces –, neither the visual nor the auditory
modalities can provide enough information on their own. The existence of a mod-
ule capable of retrieving a frontal face representation from the speaker’s voice
might provide information useful for speaker disambiguation in such challenging
scenarios. Face-voice association applications show that it is actually possible
to retrieve a frontal face representation from a speaker’s speech signal [11,13].

Fig. 1. Active Speakers in Context (ASC) uses feature representations of face crops and
audio provided by short-term encoders (STE). Through a pairwise analysis of feature
representations of different speakers at distinct time steps made by a self-attention
module (SAT) and the subsequent temporal refinement made by a long short-term
memory (LSTM), ASC classifies an active speaker. By adding a face-voice associa-
tion module (FV), FaVoA supports the classification of active speakers in challenging
scenarios where the context does not provide enough information. The face-voice asso-
ciation module is combined with the output of ASC via a gated bimodal unit (GBU).
Modules and layers in yellow are pretrained and fixed, those in violet are pretrained
but are also updated during fine-tuning, and the ones in blue are trained from scratch.
(Color figure online)
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The retrieved frontal face can be useful in cases in which the voice of the per-
son speaking does not match the face of the person being classified for any of
several reasons, e.g., difference in gender, ethnicity, age and so on. Additional
information obtained via the crossmodal aspect of face-voice association, where
one can relate one speech signal with a person’s face, can help determining some
clear cases that can be challenging for other models. For instance, if the mouth
of the actual speaker in the scene is not seen for some reason, and no mouth
movement is detected from any other participant in the scene. A non-speaking
person whose face does not match the actual speaker’s voice would be classified
as not speaking. The actual speaker can also be properly classified if the face of
no other scene participant matches the voice.

The contributions of this paper include the creation of FaVoA (Face-Voice
Association Ambiguous Speaker Detector), a model (depicted in Fig. 1) capa-
ble of detecting speaking activities in scenarios in which the context does not
provide enough information, e.g., several people speaking simultaneously. We
furthermore provide a quantitative evaluation on how much face-voice associa-
tion actually contributes to the detection of speaking activity.

The remainder of the paper is structured as follows. Section 2 presents the
approaches that have been proposed to tackle the active speaker detection task,
as well as applications of face-voice association. Section 3 introduces the model
used in this research to address the task of active speaker detection. The model
performance was assessed and compared with state-of-the-art architectures. The
details on the experimental setup as well as its results are presented in Sect. 4.
That section also offers a discussion on those results, as well as an analysis
on how much importance face-voice association plays in ASD. Finally, Sect. 5
summarises the findings of this research and offers possibilities for future works.

2 Related Works

2.1 In-the-Wild Active Speaker Detection

AVA-ActiveSpeaker [16] was the first dataset built for in-the-wild active speaker
detection. It was composed of videos in different resolutions with actors speaking
in various distinct languages. Labels were provided for some speakers in selected
frames of those videos depending on their speaking activity. The labels could
be “not speaking”, “speaking audible” and “speaking not audible”. The dataset
was built as part of a task at the 2019 ActivityNet Challenge. The task used
mean average precision (mAP) as its evaluation metric and the audibly speaking
activity as the positive class for that matter. Two competitors [6,17] achieved
a higher mAP than the baseline provided by Roth et al. [16]. Both models
depended on a lip synchronisation preprocessing step, and could only achieve
a high performance when working with short-term time spans and usually in
scenarios in which there was only one person speaking [1,6,17].

To address the shortcoming of previous models, Alcázar et al. [1] propose
Active Speakers in Context (ASC), a model whose main intuition is to leverage
active speaker context from long-term inter-speaker relations. It differs from
previous approaches by using not only the information of the face of the target
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individual and of the audio input, but also that of the faces of other individuals
detected at the same timestamp [1]. The addition of the information from the
context in which a speaking activity happens grants ASC an mAP higher than
that of Zhang et al. [17], but still lower than that of the ensemble models of
Chung [6]. Even though the context aids in some challenging scenarios, it may
not prove useful in scenarios in which the mouth of the speaker is not seen due
to low resolution or for the speaker not facing the camera, and when there are
several people speaking simultaneously.

Dense optical flow is also used for ASD, as a means to strengthen facial
motion visual representation and this way avoid confusions that happen to audio-
visual fusion-based models due to factors such as non-speaking facial motion,
varied lighting and low-resolution footage [10]. The inclusion of the dense opti-
cal flow grants the model a performance higher than the baseline model of Roth
et al. [16] in two distinct metrics [10], yet no mAP comparison is offered. No com-
parison with any other architecture is provided either. Similar to other models,
the performance of that approach degrades when dealing with faces in low res-
olution or that are highly tilted.

2.2 Learning of Face-Voice Association

Learning of face-voice relations results from continuous and extensive exposure
to audiovisual stimuli [8]. Psychology studies with infants indicate that the abil-
ity to make arbitrary face-voice associations emerge in humans between two and
four months of age [3]. In the area of active speaker detection, the advantage
of matching visual and auditory representations was shown via the use of con-
trastive loss by some models [10,17]. Those implementations, however, do not
explicitly make use of the advantages face-voice associations can provide.

Applications of face-voice association in audiovisual crossmodal representa-
tion learning include the assembling of models capable of generating human
faces from speech inputs [5,13], as well as of models that can retrieve or match
inputs from one modality given inputs of the other modality [11,12]. The per-
formance of active speaker detection models degrades in cases where faces have
a very small resolution or a large yaw angle [10]. The ability to retrieve frontal
facial embeddings from speech embeddings might provide additional information
capable of helping with those challenging cases.

2.3 Gated Bimodal Unit

To determine if face-voice association presents an actual contribution to the task
of ASD and in which cases it contributes the most, one should be able to evaluate
its contribution quantitatively. Gated multimodal units (GMUs) [2] are modality
fusion mechanisms capable of providing quantitative values on the contribution of
a given modality to the classification of a dataset entry. The gated bimodal unit
(GBU) is a special case of the GMU oriented for the case where there are only
two modalities to be fused. GMUs incorporate ideas from feature and decision
fusion [2]. The model architecture is based on the flow control of gated neural net-
works, e.g., gated recurrent units (GRUs) [4]. Given embeddings e1, e2 ∈ R

d from
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Fig. 2. GBU inner structure

different modalities, the GBU outputs a fused embedding z ∈ R
d. As indicated in

Fig. 2, the GBU architecture is similar to the update gate of a GRU. In that sense,
the GBU fused modality z is given by

z = p � h1 + (1 − p) � h2, (1)

p = σ (Wp (e1 ‖ e2) + bp) , (2)

hi = tanh (Wihi + bi) , (3)

where � denotes the Hadamard product, σ the sigmoid function, ‖ vector con-
catenation and 1 ∈ R

d an all-one vector. It is worth noticing from Eqs. 1 and 2
that p can be interpreted as a vector of probabilities p1, p2, . . . , pd that indicate
the relevance of each modality in every element zi ∈ z. In other words, zi ∈ z is
composed of a linear combination of h1,i ∈ h1 and h2,i ∈ h2. The contribution
of h1,i in zi is given by pi and that of h2,i is given by the complement of pi, i.e.,
1 − pi. Besides the case in which pi = 0.5, one of the modalities will provide a
major contribution to zi while the other will deliver a minor contribution.

3 Model Architecture and Training Method

3.1 Input Data, Active Speakers in Context, and FaceVoice

FaVoA incorporates the context information of Active Speakers in Context
(ASC) [1] and the face-voice association provided by FaceVoice [11]. And as
such, the proposed model requires input data that can be fed to both models.
Figure 1 shows the architecture of the model, how it receives the input data and
how it processes it. For the part imported from ASC, given a frame and a person
in that frame, the model receives that person’s face as a 144×144 image, as well
as the audio input from that particular part of the video, which is converted to
a MFCC spectrogram. Both inputs are sent to a short-term encoder, denoted as
STE in Fig. 1, which outputs a vector u ∈ R

1024. The STE is composed of two
ResNet-18 CNNs [1], one for each modality, which output vectors of 512 dimen-
sions, which are then concatenated to produce u [1]. The STE was pretrained
with the weights provided by Alcázar et al. [1] and kept fixed during training.
From FaceVoice, only its voice subnetwork was used, which is denoted as FV
in Fig. 1. It requires 10 s of continuous speaking activity as input. However, it
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is not common for datasets built for active speaker detection to have the same
person speaking for such a long time. To work around this restriction, the same
audio input sent to STE was replicated until the repeated input had the length
of 10 s. This approach was taken because the semantics of what is being said
was irrelevant for this task and only the speaking activity was of interest. Given
a 10-second audio input, FV then outputs a vector representation a ∈ R

128. FV
was pretrained with the weights provided by Kim et al. [11], but unlike STE its
weights were not kept fixed.

In order to make use of the context in which a given speaking activity takes
place, the vector representations u provided by the STE are combined and organ-
ised in a tensor C. Tensor C is built in such a way that it may contain information
from the time steps before and after the given speaking activity as well as from
other speakers in the same scene. C has dimensions L×S ×1024, where L is the
number of frames used for the context and S is the number of speakers. Those
L frames are defined according to a specific time step t, in which the speaking
activity to be classified happens. The frames must be selected in a way that time
step t lies at the centre of the frame sequence. A sequence of L frames should
contain every frame from time step t−�L/2�τ to t+�L/2�τ with hops of τ units
of time between each selected frame. It is worth noticing that the sequence of
frames does not need to be contiguous. Given the frame of interest at time step
t, a set of S speakers in that frame is selected. If there are only S′ < S speak-
ers on the frame of interest, then information of some of those S′ may be used
more than once when working with that frame of interest. In a similar fashion, if
some selected speaker appears only in a part of the frame sequence, its foremost
activity is replicated all the way until the first frame of the sequence, and anal-
ogously its last activity is also replicated all the way until the last frame of the
sequence. A more detailed explanation on the selection of frames and speakers
can be found in the ASC original paper [1]. Tensor C is then subjected to a self-
attention unit (SAT in Fig. 1) and a single-layer LSTM for the sake of context
refinement. The LSTM produces outputs c′

i ∈ R
128, 1 ≤ i ≤ L × S, which are

concatenated into a vector representation s ∈ R
L×S×128. SAT and LSTM were

pretrained with the weights provided by Alcázar et al. [1] and were subjected to
updates during training.

3.2 Fusing Speaking Context and Face-Voice Association

By combining the embedding a, provided by FaceVoice, with s, provided by
ASC, it is expected that the benefits of face-voice association might aid the
active speaker detection model even in cases in which the context is not enough,
e.g., when there are several people speaking simultaneously, or when the faces
of the speakers are either in low resolution or very tilted. The fusion of those
embeddings is made by a GBU unit, but since it requires both modality embed-
dings to have the same dimension, embedding a is presented to a ReLU and a
linear layer, which outputs a vector representation a′ ∈ R

L×S×128. Both a′ and
s are then fused by the GBU unit, which produces a fused vector representa-
tion z ∈ R

L×S×128. The probability q(x) of a given input x being classified as
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“speaking audible” is obtained by projection from z with a linear layer and then
the application of a softmax operation over the two classes.

FaVoA was trained on a single NVIDIA GeForce RTX 2080 Ti GPU with 11
GB GDDR6 memory. A single cross-entropy loss L was used to train it using
PyTorch. The loss is given by

L = −y log(q(x)) − (1 − y) log(1 − q(x)) , (4)

where y represents the expected label, which should be 1 if there is audible
speaking activity, and 0 otherwise. The model weights were updated through a
backpropagation algorithm, by trying to minimise the cumulative loss in every
training mini-batch. Data was sent to the model via mini-batches of size 16.
Similar to ASC, the model optimisation was done with the ADAM optimiser
with an initial learning rate γ = 3 × 10−6 and learning rate decay η = 0.1 every
10 epochs.

4 Experiments

4.1 Dataset

The AVA-ActiveSpeaker dataset is the first dataset intended for the task of
active speaker detection that can be considered to be “in the wild”. Prior to
its publication, datasets crafted for this task were mainly composed of high
resolution videos with the speakers facing the camera [16]. AVA-ActiveSpeaker
contains videos spoken in very distinct languages, with some of them with low
resolution and with video and audio not well synchronised. Speakers may also
appear in different video depths, which may cause facial information to be less
clear for a learning system, and usually they are not looking at the camera.

The AVA-ActiveSpeaker dataset contains 153 videos, split into 120 for train-
ing and 33 for validation. The training dataset is composed of 29,723 speaking/
non-speaking streams, ranging from 23 to 304 annotated entries, performed by
a total of 10,156 distinct actors, some of them appearing in up to 2,165 dataset
entries. The validation dataset has 8,015 streams of speaking/non-speaking activ-
ity that range from 14 to 305 dataset annotated entries. Those streams are cap-
tured from the performance of 2,515 distinct actors, with some of them having
up to 2,143 entries of activity stored in the validation dataset. Table 1 displays
the label distribution among those datasets.

Table 1. Label distribution of training and validation splits of the AVA-ActiveSpeaker
dataset.

Not speaking Speaking audible Speaking not audible

Training 1,969,134 682,404 24,776

Validation 567,815 192,748 7,744
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4.2 Experimental Results

To evaluate FaVoA, its performance was compared with AV-GRU-f2, the base-
line model provided by Roth et al. [16], ASC (Active Speaker in Context) [1],
Chung’s TC-LSTM Ensemble + Wiener smoothing [6] and Zhang et al.’s Multi-
Task Learning model [17]. Following the indications on the 2019 ActivityNet
challenge, mAP is employed as the metric for this comparison. Table 2 presents
the achieved performance of state-of-the-art models and compares them with
that of the model described in Sect. 3.

Comparisons were also made with Huang and Koishida’s F+O+A VCE-CL
(Facial Image, Optical Flow and Audio Signal Visual-Coupled Embedding with
Contrastive Loss) [10]. It, however, does not offer performance values using the
mAP metric. Because of this, a comparison is here provided using other metrics
instead, namely the area under the ROC curve (AUC) and the balanced accuracy.
Those metrics were also published for AV-GRU-f2 [16]. Performance results of
those models, as well as FaVoA’s, are also offered by Table 2. Table 2 shows that
not only FaVoA outperformed AV-GRU-f2 in every metric, but it also presents
an mAP considerably higher than that of the multi-task learning approach [17],
which was the runner-up in the 2019 ActivityNet challenge. Its AUC is also close
to that obtained by V+O+A VCE-CL [10].

4.3 Contribution of Face-Voice Association to Active Speaker
Detection

Ablation studies are performed to determine whether a given addition to a model
makes an actual difference in its performance. However, they do not offer quan-
titative measures of how much that addition contributes to the classification.
For multimodal classification, this is an important issue if one wants to better
understand whether some modality contributes more than another to a given
task. The use of GBU for crossmodal integration allows to determine if a given
classification favours one modality or another. In the case of this study, the inter-
est lies in determining if the classification is mostly due to context information
(from ASC) or to face-voice association (from FaceVoice).

Table 2. Comparison with state-of-the-art models on the validation subset.

mAP ↑ AUC ↑ Balanced accuracy ↑
ASC [1] 0.871 N/A N/A

TC-LSTM Ensemble + Wiener [6] 0.878 N/A N/A

Multi-Task Learning [17] 0.840 N/A N/A

V+O+A VCE-CL [10] N/A 0.932 0.869

AV-GRU-f2 [16] 0.821 0.910 0.814

FaVoA 0.847 0.928 0.846
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In order to quantify the contribution of each modality, one can use the vector
p produced by the GBU sigmoid unit (see Fig. 2 and Eq. 2). For every entry of
the dataset, a vector p can be extracted. This vector contains elements pi, whose
values range from 0 to 1. Each element pi represents a degree of contribution of
modality input e1 (see Fig. 2) to element zi ∈ z. In turn, the degree of contri-
bution of modality input e2 to element zi ∈ z is 1 − pi. By taking the fraction
of elements of p whose value is greater than 0.5, one can determine the fraction
of elements of z that favours modality input e1 rather than e2. This way, one
can get a quantitative measure of the contribution of modality input e1 to the
classification and consequently, the contribution of e2 is simply one minus the
contribution of e1. In our case modalities e1 and e2 correspond to the resulting
vector representation of the FaceVoice module and the one of ASC.

The graph of Fig. 3a presents a histogram of the degree of contribution of face-
voice association to the detection of speaking activity in entries of the validation
set. The horizontal axis of the graph represents the degree of contribution of face-
voice association, ranging from 0 to 1. The vertical axis represents the number
of entries in the dataset for which the face-voice association had a particular
degree of contribution. It can be noticed in the graph that context has a greater
contribution to the classification than face-voice association in the entries of the
validation set. Nevertheless, context is never favoured by all elements of the GBU
output. Besides, face-voice association has a degree of contribution greater than
0.15 for nearly 40% of the entries, and for 303 entries this degree of contribution
can get higher than 0.3.

The contribution graph has three modes. The highest peak and its surround-
ing values correspond mostly to active speakers whose faces are clearly visible,
or to silence. The region surrounding the leftmost peak corresponds to dataset

(a) Number of entries per degree of contribu-
tion. (b) Face-voice association has a

much higher degree of contribution
for the man marked in green than
for the other actors.

Fig. 3. Degree of contribution of face-voice association in entries of the validation set.
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records where there is some sound activity and the face of the active speaker
is not entirely clear or the face being analysed is clearly not from the active
speaker. The rightmost part of the graph, with degrees of contribution greater
than 0.275, corresponds to entries in which there are very loud sounds. Figure 3b
depicts a scene in which the GBU assigns a reasonably higher degree of contri-
bution of face-voice association for the man in the foreground (0.198) than for
the other actors (0.098 for the woman in the foreground, and 0.129 and 0.132 for
the actors in the background). This happens due to the presence of a male voice
in the scene and the higher resolution of the face of the man in the foreground.

4.4 Comparison with Active Speakers in Context

The integration of FaceVoice into FaVoA offers the capability of classifying some
instances of speech activity in which ASC failed. Figure 4 presents three cases
in which the context information may be ambiguous and face-voice association
proves useful. This may happen when actors are facing sideways and a facial
feature may be mistaken for an open mouth. In Fig. 4a, ASC wrongly classifies
the facial hair for an open mouth, and classifies the man as speaking and the
woman as not speaking. Face-voice association prevents this misclassification by
recognising the female voice and associating it to the woman.

ASC can also mistakenly classify speaking people as not speaking if the mouth
of every person in the scene cannot be clearly seen due to low resolution (Fig. 4b)
or if people are speaking simultaneously (Fig. 4c). ASC classifies every person
in both figures as not speaking. Face-voice association can aid with correctly
classifying the speaker of Fig. 4b due to the age difference. Regarding the scene
depicted in Fig. 4c, ASC tends to classify a person as not speaking if someone in
the same scene context seems to be already speaking. Thus ASC classifies both
speaking women as not speaking, since the speaking activity of one of them
triggers ASC to classify the other as not speaking and vice versa. Given the
presence of female voices, FaVoA presents a less hesitant behaviour in classifying
both women whose faces are not partially hidden as speaking.

(a) Wrong gender. (b) Low resolution. (c) Multiple speakers.

Fig. 4. Examples of cases in which the context does not provide enough information
and face-voice association is required for a correct active speaker detection. In the
subfigures, people who are not speaking are marked with a red bounding box and
those speaking with a green bounding box. (Color figure online)
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FaVoA presents some difficulties in comparison to ASC in scenes where the
person is not speaking, but his/her voice can be heard narrating something. It
also makes some mistakes in case there is some chanting and the voice of the
person who is chanting somehow resembles that of the person being classified.
Finally, ASC tends to more precisely classify some speaking activities (model
outputs are mostly either close to 0 or to 1), whereas the outputs of FaVoA vary
reasonably in the range between 0 and 1.

5 Conclusion

This paper offers a study on the role of face-voice association in the task of active
speaker detection. FaVoA provides a better classification in some challenging
scenarios, such as low-resolution faces and several simultaneous speakers. Cross-
modal learning models integrate the information from different modalities as a
means to better tackle tasks in which one or more of those modalities do not
provide enough useful information for some reason. By considering a person’s
characteristics by his/her voice, FaVoA makes use of the benefits of crossmodality
in order to better determine the active speakers in a scene even in cases where
the mouth of a speaker cannot be seen. The use of GBU for modality fusion
allowed for determining quantitatively the contribution of face-voice association
in ASD. By analysing that contribution, some cases of non-speaking activity
can be immediately identified, which can help preventing the misclassification of
some person as actively speaking. Cases in which there are several speakers can
also be identified based on the degree of contribution of face-voice association. In
future work, face-voice association may be used to support tackling other cross-
modal tasks that involve conversational datasets in which speaker faces may
not be clear. Additional directions for improvement in active speaker detection
include the addition of other modalities, e.g., gaze and face keypoints.
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Abstract. Karyotyping is a vital cytogenetics technique widely applied
in prenatal diagnosis and genetic screening. Heavily dependent on the
experience of the cytogeneticist and easily affected by the attention, kary-
otype analysis is a time-consuming and error-prone task, and incorrect
karyotypes may result in misdiagnosis conclusions. This paper proposes
an effective identification framework for incorrect karyotypes based on
deep learning technology. Firstly, a chromosome classifier is trained and
utilized to classify chromosome instances in karyotypes performed man-
ually by cytogeneticists. Afterward, when the categories of chromosome
instances classified by the classifier are not identical to those categories
classified by cytogeneticists, the proposed framework identifies these cor-
responding karyotypes as unreliable. Finally, the expert team review
these unreliable karyotypes and confirmed their correctness. Extensive
experiments show that the proposed framework achieves 100% recall
and 88.89% F1 score on incorrect karyotypes, which demonstrates the
advancement and promising effectiveness of the proposed framework to
address the issue of incorrect karyotypes.

Keywords: Incorrect karyotypes identification · Karyotype analysis ·
Chromosome classification · Deep learning

1 Introduction

According to the Birth Defects Report [12] reported by the secretariat of the
World Health Organization, congenital diseases account for 7% of all newborn
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deaths. Chromosomal abnormalities are responsible for many congenital genetic
diseases, such as Down syndrome, Patau syndrome, Edward syndrome, and Kline-
felter syndrome [1].

In general, a healthy human cell has 23 pairs of chromosomes, including 22
pairs of autosomes and a pair of sex chromosomes (X and Y sex chromosome in
a male cell and double X sex chromosome in a female cell) [8]. However, chromo-
somal abnormalities may occur from some specific hostile environmental factors
or errors in cell divisions. To identify various genetic disorders that result from
the changes in the number or structure of chromosome instances, the karyotype
analysis is the most frequently-used approach in hospital. Figure 1 presents an
example of karyotyping where the left sub-figure illustrates a metaphase cell
microphotograph G-band chromosome image and the right sub-figure denotes
the corresponding karyotype analyzed by an experienced cytogeneticist.

Fig. 1. An example of karyotyping where the left sub-figure illustrates a metaphase
cell microphotograph G-band chromosome image and the right sub-figure denotes the
corresponding karyotype analyzed by an experienced cytogeneticist.

In the clinical karyotyping practices, the karyotype analysis is a tedious and
error-prone task [10]. Incorrect karyotypes occasionally occur due to various
objective or subjective reasons, such as similarities among different categories of
chromosomes and the experience of cytogeneticist. Accordingly, each analyzed
karyotype is required to be reconfirmed by a expert team, which greatly increases
the time cost.

Inspired by the existing successes of deep learning, this paper proposes an
effective incorrect karyotypes identification framework (Fig. 2) based on deep
learning. The contributions and highlights of this paper includes: (1) This paper
identifies the challenges of incorrect karyotypes identification and is the first
work to address the issue of incorrect karyotypes based on deep learning. (2)
The paper introduces a state-of-the-art chromosome classifier and an effective
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assessment strategy to boost the performance of the proposed framework signifi-
cantly; (3) Extensive rigorous experiments have been conducted to demonstrate
the effectiveness of the proposed identification framework.

The paper is organized as follows. Section 2 reviews the related work on nat-
ural image classification and chromosome classification. Section 3 introduces the
proposed framework to address the issue of incorrect karyotypes. To verify the
efficacy of the proposed framework, Sect. 4 introduces the experimental verifi-
cation objectives, experimental designs, data, and corresponding experimental
results. Finally, Sect. 5 concludes this paper.

2 Related Work

A strong chromosome classifier plays a critical role in the proposed framework,
and medical image classification has been widely accepted as a more challenging
task compared to natural image classification. According, this section reviews
the development of natural image and chromosome classification based on deep
learning.

2.1 Image Classification

Recently, many deep learning-based models have been proved more effective for
natural image classification tasks than traditional machine learning approaches
that heavily relied on hand-crafted feature engineering. Motivated by the Ima-
geNet [2] large-scale visual recognition challenge (ILSVRC ), the most author-
itative annual computer vision competition started in 2010, the accuracies of
state-of-the-art models on ILSVRC have been improved significantly from 2010
to 2020. Accompanied by the ILSVRC competition, many remarkable images
classification deep learning-based models have been proposed, such as AlexNet
[5], VGGNets [15], GoogLeNet [16], ResNet [3], and ResNeXt [18]. These success-
ful models are successively applied in medical image recognition tasks, including
but not limited to chromosome classification tasks, which has considerably pro-
moted medical artificial intelligence.

2.2 Chromosome Classification

Benefit from the achievements of deep learning-based models for natural image
classifications, some chromosome classification methods based on deep learning
have been proposed and obtained promising results in various corresponding
private datasets. For example, Kusakci et al. [6] presented a two-stage chromo-
some classification method named Competitive SVM Teams (CSVMTs). Their
results evaluated on a database consisting of 4,400 samples yielded 91.00% clas-
sification accuracy. Xi et al. [4] presented a CNNs (with six convolutional lay-
ers, three pooling layers, four dropout layers, and two fully connected layers)
for the chromosome classification task. The classifier hit an accuracy score with
93.79% on a database containing 4,184 images. Inspired by the Inception-ResNet
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[17] achievement in ImageNet image classification challenge competition, a chro-
mosome classification method named CIR-Net [8] was proposed and obtained
95.98% classification accuracy on a public dataset consisting of 2,990 samples.
Qin et al. [13] designed a Varifocal-Net to address the chromosome classification
issue whose method includes a global-scale network (G-Net) and a local-scale
network (L-Net). Evaluation results from 1909 karyotypes showed that their
proposed Varifocal-Net achieved the highest accuracy per patient case of 99.2%
accuracy for both category and polarity tasks.

Different from previous work, this paper pays more attention to identifi-
cation incorrect karyotypes. To be more specific, we propose a identification
framework to check if cytogeneticists misclassified the karyotype. Compared to
prior research, we carry the work forward and first notice the issue of incorrect
karyotypes. That is to say, our proposed framework can be considered as a valid
and reliable tool for the secondary screening of karyotype in clinical practice,
rather than to fulfill the reconfirm task totally dependent on manual labour.

3 Proposed Approach

This section first makes a problem statement for the issue of incorrect karyotypes
identification and then presents the details of the proposed framework, whose
overview is illustrated by Fig. 2. The proposed framework includes the method of
data pre-processing, the chromosome classification, and the incorrect karyotypes
identification.

Fig. 2. The overview of the proposed framework for incorrect karyotypes identification.

3.1 Problem Statement

Given a karyotype Kj analyzed by a cytogenetics expert, we let Φ(·) denote an
identifier whose input is a karyotype, and output is Yj representing the recon-
firmed result of the corresponding karyotype. Accordingly, the issue of incorrect
karyotypes identification can be regarded as finding a quality-enough identifier

https://github.com/CloudDataLab/CIR-Net
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Φ(·) that has the ability to identify unreliable karyotypes accurately, which can
be formalized as Eq. 1.

Yj = Φ(Kj) (1)

This work addresses this issue in the following stages. Firstly, it extracts all
chromosome instances Xj , (< c1j , c

2
j , · · · , cNj >) and their corresponding label

Lj , (< l1j , l
2
j , · · · , lNj >) from the given karyotype Kj , where ckj denote the kth

chromosome instance of Kj and lkj represents the kth chromosome category of
ckj given by an expert. Then, this paper trains a chromosome classifier F(·) and
infers the labels L

′
j of Xj , which can be formalized as Eq. 2.

L
′
j = F(Xj) (2)

Finally, this paper proposes an assessment strategy A to calculate the consis-
tency of two label vectors Lj and L

′
j . When vector Lj and vector L

′
j are identical,

the value of Yj is zero, which means that the karyotype is correct; otherwise, the
value of Yj is one, which means that the karyotype is unreliable. Accordingly,
the proposed framework can be formalized as Eq. 3.

Yj = Φ(Kj)

= A(Lj , L
′
j)

= A(Lj ,F(Xj))

(3)

3.2 Date Pre-processing

Given a karyotypes Kj , we first extract chromosome instances into a unified
resolution of 300× 300 pixels from the karyotypes, then determines the categories
of chromosome instances by their category number below the corresponding
instances (See right sub-figure of Fig. 1). To get chromosome instances Xj and
their corresponding labels Lj , an efficient chromosome extraction algorithm is
required.

More specifically, there are four rows of chromosomes in a given karyotypes
Kj , and chromosome instances are arranged in a fixed order and relative position.
Therefore, the designed algorithm first scans a given karyotypes and determines
the start and end cursors for each row. Then, the algorithm resolves how many
chromosome instances in each row and records the start and end column cursors
of each chromosome instance. Finally, the algorithm extracts each chromosome
instance in order and marks the corresponding labels.

3.3 Chromosome Classification

The proposed framework constructs the chromosome classification network F(·)
by transferring the ResNeSt [19]. The ResNeSt model enables attention across
feature-map groups and outperforms other networks with similar model com-
plexities. This improvement boosts the performance of downstream tasks like
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object detection, instance segmentation and semantic segmentation, which is
why the proposed framework applies the ResNeSt model to classify chromo-
somes to ensure its good generalization ability.

Fig. 3. The difference between the ResNet block and ResNeSt block. The orange
squares indicate the input feature maps of the given block, and the output feature
maps are marked as brown. The yellow, cyan, blue and green squares are the interme-
diate feature maps. (Color figure online)

Figure 3 depicts the difference between ResNet Block and ResNeSt Block.
ResNet introduces a Residual Connection instead of hoping each few stacked-
layer directly to fit a desired underlying mapping to address the gradient degra-
dation problem of deeper neural networks. ResNet architecture has become one
of the most popular CNN architecture whose superiority has been proved in
various computer vision applications. ResNeSt proposes a ResNeSt Block con-
sisting of Residual Connection, Feature-map Group [18], and Split Attention [7],
aiming to improve ResNet through a simple architectural modification. Each
block of ResNeSt divides the feature-map into several groups and finer-grained
subgroups, where the feature representation of each group is determined via a
weighted combination of the representations of its subgroups. ResNeSt model
demonstrates its state-of-the-art performances on various benchmarks and can
be easily transferred to the downstream task.

The proposed chromosome classifier F(·) is built by replacing the fully con-
nected layer header of ResNeSt. Additionally, this work adopts label smoothing
loss [17] to boost the performance of the proposed classifier.

3.4 Incorrect Karyotypes Identification

In the general natural image classification tasks, the predicted probabilities of
predetermined categories are calculated at the end of the fully connected layer
in each model. For the chromosome classification task, a probability distribution
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over predicted 24 classes would be generated by applying the softmax activation
function.

However, in a correctly analyzed normal human karyotypes, each chromo-
some category has two instances. Therefore, the important prior knowledge that
a normal karyotypes contains 23 pairs of chromosomes classified into 24 cate-
gories can be applied to boost the performance of the chromosome classification
network.

To maximize the precision of incorrect karyotypes identification, this paper
proposes an assessment strategy including three stages. In the first stage, given
a karyotypes Kj needed to identify, 46 chromosome instances Xj and corre-
sponding labels Lj are extracted through data pre-processing. Then, the pro-
posed framework loads the trained chromosome classification network to infer
the labels of X in the same batch. Therefore, a 46 rows × 24 colums probability
distribution matrix P is obtained where Pij denotes the probability of the ith

chromosome belonging to the jth category. In the second stage, the assessment
strategy A1 iterates the probability matrix P to figure out categories E that
have more than two chromosome instances and excludes redundant chromosome
instances into a set M according to the rank of their probabilities. Meanwhile,
categories that have less than the required number of instances are recognized as
E. In the last stage, the proposed strategy reassigns each chromosome instance
of M into the most suitable category in E according to the corresponding prob-
ability. It is noteworthy that the sex chromosomes need to be specially handle,
because the number of X chromosome and Y chromosome will change with the
sex.

4 Experiments and Results

4.1 Dataset and Metric

The clinical chromosome dataset is obtained from the Guangdong Women and
Children Hospital. All privacy information of patients has been removed before
these karyotypes being collected. This dataset contains 1680 karyotypes, includ-
ing 1400 karyotypes for training and validating and 280 karyotypes to test the
proposed framework. All the extracted chromosome instances are padding into
a unified resolution of 300 × 300 and then are resized to 224 × 224 in order to
speed up training. Furthermore, the training set is augmented by flipping, elastic
transformation, optical distortion and affine transformation. We stochastically
exchange labels between two similar chromosomes in a karyotype to simulate
incorrect karyotypes in the testing subset.

The issue of incorrect karyotypes identification is a binary classification
problem. Accordingly, this work adopts the well-accepted evaluated metrics
(Precision, Accuracy, Recall, and F1) for evaluating the proposed framework.
Before calculating these evaluated metrics, the following criterion should be clar-
ified.

– True Positive (TP): The number of incorrect karyotypes that are identified
as unreliable.
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– False Positive (FP): The number of correct karyotypes that are identified as
unreliable.

– True Negative (TN): The number of correct karyotypes that are identified as
correct.

– False Negative (FN): The number of incorrect karyotypes that are identified
as correct.

Based on the above criterion, the evaluated metrics of proposed identification
framework Precision, Recall, Accuracy, and F1 can be calculated as Eq. 4, Eq. 6,
Eq. 5, and Eq. 7. It should be pointed out that we also separately compared
performance of proposed chromosome classifier with previous study, and the
metrics were adopted as other researches including precision, recall, accuracy
and F1 for multi-class classifier.

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)

Accuracy =
TP + TN

TP + FP + TN + FN
(6)

F1 =
2 × precision × recall

precision + recall
(7)

4.2 Implementation Details

To train the chromosome classification network F(·) and boost the performance
of proposed framework, this work uses Label Smoothing Loss. As in research [17],
the Label Smoothing Loss was first applied in natural image classification that
allows regularizing the classifier layer by estimating the marginalized effect of
label-dropout during training. The Label Smoothing Loss is defined as:

H(q′, p) = (1 − ε)H(q, p) + εH(u, p) (8)

Label Smoothing Loss is a mixture loss combining cross-entropy losses H(q, p)
and H(u, p) with weight 1 − ε and ε, where p is the predicted distribution over
labels and u is fixed distribution. Since the blurred distinction between different
chromosome categories, we need to encourage the models to be less confident
and guarantee the generalization simultaneously.

The proposed framework was implemented with the PyTorch 1.7. The incor-
rect ratio of karyotypes was set to 0.2 in testing karyotypes. We implemented
the Vanilla [20], CNN [4], ChromeNet [14], CIR-Net [8], MixedNet [9] in strict
accordance with their origin paper. All implemented chromosome classification
network was pre-trained on the ImageNet dataset and optimized using stochas-
tic gradient descent algorithm. All experiments use the same dataset described
as above. The initial learning rate was 1e − 2, and adjusted dynamically using
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a cosine learning rate schedule with the minimum learning rate with 1e − 5.
Training is done for 500 epochs with a weight decay of 1e − 4 and momentum
of 0.9, and we use a mini-batch of size 64 at each training iteration. We moni-
tored the loss value and saved the best-trained weight on the validation set. The
experiments have been carried out on a server equipped with a 12 GB Nvidia
GeForce GTX 2080Ti, Intel Xeon E5-2678 CPU and 256 GB RAM. The source
code is available at github.

4.3 Experimental Results and Analyses

A robust incorrect karyotypes identification framework requires a better chromo-
some classifier. Therefore, this paper has conducted experiments to evaluate the
performance of the proposed chromosome classifier and evaluate the incorrect
karyotypes identification performance of the proposed framework. The exper-
imental results contain two parts: including chromosome classification results
(Table 1) and incorrect karyotypes identification results (Table 2).

Table 1. The chromosome classification performance comparisons between existing
state-of-the-art chromosome classification methods.

Chromosome classification methods Year Precision Recall Accuracy F1

Vanilla [20] 2018 95.40% 94.73% 95.47% 95.01%

CNN [4] 2019 94.33% 93.59% 94.70% 93.88%

ChromeNet [14] 2019 95.06% 94.62% 95.23% 94.81%

CIR-Net [8] 2020 98.57% 98.21% 98.64% 98.38%

MixNet [9] 2020 98.92% 98.71% 98.92% 98.81%

The proposed classification method / 99.31% 99.27% 99.33% 99.29%

Evaluations on the Proposed Chromosome Classification Method.
According to the chromosome classification results shown in Table 1, the pro-
posed chromosome classifier has achieved 99.31% precision, 99.27% recall,
99.33% accuracy, 99.29% F1 on the clinical test set, which is better than existing
state-of-the-art chromosome classification methods [4,8,9,14,20]. The chromo-
some classification performance comparison shown in Table 1 demonstrates the
outstanding of the proposed chromosome classifier.

Evaluations on the Proposed Kayogram Identification Framework.
Based on the proposed advanced chromosome classifier, this paper has evalu-
ated the incorrect karyotypes identification performance of the proposed frame-
work on the condition of with and without the proposed assessment strategy A,
respectively. The experimental results have concluded in Table 2.

https://github.com/P9J7/KARYOGRAM_IDENTIFIER
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Table 2. Summarization of the incorrect karyotypes identification performance of the
proposed framework.

Precision Recall Accuracy F1

All karyotypes 78.57% 90.63% 85.00% 81.19%

All karyotypes + A 90.00% 96.88% 95.00% 92.83%

Incorrect karyotypes 57.14% 100.00% / 72.72%

Incorrect karyotypes + A 80.00% 100.00% / 88.89%

According to the experimental results, without the proposed assessment
strategy A, the proposed framework has recalled 100% incorrect karyotypes and
achieved 90.63% general Recall score. Meanwhile, the proposed framework has
achieved an 81.19% identification F1 score on all test karyotypes and a 72.72%
F1 score on incorrect karyotypes. Furthermore, experimental results have shown
that the proposed assessment strategy A has significantly boosted the incor-
rect karyotypes identification performance of the proposed framework. Combin-
ing with the proposed strategy, the F1 value on all test karyotypes has been
improved 11.64% from 81.19% to 92.83% while the F1 value on incorrect kary-
otypes has been improved 16.17% from 72.72% to 88.89%. The Recall value has
been improved 6.25% from 90.63% to 96.88%. The Precision value on all kary-
otypes has been improved 11.43% from 78.57% to 90.00% while this metric on
incorrect karyotypes has been improved 22.86% from 57.14% to 80%. The exper-
imental results have demonstrated the effectiveness of the proposed assessment
strategy for the proposed framework to address the issue of incorrect karyotyping
identification.

Fig. 4. Examples of misclassification of chromosome pairs. In each misclassified pairs,
two chromosome instances are very similar and indistinguishable but belong to different
categories.
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Explorations of Reasons for Misidentifications. To explore the reasons
why false positives still appear, we recorded the misidentified karyotypes and
their corresponding mispredicted chromosome instances. In most cases, the
reported false positives were misprediction of two chromosome instances. How-
ever, this phenomenon is primarily caused by the poor quality of testing kary-
otypes. To support our observations, Fig. 4 shows a group of misclassified chro-
mosome tuples from six misidentified karyotypes. According to these examples,
there are only very slight differences between two misclassified chromosome
instances. Moreover, each chromosome instance has very few effective pixels,
resulting in extremely limited feature information that the classifier can learn.
With the improvement of the quality of chromosome images, we believe that this
error rate still has a decline interval.

According to rigorous experiments and corresponding results, the proposed
framework has achieved excellent incorrect karyotypes identification performance
with a 100% recall score of incorrect karyotypes, which means the proposed
framework has identified all incorrect karyotypes analyzed by cytologists man-
ually. These results have demonstrated the promising prospect of the proposed
framework for the quality guarantee of karyotypes to avoid the false terminations
of healthy babies or the birth of defective babies.

5 Conclusion

In this paper, we proposed a novel and powerful identification framework to
address the issue of incorrect karyotypes. More specifically, we introduced a state-
of-the-art chromosome classifier, an effective karyotypes assessment strategy and
a training methodology of incorrect karyotypes identification. This paper is the
first work that realizes the serious consequences of incorrect karyotypes, and
the experimental results with a 100% recall score of incorrect karyotypes have
demonstrated the preeminent performance of the proposed framework. Besides,
the contrast experiment of chromosome classification and incorrect karyotypes
identification further proves the reasonability of our proposed framework.

In future works, we plan to investigate additional strategies to further
improve the performance of the identification framework, such as confident learn-
ing [11]. Deployment of the current method in real-time screening and diagnosis
is also to be achieved in the future.
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Abstract. Determining drug-target interactions (DTIs) is an important task in
drug discovery and drug relocalization. Currently, different models have been
proposed to predict the potential interactions between drugs and targets. However,
how to make full use of the information of drugs and targets to improve the
prediction performance is still a great challenge. We define the problem of DTI
prediction as a link prediction problem in a heterogeneous network and propose a
new method, named MGDTI. The heterogeneous network includes known drug-
target interactions and drug-drug and target-target similarity relationships. Firstly,
we use the frequent subgraph mining algorithm to extract important metagraphs
representing the network structure and semantic features without using domain
knowledge and experience; then thematrix factorizationmethod based onmultiple
commuting matrices is used to obtain the embedding representations of drugs and
targets from multiple metagraphs; finally link prediction tasks are performed to
predict the potential interactions between drugs and targets. We compare MGDTI
with four classic heterogeneous network embeddingmethods and the experimental
results show that MGDTI could achieve a better prediction performance.

Keywords: Drug-target interaction · Heterogeneous network · Metagraph · Link
prediction

1 Introduction

Drug research and development is a long and expensive process. It is reported that,
on average, only one compound in every 10,000 new chemical entities can eventually
become a drug, and the whole process takes more than ten years and an investment
of more than 800 million US dollars [1]. In recent years, drug development has shifted
from traditional experimental methods to computer-aided development [2]. The target of
computer-aided drug development is to find drugs that can interact with specific target
proteins. The prediction of drug-target interaction (DTIs) refers to the recognition of
interactions between drugs and the protein targets in the human body. Therefore, DTI
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prediction is an important task for early evaluation of potential new drugs, and can reduce
the cost of capital, time, and resources in the process of drug development.

In recent years, many machine learning-based methods have been proposed for DTI
prediction, such as network reasoning [3–5], matrix factorization [6, 7], kernel-based
method [8], collaborative filtering [9], clustering [10], and label propagation [11]. How-
ever, due to the rapid growth of biomedical data, the relationships among the data entities
involved are becoming more and more complex. These existing methods do not make
full use of the latent information of these complex relationships. Heterogeneous net-
works can better express the relationships among different types of entities and are more
universal.

In a heterogeneous network, nodes represent different types of entities, such as targets
and drugs, and the edges between nodes represent the relationships among these nodes,
such as drug-drug similarity, target-target similarity, and drug-target correlation. Each
node in the network can be represented by a low-dimensional latent feature embedding.
Different downstream tasks can be implemented based on these low-dimensional fea-
ture embeddings. The objective of this study is to predict drug-target interactions, which
is defined as the link prediction problem on a heterogeneous network. Some scholars
have conducted in-depth research on the node embedding of heterogeneous networks
and proposed a series of methods, including metapath2vec [12], HIN2vec [13], HeteS-
paceyWalk [14], JUST [15], PTE [16], HEER [17], GATNE [18], RHINE [19] and so
on. Some of the above methods, such as metapath2vec, HIN2vec, HeteSpaceyWalk and
GATNE, are based on random walk, which requires pre-defined metapath templates, or
knowledge and experience in related fields when defining metapaths. Moreover, metap-
ath cannot fully capture the complex semantic information of heterogeneous networks.
Other methods based on first-order (second-order) proximity, such as PTE and HEER,
are mainly used in tasks of node classification, and do not performwell in link prediction
tasks.

To address the above issues, in this study, we propose a new drug-target interaction
prediction method based on heterogeneous network, named MGDTI.

The core contributions of this study are as follows:

1. A heterogeneous network is constructed based on known drug-target interactions,
drug-drug similarity and target-target similarity relationships, which could provide
rich potential semantic information among different entities;

2. A frequent subgraph mining algorithm is used to extract important metagraphs that
represent network structure and semantic features, and no longer rely on relevant
domain knowledge and experience;

3. Multiple metagraphs are used to obtain the embedding representation of drugs and
targets, which can capture the complex semantic features and potential association
information of heterogeneous network more comprehensively.

2 Data and Definition

2.1 Data Source

In this study, the similarity relationships among 580 drugs from [20] are used to rep-
resent the drug-drug similarity matrix SD ∈ R580×580. And the similarity relationships
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among 2681 target genes from [21] are used to represent the target-target similarity
matrix ST ∈ R2681×2681. SDi,j represents the similarity between drugs di and dj, and STi,j
represents the similarity between targets ti and tj. The values in SD and ST are real
numbers between 0 and 1. In addition, the interaction relationships of 580 drugs and
2681 targets were obtained from the DrugBank [22], which is represented as the matrix
P ∈ {0, 1}580×2681, including a total of 2187 known drug-target interaction relationships.
If Pi,j = 1, it indicates that drug di has been experimentally confirmed to interact with
target tj. Otherwise, the interaction between them is unknown.

2.2 Problem Definition

Generally, a heterogeneous graph is represented as G = (V ,E,A,R), where V =
{v1, · · · , vm} is the set of nodes and E = {e1, · · · , en} is the set of edges. The topology
of the graph is represented as an adjacency matrix A ∈ {0, 1}m×m, where Ai,j= 1 means
there is a link between nodes vi and vj , otherwise Ai,j = 0. A represents the node type
set, R is the edge type set, and |A| + |R| > 2. The adjacency matrix A can be divided
into |A| × |A| submatrices. AAi,Aj represents the adjacencies between nodes of type
Ai and nodes of type Aj, AAi,Aj is the transpose of AAj,Ai , and AAi,Ai represents the
adjacencies among nodes of type Ai.

Fig. 1. (a): The topology of the heterogeneous graphG; (b): The adjacencymatrix and submatrices
of G; (c)–(e): Metagraph examples.

In this study, we define the drug-target interaction prediction problem as the link
prediction problem on the heterogeneous network G (Fig. 1(a)), which includes two
types of nodes and three types of undirected edges. Therefore, |A| = 2 and |R| =
3. A1and A2 represent the node type of drug and target, respectively. R1,R2 andR3
represent the edge type of drug-drug association, target-target association, and drug-
target interaction, respectively. For each vi ∈ A1 and vj ∈ A1, if SDvi,vj > α, Ai,j = 1.

And for each vi ∈ A2 and vj ∈ A2, if STvi,vj > α, Ai,j = 1. α is a pre-set similarity

threshold. Similarly, for each vi ∈ A1 and vj ∈ A2, if Pvi,vj = 1, Ai,j = 1. AA1,A2

represents the relationships between drug nodes and target nodes, AA1,A1 represents
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target-target associations, and AA2,A2 represents drug-target associations, as shown in
Fig. 1(b).

For the given heterogeneous networkG, the goal is to predict unknownedges between
drug nodes and target nodes in G.

3 Methods

In this section, we will introduce the MGDTI model in detail. Before introducing the
model, we first give the definition of metagraph.

Ametagraph is an acyclic graphwith a single source node ns and a single sink node nt .
Given a graphG= (V ,E,A, R), ametagraph can be defined asM = (AM ,RM , ns, nt),
where ns ∈ AM , nt ∈ AM ,AM ⊆ A and RM ⊆ R. AM and RM represent the node
set and edge set of M, respectively.

For a path of length p in metagraph M , it can be defined as a sequence of p nodes
(a1, a2,…,ap), where ai ∈ AM (1 ≤ i ≤ p), a1 = ns and ap = nt . There may exist only
one path or multiple paths in a metagraph. Since the objective of this study is to find
potential drug-target interactions, the source-sink node pair of an effective metagraph
should be a drug-target node pair or a target-drug node pair. Given that G is an undirected
graph, the above two cases are symmetric. Therefore, we only consider the case that
source node is drug and sink node is target.

In Fig. 1, (c) and (d) denote two metagraphs of G, respectively. There is only one
path of length 4 in Fig. 1(c), where a1 is the source node and a4 is the target node. In
Fig. 1(d), the metagraph includes two paths of length 4, which are (a1, a2, a4, a5) and
(a1, a3, a4, a5), and a1 and a5 are the source node and the target node, respectively.

The prediction model includes three parts: metagraphs discovery, node embedding,
and link prediction. The overall framework of the model is shown in Fig. 2.

First, we use the frequent subgraph mining algorithm to obtain a series of subgraphs
of G; then a set of non-repetitive representative metagraphs that conform to the above
metagraph definition is selected from these subgraphs; next, we calculate the commuting
matrix of each metagraph, and the node embeddings of drugs and targets are obtained
from the commuting matrix by matrix factorization. Finally, the link prediction task is
performed based on the obtained node embeddings.

Fig. 2. The overall flowchart of the MGDTI method.



A Metagraph-Based Model for Predicting Drug-Target Interaction 469

3.1 Metagraph Discovery

The traditional idea of metagraph discovery includes two steps: (1) find out a series
of metapaths according to the prior knowledge; (2) simply combine several metapaths
to construct a set of metagraphs. In this way, the quality of the metagraph is directly
determined by the known prior knowledge. Once the prior knowledge is insufficient or
incomplete, the quality of the discovered metagraphs will be poor, which will directly
affect the performance of downstream tasks.

In order to avoid the influence of prior knowledge on metagraph discovery, we
adopt the method of frequent subgraph mining to obtain metagraphs. The basic idea
is that if a subgraph in graph G appears frequently, it is important for graph G and
can be used as a metagraph to retain important structure and semantic information in
G. The metagraph discovery method is divided into two steps. Firstly, the frequent
subgraph mining algorithm is used to find all frequent subgraphs in G according to a
given frequent threshold τ . Secondly, a group of representative subgraphs that conform
to the given metagraph definition is selected from the frequent subgraphs. The specific
algorithm is shown in Algorithm 1.

Algorithm 1 Metagraph discovery
Input: Frequency threshold Source node Target node 
Output: Metagraph set 
1.   
2. for each do
3. represents the type of edge e
4. for each do
5.       if
6. //add edge type to set 
7. for each do
8. if
9. SUBGRAPHEXTENSION 
10
11 for each do
12 i
13
14 Return

First, the algorithmobtains the frequency of all edge types in graphG (Lines 2–3). fRi

represents the number of times that the edge typeRi ∈ R appears in G. If the frequency
fRi is not less than the frequent threshold τ , this edge type is frequent and will be added
to the setF (Lines 4–6). For each edge e inG, ifRe ∈ F , the SUBGRAPHEXTENSION
algorithm [23] will be executed. This algorithm first initializes a subgraph, and then uses
the frequent edges in F to extend the subgraph that conforms to the frequent threshold
τ (Lines 7–10). Finally, for each frequent subgraphM ∈ C, if the source node is not ns
or the sink node is not nt , M is removed (Lines 11–13). At last, the set C = {Ml}Ll=1
containing all metagraphs can be obtained.
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3.2 Node Embedding

In order to obtain the potential embedding representations of all drugs and targets, the
commuting matrix CM of each metagraph needs to be calculated first. The commuting
matrix [24] represents the similarity between the source node and the sink node in
metagraph M .

M can be composed of several sub-metagraphs, which are defined as follows:

(1) There is only one path (ai, ai+1,…, aj) in the sub-metagraph, such as Fig. 1(c).
(2) The sub-metagraph contains s > 1 independent paths that share the same source

and sink nodes, such as
(
ai, a

(1)
i+1, . . . , a

(1)
j−1, aj

)
,
(
ai, a

(2)
i+1, . . . , a

(2)
j−1, aj

)
, . . . , and(

ai, a
(s)
i+1, . . . , a

(s)
j−1, aj

)
. In Fig. 1(e), the sub-metagraph has two paths.

For the first type of sub-metagraph, the commuting matrix Ci,j
SM is calculated as Eq.

(1):

Ci,j
SM = Aai,ai+1 · Aai+1,ai+2 · . . . · Aaj−1,aj . (1)

For the second type of sub-metagraph, the commuting matrix Ci,j
DM is calculated as

Eq. (2):

Ci,j
DM = �s

x=1(A
ai,a

(x)
i+1 · Aai+1(x),a

(x)
i+2 · . . . · Aaj−1(x),aj ). (2)

� is the Hadamard product. The commuting matrix of a metagraph M can be obtained
by multiplying the commuting matrices of its several sub-metagraphs. For example, in
Fig. 1(d), the commuting matrix CM = ((Aa1,a2 · Aa2,a4) � (Aa1,a3 · Aa3,a4)) · Aa4,a5 . If
G has L different metagraphs, we can get L different commuting matrices, denoted by{
C(l)
M

}L
l=1

. Then we adopt matrix factorization (MF) [25] to extract the latent features of

drugs and targets from the obtained commuting matrices to solve the sparsity problem of
the commuting matrices. C(l)

M can be decomposed into two low-rank matrices, D(l) and
T (l), as shown in Eq. (3). They represent the potential features of all drugs and targets
obtained from the commuting matrix of the l-th metagraph in low-dimensional vector
space.

C(l)
M ≈ D(l) × T (l)�. (3)

The objective function that needs to be optimized in matrix factorization is shown
in Eq. (4):

min
D(l),T (l)

1

2
P�

(
D(l)T (l)� − C(l)

M

)2
F

+ λd

2
‖D(l)‖2F + λt

2
‖T (l)‖2F (4)

where if Adi,tj = 1, [P�(X)]ij = Xij; otherwise, [P�(X)]ij = 0. λd and λt are the
regularization hyper-parameters that are used to avoid overfitting. For each metagraph,
we can obtain two embedding matrices, one for drugs and one for targets. Therefore, we
get L embedding matrices for drugs and L embedding matrices for targets, denoted as{
D(1), . . . ,D(L); T (1), . . . ,T (L)

}
.



A Metagraph-Based Model for Predicting Drug-Target Interaction 471

3.3 Link Prediction

In order to perform the task of link prediction of drug-target interactions, we need to
obtain a single embedding for each drug or target node separately. Therefore, for each
drug node, its embedding is integrated according to Eq. (5); for each target node, its
embedding is integrated according to Eq. (6):

Di = 1

L

∑L

l=1
D(l)
i , (5)

Tj = 1

L

∑L

l=1
T (l)
j , (6)

where D(l)
i ∈ R1×d and T (l)

i ∈ R1×d represent the embedding representation of drug i
and target j obtained from the l-th metagraph, respectively. Then, the cosine similarity
between the drug node embedding and the target node embedding is treated as the
probability of the existence of a link between the two nodes. The cosine similarity is
defined as Eq. (7):

cos(x, y) = x · y
‖x‖‖y‖ . (7)

The drug-target pair with cosine similarity greater than β is predicted to have an
interaction.

4 Experiments and Analysis

The experiments are designed to answer the following four questions:

1. Do the metagraphs obtained by our method capture the semantic information of a
given heterogeneous network more fully than the metagraphs designed based on
experiences?

2. How does the frequent threshold τ affect the performance of the model?
3. What is the impact of the embedding dimension on the performance of link

prediction?
4. Will our model (MGDTI) outperform other node embedding models based on

heterogeneous network?

4.1 Assessment Metrics

The assessment metrics used in this study are F1-score, Precision@k and AUPR.

Area Under the Precision-Recall Curve (AUPR): Recall is the fraction of retrieved
instances among all relevant instances. Precision measures the model’s accuracy in
classifying a sample as positive. These metrics are used to construct a Precision-Recall
Curve which illustrates how the increase in recall affects precision. AUPR is the area
under the Precision-Recall curve.
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Precision@k: Link prediction tasks are usually interested in the quality of highly ranked
results. Precision@k is the fraction of correct predictions in top k predictions, which is
defined as Eq. (8):

Precision@k =
∣∣Epred (1 : k) ∩ Eobs

∣∣
k

. (8)

Epred (1 : k) is the set of the top k predictions and Eobs is the set of hidden edges.
This is a link-quality metric.

F1-score is often used to determine the accuracy of the method. It can consider both
the precision and the recall, which can reflect the accuracy of the method in a balanced
way. It can be defined as Eq. (9):

F1 = 2 · precision · recall

precision + recall
. (9)

4.2 Experimental Setup

We first obtain the embedding representation of drugs and targets, and then perform link
prediction tasks to evaluate the effectiveness of our proposedmethod. The link prediction
task is to randomly hide a certain percentage of known links from the original network,
and the goal is to predict the hidden links. We randomly hide 20% of the drug-target
associations in the heterogeneous network as a test set to evaluate the performance of
the model, and use the rest of the network as a training set. The parameters used in the
experiments and their values are listed in Table 1.

Table 1. The parameters and settings used in the experiments.

Parameter Setting

Embedding dimension (d ) [10,20,30,50,64,128]

Frequency threshold (τ ) [100,200,300,400,500]

λd 0.01

λt 0.01

α 0.003

β 0.35

4.3 Results and Analysis

Comparison of Different Metagraph Discovery Methods
We use the node embeddings obtained by our method and the embeddings from meta-
graphs designed by experiences for comparison. When designing metagraphs based on
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Table 2. The impact of different metagraphs discovery methods on prediction performance.

AUPR F1-score Precision@128

MGDTI 0.893 0.882 0.992

Experiences-based 0.879 0.789 0.961

experiences [4], the length of any path in the metagraph is set to be no more than 5, and
all possible metagraphs are obtained. Table 2 shows the comparison results.

As can be seen from Table 2, the prediction results obtained by using our method are
slightly better than those based on experiences. The subgraphs obtained by MGDTI are
more important in the heterogeneous network since they reappear in the network many
times. They can reflect important link relationships among nodes, and can better capture
the potential semantic information in the heterogeneous network. Therefore, the results
of link prediction based on our approach are better than those of the experience-based
method.

Influence of the Frequent Threshold τ on the Performance of the Model
In the metagraph discovery algorithm, the frequent threshold τ will have a direct
impact on the obtained metagraphs. Figure 3(a) shows the comparison of link prediction
performances based on metagraphs obtained with different frequent thresholds.

As can be seen from Fig. 3(a), with the increase of τ , the link prediction performance
of the model generally declines. This is because with the increase of frequent thresh-
old, the number of frequent subgraphs satisfying the threshold decreases, and there may
be some important structural information in these filtered subgraphs. This will make
selected metagraphs unable to completely capture semantics information in the het-
erogeneous network, resulting in missing some important structural information. If the
frequent threshold is set too small, it will lead to many repetitive and useless information
in the frequent subgraphs, and will increase the cost of subsequent node embedding. So,
we use the frequent threshold τ = 100 as the best parameter.

Fig. 3. (a): The impact of different frequency thresholds on prediction performance; (b): The
impact of different embedding dimensions on prediction performance.
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Impact of the Embedding Dimension on Link Prediction
The goal of node embedding is to map the high-dimensional feature vectors to a low-
dimensional latent space and capture the implicit features expressed by nodes. The
dimensional size of the node embedding has an impact on capturing the hidden fea-
ture information expressed by the original high-dimensional drugs and target nodes.
Figure 3(b) shows the performances of link prediction task with node embeddings in
different dimensions. It can be seen that the overall performance fluctuates but the change
is small. This indicates that our node embedding method has been able to fully extract
the potential feature information of nodes with a small embedding dimension.

Comparison with Other Methods
We compare our method with four classic methods, including JUST [15], Hin2vec [13],
GATNE [18] and FMG [26]. All of them are designed for heterogeneous network embed-
ding representation learning, and have good performances. They all use their original
parameter settings in this experiment.

As can be seen from Table 3, the three metapath-based approaches (JUST, Hin2vec
and GATNE) have a good performance, which shows that metapath is a good method for
network representation learning. However, our method (MGDTI) has significantly better
performance in both AUPR and F1-score. This is because in heterogeneous networks,
metagraphs can capture the complex semantic features and the potential relationships
between nodes more comprehensively than metapaths. FMG is also a metagraph-based
method, andMGDTI performs better than FMG, indicating that metagraphs obtained by
MGDTI can better capture the complex semantic features than those defined by FMG.

Table 3 also illustrates the comparison results on Precision@k. In the top 128 links,
MGDTI made only 1 wrong prediction, while other methods made more than 3 wrong
predictions, and the performance of MGDTI is much better in the top 256 links.

Table 3. Comparison different methods on AUPR, F1-score, and Precision@k

AUPR F1-score Precision@k

32 64 128 256

JUST 0.846 0.712 1 1 0.97 0.90

Hin2vec 0.854 0.724 1 1 0.984 0.933

GATNE 0.835 0.722 1 1 0.906 0.767

FMG 0.879 0.789 1 0.984 0.961 0.933

MGDTI 0.893 0.882 1 0.984 0.992 0.949

5 Conclusions

In this study, we propose a new method, named MGDTI, to predict the unknown
interactions between drugs and targets. We use frequent subgraph mining algorithm
to extract important metagraphs representing network structure and semantic features,
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which solves the problem that traditional methods rely on relevant domain knowledge
and experience for metagraph discovery. Then the matrix factorization method based on
multiple commuting matrices is used to obtain the embedding representations of drugs
and targets from multiple metagraphs. Finally, link prediction task is performed to pre-
dict potential interactions between drugs and targets. MGDTI can effectively learn the
correlation information between drugs and targets, andmake full use of the latent feature
information in heterogeneous network for prediction. We compare MGDTI with other
classic methods and prove its superiority and robustness.
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Abstract. Given hypotheses that connect two “irrelevant” concepts
of interest via one or multiple concepts, Hypothesis Generation (HG)
attempts to judge their meaningfulness and compare or rank them
accordingly. HG can accelerate scientific research and is becoming
increasingly important. The basic idea of prior studies is to conduct
a two or higher-order search between the two input concepts for the one-
concept and multiple-concept hypotheses to evaluate them. However,
these approaches inevitably encounter exponential-growing searching
space when addressing multiple-concept hypotheses, making it imprac-
tical to tackle such hypotheses. We propose HG Set Net (HSN) that
forms a hypothesis with any number of connecting concepts as a set
and learns to evaluate the set to address this problem. HSN can eval-
uate any hypotheses with the same complexity and avoid higher-order
search, making it computationally possible to evaluate hypotheses with
numerous concepts. Besides, we present a double-margin loss to train
HSN to resolve the lack of labeled hypotheses. Experiments show that
HSN can not only address hypotheses with efficiency but also outperform
previous approaches. The double-margin loss also reveals to boost HSN’s
performance.

Keywords: Hypothesis Generation · Bioinformatics · Data mining

1 Introduction

Understanding and creating human knowledge is one of artificial intelligence’s
ultimate goals. Hypotheses Generation (HG), which creates seeds for new knowl-
edge based on understanding existing knowledge, has long been a task of the
above kind (Fig. 1). In a typical knowledge discovery process, an investigator
generates hypotheses through reviewing relevant publications and then exper-
iments to verify them. However, it often requires significant efforts for sifting
through large amounts of documents to find relevant information.

HG becomes challenging due to the vast amount of literature. This problem
is especially severe in the biomedical domain. The most recognized biomedical
literature search tool PubMed has indexed more than 30 million records, and
what is more serious, more than 500,000 records are added to it every year.
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Fig. 1. An example of Hypotheses Generation (HG). There can be different hypothe-
ses connecting “Ibuprofen” and “COVID-19”. An HG system aims to evaluate their
meaningfulness and rank them where meaningful ones rank high.

Fig. 2. A comparison between current HG solutions and our proposed HSN. Cur-
rent solutions evaluate a hypothesis (as a dashed line connecting the two concepts of
interest) via comparing it with all hypotheses of the same N . The process involves
a high-order search for multiple-concept hypotheses and will encounter the exponen-
tial growth of to-be-explored paths, making it impractical to address multiple-concept
hypotheses. HSN evaluates hypotheses of ANY N via directly outputting their mean-
ingfulness scores of the same scale to tackle the above problem.

Although the enormous amount presents the investigators with opportunities
for more hypotheses and knowledge, it tremendously challenges them. One can
hardly read related publications exhaustively before making hypotheses.

Generally, HG aims to find concepts bridging the previously “irrelevant”
ones in a semantically meaningful way according to existing publications. For
example, the pioneer Don Swanson [12] found from the literature that “Fish Oil”
can alleviate “blood viscosity” and “vasoconstriction”, and the two concepts are
positively related to “Raynaud Disease”. The hypothesis from the above findings
is that “Fish Oil” may relieve “Raynaud Disease” via the connecting concepts
“blood viscosity” and “vasoconstriction”, which are verified by clinical trials
later [5]. An HG system should recognize such hypotheses as meaningful ones,
i.e., scoring or ranking them high among plausible hypotheses.

The basic idea of current HG approaches is a search between the two
input concepts of interest (A and C) [1,3,4,6,8,11,15,17] as in Fig. 2a. The
search starts from the concept A. It first finds all relevant B1 and evaluate
A −→ B1’s meaningfulness. Similarly, the process iteratively finds and evalu-
ates B1 −→ B2, B2 −→ B3, · · · , BN−1 −→ BN , BN −→ C. The last step aggregates
all the possible connections above as different hypotheses A −→ B1 −→ B2 −→
· · · −→ BN −→ C and evaluates their meaningfulness. The output is a rank of
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A −→ B1 −→ B2 −→ · · · −→ BN −→ C where meaningful hypotheses rank high. These
approaches use different metrics to find relevant B(s) and evaluate the mean-
ingfulness between two concepts. To decide the meaningfulness of a hypothesis
with N intermediate concepts, they have to exhaustively evaluate all hypothe-
ses of the same N and compare between these hypotheses. While showing great
performance on hypotheses with N = 1, these approaches will encounter the
problem of exponential-growing searching space when N becomes larger. The
problem makes it impractical to find hypotheses with numerous concepts even
though such hypotheses are also meaningful and of practical value [3,4,15].

This paper solves the above exponential-growing searching space problem in
HG. Specifically, the task is to evaluate hypotheses with any number of concepts
efficiently. Despite its value and significance, the task is much more challenging
than tasks in typical HG settings. The reasons are listed below:

1. Hypotheses with Large Numbers of Concepts. Current HG solutions mainly
focus on hypotheses with only one connecting concept [6,8], and it becomes
impractical to quantitatively evaluate hypotheses with more than one con-
necting concepts due to the exponential-growing searching space.

2. Hypotheses with Variable Numbers of Concepts. Current approaches evaluate
hypotheses via comparing them with hypotheses of the same N [6,8,15] and
cannot compare hypotheses with different N . However, if an HG approach
can evaluate hypotheses with different N , it will avoid high-order searches for
multiple-concept hypotheses via comparing them with one-concept hypothe-
ses instead. Therefore, it is necessary to compare hypotheses with different
N on their meaningfulness to solve fulfill the task.

To address the above challenges, we propose a novel framework for HG in
this paper. We assume any hypotheses to be evaluated as a set of concepts and
introduce HG Set Net (HSN) to learn to score the set on its meaningfulness.
HSN can evaluate a hypothesis set containing any number of concepts with
the same computational complexity, solving the first challenge above. It scores
any hypotheses into the same scale to resolve the second challenge. Moreover, we
also present a double-margin loss to train HSN using only the existing literature,
overcoming the lack of a comprehensive training dataset in HG. We believe this
is a transformative direction of HG research, solving the exponential explosion
problem caused by high-order search fundamentally.

In the experiments, we show that HSN can evaluate hypotheses with different
N effectively and efficiently and outperform baselines significantly. Moreover,
experiments also justify the advantage of our proposed double-margin loss.

2 Related Work

Hypotheses Generation (HG) is beneficial to both knowledge discovery and bioin-
formatics research [14]. The initial works [12,13] discovered novel associations
(e.g., Fish Oil −→ Raynaud Disease) via connecting known but disjoint knowl-
edge. While pioneering the HG research, these manual methods are inefficient.
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Therefore, later studies focused on automatic HG, and they differ in how to
quantify the connections between two concepts, i.e., Bi −→ Bi+1 even though
sharing the same search-based strategy as in Sect. 1.

In automatic HG, primary works [11,17] use co-occurrence between concepts
(e.g., term frequency, inverse document frequency) to quantify the connections.
[7,17] also employ statistical measurements to evaluate the meaningfulness of
connections. The above approaches advanced HG research. However, they can-
not assure that the connections are semantically meaningful, i.e., these solutions
may present connections that are statistically significant but semantically mean-
ingless, and such connections are useless in HG. To solve such a problem, recently,
researchers use neural embeddings [1,8,16] and other neural network-based tech-
niques [6] to capture the latent semantics of concepts in quantifying connections
and further advance HG research. Nevertheless, all these approaches that adopt
the search strategy to evaluate the connections as introduced in Sect. 1 will
encounter the problem of exponential-growing searching space when addressing
multiple-concept hypotheses. In this regard, we propose a neural network-based
approach to evaluate any hypotheses with the same computational complexity
and avoid the searches for multiple-concept hypotheses.

Another line of HG researches [3,4,15] attempted to avoid high-order searches
via using external database (e.g., SemMedDB) to filter the connecting concepts
Bi. They can significantly reduce the searching space and ensures semantically
meaningful connections between concepts. However, these approaches cannot
find implicit connections because they rely on pre-defined schema. To circumvent
this drawback, we model all concepts in a latent space and are thus able to
evaluate any implicit connections.

We take inspirations from Deep Sets [18] which shows superior performance
on learning to represent set data. Given the nature of our hypotheses and docu-
ments, our proposed framework stems from Deep Sets, and we adapt Deep Sets
as a module in our proposed model. We also propose a strategy to train our
model based on negative sampling [9].

3 Methodology

We firstly present preliminaries and an overview of our framework. After the
overview, we describe our approach in three parts: the HSN model, the double-
margin loss to train HSN, and how HSN addresses HG in different settings.

3.1 Preliminaries

In HG, the literature refers to a collection of documents being searched. We
choose MEDLINE, the largest bibliographic database in the biomedical domain,
as our document collection for generating biomedical hypotheses. It contains
more than 30 million documents (articles or conference abstracts) and is freely
accessible via PubMed. Each document contains information such as its publica-
tion metadata and several Medical Subject Headings (MeSH) terms. MeSH is a
human-controlled vocabulary with approximately 26 thousand terms, and each
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term represents a concept. PubMed indexes each document with several MeSH
terms indicating its content. Therefore, we can use a bag of MeSH terms to rep-
resent a document [2,8]. Likewise, we can form a hypothesis as a MeSH term
set to evaluate it. These sets, as different combinations of MeSH terms, differ in
their biomedical meaningfulness, i.e., an existing document is a meaningful set,
and HG aims to determine new sets’ (hypotheses’) meaningfulness.

3.2 Overview

We define our task as scoring hypotheses on their biomedical meaningfulness.
The input is a hypothesis as a set containing the two MeSH terms of interest
and the connecting MeSH terms. The output is a real-number score indicating its
meaningfulness which can be used to rank or compare hypotheses. We propose
HSN (HG Set Net) as in Fig. 2b to fulfill this task. HSN scores any hypotheses
as sets without high-order searches and into the same scale, solving the two
challenges in Sect. 1.

We train HSN using the existing documents. Specifically, we propose a
double-margin loss based on negative sampling [9]. The training process samples
“better” and “worse” documents from existing ones and updates HSN to better
distinguish the three types, i.e., “better”, “original”, and “worse” documents.

3.3 HSN Structure

HSN encodes a set of L MeSH terms {M1,M2, · · · ,Mk, · · · ,ML} into a vector
in the latent semantic space whose norm indicates the set’s meaningfulness.
Generally, HSN has an encoding, a message-passing, and a readout module in
Fig. 3a encoding encodes the input MeSH terms as well as the set into the latent
space as the MeSH term vectors and the set global vector. These vectors feed
further into message-passing which ensures that both the MeSH term vectors
and the set global vector contain the context information in the set. readout
decodes the set global vector as the output vector whose norm represents the
set’s biomedical meaningfulness. We detail each module below.

Fig. 3. The structure of HSN.
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MeSH Encoding Ee. This module encodes MeSH terms (Mi, i = 1, 2, · · · , L)
into the latent space as �vi,enc, , i = 1, 2, · · · , L. It uses an embedding layer (Eemb)
to encode MeSH terms into dense embeddings, and a two-layer Multiple-Layer
Perceptron (MLP) as in Eq. 1 after the embedding layer to encode the embed-
dings into the latent space. We also add LayerNorm layers (ELN ) after both
Eemb and EMLP to avoid over-fitting. Equation 2 is our detailed implementation
of the encoding module. Ee is identical for all inputs.

EMLP (�v) = L2 (L1(�v)) ,Lt(�v) = ReLU(At�v) (1)

�vi,enc = Ee (Mi) = ELN (EMLP (ELN (Eemb (Mi)))) (2)

Global Encoding Eg. HSN generates a default global vector �vg,init = [0.5] for
the input set and uses an MLP as in Eq. 1 to encode the global vector into �vg,enc,
in the same latent space as MeSH term vectors, as �vg,enc = EMLP (�vg,init). The
set global vector will contain the set’s context information after updating.

Message-Passing MP. This module ensures the set global vector and the
MeSH term vectors contain the set’s context information after the two encoding
modules. Given that each hypothesis or document is a set of MeSH terms, this
message-passing module exchanges the information between the set global vector
and the MeSH terms vectors as in Deep Sets [18]. It has two steps: Set Update
(SU ) and MeSH Update (MU ). SU first updates the set global vector according
both to terms’ and its previous one. After SU, MU updates each term’s vector
independently according to its previous one and the updated global vector. MP
runs N times using the identical network, and Eq. 3 and Fig. 3b presents its nth

round MPn.

�vg,n+1,mp, �Vn+1,mp = MP
(
�vg,n,mp, �Vn,mp

)
,where

�vg,n+1,mp = SU
(
�vg,n,mp, �Vn,mp

)
, and �Vn+1,mp = MU

(
�vg,n+1,mp, �Vn,mp

) (3)

where �Vn,mp is the concatenation of MeSH term vectors input to MPn as
[�v1,n,mp;�v2,n,mp; · · · ;�vL,n,mp], and �vg,n,mp is the set global vector before MPn.
The input of MP0 is �vg,enc and �Venc = [�v1,enc;�v2,enc; · · · ;�vL,enc], and it outputs
�vg,N,mp and �VN,mp in the last round. We describe SU and MU below.

SU first aggregates term vectors �vi,n,mp, i = 1, 2, · · · , L into one vector
�vaggr,n,mp. It then concatenates the aggregated vector �vaggr,n,mp and the set
global vector �vg,n,mp into �vconcat,g,n,mp and feeds �vconcat,g,n,mp into an MLP for
the updated set global vector, which can take in the term’s information after
such process. Equation 4 presents the SU block in MPn. MU concatenate each
term’s vector �vi,n,mp and the updated global vector �vg,n+1,mp into �vconcat,i,n,mp

and feed it into an MLP for each term’s updated vector. Each term will include
the set’s global information after this step. Equation 5 presents the nth MU step
and MU is identical for all MeSH terms.



Evaluating Multiple-Concept Biomedical Hypotheses 483

�vaggr,g,n,mp = AGGRSU

(
�Vn,mp

)
=

L∑
l=1

�vl,n,mp

�vconcat,g,n,mp = CONCAT (�vg,n,mp, �vaggr,g,n,mp)
�vg,n+1,mp = EMLP (�vconcat,g,n,mp)

(4)

�vconcat,i,n,mp = CONCAT (�vg,n+1,mp, �vi,n,mp)
�vi,n+1,mp = EMLP (�vconcat,i,n,mp)

(5)

Readout Rg. After N rounds of MP, we can get the updated set global vector
�vg,N,mp containing all the set’s context information. Rg, as in Fig. 3a, further
decodes the set global vector into the output vector �vg,output indicating the set’s
meaningfulness, via Eq. 6. The output score is the norm of the final output
vector as Sset = |�vg,output|.

�vg,output = Rg (�vg,N,mp) = EMLP (�vg,N,mp) (6)

To conclude, the HSN scores a set on its meaningfulness as Eq. 7. Note that
the EMLP in HSN has the same structure as Eq. 1 but do not share parameters
unless specified. We tested the latent size of [32, 64, 128] and chose 64 as a balance
of performance and efficiency.

Sset = HSN({M1,M2, · · · ,ML}) (7)

3.4 Double-Margin Loss

We present our training of HSN in this subsection. Recall that we have only
existing documents rather than labeled hypotheses, our training process takes
the idea of negative sampling that trains a model using existing and randomly
sampled instances. We randomly add one concept into an existing document
to make it less meaningful (“worse”) in the sampling based on the nature of
biomedical document sets. For example, “{Fish Oil, Raynaud Disease, Blood
Viscosity}” is meaningful, and will be less meaningful if we add “Fracture” as
“{Fish Oil, Raynaud Disease, Blood Viscosity, Fracture}”. Similar to negative
sampling, we can train HSN to distinguish the “worse” and original documents.

Furthermore, we propose a double-margin loss to better train HSN via sam-
pling both less meaningful and more meaningful documents. Specifically, in the
sampling process, we also sample more meaningful (“better”) documents via
randomly removing one concept from an existing one, in contrast to the “worse”
document generation. In this regard, we train HSN to distinguish the three types
of documents: “worse” documents, original documents, and “better” documents
by the double-margin loss. We argue that we can achieve a better set of network
parameters via the double-margin loss than the typical negative sampling solu-
tion described above. Following negative sampling, the sampling processes are
independent in each iteration during the training.
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Specifically, in the training process, we generate two documents from an exist-
ing one Doriginal = {M1,M2, · · · ,ML} as Dbetter = {M1,M2, · · · ,Mk−1,Mk+1,
· · · ,ML} by randomly removing a MeSH term and Dworse = {M1,M2, · · · ,
ML,ML+1} by randomly adding a MeSH term. Every choice of random MeSH
terms is independent and follows a uniform distribution over the MeSH vocabu-
lary. After sampling, HSN will score them as Sworse, Soriginal, and Sbetter respec-
tively. We propose a double-margin loss function defined on the three scores as
in Eq. 8 and minimize it to train HSN.

L =
∑
Ndoc

{
[τ1 − Sbetter]+ + [τ2 − Soriginal]+ + Sworse

}
(8)

where τ1 and τ2 are the two margins, [x]+ is defined as [x]+ = max(x, 0), and
Ndoc is the number of original documents. Our proposed loss function ensures
same-scaled output scores and a stable and efficient training process. Firstly,
the regression-like loss guarantees the scores of any hypotheses are on the same
scale and addresses the second challenge in Sect. 1. Secondly, we sample only two
documents from an existing one in each epoch independently, ensuring a stable
and efficient training process similar to negative sampling-based training.

We employ the ADAM optimizer with a default learning rate of 0.001. The
margins τ1 and τ2 are 6 and 3 chosen from [1–6] because the model converges
much faster using these two margins than other combinations on all datasets.
The mini-batch size is 3072.

3.5 Applying HSN to HG

After training, HSN can score any hypothesis. It solves an HG problem in three
settings. The first one is to rank several hypotheses on their meaningfulness
when a researcher already has some and wants to find the best ones. HSN takes
them as inputs and outputs their respective scores for ranking. In the second
scenario, HG needs to evaluate a single hypothesis. We solve such a problem by
randomly generating several hypotheses on the same input concepts of interest,
estimating the distribution of scores, and checking the single hypothesis’s score
relative to the distribution. A hypothesis whose score is above one standard
deviation than the mean is regarded meaningful. The last setting is to generate
hypotheses without knowing any candidate. We generate candidate hypothe-
ses via enumerating all combinations and use HSN to rank them as the first
setting.

4 Experiments

We conduct experiments in three groups: 1) the empirical study and analy-
sis showing that HSN can handle any hypotheses effectively and efficiently;
2) the quantitative analysis justifying the advantage of HSN over baselines;
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3) evaluating the double-margin loss. We describe datasets before experiments
and results.

4.1 Datasets

In the empirical study, we use the most recognized query “Fish Oil” and “Ray-
naud Disease” in HG, which has long been a famous case with many verified-to-
be-true hypotheses [10]. The quantitative analysis follows the standard method
that cuts off the data into two parts according to a cutoff date, generates
hypotheses according to the pre-cutoff data, and evaluates whether a hypothesis
is a good one using the post-cutoff data [17]. We use five widely accepted “golden
datasets” below. HSN’s settings are the same on five datasets for uniformity.

1. Fish Oil (FO) & Raynaud Disease (RD) (1985)
2. Magnesium (MG) & Migraine Disorder (MIG) (1988)
3. Somatomedin C (IGF1) & Arginine (ARG) (1994)
4. Indomethacin (INN) & Alzheimer Disease (AD) (1989)
5. Schizophrenia (SZ) & Calcium - Independent Phospholipase A2 (CI-PA2)

(1997)

In the preprocessing, we select documents published before the cutoff date
and containing either one of the input terms to build the training corpus. The
step can significantly ease model training without compromising the perfor-
mance. To verify that the preprocessing introduces no bias, we add TF-IDF, the
standard approach to distinguish between documents, as a comparative approach
in our experiments.

4.2 Empirical Study

In this experiment, we examine whether HSN can replicate the one-concept and
multiple-concept true hypotheses regarding “Fish Oil” and “Raynaud Disease”.
After training, we feed several such hypotheses into HSN and see whether HSN
can distinguish them from random ones as the second setting in Sect. 3.5.

Specifically, we checked hypotheses listed in Table 1 that are verified to be
true by domain experts [4,12]. As for the reference, we generated 10,000 dif-
ferent hypotheses containing 1 to 7 MeSH terms (the choices MeSH terms and
the number of MeSH terms are both random) other than “Fish Oil” and “Ray-
naud Disease”. We use HSN to score them as Eq. 7 and calculate the mean and
std of the scores which are 0.017752 and 0.021220 respectively. We consider a
hypothesis as meaningful if its score is above one std from the mean.
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Table 1. Scores of true hypotheses By HSN. Bold numbers indicates that HSN scores
the respective hypotheses as meaningful. HSN scores all verified true hypotheses, either
one-concept or multiple-concept ones, as meaningful and in the same complexity.

Valid hypotheses Scores

Fish Oil, Blood Viscosity, Raynaud Disease 0.067301

Fish Oil, Vasoconstriction, Raynaud Disease 0.067295

Fish Oil, Epoprostenol, Raynaud Disease 0.067286

Fish Oil, Prostaglandins E, Raynaud Disease 0.067360

Fish Oil, Epoprostenol, Platelet Aggregation, Raynaud Disease 0.067260

Fish Oil, Epoprostenol, Blood Viscosity, Raynaud Disease 0.067271

Fish Oil, Epoprostenol, Vascular Resistance, Raynaud Disease 0.067260

Fish Oil, Epoprostenol, Prostaglandins, Platelet Aggregation, Raynaud Disease 0.067248

Fish Oil, Epoprostenol, Eicosanoic Acids, Alprostadil, Raynaud Disease 0.067408*

We list the scores of the true hypotheses as in Table 1. The bold numbers indi-
cate that HSN scores the respective hypotheses as meaningful. We can observe
from Table 1 that HSN scores all the true hypotheses, both one-concept and
multiple-concept ones, as meaningful. Moreover, HSN’s scoring complexity for
both one-concept and multiple-concept hypotheses are identical as in Table 2,
i.e., addressing the first challenge in Sect. 1. The results show that HSN can find
the two types of hypotheses effectively and efficiently.

Table 2. A comparison of (time) complexity between search-based solutions and HSN
when evaluating a hypotheses. N is the number of concepts in the hypotheses, and M
is the averaged number of possible connections of a MeSH term.

Method Search-based approaches HSN

Time Complexity O(MN ) O(N)

We can also observe from Table 1 that the one-concept and multiple-concept
hypotheses’ scores are in the same range, enabling the comparisons across
hypotheses with different numbers of MeSH terms, i.e., addressing the second
challenge in Sect. 1. That the scores are in the same range also addresses the
concern that the varied number of MeSH terms in a document may be a clue for
HSN scoring, validating our document sampling strategy.

Interestingly, we can see that even though the hypotheses “Fish Oil, Epopros-
tenol, Eicosanoic Acids, Alprostadil, Raynaud Disease” has three intermediate
concepts, it has the highest scores in Table 1. This score shows that hypotheses
with more intermediate concepts can be more meaningful than those with less,
verifying the necessity of evaluating multiple-concept hypotheses.

4.3 Quantitative Analysis

We evaluate HSN statistically in this section. Specifically, these experiments rank
hypotheses using different approaches and compare the rankings’ consistency
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with the ground truth ranking. We describe our ground truth ranking and base-
lines before presenting the results.

Ground Truth Generation. A hypothesis should be more meaningful if more
documents discuss it in the future [17]. Therefore, we cut off the data into two
parts according to a cutoff date. No publications discuss the hypotheses before
cutoff, and we can evaluate a hypothesis by checking the number of documents
mentioning it after cutoff. Therefore, the ground truth score is defined as: gt(B)
= #(A,B)+#(B,C), where A and C are the two input MeSH terms and B is
the intermediate term in a hypothesis, #(i, j) is the number of documents in
the post-cutoff data containing both term i, j. We use the scores to rank the
plausible hypotheses as the ground truth ranking in our statistical evaluation.

Comparative Methods. To compare between HSN and current advance-
ments, we implement three baselines in our comparison: TF-IDF, Lift, and Word
Embedding. The following are the details.

– TF-IDF: To evaluate the bias introduced by preprocessing, we compare HSN
with TF-IDF. This baseline ranks candidate hypotheses using their interme-
diate terms’ TF-IDF values in the pre-cutoff data and is a representative of
the co-occurrence-based HG solution [11,17].

– Lift: We also compare HSN with approaches based on statistical measure-
ments. This baseline ranks hypotheses using lift(A,B) + lift(B,C) scores
measuring the importance of hypotheses among candidates to represent such
researches [7,17].

– Word Embeddings (Embedding): Embedding-based approaches have
achieved the state-of-the-art performance in HG research [1,8]. To make a
fair comparison with such approaches, this baseline uses word2vec [9], iden-
tical to the MeSH encoding module in HSN, to encode each MeSH and rank
hypotheses.

Experiment Results. We compare the rankings, by each approach and on
each dataset, with the ground truth rankings using the Spearsman’s correlation
scores at different k. Tables 3, 4, 5, 6, 7 list the scores on the five datasets. Higher
scores indicate better rankings, and bold numbers indicate that the respective
approach achieves the best performance in the group.

Table 3. Spearman correlation at differ-
ent k for FO-RD.

k 500 800 1000 1200

TF-IDF −0.255 −0.328 −0.344 −0.418

Lift −0.015 −0.012 0.009 0.115

Embedding 0.282 0.247 0.215 0.184

HSN 0.349 0.355 0.329 0.304

Table 4. Spearman correlation at differ-
ent k for MIG-MG.

k 500 800 1000 1200

TF-IDF −0.258 −0.324 −0.374 −0.397

Lift 0.058 0.157 0.225 0.304

Embeddings 0.296 0.316 0.335 0.300

HSN 0.311 0.466 0.426 0.401
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Table 5. Spearman correlation at differ-
ent k for INN-AD.

k 500 800 1000 1200

TF-IDF −0.293 −0.375 −0.399 −0.464

Lift 0.248 0.341 0.365 0.352

Embeddings 0.207 0.137 0.170 0.203

HSN 0.374 0.405 0.418 0.372

Table 6. Spearman correlation at differ-
ent k for IGF1-ARG.

k 500 800 1000 1200

TF-IDF −0.264 −0.317 −0.359 −0.382

Lift 0.091 0.089 0.190 0.157

Embeddings 0.175 0.215 0.219 0.179

HSN 0.275 0.377 0.441 0.339

Table 7. Spearman correlation at different
k for SZ-CI, PA2.

k 500 800 1000 1200

TF-IDF −0.212 −0.280 −0.327 −0.301

Lift −0.116 −0.104 −0.178 −0.2201

Embeddings 0.155 0.173 0.201 0.199

HSN 0.497 0.436 0.402 0.441 Fig. 4. HSN trained with the double-
margin loss outperforms HSN trained
without it at all ks.

In Tables 3, 4, 5, 6, 7, we can see that the TF-IDF approach’s scores are
always low. It shows that the preprocessing does not benefit the performance.
The statistical measurement-based approach Lift performs better than TF-IDF
because it can employ the statistics to evaluate hypotheses. Furthermore, the
word embedding-based approach can capture latent semantics and perform even
better, consistent with the previous research. Our proposed model achieves
higher scores than the embedding-based approaches. The reason is that our
unified model structure can ensure optimal embeddings and scoring mechanisms
in contrast to embedding-based approaches that learn the embeddings and score
hypotheses separately. To conclude, HSN outperforms its counterparts on all
five datasets in the statistical evaluation. The results reveal that HSN can not
only address the challenges in addressing multiple-concept hypotheses but also
improve performance.

4.4 Double-Margin Loss Evaluation

Our proposed double-margin loss training scheme can train HSN without using
labeled hypotheses, which is the first solution of such kind in HG. To evaluate its
advantage over simple negative sampling-based training scheme, we compare it
with “single-margin” loss that only samples “worse” documents and trains HSN
using the “worse” documents and the original documents. Similar to the quanti-
tative evaluation, this experiment compares HSN trained with two losses on the
five datasets. Figure 4 presents the Spearman’s correlation scores at different k
on the “Fish Oil - Raynaud Disease” dataset by HSN trained with our proposed
double-margin loss and HSN trained without our proposed double-margin loss
(with the “single-margin”). The results show that HSN trained with the double-
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margin loss outperforms HSN trained without it all the time. The results on the
other four datasets are similar and we omit them for brevity. These experiments
justify that the double-margin loss can improve the performance of HSN.

5 Conclusion

This paper proposes a model HSN for HG. HSN can compare one-concept and
multiple-concept hypotheses effectively and efficiently. It is the first HG solution
to solving such a problem to the best of our knowledge. Importantly, HSN solves
the exponential explosion problem caused by high-order search in traditional
approaches fundamentally, and we believe this is a transformative direction of
HG research. Moreover, we can train HSN using only the existing documents,
overcoming the lack of labeled hypotheses, and propose a double-margin loss
to better train the model. We conduct extensive experiments verifying those
advantages.
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Abstract. Identifying novel drug-target interactions (DTIs) is a cru-
cial step in drug discovery. Since experimentally determining DTIs is
expensive and time-consuming, it becomes popular to employ computa-
tional methods for providing promising candidate DTIs. However, in the
existing computational methods, the drug implicit network and target
implicit network constructed from a DTI network (a bipartite network)
have been ignored in the DTI prediction problem, while such implicit
networks constructed from a bipartite network have been proven useful
in other problems, e.g., the link prediction task in a bipartite network.
Motivated by that, we propose a novel DTI prediction method which
considers the implicit networks in addition to drug structure similarity
network and target sequence similarity network. The experiments over
five real-world DTI datasets demonstrate the competitive performance
of the proposed method compared to the state-of-the-art methods. The
code is available at https://github.com/BrisksHan/NE-DTIP.

Keywords: Drug-Target Interaction Prediction · Network
embedding · Implicit networks · Network topology

1 Introduction

Identifying novel drug-target interactions (DTIs) is a crucial step in drug dis-
covery. Since experimentally determining DTIs is expensive and time-consuming
[10], it is desirable to develop computational methods to identify promising can-
didate DTIs to accelerate the speed of drug discovery.

Over the years, many computational methods have been proposed to identify
novel DTIs. The existing methods could be categorised into three groups. The
first group is the target structure based methods [15]. These methods simulate
the docking process of drugs. However, the 3D structures of the proteins are
required as the input, yet, the 3D structures of many proteins are unavailable.
The second group is the ligand similarity based methods [14]. These methods
use the structural similarity between ligands to predict interactions, however,
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the sequence similarities between targets are ignored in predicting DTIs. The
third group is the machine learning based methods [2,16,17,19,26,28,33,34,36].
They often take the DTI network, drug structural similarity network (DSSN),
and target sequence similarity network (TSSN) as the inputs to train a machine
learning model for predicting DTIs. Note that, the machine learning based meth-
ods have attracted a lot of research interests in recent years. Most of them focus
on identifying novel DTIs from known DTIs, as a drug might bind to more than
one target [33], which could lead to successful drug repositioning.

Although many computational methods have been proposed to tackle the
DTI prediction problem, the implicit networks constructed from the known DTI
network are ignored in existing works. However, it has been shown the implicit
networks constructed from a bipartite network can improve the performance
of the link prediction task in the bipartite network [29]. Besides, the implicit
relations can also improve the performance of recommender systems [35].

Motivated by the success of using implicit networks or relations in other
problems, we suggest to also consider the implicit networks extracted from the
DTI network (a bipartite network) in the DTI prediction problem. The implicit
networks, i.e., drug implicit network (DIN) and target implicit network (TIN),
are constructed using the second-order proximity in the DTI network. It is worth
noticing that, an edge in DIN indicates that two drugs would bind to at least
one common target and an edge in TIN indicates that two targets would bind
to at least one common drug, while DSSN (or TSSN) represents the structural
similarity directly calculated between two drugs (or two targets). The topological
structures of DIN and TIN would be different from the topological structures of
TSSN and DSSN, as they are computed from different perspectives.

To incorporate the implicit networks, we propose a method termed as Net-
work Embedding based Drug-Target Interaction Prediction (NE-DTIP). Specif-
ically, NE-DTIP is a machine learning based method and it includes two stages:
the feature vector construction stage and the DTI classification stage. During
feature vector construction stage, DIN and TIN are constructed from the DTI
network. After that, drug embeddings and target embeddings are learned from
DIN, TIN, DSSN, and TSSN using a network embedding method. Unlike previ-
ous methods, the proposed method additionally considers two homogeneous net-
works, i.e., TIN and DIN, both of which are generated based on the implicit
relations of a given DTI network. During DTI classification stage, the drug-
target pairs in DTI network are regarded as positive samples, while randomly
sampled unknown drug-target pairs in the DTI network are regarded as nega-
tive samples. The feature vector of each training sample (for a drug-target pair)
is constructed via concatenating the corresponding drug embeddings and target
embeddings. Finally, all samples are used to train a classifier for DTI predictions.

We employ five real-world DTI datasets to evaluate the performance of NE-
DTIP. Comparing against four state-of-the-art methods, NE-DTIP outperforms
the existing methods on three out of five datasets. We also conduct a case study
to verify the top-20 DTI predictions by NE-DTIP on the latest dataset, and it is
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interesting to find that six out of twenty novel DTIs (i.e., new DTIs not recorded
in the dataset) are supported by recent studies.

2 Related Work

The machine learning based DTI prediction methods can be categorised into
three groups. The first group is the distance based methods [16,34,36]. Those
methods embed the drugs and targets into a unified space based on the known
DTIs and the similarities between drugs and targets. Then, the novel DTI pre-
dictions are made based on the distance between the drugs and targets in the
unified space. The second group is the bipartite local prediction based methods
[2,19,32]. Those methods learn two classifiers. The first classifier predicts targets
for a given drug and the second classifier predicts drugs for a given target. Given
a drug-target pair, the two classifiers are jointed together to make a prediction.
The third group is the feature vector based methods [17,26,28]. Those meth-
ods construct feature vectors for drugs and targets. Then, the known DTIs are
treated as positive samples and unknown DTIs are treated as negative samples.
The feature vectors of drug-target pairs are constructed via concatenating the
corresponding drugs and targets. Then, a classifier is employed to predict DTIs.

3 Notation and Problem Definition

Homogeneous Network : All of DIN, DSSN, TIN, and TSSN are homogeneous
networks, i.e., all nodes of a network are the same type. Let G = (V,E) be a
homogeneous network, where V denotes a set of nodes and E ⊆ V × V denotes
edges. The number of nodes in V is denoted with |V |. For any node pair (vi, vj),
where i ∈ [1, ..., |V |] and j ∈ [1, ..., |V |], there is a non-negative edge weight wij

which describes the strength of connection between the two nodes. The weight
is 0 if two nodes are not connected in E. All the edge weights are represented in
a |V | × |V | matrix W = [wij ]. Note that, there is no self-loop in this work, i.e.,
wii = 0 ∀i ∈ [1, ..., |V |] in all homogeneous networks.

DTI Network : DTI network is a bipartite network, i.e., nodes are in two sets and
there is no edge between nodes in the same set. Let B = (V D, V T , EDTI) be a
DTI network, where V D denotes a set of drugs, V T denotes a set of targets and
EDTI ⊆ V D × V T denotes edges, as there is no drug-drug edge or target-target
edge in the DTI network. For any node pair (vD

i , vT
j ), where i ∈ [1, ..., |V D|] and

j ∈ [1, ..., |V T |], wDTI
ij is used to describes the strength of interaction, and the

weight is 0 if there is no interaction between a drug-target pair. All the edge
weights are represented in a |V D| × |V T | matrix WDTI = [wDTI

ij ].

DTI Prediction Problem: The aim of DTI prediction is to infer a DTI prediction
matrix M ⊆ V D × V T for all drug-target pairs, given the inputs, i.e., DTI
network, DSSN, and TSSN. Each entry in the outputs M should reflect the
possibility of the existence of the interaction between a drug-target pair.
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4 Method

The proposed method as shown in Fig. 1 includes two stages. The feature vector
construction stage is discussed in Sect. 4.1–4.3. The DTI classification stage is
discussed in Sect. 4.4. And the pseudocode is summarised in Algorithm 1.

Fig. 1. The framework of the proposed method.

4.1 Network Construction

Construction of Implicit Networks for DIN and TIN. The implicit net-
works GDIN = (V D, EDIN ) and GTIN = (V T , ETIN ) are constructed from the
DTI network B = (V D, V T , EDTI). Both of the implicit networks are homoge-
neous networks, each node represents a drug in GDIN and a target in GTIN ,
and an edge between two nodes indicates the corresponding nodes share at least
one common neighbour in the DTI network. Following the definition in [8], for
any node pair in DIN and TIN, the edge weight is defined as:

wDIN
ij =

∑

k∈[1,...,|V T |]
wDTI

ik wDTI
jk ∀i, j ∈ [1, ..., |V D|] and i �= j (1)

wTIN
ij =

∑

k∈[1,...,|V D|]
wDTI

ki wDTI
kj ∀i, j ∈ [1, ..., |V T |] and i �= j (2)

where, wDIN
ij denotes the edge weight for node pair (vD

i , vD
j ) in DIN and wTIN

ij

denotes the edge weight for node pair (vT
i , vT

j ) in TIN.

Construction for DSSN and TSSN. The edge weight in DSSN is calculated
via applying either Tanimoto coefficient [30] or [12] to pairs of drug molecular
structures, while the edge weight in TSSN is calculated via applying Smith-
Waterman algorithm to pairs of protein sequences [24]. The DSSN and TSSN
are fully connected as each node pair would have a positive similarity score
as weight. However, many edges are not informative as the corresponding edge
weights are very small. By removing edges with small weights, the speed of
network embedding process can be significantly improved. Since it is difficult to
set cut-off scores for both drug structural similarity score and target sequence
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similarity score, we introduce an edge density parameter α to remove the non-
informative edges, as it has been shown the DSSN shows strong community
structures via only keeping the edges with high similarity scores [27]. In both
DSSN and TSSN, we rank edges by weights and use the edge density parameter
α to denote the proportion of edges to keep, i.e., α = 0.1 means only the top
10% of edges are kept.

4.2 Network Embedding

A network embedding method is employed to learn low dimensional node embed-
dings for constructing feature vectors. The reasons are that the rows and columns
of the weight matrix of a network only contain the first-order proximity informa-
tion, and they are sparse and high dimensional. Those factors made the weight
matrix sub-optimal for the downstream machine learning task.

The modified DeepWalk [13,22] is employed to learn the node embeddings,
as it has been widely recognised as a simple, efficient, and effective algorithm in
the network embedding field [9]. The modified DeepWalk includes three parts: 1)
Random walks that capture the topological structure of a network; 2) A sliding
window that encodes the node similarity from node sequence into the node pairs
D; 3) Skip-gram negative sampling model (SGNS) [20] that learns the node
embeddings based on the frequency of node pairs in D and SGNS is employed
instead of the original method in DeepWalk to reduce the computational cost.

The modified DeepWalk is applied to DSSN, DIN, TSSN, and TIN to learn
drug and target embeddings. The embeddings from the four networks can be
denoted as ZDSSN ∈ R

|V D|×d, ZDIN ∈ R
|V D|×d, ZTSSN ∈ R

|V T |×d, and
ZTIN ∈ R

|V T |×d respectively, where d is the embedding dimension.

4.3 Feature Vector Construction for Training Samples

The feature vectors of training samples are constructed based on the learned
embeddings: ZDSSN , ZDIN , ZTSSN , and ZTIN . The positive samples are the
edges from the DTI network. For the m − th drug-target pair (vD

i , vT
j ) ∈ EDTI ,

the feature vector of positive samples Zpositive
m is constructed by:

Zpositive
m = ZDSSN

i ⊕ ZDIN
i ⊕ ZTSSN

j ⊕ ZTIN
j (3)

For m − th positive sample, there is a corresponding label ypositive
m = 1. The

negative samples are constructed from the unknown pairs in the DTI network as
those pairs have not be experimentally validated, hence, they are unlikely to have
interactions. For the h−th randomly sampled drug-target pair (vD

i , vT
j ) /∈ EDTI ,

the feature vector Znegative
h can be constructed by:

Znegative
h = ZDSSN

i ⊕ ZDIN
i ⊕ ZTSSN

j ⊕ ZTIN
j (4)

the corresponding label of the negative sample is ynegative
h = −1. In the training

samples, the ratio of positive samples to negative samples is 1:10.
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Algorithm 1. NE-DTIP: Network Embedding based DTI Prediction
Input: DTI network; DSSN; TSSN; edge density parameter α; number of walks per
node r; walk length l; window size w; number of negative samples q; embedding dimen-
sion d; kernel parameter γ for the SVM classifier; tolerance parameter c for training
the SVM classifier;

Output: DTI prediction matrix M ∈ R
|V D|×|V T |.

1: Construct DIN and TIN (two implicit networks) from DTI network. The edge
weights in DIN and TIN are constructed by Eq (1) and Eq (2) respectively.

2: Keep the top α proportion of edges in DSSN and TSSN.
3: for DIN, TIN, DSSN, and TSSN do
4: Apply the modified DeepWalk to learn the node embeddings.

5: End for
6: Construct feature vectors for positive samples (from known DTIs) and randomly

sampled negative samples (from unknown DTIs) as training samples.
7: Train a SVM classifier using training samples, which yields a trained SVM classifier.
8: Construct feature vectors for all drug-target pairs.
9: Feed all feature vectors (from the last step) into the trained SVM classifier to learn

the DTI prediction matrix M .
10: return DTI prediction matrix M .

4.4 DTI Prediction

A support vector machine (SVM) with Platt scaling [23] classifier is trained to
separate positive and negative samples as SVM has been shown to be accurate
and robust [1]. For a drug-target pair, the probability of classifying a feature
vector as a DTI edge can be written as:

p(y = 1|x) =
1

1 + exp(−(
p∑

k=1

ykakK(x, xk) + b))
(5)

where p is the number of training samples, K indicates the kernel function,
a = (a1, ..., ap) and b are learnable parameter. The kernel function provides the
non-linear ability to classify samples without having to project the features of
samples into higher dimensional space. In this work, we use Radial basis function
kernel [3] to calculate the distance between samples. The parameters in Eq.
(5) are learned using matrix decomposition via transforming it to a quadratic
programming problem [6], in which a tolerance parameter c is introduced.

After all the parameters being learned, we start to infer the DTI predic-
tion matrix M . For all drug-target pairs, the feature vectors are constructed as
described before. After that, all feature vectors for all drug-target pairs are fed
into the trained decision function to infer the DTI prediction matrix M .
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Table 1. The statistics of five DTI datasets.

NR GPCR IC E DT-IN

# of DTI edges (in a DTI network) 90 635 1476 2926 4978

# of drug nodes (in both DTI and
DIN networks)

54 223 210 445 732

# of targets nodes (in both DTI
and TIN networks)

26 95 204 664 1915

# of implicit drug-drug edges (in a
DIN network)

218 2748 2546 5137 25628

# of implicit target-target edges
(in a TIN network)

54 668 8843 15497 46843

5 Experiments

5.1 Datasets

The experiments are conducted on five benchmark datasets. Four of those datasets
are published in [34] and they are nuclear receptor (NR), G-protein-coupled recep-
tors (GPCR), ion channel (IC), and enzyme (E). All of those four datasets are
obtained from DrugBank [31]. The fifth dataset drug-target inhibition (DT-IN)
is published in [17], in which, the DTIs are obtained from multiple sources, and
only the DTIs with the binding threshold below 10 µM are kept.

For all the benchmark datasets, DSSNs, and TSSNs are pre-computed. There
is a difference in constructing the DSSNs between those datasets. For NR, GPCR,
IC, and E, the drug structural similarity scores are constructed using [12], while
for DT-IN, the drug structural similarity score is constructed using Tanimoto
coefficient. The target sequence similarity scores in all of the five datasets are
constructed using Smith-Waterman algorithm [24].

5.2 Baselines

The DTI prediction task can be viewed as classifying an imbalanced datasets.
The datasets are imbalanced as there is far more unknown edges than the known
edges in the DTI network. Following previous works [17,28], the metric of eval-
uating the performance of predicting DTI is the area under precision and recall
curve (AUPR), as it is more suitable for imbalanced datasets. Other popular
metrics such as the area under receiver operating characteristic curve (AUC)
would give an optimistic evaluation of the prediction [7].

Five independent ten-fold cross validations are conducted to evaluate the
performance of the DTI prediction methods on each dataset. To calculate the
AUPR of the testing edges, the randomly sampled unknown edges are treated as
negative samples. Following the experimental setting in NeoDTI [28], the ratio
of the testing edges to the randomly sampled unknown edges is 1:10.
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Table 2. The AUPR scores on five benchmark datasets.

Netlaprls BLM-NII NRLMF NeoDTI NE-DTIP

AUPR st.d. AUPR st.d. AUPR st.d. AUPR st.d. AUPR st.d..

NR 0.2288 0.0486 0.3617 0.0984 0.3336 0.0629 0.2308 0.0835 0.2906 0.0992

GPCR 0.4149 0.0358 0.4578 0.0434 0.4979 0.0392 0.4966 0.0624 0.4398 0.0628

IC 0.4704 0.0291 0.4763 0.0276 0.5201 0.0278 0.5841 0.0356 0.6077 0.0397

E 0.6930 0.0265 0.7299 0.0285 0.7352 0.0294 0.7844 0.0267 0.7963 0.0248

DT-IN 0.7816 0.0230 0.8024 0.0231 0.8484 0.0186 0.8560 0.0161 0.8610 0.0145

The best results are in bold. The st.d. is the abbreviation for standard deviation.

5.3 Compared to Other Methods

The compared methods are Netlaprls [32], BLM-NII [19], NRLMF [16], and
NeoDTI [28], which have been introduced in related works. Although there are
newer methods, those methods take additional networks such as drug-drug inter-
action and target-target interaction as inputs, yet those additional networks may
not available in some datasets. For fairness, the inputs are DTI network, DSSN,
and TSSN for all methods. The hyper-parameters of the compared methods are
obtained via conducting a grid search on DT-IN using a ten-fold cross validation.
The set of hyper-parameters with the highest performance in AUPR is selected
to conduct all experiment on all five datasets.

The experiments of our method are conducted using the following hyper-
parameters unless otherwise specified. The edge density hyper-parameter α for
DSSN and TSSN is set as 0.1. For the hyper-parameters in the modified Deep-
Walk, the hyper-parameters for embedding dimension, number of walks, walk
length l, window size w, and negative sample number q are set to 128, 10, 80,
10, and 5 respectively, as these parameters have been shown the good perfor-
mance in most cases according to [13,22]. For the hyper-parameters in SVM, γ
and the tolerance hyper-parameter c are set to 1/(11|EDTI |) and 1 respectively,
both of which are according to [6].

The result is shown in Table 2, from which, we have two observations. First,
our method shows very competitive performance comparing to other methods,
as our method consistently outperforms other methods over the three largest
datasets (see Table 1 for the size). Second, the performance of our method is
affected by implicit relations between drugs and targets. It can be seen from
Table 1, there are far more edges in implicit networks constructed from IC, E,
DT-IN than that of the implicit networks constructed from NR and GPCR. Due
to the sparseness of implicit networks in NR and GPCR, many nodes are isolated
in the corresponding implicit networks. As a result, the embeddings learned from
the DIN and TIN with less implicit relations (in NR and GPCR datasets) are
less informative, which degrades the performance of our method.

5.4 The Effect of Implicit Networks

To evaluate the performance gain by adding the implicit networks in predicting
DTIs, we investigate the DTI prediction performance by using node embeddings



NE-DTIP 499

Table 3. The effect of implicit networks.

DSSN + TSSN d = 128 DSSN + TSSN d = 256 NE-DTIP

AUPR st.d. AUPR st.d. AUPR st.d.

0.8075 0.0171 0.8063 0.0172 0.8610 0.0145

from DSSN and TSSN to construct to feature vectors and this method is named
as DSSN+TSSN. The experiments are conducted on DT-IN with five indepen-
dent ten-fold validations. The embedding dimension d of the DSSN+TSSN is
set as 128 and 256, while the embedding dimension d of NE-DTIP is set as
128 as previous. The reason for the additional dimension setting d = 256 for
DSSN+TSSN is to make the dimensions of feature vectors of DSSN+TSSN and
NE-DTIP to be the same. The experimental result is draw in Table 3. From it,
we can conclude there is a performance gain by adding implicit networks, as NE-
DTIP significantly outperforms DSSN+TSSN in both experimental settings. It
demonstrates the effectiveness of the proposed method by additionally incorpo-
rating the implicit networks. The reason is that the topological structures of DIN
and TIN are different from that of the DSSN and TSSN. As a result, the node
embeddings from DIN and TIN could provide additional useful features for the
prediction model to improve its performance.

5.5 Parameter Sensitivity

For the proposed method, an important hyper-parameter α is investigated. For
the parameter sensitivity analysis, α is set to 0.01, 0.04, 0.1, 0.4, and 1.0 with
other parameters fixed. The effect to the DTI prediction is shown in Table 4.
It can be seen that the proposed method performs the best with α = 0.04 and
α = 0.1, while there is a performance loss if α is set to a too low or too high
value. The reason for the performance loss of setting α = 0.01 is that many
informative relations are removed. However, the reason for the performance loss
of setting α = 0.4 and 1.0 is that most uninformative relations are kept. By
keeping those uninformative edges, node pairs with very small similarity scores
could co-exist in the training node pair set D. As a result, the distance between
the node embeddings do not reflect the structure/sequence similarity between
the nodes. This is further verified by an additional performance loss in setting
α = 1 compared to setting α = 0.4.

5.6 A Case Study of Novel DTI Prediction

We conduct a case study on DT-IN dataset to find whether the novel DTIs
(excluding the known DTIs recorded in the dataset) predicted by our method
can be supported by recent studies. In this experiment, all the known DTIs are
first used to train our model. The trained model is then used to predict novel
DTIs. The top-100 novel DTIs predicted by our method are shown in Fig. 2.

We search for the supporting studies over the top-20 predicted DTIs. It is
interesting to find that six of them are supported by recent studies. Sunitinib
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inhibits EPHB2 [18], GSK3B [5], and SYK [21]. The treatment of using Suni-
tinib substantially increases ErbB3 [11]. Bosutinib is an inhibitors to KDR [4].
Haloperidol would down regulate CHRM2 [25].

Table 4. The effect of edge density parameter α.

α = 0.01 α = 0.04 α = 0.1 α = 0.4 α = 1

AUPR st.d. AUPR st.d. AUPR st.d. AUPR st.d. AUPR st.d.

0.8547 0.0140 0.8608 0.0153 0.8610 0.0145 0.8536 0.0151 0.8491 0.0159

Fig. 2. The top-100 DTIs predicted by the proposed method on DT-IN dataset. Each
circle represents a drug. Each diamond represents a target. The edges between nodes
indicate novel DTI predictions (i.e., new DTIs not recorded in the dataset). The top-20
DTI predictions are in solid lines, while the remaining ones are in dashed lines.

6 Conclusion

In this work, we propose a novel DTI prediction method, namely NE-DTIP, by
additionally considering the implicit networks. Experiments over five benchmark
datasets demonstrate the competitive performance of the proposed method com-
pared to other state-of-the-art methods, especially on the datasets with densely
connected implicit networks. Further experiments suggest that there is a signif-
icant performance gain in incorporating the implicit networks, which however,
are ignored in the previous related works. Finally, a case study indicates that
the proposed method is capable of predicting novel DTIs.

The future work can be conducted from the following directions. The first
direction is to increase the robustness of utilising the implicit relations. If the
implicit network is too sparse, the features generated by network embedding
module of NE-DTIP would not be informative. As a result, the performance of
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DTI prediction would be degraded. The second direction is to further incorporate
other networks such as drug-drug interaction network, target-target interaction
network and drug-side-effect network, since these networks with the more infor-
mation may increase the performance of DTI prediction.
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Abstract. Depth estimation from 2D images is a fundamental task for
many applications, for example, robotics and 3D reconstruction. Because
of the weak ability to perspective transformation, the existing CNN
methods have limited generalization performance and large number of
parameters. To solve these problems, we propose CNNapsule network
for monocular depth estimation. Firstly, we extract CNN and Matrix
Capsule features. Next, we propose a Fusion Block to combine the CNN
with Matrix Capsule features. Then the skip connections are used to
transmit the extracted and fused features. Moreover, we design the loss
function with the consideration of long-tailed distribution, gradient and
structural similarity. At last, we compare our method with the existing
methods on NYU Depth V2 dataset. The experiment shows that our
method has higher accuracy than the traditional methods and similar
networks without pre-trained. Compared with the state-of-the-art, the
trainable parameters of our method decrease by 65%. In the test exper-
iment of images collected in the Internet and real images collected by
mobile phone, the generalization performance of our method is further
verified.

Keywords: Monocular depth estimation · Matrix capsule · Fusion
block

1 Introduction

Depth estimation is a fundamental research in computer vision. It mainly
depends on professional equipments and computer vision algorithms. The depth
maps of the real-world are useful for many applications including robotics [1],
self-driving cars [2], SLAM [3], augmented reality [4], 3D reconstruction [5], and
segmentation [6]. Depth estimation methods mainly include structured light,
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TOF (Time of Flight), binocular vision and monocular vision. Compared with
the other methods, monocular vision has the advantages of simple structure,
wide vision and low cost. Therefore, there are many recent studies focusing on
monocular depth estimation [7–10].

The early monocular depth estimation methods mainly rely on the computer
vision algorithms [11–13]. With the continuous optimization of deep learning and
GPU acceleration technology, automatic learning image structural features based
on CNN (Convolutional Neural Network) has gradually become an important
method for monocular depth estimation [14–16]. In 2014, Eigen et al. [17] first
used CNN for monocular depth estimation and proposed multi-scale deep net-
work. Compared with the traditional methods, this method achieved higher accu-
racy. But, the resolution of output images are low. To solve this problem, Laina
et al. [18] proposed a full convolution depth estimation network with Encoder-
Decoder. They proposed a new up-sampling method, and first used the inverse
Huber loss as the optimization function. Further, they deepen the network and
achieved good performance without post-processing. Nevertheless, they did not
make full use of multi-scale information, which limits the further improvement of
depth estimation. Based on this problem, in 2017, Xu et al. [19] proposed a net-
work with CRF (Conditional Random Field) model. They extracted multi-scale
CNN features maps and integrated these maps to achieve better performance.
Due to the lack of contextual information, the results were still inadequate. To
solve this problem, Hao et al. [20] adopted ResNet-101 as the backbone network
based on transfer learning research. They used dilated convolution to extract
context information. Meanwhile, they constructed AFB (Attention Fuse Block)
and CRB (Channel Reduce Block) to fuse the features in the decoder stage.
After that, many scholars used transfer learning method and replaced differ-
ent backbone network to improve the performance of depth estimation, such as
using VGG [20], DenseNet [16,21], etc. However, in order to reduce the impact
of perspective transformation, these methods always need complex networks to
cover all samples. Meanwhile, these networks have large number of parameters
and the generalization performance is limited. To solve these problems, we pro-
pose a lightweight CNNapsule network to integrate Matrix Capsule features into
CNN with Fusion Block. Moreover, Encoder-Decoder is constructed to realize
end-to-end training. In the end, the experiments show that our method achieves
better performance.

When humans perceive the depth of the real-world, there are many overlap-
ping areas with similar features. Humans can learn these features and perspec-
tive transformation for depth estimation. Based on this, we take advantage of
the invariability of perspective with the Matrix Capsule features [22]. Firstly,
we extract CNN and Matrix Capsule features in the encoder stage. Next, the
perspective invariant pose matrices of Matrix Capsule features are mapped into
feature maps. Then the generated feature maps are concatenated with CNN
features for decoder module. After that, the skip connections method is used
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to make full use of multi-scale features. Moreover, we design a loss function
with the consideration of depth difference, gradient and structural similarity.
In addition, we realize end-to-end training. Finally, the experiments verify the
effectiveness of our proposed method. The paper is structured as follows: Sect. 2
describes Matrix Capsule features, Fusion Block and CNNapsule architecture in
detail. The experiment results on NYU Depth V2 and real images are presented
in Sect. 3. Finally, a conclusion is provided in Sect. 4.

2 Proposed Method

In this section, we first introduce Matrix Capsule features. Then we describe our
Fusion Block for feature fusion. After that, we give the complete architecture of
our method in detail. In addition, the effective loss function is given. Finally, the
data augmentation used in training is explained.

2.1 Matrix Capsule Features

Matrix Capsule features [22] are as shown in Fig. 1. The set of capsules in layer
l is denoted as Il. Every capsule has a pose matrix, M4×4, and an activation
probability, a1×1. In between each capsule i in layer l and each capsule j in
layer l + 1 is a 4 × 4 trainable transformation matrix, Wij . These Wijs (and two
learned biases per capsule) are the only stored parameters and they are learned
discriminatively. The pose matrix of capsule i is transformed by Wij to cast a
vote Vij = MiWij for the pose matrix of capsule j. The poses and activations of
all the capsules in layer l + 1 are calculated by using EM algorithm which gets
as input Vij and ai for all i ∈ Il, j ∈ Il+1 [22]. The combination results of Vijs
and ajs are Matrix Capsule Features. In our experiments, the iteration of EM
algorithm is set to 3.

Fig. 1. Matrix Capsule features with pose matrix
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Fig. 2. Convert Matrix Capsule features to feature maps

2.2 Fusion Block

In order to integrate Matrix Capsule features into CNN, we propose a Fusion
Block for feature fusion. As shown in Fig. 2, Matrix Capsule features are firstly
reshaped into vectors with length n. Next, these vectors are mapped into longer
vectors with length n2 through a fully connected layer. Then the mapped vectors
are reshaped into n × n feature maps. After that, an n × n × m feature map
is formed through m different n × n feature maps. Finally, we use three 1 × 1
convolutional layers to widen the channels to balance the contribution between
Matrix Capsule and CNN features. In our experiments, we set the parameter n
as 16 and m as 4.

2.3 CNNapsule Architecture

Fig. 3. Overview of our network architecture (Color figure online)

Our CNNapsule architecture is based on Encoder-Decoder and shown in Fig. 3.
Firstly, considering the high computational complexity of directly extracting
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capsule features from input images, we adopt a convolution of 5 × 5 with the
stride of 2 to extract low-level features. Next, we use 4 blocks to extract multi-
scale features. Each block contains a convolutional layer, a BN (Batch Normal-
ization) layer, ReLU activation function, a dropout layer (rate = 0.2) and an
average pooling layer. Meanwhile, on the basis of the fourth convolutional layer,
the Matrix Capsule features were generated for Fusion Block. Then, the fusion
features can be obtained from our proposed Fusion Block. After that, in the
decoder stage, we concatenate the channels of fusion features (yellow block in
Fig. 3), CNN features (orange block in Fig. 3) and decoder features (blue block in
Fig. 3). Besides high resolution feature maps were obtained by transposed con-
volution and leaky ReLU activation function with parameter α = 0.2. Finally,
the last convolutional layers results in depth map of spatial resolution 128× 128
pixels.

2.4 Loss Function

An effective loss function is beneficial to train networks and different consider-
ation regarding the loss function can accelerate the training speed and improve
the overall depth estimation performance. There are many variations on the loss
function employed for optimizing the network [16,17,23,24]. Jiao et al. [23] found
that NYU Depth V2 dataset has a long-tailed distribution. It means that hard
samples with large depth pixel values have very limited contribution and it leads
the models tend to predict smaller depth values. So we design an adaptive depth
loss Ldepth as:

Ldepth =
1
N

N∑

p

y∗
p[f(y∗

p) − f(yp)] (1)

f(y) = min(
1
y
, 1000.0) (2)

where N is the number of pixels, y∗ is the ground truth depth map and y is
the prediction of the depth estimation network. Meanwhile, the pixels of ground
truth are normalized to [0, 1].

Then, in order to retain edge information of depth maps, gradient similarity
is considered to design gradient loss Lgrad as:

Lgrad =
1
N

N∑

p

|gx[f(yp), f(y∗
p)]| + |gy[f(yp), f(y∗

p)]| (3)

where gx and gy, respectively, compute the difference in the x and y components
for the depth image gradients of f(y) and f(y∗).
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At last, we consider the SSIM (Structural Similarity) effectiveness on our
model and design the SSIM loss function as follows:

LSSIM (y) = 1 − SSIM [f(yp), f(y∗
p)] (4)

Based on these considerations, we design the loss function as:

Lcost = Ldepth + Lgrad + λLSSIM (5)

We empirically found and set λ = 0.5 as a reasonable weight.

2.5 Data Augmentation

In order to improve the generalization performance of our network, we augment
the training data with random online transformation:

– Brightness: Change the brightness of the input images with a probability of
0.5, and the brightness range is [0.5, 1.5].

– Contrast: Change the contrast of the input images with a probability of 0.5,
and the contrast range is [0.5, 1.5].

– Saturation: Change the saturation of the input images with a probability of
0.5, and the saturation range is [0.4, 1.2].

– Color: Exchange R and G channels of the input images with a probability of
0.25.

– Flip: Flip the input and target images horizontally with a probability of 0.5.
– Translation: Input and target images are randomly cropped to 224 × 224.

To fit the network, the input images are resized to 256 × 256 and the target
images are resized to 128 × 128.

We change the brightness, contrast and saturation of the input images to
simulate the transformation of the lightness in the real scene. Meanwhile, the
effectiveness of switched R and B channels has been demonstrated by relevant
study [16]. Image translation does not preserve the world-space geometry of the
scene. This problem can be corrected in the case of scaling by dividing the depth
values by the scale (making the image s times larger effectively moves the camera
s times closer) [17]. Flips are geometry-preserving.

3 Experiments

We train our model on NYU Depth V2 [25] with our proposed data augmen-
tation. Moreover, we also download some indoor images outside of the dataset
from the Internet and collect some real indoor images with our mobile phone. We
use these images for qualitative test. Our network training and test environment
is Win10+Tensorflow1.13.0 and the GPU is GTX2060.
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3.1 Evaluation

We quantitatively compare our method against existing methods using the stan-
dard six metrics used in prior work [17]. These error metrics are defined as:

– average relative error (rel): 1
N

∑N
p

|yp−y∗
p |

y∗
p

;

– root mean square (rms):
√

1
N

∑N
p (yp − y∗

p)2;

– average error (log10): 1
N

∑N
p |log10(yp) − log10(y∗

p)|;
– threshold accuracy (δi): % of y∗

p s.t. max( yp

y∗
p
,
y∗
p

yp
) = δ < threshold for

threshold = 1.25, 1.252, 1.253.

3.2 NYU Depth V2

NYU Depth V2 is a dataset which contains 120K training samples and 654
testing samples. It is always used for the indoor depth estimation task. RGB
inputs are downsampled from 640 × 480 to 256 × 256 and the ground truth
images are downsampled to 128 × 128. In particular, points for which there is
no depth value are left unfilled in training. Learning rates are 0.01 for all layers.
Momentum is 0.9. Training took 52h and was performed for 0.75M iterations.
Due to the limited performance of the GPU, batch size is only set to 4 in our
experiments. In order to compare the different methods clearly, we resize all the
results to the same resolution in Fig. 4, Fig. 5 and Fig. 6.

Table 1. Comparison on the NYU Depth V2.

Method rel↓ rms↓ log10 ↓ δ1 ↑ δ2 ↑ δ3 ↑ Output

Zheng et al. [26] 0.257 0.915 0.305 0.540 0.832 0.948 –

Liu et al. [27] 0.230 0.824 0.095 0.614 0.883 0.971 –

Wang et al. [28] 0.220 0.745 0.094 0.605 0.890 0.970 –

Eigen et al. [17] 0.215 0.907 – 0.611 0.887 0.971 80 × 60

Ours (No Fusion Block, batch size = 4, Lcost) 0.226 0.792 0.092 0.637 0.887 0.970 128 × 128

Ours (batch size = 2, Lcost) 0.216 0.757 0.088 0.657 0.897 0.973 128 × 128

Ours (batch size = 4, Ldepth) 0.229 0.817 0.094 0.605 0.883 0.971 128 × 128

Ours (batch size = 4, Lcost) 0.214 0.760 0.087 0.663 0.900 0.973 128 × 128

During the test, we use bilinear interpolation to resize the prediction images
to 640 × 480. Then we evaluate the results on the pre-defined center cropping
by Eigen et al. [17]. Since our network did not adopt pre-trained and fine-tune
strategies, we compare our method with traditional algorithms and the net-
works without pre-trained. We do pseudo color processing for better visualiza-
tion. Qualitative results are shown in Fig. 4. In the second row, our method gives
a clearer result of the bookshelf. Moreover, in the third row, our result has better
texture information in the lamp. Meanwhile, quantitative results are provided
in Table 1. As can be seen, compared with traditional algorithms and similar
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Fig. 4. Depth prediction on NYU Depth V2: (a) input RGB images (b) ground truth
(c) results using Eigen et al. [17] (d) our estimated depth maps

networks without pre-trained, our method (batch size = 4, Lcost) achieves the
best performance on all but one quantitative metrics. In addition, our method
has higher output resolution.

The comparison with other methods is shown in Fig. 5. Although we do not
use transfer learning and pre-trained, our results also have similar prediction
performance with the existing method based on transfer learning. Furthermore,
our results even have clearer textures on some samples. In the second row, since
we consider the long-tailed distribution, we have a better result on large pixels. In
particular, a comparison of network parameters and iterations is shown in Table
2. Compared with the state-of-the-art, the trainable parameters of our method
decrease by 65%. Moreover, our method needs fewer iterations to converge.
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Table 2. Comparison of network parameters and iterations.

Method Parameters Iterations

Fu et al. [15] 110M 3M

Alhashim et al. [16] 42.6M 1M

Ours 14.9M 0.75M

Fig. 5. Qualitative comparison of NYU Depth V2 between our method and other
methods (based on transfer learning): (a) input RGB images (b) ground truth (c)
results using Fu et al. [15] (d) results using Alhashim et al. [16] (e) our estimated
depth maps

3.3 Internet and Real Collected Images

In order to further verify the generalization performance of our method, we
collect some images from the Internet and some real images by mobile phones.
We directly predict the depth of these images with our model trained on NYU
Depth V2. Some visualization results are shown in Fig. 6. As can be seen, even
if the test images are not consistent with the training dataset, the estimation
results are still robust to some content.
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Fig. 6. Depth estimation results for collected images: (a) images from the Internet (b)
our results (c) real images collected by mobile phone (d) our results

4 Conclusion

In this work, we proposed a lightweight CNNapsule network for monocular depth
estimation. We have constructed Fusion Block to fuse Matrix Capsule into CNN
features. Complete depth estimation network has been established with Encoder-
Decoder. Meanwhile, we have considered three influential parts to design loss
function for parameter optimization. The experiments have verified the effec-
tiveness of our method. Moreover, compared with the existing state-of-the-art
method, our estimation results also have certain advantages in some scenes.
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Abstract. Capsule network provides comparable results on several benchmark
datasets with only two convolutional layers. The shortcomings of highly cost in
dynamic routing and unsatisfactory performance on complex datasets are mainly
caused by primary capsules, they are filled with trivial redundant features mainly
because of the lack of feature compression process.We introduce a novel algorithm
for exploiting better performance with limited capacity based on the information
bottleneck theory, which defines optimal representation of supervised learning
that it is to extract minimal sufficient statistics of the input with respect to the
output. Optimal primary capsules are solved by injecting constraint variable in
the representation instead of variational information bottleneck, this process can
be in turn to add a regularization term to loss function. Our algorithm allows
more flexible prior distribution, and it is convenient to apply and optimize. Our
experiments validate that our method can make Capsule Network achieve better
performance with fewer primary capsules and reduce computation complexity
significantly.

Keywords: Information bottleneck · Capsule network · Representation
learning · Compression

1 Introduction

Convolutional neural networks (CNNs) have played an important role in computer vision
tasks, there are still some limitations such as remain invariance and the inability to under-
stand spatial relationships between features caused by pooling layer. To address these
limitations, a representational variant named Capsule Network (CapsNet) proposed by
[1–3] that shows promising results in some basic datasets. However, there is no effec-
tive algorithm to compress primary capsules, the techniques used to prevent overfitting
such as dropout and data augmentation cannot eliminate redundant information in the
representation. The trivial redundant features in primary capsules lead to highly cost in
dynamic routing and unsatisfactory performance on complex datasets.

To solve this, we attend to use information bottleneck theory to compress the primary
capsules and reduce computation complexity. In the view of information bottleneck
[4, 5], optimal representation of supervised learning is to extract minimal sufficient
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statistics of the input with respect to the output. But this method is difficult to perform
because of its definition. Deep VIB [8] is the most common trick to address information
bottleneck which parameterizes model by using a neural network, it gets an evidence
lower bound by leveraging the variational inference and uses the reparameterization trick
for back-propagating the gradient efficiently.

However, the assumption of the posterior distribution in Deep VIB is inflexible for
CapsNet, for example, it is unrealistic to assume that the posterior is Gaussian. In this
paper, we focus on formalizing the idea for optimal primary capsules with information
bottleneck conveniently. We propose a newmethod to control the information flow from
input by adding multiplicative constraint variable instead of VIB. Our method allows
arbitrary representation distribution and avoids posterior, it can equivalently be encoded
as the constraint variable in primary capsule layer. Then we introduce how to use our
method to compress primary capsules and build a loss function about the constraint
variable, it is used to encourage the representation to carry out the task with minimal
features. As we show in various experiments, our method can reduce the number of
the primary capsules with lower computation complexity and achieve better results than
baseline CapsNet with binary dropout and data-augmentation.

More specifically, we summarize our main findings:

1) We first construct optimal representation of CapsNet to improve performance, and
reduce calculation complexity by information bottleneck theory,which can compress
primary capsules effectively.

2) We provide a novel method to approximate information constraint by injecting
multiplicative constraint variable in the representation, this method aims at build-
ing convenient and flexible assumption by avoiding posterior. Then, we propose a
regularization term to limit information flow from input to representation.

3) Using our method to compress primary capsules in CapsNet for optimal representa-
tion. We evaluating the performance of our method on several benchmark datasets
with different capacities, the results show that our method can achieve better results
with fewer primary capsules.

CapsNet: CapsNet comprises only two convolutional layers and a dynamic routing
process between two capsule layers, each capsule is a vector encapsulated a group of
neurons that represents the instantiation parameters such as an object or a part. Convolu-
tional layers are used to get features from the image without pooling layer, these features
are divided into small groups of neurons called primary capsule, all of them compose the
representation. Dynamic routing mechanism is a novel algorithm used to cluster primary
capsules to classified capsules which are long instantiation vectors if and only if it is
present in the input. The classified capsule with the longest length is predicted result, it
depends on the separate marginal loss function. Decoder can reconstruct the input from
the practical capsule representation predicted by model, the Euclidean distance between
the input and the reconstruction is minimized during training as a regularization term.

CapsNet works well in theMNIST dataset, but the performance on complex datasets
such as CIFAR10 is not satisfactory compared with the CNNs. Another disadvantage is
that the dynamic routing is an extremely computationally expensive procedure due to
the redundant primary capsules. When the input is MNIST dataset the primary capsules
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of the best result contained 1152 primary capsules which are 12 times input dimension,
but the accuracy is very close to the best when the number of primary capsules is 288.
CapsNet has no feature compression process such as pooling layer, its representation is
filled with trivial and redundant features, it is the main reason for poor performance on
complex datasets and excessive computation.

Information Bottleneck: It suggests that the representation should be an efficient
feature, and its relevant information in the input variable about the target is brief in
perspective of information theoretic concepts, its objective has the form:

I(z; y) − βI(x; z) (1)

where I(·) denotes the mutual information which is always difficult, β is a positive
constant to tradeoff sufficiency and minimum. Despite being a pivotal across machine
learning and data science, mutual information is intractable in the high-dimensional
continuous variables of deep learning constitutionally because of the joint probability
distribution [6]. The binning algorithm proposed by [7] segments the neuron’s output
activations into several equal intervals, it can be used to optimize this function only when
all random variables are low-dimensional discrete variables. For high-dimensional con-
tinuous variables of deep neural networks, an approximation algorithmnamedvariational
inference is needed.

2 Proposed Framework

Our purpose is to construct optimal primary capsules which can achieve better perfor-
mance with fewer features in perspective of information theoretic concepts, therefore we
attend to use the information bottleneck to constrain the representation. The first term
in Eq. (1) can be replaced by the marginal loss function in CapsNet, since the second
term can be seen as a regularization method to limit information flow of capsules in our
method.

Mutual information is a fundamental quantity leverage for measuring the relevant
information, but it is always difficult to compute directly:

I(x; z) =
∫ ∫

p(x, z) log
p(x, z)

p(x)p(z)
dzdx (2)

where p(x, z) is the joint probability distribution, p(x) and p(z) are the marginals. VIB
is needed to estimate these distributions which are difficult to address, then Eq. (2) can
be rewrite as:

I(x; z) = ∫ ∫
p(x, z) log p(x,z)

p(x)p(z)dzdx

= ∫ ∫
p(x) p(z|x) log p(z|x)

p(z) dzdx

= Ex∼p(x)
[
KL(p(z|x)||p(z))]

(3)

where KL denotes the Kullback-Leibler divergence. It is still intractable due to the
posterior distribution p(z|x) and themarginal distribution p(z), sincewe propose a simple
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way to approximate it inspired by local reparemeterization [9] and information dropout
[10].

Local reparemeterization trick suggests that the uncertainty about the posterior can
equivalently be encoded as amultiplicative variable in the activationof the representation.
According to this trick, a constraint variable ε is a random sample drawn fromconditional
probability distributionp(ε|h) that depends on the input, the constraint variable is injected
in the representation as noise with multiplicative:

t = z � ε, ε ∼ p(ε|x)
where � denotes multiplicative, t denotes our optimal representation.

Figure 1 describes the structure of ourmethod: variable h1 and h2 are hidden layers in
front of z, α(·) denotes a neural network that x is input, p(ε) is the probability distribution
of the output, we can get constraint variable ε through sampling operation from posterior
distribution p(ε|x). Then constraint variable should be rescaled in the allowed range
and add a small value for numerical stability. After a multiplication between constraint
variable ε and representation z, a restricted variable t is the optimal representation that
it is used as input of the decoder for task y.

Fig. 1. The architecture of our method to approximate information bottleneck

Now the KL divergence term can be rewrite as:

KL(p(ε) || p(z))
= ∫

p(ε) log p(ε)
p(z)dz

= −H (p(ε)) − ∫
p(ε) log p(z)dz

(4)

There are two probability distributions need to fix for computing KL divergence:
constraint distribution p(ε) and prior distribution p(z). To compute efficiently and anal-
ysis simply, a natural choice for constraint distribution is the log-normal distribution
logN (0, α2(x)) with mean zero and standard deviation parameterized by α(x). Notice
that these neural networks used for information constraints on the representation are
additional network, they won’t affect the structure of the model.

Prior would be desirable to use a log-uniform p(log(z)) which is a scale invariant
prior from a theoretical point of variational dropout. In this setting, we can easy to write
Eq. (4) as follow:

LIB = −KL(p(ε) || p(t))
= H (p(ε)) + log c
= logα(x) + c

(5)
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This is an information constraint in loss function that penalizes the input related
information in the representation, it is easy to optimization and convenient to apply on
other models. A standard normal distribution is a good fit for prior, using this prior we
can compute the KL divergence easily:

LIB = −KL(p(ε) || p(t))
= KL

(
N (0, α2(x)) ||N (μ, σ 2)

)
= 1

2σ 2

(
α2(x) + μ2

) − log α(x)
σ

− 1
2

(6)

Indeed, it is usually to assume that the prior is a standard normal distributionN (0, 1),
in this case the loss function of information constraint is:

LIB = 1

2
α2(x) − logα(x) − c

3 Optimal Primary Capsules

In this section, we would show how to use our method to get optimal primary capsules
and loss function. First, we use a neural network for constraint variable ε, notice that the
size of ε should be same as the representation. Second, ε is divided into small groups
after scaling and reshaping, these groups can be seen as constraint capsules which should
have the same size as the primary capsules. Last, the optimal representation is the product
of primary capsules and the random samples from constraint capsules. Figure 2 shows
how to compress primary capsules for optimal representation marked by a dotted line.

Fig. 2. Constrain primary capsules by information bottleneck

When the activation function of primary capsule layer is not squashing in other
models, constraint variable should inject into the weights of representation before non-
linear function. For instance, there is such a common network, the prior distribution is
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uniform p(z) = c
z and the activation function is the rectified linear unit (ReLU) which is

unbounded and frequently zero, we can assume the prior p(z) = c′ when z is zero, where
c’ denotes a constant in the interval 0 to 1, the final prior has the form p(z) = c′δ(z)+ c

z
where δ is the Dirac delta function. Now we can get the following loss function:

L = LCaps + βLIB (7)

4 Experiments

4.1 Datasets and Experimental Settings

We used Keras libraries for all the models. For the training procedure, we used RMSprop
with an initial learning rate of 0.001 and an exponential decay rate of 0.9. All the
experiments are performed on RTX-2080ti with 16 GB RAM. We test our method with
several benchmark datasets, MNIST [11], Fashion-MNIST [12] and CIFAR10 [13]. We
present various experimental results comparing the behavior of the standard CapsNet,
CapsNet with dropout [14] and data augmentation, the results show that our method is
able to compress the representation and improve performance of limited capacity, but
other methods can’t.

4.2 Classification Results with Different B

Parameter β in loss function is a hyper-parameter to adjust the mutual information
between input and representation. To show the effect on classification results with dif-
ferent β, we train some CapsNet models on MNIST dataset with β ∈ {0.01, 0, 1, 100},
we get back the original CapsNet when β = 0. In each value of β, we train 9 models
with channel ∈ {1, 4, 8, 12, 16, 20, 24, 28, 32}, channel can represent increasing model
capacity gradually from 1 to 32, we can get back the original CapsNet when channel =
32, for example, the capacity of CapsNet with channel = 4 is four times as large as the
capacity of CapsNet with channel = 1.

We show the results in Fig. 3. When the number of channels is from 1 to 32, CapsNet
models with different β have similar curve changes. It maybe because that the Squash
activation function of the primary capsules and routing can normalize the values of
representation variable, the size of the noise hardly affects the information constraint
of the representation. This is an advantage of our method that the additional hyper-
parameters β needn’t to adjust. These three models with different β can achieve best
accuracy 99.69% when the number of channels is 12. The results will achieve the next
peak when channel = 20, and then show a downward trend. When β = 0, the original
CapsNet will get the first peak at 99.63% when the channel = 8, and then show a
downward trend until channel = 24, it will get best result 99.64% when channel is
32, this setting is equal to baseline CapsNet. Our method can get better results than
the baseline by using 37.5% capsules. It can suggest that in our method, the primary
capsules of the CapsNet can achieve better representation whatever the value of β is.

We compare our method with binary dropout, information dropout and data aug-
mentation as baseline on different network sizes and architectures. Binary dropout is
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Fig. 3. Classification results on MNIST with different β

set a drop probability of 0.2 on primary capsules and data augmentation is set width
shift range = height shift range = 0.5. Information dropout is similar to our method,
it can be regarded as a generalization of dropout that is motivated by the Information
Bottleneck principle, so it should use multiple times in layer like binary dropout, each
information dropout uses a Sigmoid activation function and the noise is come from the
previous layer. When regularization term is none, we will get original CapsNet. If this
term is dropout, it has the same curve with original CapsNet when channel is from 1 to
12, the best result is 99.66% when channel is 16. Data augmentation has a similar curve
to dropout, it gets best result at 99.65% when channel is 8 and 32. Table 1 shows the
testing error and the number of primary capsules on MNIST with different β for ours,
original CapsNet, binary dropout and data-augmentation.

Table 1. Classification error on MNIST

Method Error (%) Primary capsules

CapsNet 0.36 1152

Binary dropout 0.35 864

Data
augmentation

0.34 1152

Ours (β =
0.01)

0.31 720

Ours (β = 1) 0.32 432

Ours (β = 100) 0.31 432

Neither dropout or data augmentation has no compression and significant perfor-
mance improvement, it may be because that binary dropout on primary capsules will
destroy the integrality of the representation. As a result of the instantiation parameters of
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a specific type of entity, each primary capsule may contain different levels and types of
relevant features such as position, size and orientation, it’s not enough to activate parts of
primary capsules or neurons in capsules randomly. Dynamic routing is viewed as a kind
of attention mechanism that allows each capsule at one level to attend to some capsules
and to ignore others at below level, in other word, CapsNet can learn the intrinsic spatial
relationship between part and whole and then generalizes to novel viewpoints [15], data
augmentation by adding the gathered information from various viewpoints or converting
pixel intensities doesn’t work as well as it does on CNNs. Information dropout constrains
the information flow between one layer and the next, it may have adverse effects on the
representation learning.

4.3 Classification Results with Fashion-MNIST and CIFAR10

To see the effect of our method on different network size and other datasets, we train on
Fashion-MNIST and CIFAR10with β = 0.01 and a variable number of channels, similar
to Sect. 4.2, and all the results are the best of three times and run 80 epochs. We show
the result on Fashion-MNIST in Fig. 4 (a), the CapsNet with our method can achieve
the best accuracy 92.10% with 24 channels which outperforms the best accuracy of the
original CapsNet 91.98% with 32 channels.

Fig. 4. Classification results on MNIST with different β

In Fig. 4 (b), we plot the accuracy of two CapsNet as the model capacity grows,
the accuracy of our method is better than the original CapsNet when the channel is less
than 24. The best accuracy 73.89% that our model achieves is comparable to the original
CapsNet (73.80%), but only 62.5% of primary capsules are used. CapsNet with our
method uses 24 capsule blocks to achieve the best result in gray Fashion-MNIST images,
but only 20 in themore complexRGBCIFAR10 imageswhich seems counterintuitive. In
fact, the number of primary capsules in each capsule block is different which is related
to the input size. In our setting, each capsule block contains 64 primary capsules on
Fashion-MNIST images and 36 primary capsules on CIFAR10 images. Table 2 shows
the testing error and the number of primary capsules on Fashion-MNIST and CIFAR10.
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Table 2. Classification error on MNIST

Dataset Method Error (%) Primary
capsules

Fashion-MNIST CapsNet 8.02 1152

Ours 7.90 864

CIFAR10 CapsNet 26.20 2048

Ours 26.11 1280

5 Conclusion

In this paper, we develop a novel method for exploring the information bottleneck in
a simple way, and we use this method to compress primary capsules for optimal rep-
resentation. We show that our approximate algorithm can be optimized by adding a
regularization term in loss function which is related to injecting a constraint variable
in primary capsules, it allows flexible assumption and can be minimized efficiently.
The optimal representation is proven to achieve preferable results with fewer primary
capsules and reduce calculation significantly.

We have successfully demonstrated the convenient compression capability of infor-
mation bottleneck, there are several extensions that we would like to explore in future
work. The most notable direction is that optimal representation compressed may have
other benefits, such as increased disentanglement to the decoder or robustness to adver-
sarial inputs. The second interesting direction would be considering to extend our algo-
rithm to general neural networks such as CNNs. Lastly, we believe that exploring more
precise estimation algorithm instead of ours or a measure easy to calculate instead of
mutual information could bridge the gap between the theory and the practice on neural
networks.
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Abstract. Capsule Networks overcome some shortcomings of convolu-
tional neural networks organizing neurons into groups of capsules. Capsule
layers are dynamically connected by means of an iterative routing mecha-
nism, which models the connection strengths between capsules from differ-
ent layers. However, whether routing improves the network performance
is still object of debate. This work tackles this issue via Routing Anneal-
ing (RA), where the number of routing iterations is annealed at training
time. This proposal gives some insights on the effectiveness of the routing
for Capsule Networks. Our experiments on different datasets and archi-
tectures show that RA yields better performance over a reference setup
where the number of routing iterations is fixed (even in the limit case with
no routing), especially for architectures with fewer parameters.

Keywords: Capsule networks · Routing · Annealing

1 Introduction

Capsule Networks (CapsNets) [8,9,16], received lots of attention lately as they
tackle several shortcomings of Convolutional Neural Networks (CNNs). The
human visual system is known to recognize objects (e.g., faces) decomposing
them in hierarchy of parts (e.g., mouth and nose) with poses imposing coordinate
frames to represent shapes [7]. While CNNs can detect the presence of objects
in an image, they cannot however capture the spatial relationships between its
parts mainly due to max pooling layers progressively dropping spatial informa-
tion. CapsNets attempt to preserve and leverage an image representation as a
hierarchy of parts with poses introducing two architectural novelties.

First, neurons are organized in groups called capsules, where each capsule
accounts for a different visual entity, e.g. for a different part of an object. Then,
neurons inside each capsule account each for a different property or attribute of
the object such as pose (position, size, orientation) and properties (color, defor-
mation, etc.) [16]. The output of each capsule is a vector, where the normalized
vector length is the probability that the image contains the object the capsule
accounts for [16].
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Second, pooling layers are replaced by a routing algorithm, which captures the
part-objects spatial relationships between one capsule layer and the following.
Unlike conventional neural networks, each capsule chooses to which capsules
of the next layer to forward its output. Capsules activations are multiplied by
learnable weight matrices in order to cast the votes for how the poses of the
capsules of the next layer will be. The routing algorithm iteratively computes
the agreement between the predictions of a capsule layer for the following layer.
The routing algorithm outputs both the poses of the following capsule layer
and the probabilities with which parts are assigned to objects. Therefore, the
information flow across layers is not given by the network topology anymore,
rather it is dynamically controlled by the routing algorithm.

Recently, the contribution of the routing algorithm to CapsNets generaliza-
tion ability and robustness to affine transformations has been questioned [5,14].
Typically, the number of routing iterations r is fixed once and for all during
training and inference. Dropping the routing procedure is equivalent to run just
one iteration (uniform routing in [14], r = 1) so that the coupling coefficients
are not updated and they are all initialized equally. In [5,14] it is shown that
by simply averaging the predictions instead of finding the coupling coefficients
between capsules through the routing algorithm yields better results. To the
present date, it is not clear whether the routing algorithm improves the perfor-
mance of CapsNets and what is the optimal number of iterations.

This work provides new evidence on the benefits of routing proposing Rout-
ing Annealing (RA), a novel technique where the number of routing iterations
is iteratively found at training time. With RA, the number of iterations of the
routing algorithms increases whenever the network performance reaches a loss
plateau. We observed that, for the same number of routing iterations, a gradual
ramp thereof allows to reach better minima of the loss function. Our experiments
over multiple datasets show better performance when using RA, especially when
the number of capsules in the network is limited, i.e. where CapsNets perfor-
mance is weaker. We also found that the number of routing iterations depends
on the number of capsules, their dimensions and on the dataset itself.

The rest of this work is organized as follows. In Sect. 2 we first provide
the background on CapsNets instrumental to understanding this work, then we
discuss recent literature on routing. Next, in Sect. 3 we present Routing Anneal-
ing (RA), our proposed training procedure for CapsNets. Finally, in Sect. 4 we
experiment with RA and a reference routing algorithm over multiple datasets,
highlighting the benefits of the former. Section 5 drawn the conclusions and
discusses further developments of this work.

2 Background and Related Works

This section first describes those aspects of CapsNet instrumental to the under-
standing of this work, namely their architecture and the routing algorithm intro-
duced by Sabour et al. [16]. Then, we review the literature especially related to
the routing algorithm and we make some considerations on this procedure.
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2.1 CapsNet Architecture

Figure 1 shows the CapsNet architecture proposed in [16] for MNIST classifi-
cation, consisting in one convolutional layer and two capsule layers. Due to its
relevance for our work and for sake of simplicity, our overview on CapsNets will
focus on this specific architecture.

Fig. 1. CapsNet architecture described in [16]. There are one convolution layer (Conv1)
and two capsule layers (PrimaryCaps and DigitCaps). The routing algorithm controls
the information flow between capsule layers.

The first layer (Conv1) is a convolutional layer that converts pixel intensities
to the activities that are given in input to the first capsule layer.

The PrimaryCaps layer is implemented as a convolutional layer with a 9 × 9
filters [16] and T ×D1 channels where T is the number of primary capsules types
and D1 is the dimension of a capsule vector. Overall, there are T×M×N primary
capsules. Let us denote as uj primary capsules vectors normalized with the
squashing function introduced in [16]. Each capsule is composed of a pose vector
whose magnitude models the probability that the object that detects is present
in the image. The output layer (DigitCaps) comprises of K D2-dimensional digit
capsules vj , one for each output class.

The information flow between primary and digit capsules is governed by
a routing algorithm which aims to organize these capsules into a part-whole
hierarchy. One of the most employed is the one introduced in [16]. This is an
iterative procedure that computes both the poses of digit capsules from the poses
of primary capsules and the strengths of the connections between the latter two.
Each primary capsule predicts a pose for each digit capsule: if there are a lot
predictions agreeing with each others, this means that they are in correct spatial-
relationship to activate a specific digit capsule. The routing algorithm aims to
find clusters of these agreements. Let W ij ∈ R

D1×D2 be the matrix which
projects the information flow between the i-th primary capsule and the j-th digit
capsule. This can be learned through standard error gradient backpropagation.
The prediction, or vote, of a primary capsule i for the digit capsule j is defined
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Algorithm 1. Dynamic routing algorithm
1: procedure Routing(ûj|i, r)
2: for each primary capsule i and digit capsule j: bij ← 0
3: for r iterations do
4: for each primary capsule i: ci ← softmax(bi)
5: for each digit capsule j: sj ← ∑

i

cijûj|i(bi)

6: for each digit capsule j: vj ← squash(sj)
7: for each primary capsule i and digit capsule j: bij ← bij + vj · ûj|i
8: end for
9: return vj

10: end procedure

as ûj|i = W ijui which is the input for the routing algorithm described in [16]
and shown in Algorithm 1. This procedure shows how to dynamically compute
the poses vj of the digit capsules given the predictions ûj|i. At the beginning
of the routing algorithm (line 2) the logits bij are initialized equally and they
are the log prior probabilities that capsule i should be coupled to capsule j.
The core of the routing algorithm is depicted in lines 3–8. At every iteration, a
“routing softmax” (line 4) is applied to the logits bij to obtain the corresponding
coupling coefficient cij . Then, the total input sj of capsule j of the DigitCaps
layer is computed as the weighted average of the input predictions (line 5). Each
vote ûj|i is weighted by the corresponding coupling coefficient cij . vj is defined
as the normalized “squashed” sj (line 6). Then each bij is refined by measuring
the agreement between the output vj of a capsule j and the prediction ûj|i (line
7). Therefore, if there is a strong agreement, the corresponding link strength
bij between capsules i and j is increased, decreased otherwise. Finally, after r
iterations of lines 4–7, the routing algorithm output the final pose vj for each
digit capsule.

2.2 Literature Review and Considerations on the Routing
Algorithm

Ever since, different routing algorithms and architectures for capsule networks
have been proposed and have found applications in various tasks [2,4,11,18]. We
refer to routing-based CapsNets as those models that employ a routing algorithm
in the architecture of the network. Hinton et al. [9] employ the Expectation-
Maximization algorithm for the iterative routing procedure and build a deeper
capsule network with convolutional capsule layers. Wang et al. [17] model the
routing strategy as an optimization problem that minimizes a clustering-like loss
and a KL divergence between the coupling distribution. Li et al. [13] reduce the
computational complexity of the routing process using master and aide branches.
Hahn et al. [6] describe a self-routing method that incorporates mixture-of-
experts into capsule network models so as they do not require agreements any-
more. De Sousa Ribeiro et al. [3] replace the routing algorithm with variational
inference of part-object connections in a probabilistic capsule network, leading
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to a significant speedup without sacrificing performance. Furthermore, Ahmed
et al. [1] exploit attention modules and differentiable binary router to remove the
recurrence of the routing algorithm to estimate the coupling coefficients. Lenssen
et al. [12] exploit group convolutions to guarantee equivariance of pose vectors as
well as invariance of output activations. Rajasegaran et al. [15] propose a deep
capsule network architecture which uses a novel 3D convolution based dynamic
routing algorithm aiming at improving the performance of CapsNets for more
complex image datasets.

Despite of all the contributions mentioned before it is still no clear if Cap-
sNets really need a routing algorithm. Paik et al. [14] highlight that running
just one iteration of the routing algorithm (namely assigning the connection
strengths uniformly or randomly) leads to better results. This is explained as
more iterations of the routing algorithms do not change the classification result
but polarize the link strengths [14]. Gu et al. [5] mitigate this problem with a
simple but effective solution in which the transformation matrices are shared
between all capsule types. However, in contrast with the present work, they do
not change the number of iterations during the training process neither the num-
ber of capsule types and their dimensions, which as we will see they do have a
strong impact on the number of iterations of the routing algorithm.

3 Methodology

This section first describes the standard methodology training algorithm and
Routing Annealing (RA), the routing training technique we propose in this work,
and then discusses its relation with the simulated annealing.

3.1 Training with Fixed Routing

As a reference, Algorithm 2 shows the standard strategy for training a CapsNet.
The network parameters are optimized with standard backpropagation of the
error gradients for a number of epochs until some stop criterion is met. For each
epoch, the forward pass (line 5–11) is computed, followed by error gradients
backpropagation and parameter update (line 12). The training procedure ends
when the loss computed over a validation set does not decrease for p epochs
in a row (p is usually termed as patience). The algorithm returns the network
(i.e., the learned parameters set) that yields the lowest loss on the validation set.
In this procedure, as can be note from line 6 which refers to Algorithm 1, the
number of routing iterations r is fixed once for all (usually, r = 3), so we refer to
this technique as Fixed Routing (FR). Notice that when the trained network is
deployed for inference, the routing algorithm is executed for r iterations, as well.
A standard procedure towards optimising the iterations number would be to
optimize r with a grid-search strategy: one runs as many simulations as r values
to test, during which r is kept constant. However, we experimentally show that
this approach leads to sub-optimal performance, which motivates the design of
our routing technique.
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Algorithm 2. Training with Fixed Routing : learns the network parameters for
a fixed number of iterations r.
1: procedure Fixed-Routing(r, p)
2: initialize CapsNet
3: e ← 0; L� ← 0; e� ← 0
4: while e − e� < p do
5: compute all primary capsules poses ui and votes ûj|i
6: compute all digit capsules poses: vj ← Routing(ûj|i, r)
7: evaluate current loss L on the validation set
8: if L < L� then
9: L� ← L; e� ← e

10: end if
11: e ← e + 1
12: backpropagate error gradients and update parameters
13: end while
14: return CapsNet network of epoch e� with the best loss value
15: end procedure

3.2 Training with Routing Annealing

In this section we propose Routing Annealing (RA), an iterative method to
jointly optimize the number of routing iterations r� and the network parame-
ters. In a nutshell, RA finds r� adaptively during training for a given capsule
architecture over a given dataset and is described in pseudo-code as Algorithm 3.
The algorithm takes as input: r0, the initial value of r; rT , the maximum value
for r; s, the schedule used to increase r; the patience p, in number of epochs. Let
us denote as rk the value of r at step k: we say that every time r increases, an
annealing step is performed. We denote as L�

k and e�
k the lowest losses achieved

so far and the corresponding epochs for each rk. The main difference between
Algorithm 2 and 3 lies in line 3 where we loop over the possible values of r
instead over the number of epochs and in line 8 where the number of routing
iterations is increased. In line 5, Algorithm 1 is used as core routing algorithm.
At step k, we increase r by s if the validation loss L�

k does not decrease for p
epochs (lines 7–8). Every time r is increased, the training does not start from
scratch again. Instead it is resumed with the network weights with the best loss
achieved with the previous value of r, namely the network at epoch e�

k−1 (line
9). Here we assume that we save the network weights for each epoch. When r
reaches the maximum allowed rT , the training procedure ends and best network
obtained during training along with the corresponding number of routing itera-
tions is returned (lines 16–17). To summarize, RA increases the value of r when
the validation loss does not decrease for p epochs in a row. As an upper bound
for the number of routing iterations, we stop the training when r reaches its
maximum value rT . When r increases, the training restarts with the weights of
the network with the best validation loss obtained with its previous value. By
comparison, using the standard training procedure mentioned in Sect. 3.1, the
weights need to be reinitialize for every simulation with a different value for r.
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Algorithm 3. Training with Routing Annealing : learns the number of iterations
r� jointly with the network parameters.
1: procedure Routing-Annealing(r0, rT , s, p)
2: r; r ← r0; L�

0 ← +∞; e�
0 ← 0, e ← 0; k ← 0

3: while r ≤ rT do
4: compute all primary capsules poses ui and votes ûj|i
5: compute all digit capsules poses: vj ← Routing(ûj|i, r)
6: evaluate loss L on the validation set
7: if (L ≥ L�

k) and (e − e�
k ≥ p) then

8: k ← k + 1; r ← r + s; rk ← r; L�
k ← +∞; e�

k ← 0
9: load CapsNet network of epoch e�

k−1

10: else if L < L�
k then

11: L�
k ← L; e�

k ← e
12: end if
13: e ← e + 1
14: backpropagate error gradients and update parameters
15: end while
16: k� ← arg min

k
L�; r� ← rk�

17: return CapsNet network of epoch e�
k� and r�

18: end procedure

3.3 Rationale

RA takes inspiration from the simulated annealing (SA) algorithm, a proba-
bilistic technique used in combinatorial-optimization problems to minimize a
cost function. In our approach, we relate the temperature of our system being
inversely proportional to the number of routing iterations r: the highest r, the
highest the agreement between the capsules and the lowest the noise.

The number of routing iterations relates to the distribution of the coupling
coefficients cij . According to Algorithm 1, when r is low, the agreement is low
as well. When r = 1, all the coupling coefficients will have the same value,
1
K . Increasing the routing iterations, a certain number of coupling coefficients
becomes dominant over others, since Algorithm 1 looks for capsule’s agreement.
Considering that cij are normalized values, we can say that, for the i-th capsule∑

j∈Ki
cij → 1 and

∑
j∈Ki

cij → 0, where Ki is a subset of the K coupling coeffi-
cients for the i-th primary capsule and Ki is its complementary set. When r = 1,
the cardinality of Ji is exactly K, but increasing r, its cardinality drops to some
optimal value K�

i : this means that the i-th primary capsule will be coupled to
K�

i digit capsules only, avoiding noisy coupling to the others (which are K−K�
i ).

A visual representation of this effect is displayed in Fig. 2. As r increases, many
coupling coefficients drop to zero, while others converge to higher coupling val-
ues. In this way, the routing algorithm learns how to build relationships between
primary and digit caps, discarding noisy information, which helps in improving
the generalization of the model. In the next section we are going to test on-the-
field our RA strategy, observing in particular the generalization capability of the
RA models compared to the other state-of-the-art approaches.
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Fig. 2. Routing coupling coefficients between the i-th primary capsule and K digit
capsules. The highest the line weight, the highest the corresponding coupling coefficient.
When r = 1 (a) the coupling coefficients have all the same value, while increasing r (b,
c) a portion of the coupling parameters survives, while the others drop to zero. In the
case of (c), K� = 2 and Ki = {1,K − 1}.

4 Experiments

In this section we compare our proposed Routing Annealing (RA) method in
Algorithm 3 against the reference method in Algorithm 2. First we show that,
with RA, the network performs better as the number of routing iterations r
improves, whereas this is not the case with the reference algorithm. Then, we
further validate RA on multiple datasets and settings showing that it delivers
best gains especially where the number of parameters the network can afford is
low, i.e. where CapsNets performance is weaker.

4.1 Experimental Setup

We experiment with the CapsNet in Fig. 1 at classifying natural images in a fully
supervised scenario. We consider the MNIST, Fashion-MNIST and CIFAR10
datasets. For all datasets, 5% of the training set samples are reserved for valida-
tion. MNIST and Fashion-MNIST are composed of 28 × 28 images; concerning
CIFAR10, we randomly crop the original 32 × 32 images into 24 × 24 patches for
training whereas crops from the image center are used for testing as done in [16].
Our experiments consider several flavors of the architecture in Fig. 1 with differ-
ent types T ∈ {1, 2, 4, 8, 16, 32} and dimensions (D1,D2) ∈ {(2, 4), (4, 8), (8, 16)}
of capsules. We train the network minimizing a margin loss [16] with the Adam
optimizer [10] with a constant learning rate equal to 0.001 and a batch size of
128. No weight decay, dropout or other regularization techniques were used.

Concerning the proposed RA method, we train the network with the proce-
dure in Algorithm 3, with the following configuration: r0 = 1, rT = 50, s = 1
and p = 10. As we discussed in Sect. 3.2, RA can be applied to any iterative
routing algorithm but this work use as base routing algorithm the one described
in Algorithm 1.
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About the reference method, we use FR which employs the procedure in
Algorithm 2, i.e. where the number of routing iterations r is fixed (common
values in literature are r = 1 [5] or r = 3 [16]).

4.2 Preliminary Analysis on MNIST

Preliminary, we assess the effect of the number of routing iterations r on MNIST
for a minimal capsule network where the PrimaryCaps layer has only T = 1
capsule types and vectors have dimension D1 = 2 while the DigitCaps layer
vectors have D2 = 4 elements. This network has only 65k parameters, which
helps isolating the effect of r, whereas the architecture in [16] has 6M parameters
(8.2M with the decoder).

In Fig. 3 we report the learning curves for FR and RA. For FR, we train a new
CapsNet from scratch for each and every value of r. In the case of RA, instead,
we train one model only, where we gradually increase the number of routing
iterations (when the network loss reaches a plateau). We plot the best loss and
accuracy values for every r. Figure 3 shows that as r increases, the proposed
RA enables decreasing loss that reflects into higher classification accuracy. Con-
versely, with a fixed routing strategy, the loss function diverges as r increases.
We explain the gap between the two loss curves with the following hypothesis.
Each iteration of the routing algorithm strengthens or weakens the connections
between a capsule of the primary layer and all the capsules of the digit layer.
Therefore, imposing high r for all the training epochs leads the CapsNet to be
overconfident on its predictions on the link strengths, preventing the network
form learning the correct connections between the capsules.
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Fig. 3. Loss function (left) and classification accuracy (right) on MNIST test set for a
CapsNet with T = 1, D1 = 2, D2 = 4 (means and stds of 5 seeds) as a function of the
number of routing iterations r.

4.3 Results

Next, we experiment with the more complex datasets Fashion-MNIST and
CIFAR10. Figure 3 showed that RA performs better than the fixed routing ref-
erence for large r values.
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Fig. 4. Classification accuracy (%) on Fashion-MNIST (a) and CIFAR10 (b) test set for
different capsule types T and dimensions (D1, D2). On top of each bar it is shown the
number of iterations r used during training/inference, for RA it is shown the median
value of r�.

For fixed routing experiments we only consider r = 1 and r = 3, as done in
much of the recent literature. Figure 4a and 4b show that RA performs better
than fixed routing (both r = 1 and r = 3) in all the settings. Such experiments
brought us to the following observations.
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First, coherently with our previous findings on MNIST, RA delivers the most
appreciable gains when the network can afford only few learnable parameters.
We recall here that for each capsule we have a matrix of weights W ij and these
matrices have shapes D1 × D2, namely the dimensions of the capsule vectors.
This means that the number of capsules types T and their dimensions, along
with the convolutional layers, drive the number of parameters of the network.
This behaviour can be explained observing that finding agreements between
many high-dimensional capsule is not trivial. Running more iterations of the
routing algorithm tends to polarize the coupling coefficients, namely the link
strengths between capsules, such that it results in a simple route where each pri-
mary capsule sends its output to only one digit capsule Therefore, when there
are a lot of capsules, introducing some level of uncertainty with a low value
of r helps the network to not be overconfident on its predictions and to not
overfit on the training data. As a matter of fact, Fig. 4a shows that with 32 cap-
sule types of 8-dimensional primary capsules and 16-dimensional digit capsules,
our proposed method RA finds r� = 3, namely the value used in the original
formulation of CapsNets in [16]. Second, in high-dimensional settings the same
conclusions about routing as in [5] and in [14] hold for the fixed routing pro-
cedure, which achieves higher accuracy with r = 1 than r = 3. Nevertheless,
RA always achieves better performance in all cases, sometime even with fewer
routing iterations.

Third, Fig. 4b shows that r� for CIFAR10 is not the same as for Fashion-
MNIST in Fig. 4a for identical network conditions. This means that despite r�

differs from dataset to dataset, nevertheless our method can find it.

5 Conclusion

In this work we proposed a novel training technique for routing-based Cap-
sNets where the number of iterations is iteratively found at training time rather
than being fixed. This work also shows experiments in settings with a different
number of capsule types and their dimensions, namely the network capacity in
terms of trainable parameters, and on several datasets. We show that this value
depends heavily on the size of the network and on the dataset used. Typically,
the smaller the network, the higher the number of iterations the network requires
to improve its generalization capability. Given the potentiality of our technique,
in future works we plan to apply RA on more complex and sophisticated routing
algorithms such as EM routing [9].
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Abstract. Capsule networks are a type of neural network that have
recently gained increased popularity. They consist of groups of neurons,
called capsules, which encode properties of objects or object parts. The
connections between capsules encrypt part-whole relationships between
objects through routing algorithms which route the output of capsules
from lower level layers to upper level layers. Capsule networks can reach
state-of-the-art results on many challenging computer vision tasks, such
as MNIST, Fashion-MNIST and Small-NORB. However, most capsule
network implementations use two to three capsule layers, which limits
their applicability as expressivity grows exponentially with depth [20].
One approach to overcome such limitation would be to train deeper net-
work architectures, as it has been done for convolutional neural networks
with much increased success. In this paper we propose a methodology to
train deeper capsule networks using residual connections, which is evalu-
ated on four datasets and three different routing algorithms. Our exper-
imental results show that in fact, performance increases when training
deeper capsule networks. The source code is available on https://github.
com/moejoe95/res-capsnet.

Keywords: Capsule network · Residual capsule network · Deep
capsule network

1 Introduction

Capsule Networks were introduced by Sabour et al. [23], although the idea behind
capsules was earlier introduced by Hinton et al. [6]. A capsule represents a group
of neurons, and each neuron in a capsule can be seen as an instantiation parame-
ter of some object in the image. In other words, a capsule is a vector of neurons,
where its length would define the capsule’s activation, representing the presence
of an object or object-part in the input. The vector’s orientation relates to cer-
tain properties of the object. Capsules can also be in matrix form, together with
a scalar variable that represents its activation, as it was described by Hinton
et al. in [7] as Matrix Capsules.

Capsules of a lower layer vote for the pose of capsules in the upper layer, by
multiplying its own pose with a transformation matrix. Transformation matrices
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are obtained through training and model viewpoint-invariant part-whole rela-
tionships, so that the change in viewpoint to an object does not change the
agreement between capsules. This makes capsule networks better suited than
classical CNNs for 3D viewpoint object recognition [7]. The aforementioned votes
are weighted by a coefficient, which is computed dynamically by a routing algo-
rithm. This routing algorithm computes the agreement between two capsules,
where a high value is given to strongly agreeing capsules. The first dynamic rout-
ing algorithm - called routing-by-agreement or RBA - was proposed by Sabour
et al. [23]. RBA computes the agreement between capsules by a dot product of
the predicted activation of the lower level capsule with the pose of the current
capsule. Later, Hinton et al. [7] published an improved routing algorithm based
on expectation maximization, called EM routing. Routing capsule networks with
RBA [23] improved the state-of-the-art accuracy on MNIST and outperformed
previous approaches on an MNIST-like dataset with highly overlapping digits.
Through EM routing, Hinton et al. [7] reported new state-of-the-art perfor-
mances on the Small-NORB dataset, reducing the error rate by 45%.

In order to obtain the best performance results, it is of great importance to
design very deep networks as has been shown with classical CNNs [24]. However,
most capsule network implementations use two to three capsule layers, which
may be the reason behind their low performance on more complex data when
compared to CNNs. We believe that the performance of capsule networks can be
also greatly increased by designing and training deeper network architectures.
CNNs use skip connections [5] to stabilize the training process but have not
yet been considered for the training of deep capsule networks. Rajasegaran [21]
et al. uses residual connections, but only one routing iteration for all capsule
layers except the last one. They claim that a capsule layer with only one routing
iteration can be approximated with a classical single 2D convolutional layer and
therefore only one capsule layer exists in their architecture1. In contrast we show
in this paper how skip connections can be used between multiple capsule layers
and not only convolutional layers.

In this work, we will show experimentally that the performance of deep cap-
sule networks can be improved by adding residual connections between capsule
layers for three different and commonly used routing algorithms: routing-by-
agreement (RBA) by Sabour et al. [23], EM routing by Hinton et al. [7], and
scaled-distance-agreement (SDA) routing by Peer et al. [16]. The evaluation was
performed on four well-known datasets: MNIST, Fashion-MNIST, SVHN and
Small-NORB.

2 Related Work

The first capsule network with a dynamic routing mechanism was proposed by
Sabour et al. [23]. The authors showcased the potential of capsule networks on
MNIST, using an algorithm called routing-by-agreement. Later, Hinton et al.

1 https://github.com/brjathu/deepcaps/issues/15.

https://github.com/brjathu/deepcaps/issues/15
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[7] came up with the more powerful EM routing algorithm. Since then, vari-
ous different routing algorithms have been presented, every new implementation
obtains better results when compared to previous methods. Other routing algo-
rithms worth of mention are scaled distance agreement routing [16], inverted
dot-product attention routing [25] and routing via variational bayes [22] just to
name a few.

Kosiorek et al. [10] presented a network called stacked capsule autoencoders,
which is able to reach state-of-the-art results for unsupervised classification on
MNIST and SVHN. However, our goal is to train deep capsule networks in a
supervised fashion and compare different routing mechanisms to each other.

Capsule networks show state-of-the-art performance on many simple datasets
like MNIST as well as on datasets where we want to model viewpoint invariant
part-whole relationships, like Small-NORB. However, the design and training
of capsule networks for more complex data is still an open question. Capsule
networks do not perform at the same level as modern CNN architecture. For
example, in CIFAR-10 [11], capsule networks reach an error rate of about 9%
[22], compare it to the 3% error rate of CNN approaches [26].

Late implementations have tried to improve capsule networks results on
CIFAR-10. Xi et al. [27] were able to improve the baseline model by using a
more powerful feature extractor in front of the capsule network, and training
the network in an 4-model ensemble. Similarly, Ai et al. [2] presented a capsule
network named ResCaps, having a residual sub-network in front of the cap-
sule network. Although called ResCaps, the authors do not use skip connections
between capsule layers, as opposed to our work. Rajasegaran et al. [21] were able
to reach remarkable results on CIFAR-10, Fashion-MNIST and SVHN by stack-
ing up 16 convolutional capsule layers with residual connections. They report an
accuracy of 92.74% on CIFAR-10, 97.56% on Fashion-MNIST, and 94.73% on
SVHN. Differently to the work presented in this paper, the authors did not use
dynamic routing in the network, but only on one layer of a residual connection
in the last block. Peer et al. [19] proposed a way to train deeper capsule networks
that use routing-by-agreement or EM routing. The authors proved theoretically
and showed experimentally, that these two routing algorithms can be improved
by adding a bias term to the pre-activations in RBA and adding a bias term to
the pose matrix in EM routing.

On the other hand, training very deep convolutional neural networks shows
excellent results for a wide range of tasks in computer vision. Simonyan et al. [24]
conducted a comprehensive study on how network depth influences the perfor-
mance of CNNs. In that work, VGG provided an error rate of 23.7% on ImageNet
[3], while the older and not so deep AlexNet [12] performed with an error rate
of 40%. At some point, simply stacking up a higher number of layers does not
improve the accuracy of a network, because of the vanishing/exploding gradient
problem [8]. Proper weight initialization, as done by Glorot et al. [4], and nor-
malization techniques, such as batch normalization [9] where able to overcome
those issues to some extend. Even so, very deep networks still face a degradation
problem [5], such that when the accuracy gets saturated, it drops fast, resulting
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in a high training error. The solution to this degradation problem was presented
as the deep residual learning framework. Additionally, the conflicting bundles
problem [18] becomes more present using deeper networks, where the floating
point precision of GPUs and CPUs can be another reason for this problem.
The authors showed in that work that residual connections can help to resolve
this problem of underperformance in the case very deep convolutional neural
networks.

3 Training Deep Capsule Networks

The depth of a CNN is a very important hyper-parameter because expressivity
has been proved to grow exponentially with depth [20]. We will show in this
chapter how to train deep capsule networks in order to improve the performance
of this type of neural networks. Simply “stacking up” layers is not a proper
strategy to follow and leads to failure when using routing algorithms such as
routing-by-agreement and EM routing [27]. We hypothesize we can be succeed
at training deep capsules through the use of residual connections between capsule
layers. In this section we will analyze in detail this hypothesis and provide the
details of the network architecture for the different routing procedures.

3.1 Routing Algorithms

Dynamic routing in capsule layers is a much more sophisticated strategy than
just the classical pooling operation present in CNNs. We conducted our experi-
ments using the following three routing algorithms, as they are widely used: 1.
Routing-by-agreement (RBA) [23], 2. Expectation-maximization (EM) routing
[7], and 3. Scaled-distance-agreement (SDA) routing [16].

The goal of a routing algorithm is to compute the agreement between lower
level capsules (child capsules) and higher level capsules (parent capsules). This
agreement is represented by the length of a vector and acts as a weight, determin-
ing the parent capsule(s) to which a child capsule routes its output. Routing is
typically implemented iteratively, requiring usually just two to five iterations for
convergence [7,16,22,23]. We use two routing iterations for all our experiments
because this gives a good trade-off between accuracy and training time.

RBA and SDA-routing (Algorithm 1) have a very similar structure. The itera-
tive process starts by calculating the coupling coefficients between child capsules
and parent capsules, which sum up to 1 by applying the softmax function over
the agreements. Each capsule in the higher level layer then calculates a weighted
average with the coupling coefficient and the votes from the lower level capsule
layer, which are squashed to a value between 0 and 1. In RBA, the agreement
is computed by a dot product of the current pose and the votes from each child
capsule. Finally the agreement tensor is updated and the procedure continues
for a fixed amount of routing iterations. On the other hand, SDA calculates
the agreement by inverse distances instead of the dot product, as can be seen
in line 8 of Algorithm 1. This ensures that active lower level capsules do not
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[1] Input: vi, ûj|i, r, l
1 bij ← 0

2 ûj|i ← min(||vi||, ||ûj|i||) · ûj|i
||ûj|i||

3 for r iterations do

4 cij ← bij∑
k exp(bik)

5 sj ← ∑
i cij · ûj|i

6 vj ← ||sj ||2
1+||sj ||2 · sj

||sj ||
7 ti ← log(0.9(J−1))−log(1−0.9)

−0.5meanJ
j (||ûj|i−vj ||)

8 bij ← ||ûj|i − vj || · ti
9 end

10 return vj
Algorithm 1: Scaled distance agreement routing algorithm. ∀ capsules i of
child capsule layer l and J parent capsules on layer l + 1, with r routing
iterations and predictions ûj|i from child capsule with activation vi.

couple with inactive higher level capsules and that the prediction is limited by
the activation of the corresponding capsule (line 2). The runtime complexity of
both algorithms is linear in the number of routing iterations.

EM routing works by fitting the mixtures of Gaussians parameters through
expectation maximization. This Gaussian mixture model clusters datapoints into
Gaussian distributions, each described by a mean μ and a standard deviation
σ. Starting with random assignments, the expectation maximization (EM) algo-
rithm iteratively assigns the datapoints to Gaussians and recomputes μ and σ.
The EM routing algorithms formulates the problem of routing as a clustering
problem, assigning lower level capsules to higher level capsules. EM routing was
proposed first together with Matrix-Capsules, which uses a matrix and a separate
scalar for representing the activation instead of the length of the vector.

3.2 Applying Residual Learning to Capsule Networks

The starting point of residual learning is that a deep network should perform
at least as good as a shallower one [5]. In order to make this possible, identity-
shortcut connections are inserted, skipping one or more layers and simply adding
their output to the output of a deeper layer. Those skip connections do not
contain learnable parameters, and as such, layers can be replaced by the iden-
tity function. In deep neural networks performance decreasing layers occur with
higher probability. It is known that residual connections bypass those layers such
that the accuracy of the trained model is increased [18].

We include shortcut connections between capsule layers as explained next.
The output of a capsule layer is element-wise added to the capsule layer that
is located two layers deeper into the network. We add the shortcut connection
after routing has happened, because this approach yielded the best results. We
also did experiments on adding skip connections before routing or doing another
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Fig. 1. Architecture of our capsule network (Fig. 1a) with detailed view of the capsule
sub-network (Fig. 1b). Given dimensions apply to the datasets MNIST and Fashion-
MNIST.

squashing after the element-wise addition but did not achieve good results. This
design is shown in Fig. 1b and is in stark difference to ResCaps, presented by
Ai et al. [2], where a residual sub-network is located in front of the capsule
network. The authors replaced the single convolutional layer that we used before
the PrimaryCapsule layer by a residual sub-network, to provide better features
to the capsule network. The implementation of Rajasegaran [21] et al. uses only
one routing iteration for all capsule layers except the last one i.e. all layers are
implemented as classical 2d-convolutional layers except the last one, which is
also confirmed by the original authors on GitHub2. Opposed to that, our network
uses more than one routing iteration in every capsule layer. Additionally, we will
show in the experimental evaluation, that the performance will not drop as the
network depth is increased (also known as the degradation problem), regardless
of the used routing algorithm.

4 Experimental Evaluation

In this section we describe the experimental setup. First, we will explain in detail
the network architecture and setup. Next, we will we will describe the datasets
used to evaluate our model. We will finish this section with the results of our
experiments.

2 https://github.com/brjathu/deepcaps/issues/15.

https://github.com/brjathu/deepcaps/issues/15
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4.1 Setup

The general architecture is shown in Fig. 1a. The input is fed into a normal
convolutional layer with a fixed kernel size of (9, 9) and a stride of 1. We then
apply another convolution with a (9, 9) kernel and a stride of 2 inside the layer
PrimaryCapsules and reshape into capsule form. Both convolutions use the ReLu
activation function. The first Capsule layer has 512 incoming capsules and 32
outgoing capsules with a dimension of 8. Afterwards, we feed into a sub-network
containing capsule layers, which contains 1 to 15 fully connected capsule layers,
where each capsule is represented by a 12 element vector. The last capsule layer,
the ClassCapsule layer, has one capsule of dimension 16 for each class contained
in the dataset. Dynamic routing between capsule layers is either done by RBA,
SDA or EM routing.

Residual connections were added between every second layer in the Capsule
Net sub-network of Fig. 1a as shown in Fig. 1b. Skip connections do not contain
any learnable parameters since the dimensionality of capsule layers do not vary
across the inserted connections. Figure 1b shows that the tensors coming from
the skip connections are element-wise added to the output of the two layer deeper
capsule layer.

The reconstruction network contains three densely connected layers, where
layer one and two uses ReLu, and the last layer implements a sigmoid activation.
The reconstruction network is used to compute the reconstruction loss [23], used
for training the capsule network. The sum of squared differences between the
input pixels of the image and the output from the reconstruction network is
used in the objective function. The overall loss function used for training is the
sum of the margin loss [23] and the reconstruction loss, which is weighted by a
scalar factor.

Weights of the transformation matrices were initialized randomly from a
normal distribution with a standard deviation of 0.2 and a mean of 0. The
weights of the bias terms were initialized with a constant value of 0.1. While
training, the network receives random crops of 24× 24, and on inference center
crops are used. We trained with a batch size of 128, and used Adam optimizer
with a constant learning rate of 1−4. For networks deeper than 13 layers we used
a batch size of 64, because of memory constraints of our GPU. We weighted the
reconstruction loss with a factor of 1−5, and trained each model for 30 epochs.

Our implementation3 of the capsule network uses Tensorflow [1] Version 2.3.

4.2 Datasets and Data Augmentation

We evaluated our model on four different datasets: MNIST [13], Fashion-MNIST
[28], Small-NORB [14], and SVHN [15].

MNIST is a dataset of 28× 28 greyscale images of handwritten digits, con-
taining 10 classes, representing the digits from 0–9. Fashion-MNIST is a little bit
more involved than MNIST, but with a very similar structure. It also contains

3 https://github.com/moejoe95/res-capsnet.

https://github.com/moejoe95/res-capsnet
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Table 1. Test accuracy for capsule networks using RBA with 3–11 capsule layers,
trained with and without skip connections. Results are averaged over at least two
runs.

Dataset Method 3 4 5 6 7 8 9 10 11

MNIST RBA 0.995 0.992 0.990 0.937 0.114 0.114 0.114 0.114 0.114

RBA+Skip 0.995 0.995 0.995 0.993 0.988 0.993 0.993 0.993 0.989

Fashion RBA 0.890 0.888 0.866 0.774 0.100 0.100 0.100 0.100 0.100

MNIST RBA+Skip 0.891 0.887 0.890 0.884 0.856 0.882 0.878 0.846 0.813

SVHN RBA 0.923 0.913 0.865 0.675 0.378 0.196 0.196 0.196 0.196

RBA+Skip 0.923 0.927 0.920 0.911 0.82 0.898 0.895 0.731 0.783

Small RBA 0.886 0.862 0.757 0.527 0.200 0.200 0.200 0.200 0.200

NORB RBA+Skip 0.891 0.889 0.892 0.856 0.838 0.851 0.857 0.697 0.524

Table 2. Test accuracy for capsule networks using SDA routing with 3–16 capsule
layers, trained with and without skip connections.

Dataset Method 3 4 5 6 7 8 9 10 11 12 13 14 15 16

MNIST SDA 0.994 0.994 0.994 0.993 0.993 0.992 0.992 0.990 0.989 0.985 0.978 0.491 0.673 0.392

SDA+Skip 0.994 0.994 0.994 0.993 0.994 0.994 0.994 0.993 0.993 0.993 0.992 0.992 0.991 0.991

Fashion SDA 0.890 0.890 0.887 0.886 0.885 0.881 0.883 0.877 0.871 0.866 0.841 0.798 0.625 0.192

MNIST SDA+Skip 0.891 0.890 0.891 0.890 0.890 0.887 0.885 0.884 0.886 0.884 0.886 0.883 0.884 0.882

SVHN SDA 0.919 0.915 0.911 0.902 0.897 0.892 0.898 0.892 0.873 0.766 0.825 0.671 0.634 0.341

SDA+Skip 0.918 0.924 0.920 0.915 0.911 0.909 0.909 0.906 0.904 0.898 0.902 0.898 0.896 0.892

Small SDA 0.887 0.881 0.876 0.877 0.874 0.863 0.877 0.864 0.860 0.862 0.855 0.840 0.721 0.323

NORB SDA+Skip 0.900 0.906 0.893 0.887 0.885 0.882 0.879 0.872 0.873 0.874 0.874 0.875 0.870 0.871

greyscale images of size 28 × 28 and there are 10 distinct classes, each repre-
senting a type of clothing. Small-NORB is a dataset of greyscale 96× 96 images
showing objects from different elevations, azimuths and under different light-
ing conditions. It contains 5 classes of toys. SVHN is a dataset of 32× 32 RGB
images showing real world pictures of house numbers. As MNIST, it contains 10
classes representing the digits from 0–9.

We applied data augmentation by adding random brightness with intensities
[−0.25, 0.25) to the images in Small-NORB and SVHN. On Fashion-MNIST we
augmented the data by horizontally flipping pixels of images with a probability
of 50%. After data augmentation, we normalized per image to have zero mean
and a variance of 1. We scaled down images of Small-NORB to the size 28× 28.

4.3 Results

Tables 1 and 2 show the results of training capsule networks using the two simi-
lar routing algorithms RBA and SDA, comparing the cases where there were no
skip connections with the ones in the presence of skip connections for MNIST,
Fashion-MNIST, SVHN and Small-NORB. We can see that both routing algo-
rithms benefit from skip connections. These results also show that SDA is more
robust than RBA for routing deeper capsule networks with and without skip
connections. In the case of no skip connections, RBA-routing shows a dramatic
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Table 3. Test accuracy for capsule networks using EM routing with 3–16 capsule
layers, trained with and without skip connections. Results are averaged over at least
two runs.

Dataset Method 3 4 5 6 7 8 9 10 11 12 13 14 15 16

MNIST EM 0.995 0.995 0.995 0.994 0.993 0.992 0.992 0.991 0.990 0.990 0.989 0.988 0.823 0.767

EM+Skip 0.995 0.994 0.994 0.994 0.994 0.994 0.993 0.992 0.991 0.992 0.992 0.992 0.991 0.990

Fashion EM 0.890 0.889 0.890 0.882 0.881 0.875 0.875 0.876 0.869 0.871 0.866 0.862 0.855 0.856

MNIST EM+Skip 0.892 0.889 0.888 0.885 0.882 0.882 0.879 0.878 0.882 0.877 0.880 0.872 0.879 0.874

SVHN EM 0.932 0.921 0.906 0.898 0.888 0.887 0.881 0.880 0.878 0.869 0.869 0.856 0.855 0.789

EM+Skip 0.932 0.926 0.919 0.909 0.903 0.902 0.894 0.893 0.879 0.885 0.598 0.882 0.418 0.877

Small EM 0.899 0.887 0.870 0.875 0.872 0.873 0.867 0.863 0.869 0.846 0.855 0.860 0.841 0.832

NORB EM+Skip 0.893 0.893 0.885 0.880 0.872 0.882 0.872 0.873 0.862 0.863 0.871 0.862 0.867 0.852

decrease in performance after 7 layers, while SDA holds up to depths of 13 layers.
In some cases, RBA barely performs better than chance after just using 7 layers,
such as in MNIST, Fashion-MNIST and Small-NORB. On the other hand, if we
use skip connections, RBA performs well up to 11 layers of depth and SDA up to
at least 16 layers. Table 3 provides the results for capsule networks using EM-
routing for the four used datasets. This routing algorithm exhibits the highest
robustness of the three used in this work. While there is also a benefit of using
skip connections, the increase of performance when using EM routing is smaller
as with RBA and SDA.

We can better analyze the training behavior at different depths in Fig. 2 with
skip (blue line) and without skip connections (red line). The top row (2a–d)
shows the trend for RBA, the second row (2e–f) for SDA, last row corresponds
to EM-routing (2g–j). We show all three routing algorithms for MNIST (first
column), Fashion-MNIST (second column), SVHN (fourth column) and Small-
NORB (fourth column). From this figure we can extract that in the case of
RBA, after 5 to 6 layers the performance of the network drops without using
skip connections and above 7 or 8 layers, performance drops to around chance.
On the other hand, with skip connections the performance keeps stable and the
drop in performance happens much later.

In the case of SDA-routing, the benefits of using residual connections between
capsule layers appears later, but after layer 13−14 the network with residual con-
nections performs significantly better on every dataset. Finally, for EM-routing,
we can observe positive impact of residual connections on MNIST Fashion-
MNIST and Small-NORB. However, there were two cases on the SVHN dataset
(with 13 and 15 layers) where surprisingly, the network with residual connections
performed slightly worse.

The results of our extensive experimental evaluation shows that there is
an improvement in the performance of deep capsule networks using residual
connections, this improvement was quite significant for the case of RBA. For
SDA-routing and EM-routing, our results show that both routing strategies also
benefited from skip connections, although to a lesser degree than for RBA.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 2. Results for capsules networks at different depths, trained with (blue curve) and
without (red curve) the use of skip connections. Plotted are the accuracies using RBA
(first row), SDA-routing (second row) and EM-routing (third row) for MNIST (2a, 2e
and 2i respectively), Fashion-MNIST (2b, 2f and 2j respectively), SVNH (2c, 2c and
2k respectively), and Small-NORB (2d, 2h and 2l respectively). (Color figure online)

5 Conclusions and Future Work

In related work residual connections are either used before the capsule layers in
the classical convolutional part or only a single capsule layer is used [2,21]. In
this paper we have shown that its indeed possible to use residual connections
together with multiple capsule layers. More precisely, we showed experimentally
that training deep capsule networks greatly benefit from residual connections in
terms of performance and stability. We experimented with three different routing
algorithms on four datasets, and were able to train deep capsule networks in all
cases. Even so, the test accuracy for deeper networks is significant larger when
using residuals in almost all configurations. Therefore, we believe that in future
work an extension of this work to convolutional capsule layers would further
improve the accuracy, reduce the computational complexity and also enable the
training on more complex datasets. Additionally, through the use of auto-tuning
for deep capsule networks [17], we could remove unused capsule layers from
trained residual capsule networks and further improve the performance.
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Abstract. While image understanding on recognition-level has
achieved remarkable advancements, reliable visual scene understanding
requires comprehensive image understanding on recognition-level but also
cognition-level, which calls for exploiting the multi-source information
as well as learning different levels of understanding and extensive com-
monsense knowledge. In this paper, we propose a novel Cognitive Atten-
tion Network (CAN) for visual commonsense reasoning to achieve inter-
pretable visual understanding. Specifically, we first introduce an image-
text fusion module to fuse information from images and text collectively.
Second, a novel inference module is designed to encode commonsense
among image, query and response. Extensive experiments on large-scale
Visual Commonsense Reasoning (VCR) benchmark dataset demonstrate
the effectiveness of our approach. The implementation is publicly available
at https://github.com/tanjatang/CAN.

1 Introduction

Visual understanding is an important research domain with a long history that
attracts extensive models such as Mask RCNN [1], ResNet [2] and UNet [3]. They
have been successfully employed in a variety of visual understanding tasks such
as action recognition, image classification, pose estimation and visual search [4].
Most of them gain high-level understanding by identifying the objects in view
based on visual input. However, reliable visual scene understanding requires not
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only recognition-level but also cognition-level visual understanding, and seamless
integration of them. More specifically, it is desirable to identify the objects of
interest to infer their actions, intents and mental states with an aim of having
a comprehensive and reliable understanding of the visual input. While this is
a natural task for humans, existing visual understanding systems suffer from a
lack of ability for higher-order cognition inference [5].

To improve the cognition-level visual understanding, recent research in visual
understanding has shifted inference from recognition-level to cognition-level
which contains more complex relationship inferences. This directly leads to four
major directions on cognition-level visual understanding research: 1) image gen-
eration [6], which aims at generating images from given text description; 2) image
caption [7], which focuses on generating text description from given images; 3)
visual question answering, which aims at predicting correct answers for given
images and questions; 4) visual commonsense reasoning (VCR) [5], which addi-
tionally provides rational explanations along with question answering and has
gained considerable attention [8]. Research on VCR typically necessitates pre-
training on large scale data prior to performing VCR tasks. They usually fit
well towards the properties that the pre-training data possessed but their gen-
eralization on other tasks are not guaranteed [9]. To remove the necessity of
pre-training, another line of research focuses on directly learning the architec-
ture of a system to find straightforward solutions for VCR [10]. However, these
methods suffer commonsense information loss where the last hidden layer is
taken as output while jointly encoding visual and text information.

In this paper, we focus on the generic problem of visual scene understand-
ing, where the characteristics of multi-source information and different levels of
understanding pose great challenges to comprehensive and reliable visual under-
standing: 1) Multi-source information. Visual understanding entails infor-
mation from different sources. It is difficult for the model to capture and fuse
multi-source information and to infer the rationale based on the fusion of collec-
tive information and commonsense [11]. 2) Various levels of understanding.
Cognition requires accumulation of an enormous reservoir of knowledge. Com-
prehensive cognition from limited datasets is even more challenging, and requires
consideration of different levels of understanding [5]. 3) Difficulty in learning
commonsense. The learning of commonsense from the dataset is a hard prob-
lem per se. Unlike humans who can learn an unlimited commonsense library from
daily life effortlessly, learning extensive commonsense knowledge for a model is
an open problem.

To address the above challenges, we propose a novel Cognitive Attention
Network (CAN) for interpretable visual scene understanding. We first design
a new multimodal fusion module to fuse image and text information based on
guided attention. Then we introduce an co-attention network to encode the com-
monsense between text sequences and visual information, followed by an atten-
tion reduction module for redundant information filtering. The novelty of this
research comes from four aspects:
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– A new VCR model for comprehensive and reliable visual scene understanding.
– A new multimodal fusion method that jointly infers the multi-source infor-

mation.
– A new co-attention network to encode commonsense.
– Extensive experiments comparing with state-of-the-art works and ablation

studies.

The rest of the paper is organized as follows. Related studies are first dis-
cussed in Sect. 2. Section 3 presents the notations and problem formulation. We
describe our method in Sect. 4, followed by the experimental results in Sect. 5.
Finally, Sect. 6 concludes the paper.

2 Related Work

From individual object level scene understanding [1] which aims at object
instance segmentation and image recognition, to visual relationship detec-
tion [12] which captures the relationship between any two objects in image or
videos, state-of-the-art visual understanding models have achieved remarkable
progress [13]. However, that is far from satisfactory for visual understanding
as an ideal visual system necessitates the ability to understand the deep-level
meaning behind a scene. Recent research on visual understanding has there-
fore shifted inference from recognition-level to cognition-level which contains
more complex relationship inferences. Rowan et al. [5] further formulated Visual
Commonsense Reasoning as the VCR task, which is an important step towards
reliable visual understanding, and benchmarked the VCR dataset. Specifically,
the VCR dataset is sampled from a large sample of movie clips in which most of
the scenes refer to logic inferences. For example, “Why isn’t Tom sitting next to
David?”, which requires high-order inference ability about the scene to select the
correct answer from available choices. Motivated studies generally fall into one
of the following two categories based on the necessity of pre-training dataset.

The first line of research, pre-training approaches, trains the model on a large-
scale dataset then fine-tunes the model for downstream tasks. The recent works
include ERNIE-ViL-large [8] and UNITER-large [9]. While the former learns
semantic relationship understanding for scene graph prediction, the latter is pre-
trained to learn joint image-text representations. However, the generalizability
of these models relies heavily on the pre-training dataset and therefore is not
guaranteed.

Another line of research is independent of large-scale pre-training dataset,
and instead studies the architecture of a system to find a straightforward solution
for VCR. R2C [5] is a representative example in this line of efforts in which atten-
tion based deep model is used for visual inferencing. More recently, a dynamic
working memory based memory cells framework is proposed to provide prior
knowledge for inference [14]. Our model more closely resembles this method
with two distinctions: i) a parallel structure is explicitly designed to relax the
dependence on the previous cells, alleviating the drawback of information lose



558 X. Tang et al.

of long dependency memory cell for long sequences, and ii) a newly proposed
co-attention network rather than dynamic working memory cell to ease model
training but also to enhance the capability of capturing relationship between
sentences and semantic information from surrounding words.

3 Notations and Problem Formulation

Given the input query q := {q1, q2, ..., qm} and the objects of the target image
o := {o1, o2, ..., on}, the general task of VCR is to sequentially predict one correct
response from the responses represented as r := {r1, r2, ..., ri}. Figure 1 shows
a typical VCR task, where q is to elicit information for Q (“How is [1] feeling
about [0] on the phone?”) or both Q and its correct answer A (“She is listening
attentively.”) depending on the specific sub-task discussed hereafter, r provides
all possible answers or all reasons also depending on the specific sub-task, and
o consists of objects of the image, i.e., person 0–2, tie 3, chair 4–6, clock 7 and
vase 8. The three sub-tasks of VCR can then be represented as:

1) Q2A: is to predict the answer for the question. In this task, the inputs include:
a) query q: question Q only, b) responses r: all possible answers, c) objects
o, and d) given image, i.e., Fig. 1. This sub-task needs to predict A based on
the inputs.

2) QA2R: is to reason why the answer is correct. Compared to the previous Q2A
task, the query q, in addition to question Q, also includes the correct answer
A and the responses r that are four given reasons. The aim of this sub-task is

Fig. 1. A VCR example with the correct answer and rationale highlighted in green.
(Color figure online)
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then to predict the correct reason R (“She has a concerned look on her face
while looking at [0]”) for its input.

3) Q2AR: is to integrate the results from the previous two tasks as the final
result. The correct and wrong results will be shown and recorded for final
performance evaluation.

4 The Proposed Framework

The proposed Cognitive Attention Network (CAN) consists of four modules as
shown in Fig. 2: a) feature extraction module generates feature representations
from the given multi-source image and text input, b) multimodal feature fusion
module integrates the extracted heterogeneous features; c) co-attention network
encodes the fused features; and d) attention reduction module filters redundant
information. The following subsections discuss the four modules in details.

4.1 Feature Extraction

Extracting informative features from multi-source information plays an impor-
tant role in any machine learning application, especially in our context where
the feature itself is one of the learning targets. As shown in Fig. 2, for the image
feature extraction, the original image information source is the image along with
its objects, which is given by means of related bounding boxes serving as a point
of reference for objects within the images. The bounding boxes of given image
and objects are then fed into the deep nets to obtain sufficient information from
original image information source. Concretely, CAN extracts image features by
a deep network backbone ResNet50 [15] and fine-tunes the final block of the net-
work after RoiAlign. In addition, the skip connection [2] is adopted to circumvent
the gradient vanishing problem when training the deep nets.

Fig. 2. The architecture of the proposed CAN consists of four modules to achieve
interpretable visual understanding.
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In term of the text feature extraction, the original text information source
includes Query (Q or Q together with A) and Response (given answers or rea-
sons). The text information is then extracted in a dynamic way in which the
attention mechanism is employed to encode information from words around them
in parallel [16], resulting text features including query features q and response
features r.

4.2 Multimodal Feature Fusion

After features from heterogeneous information sources are extracted from the
previous module, a multimodal feature fusion module is designed to fuse them,
including: 1) a visual grounding unit to learn explicit information by aligning
relevant objects with query and response; 2) a guided attention unit to learn
implicit information that is omitted during visual grounding.

Visual Grounding (VG). To fuse the previously extracted heterogeneous fea-
tures, i.e., related object features o along with text features q and r, a visual
grounding module is designed to learn joint image-text representations explicitly.

To this end, VG firstly identifies related objects in query and response
by using tags contained therein. Taking Fig. 1 as example, object features
[person 0] and [person 1] are learned to match tags [0] and [1] in query
q and responses r, while object features [person 2], [tie 3], [chair 4], [chair
5], [chair 6], [clock 7] and [vase 8] are omitted due to the lack of cor-
responding tags in q and r. Next, the aligned representations are fed
into a one-layer bidirectional LSTM [17] to learn joint image-text repre-
sentations. The learned image-query and image-response representations are
denoted as grounded q := {grounded q1, grounded q2, · · · , grounded qj} and
grounded r := {grounded r1, grounded r2, · · · , grounded rj}, respectively.

Guided Attention (GA). After the VG stage, CAN learned an explicit joint
image-text representations. However, the implicit information, which is impor-
tant for commonsense inference including unidentified objects as well as reference
relationship between grounded representations, is omitted. The guided attention
module, shown as the two blocks within the purple dashed square in the bottom
of Fig. 3, is therefore designed to learn these implicit information, allowing for the
attention on the two types of implicit but important correlations. Note that the
unit of this guided attention module is also the atomic structure of the following
co-attention network (c.f., Sect. 4.3). Specially, right hand side unit captures the
implicit information between image-response representations grounded r and
image objects features o. Back to the running example in Fig. 1, VG focuses on
learning explicit information that is relevant to person 0 and person 1, and omits
the explicit information associated with other objects, i.e., tie 3, chair 4–6, clock
7 and vase 8. This unit is designed to identify such implicit correlations between
grounded r and o. On the other hand, the left unit learns the implicit relationship
between image-response representations grounded r and image-query represen-
tations grounded q. For example in Fig. 1, both “[1]” in the question (“How is
[1] feeling about [0] on the phone”) and “She” in the answer (“She is listing
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attentively”) refer to identical person 1, but such implicit information is not
learnable at VG stage. This unit accounts for such implicit correlations among
grounded r and grounded q. Note that attention can also be guided between
grounded q and o. However, grounded q contains much lesser information than
grounded r as query normally entails lesser words and could be inferred from
responses. Such an attention is therefore not considered to simplify the model
with limited information loss. In the following, we will discuss the details of the
proposed guided attention unit.

Fig. 3. Attention network of contextualizing feature representations. It consists of self-
attention module and guided attention module to encode commonsense among image,
query and response representations.

A guided attention unit is composed of a multi-head attention layer and a
feed-forward layer. To speed up training, we additionally add LayerNorm for
normalization behind both of these two layers. Recall that the aim of GA is
to learn the omitted implicit information. To this end, GA first takes o and
grounded q or grounded r as the input depending on the focused type of implicit
information to guide the attention. Here, we employ the multi-head attention [18]
to guide this process. More specifically, multi-head attention consists of h divided
attention operations, referred as heads, through scaled dot-product attention.
Formally put,

MultiHead(Q1,K1, V1) = Concat(head1, ..., headh)WO (1)

where Q1 is grounded r, both K1 and V1 are o or grounded q, WQ1
i ,WK1

i ,WV1
i ,WO

are trainable linear transformation parameters, and h is the total number of heads
which can be formulated as:

headi = Attention(Q1W
Q1
i ,K1W

K1
i , V1W

V1
i ) (2)

Attention(Q1,K1, V1) = softmax(
Q1K

T
1√

dk
)V1 (3)
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where T is the transpose operation, dk represents the dimension of input K1,
and i is the ith head of total h heads. In practise, headi outputs the attention
weighted sum of the value vectors V1 by softmax.

Next, the output of multi-head features are transformed by a feed-forward
layer, which consists of two fully-connected layers with ReLU activation and
dropout. Finally, GA outputs the fused multimodal representations q̃ and r̃
with weight information among o, grounded q and grounded r.

4.3 Co-attention Network

Given the fused image-text representations q̃ and r̃, we further propose a co-
attention network to encode commonsense between the fused image-text rep-
resentations for visual commonsense reasoning. The input of the network, in
addition to q̃ and r̃, therefore further considers their joint representation X
defined as:

X = q̃||r̃ (4)

where || is the concatenation operation.
The red dashed square of Fig. 3 shows the structure of the co-attention net-

work, consisting of two co-attention modules for attending query and response
commonsense, respectively. In specific, the former is used for encoding com-
monsense between X and q̃, thus learning the attended commonsense for query
jointly considers response. The latter then focuses on encoding commonsense
between X and r̃, capturing the attended commonsense for response taking query
into consideration. These two co-attention modules share the same structure,
comprised of two sub-units: i) the self attention units, which are the blocks with
yellow background in Fig. 3, aiming at attending weighted information concern-
ing each other within a sentence; ii) the blocks with green background depicted
guided attention units to attend weighted information inter-sentence-wise as
opposed to intra-sentence-wise attention of the self attention units.

Self Attention. The structure of self attention is similar to guided attention
(c.f., Sect. 4.2). The difference comes from self attention takes identical inputs,
i.e., query Q1, key K1 and value V1 are identical, for the sake of capturing pair-
wise relationship in a sequence. In details, pairwise relationship between samples
in a sequence is learned by the multi-head attention layer. For input sequence
X = [x1, x2, ..., xm], the multi-head attention learns the relationship between
< xi, xj > and outputs attended representations. Subsequently, the attended
representations are transformed by a feed-forward layer which contains two fully-
connected layers with ReLU activation and dropout.

Pairwise Guided Attention. In comparison to self attention, pairwise guided
attention focuses on inter-sentence-wise attention and can be regarded as guided
attention learning weighted information among different sentences. When tak-
ing two different sentences representations X = [x1, x2, ..., xm] and Y =
[y1, y2, ..., ym] as the inputs, X is the query Q1 while key K1 and Value V1
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are Y , guiding the attention learning for X. Specifically, the multi-head layer
in a guided attention unit attends the pairwise relationship between the two
paired input sequences < xi, yj > and outputs the attended representations. A
feed-forward layer is then applied to transform the attended representations. The
co-attention network finally outputs Zq and Zr, which are attention information
over both images and texts.

4.4 Attention Reduction

After the previous multilayer data encoding, CAN now contains rich multi-source
attention information. Among them, not all of them are necessarily to be inneg-
ligible. An attention reduction module is therefore further designed to select
information with the most important attention weights. In details, the output
of attention network Zl

l∈{q,r}
are fed into a multilayer perceptron (MLP) to learn

attention weights, outputting ˜Zl
l∈{q,r}

:

˜Zl =
m

∑

i=1

αi
lz

i
l , α = softmax(MLP (Zl)) (5)

where α is the learned attention weights and i is the position in a sequence.
For better gradient flow through the network, CAN also fuses the features

by using LayerNorm on the sum of the final attended representations,

c = LayerNorm(WT
x1

˜Zq + WT
x2

˜Zr) (6)

where WT
x1 and WT

x2 are two trainable linear projection matrices.
The fused feature c is then projected by another FC layer for classification,

which is used to find the correct answer and reason from given candidates, e.g.,
“B. She is listening attentively” and “C. She has a concerned look on her face
while looking at [0]” among all other candidate answers and reasons in Fig. 1.

5 Experimental Results

This section evaluates the performance of our model in comparison to state-
of-the-art visual understanding models. The experiments were conducted on a
64-bit machine with a 10-core processor (i9, 3.3 GHz), 64 GB memory with GTX
1080Ti GPU.

5.1 Dataset

The VCR dataset [5] consists of 290k multiple-choice questions, 290k correct
answers, 290k correct rationales and 110k images. The correct answers and ratio-
nales are labeled in the dataset with >90% of human agreements. As shown
previously in Fig. 1, each set consists of an image, a question, four available
answer choices, and four reasoning choices. The correct answer and rationale are
provided in the dataset as ground truth.
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5.2 Understanding Visual Scenes

We compare our method with several state-of-the-art visual scene understanding
models based on the mean average precision metric for the three Q2A, QA2R
and Q2AR tasks, respectively, including: 1) MUTAN [19] proposes a multimodal
based visual question answering approach, which parametrizes bi-linear interac-
tions between visual and textual representations using Tucker decomposition; 2)
BERT-base [18] is a powerful pre-training based model in natural language field
and is adapted for the commonsense reasoning; 3) R2C [5] encodes commonsense
between sentences with LSTM; 4) DMVCR [14] trains a dynamic working mem-
ory to store the commonsense in training as well as using commonsense as prior
knowledge for inference. Among them, BERT-base adopts pre-training method,
while MUTAN, R2C and DMVCR are non pre-training methods. The obtained
results are summarized in Table 1.

Table 1. Comparison of results between CAN and other methods on VCR dataset
with the best performance marked in bold.

Models Q2A QA2R Q2AR

MUTAN [20] 44.4 32.0 14.6

BERT-base [18] 53.9 64.5 35

R2C [5] 61.9 62.8 39.1

DMVCR [14] 62.4 67.5 42.3

CAN 71.1 73.8 47.7

In these results, it is clear that CAN consistently outperforms other methods
across all tasks and is the only method capable of handling all tasks properly.
Specially, CAN outperforms MUTAN by a significant margin. This is expected
as CAN incorporates a reasoning module in its encoder network to enhance com-
monsense understanding while MUTAN only focuses on visual question answer-
ing without reasoning. In addition, to alleviate the lost information when encod-
ing long dependence structure for long sentences of other methods, CAN further
encodes commonsense among sentences with attention weights in parallel for a
better information maintenance, which also leads to its superior performance
over the others.

5.3 Ablation Studies

We also perform ablation studies to evaluate the performance of the proposed
guided attention for multimodal fusion and co-attention network encoding. As
one can see in Table 2, when taking out guided attention unit, the prediction
result decreases 4.2% in Q2A task and 5.7% lower in QA2R task. It indicates
guided attention can help the model learn implicit information from images,
query and response representations, by attending the object in the images and
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the corresponding noun in the sentence. In addition, if we replace co-attention
encoder network with LSTM encoder, the prediction result decreases 2.5% in
Q2A task and 4.6% in QA2R task. Compared to LSTM keeping the mem-
ory among sentences, our proposed co-attention encoder network can attend
the commonsense among various sentences and words with multi-head attention
mechanism, thus capturing rich information from more aspects.

Table 2. Comparison of ablation studies.

Models Q2A QA2R

LSTM encoder 68.6 69.2

Without GA 66.9 68.1

CAN 71.1 73.8

5.4 Qualitative Results

We evaluate the proposed framework with qualitative examples, which are shown
in Fig. 5.4. The candidate with green color represents the correct choice along
with the check mark by � labeling the prediction by the proposed model. As the
qualitative results show, our method works well for most of the visual scenes.
For instance, in Fig. 4(a), the query is “Why isn’t [person 0] sitting next to
[person 1]?”, our model predicts the correct answer: “B. They were both looking
for something”, and the correct rationale “C. Him picking up and then staring
at the envelope means it was something he was looking for”. By co-attending
the commonsense for [person 0] and [person 1] among the textual information
in query, response and image representation, our model can select the correct
answer and rationale for both Q2A and QA2R tasks.

Moreover, we can gain more insight into how the model understands the
scene by co-attending the visual information and text information to predict
the correct answer and rationale. For example in Fig. 4(b), the question is “How
is [person 0] feeling?”, our model predicts the correct answer “B. [person 0] is
upset and disgusted”, and the correct rationale, “D. Her mouth is open, body
is positioned and hand pointed toward [person 0]”. This result shows that our
model performs well by fusing multimodal features and co-attending the visual
and textual information.

Figure 4(c) shows two more challenging scenarios. CAN successfully predicted
the correct answer and rationale for Question 1 but provided the incorrect answer
with right rationale. Recall that question answering task (Q2A) and answer
justification task (QA2R) are two separate tasks, and QA2R task performs on
the condition that the correct answer is given. Therefore, the result of QA2R
is independent of Q2A, and CAN can still predict the correct rationale in this
challenging setting.
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Fig. 4. Qualitative examples. Prediction from CAN is marked by � while correct results
are highlighted in green. (Color figure online)
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6 Conclusion

In this paper we propose a novel cognitive attention network for visual com-
monsense reasoning to achieve interpretable visual understanding. This work
advances prior research by developing an image-text fusion module to fuse infor-
mation between images and text as well as the design of a novel inference mod-
ule to encode commonsense among image, query and response comprehensively.
Extensive experiments on VCR benchmark dataset show the proposed method
outperforms state-of-the-art by a wide margin. One promising future direction
is to explore visual reasoning with fairness constraints [21].
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Abstract. In the olfactory system of insects, the synapses between two
populations of neurons, the projection neurons (PN) in the antennal
lobe and the Kenyon Cells (KC) in the mushroom body, do not show
reproducibility between individuals or associative learning. Despite this,
the system is still capable of learning and discriminating odorants. This
suggests that it must have some mechanism to compensate the effects
of the variability in the structure of PN-KC connections. The nature
of this mechanism remains unknown. This work explores the hypothesis
that the regulation of KCs sensitivity through their neural thresholds
makes possible not only the generation of sparse coding, but a more
stable representation of patterns that makes the whole system robust to
the variations in the connections to PNs. By comparing the behavior of a
model of the insect olfactory system that includes the learning of the KCs
neural thresholds to other model that does not include this mechanism, it
is found that the model with this mechanism has a more stable accuracy
and a more robust inner representations of patterns. These results are
coherent with the hypothesis proposed and hints that regulation of the
sensibility of KCs through their neural thresholds could potentially help
the system to adapt and select the most meaningful PN-KC connections
in a context of the random variability in them that is found in nature.

Keywords: Neural computation · Pattern recognition · Bio-inspired
neural networks · Random connectivity · Olfactory system · Antennal
lobe · Projection neurons · Kenyon cells sensitivity

1 Introduction

The olfactory system of insects has been extensively studied and it is an example
of how biological neural networks can use very simple but powerful strategies to
discriminate hundreds of patterns. Some of these strategies include the use of
random connection topologies [3,5,12], fan-out phases [5,23], regulation of neural
threshold [19,24] and neural activity control to generate sparse code [5,14,21,25].
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However, there are still unresolved questions about this system, and this work
focuses on some aspects of the random connectivity found in some parts of the
system. But first, let us briefly consider the functioning of the olfactory system
of insects.

The olfactory system of insects is organized in different layers, each one with
a certain function. The olfactory receptor neurons (ORNs), placed on the insect
antennae, capture the information about the chemical compounds in the air [17].
This information is sent to the antennal lobe (AL). The AL includes the olfactory
glomeruli, projection neurons (PN) and local inter-neurons (LN). The glomeruli
send their output to both the LNs and PNs. A simple diagram of this system
can be observed in Fig. 1 panel (a) and (b).

Fig. 1. (a) Structure of the biological olfactory system of insects. The ORNs capture
the information about chemical compounds and send it to the PNs in the AL. PNs
send this information to the MB through their random connections with KCs. KCs use
sparse coding to represent the information. The MBONs are responsible for the final
identification of stimuli. (b) Outline of the computational model based on neural net-
works used to imitate the behavior of the system and explore the relationship between
the random connectivity between PNs and KCs and the sensitivity of KCs. The model
is a single hidden layer neural network with supervised learning.

A population of Kenyon Cells (KCs) in the mushroom body (MB) receives
the information from the antennal lobe through their connections to the PNs,
as indicated in 1 Panel (b). One of the key characteristics of KCs is that they
show little activity, since each of them only responds to very specific odorants and
remains silent the rest of the time. Thus, it is believed that they use sparse coding
to represent stimuli [2,23,27]. Apart from that, KCs are much more numerous
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than PNs (for example, in the locust, the proportion between them is 1 : 50
[23]), which also contributes to the emergence of sparse coding [9,27]. Finally,
the association between the representations made by the KCs and the identity of
each chemical compound is made by associative learning in the synapses between
the KCs and the mushroom body output neurons (MBONs). From there, the
information travels to more advanced processing centers.

This work focuses on the connections between PNs and KCs. The pattern
of connectivity between these neurons seems not to show reproducibility across
individuals and there is no learning process in their synapses either, which remain
unaltered [5,11,12]. In [12], it was showed that a stochastic matrix of connections
is sufficient to represent the PN-KC connectivity and still have a functional
system able to learn. There have been various previous attempts to find the
value of some of the parameters in this layer of connections, like the probability
of connection between a PN and a KC (pc). Through computational models
and the examination of neuro-physiological records, pc was given values that
range from 0.01 to 0.5, with no consensus [3,5,8,13,15,22,26]. Other studies
have tried to determine the topology of the connections, if there is any, and
their observations suggest that there are subgroups of KCs depending on the
number of PNs they are connected to, being some groups more important to
the discrimination task than others [4,8]. Beyond this discussion around PN-KC
connections, the truth is that the olfactory system of insects is perfectly capable
of learning and discriminate odorants despite the inter-individual variability and
randomness in the connections between these two neuronal populations. Finding
the best value of pc may be useful in a computational model, but it is hard to
believe that biological systems use fixed values. Hence, the question remains of
how the neural networks in the olfactory system of insects compensate for this
variability.

This work proposes the hypothesis that KCs are responsible for this robust-
ness towards the variability of their connections to the PNs. Their low activity
and different degrees of sensibility towards stimuli [19,20,24], mediated by their
firing thresholds, make possible not only the generation of sparse coding, but a
more stable representation of patterns that makes the whole system resilient to
the variations in the connections from PNs. To test this hypothesis, two models
of the insect olfactory system are used. One of them includes the mechanism
for regulating the activity of KCs by learning their firing thresholds and the
other does not include this mechanism. This allows to examine the behavior of
both systems towards variations in the probability of PN-KC connection (pc)
and random changes in the structure of said connections when the system needs
to resolve a classification task.

2 Materials and Methods

This section explains the details about the models used to compare the effect
of including the regulation mechanism of KC thresholds in the behavior of the
system when there is variability in the PC-KC connections. The metrics used
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to examine said behavior are described as well: accuracy and cosine similarity
between the internal representations of the patterns.

2.1 Models of the Insect Olfactory System

The two proposed models are based on a single hidden layer neural network and
supervised learning. In them, the input layer (X) corresponds to the PNs, the
hidden layer (Y ) to the KCs and the output (Z) to the MBONs. A schema of
this model is shown in Fig. 1 panel (a). The neural network is trained to resolve
a classification problem.

To represent the PN-KC connectivity, both models use the approach of most
models of the olfactory system, where every possible connection between a PN
and a KC exists with probability pc [5,11,12,18,19]. The result is a randomly
generated matrix of binary values (C). In it, the value 1 indicates the existence
of a connection and 0 its absence. This matrix remains unchanged through the
learning process. To imitate the variability in these connections observed in
nature, the value of pc can be changed or its structure can be altered by randomly
generating it from a different random seed.

Regarding the connections between KCs and MBONs, given that in the bio-
logical system there is associative learning in this layer, in the model their weights
(W ) are adjusted using the gradient descent algorithm [16]. When a pattern is
presented to the network, it is assigned the class indicated by the MBON that
activates the most, with as many MBONs as there are classes.

The characteristics explained in the previous paragraphs are common to both
models. However, one of them includes a mechanism to imitate the behavior of
KCs in the biological system, regulating the level of activity of the population of
these neurons through the adjustment of their firing thresholds. This mechanism
is explained below.

KCs Gain Control: The adjustment of neural thresholds is a very important
point in the computational properties of the olfactory system of insects. For
example, in [19,20,24], it is demonstrated that a heterogeneous distribution of
firing thresholds to generate sparse activity results in a better performance of
the neural network. This threshold adjustment mechanism is also used in other
contexts, such as recurrent neural networks, to produce sparse activity adapted
to the recovery patterns of the network, thus increasing its load capacity [6,7].

In order to introduce this mechanism of threshold adjustment to control the
activity of the KCs in the model proposed in this work, a new set of adjustable
parameters called θ that represent the firing thresholds of the KCs are added to
the model. With the introduction of this new parameters, the activation function
of the KCs would be:

yj = σ

(
NPN∑
i=1

xicij − θj

)
, (1)



Threshold Regulation to Compensate Variations in Network Connections 573

where xi is the activation value for the ith PN, cij takes the values 0 or 1
depending on whether the connection between the PN (xi) and the KC (yj)
exists according to the pc selected and θj is the firing threshold of the KC (yj).

The thresholds θ are adjusted using the gradient descent algorithm, adding
a new term to the cost function that allows to regulate the activation of KCs
neurons until reaching the desired level. This term is called Mushroom Body
Gain Control (GCMB) and it is expressed as:

GCMB(y) =
1
2

⎛
⎝ 1

NKC

NKC∑
j=1

yj − s

⎞
⎠

2

, (2)

where NKC is the number of KCs in the hidden layer, y = (y1, ..., yNhidden
) is

the vector with the activation of each KC and s ∈ [0.0, 1.0] is the parameter that
allows to control the level of activity in the hidden layer from no activity when
s = 0.0 up to the maximum activity when s = 1.0. For example, for s = 0.1
there is an activity in the KC population of 10%, which would be approximately
the value observed in the biological system.

Therefore, when comparing the two models against variations in PN-KC
connectivity, one of them will include the previous mechanism for adjusting the
KC thresholds, while the other will not include said mechanism.

2.2 Separability Measure in KCs

In order to compare the discrimination capacity between the two models, the
quality (in terms of degree of discrimination) of the internal representations of
the input patterns made by KCs is measured. For each pattern, it is computed
how much its representation differs from that of the rest of the patterns belonging
to its class (intra-class) and to each of the other classes (inter-class). The metric
use for this is cosine similarity [10]. Cosine similarity is a measure that works
well with long and sparse vectors, like the internal representations of KCs. Given
that the vectors that are going to be compared only contain positive values (the
activation of KCs), the range of cosine similarity is between 0.0 and 1.0. The value
0.0 indicates that two representations are completely different and the value 1.0,
that they are completely similar. The representations of a class will be better the
greater the intra-class distance, since it is desirable that the patterns belonging
to the same class are similar to each other, and a small inter-class distance, since
it means that the representations of patterns belonging to different classes are
less alike.

2.3 Input Patterns

The classification problems used to evaluate the model are two well known ones:
MNIST [1], where handwritten numbers must be recognized, and fashion-MNIST
[29], similar to MNIST but using images of different types of clothing. In addi-
tion, other dataset generated artificially using Gaussian patterns is used. The
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Gaussian patterns have 250 points that represent the number of PNs that the
olfactory system of insects has approximately. Patterns belonging to different
classes are centered in different points. These Gaussian patterns are difficult to
distinguish from each other due to the amplitude of their variance and the noise
that is added to them, since the Gaussian patterns are more similar the ones the
olfactory system would find in nature [19,28]. Some examples of the patterns in
each dataset are displayed in Fig. 2.

Fig. 2. Examples of some of the input patterns of the three datasets used to study
the model. For each one, patterns belonging to the same and different classes are
shown to give an idea of the intra and inter-class variability in each of them. The
top figure corresponds to three examples of different classes of the Gaussian patterns
generated artificially, each centered on a different point. For these patterns, the inter-
class separability is controlled through the variance of the Gaussian distribution and,
the intra-class separability, by the random noise added to each pattern. The bottom left
figure displays three examples belonging to three different classes of the handwritten
digits from MNIST. The bottom right shows other three examples belonging to three
different classes from the clothing images in fashion-MNIST.
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3 Results

This section includes all the results from the comparison between the model with
the mechanism to control the activity of KCs and the simple model that does
not include said mechanism.

3.1 Accuracy of the Models for Different pc

To carry out the simulations of the models, all the values of pc in the interval
[0.1, 0.9] with a step of 0.1 are used. For each of the pc values, 10 instantiations
of the system with certain random seeds are made, and 5-fold cross-validation is
applied for each simulation. In the case of the model that includes the control of
the activity of KCs, the s parameter is set in such a way that the average activity
in the layer is 10%, according to the observations on the biological system [23].
Apart from all this, the system is also tested using different ratios between the
number of PNs and KCs, to see if this has any influence on the performance.
These ratios are [1 : 0.25, 1 : 0.5, 1 : 1, 1 : 2, 1 : 5, 1 : 10, 1 : 25].

The mean accuracy of the model is computed for each one of the combi-
nations of pc and PN-KC ratio for the 10 random seeds. Results are shown in
Fig. 3. In this figure, panel (a) represents the accuracy of the model without the
activity control of KCs and panel (b) the accuracy of the model that includes
this mechanism, in both cases for different PN-KC ratios. The results for the
Gaussian patterns are the ones in the first row, MNIST in the second row and
fashion-MNIST in the last row.

The first observation that can be made about these results is that the ratio of
PN-KC neurons has a noticeable influence on the accuracy of the model and, in
general, the higher the number of KCs per PN, the better the accuracy. This is
consistent with what was previously known about the functioning of the olfactory
system and the existence of a fan-out phase between PN and KCs that facilitates
the generation of sparse coding and discrimination [5].

Secondly, it can be observed that the model without adjustment of thresholds
to control the KCs (Fig. 3 panel a), is much more sensitive to changes in the value
of pc than the model that incorporates this mechanism (Fig. 3 panel b), for which
the accuracy remains almost stable and without variations regardless of the value
that pc takes. This is an indication that, in the model with thresholds, they could
be compensating for the variability caused by the different pc and increasing the
stability of the system.

Finally, regarding the changes in the structure of the connections, it can
be observed that in the model without threshold adjustment there is a greater
standard deviation in the value of each point for the different instantiations
of pc that were simulated. On the contrary, in the model with the threshold
adjustment, the standard deviation of each point is much smaller in comparison,
indicating that the system is also more robust when it has to face this type of
variability.

These results are coherent with the hypothesis proposed and show how
the regulation of the sensibility of KCs through their neural thresholds could
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Fig. 3. Comparison of the accuracy of the models without (first column) or with (sec-
ond column) the adjustment of the thresholds of the KCs for pc between 0.1 and 0.9,
for different ratios between the number of PNs and KCs ([1 : 0.25, 1 : 0.5, 1 : 1, 1 : 2, 1 :
5, 1 : 10, 1 : 25]). Every point in the graph corresponds to the mean accuracy for 10 sim-
ulations of the model with certain random seeds. The first row of the graph corresponds
to the Gaussian patterns, the second to the MNIST and the third to fashion-MNIST.
In the case of the model that includes the regulation of KCs thresholds, its accuracy
remains stable despite the changes in pc. Moreover, the standard deviation of the accu-
racy for the 10 simulations is also lower for this model. This could be caused by the
adjustment of the neural thresholds, which could be compensating for these variations
and making the system resilient to them.

potentially help the system to adapt and select the most meaningful PN-KC
connections in a context of great random variability in them.

3.2 Separability of KCs Inner Representations

In this section, the cosine similarity was measured between patterns belonging to
the same class (intra-class distance) and to different classes (inter-class distance),
as described in Sect. 2.2. The results are presented in Fig. 4, and were obtained
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for one of the simulations of the model that includes the mechanism to regulate
the activation of KCs (lighter colors) and for the model that does not include it
(stronger colors), in order to compare how it influences the intra and inter-class
distances. This process is repeated for three different values of pc, 0.1, 0.5 and
0.9 and a PN-KC ratio of 1 : 25. In Fig. 4, the first column of results corresponds
to the Gaussian patterns, the second one to MNIST and the third one to the
fashion-MNIST dataset.

Fig. 4. Comparison between the inter-class cosine similarity (upper row) and intra-
class (lower row) achieved by the model with adjustment of the thresholds of KCs
and the model without this adjustment. The first column corresponds to the Gaussian
patterns, the second to the MNIST and the third to the fashion-MNIST. The results
are also obtained for three possible values of pc, 0.1, 0.5 and 0.9.

In the case of intra-class distance, in the lower row of the figure, it can
be observed that the model without the learning of neural thresholds of KCs
generally gets a greater intra-class distance than the model with learning of
thresholds. However, for the model without thresholds, this intra-class distance
becomes smaller the greater the value of pc, to the point that it is surpassed
by the model with thresholds for pc = 0.9. This behavior could explain the
degradation of the accuracy of the model without thresholds for greater values
of pc in Fig. 3. On the other hand, for the model with thresholds, it seems
that the different sensitivity in KCs absorbs the reduction in the intra-class
distance observed in the model without thresholds, since it remains more stable
for different pc or even gets better in the case of pc = 0.9.

For the inter-class distance, in the upper row of the figure, the model with the
adjustment of thresholds have a better inter-class distance for all the datasets
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and cases except for pc = 0.9, where it is equal to the model without them.
In this last case, the reason why the model with thresholds achieves a better
classification error could have to do with the fact that the intra-class distance is
bigger than for the model without them.

So, these results show that the control of the activity of KCs can increase the
quality of the internal representation of information in the system. In the case
of patterns from different classes, it increases the distance between their repre-
sentations regardless of pc, while regarding the representations of the patterns
of the same class, it makes the similarity of their representations stable across
different pc.

4 Conclusions

In this work, the connectivity between the PN and KCs neurons in the olfactory
system of the insects was examined to answer the question of why the system
is capable of processing information despite the great variability found in the
connections between PNs and KCs, regarding the probability of connection and
in its structure.

The hypothesis to explain this behavior is that the effects of this variability
are absorbed by the adjustment of the sensitivity of KCs through their neural
thresholds, that helps the system to generate more stable and separable pat-
tern representations. To test this idea, two models of the insect olfactory system
based on neural networks were presented. One of them included a learning rule
to adjust the neural thresholds of KCs and regulate their activity, and the other
did not include it. The performance and the separability of their inner repre-
sentations were compared using the accuracy and the cosine similarity between
representations for three different datasets. Results show that the model that
includes the KC thresholds adjustment achieves a stable accuracy, regardless of
the value of pc, and also improves the internal representations.

This work contributes to shed some light on the debate about the PN-KC
connectivity in the olfactory system of insects. The results are promising since
they show that it is not critical to determine the specific value for the probability
of connection between neurons or the structure of connections anymore, since the
system, thanks to the regulation of the sensitivity of KCs, is capable of adapting
to different parameters and variations and still function properly.

From the results presented in this manuscript, some future work and ques-
tions that would be interesting to consider is analyzing further the behavior of
the system and answer questions such as how the PN-KC ratio influences the
intra/inter-class separability, which values of pc appear naturally in the system
as a consequence of the regulation of the activity of KCs, the impact of noise
and the complexity level of inputs patterns or what happens if the PN-KC con-
nections are altered once the system is trained to solve a problem.
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Abstract. As a phenomenon in dynamical systems allowing
autonomous switching between stable behaviors, chaotic itinerancy has
gained interest in neurorobotics research. In this study, we draw a con-
nection between this phenomenon and the predictive coding theory by
showing how a recurrent neural network implementing predictive coding
can generate neural trajectories similar to chaotic itinerancy in the pres-
ence of input noise. We propose two scenarios generating random and
past-independent attractor switching trajectories using our model.

Keywords: Predictive coding · Free energy principle · Dynamical
systems · Neural networks

1 Introduction

Chaotic Itinerancy (CI) describes the behavior of large non-linear dynamical
systems consisting in chaotic transitions between quasi-attractors [7,14]. It was
first observed in a model of optical turbulence [4], using globally coupled map
in a chaotic system [6] and in high dimensional neural networks [14]. From a
neuroscientific point of view, this phenomenon is interesting as such systems
exhibit complex behaviors that usually require a hierarchical structure in neural
networks. Studying CI could help better understanding the mechanisms respon-
sible for the emergence of structure in large populations of neurons.

In cognitive neuroscience, it is believed that attractors or quasi-attractors
could represent perceptual concepts or memories, and that cognitive processes
such as memory retrieval or thinking would require neural trajectories transi-
tioning between such attractors. CI is also gaining interest in neurorobotics, as it
allows to design agents with the ability to autonomously switch between different
behavioral patterns without any external commands. Several studies have tried
to model CI with learned attractor patterns. [10,15] propose a method where
this functional structure emerges from a multiple-timescale RNN. Behavioral
patterns are encoded in a rapidly varying recurrent population while another
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population with a longer time constant controls transitions between these pat-
terns. [5] models CI, using reservoir computing techniques [9], with the interplay
between an input RNN and a chaotic RNN where desired patterns have been
learned with innate trajectory training [8].

In this work, we try to model the attractor switching behavior of CI with a
RNN implementation taking inspiration from the Predictive Coding (PC) the-
ory. We propose a model performing random and past-independent transitions
between stable and plastic limit-cycle attractors.

According to PC [2,12], the brain is hierarchically generating top-down pre-
dictions about its sensory states, and updating its internal states based on a
bottom-up error signal originating from the sensory level. This view can be
implemented by having the generative model intertwined with error neurons
that propagate the information in a bottom-up manner through the hierarchy.
An online computation of the error at each level of the generative model makes
it possible to dynamically infer the hidden states, using only local update rules.
The proposed model implements PC using the free-energy formulation [3], pro-
viding a variational Bayes frame for the inference mechanisms.

We show how an RNN implementation based on PC can be trained to gen-
erate a repertoire of limit cycle attractor trajectories, and how adding noise into
the neural dynamics causes random transitions between the learned patterns.

2 Methods

In this section, we present the proposed RNN model and the corresponding
derivations for the free-energy. We then describe the two hypothesized situations
in which our model could exhibit attractor transitions dynamics, that we label
mode A and mode B.

2.1 RNN Model

Figure 1 represents our proposed RNN model implementing predictive coding.
This implementation takes inspirations from several works on RNN modeling
[3,11,13].

RNNs can be introduced as directed graphical models forming temporal
sequences of hidden states ht. RNNs can also include a sequence of input vari-
ables, and a sequence of output variables. The model we present here only con-
siders outputs, that we denote xt. Such RNNs are parameterized by recurrent
weights controlling the temporal evolution of ht, and output weights translating
ht into outputs xt.

Taking inspiration from [3], we introduce hidden causes into our generative
model. Hidden causes, that we denote ct, are variables influencing the temporal
dynamics of ht. Contrary to hidden states, this variable is static and doesn’t
evolve according to recurrent weights. Hidden causes differ from model param-
eters, as they are a random variable on which we can perform inference. They
also differ from inputs, as they are not an observable variable with known value.
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Fig. 1. RNN model. Left: Functional block diagram of the model. The layers of
the model interact through top-down connections (blue) and bottom-up connections
(green). Right: Temporally unfolded computation graph of the model. (Color figure
online)

We still use the subscript t on ct, since our model will perform inference at each
time step, providing new estimates of the hidden causes variable.

To model the influence of the hidden causes variable ct onto the temporal
dynamics of the hidden states ht, we use a three-way tensor of shape (n, n, p)
where n is the hidden state dimension and p is the hidden causes dimension.
The outcome of the dot product of this tensor by the hidden causes ct is a
matrix of shape (n, n). We can thus see the three-way tensor as a basis of size
p in a dimensional space of recurrent weight matrices, and hidden causes as
coordinates in this basis used to select particular temporal dynamics. Following
this intuition that different hidden causes will lead to different hidden state
dynamics, we choose to have one hidden causes vector for each attractor we
want to learn with our model. To make sure these attractors don’t interfere
with each other during the training phase, we enforce one-hot embeddings for
the hidden causes, with the activated neuron corresponding to the index of the
attractor we want to learn. It ensues that the hidden causes dimension will be
equal to the number of attractors we learn with this model.

This three-way tensor comprises a large number of parameters, causing this
model to scale poorly if we increase the dimension of the hidden causes (i.e. the
number of attractor patterns we learn). To address this issue, [13] proposes to
factor the tensor into three matrices such that for all i, j, k, Wijk

rec =
∑

l<d W
il
p ·

Wjl
f · Wkl

c . We introduce a factor dimension d that we can be set arbitrarily to
control the number of parameters. In our experiments, we used d = n/2.
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The top-down, prediction pass through our network can thus be described
with the following equations:

ht = f(ct−1,h∗
t−1) (1)

= (1 − 1
τ

)h∗
t−1 +

1
τ
Wf · ((Wc

T · ct−1) � (Wp
T · tanh(h∗

t−1))) (2)

xt = g(ht) (3)
= Wout · tanh(ht), (4)

where we have introduced a time constant τ for the hidden state dynamics.

2.2 Free-Energy Minimization

As explained in introduction, our model implements PC with a bottom-up error
propagation circuitry, represented with green lines in Fig. 1. The error neurons,
denoted ε and ε′, compute the difference between predicted and target values
at each layer. By propagating these errors originating from the output layer,
onto the upper layers, this architecture is able to perform online inference of the
hidden variables (states and causes) of the RNN.

Inference in the proposed model can be formulated as a free-energy min-
imization process. The detailed derivations of our model’s equations based on
the free-energy principle are provided in Annex A. We obtain the following equa-
tion for the free-energy:

E(h, c) =
(x∗ − x)2

2σ2
x

+
(h∗ − h)2

2σ2
h

− log p(c) + C (5)

In this equation, x and h denote prior predictions while h∗ denotes the
approximate posterior estimation based on bottom-up information. x∗ denotes
the observed value. C is a constant value that does not impact gradient calcula-
tions.

The probability p(c) is the prior probability on the hidden causes variable. In
this article, we use a Gaussian mixture prior, defined in the following equation:

p(c) =
p∑

k=1

πkN (c;μk, σ2
c Ip) (6)

Note that the number of Gaussians in the mixture model is equal to p, which
is the number of attractors, also equal to the dimension of c.

The temporal dynamics of h and c can be found by computing the free-
energy gradients with regard to these variables. The bottom-up, inference pass
through our network is described by the following equations:
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εt = xt − x∗
t (7)

h∗
t = ht − 1

σ2
x

Wout
T · εt (8)

ε′
t = ht − h∗

t (9)

ct = ct−1 − 1
σ2
h

Wc · ((Wf
T · ε′

t) � (Wp
T · tanh(h∗

t−1))) +
∂ log p(ct−1)

∂ct−1
(10)

The last term in Eq. 10 will pull c towards values with high prior probability.
Compared to the RNN proposed in [11], our model comprises hidden causes

in the generative model. Additionally, the feedback connections perform gradient
descent on the free-energy, instead of being additional parameters to be learned.

2.3 Training

Algorithm 1: RNN Training
Initialize the RNN model;
hinit ∼ N (0, 1);
for 0 ≤ i < I do

for 0 ≤ k < p do
h0 ← hinit;
c0 ← one hot(k);
(x0, . . . ,xT ) ← RNN(h0, c0);
L ← MSE((x0, . . . ,xT ), (x∗

0, . . . ,x
∗
T ));

backprop(L, RNN.parameters());
update(RNN.parameters()) ;

end

end

The model can be trained with gradient descent on the free-energy functional
using only local update rules. The output weights Wout can be trained in order
to reduce the discrepancy between the observed value x∗

t and its prediction
xt. Similarly, all the weights Wp, Wf and Wc, responsible for the temporal
dynamics of h, can be trained in order to reduce the error between the posterior
estimation h∗

t and its prior estimation ht.
However, such learning rules would not consider the delayed influence of

the recurrent weight parameters onto the trajectory. In this article, we instead
use the backpropagation through time algorithm for the training of the model
parameters, using only the forward pass described in Eqs. (2) and (4) for gradient
computations (all the bottom-up updates are detached from the computation
graph).

For each limit cycle attractor (x∗
0,k,x

∗
1,k, . . . ,x

∗
T,k) of the p trajectories we

want to learn, we initialize the hidden causes to the one-hot encoding of k (all
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coefficients set to 0 except for the k-th coefficient that is set to 1). All trajectories
start from a same random initial hidden state hinit. The training method is
described in Algorithm 1, where I denotes the number of training iterations and
T denotes the length of the target trajectories. During our training, we used the
Adam optimizer with a learning rate of 0.01, and a batch size of p corresponding
to the inner loop in the previous algorithm.

2.4 Mode A

Fig. 2. Gaussian mixture probability distributions with p = 2. The Gaussians centers
μ0 = (1, 0) and μ1 = (0, 1) are represented in black. The red points represent the
minima of the distributions. In the general case, the prior means μk will correspond to
the one-hot vectors activated on the k-th dimension, and the mixture coefficients πk

will be set uniformly : πk = 1/p. (Color figure online)

Here we describe one way to simulate attractor switching behavior using the
proposed model. This method, that we label mode A, varies the parameters σc

used to dynamically infer hidden causes during the trajectory.
First, we are in a situation where no target x∗ is provided by the environ-

ment, in other words, the RNN performs a closed-loop trajectory generation. In
this situation, we replace the error in the bottom level by low amplitude noise.
This noise propagates in the RNN with feedback connections and in particular,
influences the hidden causes variable.

As represented in Fig. 2, the parameter σc determines the shape of the prior
distribution on hidden causes. With low values of σc, the complexity term in
Eq. (10) will pull the hidden causes variable towards one of the prior means
μk. These values for c correspond to temporal dynamics that have previously
been trained to match each of the desired attractors. With high values of σc, the
Gaussians merge into a concave function with a global maximum corresponding
to the average of all the prior means μk. In this situation, the complexity term
in Eq. (10) will pull the hidden causes variable towards this average value, for
which no training was performed.
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The idea of mode A is to periodically vary σc in order to alternate between
phases where the hidden causes are pulled towards learned attractor dynamics
values, and phases where the hidden causes are pulled towards the average of
the prior means.

2.5 Mode B

We describe a second method to simulate attractor switching behaviors, that we
label mode B. In mode B, the parameter σc remains constant and equal to 0.4,
instead we vary the parameter σh.

We can see from Eq. (10) that this parameter controls the importance of
the bottom-up signal in the hidden causes update. In our case, since the error
that is propagated up into the model is pure noise, the parameter σh can be
seen as controlling the noise level that we add to the hidden causes at each time
step. For high values of σh, the additive noise level will remain too low to pull
the hidden causes outside of the basin of attraction created by the last term of
Eq. (10) and represented in Fig. 2a. For values of σh that are low enough, the
additive noise can make the hidden causes c escape from its basin of attraction.

Similarly to mode A, the idea behind mode B is to periodically vary σh in
order to alternate between low noise phases where hidden causes remain close to
a value corresponding to the learned attractor dynamics, and high noise phases
where the hidden causes escape their attraction basin.

3 Results

In this section, we present the results we obtained with the proposed model. We
analyze the simulations of our network in mode A and mode B for the generation
of attractor switching trajectories.

3.1 Training

We initialize our model with an output dimension of 2, a hidden state dimension
of n = 100, and a hidden causes dimensions of p = 3, equal to the number
of attractor trajectories we want to learn. The network has a time constant of
τ = 5. Finally, we set σo = 1, σh = 10 and σc = 0.1 during training. Note that
the parameters σh and σc will be varying during the simulations in mode A and
B.

The three target trajectories are periodic patterns representing a circle, a
square, and a triangle, with a period of 60 time steps, repeated to last for 1000
time steps.

The model was trained during 1000 iterations using the method described in
Algorithm 1.
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Fig. 3. Simulation in mode A. Left: Output trajectory generated by the model in mode
A. The line colors in RGB values correspond to the activations of the three neurons of c
throughout the trajectory. Top-right: Average velocity of the hidden state according to
its average value throughout the trajectory. Middle-right: Evolution of the three hidden
causes neuron activations over time. Bottom-right: Evolution of the σc coefficient over
time.

3.2 Mode A

We now use the trained network in mode A, with the parameters settings
σo = 10, σh = 0.1, and σc varying according to the function σc(t) = 0.2 ·
exp{2 sin(t/100)}. The results are recorded in Fig. 3.

We can observe that the RNN switches between the three attractors. When
σc is high, the hidden causes converge towards the center value. This center
value corresponds to the hidden state dynamics and output dynamics depicted
in gray. This value of the hidden causes seems to correspond to a point attractor,
which was not something directly enforced by the training procedure. Starting
from this configuration, when σc decreases, the hidden causes falls into one of
the three attracting configurations that were trained to correspond to the three
limit cycle attractors.

3.3 Mode B

We now use the trained network in mode B, with the parameters settings
σo = 10, σc = 0.4 and σh varying according to the function σh(t) = 0.04 ·
exp{2 sin(t/300)}. The results are recorded in Fig. 4.

We can observe that the RNN again switched between the three attractors.
When σh is high, the hidden causes remain in a stable position corresponding
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Fig. 4. Simulation in mode B. Left: Output trajectory generated by the model in mode
B. The line colors in RGB values correspond to the activations of the three neurons of c
throughout the trajectory. Top-right: Average velocity of the hidden state according to
its average value throughout the trajectory. Middle-right: Evolution of the three hidden
causes neuron activations over time. Bottom-right: Evolution of the σh coefficient over
time.

to the learned limit cycle attractor dynamics. When we decrease σh, the noise
level applied onto the hidden causes at each time step increases to the point
where c escapes its basin of attraction, to fall back into one of the three stable
configuration once the noise level resettles.

3.4 Transition Matrices

In this section, we want to verify whether the attractor switching behavior follows
a uniform probability distribution or if some transitions are more likely to occur
than others. We view the RNN as a Markov chain with three configurations.
For modes A and B, we record 2000 attractor transitions that we use to build
an estimation of the transition matrix of that Markov chain. The results are
displayed in Fig. 5.

For mode A, we can see that the probability of switching to a certain state
seems independent from the previous state. This result can be explained by the
fact that the intermediary, neutral configuration that the networks reaches before
switching to a new configuration corresponds to a fixed point. If we let enough
time for the hidden state to reach this fixed point, it would no longer hold any
memory of the previous configuration. Additionally, the probability distribution
is not uniform, as rectangle states happen more often than others.
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Fig. 5. Transitions matrices for modes A and B. Lines correspond to previous states
and columns to next states. For instance, the estimated probability of switching from
circle to triangle attractors in mode B is 0.23.

For mode B, this bias is still present but contrary to mode A, the probability
to reach a certain state depends on the previous state. The transitions are thus
past-dependent.

4 Conclusion

In this study, we have shown how an RNN model implementing PC could exhibit
attractor switching behaviors using an input noise signal. Here, we compare our
results with other works aiming at modeling this behavior.

The approach described in [15] requires to train a separate RNN for each
primitive. In opposition, we have shown that our model can embed different
dynamics within one RNN, and as such should scale better to an increased
number of primitives. On the other hand, one limitation of the model presented
by [5] is that quasi-attractors have a set duration, and the behaviour they yield
can’t last longer than this trained duration. In contrast, since our model relies
on real trained limit-cycle attractors, any periodical behavior can be maintained
for as long as desired.

In this article, we have tried to propose mechanisms that will provide random
transitions between attractors, regardless of the past attractor state. However,
if we were to model cognitive mechanisms such as memory retrieval, it could be
interesting to have such a dependency. Following this idea, we could envision
a mode C where we would periodically set the parameter σc to a very large
value. When σc is very high, the prior probability over c converges to a flat
function, thus making the last term of Eq. 10 negligible. In such a setup, c
would evolve following a Gaussian random walk. When σc is reset to its initial
value, c should converge to the closest mixture mean. Alternating between low
values of σc and very high values would thus result in a succession of random
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walk and convergence phases for c, that should maintain information about the
previously visited attractor configurations.

A Free-Energy Derivations

In this section, we provide the derivations for Eq. 5. We start from the following
probabilistic graphical model:

p(c) =
p∑

k=1

πkN (c;μk, σ
2
c Ip) (11)

p(h|c) = N (h; f(c,ht−1);σ2
hIn) (12)

p(x|h) = N (x; g(h);σ2
xI2) (13)

Where f and g correspond to the top-down predictions described respectively
in Eq. 2 and 4. Note that here, c, h and x denote random variables, and should
not be confused with the variables of the computation model presented in the
main text. Since free-energy will be used to perform inference on the hidden
variables, and that it’s not possible to update the past hidden variable ht−1, we
consider it as a parameter and not a random variable of the probabilistic model.
We only perform inference on c and h = ht.

We introduce approximate posterior density functions q(h) and q(c) that are
assumed to be Gaussian distributions of means mh and mc. Given a target for
x, denoted x∗, the variational free energy is defined as:

E(x∗,mh,mc) = KL(q(c,h)||p(c,h,x∗)) (14)
= −Eq[log p(c,h,x∗)] + Eq[log q(c,h)] (15)

The second term of Eq. 15 is the entropy of the approximate posterior distri-
bution, and using the Gaussian assumption, does not depend on mh and mc.
As such, this term is of no interest for the derivation of the update rule of mh

and mc, and is replaced by the constant C1 in the remaining of the derivations.
Using the Gaussian assumption, we can also find simplified derivations for the
first term of Eq. 15, and grouping the terms not depending on mh and mc under
the constant C2, we have the following result:

E(x∗,mh,mc) = − log p(x∗|h) − log p(mh|c) − log p(mc) + C1 + C2 (16)

=
(x∗ − g(h))2

2σ2
x

+
(mh − f(c,ht−1))2

2σ2
h

− log p(mc) + C (17)

where C = C1 + C2 + C3 and C3 corresponds to the additional terms obtained
when developing log p(x∗|h) and log p(mh|c).

[1] provides more detailed derivations and a deeper hindsight on the subject.
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B Linked Videos

Here is the link to a video showing animated example trajectories in modes A
and B (https://youtu.be/LRJQr8RmeCY).
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Binocular Rivalry in the Context of
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Abstract. Treatments for amblyopia focus on vision therapy and patch-
ing of one eye. Predicting the success of these methods remains dif-
ficult, however. Recent research has used binocular rivalry to monitor
visual cortical plasticity during occlusion therapy, leading to a success-
ful prediction of the recovery rate of the amblyopic eye. The underlying
mechanisms and their relation to neural homeostatic plasticity are not
known. Here we propose a spiking neural network to explain the effect of
short-term monocular deprivation on binocular rivalry. The model repro-
duces perceptual switches as observed experimentally. When one eye is
occluded, inhibitory plasticity changes the balance between the eyes and
leads to longer dominance periods for the eye that has been deprived.
The model suggests that homeostatic inhibitory plasticity is a critical
component of the observed effects and might play an important role in
the recovery from amblyopia.

Keywords: Amblyopia · Binocular rivalry · Neural network ·
Plasticity

1 Introduction

Amblyopia (greek, meaning dull or blunt sight) is a developmental disorder of
the visual system in which the brain and an eye are not working well together.
For people suffering from amblyopia one eye—the then called amblyopic eye—
shows little visual acuity as well as a decreased contrast and motion sensitivity
[9]. Patients typically also suffer from poor stereo vision. Neither can be related
to structural abnormalities nor can it be entirely recovered during adulthood.
Amblyopia can be caused by, e.g., a muscle imbalance (strabismic amblyopia)
as well as by a difference in sharpness of vision between the eyes (anisometropic
amblyopia) during the first 3–5 years of life. Different causes lead to different
characteristics of amblyopia, e.g., regarding visual acuity and contrast sensitivity
[1]. Considering these causes and their consequences, the suppression of the
amblyopic eye’s neural representation by the fellow eye seems to be the primary
cause for a failing contribution of the amblyopic eye to vision. Indeed, it was
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found that for all major forms of amblyopia the degree of interocular, GABAergic
suppression correlates with the depth of amblyopia [14,21].

Under normal viewing conditions, the input to both eyes is nearly identical
and just differs slightly due to different viewing angles. When both eyes are
presented with non-matching input, however, most people report fluctuations
between the perceptions of these inputs with the observer perceiving only one
eye’s image at a time. This phenomenon is called binocular rivalry. The fluc-
tuations in perception during binocular rivalry are stochastic and show a mean
duration of about 2 s [4]. They are thought to arise due to a competition between
neural populations representing the two different percepts, which is mediated by
mutual inhibition. Recent computational models of binocular rivalry focused on
addressing this mutual inhibition with alternations in perception being allowed
due to adaptation [5,13] and/or noise in the network [20]. Since amblyopia and
binocular rivalry both rely on competition between the eyes, they may be related
at a mechanistic level.

A recovery from amblyopia can be achieved best during childhood, e.g., by the
most common treatment incorporating eye patches during an occlusion therapy.
Here, the strong eye is occluded for several hours per day over multiple months.
Recently, Lunghi and others combined the patching therapy with a novel measure
for neuronal plasticity which incorporates binocular dynamics [15–17]. They first
showed that after a short-term monocular deprivation of 150 min, the occluded
eye dominates perception under binocular rivalry in healthy adults [15]. The
strength of this effect correlated with decreased GABA levels after patching
[16], diminished over time, and went back to a normal state after 90 min. In a
following study, they found that this effect is also present for the patched fellow
eye of amblyopes undergoing standard occlusion therapy [17]. Moreover, the
recovery rate from amblyopia could be predicted: the stronger the dynamics are
altered after the patching, the more the amblyopic eye could recover after months
of treatment. Zhou et al. [27] added to this finding by successfully applying an
inverse occlusion therapy in adult amblyopes for which, again, the binocular
balance was the key aspect for recovery.

The physiological mechanisms responsible for the observed effects are still
unknown, however. Therefore, the current work aims to provide a better under-
standing of potential mechanisms leading to the effects described above. We
hypothesized that inhibitory plasticity may be the central mechanism giving
rise to the observed effects. To test the plausibility of this hypothesis, we first
created a spiking neural network model that produced alternations in dominance
between two competing neuron groups, which were stimulated simultaneously.
Second, one of the groups was deprived of its normal input for a certain amount
of time. Inhibitory plasticity altered the rivalry dynamics during deprivation and
lead to longer dominance durations for the previously deprived population. This
effect was accompanied by a temporary reduction in GABA-levels, as observed
experimentally. Based on these findings, we conclude that inhibitory plasticity
is a plausible explanation for the observed experimental findings.
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Fig. 1. Model architecture and connectivity. A) Modeled layer IV with exc. (blue)
and inh. populations (red) as well as thalamic drive (solid black). Excitatory synapses
are displayed as bulbs, inhibitory synapses as lines. B) Connectivity within one ocular
dominance column following a Gaussian probability function (exc: σ of 3, inh: σ = 2).
Lines separate regions of exc. neurons that respond to the same orientation. The second
column is placed adjacent (not shown) and shows the same connectivity. C) Pinwheel
architecture of the model. Black line separates ocular dominance columns. (Color figure
online)

2 Methods

The current model aims to represent a part of layer IV of the primary visual
cortex. It incorporates pyramidal neurons (excitatory, regular-spiking) and par-
valbumin neurons (inhibitory, fast-spiking) in two interconnected layers. The
excitatory neuron layer consists of 200 neurons and the inhibitory layer of 50
neurons to maintain ratios between these two groups as seen in experiments.
The general structure of the model is displayed in Fig. 1.

Each layer consists of two ocular dominance columns, which incorporate a pin-
wheel structure, once clockwise and once counter-clockwise, which indicate neuron
populations with a varying orientation preference. For each dominance column,
100 exc. and 25 inh. neurons are divided into 4 groups which then share the same
orientation preference (e.g. exc. neurons 1–25: left eye, preference of 0◦).

Neurons in the model are of the standard leaky-integrate-and-fire type. They
include a slow hyperpolarizing current to model neuronal spike rate adaptation
and white Gaussian membrane noise that is added to the membrane voltage.
The general formulation is adapted from [6]. When the membrane potential of
a neuron reaches a threshold (mean value −57.3 mV for exc. neurons, −58.0
mV for inhibitory neurons, both with a standard deviation of 0.1 mV), a spike
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is generated and the neuron’s membrane potential is set back to −70.0 mV for
excitatory neurons and −60.0 mV for inhibitory neurons.

Synapses are modeled as conductance-based. Upon arrival of a presynaptic
spike, the synapse’s conductance is increased by the synaptic weight w and
then decreases exponentially with a time constant specific to the synapse type
(τAMPA = 3 ms, τNMDA = 80 ms, τGABAA = 10 ms). The different synapse
types are used to model external stimulation by the thalamus (AMPA-mediated),
recurrent excitation provided by adjacent excitatory neurons and not explicitly
modeled layer V/VI neurons alike (AMPA- and NMDA-mediated) as well as
inhibition from inhibitory neurons (GABAA-mediated).

The spike rate adaptation mechanism works similarly. Upon each postsynap-
tic spike, the conductance is increased by a parameter wSRA and then decays
exponentially with the time constant τSRA = 996 ms.

Considering plasticity in the model, STDP was implemented only at
inhibitory to excitatory connections for which a symmetric STDP window has
been assumed with a pairing of pre- and postsynaptic spikes leading to potenti-
ation independent of the relative order of the events:

ΔW (x) = AIexp− |Δt|
τSTDP . (1)

Here, Δt denotes the time between pre- and postsynaptic spikes, τSTDP is the
time constant for the STDP and AI is a constant for the maximum possible
weight change. An online implementation of a nearest-neighbor STDP rule is
used with every spike leading to a trace, which is evaluated once a spike of the
corresponding pre- or postsynaptic neuron occurs. For homeostatic purposes, an
α-parameter is also introduced which reduces the synaptic weight by a small
amount α for every presynaptic spike of an inhibitory neuron and which is inde-
pendent of spike times of the corresponding postsynaptic excitatory neuron [25].

The global connectivity of the network promotes inhibition between groups
in different ocular dominance columns which are driven by different sensory stim-
uli. This is in line with experimental findings showing that inhibition is prominent
from one ocular dominance column towards the other [10]. This inhibition is medi-
ated by long-range excitatory connections from excitatory neurons of one eye’s
dominance column towards inhibitory neurons of the other eye’s dominance col-
umn. For the local connectivity within one ocular dominance column, every neu-
ron pair has a chance to become connected that drops of with increasing distance
following a Gaussian probability function (exc: σ of 3, inh: σ = 2; see Fig. 1B).
Thus, the longest axons stem from excitatory rather than inhibitory neurons [19].
Connectivity parameters were adapted from Ahmed et al. [2] for the relative con-
tributions of thalamic and cortical projection ratios and from Potjans et al. [23] for
cortico-cortical connection ratios. Axonal delays are heterogeneous (exc. to exc.
1.5 ms, inh. to exc. 0.5 ms, exc. to inh. 1.0 ms and inh. to inh. 1.0 ms).

Every neuron is stimulated via 10 spike trains (40 Hz, interocular correlation
of 0.08 and intraocular correlation of 0.25). The same input is also provided to
the inhibitory populations which target the excitatory populations of both eyes



Inhibitory Plasticity and Binocular Rivalry in a SORN 597

(see Fig. 1). During the simulated patching, the input towards one eye is set
10 Hz and is uncorrelated while the input to the other eye is left unchanged.

For the computation of dominance durations, mean firing rates are calculated
for the two groups belonging to the eyes using a rectangular sliding window
with a width of 300 ms. The population which is more active than the other
population is labeled as dominant at this moment. Switches in dominance are
indicated when the suppressed population becomes at least twice as active as
the formerly active population. Periods with mixed perceptions and transitions
between dominance durations of competing groups are not treated differently for
the current analysis. For the comparison of distributions of dominance durations,
a Kolmogorov-Smirnow test is used for the dominance durations of one eye before
and after the patching.

The model is implemented using Brain2 [24]. The program code is available at
GitHub under https://bit.ly/38jZQgX and licensed under GNU General Public
License v3.0.

3 Results

3.1 General Network Behavior

An example of the network’s activity is given in Fig. 2. Here, the excitatory
populations representing the left (bottom row) and right (top row) eye compete
for dominance when neurons that prefer orthogonal orientations are stimulated
simultaneously. These populations show varying dominance durations with a
mean slightly above 2 s as seen in experiments [4] (Fig. 3). The inhibitory popu-
lations show the inverse activity (data not shown).

3.2 Effect of Patching

We modeled the patching procedure used in experiments. Participants typically
watch a movie containing a wide range visual stimuli or are free to perform
their normal everyday activities while the patch is applied. The stimulus before
and after the patching depends on the particular experiment (e.g. unrestricted
input or specific tasks). For the purpose of our model, we provide the rivaling
input for the entire time. Dominance durations are calculated for the first and
last third, inhibitory weights are recorded for the entire time. To save simu-
lation time, we accelerated the effect of plasticity to reduce the time required
to simulate the occlusion to 100 s. Figure 4 shows a representative example of
the effect of the simulated patching on the network dynamics. In part (A), the
mean of the inhibitory weights targeting the corresponding excitatory popu-
lations is shown with the green/red vertical lines indicating the start/end of
the occlusion. Before the patch is applied, the inhibitory weights towards both
populations slightly diverge since one population is slightly stronger than the
other due to random factors in the initialization of the network. As soon as
the patching starts, however, the mean inhibitory weight towards the occluded

https://bit.ly/38jZQgX
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Fig. 2. Rasterplots of network activity Example of the network activity under
basal rivaling conditions. The stimulated populations are left eye, 0◦ (red) and right
eye, 90◦ (blue). Other colors correspond to other eye, orientation combinations. (Color
figure online)

eye drops substantially while the mean inhibitory weight towards the open eye
shows an increase. When the patching stops, the reverse is visible: the strengths
of inhibitory weights towards the formerly occluded eye rise again to the level
of the unoccluded eye. The mean inhibitory weight towards the unoccluded eye
starts to decrease. Both means seem to approach each other in a time frame
comparable to the patching duration.

The impact of these altered weights on rivaling dynamics can be seen in
Fig. 4B (data from 18 different simulations). Before the patching, every eye
shows average dominance durations of roughly the same length (left: 2069 ms;
right: 2164 ms). Afterwards, this behavior is dramatically altered. The formerly
occluded population can be active for very long time periods and now pos-
sesses a significantly prolonged mean dominance duration of 3212 ms (KS-Test:
p < 0.001). The eye which stayed open during the patching has its mean dom-
inance duration significantly reduced to 1667 ms (KS-Test: p < 0.001). The
change in dominance duration length for the occluded eye is stronger than the
change for the eye which remained open. Thus, the model reproduces the changes
in dominance durations after patching observed experimentally.

4 Discussion

We aimed to create a model that captures and explains the experimental effects
observed by Lunghi and others [15–18]. The main focus lied in creating a spiking
neural network model with inhibitory plasticity to explain how the dynamics of
binocular rivalry are altered in response to monocular deprivation. Our network
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Fig. 3. Dominance duration distribution Distribution of dominance durations for
the model together with a gamma fit and a lognormal fit. Inset: Perception duration
lengths found in experiments with a fitted gamma distribution (see [4]).

captures these effects and demonstrates how the occlusion of one eye can lead to
a temporary relief of the corresponding part of the primary visual cortex from
inhibition. This then allows for a re-balancing of the total network undisturbed
from a potential suppression by the other eye.

In the model and with the occlusion of one eye, the input towards inhibitory
neurons targeting the corresponding excitatory population is only partially
decreased due to the drive coming from the eye which remains open. This presy-
naptic inhibitory activity, however, has little to no postsynaptic excitatory acti-
vivity with which the spikes could be correlated. Thus, the inhibitory weight
of these synapses decreases over time during the occlusion and only starts to
regain strength after the patch is lifted. At this third stage, the chance of cor-
related activity is elevated which leads to a strong potentiation of the targeting
inhibitory weight. A similar, but inverted, effect can be seen for the eye which
remains open: during the occlusion, the inhibitory neurons for the open eye gain
nearly all of their input from the same neurons which drive the excitatory pop-
ulation. Thus, the activity is highly correlated and leads to a potentiation of
the average inhibitory weight. Interestingly, we also found a similar impact of
the patching in a variant of this network without feed-forward inhibition (data
not shown). In this variant, the inhibition towards the open eye remained sta-
ble but the occluded eye experiences a decreased inhibition. Both versions of
the model lead to the occluded population dominating after the patching under
rivaling conditions. This effect is also robust with respect to the condition of
the network at the moment of patching—since the strength of the eyes differs
in healthy people in general and in amblyopic people in particular, completely
balanced conditions would be a rather unrealistic setting. The reaction of the
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Fig. 4. Effect of patching A) Evolution of the inhibitory weight (mean and standard
deviation) targeting excitatory neurons of the open (top) and occluded eye (bottom).
Vertical green and red lines indicate, respectively, the start and end of the occlusion.
One exemplary weight evolution was chosen. B) Dominance durations before (left) and
after (right) the patching (combined data from 18 simulations). (Color figure online)

network to the occlusion directly results from the used parameters (e.g. for the
STDP) and thus, the ability of the network to show plastic changes due to this
treatment could be linked to the overall plasticity of the brain. This could explain
why Lunghi et al. could predict the recovery rate from amblyopia based on the
impact of short-term occlusion on binocular rivalry.

The network also agrees with details of the results by Lunghi et al. [15]. The
increase in dominance duration length of the formerly occluded eye exceeds the
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decrease for the eye which remained open. Also, the time constants seem to fit:
in the experiment, the patching had shown an impact for a duration which is
slightly shorter than the time the patching was performed. A similar time frame
can be seen in the model.

Also, our model is robust to various design choices. In the network, excita-
tory neurons only connect to excitatory neurons with a rather similar orientation
preference (up to 45◦) while avoiding excitatory neurons with opposite prefer-
ences. However, an architecture where excitatory neurons only connect to neu-
rons showing the same preference would also be plausible. This approach leads to
similar results in the current model. The same is true for a variant of the model
where projections crossing the ocular dominance column border are not provided
by excitatory neurons towards inhibitory populations, but by inhibitory popula-
tions targeting the other eye. This architecture also yielded comparable results.

But what might be the implications of reduced inhibition in the brain?
Parvalbumin-positive (PV+) inhibitory neurons play an important role in guid-
ing cortical plasticity, with the maturation of these neurons marking the onset of
critical periods, e.g., in the visual cortex. Reopened periods for ocular dominance
plasticity later in life are, however, achieved through reduced inhibition. This is
shown for example by Kuhlmann et al. [12], who re-enabled juvenile-like plas-
ticity in the visual cortex by artificially inhibiting the activity of PV+-neurons.
This then allowed excitatory neurons to become plastic again. Barnesd et al. [3]
added the finding that the recovery of neurons responding preferentially to a
patched eye depends on the amount of correlated activity, which matches the
findings of our model. With regards to amblyopia, there also is recent computa-
tional evidence highlighting the importance of cortical plasticity for a potential
recovery [8]. There are different possible mechanisms of how PV+ neurons can
guide cortical plasticity, one of which is the strong effect of perisomatic inhibition
onto backpropagating action potentials and the temporal window in which arriv-
ing inputs can sum up and provoke a response of the target neuron. A release
of that inhibition together with increased excitability can help these otherwise
suppressed neurons to compete, which is important to consider for strongly sup-
pressed populations that represent an amblyopic eye. Another interesting aspect
is a possible effect of PV+ neurons on the tPA enzyme (tissue plasminogen
activator), which is more active following monocular deprivation and supports
pruning mechanisms, which are important for ocular dominance plasticity [22].

Most of these aspects, however, take place in higher layers such as layer
II/III. Nevertheless, a key role of parvalbumin-positive neurons and their plas-
ticity was made clear by the studies mentioned above. PV+ neurons also receive
potent thalamic input [11], show a specific degree of orientation tuning [26], and
change their levels of activity under locomotion [7]. The latter point is consis-
tent with [18] showing increased effects of the patching paradigm when combined
with physical exercise. Therefore, inhibitory neurons in general and parvalbumin
neurons, in particular, could be a key player in plastic changes also in layer IV
during ocular dominance alterations and an important mediator of a possible
recovery from amblyopia.
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Abstract. Transitions between metastable states are commonly
observed in the neural system and underlie various cognitive functions
such as working memory. In a previous study, we have developed a
neural network model with the slow and fast populations, wherein sim-
ple Hebb-type learning enables stable and complex (e.g., non-Markov)
transitions between neural states. This model is distinct from a net-
work with asymmetric Hebbian connectivity and a network trained
with supervised machine learning methods: the former generates sim-
ple Markov sequences. The latter generates complex but vulnerable
sequences against perturbation and its learning methods are biologically
implausible. By using our model, we propose and demonstrate a novel
mechanism underlying stable working memories: sequentially stabilizing
and destabilizing task-related states in the fast neural dynamics. The
slow dynamics maintain a history of the applied inputs, e.g., context
signals, and enable the task-related states to be stabilized in a context-
dependent manner. We found that only a single (or a few) state(s) is
stabilized in each epoch (i.e., a period in the presence of the context sig-
nal and a delayed period) in a working memory task, resulting in a robust
performance against noise and change in a task protocol. These results
suggest a simple mechanism underlying complex and stable processing
in neural systems.

Keywords: Sequence · Multiple timescale · Working memory

1 Introduction

Neural trajectories are commonly observed in neural systems [12] and are
involved in temporal information processing, such as working memory [19]
decision-making [6]. The organization and processing of task-related informa-
tion through these trajectories is an essential question in neuroscience.

Two theoretical approaches are proposed to answer the question. In this
approach, each pattern in the trajectory is represented as a metastable state,
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wherein synaptic connectivity in a neural network is formed through Hebbian
learning. An asymmetric connection from the current to the successive pat-
tern [1,3,4,14,16–18] leads to transitions between patterns. These sequences of
metasable states are robust to noise and are widely observed in neural systems
[12]. A transition between these states is explicitly embedded into connectiv-
ity (i.e., the connectivity composed of correlations between the current and the
next patterns), resulting in a next pattern being determined only by the current
pattern. Hence, the generation of non-Markov sequences depending on the long
history of previous patterns is not possible.

In another approach [2,10,11,20] trained recurrent neural networks (RNNs)
were used to generate neural trajectories using machine learning methods. RNNs
reproduce neural trajectories observed in neural systems, and how these trajec-
tories encode and process information over time has been investigated. These
models allow for generating complex sequences dependent on the history. How-
ever, parameters are finely tuned through non-biologically plausible learning, and
the parsimonious principle of temporal information processing in neural dynam-
ics is unclear. Thus, a simple and biologically plausible model that generates
long-history-dependent sequences is necessary.

To this end, we have studied a neural network model with fast and slow
neural dynamics [9], wherein the slow dynamics integrate previous information
and regulate fast dynamics. Using this model, in this study, we propose a novel
mechanism underlying stable working memories: stabilizing and destabilizing
task-related states at an adequate time. We also examine whether our model
performs a context-dependent working memory task wherein history-dependent
computation is necessary.

2 Model

2.1 Neural Dynamics

Our model is based on a previous study [9] that showed that an RNN with
multiple timescales enables the learning of sequential neural patterns including
non-Markov sequences. The model has two populations with different timescales
connected to each other (Fig. 1A). One population comprises N fast neurons
x, and the other comprises N slow neurons y. The fast population receives an
external stimulus and generates a target response corresponding to the given
input. These neurons evolve according to

τxẋi = tanh (βxIi) − xi, (1)
τy ẏi = tanh(βyxi) − yi, (2)

Ii = ui + tanh(ri) + (ηα
μ )i, (3)

ui =
N∑

j �=i

JX
ij xj , (4)
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ri =
N∑

j �=i

JXY
ij tanh(yj), (5)

where JX
ij is a recurrent connection from the i to j-th neuron in the population

of x and JXY is a connection from the i-th neuron in the population of y to the
j-th neuron in the population of x. The mean values of JX and JXY are set to
zero with a variance equal to 1/N . N,βx, and βy are set to 100, 2.0, and 2.0,
respectively, while the time scales of x and y, denoted as τx and τy, are set to 1
and 33, respectively. Ii is the i th element of an input pattern.

2.2 Learning Process

In our model, only JX is plastic and changes according to

˙JX
ij = ε(ξi − xi)(xj − uiJ

X
ij )/N,

where ε is the learning speed, and it is set to 0.03. ξi is the i-th element of
a target ξ, which is an N -dimensional pattern. In previous studies [5,7,8], we
demonstrated that a single population with a single timescale learns mappings
between constant input and target patterns using this learning rule. In the cur-
rent two-population model, there are two inputs for the fast sub-network—one
is from an external input and the other is from the slow sub-network that stores
previous information. Thus, the synaptic dynamics can modify the connection to
generate a target pattern depending not only on the currently applied input but
also on the preceding input, as shown in [9]. We, in the present study, demon-
strate this model performs a context-dependent task.

context A D (delay)

Tstim

C (cue)

RA (Go)

Tstim Tstim

Stim.

Resp.

context B D (delay) C (cue)

RB (No-Go)

Stim.

Resp.

BA

plastic not-plastic

response

x:fa
st 

pop.

y:s
low pop.

stimulus

Fig. 1. A: Schematic of our model. B: Context-dependent task. Tstim denotes the
stimulus duration.
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3 Results

3.1 Context-Dependent Task

First, we consider learning a simple context-dependent task that is composed of
two context signals, a delayed signal and a cue signal (Fig. 1B). In this task, one
of the context signals is applied to fast neurons, followed by the delayed signal.
Finally, the cue signal is applied. On applying the cue signal, the network is
required to generate “Go” pattern or “No-Go” pattern depending on the context
signal. When the applied context signal is A, the network should generate the
Go pattern, while it should generate the No-Go pattern when the context signal
is B. Here, we denote Go and No-Go patterns as RA and RB, respectively. Thus,
the network must maintain the context signal to generate an adequate response
pattern.

The signal and response patterns are random N -bit binary patterns, each ele-
ment of which corresponds to a neuron of x, with probabilities P (Xi = ±1) = 1/2,
where Xi is the activity state of the i-th element of patterns X = A,B,C,RA,
and RB. All elements of the delayed signal D are −1. We apply the context, the
delayed, and the cue signal sequentially with duration time Tstim = 60 as an
external input η in Eq. 2, as illustrated in Fig. 1B. If the fast dynamics reach RA

(or RB), namely
∑

RAixi/N > 0.95, a trial is completed, and the next trial starts.
Now, the target patterns are defined only when the cue signal is applied. There-
fore, the learning process runs only during the cue signal application; otherwise,
only the neural dynamics run.

We show successful trials in the context-dependent task in Fig. 2A. In the
presence of the context signal A, fast neural dynamics already show a high
overlap with RA, while they show quite different patterns in the presence of B.
The slow dynamics follow the fast dynamics in both cases. The fast dynamics
change slightly upon the delayed signal after the context signal A, while they
change drastically after B. Although the network receives the same delayed
signals, quite different neural dynamics emerge owing to the slow dynamics that
reflect the preceding context signals. Finally, the fast dynamics converge to the
correct target RA or RB depending on the preceding context signals A and
B, respectively. We measured the success rate across 20 trials for each context
signal, resulting in a 95% success rate (Fig. 2B).

To examine the role of the slow dynamics in this task, we analyzed the neural
dynamics with τy = 1, i.e., the dynamics of the two populations change with the
same timescale. In this case, the neural dynamics y do not store the history of
the fast dynamics x over a long time. We plot two trajectories for the context
A and B in Fig. 2C. In the present of the context signals, two trajectories show
different behaviors depending on the identity of the context signals. After the
presentation of the context signal, the difference between the two trajectories
rapidly decreased during the delayed epoch and the cue one. Thus, the network
generates the same neural patterns (in this case, RA) in both contexts A and
B in the presence of the cue signal. Altogether, these results show that the
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Fig. 2. A: Neural dynamics after being trained in the context-dependent task for the
context A and B in the left and right panels, respectively. The neural dynamics of
x and y are plotted by computing their overlaps with RA (red line) and RB (green
line), respectively. The top panels represent the neural dynamics of x, whereas the
bottom panels represent the neural dynamics of y. The colored bars above the top
panels represent context signals A and B, the delay signal, and the cue signal in red,
green, black, and cyan, respectively. B: Success rate of the context-dependent task for
τy = 33 and 1. For each condition, we plot the success rate of the response to contexts
A and B separately. C: Neural dynamics for τy = 1 for the context A and B in the left
and right panels, respectively. The neural trajectories are plotted in the same manner
as in panel A. (Color figure online)

population with the slow timescale enables successful performing the context-
dependent task.

3.2 Delayed Match to Sample Task

In the task analyzed above, the network is required to store only the context
information irrespective of the cue signals; this is because the correct response
is uniquely determined by the context signal. However, the required responses are
commonly dependent on cue signals in addition to context signals, as analyzed in
[11,19]. Subsequently, we examined whether our model performs such a complex
context-dependent task (denoted as a delayed match to the sample task), as shown
in Fig. 3A. This task is based on procedure similar to the task analyzed above.
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Fig. 3. A: Schematic of the delayed match to sample task. B–D: Fast dynamics are
plotted on two principal component spaces (B, C, and D: the dynamics in the pres-
ence of the context signal, the delayed one, and the cue one, respectively). The four
trajectories represent fast dynamics under different conditions. E: Success rate against
noise and perturbation for each condition. The performances for normal, perturbation
in initial states, and modified Tstim situations are shown in blue, orange, and green,
respectively.

There are two context signals, A and B, and two cues, a and b, and the same-
name patterns (i.e., A and a, or B and b) belong to the same category. A network
is required to “Go” (denoted as matched pattern M) when the context and cue
signal in the same category are given, while it is required to “No-Go” (denoted as
non-matched pattern NM) when these cues are in a different category. Unlike the
previous task, the network should generate two different patterns depending on
the cue signals, in addition to the context signals.

The context and cue signals (A,B, a, and b) and response patterns (M and
NM) are the random N -bit patterns generated in the same manner as in the
previous task. There are two M patterns for A−a and B− b as well as two NM
patterns for A − b and B − b. When the two M (NM) patterns are the same,
the learning performance is poor. Thus, we add random perturbation parts to
M and NM , as shown in Fig. 3A. The delay signal and learning procedure are
the same as that in the previous task.

First, we present four trajectories corresponding to the four conditions (two
contexts by two cues) in Figs. 3B–D. Here, the fast neural dynamics are projected
onto the 2D principal component (PC) space after averaging over 20 trajectories
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for each condition. The projected trajectories for four different conditions are
shown by solid and dotted lines in different colors.

In the presence of context signals, neural trajectories are separated into two
groups according to the context signals and converge into neural states SA and
SB . Following the context signals, the delay signals are applied. Two groups of
trajectories evolve from SA and SB and reach S′

A and S′
B with a decrease in

the distance between the two groups. Although the difference decreases, that
between neural states in the slow dynamics remains high at the end of the delay
epoch, and the information of the preceding context signal is retained in the slow
dynamics. Finally, applying the cue to the network separates the four trajectories
into the match (SM ) and non-match (SNM ) states depending on the contexts
and cues. The trajectories diverge into different states in the presence of the
same cue owing to the slow dynamics that reflect the context signals. In this
manner, the network performs the delayed match to sample task. To precisely
evaluate the performance of this model, we measured the success rate for 20
trials for each condition, resulting in more than 90% trials being successful for
all conditions.

In a noisy system such as a neural system, information processing should be
robust against noise and perturbations. We explore the robustness of our model
against perturbations in the initial states and the change in stimulus duration
Tstim. First, for the modification of Tstim, we changed Tstim for each epoch
(the context signal, the delay signal, and the cue signal) from Tstim = 60 to
Tstim = 66 in the test process after training the network with Tstim = 60. We
measured the success rate by 20 trials for modified Tstim and observe that such
perturbations do not reduce the success rate compared to the normal situation,
as shown in Fig. 3E.

Next, we analyze the robustness against the perturbations of the initial states,
wherein the initial states of the fast and slow dynamics, x and y, in the test
process are selected randomly from a larger distribution around the origin in the
neural state space than those in the learning process. We set the initial states of
x and y in the test process to random N -dimensional states uniformly sampled
from a closed interval [−0.2, 0.2]N , whereas in the learning process, the initial
states are limited to a smaller closed interval [−0.01, 0.01]N . Therefore, almost
all initial states in the test process are novel for the network. By measuring the
success rate against 20 trials for the perturbation case, we observed that 90% of
all trials were successful for three conditions, while more than 50% of all trials
were successful for one condition (context A – cue b). The network successfully
performs the delayed match to sample task with highly volatile initial states,
except for A – b condition. In total, these results indicate that our learning
process generates a network model robust against perturbations of the initial
states and signal duration.

Why is such robust information processing possible? To answer this question,
we analyzed the stability of neural trajectories in each epoch (i.e., in the pres-
ence of context, delayed, and cue signals) in the test process. First, to explore
the robustness during the signal epoch, the initial states are randomly generated
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Fig. 4. A–C: Neural trajectories with perturbed initial states projected on 2D PC space
for context A–cue a condition. Trajectories during the context signal, the delayed one,
and the cue one are plotted on A, B, and C, respectively. D: Neural trajectories during
the cue signal for the context A–cue b condition.

around SO in the same manner as the perturbation case, and the fast and slow
dynamics run according to Eqs. 2 and 3. Figure 4A demonstrates these trajec-
tories in the presence of the context A. Neural trajectories from the perturbed
initial states converge to and remain around SA for some time. SA is stable
and attracts trajectories starting from a broad area of the neural state space in
the context A epoch. The same analysis in the delayed and cue epochs revealed
that SB , S′

A, S′
B , SM , and SNM are stable states in the corresponding epochs, as

shown in Figs. 4B and C. After changing the signal, each state is destabilized.
S′

A and S′
B are stable for the same delay signals depending on the preceding

contexts. SM and SNM are stable dependent on the context and the cue. The
slow dynamics store the context information and stabilize the different states
through interaction with the cue signal. These results demonstrate that suc-
cessive stabilization and destabilization of the epoch-specific states underlie the
stable performance of the delayed match to the sample task.
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In contrast, SMN in the presence of b (i.e., the correct target state for A – b
condition) is less stable than the other task-related states, resulting in some tra-
jectories not reaching SNM , but SM , as shown in Fig. 4D. Thus, the task often
fails. These results indicate that our model robustly performs a delayed match to
sample task by sequential stabilization of the task-related states.

4 Discussion and Summary

We have proposed and demonstrated that sequential stabilization of task-related
states leads to the robust performance of the context-dependent task. During
each epoch (i.e., in the presence of the context signal, the delayed one, and
the cue one), the epoch-specific states are stabilized and destabilized in the
fast dynamics through the regulation of the slow dynamics. The slow dynamics
maintain the previous stimulus and enable the neural state in the fast dynamics
to transit from one state to another in context-dependent (i.e., non-Markov)
manner.

Such transitions of neural states are distinguished from the typical models
of the transitions. Although asymmetric Hebbian connection model [1,3,4,14,
16–18] generates transitions between metastable states, the current pattern is
determined only by the immediately preceding pattern and, consequently, non-
Markov sequences are not allowed. Sophisticated training methods of RNNs
[2,10,11,20] generate complex neural trajectories, but how such trajectories are
formed is unclear and the stability of these trajectories is poor [10].

Recent theoretical studies revealed relevance of the stable states in neural
processing [21,22]. In these studies, several stable states exist in the neural state
space and the adequate input drives the neural state from one stable state to
another for performing the cognitive tasks, e.g., flip-flop function and generation
of muscle activity. Thus, initial states before being applied the input are crucial
for performing a task. In contrast, in our model, the input stabilizes a single (or
a few) state(s) in the fast dynamics depending on the previous inputs stored in
the slow dynamics. Hence, neural states beginning from a broader area converge
the adequate state. Our proposed model sheds light on neural processing by
the hierarchical timescale structure, which are commonly observed in the neural
system [13,15].
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