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Abstract. This article represents the parallel multigrid component
analysis of Robust Multigrid Technique (RMT). The RMT has been
developed for black-box solution of a large class of (non)linear bound-
ary value problems in computational continuum mechanics. Parallel
RMT can be constructed by combination of the algebraic and geomet-
ric approaches to parallelization. The geometric smoother-independent
approach based on a decomposition of the given problem into 3κ (κ =
1, 2, . . .) subproblems without an overlap should be used to overcome
the problems of large communication overhead and idling processors
on coarser levels. The algebraic grid-independent approach based on a
decomposition of the given problem into C3κ (κ = 1, 2, . . .) subproblems
with an overlap (multicoloured Vanka-type smoother) should be used
for parallel smoothing on finer levels. Standard programming model for
shared memory parallel programming OpenMP has been used for paral-
lel implementation of RMT on personal computer and computer cluster.
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This paper represents parallel multigrid cycle, algebraic and geometric
approaches to parallelization, estimation of the parallel RMT efficiency
and parallel multigrid component analysis.

Keywords: Boundary value problems · Robust multigrid technique ·
OpenMP · Parallel solvers

1 Introduction

Multigrid algorithms are well known for being the fastest numerical methods
for solving elliptic boundary-value problems. There are two trends with respect
to the choice of multigrid components [5]:

– in optimized multigrid algorithms, one tries to tailor the components to the
problem at hand in order to obtain the highest possible efficiency for the
solution process;

– in robust multigrid algorithms, one tries to choose the components indepen-
dently of the given problem, uniformly for as large a class of problems as pos-
sible.

At the end of the 70ies and at the beginning of the 80ies there was a real
boom in research on the multigrid methods. Very interesting multigrid approach
had been proposed and developed in Theoretical Division of the Los Alamos
National Laboratory. In paper [1], P.O. Frederickson and O.A. McBryan studied
efficiency of parallel superconvergent multigrid method (PSMG). The basic idea
behind PSMG is the observation that for each fine grid there are two natural
coarse grids – the even and odd points of the fine grid. Authors tries to develop
optimized multigrid algorithm by combination of these coarse grid solutions for
more accurate fine grid correction. The PSMG and related ideas essentially refer
to massively parallel computing. To keep all processors of a massively parallel
system busy especially on coarse grids, PSMG works simultaneously on many
different grids, instead of working only on the standard coarse grid hierarchy [5].

Also in 1990, S.I. Martynenko (Baranov Central Institute of Aviation Motors,
Moscow) suggested to use similar multiple coarse grid correction strategy for
development of robust multigrid method for black-box software. To avoid termi-
nological confusion, we define software to be black-box if it does not require any
additional input from the user apart from the physical problem specification con-
sisting of the domain geometry, boundary and initial conditions, the enumeration
of equations to be solved (heat conductivity equation, Navier–Stokes equations,
Maxwell equations, etc.) and mediums. The user does not need to know any-
thing about numerical methods, or high-performance and parallel computing [2].
Developed solver is called the Robust Multigrid Technique (RMT), RMT history
is given in [3]. For a theoretical description of RMT and corresponding parallel
analysis, we refer to [2].
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To overcome the problem of robustness, the essential multigrid principle1

has been used in the single-grid solver. RMT has the least number of problem-
dependent components, close-to-optimal algorithmic complexity and high pa-
rallel efficiency for large class of boundary value problems. Application field
of the RMT is mathematical modelling of complex physical and chemical pro-
cesses described by the systems of nonlinear strongly coupled partial differen-
tial equations. As a result, RMT can use not only a segregated smoothers, but
also the coupled Vanka-type smoothers in the multigrid iterations. RMT can
be used as efficient solver on structured grids or as a multigrid preconditioner
on unstructured grids in black-box software [2]. It should be noted that RMT
has close-to-optimal algorithmic complexity: the number of multigrid iterations
needed for solving the boundary value problems is independent of the number
of unknowns, but computational cost of each multigrid iteration is O(N log N)
arithmetic operations. Loss in computational efforts compared to classic multi-
grid (∼ log N arithmetic operations) is a result of true robustness of RMT [2].

In [5], important aspects of parallel classic multigrid are summarized:

– on coarse grids, the ratio between communication and computation becomes
worse than on fine grids, up to a (possibly) large communication overhead
on very coarse grids;

– on very coarse grids we may have (many) idle processes;
– on coarse grids, the communication is no longer local.

The simplest way to construct a parallel multigrid algorithm is to parallelize
all of its components. Although suitable multigrid components may be highly
parallel, the overall structure of standard multigrid is intrinsically not fully par-
allel for two reasons. The first reason is that the grid levels are run through
sequentially in standard multigrid. The second reason is that the degree of par-
allelism of multigrid is different on different grid levels (i.e. small on coarse grids)
[5]. In addition, parallelizing the multigrid components will only allow construct-
ing a small-scale granulated algorithm, it means small tasks can be performed
in parallel.

The Chan-Tuminaro and the Gannon-van Rosendale algorithms both belong
to the class of concurrent methods. The basic approach is to generate indepen-
dent sub-problems for the different grid levels by projection onto orthogonal
sub-spaces. The algorithms differ in the way this decomposition is performed
and the way solutions are combined again.

The algorithm of Fredrickson and McBryan follows a completely different
approach. Opposed to standard multigrid, the method does not employ a single
grid to compute a coarse grid correction, but composes on each level several
coarse grid problems. Ideally, the additional information obtained from these
multiple coarse grids can be used to improve the convergence rate of the multigrid
method, thus improving not only parallel efficiency, but also actual run-time [1]
1 The essential multigrid principle is to approximate the smooth (low frequency) com-

ponents of the error on the coarse grids. The nonsmooth (high frequency) compo-
nents are reduced with a small number (independent of mesh size) of smoothing
iterations on the fine grid [6].
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Large-scale granularity means large tasks that can be performed indepen-
dently in parallel. Goal of the paper is to analyse granularity of the basic com-
ponents of parallel RMT using OpenMP technology. Now the presented approach
is suitable for use only with shared memory systems.

2 Parallel RMT

Let NG0 points form the computational grid G0. We assume that it is possible
to form non-overlapping subgrids Gi ∈ G0 of NGi

points, such what

G0 =
I⋃

i=1

Gi and Gn ∩ Gm = ∅, n �= m.

All subgrids Gi, i = 1, 2, . . . , I form the first grid level and

I∑

i=1

NGi
= NG0 ,

but the finest grid G0 forms zero level. There are a number of the subgrid ge-
neration strategy, but we will be interested in an optimal strategy that minimizes
the approximation error on the coarse grids Gi.

Let 1D uniform grid for the finite volume discretization is defined as

xv
i =

i − 1
N0

x

= (i − 1)hx, i = 1, 2, . . . , N0
x + 1,

xf
i =

xv
i + xv

i+1

2
=

2i − 1
2

hx, i = 1, 2, . . . , N0
x ,

where N0
x is a discretization parameter and hx = 1/N0

x is a mesh size. Points xv
i

and xf
i can be vertices or faces in the finite volume discretization of mathematical

model equations. Figure 1 represents a triple coarsening used in RMT. In this
case, each finite volume on the coarser grids is union of three finite volumes on
the finer grid. It it easy to see that the smoothing steps on different grid of the
same level are independent of each other and can be performed in parallel.

This grid hierarchy will be called a multigrid structure generated by the
finest grid G0. Note that each grid of the multigrid structure can generate own
multigrid structure. The triple coarsening and the finite volume discretization
lead to the problem-independent restriction and prolongation operators [2].

Multigrid cycle of RMT is smoothing on the multigrid structure as shown
on Fig. 2. The multigrid schedule of RMT is sawtooth cycle, i.e. a special case
of the V-cycle, in which smoothing before the coarse grid correction (presmoo-
thing) is deleted [6].

OpenMP is an implementation of multithreading, a method of parallelizing
whereby a primary thread (a series of instructions executed consecutively) forks
a specified number of sub-threads and the system divides a task among them
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Fig. 1. Triple coarsening in RMT: the finest grid and three coarse grids of the first
level.

[8]. The threads then run concurrently, with the runtime environment allocating
threads to different processors. OpenMP uses a portable, scalable model that
gives programmers a simple and flexible interface for developing parallel RMT
for platforms ranging from the standard desktop computer to the supercomputer.

From the parallel point of view, RMT has the following attractive features:

1. All coarse grids of the same level have no common points and the smoothing
iterations can be performed in parallel.

2. The number of grids (known in advance) on each level predicts the number
of threads for parallel RMT.

3. Almost the same number of points on each grid of the same level leads
to almost uniform load balance.

4. The most powerful coarse grid correction strategy used in RMT makes it pos-
sible to use the weak smoothers in the parallel multigrid iterations.

Each grid level of the multigrid structure consists of 3dl grids (the problem
dimension d = 1, 2, 3; l = 0, 1, . . . , L+), where L+ is the coarsest level. Therefore
we should use p = 3κ (κ = 1, . . . , L+) threads for uniform load balance. Case
κ = 0 corresponds to sequential implementation.

Fig. 2. Sequential multigrid cycle of RMT for solving 1D problems.
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Fig. 3. Distribution of the coarse grids of the first level to p = 3d threads.

If we use p = 3κ (κ = 1, . . . , L+) threads for parallel RMT, we have to dis-
tinguish two cases:

– algebraic parallelism κ > dl (finer levels). In the first case, multicoloured
unknown ordering could be viewed as a specific way to parallelize a smoothing
iterations independently of the computational grid [4];

– geometric parallelism κ ≤ dl (coarse levels). In the second case, RMT has
almost full parallelism independently of the smoothing procedure. Distribu-
tion of the coarse grids of the first level to p = 3d (or κ = d = 2, 3) threads is
shown on Fig. 3.

Remember the common measure of parallelism [4]:

Definition 1. The efficiency E of a parallel algorithm is

E =
1
p

T (1)
T (p)

,

where T (1) is an execution time for a single thread and T (p) is an execution
time using p threads.

Now we analyse parallel multigrid cycles. Since RMT has almost full paral-
lelism on the coarse levels (κ ≥ dl), it is possible to perform extra smoothing
iterations on these levels. Figure 4 demonstrates a parallel multigrid cycle with
two extra multigrid iterations on the coarse levels (q∗ = 3). It is clear that par-
allel efficiency of the smoothing iterations of the finest grid will be critical for
the parallel RMT efficiency.

In addition to abovementioned common measure of parallelism, we introduce
measure of parallel properties of the smoothers:
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Fig. 4. Parallel multigrid cycle (q∗ = 3).

Definition 2. The efficiency El of a parallel smoother is

El =
1
p

Tl(1)
Tl(p)

, (1)

where Tl(1) is an execution time for a single thread of the smoother, Tl(p)
is an execution time using p processors and l = 0, 1, . . . , L+ is serial number
of the grid levels.

Since all grids of the same level have the same number of points, it is expected
the execution time for the smoothing iterations is l-independent: Tl(1) = const.
For example, the execution time of the sequential multigrid iteration of RMT
becomes

T (1) = T0(1) + q∗
L+
∑

l=1

Tl(1) =
(
1 + q∗L+

)
T0(1),

where q∗ is the number of the multigrid iterations on coarse levels. Efficiency
of the parallel multigrid cycle shown of Fig. 4 can be estimated as

E ≈ q∗L+ + 1

q∗L+ +
1
E0

.

This estimation predicts that E > E0.
For this cycle, solution u of a boundary value problem should be represented

as
u = c + cd + û,

where c is the coarse grid correction (defined on the finest grid), cd is the coarse
grid correction (defined on the multigrid structures generated by the coarse
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Fig. 5. Simplified parallel multigrid cycle (q∗ = 2).

grids of the first level) and û is approximation to the solution u. This approach
is difficult to use for nonlinear boundary value problems.

Simplified parallel multigrid cycle is shown on Fig. 5. This cycle makes it
possible to apply standard Σ-modification of the solution used in RMT [2].
In this case, efficiency of parallel RMT depends on the number of the multigrid
iterations q:

E(+∞) =
L+ + 1

L+ +
1
E0

< E(q) <
q∗L+ + 1

q∗L+ +
1
E0

= E(1).

To illustrate the simplified parallel multigrid cycle, we consider the model
Dirichlet boundary value problem for the Poisson equation

u′′
xx + u′′

yy + u′′
zz = −f(x, y, z) (2)

in domain Ω = (0, 1)3. Substitution of the exact solution

ua(x, y, z) = exp(x + y + z), (3)

into (2) gives the right-hand side function

f(x, y, z) = −3 exp(x + y + z)

and the boundary conditions.
Let us define error of the numerical solution as

‖e‖∞ = max
ijk

|ua(xi, yj , zk) − ûh
ijk|, (4)

where ûh
ijk is approximation to the solution u.
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As smoother, we use 3 × 3 × 3 block Gauss–Seidel iterations (Vanka–ty-
pe smoother [7]). This means that all 27 unknowns are updated collectively.
As a rule, the Vanka–type smoother is used for solving systems of PDEs including
saddle points problems. Of course, the discrete Poisson problem on an uniform
grid does not require application of the Vanka–type smoother, since for the alge-
braic system that results from the seven-point discretization a point smoother is
efficient, but this algorithm can be used for algorithmic complexity estimation
in simulation of the coupled physicochemical phenomena.

Figure 6 represents reduction of the error (4) in the first multigrid iteration
of the simplified parallel cycle (Fig. 5) starting the iterand zero. After four multi-
grid iterations steps on the multigrid structures generated by the coarse grids
of the first level, error of approximation to the solution of (2) composed from
solutions of 27 independent problems becomes small.

This error can be estimated as follows: for second-order discretization of (2),
we have

‖ua − uh‖ = Ch2.

Second-order seven-point discretization of (2) on coarse grids of the first level
with mesh size 3h results in

‖ua − u3h‖ = C(3h)2 = 9Ch2.

Error estimation becomes

‖uh − u3h‖ ≤ ‖ua − uh‖ + ‖ua − u3h‖ = Ch2 + 9Ch2 = 10Ch2.

i.e. difference between numerical solution and approximation to the solution
is one significant digit.

Compared to the traditional single-grid Seidel method, RMT has a sin-
gle extra problem-dependent component – the number of smoothing iterations.
Numerical experiments are intended for studying efficiency of the parallel com-
ponents of RMT as a function of the unknowns number (or the number N of
grid points used for the boundary problem approximation).

3 Algebraic Parallelism of RMT

Efficiency of Gauss–Seidel method depends strongly on the ordering of equations
and unknowns in many applications. Also, the possibility of parallel computing
depends strongly on this ordering. The equations and unknowns are associated
in a natural way with blocks of the unknowns. It suffices, therefore, to discuss
orderings of the unknown blocks. Figure 7 represents three coloured block order-
ing in one dimension. Multicoloring allows the parallel execution of Gauss–Seidel
relaxation. In d dimensions, such multicoloured block ordering defines the par-
allel block plane smoothing.

If the number of threads is less than the number of grids forming the given
level, unknown blocks partitioning is a natural approach to algebraic parallelism
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Fig. 6. Reduction of the error (4) in 27 independent subproblems (the first multigrid
iteration).

Fig. 7. 1D three coloured ordering of the unknown blocks.

of RMT. In this approach, the set of unknown blocks is split into C3κ (κ =
1, 2, . . .) subsets, such that 3κ available threads can jointly solve the underlying
discrete problem. Here C is the number of colours in the used multicoloured
ordering of the unknown blocks.

Personal computers (Intel(R) Core(TM) i7-4790 CPU@3.60 GHz) and com-
puter cluster K-60 of Keldysh Institute of Applied Mathematics [9] (Russian
Academy of Sciences) are used for the computational experiments for study
of the parallel smoothing efficiency E0 (1) on the finest grid.

Figure 8 represents results of the parallel computations. Reduction of the
parallel RMT efficiency is observed in 27 thread implementation. Smoothing
iterations on the finest grid is small-scale granulated component of RMT, but
large algorithmic complexity of the Vanka-type smoother (∼ N3 arithmetic oper-
ations, for each box, one has to solve a N × N system of equations to obtain
corrections for the unknowns) leads to almost full parallelism.



206 S. Martynenko et al.

Fig. 8. Parallel smoothing efficiency E0 (1) on the finest grid.

4 Geometric Parallelism of RMT

Remember that the problem of the very coarse grids leads to multigrid specific
parallel complications which do not occur in classical single-grid algorithms. This
crucial impact of the coarse grids increases, the more often the coarse grids are
processed in each cycle. A parallel W-cycle, for example, has a substantially
different parallel complexity from that of a parallel V-cycle [5].

An important advantage of the geometric approach to parallelization is the
reduction of the discrete boundary value problem to the set of 3κ independent
problems, which can be solved in parallel without data exchange between pro-
cessors for any used solver. Therefore one aim of parallel RMT is to perform as
little work as possible on the finest grid and to do as much work as possible on
the coarse levels. Extra multigrid iterations on the coarse levels lead to a con-
siderably better parallel efficiency of RMT. Smoothing iterations on the coarse
levels is large-scale granulated component of RMT.

Figure 9 represents results of the parallel solution of the model boundary
value problem (2) on the coarse levels. We perform four multigrid iterations
on the multigrid structures generated by the coarse grids of the first level. Also
reduction of the parallel RMT efficiency is observed in 27 thread implementation.
This test demonstrates a significant loss of efficiency for solving 27 independent
subproblems. It means that the memory access pattern for computing those
multigrid iterations need to be carefully designed, as their performance is very
dependent on the memory bandwidth. Our study illustrates that memory band-
width is a major bottleneck for multigrid. The role of memory and the deepening
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Fig. 9. Parallel smoothing efficiency on the coarse levels.

memory hierarchy on contemporary processors in the performance in numerical
codes cannot be overstated.

Parallel RMT allows one to avoid a load imbalance and communication over-
head on very coarse grids.

5 Parallel Multigrid Iteration

First parallel multigrid iteration of RMT shown on Fig. 5 consists of four multi-
grid iterations on the independent multigrid structures generated by the coarse
grids of the first level (geometric parallelism of RMT) and parallel smoothing on
the finest grid based on the multicoloured block Gauss–Seidel iterations (alge-
braic parallelism of RMT). Figure 10 represents efficiency of the first parallel
multigrid iteration.

6 Remarks on Parallel Implementation

Inefficient memory access is one of the most common performance problems
in parallel programs. The speed of loading data from memory traditionally lags
behind the speed of their processor processing. The trend of placing more and
more cores on a chip means that each core has a relatively narrower channel
for accessing shared memory resources. On NUMA computers, accessing remote
RAM is slower than accessing local memory. Therefore, to access the RAM
of another socket it is necessary to access the QPI or HyperTransport bus, which
is slower than the local RAM access bus. The program analysis performed by the
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Fig. 10. Efficiency of the first parallel multigrid iteration.

Intel VTune Performance Analyzer shows that when 27 thread implementation
using 2 Intel Xeon Gold 6142 v4 processors leads to 15–18% of memory accesses
are accesses to remote memory. It results in reduction of the parallel program
efficiency. This problem does not arise if all threads go to one processor.

Our future work is development of approaches to made memory-bandwidth
efficient for parallel RMT.

7 Conclusions

The RMT has been developed for application in black-box software, because
it has the least number of the problem-dependent components. This technique
can solve many (non)linear problems to within truncation error at a cost of
CN log N arithmetic operations, where N is the number of unknowns and C
is a constant that depends on the problem. Large-scale granularity of the par-
allel RMT (geometric parallelism) coupled with the multicoloured Gauss-Seidel
iterations (algebraic parallelism) lead to almost full parallelism of the multi-
grid iterations. The geometric approach, based on a decomposition of the given
problem into a number of subproblems without an overlap, should be used to
overcome the problems of large communication overhead and idling processors on
the very coarse grids independent of the smoother. Results of numerical experi-
ments on shared memory architectures show the high parallel efficiency of RMT
components.
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