
Computational Aspects of Solving Grid
Equations in Heterogeneous Computing

Systems

Alexander Sukhinov1 , Vladimir Litvinov1,2(B) , Alexander Chistyakov1 ,
Alla Nikitina3 , Natalia Gracheva2 , and Nelli Rudenko2

1 Don State Technical University, Rostov-on-Don, Russia
2 Azov-Black Sea Engineering Institute of Don State Agrarian University,

Zernograd, Russia
3 Southern Federal University, Rostov-on-Don, Russia

Abstract. The prediction of environmental disasters, both technogenic
and natural, is currently based on advances in mathematical modeling.
The high cost and costly maintenance of computing clusters actualizes
the research in the field of heterogeneous computing. One of the direc-
tions of them is to maximize the use of all available hardware resources,
including the central processor and the video adapters (GPU). The pur-
pose of the research is to develop an algorithm and a software mod-
ule that implements it for solving a system of linear algebraic equa-
tions (SLAE) by the modified alternating-triangular iterative method
(MATM) (self-adjoint and non-self-adjoint cases) for the hydrodynamics
problem of shallow water using NVIDIA CUDA technology. The con-
ducted experiment with the flow distribution along the Ox and Oz axes
of the computational grid at a fixed value of the grid nodes along the Oy
axis allowed reducing the implementation time of one step of the MATM
on the GPU. A regression equation was obtained at the experimental
data processing in the Statistica program, on the basis of which it was
found that the implementation time of one step of the MATM on the
GPU is affected only by the number of threads along the axis Oz. The
optimal two-dimensional configuration of threads in a computing unit
executed on a single thread multiprocessor is determined, in which the
calculation time on the GPU for one step of the MATM is minimal.

Keywords: Mathematical modeling · Parallel algorithm · Graphics
accelerator

1 Introduction

The prediction process of environmental disasters of natural and technogenic
nature requires an operational approach in order to reduce the negative con-
sequences on the environment and the population living in the surrounding

Supported by Russian Science Foundation, project № 21-71-20050.

c© Springer Nature Switzerland AG 2021
V. Malyshkin (Ed.): PaCT 2021, LNCS 12942, pp. 166–177, 2021.
https://doi.org/10.1007/978-3-030-86359-3_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86359-3_13&domain=pdf
http://orcid.org/0000-0002-5875-1523
http://orcid.org/0000-0001-8234-3194
http://orcid.org/0000-0002-8323-6005
http://orcid.org/0000-0001-7257-962X
http://orcid.org/0000-0003-3699-7255
http://orcid.org/0000-0001-5468-3626
https://doi.org/10.1007/978-3-030-86359-3_13


Computational Aspects of Solving Grid Equations 167

areas. Hydrophysical processes have a significant impact on the water shoreline,
coastal protection structures and coastal constructions. Currently, the research
of hydrodynamical processes in waters with complex bathymetry is one of the
most important problems. This problem can be effectively solved using mathe-
matical modeling methods.

Mathematical modeling of hydrodynamical processes is based on the Navier-
Stokes motion equations, the continuity equations, as well as the heat and salt
transfer equations. As a result of numerical implementation, a continuous mathe-
matical model is transformed into a discrete one, the solution of which is reduced
to the solution of a system of linear algebraic equations (SLAE).

Many Russian and foreign scientists are engaged in research and forecasting
of aquatic ecosystems. Representatives of the scientific school by G.I. Marchuk
study the computational aspects of atmospheric and ocean physics. Compre-
hensive re-searches of the environment and biota in the Azov and Black Seas
are performed under the leadership of G.G. Matishov. Bonaduce A., Staneva J.
proposed the mathematical models of sea level dynamicss [1]. Marchesiello P.,
Androsov A., etc. scientists are engaged in improving ocean models [2,3]. Devel-
oped software systems, designed for monitoring and forecasting the state of
waters (SALMO, CHARISMA, MARS3D, CHTDM, CARDINAL, PHOENICS,
Ecointegrator), have a number of advantages, are easy to use, and allow solv-
ing computationally labors problems for a wide range of research areas. The
disadvantages include the lack of consideration of the spatially inhomogeneous
transport of water environment, the lack of accuracy in modeling the vortex
structures of currents, the shore and bottom topography [1–4].

The team of authors developed the AZOV3D software, which uses the spatial-
three-dimensional models of the hydrodynamics of shallow waters (coastal sys-
tems). These models include the motion equations in all three coordinate direc-
tions and taking into account the wind stress, bottom friction, complex geometry
of the shore and bottom of water, Coriolis force, precipitation evaporation, as
well as the nonlinear character of microturbulent exchange in the vertical direc-
tion [5]. Testing of this software was performed during the reconstruction of the
extreme storm surge of water on September 23–24, 2014 in the port area of
Taganrog, when the level rise was more than 4 m at the average depth of the
bay is about 5 m. The prediction was performed with the error of 3–5%.

The complex geometry of the computational domain requires the use of com-
putational grids with a large number of nodes in spatial coordinates. As a result,
it’s necessary to solve the SLAE with dimension from 107, 109 and more [6]. The
implementation of such calculations for the time interval from the occurrence of
an emergency to the receipt of forecasting results, established by regulatory acts,
is very difficult without the use of parallel computing and supercomputer tech-
nologies. The high cost and costly maintenance of computing clusters actualizes
research in the field of heterogeneous computing, which aims to maximize the
use of all available hardware resources, which include video adapters along with
the central processor. Modern video adapters have a large amount of VRAM
(up to 24 GB) and stream processors, the number of which can achieve the sev-



168 A. Sukhinov et al.

eral thousand. There are software interfaces that allow you to implement the
computing process on a graphics accelerator, one of which is NVIDIA CUDA.
International research teams are actively conducting research in this area [7,8].

The purpose of the research is to develop algorithms for solving large-dimen-
sional SLAE in a limited time, and their software implementation in the envi-
ronment of heterogeneous computing systems.

2 Grid Equations Solving Method

Let A be is linear, positive definite operator (A > 0) and in a finite-dimensional
Hilbert space H it is necessary to solve the operator equation [9, 10]

Ax = f,A : H → H. (1)

For the grid Eq. (1), iterative methods are used, which in canonical form can be
represented by the equation [9,10]

B
xm+1 − xm

τm+1
+ Axm = f,B : H → H, (2)

where m is the iteration number, τm+1 > 0 is the iteration parameter, B is the
preconditioner. Operator B is constructed proceeding from the additive repre-
sentation of the operator A0 – the symmetric part of the operator A

A0 = R1 + R2, R1 = R∗
2, (3)

where A = A0 + A1, A0 = A∗
0, A1 = −A∗

1.
The preconditioner is formed as follows

B = (D + ωR1) D−1 (D + ωR2) ,D = D∗ > 0, ω > 0, (4)

where D is the diagonal operator, R1, R2 are the lower- and upper-triangular
operators respectively.

The algorithm for calculating the grid equations by the modified alternating-
triangular method of the variational type is written in the form:

rm = Axm − f,B(ωm)wm = rm, ω̃m =

√
(Dwm, wm)

(D−1R2wm, R2wm)
,

s2m = 1 − (A0w
m, wm)2

(B−1A0wm) (Bwm, wm)
, k2

m =

(
B−1A1w

m, A1w
m

)
(B−1A0wm, A0wm)

, (5)

θm =
1 −

√
s2
mk2

m

(1+k2
m)

1 + k2
m (1 − s2m)

, τm+1 = θm
(A0w

m, wm)
(B−1A0wm, A0wm)

,

xm+1 = xm − τm+1w
m, ωm+1 = ω̃m,



Computational Aspects of Solving Grid Equations 169

where rm is the residual vector, wm is the correction vector, the parameter sm

describes the rate of convergence of the method, km describes the ratio of the
norm of the skew-symmetric part of the operator to the norm of the symmetric
part.

The method convergence rate is:

ρ ≤ ν∗ − 1
ν∗ + 1

, (6)

where ν∗ = ν
(√

1 + k2 + k
)2

, where ν is the condition number of the matrix
C0, C0 = B−1/2A0B

−1/2.
The value ω is optimal for

ω =

√
(Dwm, wm)

(D−1R2wm, R2wm)
(7)

and the condition number of the matrix is estimated C0:

ν = max
y �=0

(
1
2

+

√
(Dy, y)(D−1R2y,R2y)

(A0y, y)

)
≤ 1

2

(
1 +

√
Δ

δ

)
=

1 +
√

ξ

2
√

ξ
, (8)

where ξ = δ
Δ , D ≤ 1

δ A0, R1D
−1R2 ≤ Δ

4 A0.

3 Software Implementation of the Method for Solving
Grid Equations

To solve the hydrodynamics problem, a computational grid is introduced as [11]

w̄h = tn = nτ, xi = ihx, yi = jhy, zk = khz;n = 0, nt − 1, i = 0, n1 − 1,

j = 0, n2 − 1, k = 0, n3 − 1, ntτ = T, n1hx = lx, n2hy = ly, n3hz = lz,

where τ is the time step; hx, hy, hz are space steps; nt is the time layers number;
T is the upper bound on the time coordinate; n1, n2, n3 are the nodes number by
spatial coordinates; lx, ly, lz are space boundaries of a rectangular parallelepiped
in which the computational domain is inscribed.

At discretization the hydrodynamics model, we obtained a system of grid
equations. Each equation of the system can be represented in a canonical form.
We will use a seven-point template (Fig. 1):

c(m0)u(m0) −
6∑

i=1

c(m0,mi)u(mi) = F (m0),

m0(xi, yj , zk) is the template center, M ′(P ) = {m1(xi+1, yj , zk), m2(xi−1,
yj , zk), m3(xi, yj+1, zk),m4(xi, yj−1, zk),m5(xi, yj , zk+1),m5(xi, yj , zk−1)} is the



170 A. Sukhinov et al.

Fig. 1. Grid template for solving hydrodynamic equations.

neighborhood of the template center, c0 ≡ c(m0) is the template center coeffi-
cient, ci ≡ c(m0,mi) are coefficients of the neighborhood of the template center,
F is the vector of the right parts, u is the calculated vector.

The developed software module uses one-dimensional arrays. The transi-
tion from a three-dimensional representation of the grid node (i, j, k) to a one-
dimensional (node number) is performed using the following formula:

m0 = i + jn1 + kn1n2.

The numbers of nodes in the neighborhood of the template center are calculated
by the formulas:

m1 = m0 + 1,m2 = m0 − 1,m3 = m0 + n1,
m4 = m0 − n1,m5 = m0 + n1n2,m6 = m0 − n1n2.

The MATM algorithm consists of four stages:

– calculating the values of the residual vector rm and its uniform norm;
– calculating the correction vector wm;
– calculating the scalar products and iterative parameters based on them

τm+1, ωm+1;
– transition to the next iterative layer.

The computational process is performed until the norm of the residual vector
reaches the specified accuracy.

The most laborious part of the algorithm is the calculation of the correction
vector from the equation:

(D + ωR1)ym = rm, (D + ωR2)wm = Dym.

The algorithm fragment of solving SLAE with the lower-triangular matrix is
given below (Algorithm 1).



Computational Aspects of Solving Grid Equations 171

Algorithm 1. matm(IN: c0, c1, c2, c3, c4, c5, c6, ω; OUT: r)
1: for k ∈ [1; n3 − 2] do
2: for i ∈ [1; n1 − 2] do
3: for j ∈ [1; n2 − 2] do
4: m0 ← i + n1 · j + n1 · n2 · k
5: if c0[m0] > 0 then
6: m2 ← m0 − 1; m4 ← m0 − n1; m6 ← m0 − n1 · n2

7: r[m0] ← (ω · (c2[m0] · r[m2] + c4[m0] · r[m4] + c6[m0] · r[m6]) +
r[m0])/((0.5 · ω + 1) · c0[m0])

8: for k ∈ [n3 − 2; 1] do
9: for i ∈ [n1 − 2; 1] do

10: for j ∈ [n2 − 2; 1] do
11: m0 ← k + n3 · j + n2 · n3 · i
12: if c0[m0] > 0 then
13: m1 ← m0 + n2 · n3; m3 ← m0 + n3; m5 ← m0 + 1
14: r[m0] ← (ω · (c1[m0] · r[m1] + c3[m0] · r[m3] + c5[m0] · r[m5]) +

r[m0] · c0[m0])/((0.5 · ω + 1) · c0[m0])

The residual vector is calculated in 14N arithmetic operations, where N is
a basic arithmetic operation such as adding, multiplying etc. The complexity of
calculating the values of the correction vector is 19N arithmetic operations (9N
and 10N each for solving SLAE of upper-triangular and lower-non-triangular
types, respectively). The transition to the next iteration will require 2N arith-
metic operations. In total, the total number of arithmetic operations required to
solve the SLAE with a seven-diagonal matrix using MATM in the case of known
iterative parameters τm+1, ωm+1 is 35N .

We determine the complexity of adaptive optimization of the minimum cor-
rection MATM. The calculation of A0w

m, A1w
m and R2w

m vectors requires
13N , 11N and 7N operations each. The multiplication of vectors by diagonal
operators D−1 and D will require N operations each. The conversion B to deter-
mine vectors B−1A0w

m and B−1A1w
m will require 19N operations each. It is

also necessary to calculate 6 scalar products, each of which will require 2N oper-
ations. Thus, each adaptive optimization of the minimum correction MATM
requires 83N arithmetic operations in the non-self-adjoint case and 49N in the
self-adjoint case. The calculation process of iterative parameters τm+1, ωm+1 is
laborious, but its establishment is observed quite quickly at solving grid equa-
tions in the adaptive case. As a result, these parameters do not need to be
calculated at each iteration.

4 Parallel Implementation

Parallel algorithms focused on heterogeneous computing systems were developed
for numerical implementation of the proposed hydrodynamics model. Each com-
puting node of the system can contain from 1 to 2 central processing units (CPU)
containing from 4 to 32 cores, and from 1 to 4 NVIDIA video accelerators with



172 A. Sukhinov et al.

Fig. 2. Decomposition of the computational domain. Node1, Node2, Node3 are com-
putational nodes; CPU , GPU are fragments of the computational domain, calculated
on the CPU and GPU, respectively; blockDim.x, blockDim.z – dimensions of the com-
puting CUDA block.

CUDA technology (GPU), having from 192 (NVIDIA GeForce GT 710) to 5120
(NVIDIA Tesla V100) CUDA cores. Data exchange between nodes is performed
using MPI (Message Passing Interface) technology. An algorithm that controls
all available CPU and GPU threads performs the organization of calculations
on each node. The computational domain is divided into subdomains assigned
to the computational nodes. Next, each subdomain is divided into fragments
assigned to each CPU core and each GPU computing unit (Fig. 2).

The solution of mathematical modeling problems using numerical methods,
in particular, the finite difference method (FDM) on equal-dimensional grids,
leads to the necessary to use with sparse matrices, the elements of which for
internal nodes are a repeating sequence. This leads to inefficient memory con-
sumption in the case of high-dimensional problems. Using the CSR (Compressed
Sparse Row) matrix storage format avoids the necessary to store null elements.
However, all non-zero elements, including many duplicate ones, are stored in
the corresponding array. This disadvantage is not critical at using computing
systems with shared memory. However, it can negatively affect the performance
at data transferring between nodes in heterogeneous and distributed computing
systems. A CSR1S modification of the CSR format was developed to improve



Computational Aspects of Solving Grid Equations 173

the efficiency of data storage with a repeating sequence of elements for modeling
hydrodynamic processes by the finite difference method. In this case, to change
the differential operator, instead of repeatedly searching and replacing values in
an array of non-zero elements, it is enough to simply change them in an array
that preserves a repeating sequence.

Let’s consider the conversion of a sparse matrix from CSR1S to CSR for-
mat. The input data of the algorithm is an object of the matrix class with
repeated elements SMatrix1Seq, encapsulating an array of non-zero elements
V alues; the array of indexes of columns, containing non-zero elements ColIdx;
the array of indexes of non-zero elements that are first in the rows (the last
element of the array is the total number of non-zero elements) RowIdx; the
array for storing a repeating sequence; the array for storing the indexes of
columns, containing the first elements of a repeating sequence. In this case,
the V alues, ColIdxandRowIdx arrays indicate elements that are not part of a
repeating sequence. The output data – an object of the MatrixCsr class – a
sparse matrix in CSR format containing arrays V alues, ColIdxandRowIdx. The
data types and array assignments are similar to the corresponding arrays of the
SMatrix1Seq class. We present an algorithm for converting a sparse matrix from
the CSR1S to CSR format.

1. Calculation the size of the MatrixCsr class arrays (output arrays).
2. Reserving of RAM for storing output arrays.
3. Saving the resultV alues array size value.
4. Copying the non-repeating elements from the V alues input array to the

resultV alues output array.
5. Filling the resultV alues array with duplicate elements using CUDA.
6. Copying the column indexes of non-repeating elements.
7. Copying the column indexes of duplicate elements using CUDA.
8. Copying the indexes of rows, containing non-repeating elements.
9. Copying the indexes of rows, containing duplicate elements using CUDA.

10. Generating an output object of the MatrixCsr class, containing the
resultV alues array of non-zero elements, an array of column indexes of non-
repeating elements, and an array of row indexes, containing non-repeating
elements.

11. Clearing the resources, returning the result to the calling method.

Let’s estimate the memory capacity in the CSR format:

Pcsr = NnzBnz + (Nnz + R + 1)Bidx,

in the CSR1S format:

Pcsr1s = (Nnz − Nseq(Rseq + 1))Bnz + (Nnz − Rseq(Nseq + 1) + R + 1)Bidx,

where R is the number of matrix rows; Rseq is the number of matrix rows,
containing a repeating sequence of elements; Nnz is the number of non-zero
matrix elements; Nseq is number of elements in a repeating sequence; Bnz is



174 A. Sukhinov et al.

the memory capacity to store a single non-zero element; Bidx to store a single
non-zero element to store a single index.

Let’s introduce the coefficients kr = Rseq/R and ki = Bidx/Bnz. After arith-
metic transformations, we obtained the following:

Pcsr1s = Bnz[Nnz(ki + 1) − Nseq(kikrR + krR + 1) − ki(krR − R − 1)].

Efficient function libraries have been developed to solve the system of grid
equations that arise during the sampling process in CSR format on GPUs using
CUDA technology. The developed algorithm for solving the problem uses the
modified CSR1S data storage format with further conversion to the CSR format
to solve the resulting SLAE on a graphics accelerator using NVIDIA CUDA
technology. In this case, there is the problem of developing a matrix conversion
algorithm the from CSR1S to CSR format in the shortest possible time.

Experimental researches of the dependence of the execution time of the trans-
formation algorithm on the number of elements of the repeated sequence Nseq

and the ratio of the matrix rows containing the sequence to the total number
of rows kr were performed. According to the obtained results, the algorithm
with using NVIDIA CUDA technology is more efficient at Nseq > 7. The point
of equal efficiency decreases starting from kr = 0.7. The resulting regression
equation kr = −0.02Nseq + 0.08329 with the determination coefficient 0.9276
describes the boundary of equal time consumption of the sequential algorithm
and the algorithm using NVIDIA CUDA. Thus, we can calculate the minimum
value kr, by substituting a value Nseq into it, above which the second algorithm
will be more efficient than the first.

The part of the computational load is passed to the graphics accelerator to
increase the efficiency of calculations. For this, the corresponding algorithm and
its software implementation on the CUDA C language were developed [12].

An algorithm for finding a solution to a system of equations with a lower-
triangular matrix (straight line) on CUDA C is given (Algorithm 2).

The input parameters of the algorithm are the vectors of the coefficients
of the grid equations c0, c2, c4, c6 and the constant ω. The output parame-
ter is the vector of the water flow velocity r. Before running the algorithm,
we must programmatically set the dimensions of the CUDA computing block
blockDim.x, blockDim.z in spatial coordinates x, z, respectively. The CUDA
framework runs this algorithm for each thread; in this case, the values of the vari-
ables threadIdx.x, threadIdx.z, blockIdx.x, blockIdx.z automatically initialized
by the indexes of the corresponding threads and blocks. Global thread indexes
are calculated in rows 1 and 2. The row index i, the layer index k, which the
current thread processes, are calculated in rows 3 and 5. The variable j is initial-
ized in row 4, representing a counter by coordinate y. The calculation pipeline
is organized as a loop in line 6. The indexes of the central node of the grid tem-
plate m0 and surrounding nodes m2,m4,m6 are calculated in rows 8, 10–12. The
two-dimensional array cache is located in the GPU shared memory and designed
to store the calculation results of on the current layer by the coordinate y. This



Computational Aspects of Solving Grid Equations 175

allows us to reduce the number of reads from slow global memory and accelerate
the calculation process by up to 30%.

The conducted researches represent a significant dependence of the imple-
mentation time of the algorithm for calculating the preconditioner on the ratio
of threads in spatial coordinates.

Algorithm 2. matmKernel(IN: c0, c2, c4, c6, ω IN/OUT: r;)
1: threadX ← blockDim.x · blockIdx.x + threadIdx.x
2: threadZ ← blockDim.z · blockIdx.z + threadIdx.z
3: i ← threadX + 1
4: j ← 1
5: k ← threadZ + 1
6: for s ∈ [3; n1 + n2 + n3 − 3] do
7: if (i + j + k = s) ∧ (s < i + n2 + k) then
8: m0 ← i + (blockDim.x + 1) · j + n1 · n2 · k
9: if c0[m0] > 0 then

10: m2 ← m0 − 1; m4 ← m0 − n1; m6 ← m0 − n1 · n2

11: rm4 ← 0
12: if (s > 3 + threadX + threadZ) then
13: rm4 ← cache[threadX][threadZ]
14: else
15: rm4 ← r[m4]

16: rm2 ← 0
17: if (threadX �= 0) ∧ (s > 3 + threadX + threadZ) then
18: rm2 ← cache[threadX − 1][threadZ]
19: else
20: rm2 ← r[m2]

21: rm6 ← 0;
22: if (threadZ �= 0) ∧ (s > 3 + threadX + threadZ) then
23: rm6 ← cache[threadX][threadZ − 1]
24: else
25: rm6 ← r[m6]

26: rm0 ← (ω·(c2[m0]·rm2+c4[m0]·rm4+c6[m0]·rm6)+r[m0])/((0.5·
ω + 1) · c0[m0])

27: cache[threadX][threadZ] ← rm0
28: r[m0] ← rm0

29: j ← j + 1

GeForce MX 250 video adapter was used in experimental researches; it specifi-
cations: the VRAM capacity is 4 GB, the core clock frequency is 1518–1582 MHz,
the memory clock frequency is 7000 MHz, the video memory bus bit rate is
64 bits, and the number of CUDA cores is 384.

The purpose of the experiment is to determine the flow distribution along
the Ox and Oz axes of the computational grid at fixed value of grid nodes along
the Oy axis, equal to 10000, so that the implementation time on the GPU of
one MATM step is minimal.



176 A. Sukhinov et al.

Two values are taken as factors: X is the number of threads on the axis Ox,
Z is the number of threads on the axis Oz. The criterion function TGPU is the
implementation time of a single MATM step on GPU, ms.

The composition of the streams X and Z must not exceed 1024. This restric-
tion is imposed by CUDA, since 1024 is the number of threads in a single block.
Therefore, the levels of variation of the factors X and Z were chosen as shown
in the Table 1.

Table 1. Experiment results.

X Z TGPU , ms

16 64 64

32 32 65

64 16 81

128 8 109

256 4 100

512 2 103

The regression equation was obtained in the result of experimental data pro-
cessing:

TGPU = 119.797 − 9.371 log2 Z, (9)

where TGPU is the implementation time of a single MATM step on GPU, ms;
Z is the number of threads on the axis Oz. The coefficient of determination was
0.78.

As a result of the analysis of experimental data, it was found that only the
number of threads along the axis Oz affects the implementation time of one
MATM step on GPU. The implementation time of one MATM step on GPU is
inversely proportional to the number of nodes of the computational grid along
the axis Oz. The calculation time decreases according to the logarithmic law at
increasing the number of nodes along the axis Oz. Therefore, it is advisable to
perform the domain decomposition in the form of parallelepipeds, in which the
size on the Oz axis is maximum, and on the Ox axis is minimal.

Due to the conducted experimental researches, we established the optimal
values of X and Z, which were equaled to the 16 and 64, respectively.

5 Conclusion

The algorithm and software unit that implements it were developed in the result
of the conducted researches to solve the SLAE, which arises during the sampling
of the hydrodynamics problem of shallow water, MATM using NVIDIA CUDA
technology. The method of domain decomposition, applicable for heterogeneous
computing systems, was described. The developed modification of the CSR –



Computational Aspects of Solving Grid Equations 177

CSR1S format made it possible to increase the efficiency of data storage with
a repeating sequence of elements. It is determined that the algorithm using the
NVIDIA CUDA technology is more effective at Nseq > 7. In this case, the point of
equal efficiency decreases, starting from kr = 0.7. The optimal two-dimensional
configuration of threads in a computing unit, implemented on a single thread
multiprocessor, was determined, in which the implementation time on GPU of
a single MATM step is minimal and equaled to the 64 ms.

References

1. Bonaduce, A., Staneva, J., Grayek, S., Bidlot, J.-R., Breivik, Ø.: Sea-state contribu-
tions to sea-level variability in the European Seas. Ocean Dyn. 70(12), 1547–1569
(2020). https://doi.org/10.1007/s10236-020-01404-1

2. Marchesiello, P., Mc.Williams, J., Shchepetkin, A.: Open boundary conditions for
long-term integration of regional oceanic models. Oceanic Modell. J. 3, 1–20 (2001)

3. Androsov, A.: Straits of the world ocean. General approach to modeling, St. Peters-
burg (2005)

4. Nieuwstadt, F., Westerweel, J., Boersma, B.: Turbulence. Introduction to Theory
and Applications of Turbulent Flows. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-31599-7

5. Sukhinov, A., Atayan, A., Belova, Y., Litvinov, V., Nikitina, A., Chistyakov, A.:
Data processing of field measurements of expedition research for mathematical
modeling of hydrodynamic processes in the Azov Sea. Comput. Continuum Mech.
13(2), 161–174 (2020). https://doi.org/10.7242/1999-6691/2020.13.2.13

6. Sukhinov, A., Chistyakov, A., Shishenya, A., Timofeeva, E.: Predictive modeling
of coastal hydrophysical processes in multiple-processor systems based on explicit
schemes. Math. Models Comput. Simul. 10(5), 648–658 (2018)

7. Oyarzun, G., Borrell, R., Gorobets, A., Oliva, A.: MPI-CUDA sparse matrix-vector
multiplication for the conjugate gradient method with an approximate inverse pre-
conditioner. Comput. Fluids 92, 244–252 (2014)

8. Zheng, L., Gerya, T., Knepley, M., Yuen, D., Zhang, H., Shi, Y.: GPU implemen-
tation of multigrid solver for stokes equation with strongly variable viscosity. In:
Yuen, D., Wang, L., Chi, X., Johnsson, L., Ge, W., Shi, Y. (eds.) GPU Solutions to
Multi-scale Problems in Science and Engineering. Lecture Notes in Earth System
Sciences, pp. 321–333. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-16405-7 21

9. Konovalov, A.: The steepest descent method with an adaptive alternating-
triangular preconditioner. Differ. Eqn. 40, 1018–1028 (2004)

10. Sukhinov, A., Chistyakov, A., Litvinov, V., Nikitina, A., Belova, Y., Filina, A.:
Computational aspects of mathematical modeling of the shallow water hydrobio-
logical processes. Numer. Methods Program. 21(4), 452–469 (2020). https://doi.
org/10.26089/NumMet.v21r436 https://doi.org/10.26089/NumMet.v21r436

11. Samarsky, A., Vabishchevich, P.: Numerical methods for solving convection-
diffusion problems. URSS, Moscow (2009)

12. Browning, J., Sutherland, B.: C++20 Recipes. A Problem-Solution Approach.
Apress, Berkeley (2020)

https://doi.org/10.1007/s10236-020-01404-1
https://doi.org/10.1007/978-3-319-31599-7
https://doi.org/10.1007/978-3-319-31599-7
https://doi.org/10.7242/1999-6691/2020.13.2.13
https://doi.org/10.1007/978-3-642-16405-7_21
https://doi.org/10.1007/978-3-642-16405-7_21
https://doi.org/10.26089/NumMet.v21r436
https://doi.org/10.26089/NumMet.v21r436
https://doi.org/10.26089/NumMet.v21r436

	Computational Aspects of Solving Grid Equations in Heterogeneous Computing Systems
	1 Introduction
	2 Grid Equations Solving Method
	3 Software Implementation of the Method for Solving Grid Equations
	4 Parallel Implementation
	5 Conclusion
	References




